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Abstract

Some developments in the theory of function spaces involving differences are shown.
Difference and new characterizations of Besov, Sobolev and Triebel-Lizorkin spaces on
metric measure spaces, on the Euclidean space and on averages balls are studied. We
obtain directly and perfectly the dual multi-parameter, singular integrals and boundedness
of the composition operators on Triebel-Lizorkin and Besov spaces associated with
singular integrals with different homogeneities and of regular distributions. We introduce
the method of Hormander type theorems for multi-linear and boundedness of multi-
parameter Fourier multiplier operators with limited smoothness and on Triebel-Lizorkin
and Besov-Lipschitz spaces of logarithmic smoothness, approximation spaces and limiting
interpolation. We explain the treatments of the characterizations of generalized and
logarithmic Besov spaces in terms of differences, Fourier-analytical decompositions,

wavelets bases and semi-groups.
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Introduction

On a metric measure space satisfying the doubling property, we establish several
optimal characterizations of Besov and Triebel-Lizorkin spaces, including a pointwise
characterization.

The theory of one-parameter Triebel-Lizorkin and Besov spaces has been very well
developed in the past decades, the multi—parameter counterpart of such a theory is still
absent. The main purpose is to develop a theory of multi-parameter Triebel-Lizorkin and
Besov spaces using the discrete Littlewood—Paley—Stein analysis in the setting of implicit
multi—parameter structure. It is motivated by Han and Lu in which they established a
satisfactory theory of multi—parameter Littlewood—Paley—Stein analysis and Hardy spaces
associated with the flag singular integral operators studied by Muller—Ricci—Stein and
Nagel-Ricci—Stein. The theory of Triebel-Lizorkin and Besov spaces in one-parameter
has been developed satisfactorily, not so much has been done for the multi-parameter
counterpart of such a theory. We introduce the weighted Triebel-Lizorkin and Besov
spaces with an arbitrary number of parameters and prove the boundedness of singular
integral operators on these spaces using discrete Littlewood—Paley theory and Calderon’s
identity. This is inspired by the work of discrete Littlewood—Paley analysis with two
parameters of implicit dilations associated with the flag singular integrals recently
developed by Han and Lu. We introduce new Triebel-Lizorkin and Besov Spaces
associated with the different homogeneities of two singular integral operators.

We obtain a wavelet representation in (inhomogeneous) Besov spaces of generalized
smoothness via interpolation techniques. We establish conditions on the parameters which
are both necessary and sufficient in order that Besov and Triebel-Lizorkin spaces of
generalized smoothness contain only regular distributions.

We characterize the Triebel-Lizorkin space E&, (R™) via a new square function

1 q\1/4
— ka —
Sa,q(f)(x)—{;Z B2 Jyy [~ IO } :

where € L,.(R™) nS'(R"), x € R",a € (0,2) and p,q € (1,]. We show several
equivalent characterizations of Sobolev spaces of even integer orders on R", using the
average

1
B f(x) := Bx 0] B(x’t)f(J’)dY»

of a function f over the ball B(x,t) :={y e R*: |y — x| <t} with x e R" and t €
(0,00). Let £ € Nand p € (1, o]. We show that the sequence {f — B, ,-kf }rez COnsisting
of the differences between f and the ball average B, ,-«f characterizes the Besov space
B, (R™) with q € (0, ] and the Triebel-Lizorkin space £ (R™) with g € (1, 0] when
the smoothness order a € (0, 2¢). It is shown that f — B, ,-«f plays the same role as the
approximation to the identity ¢,-x x f appearing in the definitions of Bg{q(Rn) and
EZ&, (R™).

We are concerned with the limited smoothness conditions in the spirit of Hormander on
the multi-linear and multi-parameter Coifman—Meyer type Fourier multipliers studied by
C. Muscalu, J. Pipher, T. Tao, C. Thiele where they established the L" estimates for the
multiplier operators under the assumption that the multiplier has smoothness of

Vil



sufficiently large order. We study the duality theory of the multi-parameter Triebel-
Lizorkin spaces F,"7(R™) associated with the composition of two singular integral
operators on R™ of different homogeneities. Such composition of two singular operators
was considered by Phong and Stein in 1982. For 1 < p < oo, we establish the dual spaces
of such spaces as (F,"*(R™))* = F§'q (R™), and for 0 < p < 1 we prove (F,"?(R™))* =

CMOQ“"”(R’”). We then show the boundedness of the composition of two Calderon-
Zygmund singular integral operators with different homogeneities on the spaces

CMO, wd’ Surprisingly, such dual spaces are substantially different from those for the

classical one-parameter Triebel-Lizorkin spaces Tp“’q(Rm). We show that under the

limited smoothness conditions, multi-parameter Fourier multiplier operators are bounded
on multi-parameter Triebel-Lizorkin and Besov—Lipschitz spaces by the Littlewood—Paley
decomposition and the strong maximal operator.

We compare Besov spaces Bg;fl’ with zero classical smoothness and logarithmic
smoothness b defined by using the Fourier transform with the corresponding spaces ngg

defined by means of the modulus of smoothness. With the help of limiting interpolation
we determine the spaces obtained by iteration of approximation constructions. We work

with Besov spaces By defined by means of differences, with zero classical smoothness
and logarithmic smoothness with exponent b.
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Chapter 1
Developments in Theory and Characterizations of Besov Spaces

We show some recent developments of distributional Sobolev—Besov spaces and
Sobolev—Besov spaces of measurable functions of positive smoothness which can be
characterized in terms of differences. We discuss their (non) triviality under a Poincarée
inequality.
Section (1.1) Function Spaces Involving Differences

For 1 < p < oo. The classical Sobolev spaces W,'(R™) can be characterized as the

collection of all f € L,,(R™) such that there exists a function 0 < g € L,(R") with

f)—fMI<Ix—yl(gx)+9(»)), xyeR* ae. (1)
Furthermore,

IF W R™)|| ~ [|f 1L, (R™]| + inf [|g]L, (RM], (2)
where the infimum is taken over all g with (1). The idea of dealing with Sobolev spaces of
first order in terms of pointwise inequalities goes back to Bojarski and Hajtasz [7, 26].
This approach has been extended afterwards by Bojarski and coauthors to higher-order
Sobolev spaces. See [3, 4, 5, 6, 8, 25]. It is quite clear that pointwise estimates of type (1)
and even more their counterparts for higher-order Sobolev spaces, usually defined as
distributional spaces or spaces of measurable functions, require some care and
justification. This new approach attracted a lot of attention. (1), (2) have been extended in
[69] to spaces Wy (R™) with ke N and 0 <p < oo. If 1 <p < oo, then WE(R") =
W (R™) are the classical Sobolev spaces. If 0 <p <1, then W/ (R™) are no longer
spaces of distributions, but of measurable functions. One may understand I/I/Z,"(]R{") as a
proposal how the classical Sobolev spaces Wp"(Rn) can be extended naturally from
1 <p<oto0 <p < oo. These pointwise characterizations can be used to have a new
look at embedding assertions of Besov—Sobolev spaces in terms of differences, [30], limits
of Besov norms and reformulations of some Gagliardo—Nirenberg inequalities, [61, 63].
We concentrate on definitions, explanations and assertions referring for proofs to the
above mentioned. However, we wish to make this presentation accessible to a larger
audience interested in function spaces and how the outlined specific topic is located
within.

We introduce distributional function spaces and smoothness spaces of measurable
functions. We recall some known relations. Deals with properties of the spaces
Lf,(]R{”)", 0<p<o,0<s<kEeN, covering in particular the above-mentioned spaces
W’g (R™),0 <p < o,k € N. Afterwards we apply these assertions to embeddings and to
limits of Besov norms and to Gagliardo—Nirenberg inequalities.

Let N be the collection of all natural numbers and N, = N U {0}. Let R™ be Euclidean n-
space, where n € N. Put R = R, whereas C is the complex plane. Let S(R™) be the usual
Schwartz space and S’'(R™) the space of all tempered distributions on R™. Furthermore,
L,(R™), with 0 < p < oo, is the standard complex quasi-Banach space with respect to the
Lebesgue measure in R™, quasi-normed by

1/p
Iritaol = ([ 1reor ax) ©

with the natural modification if p = co. As usual Z is the collection of all integers; and Z",
n € N, denotes the lattice of all points m = (m,,...,m,) € R" with m; € Z. Let Ng ,
n € N, be the set of all multi-indices,



n
a = (ay,...,ap) witha; € Ny and |«a] =Zaj. (4)
j=1

If @ € S(R™), then
$(©) = (Fp)(©) = (2m) /2 j e p(x)dx, EER, 5)

]Rn
denotes the Fourier transform of ¢. As usual, F~1¢ and ¢" stand for the inverse Fourier
transform, given by the right-hand side of (5) with i in place of —i. Here x¢ stands for the
scalar product in R™. Both F and F~! are extended to S’(R") in the standard way. Let

0o € S(R™) with

@o(x) =1if|x|] <1 and po(y) =0if |y| = 3/2, (6)
and let
o () = 9o(27%%) — 9o 27**'x), x€R", keN. (7)
Since
Zgoj(x) =1 for x € R", (8)
j=0

the ¢;’s form a dyadic resolution of unity. The entire analytic functions (qo i f )V(x) make
sense pointwise in R™ for any f € S'(R").

Definition (1.1.1) [74] Let ¢ = {@;}}~, be the above dyadic resolution of unity.

(i) Let

0<p< oo, 0 <q < o, s € R (9)
Then By ,(R™) is the collection of all f € S"(R™) such that /
j 2 q
1185 DI, = > 2%l ) I, RO | <o (10)
j=0
(with the usual modification if g = ).
(i) Let
0<p<oo, 0<q < o, s € R (11)
Then E;,(R™) is the collection of all f € S"(IR™) such t/hat
co 1/a
IS @I, = [ D 25l @h Ol | L@y || <e (12)
j=0

(with the usual modification if g = o).
Remark (1.1.2) [74] The theory of these spaces may be found in [65, 66, 67]. The above
spaces are independent of admitted resolutions of unity according to (5)—(8) (equivalent
quasi-norms). This justifies our omission of the subscript ¢ (in (10), (12)) in what follows.
We remind a few special cases and properties referring for details to the above, especially
to [67, Section 1.2].
(i) Let 1 < p < . Then
L,(R™) = F,),(R™) (13)
is a well-known Littlewood—Paley theorem.
(i) Let1 < p < o and k € Ny.Then
WE(R™) = Ff,(RM) (14)
are the classical Sobolev spaces usually equivalently normed by
2



1/p
)| = (Z IID“fle<R“>||”> - (15)

|a|<k

(iii) We denote by

C*(R™) = B, »(R"), s ER, (16)

the Holder—Zygmund spaces. Let
QRO = flx+h) = f(x),  (AFf)(x) = AL (ALf) (), (17)
where x € R", h € R",[ € N, be the iterated differences in R". Let 0 < s < m € N. Then
IF1CE (Rl = sup |f ()| + sup|h|~ |AR f (%) (18)

are equivalent norms in CS(R™) (for the continuous representatives), where the
second supremum in (18) is taken over all x € R® and h € R™ with 0 < |h| < 1.
(iv) This assertion can be generalized to the spaces B, ,(R™), with

1
0<pq<oo and s>ap=n(max<g,1)—1), (19)
as follows. Let s < k € N. Then
1 o dt\"1
171854 DI, = [1f 1L, R™)]| + ( j 77 sup|[ARf1L, (R™)| 7> (20)
0 <

and

1/q
11850, = ol + ([ e i@l ) @

(with the natural modifications if g = o) are equivalent quasi-norms in B, ,(R™). See
[65, Theorem 2.5.12, p. 110]. The spaces B, ,(R™) with 1 < p,q < o and s > 0 are the
classical Besov spaces.

We deal with function spaces not only in the framework of distributions but also of
Lebesgue-measurable functions in R™. Let M (IR™) be the collection of the equivalence
classes of all almost everywhere finite complex-valued functions with respect to the
Lebesgue measure in R™. This linear space, furnished with the convergence in measure,
can be converted into a complete metric space. A short description may be found in [60, p.
19] see [43, Section 1.5]. One may consider M (R™) as the largest space covering
everything that will be treated of measurable functions including the definition of the
spaces By ,(R"), L} (IR%”)" and the convergence of series. It is the substitute of S'(R™) of
the distrlbutlonal spaces according above. But for our purpose it is sufficient to remark
that the convergence in the quasi-Banach space L, (R™), 0 < p < oo, is stronger than in M
(R™), [60, p. 19]. Let again AXf(x) = (A f)(x) with k € N, x € R*, h € R", and
f € M (R™), be the iterated differences as introduced in (17).

Definition (1.1.3) [74] (i) Let 0 <p,q <o and s> 0. Let k € Nwith s < k.Then
B, ,(R™) is the collection of all f € L,,(R™) (or likewise f € M (R™), such that
1/q

171854, = 1, R+ [ e suplla i, o) 5 @22)

is finite (with the usual modification if g = oo)
(i) Let 0 <p < coand s > 0. Let k € N with s < k. Then L3(R™)* is the collection of
all f € L,(R™) (or likewise f € M (R"), for which there exists a function g € L,(R")
with g(x) = 0 a. e. such that for all h € R™® with 0 < |h| < 1,

3



k
|h|~S|A%f(x)] < zg(x +1lh) a.e.in R™ (23)
1=0

Let

| 165 (R™)¥[| = [|£1L,, (R™)]| + inf || g L, (RM) (24)

where the infimum is taken over all g with (23).
(ili) Let 0 < p < o and k € N. Then
W (R™) = LE(R™). (25)

Remark (1.1.4) [74] The spaces B, ,(R™) have some history, when 1 < p,q < o0, s > 0.
The study for all admitteds, p and g goes back to [57], relevant comments and references
may be found in [67, pp. 387-389]. See [1, Chapter 5, Definition 4.3] and [15, Chapter 2,
Section 10]. An approach including atomic and quarkonial characterizations is given in
[29, 31, 49], see also [52, 71]. B} ,(R™) are quasi-Banach spaces which are independent
of k € N with s < k (equivalent quasi-norms). The equivalence of (20) and (21) can be
extended to the spaces By ,(R™) by the same arguments as in [65, Theorem 2.5.12, p.
110]. In other words, if 0 < p,qg < oand 0 <s < k € N, then

. dh \1
1£1B5a D], = [IfI1L,(R™)]| +<f |h| =5 IIA’ﬁfILp(R")lqu> (26)

|h|=1
is an equivalent quasi-norm in B3 ,(R™). By (19), (20) one has
By ,(R") =B, ,(R") if 0<p,q <o, s > oy (27)
(appropriately interpreted). Recall that all spaces in the above definition must be
understood of M(R™), hence in terms of equivalence classes, especially
L5, (R™)* & L,(R™) © M(R™). (28)
This applies to (23) for any fixed h € R™ with 0 < |h| < 1. We remark that L;(R")k are
quasi-Banach spaces. Related arguments may be found in [69, p. 73] which will not be
repeated here. It is sufficient to restrict (1) to x € R", y € R™ with |x —y| < 1. Then it
follows from the above definition that
Wi (R™) = WI(R™), 1<p <o (29)
We complement the spaces B, ,(R™) by the corresponding spaces F; ,(R™).
Let Ay, A; be two complex quasi-Banach spaces with A; & A, (continuous embedding).
Let 0 <6 <1and0<gq <. Then (4,,4;)e, are the usual real interpolation spaces,

quasi-normed by
1/q

°° _ dt

||a|(A0,A1)9’q|| = jo t94 a=(11I01£a1,(||a0|A0” +t||a1|A1||)qT (30)
ajEAj

(with the usual modification if g = o). Basic information may be found in [2, 62]. Let

Lip*(R™) with k € N be the Lipschitz spaces consisting of all f € L., (R™) such that
|If ILip*(R™)|| = sup |f ()| + sup|h| ™ |k f (x)] (31)
X n

is finite, where the second supremum is taken over all x € R™ and all h € R" with
0 < |h| < 1. See [69, p. 73] where one finds some discussion about these spaces and
equivalent norms. Recall that the near by Holder—Zygmund spaces C*(R™) according to
(16) can be normed by (18). As usual, C*¥(R™),k € N, collects all functions f having
bounded classical derivatives D% f with |a| < k, normed by



IFIC*RDII = ) supID“f (o). (32)
lal<k ™
It is well known that for k € N,
C*(R™) & Lip*(R™) © C*(R™) (33)
and
CK(R™) # Lip*(R™), Lip*(R™) # C¥(R™). (34)
One may consult [69, p. 75] and [68, pp. 170-172] as far as (34) with k = 1 is concerned.
This can be extended to k € N. As before “ < ” indicates continuous embeddings.
Theorem (1.1.5) [74]
(Let0<s<keNand0 < p < o0.Then

B} minep.n(R™) © L5, (RN © By, (R™). (35)
(iLet0<s<ke N,O0<p<oo0<O<land0 < q <oo. Then
(Lp(R™), Ly (RM) ) = By (R™). (36)
(i) Letk e Nand 1 < p < oo. Then
W/ (R™) = W (R™M). (37)
Furthermore,
WE(R™) = Lip*(R™) & ¢*¥(R™),  Lip*¥(R™) # C*(R™). (38)

Remark (1.1.6) [74] This coincides essentially with the main theorem in [69], where one
finds detailed proofs. The most complicated assertion of the above theorem is the left-hand
side of (35). Its proof is based on subatomic decompositions of B, , (R™). Afterwards one can
reduce (36) to the reiteration theorem of interpolation theory and the remarkable formula
(Lp(R™), B;:‘h(Rn))g’qz = By, (R™), (39)

where p,q:,q, € (0,0],s >0 and 0 < 8 < 1. See [18, Theorem 6.3, p. 859] and the
related comments in [68, pp. 373-374] and [69, p. 74].
Remark (1.1.7) [74] The assertion (37) extends (29), and hence (1), (2), from k =1 to
k € N. This will be used later on. One obtains (38) from (23)—(25) and (34). Recently
Bojarski proved in [5] that (37) remains valid if one replaces (23) by

Ak FO| < 1x —yI*(g(x) + g()) a.e.,0< g € L,(R"), 1 <p <o,k €N, (40)
where x € R™, h € R™ and y = x + kh. This is the direct generalization of (1), (2).

The spaces B, ,(R™) according to Definition (1.1.3) (i) are independent of k € N with
s < k. We have no assertion of this type for the spaces L;, (R™)¥ introduced in Definition
(1.1.3) (ii).

Problem (1.1.8) [74] Let 0 < p < o and s > 0. The question arises whether the spaces
L5, (R™)* depend on k € N if s < k.
Remark (1.1.9) [74] If p = oo, then it follows from Definition (1.1.3) and from (16), (18)
that

LS, (RM)* = BS, (R™) = BS, »(R™) = C5(R"), 0<s<kEeN. (41)
It is not clear whether assertions of this type can be extended to p < co. Based on (23),
(24) there is a temptation to ask whether L$,(R™)* with 0 <p <ocoand 0 <s<k €N
coincides with B; .,(R™). But it will be seen below that in general this is not the case and
that there is a more promising candidate.

We complement the spaces B; ,(R™). according to Definition (1.1.3) (i) by their F-

counterparts. Let f € L,(R") with 0 <p < oo and let (A% f)(x) be the differences as
introduced in (17). Let



1/p
ak () = (t‘” f| | |(A',gf)<x)|pdh> . 0<t<w, xeR,  (42)
h|st

be the related local means. Let 0 <p <o, 0<g<o and0<s<k€eN. Then
F; ,(R™).is the collection of all f € L,,(R™) (or likewise f € M(R™)) such that

1 de\?
183, = Ity ol + ([ eseatyrn ) ipmn| @
0
is finite, where
£ 18500 RM|, = [If 1Ly RD]| + Os<1:<plt‘sd’t‘,pf(-)|Lp(R") - (44)

The theory of these spaces has been developed in [67, Chapter 9], [53, 54], and
complemented in [69]. They are independent of k € N with s < k. Of interest for us are
the embeddings
pmin(p.q) (R © E5g(R™) © By oo oy (R, (45)
for s>0,0<p<,0<q<o, see [53] (extending the well-known result [65,
Proposition 2.3.2/2] to spaces of type B; , and F; ), and
F5 o (R") = o, (R™), 0<p<oo, S > 0. (46)
Here F; ., (R™) are the distributional spaces according to Definition (1.1.1) (ii) and o, has
the same meaning as in (19). F; ., (R™) is smaller than B, ., (R™)According to [69, (4.7),
p. 80], the right-hand side of (35) can be strengthened by
L(RM* o F5,(R"), 0<p<o, 0<s<keN. (47)
This suggests complementing Problem (1.1.8) and Remark (1.1.9) as follows.
Problem (1.1.10) [74] Let 0 < p < oo and s > 0. The question arises whether
L5, (R")* = F§ ,(R") forallk € N with s <k. (48)
Remark (1.1.11) [74] A first affirmative answer was given by Yang who proved in [72,
Corollary 1.3, p. 686] that
LS(RM = F5 o (RY) = F(R"), 1<p<ow, 0<s<]1, (49)
where the second equality is covered by (46). In this context we mention also the
remarkable observation in [38],
W (R™) = HA(R™) = FL,(R™), nL-I—l <p<w (50)
(Hardy—Sobolev spaces). Both (49) and (50) have been extended substantially in [39, 40].

We deal with necessary and sufficient conditions for the Sobolev-type embeddings

n n
Bi,g,q (Rn) o Lr(Rn) with s — 5 = —;, (51)

where 0 < p,q < 0,1 <r < oo, s > 0, employing (37), based on (23)—(25). First we fix
an easy consequence of (25). Recall that we normed the classical Sobolev spaces W,,"(R”)
with 1 < p < o0,k € N, according to (15).
Proposition (1.1.12) [74] Let 1 < p < oo and k € N. Then
(i) the norms

IF WD ~ [|f 1L, RD]| + Sup IR |85 1L, (R (52)

are equivalent in W,*(R™);

(ii) the seminorms

D eI, RO~ sup [BI7F|ak 1L, R (53)
2 heR™\{0}
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are equivalent in W, (R™);

Theorem (1.1.13) [74] Let 0 < p < 0,0 < g< 0,1 <r <ocoand s > 0 withs — (n/p) =
—n/r. The following assertions are equivalent.

(i) Bpq(R™) & L.(R™).

(i)0<g<r.

(iii) For all k € Ny, K € N with s + k < K there is a constant ¢ = ¢, x > 0 such that
IF1L- (R + oSup Ihl AR fIL- (R

1/q
sc||f|Lp(1Rn)||+c<L<|hl<1|h| s+ia || AKfIL, (R”)” Ihln> (54)

for all f € M(R™) (with the usual modification if g = ).
(iv) Forall k € Ny, K € N with s + k < K there is a constant C = C x > 0 such that

h 1/q
SupIhI k|| Akp|L, (RM|| < C(j. |h|~6+0a || A% ‘P|Lp(Rn)” |h|n> (55)
|h|>0

for aII @ € D(R™) (with the usual modification if g = o0).
Remark (1.1.14) [74] This is the main assertion of [30]. The equivalence of (i) and (ii) is
well known and covered, for instance, by [68, Theorem 11.4, p. 170], based on [55].
Corresponding assertion for By ,(R™) can be found in [29] and, in case of 1 < p,q < o
and s > 0, in [1, Chapter 5, Theorem 4.6, Corollaries 4.20, 4.21], [24] and [36]. Roughly
speaking, one lifts (i) to the level of Sobolev spaces, hence

B5tE(R™) & WA (R™M), k €N, (56)
and applies Proposition (1.1.12) (i). But the details require some effort. Part (iv) is a
homogeneity assertion similarly as (53).

In the homogeneous case (and dealing with generalized moduli of smoothness) there are
related results in [59, Theorem 2.4]. Moreover, assertions of type (iii) and (iv) can also be
regarded as inequalities of Ul’yanov type referring to the first observation of this kind
[70]; for more recent works (in the periodic case) see [19, 58].

Dealing with spaces of generalized smoothness, sharp (limiting) embeddings were
studied in some detail in [12, 14] with forerunners in [11, 13, 47]; see also [42, Theorem
D.4.1.7]. The most general result may be found in [27], but this only concerns criteria in
the sense of (i) and (ii). Though characterizations of such spaces by differences, the full
counterpart of Theorem (1.1.13) as presented above has apparently not yet been obtained.

We describe two further applications of the above considerations. we deal with limits of
Besov norms and in the following we deal with some related aspects of Gagliardo—
Nirenberg inequalities.

Let 1 < p < co. Then it had been observed in [9, 10] that there is some constant ¢ > 0

such that
. If() = fFMIP _ .
lslgl(l —5) B Py Er dxdy = CJRn|Vf(x)| dx (57)

for all f € D(R™). Limiting assertions of this type attracted afterwards some attention. A
few references will be given later on. Otherwise we follow [63] where we applied the
above theory to problems of this type. Recall that the spaces B ,(R™) can be quasi-
normed by (22) and (26), in analogy to (20), (21). Let W/ (R™) be the Sobolev spaces
according to (25) with (37) if 1 < p < oo. Let

wi(f, ), = sup”A fIL,(RM|, 0<p<ow, >0, kE€N, (58)
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be the usual moduli of continuity.
Proposition (1.1.15) [74] (i) Let 0 < p < o0 and k € N. Then there is a constant ¢ > 0
such that for all s with 0 < s < k and all g with 0 < g < oo,

IF 1B R, < c(atk = )|l FIwE®RD) (59)
(with 1 in place of (q(k — 5))~ Y4 if q = o).
(ii)Let1 <p <ocoand k € N. Let f € WE(R™). Then t*w,(f, t), is continuous on the
interval (0,1] and can be extended continuously to the closed interval [0,1] with

sup t *wy (f,t), = sup t *wy(f, ), = limt *w,(f, t),. (60)
t>0 o<ts1 tlo

Recall again that ||f|B5 ([R")”k is given by (22).
Theorem (1.1.16) [74] (i) Let 1 < p < 00,0 < g < coand k € N. Let f € Wj(R™). Then
lim(k — )| f1B5sRM|, = ¢~ limt ™ w,(f, ). (61)
(iLetl <p < 00,0 <qg<ooandk € N. Then there are positive equivalence constants
which are independent of g and f € W,’,‘(]R%"). (but may depend on p, k) such that

lim(k — )"/ £|BS o (R, ~ g7/0 > IDfIL, R (62)
|la|=k
Remark (1.1.17) [74] We refer to [63]. From
_ _ ° dt
lim(k — )| f1L, R + lim(k ~ 5) j M (f, p— =0 (63)
it follows that one can replace (61) by the more handsome homogeneous version
00 dt 1/q
: _ \1/q -sq, .4 - — A—1/q7; -k
lslTI}Cl(k S) <j0 t™w, (f, t)y ” ) q lgf})lt wi(f,t)p- (64)
This is also the basis to prove (62) which can be rewritten as
. 0o ~ dt 1/q B
lslgcl(k _ S)l/q <L t Sqwg(f, t)p T) ~ q 1/q Z ||D6¥f|Lp(]R")”_ (65)

|la|=k
Gagliardo—Nirenberg inequalities go back to [22, 50]. In 1959, Nirenberg proved in [50,
Theorem, p. 125] that for 1 < u,p < o0,k € Ny and m € Nwith k <m,

0
D PP L, ®D|| < c||f|Lu<Rn)||1-9( > ||D“f|Lp<Rn)||> (66)
|Bl=k la|l=m

for smooth functions f in R™ with compact support, where

n n n k
k——:—(l—e)—+9(m——), —<60<1 (67)
v u p m

(with some additional conditions in limiting cases). Here —oo < 1/v < oo where L, (R™)
with s = —n/v > 0 refers to the Holder spaces C°(R™) (an ingenious notation but not in
common use nowadays). In the same year, 1959, Gagliardo published in [22] inequalities
which are equivalent to Nirenberg’s observation, but formulated differently. The assertion
(66) with (67) is dimension balanced (differential dimensions on both sides of (67)). This
suggests formulating assertions of type (66) preferably in terms of homogeneous (semi-)
norms. Gagliardo—Nirenberg inequalities, sometimes also called refined Sobolev
embeddings, attracted a lot of attention up to our time. We contributed to this topic in [61]
and [64, Chapter 4]. We formulate essentially only one assertion which is directly related
to (66), (67) and to the above considerations, especially (53). Recall that the Holder—
Zygmund spaces C*(R™), s > 0, can be normed according to (18).
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Theorem (1.1.18) [74] Let 1 <p < 00, 1 <u < o0, m € N and
n n n
m—5>0=—(1—0)a+9<m—g>>0. (68)
Then there is a constant ¢ > 0 such that for all f € W,™(R") N L, (R™),

heR™\{0},

0
sup [RI~|A7F ()] < c||f|Lu<Rn)||1-9< > ||D“f|Lp<R“>||>

xX€ERM |arl=m
_ _ 0
~ fIL(R™*7 sup [h|=™ ||A7fIL,(R™)||". (69)
heR™\{0}
From
g+
0<f=—=E—-<1 (70)
m-——+—
p u
and
n n n n n
9m=0+—+9(———>=0+9—+(1—9)—>a (71)
u p u D u

it follows that (69) fits in the usual scheme of Gagliardo—Nirenberg inequalities. The
equivalence in (69) comes form (53). Otherwise the above theorem coincides essentially
with [61, Remark 3.7] where it is a comment on Gagliardo—Nirenberg inequalities. See
[35, 41, 51].
Section (1.2) Triebel-Lizorkin Spaces on Metric Measure Spaces

For (X,d) a metric space and p be a regular Borel measure on X such that all balls
defined by d have finite and positive measures, and assume that p satisfies a doubling
property: there exist constants C; > 1 and n > 0 such that for all x € X,r € (0,) and
A € (1,0),

W(B(x,Ar)) < GA"W(B(x,1)).

The following definition of Besov spaces from [23].
Definition (1.2.1) [95] Let s € (0,) and p, q € (0, c]. The homogeneous Besov space
B ,(X) is defined to be the collection of all u € L} (X) such that

loc

o a/p 1/q
lull s o, = () — u) P duGIdpG) | <
By a(X) y uly)au 1+sq
0 x B(x,t)

with the usual modification made when p = oo or g = o.
Above, u € L} (X) requires that u € LP(B) for each ball B.

loc
Observe that functions in B;,q(X) have the smoothness of order s as measured by

1/p
t=s ()( lu(x) —u@)|P du(y)>
B(x,t)

Recall that, there are several ways to measure the smoothness of functions. For example,
letting s € [0,0),e € [0,s] and o € (0,00), for all measurable functions wu, set

Co () = ( f 1

=l du(y)>a,



1
AP (W)(x) =t~3 <JL lu(x) — uB(x,t)la d#()’)) ,
B(x,t)
3

570 = ¢ (ggg b - du(y)> ,

(x,t)

1/0
SS9 (w)(x) =t sup r=¢ (inf)L lu(x) —cl|? d#()’)) :
B(x,t)

re(0,t) CER
forall x € X and t € (0, 00).

We show that the smoothness of functions in Besov, spaces can be measured by the
above quantatives with optimal parameters. We introduce the following spaces of Besov
type. In what follows, we denote by CS the operator that maps each u € L, .(x) into a
measurable function €5 (u) on X x (0, o) defined by €5 (u)(x, t) = € (u)(x) for all
x € Xand t € (0,00). We define Aso ,fS"’ and §s€9,

Definition (1.2.2) [95] Let s, 0 € (0,),€ € [0,s] and p, q € (0, ]. For E = €57, 457 ,[*°
or $S€9 the homogeneous space F?Bp,q (x) of Besov type is defined to be the collection of
all u € LJ,.(x) such that

o = q 1/q
lilzs, 0 = (I IEG@C Ol 5) " <o

with the usual modification made when p = oo or g = o.

For our convenience, for s € (0,0) and p € (0, oo], we always set

_ (np/(n—ps), if p<n/s;
p)= {7 AN (72)
Definition (1.2.3) [95] Let s € (0,0) and let u be a measurable function on X. A
sequence of nonnegative measurable functions, g = {gx}xez, is called a fractional s-
Hajtasz gradient of u if there exists E ¢ X with u(E) = 0 such that for all k € Z and
x,y € X\E satisfying 27%"1 < d(x,y) < 27%,
lu(x) —u)| < [d(x ¥)]°[gr(x) + g (V)]

Denote by D®(u) the collection of all fractional s-Hajtasz gradients of wu.

In fact, § = {gx}rez , above is not really a gradient. One should view it, in the
Euclidean setting (at least when g, = g; for all k, j), as a maximal function of the usual
gradient.

The characterizes the Besov spaces in Definition (1.2.1) via the fractional Hajtasz
gradient. In what follows, for p,q € (0, 0] and a sequence g = {gx}xez Of nonnegative

1/
|lq = {Zjerlg;|"} " when g < e and “{91'}

functions, we always write ||{gj}jEZ

SUPjez |gj|v ||{gj}jez ||lq(Lp(x)) = ||{“gj”Lp(x)}jeZ q
Definition (1.2.4) [95] Let s € (0, ) and p, g € (0, o]. The homogeneous Hajtasz-Besov
space N, (x) is the space of all measurable functions u such that

lullys 00 = g,egyzu)”g“lq@p(x)) < .

Theorem (1.2.6) and (i) through (iv) of Theorem (1.2.5) follow from Theorem (1.2.12)
below, whose proof relies on an inequality of Poincare type established in Lemma (1.2.7)
and a pointwise inequality given by Lemma (1.2.10). The proof of (v) through (vii) of
Theorem (1.2.5) will be given at the end.
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We state the corresponding results for Triebel-Lizorkin spaces (see Theorem (1.2.16)).
As a special case, we also establish the equivalence between Hajtasz-Sobolev spaces and
the Sobolev type spaces of Calderon and DeVore-Sharpley (see Corollary (1.2.18)).

Applying the above characterizations, we prove the triviality of Besov and Triebel-
Lizorkin spaces under a suitable Poincaré inequality (see Theorem (1.2.19) and Theorem
(1.2.20)), and also give some examples of nontrivial Besov and Triebel-Lizorkin spaces to
show the “necessity” of such a Poincaré inequality (see Theorem (1.2.21)).

The notation A S B or B= A means that A< CB. If A= B and B < A, we then write
A ~ B. For two spaces X and Y endowed with (semi-) norms, the notation X < Y means
that u € X implies that u € Y and ||ully < ||ullx, and the notation X =Y means that
X cYandY c X. Denote by Z the set of integers and N the set of positive integers. For
any locally integrable function f, we denote by fEf du the average of f on E, namely,

1
fofdu = —= [ f du.
Theorem (1.2.5) [95] Let s € (0, ) and p, g € (0, ].
(i) If o € (0,p], then B3, (x) = C5°B3,(x).
(ii) If & € (0,p.(s)), then B . (x) = I59B, (x).
(iii) If € € [0,5) and & € (0,p.(s)), then By, (x) = S5 B3 . (x).
(iv)Ifp e (n/(n+ s),o] and o € (0,p.(s)), then Bg,q (x) = /TS"’B,g,q (x).
Moreover, the ranges of € and o above are optimal in the following sense.
(v) Lets € (0,1),p € (0,n/s) and ¢ > p.(s). Then there exists a function u such that for
all q€(0,0],u€Bj, (R") but uélLf (R"), and hence, for E =A% ,[%7 or
§$€% u ¢ EBS ,(R™).
(vi) Let p € (0,00),0 € (p,0) and s € (0,n/p —n/o) N (0,1). Then there exists a
function u such that for all ¢ € (0, %], u € B ,(R™) butu ¢ C>?B, ,(R™).
(vii) Let s € (0,1) and p € (0,00). Then there exists a function u € Bg,q(]R%") with

u & SSPB, L (R™.
It is natural and necessary to consider the full range of s due to the nontrivial example of
nontrivial Besov spaces B,i/s, nss (x) forall s € (0, ) given by Theorem (1.2.21).

A fractional pointwise gradient was introduced in [40] to measure the smoothness of
functions.

Theorem (1.2.6) [95] Let s € (0,0) and p, q € (0, ]. Then N3, (x) = B ,(x) .

Under the additional assumptions that i also satisfies a reverse doubling condition,0 <
s<landp >n/(n+1), Bg,q (x) also allows for a kernel function characterization [90].
Proofs of Theorem (1.2.5) and Theorem (1.2.6)

We begin with a Poincaré type inequality.

Lemma (1.2.7) [95] Let s € (0,) and p € (0,n/s). Then for every pair of ¢,€' € (0,s)
with € < €', there exists a positive constant C such that for all x € R™, k € Z, measurable
functions u and g € D% (u),

1/p.(e) 1/p
inf <]( lu(y) — cl”*(e)du(y)> < C27ke Z 2‘1(5‘6){f [gj(y)]pdu(y)}
CER B(x,Z‘k) B(x,2‘k+1)

j2k—-2
where p, (€) isas in (72).

Recall that when s € (0,1] and X = R", Lemma (1.2.7) was established in [40, Lemma
2.3]. Generally, Lemma (1.2.7) can be proved by an argument similar to that of [40,
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Lemma 2.3] with the aid of the following variant of [85, Theorem 8.7]. In what follows,
for every s € (0, ) and measurable function u on X, a non-negative function g is called
an s gradient of w if there exists aset E ¢ X with u(E) = O such that forall x,y € X \E,
[u(x) —u@)| < [d(x, »)]°[g(x) + g(¥)]. (73)
Denote by D*(u) the collection of all s-gradients of wu.
Lemma (1.2.8) [95] Let s € (0,),p € (0,n/s) and let p,(s) be as in (72). Then there
exists a positive constant C such that for all x € X,r € (0,00), and all measurable
functions u and g € D*(w),

1/p.(s) 1/p

inf ][ lu(y) — c|PSdu(y) <Crs )[ [9; )] du@)
B(x,r) B(x,21)

When s € (0,1], since d*® is also a distance on X, Lemma (1.2.8) follows from [85,
Theorem 8.7]. When s € (1,), with p <n/s in mind, checking the proof of [85,
Theorem 8.7] line by line, we still have Lemma (1.2.8).

We still need the following pointwise inequality, which is a variant of the pointwise
inequality established in [40, (5.7)].

Lemma (1.2.9) [95] For every real-valued measurable function wu, there exists a
measurable set E < X with u(E) = 0 such that for all z € X\E,
u(z) = limu(B)—m,Baz my, (B).

Lemma (1.2.9) was proved in [79, Lemma 2.2] for X = R", and the very same argument
gives Lemma (1.2.9).

Lemma (1.2.10) [95] Let o € (0, o). Then there exists a positive constant C such that, for
each function u € L7, .(X), one can find a set E with p(E) = 0 so that for each pair of
points x, y € X\E with d(x,y) € [27F"1,27K),

lu(x) —u(y)l
1/0 1/o0
<C z érelﬂg ( )[ lu(w) — c|“dw> + clgﬂg f lu(w) — Cladwl (74)
jzk—-2 B(x,27/) B(y,277)

To prove Lemma (1.2.10), we need Lemma (1.2.9) above. In what follows, for a real
valued measurable function u and a ball B, define the median value of u on B by

m, (B) = max {a ER pu{{x € B:u(x) <a}) < @} (75)

Proof. Let u be a real-valued measurable function and E be the set given by Lemma
(1.2.9). Then for all z € X\E, by Lemma (1.2.9), m,(B(z,277)) - u(z) as j > o, and
hence

lu(z) — my(B(z,279))| < zlmu(B(Z» 277)) = my(B(z,27771)|
j=k

= Z “mu(B (z,277)) = CB<z.z-f>| + |mu(B (z,2771) = CB(z-z-f)”'
j=k

where ¢, ,-7 is a real number such that

o
J[ |u(w) - cB(Z_Z_,-)| du(w) < 2 inf )( u(w) — c|du(w).
B(z,277) B(z.27))
We claim that for every ball B and each c € R
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1/0
Imy(B) —c| < {2 ][Iu(W) - CI"du(W)} : (76)
B

Assume that this claim holds for a moment. We have

1/0
|mu (B(z, Z‘f)) — CB(Z_Z—j)| < {2 f |u(w) — CB(Z_Z_j)lg d,u(w)}

B(z.27)
1/0
= ggﬂg{ f e - CI"du(W)} (77)
B(z,27J)
and
1/0
|mu (B(Z, Z_j_l)) — CB(Z.Z_j)| < {2 JL |u(w) — C'B(le_j)|‘I dW}
B(z.27J 1)
1/0 1/0
= { ]‘ luw) - cB(Z,Z_j)rdw} S inf { f lu(w) — clc’dw} (78)
B(z,277) B(z,27)
Therefore,
1/0
) = my (B2, 27| < ) ggﬂg{ ]‘ Ju(w) - CI"du(W)} . (79)
jzk B(z,rJ)

For x,y € X\E with 27%"1 < d(x,y) < 27%, we write
[ux) = u@) < [uCe) = my (BG,279)| + my (BGo 27541 = g

|Cp(xak+1y = Mu (B, 27| + [u(y) = mu(B(y, 27))|.
By an argument similar to that of (78), we have

+

1/0
|CB(x’2—k+1) —my,(B(y,27%)| s érellg{ lu(w) — cladw} )
B(x,27k+1)
which together with (79) and (77) gives (74).
Now we prove the claim (76). For every ball B and each ¢ € R, observing that m,,_.(B)
= m,(B) — c and recalling that |m, (B)| < m,,(B) as proved in [79, Lemma 2.1], we have

|m, (B) — c| < my,_(B) . By this, (76) is reduced to

1/0
Myy—ci(B) < {2 f [u(w) — CI"du(W)} . (80)

To see this, letting § = fBlu(W) — ¢|?dw, by Chebyshev’s inequality, for every a > 2, we
have
,u({w € B:lu(w) —c| = (a5)1/"}) = u({w € B: |lu(w) — c|? = ad})
u(B)

< (ad)™ ! flu(w) —c|%dw < —
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which yields that
B
u({w € B:lu(w) — c| < (a8)/°}) > %
and hence by (75), m,—(B) < (a8)Y/?. Then letting a — 2, we obtain (80) and hence
prove the claim (76). This finishes the proof of Lemma (1.2.10).
We also use the following lemma.

Lemma (1.2.11) [95] Let s, 0 € (0,),€ € [0,s] and p,q € (0,]. Let E = C57, 457, [*°
or $$€9_ Then for each measurable function u,

||u“§3p,q(x)~ ”{E(u)(x, Z_R)}keZ || lq(Lp(x)).

Proof. Observe that E(u)(x,t) S E(w)(x,27%*1) for all t € (27%27%+1] and x € X,
from which (81) follows by a simple computation. This finishes the proof of Lemma
(1.2.11).

With the aid of Lemma (1.2.7), Lemma (1.2.10) and Lemma (1.2.11), we obtain the
following result, which, together with the fact 55'po,q (x) = B, 4(x), implies Theorem
(1.2.6) and (i) through (iv) of Theorem (1.2.5).

Theorem (1.2.12) [95] Let s € (0,0) and p, q € (0, oo].
(i) If ¢ € (0,p], then N5, (x) = CB,, ,(x).
(ii) If & € (0, p.(s)), then N, (x) = I%°B, . (x).
(iii) If € € [0,s) and o € (0, p.((s)), then Ng,q(x) = §S'E*UBp,q(x).
(iv)Ifpe (n/(n+s),o]and o € (0,p.((s)), then Ng,q(x) = /TS"’Bp,q (x).
Proof. First, notice that if u(X) < oo, then
diam X = sup d(x,y) < . (82)

x,yEX
Indeed, suppose that diam X = oco. Fix a ball B(x,,1,) € X. By our assumptions on p, we
have (B (xq,75)) > 0. Notice that for any x; € X with d(xq,x,) = 21, by the doubling
property and B (x,,1y) € B(xq,2d (x4, Xo)), We have

U (B (xl,%d(xl,xo)» > (C) M4 (B(xp Zd(xpxo))) = (C1)_14_nﬂ(3(x0»7"0))-
Let 7, = 2d(x, x,). Since B (xl,%d(xl,x0)> A B(xo,7y) = 0, We have

u(x) > .U(B(xlirl)) > [1+ (Cl)_14_”],u(B(x0,r0)).
Repeating this procedure for N times, we can find x5 € X and ry > 0 such that
u(x) > #(B(XN:TN)) >[1+ (C1)_14_n]M(B(xN—1'TN—1))
> 2> plx) > [1+ (61)_14_n]#(3(x0;7”0)),
which tends to infinity as N — co. This is a contradiction. Thus diam X < co.

Assume that 2 %01 < diam X < 27%o for some k, € Z. Observe that
1/q

(81)

= q
lullzs, o~ | . @270,
k=ko—2
and that for any g € D(u), we can always take g, = 0 for k < k, — 2. Because of this,
the proof of Theorem (1.2.6) for the case pu(X) < oo is a slight modification of that for the
case pu(X) = oo below. In what follows, we only consider the case u(X) = oo.
We first prove (ii) and (iii). Observing that
I7° () < 87 (W) (x) (83)
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for all t € (0, ) and x € X, we have S5¢7B,  (x) c [*?B, ,(x). So it suffices to prove
that fs'“Bp,q (x) © N3 ,(x) c §5'6’“Bp,q (x).

To prove I%7B,,(x) € N5, (x), let u € [*°B, ,(x) and E with p(E) =0 be as in
Lemma (1.2.10). By Lemma (1.2.10), it is easy to see that for x,y € R™\E and d(x,y) €
[2—k+1’2—k),

[u(x) —u@)| < Cld(x,y)]° Z 2003 [P (W) (x) + L5 ). (84)
Fork € Z, set e

g = 2 206-15 39 (u), (85)

jzk—2
Then g = {gi}rez € D(u) modulo a fixed constant and it is easy to check that

lglearcon = 15500y ooy

see the proof of [40, Theorem 2.1] for details. So, by Lemma (1.2.11), u € Ng,q (x) and
”ullstmq(x) = ”g)llfq(’“p(x)) s ”{IZSLUR(u)}kEZ 29(LP (x)) N ”ullis'aBp.q(x)' (86)

This leads to 1% B,, , (x) N3, (x).
To prove that NS, (x) © S%¢9B,, . (x), since o < p,(s), we can choose €’ € (0, s) and
6 € (0,p) such that 0 < 6,(e") =né/(n—€'6). We also let €” € (¢',s) and €' €
(0,min{s — €'',s — €}). For given u € szlq(x), take g € DS(u) with IIQ’II{;q(Lp(x)) <
2lullys - Set
hk — Zkelu z Z_ielu g

izk
for k € Z. Then k = {hy }ke, € DS (W), h; < 200" b, for any i > k, and moreover, it is
easy to check

||h||{)q(Lp(x)) 5 ”g)”{’q(l,p(x)) 5 “u“NIS)'q(x); (87)

see the proof of [40, Theorem 2.1] for details. Then by Lemma (1.2.7), for all j € Z and
j =k,

1/0
1% (w)(x =2j€<inf)( u(z) —cl°d z>
oW (x) inf B(x,z—f)l (z) — c|? du(z)
(n—-€'8)/nés
< 2J€ <inff u(z) - c|n8/(n—€'8) d,u(z))
B(x,27J)

ceR

1/6
< 2JepJe" 2its=e" hi(2)]°d
D (f rey [ u(z))

i2j—2

1/6
< 2/(€=9) Z 20-D(=¢") (f [hi(Z)]‘Sdu(Z)>
B(x,27J+1)

izj-2

S 2/ 85 20796740 M () ()
< 2J(e=s) Z 20=DG=€") =" Aro(h,)(x)

izj—2
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s 292005 (hy ) (%), (88)
Here and in what follows M denotes the Hardy-Littlewood maximal operator and
Ms(w) = [M(Ju |5)] *forallu € 12, .(x) and § € (0,00). Thus forall k € Z,

§357 (W (x) < 2K6=9 sup 209 129 (w) (x)
jzk

S sup 2707069 2070 () (x) S Mis (i) (). (89)
jzk
So, by the LP/®(x) boundedness of M, Lemma (1.2.11) and (87), we have u €

§s€9B, . (x) and
S,E,0
lellgsers, oo, % (11555 @}, | ey

S M5 (dbeezlleaqrc) S IRl jagyo gy S Tellig g0

This yields N,jq (x) c §S'e"’Bp,q (x) and thus finishes the proofs of (ii) and (iii).
Now we prove (i). Since

kez

I77(W)(x) < €7 (w)(x) (90)
for all ¢t € (0,00) and x € X, we have C59B,,(x) c [*B,,(x), and hence by (i),
C7B, ,(x) © N3, (x). So we only need to show that N3, (x) = CS?B, ,(x). For given
u € N3 ,(x), take g € D%(u) with 191l pa(1p ) < 2llullys, x)- Then by Lemma (1.2.7),
forall k € Z,

1/0
1
S,0 — ks _ o
Clre()(x) = 2 (,-Zk“B(x'z_k) B(x'z_j)/B(x’z_j_l)lu(Z) u(x)| dﬂ(Z))

1/0
< zks( Z z—f“’f . ]([g,(z)] +[g;(0] )du(z)>

jzk—2

1/0
= < Z 2—(j—k)sé [gj(x)]d n z 2—(j—k)saf( i [g](z)] d,u(z)> .

j=k—2 j=k-2

If p > o, then when o € (0, 1), applying the Holder inequality, we have

1/0
€5 (x) s (Z 2-U-k)so [Mg(gj)(x)](’>

j=k
(1-0)/o
< Z 2-U=05/2 31, (g,) (%) <z 2—(j—k)s/2(1—a)>
S Z 27072 p (g;) (), (91)

jzk jzk
j=k

andwheno € [1,p),by 1/0 < 1,
C3% W) (x) S Z 2-0-5 31, (g,) (x).

j=k
From this, it is easy to deduce that

[{cse@y _ | < 1M, (1) ezl oa(uo -

29(LP (x))
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By this, the LP/? (x)-boundedness of M and Lemma (1.2.11), we have u € 55"’Bp,q (x)
and

lullgson, 0 = ||{C;g<(u)}kez”
If ¢ = p, then

a/p
”uu(‘?s,aBp’q(x) < Z(f 22 (j—k)sp [g (x)] du(x))

k€L j=k

q/p
;ZO ]Zkz " k)spt(x,zj)[gj(z)]pdu(z)du(x)>

1/q

( a/p
< z< f > 270 ;)] du(x)> S gl sa@reo) = lellig goo:

KEZ >k
\ J

< |lg < - ]
(P ) = “g”gQ(Lp(x)) = “u”]vp’q(x)

1/q

1/q

+

A

This gives Ng,q (x) c CS'UBp,q (x) and thus finishes the proof of (i).
Finally, we prove (iv). Trivially,

177 (W) (x) < A7° (W) (x) (92)
for all x € X and t € (0, ), which implies that A)S'UBp,q (x) c fs'“Bp,q (x). On the other
hand, since p > n/(n+s) and o < p.(s), we can find ¢' € (max{o, 1}, p.(s)). Notice
that, for any ¢ € R, by the Minkowski inequality and the Holder inequality,

1/c’ 1/c’

o’ '
f u—usen|” du(@ | < f u—cl du@ | + e — upwo|
B(x,t) B(x,t)
1/0’

szf u—cl du(z)|
B(x,t)

which together with the Holder inequality again implies that

A7) < A W) < 2157 W@ (93)
forall u € L,.(x),x € X and t € (0,0). Then I*? B, ,(x) € AS?B,, ,(x). Recall that we
have proved that I B, . (x) = N§,(x) = BS,(x) = [*?B, ,(x). So we obtain (iv). The
proof of Theorem (1.2.12) is finished.

One can derive the following inequality from the proof of (88).

Corollary (1.2.13) [95] For s € (0,%),5 € (0,%),0 € (0,5.(s)) and ¢’ € (0, ), there exist
e > 0 satisfying o < §,(s — €) and constant C such that for all u € LY, .(x),k € Z and
x € X,

B < c27% ;| Y 1 @) | (0. (94)
j=2k-2
Proof. If ¢’ = g, then (94) is trivial or follows from the Holder inequality If 6’ < o, then

we employ the argument for (88) with the special choice g; = IS" (u) forallj = k — 2.
We close by proving the optimality of the ranges of € and ¢ in Theorem (1.2.5).
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Proofs of (v) though (vii) of Theorem (72). (v) For a € (0, =), define
u.a(x) = |x|_“)(3(0,1)(x) + X]R”\B(O,l)(x)-
We first claim that u, € B ,(R™) when a € (0,n/p — s). To see this, for j < 0, we set
g;j(x) = 27%|x|7% xp(0,1) (%),
and, for j > 1, we set
gj (X) = stlxl_aXB(o,z—f—S) (X) + 2_](1_5)|x|_a_1XB(0,1)\B(0‘2—J‘—5) (X)
Then it is easy to check that g = {gj}jEZ € D%(u,) modulo a fixed constant. Moreover,
since pa < n, for j < 0, we have that
p . _ .
g w S J 27P8 | x|7PYdx < 2775,
|| ]”Lp(]R ) B(0,1)
and for j > 1,
p
1971, < |

ijslxl—Padx + J Z—jp(l—s)lxl—p(a+1)dx
B(0,27J79)

B(0,1)\B(0,27J-5)
< 2Jlp(s+a)-n} 4 9>—jp(1-s)
Observing that s + a < n/p and recalling that s < 1, we have ||Gl| ¢, rn)) < o0, Which
Is as desired. Now, taking a« = n/o and noticing s + a < s + n/p.(s) = n/p, we have
Uy € N3, (R™) and hence by Theorem (1.2.6), u, € Bj,(R™). This yields (v) since
Ug ¢ L?oc(Rn)- .
(vi) Let @ = n/o. Since a +s < n/p, as shown in (v), u, € N; ,(R™). Let us check that
“ua”é’s,aqu(Rn) = oo. Indeed, if 1/2 < |x| < 3/4, then B(0,1/4) c B(x,1) and for all

z € B(0,1/4),
lx|7% < (1/2)7% = 27%(1/4)"%27%|z|™,
which implies that |u(x) —u(z)| = (1 — 27%)|z|™%, and hence by n = ag,

f lu(x) —u(2)|™%dz = ]L lu(z)|"% dz = oo.
B(x,1)

B(x,1/4)
Therefore

p/c 1/p
||u||5s,agpq(Rn) < {f <J( lu(x) —u(2)|™¢ dz) dx} = o0
' B(0,3/4)\B(0,1/2) \YB(x,1)

as desired. This gives (vi).
(vii) Leta =n/p —sand § € (—2/p,—1/p), and define

2
u(x) = |x|™* (logm) XB(0,1) (%) + Xrm\B(0,1) (X)-

We claim that u € N ,(R™). To see this, similarly toﬁ(v), for j < 0, we set

. 2
9,0 = 251x1% (log 77) Xacon (),

and for j > 1, we set

. 2\F . 2\F
g;(x) = 251x|7* (log =) Xp(02-i-(®) + 27749 |x|7*" (log =) X p0.10\5(0.2-i-3)(X)-
x| (0.27775) x| (0, )\B( )

Then g = {gj}jEZ € D%(u) modulo a fixed constant. Since a« + s = n/p and pf < —1,
we have that
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> ol s Y[ 2 (10g:2)" ax
j21 LD =1 7B(0.2777%) x|

pB

+ZJ 27/P(1=8) | x| ~P(a+1) (logi> dx
=1 /BOD\B(0,27/73) |x|
1
pﬁ dt
S j || ~P@+s) (log f — < oo,
B(0,1) |x| o
and that
pB

p _ 2
2 ||gf||LP(R") SL |x| 7P+ (logm) dx < oo,

Jj<0
Thusu € Ng,q (R™). On the other hand, forany x € B(0,1/2) and all t > |x]|,

1/p
ST (W) (x) = |x|~S <inf)£ lu(z) —c|? dx)
B(x,|x])

ceR

1/p
> (20x)* (}( | Dlu(z)—u(xo)lpdx> ,
B(x,|x

where may choose x, € B(x,|x|). Moreover, up to a rotation, we can assume that
Xo = X|xo|/|x|. Observe that if |x,| = |x|, then for z € B(x/2, |x|/4) < B(0,3|x|/4),
[u(z) —u(xo)| = [u(3x/4) —u(x)| = u(x).
Moreover, if |x,| < |x|, then for z € B(3x/2,|x|/4) <€ B(0,1)\B(0,5|x|/4),
[u(z) —u(xo)| = [u(5x/4) —u(x)| = ux).

Hence by B(x/2, |x|/4) U B(3x/2,|x|/4) € B(x, |x|) and a + s = n/p, we have

ssp 2 \F y 2 \F
S (uw)(x) = x‘“‘s(lo —) ~ x‘”p<lo —) ,

from which together with pf + 1 > —1, it follows that
pB

2
S,5,p n
”uHSSSpB q@®™M T ZHS (u )”L” (B(027771)) zfg(oz -j- 1)|X| logl |) dx

jz20 jz0

2 pf+1 1/2 pf+1 dt
~ ||~ <log—> dx ~ J (log—) — = oo,
jB(O,l) |x| 0 t t

The proof of Theorem (1.2.12) is finished.
In what follows, for p,q € (0,] and a sequence g of measurable functions, we set

G 1lLecx,eay = MGl all Lo cx)-

Definition (1.2.14) [95] Let s € (0,) and p,q € (0,]. The homogeneous Hajtasz-
Triebel Lizorkin space Mj,(x) is the space of all measurable functions u such that
”uans)’q(x) < oo, where when p € (0,0) or p,q = o,

||u||M§,q(x) }D{lsf( )||9||LP(xM)»
and when p = o and g € (0, ),
1/q

q
lullig o = dnf swpsupd > {  [g;0]" duy)
' 7 B(x,27k)

gEDS(W) kez xex
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Definition (1.2.15) [95] Let s, g € (0,0),€ € [0,s] and p, q € (0, ]. For E = €57, 457 ,[5°
or §%€7 the homogeneous space EE, ,(x) of Triebel-Lizorkin type is defined to be the
collection of all u € L .(x) such that ”””EF'pq(x) < oo, where when p € (0,),

oo 1/q
( [ Eao. t)f’ﬂ)
0 t LP (%)

with the usual modification made when g = oo, and when p = oo and g € (0, ),

lullgg, ,x) = Sup sup ( f ][ [E@©,0)] du(y)7>
' 0 YB(x,r)

xeX r>0

”u”EFp,q(x) =

and whenp,q = o, [lullgp,, o = lullzs, -
Theorem (1.2.16) [95] Lets € (0,)andp,q € (0,].Letr = min{p, q}.
(i) If o € (0,7), then M3, (x) = C57F, . (x).
(ii) If ¢ € (0,7.(s)), then M5, (x) = I°°E, . (x). )
(i) If € € [0,5) and o € (0,7.((s)), then M ,(x) = S¥7F, ,(x).
(iv) If r € (n/(n + s),] and & € (0,7.((s)), then M3 ,(x) = AS9E, ,(x).
Proof. The proof of Theorem (1.2.16) is similar to that of Theorem (1.2.12). We only
sketch it. By (83), we have S¥°F, . (x) c [7E, . (x).
For u € fs"’Fp,q (x), by taking g = {gi}ke, as in (85), similarly to (86), we can show
that l[ullis ) S lullisor, o Hence, I97F, 4 (x) M4 (x).
The result M3 ,(x) 55'6’“Fp,q (x) follows from an argument similar to that Nj,(x) C

§S'E'“Bp,q(x) where the inequality (89) plays an important role. The restriction o €
(0,7.(s)) ensures the existence of & € (0,r), and € € (0,9) such that o < 6,(¢€").
Moreover, by § € (0,7), we can use the Fefferman-Stein maximal inequality (see [81]) to
obtain

M5 (R Ykezllipceeny S 1Blp oy
This gives (i) and (iii).

For (i), by (90), we have C59F, ,(x) c I®9F, ,(x) © M3, (x). The converse result
Mg,q(x) C E_')S"’Fp,q(x) follows from (91) and an argument similar to the proof of
Ny ,(x) € C¥°B, 4(x) for § € (0,p). Here the restriction § € (0,7) comes from the
Fefferman-Stein maximal inequality used to prove

I{M5 (g1 dkezllpx,eay S 1 G1Lp(xe9)-
This gives (i).

For (iv), the equivalence AS7F, ,(x) = M5, (x). follows from (92), (93) with o’ €
(max{ao, 1},r*(s)) and (ii). This gives (iv) and hence finishes the proof of Theorem
1.2.16).

( In Tr)1eorem (1.2.16) (iii), we have the restriction € € [0, s). However, when € = s and
q = oo, we have the following result.
Theorem (1.2.17) [95] Let s € (0, %) and p € (0,]. If o € (0,p.(s)), then M3 ., (x) =
ST [, o0 (X).
Proof. To see S¥7F, (x) © M3, (%), let u € S5¢7F, ,(x). By (84) and taking § =
{gi3kez With g, = S55, (u) we have g € D°(u) and
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||g||Lp(x€oo) < ||{SSSU( )} . ~ ”u”gs,s,aﬁp'w(x)'

which implies that u € M o, (x) and ||u||M§°o(x) S |lullgssop "
’ p,oo

kez

Conversely, let u € M3 ,(x) and g € D*(u) with [|Gll.p(xee) < 2|[wllyis ooy Taking

g = supkez gk = llglls~, we have g € D5(u) and ||gllpx) S IIuIIMswm By o€

(0,p.(s)), let § € (0,p) such that o = 6.(s). Then by Lemma (1.2.8), for all x € X and
k € Z,

S5k W) (X)) < Ms(g) (%),
which together with the LP/8(X)-boundedness of M implies that SS€7F, ,(X) and
||u”§5's"’ﬁpoo(x) S ||u||M{,_oo(x) This finishes the proof of Theorem (1.2.17).

Let s,0 € (0, ) and recall the classical fractional sharp maximal functions

W)= sup 0 [u) = e ducz)
t€(0,00) B(x,0)

and
1/0
uSS(x) = sup t~Sinf <][ lu(z) — c|"d,u(z)> .
te0)  ER\Jp@p)

The Sobolev-type space C*P(X) of Calderéon and DeVore-Sharpley is defined as the
collection of all locally integrable functions u such that [[ullgspx) = [[u®*]| , ,, < oo: see
[78, 93]. Also observe that

Uy (W) (x) = SUPee(o,e) S5 (W) () ~||S55° W) () 1o
5505, o (x) = = lug]l x- ON the other hand, recall from [40] that M; ., (X)

is simply the Hajtasz-Sobolev space MSP(X). Here MSP(X) is the collection of all
functions u such that

and hence ||u]|

lullygsexy = gt )”g”Lp(X) < oo,

where D*(u) is the set of all s-gradients of u as in (73). Then, as a consequence of
Theorem (1.2.16) and Theorem (1.2.17), we have the following corollary.
Corollary (1.2.18) [95] Let s € (0,) and p € (0, oo].

(i) If o € (0,p*(s)), then u € MP(X) if and only if ul® € LP(X), and moreover, for
every u € MP (X), l[ullsw oy~ [l @l .-

(i) If p € (n/(n + 5), 0], CSP(X) = M5P(X).

We say that X supports a weak (1, p)-Poincaré inequality with p € [1, o) if there exist
positive constants C and A > 1 such that for all functions u, p-weak upper gradients g of u
and balls B with radius r > 0,

f,lu@) — ugldu(x) < Cr{f,,[g(0IP du(x)}
Recall that a nonnegative Borel function g is called a p-weak upper gradient of u if

uG) - u)l < [ gds (95)
14
for all y € T.oc:\I', Where x and y are the endpoints of y, [...; denotes the collection of

non-constant compact rectifiable curves and I' has p-modulus zero. If X is complete, the
above Poincareé inequality holds if and only if it holds for each Lipschitz function with the
pointwise Lipschitz constant

1/29
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u(x) —u
Lip(u)(x) = limsup sup [u) 2l
r—0  yEB(x,T) r

on the right-hand side. See [84].

By triviality of N3 ,(X) or M3 ,(X) below we mean that they only contain constant
functions. In order to obtain such a conclusion, one needs some connectivity assumption
on X; simply consider B(0,1) U B(x,, 1) where x, € R™ and |x,| > 3, equipped with the
Euclidean distance and Lebesgue measure. Then xpco1y € M;4(X) N N3, (X) for all
s, p, q. Notice that X does not support any Poincaré inequality.

Theorem (1.2.19) [95] Suppose that X supports a weak (1, p)-Poincaré inequality with
p € (1,). Then for all g € (0, ), N}, (X) and M ,(X) are trivial.

Proof. Since for g € (0,p), M3 ,(X) € M, ,(X) and N; ,(X) € Nj,(X) = M ,(X), we
only need to prove that for g € [p, »), M;,(X) and Nj,(X) are trivial. Assume that
q € [p, ). Notice that My ,(X) € M} (X)) = M*P(X), where M*?(X) is the Hajlasz-
Sobolev space [26]. Moreover, under the weak (1, p)-Poincareé inequality, it is known that
MY (X) = N'P(X) (see [92, Theorem 4.9] and [87]), where NP (X) is the Newtonian
Sobolev space introduced in [92]. So M;,(X) € N*P(X). Let u € M} ,(X). Then.u €
NP (X) The proof of the trivialilty of M, ,(X) is reduced to proving |[u||y1rx, = 0. To
this end, it suffices to find a sequence {p, }ren OF p-weak upper gradients of u such that
lpkllLpxy > 0as k — oo,

For k € N, set
pi(x) = sup 2/ ]L . |u(z) — Up(x,27)) du(z).
jzk B(x,277)

Then p,, is nonnegative Borel measurable function for all k € N. Moreover, we have that
limy,_, p (x) = 0 for almost all x € X. Indeed, by a discrete variant of Theorem (1.2.16)

(i),
|

1,1 1,1
LI OIS
as k — oo for almost all x € X. Moreover, applying the Lebesgue dominated convergence

theorem, we have |[[py|lp(x) > Oask — oo,

Now it suffices to check that p, is a p-weak upper gradient of u. Observe that if
pr(x) < oo, then lim;_,, Up (x,2-)) exists. In fact, we have

{5}

o ~ltllyig ey <

LP(Xx,£9)

which implies that |

< oo and hence p; (x) < |

-0
24

Up(x,2-1) ~ Up(rz-1)| S 27U py(x) - 0
as j,£ — co. For such an x, we define (x) = lim;_c, up(, ,-1)- Generally, for x € X, if
lim;_, e Up (x,2-)) exists, then we define @i(x) = lim;_,, Up (5,271 otherwise, fi(x) = 0.
Obviously, u(x) = ii(x) for almost all x € X, and hence u and i generate the same

element of NP (X ). Therefore we only need to check that p, is a p-weak upper gradient
of 1. To this end, notice that for all x,y € X with d(x,y) < 27%2, we have

[a(x) — a(y)l < d(x, y)[pr(x) + pr (W]
Moreover, by [92, Proposition 3.1], u is absolutely continuous on p-almost every curve,
namely, u o y is absolutely continuous on [0, £(y)] for all arc-length parameterized paths
Y € [Lect\ [, Where T has p-modulus zero. For every y € Teet\ I, we will show that (95)
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holds. To see this, by the absolute continuity of u on y, it suffices to show that for j large
enough,

2™/ 2(v)
j uoy(t)dt—f uoy(t)dt
0

. 2(v)
27 S f pr e y(t)dz.
(y)—27J 0

But, borrowing some ideas from [75], for j large enough, we have

2™/ £(y) £(y)-27J ,
j uoy(t)dt—j uoy(t)dt J [uey(t+27) —uoy(®)]de
0 0

L(y)-27J

27 =2J

rtp-27 _
< 2’f luoy(t+27) —uoy(®)|dt
0
£y)-277 . £()
sfo [p, ev(t+27)—p, oy(®)] dtsfo p, ° y(t)dt.

This means that p;, is a p-weak upper gradient of .
To prove the triviality of Nz}'q(X) with g € (p, ), foru € Nz},q (X), applying Theorem

(1.2.12), we have
“’”u”N;,q(X) < o,

”{Iz"‘( )}kEZ”
which implies that ||12_k(u)||

L9(LP (X))

. — 0ask —» oo. For every k €Z, let {x;,i}; be a

maximal set of X with d(xy;,x; ;) = 27%72 for all i # j. Then By, = {B(xk,i,Z‘k)}i is a
covering of X with bounded overlap. Let {‘pk»i}i be a partition of unity with respect to B,
as in [86, Lemma 5.2]. We define a discrete convolution approximation to u by ug, =
ZiuB(xk 2~ @k,i- By an argument similar to that of [86, Lemma 5.3], we have that
ug, »uinL?

)»c(X) and hence in L}, (X) as k — oo, and that Lip ug, (x) < CL%n () (x)
for all x e X, where € >1 and N € N are constants independent of k,x and u. Now
CI%n(w) is an upper gradient of ug,. So, for every ball B = B(xp,73), by the weak
(1, p)-Poincaré inequality, we have

J 14~ ual ducz) = Jim f [us, () ~ (un,), | duc2)

k—o0

1/p
< liminfrg {][( ) )[ k+N(u)(Z)] d,u(z)} =0,
B(xg,Arp

which implies that u is a constant on B and hence is a constant function on X. This finishes
the proof of Theorem (1.2.19).
Theorem (1.2.20) [95] Suppose that X supports a weak (1, p)-Poincaré inequality with
p € (1,). Let s € (1, oo) Then for q € (0,90], My, /inips—p)q(X) is trivial, and for
q € (Onp/(m + ps — P)], Npp/ntps—p),q X) s trivial. Moreover, if either X is complete
or X supports a weak (1, p— €)-Poincaré inequality for some € € (0,p — 1) then for
q € (np/(m + ps — p),0], Npp (n4ps—p),q (X)) 18 trivial.
Proof. We first prove the triviality of My /405 p)e0(X) = MSTP/MFPS7P) (%) by
considering the following three cases: Case pu(X) < oo, Case u(X) = oo and X is Ahlfors
n-regular, and Case p(X) = oo but X is not Ahlfors n-regular.

Case p(X) < oo. Notice that by (81), 27%0~1 < diam X < 27%0 for some k, € Z. In this
case, it suffices to prove that MS™P/(+ps=P) (x) c M3 ;(X) for some o € (0,p); then the
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triviality of MS"?/(+ps=P) (x) follows from that of M3 ,(X) as proved by Theorem
(1219) Iet u e Ms,np/(n+ps—p) (X) and Iet g € Ds(u) Wlth ”g”an/(n+ps—p)(X) <
2 |[ull yysmp/sps—p) o) We claim that there exists o € (0, p) such that

(u)}k>k0—2

Assume that this claim holds for a moment. By Theorem (1.2.16) (ii) and a variant of
Lemma (1.2.11), we have u € M, ,(X) and lullig yoo S Nullysne/mips—p xy-
To prove (96) by Lemma (1 2.8),

9 S ”g”an/(nﬂ?S—p)(X)- (96)

WO, _Zo_zz'“’ ] ) = el du @
s ) 2kGDe [9(D)° du(2)
kaZO—Z -)(;B(x,z—k)

Z—k(s—l)a
s - [9(2))° du(2).
kzkzo—z M(B (x,2 k)) ; J1‘5’(x,Z‘J')\B(x,Z—J'—l)

Notice that there exists 0 < k < n such that for j > k,
u (B(x, z—k)) = (B(x, 2-1')) 2~ (e=]k.
see [94]. Choosing ¢ € (0,p) such that k — (s — 1)o > 0, we have

|awe,, |

k=ko—2
1 J
Z Z 2 k(s=Dapk=jk f [9(2)]°du(z)
Py ,u(B(x ])) Kihoe2 B(x,27/)\B(x,277-1)
Z 2-Jj(s-1o
- [9(2)]7du(z) < I(5-1)5(97)(x).(97)
ot (B, 270) Jp(ez-inp (i) ¢=be
where for a € (0,n),J, denotes the fractional integral defined by
_ [d(x, y)]*
Ja(W)(x) = u(y)du(y).
XU (B(x, d(x, y)))
Therefore
o 1/0 N o 1/0
(u)}k>k0—2 1P (x,0) S || [j(s—l)a(g )] ||Lp(X) ||~7(s—1)a(g )”Lp/a'(X)'
Notice that for all x € X and r < diam X,
7,.n
> — =7

Recall that 7, is bounded from LP (X) to LP-(® (X) for all p € (1,n/a); see, for example,
[83, Theorem 3 22]. We have

AOY

which gives (96).
Case pu(X) = oo and X is Ahlfors n-regular. Recall that X is Ahlfors n-regular if for
allx e Xandr > 0,

1
p “gG ”Lr/lg/(n+ps—p)a(x) ~ “g ”an/(n+ps—p) x)’

kz2kqo—2 LP(X,29)

u(B(x, r))~r”.
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Observe that the fractional integral 7, is still bounded from LP(X) to LP-(®(X), and hence
by an argument similar to above, we have MS"P/(4Ps=p) (xyc M} (X) for some
o € (0,p), which implies the triviality of MS™/M+ps=p) (x),

Case p(X) = oo but X is not Ahlfors n-regular. Notice that, in this case, we do not have
the boundedness from L? (X) to LP-(®)(X) of the fractional integral 7, and hence we cannot
prove MS™P/(*ps=P) (x) ¢ M}, (X) for some o € (0,p) as above. But the ideas of an
imbedding as above and the proof of Theorem (1.2.19) still work here for a localized
version. Indeed, we will show that any function u € MS™/(®+ps=p) (X js constant on
every ball of X, which implies that u is a constant function on whole X.

To this end, let x, € X, k, be a negative integer and let n be a cutoff functions such that
n(x) = 1 — dist (x, B(xg, 27%*1)) on B(xy, 27%0*1) and n(x) = 0 on X \ B(x,, 27%0+1),
Observe that n(x) = 1 on B(x,, 27%0).

For every u € MS™/(m+ps=p) (x) with g € DS(u) N L™/ +Ps-p)(X), we first claim
that un € MYP(X). Indeed, if x,y € B(x,, 27%0*1),

luCem®) —u(yn@)| = lulx) —u@) I + [u)[Inx) =)l
< Jux) —u + d, ) [luC)] + [uly)l]
< dC,y)[[u@)| + [u@)| + h(x) + h(y)]
With k= ¥ p(oa-ko+2) Xjzke-a 2("0‘1)121’_0]-(11); if x,y € X\ B(xp,27%"), u(x)y(x) =
0=u(y)x(y) ; if x € B(xy,27%0*1) and y € X \ B(x,y,27%0%2) or y € B(x,, 2 %0*1)
and x € X \ B(x,, 27 %0%2), then by d(x,y) = 27%0, we have
[u@)x(x) —u@)xI = [u@E)| + [u@)| < 2%d(x, y)[lu@)| + [u@)I]-
This means that (U,)(B(xo,z—ko+1) + h) € D*(u) modulo a constant depending on k,. Notice

that, by Lemma (1.2.8), u € L},.(X). SO to obtain (uxp(y, ,-re+1y +h) € LP(X), it

loc

suffices to prove that h € LP(X). For a € (0,n), define the local fractional integral by
N [d(x, y)]“
Ja(9)(x) =
d(x,y)<2=ko+4 (B (x, d(x, y))
By an argument similar to that of (97), for x € B(x,, 27%0*2) we still have
1/0

he) < (3500, | S [T6-00 (070 m000) O]

Obviously, J(s-1)s (g")(B(xO,Z_kM‘;)) is supported in B(x,, 27%*8), Moreover, by an
argument similar to that of [83, Theorem 3.22], for a € (0,n) one can prove that J, is
bounded from LP (B(xO,Z"‘0+8)) to LP-(®(X) with its operator norm depending on

ko, xo, @ and X. This together with an argument similar to that for the case p(X) < o
implies that h € LP (X) and hence the claim that un € M7 (X).
For k € N, set

) g»)du(y).

kzko—4

jzk

1/0
Pr(x) = max 2/ (inﬂg)( |un)(2) — C|ad.u(Z)> :
CERJB(x,27))

Since un € MP(X), as what we did in the proof of Theorem (1.2.19), we can show that
P 1S a p-weak upper gradient of &n. Notice that in(x) = u(x)n(x) = u(x) for almost all
x € B(xo,27%0), and that for all x € B(xo, 277" and j =k = ko, (un) gy, 2y =

Up(xo,277) and hence py (x) = supjsx I,i’“(u) (x). Moreover,
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A0

K=k, = ”[‘7(5_1)” (QUXB(’CO'Z"‘OM))]MU LP(X)

< ”g|Ian/(n+ps—p)(B(xo,z—k0+4)) < 00,

1,0
kzko Il o Iz_j(u)(x)}jzko

as k — oo for almost all x € B(x,, 2 %0~1). Then by the Lebesgue dominated convergence
theorem, we have ||| ~ko1)) — 0 as k — oo. Applying the Poincaré inequality,

LP(B(xo,27*071),09)

which implies that ||{12_k(u)(x)}

< o and hence g, (x) <

-0
{;0‘

LP(B (.2
we obtain

inf u(z) —u —ko— du(z)
ceR B(XO,Z_kO_l/A)| B(XO,Z 0 1/2-)|

= inf | (@) = @) gy 2-ko-1/2)| d1(2)

CER Jp(x,2-K0-1/2)
1/p

s\ f R@Ddu@ | —o.
B(xq,27%0~1)

This means that u is a constant on B(x,, 2 %0~1/2). Since k, is arbitrary, we conclude
that u is a constant function.
Moreover, for q € (0, oo] the triviality of M np/(n+ps—p),q (X) follows from

np/(n+p5_p),q (X) C MSnP/(n+ps D) (X)

Meanwhile, for q € (0, np/(n+ps—p)] the triviality of Ny, /u4ps—p)q(X) follows

from N; np/(n+ps-— p)q(X) cM p/(n+ps p) np/(n+ps— p)(X) c Monp/(psTp) (X).

Finally, we prove the triviality of N. p/(n+ps _p,gX) for g € (np/(n+ ps —p), ]. |
fact, it follows from the triviality of w(X) since np/(n+ps—p),q(X) C

np/(n+ps p),
N /(nsps—p),e0 (X)- T see the triviality of Ny, 106 1,0 (X), we need the additional

condition that X supports a weak (1,p — €)-Poincaré inequality for some € € (0,p — 1).
Recall from [87] that if X is complete and supports the weak (1, p)-Poincare inequality,
then X supports a weak (1,p — €)-Poincaré inequality for some € € (0,p — 1). Without
loss of generality, we can ask e close to 0 such that

n
t=s+——
p p—¢€

> 1.

Observe that
np _ n(p —€)
n+pis—1) n+@—-e(t—1)
Now we will consider the following two cases: pu(X) < oo and p(X) = co.
Case p(X) < oo. Assume that 2 %01 < digm X < 27%0 for some k, € Z. We claim

(98)

that Np/(n+ps )00 (X)can/(n+ps _p;woX) for any ¢ € (1,s). Indeed, for every
u €N, np/(n+ps— p)oo(X)
sup Iz_k(u) ~ || sup 27KG- t)l (1) ||SStk‘g+2(u)||Lp(X). (99)
. k=ko—2 LP(X) kzko—2 LP(X)
Since
s,t,o
|lu ”an/(n+ps 2,00 (%) kZSIICJOIzZ”SZ-k (u)“Lp(X)

and
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llull s

we conclude that ”u“an/(n+ps p)eo(X)

« (X) follows from that of M (p )/ In+(p-e)(t-1)],00 (X) and

t,o
np/(n+ps-p), X Sup Iz—k ('LL)
) LP(X)

S lu IIN o/ and hence our claim. Then

the triviality of
(98).

Case u(X) = oo. Since the constant in (99) depends on ko, and hence the diameter of X,
we can not get the imbedding ',fp/(mps_p) wX)cM (X) fort € (1,s). But
for any fixed x, € X and k, € Z, we still have

S

np/ (n+ps—p),o

p/ (n+ps—p),

~

Lp(B(x 2"<0+8))

s,t,o
~ ||S —-ko+16

sup 15 o=k ()
kzko—16

LP(B(xp,2 k0 +8))
(U) ||Lp (B(xo,Z_k0+8)

which further means that u € Mt®=€)/In+(-€)(t-1)] (B(xO,Z‘k0+8)). With the weak

(1,p — €)-Poincaré inequality in hand, by adapting the arguments in Case p(X) but X is
not Ahlfor n-regular as above, we still can prove that u is constant on ball B (x,, 2%0=1/2).
Hence u is a constant function on whole X. We omit the details. This finishes the proof of
Theorem (1.2.20).

Finally, we give an example to show the “necessity” of the weak (1,n)-Poincare
inequality to ensure the triviality of B ;¢ . /<(X) for s € [1, o0).
Theorem (1.2.21) [95] For each p € (2, ), there exists an Ahlfors 2-regular space X such
that X supports a weak (1, p)-Poincaré inequality but for every s € (0, o), BZ/S 2/s(X) s
not trivial.
Proof. Let « € (0,1) and E, be the cantor set in [0,1] obtained by first removing an

interval of length 1-a and leaving two intervals of length a/2 and then continuing
inductively. The Hausdorff dimension d, of E, is log2/log(2/a). The space X,
obtained by replacing each of the complementary intervals of E, by a closed square
having that interval as one of its diagonals. Then X, is Ahlfors 2-regular with respect to
Euclidean distance and by [88, Theorem 3.1], for any

—d, log 2
1-d, 2-i_—loga:’

X, supports the (1, p)-Poincaré inequality.

So for any p > 2, choosing a € (0,27/®=2), we know that X, supports the weak
(1,p)-Poincaré inequality. Moreover, for any x = (x;,x,) € X,, define the Cantor
function by u(x) = # % ([0,x,] N E,). Then u is constant on each square generating X,
and moreover, |u(x) —u(y)| < |x; — y1|% < [d(x,y)]% for all x,y € X, (see [86]).
For s > dg, taking g(x) = 2[d(x, E,)]%~* for all x € X,,, we have g € DS(u). We claim
that g € L9(X,) if

< 0,
)

p>

2—dy log2 — 2loga

0 = :
<q<s—da (s—1)log2 —sloga

Indeed, on each square Q c X, with diagonal length 2~/ a/ (1 — a), we have

f [g(x)]%dx < |2—jaj|(da-5)q+2
Q
since (d, —s)q + 1 > —1, namely, q < 2/(s — d,) Which is given by q < (2 —dg)/(s — dg).

Observing that there are 27 such squares, we have
27



j [g(0)]9dx < Z 21|27 i |2 < z 27-il(dg=5)a+21(1-log a/10g2) < oo,

Xa =1 =1
where in the last inequality we use

1-[(dg —s)q+2](1 —loga/log2) =1 —[(dy —s)q + 2]/d, <0,

which is equivalent to g < (2 —d,)/(s — d,). Thus u € M>4(X,). Taking q = 2/s for
each s € (d,, ), we know that MS2/5(X,) are nontrivial. Notice that MS%/5(X,) c
B} ,(X,) When s > 1. Similarly, when 0 < s < 1, M*2(X,) < B ,,s(X,), and moreover,
33 /s2/s(Xq) contains the restriction of any function in BS /s2/s(R™) to X,.Then
'g/s,Z/S(Xa) for all s € (0, o) are nontrivial. This finishes the proof of Theorem (1.2.21).
Corollary (1.2.22) [314] For each 0 < € < oo, there exists an Ahlfors 2-regular space X
such that X supports a weak (1,1 + 2¢)-Poincaré inequality but for every 0 < € < oo,
B3 1e2/10e(X) is not trivial,
Proof. Let « € (0,1) and E, be the cantor set in [0,1] obtained by first removing an
interval of length 1-a and leaving two intervals of length a/2 and then continuing
inductively. The Hausdorff dimension d, of E, is log2/log(2/a). The space X, is
obtained by replacing each of the complementary intervals of E, by a closed square
having that interval as one of its diagonals. Then X, is Ahlfors 2-regular with respect to

Euclidean distance and by [88, Theorem 3.1], for any

2—d log 2
24+€e> 2= g

1-d, —loga’
X, supports the (1,1 + 2¢)-Poincaré inequality.

So for any € = 0, choosing a € (0,271/€), we know that X,, supports the weak (1,1 +
2¢)-Poincaré inequality. Moreover, for any x™ = (x{*,xJ') € X,, define the Cantor
function by wu,,(x™) = H%([0,x*] N E,). Then u,, is constant on each square
generating X, and moreover, ¥ |u,,(x™) — u,,(y™)| < ¥|x* — y*|%e < Y[d(x™, y™)]%
for all x™,y™ € X,, (see [86]). For € > d, — 1, taking g(x™) = 2[d(x™, E,)]%(1+€)
forall x™ € X,, we have g € D®(u,,). We claimthat g € LY(X,,) if

2—d, log2 —2loga
(1+e)—d, (e)log2—(1+e€)loga’
Indeed, on each square Q c X, with diagonal length 277 a/ (1 — a), we have

| Dlgtemnedam s Jaal| O
Q
since (d,—(1+¢€))g+1>-1, namely, q <2/((1+¢€)—d,) which is given by g <
(2 —dy)/((1+ €) — dy). Observing that there are 27 such squares, we have
i i(deg—(1+€))g+2 . _ _
[g(x™]9dx™ < 27 |2-J ¢ < 2] j[(dg—(1+€))q+2](1-log a/log2) < oo,
J, 2taem D> 2feial| D

j=1 j=1
where in the last inequality we use

1-[(de—(1+€)g+2](1—loga/log2) =1—[(dy — (1 +€))q +2]/d, <0,
which is equivalent to q < (2 —d,)/((1 +¢€) —d,). Thus u,, € M1*€4(X,). Taking
q=2/1+¢€ for each d, —1 < € < oo, we know that M1*€-2/1+€ (x Y are nontrivial.
Notice that M*€2/1*€(x ) c B},(X,) when e> 0. Similarly, when -1<e<0,
MY2(X,) € By} 14¢(X,), and moreover, B;*S ., 1, .(X,) contains the restriction of
any function in B3¢, ., /1,(R™) t0 X, Then B} 75, ., 1. (X,) Torall 0 < e < oo are nontrivial.
This finishes the proof of Corollary (1.2.22).

0<g<
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Chapter 2
Multi-Parameter Triebel-Lizorkin and Singular Integrals with Boundedness of
Composition Operators

We show the boundedness of flag singular integral operators on Triebel-Lizorkin space
and Besov space. The methods here can be applied to develop easily the theory of multi-
parameter Triebel-Lizorkin and Besov spaces in the pure product setting. The derivation
of the boundedness of singular integrals on the spaces is substantially different from those
used where atomic decomposition on the one-parameter Triebel-Lizorkin and Besov
spaces. The discrete Littlewood—Paley analysis allows us to avoid using the atomic
decomposition or deep Journe’s covering lemma in multi-parameter setting. We then
establish the boundedness of composition of two Calderén—Zygmund singular integral
operators with different homogeneities on these Triebel-Lizorkin and Besov spaces.
Section (2.1) Besov Spaces Associated with Flag Singular Integrals

The multi-parameter pure product theory has been developed. This theory includes the
boundedness on LP(1 < p < o) and multi-parameter Hardy spaces H?(0 <p < 1) of
singular integral operators of the form Tf = K = f, where K is homogeneous, that is,
61 0,K(6-x) =K(x), or, more generally, K(x) satisfies a certain differential
inequalities and cancellation conditions such that &; -+ 6,K(6 - x) also satisfy the same
bounds. This theory also includes the atomic decomposition of Hardy spaces, duality and
interpolation theorems on product spaces, maximal function characterization of Hardy
spaces, etc. See Gundy and Stein [96], Carleson [97], Fefferman and Stein [98], Fefferman
[99], Chang and Fefferman [100-102], Journe [103-104], Pipher [105], etc.

Substantial attention has been paid to the theory of flag singular integral operators in the
multi-parameter setting. This is an implicit multi-parameter structure which arises in a
number of occasions such as Marcinkiewcz multiplier operators associated with the sub-
laplacian L and the centralizer T on the Heisenberg group (see Muller—Ricci—Stein [106])
and flag singular integrals (see Nagel-Ricci—Stein [107]). We focus on the case that the
implicit multi-parameter structure is induced by the flag singular integrals on R™ x R™
studied by Nagel-Ricci—Stein [107]. The simplest form of flag singular integral kernel
K(x,y) on R™® x R™ is defined through a projection of a product kernel K (x, y, z) defined
on R™™ x R™ given by

K(x,y) = f K(x,y — z,z)dz. (D
Rm

Discrete Littlewood—Paley—Stein analysis and multi-parameter Hardy space theory has
been developed in the framework of flag singular integral operators by Han and Lu [108].
One of the main ideas of the program in [108] is to develop a discrete version of Calderon
reproducing formula associated with the given multi-parameter structure, and thus prove a
Min-Max comparison inequality in this setting. This discrete scheme of Littlewood—
Paley—Stein analysis is particularly useful in dealing with the Hardy spaces HP for
0 < p < 1. Using this method of discretizing, they are able to show that the flag singular
integral operators are bounded on HE for all 0 < p < 1 and then further show that these
operators are also bounded from HE to LP for all 0 < p < 1. This method offers an
alternate approach of Fefferman’s method of restricting singular integral operator’s action
on the rectangle atoms. Thus, they bypass the use of Journe’s covering lemma in proving
the HY to LP boundedness for all 0 < p < 1. The duality theory of the Hardy space,
Calderon—Zygmund decomposition and interpolation theorems have also been established
in the setting of multi-parameter flag setting in [108]. Multi-parameter Hardy space theory
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associated with the Zygmund dilation has also been developed in [109] in which endpoint
results of singular integral operators (introduced by Ricci and Stein in [110]) have been
established.

We study initiated in [108], and introduce the multi-parameter Triebel-Lizorkin and
Besov spaces and prove the boundedness of the flag singular integral operators on such
spaces. Though the theory of one-parameter Triebel-Lizorkin and Besov spaces has been
very well developed in the past decades, the multi-parameter counterpart of such a theory
is still absent. We develop a theory of multi-parameter Triebel—Lizorkin and Besov spaces
using the discrete Littlewood—Paley—Stein analysis in the setting of implicit multi-
parameter structure.

We first introduce the continuous version of the Littlewood—Paley—Stein square function
gF. Inspired by the idea of lifting method of proving the LP(R™ X R™) boundedness
given in [106], we will use a lifting method to construct a test function defined on
R™ x R™, given by the non-standard convolution *, on the second variable only:

W0oy) =90 i Oy) = [ YOGy =2 v @iz @
where p @D € S(R™™), @ € S(R™), and satisfy

— . , 2
Z|¢(1)(2_151'2_152)| =1
J
forall (¢,&,) € R™ x R™\{(0,0)}, and
— 2
Z|1/J(1)(2_k71)| =1

k

for all n € R™\{0}, and the moment conditions
x®yBy D (x,y)dxdy = j 2V @ (2)dz =0
RntmM RM

for all multi-indices a, 8, and y. We remark here that this idea of considering such a
convolution was introduced in [108]. It is this subtle convolution *, which provides a rich
theory for the implicit multi-parameter analysis.

We now recall some definitions given in [107]. Following closely from [107], we begin
with the definitions of a class of distributions on an Euclidean space R". A k-normalized
bump function on a space RY. is a C*-function supported on the unit ball with C*-norm
bounded by 1. As pointed out in [107], the definitions given below are independent of the
choices of k, and thus we will simply refer to “normalized bump function” without
specifying k.

For the sake of simplicity of presentations, we will restrict our considerations to the case
RN = R*"*™ x R™, We will rephrase Definition 2.1.1 in [107] of product kernel in this
case as follows:

Definition (2.1.1) [120] A product kernel on R™™ x R™ is a distribution K on R™*™+m
which coincides with a €* function away from the coordinate subspaces (0,0, z) and
(x,v,0), where (0,0) € R™™ and (x,y) € R"*™, and satisfies

(i) (Differential Inequalities) For any multi-indices @ = (a4,...,@,),8 = (B1,---, Bm)
and ym = (Y1,---, ¥m),

10£0) 0) K (x,7,2)| < Cqpy (lx] + [y~ mlel=IAL |z 7m=lY]

forall (x,y,z) € R® x R™ x R™ with |x| + |y| # 0 and |z| # 0.

(i) (Cancellation Condition)
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|| 020fKxy, 0 (67)dz| < o 1] + 1yDym-mmiero
]Rm

for all multi-indices a, § and every normalized bump function ¢, on R™ and every § > 0;
f GZK(x, Y, Z)@,(6x,6y)dxdy
]Rn+m

for every multi-index y and every normalized bump function ¢, on R™™ and every
6 > 0;and

< Cy|z|‘m‘“’|

<C

f K(x,y,2)p;3(61x,61y,0,z)dxdydz
Rn+m+m

for every normalized bump function @5 on R**™+™and every 6; > 0 and §, > 0.

Definition (2.1.2) [120] A flag kernel on R™ x R™ is a distribution on R™*™ which

coincides with a C* function away from the coordinate subspace {(0,y)} € R™"™ where

0 € R™and y € R™ and satisfies

(i) (Differential Inequalities) For any multi-indices a = (a4,...,a,),8 = (B1,---, Bm),
10207 K (x, )| < Capla|™711 - (Jx| + [y) ™™ 1#

forall (x,y) € R™ x R™ with |x| # 0.

(if) (Cancellation Condition)

| agke ey
]Rm

for every multi-index a and every normalized bump function ¢, on R™ and every § > 0;
fRnaf K(x,v)@,(8x)dx

for every multi-index £ and every normalized bump function ¢, on R™ and every § > 0;
and

< Cy x| 1el

< Gy ly| I

<C

[ KGyes (s 8,9 dxdy
Rn m

for every normalized bump function ¢4 on R™**™ and every §; > 0 and §, > 0.
By a result in [106], we may assume first that a flag kernel K lies in L*(R™*™). Thus,
there exists a product kernel K* on R™*™ x R™ such that

K(x,y) = J K*(x,y —zz)dz.
Rm

Conversely, if a product kernel K* lies in L1 (R™*™ x R™), then K (x, y) defined as above

is a flag kernel on R™ x R™. As pointed out in [106], we may always assume that K (x, y),

a flag kernel, is integrable on R™ x R™ by using a smooth truncation argument.

In order to use the Littlewood—Paley—Stein square function g to define the Hardy space,
one needs to extend the Littlewood—Paley—Stein square function to be defined on a
suitable distribution space. We will recall several definitions introduced in [108]
concerning the test function space on R™ x R™associated with the flag singular integral
operators.

Definition (2.1.3) [120] A Schwartz test function f(x,y, z) defined on R™ x R™ X R™ is
said to be a product test function on R™*™ x R™ if

jf(x, y,2)x%yPdxdy = ff(x, y,z)z¥dz =0 (3)
for all multi-indices «a, 8, y of nonnegative integers.
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If £ is a product test function on R™*™ x R™we denote f € S, (R"*™ x R™) and the
norm of f is defined by the norm of Schwartz test function.
Furthermore, the test function space $r on R™ x R™associated with the flag structure can
be defined as follows:
Definition (2.1.4) [120] A function f(x,y) defined on R™ x R™ is said to be a test
function in S (R™ x R™) if there exists a function f € S, (R™**™ x R™) such that

fy) = Rmf*(x,y —z,2)dz. (4)

If f € Sp(R™ x R™), then the norm of f is defined by
If Il sprrxR™) = inf”f*”Sw(Rn+mem): for all representations of f in (4)}.
We denote by (Sz)’ the dual space of Sg.
For f € (SF), gr(f), the Littlewood—Paley—Stein square function of f is defined by
1

2

2
gr (NG =3 Y e F@| ¢ )
7k

where functions
Vi) =9 % Y (%),
Y y) = 20 miy D (27x,27y) and .7 (2) = 2™p(2)(2%2). (5)
By taklng the Fourier transform, it is easy to see the following continuous version of the
Calderén reproducing formula holds on L2 (R™t™),

f(xy)-ZZzp]k*w,k*ﬂxy) (©)

Formally, in [108] the flag Hardy space Is defined as follows:
Definition (2.1.5) [120] Let 0 < p < 1. HE(R™ x R™) = {f € (Sp)": gr(f) € LP(R™ X R™)}.
If £ € HE (R™ x R™)the norm of f is defined by
1Nl = llgr (Olp. (7)

It is proved in [108] that this definition is independent of the choice of functions y;
and the following boundedness results of flag singular integral operators are established.
Theorem (2.1.6) [120] Suppose that T is a flag singular integral defined on R™ x R™ with
the flag kernel K(x,y) = me K(x,y — z,z)dz, where the product kernel K* satisfies the

conditions in Definition (2.1.2). Then T is bounded on HY and from HY to LP for 0 < p <
1. Namely, for all 0 < p < 1 there exists a constant C,, such that

TNz < CollFllz, 1Tz < GlIfllp.
Moreover, T is bounded on BMO,. Namely, there exists a constant C such that
IT(Fsmor < Cllf llzmog-

Having obtained the boundedness of flag singular integral operators on multi-parameter
Hardy spaces, a natural question arises: Are these operators bounded on more general
function spaces? We will use the approach in [108] to develop a satisfactory theory of the
Triebel-Lizorkin space and Besov space associated with the implicit multi-parameter
structures induced by the flag singular integrals. Indeed, our ideas and methods apply
easily to the pure product theory of Triebel-Lizorkin and Besov spaces. This pure product
theory appears to be new and has not been studied.

We now describe our approach and results in more details.
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Definition (2.1.7) [120] Let 0 < p,q < o,s = (s1,S,) € R2. The Triebel-Lizorkin type
space E,/ (R" x R™) associated with the flag singular integrals is defined by

Fyd (R™ X R™) = {f € (Sp)"t If Il g gmsmy < 0}
where

Q=

”f”F;;ji — zz Z_jslqz_(j+k)SZQ|¢j’k % f(')lq _ (8)

JEZ ker
p
The Besov space B,#(R" x R™) associated with the flag singular integrals is defined as

Byf (R X R™) = {f € (Sp): [Ifllgsg < o},
where

1

q
gy = | ), 0, 27200y« £l | )

JEZ k€L

If s = (0,0), then F)7 = LP when 1 < p < o0, and F,)7 = Hy when 0 < p < 1 defined
in [108]. A natural question arises whether this definition is independent of the choice of
functions ;. To study the Fps'ﬁ-boundedness of flag singular integrals we need to

discretize the norm of F. In order to obtain such a discrete F,/ norm we will prove the

Min-Max comparison principle. To prove such principle is the Calderon reproducing
formula (6). To be more specific, in [108] they have proved that the formula (6) still holds
on test function space Sp(R™ x R™) and its dual space (Sr)' (see Theorem 3.6 in [108]).
Furthermore, using an approximation procedure and the almost orthogonality argument,
the following discrete Calderén reproducing formula is proved in [108].

Theorem (2.1.8) [120] [108, Theorem 1.8] Suppose that 1 ;. are the same as in (5). Then

Oy = ) > D S By 0,3) Wby = £ Cea ), (10)
7k J I

where ;. (x,v,x,y,) € Sp(R® x R™),I ¢ R",J ¢ R™, are dyadic cubes with side-
length I(I) =27/"N and (J) =27/7N + 27/7N — j — N for a fixed large integer N; x;,y;
are any fixed points in I, ], respectively; and the series in (10) converges in the norm of
Sp(R™ x R™) and in the dual space (Sz)'.

The discrete Calderén reproducing formula (10) provides the following Min-Max
comparison principle in Treibel-Lizorkin spaces. We use the notation A =~ B to denote
that two quantities A and B are comparable independent of other substantial quantities
involved.

We show the boundedness of the flag singular integral on Triebel—Lizorkin spaces and
Besov spaces. We outline the corresponding results for Triebel-Lizorkin spaces and Besov
spaces in the pure product setting and boundedness of singular integral operators on these
spaces without any proof. Their proofs can be carried out easily following the more
complicated case in the implicit flag multi-parameter structure dealt.

We establish the Min-Max comparison principles in Triebel-Lizorkin and Besov spaces.
These principles are important in proving that the Triebel-Lizorkin and Besov spaces are
well defined.
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We first recall some decay estimates proved in [108]. If Y*(x,y,zu,v,w) for
(x,y,2),(u,v,w) € R* Xx R™ x R™ is a smooth function and satisfies the differential
inequalities
o108 01 032 052 0Ly (x,y, 2w, v, w)|

< AvManaz oy (L F1Xx—ul+ 1y —vD™VA +|z—-w)™ (11)
and the cancellation conditions

jlp*(x,y,z,u,v,w)x“lyﬁldxdy = f¢*(x,y,z,u, v,w)z"dz

= jl/)*(x, y, z,u, v, w)u®2vh2dudv = ft,l)*(x, Y, z,u,v,w)wr2dw = 0, (12)
and for fixed x, € R"™, vy, € R™, @(x,y, 2, X0, Vo) € Se (R™™ x R™) and satisfies
10518595 9(x,¥, 7, %0, Y0)|

< Bumay oy, (1 +1x = %0l + [y = yoD7V (1 +12D7Y, (13)
for all positive integers N, M and multi-indices a4, a,, 81, 52, Y1, Y20f nonnegative integers,
then we have the following almost orthogonality estimate:

Lemma (2.1.9) [120] [108] For any given positive integers L,, L, and K3, K,, there exists a
constant C = C(L4, L,, K4, K,) depending only on L, L,, K;, K, and the constants in (11)
and (13) such that for all positive t, s, t’, s’, we have

j Yis(x,y,z,u,v, w)gozl’sl (u,v,w, x, yo)dudvdw‘
Rn+m+m

t ¢ Ly s s’ Ly (t Vv t’)Kl (S \Y S,)KZ
o[t N (58 . (14)
t' "t s’ s) (@VE +|x—xo| + |y —yo DD (s Vs + |z])mHKe

Where QD;,S(X, y, Z,U,7, W) = t_n_mS_mlp*(%J%lgl%lglg) and

_m *(xyzxo 3’0).

Prs(X,Y,2,%0,y0) =t ST
Lemma (2.1.10) [120] [108] For any given positive integers L,, L, and K;, K, there exists
a constant ¢ = C(L,, L,, K1, K,) depending only on L,,L,,K;,K, suchthatif tvt' <svVv
s, then

t t’ Lq S S’ L (t Vv tl)K1 (S VS’)KZ
|1/)t,5*<pt’,s’(x;y)| < C F/\— —A—

t s' s . (t Vit + |x])@+ED (s v s’ + |y|)mtKe’

s'" s

andiftvt' = svs’', then

| ()| < t ¢ s s\ (tVtHk (tVtHk

* r (X, < | — . ’
Ves * @usr (1Y t' ot Vvt + [x)OFHED (tv it + |y[)mike

Lemma (2.1.11) [120] [108] Suppose that 1; are the same as in (5). Then
FO9) = ) > Wiex B+ f9), (15)
ik

where the series converges in the norm of Sy and in dual space (Sz)'.

Before we prove the Min-Max comparison principles (Theorems (2.1.13) and (2.1.14)),
we also give the following lemma.
Lemma (2.1.12) [120] [108] Let I,1',],]" be dyadic cubes in R™ and R™ respectively such
that I(1) =27/"N,1(J) = 279"N 427N (") = 277N and I(J)) = 27"~V 4 27K'-N
Thus for any u,u* € I and v, v* € J, we have, when j Aj' > k A K’,

34



2—|j—j’|L1—|k—k'|L2 2—(jAj’)K1—(kAk')K2 |II | |]/|
mik, |‘Pj’,k’ * f(xl"y]')l

5 @ =) @ o=y
< C,(N,1,j,j' k, k)2 V=i Lip=lk=k'|L,

1
"IN\T

DD Mol = FCanylagar | ¢ @
]I II
andwhenjAj' < kAKk’,
z 2—|j—j,|L1—|k—k’|L22—(j/\j,)K1—(j/\f')K2|[’||]’|
y n+K , m+K |‘Pj’,k’ *f(xl'ly]')l
(2N +lu—xpl) TRIN v —yp])T T

= CZ (NJ r:j!j,J k: k’)2_|j_j,|L12—|k—k’|L2

1

TINT
DD Migp = famymlaar | ¢ @
]I II
where M is the Hardy-Littlewood maximal function on R™*™ M, is the strong maximal
function on R™ x R™ (see [111]), and max{——,——} < r and
n+K,; m+kK,

C.(N,7,j,j ke, k') = SF-1N@Am) o nGa =" +mlent’-k)(1-7)
Co (N, j' ke, k') = 2G-DNGWm) o IGAT'=j YmUnS’ = NeDI(—3)
We now are ready to give the
Theorem (2.1.13) [120] Suppose D, o@D € S(R™™), @, ) € S(R™) and
ey = [ WOy - DOz

Rm

o(x,y) = j oM (x,y — 2)pP (2)dz,
Rm
and Yy, @j, satisfy the conditions in (5). Then for f € (§¢),0 <p,q < and s =

(s1,5,) € R?,

{z z 27 Js1a=(+k)sz2q z Z S}lpjllljj,k * f(u, v)|q)(,(x))(](y)}
- — T uelve

J

Q=

p
1

q
~ —js19~»—(+k)sz2q . q
~ {ZZZ 2 Zzugg}je,kpj,k*f(u,v)l Xl(x))(,(y)} ,
]

p
where I c R™%,J c R™ are dyadic cubes with side-length I(I) =277~V and I(J) =
27k=N 4 27J=N for a fixed large integer N; y; and x; are indicator functions of I and J,
respectively.

Similarly, we have the Min-Max comparison principle in Besov spaces.
Proof. By Theorem (2.1.8), f € S can be represented by

£ =D D SN G (63,60, ) (0100 £) G vy
j/ kl ]I II
We write
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(l/)j,k *f)(ul U)
= z z 2”,”],' (l/)j,k * (ﬁj’,k’(',', Xr') y]’)) (ur v)((pj’,k’ * f)(xll’y],)'
k' Iy

Jj’ J'

By the almost orthogonality estimates in Lemma (2.1.10), for any given positive integer
K,taking L, = L, = K; = K, = K, we have, if j' > k',

|l/Jj,k * @j’,k’('l')(u' 2]

Z—j'K z—k'K
< 277K . p-lk=K'IK

277" + |u — xp|)ntK . 27K +|u— yyr|)mHK ’
and if j' < k', we have
1Y * @jr gt () (w, V)|
Z_j,K Z—j'K
Sy AL Ll L gp— — .
QI+ lu—xp YK 27+ Ju—yp)HK
Using Lemma (2.1.12), for any u,u* € L,v,v" € J,xy € I',y; € ],
i fwl ¢ ) ) ) 2 bk
k’Sj, II ]I
Z‘f'K 2—k'K

X

- . (p./'/*f x/,y/

2 +u—x )" (27K + |v—y]/|)m+K| e S )l
kl>jl ]I II

27K 27K

. q)./ /*f xl,y/
(2_1’+|u—x,r|)n+K (2‘j'+|v—y]r|)m+K| Jk (1 ])|

<=

T

<cC z 271K ek S zzk"j’,k’ “fany)leray | ¢ @ v

k’sj’ ]l I’
NT
+C Z 2_|]_] |K2_|k—k |K M ZZ|¢j’,k' % f(x]’;y]’)|)([’)(]’ (u*' v*)’
k'<j' o

where M is the Hardy—Littlewood maximal function on R™*™, M. is the strong maximal
function on R™ x R™, and max{——,——1 < r < min{p, q} by taking K large enough.
Applying the Holder’s inequality and summing over j, k, I, ] yields
1

q

z z z z 27Js1a2=U*KIs2a  sup |y, k = f(u, v)|9%x;
7 - 7 - uel,vej

<
Q-

—_

< €4 N s UK M 3N (g F Gy ey
k/

j’ ]’ I’

Since x; and y,: are arbitrary points in I’ and J', respectively, we have
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1
q

zzzzz—jslqz—(jﬂc)m sup |1/)j’k *f(u,v)lq)(,)(]
— L 4 u€el,vej

1

™7
o —(i'+K’ .
<C IIZZ 2-J1'519) (] + )qu MS ZZUEI]’I:Ije]’|(pj,’k’ * f(u, v)|)(11)(]l ll .
7 a )

! !

and hence, by the Fefferman—Stein vector-valued maximal function inequality [112] with
r < min{p, q} we get

2222 2—j51qz_(j+k)52q Sup |l/)j,k *f(u, ’U)|q)(1)(]
7 = 7 i uel,vej

<C zz Z Z 27is1q9=(+k)s2q inf |(ij L f(u, v)| XI’X]’
T uel wej 177
J

This ends the proof of Theorem (2.1.13).
Theorem (2.1.14) [120] For f € (8r)',0 < p,q < o and s = (s4,s,) € R?, we have
1

q\4q
(Z Z—jslqz—(j+k)52q z sup |l/)j,k * f(u, 'U)| XiXj )
= ] ue€l,vej P
1
q\4
~ 2—j51q2—(j+k)52q z i :
Z uel{lvfejl¢,,k s fn|xx| |
jk L] p

where ;. (x,y) and @, (x,y) are defined as in (5), I ¢ R",J] < R™ are dyadic cubes

with side-length [(I) = 277"V and [(J) = 27%~N + 277=V for a fixed large integer N.
Theorem (2.1.13) implies that the Triebel-Lizorkin space F, (R™ x R™) in (8) is well

defined and Theorem (2.1.14) implies that the Besov space B,’%(R™ x R™) in (9) is well

defined.
By use of the Min-Max comparison principle, we will prove the boundedness of flag

singular integrals on F7 and on B 1.
Proof. As in the proof of Theorem (2.1.13), f € Si can be represented by

FO3) =) D D S U G0y, 203) @ = Dy

QR

p

Q=

jl k, ]I
Arguing as in the proof of Theorem (2.1.13), we have
|l/)j,k * f(ul U)|
1
<C Z 2=lj=j'|K . p=[k-K'|K M, ZZ'QBJJ"(, *f(xll,y]r)|X]r)(Ir (w, z)
klsjl J7r
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1
r T
+C z 2-li=i' |k ==kl J g ZZlq)j’,k’ s £y ) xrxy | w,2)
kl>jl ]I II
1
r T
<C Z 2-li=J'lK . p=[k-k'|K M zz|¢j’,k’ *f(xl’»)’]')|)(]’)(1’ (w, z)
j’,k’ ]I II
Therefore,
sup |15 * f (u, v) [ x; (W) x;(2)
uel,vej

| =

T

T
<C Z 2-li=i'lK . p=lk=K"[K ) pg ZZ|<P]’,I¢’ # f Qe y)layae | w,2)

j,,k, ]l II
When 1 < p < oo, by the Fefferman-Stein vector-valued maximal function inequality
[112] with r < p, we have

z sup |, * f(u,v)|x1x,

7] uel,vej
1
™7
it _ _1!
<c|| Y 2 b2 bR B (N N g« £y gt
j’,k’ ]’ II
p
1
™T
N _ 1!
< Cz 27T ek ZZ|‘Pj’,k’ “ fCenyy ) e
j’,k, ]’ I,
D

= CZ 2 b okl Z Z |(pj',k' * f(xl"y]')|X]'X1'
K J I .

If 1 < q, applying the Holder’s inequality and if 0 < g < 1 by using the usual inequality,
and summing over j, k yields

z 2-Js1q 2—(j+k)52q
J.k

1
a\q
g sup [¥;x * f(w, )| x1x,

€l,ve
1) “ebvel »

< 22-f51q2-<f+k>52q ZZ-If-f’lK-z-l"—"'V‘- ZZIW:a*f(x,r,y;')lxﬂx]'
Jk I

i k! 7
J J p
1

a\ q
<C Z 2=Jj's1a9-(j"+k")s2q zzl(pﬂ"" *f(xl’iy]’)b(l')(]'
jLK! Jr p
When 0 < p < 1, the Fefferman—Stein vector-valued maximal function inequality [112]
with r < p yields

38



p
f (z sup [+ f (w, 0) i (W) (2) ) dwdz
1) u€l,ve

r

T
<C Z 2_|j—j’|Kp . 2_|k—k’|Kp.[ M; (22|(pjllkl *f(xll,y],)|)(],)(ll> (W, Z) dwdz
7T

j’,k,

14
<C Z 2—|f—j'|Kp . 2_|k—k’|Kp .[ (22'(’)]-/',{/ *f(xll,yjl)|XII(W)X]I(Z)> dwdz .
7T

j’,k,
Since 1 < 1/p, taking € > 0, by the Holder’s inequality, we have
1

P P
(f (Z i ]|1/’f,k*f (w )X, (w)x; (2) ) dwdz)
T.J uel,ve
p
< C27lIKO-2) . -l [K(1-e) |00 % £ Cerr, v, |t (W) ,(z)> dwdz>
(.[ (ZZ Ik 7] I i

So if 1 < q/p, then applying the Hdlder’s inequality and if 0 < q/p < 1 by using the
usual inequality, we have

1
q\4
Zz—jslqz—(j+k)szq Z sup |1/}j,k*f(u,‘l7)|)(1)(]
e~ ] u€el,vej P

1
P

Q
Q|

ZZ J$1a9~(+K)s2q z 2=lj=j'|k(1-€) . 9=|k=K'|K(1~¢)
]Ikl

Z ZI(pJ e * f G yp) ey

]I II

D D Jogae = £y

I II

a\q
<C 22 J's1ap-(j"+k')s2q

jl kl

14
Since x;» and y; are arbitrary points in I" and J’, respectively, we have the desired

inequalities in Theorem (2.1.13).

To establish the boundedness of flag singular integral operators on Triebel-Lizorkin and
Besov spaces associated with the flag multi-parameter structure using the results we have
proved. As a consequence of Theorems (2.1.13) and (2.1.14), it is easy to see that the

Triebel-Lizorkin spaces prﬁ and Besov spaces are independent of the choice of the
functions y. Moreover, we have the following characterization of” F,’? and B >1 by using

the discrete norm.

Proposition (2.1.15) [120] Let 0 < p,q < o0 and s = (s4,s;) € R% Then we have
1

q
1fllgsq ~ ZZZZ 2751027004 [y f ey 0O 0) | || 5 (16)
i k] 1

where j, k, 1, x;, x;, 1, y; are the same as in Theorem (2.1.13).
Proposition (2.1.16) [120] Let 0 < p,q < o and s = (s1,s,) € R?%. Then we have
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1
a\4d

,(17)

sq A~ —Jjs1q99—(+k)s2q
Ifllgsg = ( ) ) 27isaz-Gwos,
k

ZZWJLk * f(xIrYJ)lXI(x)X](Y)
J J I

where j, k,y, x;, x;, x;, y; are the same as in Theorem (2.1.14).

Before we give the proof of the boundedness of flag singular integrals on £, and B,’;.
we show several properties of them.
Proposition (2.1.17) [120] Sx(R™ x R™) is dense in £ and in B, /.
Proof. Suppose f € F,7,and set W ={(j,k I,)):|j| <L,|k| <M,I x] < B(0,r)},
where 1,] are dyadic cubes in R™, R™ with side length 2=/=N, 27k=N 4 2=J=N respectively,
and B(0,r) are balls in R™*™ centered at the origin with radius r. It is easy to see that

[1[1]] ‘/Jj,k(x' Y, x1»3’])¢j,k * f(xlry])
.k, L)) ew
Is a test function in Sp(R™ x R™) for any fixed L, M,r.To show the proposition, it
suffices to prove

p

[T]1/] 1,0~j‘k(x, Y xb)’])l/)j,k * f(xby])
(k1) EWE

tends to zero in the £/ norm as L, M, tend to infinity. This follows from (16) and a

similar proof to that of Theorem (2.1.13). In fact, repeating the same proof as in Theorem
(2.1.13) yields

|I|Ull[}j,k(x!yrxhy])l/)j,k *f(xIIYJ)

U.kIDEWE

~S,q
FyF

QR

<C { z 2‘j51q2_(j+k)52q|1/)j,k *f(xI;YJ)|qX1X]} )
U.k1LHewe
where the last term tends to zero as L, M, r tend to infinity whenever f € . '
Suppose f € B, 7, set Wy = {(j,k): |j| < L, |k|] < M}and W, = {(I,])):1 xJ € B(0,r)},
where I,] are dyadic cubes in R",R™ with side length 27/=N, 27k=N 4 2=j=N
respectively. Then

[1[1]] l/;j,k(x: Y xl»y])lpj,k * f(xh)’])

(J.K)EWS,(I,))eWy BS"}
’ 1
qa\ 4
<C Z 2-Js1q9-(+k)szq z |¢j’k *f(xhy])|)(1)(] ,
(. k)ew, L)Hewy p

where the last term tends to zero as L, M, r tend to infinity whenever f € B /.
As a consequence of Proposition (2.1.16), L*(R™*™) is dense in .’/ (R" x R™) and
also in B, } (R™ x R™),
Theorem (2.1.18) [120] Suppose that T is a flag singular integral defined on R" x R™
with the flag kernel K (x,y) = meK*(x,y — z,z)dz, where the product kernel K satisfies
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the conditions in Definition (2.1.2). Then T is bounded on E; . Namely, for all 0 <

p,q < oo and s = (s1,s,) € R* there exists a constant C,, such that
ITHllgsg < CollFllgss.

Proof. We assume that K is the kernel of T. Applying the discrete Calderén reproducing

formula in Theorem 3.4 in [108] implies that for f € LZ(R™™) n 7

D,
11 a
Z Z Z Z 2-is1a=Gts2a | x K # £ (2, )| 0 (0, ()
A A

{ZZZZZ JagmUHasg ZZZZI} | % K % @1 (- —
J k] 1

I kl I

1
q
)(I(x))(](}’)} )

q

= y) X ()@ f (X, Yy

14
where the discrete Calderon reproducing formula in L2 (R™*™) is used.
Noting that ¢ are test functions as defined in (5), one can easily check that

|9 % K * @i (- = 2,0 =y ) (e, )| < €270l oIk
2-UNDK o= (kAK")K
X.] —(jnj' n+m+K ) —(kAK m+K dZJ
rRm (20N + |x — x| + |y —z — y)]) (270D 4 |2])

where K depends on M, given in Theorem 3.4 in [108] and M, is chosen to be large
enough. Repeating a similar proof to that of Theorem (2.1.8) (see [108]), we obtain

1
q

T
||Tf||ﬁg;g <C ZZZ j's1ap-(j' +kf)qu{ S<Zz|(pj""’ * (x,,,y]r)|)(]f)(,r> } (x,y)

I k’ ]I II

{ZZZZ 277 S1Q2 (j'+k")s2q |§D Tk ¥ (xp,y] )| Xy (}/)){1 (X)} < CIlf”F;g'

T T T
where the last inequality follows.

Since L*(R™*™) is dense in F5, 7, T can be extended to a bounded operator on F;, . This
ends the proof of Theorem (2.1.18).
Theorem (2.1.19) [120] Suppose that T is a flag singular integral with the kernel K (x, y)

satisfying the same conditions as in Theorem (2.1.18). Then T is bounded on B,’;.
Namely, forall 0 < p,q < o0 and s = (sy, s,) € R? there exists a constant C,, such that
ITHllgsg < Collfllgsg.
From the above of the proof of Theorem (2.1.18), it is obvious that Theorem (2.1.19)
follows from similar proof of Theorem (2.1.18) immediately.
We some remarks on how our methods can be applied to derive results of Triebel—
Lizorkin and Besov spaces in the simplest case of product spaces of two Euclidean spaces.
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We shall not provide any proofs since they can be given easily by following those in the
flag singular integral case.

To state the realization of our main results on R"™ x R™. Let S(R™) denote Schwartz
functions in R™. Then the test function defined on R™ x R™ can be given by

Y(x,y) =D YA (y),
where Yy € S(R?), @ € S(R™), and satisfy Zjez|1/3(1)(2‘f€1)|2 =1 for all & €

R™\{(0)}, and Zkez|1/7(2)(2‘f€2)|2 =1 forall & € R™\{0}, and the moment conditions
| xpO@dr= [ w@@)yPdy=o
R R™M

for all nonnegative integers a and .
Let f € LP?,1 < p < oo. Thus g(f), the Littlewood—Paley—Stein square function of f, is
defined by

1
2

9NN =D > Wi Fen| |
ik
where functions
i (x,y) = 2mHkmy W (21 )y @ (2K ). (18)
By taking the Fourier transform, it is easy to see the following continuous version of
Calderén’s identity holds on L?(R™ X R™),

FOY) = ) Wies i x FG6 7).
7k
Using the orthogonal estimates and together with Calderon’s identity on L2, one can
easily obtain the LP estimates of g for 1 < p < co. Namely, there exist constants C; and C,
such thatfor 1 < p < oo,
CIfll, < llgHlly < GlIfllp.

In order to use the Littlewood—Paley—Stein square function g to define the Treibel—
Lizorkin Besov spaces in pure product setting, one needs to extend the Littlewood—Paley—
Stein square function to be defined on a suitable distribution space. We introduce the
product test function space on R™ x R™.

Definition (2.1.20) [120] A Schwartz test function f(x,y) defined on R™ x R™ is said to
be a product test function on R™ x R™ if f € S(R™ x R™) and

JEyxtde= | fGny)yPdy =0
for all indices a, § of nonnegative integers.

If £ is a product test function on R™ x R™ we denote f € S(R™ x R™) and the norm of
f is defined by the norm of Schwartz test function.

We denote by (S(R™ x R™))’ the dual of §(R™ x R™).

Since the functions y; , constructed above belong to S(R"™ X R™), so the Littlewood—
Paley—Stein square function g can be defined for all distributions in (S(R™ x R™))’.
Formally, we can define the multi-parameter Triebel-Lizorkin and Besov spaces in the
pure product setting as follows:

Definition (2.1.21) [120] Let 0 < p,q < o,s = (54, ;) € R?%. The Triebel-Lizorkin type
space £, (R™ x R™) in the pure product setting is defined by

(R X R™) = {f € (55)": [Ifllgga < oo},
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where

Q|

Ifllsga = | D) 27issazksaa|lyy,x |7 | (19)
j€Z kez
The Besov space B,? (R™ x R™) in the pure product setting is defined as
By (R" x R™) = {f € (5)": ||f||g;rq < oo},
where

| =

q

Ifllaga ={ D > 27Imaz-kszazgllyy, « £ | (20)
JEZ keZ

If s =(0,0), then £* = LP when 1 <p < o and £* = HP when 0 <p < 1, the
product Hardy spaces introduced in [100-102]. It can be shown that this definition is
independent of the choice of functions y; .

To establish the Triebel-Lizorkin and Besov space theory on R™ x R™ we need the
following discrete Calderon’s identity.
Theorem (2.1.22) [120] Suppose that ; , are the same as in (18). Then

FO6Y) = ) ) U132 (e )G, 21)
jk L]
where ;. (x,y,x,y;) € S(R*x R™),] cR",J] c R™ are dyadic intervals with
interval length £(I) = 277N, ¢(J) = 27%~N for a fixed large integer N; x;, y; are any fixed
points in I, ] respectively, and the series in (22) converges in the norm of S(R™ x R™) and
in the dual space (S(R™ x R™))’.

By use of the Min-Max comparison principle in the pure product setting similar to
Theorems (2.1.13) and (2.1.14), we can prove the boundedness of singular integrals of
product kernels on R™ x R™ defined as in Definition (2.1.2) (one notes that it is R"™ x R™
instead of R™*™ x R™) on F,”? and on B,

Theorem (2.1.23) [120] Suppose that T is a product singular integral defined on R™ x R™
where the product kernel K satisfies the conditions in Definition (2.1.2). Then T is
bounded on F,*? and B,?. Namely, for all 0 <p,q < oo and s = (s;,5,) € R* there
exists a constant C,, such that

ITllgsa < Collfll s
and

||T(f)||ggg < Cpllfllggg-

We also remark that Hardy space theory associated with non-isotropic flag singular
integrals induced by the non-isotropic dilation (6x, 52y) on R™*™ has been carried out by
Ruan in [117-118]. Therefore, it can be applied to develop the multi-parameter Treibel—
Lizorkin and Besov space theory in that setting. See Han and Lu [118] for more
comprehensive summaries of multi-parameter Hardy space theory and discrete
Littlewood—Paley—Stein analysis.

Section (2.2) Weighted Triebel-Lizorkin and Besov Spaces of Arbitrary Number of
Parameters

The multi-parameter pure product theory has been developed over the past decades. This

theory includes the boundedness on multi-parameter LP spaces (1 < p < o0) and multi-
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parameter Hardy spaces HP(0 < p < 1) of singular integral operators. This theory also
includes the atomic decomposition of multi-parameter Hardy spaces, duality and
interpolation theorems on product spaces, and maximal function characterizations, etc. See
Gundy and Stein [96], Carleson [97], Fefferman and Stein [98], Fefferman [99, 121],
Chang and Fefferman [100-102], Journe [103, 104] and Pipher [105], etc.

[108, 122], developed a theory of discrete Calderon reproducing formula and
Littlewood—Paley analysis and then developed the implicit multi-parameter Hardy space
theory associated with the flag singular integrals. Adapting ideas from [108, 123]
established the boundedness of singular integral operators on weighted multi-parameter
Hardy spaces H? (R"™ x R™) and from H? (R" x R™) to LF (R™ x R™) when the weight
w is in A,. The boundedness of singular integral operators on weighted multi-parameter
Hardy spaces of arbitrary number of parameters was derived in [124].

The theory of one-parameter Triebel-Lizorkin and Besov spaces has been very well
developed. The multi-parameter counterpart of such theory is still very little explored.
[120] studied the nonweighted Triebel-Lizorkin and Besov spaces associated with the flag
singular integral operators and proved the boundedness of the flag singular integrals on
these spaces.

To use the discrete multi-parameter Littlewood—Paley—Stein analysis to establish the
theory of weighted Triebel-Lizorkin and Besov spaces on R™t x R"2 x.--x R™ and the
boundedness of singular integral operators on FE/(w; R™ x R"z x---x R™) and
By T (w; R™ X R™ X---x R"™) for all w € A, (R™ X R™ X---x R™),0 < p,q < oo and
s = (Sq,55,...,5¢) € R¥. For the simplicity of the presentation, we assume k = 3 and
denote n = n;,m =n,,d = n;.

We now recall some definitions of product weights in three parameter setting.

For 1 <p < o, a nonnegative locally integrable function w € A,(R™ X R™ X RY) if
there exists a constant C > 0 such that

1 L[ o1/ )
(IleRw(x)dx> (lleRw(x) P=Vdx <C

for any dyadic cuboid R =1Xx] x K, where I,J,K are cubes in R®,R™ and R¢

respectively. We say w € 4;(R"™ x R™ x R%) if there exists a constant C > 0 such that
M,w(x) < Cw(x)

for almost every x € R™ x R™ x R4, where M, is the strong maximal function defined by

1
Mof () = sup j If(v)ldv

UER

for any dyadic cuboid R =1 x ] x K on R" x R™ x R4, We define w € A, (R™ X R™ x
R?) by
A, (R* x R™ x R%) = U A,(R* x R™ x R%).
1<p<oo

If w€ A, then q,, =inf{q: w € A} is called the critical index of w. Notice that if
w € A, then g, < . The A,(R™ x R™ X R%) has the following restriction property:
w € A,(R™ x R™ x R?) implies w(-,y,2z) € A,(R"),w(x,,, z) € 4,(R™),w(x,y,") € A,(RY).

We will use an appropriate Littlewood—Paley square function to characterize the
weighted ~ Triebel-Lizorkin space F,"?(w; R™ x R™ x R?), and Besov spaces
By (w; R™ X R™ x R%),w € Ao, (R™ X R™ x R%). To approach this, we first introduce
the test function space S, (R"™ x R™ x R%), where M is a positive integer.
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Definition (2.2.1) [128] We call f defined on R"® x R™ x R¢ a test function of order M if
(DFor |al, 1Bl Iyl =M — 1,

a 14 1 1
|DxD D, f(x,y,2)| <

O+ D (L [y (L e
(iDFor [x — x'| < —(1 + |x]) and |[a| = M, [B], [yl =M —1,
IDEDY DY f(x,y,2) — DEDY DY f(x',y,2)]
lx — x'| 1 1 .
(1 + [x|)™¥2M (1 + [y|)ym+MHIBI(1 4 |z[)d+M+v”

1
(ii)For |y =y’ <51 +|yD and |f] =M, |al, [yl =M -1,

IDEDY DY f(x,y,2) — DEDY DY f(x,y',2)]
ly —y'] 1 1 .
(1 + [y)™+2M (1 + |x[)+MHlal (1 + [z])aeM+iv”
1
(iv)For |z —z'| < 5 (1 +|z]) and ly| = M, |al, 1B <M - 1,
IDEDY Dyf(x y,2) = DEDS DY f(x,y,2")]
|z —Z'| 1 1 _
(1 + |Z|)d+2M (1 + |x|)n+M+|a| (1 + |y|)m+M+|ﬁ| 4
! 1 ' 1
(WForx —x'| < 2(1 + [x), Iy —y'| (@ +lyDand [a| = |B] = M, ly| <M -1,
IDEDY DY f(x,y,2) — DEDYDYf(x',y,2) — DEDEDY f(x,y',2) + DEDE D) f(x', ', 2)|
|x —x I ly —y'l 1 _
(1 + [x])PF2M (1 + [y[)m+2M (1 + |z|)d+M+vT’
(vD)For [x —x'| < (1 + IxD), |z — 2’| < 5(1 +|zD and |a| = |y = M, 1B < M — 1,
IDEDY DY f(x,y,2) — DEDYDYf(x',y,2) — DEDEDY f(x,y,2") + DEDE D) f(x',y, 2]
lx — x| |z — 2’| 1 .
(1 + [x)™2M (1 + [z])3F2M (1 + |y[)m+M+BD”
. / 1 ! 1
(viD)For [y —y'| < (1 +1yD,lz—2'| <1 + |z and |B] = [yl = M, |a] <M — 1,
IDEDY DY f(x,y,2) — DEDS DY f(x,y',2) — DEDEDY f(x,y,2') + DEDED) f (x,', 2]
ly =] 1z —2'| 1 |
(1 + [yD™F2M (1 + [z])@+2M (1 + |x|)n+M+lal’
/ 1 / 1 p 1
(viii) For [x —x'| <= (1 + |xD, Iy =y’ <51 + |yl 1z — 2| <Z(1 +|z]) and |v| =
M,
[DZDED?f (x,y,2) — DEDEDEf (x',y,z) — DEDIDYf(x,y',z) + DZDEDYf (x',y', 2)]
— [D¥DIDYf(x,y,2") — DEDYDYf(x',y,2z') — DYDIDYf (x,y',2")
x — x'| ly — 'l z—2z'|
(1 + [xM+2M (1 + |y|)m+2M (1 + |z[)d+2M’

<C

<C

<C

+ D;D},’D;’f(x’,y’,z’)“ <C
(iX) For |a|, |B], |yl =M — 1,
f flx,y,2)x%dx = f(x,y,2)yPdy = f f(x,y,2)z¥dz = 0.
R" R™ R4

If f is a test function of order M on R™ x R™ x R? we denote f € Sy, (R™ X R™ x R%)
and the norm of f is defined by
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1f1ls,,wrxrmxrey = Inf {C: (i)~ (iX) hold}.
It is easy to check that S, (R™ x R™ x R%) with this norm is a Banach space. The dual
space of Sy, (R™ x R™ x R%) is denoted by S,,(R"™ x R™ x R%)). Note that a Schwartz
function with condition (iX) belongs to Sy,.

Let @ € S(R™), @ € S(R™), @ € S(R?) and satisfy
2|¢Tl>(z—f€1)| =1 forall & € R™\ {0},

JEL
2|¢TZ>(2"‘€2)| =1 forall & € R™\ {0},

KEZ

Y @@ g)| =1 forall & € R\ (0},

LETZ
and the moment conditions

j PYDx%dx =0, f Y PDyBdy =0, J PY®z¥dz =0
R™ R™ R4
for all multi-indices «, § and y. Denote
Ve y,2) = (WP @YP @), y.2) =P VP PP @), (22)

where

Y =2mp@(27x), PP o) = 2@k, Y () = 2/ (2%x).

By taking the Fourier transform, it is easy to see the following continuous version of
Calderén reproducing formula holding on L?(R™ x R™ x R%):

f(x! Y, Z) = Z(lpj,k,l * lpj,k,l * f)(x! Y, Z)' (23)

Jkl
For f € (Sy)'(R™ x R™ x R%), we define the Littlewood—Paley square function on
R" x R™ x R% by

1/2
5N, 2) =< > Iw,-,k,f*f(x,y,zﬂz) : (24)

J.kLEL

where y; . », satisfies the same conditions as in (22).
Definition (2.2.2) [128] A product kernel K is a distribution on R™ x R™ x R¢ which
coincides with a C* function away from the coordinate subspaces x = 0,y =0andz =0
and satisfies
(i) (Differential Inequalities) For any multi-indices ¢ = (ay,...,a,), 8 = (B1,---, Bm) and
Y =1 Vm),

10205 0YK (%, 2)| < Coyp,|x|~(H1ED |y ~(n+IBD |z =(@I¥D;
(ii) (Cancellation Condition) For all normalized bump functions ¢,, ¢,, @3 on R*, R™, R%
respectively and for any Ry, R,, R; > 0,

j 0K (x,y,2) 92 (Ryy) 93 (Rsz)dydz| < Clx| ™14,
R™MxR4E

f dafK(x'y'z)¢1(R1x)¢3(R32)dde < C|y|_m_|ﬁ|,
R xR

f YK (x,y,2)0,(R1x),(R,y)dxdy| < C|z|~¢7I],
RMXR™M

<C,

[ oKy D0 R (Ro)s Re7)dxdydz
RTXRMXR
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We describe the approach and results.
Definition (2.2.3) [128] Let 0 < p,q < ,s = (s41,5,,53) € R3,w € A,. The weighted
Triebel-Lizorkin type space F,*? (w; R™ x R™ x R%) is defined by
Fps'q (wW; R" X R™ X RY) = {f € (Sy)": ||f||F§'q(w;R"mede) < o0},
where

1
q

||f||F;.q(W;RanmXRd) = Z 2_(j51+k52+ls3)q|¢j,k,l x 14 _ (25)
I LEL
LP(w)

The weighted Besov space B, ¥ (w; R™ X R™ x R%) is defined by
By (w; R x R™ x RY) = {f € (Sy)": ||f||B;,q(W;RnXRmXRd) < oo},
where
1
q
P llistqummamsas, = | > 270wy, ol ) (26)
jkIEL
By Littlewood-Paley theory, if s = (0,0,0), then £*(w) = LP(w) when 1 < p < oo,
and £*(w) = HP (w) when 0 < p < 1 as defined in [124]. To proceed further, a natural
question arises whether this definition is independent of the choice of function v, ;.
Moreover, to study the F"(w; R™ x R™ x R%)-boundedness and B,? (w; R™ X R™ x
R%)-boundedness of singular integral operators we need to discretize the norm of
EJY(w; R™ x R™ x R?) and B,? (w; R™ x R™ x R?). To do that we shall prove a Min-
Max comparison principle. The main tool to prove such principle is the Calderon
reproducing formula (23). Furthermore, using an approximation procedure and the almost
orthogonality estimate, the following discrete Calderén reproducing formula is proved in
124].
[I'hegrem (2.2.4) [128] Let y; ., be the same as in (22). Then

foyz) = z z \NTKT ¥y, 2, %0 V5 2i)Wj e * f (X0 Yy 2k), (27)
jkL1,].K

where z,ljj,k,l € Sy (R* X R™ x RY),I < R"%, ] c R™and K c R? are dyadic cubes with
[(I) = 2777N, where I(I) is the side length of I,1(J) =27 %N and I(K) = 27!V for a
fixed large integer N, x;, y;, zx are any fixed points in I, ], K respectively, and the series in
(27) converges in the norm of Sy, (R™ x R™ x R%) and in the dual space (S,)'(R™ X
R™ x RY).

The discrete Calderon reproducing formula (27) provides the following Min-Max
comparison principle in weighted Triebel—-Lizorkin spaces and Besov spaces.
Lemma (2.2.5) [128] Given positive integers M;, M,, M5, N;, N, and N, there exists a
constant ¢ = C(M,, M,, M5, N;, N,, N3) such that for all positive numbers t,s,r,t’,s’,r’,

|l/) tsr ¥ ¢t’,s’,r’t(x' Y, Z)l

¢ t, M, S S, M, r T', M3
<cl=n=- A= —A—
t' ot s'" s r' T
(tvitHM (s vsHNz (rvr')Ns
(EVE + |x)Ne (s Vs' + |y[)™ Nz (r v ! + |z])d+Ns’

(28)
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where Y, ;- and ¢, o+ are the same as in (22) and t V s = max{t, s}, t A s = min{t, s}.
Lemma (2.2.6) [128] Given any positive integers M, M,, M5, N;,N,, N5, let I,1';],]" and
K,K' be dyadic cubes in R®,R™ and R respectively such that {(I) =27/7N,I(]) =
27k=N |(K) = 27N and [(I") = 277""N 1(J") = 27K =N 1(K") = 27V'~N_ Then for any
w,u* € I,v,v* € Jand w,w"* € K, we have

2—|j—j’|M12—|k—k’|M2 2—|l—l’|M32—(j/\j’)N12—(k/\k’)N2 2—(1/\1’)N3 didiid

(273N 4+ [u —xp )" (2 4 o=y )T (2 4w — zg0])

|y pr *f(xl"y]"ZK,)l}

< 2-1i=i"IMy . 9p—lk—k'|My , p—|l-U"|M3

d+Ns
I,,],,K,

1

r T
: {Ms Z Z 2 |pjrwr i * fe,ymze)xexyxy | @W,v,ws)e
I K'

]I
where M, is the strong maximal function on R X R™ x R%,0 < r < min{l,qi}, qw 1S
the critical index of w, and
C= 2N(%—1)(n+m+d)2(1—%)[n(j/\j'—j')+m(k/\k’—k')+d(z/\z’—z')]
The proof of Lemmas (2.2.5) and (2.2.6) can be found in [108] and [124].

We need the following weighted Fefferman—Stein vector-valued inequality in the multi-
parameter setting:

j 1M (PG, 2w, y, 2)dxcydz
RMTXRMXR

< Cj 1x,v,z|5w(x, y, z)dxdydz, 1<p,q< oo,
RPXR™M xR

where w € 4,(R" X R™ x R?) and f = (f, f2, f3,...) € 19. The one-parameter version
of this inequality corresponding to the Hardy—L.ittlewood maximal function instead of the
strong maximal function, was proved in [126]. From one-parameter version together with
the observation

Ms(f)(x,y,2) < MOMOMB (f)(x,y,2),
where M® denotes the Hardy—Littlewood maximal operator acting on the i-th variable,
the above multi-parameter inequality follows (see, e.g., [127]).
Theorem (2.2.7) [128] Let @, ™ € S(R™), @, @ € S(R™) and @, ¢ € S(R?).
Suppose that ¥, ; and ¢; ., satisfy the same conditions as in (22). Then for 0 < p,q <
00,5 = (51,52,53) € R%,and w € A, (R™ x R™ X R?) and f € (S3)'(R® X R™ x R%),

1/q

—(j q
D 2 Usitkettsa N sup [y famw)|! 60
ikl I']’KuEI,vE],WEK
LP(w)
1/q

~ Zz—usl+kSz+lsmz inf | * Fv,w)|* 2 00x 0Dk (@) ,(29)

Uuel,veJ,wekK
Ikl 1,],K

LP(w)

q )1/‘1
LP(w)

q
z sup |¢j,k,l * f(w,v, W)l XiXjXk

u€el,veJwekK
7K J

(Z 2—(j51+k52+ls3)q

Jkl
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q

(30)

~ Z 2—(j51+ksz+ls3)q

Jkl

i q
inf ok flu,v,w
Z uEI,vE],wEK'lpJ‘k'l f( )| XiXj Xk
1JK

LP(w)

Theorem (2.2.7) ensures that the Triebel-Lizorkin space F,”?(w; R x R™ x R%) and
the Besov space B,? (w; R™ x R™ x R?) in Definition (2.2.3) are well defined.

By use of the Min-Max comparison principle, we shall prove the boundedness of
singular integrals on both of £ (w; R™ x R™ x R%) and ;" (w; R™ x R™ x R%).
Proof. By Theorem (2.2.4), f € S),(R"™ x R™ x R%) can be represented by

Fay 2= D > WK Gy Gy, 2,50 vy 20 )bt F G, vy, 7).
jLE U ) K!
We write
(Ebj,k,z * f) (u,v,w)

= 0 D WK (yser = Byraear )@t 0w, 510, 90,20 ) * £ Chrn vy 2
j’,k,,l’ 1’,]’,1(’ .

By the almost orthogonality estimate in Lemma (2.2.5) by choosing t =27/,s =
27k =271 =27 s =27% and r' = 27V, we have from Lemma (2.2.6) that for any
given positive integers M,, M,, M5, N;, N,, N3, and for any u,u* € I,v,v* € J and w,w™ €
K,

|(1l’j,k,l «fwv,w)| <C 2 Z <

j’,k’,l, I’,]’,K,

2—|j—j’|M1 2—|k—k’|M2 2—|l—l'|M3 2—(;‘/\1")1\/1 2—(k/\k')N2

n+N1(

(277N + |u — xp|) |)m+N2

ALY

<C z o=li=J"|M1 p=|k~k'|M; o ~1~1'|M;
j’,k’,l,

27k |y —y

¢j’,k’,l’ * f(x,,y,r,ZKr)|>

1

T

MS Zzz |¢j’,k',l’ * f(xl"y]"ZK’)l)(I’X]’X]’ (u*,v*,w*) ,
II ]l KI

where M, is the strong maximal function on R* x R™ x R and max { L ,
n+N1 m+N2 d+N3

r < min {qi,l}. Applying Holder’s inequality and summing over j, k,l,1,] and K, we

T

m d}

have
1
q

Z Z 2-Usitksa+lss)a  gup |(¢j’k’l * ) (u, v, W)|q)(1)(])(1<

TRLLIK u€el,veJ,wekK

Q|

r

—( sy +k s+l
<C z 2 (J's1 sp+1's3)q MS z |¢j',k’,l' * f(xll’y]I’ZKl)l)(IIX]IXKI
j/ k/ ll II ]I KI

3

Since x, x;» and xy are arbitrary points in I,]" and K’ respectively, we have by
weighted Fefferman—Stein vector-valued inequality that
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1
q
E : 2-(is1tksz+ls3)q sup |(l/)j,k,z * f)(u, v, W)|q)(1)(])(K

jkUIL]K U€l,veJ,WeEK
LP(w)
1
AL
<C 2=(j's1+k s +U's3)a | g Z N
s uEI’vE]’weK’l(pJ sy * f( )l)(z X)' XK'
k]l Ill II,]I,K[ }
LP(w)
1
q
. , , _ .
UEI’,‘UE]',WEK’|(p] kL f( » Yy )| X X] XK ,
JrLE I K
LP(w)

the last inequality follows from the fact that r < mm{— 1} and w € A, /. Thus (29)

follows and the proof of the first part of Theorem (2.2.7) i |s completed
Next, we will show the second part of Theorem (2.2.7), i.e., (30). As in the proof of (29),
we have
sup |(¢j,k,l * f)(w, v,w) |X1X1XK

u€l,veJ,weK
r T
= z 2_|j_j’|M12_|k_k’|M22_|l_l’|M3 ’ MS z |(pj’,k’,l' * f(xllr y]’iZK’)l)(I'X]’XK' (u*,v*,W*)
j’,k’,l’ I’,]’,K’
When 1 < p < o, by the weighted boundedness of strong maximal function M, with
. D
r< mm{ﬁ’ 1}andw € A, /-, We have

Z sup | @0 * ) v, W) iy xe

u€el,veJ,weK

LK LP(w)

|

r

= Z 27l gk Mgt s Z |¢j’k’z'*f(xz"yj"ZK’)|X1’XJ’XJ’

<

j',k',l' IIJI'KI
LP(w)
1
™NT
—|i— ! _ 1! . U
< Z 27 V=i Mg =lie=k Mo == M5 3 pg Z |61 v+ FQn vz )| xtyny
j',k’,l’ IIJI'KI
LP(w)
—|i— ! _ 1! .
< Z 2 li=i" M2 ==k M == | M Z Do * F ey 2 k) X Xy Xk
] I ! IR !
LKL ] K LP(w)

If g > 1, applying Holder’s inequality and if 0 < g < 1, using the inequality (3};a;)? <
Y al , and summing over j, k, [ yields

1
q q
Z 2_(]51+k52+153)q sup |(¢j,k,l *f)(u, v, W)|X]X]XK
i uel,veJ wekK LP(w)
1
q q
<c Z 2_(jrsl+k’sz+1153)q z |(1/Jj,k,l * f(xl’:y]’lZK’)l)(I'X]’X]'
iR ') K'

LP(w)
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When 0 < p < 1, by the fact that w € A4, ., we have
14
] ( sup  [(Wjuu * £)w v, w) |1 (x)x](y)xK(Z)> w(x,y,z)dxdydz
u€l,ve,weK
<c N 2l Mip -l [Mzpp—|i=t' M3
j’,k’,l,
r p/T

j MS Z |¢j’,k’,l’ *f(xI"y]"ZK’)|XI’X]’XK' (x,y,Z) W(x,y,Z)dXdde
1K'
<C 2=|i=i"|M1p 9—|k=k'|Mzp o~ |1-1" M3

jLEn
2

. f Z |¢j’,k’,l’ * f(x1n y]I,ZKI)l)(IrX]/)(KI w(x, v, Z)dXdde.
I,,],,K,
By Holder’s inequality with exponents % and ﬁ, we have

1
P

p
{ f < sup |(¢j,k,l*f)(urU:W)|X1(x)X](Y)XK(Z)> W(x,y,Z)dxdde}

u€el,vejwek
<C 2=([i=J" [My+[k—FK'|My+[1-1"|M3)e

jl,k,,l,

=

P P

. f 2 |¢j',k',l' *f(x,/,y]/,zK,) XI’X]'XK’ W(X,y, Z)dXdde )
I,,],,K,
where € € (0,1). Then, if ¢ > 1 by using Holder’s inequality and if 0 < g < 1 by using

inequality (X, ;)7 < ¥, a/ again, we have

z 2—(j51+k52+l53)q

Jkl

Q-

q
sup | (W) * £ v, Wi xx

u€el,veJwekK

LP(w)

S z 2—(j51+k52+153)q z 2—(|j—jl|M1+|k—k’|M2+|l—l,|M3)8

j,k,l j,;k,,l’
1
919
' Z |¢j’,k’,l’ * f(xl"y]"ZK’)|X1’X]’XK'
I
I',J' K o)
1
a q
.y , '
< C 2_(] S1+k'sy+1 S3)q Z |¢j’,k’,l’ * f(xll'y]"ZK’)l)(I’X]’X]’

JjLELY e

LP(w)
Since x;1,y; and zy are arbitrary points in I',J" and K' respectively, we have the desired
inequality (30).

As a consequence of Theorem (2.2.7), it is easy to see that the weighted Triebel—
Lizorkin and Besov Spaces are independent of the choice of the function . Moreover, we
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have the following discrete characterization of £, (w; R™ x R™ x R?) and B,/ (w; R™ x
R™ x RY).
Proposition (2.2.8) [128] Let 0 < p,q < ,s = (54, 5,,53) € R® and w € A,,. Then we have

1

—(i q
||f||p;'q(w) = <z z 2 (jsl+k52+ls3)q|(1/)j,k,l * f)(xh)’]'zk)l XIX]XK) ) (31)

JklL]K

Q|

LP(w)
1

q q
) , (32)
LP(w)
where Y; .1, j, k, 1, X1, X;, Xk are the same as in Theorem (2.2.7).
Before we prove the boundedness of singular integrals on F,*?(w) and B, (w) we
introduce several properties of them.
Proposition (2.2.9) [128] Sy (R™ x R™ x R?) is dense in F,’? (w; R™ x R™ x R%) and in
By?(w; R™ X R™ x RY).
Proof. Suppose that f € E"(w; R™ x R™ x R%). By Theorem (2.2.4),
Fy2) =) > MUK (63, 2,503 26 W * F) 060,70

kUL KEW

z |(l/)j,k,z * f)(xhy]'ZK)l)(IX]XK

L].K

s ~ —(js1+ksy+1s3)q
1 g5 <Zz sy sy

Jikl

Set

W ={(,k,,1,],K):|j| £ L k| <L, |l| £Ls3,I X] XK < B(0,R)},
where I,],K are dyadic cubes in R", R™ R% with side-length 2/=N, 27k=N 2=I=N
respectively, and B(0, R) is a ball in R® x R™ x R¢ centered at the origin with radius R.
Obviously,

[1[1]] |K|115j,k,l(x» Y, Z, xliy]'ZK)(lpj,k,l * f)(xl»)’]» Zg)
j kUL KEW

is a test function in Sy, (R™ x R™ x R%) for any fixed L,,L,,L; and R, where 1/3]-,,(’1 €
Sy(R™ x R™ x R%). Repeating the same proof as in Theorem (2.2.7), we have

|I| |]| |K|d}j,k,l(xl Yz, Xy, y]l ZK)(lpj,k,l * f)(xl' y]'ZK)

Uk LL]LK)EWE

EyT(w)
1
q
<C z 2_(j51+k52+ls3)q|l/)j,k,l * f(xI'YJ’ZK)quIX]XK ,
.k L1,],K)ewe
_LP(w)
the last term tends to zero as Ly, L,, L3 and R tends to infinity whenever f € E(w; R x
R™ x R%) © (Sy(R™ x R™ x R%))’.
Suppose that f € B,'?(w; R™ x R™ x R%). Set
Wl = {(j,k, l): |j| S Ll' |k| S L2, |l| S L3} and WZ == {(I,],K):I X] X K (e B(O,R)},
where I,],K are dyadic cubes in R™, R™ R% with side-length 27/=N,27k=N 2=I=N
respectively. Then

[1]1]1 |K|1/;j,k,l(x' Yz, xl'y]rZK)(lljj,k,l * f) (xIJ’];ZK)
(j,k,l)Ech (IJ'K)EWZC B;'q(W)
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| =

q q

< Z 9—(js1tksy+ls3)q z |(1/jj'k'l * f)(xI'YJrZK)l)(IX]XK )

Uk DEWS (LK) EWS LP (w)

the last term tends to zero as Ly, L,, L and R tends to infinity whenever f € B,/ (w; R x
R™ X R%) € (Sy(R™ X R™ x R%))'.

As a consequence of Proposition (2.2.9), L*(R™ x R™ x R%) is dense in £,"7 (w; R™ X

R™ x R?) and in B,? (w; R® x R™ x R%).
Theorem (2.2.10) [128] Suppose that T is a singular integral defined on R x R™ x R% by
(TH(x,y,2z) = (K * f)(x,y, z), where the kernel satisfies conditions in Definition (2.2.2).
Then T is bounded on £ (w; R™ x R™ x R%) and B, ¢ (w; R™® x R™ x R%). Namely, for
all 0 < p,qg <o, s =(sq1,5,,53) € R and w € A, there exists a constant C, such that
”T(f)”F;’q(W;Ranmed) < C”f”ﬁ';'q(w;]}gnx]]gmx]]gd)' (33)
||T(f)||gg'q(w;Ranmed) < Cllfllg;’q(W;Ranmed)- (34‘)

We end with the following. Rychkov [125] characterized the weighted Besov—Lipschitz
and Triebel-Lizorkin spaces on R™ with weights that are locally in A,, but may grow or
decrease exponentially at infinity. A certain local variant of the Calderén reproducing
formula is also constructed and used in [125]. We get the boundedness of singular
integrals on the weighted Triebel-Lizorkin and Besov spaces with A, weights. This
theorem is new even in one parameter case.

We will prove Theorem (2.2.7), namely, the Min-Max comparison principle which
implies that the weighted Triebel-Lizorkin and Besov spaces are well defined as given in
Definition (2.2.3). Provides the proof of the boundedness of singular integrals on the
weighted Triebel-Lizorkin and Besov spaces, namely, Theorem (2.2.10).

We establish the Min-Max comparison principle in weighted Triebel-Lizorkin and
Besov spaces. We first recall the almost orthogonality estimates on S,,.

Proof. We assume now that K is the kernel of T. Applying the discrete Calderon

reproducing formula, we get, for f € L2 n E,?(w; R® x R™ x R%),
1

q
{z z 2—(j51+k52+153)Q|¢j,k’l * K % f(xl,y],ZK)lq)(I(x))(](y)XK(Z)}

JjklL],K
LP(w)

— Z 2—(jsl+ksz+lsg)q

JkUL]K

D IR s * K €
j’,k’,l’ I’,]’,K’

Q|

q

XDt Y —Zgr)(x,Y, Z)lpj’,k’,l’ * f(xl’!y]"ZK’) Xl(x)X](y)XK(Z)

LP(w)
Noting that ;,, are dilation of bump functions, one can easily get from almost
orthogonality estimate that
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[k * K * lpj’,k’,l’(' — X =Y —zg)(x,y,2)|

-(n"L
< C2-limi gk iz li=t s ’ =
@1 [~
2—(k/\k’)L 2—(lAl’)L
a+L’ (35)

(2708 4 Jy =y )™ (27000 + |z = z0)
where L only depends on M, and M, is chosen to be large enough. Then following a
similar proof in Theorem (2.2.7), we have
1
q
(x.y,2)>

”Tf”F;‘q(w;R"mede)
1
q

s

T
S C ( z 2_(j’sl+k’52+1753)q . {M5‘< Z |l/)]",k’,l' * f(xl’ly]’lZK')l)(I’X]'XK') }
I

j’,k’,l’

LP(w)

< Z z 2_(j’51+k’82+l’53)q|1/)jr,kr,lr * f(xll,y]/, ZKI)|qXIIX]IXKI
j’,k’,l’ I’,]’,K’
LP(w)

< C”f”F;q(W;Ranmed).
Since L*(R™ x R™ x R*) N £ (w; R® x R™ x R%) is dense in E/(w; R™ x R™ x
R%), we could yield (33) in Theorem (2.2.10) by a limiting argument.

Similarly, for f € L2 n B9 (w; R™ x R™ x R%), applying the Calderon reproducing

formula,

1
q q

D Wjser * K+ Gy, 26 000 @)

L].K

Z 2—(j51+k52+ls3)q

skl LP(w)

— Z 2‘(jS1+kSz+lS3)q Z Z Z |I,||],||K,|¢j,k,l * K % lﬁj/'kl'll(
jk,1 LILK|j' k"1 K
1
q q
Xt Yy _ZK’)lpj',k’,l' * f(xl!y]’rZK’) XiXj Xk

LP(w)
By (35), we obtain
||Tf||B;q(W;Ranmed)

14,49
™T

< C z 2_(j’51+k’52+1153)q . MS z |ijl,kl,ll * f(xII,yJI’ZKI)|XIIX]IXKI

j,,k,,l’ I,,],,K,
LP(w)

1
q
il / ’ q
< Z 2 (J's1+k'sz+l S3)q”¢j’,k’,l’ * f(xll,y]’;ZK’)XI’X]’XK’”Lp(W)
j’,k’,l,
=< C||f||3;'q(w;Ranmed)-
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Section (2.3) Triebel-Lizorkin and Besov Spaces with Different Homogeneities

The multi-parameter pure product theory has been developed. This theory includes the
boundedness of singular integral operators on multi-parameter LP spaces (1 < p < oo) and
multi-parameter Hardy spaces HP(0 < p < 1). This theory also includes the atomic
decomposition of multi-parameter Hardy spaces, duality and interpolation theorems on
product spaces, and maximal function characterizations, etc. See [96, 97, 99, 100-105,
121, 129].

[108, 119, 122], developed a theory of discrete Calderén reproducing formula and
Littlewood—Paley analysis, and then applied it to establish the implicit multi-parameter
Hardy space and dual space theory associated with the flag singular integrals both in
Euclidean spaces and Heisenberg groups. Their results lead to the endpoint estimates of
the Marcinkiewitz multipliers on the Heisenberg group where the LP estimates were
established by Muller—Ricci—Stein [106]. Ideas and methods have inspired much
subsequent works using the discrete Littlewood—Paley theory in various multi-parameter
settings, see [123, 130, 131, 133, 134, 136], etc. Using the discrete Littlewood—Paley
analysis developed in [108] and [119], [128] and [120] introduced the theory of multi-
parameter Triebel-Lizorkin and Besov spaces associated with the flag singular integrals
[120] and weighted Triebel-Lizorkin and Besov spaces of arbitrary number of parameters
[128] and proved the boundedness of singular integral operators on these spaces. These
Triebel-Lizorkin spaces include the multi-parameter Hardy spaces when the index p is
less than or equal to 1. (See also [138] for Triebel-Lizorkin and Besov spaces associated
with the flag singular integrals when the indices p and q are strictly bigger than 1.)

[132] established the boundedness of composition singular integrals on Hardy spaces
associated with different homogeneities. To describe their result, we begin with some brief
review of composition of two operators with different homogeneities.

The composition of operators was considered by Calderon and Zygmund when
introducing the first generation of Calder6n—Zygmund convolution operators. Let e(§) be
a function on R™ homogeneous of degree 0 in the isotropic sense and smooth away from
the origin. Similarly, suppose that () is a function on R™ homogeneous of degree 0 in
the nonisotropic sense similar the one in situation of the heat equation, and also smooth
away from the origin. Then the classical Calderon-Zygmund theory tells us that the
Fourier multipliers T, defined by T, (f)(§) = e(§)f(§) and T, given by T,(f) (&) =
h(&)f (&) are both bounded on LP for 1 < p < oo, and satisfy various other regularity
properties such as being of weak-type (1, 1). It was also well known that T, and T, are
bounded on the classical isotropic and non-isotropic Hardy spaces, respectively. The
following question raised by Rivieré in [137] is highly nontrivial: Is the composition
T, o T, still of weak-type (1, 1)? It was Phong and Stein who answered in [135] this
question and gave a necessary and sufficient condition such that the composition operator
T, oT, is of weak-type (1, 1). In fact, the operators Phong and Stein studied are
compositions with different homogeneities and such a composition operator arises
naturally in the study of d-Neumann problem.

It is well known that any Calderéon—Zygmund singular integral operator associated with
the isotropic homogeneity is bounded on the classical Hardy space HP (R™) with 0 < p <
1. A Calderon—Zygmund singular integral operator associated with the non-isotropic
homogeneity is not bounded on the classical Hardy space but bounded on the non-
isotropic Hardy space. However, the composition operator is bounded on neither the
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classical Hardy space nor the non-isotropic Hardy space. This motivates the authors of
[132] to introduce a new Hardy space associated with the different homogeneities.
Motivated by [120, 128, 132], we consider new Triebel-Lizorkin and Besov spaces

associated with the composition of two operators with different homogeneities. All
functions and operators are always defined on R™. We write R™ = R™ ! x R with
x = (x',x,,) where x’ € R™" 1 and x,,, € R. We consider two kinds of homogeneities

6: (x',x) = (6x',6x,,), 6>0
and

5: (x', x,) = (6x',8%x,,), 5> 0.
The first is the classical isotropic dilations occurring in the classical Calder6n—Zygmund
singular integrals, while the second is non-isotropic and related to the heat equations (also

Heisenberg groups).
1 1

For x = (x',x,,) € R™™! x R we denote |x|, = (1’ + |x,|2)* and x|, = (x| + |x,.D2
We also use notations j Ak = min{j, k} and j V k = max{j, k}. The singular integrals
considered are defined in the following.

Definition (2.3.1) [139] A locally integrable function K; on R™\{0} is said to be a
Calderéon—Zygmund kernel associated with the isotropic homogeneity if

aa
| aKl(x)|SA|x|;m_|“| for all |a| = 0, (36)

0x
j K, (x)dx =0 (37)
r1<|x|e<T3

forall0 <r <1, < oo,
We say that an operator T, is a Calderon—Zygmund singular integral operator associated
with the isotropic homogeneity if T,(f)(x) = p.v.(K; * f)(x), where K,; satisfies
conditions in (36) and (37).
Definition (2.3.2) [139] Suppose K, € LI .(R™\{0}).K, is said to be a Calder6n—
Zygmund kernel associated with the non-isotropic homogeneity if
¢ 9P

0(x" )% 9 (xm)P T Vi 208 20, (38)
m

K,(x',xm)| < Blx|,

j K,(x)dx =0 (39)
ri<|x|p<r2

forall0 <nr <1, < o0,

We say that an operator T, is a Calderon—-Zygmund singular integral operator associated
with the non-isotropic homogeneity if T,(f)(x) = p.v. (K, * f)(x), where K, satisfies
the conditions in (38) and (39).

Denote S,(R™) = {f € S(R™): mef(x)x“dx =0, V]a| = 0}. Let p V) € S(R™) with

suppy™ € {(¢,6) € R™1 x Re < Jel, < 2} (40)
and
D W@ 27| =1 forall (£,6,) € R™\(0} (41)
j EZ
Let EJS(]R’J") with
supp® € {(¢,6) € R0 x Re < [gl, < 2}, (12)
and
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Z |1/J/(\2)(2_kf’,2_2kfm) g 1 forall (¢,¢,,) € R™{0}. (43)
k€eZ
Denote 1, (x) = ;" P (x), where P (x', x,,) = 27D (2/x’, 22,), P2 (x', 2 =
2K+, (2kx’ 22kx Y. Using an approximation procedure and the almost orthogonality
estimate, the following discrete Calderon reproducing formula is proved in [132].
Theorem (2.3.3) [139] Suppose that 1 and @ are functions satisfying conditions in
(40)—(41) and (42)—(43), respectively. Then
f(x', %) = Z 2 2~ (m=1)(jAK) p=(jA2k) (W) i * 2GRk 2=Gr2ip
JKEZ (£ £, ELM1IXTZ
X P p(x’ — 270N x, — 270N p Y
where the series converges in LZ(R™), S, (R™) and S;(R™).
With the discrete Calderon reproducing formula, we can define Triebel—Lizorkin spaces
and Besov spaces with different homogeneities.
Definition (2.3.4) [139] Let 0 < p,q < o,s = (s1,5,) € R2. The Triebel-Lizorkin type
space with different homogeneities £,*? (R™) is defined by

B R™) = {f € SyR™): [f llggagqemy < 03,

where
||f||,;~;,q(Rm) = Z 2-[(Ak)s1+(jA2k)sz]q
J,KEZ
lll
q
—_— 7 , — ] q ,
X z |lpj,k * f(2 Gnk) pr 2 (jAZk)fm)| 11 (x ))(](Xm) ,
(8! )L™ 1XZ
LP(Rm)

where I are dyadic cubes in R™~1 and J are dyadic intervals in R with the side length
1(I) = 2=0M¢" and 1(J) = 27U72K), and the left lower corners of I and the left end points
of J are 27U7K) and 2-U72K) ¢ respectively.
The Besov space with different homogeneities B,'? (R™) is defined by
B, (R™) = {f € Sy(R™): £ 1l 55 gmy < o3,
where

”f”B;'q(]Rm) = z 2_[(j/\k)51+(j/\2k)sz]q
J.KEZ

Q=

q

X Yk * f-Unagr, 2_(jA2k)€m)X1(x’)X](xm)

(¢! ) ELM=1XT,
where I, ] are the same as the above description.
Note that, the multi-parameter structures are involved in the discrete Caldero6n’s identity
and also in the new Triebel-Lizorkin spaces and Besov spaces. To see that these spaces
are well defined, we need to show that £,*7(R™)and B, (R™) are independent of the
choice of the functions ! and 2. This will directly follow from the following.
We now state the main results.

LP(R™)
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Lemma (2.3.5) [139] Suppose that 1;, and ¢ ,+ satisfy the same conditions in (40)—(43).

Then for any given integers L and M, there exists a constant C = C(L, M) > 0 such that
2GAj AkAK") (m—-1)

Yige * @y (' x| < €271 Tl -
2j/\j’/\2(k/\k’)

X (1 + 2j/\j’/\2(k/\k’)|xm|)(M+1) '

Modifying the proof of Lemma 3.2 in [132] slightly, we have the following discrete
version of the strong maximal function.
Lemma (2.3.6) [139] Let I,I’ be dyadic cubes in R™~! and /,J' be dyadic intervals in R
with the side lengths ¢(1) = 2-UnK) p(1") = 2-U'AK')=N and ¢()) = 2-Ur2k) p(J") =
2-(""2k")=N for an integer N > 0, and the left lower corners of 1,1’ and the left end points
of J,J' are 2-UnD g 2=('"ak")=Nprr 5=(in2k)p ~and 2-U'A2kD=Np! for (' £.),(£",2,,) €
Z™, respectively.
Then forany u',v' € I,u,,, v, € J, and any MT;l_l <8<,

2 (m=1)(jAj AkAK") 9 jAj A2kA2K" 9= (m=D)[(j'Ak")+N] 9~ (j'A2k")-N

(1 + ZjAj'AkAk’lul _ 2_(j/Akl)_N€,,|)(M+m—1)

(6" o) ELMIXE.
y |(¢j,’k, % f)(z—(j’/\k’)—zvgu’ 2—(j’A2k')—N€;n)|

(1 + 2j/\j’/\2k/\2k’|um — 2—(j’/\2k’)—N€;n )(M"'l)

5 1/8

< C;{ M z Qi i’ * f)(z_(j’/\k’)—N‘Bn,2_(]-1/\21{’)—1\/3;71)')(1,)(], (17', V) ,
(¢ 4n)
Where ¢, = CZ—mN(1—§)2(m—1)(§—1)(j’/\k’—j/\k) + 2(%—1)(j’/\2k'—j/\2k)+, here (a — b), =
max{a — b, 0}, and M; is the strong maximal function.
Theorem (2.3.7) [139] Let y®,¢™ e S(R™) satisfy conditions (40)—(41), y@®,¢® €
S(R™) satisfy conditions (42)—(43). Then for 0 < p,q < o0,s = (s1,s,) € R? and f € S5(R™),

1

a
0 . (s , (s q
Z 2-[GARS +(jA2K)sz]a z [, * F(270M0 27, 270208 Y|y ("), )
J.K€EZL @' m)
LP(R™)
1

q
~ (Z 2-[UAK)s1+(jAZK)s;]q . Z |<ij % f(z_(j/\k){”,2_(j/\2k)£m)|q)(1(x'))(](xm)

JKEZ " tm)
LP(R™)
and
q q
Z 2= [GiA)s1+(jA2K)s, 14 Wi f(270N 7 2=UN20 0 o () 3y ()
j.kEZ (&' ) EL™M X LP(R™)
1
q q
<[ Y rlumwsrGrosa. @i+ F27UNOL, 270N 2y, () 3y () ,
j.k€EZ (&' ) ELM X LP(R™)

where ¢ ., is constructed as ;.
],k J'k
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Proof. Let f € So(R™). Denote x; = 27 UNO/ x; = 27020y, = 2=U'NDp gnd
= 2‘(1'"‘2"')3’ By Theorem (2.3.3), Lemma (2.3.6) and the almost orthogonality
<5< landany v’ € I,v,, € J, we have

estlmates for

| () *f)(x,,x])|

_ AN Y /
= z z 2(m-D( k) 2= (1" n2k") . (lpj,k * %",k’)(xl — XXy~ x]')(¢j’,k’ * f)(xl"x]’)
JTK" (2" )
2 (m=1)(jAj' AkAK") 9 jAj' AZkAZK' 5 —(m=1)(j'Ak") o~ (j'A2K")

<C z 2=li=J"|Ly=|k=K'|L
Ry 2l )

(o = £) (i 7))

(1 + 270" A2kn2K |, — x1’|)(M+1)

(M+m-1)

5 5
Z |(‘Pj’,k'*f)(xl"xj’)bfl’?fj’) W' vp) ¢ - (44)

(¢"m)
Summing over j, k and (¢',4,,), forany v’ € I, v,, € J, we have

<C Z 2_|j_jI|L2—|k—k’|L . Cl Ms(
j,,k,

1
q

Z =[S +(jAZK)s;1q Z Wixe * P 211D 2 )
j.k€EZ ' tm)

<C Z 2—[(jAk)s1+<jAzk>sz]q|z 2-li=i"|Lp=le=k'|L
J,KEL lj"k’

1

1/8 CI\E

)
- Cy Ms( Z |((Pj’,k’*f)(xl’:x]’)l)(l’)(]’> ', vm) ) .
()

When 0 < g < 1, using the inequality (3; a,)? < Y a/

QR

<Z G LR |¢,-,k*f(x,,x,)|qx,(x')x,<xm)>

J.keZ ' tm)

JkEL jhKk! (¢ tm)

< kz 2-[GAR)s; +(jAzk)s, lq Z 27li=i'|tag-lk=k'|La . ca {Ms

5 %\

2. |(‘/’j’.k’*f)(xl"x]’)ul’xl’\ (v"vm)})
1

q

F) \CI/S

@, vm)f ,
(¢ m)

where in the last inequality we use the facts that: (j' Ak —jAKk). <|j—j'| + |k —
k',j" N2k —jA2k), <|j—j'| + 2|k —k'| and if choose L big enough such that

L>(m+1)G—1) +|si| +|s,| then

PG| 2

| k ez

(
< ( 2 2= (A )51+ (7 A2k )s2]a . i
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z 2-1i-i'lLq 2—|k—k’|Lq2—(1Ak—j’/\k’)slq2—(1A2k—j’A2k’)quClq <C.
Tk
When g > 1, by Holder’s inequality with exponents g, q’,é +$ =1,

q
o . .
Z 2 =[(jAK)s1+(jA2k)s;]q Z [ix * f Ccnx) | x (e xy Gem)
J,kEL ' tm)
a/q’
< Z =[RS, +(A2K)s]q Z 2-(1i='Ita’)/2 (k' |ta’)/2 ¢4’
J,kEL j’,k’
. Z 2-(li-i'lLa")/29~(Je=K'|La") /2
j,,k,

1
S q/G\E

M| D o = Ay | @en)d
(¢"" ) /

1
/ P C1/5\6
z 20" )s1+ (1" n2k")s2)a d g

s > @y * Doy | vt |
\j’,k’EZ (fll'{);n) /

where in the last inequality we use similar estimates as in the case of 0 < g < 1, since
2-(i=s"Ita’)/2p-(le=K'ILa")/2 4" < ¢
Jk!

and

Z 2=(1i=J'ILa)/2 p~(lk=k'ILq) /2 ~(ink=j'Ak")s1q 9~ (iAzk=j'n2k")s2q <

J.k
by choosing L big enough. At last, applying Fefferman—Stein’s vector-valued strong
maximal inequality on LP/9(£9/9) provided & < min{p,q,1} yields the first part of
Theorem (2.3.7).

Next, we show the second part of Theorem (2.3.7).

When 1 < p < oo, with (44), we have

Wix * f(270MI1, 270020 Yy () ) ()

! m—1
' tm)EL X7 LP(R™)

1
)

s
<cl| > Dzl e dm Y (o« £ty | )
(' ) ELZM XL j' k' (2" 60)
LP(R™)
<C 2-|j—j’|L2-|k—k'|L2(’”‘1)(%‘1)(1'"\""1""‘)+2(%‘1)(f"\2k"f’\2k)+

j’,k’
1

) 5
MS< Z |(‘pf’,k’*f)(xl"xl’)|X1'X]’> V', )
(gll‘gin)
LP(R™)
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< N 2-li-S Lo lkk|LopMm-DG=DU N =4 5 G-DU A2k = jn2k)s

j’,k,

D @ = DGty
(¢"60) LP(R™)
by the LP/4(R™) boundedness of strong maximal function M, for a small 8.1fq > 1,
applying Hélder’s inequality and if 0 < ¢ < 1, using the inequality (3, ¢))? < ¥, a/, and
summing over j, k yields

1
q q
Wi * (270N, 2=0A2 e Yy () xy (o)

(! ) ETM~1XT.

Z 2-[GNOs +(iAZI)sz)a
j,kEL

LP(R™)

QR

q

Pk’ * f(z_(j’/\k’){)", 2_(j’/\2k’)f’1'n))(1(x')Xj(xm)

(8" 61, ) EL™1XT.

<C 2 =[G ADs1+(' A2k,
jK'EL LP(R™)

When 0 < p < 1, using (44) again,
p

Wi x f27UNDL 270N 0 Y () () | dx'd X

(&' ) ELM1XT
1 . . 1 . .
o=li=j'|pLy~|k—K'|pLoP(M=1)(G=1)("AK' = jAK)+ 5 P (5= 1) (' A2K" = jA2k)+

<C
j’,k,
8 p/é
.j MS Z |(g0j,,k, *f)(xll’x],)|XI,X], (v” vm) dx[de
({)”"?;n)
<C 2—|j—j’|pL2—|k—k’|pL2p(m—1)(%—1)(j'/\k'—j/\k)+2p(%—1)(j’/\2k’—j/\2k)+

j’,k,
p
(@514 * PGy | (0 vm)dx de
(f”,’g-;n)

By Holder’s inequality with exponents % and ﬁ, we have
p 1/p

f z Wi * (270N, 2=0r20 0 Yy (x )y, () | dx’dxn,

(&' ) ELM1XT

1-p
p/2(1-p) \ P

< Z [z—|f—f'|Lz—|k—k'|Lz<m—1>(%—1)<f’Ak’—fAk>+z(%—l)w'Mk'—fAzm]

j’,k’
. Z [2—|j—j’|L2—|k—k’|L2(m—1)(%—1>(j'/\k'—j/\k)+2(%—1)(j’/\2k'—j/\2k)+]1/2
jl,k,
p 1/p
|(‘Pj’,k’ * f)(xl"x]’)|XI’X]’ W', vp)dx'dx,,
(¢"".t1m)
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1/2
< z [2-| j-j'|L2-|k-k'|L2(m—1)(§—1)(j’Ak’—jAk)+2(%—1)(1’A2k’—jA2k)+]
j,,k’
) 1/p

(@jraer = ) e ) xry | @' vm)dx'dy,
(2" )
At last, if g > 1 by using Holder’s inequality and if 0 < g <1 by using inequality
(Xra)? < ¥, a] again, we have

1
q q
Z 2=[(AK)s +(jA2K)s]q | i % F(270NO P, 27020, ) 3 (), G
JKET (&) bm)ELMIXZ LP(R™)
Z 2= GRS +(jAZI)s2]a
\j k€EZ
1/2
D [z-u-j'|L2—|k-k'|L2<m—1>(%—1><f'm'—mk>+2(%—1)<1'A2k'—mk>+]
j,,k’
1
p 1/p q\q
{ (o er £ ey | @ vm)dx’dxm}
(¢ tm) /
Z =[G AK")s1+(i" A2k )s5]q
jLk'EL
1
q q
(pj/,k/ . f(z_(j//\k'){,n 2 (} N2k )fl )Xl(x )X](xm) ,
({’”,{’;n)EZm_lXZ LP(R™)

which completes the proof.
Before we prove the boundedness of singular integrals on F,”*(R™) and B, (R™) we
introduce several properties of them.
Proposition (2.3.8) [139] S, (R™) is dense in F,*? (R™) and in B, (R™).
Proof. Let f € F,”(R™). For any fixed N > 0, denote
E={(,k,?,4,):ljl <N,|k| <N,|?'| <N, |¢,,| < N}
and
Fu(x x): = Z 2-m=DUNIZ=UN) (4 £)(2-UNO g1, 2-GA2K) p,
(kL' tm)EE
XPjp(x’ — 270N x, — 270N ),
where ;. is the same as in Theorem (2.3.3).
Since ¥, € So(R™), we obviously have fy € So(R™). Repeating the same proof as
that of Theorem (2.3.7), we have
Ifwllsagmy < ClIFlgsacamy;
moreover,
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”f _fN”p;'q(]Rm) 1
q
< Z 2-[GAK)s1+(jA2k)s2]q VITE: f(-Groy, 2_(j/\2k){)m)|q)(1(x’))(](xm) )
(k' tm)EEC
LP
where the last term tends to 0 as N tends to infinity.
Suppose that f € B, (R™). Set
Ey ={0.0):jl Ny, |kl < N}, B ={(£',€m): [¥'] < No, [€m| < N},
and
fn (', x):= Z Z 2—(Mm=1)(GAK) 2=(jAK) (W) * £)(2-UrKpr 2-Gr2i)p
(J,k)EE, (fl,tpm)eﬁz _
X (x' — 270N x, — 270Ky,
Then f € So(R™) too. Proceeding as above, we have
55, m S 5S, m
”fN”qu(]R ) C”f”qu(]R )
and
”f _fN”l;;'q(Rm)

q q
<C z 2-[GAK)s1+(jA2k)sz]q . Wik * f(-Unap 2_(j/\2k)€m))(l(x,))(](xm)
(¢ 6m)EES

(j,k)EES
where the last term tends to 0 as N;, N, tends to infinity.

As a consequence of Proposition (2.3.8), L*(R™) n F,"(R™) and L2(R™) N B, ¥ (R™)
are dense in £, (R™) and B,’? (R™) respectively.

In order to obtain almost orthogonality estimates with the kernel of T, we need a discrete
Calderon-type identity on L(R™) n £, (R™) and L*(R™) n B, (R™). To do this, let
oM € S(R™) with supp ¢ € B(0,1),

Z |¢@(2-f§)|2 =1 forall &£ € R™\{0}, (45)

jez

LP(R™)

and
¢V (x)x%dx =0 forall |a| < 10M, (46)
Rm
where M is a fixed large positive integer depending on p, g, s. We also let $® € S(R™)
with supp ¢ < B(0,1),

Y e re, 277e,)| =1 forall (6,6,) €R™IXRO0),  (47)
kezZ
and

f 6@ (x)xPdx = 0 forall |B] < 10M. (48)
Rm

Set ;. =o' * ¢, Where ¢ (x) = 2mp® (2x) and ¢ (x', x,,) = 2K DD (2, 2%,
For simplicity, let X be one of E(R™) and B,?(R™). The discrete Calderon-type

identity is then given by the following.

Proposition (2.3.9) [139] Let ¢ and ¢® satisfy conditions (45)—(48). Then for any

f € L>(R™) n X, there exists h € L?(R™) n X such that for a sufficiently large N € N,
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F )= Y I, = 270N, = 27Uy (g

J.KEZ (£ £,))ELM1XT

* h)(z—(j/\k)—N{)l’ 2_(jA2k)_N{)m);
where the series converges in L? and X, are dyadic cubes in R™™! and J are dyadic
intervals in R with side-length £(I) = 2=UMI=N and £(J) = 2=0"20-N " and the left
lower corners of I and the left end points of J are 2-UANI=Ngr gand 2-UA2K)-Np
respectively. Moreover,

”f”LZ(Rm) ~ ||h||L2(Rm)

and

Ifllx = ll~]lx

Proof. The proof is similar to that of Theorem 4.1 in [132], and we only provide a brief
outline. For any f € L?(R™), from the continuous Calderon identity,

[ xm) = z¢j,k * ¢j,k * f(x', xm) .
Tk

Applying Coifman’s decomposition of the identity operator, we obtain
f(x', xy) = z z |1||]|¢j’k(x' — 2-UNO=Npr 5 2—(j/\2k)—N{;m)
Jk (£ m)
X (d)j,k * f) (2_(j/\k)_N[” 2—(]'/\2’()—N€m) + Ry ()X, %)
= Ty (), Xm) + Ry (P %),
where

Ry (', xm)

- Z Z f [d)f'k(x, =Y\ Xm — Ym)(qu.k * ) Ym)

Jk (0 m) P
— d)j,k(x, _ 2_(jAk)_N‘€’,Xm _ 2_(jA2k)_N€m)(¢j,k % f)(xr _ 2_(jAk)_N£’,Xm
_ 2—(j/\2k)—Ngm)] dy

= Z Z [on,k(x, - ylixm - Ym) - q)j,k (x, - 2_(jAk)_N'€,rxm - 2_(jA2k)_N€m)
Jk ) "
X (@i * )", ym)] dy' dym
+ z z @ (x' = 270NNt oy —27UN2K=Np
jke (Etm) "
X [((pj,k * f)()"d’m) —Qjk
x f(x" = 27UNO=Npr o — 27UNZ=Np Ndy'dyr,
1= Ry () (X, %) + RE (X, X)),
here I are dyadic cubes in R™~1 and J are dyadic intervals in R with side-length £(I) =
2-UNO=N and £(]) = 2-UA2K)=N and the left lower corners of I and the left end points of
] are 2=UAK=Npr and 2-UAZK)=Np  respectively.
Applying discrete Calderon’s identity,
Flx' xm) = Z 2—(m—1)(j"/\k”)2—(1"’/\2k")(lpj,,,k,, x ) (27" mKD) prr =G 2k pr1
JTH (61T i)
X I,Djll'ku(x' - Z_UHARH)‘K”',xm — 2_(]"’/\2]{”)#;;1) .
Then
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[0 * RE (PG x0)|
< 2-N 2-1i"=i"[3My—|k' -k [3M
KT ) (1 + 2J A" AR AR |x’ — 2—(j”/\k”)£m|)
A tm
2 (i’ nj")A2(kAk')

' |]u|2(j’/\j"/\k’/\k")(m—1)

(M+m-1)

| i k! 2= (") prr 2 =(i" n2k™) g1
(1 + 2(}"/\]”’)/\2(k/\k’)|xm _ 2_(leA2krr)€;{1|)(M+1) |(¢1 KE f)( m)|
1/8

)
s27V Z ¢, { M, Z |y g (@G AR g1, =GN 0 | gy | (0, 0)
j”,k” (f”’,#;,’l)EZm_1XZ

which follows
IRN (Ol 2 < CIIR}v(f)Ilp-zo,z < C27V|Ifl 2
and

IRY (NDlx < C27VIf Iy,
by repeating the same proof as that of Theorem (2.3.7). With a similar proof, one also has

IRZ Oz < C27Mfll2, IRF DNk < C27VNIf
By choosing sufficiently large N, Ty = Yoo ,(Ry)™ is bounded in both L? and X, which
implies that
1Ty "D llzwmy = 1f 2 wemy
and

TN (Ollx = NIfllx-
Moreover, for any f € L>(R™) N X, set h = Ty X (f). Then

fx'xm) = Tn(Ty (X, 200)
B Z Z 1, G = 270NN, xy — 270NN )
JKEZ (£ £ EZM~1IXT,
(@i * B (27UNON g pmURION g,
where the series converges in L? and in X.
Repeating the same proof as that of Theorem (2.3.7), we have
Corollary (2.3.10) [139] Let 0 < p,q < %, s = (s4,5,) € R%.Suppose Dk satisfies the
same conditions as in Proposition (2.3.9) with a large M. For a large N as in Proposition
(2.3.9),if feL*n Fps"’ (R™),

||f||ﬁg'q(mm) ~ (2 2-[GAk)s1+(jA2k)sz]q

j kET

1
q
—(7 — ’ —(i — q
| i * R(2=UNO=N g 2=GAZIS=Np 3Ty (")) () ,
(! ) ETM1XT.

LP(R™)
and if f € L n By (R™),
”f”BS"’(Rm) ~ Z 2-[GAK)s1+(jA2k)sz]q
b JKEZ
1
q q
by * R(27UNOTN 1, 270NN Ly 3y () oy (Xim)
(! ) ETM1XTZ LP(R™)
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Theorem (2.3.11) [139] Let T; and T, be Calderon—Zygmund singular integral operators
with the isotropic and non-isotropic homogeneity, respectively. Then for all 0 < p,q <
,s = (s4,5;) € R?, the composition operator T = T; o T, is bounded on F,"/(R™) and
BST(R™).

We first recall two important lemmas in [132], almost orthogonality estimates and
discrete version of the strong maximal function, which play an important role in the theory
developed in [108, 122].

Proof. We assume that K; is the kernel of the convolution operator T;, i = 1,2, and K is
the kernel of the composition operator T =T, o T,. Then T(f) = K * f and K = K; * K.
Suppose that ™ and @ are functions satisfying conditions in (40)—(41) and (42)—(43),
respectively. Then by definition

||T(f)||p;'q(Rm)

1
q

2 2-[(Ak)s1+(jAZK)s;]q Z |¢j,k x K x f(27UNO=Npr 2=(in2k)=Np " |q)(1 ) (Xm)
J k€L (! £ )EL™1XT

LP(R™)
Applying the discrete Calderon-type reproducing formula in Proposition (2.3.9), for
f e L*nEI(R™),

||T(f)||p;'q(Rm)
11

_ <Z 2-[(iAK)s1+(jA2K)s1g Z

J k€L ' tm)

2—(m—1)[(j’/\k')—N]2—(j’A2k’)—N

IR (£72h)

‘ ((pj,’k, . h)(z_(j,Ak,)_N’g”J 2_(j,A2k,)_N'B;‘n)(K * lpj,k * d)j’,k’)
1

q q
XIX]) )

LP

. (2—(j/\k){,, _ 2—(j’/\k’)—N€H’ 2-Unzkyp 2—(j’/\2k’)—N€;n)

where ¢ and ¢ @ satisfy (45)—(48). It is easy to see that
/ 1 1 2 2 ’
K P o (8 xm) = [Ky * ¢+ Wi 0] + [Ky * ¢ * 9210, 2.
For K; *<p]§,1) *1/)}1), since @™ has compact support and satisfies the cancellation
condition in (46), one can obtain the following estimates from [132]:
21'm

(1+ 27"/ M3 (L + 27" M+
Note that, V|a| >0, 0%p™ € S(R™) satisfies the same conditions of ¢, that is,

compact support and satisfies the cancellation condition in (46) with order not less than
10M. Then

K, (879 ™), (', x)| < €

Ky * ¢ (' xm)| < € (49)

2J'm

- (50)
(1 N 2jr|x,|)M+m 1(1 + 2j’|xm|)M+1

and 0% (K, * d)j(,l)(x’,xm)) = 2J191K, % (8% ™) ;s (x', x,,)). By classical methods of the
almost orthogonality estimates, if j' < j, using Y™ € Sy(R™), 9% (K, * ¢j(,1)(x’,xm)) =
2J'lalg « (0%¢™) 1 (x', x,)) and (50), and if j > j, using cancellation condition (46) to
Ky * ¢ and (49), we obtain
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2-li=i'lL omGiaj")

(1 + 20N |x/)M+m=1) (1 + 20N |x,,, | )M+D”

K+ oD ()| < € (51)

Similarly, for K, * q'),((z,) * l/J,EZ),
2—|k—k'|L 2(kAk')(M+1)

(2) () o1
Estimates (51) and (52) yield that

/ 1 1 2 2 / ’
K % i % brir (8 xm)| = 1Ky * @7 0] [Ky ¢ ¢ 21, )] (6, )|
2—|j—j’|L2—|k—k’|L2(j/\j’/\k/\k’)(m—l)2j/\j’/\2k/\2k’

(1 + Z(j/\j’/\k/\k’)lxr|)(M+m—1)(1 + 2j/\j’/\2k/\2k’|xm|)(M+1)'
Together with Lemma (2.3.6), applying the same proof as that of Theorem (2.3.7) yields
that

[

e aCimoe ]| w ,
IT P llggagen = ||| D 2710mssr0n2b0s21a | 3" ol gk leg,

\ jkeZ ll itk

8
. Ms( Z |(¢j',k' * h)(z—(j’Ak’)_Nfll’2—(j’A2k’)_N€Im)| XI’X]') (U’,Um)
(@)

S
_Q
Q-

N~

LpP

< Z =[G A )1+ (' AZK sz )

jLk'EL

1
q
|¢j’,k’ * h(z—(j’Ak’)—Nfu’2—(}"A2k')—N€rm)|q )(1'(X'))(]’(xm) = ”f”F;,q(Rm),
(¢ 61, ) EZM1XT.
. LP(R™)
where in the last step we use Corollary (2.3.10). Since L? n Fps'q (R™) is dense in
E>*(R™), we conclude the boundedness of T on E,*(R™).
Similarly, for f € L n B, (R™),

I F 11553 ey

Q|

q

lpj,k * K * f(Z_(j"k){”, 2—(}'/\2k)[m)xl(x’))(](xm)
(f’,fm)EZm_lxz

- Z 2[NS +(AZI)s,a
jkez

LP(R™)

2—(m—1)[(j'/\k’)—N]2—(j’A2k’)—N
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2 2= [(A)s1 +(jAZK)s;1q
jkez

([’r[m) j’:k’ ({)”r[’m)

(i per * h)(2-G' AN g o=("n2k')=Npr (K « Yk * Djr i)

QR

q
) (2_(]-/\;(){,, _ 2—(j’/\k')—N£H’ 2—(j/\2k)£m _ 2—(j’/\2k’)—1v{ﬂm)xl(xf)X](xm)
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which can be extended to the entire B, (R™) spaces.
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Chapter 3
Wavelets Bases and Generalized Besov Spaces

We show that compactly supported wavelets of Daubechies type provide an
unconditional Schauder basis in these spaces when the integrability parameters are finite.
We also connect this with the possibility of embedding such spaces in some particular
Lebesgue spaces.

Section(3.1) Generalized Besov Spaces

Wavelets have many applications into mathematics and other areas, such as engineering
and physics. For instance, wavelet bases are used in the numerical resolution of some
PDE’s with the advantage of providing fast and efficient algorithms. Concerning functions
spaces, wavelet bases give us the possibility of describing their elements in terms of basic
and simple “building blocks.” In general, an important point is that we can characterize the
original (quasi-)norm by means of certain sums involving the wavelet coefficients. On the
other hand, wavelet bases can be quite useful to study some intrinsic questions related to
functions spaces. For example, they were successfully used to estimate entropy numbers of
compact embeddings between weighted spaces (see [148]).

Motivated by Triebel on wavelet bases in function spaces, we deal with wavelet
representations in Besov spaces with generalized smoothness. [151] proved, that
compactly supported wavelets of Daubechies type form an unconditional Schauder basis
in the “classic” Besov spaces By,. The aim is to extend this result to the “generalized”

Besov spaces Bg’q, showing that the same wavelet system also provides an unconditional

Schauder basis in these spaces. We would like to remark that function spaces of
generalized smoothness have applications in other fields such as probability theory and
stochastic processes (see [144]).

It is possible to get the result without repeating the approach suggested in [151]. Hence,
instead of making use of all that powerful tools (atomic decompositions, local means,
maximal functions, duality theory), we try mainly to take advantage of the classic case by
means of suitable interpolation techniques. We would like to remark that interpolation
tools were recently used by Caetano (see [141]) in order to get subatomic representations
of Bessel potential spaces modelled on Lorentz spaces from the corresponding ones for the
usual spaces H,.

As long as wavelet bases is concerned, see [143, 151, 150, 155]. And [146], where
wavelet decompositions of Besov spaces were studied in a multiresolution analysis
framework.

We give the definition of Besov spaces of generalized smoothness and compare them to
other well-known function spaces. We also discuss some interpolation properties which
will play a key role later on, is devoted to the wavelet representation of Besov spaces. For
convenience, we contextualize the problem recalling what is already done in the “classic”
case, and then we formulate the main result as well as some of its consequences.

For R™ be then-dimensional Euclidean space and Z™ the usual lattice of all points with
integers components (n € N). For 0 <p < o, L,(R") denotes the well-known quasi-
Banach space with respect to the Lebesgue measure, quasi-normed by

1/p
Ity = ( [ircoras)
Rn

with the usual modification if p = c. Let C(R™) be the space of all complex-valued
uniformly continuous bounded functions in R™ and let, for r € N,
{C"(R") =f € C(R"): DUf € C(R"), |a] <1}, (1)
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normed by

IFICT (R = z ID“f |Loo (RM)].
|a|sr
By S(R™) we denote the Schwartz space of all rapidly decreasing and infinitely
differentiable functions on R", and by S’ (R™) its topological dual, that is, the space of all
tempered distributions. If ¢ € S(R™), then Fe(or p) stands for the Fourier transform of

Q,

FQE) = @0 [ Hpwax,  feRY @)
]RTL
where as F 1 (or ¢") denotes its inverse Fourier transform, given by the right-hand side
of (2) with i in place of —i. Both the Fourier transform and its inverse are extended to
S'(R™) in the usual way.
Let ¢, € S(R™) be such that

po(x) =1 if|x| <1land supp @, c {x € R™ |x| < 2}. (3)
Putting
@1(0):= @o(x/2) — o (x) and @;(x):=¢,(277*x), x€R", jEN, (4
then

supp ¢; C{x e R:2/71 < |x| <2/*1},  jEeN,

and

Z(pj(x)=1, x € R"™.
=0

Hence {¢;}en, forms a dyadic smooth resolution of unity. We recall that, for s € R, 0 <
p < 0,0<q < oo, the usual Besov and Triebel-Lizorkin spaces are defined as the
collection of all f € S'(R™) such that

o 1/q
I (B3RO == | > 205 oy L, RO (5)
=0
and :
o 1/q
If E @l = (|| D 250" Ol | [ ®e) (©)
j=0

(with the usual modification if g = oo and p < oo in the F-case) are finite, respectively.
They are quasi-Banach spaces and are independent of the system {¢;};cy, Chosen
according to (3) and (4) (with equivalent quasi-norms). We refer to [65] for a systematic
theory on these spaces. It is well known that these scales contain some classic spaces as
special cases. For instance,
Fj,(R™) = Hy(R™), s ER, 1<p<oo,
are the fractional Sobolev spaces (they are the classic Sobolev spaces when s € N) and
Fp(R™) = hy(R™),  0<p <o, (7

are the local (or inhomogeneous) Hardy spaces introduced by Goldberg (see [147]).

We need to deal with some sequence spaces into a general context as follows. Let E be a
quasi-normed space, I a countable set and 0 < g < co. We denote by ¢,(I,E) the
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“sequence” spaces of all E-valued families a = {a;};¢; such that ||a|€q (1, E)” is finite,
where

1/q
|al, (L E)|| := <zllai|Ellq> ) 0<q< oo, (8)
i€l
and
lalfe (1, E)|| := S_u})“ailE” 9)
S

define quasi-norms. If the set I is clear from the context, we shall omit it. Besides, we may
omit E from the notation if E = C.

We obtain Besov spaces of generalized smoothness replacing the usual regularity index
s in (5) by a certain function with given properties. We consider a sufficiently wide class
of such functions, which allows us to cover many cases.

Definition (3.1.1) [157] We say that a function ¢: (0, ) — (0, ) belongs to the class B
If it is continuous, ¢ (1) = 1, and
¢(ts)

PO= e

See [142, 149] for more details concerning this class. For a function ¢ € B, the Boyd
upper and lower indices ag and B are then well-defined, respectively, by

s log $(t) L log b (t)

ag = llmt_,+ooW and B = lim,_,q \ogt

If E is a quasi-normed space, 0 < g < ocoand ¢ € B, one can consider the spaces

€§’(E) of all sequences {a;}je, such that {¢(2/)a;};en, € ¢4(E), equipped with the

quasi-norms||- |£,(E)|| according to (8) and (9) (with I = Ny). When ¢(t) =t5,t €
(0,),s € R, we simply write £ (E) instead of i’g’(E) for short.

Let {@;}jen, © S(R™) be a system with the following properties:

t € (0,00).

with —co < B3 < ag < +oo.

supp ¢ < {§ € R™: [§| < 2}; , (10)
supp p; C{§ e Rm: 2771 < €| <2/}, jeN; (11)
sup [D%p;(§)| < c,27/%,  jeN,  a€Ng (12)
£ERM

Yo)=1 ger. (13)
j=0

Definition (3.1.2) [157] Let {@;};en, be a dyadic resolution of unity with the properties

(10)—(13) above. For ¢ € B,0 < p < o, and 0 < g < oo, we define Bg’q R™) as being the
classof all f € S’ (R™) such that {(<ij)v}jENo € {’Qf (L, (R™)) with
I 1B Rl = (|00 jeny | £ (Lp (R

These spaces were studied by Merucci (see [149]) as a result of real interpolation with

function parameter between Sobolev spaces and then by Cobos and Fernandez in [142].

Such as in the classic case according to (5), they are quasi-Banach spaces and are
independent of the system {¢;} ey, chosen, up to equivalent quasi-norms. We point out

that the spaces B;,(R™) can be obtained as a particular case of the spaces Bg’q (R™) by
taking ¢(t) = t*,t € (0,0), s € R.

In general, we are only dealing with functions spaces on R™. Hence, from now on, we
shall omit the R™ in their notation. For convenience, we will refer to the spaces By, as

classic Besov spaces.
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Besov spaces with generalized smoothness have been considered and studied. See [144].
In [144] we can also find a general and unified approach for these spaces, as well as the
counterpart for the Triebel-Lizorkin scale. As far as Besov spaces are concerned, it is
possible to define generalized spaces Bg, by replacing ¢(27) by g;,j € Ny, in Definition
(3.1.2), where o is a certain admissible sequence of positive real numbers in the sense of

[7]:

Bfq = {f € 5" 1 [Ball: = 100,13 jemo| £a )| < o}, (149
where o = {0;} en,Satisfies the condition
dooj < 041 < dqy0;,  Vj EN,, (15)

for some d,, d; > 0. The definition given in [144] is even more general: it is introduced a
fourth parameter N = {N;};en,related to generalized resolutions of unity, namely,
allowing different sizes for the support of the involved functions. We restrict ourselves
here to the standard decomposition, that is, with N = {Zf}jeNo.

Some “other” generalized spaces of Besov type were introduced by Edmunds and
Triebel. They are usually denoted by B;;'w) and are defined as in (5) with 2759y (277 in
place of 2754, The parameter 1 here represents a perturbation on the smoothness index s,
and, of course, it fulfills certain conditions. See [47] for a systematic study on spaces

As it was remarked in [144], the spaces BIS‘;“”) are covered by the general formulation
(14), by taking g; = 275y (277),j € N,. Since we have ¢(1/2)71¢(27) < ¢p(2/*) <
ql_)(Z)qb(Zj),j € N,, the spaces B{fq, ¢ € B, are also a particular case of the spaces defined

in (14). However, we would like to point out that is enough to consider the spaces B{fq.
This fact may be justified by the following result, which was suggested to us by Caetano.
Proposition (3.1.3) [157] Let o be an admissible sequence in the sense of (15) and
0 < p, q < oo. Then there exists a function ¢, € B such that

B¢O' — B

prq rq:
Proof. Let o be admissible. First, we remark that one can always assume ¢, = 1 without
loss the generality. In fact, the sequence o’ defined as oy =1 and o/ =g;, j EN, is
equivalent to o, so BY, = BZ,.
We can construct a function ¢, € B as follows:

G+1 7% (oY 4 g j i+ :
bo() =1 2 (t—2)+g, te€[2/,2/*'), jeN,

0o, te (0,1)

(cf. [12, Section 2.2]). Hence, ¢,(27) = g; for all j € N, and we get the result.

Taking into account this proposition, from now on we will only deal with Besov spaces
from Definition (3.1.2). Such as in the classic case (cf. [65, pp. 47-48]) one proves the

following embeddings related to the spaces Bg’q.
Proposition (3.1.4) [157]
(i) Letp € B,0 <p < 00,0 < g < oo, Then
¢ /
) S(R™) < Bj. (R™) & S'(R™).
(i) Letp € B,0 <p < 0,0 < gy < gy <00.Then
¢ ¢
BPCIo (Rn) ° BPCI1 ]Rn)'
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$(2))
} € fmm{ql,l}, then

Y@ je,
By, (R™).S B (R™.

As usually, the symbol “©” above indicates that the corresponding embedding is
continuous. Property (iii) is important, in particular, to derive Lemma (3.1.6) bellow.

As it was referred before, the spaces Bg’q, ¢ € B, can be obtained from real interpolation
between Sobolev spaces with an appropriate function parameter. Interpolation of this kind
fits well into these generalized Besov spaces framework if the function parameter belongs
to the same class B. See [142,149]. In [142] several interpolation results were obtained for
the spaces Bg’q in the Banach case (1 < p,q < ). The approach followed there was
based on interpolation properties of sequence spaces. Those properties were then
transferred to the spaces B;fq, by means of the so-called method of retraction and co-

retraction(cf. [2, p. 150] and [153, p. 22], for example). Briefly, let E be a quasi-Banach
space, ¢ € B and 0 < q,, q41,q < oo. Taking into account [142, Theorem 5.1 and Remark
5.4], one can write

(i) Let ¢, 1) € B,0 < p < 0,0 < g, q; < o0. If {

(e (E). £3.(E)) =45 (E) (16)
|f SO'S1 € R Wlth Sl < ,8(7) S CZJ, < SO and

So
tSo—S51

y@) =————,
)

It is possible to show that Bg’q is a retract of €Z’(LP) if p > 1 by constructing certain
applications (retraction and co-retractions) based on the Fourier transform. But this does
not work if 0 < p < 1. However, as it was remarked in [142, Remark 5.4], some of the
interpolation results obtained hold in the quasi-Banach case as well. We do not intend to
go into too many details, but we give here a brief description how this question in the
general case can be dealt with. Following [152, Theorem 2.2.10], one can prove the result
bellow.

Proposition (3.1.5) [157] Let f € §',0 <p < o and {g,};cy, Satisfying the conditions
(10)—(13). Then F~'(¢;Ff) € L, if and only if F~'(¢;Ff) € h,,j € N,. Moreover,
there are constants c;, ¢, > 0 independent of f and j such that

allF @ FN | Ll < [F7H 0 F0 | |l < c2l|F 70, FF) [ Lo -

Note that h,, is the local Hardy space from (7). Using these estimates, one can replace L,,
by h, in Definition (3.1.2) when p < oo (note that h, = L, if 1 <p < o). With this
change, one avoids the mentioned troubles caused by the Fourier transform. On the other
hand, we can prove that Bg’q IS a retract of fg’ (hy): if {@;}jen, © S is a system with the
properties (10)—(13), then

0o 1
RifiYjen, = ) FUGF),  withg; = ) .,
j=0

t € (0,). (17)

r=-1
IS a retraction from {’g’ (hy) to Bz‘,’bq and Sf: = {T‘1(<pij)}jeN0 Is the corresponding co-
retraction. We remark that R is well-defined with the help of the following lemma, which
can be proved following similar techniques as in [156, Theorem 3.6],
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Lemma (3.1.6) [157] Let ¢ €EB,0<p <1,0<gq < . Assume that {g;}jen, €S’
fulfills the conditions
supp Fgo € {x: |x| <2} and supp Fg; c {x:2/71 < |x| <2/*'}, jeN.
If ||p(27)g; | £4(hp)|| < o, then 352, g; converges in S”.
Hence, it is possible to get the result bellow.
Proposition (3.1.7) [157] Let ¢ € B,0 < p < o0, and 0 < qg, q1,q < . ASSUme s,,s; € R
satisfy s; < Bg < ag < spandy asin (17). Then

So S1 _po
(BPCIO’BPCh v.q - BPCI'

Proposition (3.1.7) shows, that spaces Bzg‘;’l/’) mentioned can be obtained by interpolation
of classic Besov spaces with a suitable function parameter. This fact was already observed
in [140].

The aim is to obtain wavelet representations for the generalized Besov spaces under
consideration. We will make use of the system considered in [151] and follow the same
notation.

LetL; =L =2"—-1ifjeNand L, = 1. Itis known that, for any r € N, there are real

compactly supported functions

Y, €ECT, Ylecr, l=1,...,L, (18)
with
]x“t/)l(x)dx =0, a € N7, la| <, (19)
Rn
such that
{22yl jeNy,, 1<I<L, meZ"} (20)
with

! {‘po(‘ —m), j=0meZ"l =1,
wjm(') = l(yj-1,_ : n (21)
1/1(21 . m), JENmMmeZ"1<I< L,
is an orthonormal basis in L,. As mentioned in [151], an example of such a system of
functions is the (inhomogeneous) Daubechies wavelet basis (see [143, 150, 155]).
Wavelets with the properties above are sufficiently good to provide unconditional bases
in many classical spaces. For instance, it was known that the mentioned Daubechies
system forms an unconditional Schauder basis in the Sobolev spaces Hy if 1 <p < oo,
r > |s|, and in the Besov spaces By, if 1 < p,q < o, r > |s|. These two examples show,
that the smoothness required on the wavelets in (18) should be large enough, depending on
the regularity of the functions that we pretend to represent. This fact can also be observed.
The main aim in [151] was to extend the results above about Sobolev spaces and some
Besov spaces to the entire scales By, and F,,. For convenience, we recall here the main
result related to Besov spaces. Let I ={(lj,m): jENy, 1<1<L;, meZ"} and
I'={(l,j): JENy, 1 <I<L;}
Theorem (3.1.8) [157] Lets e R,0 < p < 0,0 < g < o0, and

2n n )

= amn_ 22
r(s,p) max(s,p+2 S (22)

(1) Assume r € N with r > r(s,p) and let f € S’. Then f € B, if and only if it can be
represented as
= Z 2l with 2 € bS, (23)

(Ljm)el
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unconditional convergence in S’ and in any space B, if t<s. Moreover, the
representation (23) is unique:

A=Af) with Ay (f )= 2T(f, Pjp). (24)
Furthermore, f — {2/™(f, w}m)}(l,j,m)e, defines an isomorphic map of B;, onto b, and
17 1 B3qll ~ 114G ) | b (25)

(equivalent quasi-norms).
(ii) In addition, if max(p, q) < oo, then (23) with (24) converges unconditionally in B,

and {lp}m}(l,j,m)e,is an unconditional Schauder basis in B;,.

Here, by, is the space of all complex-valued sequences A = {A}m}/(l, jmyer such that
1/q

q/p
loiali= (3 e S pp) ) <o

L,j)Her mezn
with standard modifications if p = co and/or g = co.

The proof of Theorem (3.1.8) was based on atomic decompositions, characterizations by
local means, and duality theory (see [68, 154]). An important point there was that the
wavelets considered were simultaneously atoms and kernels of those local means. It was
also commented in [151] the possibility of getting a similar result of other scales of
function spaces. To do that, it would be enough to have the same tools available. However,
as we mentioned before, we will not follow this approach. Instead, we will consider a
scheme based on interpolation techniques in order to take advantage of the already known
wavelet decompositions for the classic case.

Letp € B,0 < p < 0,0 < g < oo. For our purposes we need to introduce the sequence

spaces bz‘f’q, consisting of all complex-valued sequences A = {A}m}(l,j,m)e, such that the
guasi-norm
a/p\ /4
. i q p
||/1|b2‘fq|| = Z (¢(21)2 Jn/p) (Z |/'1]l-m| ) (26)
Lj)el’ mezn

(with the usual modifications if p = o and/or q = ) is finite. When ¢(t) = t°,t €
(0,0),s € R, then bg’q coincides with the space by, defined in [151]. We would like to
remark that sequence spaces with this structure were introduced by Frazier and Jawerth in
[115, 145] in connection with atomic decompositions of (classic) Besov and Triebel-
Lizorkin spaces and they have been used afterwards by many.
The interpolation property bellow will be very useful in proving the main result.

Proposition (3.1.9) [157] Let ¢ € B and 0 < p, q,qo,q; < . If s¢, s; are real numbers
fulfilling s; < B3 < ag < s, , then we have

s S _ 1.9
(bP(C)Io' bpih)y’q - bPQ'
where y is defined as in (17).

Proof. Firstly, we note that spaces b;go and b;ih form an interpolation couple since they

S1

are both continuously embedded in b,,, for example. We can interpret bg’q as the

sequence space {’351 (£, (Z™)) where ¢4 (t): = d(t)t™™/?,t € (0,). In fact, the index I
does not bring any trouble. It is not hard to see that formula (16) remains valid for these
spaces. On the other hand, the Boyd indices of ¢, are given by
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n
Bg, = Bg —,and ag, = ag —
Taking ; = s; —n/p (i = 0,1), then we have
01 < By, < ag, < ggandy,(t):= too- a1/¢1 (t"o 01) y(t), te€(0,00).
Hence, attending to formula (16), we have

(¢ (@), 22 (1a@)) =l (@),

Y.q

that is, (bpqo b;zl) v =:b§2.

Lemma (3.1.10) [157] Let s € R,0 < p < o0, and 0 < q < oo. If {1}, .} jmyer € byq and
r is a natural number such that r > max (s, 0, — 5), then X i mye A}mz/)]l-m converges
unconditionally in Bj, if ¢ < oo and in any Bj, with t <s, if g = oo.

Proof. First, we assume that g < oo. From properties (18), (19), and (21), we see that, for
each I, the functions 27/G~"/Pyt ~are 1,-atoms (j = 0) or (s,p),-atoms (j € N)
according to [154, Definition 13.3], ignoring constants which are independent of, ¢, j, and

m. Using the Atomic Decomposition Theorem (cf. [154, pp. 75-76]), we arrive at the
conclusion that there exists ¢ > 0 such that the estimate

1 a/p
i(s— p
Kot | Bia|| < ¢ ) 2im/ma <2|/1}m| ) @7)
(1,jm)eK Lj m

holds for all finite subsets K of I (the sums on the right-hand side run over all indices
(1,j) and m such that (1, j,m) € K). From this estimate and from the summability of the
two families of positive real numbers involved in (26), we conclude that the partial sums
on the Ieft hand side of (27) constitute a generalized Cauchy sequence in the complete
space B, thus converge in this space.

Now, let t < s and g = . We reduce this case to the previous one by using the atomic
decomposition result as before (with t in place of s) and remarking that b;., < b, with
0 <u<oo.

We formulate our main result related to wavelet representation and some of its
consequences.

Theorem (3.1.11) [157] Let ¢ € B, 0 <p < o0, and 0 < g < oo. Consider the system
{z,b}m}(l,j,m)e, as previously. Then there exists r(¢,p) such that, for any r € N with
r > r(¢, p), the following holds:

Given f € S, then f € B{fq if and only if it can be represented as
f= ) Ayl with 2€ b, (28)
(1,jm)eK
(unconditional convergence in S"). Moreover, the “wavelet coefficients” A]‘-m are uniquely
determined by

m = A (F)i=2F k), (Ljm) el (29)
Further,
|7 185 ~ [0 165 (30)
(equivalent quasi-norms), where A(f) = { ]m(f)}(l,],m)e,.
Proof.

Step 1. Assume that f € S’ can be represented as
76



f= Z Ajl-mt,b]l-m (unconditional convergence in S")

(L,jm)el
for some A € bg’q. Let s,,5; € R. Attending to Lemma (3.1.10), we conclude that the
operator

T:b) + by —— B, + BoY,
given by
Ty = z WimWim  (unconditional convergence in S"),

(1,jm)el
is well-defined and linear if » > max (r(so, p), 7 (sy,p)), for example, where r(s;, p) (i =
0,1) is given by (22). Moreover, by Theorem (3.1.8) one concludes that the restriction of
T to each b’L is a bounded linear operator into B;fl. Choosing sy, s; above such that

p,1
s1 < Bg < ag < s and attending to the interpolation property and to Propositions (3.1.7)

and (3.1.9), we arrive at the conclusion that the restriction of T to bg’q is also a bounded
linear operator into Bg’q. Thus, f € B{fq and
718 = a1 85 <158,
for some ¢ > 0 independent of A and f.
Step 2. Now, let f € Bg’q. Assume that sy, s;, and r fulfill the same conditions as in Step
1. Consider the operator
S:B, + By, —— by° + by

defined by

Sg = Ag):= {2"({go ¥jm) + {90 ¥jm)) } | s myer (31)
where g = go + g, With g; € By, i = 0,1. Theorem (3.1.8) shows that S is well-
defined, it is linear and its restriction to each B;fl is a bounded linear operator into b;fl.
Taking into account the interpolation property as previously, one concludes that the
restriction of S to Bl?q is a bounded linear operator into bg’q as well. Therefore,

s 185 = l1ac 18| < el 1 8% (32)
where ¢ > 0 does not dependent on f. So, A(f) € bg’q and hence
G= ) A (33)
(L,jm)el

(unconditional convergence in S') belongs to the space Bg’q by Step 1. But Theorem
(3.1.8) once again allows us to conclude that TS is the identity operator, so g = f. But we
have (by Step 1)

17185 || = c|anng| (34)
¢ > 0 independent of f. Therefore, equivalence (30) follows from estimates (32) and (34).
It remains to show that representation (28) is unique. We do this next. Suppose that

¢ . .
f € B, admits the representation

f= Z A}mzp}m with 1 € bz?q (unconditional convergence in S").

(Ljm)el
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Since B, © B + By © ByY and by, & by° + by © by (note that sq > s;), then
f € B,} has the representation

f= Z AmWhn  with A € byt (unconditional convergence in S),
(1,jm)el

which is unique by Theorem (3.1.8). The proof of the theorem is completed.
Corollary (3.1.12) [157] Let ¢,p, and g be as in Theorem (3.1.11). If r € N is large
enough and q < oo, then {¢,l-m}(z,j,m)e1 forms an unconditional Schauder basis in B;f’q.
Proof. Attending to Theorem (3.1.11), all we need to do is to check that the series in (28)
converges unconditionally in Bg’q (if p,g < 00). We proceed as in the first part of the proof
of Lemma (3.1.10): observe that ¢(2/)~*2/"/Py. are 1,-N-atoms (I =1,j =0) or
(o,p),-N-atoms (j € N) according to [144, Definition 4.4.1], with o = {cp(Zf)}jeNo and
N = {2/} en,- Hence, it is possible to use the Atomic Decomposition Theorem from [144,
Section 4.4.2], in order to get the counterpart of estimate (27), that is,

q/p
Z A}mw}m|3§q scZ(qs(zi)z—jn/p)q<z|/1}m|p>
l’j m

(1,jm)el
with ¢ > 0 independent of K. To do that we have to assume that » > r(¢, p) satisfies also
the conditions mentioned in that theorem restricted to our particular case. We conclude
now as in Lemma (3.1.10).
Corollary (3.1.13) [157] Let ¢, p, q, and r as in Theorem (3.1.11). Then

. in l
I:f = @2 e
establishes a topological isomorphism from Bgfq onto bz‘f‘q.
Proof. This result follows at once from the properties of the operators T and S studied in
the proof of Theorem (3.1.11).
Corollary (3.1.14) [314] Let ¢ € Band 0 < € < . If 5,_4, s, are real numbers fulfilling
Sr < Pgz < gz < Sy, then we have

¢2

Sy— Sy
(b(1+1e)(1+3e)' b(1+e)(1+4e) - b(1+6)(1+26)’

where y is defined as in (17).

Proof. Firstly, we note that spaces bj %ty 145y a0 B, o144

couple since they are both continuously embedded in bflr+6)oo,
interpret bgie)(HzE) as the sequence space €f§2€ (£1+c(Z™)) where ¢p#(1+¢€):=
$2(1+€)(1+€)™™1+€,0 < € < oo. In fact, the index [ does not bring any trouble. It is
not hard to see that formula (16) remains valid for these spaces. On the other hand, the
Boyd indices of ¢# are given by
n

Bz = Bz ~ 7 and agz

Taking g, =s; —n/1+ € (i =r —1,r), then we have

Or—1
(1+e)9r-1—0r

1
¢%((1+e)"r-1‘ or

)y,(1+2€)

form an interpolation
for example. We can

n

= a5z — —.
d? 1€

<o, and y;(1+¢€):=

Ur<ﬁ¢—%3a¢—%

>=y(1+e), 0<e<oo.

Hence, attending to formula (16), we have
2
(€f1_316(£1+6(zn))’€3146(£1+6(Zn))) = £0he (14e (@),

y,142€
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_ 97
- b(1+6)(1+26)'

. Sr—1 Sr
that is, (b(1+e)(1+36)’ b(1+6)(1+46))y,1+2€

Section (3.2) Triebel-Lizorkin Spaces of Regular Distributions

We describe completely, in terms of their parameters, when the generalized Besov and
Triebel-Lizorkin spaces Bg'c’,v([R") and Fp‘fgIN(Rn) contain only regular distributions. In
other terms, we aim to characterize the relations

Bya (R™) < LY“(R™)
and

Fyq (R™)  LY°(R™)
in terms of the behaviour of o, N, p and q.

Besides the intrinsic interest of such a question within the theory of those spaces, such a
characterization might also be useful when calculating with distributions belonging to
them, as the possibility of representing distributions by functions naturally leads to
simplifications.

A final answer to such a question of classical spaces B, ,(R™) and Fy,(R™) was given
in [55, Thm. 3.3.2]:

Theorem (3.2.1) [169]
(i) Let seR0<p<o and 0< g <. Then the following two assertions are
equivalent:

l
Fps,qCLolc’

either 0 <p <1, sZn(E—l), 0<qg<oo

orl<p < o, s>0, 0<q < o,

orl <p < o, s=0, 0<qg<.

(i) Let seR0<p <o and 0< q <oo. Then the following two assertions are
equivalent:
l
Bpq © L7°,

1
either 0 <p < o, s>n(;—1), 0<qg < oo,
+

1
or 0<p<l1, s=n(g—1>, 0<qg<1,

or 1<p<oo, s=0, 0 < g < min{p, 2}.

The spaces of generalized smoothness B;f;’lv (R™) and Fp‘fé"’ (R™) in which we intend to
study the same problem are natural generalizations of the classical Besov and Triebel—
Lizorkin spaces in the direction of generalizing the smoothness and the partition in
frequency. Now, instead of (25) j» for some s € R, the smoothness will be controlled by a
general so-called admissible sequence o: = (g;);, whereas the splitting in frequency will
also be controlled by an admissible sequence N:= (N;); more general than the classical
(27);.

Originally they were introduced by Goldman and Kalyabin in the middle of the seventies
of the last century on the basis of expansions in series of entire analytic functions and
coverings. Another approach used differences and general weight functions. In all these
cases the function spaces were subspaces of L,(R"),1 < p < oo, by definition, therefore
the question under which conditions they can contain or not contain singular distributions
was pointless. See [32] or [42]. Here we just briefly recall the approaches just mentioned:
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Let (N;); be strongly increasing, («;); be of bounded growth and (aj‘l)j € l,. Then a
space of generalized smoothness Bg‘;g (R™) (resp. F;f;;" (R™)) was defined as the
collection of all f € L,(R™) such that f = Z}?‘;lfj in L,(R™) with supp(¥f;) c {¢ €
R™ €] < N} and ||(a;fj); | L(Ly)|| < o (resp. (a;f;); | Ly(ly) < o).

And, respectively, a space of generalized smoothness denoted by Bzig)([R{") was defined
by

1 1/q

_ Mcr O\ da
Bpg (R) = {f € Ly(R"): j (wp/lg) )> A((tt))
0

where 1 : (0,1) » R* is a non-decreasing, continuous function with lim,;, A(t) = 0,M € N
and w (f, t) = supnj<¢ ||AFu ()] Ly || -

For the connection with the spaces we describe in Definition (3.2.8), cf. [144].

Later on spaces of generalized smoothness appeared naturally by real interpolation with
a function parameter (cf. [149] and [142]). Putting it briefly, for example for given
1 <p,q <o,k €N and p asuitable function parameter one has the interpolation result

. -1
(Lp(]Rn)r ka([R"))pq =BJ,(R"),  where g; = (p(Z‘fk)) .
Function spaces of generalized smoothness have been used to describe compact and

limiting embeddings with the help of the finer tuning given by the smoothness parameter,
for example with additional ‘logarithmic’ smoothness for function spaces either on
bounded domains in [165] or in [167] to describe general embeddings of Pohozhaev—
Trudinger type.

Moreover they have shown up also in connection with generalized d-sets and h-sets
(special fractals) and function spaces defined on them as trace spaces. For example, in the
case of the so-called (d, )-sets I" one has

“ S+Mﬂl}%+a)
BEYI(r )= treB,, P (R™),
see [68, Chap. 22], [47] and [158].

In probability theory they have been used as generalized Bessel potential spaces defined
by pseudo-differential operators with negative definite functions as symbols [161]. If these
negative definite functions are suitably constructed with the help of Bernstein functions,
then those generalized Bessel potential spaces belong to the scale of the spaces Fp‘f;]N R™)
we consider.

For a more complete historical survey up to the end of 2000, see [144].

As can be noticed by comparing our main assertions in Theorems (3.2.28) and (3.2.29)
below with the classical counterpart recalled in Theorem (3.2.1) above, it is not at all clear
why the latter should generalize in that way. As a matter of fact, it was somewhat of a
surprise to us that the characterization could be done in such a neat way, specially in the
cases where a comparison between the numbers p,q and 2 seemed to be in order. We
stress that we get a characterization, and not mere sufficient conditions. The bulk of the
work has, indeed, to do with the proof that the guessed conditions are necessary. The tools
used there rely heavily on the useful Proposition (3.2.26), which we denote by “a reverse
Holder’s inequality result”, and on the consideration of suitable sets of extremal functions.
These are, for most of the cases, inspired by the possibility of representing the elements of
the functions spaces under study by means of infinite linear combinations of atoms. For
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the tricky cases given by the last lines in Theorems (3.2.28) and (3.2.29) we had to resort
to lacunary Fourier series (and standardization) for that effect (by the way, Theorem
(3.2.25) might also have independent interest).

Still with respect to techniques used, specially the consideration of extremal functions
built as atomic representations in the functions spaces under study, one first difficulty
faced is the possibility of having such representations with the required moment
conditions. This is solved by Proposition (3.2.27), also used in the somewhat related
question of characterizing the growth envelopes of the same spaces. In fact, a construction
of this kind appears already in [68, Cor. 13.4] and was used in the study of the growth
envelopes of the classical spaces B, ,(R") and Ey,(R™) (cf. [68, 163]). For the study of
growth envelopes of the generalized spaces considered, see [12, 14]. These contain also
sufficient conditions for those spaces to be constituted by regular distributions alone, as
this is a requirement for the consideration of the concept of growth envelope itself. So,
from this point of view, our results here broaden the class of sufficient conditions to the
point that they also become necessary. The fact that in both situations extremal functions
are pursued is related to the fact that in both cases one is looking for the validity of
embeddings — in LY (R™) in our case and in local spaces of integrable functions in the
case of growth envelopes.

As a by-product of the main results, we also extend to our framework the classical result
[55, Cor. 3.3.1], which states that the Besov and Triebel-Lizorkin spaces of integrability
parameter p # oo which are completely formed by regular distributions are exactly those
which continuously embed in the Lebesgue spaces of power max {1,p}- cf. Corollary
(3.2.31).

Since all the Besov and Triebel-Lizorkin spaces under consideration are spaces on R",
we shall omit the R™ from the notation.

Given any r € (0, 00], we denote by r’ the number, possibly oo, defined through the

. 1 1 . . .
expression —: = (1 —;)J,; in case when 1 <r < oo,r" is the same as the conjugate

!

exponent usually defined through % + % = 1.

The symbol < is used for continuous embedding from one space into other.

Unimportant positive constants might be denoted generically by the same letter, usually
¢, with additional indices to distinguish them in case they appear in the same or close
expression.

Before introducing the spaces we want to consider, we define and make some comments
about the type of sequences which will be used as parameters.
Definition (3.2.2) [169] A sequence o = (0j)jen,, With g; > 0, is called an admissible
sequence if there are two constants 0 < dy = dy(d) < d; = d,(0 ) < o such that

dyoj < 0j41 < d,0; forany j €Ny, (35)
Definition (3.2.3) [169] Two admissible sequences o = (0j) en, and T = (7;)jen, are
called equivalent if there exist constants C; and C, such that
0<Cy S:—]SCZ < o forany j € N,.
]

To illustrate the flexibility of (35) we refer the reader to some examples discussed in

[144] or [158, Chap. 1].

The following definition, of Boyd indices of a given admissible sequence, is taken from
[159]:
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Definition (3.2.4) [169] Let g; := supk>0 £ and gji= 1nfk>0 ,] € Ny. Then

log, o; log, o; lo log, o
agz:= inf B29) _ = lim g. . and Bs:= sup 829; = lim gz_ =J
JEN ] jooo ] JjEN ] J—® ]

are the (upper and respectively lower) Boyd indices of the sequence o.

Remark (3.2.5) [169] (i) It is easy to see that the Boyd indices of an admissible sequence
o remain unchanged when replacing o by an equivalent sequence in the sense of
Definition (3.2.2).

(if) Given an admissible sequence o with Boyd indices a, and S, then it is possible to find
for any € > 0 a sequence T which is equivalent to ¢ with d,(7) = 2f=¢ and d,(7) =
2% 7% j.e.

ZB“_ST]- S Tjyg < 29070 forany j €N,. (36)
Assumption (3.2.6) [169] From now on we will denote N = (N;);ey,a sequence of real
positive numbers such that there exist two numbers 1 < A, < A, with

AoN; < Njp1 S 44N for any Jj € Njy. (37)

N is a so-called strongly increasing sequence — compare Definition 2.2.1 and Remark
4.1.2 in [144]. We would like to point out that the condition A1, > 1 played a key role in
[144, Assump. 4.1.1] in order to get atomic decompositions in function spaces of
generalized smoothness.

Moreover we choose a natural number x, in such a way that 2 < A’SOand consequently
2N; < N, for any j,k € N such that j + ko < k holds. We will fix such a x, in the
following.

Definition (3.2.7) [169] For a fixed sequence N = (Nj) jen, as in Assumption (3.2.6), let

¢V be the collection of all function systems ¢ = (go ) jen, Such that:

(i)
(if)

<p] € (' (R") and ¢; Né&)=0 if Ee (R*) forany j € Ny;

supp ¢ < {& € R™: [§] < Njyy, }, j=01,...,K -1,
supp (p}\l c {f € R™ NJ'—Ko <= Nj+Ko} if  j =K
(iii) for any y € N there exists a constant ¢, > 0 such that for any j € N,
DY} (E)] <, (1 +1€1))7M/2 forany ¢ €R™;
(iv) there exists a constant ¢, > 0 such that

0 <Z<pj’-v(€) =c¢, <o forany ¢&€R™
j=0

In what follows S stands for the Schwartz space of all complex-valued rapidly
decreasing infinitely differentiable functions on R™ equipped with the usual topology, S’
denotes its topological dual, the space of all tempered distributions on R", and F and F 1
stand respectively for the Fourier transformation and its inverse.

Let (0j)jen, € an admissible sequence (N;);en, be an admissible sequence satisfying
Assumption (3.2.6) and let " € ¢V.
Definition (3.2.8) [169]
(i) Let 0 <p <ooand 0 < q < oo. The Besov space B N of generalized smoothness is
defined as
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fes’

- 1/q
1B |l:= <Z of |7~ (e} Ff) | Lp(R")II"> <o

j=0

(i) Let 0 <p <o and 0 < g < oo. The Triebel-Lizorkin space Fp‘fgIN of generalized
smoothness is defined as

o 1/q
fesIf 15 |l:= <§}#w?%¢@ﬂcwv | Ly(RY)|| < o0
j=0
In both cases one should use the usual modification when g = oo.

Both B{j é" and Fp‘f;,N are Banach spaces which are independent of the choice of the system
(<p”)]-ENO, in the sense of equivalent quasi-norms. As in the classical case, the embeddings
So BJY S and S & E;Y & S’ hold true for all admissible values of the parameters

and sequences. If p,q < oo then S is dense in Bgévand in Fp“’éN. Moreover, it is clear that

o N _ rpo,N
Bp,q - Fp,q :

Note also that if N; =2/ and o = ¢ := (2/5) ¢y, With s real, then the above spaces
coincide with the usual function spaces B, , and F;, on R™, respectively. We shall use the
simpler notation By, and F;, in the more classical situation just mentioned. Even for

general admissible o, when N; = 27 we shall write simply EJ, and Bj, instead of Fp"’;]’v

and By, respectively.
We have the following relation between B and F spaces, the proof of which can be done

similarly as in the classical case (cf. [65, Prop. 2.3.2/2. (iii), p. 47]):

Proposition (3.2.9) [169] Let 0 <p < o0,0<qg<oco. Let N and o be admissible

sequences with N satisfying also Assumption (3.2.6). Then

o N o,N o,N
-y S A ’
Bp,mln{p,q} FPICI Bp,max{p,q}'

Of intrinsic interest are also embedding results involving such spaces. Here we present
two which will, moreover, be of great service to us later on. In the case of Besov spaces,
this is taken from [12, Thm. 3.7]:

Proposition (3.2.10) [169] Let N = (N;) jen, be an admissible sequence as in Assumption

(3.2.6) and let 0 = (o) jen,and T = (1) jen, b€ two further admissible sequences. Let
0<p <Py <0,0<qy,q; < ooand%: (qi—qi)+. If
2 1

-1 n(p_ll_p_lz)
0; ‘chj € Ly (38)
J€ENp

o,N ,N
then Bpllql ‘—) Bp21q2.

The following partial counterpart for the F-spaces (which will be enough for our
purposes) can be proved similarly (cf. also [166, Prop. 1.1.13. (iv), (vi)]):
Proposition (3.2.11) [169] Let N be an admissible sequence as in Assumption (3.2.6) and

let ¢ and 7 be two further admissible sequences. Let 0 < p < 0,0 < g4,q, < o and
1 1 1
e =G 1

(O-] Tj)jENO € gq* (39)

o,N T,N
then Fplql ‘—) Fp,QZ'
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We state now sufficient conditions, already known to us, in order that Bg;’lv and

o,N : st i
F, 4 contain only regular distributions.

Proposition (3.2.12) [169] (See [12, Cor. 3.18].) Let0 < p < o,0 < g< . LetNand o
be admissible sequences with N satisfying also Assumption (3.2.6). If

1
n(z-1)4
-1 14
(aj N] ) SR
Jj€Ng
o,N
then Bp’q S Lmax{l,p}-

Proposition (3.2.13) [169] (See [14, Sec. 4, Prop. 3].) Let 0 < p < 0,0 < q < co. Let N
and o be admissible sequences with N satisfying also Assumption (3.2.6). If
{(aj‘lNJ-‘s)jeNo €y, forsomed >0, if 1<p<o,
nE-1)
(aj‘le P Njen, € Yoo if 0<p<l1,
then Ey' < L¥°.

In order to deal with the main question formulated, we need to introduce some technical
tools and derive some results which will be required later on.

In our setting, standardization is the ability to identify our generalized spaces with
spaces where N; has the classical form 27,

Let N and o be admissible sequences, N satisfying also the Assumption (3.2.6) as
before, and let x, be the fixed natural number with 23° > 2. Define

B =0k,  withk():=min{k € Ng:2/"' < Nyy ), jEN,. (40)
Then we have that
toBj < Bjv1 < mBj,  J €Ny,
with o = min {1,d;°}, w4, = max {1, d;°}.

Under these conditions we proved in [14, Thm. 1] the following standardization:
Theorem (3.2.14) [169] Let N and o be admissible sequences, N satisfying also the
Assumption (3.2.6). Let, further, 0 < p, g < oo (with p # oo in the F-case). Then
Fp%N = szq and Bg,'c]lv = Bf,w
where B := (B;) jen, IS determined by (40).

As a consequence of this we obtain in case g; = J]_o =1 forall j € Ny:

Corollary (3.2.15) [169] Let (0}) jen, and (N;) jen, be as before and 0 < p, q < oo (with

p # o in the F-case). Then

(N _ 0N
Bp,q - ng Bzg).q (41)
and
(DN _ po®N _
Fp,q - Fp(.jq - Fp?q' (42)

This extends [144, Thm. 3.1.7] also to the F-spaces and to the case 0 < p < 1. The
corollary will be useful to prove the sufficiency of the conditions in Theorems (3.2.28) and
(3.2.29).

One of the most significant ingredients in the proof of the following theorem, which is
Lemma 1 in [14] and will also be useful later on, was again the above standardization
theorem.

Theorem (3.2.16) [169] Let 0 <p; <p <p, < 0,0 < q < . Let N:= (N;) ey, and
o:= (0j) jen, e admissible sequences with N satisfying also Assumption (3.2.6). Let ¢’
and a"’ be the admissible sequences defined respectively by
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e "G, p) :
of =N, 7" "o, o' =N " "g, jEN,

Then
By By o By

if,andonlyif, 0 <u<p <v < oo

As we shall see, the main results will be established in terms of the behaviour of the
sequences o and N. Sometimes it is useful to deal with the case of general N after having
dealt with the more classical situation when N = (Zf)jeNo, through standardization. The
problem afterwards then might be that the criteria obtained are expressed in terms of
(O_k_é'))jeNoi for the k(j) defined in (40), instead of the original sequence (Uj_l)jeNo- This
difficulty can, however, be circumvented by the following observations.
Remark (3.2.17) [169] From the definition of k(j) the following two properties easily follow:

(i) For x, the fixed natural number such that A’;o < 2, it holds
k(G+1) <k()+ry, jEN,.
(if) There is ¢, € N such that
k(j+co) > k@),  jE€N;

for example, ¢, = k; + j,, Where k; € N satisfies 1; < 2%t and j, € N, is chosen such
that 2/o=1 > 2T°N,,.

Proposition (3.2.18) [169] Let o be an admissible sequence and 0 < r < co. Let k(j) be
defined as in (40). Then
o-ter ifandonlyif,  (04(j)jen, € tr-
Proof. We deal only with the main case when 0 < r < co. The case r = oo can be dealt
with usual modifications.
Consider the numbers k, and ¢, as in Remark (3.2.17).

On one hand,
[0'0) C0—1 Co—l [o'e) Co—l [0'e)
Z Ok (j) = z z Ok (icy+m) = z z Ok(icg+m) = z Z = Coz o ", (43)

m=0 [=0 m=0 j=
where the mequallty is justified by the fact that, for each fixed m =0,...,¢co — 1,

(ox (lcg + m))en, Is a subsequence of g, as follows from Remark (3.2.17) (ii).
On the other hand,

oo Ko—1 oo Ko—1 oo
Kozak(]) - z Z Gk(]) = Cz Z Gk(])+m = z Gl_r» (44)
j=0 m= j=0 m= 1=k(0)

where the flrst inequality is a dlrect consequence of the admissibility of o (with the factor
¢ depending on k) and the second inequality comes from the fact that the term following
each gy (j)4x,—1 IN the middle line above, being oy(;.1y is, by Remark (3.2.17) (i), either
the next term in the sequence o~" or a term already considered before and that we can
discard, turning the total sum smaller, though not smaller than the sum in the last line
(because of Remark (3.2.17) (ii)).

Combining (43) and (44), we get the required result.
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One of the tools we shall need is the atomic representation of functions in spaces of
generalized smoothness. In order to present the atomic decomposition theorem see also
[144, Sect. 4.4].

Let Z™ be the lattice of all points in R™ with integer-valued components.

If ve Ny,and m = (mq,...,m,) € Z" we denote by Q,,, the cube in R" centred at
N;'m = (N;tmgq,...,N,; 1 m,) which has sides parallel to the axes and side length N, 1.

If Q,., IS such a cube in R™ and ¢ > 0 then cQ,,,, denotes the cube in R™ concentric
with Q,,,,, and with side length cN,; 1.

Definition (3.2.19) [169] (i) Let M € Ny, c* > 1 and k > 0. A function p: R™ — C which
Is M times differentiable (continuous if M = 0) is called a 1,,-N-atom if:
supp p € ¢*Qqy,, forsome meZ", (45)
ID%p(x)| < k if |a] < M. (46)
(ii) Let 0 = (0j) jen, b€ an admissible sequence, let 0 <p < oo, M,L +1 € Ny, c* > 1
and k > 0. A function p: R™ — C which is M times differentiable (continuous if M = 0) is
called a (o, p)p ,-N-atom if:

suppp € ¢*Qqy,, forsome v e N,meZ" (47)
el
|D%p(x)| < ko IN} if |a] < M, (48)
jx”p(x)dx =0 if|y| <L. (49)
]Rn

If the atom p is located at Q,,,,, (that means supp p € c*Q,, with v € Ny, m € Z™,c* > 1)
then we will denote it by p,,,,,-

As in the classical case, the N-atoms (associated to the sequence N) are normalized
building blocks satisfying some moment conditions.

The value of the number ¢* > 1 in (45) and (47) is unimportant. It simply makes clear
that at the level v some controlled overlapping of the supports of p,,,,, must be allowed.

The moment conditions (49) can be reformulated as DYp(0) = 0 if |y| < L, which
shows that a sufficiently strong decay of p at the origin is required. If L < 0 then (49)
simply means that there are no moment conditions required.

The reason for the normalizing factor in (46) and (48) is that then there exists a constant

¢ >0, depending on k, such that for all these atoms we have || p| By || <c and

| p | E5|| < c, provided M and L are large enough — see Theorem (3.2.21) below. In
[144] x was fixed to 1 but we can use any other k to the effect of normalization.

If v e N,,m € Z™" and Q,,, is a cube as above, let y,,,, be the characteristic function of
Qums 10 < p < oo let

Xom = N/ dom

(obvious modification if p = oo) be the L,-normalized characteristic function of Q.,,,,.
Definition (3.2.20) [169] Let 0 < p < 00,0 < q < oo. Then:
(1) by 4 is the collection of all sequences A = {4,,, € C: v € Ny, m € Z"} such that

/p 1/q
e Z(Z i)

mezn
(with the usual modification if p = oo and/or g = o) is finite;
(ii) £, is the collection of all sequences A = {A,,,, € C: v € Ny, m € Z"} such that
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00 1/q
1212l = (Z > Mvmxéﬁi(-)w) | Ly

v=0 mezZn"

(with the usual modification if p = oo and/or g = ) is finite.

One can easily see that b,, , and £, are quasi-Banach spaces and using |[x | L,|| = 1 it
is clear that comparing ||2 | b, 4| and ||2 | £, || the roles of the quasi-norms in L, and [,
are interchanged.

In [144] it was proved the following atomic decomposition theorem.

Theorem (3.2.21) [169] Let N = (N;) en, be an admissible sequence from Assumption
(3.2.6) with 4, > 1 and let o = (g;) jen, b€ an admissible sequence.
Let 0 < p < oo, respectively 0 < p < 00,0 < g < oo, and let M, L + 1 € N, be such that

log, dq
log, Ay 0
and
log, 44 1 log, d,
L>-1 —1)-—— 1
g n (1082 Ao min(1,p, q) ) log, Ao’ (1)
respectively
log, 44 1 log, d,
L>-1 —-1)— . 2
> n (logz Ao min(1,p) ) log, A (52)
Then g € S’ belongs to Fp‘f;IN, respectively to BI;’,;;V, if and only if it can be represented as
g = z Z AvmPvom (53)
v=0 mezZ"

convergence being in S’, where p,,,, are 1p-N-atoms (v =0) or (o,p)y-N-atoms

(v eN) and A € f,)V,, respectively A € b, ,, where A = {4,,,,,: v € No, m € Z"}.
Furthermore, for any fixed c* > 1, any fixed k >0, and any M and L as above,

inf || ] £, ||, respectively in |2 ]b, ||, where the infimum is taken over all admissible

representations (53), is an equivalent quasi-norm in Fp‘fé"’ , respectively B{,f'év :

See [144]. The use of arbitrary k¥ > 0 instead of k = 1 changes only the equivalence
constants for the quasi-norm.

Remark (3.2.22) [169] Let N = (IVJ-)]-ENO be an admissible sequence as in Assumption
(3.2.6) which is equivalent to the sequence N.

Letalso 6 = (6;) jen, b€ an admissible sequence equivalent to o.

It follows directly from Definition (3.2.19) that for arbitrary fixed ¢* > 1 and k > 0
there exist ¢* > 1 and # > 0 such that any 1,,-N-atom is a 1,,-N-atom and such that any
(0,p)m-N-atom is a (&, p) . -N-atom with respect to the numbers c* and &.

Clearly ¢* and & > 0 depend on c*,k, M,p and on the equivalence constants for the
sequences o and N.

Let us denote by a, and S, respectively ay and Sy, the Boyd indices of ¢ and N
respectively.

According to Remark (3.2.22), Remark (3.2.5) and taking into account the definition of
Boyd indices, conditions (50)-(52) can be reformulated and improved as

a
M > ﬁ—a (replacement for (50)), (54)
N

and
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L>-1+n (;N — (1 D) 1) g (replacement for (51)), (55)
N ) N
L>-1+n (aN _r 1) —— (re lacement for (52)) (56)
By min (1,p) N P .

At one point we shall need a specific result about lacunary Fourier series, that is, of
Fourier series of the form
At
2 bje‘ J
j=1

where (4;); is some given sequence of positive integers for which there exists g such that

]+1

>qg>1,jeN.

For the following result, see [164, p. 204].
Proposition (3.2.23) [169] If Y52, b; ettt with (4;); as above, is the Fourier series of a
function of L, ([0,2m]), then (b;); € {’2

Related to this, we shall also need the following technical lemma of [160, Lem.5.5.2]
and the theorem which we state and prove afterwards, though the proof follows along the
same lines of a corresponding result in [160, Thm. 4.2.1; see also Rem. 4.2.2.(c)].

Lemma (3.2.24) [169] Let N = (Zf)jeNoand consider a function system ¢ = (¢;) e, €
¢" as in Definition (3.2.7) built in the following way: for each j € N\{1},¢; =
®,(277%1 ), where, for some suitable a > 0, ¢, € S is chosen such that
P1(E)+ 27 =1 if 2<[¢| <4,
p1(§)=1 if 20 -a)<|§|<2(1+a)

supp 1 € {§ € R™: (1+a) < [§] < 4(1 - a)};
@, € S is chosen so that ¢,(&) + 9,(§) =11if [€] < 2 and supp ¢, € {£ € R™ |¢| < 2}.
Consider e; = (1,0,...,0) € R*®. Given { €S, (bj)jEN c Cwith |b;| < ¢,2/" for some

r > 0 and k € N, the function

and

Vi = z b ¢(- =2y ) i (57)
is well-defined with convergence in S ;nd, for any givend > 0,
lim 2+ (Vk bl (- —2"31)) =0 inS. (58)

Theorem (3.2.25) [169] Let 0 <p < o0 (0 < p < win the case of F-spaces), 0 < q <
and o be admissible. Let i € S\{0} and (by)xeny < C With |by|c, 25" for some r > 0. Then

W(xy,...,xp):= z bjeizj"1
j=1

converges in S" and

YW € Bj, © (oxbi)ren ELq © YW € EJ,. (59)
Proof. The hypothesis on the sequence (by)xeny immediately guarantees that W makes
sense in S’ and is indeed a periodic distribution on R™ (cf. [168, Sect. 3.2]). Then it is a
straightforward calculatlon to see that

T(z/)W)—ZbT (pei?'=) Zb(?-"t/)) Sxio. 0y = Zb(}"t/))( ~2Je,),
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where e; stands for (1,0,...,0) € R™.
Considering a system ¢ as in Lemma (3.2.24) then

OLFYW) = z bFP) (- ~2er) o

can be taken as the V, in (57), k € N, for the choice ¢ = Fi. Therefore the conclusion
(58) reads here as

lim 2kd (gokﬂ-"(t,bW) — b, F (¢ eiZ"xl)> =0 in S,
where d > 0 is at our disposal. Applying the inverse Fourier transformation we get

lim 2 (F (e W) — b 1) =0 inS (60)
and, using § < Ly, also
lim 24| F (@ P (YW)) = by 21 | L, || = 0. (61)

Notice now that (with the usual modification in the case g = o) we have

o0 1/q
(Z ot e e Lp||">

k=1

) 1/q [ 1/q
<c (Z ol |F (e F @ W)) | Lp||"> e (Z ol |F (P Gp W)) — byp i1 | Lp||") (62)
k=1 k=1
and a corresponding estimation obtained by interchanging the roles of b,y eiz“x1 ang
F Y @rF @PW)). Since the last term in (62) can be estimated from above by

0 1/q
(Z 0,?2"’“1‘7) sup 2kd ”T_l(@k?(l/) w)) — bpei? ¥ | L, ”
k=1

and, from (35), g, < 0,2k1°8291 py choosing d > log, d, we get, also with the help of
(61), that the above expression is finite and therefore, from (62) and the corresponding
estimate referred to above,

> allF (o F@W) L[ s finite
k=1
if, and only if,
Z o) ”bktpeizkxl | L, ”q is finite.
k=1
That is, and after simplifying the last expression (taking also into consideration the
hypothesis ¢ € S \{0}),
YW € By, if,and onlyif, (okbi)ken € £4-
As for Ef,, with 0 <p,q < oo, we start by observing that from (60) it follows, in
particular, that forany m € Nandany d > 0
lim sup {(1+ x)™2%¢ |F 2 (@ F (@ W)) = bype |} = 0.
k-0 yeRrn

Then we have, pointwisely, with d" > d, that

(1 + [x)m Z 244971 (o F (P W)) = byap /2"

;

<Z 2k(d-d )q> (sup sup (1 + |x)m2ka’ |T Yo FpW)) —b lpelzk"l

n
) keN xeR

89



Is finite and therefore the series of functions above converges pointwisely and, moreover,
. q
sup [(1 + |x|™ma Z deq|fF'_1(<ka(1/)W)) — by €2 ] < oo, (63)
XERM
k=1

Using now that o;, < g,2%1°82¢:1 _ ¢f, (35) — and choosing m € N large enough and
d > log, d; in (63), we get that

o p/q
/ (Z L[ (P @) - byap e ) “
]Rn

k=1

r/q
q)

< oo, (64)
The counterpart of (62) is now

o 1/q
: q
(Y attoane=r') 11,

= [°S) 1/q
(Z ot (P w>)|q> 1L,

k=1

FHouF@ W) = bap e

x€RM

= f(l + [x])™™Pdx X sup ((1 + |x|)™ma Z pk(log; d1)q
R k=1

1/q

(foﬁlﬂf*(www»—bkwe”k’“|q> | L.

k=1

<c tc

and, again, a corresponding estimation obtained by interchanging the roles of b,y ei2"x1
and F~1 (¢, F ( W)) also holds. Therefore, taking (64) into account,

0 1/q
(Z ol |F (o F (P W))|q> | Ly|| is finite
k=1
if, and only if,
o 1/q
q ika q . . .
Oy |bk1/) el | L, is finite.
k=1

That is, and after simplifying the last expression (taking also into consideration the
hypothesis ¥ € S \{0}),
YyweE, if, and only if, (okbi)ken € €4

We have been assuming, in this case of F-spaces, that both p and q are finite. However,
with the usual modifications the preceding arguments also work out for g = oo.

We start by considering a reverse Holder’s inequality result which will be used as a
backbone for the proof of the necessity of most of the conditions in Theorems (3.2.28) and
(3.2.29) below.

Proposition (3.2.26) [169] Let 0 < r < o and (aj)jeN' (bj)jeN c C If(ajbj)jeN belongs
to ¢, for all sequences (bj)jENbelonging to ¢, then (aj)jEN €4,

The case 1 < r < oo is contained in [162, Thm. 161, p. 120]. The case r = oo is trivial
(just take all b;’s equal to 1), though something stronger is true, namely the conclusion

still holds merely by drawing (bj)jEN from c,, as follows from [162, Thm. 162 (i), pp.

120-121]. Finally, the case 0 <r <1 (then r' = o0) can be proved by contradiction.
Indeed, assume (bj)jeN & £.. Then for each natural number [ there exists an index

1
Ji > ji—1 such that |a;,| = I-*', where j, can, e.g., be taken equal to 1. Define
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1 e .
b; := {l T ifj =j,

0 otherwise.
Then (b,-)jEN € £, but X527, |a;|b; = co.

To prove the necessity of some conditions in the next theorem we will construct so-
called extremal functions starting from a smooth basic function ¢ with compact support
and vanishing moment conditions, which we describe next:

Proposition (3.2.27) [169] For every L € N and A, > 1 there exist a C “-function ¢ on R"
and suitable positive constants C;, C, and Cs, these constants depending only on A, and n,
such that C; < C3 < A,C4,

) =2C, iflxle<C, @) =0 iflx|e = G
and

fx”qb(x)dx =0 whenever y €Ny and |y|. < L.

A construction of such functions was described in [12, Lem.4.6].
Theorem (3.2.28) [169] Let 0 < p,q < oo. Let N and o be admissible sequences with N
satisfying also Assumption (3.2.6). The following are necessary and sufficient conditions
for Bz‘,’,'é\’ c L, where £ p~ should be understood as ¢,,:

©-=p

_ n(;—1)

(i) (aj_le ’ Djen, €y, incase0 <p < land 0 < g < oo;

(i) (67" jen, € forincase 1 <p < oc0and 0 < q < min{p, 2};

(iii) (67 D) jen, € f%’ incase 1 < p < 2and min{p, 2} < q < ;

(iv) (67 ") jen, € fz_qz, in case 2 < p < o and min{p, 2} < q < oo.
=

Proof. (i) First we prove the sufficiency of the given conditions in each case.

In case 1, it follows directly.

For each one of the remaining cases we use, in sequence, Proposition (3.2.10), Corollary
(3.2.15) and Theorem (3.2.1). This explains why we can write, assuming the condition in
each one of the cases, that in case 2

1),N
BO_’N - Bp(lq) = Bz(j)!q c Léoc’

] p.q
in case 3
o,N (LN _ po loc
_ Bp,q oS Bp,p = Bm, C LY
and in case 4

o,N (LN _ po loc
Bp,q S Bp,Z = Bp,z c L7°.

(if) Here we prove the necessity of the condition stated in case 1.

Let L be chosen in dependency of (N;);en,and (o;)jen, by (52) or (56), respectively,
and let ¢ be a corresponding basic function depending on L,n and A, from Proposition
(3.2.27) Let (p;) jen be a sequence belonging to £, and

£o00:= ) |oylor NP (), (65)

j=1
convergence in S’. For x # 0 this is always a finite sum and for each j the functions

aj‘ll\ljn/pgb(lvjx) are (o, p)y,,-N-atoms located at Q;, in the sense of Definition (3.2.19)
and Theorem (3.2.21). Then f* belongs to Bgév and
1F7 1 By Il < cll(pj)jen | £]l-
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Now we assume By < L. Then

lfP(0)ldx < oo
|x|eo<CyNT1
and, actually, f” will also be given by (65) in the pointwise sense a. e. We will split part of
the set {x: |x| < C;N; '} inanon-overlapping way to obtain simple passages
Pn:={x: C3A5 N, < |x|e < G N Y,
because on these passages we have
p(Nx)=C, ifj<m

and
¢(Njx) =0 if j > m.
For each k € N we have
o> [ iz [ Ylele N e(n)| ax
|XleosCiNT! C3Ay NG 1s|x|osCyNT T [J=1

i f ilmlﬁfll\']‘/ Po(N;x)| dx

=1 C3A5 N <|x|eo<C Nt |T=

k
26, ) | Z|Pf|0j‘”\’j"/” dx

m=1 /101Nm 2|x|00=C1 Ny L=

> G, Z|pm|a-11\/’”‘/’”2“(c1 CPAING" = czlpmla—w

The sum on the rlght -hand side is monotone increasing and the left-hand side is
independent of k. So we have

N -1 n(%_l)
Dloilo P < (66)
j=1
for any sequence (p;) jen € €, if Bgy < LYC.
Now by Proposition (3.2.26) it follows

\%

n(%— 1)

L GD)
(O-] ]V] )jENO € gq"
(iif) Now we prove the necessity of the conditions stated in cases 2 and 3.
Let (v;) jen, € an arbitrary sequence belonging to £,. For technical reasons we consider
now the sequence (¥;) jen,With
7 = max ([yjl, 103Ng1257),  j=01,.... (67)
It is clear that (7;) jen,also belongs to £;. Define

for j € N.

M\

K0:=0

=1
Then k; > 0 if j € N and lim;_o, k; = k, where k is equal to ||(7}) jen, | 1]|-
Forallj = 1,2,... put
R; := {x = (X1, X X)) Ko <X SK;,0<xi <1,i= 2,3,...,n}.
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We obtain rectangles in R™ which become narrower in the x;-direction. Inside each R; we
consider cubes Q ;, of the type considered. There exist M; such cubes inside R;, centred in
N7 'm,,j =1,..., M;. Because of
103N < 103N, 14y < 7

and assuming, without loss of generality, that N, > 2, we have

M; ~ NP2 = k20N = N 7
In dependency of (N;)en,and (g;)jen, choose L which fulfil (52) or (56), respectively.
Furthermore let ¢ be a basic function depending on L,n and A, from Proposition (3.2.27)
and put ¢ (x): = ¢(2C5x). Let

o Mj
he (x): = z z pi® (N (x = N7'm,)) (68)
j=1r=1
(pointwise convergence) be a compactly supported function where (p;) jey is an arbitrary
sequence of non-negative numbers which will be specified later. Notice that by
construction for each x € R™ in the double sum appears at most one summand which is
not zero and that aj‘llvjn/pqﬁ (Nj (x — Nj‘lmr)) are (o, p)y,,-N-atoms located at @, in
the sense of Definition (3.2.19) and Theorem (3.2.21).

If (p( ) _1Nn/p)]eNo mezn € by 4, Where p( ) = p; if QmcR; and p(m) =0
otherW|se then the double sum in (68) converges in S’ to some g* WhICh by Theorem
(3.2.21), belongs to B N and which, moreover, satisfies (assuming further that both p and
q are finite)

w /M g q/p\ q o ng ¢\
p | pON N P - q,.4y P P
lg? 1 Byg' || < ¢ E EPJGJN,- c\ . pjoiN; " M,
j:]_ r=1 ]_1
1 1
d _ng ng g\? ® a\?
q_q p P 5P q__4~p
~ . . ~ (0e]
c E p]O']NJ MJ f c E pjo;¥; <
j=1 j=1

and obtain

[/ < oo

l9” 1 By || < el jeny 1 44
With this special choice of (p;) ey We also have

o]

| |hp(x)|dx—2f|hp(x)|dx—z 1?,.'%%2] | 16 (8= n71m,)) [ ax

[0,k]x[0,1]7—1 J=1R; j=1 7=1Qm,
i 1,1 0 1,1 °° 1,1
~ Z 0-_1)7. 14 qN-_nM' ~ Z O..—ly_ 14 qN'_nN'nV' ~ Z O..—ly' P q
] J ] ) ] Jj ] ] 7] ] j ’
j=1 j=1 j=1

where the equivalence constants might depend on ¢. Now we assume B{,f'é" c L¥¢. Then
h? and g” coincide a. e. and for every sequence (¥;) jen, € f1
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i 11
> oty P f 19°()ldx < oo.

j=1 [0,k]x[0,1]~1
Moreover by (67)
¢ 1,1 o 1-L1
-1 + -15" P q
Doty s Y o,
j=1 j=1

whenever 1 — % + é > 0. But this is the case if 1 < p.

1.1
Therefore By < LY implies ¥, aj‘1|yj|1 »"4 < oo for all sequences (¥j)jen, € ?1.
But this is equivalent to »%2; aj‘1|ﬁj| < oo for all sequences (8;) jen, € ¥r, Where % =1-
%+ g > 0. Then it follows (aj‘l)jENO € ¢, by Proposition (3.2.26). Incase 1 <r < o
(this is equivalent to p < q) we get % = % + é and in case 0 < r < 1 (this is equivalent to

q < p) we have r’ = co. Consequently we obtain that Bg;’l" c ¢ implies

(O-j_l)jeNOE'gﬂ ifl<p<qg<oo,
q-p
(07 ) jen, E 4o if 1<p<ooand 0<gq<p.
Adapting the above arguments to the cases where p or g are infinite, we get the same
conclusions as long as we interpret £ p= as ¢,,.

00—p
(iv) Finally we prove the necessity of the condition stated in case 4.
Let Bg’é" be given. Then by Theorem (3.2.14) we find a sequence (B;)jen, :=

(0k(j)) jen, determined by (40) with Bz‘,f'c’lv = Bzf q- Furthermore by Theorem (3.2.25) we

can construct for each sequence (b;);ey € C with |bj| < c,2/7 (for some r > 0) a
distribution

oo
W( )._ b: izjxl
X1y oy Xp) == i€
j=1

such that
YyWwe Bﬁq S (Brbr)ken € €4, for any given ¢ € S\{0}.
If we assume BJs = BZ, < L%¢, then it follows 1 W € LY°(R™) whenever (B by)ken €

b.q
£,. With a choice of i different from 0 everywhere, then also W € L?°(R™) and,

consequently, the one variable version w (that is,w(t):=§]j?°:1bjei2jt) is locally

integrable too. Y52, bjeizjt Is the Fourier series of a function in L;([0,2x])and by
Proposition (3.2.23) it follows (b)) jen € ?».

Since the assumption (B bx)ken € £4 implies that |b;| < c,2/7 for some r > 0, then we
have shown that (b;) ey € ¢, for all sequences (by)ken < C such that (Bxby)ken € €4
Given any (y;) jen € #g and defining

1
b; := |yj|zﬁj—1,
the assumption (Byxby)ken € £, is satisfied and therefore B 1Yk Dren € £1.1f q > 2,
then again by Proposition (3.2.26) we have (B;*)ken € £, 1., (Br Dren € €24 (With
2

q-2
the understanding that € 2 should be read as ¢,).

0—2
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Finally, by Proposition (3.2.18) we can transfer this to the original sequence o with

arbitrary o, > 0 and obtain (o; ") ken, € £24.
q-2
Theorem (3.2.29) [169] Let 0 <p < ©,0<qg<o0o. Let N and o be admissible
sequences with N satisfying also Assumption (3.2.6). The following are necessary and
sufficient conditions for Fp‘fglN c L, where £ 200 should be understood as 2:
00—2

L nGD _
(i) (o; N; )jen, € {wsincase 0 <p <land0 < gq < ;
(i) (67 ) jen, € fw, incase 1 <p <o0and0<q < 2;
(iii) (67 ") jen, € €24, incase 1 <p <oand2 < q < co.

q-2

Proof. (i) First we prove the sufficiency of the given conditions in each case.

In case 1, it follows directly from Proposition (3.2.13).

For both remaining cases we use, in sequence, Proposition (3.2.11), Corollary (3.2.15)
and Theorem (3.2.1). This explains why we can write, assuming the condition in each one
of the cases, that in case 2

FO',N S F(l),N

— 0 loc
p.q .9 - Fp,q = Ll

and in case 3
E o BN = F9, c 1¥e.
(if) Now we prove the necessity of the conditions stated in cases 1 and 2.
If we assume Fp"’é’v c L€, by Proposition (3.2.9) it follows
,N
By mingpa) © L1
Incase 0 <p <1and 0<gq < o itholds 0 < min{p,q} <1 and by Theorem (3.2.28),

n(-1)
part 1, we have (aj_le ? )jen, € Yoo

Incase 1 <p <ooand 0 < q < 2itholds 0 < min{p, g} < min{p, 2} and by Theorem
(3.2.28), part 2, we have (6, ") jen, € fo-
(iii) Finally, the proof of the necessity of the condition stated in case 3 is the same,

mutatis mutandis, as in the last part in Theorem (3.2.28) because, under the conditions of
Theorem (3.2.25),

YW € Bl & (Bibidken € £q & YW € EV. |
Example (3.2.30) [169] Let g; := 2515(1 + /)P, where b > 0 and N; = 27. Then
By © Bpa © Bpg

for any s; > s, that is, we have a scale in smoothness finer than in the classical case.

Naturally we obtain in some cases also really finer results concerning the embedding of
BY in Lloc
.p’q 1 ' - - - -
(i) Let 0 <p <1and 1< q < o. Then the classical result gives the embedding if and
only if s > n(% — 1), while in our example the embedding is still true if s = n(% — 1) and
in addition b > "T‘l
(ii) Let 1 < p < 2 and min{p, 2} < g < . Then, in contrast to the classical case, s = 0 is
possible if and only if b > % (meaning b > % if g = o).
(iii) Let 2 < p < oo and min{p, 2} < q < oo. Then again s = 0 is possible if and only if
b> %(meaning b>ifq = o).
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(iv) The same is true for the F-spaces in the case 1 <p < o and 2 < g < o, where
instead of s > 0 now s = 0 together with b > qz—_qz (meaning b > % iIf g = o) is permitted.

The following extends [55, Cor. 3.3.1] to our setting:
Corollary (3.2.31) [169] Let N and o be admissible sequences with N satisfying also
Assumption (3.2.6).
(i) Let 0 < p < 0,0 < g < 0. The following two assertions are equivalent:
By < Le
p.q 1
and

o,N
Bp,q o Lmax{l,p}'

(if) Let 0 < g < oo. The following two assertions are equivalent:
BO',N C LlOC
00,q 1

and
B < bmo.
(ifi) Let 0 < p < 00,0 < g < oo. The following two assertions are equivalent:
EoN c Le
] p.q 1
an
E oL
p.q max{1,p}

Proof. Since the implication in which one concludes that B{,’;év or Fp“,;]N is in LI°¢ s
obvious, we concentrate on the reverse one. So, let us assume that B{,’;év c L°¢ when
proving (i) and (ii) above and that pr;lN c L'°¢ when proving (iii).

In what follows we shall use the following classical facts without further notice:

Fp, =Ly, 1<p<o (by[65Thm.2.5.6(i)]);
Fl, =hy (by [65, Thm. 2.5.8/1]);
hy &L, (by [65, Rem. 2.5.8/4]);
Fgo, = bmo (by [65, Thm. 2.5.8/2]);
BY, - F3, (cf.[65, Prop. 2.3.2/2(iii), Thm. 2.11.2]).

(i) The B case when 0 < p < co.
Firstlet0 <p<1land 0 < g < oo.
G-1) »
We have, by Theorem (3.2.28), that (aj‘ll\ljn ’)jen, € £, and by Proposition (3.2.10)
and Corollary (3.2.15) it follows

1),N
Bl;‘,’C]IV I Bl(,l) = Bg,l = Fl?l o quz =h © Lp = Lmax{l,p}-

In case 1 < p < o and 0 < q < min{p, 2} Theorem (3.2.28) implies (o; ") jen, € £
and by Propositions (3.2.9), (3.2.11) and Corollary (3.2.15) we have
N N (DN _ — —
ng = Fpa,z ° Fp,Z - FI?,Z = Lp = Linax(ypy

If 1 <p <2 and min{p, 2} < q < oo, then Theorem (3.2.28) implies (o, ") jen, € £ 20
q-p

and combining Proposition (3.2.10), Corollary (3.2.15) and Proposition (3.2.11) we get
o,N (1),N

Bpq < Bpp

Finally in case 2 < p < oo and min{p, 2} < q < o Theorem (3.2.28) gives (aj‘l)]-ENO €

and again Proposition (3.2.10), Corollary (3.2.15) and Proposition (3.2.9) lead to

—np0 _ 10 0 _ _
- Bp.p =K DD > F P2 — Lp - Lmax{l,p}'

?

29
q-2

,N 1),N _ _ _
BN o BZE,Z) =B, © Fdy = Ly = Linax1p}-
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(if) The B case when p = oo.

Then we have, similarly as above, that, in case 0 < g < min{p, 2}, (aj‘l)]-ENO € ¥, and
N 1),N
BN & BUYY =BY, o FY, = bmo;
in case min{p, 2} < q < 0, (67 ") jen, € €24 and
q-2
B(?o’z S FO%,Z = me.

Bl o BLY"
(iii) The F case.

Let first 0<p<1 and 0<qg<o. Then by Theorem (3.2.29) it holds
1
<aj‘1Njn(” )> € £,,. By Theorem (3.2.16) we obtain
JENy

FO-,N ‘_> BG,,,N -th no__ Nn(%_l)
P.q 1,p wi gj = Ojly; :

Moreover by Proposition (3.2.10) and Corollary (3.2.15) we get

Bf,p'N I B1(,11)'N =BP1 =F1 © F)y = hy © Ly = Liax(1,}-

If1<p<oand0 < g < 2 we obtain (Uj_l)jeNo € ¢ and by Proposition (3.2.11) and
Corollary (3.2.15) we have
1),N .
Fp(fc’lN S Fp(’z) =Fpy =L, = Lingxp1py incase 1 <p.

and

Fla,(’zN - Fl(,;),N = F10,2 =hy 9L = Lmax{l,p} incase p = 1.

Atlast,incase 1 < p < ooand 2 < g < oo we get (Uj_l)jeNo € ¢ 2q and in a similar way
q-2
by Proposition (3.2.11) and Corollary (3.2.15)

o,N 0 _
Fp,q o Fp,z - Lp - Lmax{l,p}-
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Chapter 4
New Characterizations of Sobolev and Besov Spaces

We establish similar characterizations are also established for Triebel-Lizorkin spaces
E&,(R™) with a € (0,00) \ 2N and p, q € (1,00], and for Besov spaces BZ,(R™) with
a € (0,0) \ 2N,p € (1,c0] and g € (0, oo]. The characterizations rely only on the metric
and the Lebesgue measure on R™ and are simpler than those obtained recently by Alabern
et al. These results may shed new light on the theory of high order Sobolev spaces on
spaces of homogeneous type. The corresponding results for inhomogeneous Besov and
Triebel-Lizorkin spaces are also obtained. These results, for the first time, give a way to
introduce Besov and Triebel-Lizorkin spaces with any smoothness order in (0,2#) on
spaces of homogeneous type, where £ € N.
Section (4.1) Triebel-Lizorkin Spaces on R"

The fractional Sobolev space W*P(R™) with a € (0,1) and p € (0,0) can be
characterized by the square function s,, defined by setting, for all x € (R™) and f €
L%oc(Rn) N S,(Rn);

0 2 d 1/2
Sa(f)(X)=={f0 b‘( )[f(x)—f(y)]dy] t—t} ,

where above and in what follows, for any g € L],.(R™) and ball B c R",

]f d-—ij d
Bg(y) y = IB] Bg(y) y

and B(x,t) denotes the ball of R™ with the center x € R"™ and t € (0, c); see, for
example, [56], [65], [72], [174]. However, when «a = 1 and p € (0, =), the above square
function fails to characterize W %P (R™); indeed, if f € L},.(R™) and Ise (| 1Py < o0,
then f must be a constant function (see [6, Section 4]).

Alabern, Mateu and Verdera [170] characterized the fractional Sobolev space W*P (R")
for ¢ € (0,2) and p € (1,) via a new square function defined by setting, for all

f € Lj,.,(R")NnS'(R") and x € R™,
2 1/2
dt
t1+2a}

52 () (@): = { j f( G = FOlay
0 B(x,t

S, -function characterizes the Sobolev space WP (R™). Comparing S,, with s,, we see that
the only difference is that |f(x) — f(y)| appearing in the definition of s, (f) is replaced
by f(x) — f(y) in that of S,(f). Such a slight difference leads to a quite different
conclusion in the characterization of (fractional) Sobolev spaces. The main point, as first
observed by Wheeden in [173] (see [174]), when studying the Lipschitz-type (Besov)
spaces, and later independently by Alabern, Mateu and Verdera in [170], is that S,-
function provides smoothness up to order 2 in the following sense: for all f € C*(R") and
t €(0,1),

(ee)

f( =0y =06, xeR

which follows from the Taylor expansion of order 2

fO=f)+Vf(x) - (x=y)+0(x—yl*), xy€ER™
The purpose is to show that the above observation further leads to a new characterization

of Triebel-Lizorkin spaces with reasonable parameters. We denote by Fp?‘q(R") the
classical homogeneous Triebel-Lizorkin space while F;%, (R™) the inhomogeneous Triebel-
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Lizorkin space for all reasonable parameters; see for their definitions. Moreover, we
introduce the following function spaces of Triebel-Lizorkin type via a variant of the above
square function S,,.

Definition (4.1.1) [177] Let @ € (0,2) and g € (0, oo].

(i) If p € (0, ), the space SE '“q(]R{") Is defined as the collection of all functions f €

L} (R™ nS’(R™) such that I lszg, @m: = ”S“CIU)”LP(R") < oo, where, for all x € R,
[ e - foldy
B(x,27Kk)

q\1/4a
a0 <[ 2 |
with the usual modification made when g = oo.

k€eZ
(if) The space SFog{q(R”) is defined as the collection of all functions f € L},.(R™) n
S'(R™) such that
q 1/q
dy} < o

I lsis ooy = Sup sup {f > gk
Xx€ER™ f€Z B(X,Z_k)

with the usual modification made when g = oo.
(iii) If p € (1, o], the inhomogeneous space SE;, (R™) is defined by
SE&, (R™) := LP(R™) n SE& (R™)

with its norm || llsrg, ny == If lzpcamy + 1f lsig, ) for all £ € SEZ (R™.

In the above definition, S(R™) denotes the space of all Schwartz functions and S’'(R")
its topological dual, namely, the space of all Schwartz distributions. Recall that f €

L} .(R™) N S’(R™) means that L],.(R™) and the natural pair (f, @) given by the integral
fRnf(x)<p(x)dx exists for all ¢ € S(R™) and induces an element of S'(R™).

Then the first result reads as follows.
Theorem (4.1.2) [177] Let « € (0,2) and p € (1,00]. Then E, g (R™) = 'p‘f‘q (R™), with
equivalent norms, and also F;%, (R") = SE;, (R™), with equwalent norms.
Remark (4.1.3) [177] Notlce that to obtaln Theorem (4.1.2), it is necessary to make the a
priori assumption f € L7, .(R™) n S’(R™) in Definition (4.1.1). Indeed, let f(x;,x,) :=
e*1sinx, for (xy,x,) € R% Then f is a harmonic function in the plane and hence by the
mean value property,

[ rw-roiy=r0-f  fordy=o0
B(x,27k) B(x,27)

forall x € R* and k € Z. So f € Lj,.(R?) and S, ,(f) = 0 € LP(R") for all, a,p, q as in
Theorem (4.1.2). However, let ¢(xy,x,) := e™*1/2e™*2/2sinx,. Then ¢ € S(R?) and
fsz(x)q)(x)dx = oo, which implies that f ¢ S'(R?). Since F ,(R?) is a subspace of
S'(R?) (or S'(R?) modulo polynomials), we then conclude that f & E% (R?). In this
sense, the assumption f € L1 .(R™) n S’(R™) in Definition (4.1.1) is necessary.

In what follows, the space WZ?CV L(R™) denotes the set of all functions that are locally in
the homogeneous Sobolev space W2N1(R™). When a € (2N,2N + 2) with N € N :=
{1,2,...} and q € (0, o], as motivated by higher order Taylor expansions, for all f €

Z(Z,IC“(IR%”) N S'(R™) and x € R™, we set
q\1/4a
Sa,q (f)(x) = {z 2k0tq } , (1)

keZ

UG RO

[ Rix2ay
B(x,27k)
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where, for all x,y € R",
o1 .
Ryi%,27) 1= f0) = f() = ) A f()ly = x| @
j=17

with L; := A |x|¥ for j € f{1, ..., N}; see [170] (also [173]) for more details. Similar to
Definition (4.1.1), we introduce its following higher-order variant.

Definition (4.1.4) [177] Let a € (2N, 2N + 2) with N € N, q € (0,] and S, ,(f) be as in (1).
(i) If p € (0, 0), the space SFOg‘,q([R"), Is defined as the collection of all functions f €

Wige ' (R N S'(R™) such that Ifllsze, gmy: = ||Sa,q(f)||Lp(Rn) < oo with the usual

modification made when g = co.
(i) The space SEZ,(R™) is defined as the collection of all functions f € W2Y"* (R™) n
S’(R™) such that

q 1/q
£ llskg  mmy: = sup sup f Z okaq iyl <o
' x€eR™ ¢€Z (JB(x,27k) &=

with the usual modification made when q = co.

(iii) If p € (1, o], the inhomogeneous space SEy,(R™) is defined by
SE,(R™) := LP(R™) n SEZ (R™)

with its norm 1 llseg, ey == Ifllp ey + 1 llsig, ey for all £ € SEZ (RM).

Recall that, via the square function S,,, Alabern, Mateu and Verdera [170] also
characterized the higher order Sobolev space W *? for all @ € (2N,2N + 2) with N € N
and p € (1, ). We extend this as follows.

Theorem (4.1.5) [177] Let N € N,a € (2N, 2N + 2) and p, q € (1, ]. Then E&,(R™) =
SFp‘f‘q (R™), with equivalent norms, and also Ej, (R™) = SE, (R™), with equivalent norms.

We prove Theorems (4.1.2) and (4.1.5). We extend the above results to Besov spaces
and also give some further remarks on the case a € 2N and on the higher order Triebel-
Lizorkin spaces on metric measure spaces.

Finally, we point out that the proofs of Theorems (4.1.2) and (4.1.5) below are totally
different from the method used in [170]. The method in [170] strongly depends on the
theory of Fourier transforms and vector-valued singular integrals, while our approach
heavily depends on some Calderon reproducing formulae, one of which is from Peetre [91]
(see also Frazier and Jawerth [145] and Frazier, Jawerth and Weiss [171], or Lemma
(4.1.7) below) and some others are constructed.

Let Z, := {0} UN. Denote by S(R™) the space of all Schwartz functions, whose
topology is determined by a family of seminorms, {|| - “Sk’m(]R{n)}k -y where, for all

, +

keZ,,me (0,)and ¢ € S(R™),
lolls,,,crmy:=sup sup(1+ [x])™[0%(x)].

€Ll |al<k x€ER™

j Ry(y;x,27%)dz
B(x,27k)

aq an
Here, for any a := (ay, ..., a,) € Z%, |a|:= a; + -+ + a,, and 0%: = (aixl) (68771) .
It is known that S(R™) forms a locally convex topological vector space. Denote by S’'(R™)
the topological dual space of S(R™) endowed with the weak topology. In what follows, for
every ¢ € S(R™),t > 0and x € R", set ¢,(x) := t "p(t 1x).
For p € (0,], denote by LP(R"™) the Lebesgue space of order p. For N € N and

p € (0, ), denote by WP (R™) the homogeneous Sobolev space of order N , namely, the
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collection of all measurable functions f with their distributional derivatives 0%f €
LP(R™), where a € Z and |a| = N. Moreover, let

Il = ) 10%Fllgan).
|ax|=N
Set WNP(R™) := LP(R™) n WP (R™) as the inhomogeneous Sobolev space with norm
1 o gy 2= NFlpamy + 1 ipwo geny
for all f € WNP(R™). Denote by the space L], .(R") the locally integrable function and
similarly the space W2 (R™).
Now we recall the notions of Triebel-Lizorkin and Besov spaces; see [65], [66]. In what

follows, for any ¢ € L'(R™),$ denotes the Fourier transform of ¢, namely, for all

£ € (RY),
9(8):= f % (x)dx.

]RTL
Definition (4.1.6) [177] Let « € (0,), p,q € (0,] and ¢ € S(R™) satisfy that
supp @ € {£ € (R"): 1/2 < |¢| < 2} and|p(é)| = constant > 0 if 3/5 < |&] <5/3.(3)
(i) The homogeneous Triebel-Lizorkin space Fp‘f‘q (R™) is defined as the collection of all

f € S'(R™) such that ||f||ng(Rn) < oo, where, when p € (0, o),

1/q
(Z 2kea |‘P2—’< * f|q>

KEZ

)

||f||F,gfq(Rn) =

LP(R™)
with the usual modification made when g = oo, and

1/q
||f||Fo%q(R") ‘= Sup sup {JL z 2kaq|‘Pz-k * (f)|q dY} ,
' B(x,27%)

XERM f€7Z =7
with the usual modification made when q = co.
When p € (1, o], the inhomogeneous Triebel-Lizorkin space E, (R™) is defined by
E&,(R™) := LP(R™) n E& (R™)
with the norm ||l zg, wmy == Ilf llpcmy + fllsg, eny for all f € Egf (R™).
(i) The homogeneous Besov space By ,(R") is defined as the collection of all f €
S'(R™) such that ”f“Bg'q(Rn) < oo, Where

1/q
”f”Bg’q(R”) = (Z 2kaq||(p2_k *f”Zp(Rn)>

k€eZ
with the usual modifications made when p = o or g = co.

When p € (1, o], the inhomogeneous Besov space By, (R") is defined by
B, (R™) := LP(R™) N BE,(R™)
with the norm Ilf”Bg’q(Rn) = |[fllprmy + ”f”ng(Rn) for all f € By, (R™).
we need the following Calderén reproducing formula established in [91, pp. 52-54] (see
also [145, Remark 2.2]).
Lemma (4.1.7) [177] For any ¢ € S(R™) satisfying (3), there exists i € S(R™) satisfying
(3) such that, fora & € R™ \ {0},
> o@IpEI9 =1
jEZ
Moreover, for ever f € S'(IR™), there exist polynomials {Pj}jeZ and Pf such that
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[——00

fap=lim 3% g,y sty f + P “)
Jj=i

in S'(R™).
Theorem (4.1.8) [177] Let a € (0,0)/2N and p,q € (0,00]. If f € E, g (R™) then there
exists a polynomial P such that f + Py € SE&, (R™); moreover, ||f+Pf”sz:a ' =
C”f”pgfq(Rn) where C is a positive constant independent of f.
Proof. We first assume that a € (0,2) and p,q € (0,00]. Notice that E g (R™) €
ZOC(IR{”) see, for example, [90, Proposition 4.2] or [176, Proposition 5.1] for a proof. Let

f € E(R™). Then f € S"(R") N L T.c(R™). Let ¢ and vy be as in Lemma (4.1.7). Then
(4) holds for f. Observe that f € Fp‘fq(Rn) further implies that the degrees of the
polynomials {P;};cz in (3) do not exceed |a —n/p| < 1; see [115, pp. 153-155] and
[145]. Moreover, since P; has at most degree 1 for each i, we have

P;(x) — P;(z)dz =10

B(x,27k)

for all x € R" and k € Z. Moreover, as shown in [115, pp. 153-155], f + Pf is the
canonical representative of f in the sense that if for i € {1,2},¢® and 1@ satisfy (3) and

> P FOIDEHE) = 1

keZ
forall £ € R™ \ {0}, then Pf(l) P(Z)IS a polynomial of degree not more than |« — n/p] <
1, where Pf(i) is as in (4) corresponding to {p®,y®} for i € {1,2}. Also notice that for all
x € R"and k € Z,

F}(l)(x) _ F}(Z)(x) _j [Pf(l)(z) _ [}(2)(2)] dz = 0.
B(x,27k

Let f:= f + P;. Then by (4), we have

f=Fo(ary= E (Poi = X * 0i) * Ypmi % f ()
jez
; (N XB(0,1) kn k . . .
in S'(R™). Here y: = 50D and y,:= 2"y (2% -). From the above discussion, it follows

that f — f B(.27%) is independent of the choices of ¢ and 1 satisfying (3). Then it suffices
to prove that, when p € (1,00) and q € (1, o],

1
A
f Z 2k ZK(pz—f — Xk * Qoz‘f) * 1Py * f(x)| dx = “f”F?(’)fq(Rn) (6)
R™ | ez JeL )
and that, when p = oo and q € (1, o], for all x € R"and ¢ € Z,
Y
JL > 249 N (9 = i+ 930) * ¥ < fO| | Ay S Wf gy (7)
B(x,27%) 457 JEL

Indeed, if (6) holds, then for each k € Z, we have
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p

f Z|(<p21 Xk*fpzf) l/JZJ*f(x)| dx < o0,

JEZ
which further implies that (5) holds in LP(R™) and hence almost everywhere. Therefore,
for every k € Z,

IF = Fogm| < ZI(%—; — Xic * Ppi) * Wymi * f|

almost everywhere, and hence ”f”spa (rny 1S less than the left hand side of (6), which
further implies that kef ”f”SF“ —_— ”f”Fa L Similarly, if (7) holds, then (5) holds in

loc(]Rn) and hence almost everywhere and, moreover, an argument similar to above leads
To prove (6), we consider Y ;< and Y-, separately. Notice that for any smooth
function ¢ on R,

B = 60 + [ '©ds = 6 + '@ + [ 1~ 90" (s (®)
Let dp(s) := @(2/x + sz)ofor s €[0,1] and x,z € R". Tf?en
p(27x+z) =@(2x) + (Vo) (2/x)z" + Jl(l — 5)z(V?@)p(2/x + sz)z'ds,
where z¢ denotes the transpose of z. Therefore, V\?hen j <k, forall x € R",

et 01 = 0,00 = || 2 [o(@x 4 20) = p(20)] e
B(0,1

j 2m[p(2x + 2) — p(2/%)] dz
B(0,2Jk)

2(j-kK) 2J
S 2997 . ,(9
(1 +|2/x[)t )

1
]( Zj"f (1—5)z(V2p)p(2/x + sz)z'ds dz
B(0,2/-k) 0

where L > n. Hence
jn

. 2
| (e * @21 = 9pm1) ¥ ey » f ()| 5 22070 .[]Rn @t 2yl Vet f =y
< 22079M([p,-5 * £]) (0,

where M denotes the Hardy-Littlewood maximal function. Then, choosing § € (0,2 — a),
by Holder's inequality and « € (0, 2), we see that

q-P/a
J-]Rn Iz 2kaq < |((p2—f — Xk * (pz_j) * 1/)2_]- * f(x)|> \ dx

KEZ j<k

1/p

(T p/a  \MP
) f > 2kea Y @000 M(y,-s + f)O]° | dx
R™ | ez j=k

p/4q 1/p

dx ,

<3| 2etm, s ol
R

jez
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which, together with the Fefferman-Stein vector-valued maximal inequality (see [112]),
further implies that
1/p

f ZZJ“qlwzj*f(x)lq] de s Wflleg,@mn-
]RTL

JEZ
Notice that when j > k, for all x € R", we always have
| * -1 = @p1) * Wymi * FOO| < Xk * @p1 = @i ¥ FOO| + | @i ¥ Wpms * f ()]
< Xic * [M([,-5 * F)] ) + M([,-5 = £]) GO

S Mo M([py- = f|) (%)
where M o M denotes the composition of M and M. Then by a > 0, taking § € (0, ¢ ) and
applying Holder's inequality, we obtain

qqp/a
fRn lz 2kaq (ZK%—J — Xk * <p2_j) *1,-j * f(x)|> ‘ dx

keZ >k

1/p

p 1/p

_ p/q
) f PRI RIS *fl)(x)]q‘ dx
Rn

L | KEZ j>k
1/p

i p/q
< 4 j z 27%4[M o M(|p,-) * f|)(x)]q\ dxp
RTL

| JEZ

which, together with the Fefferman-Stein vector-valued maximal inequality, further
implies that I, < ”f”Fa L(R™): This proves (6).
To prove (7), we con5|der Yj<t<k »e<j<k and Yjsg>, separately. If j < £ < k, from
(9) and Holder's inequality, we deduce that for all y € R",
jn

. 2
|(Xk *Py-i — (Pz—i) *1Y,-j * f(}’)l < 220G-k) J}an |¢z—j * f(y— Z)|dZ

3220—">22i<”—L>]L |y, = @] dz

i=0 B(y,Zl_])
1/q
< 220-k) z oi(n—L) {j |l/)2—] (Z)l dz}
i=0 B(y2"™

S 22079 ) 20D fllyg ) S 2207027 g qam,

i=0
where we used the following trivial estimate that

1/q .
{]L |, —f(Z)|q dZ} S 27 flleg ,mmy-
B(y,2t-J) '

Hence
q 1/q

][ z Zkaq zl(goz—f — Xk * ¢2—f) * lpbz—j * f(y)l dy
B(x27") te2 j<t
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1/q
f Z okaq z 220-K)p=ja | gy £ 1lg  rmy = IfNleg g cmmy-
B(x,27%) | |

k=t jst
If £ <j <k, then, forall y € R",

|(Xk*(p2] 902 J) lpz]*f(y)l
S 22070M (llpz =J *f|XB(x2—f’) (}’) + 2 ][ |l/)2 j*f(Z)|dZ

i>j—¢ ByzlJ

< 220-0) g (|¢2_]. *f|XB(x’2_f)) (y) + 220- k)z—Jazz(J—k)z(j—f)(n—L)”f”Fo%’q(Rn)
and hence, by Holder's inequality,

q
f}g(x,z—e)zzmq Z K%"_X"*g”zf)*%f*f(y)ll dy

k=t ¢<j=k
q 1/q
fos S| 5 st ) o] o
B(x27%) 157 2<j<k
_ q 1/q
)( szaq z 220-K)(=1)G=02=ja | gyt |[f]lsa @
B(x27") 17 ¢<j=k ’
- q
< f ZZR“CI Z 22U pys x FOD|| dy ¢ + If llgg, ey
B(x27%) 157 | <j=k

S F Nl vy
Similarly, if j > k > £, then we have

|(xie * @p- — @p-1) * Ppmi * F()|
sM (xg(x,z—f)M (7=2%; IxB(x,z—e))) ) + 2779207 0CD | f |l s eny,

which further implies that
q 1/q

)( D 25 N V(s = i 03) <y SO | Ay S Wf gy
B(x.27%) 5% >k
This proves (7).
Now we consider the case a € (2N, 2N + 2) with N € N. Since the idea of the proof is
similar to the case a € (0,2), we only sketch the main steps. First we observe that

@ (R™) W2 (R™), which follows from the lifting properties of Triebel-Lizorkin
spaces (see [13]) and the fact that F2*N (R™) < Lj,.(R™) mentioned above. Moreover,
similar to the above, f € Fp‘f‘q(Rn) |mpI|es that the degrees of the polynomials {P;};cz in
(3) do not exceed |a —n/p| < 2N + 1, and also that the polynomial P is unique modulo
a polynomial with degree no more than |a — n/p| < 2N + 1; see [115, pp. 153-155] and
[145]. In what follows, we set f := f + Py and let Ry (y; x,27%) be defined as in (3) with
f replaced by f.
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Notice that for i € N, fp(1)|y|*'dy = —. Then from (4), it follows that for all
x € R",

1
£ RuOn %29y = e F) - Zz kA (o)
B(x,27k) n+ 2i
u 1 n
2 Xic * Py ZZ Z”‘L 7 A y-i | * y-j * f ().
JEZ i=0

We now consider )i, and Y-, separately.

By an argument similar to (8), we see that, for any smooth function  on Rand N € N,
2N+1

)
d(1) = d(0) + Z ¢ (0) (ZN T 1)'f (1- S)2N+1¢(2N+2)(5)d5 (10)
As above, choosing q)(s) = go(ZJx + sz) for s € [0,1] and x, z € R", we have
. . . 1 .
p(2/x+2z) = p(27x) + (Vp)(27x)z" + EZ(V%p)(ZJx)zt + -

1 .
+ (ZN — 1)|j (1 _ S)2N+1ZN+1(V2N+2(p)(2]x + SZ)(Zt)N+1dS.
V0

Notice that in this expansion, except the terms %A"<p(2fx)|2f"‘z|2i for 0 <i < N and

the last term, the other terms are harmonic and then have average 0 on any ball centered at
0. When j < k, applying these facts, we conclude that, for all x € R",
N

YRR
Ko @y () = ) 278K hi g ()
i=0

Lin+?2
= ]( 2Jn
B(0,1)

1
— f Zjn.[ (1 —S)2N+1ZN+1(V2N+ZQD)(2jx+SZ)(Zt)N+1deZ
B(0,2/-k) 0
2/m

1+ [2x]F |
where L € N is larger than n. Here the decay factor 22(V*DU=K) js crucial. Indeed, when
j <k, we see that

Qw%xw ZT” 44N%m@}%ﬁwm

< 20004 1)),
while, when j > k, we also see that

(Xk * Py- ](X) z 2_2”( n+ 2i Al(pz J(x)> * lpz—f * f(X)

< 22G-0p o M(Iwz i+ fl) ).
Since 2N <a <2(N+1), for all p € (1,0) and g € (1,o], by exactly the same
procedure as above, we conclude that

N
. . 1 . . . j
p(2/x +2/7%z) — ZL—Al<p(21x)|21‘kz|m] dz
i

i=0

< 22(N+1)(j—k)
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q\ P/q v
”S""q(f)”Lp(an) < fRn (Z 2kaq Z 22(N+1)(j—k)M(|¢2_j * f|)(x)‘ ) dx
keZ <k
zkaq
ALzl

ke >k

1/p

q\ P/a
22(N+1)(j_k)M(|l/)z-f*f|)(x)]> dx 5 lfllig g

When 2N < a < 2(N + 1), for all p = oo and g € (1, o], from a much more complicated

argument, similar to the case 0 < a < 2,p = o0 and g € (1, ], we also deduce that

[y wny S Ifllizg wn)- We omit the details. This finishes the proof of Theorem
0,q ’

(4.1.8).

Lemma (4.1.9) [177] Let y: = |);E>011))| LeZ,u{-1}and N € N,

(i) There exist ¢,y € S(R™) satisfying that supp ¢ < B(0, 1), fRn d(x)x¥dx = 0 for all

ly| < L and supp ¢ c {¢ € (R™): 1/64 < |&| < 1/16} such that, for all £ € R™ \ {0},
D By i OBy OO = s O] = 1 (1)
JEZ

Moreover, for every f € L},.(R™) n S’(R™). there exist polynomials {Pj}jeZ and Py such

that

f+ P = lim {Z Po-i * Pa-i * (fB(~,2_j) - fB(~,21_j)) + Pi} (12)
j=i

in S'(R™).
(if) There exist ¢,y € S(R™) satisfying the same conditions as in (i) such that, for all
¢ e R"\ {0},

> By (O,- m{

JEZ

21] _ 21
Ao () - Zz e TLl ]
2i(j— 1)_ 200 —
~ 221 - Z S TLd ]} 1 (13)
Moreover, for every f € Wlﬁlc“(]R”) N S’(R™), there exist polynomials {Pj}jeZ and Pr
such that
f + Pf = mlirzloo{z ¢2—j * 1/12—1'
j=m
[(fB( 2—1)—22 ZUL_n+Zl ) <f3( 21—1)—22 210~ 1)L_n+2 lf) } (14)
in S"(R™).
Proof: (i) It suffices to show (11). The proof of (11) follows from (12) and an argument
similar to the arguments in [91, pp. 52-54].
First we show that there exists a positive constant C, such that for all 1/64 < |¢] < 1/16,
| X($) = £2(D] = Co > 0. (15)
By [172, p. 429], we know that ®p(o1)(€) = Jn/2(27E)/|1€|™/2, where ], /, is the Bessel
function of order n/2. Thus,
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1l Jup@r® 1 Jus(dnd)
“BOD ez RO =50 D e

x)

Therefore,

() = 12(8) =

7.L.n/z

|B(0,1)|T(n/2+1/2)'(1/2)

1
% {f [eZTcilfls _ e47‘ti|€|s](1 _ SZ)n/Z—l/Z dS}.
-1

Notice that if 1/64 <|&| <1/16 and s € [-1,1], then 4m|¢|s € [-n/4,m/4] and
hence cos(2m|€é|s) = cos(4m|&|s). Then we conclude that

) A 7.L.n/z
1X($) — 228 = |B(0,1)|T(n/2 + 1/2)T(1/2)

1
X {j [cos(2m|&|s) — cos(4m|&|s)](1 — s2)™/2~1/2 ds}.

-1

By the fact that 1/64 < |&§] < 1/16 and s € [—1,1] again, we see that m?|&|?s? >

107r*|&|*s*. Thus, by the Taylor expansion of the cosine function, we know that
cos(2m|é|s) — cos(4m|é|s) = 5m?|€&|%s?

and hence

2 2.2 1
1205 = 22(O)] = o 11 { [ s2a -y ds}.
-1

|B(0, DII'(n/2+1/2)I'(1/2)
From the properties of Gamma functions (see [172, Appendix A]), it follows that

n.n/Z jl (1 _ SZ)n/Z—l/Z ds
|1B(O,D|I'(n/2+1/2)I(1/2) (J_4

B nl'(n/2) ! )21/ e

= 2N/ + 1/2)T(1/2) {fo (= amiitemi dt}

_ nl'(n/2) F(n/2+1/2)I(1/2) _

- 2l(n/2+1/2)r(1/2) T'(n/2+1) B

Thus,
f_ll 52(1 _ SZ)Tl/Z—l/Z ds fol t1/2(1 _ t)n/2—1/2 dt

f_11(1 - SZ)n/Z—l/z ds fol t_1/2(1 — t)n/2_1/2 dt
r(3/2)r(n/2+1/2)r(n/2+1) _ 5c*[¢|?

— £2|Z|2 —
=S T2+ /T2 42 - ntz
Therefore, forall 1/64 < |&| < 1/16, we have

5
£ = 2] 2 272 2

12() — 22(9)] = 5m?[¢|? = 51§

(16)

2

>0,

namely, (15) holds.

For any fixed L € Z, U {—1}, select a smooth function ¢ on R™ such that supp ¢ c
B(0,1), [pn®(x)x"dx =0 forall |y| <L, and [¢(§)| = C >0 forall 1/64 < [¢{| <1/16,
where C is a positive constant. Then C.°(R™), has vanishing moments till order L and
satisfies that

BORE) — 2] =C>0 (17)
forall 1/64 < || < 1/16.

Let g € S(R™) such that g is nonnegative, supp § € {{ e R™:1/64 < || <1/16} and

g =C>0if 3/128 < |&| < 7/128, where C is a positive constant. Let
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F:= Zg(z—f ).

j EZ.
Then F is a bounded smooth function ;atisfying that F(§) > C >0 for all £+ 0 and
F(277-)=F.
Now define h:= g/F. Then h € S(R"),supph c{€ER™1/64<|é|<1/16},
h(§) = C >0forall 3/128 <|&| <7/128,and ¥z h(27/¢) for all & # 0. By (17), we

define a Schwartz function by setting ¢ : = h{$[£ — )22]}_1. Then
suppy c {E € R™:1/64 < |¢| < 1/16}

and, for all ¢ € R™ \ {0},

> Bors OB O8O = (O] = Y B(2TE) = 1,

Jjez JEL
which completes the proof of (i).
(if) Similar to the argument in (i), it suffices to show that there exists a positive constant C,
such that, forall 1/64 < || < 1/16,

26 - EN LT jepe| - | g0 - EN 22 = g
L Lin + 2 2 L Lin+20
= 1=

From (16), we deduce that, forall 1/64 < || < 1/16,

>(C,>0. (18)

12— 220 = KL
: X&) = X0 =2 m—
while
N - N o
i=1 y =
(22" = Dn 2—4(2i-2)
=l < 4[¢1? 2).

Thus, (18) holds in this case, which completes the proof of (ii) and hence Lemma (4.1.9).
Theorem (4.1.10) [177] Let a € (0,%0) \ 2N and p,q € (0, ]. If f € SE& (R™), then
f € Fpﬁ‘q (R™) and there exists a positive constant C, independent of f, such that
1fllzg ,wmy < Cllfllseg  rmy:
Proof. We first consider the case a € (0,2). Let f € SE, (R™). By Lemma (4.1.9) (i) and
f € Lj,.(R™") n S'(R™), we conclude that
f = Z ¢2—k * lpz—k * (Xz—k - Xz—k"'l) * f = 2 ¢2—k * lpz—k * (fB(.,z—k) - fB(.,Zl—k));

kEeZ keZ
which, modulo polynomials, holds in S'(R™). Here ¢ and i are as in Lemma (4.1.9) (i).

Let ¢ be as in (3). For k € Z, we have
Py-k * f = Z Py-k * (pz—f * lpz—f * (fB(.,Z—J') - fB(.’Zl—J'))-

JEZ
Notice that for all k,j € Z, and x € R",

. Zn(min(j,k))
|(p2‘k * ¢2‘f * l/JZ—j(X)| = |902‘k * (¢ * lp)z—f(x)| < Z_SU_kl

,(19)
(1+ |2n(min(j,k))x|)L
where s, L can be chosen large enough as we need; see, for example, [175, Lemma 2.2].
Thus,
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|(p2‘k * - *P,-j * g| = |(P2—’< * (¢ * ¢)2—f * g| - 2_2|j_k|M(g)-
Therefore, when p € (1,0), from Definition (4.1.6), Holder's inequality and the
Fefferman-Stein vector-valued maximal inequality, we infer that

p g~ 1/a
||f||ng(Rn) < K Z okaq Z 22(k=)) pg (f3(~,2-f) — fB(~,21—f)) }
\KEZ j<k @)
( g~ 1/a
+|11 2,2 | 0, 2970M (Fo o = Foar)
\ KEZ j>k .
. 1/q
, i q
< ([ 2.2 [M (Fagamsy = Fogarn)] }
\JEL L an
[ 1/q
< jaq 1
s |3 2,27 fagas — o
\ JEL PR
[ 1/q
, q
S | z 27% fB(,z—f) - fl } S ”Sa,q(f)”Lp(Rn)-
\JEL Lo an
When p = oo, we need to show that
q 1/q

f o 22 Do b e faan = Fagn | 0)

k>? JEZ

is controlled by ||f||5F°%q(Rn) uniformly in x € R™ and ¢ € Z. The proof of this is quite
similar to that of (7). Indeed, we consider )<k , Xr<j<k and Y-k, Separately. With
the help of (19) and some necessary calculus, we arrive at ”f”po%q(Rn) S ||f||5F°%q(Rn). We

omit the details.
When a € (2N,2(N + 1)), by Lemma (4.1.6) (ii), we see that

1 1
f_zd)z_k*wz_k*[fB(z_k)_z _ZUL_n+ZL S Fo(2r) = ZZ o 1)L n+ 2i A

k€EZ i=1

By (19) with s =2(N + 1) and L > n, repeating the above argument for the case
a € (0,2), we then conclude that ”f”ng(Rn) ”f“Sng(Rn). This finishes the proof of

Theorem (4.1.10).
We first establish a similar characterization for Besov spaces and then make some
remarks for the case a € 2N.

Let N € NU{0},a € (2N,2N + 2) and p, q € (0,]. The space SBZ,(R™) of Besov
type is defined as the collection of functions f € W,2Y"*(R™) n S’ (R™), such that

1/q
I lssgyam: =1 > 25

keZ LP(R™)
Here W0l (R™) = L}, (R™), Ry with N > 1 is as in (2) and, for all x,y € R",

q
< 0o,

[ RGi2ay
B(-,27k)
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| Ro(y; x,27) = f () = f ().
Also the space SBy ,(R™) is similarly defined as above.

Then Theorems (4.1.8) and (4.1.10) admit Besov space versions; indeed, by similar
arguments, Theorems (4.1.8) and (4.1.10) still hold with spaces £, (R™) and SE#, (R™)
replaced by Besov spaces Bgfq (R™) and SB;,’fq (R™) and, moreover, with the indices a,p
and q replaced, respectively, by a € (0,) \ 2N,p € (1,] and g € (0, co]. Namely, we
have the following characterization on Besov spaces.

Theorem (4.1.11) [177] Let « € (0,) \ 2N,p € (1,o] and g € (0, c]. Then Bgfq (R™) =
SB;j‘,q (R™), with equivalent norms, and Bf,(R™) = SBg,(R™), with equivalent norms.

It should be pointed out that B ,(R™) < SBf,(R™) when a € (0,%) and p,q € [1, «]
was obtained by Wheeden [173, Theorem 5] via a totally different approach.

Finally, we make some remarks. The first remark is on the missing indexes a € 2N in

Theorems (4.1.2) and (4.1.5) while the second one is on the higher order Besov and
Triebel-Lizorkin spaces on metric measure spaces.
Remark (4.1.12) [177] We point out that when «a € 2N, it was proved in [170] that a
variant of Theorems (4.1.2) and (4.1.5) when p € (1, ) and q = 2 still holds. However, it
Is not clear that when a € 2N, whether there exists a similar variant of Theorems (4.1.2)
and (4.1.5) when q # 2 and Theorem (4.1.11) for all g € (0, oo]. Indeed, as pointed out in
[170], S, ,-function as in (1) fails to characterize F2,(R™) = W %P (R™). To overcome this
drawback, Alabern, Mateu and Verdera [170] then introduced a variant of (1) to
characterize Fﬁz(Rn). Precisely, for N € Z,,k € Z,and x,y € R", let

EN (y; x,275)

N-1
1 . A | .
= fO)— f(0) - Jz LA FEOly = xl? - E(J( O dz) [y = xI?", (20)

where Ly is as in (2). Let §a,q () be as in (1) with Ry, replaced by Ry and, similarly, the
spaces §Fp‘fq(Rn) for « € (2N,2N + 2) and p,q € (1,0] are similarly defined to the
spaces SE& (R™). Then it was proved in [170] that SE2Y (R™) = %, (R™) = W2NP(R™)
for N e Nand p € (1, ).

When a € (2N, 2N + 2) and p,q € (1, ], by modifying the proofs, we can also show
that SE2Y (R™) = E&,(R™) with equivalent norms. But our above proof can only show
SE2N(R™) c E2N(R™) for N € Z, and p,q € (1,0]. It is still unknown whether the
relation 52N (R™) < SE2N(R™) is still true for N € Z, and p, q € (1,] but g # 2 or not.
Section (4.2) Sobolev Spaces via Averages on Balls

The problem of introducing Sobolev spaces on metric measure spaces where differential
structures are not available is one of the central topics in analysis. A very important
progress on this problem was achieved by Hajtasz [26], who successfully introduced a
concept of gradients (now widely known as the Hajtasz gradients) and used it to introduce
the first order Sobolev spaces on metric measure spaces. The Hajtasz gradients have
become a powerful tool in the study of the first order Sobolev spaces on metric measure
spaces; see [26, 72, 108, 184, 186]. After the pioneering work of Hajtasz [26], several
different approaches were proposed to introduce and study first-order Sobolev spaces on

metric measure spaces (see [72, 108, 118, 183, 184, 185]). Indeed, great success has been
achieved on the theory of the first order Sobolev spaces on metric measure spaces. On the
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other hand, however, the problem of developing a successful theory of higher order
Sobolev spaces on metric measure spaces remains open.

Alabern, Mateu and Verdera [170] obtained an interesting new characterization of
Sobolev spaces on R"™, which relies only on the metric and the Lebesgue measure on R"
and hence provides a possible way to introduce Sobolev spaces of arbitrary order of
smoothness on any metric measure space. To describe this new characterization, we first
recall that the (inhomogeneous) Sobolev spaces W %P (IR™) on R™ consist of all functions
f on R™ such that Il f liyergny =1l f lppgey+ II (—A)2f llpgey< oo. Here, the

2
smoothness index « is any positive real number, p € (1,00),A:= Y1, (%) is the
Laplacian, and (—A)%/2 is the fractional Laplacian defined in terms of the distributional
Fourier transform via ((—A)*2f) A (&) := |E|*f (&) for any tempered distribution f.
Next, we recall a well-known classical characterization of W *P (R™) via square functions
(see [174, 56, 65, 72]), which asserts that, for « € (0,1) and p € (1,), f € W*P(R") if
and only if f € LP(R™) and s, (f) € LP(R"™), where s, (f) is the square function given by

o 2 ar )’
Sa(f)(-):={jo | (.’t)lf(-)—f(y)IdYI t} - 1)

For g € Lj,.(R"),x € R®and t € (0, ),
B(x,t) :={y e R™" |y —x| <t}

1
]i(x,t)g(y) 4y = |B(x,t)] B(x't)g()’) dy =: Byg(x). (22)

Such a characterization, however, fails for « > 1. Indeed, it is known that, if « > 1, then
I f e rey+ I o () lLp gy < o implies f = 0 on R™ (see [95, Section 4]).

In order to have a similar characterization for W*P(R™) with @ > 1, Alabern, Mateu
and Verdera [170] introduced a new square function S,, with a slight modification of the
definition of s, (f) via dropping the absolute value in |f(-) — f(y)]| of (21), given by

°° 2 ar ) )
Sa(f)(-)==U0 [ vo-roia t—} Selhe@®) (@3

It turns out that such a modification is significant enough for [170] to establish a
characterization for all Sobolev spaces of smoothness orders a € (0, 2): for « € (0,2) and
p € (1,0),f € WP(R™) if and only if f € LP(R™) and S, (f) € LP(R™). The key point
here is that, unlike the classical square function s, in (21), this new function S, in (23)
provides smoothness up to order 2, namely, for f € C2(R™) and t € (0, 1),

]‘ @ -folay = 06, xew 24)

This phenomenon, followed directly from the Taylor expansion, was first observed by
Wheeden in [173] (see [174]) and later independently by Alabern, Mateu and Verdera in
[170].

A more complicated characterization of W %P (R™) for higher orders of smoothness (i.e.,
a = 2) was also established in [170, Theorems 2 and 3]. Assume that ¢ € [2N, 2N + 2)
with N € N := {1,2,...}.For f,g4,..., gy € L},.(R™), define
2

1/2
dt
T} ,  x€RY,  (25)

(0]

Sa(fr g1+ gn)(x): = {j
0

f =Ry (y, x)dy
B(x,t)
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where, for all x,y € R",

N-1
Ry, ) = Ry@,2,) = f0) = f() = ) g @)y = xI
j=1

gy (@) |y — x|?V, if a € (2N,2N + 2),
{Btgzv(x)ly—xlz”, if « = 2N.

Here we recall that B, is the average operator given in (22). With the above notation, it is

shown in [170] that f € W*P(R™), with « € [2N,2N + 2),N € Nand p € (1, ), if and

only if f € LP(R™) and

(26)

Sa(f: glf"'JgN) € LP(RTL)
for some functions g4,...,gy € LP(R™). Indeed, according to [170, Theorem 3], the

functions g; can be taken as %Aff almost everywhere with L; := AJ|x|%, where
]

j€e{1,...,N}. Of particular interest is the case when o« =2 and N =1, where the
characterization can be formulated more explicitly as follows (see [170, Theorem 2]).
Theorem (4.2.1) [188] Let p € (1,0). Then f € WP (R") if and only if f € LP(R") and
there exists g € LP(R™) such that

B.f() - f(
Sz(f;g)('):={f f()tz f()_Btg(')
0

where B, is as in (22). Moreover, the function g can be chosen such that |l f ll,»gny+
I S2(f, 9) ey is equivalent to |l f llyzpgny With equivalent positive constants
independent of f.

See [170], and the pointwise characterizations of the first-order Sobolev spaces via the
Hajtasz gradients established in [26] (see also [186, 72]). Recall that a non-negative
measurable function g on R" is called a Hajtasz gradient of a measurable function f on
R™ if the inequality

[00]

2 \1/2
dt
T} € LP(R"), (27)

lf ) —fFWI < Ix —yllg(x) + g()] (28)
holds true for almost every x,y € R™. Hajtasz [26] proved that a function f € LP(R"™)

belongs to the first order Sobolev space WP (R"), with p € (1, ), if and only if it has a
Hajtasz gradient in LP(R™). Also recall that W2?(R™) (or even higher order Sobolev
spaces) can also be characterized via the second order difference (or higher order
differences) (see Haroske and Triebel [74, Proposition 4.1] and also [30, 63, 69]); but it is
still unclear how to introduce higher order differences on spaces of homogeneous type in
the sense of Coifman and Weiss [179, 180].

The aim is to use the average operator B; in (22) to establish pointwise characterizations
of the higher-order Sobolev spaces W %P (IR™) that are analogous to (28). A novel aspect of
our characterizations of WP (R™) for @ > 2 lies in that they look much simpler than those
in [170]. We will state the main result for the second order Sobolev spaces WP (R™) only.
Pointwise characterizations of the higher-order Sobolev spaces will be given. The main
result for the second order Sobolev spaces can be stated as follows.

Lemma (4.2.2) [188] Let ¢ € S(R™) and C be a given positive constant. Then

im 25 ___ 1 ., o S(R™) (29)
t-0t t2 B 2(n+2) ¢
and
. ®(y) — Bero(y) Cc? .
1 dy = ————A S(R™ 30
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where the convergences are with respect to the topology of S(R™).
Proof. By the Taylor expansion of ¢ € S(R™), for any given x,y € R", there exists a
point &, ,, on the line segment connecting x and y such that

1 1
PO =P+ ) 0% -0+ ) —0%p(E,) - 0%,

o<|a|s2 la|=3
here and hereafter, for any «a := (aq,...,a,) € (Z,)" |a| :==|a | +: - + |ay|, a! :=
a,! -+ a,! and 0%: = (%)“1 e (%)“n. Fixing x € R™ and t € (0,0), and taking
1 n
average over y € B(x, t) on both sides of the last equation, we see that
1 1
P = Bep() = ————Bp(@t* = Y = | 3%(£,)y - )%y, (31)
2(n+2) &=, Vst

Hence, forany g € (Z,)",m € Z,,and all x € R" and t € (0, «), we have
07 (230 — [~ 5z 0] ) @] 1+ 1™
2(n+2)

t2
0% 9 — B, (0% ¢)

1
- 7 e 0fe) || a + D"

—xI2 @+ |xP™
S llzyipm ]( by | m( |2 D dy S tll @ llzypm (1 +)™,
B(x,t) (1 + |§xy|) t
which converges to 0 as t — 0. This proves (29).
The proof of (30) is similar to that of (29), the details being omitted. This finishes the
proof of Lemma (4.2.2).
Recall that, for any f € Lj,.(R™) and x € R", the Hardy-Littlewood maximal function

Mf is defined by

B3x
where the supremum is taken over all balls B containing x.

Theorem (4.2.3) [188] Let p € (1, «). The following statements are equivalent:
(i) f € W2P(R™);
(if) f € LP(R™) and there exists a function g, € (R™) such that
B
T S g, in @, (32)
(iii) f € LP(R™) and there exists a non-negative g, € (R™) such that, for all t € (0, )
and almost every x € R",

MF@) =su | IF0)l d,

|f (%) — Bef (x)] < t2ga(x). (33)
(iv) f € LP(R™) and there exist a non-negative g; € LP(R™) and positive constants C; and
C, (depending only on n) such that, for all t € (0, c0) and almost every x € R",

f IO = Be SOl dy < ¢ f 9y ; (34)

B(X,CZt)
(v) f € LP(R™) and there exist a non-negative g, € LP(R™) and a positive constant C
(depending only on n) such that, for all t € (0, ) and almost every x € R",

fB o= Begoay | < .00 35)
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Furthermore, if f € W#P(R"™), then the functions g;,i € {1,2,3,4} in the above
statements, can be chosen so that Il g; ll,»rny are equivalent to I Af llpgny With the

implicit equivalent positive constants depending only on n and p.

Clearly, the pointwise inequality (33) can be considered as a second-order analogue of
the pointwise characterization (28).
Proof. “(i) = (ii)” This implication is a direct consequence of (29) and the facts that the

operators —— f L and A are both self- -adjoint with respect to the inner product of L?(R™).
Indeed, |ff € WZ'T’(]R”), we choose the function g, as g; := — 2(n1+2) Af.

“ (i) == (iii) ”: We first observe that, if f € C%(R™) n WP (R™), then

If () = B.f ()| s t2M ( z Ia"‘fl) (x),  x€R",  t€(0,). (36)

|la|=2
Indeed, by the Taylor expansion of f, we see that

|f () = B f ()| = [f(x) = f()] dY‘
B(x,t)

ZL

|04| 2 (x,t)

tzj f |0%f (x + 2)| dz ds,
(0,st)

] (1 = $)a*f(x+s(y — x))ds||y —x|*dy

|la|=2
from which (36) follows.
Now assume that (ii) is satisfied. Then Lemma (4.2.2) implies that, for all ¢ € S(R"),

(f,A¢) = lim (f, - ¢ — Bip 1 f—Bf )

2t O Al e R L A Yo LR )
This means that Af = ~ 0 +2) g1 € LP(R™) in S'(R™). Since f € LP(R™), this further
implies that f € W2P(R"™).

Now (iii) follows from (36) and a standard limiting argument. To see this, let ¢ €
Ce°(R™) be such that [, (x)dx = 1. Let fi = f * ¢, for all k € N. Since {¢,-k}xen is
an approximation to the identity, it follows from (36) that, for almost every x € R",

fx) = Btf (x)| byk * f(x) = Be(pyr * f) (x)
tZ

k—>oo

<M Z sup|e,-« * 0%f| | () s M Z M@%f) | (x),
aj=2 FEN |a]=2
where M denotes the Hardy—L.ittlewood maximal operator. Now letting

CM Z M(@0%f) |,

|a|=2
where C is the implicit positive constant in the above inequality, we deduce from the
boundedness of M on LP (R"), with p € (1, o), that

.92 lpnys ) 10%F lupgamy 1 f 2o (37)
|a|=2

92!

This shows (iii).
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“(ii1) = (iv)”: The implication (iii) = (iv) is straightforward. Indeed, letting C; = C, =1
and g; := g,, we obtain by (33) that

LHS of (34) < tzf 9:(y)dy = tzf g3 (y) dy.

B(x,t) B(x,t)

“(iv) = (v): (v) follows directly from (iv) with C; = C; and g, := Mgs.

“(v) = (i)”: Notice that LHS of (35) can be written as |B:(f — B¢,:f)(x)|. Thus, (V)
implies that

| Be(f — Be.ef) llpp(rn
sup —- U7 ED <)l gy ppny< oo.
t>0 t

By the Banach-Alaoglu theorem (see [187, p. 70, Theorem 3.17]), there exist a
subsequence {k;};> =1 of positive integers and a function h € LP(R™) such that ||

hllpprry S Nl ga llpprny and, for all ¢ € S(R"),
lim (2258, -, (f — B, £).0) = (h o).

]—)OO

Since the operators {B;}:¢(0,«) are self-adjoint with respect to the inner product of L*(RM),
it follows that, for all @ € S(R™),

22kj <B2_kj (f - BC32_kjf); QD) = 22kj <BZ_kj (f;(P - BC32_kj(p)> .
However, by (30), we find that

2

]11_)1210 22kiB ok (go BC N k]go) mAq) in S(R™).
Thus, for all ¢ € S(R™), we have
2(n + 2)
(f,Ap) = —————(h, 9).

C3
This implies that Af = —Z(nc—;rz)h € LP(R™) and hence f € W2P(R").
3

Finally, it is easily seen from the above proof that all the functions g;,i € {1, 2, 3, 4}, can
be chosen so that each norm |l g; ll»gn) is equivalent to || Af llpgn). This finishes the
proof of Theorem (4.2.3).

From the above proof of Theorem (4.2.3), we further deduce the following equivalent
descriptions of W 2P (R™).

Corollary (4.2.4) [188] Let p € (1, ). The following statements are equivalent:
(i) f € W2P(R™);
(if) f € LP(R™) and there exists g € LP(R™) such that

liminf

f=Bf o
m in %) =g in S(R");

(iii) £ € LP(R™) and there exist g € LP(R™) and a sequence {t; };en OF positive numbers
such that I}im t, = 0 and

—B
lim f—z tef =g in S'(R");
k—oo tk

(iv) f € LP(R™) and
”f - Btkf”Lp(Rn)

sup 5 =: (, < 0.
t€(0,00) ti

In (ii) and (iii), the function g can be chosen such that Il g ll,»gn) is equivalent to
Il Af ll»gny With the equivalent positive constants independent of f, which also holds true
for C, in (iv).
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Corollary (4.2.5) [188] Let p € (1,2),q € [1,p),c € (0,0) and K € (0,00]. Then
f € W2P(R™), if and only if f € LP(R™) and £/ € LP(R™). Moreover, Il Af Il pgny ~
Il fC‘?g,K l.»wny With the implicit equivalent positive constants depending only on ¢,p, q, K
and n.

@—Btp

One novel idea used in these proofs is the convergence of lim,_,,+ — 10— 2D A

in S(R™) (see Lemma (4.2.2)). After that, we show how to establish similar
characterizations for the higher order Sobolev spaces W*P(R™). In our discussion the
concept of higher-order average operators B,.. Ideas behind the introduction of the
operators B, . are also explained in detail. Finally, several remarks on how to introduce
higher order Sobolev spaces on spaces of homogeneous type are given and an advantage
of these definitions is that they are simper than those of [170] and, in the case of Euclidean
spaces, all these definitions are equivalent. Also, several related open problems in this
direction are raised.

Let S(R™) denote the collection of all Schwartz functions on R", endowed with the
usual topology, and S’'(R™) its topological dual, namely, the collection of all bounded
linear functionals on S(R™) endowed with the weak *-topology. For allm € Z, := N U
{0},a € Z% and ¢ € S(R™"), let

lpllgm:=sup (1+|xP™0Fp(x)].

|Bl<|ar], xeR™
Forany ¢ € S(R") and t € (0,00), we let @,(:): =t "@(:/t).

The symbol C denotes a positive constant which depends only on the fixed parameters
n,¥,p and probably on auxiliary functions, unless otherwise stated; its value may vary
from line to line. We use the symbol f < g to denote that there exists a positive constant C
such that f < Cg. The symbol f ~ g is used as an abbreviationof f S g < f.

The following simple lemma plays a key role in our proofs. In what follows, t —» 0*
meanst > 0andt — 0.

Now we are ready to prove Corollary (4.2.5).

Proof. If f € W2P(R™), then, by Theorem (4.2.3) (ii), we know that, for all x € R",
1

te(0,0)
where M denotes the Hardy-Littlewood maximal operator. Since q <p, by the
boundedness of M on LP/9(R™) with g € [1,p), it follows that
172N o gy S NMAGUDTY |y = MM UGN DN ony S Ngallipuny < A llogn,
which is the desired estimate.
Conversely, assume that fc‘?f € LP(R™). By the definition of fc(,SéK and the Holder
inequality, we see that, for all t € (0,K) and x € R",

f( 1) = Baf Ol dy 5 )

From the proof of the implication “(v) = (i)” in the proof of Theorem (4.2.3), it follows
that this implies that £ € W2P(R™) and [|Af|lp@ny S || fci',’(||Lp ey < - This finishes
the proof of Corollary (4.2.5).

We discuss how to establish similar characterizations of the higher order Sobolev spaces
w?2tP (R™) with £ € N and p € (1, ). The crucial idea is to replace the average operator
B, with its higher order invariant B, . defined via higher order symmetric differences.
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To illustrate the idea behind the definition of B,,, we first recall that the r-th order
directional symmetric difference A} f of a function f : R™ — R along a vector h € R" is
defined by

ALf(x):=f(x+h/2)— f(x —h/2), = A AT, r€{2,3,...}.
Letting T,f () := f(- +h) forall h € ]R" we can wrlte Ay f more explicitly as

BLfG) = Tona (T = 1) f () = ;<—1>k ()f(x+G-k)n), xer, @38
where I denotes the identity operator.
Next, we observe that, for all t € (0, ) and x € R",

1
FOO =B = f@ =53] [fGctt)+fGx- o)) d

B(0,1)

2

This means that f(x) — B.f(x) can be considered as a constant multiple of the integral
average of the second order symmetric difference AZ vf (x) of f at x with respect to y over
the unit ball B(0,1)! In view of the characterizations of Sobolev spaces via differences
(see [74, 69, 63, 30]), this, in some sense, explains the reason why f — B, f can be used to
characterize the second order Sobolev spaces on R™.

Given ¢ € N, according to (39), it is very natural to introduce a higher order average
operator B, , via the identity

FO-Buf=pf My, xewr (40)
CeJpo,1)

Where C, is a normalization constant to be specified later. To obtain an explicit

formulation of B, ,, we deduce from (38) that

1 1
= ——f [f(x +ty) + fx — ty) = 2f (x)] dy = —53[ Aty f)dy.  (39)
B(0,1) B(0,1)

1
C_{’ B(0, 1)A2{}f(x) dy = Cp z( D* ( ) fx+ (- k)ty)dy

B(O 1)

_1\e(2f 2(— P
=(Z—(f)f( ( )Z< /() B 0. (41)

£

Comparing (40) with (41), we Iet Cp:= ( 1)”1(2;) and then obtain

Byof (x) 1= (M)Z( (2 B, te@@),  xeR. @)

Notice that (42) relies only on the metric and the Lebesgue measure of R™. We point out
that the higher order average operator B,, was previously used and studied in
approximation theory (see [178, 181]).

Another way to look at (42) is to consider B, .f as a 2£-th order symmetric difference of
B.f with respect to t. To be precise, for any fixed f € Lj,.(R") and x € R", let

B.f(x), t € (0,00),

Gry ()i =1 f(x), t=0, (43)
B_.f(x), t € (—o0,0).

Then a straightforward calculation shows that, forall £ € N and t € (0,0),

(_ ){) — 24 n
Z( /(%) gerCe=i0) = (2{) Mg, )R (44)

)
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The results of Theorem (4.2.3) can be easily extended to the case of higher order

Sobolev spaces, with ! _tftf replaced by ! _:Z;tf . We have the following conclusion.
Theorem (4.2.6) [188] Let £ € N and p € (1, ). Then the conclusion of Theorem (4.2.3)
remains valid when W2P(R™), B, f and t? therein are replaced by W2“?(R"),B,.f and
t2¢, respectively.

The proof of Theorem (4.2.6) is very close to that of Theorem (4.2.3) given. The crucial
step is to show the following analogue of Lemma (4.2.2): for each £ € N, t € (0, ),

C € (0,0) and ¢ € S(R™),

. @ — By
Jim 7= = a (-0
and
. @) — Bocro(y)
tlirgk)( 28 t dy = be(=A)'e
B(.t)

with convergences in S(R™), where
1 1X3%X---X2¢—-3)x(2¢—-1)

T A+ DA (n+ 28— +20)’

with (%) being the binomial coefficient, and b, := C**a,.

Remark (4.2.7) [188] Recall that, for @ € (0,2) and p € (1, ), the Sobolev spaces
W*P(RR™) can be characterized via the square function S, f given in (23) (see [170]).
Motivated by this characterization, very naturally, one can introduce a higher-order
analogue of the square function S, f, using f — B, f to replace f — B.f. More precisely,
given £ € Nand a € (0, 2¢), we define, forall f € L] .(R™) and x € R",

o) d 1/2
SeeD@i= [ 1760 = Bref O | (45)
0

It turns out that such a square function can be used to characterize higher-order Sobolev
spaces. It is possible to show that, for all £ € N,a € (0,2¢) and p € (1,2),f €
W*P(R")if and only if f € LP(R") and S, ,f € LP(R"™). Indeed, a discrete version of
this assertion was proved (see [196]).

Is devoted to some related questions on spaces of homogeneous type in the sense of
Coifman and Weiss [179, 180]. Recall that a triple (X,d,u) is called a space of
homogeneous type in the sense of Coifman and Weiss [179, 180] if d is a quasi-metric on
X, namely, d satisfies
(i) d(x,y) =0 ifand only if x = y;

(i) d(x,y) =d(y,x) forall x,y € X;
(iii) there exists a constant A € [1, o) such that, forall x,y,z € X,

d(x,y) < Ald(x,z) + d(z,v)], (46)
and p is a non-trivial regular Borel measure on X satisfying the following doubling
condition: there exists a constant C, € [1, o) such that, for all x € X and r € (0, =),

u(B(x,2r)) < Cou(B(x,7)) (doubling property). (47)
Every quasi-metric d on X determines a topology on X, for which the class of all balls,
B(x,r):={y e X:d(x,y) <r}, (xeX,r>0),
forms a basis on X. A space (X,d, ) of homogeneous type is called a metric measure
space of homogeneous type if A = 1 in (46); namely, if (X, d) is a metric space.
As in the Euclidean case, the average operator is defined by

ap
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Bef (x) = B(x’t)f ) du(y) = (B D) B(x’t)f () du(y),

where f € L],.(X),x € R" and t € (0, ). Similarly, given £ € N, we define the 2¢-th
order average operator as in (42).

In what follows, (X,d, 1) always denotes a space of homogeneous type. We have the
following analogue of Theorem (4.2.6).
Theorem (4.2.8) [188] Let £ € N and p € (1, ). Then the following two statements are
equivalent:
(i) f € LP(X) and there exist a non-negative g, € LP(X') and a positive constant C; such
that, for all t € (0, o) and almost every x € X,

f( 1700 = Buee )] du) < 244, 2 (48)
B(x,t

(if) f € LP(X) and there exist a non-negative g, € LP(X') and positive constants C,, Cs
such that, for all t € (0, o0) and almost every x € X,

{ o) -Buearolaum = g.0)duw. (49)
B(x,t)

B(x,C3t)
Proof. The implication (ii) = (i) is obvious as we may choose g,:= Mg, and C; =
C,, where M denotes the Hardy—L.ittlewood maximal operator on X.
To show the inverse implication (i) = (ii), we first notice that, for any y € B(x, t),
B(x,t) c B(y,(1 + A)t) € B(x, (1 + 24)t).
Thus, by the doubling condition of the measure g, it follows that, for all y € B(x, t),

f o) =B o) duy < ¢ f (@) = Buc,of ()] du(@),
B(x,t) B(y,(1+A)t)
which, by (i), is controlled by t2 g, (y) modulus a positive constant C. Thus,

f o) = Bef D due) < ¢ _inf g0 < g, duy).
B(x,0) YEB(.0) B(x,t)
This yields (ii) with g,: = Cg4,C3 = 1 and C, = C;. Thus, the proof of Theorem (4.2.8) is
complete.

According to Theorem (4.2.8) and the characterizations in [170], it is very natural to
introduce the following notion of Sobolev spaces on (X, d, ).
Definition (4.2.9) [188] Let £ € N and p € (1, ).
(i) The Sobolev space W24P(X) is defined to be the set of all functions f € LP(X) for
which either of the condition (i) or (ii) in Theorem (4.2.8) is satisfied. For any f €
W2t (X)), write

I lwacoey: = If e + inf{llglleeo},

where g in the infimum is taken over either all functions g, satisfying (48) or functions g,
satisfying (49).
(ii) For a € (0, 2¢), the Sobolev space W*P(X) is defined to be the set of all functions
f € LP(X) for which

*® 2 dt 1/2
Sa,e(f):= {f |f = Becf| M} € LP(X0).
0
For any f € W*P(X), define

||f||w“1’(x) = ||f||LP(x) + ||S(Z,£7(f)||Lp(x)'
Several remarks are in order.
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Lemma (4.2.10) [188] For ¢ € S(R™), it holds true that
. @ —Bixo
e PO
and

lim )( @) — Bexo(y) p

3 y=P0)y

t—07t

in the sense of S(R™), where

n n
0° )
P(a):: jK(u . V)Z du = Zzai’jm,ai'j = ][Kxixjdx,L,] € {1,...,71}.

i=1 j=1

Since P(x) := XL, Xj-1a;;x;x; is an elliptical homogeneous polynomial, it follows
that

IPOfllerwny ~ WAfllir@wny, P € (1, 00).

Similar to the proof of Theorem (4.2.3), we can show the following conclusion.
Theorem (4.2.11) [188] The conclusions of Theorem (4.2.3) remain true with B, f in
place of B,f.

Next, forany £ € N, f € L},.(R™) and x € R", we define

£
-2 .
Brawf @) = g 0 1 () B @
=

As the higher order variant of Theorem (4.2.11), we have the following result.

Theorem (4.2.12) [188] The conclusion of Theorem (4.2.6) remains valid with B, , therein
replaced by B, .

Section (4.3) Triebel-Lizorkin Spaces via Averages on Balls

The theory of function spaces with smoothness is a central topic of the analysis on
spaces of homogeneous type in the sense of Coifman and Weiss [179, 180]. The first order
Sobolev space on spaces of homogeneous type was originally introduced by Hajtasz in
[85] and later Shanmugalingam [118] introduced another kind of a first order Sobolev
space which has strong locality and hence is more suitable for problems related to partial
differential equations on spaces of homogeneous type. Alabern et al. [170] gave a way to
introduce Sobolev spaces of any order bigger than 1on spaces of homogeneous type in
spirit closer to the square function and Dai et al. [190] gave several other ways, different
from [170], to introduce Sobolev spaces of order 2on spaces of homogeneous type in spirit
closer to the pointwise characterization as in [85], where £ € N :={1,2,...}. Later,
motivated by [170], Yang et al. [178] gave a way to introduce Besov and Triebel-Lizorkin
spaces with smoothness order in (0, 2) on spaces of homogeneous type. It is still an open
question how to introduce Besov and Triebel—Lizorkin spaces with smoothness order not
less than 2 on spaces of homogeneous type.

We establish a characterization of Besov and Triebel—-Lizorkin spaces which can have
any positive smoothness order on R" via the difference between functions themselves and
their ball averages. Since the average operator used is also well defined on spaces of
homogeneous type, this characterization can be used to introduce Besov and Triebel—
Lizorkin spaces with any positive smoothness order on any space of homogeneous type
and hence our results give an answer to the above open question.

It is well known that a locally integrable function f belongs to the Sobolev space
WP (R™), with ¢ € (0,1) and p € (1, ), ifand only if f € LP(R™) and
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) 1/2

r d
saPi=1 | [ fro-ronw| st cram

B(-t)

(see, for example, [174, 56, 65, 72]). Here, B(x,t) denotes an open ball with center at
x € R™ and radius t € (0, ), and fB(x nf (y) dy denotes the integral average of f €
L}, .(R™) on the ball B(x,t) c R™, namely,

frorari=gg ol
B(x,t)
However, when a € [1, ), s, (f) is not able to characterize W %P (IR™), since, in this case,
f € Lise(R™) and |Isy (f)llpmy < oo imply that f must be a constant function (see [95,
Section 4]).

Alabern et al. [170] established a remarkable characterization of Sobolev spaces of
smooth order bigger than 1 and they proved that a function W*? (R"), with « € (0, 2) and
p € (1,00), if and only if f € LP(R™) and the square function S, f € LP (R™) where
1/2

f F) dy =: Bof (). (50)

2

oo

dt
e NO={ [ | {IFO-FrOay| ozl f € Lhoe(RY
0 |BGD

(see [170, Theorem 1 and p. 591]). Comparing S, and s,, we see that the only difference
exists in that the absolute value [f(-) — f(y)| in s, (f) is replaced by f(:) — f(y) in
S« (f). However, this slight change induces a quite different behaviour between s, (f) and
S, When characterizing Sobolev spaces. The former characterizes Sobolev spaces only
with smoothness order less than 1, while the later characterizes Sobolev spaces with
smoothness order less than 2. Such a difference follows from the following observation:
forall f € C2(R™) and t € (0,1),

f PO - fOdy = 0@, xeR", (51)
B(x,t)
which follows from the Taylor expansion of f up to order 2:
fON=f)+Vfx)-(y—x)+0(y—xI?), xy€RY
in other words, the S, -function provides smoothness up to order 2. We point out that this
phenomenon was first observed by Wheeden in [173] (see also [174]), and later
independently by Alabern, Mateu and Verdera [170].

By means of the fact (51), Alabern et al. [170, Theorems 2 and 3] also characterized
Sobolev spaces of higher smoothness order and showed that f € W*P(R"), with a €
[2N,2N + 2),N € N and p € (1,), if and only if f € LP(R™) and there exist functions
J1,---» gy € LP(R™) such that S, (f, g1,---,gn) € LP(R™), where

5 1/2
d
Selfugn o aOi=1 [ | eeruar| T
0 |B(.t)
with
Ry )i=FO) = O = ) g;Oly =+ (52)
j=1
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when a € (2N, 2N + 2), and

Ry(y; ):=f) = f() = z giOly = 1% = Begn Oy — 12" (53)

when a = 2N. Indeed, the function g] was proved in [170, Theorems 2 and 3] to equal to
—Aff almost everywhere, where L; := = AJ|x|% forj € {1,...,N}. As the corresponding

results for Triebel-Lizorkin spaces, Yang et al. [170, Theorems 1.1, 1.3 and 4. 1] further
proved that, for all « € (2N,2N +2),N € N and p € (1, o], the Besov space By ,(R™)

with g € (0,0] and the Triebel-Lizorkin space Fpﬁ‘q(Rn) with g € (1,] can be
characterized via the function

g~ 1/a
SeaP@ =Y | Rvmiod| . xerr (54)
k€L | p(x;2-k)
where, for all x,y € R™ and k € Z,
R )= F) = () - Z NGl =¥l (55)

It is an open question, posed in [178, Remark 4 1] whether there exists a corresponding
characterization for B;,{q(IRi") and F, M(IR{") when a = 2N with N € N. Moreover, only
when a € (0,2), [178, Theorems 1.1 and 4.1] provide a way to introduce Besov and
Triebel-Lizorkin spaces with smoothness order a on spaces of homogeneous type.

Via higher order differences, Triebel [69, 63] and Haroske and Triebel [30, 74] obtained
another characterization of Sobolev spaces with order bigger than 1 on R™ without
involving derivatives. Recall that, for £ € N, the #-th order (forward) difference operator
Af with h € R™ is defined by setting, for all functions f and x € R",

ALf(x):=f(x+h)—f(x), A :=ALALY,  £2>2.

By means of A¢f, Triebel [69, 63] and Haroske and Triebel [30, 74] proved that the
Sobolev space W*P(R™) with £ € N and p € (1, ) can be characterized by a pointwise
inequality in the spirit of Hajtasz [26] (see also Hu [85] and Yang [72]). Recall that the
difference A% f can also be used to characterize Besov spaces and Triebel—-Lizorkin spaces
with smoothness order no more than . See Triebel’s monograph [66, Section 3.4] for
these difference characterizations of Besov and Triebel-Lizorkin spaces; see also [193,
Section 3.1]. However, it is still unclear how to define higher than 1 order differences on
spaces of homogeneous type.

On the other hand, recall that the averages of a function f can be used to approximate f
itself in some function spaces; see [178, 182]. Motivated by (51) and the pointwise
characterization of Sobolev spaces with smoothness order no more than 1 (see Hajlasz
[26], Hu [85] and Yang [72]), it established in [190] some pointwise characterizations of
Sobolev spaces with smoothness order 2¢ on R" via ball averages of f, where £ € N. To
be precise, as the higher order variants of B, in (50), for all 2€N, t € (0,0) and
x € R", we define the 2¢-th order average operator B,, by setting, for all f € Lj,.(R™)
and x € R",
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Buuf (x): = (2€)2< () Ber o, (56)

here and hereafter, (f_"j) denotes the binomial coefficients. Obviously, B,.f = B.f.

Moreover, it was observed in [190] that f — B, . f is a 2£-th order central difference of the
function t — B,f(x) with step t at the origin, namely, for all £ € N,t € (0,0),f €
L} (R™) and x € R",

(-1)° 20
f) = Byef(x) = @ A7 g(0) (57)
with ‘
Btf(X), t € (01 OO)’
g@):=4 f(x), t =0, : (58)
B_.f(x), t € (—,0).

Here and hereafter, for all functions h on R and 6,t € R, let Tyh(t) := h(t + 8), and the
central difference operators A} are defined by setting

Ah(t): = Agh(t): = h<tr+ g) h(t — 9) (To/2 — T-g/2)h(D),

- o1 T . réd
Aph(t):= Mg (MG~ R)(E) = Z (]) (-1)/ (t +— —19), ref{23,...}
=0

It is proved in [190] that f € W?%P(R™), with £ € N and p € (1,00), if and only if
f € LP(R™) and there exist a non-negative g € LP(R™) and a positive constant C such that
|f(x) — B“f(x)| < Ct*g(x) for all t € (0,0) and almost every x € R". Various
variants of this pointwise characterization were also presented in [190]. Recall that
centered averages or their combinations were used to measure the smoothness and to
characterize the K-functionals in [189, 191, 192].

Comparing the difference f — B,.f with the usual difference A2¢f, we find that the
former has an advantage that it involves only averages of f over balls, and hence can be
easily generalized to any space of homogeneous type, whereas the difference operator
A2¢ £ cannot. We can also see their difference via (57). Indeed, it follows from (57) that
f — By.f is a 2¢-th order central difference of a function g and the parameter related to
such a difference is the radius t € (0,00) of the ball B(x,t) with x € R", while the
parameter related to AZ¢f is h € R™, which also curbs the extension of A% f to spaces of
homogeneous type.

Although there exist differences between f — B,.f and the usual difference A2 f the
characterizations of W2%P(R™) via f — B, f obtained in [190] imply that, in some sense,
f — By f also plays the role of 2£-order derivatives. Therefore, it is natural to ask whether
we can use f — B, .f to characterize Besov and Triebel-Lizorkin spaces with smoothness
order less than 2¢ or not.

Let Z, := N U {0} and S(R™) denote the collection of all Schwartz functions on R",
endowed with the usual topology, and S’ (IR™) its topological dual, namely, the collection
of all bounded linear functionals on S(R™) endowed with the weak =*-topology. Let
S« (R™) be the set of all Schwartz functions ¢ such that fRn xYo(x)dx = 0 forall y € Z%,

and Si, (R™) its topological dual. For all « € Z%, m € Z, and ¢ € S(R"), let
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l@llgm :==sup (1 +[|xN™[0Pp(x)].

x€R™|B |||

For all ¢ € S,,(R™), we use @ to denote its Fourier transform. For any ¢ € S(R") and
t € (0,00), we let @,(+) :=t"@(-/t).

For all a € R, |a] denotes the maximal integer no more than a. For any E c R", let yg
be its characteristic function.

We now recall the notions of Besov and Triebel—Lizorkin spaces; see [65, 66, 115, 195].
Definition (4.3.1) [196] Let a € (0,),p,q € (0,0] and ¢ € S(R™) satisfy that

suppp c{ e R™1/2 < |&| < 2}and |p(¢)| = constant > 0if 3/5 < |&| <5/3. (59)
(i) The homogeneous Besov space B;;fq (R™) is defined as the collection of all f € S, (R™)
such that ||f||ng(Rn) < oo, where

1/q
£ 1l g ooy = [2 2|9 fIIZp(Rn)]

keZ
with the usual modifications made when p = o or g = co.

(if) The homogeneous Triebel-Lizorkin space Fp?‘q (R™) is defined as the collection of all
f € S&(R™) such that ||f||ng(Rn) < oo, where, when p € (0, ),
1/q

q
I llgyam = ||| 25 opmi + F )
KELZ LP(R™)
with the usual modification made when g = oo, and
- 1/q
q
1fllzg ,rmy: = sup sup )( z 2k |, i+ f ()| dy
’ XER™ meZ

B(x,2=™) k=m

with the usual modification made when q = co.

It is well known that the spaces B;,’fq (R™) and Fp‘fq (R™) are independent of the choice of
functions ¢ satisfying (59); see [171].

We also recall the corresponding inhomogeneous spaces.
Definition (4.3.2) [196] Let a € (0,),p,q € (0,0],p € S(R™) satisfy (59) and
¢ € S(R™) satisfy that

supp ¢ € {¢ € R™ || < 2} and |¢(&)| = constant > 0 if |¢] < 5/3. (60)

(i) The inhomogeneous Besov space By, (R™) is defined as the collection of all f €

S’ (IR™) such that ||f||Bg_q(Rn) < oo, Where
1/q

oy = | D 2% |0y = £l g
k€EZ,
with the usual modifications made when p = o or g = o, where, when k = 0, ¢,-« is
replaced by ¢.
(ii) The inhomogeneous Triebel-Lizorkin space F;*, (R") is defined as the collection of
all f € S"(R™) such that || f ||z, rn) < o0, where, when p € (0, ),
1/q

q
I legyam = (|| D 2“0pmx f) ‘

KEZ,
LP(R™)

125



with the usual modification made when g = oo, and
1/q

Fllg = sup sup & > 2%e|g,men £ dy
xER®" MeZ,
B(x,2~™) k=m
with the usual modification made when g = oo, where, when k = 0, ¢,-« is replaced by ¢.
It is also well known that the spaces By, (R™)and E;%,(R™) are independent of the
choice of functions ¢ and ¢ satisfying (59) and (60), respectlvely, see, for example, [65].
We prove that the difference f — B,,-xf with k € Z plays the same role of the
approximation to the identity ¢,-« * f in the definitions of Besov and Triebel-Lizorkin
spaces in the following sense.
We need some technical lemmas. Let, for all t € (0,00) and x € R", I(x) :=

|B(0, 1)|XB(0 1)(X) and It(x) — t—nl(x/t) Then

(Beaf) @) = (2{,)2@ (2 )@, xer, e @)

and hence

(Boef)" (&) = mp(t©)f (), € €RM, (61)

where

me(x): = (2{))2@ (" DD, xemn (62)

A straightforward calculation shows that
1

N n-—1
I(x) =y, j cos(u|x]) (1 —u?)"2 du, x € R", (63)
0
n-—1
with y,, := [fol(l —u?)z du]™?! (see also Stein’s book [194, p. 430, Section 6.19]).
Lemma (4.3.3) [196] For all # € N and x € R",

me(x) =1 —A,(|x]), (64)
where

4¢ Lol usy2t
Ag(s) ’:Vnﬁj(l—u )z (sm7) du, seR (65)
70

Furthermore, s=%¢4,(s) is a smooth function on R satisfying that there exist positive
constants ¢; and c, such that

Ay(s)
0<c < 27 < cy, s € (0,4] (66)
and _
Ay(s)
< 00, | € N.
sup(5) (52)[ <=

Proof. Combining (62) with (63), we obtain
1
-2y, : r 2f _ n-1
mp(x) = T_f Z(—l)f <£ ~ ) cos(ulx)| (1 —u?)2 du, x €ER™ (67)
(f) o |j=1 J
However, a straightforward calculation shows that, for all s € R,
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¢
S\2¢ 27 (28
t(cin2) = —1)J '
4 (st) (£)+Z( 1) <£_j>cos(13).
]:
This, together with (67), implies (64).

Next we show (66). By the mean value theorem, we know that, for all u € (0,1) and
s € R, there exists 8 € (0, 1) such that

Cusy2t 1\ uso\**
(n) =(zw) (eos)
From this and (65), we deduce that, for aII s € (0,4],

Ay(s)
;y SV n2(2€)

f(l—uz) zZ u¥du =:c, <

and
. 2T
P rIHn{l’3s} )
A,(s) 4 At usé
27 Zynm j 1—-u®)zu (COST> du
mm{ ¥ s
£ 2 24
= Vo~ f (1- uZ)Zu2 du = ¥y —5 J(l—u)Zu du =:c; > 0.
2( ) 2(%)}
These prove (66)
Finally, by the mean value theorem again, an argument similar to the above also implies
that .
Ay(s)
| (55) (257)| < =

for all i € N. This finishes the proof of Lemma (4.3.3).
Recall that the Hardy—Littlewood maximal operator M is defined by setting, for all

f € Lb,(RY),
Mf(x):= sup ]LIf(y)I dy, xeR"
BCR"

where the supremum is taken over all t?alls B in R™ containing x. The following two
lemmas can be verified straightforwardly.
Lemma (4.3.4) [196] Let {T;}tec(0,«) b€ a family of multiplier operators given by setting,
for all f € L*(R™),
(TN'():=m@EOfE), §€R",  te(0,)
for some m € L*(R"). If
IV im| g gey + Iml ey < €1 < 0o,
then there exists a positive constant C such that, for all f € L>(R™) and x € R",
sup |T.f(x)| < CCiMf (x).

te(0,0)
Proof. Forall t € (0, ), f € L>(R™) and x € R", by the Fubini theorem, we see that

IT.f GOl = f m(tE)f(€)e de| = f ) j m(tE)F(§)e! =V Edg dy
R RM

Rn
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[ ro) [mepf@ecagay|+| [ ~|=:1+n
[x—y|<t R™ [x—y|=t
It is easy to see that I S ||m/|| 2 gnyMf (x).
For 11, via the Fubini theorem and the integration by parts, we also have
lf ()l
IIs f m ft”“lV”“m(tf)ldf d_’y
lx—yl=t

lf ()
< IV im|| 1(Rn)z f Wdy

':1 2Jt<|x—y|<2/t1t

< ||v"+1m||L1<Rn)Z 27T Mf(x) < IVl ey MF (),
j=1
which completes the proof of Lemma (4.3.4).
Lemma (4.3.5) [196] Let {a;};cz © C,q € (0,0] and B € (0,0). Then there exists a
positive constant C, independent of {a;} <z, such that
q1/a

1/q
S g Zlal <o (3 2#ar)
kK€EZ keZ
and
a /4 1/q
> 2k Z gl || < C(Z z-kﬁquw)
keZ j=—o0 k€EZ

Theorem (4.3.6) [196] Let f e Nand a € (0 2€)

(i) Let p € (1,] and g € (0,c0]. If f € By,(R™), then there exists g € Ll .(R") N
Se(R™) such that g = f in S, (R™) and |||g|||Ba JRY) S C”f“Ba LR for some positive
constant C independent of f, where

1/q
ol ooy = [ 2N = Bl
kEeZ

Conversely, if f € L],.(R™) n S (R™) and I g, mmy < 0, then f € BY,(R™) and
”f”Ba SR S C”lf”lBa o(R™) for some posmve constant C independent of f.
(ii) Let p € (1,0] and g € (1,00]. If f € Ef,(R™), then there exists g € Lj,.(R™) N
S (R™) such that g = f in S, (R™) and g1kg,@mmy < C||f||F-gq(Rn) for some positive
constant C independent of f, where, when p € (1, ),

1/q
q
g1k, rny = {Z 2kad|g — B, ,-ig] }

KEZ PR

and, when p = oo,
1/q

lgllze  wny: = sup sup )( Z 2k4|g(y) — B, g )| dy

XER™ MmeZ
B(x,2~™) k=m
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Conversely, if f € LI,.(R™) n S, (R™) and |||f|||pa JRY) < 0, then f € 'pﬁfq(R") and
”f”Fa ®RY < C”f”Fa &ny for some positive constants € independent of f.
Proof We only prove (||) the proof of (i) being similar and easier.

To show (ii), let ¢ € S(R™) satisfy (59) and ¥ jez @; = 1 on R™\{0}. Assume first that
a € (0,2¢),p € (1,») and q € (1,]. Let f € £% (R™). We know that £ (R™) &

L} .(R™) in the sense of distributions; see, for example, [90, Proposition 4.2], [176,

Proposition 5.1] or [195, Proposition 8.2] for a proof. Indeed, it was proved therein that
there exists a sequence {P;};cz of polynomials of degree not more than a — n/p such that

the summation Y ;ez(¢; * f + P;) converges in Lj,.(R™) and S, (R™) to a function

g € L} .(R™), which is known to be the Calderdn reproducing formula (see, for example,
[115, 171]). The function g serves as a representative of f. Thus, in the below proof, we
identify f with g. Then g € Ll .(R™) NS, (R™). Now we show g1l zg,@m S

||f||F;,’fq(R"); namely,

1/q
{Z 2kad|g — Bm-kgl"} S Ifllig, wmy- (68)
keZ LP(R™)
To thisend, forall k,j € Z and ¢ € R™\{0}, define T ; as
(Tijf)"©) == p(276) 4,27 IEDF ), ¢er™ (69)

Noticing that the degree of each P; is not more than |a —n/p| < 2¢and P — B,,-«xP = 0
for all polynomials P of degree less than 2¢, we then find that
g—Bpyrg = 2 Teif - (70)
JEZ
We split the sum Y, ;¢ in this last equation into two parts Y, and Y. ;< . The first part
Is relatively easy to deal with. Indeed, for j > k, by (69), we see that, for all x € R",
£

T sf O] = |U = Bogmd (F * 92D O] < I 0350 + €0 ) [Bigmef 0,0 ()|

=1
S M(f * @,-) (x). (71)
From this and Lemma (4.3.5), it follows that

q q
Yok N rr| = Y 2k | N M(Fep,)| < ) 2 M(f g, (72)

kez jzk kez j=k j=k
Now we handle the sum Y., . Since ¢ satisfies (59), by [171, Lemma (6.9)], there
exists Y € S(R™) satisfying (59) such that

2. 0CIR(IE) =1 £ R0}
jez

Thus, for all ¢ € R™\{0},
(T £)" @) = (278 A, 7*IENFE) = mie ;(OF©),
where f; := o1 f *,i-j and
. ,\ {’( _klfl) -k 20 n
Write i ;(§) := mk,j(fo). From Lemma (4.3.3), it follows that, for all j < k and
§ € R™\{0},
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~ f | —
|aﬁmk,](€)| S 22 (] k)XW,Z)\B(O,l/Z)(E)' ﬁ € Zfli-l (73)
~ ~ f — - -
and hence ||kl 1 gny + 17" i l] 1 gy = 22707, which, together with Lemma
(4.3.4), implies that
|Tk’jf(x)| S ZZ{J(j‘k)ij(x), x € R™,
Thus, by Lemma (4.3.5), for a € (0, 2¢), we have
k

q Kk q
S| Y m| s\ 3 2omp ) sToeepus. oo

keZ j=—o00 keZ Jj=—o0o0 JEZ
Combining (72) and (74) with (70), and using the Fefferman—Stein vector-valued
maximal inequality (see [112] or [194]), we see that

S oty nal] | 5| 2tutrepr]

KEZ keZ

= S 1F g mmy-

LP(R™) LP(R™)
This proves (68) and hence finishes the proof of the first part of Theorem (4.3.6) (ii).
To see the inverse conclusion, we only need to prove

1/q
1l g,y = {z 2kea|f — Bf,lz_kf|"} (75)

kEL PR

whenever f € Li,.(R™) n S, (R™) and the right-hand side of (75) is finite. To this end, we
first claim that

|f * @i ()| S M(f —B,pxf)(x), j€EZ  x€RM (76)
Indeed, we see that, for all j € Z and ¢ € R™\{0},

ey = 2(27%¢) ACEY (2] yn
(f *@,-)"() = m(f—Be,z—Jf) &) =277 (f = By,-if)"(6),
where n(¢§) := Af((l?l) for all & € R™\{0}, which is well defined due to (66). By Lemma

(4.3.3), we know that n € C*(R™) and suppn < {§ € R™ : = < [¢] < 2}. The claim (76)
then follows from Lemma (4.3.4).

Now, using the claim (76) and the Fefferman—Stein vector-valued maximal inequality
(see [112] or [194]), we find that

1/q %
17 1l ymy = {Z 27w [m(f — Bg,z—ff)]q} = {Z 2/%|f — B, f Iq}

JEZ JEZ
LP(R™) LP(R™)
~ Il eg, .
This proves the desired conclusion when a € (0,2¢),p € (1,) and q € (1, oo].

It remains to consider the case that a € (0,2¢),p = o and g € (1,]. The proof is
similar to that of the case p € (1, ) but more subtle. Assume first that f € Fog{q (R™). By
an argument similar to the above, in this case, we need to show

1/q

(e0)

sup sup ][ ZZk“"lg(y)—Bg,z—kg(y)lqdy < f llgg ,amy- (77)

xER™ MmEeZ
B(x,2—™) k=m
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Notice that, if y € B(x,2™™) and z € B(y,i27%) with k >m and i € {1,...,£}, then
z € B(x, (£ + 1)27™). Then, similar to (71), we know that, for j 2 kandy € B(x,27™),

T i fOD| = |(I = Byyi)(f * 0p-)) | < |f * 0,-i )| + CeZIBlz—k(f 16%)

S M(|f * 0,-i| X B e+1)2-m) ),
which, together with (70) and Lemma (4.3.5), implies that

. q q
z 2kaa ZTk,jf(}’) S z 2kaa zMﬂf * Qo XB0xe41)2-m)) (V)
kzm jzk kzm jzk
< > 2UM(f 5 o Kprnem) D] (78)
jzm

When m < j < k, by (73), instead of Lemma (4.3.4), we find that, for all kK > m, integer
l>n+1andy € B(x,27™),

|Tk,jf(3/)| < zzf(j—k) Z Z_i(l_n)M(JCJ'XB(x,Zi‘j+2‘m))(y)
i=0
and hence, by Lemma (4.3.5) and the Minkowski inequality, we see that
g~ 1/a

> gk Z T f )
k=m
z 2~ i(l-n) Z Zk((l 248)q i M (fiXB(x,(Zi+1)2_m)) (y)
j=m
1/

g~ 1/a

kzm
o0 k !
. ' q
S ) 27N 209 [Mf g ) O] (79)
i=0 j=m

When j < m < k, we invoke (73) to find that, for all y € R",

T f )] < f f;(2) jmk,(z 1£)el =) dedz| + f

|z—y|<2~J |z—y|z27J

5 22070 f f;(2)] dz + f il flvl"k,(z I§)|ds dz

. -yl
|z—y|<2~J |z—y|=z2~ J
(0]

< 22t(-K) Z 2-i(l-n) :f |f](z)| dz

|z—y|~2t~]

s 220070 Z 271 279 fll s ywemy S 22979277 fll g ey, (80)
. . i=0 . . . .
where |z — y| ~ 2t/ means that 2t7/~1 < |z — y| < 2"/ and we chose [ > n.
Combining (70), (78), (79) and (80), and applying the Minkowski inequality and the
boundedness of M on L7(R™) with q € (1, o], we know that, for all m € Z and x € R",
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1/q

q
z 24| g(y) = B, ,-kg(y)|" dy
B(x,2~™M) k=m
1/q

< }L Z 27 [M(|f * ‘Pz—f|XB(x,(£’+1)2‘m))(y)]q dy
B(x,2—™) jzm
1/q

+ ) 2 )( 2. 2 M (om0 dy
i=0

B(x,2—m) jz2m
q 1/q

w1 Dok B 2002 ayt g o

B(x,2—™m) jzm jsm-1

N

Z 2794\ x @,-;(y)| dy
B(x,(£+1)2—™m) j=zm
1/q

+ ) ritomain/s f Do) dyt Il
=0 B(x,(21+1)2-m) jz2m
S ||f||1~'*o%,q(11an),
where we took [ > n(1 + 1/q). This proves (77).
Finally, the inverse estimate of (77) is deduced from an argument similar to that used in

the above proof for (77), with 77, ; and f; therein replaced by n: = - (I 5 and f — B, ,-if,

respectively. This finishes the proof for the case a« € (0,2),p = o and q € (1, o], and
hence Theorem (4.3.6).

We first present the inhomogeneous version of Theorem (4.3.6). As a further
generalization, we show that the conclusions of Theorems (4.3.6) and (4.3.7) remain valid
on Euclidean spaces with non-Euclidean metrics.

It is known that, when p € (1, %) and a € (0, ), then Bj,(R™) U EJ, (R™) c LP(R"),
while when p = oo and a € (0, ), then BZ ,(R") U FZ,(R™) C(R") where C(R™)
denotes the set of all complex-valued uniformly continuous functions on R" equipped
with the sup-norm; see, for example, [55, Theorem 3.3.1] and [193, Chapter 2.4, Corollary
2].

Theorem (4.3.7) [196] Let £ € N and a € (0, 2).
(i) Let g € (0,%0]. Then f € By, (R™) if and only if f € LP(R™) when p € (1,%) or
f € C(R™) when p = oo, and

00 1/q
a ny «= n kaq
1 s, gy = If gy + {kZz If = Boatfpgn (<
Moreover, ||| - |[|pg,rm) is equivalent to || f]lze  wm).-

(ii) Let p € (1,00] and q € (1,0]. Then f € E7, (R™) if and only if f € LP(R"™) when
p € (1,0) or f € C(R™) when p = oo, and 11 Eg,®mmy < ©, where, when p € (1, ),
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00 1/q
q
1 rg ey = F Loy + {2 2kad|f — B, if| }
k=1

LP(R™)
and, when p = oo,
1/q

q
11£111eg ,rmy 2= |f liowmy + sup sup f Z 24| (y) — B, ,-1f ()| dy
x€ER™ m=1
B(x,2~™) k=m
Moreover, ||| - |||rg, @n) is equivalent to || - ||gg, mn).
Proof. By similarity, we only consider (ii). The proof is similar to that of Theorem (4.3.6),
and we mainly describe the difference. We need to use the following well-known result:
when a € (0,0) and p, q € (1, ], then, for all f € F;%, (R™),

Iflrg,wny ~ I llpany + F1leg, ny, (81)
where ||f||ng(Rn) is defined as ”f”ng(Rn) in Definition (4.3.2) withk € Z, and m € Z,

therein replaced, respectively, by k € N and m € N (which can be easily seen from [55,
Theorem 3.3.1]and [193, Chapter 2.4, Corollary 2]).

Assume first that f € Ej7, (R™). By [55, Theorem 3.3.1] and [193, Chapter 2.4, Corollary
2], we know that f € LP(R™) when p € (1,o) or f € C(R™) when p = co. On the other
hand, repeating the proof of Theorem (4.3.6), we see that, when p € (1, ),

1/q

q
{2 2%e4|f — B, ,«f| } < £ llrg, ey
=1 LP(R™)
and, when p = oo,
1/q

sup sup JL Z 254 f(y) = Boi f |  dyt S I llrg
XER" m=1 ’
B(x,2~™) k=m
which show |[|f|[|rg,wm) S IIf g, ®m)-
Conversely, assume that f € LP(R™) when p € (1,) or f € C(R™) when p = oo, and
|||f|||ng(Rn) < oo, Again the proof of Theorem (4.3.6) shows that, when p € (1, o),

o0 1/q
T q
Fllsg, o < {Z 2]t =B, of] ]
k=1

LP(R™)
and, when p = oo,
1/q

(0.0)

— q
Flleg,om = supsupd Y 29| 0) = By f O dy = Ifleg o

XER" mMm=1 B(x2-m) k=m
This, together with (81), further implies that ||f||F°aé,q(Rn) S f 1l eg oy and hence

finishes the proof of Theorem (4.3.7).

Finally, we point out that the conclusions of Theorems (4.3.6) and (4.3.7) are
independent of the choice of the metric in R™. To be precise, let || - || be a norm in R™,
which is not necessarily the usual Euclidean norm. Then (R", || - ||) is a finite dimensional
normed vector space with the unit ball

K :={x e R" x| <1}
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Clearly, K is a compact and symmetric convex set in R™ satisfying that —K = K and
B(0,6;) € K c B(0,4,) for some &, 6, € (0, ).
Forall# €N, f € Ll .(R™ and x € R", define

¢
-2 o 2f
Bpexf(x) = @;(_1)] ({? —j) Bje i f (x) -

Then we have the following conclusion.
Theorem (4.3.8) [196] The conclusions of Theorems (4.3.6) and (4.3.7) remain valid with
B, therein replaced by B, k.
Since the proof of Theorem (4.3.8) is essentially similar to the proofs of Theorems
(4.3.6) and (4.3.7), we only describe the main differences, the other details being omitted.
We first observe that

(Boexf) (©):= myp(tOf(6), EERY

where
?
-2 28 N\ -
—_— _ ] H n
my g (x): (Zf) j§=1( 1) ({ —j) Iy (jx), x € R™

Similar to the proof of Lemma (4.3.3), by means of the symmetry property of K, a
straightforward calculation shows that, for all x € R",

y
-2 ./ 24
mp(x) = fﬁZ(—l)] (f —j) cos(jx -y)dy =:1— A, (x),
K £/ j=1

where
4¢ Cox U2
A{’,K(x): = ﬁ f (Sll’l T) du
t/ g
Furthermore, we have the following estimates: for all x € R™ with |x| < 4,
0<c, <2k _ . 82
1 = |x|2{) — L2 ( )
and
[Vi4,x(0)| < C min{|x|*7,1}, i€N, (83)

where C;, C, and C are positive constants independent of x. Similar to the proof of Lemma
(4.3.4), by (82) and (83), we observe that

sup f fCc+ )] dy S MF()
K

te(0,00)
forall f € L},.(R™) and x € R™.

Finally, notice that, by the equivalence of norms on finite-dimensional vector spaces, the
spaces Bj,(R™),E% (R™) and their inhomogeneous counterparts are essentially
independent of the choice of the norm of the underlying space R™. By means of this
observation and using (82), (83) in place of Lemma (4.3.3), we obtain Theorem (4.3.8) via
some arguments similar to those used in the proofs of Theorems (4.3.6) and (4.3.7), the
details being omitted.

Corollary (4.3.9) [314] Let {Ti,c}o<e<oo b€ a family of multiplier operators given by
setting, for all f; € L*(R™),

D (Tef) @ :=m((1+08) ) i),  §eR,  0<e<w
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for some m € L™ (R™). If
||Vn+1m||L1(]Rn) + ”m”Ll(Rn) S Cl < OO,
then there exists a positive constant € such that, for all f; € L*(R™) and x € R",

sup Z|T(1+6)fj(x)| < CClefj(x).

0<e<

Proof. Forall 0 < € < oo, f; € L*(R™) and x € R", by the Fubini theorem, we see that

Y Ireriol = Y | [ m+ 0nf@et4a
]RTL

=y f LG j m((1 + OF (©)e' = dg dy
Rn Rn

> | s f m((1 + OOF e dg dy| +

lx—y|—-1<e |x—y|-1=€
=:1+1IL

It is easy to see that I < [[m|] 1 gny) X Mf;(x).

For 11, via the Fubini theorem and the integration by parts, we also have

s Z j |f](y|)n|+1 J(l + )" VM Im((1 + €)é)|dé dy

lx—y|- 1>e
7162]
< ||V"+1m||L1(Rn) Z(l + E) M’liW

2/(1+O<|x—y|<2/+1(14€)

< v +1m||L1(Rn)Z 2 ME () S T sy . MA ),

which completes the proof of Corollary (4.3.9).
Corollary (4.3.10) [314] Letf e Nand 0 < e < 1.

(i) Let € = 0. Then f; € B{{<,,(R™) if and only if f; € L'*¢(R™) when 0 < € < oo or
fj € C(R™) when € = o, and

1/1+€
1+
S s = 3 Ml + {Z PO Bafl| <

Moreover, ||| - [||ire, . (g is equivalent to ||f;|

1+€,1+€

dy

Biiér+e(R™)
(ii) Let 0 < € < co. Then f; € F{ &1, (R™) if and only if f; € L'*¢(R™) when 0 < € < oo
or f; € C(R™) when € = oo, and X ||| fj[|rrre, . rny < ©0, Where, when 0 < € < oo,

1+€,1+€

1/1+€
D WAkt e = D Wil e + ). {Z 2K+ f; Bg,z—kfjl”‘f]
k=1

and, when € = oo,

1/1+€
2 1+E
D gt 2= D1l * S22 S0P { [y 200 B0 } -

B(x,2~™) k=m

Moreover’ | I | . | I |F11:§1+6(Rn) IS eql“Va.Ient to “ ||F1+61+E(Rn)

L1+E(Rn)
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Proof. By similarity, we only consider (ii). The proof is similar to that of Theorem (4.3.6),
and we mainly describe the difference. We need to use the following well-known result:
when 0 < € < oo, then, for all f; € F{£;, . (R™),

D Wilesse ny ~ D Whillweun + D Willesse (84)

where Z||fi[l . iic (& is defined as ||| ..c (& in Definition (4.3.2) with k € Z.,.

Fife1+ Fife1
andm e Z, therem replaced, respectively, by k e N and m € N (which can be easily seen
from [55, Theorem 3.3.1]and [193, Chapter 2.4, Corollary 2]).
Assume first that f; € Fj¥¢, . (R™). By [55, Theorem 3.3.1] and [193, Chapter 2.4,
Corollary 2], we know that f; € L'*€(R™) when 0 < € < o or f; € C(R™) when € = oo,

On the other hand, repeating the proof of Theorem (4.3.6), we see that, when 0 < € < oo,

1/
Z 2k(1+e)2 Zlf kf 1+e e - Z”f ”
17 Beatd] > LWillege,

L1+E(Rn)
and, when € = oo,
1/1+€
2 1+6
sup sup{ ~ { S 269 31500 - gy ) S D Ml
xER™ m=1 00,1+€

B(x,2~™) k=m
which show X [|Ifjl [ raze,, .xm S Z|fi ||F11$§1+E "

Conversely, assume that f; € L'*¢(R™) when 0 < € < o or f; € C(R™) when € = oo,
and X [[Ifjlllgze, . mmy < ©0. Again the proof of Theorem (4.3.6) shows that, when

1+€,1+€
0<e< oo,
1/1+€
k(1 2 1+€
YU DOV
L1+6(Rn)

and, when € = oo,

- 1/1+€

Z||ﬁ||Fgo+f+E(R") < sup sup )( Z 2k(1+€)? Z|f1(3’) B, ,-if, (y)|1+e

XxER™ m=1
B(x,27™) k=m

< D Whillpase, com

This, together with (84), further implies that Z”ff”F&oTﬂe(R") < Xl gare, .ny and

0,1+€

hence finishes the proof of Corollary (4.3.10).
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Chapter 5
Hormander Type Theorems and Duality and Boundedness of Multi-Parameter

Triebel-Lizorkin Spaces and Fourier Multiplier Operators

We show that LPt x- - -x LPn — L” boundedness with —+ - - - +—==for 1 <p,,...,p, <

P1 Pn

o and 0 <r < oco. The proof of L" estimates also offers a different and more direct
approach than the one given in Muscalu et al. where they use the deep analysis of multi-
linear and multi-parameter paraproducts. We also show a HOrmander type multiplier
theorem in the weighted Lebesgue spaces for such operators when the Fourier multiplier is
only assumed with limited smoothness. The work requires more complicated analysis
associated with the underlying geometry generated by the multi-parameter structures of
the composition of two singular integral operators with different homogeneities.
Therefore, it is more difficult to deal with than the duality result of the Triebel-Lizorkin
spaces in the one-parameter settings. We note that for 0 <p <1,g=2 and a =
0, Fp“'q (R™) is the Hardy space associated with the composition of two singular operators
considered. The work appears to be the first effort on duality for Triebel-Lizorkin spaces
in the multi-parameter setting. We offer a different and more direct method to deal with
the boundedness instead of transforming Fourier multiplier operators into multi-parameter
Calderé6n—Zygmund operators. We also show the boundedness of multi-parameter Fourier
multiplier operators on weighted multi-parameter Triebel-Lizorkin and Besov—Lipschitz
spaces when the Fourier multiplier is only assumed with limited smoothness.
Section (5.1) Multi-Linear and Multi-Parameter Fourier Multiplier Operators with
Limited Smoothness

We consider the limited smoothness condition on the Fourier multipliers in the multi-
parameter and multi-linear setting. This is an analogue of the well-known Hormander—
Mihlin type theorem in the linear and multi-linear cases.

Let 8(R%) denote the space of Schwartz functions, and &'(R%) denote tempered
distributions. The Fourier transform f and the inverse Fourier transform f of f € s(R%)
are defined by

FFE) = FE) = [ e f e dx and FUE) = FG0 = o | e @) d )

In the linear case, we first recall the following Mihlin theorem (see, e.g., [197, Corollary
8.11)):

Theorem (5.1.1) [224] If a multiplier m € CB]“(JR{”\{O}) satisfies the following condition
|0%m(&)| < C, lé|71% forall |a| < [g] +1 (2)

then the Fourier multiplier operator m(D)f = T‘l[mf] defined with the symbol m(§) is
bounded from LP (R™) to LP(R™) forall 1 < p < co.

Hoérmander reformulated and improved Mihlin’s theorem using the Sobolev regularity of
the multiplier [198]. To describe Hérmander’s theorem, we let 1 € 8(R%) be a Schwartz
function satisfying

SupplpC{EERd:%S|f|S2}, ZIP(%):L forall €€ R0} (3)

JEZ
For s € R, the Sobolev space H(R™) consists of all f € s'(R™) such that
Ifllss 2 (|7 = 2)2f] . < o, (4)

where (I — A)S2f = F71[(1 + |€]2)s/2£(&)]. Then the Hérmander multiplier theorem says.
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Theorem (5.1.2) [224] If m € L™ (R"™) satisfies
. n
sj._gg”m(zf ')l/)”HS(R") < oo, forall s > >

where i is the same as in (3) when d = n and H*(R"™) is the Sobolev space, then the
Fourier multiplier operator m(D) defined with the symbol m is bounded from LP (R™) to
LP(R™) forall 1 < p < oo,

Clearly, Hormander’s theorem is stronger than Mihlin’s and the number % cannot be
improved in Hérmander’s theorem.

The weighted estimates for Fourier multipliers. We first introduce the notion of

Muckenhoupt’s A, weights [199]. Let 1 < p < o and denote p’ = ﬁ. We say that a
weight w = 0 belongs to the Muckenhoupt class A, (R™), if
1

1 1 o\
sup (me(x)dx> <WLW(JC)1 p dx) < o0 (5)

where the supremum is taken over all cubes R in R™. We also use
1

p
“f”Lﬁ,(]Rn) = <fRn|f(X)|pW(X)dx> .

Then, Kurtz and Wheeden [200] extended Hormander’s theorem to weighted Lebesgue
spaces and proved the following:

Theorem (5.1.3) [224] Let % <s<nand1l<p < oo. Assume % <p <ooand w € Aps.
If m € L*(R™) satisfies

sup|lm(27 - o < 00,

sup|[m(2/ s g,

then the Fourier multiplier operator m(D) defined with the symbol m is bounded from
P (R™ to IV (R™) forall 1 < p < oo.

We now turn to the discussion of multi-linear Coifman—Meyer Fourier multiplier
operators. We only state the bilinear case as an example for simplicity of its presentation.
For m € L®(R?™), the bilinear Coifman—Meyer Fourier multiplier operator T,, is defined

by

Tn(f,9)(x) = m(&,me*CHf()g(n)dE dn (6)

forall f,g € s(R™).
Coifman and Meyer [5-7] first proved that if m € Ct(R?™\{0}) satisfies

|0gafm(E,m| < Cap(lg] + Inl)=0at+1AD (7)
for all |a| + |B| < L, where L is a sufficiently large natural number, then T, is bounded
from LP(R™) x LY(R™) to L"(R™) for all 1 <p,q,r < oo satisfying 1/p+1/q = 1/r.
Results in [201-203] have been extended to multi-linear Calderon—Zygmund operators by
Kenig and Stein [204], Grafakos and Kalton [205], Grafakos and Torres [206], [207] to
include 0 <r <1 (see also work of generalizations to bilinear square functions and
vector-valued Calderon—-Zygmund operators of Hart [208]). However, in many cases
where m has only limited smoothness, we cannot use this result since L is not an explicit
number. Finding the best possible number of L thus becomes an interesting problem. By
reducing the bilinear Fourier multiplier operators to linear Calderon—Zygmund operators,
Coifman—Meyer obtained the L" estimates under the assumption L = 2n + 1. [206] also

)
(27’[) (271) R2Nn
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proved the condition (7) with L = 2n + 1 assures the boundedness of T,, by using the

bilinear T'1 theorem. However this number seems to be too large in view of the linear case.
Tomita [209] improved this theorem for multipliers with limited smoothness in terms of

the Sobolev regularity. To state the result in [209], for m € L®(R?"), we set m,(§,n) =

m(2%&, 2k (&, n,), where 1 is the same as the (3) with d = 2n.

Theorem (5.1.4) [224] Let s >n,1 <p,q,r <o and 1/p + 1/q = 1/r. If m € L®(R?")

satisfies

sup|lmy|[gsgzny <
k€L

then T, is bounded from LP (R™) x L9(R™) to L" (R™).

For further improvement in this direction in the case 0 < r < 1 or the case where p or q
can be smaller than or equal to 1, see the works in Grafakos, Miyachi and Tomita [210],
Miyachi and Tomita [211] and Grafakos and Si [212].

Fujita and Tomita [213] considered the weighted norm inequalities for multilinear
Fourier multiplier operators, for simplicity we only state their result in the bilinear case.
Theorem (5.1.5) [224] Let1 <p,q < 00,1/p+1/q = 1/rand n < s < 2n. Assume
(I) min{p, CI} > ZTl/S and w € Amin{ps/Zn,qs/Zn} or
(i) min{p, q} < (2n/s)’, 1 <r <ocoand w'™"" € A5/2n.

If m € L*(R?") satisfies
sup||my|lysreny < .
k€EZ

Then T,,, is bounded from LP (w) X L1(w) to L" (w).

This theorem can be understood as bilinear version of the results by Kurtz and Wheeden
[200].

We discuss the L" estimates for the multi-linear and multi-parameter Fourier multiplier
operators. In the bilinear and bi-parameter case, Muscalu, Pipher, Tao, and Thiele [214]
proved the following
Theorem (5.1.6) [224] Let 1 <p,q < o0,1/r=1/p+1/q,0 <1 < 0 and m € L®(R*")
satisfy

|a?;16§;2 651165227”(51» $2:M1,72)
< Cayaypip, (&1 + In DUt BD ([, | 4 [y )~ Cazl*BzD (8)
for |ai| + 181l <M, and |a,| + |B,| <N, where M,N are sufficiently large natural

numbers.
Then T, is bounded from LP (R?™) x L9(R?™) ~ L"(R?™), where T,,, is defined by

Tml(f, g)(x1»x2)
1 ix1(&1+n)+ix2(E2+n2) £ A
= Qe |, m(§y, §2, M1, Np)e A ATIITE22¥N F( &1, E5)G(N1,M2)dE1d S dn dn,. (9)
R n

This theorem was extended to the case of multi-linear and multi-parameter setting in
[215]. The method of proof of the above theorem in [214, 215] is to decompose the multi-
linear and multi-parameter Fourier multiplier operator into discretized multi-linear and
multi-parameter paraproducts. By proving the L" estimates for the discretized
paraproducts, they establish the L™ estimates for the Fourier multipliers. The difficult part
of their proof is in the quasi-Banach case when 0 < r < 1 where the standard duality
argument for the paraproducts does not work (see [216]). Therefore, [214, 215] establish
the desired result by using a new duality lemma of L™ for (0 < r < 1), the stopping-time
decompositions arguments and multi-linear interpolation. We mention in passing that the
endpoint estimates of results in [214, 215] were obtained by Lacey and Metcalfe [217] and
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L" estimates in the above Theorem (5.1.6) have also been established recently in the case
of multi-linear and multi-parameter pseudo-differential operators by W. Dai [218].
Furthermore, symbolic calculus has been carried out and boundedness of multi-parameter
and multi-linear pseudo-differential operators in the Hormander classes have been
established by Q. Hong [219]. LP estimates for modified bilinear and multi-parameter
Hilbert transforms have also been established by W. Dai [220], where we address the open
question raised in [214].

It is worth noting that the smoothness condition for the Fourier multiplier
m(&y,&,,m4,m,) In [214, 215] requires M and N to be sufficiently large. Thus, it is
interesting to know what the limited smoothness assumption is on m to assure the L"
estimates. This is one of the main purposes.

To establish the L" estimates of the multi-linear and multi-parameter Fourier multipliers
with limited smoothness, we need to introduce the two-parameter Sobolev spaces. For
s1,S, € R, the two-parameter Sobolev space H552(R*") consists of all f € s'(R*™) such
that

fllgsese = [[(I = 2)/25272f]| , < oo, (10)

where

(I — a)s/2s2/2f = T_l[(l + 1612 + 7112572 (1 + &, + |712|2)52/2f(€1152:771»772)]
where &;,$3,1m1,1m2 € R™,

We first establish a Hérmander’s type theorem in the bilinear and bi-parameter setting.
One of the main theorems states that:

From the theorem above, we have
Theorem (5.1.7) [224] Let 1 < p,g < o and 1/p + 1/q = 1/r. f m € C?™*1(R?™\{0} X
R2™\{0}) satisfies

6a15a2 anﬁllafzzm('fp $2:M1,M2)

< Cayanpyp, (1611 + Iny DEIlHIFD (65| + |, ) ezl HB2D (11)
forall [a;| + 18] < n+1,]az| + B2l < n+1and (&y,&,m1,m2) € RPM\{0} x R?™\{0},
then T,, is bounded from L? (R?™) x L1(R?*") to L" (R?™).

Finally, we consider the weighted norm inequalities for the bilinear and bi-parameter
Fourier multipliers. To this end, we first introduce the notion of product A, weights (see
[221]).

Let 1 < p < co. We say that a weight w > 0 belongs to the product Muckenhoupt class
A,(R™ X R™), if

1 1 Pt
sup(IleW(x,y)dxdy) <|R|jw(x y)1?P dxdy) < oo (12)
where the supremum is taken over all rectangles R = I x J,I and J are both cubes in R™.
We define A, (R™ X R™) = U,s1 4,(R™ X R™) as usual.
Then we can establish the following
Theorem (5.1.8) [224] Let m € L*(R™). Set

My, e per§) = M2E,, ., EY(ED - W(ED,
where Y4,...,1; are the same as in (3) with d = nf there. For any n > 1,t = 2, the n-
linear, t-parameter multiplier operator T, maps LP1(R) x - - - x LPn(R%) to L7 (Rt),
provided that 1 <p,,...,p, < 0,p; > %,...,pn > % where s; > %,...,st > %and

s = min(sy,...,S;) and % = pi+ .-+ +—> 0 and the multiplier m satisfies
1

Pn
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. Su.pez”mjl ----- jt||HS1,...,St(Rtn#) <®

We can also establish the following weighted estimates.
Theorem (5.1.9) [224] Let 1 < py,...,p, <0, —+--- +—=2and L <s,,...,s, < ¢,

P1 Pn r 2
s = min{sy, ..., s;}. Assume one of the following two conditions (i) and (ii) holds, namely,
(i) p; >ts—{), WjEA%,jzl,...,n, or (13)
. . t\’ 1—717
(ii) min{p, ..., pp} < (?) 1<r<oo,w; € Ay (14)
T
If m € L*(R™) satisfies
o < oo, 15
]1’Slet)EZ||m]1 ..... Jt || Hsl,...,st(Rtnf) 00 ( )

T T

Then T, is bounded from LP1(w;) X - - - X LPn(wy,) to L (w) where w = w/™* - - - wp™ .

We prove Theorem (5.1.17), namely, the L" estimates for the multi-linear and multi-
parameter Coifman—Meyer multiplier operators with limited smoothness. We give the
proof of Theorem (5.1.18), i.e., the weighted version of Theorem (5.1.17).

The strong maximal operator M, for a function f on R?" is defined by

Mf(ey) = sup —— [ 1f(u, v)ldudv, (16)

r,r2>011 2 JR
where R ={(u,v) ER*"||lu—x|<r,|lv—y|<r,} and f is a locally integrable
function on R?™. It is well known that M is bounded on L? (R?") forall 1 < p < co.
Lemma (5.1.10) [224] Let €,, €, > 0. Then there exists a constant C > 0 such that

|f (u, v)]
T dudv | < CMf (x, 17

rlsﬂl‘;EO <T1 "2 .]Rzn 1+ rx —up)®e(1 + ry|y —v|])nte uav | = S(xy) (A7)

for all locally integrable functions f on R2™,

Proof. Note that

Ny f |f (w, v)|
U2 ey umrl<rrt eyl<rgt (L Tl —u)™e (14 rply — v])nte
and

dudv < CM;f (x,y)

j Ifu, v)l dudv
(u,v):Iu—xlzrl‘l,lv—ylzrz‘l (1 + 7‘1 |x - U|)n+61(1 + TZ |y - vl)n+62
N |f (w, v)|
= ZJ n]; —— dudv
k=0 (u,v):Zkrl_ls|u—x|<2k+1T1_1,2kT2_15|17—y|<2k+1rz_1 (1 + rllx - 'LLD 1(1 + 7'2 |y - Ul) 2

- 1
= Z kyn+e k n+eJ
= (1 + 2 ) (1 + 2 ) (u,v):Iu—xl<2k+11‘1_1,|v—y|<2k+1r2_1
Then it follows immediately that
sup r”r”f G dudv | < CM,f(x,y) .
>0\ -2 Jgen (1 1ilx —u)Me(1 + |y — v)nte o
Using the inequality for vector-valued Hardy-Littlewood maximal functions of C.
Fefferman and Stein [112], and the fact that M;f (x,y) < MM, f(x,y), where M; and M,
are the Hardy-Littlewood maximal functions with respect to the x and y variables

respectively, we have the following inequality for the vector-valued strong maximal
functions:

|f (w,v)|dudv.
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Lemma (5.1.11) [224] Let 1 < p, g < oo. Then there exists a constant C > 0 such that

1/q 1/q
{Z(Msfm} <c {Zw} (18)

k€EZ P k€eZ P
for all sequences {fx }xez Of locally integrable functions on R?™,
Using the Littlewood—Paley inequality of LP estimates in the product space of R.
Fefferman and Stein [98], we can deduce immediately the following
Lemma (5.1.12) [224] Let 1 < p < oo, and let Y4, ¥, € s(R™) be such that supp Y, C
{eR™ 1/a < |&| < a} for some a > 1,supp y, € {n € R™: 1/b < |n| < b} for some

b > 1. Then there exists a constant C > 0 such that
1/2

> i (0/2)w @297t || < Cllfllp forall f € 1PREY,  (19)

J,k€EZ
LP

where  [1(D/27) 2 (D/2)f](§1,$2) = F M e (- /27) D2 (- /2 F (-, )] G, &)
Moreover, if ¥ jez ¥;(&;/27) = 1 forall & # 0, for i = 1, 2, then

1/2
> [wa(0/27)a 0729 ~IIfllr forall f € LP(RZM.  (20)
j,kEL

Let ¢, be a C*-function on [0, o) satisfyiné
$o(t) = 1on [0,1/8],supp ¢, < [0,1/4] (21)
we set ¢, (t) = 1 — ¢, (t), and set for &,n € R the following notations:
D) (1) = @o(IS |/InD) D2y (§,m) = d1(Inl/1S D (22)
D) (§m) = (1= oIS 1/InD)A = @1(Inl/1E D). (23)

Lemma (5.1.13) [224] ([213]).

(i) For (§,m) € R™ x R™\ {(0,0)},

(&) + Py (€, ) + Py(€n) =1 (24)

(ii) Each @, satisfies

050572 3y (€, 1)| < Cay (161 + I~ lezD 25)

for all multi-indices a4, ;.
(i) supp @3y < {[$]/8 < || < 8¢}, supp P(qy < {[$] < [nl/2} and supp @,y < {|n| <
1$1/2}.

With a similar proof to that of Lemma 3.2 in [209] with a little modification, we can
obtain the following:
Lemma (5.1.14) [224] Assume that m € CN+*M(R?™\{0} x R2™\{0}) satisfies

0820208 012 m (&1, &m0 mo)|
< Coyanpyp, (1] + I DEIEFIBD (g, | 4 |, ) lazl+IB2D (26)
for all [ay| + 81| < N, |az| + |B2| < M and (&1,&,,m1,m2) € R*M\{0} x R*™\{0}, where

N,M are non-negative integers. Let @, and &, € s8(R?") be such that none of
supp ®,, supp ®, contains the origin, and set

s e (§1,$2, M1, M2) = M(sEq, t&5, 51, ) 1 (€1, 11) P2 (€2, m2). (27)

Then SupS,t>0||m5,t||HN,M(R4n) <®
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Lemma (5.1.15) [224] ([210]). Let 2 < g < oo,r >0 and s = 0. Then there exists a
constant C > 0 such that

1/q
1l 2| f@WITA+xD A +y?)sdxdy | < Clifllpssmenseny (28)
L Uysq) R4

We need to establish the following
Lemma (5.1.16) [224] Let s, s, € R, and let ¥, ¢, € s(R™) be such that supp y,, supp ¥,
are compact and none of them contains the origin. Assume that ® € C*(R?™\{0} x
R2™\{0}) satisfies

aalaazaffafzzcb(fp 52;711:772)|

< Coyap.p, 1] + In. )@+ (|&, | + |n, ) ~Ueal*IB2D
for all ay, ay, a3, 4 € Nij. Then there exists a constant € > 0 such that

sup [Im(t&y, s&, tny, sn) P(t€y, 5&5, tn1, s W1 (§1, M) W2 (€2, 1) lgsise < C Sup” k”Hsl,sz

t,s>0
for all m € L (R*™) satisfies sup; rez||m;«||

HS152 (RéM) < o0, Where m;  is deflned by (29).

Proof. We mimic the proof of Lemma (3.4) in [210]. First, we assume that supp ¥, €
{1/2% < [(§,m)] < 2%} and supp i, < {1/2% < [(&,mp)| < 2} for some
jo. ko € N. Given t,s > 0, take j, k € Z satisfying 2/~ <t < 2/,2k"1 < s < 2%, Then,
since 1 < 27/t < 2,1 < 2%/t < 2, by change of variables,

[EICREDLICOEDIAGIAG] e |

< Cllm(27 -, 2% )@(27 -, 2% Yy (277 Yo (25571 )| oy
Let (&, 1), Y (&, 1) be as in (3) with d = 2n. Using supp 1, (27t ) < {1/2/0%t <

|(&1,m1)] < 270} and supp 1, (2Fs™t )  {1/2%0*1 < [(&,,1,)| < 2%0}, we have
[m(27 -, 2% )@(27 -, 2 Y (2767 )2 (27 ) | s,

Jo ko
<C z Z [m(27 2% )o(27 -, 2% Yy (2767 Ya (2557 Y (/27 )P (/20 | sy,

J1==(Uo+1) ky=—(ko+1)
Jo ko

<sc D D m@ 25 W22 s [P 25 Y (P (2557 e,
Jj1==Uo+1) k1=—(ll<(o+1)
Jo 0

<c > @25 P ORO ey 1P 5 Yatallss
J1==(o+1) ky=—(ko+1)

< ¢(suplm(@* 24 Wl ) (sup10 15 Mol )
7S

jk€EZ
By Lemma (5.1.14), sup; s»ol|P(t -, s )Py P2 |[gsisz < oo,

The proof is then complete.

The main effort is to establish the first main theorem on L" estimates for the multi-linear
and multi-parameter Fourier multipliers with limited smoothness, namely, Theorem
(5.1.17). The proof is quite complicated and involved due to the multi-parameter structure
of the Fourier multiplier m. Therefore, we will divide the proof into several steps. The
main idea is to decompose the multiplier into different pieces and handle them separately

in each piece.
Theorem (5.1.17) [224] Let m € L®(R*"). Set
mj,k(fp $M1M2) = m(2]§1, sz(z' 271, 2k772)¢1 (€1, n)Y2(E2,1m2), (29)

where y;, 1, are the same as (3) with d = 2n. Let s;,s, > n, s = min(sy,s,), 1 <p,q <
o,p > %",q > 2?"and 1/p+1/q =1/rwith0 <r < oo. If m € L®(R*") satisfies
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ﬁll('lEpZ”mj,k”Hsl,sz(Rzln) < © (30)
then T, is bounded from LP (R?™) x L(R?™) to L" (R?™).
Proof. Let 5,5, >n and m € L (R*™) .satisfy SPPJ,REZ||mj.k||Hs1.s2 < oo, where m; . is
defined by (29). Since H5v52 (R*") & HmMin{sus2bmin{susz} (R4 it is sufficient to consider
HSS(R*"), where s = min{sy,s,} > n. We rewrite m as follows:

3 3
m(&y, €2, M1,M2) = m(&y, 2,11, 1M2) (Z D ;) (51'711)> Z D)) ($2,m2)
i=1 j=1

3 3
= z m(§1, &2, N1, M) Py (1, M) Pj(§2,m2) = z m;j(§1,§2,mum2)  (31)
i,j=1 i,j=1
where @;, CDJ-](l < i,j < 3) are defined by (22) and (23). :

By Lemma (5.1.13), we divide these m;  into four groups and estimate the bilinear and
bi-parameter Fourier multiplier operator defined by each symbol m; . Since the Fourier
multiplier operator corresponding to every symbol m;, in the same group can be
estimated in the similar way, we just choose one to handle in each group.

* Group 1:

- my, where supp my ; € {|&;] < |n4|/2, 2] < [n2]/2}

— My, where supp my 4 € {Inq| < [£11/2,In2| < 1&,1/2}

* Group 2:

- my 3, where supp my 3 € {|;| < |n11/2,In2]/8 < |&;] < 8In, [}

- my 3, where supp my 3 € {[n1] < [£11/2,[n21/8 < |&2] < 8|n,[}

— mg 1, where supp my 3 € {[n,1]/8 < |&1| < 8|n4|, 121 < |n21/2}

— M35, where supp my 3 € {[:11/8 < |&1| < 8|n4|, In2| < 1€21/2}.

* Group 3:

- my,, where suppmy, € {[&]| < [n11/2,[n;] < [&,1/2}

- my,1, where supp m, 4 € {[n1| < [£11/2,1&,] < In2|/2}.

* Group 4:

- Mg 3, where supp ms 3 € {[n11/8 < |§1| < 8|n4], [n21/8 < &;| < 8|n, I}

In the following proof, we assume 2n/s < p, q.
Estimates for Fourier multiplier corresponding to a symbol m; . in Group 1.
First, we consider m, ,, for simplicity we denote it as m* instead of m, ,. Using the fact

that LP norm is bounded by the HP norm in the multi-parameter setting established, e.g., in
[108, 119, 222], and the equivalence of the definition of the multi-parameter Hardy space,
we have forall 0 < r < o

1/2
1T (. 91 < ~ {Zle(D/zf)wz(D/Z")Tm(f,g)lz} (32)

sup | @ . T (f, 9)|
s,t>0 j,keZ

LT

for 0 < p < oo, where @, (x,y) = 25 (25"x)2" ¢ (2y), ¢ € 8(R™) and ¢ does not
contain the origin, 1 is the same as (3) with d = n.
Let f,g € s(R*™) since ¥ ez, (§) = 1, for all & € R™\{0}, we have
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A 29(D/27)Y(D/29)T 1 (f, 9) (1, x32)
1 ) .
= wamml(fl; 52; N1, nz)elx1(f1+7l1)+lx2(fz+7lz)¢j({-’1
+ 771)]?(5(1; EY (& +12)G (M, ;) déydE,dn dn,

m1 (El! €2J M1, 772)6 ix1($14m1)+ix2($2+412)

_ 1
B (27.[)(4-11) ,[]R{Mi A _
X l/)j(ﬁ + n1)¢j(f1)f(s;1; EWi (&2 + 1) Yi (§2) G (M1, m2)dE dEdn, dny,

m1 (El! €2J M1, 772)6 ix1($14m1)+ix2($2+472)

_ 1
B (27.[)(4-11) ,[]R{Mi A _
X l/)j(ﬁ + n1)¢j(f1)f(s;1; EWi (&2 + 1)K (§2) G (M1, m2)dE dEdn, dny,

= [ 2@ ) @6 - 310,24 = 32,200y = 22,24,
R n

— 7)) X (l/jj(D)l/jf(D)f)(Y1'YZ)Q(Z1'Zz)dX1dYZdZ1dZZ (33)
where ¥, (&) = ¥(£/2%) and (&) € s(R™) such that Y(EDY(& +11) = Y(& +11),

on the supp m?, since |& +n4| = |&]. The same is true for Y(&,), i.e. . P(EDP(E, +
M2) = (&2 +1n2), on the supp m*, since [&; + 7| ~ |&,].

mjl,k = ml(zjfb 2kE,, 277, anz)lp(ﬁ + )Y (& +12). (34)
Take 1 < t < 2 satisfying 2n/s < t < min{2,p, q}.

|Aljge < 22 2kn [ (1420 |2y — yi| + 2|y — 241)° (1 + 28], — 3o + 2%|x; — 2,])°
R4N

x (Frmb) (27 (e — y0), 25 — 920,20 (g — 20), 25 (2, — 25) )
X (1 + 27 |xy — yi| + 2%y — Z1|)_S(1 + 2K|xy — yol + 2%|xy, — 2,)7S
X (lpj(D)l/)k(D)f)()’pJ’Z)g(zpZz)d)’1d3’2dz1dzz

s( QU Dl D
Rn

1/t'
! t!
+ |z, )¢ Sl(T_lmjl,k)()’L)’z»Z1:Z1)| ) dy,dy,dz,dz,
X (f 22jn+2kn(1 + 27 =y + 2 xy — Z1|)_t5(1 + 2K]x, — y,|
4an
K 1/t
~ ~ t
+ 2k|xz —z,[)7" x |(1/’j(D)1/’k(D)f)(y1»3’2).9(21:22)| dY1d}’2dZ1dzz>
< Imjlle, ( f 20mkn| g (21, 2,)|F (1 + 2%|x, — 2,1) /2 (1
st Rél-n
) 1/t
+ 20|, — z1|)_“/ dzldzz>
. ~ ~ t . —st/2
([ 2 BB @0 (14 2 - )
& 1/t
+ 2K|x, — y,|) 752 dY1d3’2>
~ ~ t 1/t
< [[mill, o (Ms (|60, DIA]) G 22)) (Mo (1g19) ey, 2 ) V° (35)

The last inequality is from Lemmas (5.1.10) and (5.1.11) since st/2 > n.
Then by Holder’s inequality, (32) and (35), we have
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T (f, 9) Cer, )1

i 1/2
_ _ 2/ 172
s sup [mfi s 11 ) (: (165,225 H{(Msamt))” )
\ J.k p L
RV
2/t 2y t/2||M*
< sup| klles< (M (BB )) H{(Msumf)) .
\ /K LAt
Lp/t
S sup el 171 s (36)

USIng suppm* € {1/a < \/|&1? + [n11? < a,1/b < |/|&|? + In,|? < b} for some a,b > 1,

by Lemma (5.1.11) we have
Sup || k” S,S = ]Sup ||mJ k”HSS (37)

Consequently
1T llpxpaosr S sup [lmyl| . (38)
J k€T 1,52

Changing the roles &,,n, and &,,n,, we can prove

Tt llpxzassr S sup [my || (39)
J,KEZ

HSIJSZ

where m!' = m, , this time.
Estimates for the Fourier multiplier operators with a symbol in Group 2:
We write m? instead of m,; for simplicity. Since suppm,s € {|&]| < In1l/2,

In21/8 < |&2| < 8|n3 [}, then there exists ' € s(R™), such that Y (§2)1* (1) = P(§2) on
{In,1/8 < |&,] < 8|n,|}, where ¥ is the function which is the same as case 1. Hence,

W(D/2)T 2 (f, 9) (x1, 13)
1 | |
= W R4nm2 (Ell 52,771, nz)elX1(§1+771)+lx2(§2+772)¢j (é_l
+ 7]1)]2@1; &,)d(Mm1,my) dé;dé,dn,dn,
= 2 . _
a WZ R4nm (&1, €211, 7’]2)3lx1(§1+771)+lx2(§2+n2)

X ¢j(51 + 7]1)l/~’j(n1)1/)k(fz)f(f1» Szz)lpl%(nz)g(rh»Uz)df1dfzd771d772
— 1 2 ix1(§1+n1)+ixz(&2+12)
= Wz}(: Rmm (&1, &2.m1.1m2)e 1/0(51 +11)
X lljj(ﬁ)lpk(fz)lpi(fz)f(fpfz)lpl%(nz)g\(m»Uz)df1dfzd771d772
=3 e ) @Gy 1), 24Ges - 32,20

R4T

— 71), Zk(xz — 73))
X (P (DYYR (DY) (1, ¥2) Wi (D)9) (21, 22)dy, dy, dz, dz, = ZAj,k (40)

k
where 1) is the same as we used in Estimates for symbols in Group 1 and ¥(&,) Y?(&,) =

P (&)
]k = 2(2 1) 2k771'2]€2'2k772)1/’(€1 + )Y (&L). (41)
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Take 1<t <2 satisfying 2n/s <t < min{2,p, gq}. Arguing in the same way as
deriving (35), we can prove

~ ¢ 1/t
|4l < IImZill o (M5 (IQE,OWRDIN]) Gerx2)) ™ (MEDIIGID a2V (42)

Moreover we can assume f(&1,&,) = f1(&1)/f>(&,), where £, f5> € 8(R?™), since f;  f>
is dense in LP (R?™),1 < p < oo. Then we have

_ . 1/t
4] S 2l (MU IO GOM (|G| ) )
1/t

x (M ([, | ) oM (DI ) 02)) (43)
Then from (40) and (43), we have
[W(D/2)T 2 (f, 9) (x1, x,) |

D 2l (MUgn oM (|60 (xl))m
k

1/t

X (M (D) g1 eI MPR DI )19 (x2)) /
1/t
S sup [k . (M (g2l GedM (|6 0))) (xl))

X [Z [M(1£(D) g2 1) G )M (1Y E(D) f)19) ()] t}- (44)
Then )

1/2
<Z|w<D/zf)T,%<f,g)<xl,x2>|2>
J

~ 2/t
s sup Il o {Z (Mg, M (@5, fD]) ()]

]

X

2 1/2
k

1/2
= sup [mj]l .. {2 [MUg:19GM ([0 (xl)]z”}

J

X {Z [M(Iwi(D)gzIt)(xz)M(Iwi(D)fz)It)(xz)]l/t}- (45)
k

Sincep/t,q/t,2/t > 1, by Holder’s inequality, Lemmas (5.1.11), (5.1.12) and (45)

1/2
<Z|¢(D/2f)71%(f,g)(xl,x2)|2>
J

T2 (f, 9) Gy, )l

LT

S sup Iillyss {[7 2

]

1/2
{Z [MUgu 1M (| f)]) (xl)]z”}

L"(R™)

X

Z [M (19 (D) g2 1) )M (1R (D) f)19) ()] ¢

k

L"(R™)
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1/2
< Sup || k”Hss {Z [M (l(lﬁj(D)fl)lt) (xl)]z/t} ||(M(|gl|f))1/t||Lq
J

LP

1/2
x (Z(M(wk(z))gz RIEB) ) (Z(Muwk(mfz f)(xz))z“)

k

LT(R™)

1/2
(2(M(|¢,£<D)f2|f)(xz>)2”>
pall ™k LP

S sup |mfill Mfillo I Follue g ol gellue (46)
Ik

Using supp mj’k €{l/a < I&12+ml? < a,1/b </|&]? + In,|? < b} for some a, b > 1,
by Lemma (5.1.16) we have

N

Up [|m [ s 11 l1# g1l
Ik

1/2
x (Z(Muwi(mgz|f)(x2>)2”>

k

sup il S sup el @)
Consequently
”TmZ”LPqu—»LT S sup ”mj,k”Hs,s- (48)
J,KEL

By changing the roles of &, and n, or (¢;,1,) and (¢,,71,), we can prove other situations
in Group 2.

Estimates for Fourier multiplier with symbols in Group 3:

We write m? instead of m, ,, the proof is similar to case 1 with necessary modification.
Since &5 +n1] = [n1] and [§; + 02| = [$;|we have
w(D/ZJ)Tm3 (fl g)(xll xZ)

- = )(W ] m3(Ey, & 10, ) e X1 ELHID X (2 12)
X P; (511 + 771)f(f1'52)1/)k(52 + 12)G(M1,m2) dé1dé,dn,dn,
= —(Zn_)(4n) fR4nm
X ; &+ 771)1/;] (ﬂ1)f(f1' P (& + nz)lljk(fz)g(npnz)dﬁdfzd’hd’?z
m] m (51'52:771' 2)31x1(f1+771)+lx2(52+772)
X P (& + nz)ﬁbk(gz)f(fp 52)1:0] (& + 771)¢] (1) G(M1,m2)dé,dE,dn,dn,
= ] Z(Zjnﬂkn)(?_lmsk)(zj(% —¥1), 250, — ¥2), 27 (%1 — 21), 2% (%, — 2,))
R4

; (El' 52: N1, nz)eix1(51+771)+in (&2+m2)

~ X (ll)k(D)f)(YLJ’Z)llf](D)g(Zl'Zz)dY1d3’2dZ1dzz 2 Aji (49)
where 1, are defined the same way as we deal with symbols in Group 1 and
m}ak =m3(27&;,2%n,, 278, 250) (& + n)DY(&, + 1) (50)

As we did in dealing with symbols in Group 1, we can easily prove

~ t 1/t ~ t 1/t
Al < Il e (M (165,01 ox)) ™ (s (I@@DIN) o)) . GD)
where max{1,2n/s} <t < 2.
Since the rest of the proof is similar to that of case 1, we omit the details. Thus we obtain
3
I lipaaoar < sup [ .= sup [m . (52)
By changing the roles of (¢; +n;) and (&, + 1,), we can get the same conclusion for
mz’l.
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Estimates for Fourier multipliers with symbols in Group 4:

We write m* instead of m; 5. Since the proof is similar to the case dealing with symbols
in Group 2, we will outline the main estimates and omit the details here.
First, we can easily prove

T e (f, 9) (x1, x3) |

< * Z M (
SUD [ s ,-k< :
<2

Tk
where max{1,2n/s} <t < 2.

m;'},k = m4(2j51' 2k771' ijz» 2k772)¢(51 + 771)1[’(51)1.[’(52 + 772)1,5(9{2)- (54)
Sincep/t,q/t,2/t > 1, by Holder’s inequality, Lemmas (5.1.11) and (5.1.12), we have
1T (f, 9) Ger, x2) |

4
SUD [l (2 (Ms (

Jk

1/2
timiot)’
Jjk
il e {Z (o

t/2
{Z (M( (lﬁ,-(D)tZk(D)g)lt))Z/ }
Jk

~ ~ 2
sup [l {]Zk |66, )P (D)1)]

i i ) 2/t 1/2
(‘ﬁ](D)lﬁk(D)fﬂ ) (xl,x2)>
1/2

3 N . t/2
;DY (D)N)| )(xl.x2)> (53)

1/2

N

B B ¢ 2/t
;DY) )) )

LP

X

L4
t/2 1/t

N

B B ¢ 2/t
;)P0 )) }

Lp/t
1/t

X

Lp/t
1/2

N

1/2
{2 |($;(D)$R<D)g)|2}
Tk

LP L4
< sup ”mﬁklle,sll]c”LP”g”Lq. (55)
Jj,KEZ

Since suppm* € {1/a < 1& 12+ Inl?2 < a,1/b < /1&]? + |n,|2 < b} for some a,b > 1,

by Lemma (5.1.16) we have

-

3 .
Tl = sup [, [ = sup il (56)
Next, we consider T,,,«1, T,,+2, the dual operator of T,,,, which are defined by
| Tn.ohdx = [ Tonthgfdx = [ Tpa(rygax (57)
RZn Rzn Rzn

forall f, g, h € s8(R?™).

If we have proved the same conclusion for T+, T,,-2, as T,,, then using the same proof
as in the bilinear case in [209], we complete the proof of Theorem (5.1.17) by multi-linear
and multi-parameter duality and interpolation.

149



To finish the proof of Theorem (5.1.17), we only need to show

sup [|m,|
J,KEZ

HS152 (]Rél-n) ~ ]SE%||m] k ||H51752 (RM’L)

Jsilclepz ”mmf ""| HS152 (R4™) s J ltlepz”m] k”HSl'SZ(Rm)
where m**(&3,11,82,m2) = m(=(& +11),m1,— (& +12),m2) and m(&y,m4,85,m,) =
m*l(fp —(& + 1), &, (& + 772))-

We only choose one case to prove, the remaining cases are the same.

By a change of variables,
*1 |

(58)

HS152

= ||m( 2j(€1 + 1), _Zk(s;z + 12), 2j771; 2k7]2)¢1(f1 + )P (& + 772)||H51,s2
||m(2j§1, 24&;, 271, Zkrlz)l/h (=1 + 1)) (=5, + 772);772)||H51,sz- (59)

Since \/|€ + 1% + [n|2 = y/|¢]2 + |n]2, then we can obtain
sup [[miy, ., S sup it

Therefore, we have f|n|shed the proof of Theorem (5.1.17).

Theorem (5.1.18) [224] Let 1<p,q<oo,1/p+1/g=1/r and n<s;,s, <2n,s =

min{s;, s, }. Assume

Q

(60)

H51,52

() p>2n/s; w; € Aps, j2n (61)
q > 2n/s; wy € Ay, j2n OT (62)
(i) min{p, q} < (2n/s)’, 1<r <o (63)
1 e A r's/2n 1 e A r's/2n- (64)

If m e L= (R*™) satisfies
0D 154 oy < (65)

then T,, is bounded from LP (W1) X L9(w;) to L" (w), where w = w)/Pw. /4,

The statements and their proofs of Theorems (5.1.17) and (5 1.18) can be easily
generalized to multi-linear and multi-parameter settings. We also remark that the proofs of
our main theorems can be viewed as alternative ones different from those given in [214,
215]. Moreover, we provide weighted estimates for the multi-linear and multi-parameter
Coifman—Meyer multiplier operators considered in [214, 215]. We only state these results
here.

In general, any collection of n generic vectors & = (£t ,,..., &, = (§Y)E, in R¥
generates naturally the following collection of ¢ vectors in R™:

§ =D& = EDJer 8 = G (66)
Let m = m(¢) = m(€) be a bounded symbol in L®(R™) that is smooth away from the
subspaces {§, = 0} U - - - U {¢, = 0} and satisfying

C e 0T m@)| < ., wfﬁs|m (67)

for sufficiently many multi-indices a4,..., a;. We WI|| naturally want to investigate the L"
estimates of the n-linear multiplier operator Tn(f) defined by

Trﬁt)(fp---,fn)(x):f mM(§)f1(§1) + -+ fo(§p)e?™H Crttinds (68)

Rt
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Thus, we can prove the following L" estimates for general n-linear, t-parameter

multiplier operator T,;t) with limited smoothness.

Proof. Is devoted to establishing the second main theorem on weighted estimates for the
multi-linear and multi-parameter Fourier multipliers with limited smoothness, namely,
Theorem (5.1.18). Before we prove Theorem (5.1.18), we recall some useful facts about
product A, (R™ x R™) weights.

Lemma (5.1.19) [224] ([223]). Let 1 <p < o and w € A,(R™ X R™). Then

(i) wi" € A (R" x R™)

(i) there exists 1 < g < p such that w € A, (R™ x R").

Lemma (5.1.20) [224] Suppose that w; € Apj([R” x R™) with 1 <j<m for some

1<py....,pm <ooandlet0<¥6,,...,0, <1lbesuchthatf, +--- + 6, = 1. Then
0 O
W11"' W eAmax{pl ..... Pm} (69)

we can obtain the conclusion.
Lemma (5.1.21) [224] ([112]). Let 1 <p,q < oo and w € A,(R™ X R™). Then there
exists a constant C > 0 such that

1/q 1/q
{E(Msfk)Q} <c {Zlfkl"} (70)

KEZ LP(w) KEZ LP(w)
for all sequences {f; }xez of locally integrable functions on R?™,

Lemma (5.1.22) [224] ([98]). Let 1 < p < oo,w € A,(R" X R™), and let ¥, Y, € s(R™)
be such that suppy; c{€R™1/a < |é| <a} for some a > 1,suppy, c {£ €
R™:1/b < |&| < b} for some b > 1. Then there exists a constant C > 0 such that

1/2
> [ (0/2 ) 0/2591" < Cllfllwew) for all f € LE,R™.  (71)
jkez
LP(w)
Moreover, if ¥ ez ¥;(§/27) = 1 forall € = 0, fori = 1,2, then
1/2
> (/2072591 ~Ifllirew) for all f €LP(w).  (72)
j kEZ
LP(w)

Lemma (5.1.23) [224] ([124]). If 0 < p < oo,w € A, (R™ X R™), f is a local integrable
function in HE (R™ x R™). Then

J,kEZ

1/2
I llpew) < {Z |¢1(D/zf)¢2w/zk)f|2} . (73)

LP(w)
We first prove Theorem (5.1.18) under assumption (i) in Theorem (5.1.18). Since
2n/s; <min{2,p}and w; € A, ,2n, by Lemma (5.1.19), we can take 2n/s; <p; <

min{2, p} satisfying w; € A, /,, , the same is for w,. Then

1/2
1T s (F Pllirw) < {Z |¢1(D/2f)¢2(0/2k)Tm(f,g)lz}
j,KEZ

LP(w)
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1/2
< sup ], {]k( (I @y@n[)) } (g1 N
o |
< sup|| ,(||Hsls2 { (Ms (|(1/jj(D)1/jk(D)f)|t)>2/t} ”{(M (g |t))2/t} | Lo/t
J.k Lp/t(wf/t) w,
<JSUP|| k”Hss”f”Lp(wl)”g”Lq(wz) (74)

where we take t = max{p;,q,},thenw; € A, /;,and w, € A, ..

To conclude the weighted estimates for the Fourier multipliers m, we need to do
estimates corresponding to other symbols. Since the estimates for the remaining symbols
in other groups are similar to that of m?!.

We give the proof of Theorem (5.1.18) under condition (ii) we consider case p =
min{p, q}. Since p’ < (2n/s)’, then max{l/r’, 1/q}<1/r"+1/q=1/p < s/2n, that
is, r’',q > 2n/s. Hence 2n/s < min{Z r',q}

Since 1/2<s/2n<1 and wi™ €4 s /(2n) W2 -’ € Ayrs/amy, Dy Lemma (5.1.19)
we have

W11_ eEA r's/(2n) c ATJ, then Wq € AT (75)
W21 E A ,S/(ZTL) - ATJ, then Wy € AT (76)
Wl—T‘ — Wfl r )T/p (1 r'r/q € Ar's/(Zn) (77)

where (77) is from Lemma (5.1.20).
It is from the assumption that p < g, we also have r < q/2, then w, € A, C 4,,, C

Ags/2n. Since wi" € Aris/2n) 1 Wo € Ay C Agsjon, by Lemma (5.1.20) we can take
2n/s < t < min{2,r’, g} such that

wi' € Ay, w, € Ay (78)
By duality and (59), it is enough to prove
”T")’Yl:(< ||Lr ( 1— T )XLq(Wz)—)Lp (Wl p) C Sup || k”Hsl,Sz' (79)
From the proof of Theorem (5.1.17), we have
1/2
. k 2
I (9l (1) < ([} D 100720020/ 2 ()]
! J,KEL )
1/2
= sup 15kl M, (|@; (D)D) (e, xz)) } T x (M (1919 ey, %)) wy
K€ Tk )
2/ 1/2 L
S sup [y {Z (M (| @F@D| ) o xz)) } (09196200
jk Lr’(wl_r) L9 (wy)
t/2 1/t
S sup e, {Z( @O ) )
Jik Lr'/t(wl—r’)
t/2 1/t
x [[{(M:0191 G, 20)} S sup i, I lipupllglincyy.  (80)
LYt wy)  jker
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The weighted estimates for the Fourier multiplier operators corresponding to the
remaining symbols are the same as with T,,1, thus we finish the proof of Theorem
(5.1.18).

Section (5.2) Composition of Two Singular Integral Operators

The classical theory of one-parameter harmonic analysis may be considered as centering
around the Hardy-Littlewood maximal operator and its relationship with certain singular
integral operators which commute with the usual one-parameter dilations on R™, given by
6(x) = (6xq4,++,8x,,), 8 > 0. If this isotropic dilation is replaced by more general non-
isotropic groups of dilations, then many nonisotropic variants of the classical theories can
be produced, such as the strong maximal functions, multi-parameter singular integral
operators, corresponding to the multi-parameter dilations & : x = (§;x1,0,%,),x =
(x1,x,) ER*"XR™, 6§ = (8;,62),8;,6; > 0. Such a multi-parameter theory has been
developed extensively over the past decades. See [96-105, 110, 116, 121, 123, , 128, 129,
136, 233, 234, 237]. Multi-parameter flag singular integrals and their boundedness on LP
and HP spaces have been studied in [106-108, 118, 120, 235, 239, 240, 242], multi-
parameter and multi-linear Coifman-Meyer Fourier multipliers have been investigated in
[214, 215, 219, 220, 224], and a theory of multi-parameter singular Radon transforms have
been developed in [244-246].

[132] developed a theory of new multi-parameter Hardy space associated with the
composition of two singular integral operators with different homogeneities and
established the boundedness of the composition of such singular integrals on this space.
For R™ = R™"! x R with x = (x',x,,,) where x € R™" 1 and x,,, € R, they consider two
kinds of homogeneities:

§:(x', x;n) = (6x',6x,,),6 > 0,
and

5: (x',x,) = (6x',6%x,,),8 > 0.
The first is the classical isotropic dilations occurring in the classical Calderon-Zygmund
singular integrals, while the second is non-isotropic and related to the heat equations (also

1
Heisenberg groups). For x = (x’, x,,) € R™" ! x R, denote |x|, = (|x'|? + |x,,|?)z and

lx|, = (Ix"|? + |x,|?)z. The singular integrals considered in [132] are defined in the
following.

Definition (5.2.1) [250] A locally integrable function K; on R™\{0} is said to be a
Calderén-Zygmund kernel associated with the isotropic homogeneity if

a(l
‘M—aKl(x)|3A|x|;m"“' forall |a| >0, (81)

Ki(x)dx=20 (82)
i <|x|<ry
forall0 <r <1, < oo,

An operator T; is said to be a Calderon-Zygmund singular integral operator associated
with the isotropic homogeneity if T;(f)(x) = p.v.(K; * f)(x), where K, satisfies
conditions in (81) and (82).

Definition (5.2.2) [250] Suppose K, € L},.(R™\{0}).K, is said to be a Calderén-
Zygmund kernel associated with the non-isotropic homogeneity if

da% il
Kz(xli xm)

3G 0 n)? <Blxl;" 7T v alz0,820,  (83)
m
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f K,(x)dx =0 (84)
i <|x|p<rsy

forall0 <r <1, < oo,

An operator T, is said to be a Calderon-Zygmund singular integral operator associated
with the non-isotropic homogeneity if T, (f)(x) = p.v. (K, * f)(x), where K, satisfies the
conditions in (83) and (84).

Both the classical Calderon-Zygmund theory and theory of singular integral operators
associated with the non-isotropic dilations indicate that both the operators T; and T, are
bounded on L? for 1 < p < oo and of weak-type (1,1). It is shown by Phong and Stein in
[135] that in general the composition operator T; o T, is not of weak-type (1,1). [135] gave
a necessary and sufficient condition such that the composition operator T; o T, is of weak-
type (1,1). This answers the question raised by Rivieré in [249]. In fact, the operators
studied in [135] are compositions with different homogeneities, and such a composition
operator arises naturally in the study of the d-Neumann problem.

It is also well-known that any Calderon-Zygmund singular integral operator associated
with the isotropic homogeneity is bounded on the classical Hardy space H? (R™) with
0 <p < 1. A Calderén-Zygmund singular integral operator associated with the non-
isotropic homogeneity is not bounded on the classical Hardy space but bounded on the
non-isotropic Hardy space (see [230]). The composition operator T; o T, is bounded on
neither the classical Hardy space nor the non-isotropic Hardy space. Thus, the natural
question is to ask on what Hardy space can the composition operator T; o T, be bounded?
[132] introduced a new Hardy space H,'fom(]R%") associated with the composition of these
two different homogeneities and proved that T; o T, is indeed bounded on such spaces.
Developed in [139] the theory of the Triebel-Lizorkin spaces F,”? (R™) associated with
the composition of these different homogeneities. Such Triebel-Lizorkin spaces for
O0<p<1la =a,=0and g = 2 are the Hardy spaces H,’fom(IR{”) considered in [132].
Triebel-Lizorkin spaces form a unifying class of function spaces encompassing many well
studied classical function spaces such as Lebesgue spaces, Hardy spaces, the Lipschitz
spaces, and the space BMO [65, 115]. Boundedness of singular integrals and pseudo-
differential operators on the Triebel-Lizorkin spaces have also been extensively studied;
see, Frazier and Jawerth [115] and Torres [247].

The main goals are to identify the dual spaces CMO, @4’ of the new Triebel-Lizorkin
spaces F, 7 (R™).

We now introduce the new Triebel-Lizorkin spaces associated with different
homogeneities. Denote So(R™) = {f € S(R™): [o., f(x)x%dx = 0,V |a| > 0}. Let ) € S(R™)
with

supp Y0 € {(§',6,) € R x R+ 5 < [¢l, < 2] (#5)
and
Z|¢Tl>(2—fe', 2—1'5m)|2 = 1 forall (£,&,,) € R™\{0}. (86)
Letp@ € S(nge\fvith
supp Y@ € {(£',6,) € R™ x R 3 < I¢], < 2172 #7)
and
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— 2
Z |‘/’(Z)(2"‘€’, 272kg)| = 1forall (§,&,) € R™\{0}. (88)
jez
Denote 1, () =9V + P (),  where PP (x',x,) = 2MypD(2x’, 20 x,,),
,52) (x', x,,) = 2KM+D ) (2kx" 22Ky ) and j Ak = min{j, k},j V k = max{j, k}. The
following discrete Calderon reproducing formula is from [132].
Theorem (5.2.3) [250] Suppose that 1™ and @) are functions satisfying conditions in
(85)-(86) and (87)-(88), respectively. Then
f@a)= Y ) 2Oy Gy f)(2 e, 2700,
LkeZ(#Cfm)emeng .
X P p(x — 270N x, —27UN2KDp ), (89)
where the series converges in L*(R™), S, (R™) and S;(R™).
Definition (5.2.4) [250] Let 0 < p,q < 0, a = (a,, a,) € R?. The multi-parameter Triebel-
Lizorkin type space with different homogeneities ;" (R™) is defined by

ESTR™) = {f € Sy®R™ ¢ I llpgaum, < o),

(Z - [GAR)a+(AZk)azlq

Jj k€L

where

11l 20 gmy =

1
q

—(j oy —(i q ’
X [ FRTUM,2700202, | (g o) ,
(! ) EZ™M1XT. o m)
LP(R

where [ are dyadic cubes in R™~1 and J are dyadic intervals in R with the side lengths
L() = 27U and 1(J) = 2~U"2K), and the left lower corners of I and the left end points
of J are 2=UMNI¢" and 2-UA2K)p_ respectively.

This multi-parameter Triebel-Lizorkin space is well defined, since it has been proved in
[139] that £,*7 (R™) is independent of the choice of the functions y* and 2. This space
can also be characterized by its continuous form, that is,

(Z 2-[GAR) @ +(jAzk)azlq

j k€T

1
q
—-(j 1 9—(j q !
X Z Wi f(270M 2, 2700202 |y () xy ()
(CAR P Y= ALY/
LP(R™)

~ <Z 2-[(GAR) a1 +(jAzK)az]q |¢j’k * f|q ) 0

J,KEL

Q|

LP(R™)
for a rigorous proof, see [229].
In Definition (5.2.4), setting a; = @, = 0,q = 2,0 < p < 1, one obtains Hardy spaces
associated with different homogeneities HZ . (R™), which was introduced in [132] to
study the boundedness of composition operators with different homogeneities.
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Note that the multi-parameter structure with different homogeneities is involved in (90).
If ¥; x(x,y) in (90) is the form 1/;1-1(x) - Z(y), then we obtain the Triebel-Lizorkin space

of multi-parameter pure product £, (R™ x R™)with the norm
1

q

2 2GR0 +(n20a21a [y f]?

PRt LP (R™xR™)

for f € F,"/(R" x R™),0 < p,q < oo, = (a3, ;) € R?. It has been introduced in [128].
Let g’ denote the conjugate of g, sothat 1/g+1/q' =1when1<qg<o0. If0<g<

1, it is also convenient to let g = oo. The first main theorem concerns the duality of the
spaces F,"? when p > 1.
Definition (5.2.5) [250] For 0 <p < 1,1 < q < o0, a = (a;,@,) € R? and with I, and
x1, x; being the same as before, the space CM0,"? (R™) is defined by

CMO; Y (R™) = {f € Sg(R™) : |If lemozamm) < 3,
where

”f”CMOS'q(]Rm)

1/2
= sup (%J z 2=l +(jAzK)az1q x z (|l x *f(x,,x])r’XR(x)) dx) .(91)
E\|QP 79 ke RETl ,REQ

In order to prove the duality theorems, following Frazier and Jawerth in the one-
parameter case [115] (see also [247]), we should first do these in the corresponding
discrete multi-parameter Triebel-Lizorkin sequence spaces. For any R € Il;,, setting

Yr(x) = |R|1/21/Jj'k(x’ — X1, Xm — X;), then by (89), it’s easy to have
G = ) (f e, (92)

R€ED
Definition (5.2.6) [250] Suppose that ™ and ¥ are functions satisfying conditions in
(85)-(86) and (87)-(88), respectively. Define the multi-parameter i-transform S, as the
map taking f € So(R™) to the sequence Sy f = {(Syf)r}r, Where (Syf)r = (f,¥r).
Define the inverse multi-parameter -transform T, as the map taking a sequence s =
{sr}r 10 Tys = Xg Spipr(%).
By (92), for f € Sy, g € Sg one has

(£,9) = () SyPae(x),9) = (S4f,54.9) (93)
For a sequence s = sg, one alsgeﬁas the following identity:
(Spf5) = D {Fbedse = (. ) sewhe) = (£ Tys). (94)
RED RED

The discrete Triebel-Lizorkin sequence space f,*? is defined as follows.
Definition (5.2.7) [250] For 0 < p < ,0 < q < ,a = (a3, a;) € R?, define £, to be
the collection of all complex-valued sequences s = {sz} such that

1/q
(Z(|I|“1/<m-1>|1|“2|sR|;zR(x))">

RED

Isll jea = < (95)

LP
where 7z (x) = |R|7Y2 g (x).
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Definition (5.2.8) [250] For 0 <p < 1,1 < q < oo,a = (a3, @) € R?, define C," to be
the collection of all complex-valued sequences t = {tg}z such that
1/q

lellgza = sup{ —g— [ > (19Dl 1 g 7 () (96)
QP 4" " rcaReD

where ¥z (x) is the same as the form defined in Definition (5.2.7).

Theorem (5.2.9) [250] Suppose 0 < p < 0,0 < q < o, a = (a;, @) € R, and Y™ and @

are functions satisfying conditions in (85)-(86) and (87)-(88), respectively. The operators

Sy B > £ and Ty, : £, - E;“% are bounded, and T, o S,, is the identity on £,".

Proof. The boundedness of Sy, is immediate since

”Sll)(f)”f;ﬂ = ||f||pg.q

from the definition.

We now outline the proof of T,’s boundedness. For a sequence s = {Sg}rep, l€t
f(x) = Tys = Xg sgir(x). Then by almost orthogonality estimates (e.g. see Lemma 3.1
in [132]), one has
Wy * (o = x1, 2 = ;)

Ip— 20N AkAK") (m—1) 2inj’ A2 (knk")
s 27Ukl

(1 + 2j/\j’/\k/\k’|x1, _ x1|)(M+m_1) X (1 + 2j/\j’/\2(k/\k’)|x], _ le)(M+1)'
Hence for any v"' € x;, vy, € x;,
s 1/8
[ iG] s ) 2 0 b bkl g Jan (IR syl | (07 vi)
jk REllj i

for a & > 0 which can be sufficiently small if one chooses M big enough by Lemma 3.2 in
[132]. Summing over j', k" and (£", £;,), one has
a

( Y 2 le sl Ny f(xzux;')quzr(x”)x,r(x,’ﬂ)>

jKk'ez

(¢ tm)

<C z 2_[(]"/\k’)a1+(j'/\2k’)a2]q ZZ_|j_j’|L2_|k_k’|L
j’,k’EZ ]k

1
1/6 qa\ q

)
X Cy Ms( Z |R|_1/2|5R|X1X]> ", vm)

REHj,k

Then by the inequality (3, a;)? <Y, a, if 0 <q <1, or Cauchy’s inequality with
exponents q, q’,i + & = 1,if g > 1, we obtain
1
q
. zluesraala Ny (o) | e Gy o)
jKk'ez

(¢ tm)

157



1
/ s q/5\5

<C Z 2-[G'Ak" ) a1+ (5" A2k )az]q M, z |R|‘1/2|5R|)(,)(] ", v),) :
\j,kEZ REHj’k /

Applying Fefferman-Stein’s vector-valued strong maximal inequality on LP/9(£4/9)
provided § < min{p, q, 1}, we complete the proof.

We will obtain a similar correspondence between CM0,°? and C,"?. Following the proof
of Lemma 3.1 in [132], one can obtain the following almost orthogonality estimates.
Lemma (5.2.10) [250] Suppose that ¥;, and ¢, satisfy the same conditions in (85)-
(88). Then for any given integers L, L, and M, there exists a constant C = C(L,M) > 0

such that
2 (Jnk)(m-1) 2j/\2k

/ —|j=j"|L1p—|k—K'|L
|17[)j'k * @i (X ,xm)| < ¢2-li=i"|Lip- |L2 L+ 2 ) FFmD (1 £ 272 |z, D

Proof. One can write
st 07,05 = [ @ 0PI =5 = 3 ) B ¢ 08I0, 7)Y i
RM~IxR

Then by classical almost orthogonality estimates, one has
2GAImo—|j=j'|L,

1) (CO

[ 0P um)| < € (97)

J il / (M+m-1) Sl (M+1)
d (1 + 200N |y |) (1 + 20Aj )|um|)
an
2(k/\k’)(m+1)2—|k—k’|L2

2 2 I}

W+ 0P ym)| < € (98)

(1 + 2680y )V (1 4 g20emn )Y
for any positive integer L,, L, and M. With the same process as in the proof of Lemma 3.1
in [132], we have

|¢j,k * <pj’,k’(x,:xm)|

2(j/\j’/\k/\k’)(m—1) Zj/\j’/\z(k/\k’)

< €27 l=J"ILap=k=K'|L

— X — ,
(1 + 2]/\]’/\k/\k’|xl|)(M+m—1) (1 + 2]/\]’/\2(k/\k’)|xm|)(M+1)
which gives
|l/)j,k * (pj’,k'(x,:xm)l
Z(j/\k)M—(jAj’/\k/\k’)Mz(j/\k)(m—l) 2(jA2k)M—(jAj’/\2(kAk’))MZj/\j’/\z(kAk’)

- X -
(1 + 2Jnk |y |)(M+m=1) 1+ 2]A2k|xm|)(M+1)

< 2=|j=j'|L1p=|k=K'|L,

After observing that
JAk—=jANJ ' ANRAE < |j—j'| + |k —-K'|
and
JA2k—jNj A2(kANK) Z|j—j'| + 2|k —kK'|
we obtain the desired result.

The next theorem concerns the actions of the multi-parameter -transform S, and its
inverse -transform T,, on the space CM0,"? and its discrete sequence form C,"?. We
prove that operators Sy, : CM0,"? —» C;’? and Ty, : €, = CM0O,*? are bounded, and
Ty o Sy is the identity on CMOg'q. The proof of this theorem is rather involved, and the
underlying geometry of the multi-parameter structures of the dyadic rectangles associated
with the composition of two operators with different homogeneities plays an important
role. These sorts of ideas have been initially used in [108] and then [132] for duality of

158



flag Hardy spaces, and similar ideas have been used subsequently for Hardy spaces in
different multi-parameter settings (see [130], [131], [133], etc.). It is more difficult and
complicated to carry out our multi-parameter Triebel-Lizorkin spaces.

Theorem (5.2.11) [250] Suppose 0 <p <1< g < oo, a = (aq,a,) € R?, and Y™ and
Y@ are functions satisfying conditions in (85)-(86) and (87)-(88), respectively. Then the
operators Sy, : CM0O,"? - C;>" and Ty, : ;" - CM0O,’? are bounded, and Ty, o Sy, is the
identity on CM0,"?.

Proof. We only prove T, is bounded since the rest is obvious. Let t = {tp/}p/ € Cz‘,’"q and
f =X tprpr.When 1 < g < oo, we are going to prove

1/q
_ 1 - q
sup l_l< (|I|a1/(m 1)|]|a2|§0j,k *f(xl,x])D |R|>
© 1Q|P @ \R=IxJE0,ReD
1/q
1
ssp—r( 2 (e llr ) R (99)

QP 4" \rR'=1'x"cQ.R'€D
Forany R’ € I/ s, by Lemma (5.2.10), one has
|(Pj,k % ¢R’(x1;x])| < ClRl|1/22—|j—j’|(L1+L2)2—|k—k’|(L1+2L2)
2(j’/\k’)(m—1) 2j’/\2k’
(1 + 27K |x, — x1'|)(M+m_1) " (142702 [ay — [y 0131
Since |[j' Ak —jAk|<|j—j'|+ k=K'l |j' A2k —jA2k| < |j—j'| + |2k — k'], one has
12 2—L1|j’/\k’—j/\k| 2—L2|j’/\2k’—j/\2k|
|0k * R (e, 2)| < CIR'] (1 + 20" |5, — x;0[)M+m=1) x (1 + 202K [x; — x;, [+
for any sufficiently larger L,, L,. Using conditions (85), (87), it is easy to see that
(<Pj.k w Py (- =270 _2_(j’/\2k’)€m))/\ &' ém)
= G & &P (& Edexp(—2mi[27 0D prgr 4 2-02K g & 1) =0 if |j' —j| > 1or |k' —k| > 1,
from which follows

5 F O )" = ) Newrl ]y e G )|

RI

X

Hence
_ q
(|I|Ol1/(m 1)|]|C¥2|g0]'k *f(xl’x])l) IRl
R=IXJCQ,RED
s ) ||9/On=D 9% | 9| R| /2| R]

R=IXJCSQ,RED R'=1"x]J'€D

§ <ﬂ/\ﬂ>qh/(m—1) 1 <ﬂ/\ﬂ>qh 1
YA dist(7, '\ \J'1 " 1] dist(J,J)\"
(”—m') ) (1 T )
Ry
- || /] |R'|

R=IXJ<SQ,RED R'=1"x]'€D

. <|1| . |1'|>‘”1/<’”‘” ( I |/'|>‘”2 1 1
1’| |1 VAl (1+dist(I,I’))M(1+dist(/,]’)>M
A ON 20
([17]%/ =D %2 |t | |R'|7Y/2) TR
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<

|I| |II| qlaq]l/(m-1)+1 |]| U/l qlaz|+1
—_—V — —_—\ —
|1'] |1|> <|]’| |]|>

R=IXJCSQ,RED R'=1"x]'eD <

y <|1| . |1'|>‘”1/ (m=1 ( I |1'|>‘”2 1 1
1| |1 ' (1+dist(l,1’)>M(1+dist(/,]’)>M
. 70D) 20D)
x (|1')%/ =D 1|2 | |R'|71/2) | R'|
4 - ! I|— q 12
= DD (IR e IR
R=IXJSQ,RED R'=I"x]'€D

(m |1'|>L<|1| |1'|>L 1 1
N\ A ) \ oA ) M ) M
|l |1 ' Ul (1+dlst(1,l’)) (1+dlst(/,]’)>
(1) t{J")
by settinggL,/(m—1) —q|a;|/(m—1)—1 =L =qlL, — qla,| — 1. Thus
1/q
1
SUPT< (1] 9/ =D 1192 [+ f(x,,x,)|)q|R|)
©|Q|P" @ \R=IxJS0,RED

1/q
1
Ssup—— r(R,R)p(R,R") x (|I'|%/ M=V |]’|"‘2|tR:||R’|‘1/2)q|R’| ,(100)
Q |Q|P " \R=IxJEO,RED R'=1"x]'€D
where
1] |1'|)L<|1| I]’I)L
r(RR)=[—Ar—] [=A—
(R.R) <|1'| )\
and
RR) = 1 1
PR (1 . dist(Z, 1')>M (1 . dist(, ]')>M'
(1) (")

In order to prove inequality (99), using (100), we only need to prove

1/q
1 1 1 1 - ’ - [/
sup—— r(R,R)p(R,R") x (|I'|%2/M=D|J"|%2| ¢, ||R'|7Y/2) 7 |R|
|Q|P " \R=IxJEQ.RED R'=1"x]'€D
1/q
1
S sup—— (II’I“l/(m‘l)IJ’I“ZItR'IIR’I‘l/Z)qIR’I : (101)

Q |Q|P @’ \R'=I'x/’c,R'eD
To do this, define

000 = 3(I x])).
Forany R € Q, let 4; ;(R) be the collection of dyadic rectangles R" so that
Ago(R) ={R'=I'"x] € Q:dist(I,I') <€) v £('),dist(J,]") <€) VvL(J")},
and fori > 1,
Aig(R)={R' =1'x] cQ: @) ved) <dist,I') < 24) v £, dist(J],]")
<€(HVvLy}
and forl > 1,
Ag(R)={R' =1'x]' € Q:dist(l,I") < (1) v L"), 21e(y)) v £()) < dist(J,]")
< U VveD}
and for i, > 1,
Ay(R)={R' =1x] cQ: 7)) v L) <dist(,1")
< @A) Ve, ey v E() < dist(,]) < U VLD,
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and i, =0,
A;;={R =1'x] €D:3217 x2Y)nQ = g}.
It is easy to see that for any R € Q,U;;504;;(R) =D,A;;(R)NAyp(R) =0 if
(LD # (", 1")and 4;;(R) € A;;. Note that for R" € 4; ;(R), i,1 =0,
N dist(1,1") S dist(J,]") S
2(1") £(J")

p(R,R) = 2~ G+OM

2t 1+ 2L

from which follows

Hence

1
1 1

1/q
(R, RDPp(R,R") x (1'% =D\ %2, ||R'|7/2) R
|Q|P @" \R=IxJEQ,RED R'=1"x]'€D

1
1 1

1/q
(R, ROp(R,R") x (|I'|/™=D |22 || [R'|7/2)|R'|
|QP @’ \R=IxJSQ,RED i,120 R'€A;;(R)

1/q
1
=— > Aweauwr RRIPRRY X (111D | ||R|/2) R
|Q|P @’ \R=IxJSQRED i,I>0 R"€A;,

=1 (DI ID NI IH I

|Q|P a" \ \R'€ao, =1 R'€a;, 121 R'€A,; il=1R'EAy
1/q

I} 1 - l; = qd,/

X Awengar R RIS MDY | [R2) R
R=CQ,RED

= + I + I3 + ).
We only estimate I, since estimates of estimate I;,1I, and I3 can be concluded by

applying the same techniques.

For each integer h>1, let T,,f'l =R =1'xJ' €4y [3@2'%x2Y")nQ%| >
zih|2i1’ x 24)'[3. Let
Dyt =AY, and o= | | R
R'eDi

Then
1

Iy = 2-(xhM 2 XR'EAL-J(R)T(R'R,)

QP 4" {151 k=1 R'eD}! RCQ,RED
x (J1']%/ =D | R 71/2) R
To estimate the right-hand side of the above inequality, we only need to estimate

z XR’EAi,l(R)r(R'R,) .

R<QO,RED
Firstly, because R" € 4;;(R), one has 3R N 3(2'1' x 27]") # @. For R € Q, there are four
cases:

Case 1: [2'1'| = |11,|2Y)'| = |J|; Case 2: |2 = |11, [2Y']| < I]1;

Case 3: [2'1'| < |11,]|2Y'| = |J|; Case 4: [2'| < |11, [2Y'] < 1] 1.

From the definition of 4; ;(R), one can see that if R’ € Case 2, then
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() = Q1)) VL) < dist(,]) < U VL) = £(),
which implies Case 2 is an empty set. For the same reason, Case 3 is also an empty set.
We split 1, into two terms:

] _zz Z 2" (HDM( Z Z )XR’eAi,l(R)T(R»R’)

|_Q|p qa’ i1=1 h21 gr eDll ReCasel ReCase4
x (|17]oa/(m= 1>|J'|“2|tR/||1!e'|—1/2)"|R'| = I; +11.

In Case 1, since R’ € A;,(R) and R’ € D}*!, one has

IRI < |3R N 3(21" x 2Y")| < [3(2'1" x 2Y)") n Q0| < zh -3(2'1' x 2Y")|.  (102)
Inr(R,R"), we should compare the side-length of R with the side-length of R’. We divide
R < Q into four categories:

Category 1.1 |I| < |I'|,|J| < |J'|; Category 1.2 |[I| < [I'[, | > |J'[;

Category 1.3 [I| > |I'|, |J] < |J']; Category 1.4 |I| > |I'|, [J| > [J'I.
For Category 1.1, (102) gives 2i(m=D+|R'| = 2h-1-2m+n|R| for some integer n > 0
since 1,1’ are all dyadic, where 272™ is used to offset 3™. For each fixed n > 0, the
number of such R’s must be less than 7™2"~1=2m+1 since R € 7(2'1' x 2!]"). Therefore

(Zi(m—1)+l)L
XR' EA; l(R)r(R R ) = 7mz (Zh 1- 2m+n)L 1~ S Zle - 1)+lL
ReCased,|I|<|I],1]I=1]!| 1n>0

For Category 1.2, |I| < |I'],|J| > |J']. From (102), one has
1111 < |R| < 3R N 32" x 2Y")| < [32H" x 2Y") n Q%] <
It follows that

e 1|3(2 I'x 24)|.

mzi(m—1)+l

1] < = 1I';
hence 2i(m=D+ 1’| = 2h=1-2m+6 ||| for some integer 8 > 0. For each fixed 6 > 0, the
number of such I’s must be less than 7™~12=1=2m=1+6 gince | € 7(2¢1"). Moreover from
V' < ] < [2Y'| we have |2P)’| = |J| for some positive integer B with 1 < B < L. For
each fixed B > 0, the number of such J’s must be less than 72¢=#) since J < 7(2Y)").

Hence
Zl(m—l))L 2!—,8
m
XR'ea; z(R)r(R R) <7 z z (2h-1- 2m—l+9)L—1 LB

ReCased,|I|<|'],|]1>1]'] 0>0 g=1
< lZle—h(L—1)+31L

With a similar argument to Category 1.2, for Category 1.3 one can obtain the following
estimates:

XR'EALL(R)T(R'R,) < i22iLm—h(L—1)+21L.
ReCasel,|I[>|1']1]]<])’|
For Category 1.4, from (102) one has
IR'| < AT |32 x 24|,

from which follows that 2"~1 < 3m2i(m-D+l On the other hand, with |R’| < |R| <
|21 x 2Y)'|, one has 2{m=DH|R’| = 24|R| for some integer 0 < A < i(m — 1) + L. For
each fixed A > 0, the number of such R’s must be less than 7™2% since R € 7(2’ x
24"). So
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i(lm—-1)+1

24\
XR' r(R,R) = 7M2M | s 2"
R'€A;(R) ) 2im-)+1 | ~ )
ReCased,|I|>|I'],|J1>1]'] A=0
Therefore
1 —(i I ! — I I — q /4
B ). ). . 2O Y eaumr® R x (115Dl g IR /2) R
|Q|P q' {1>1 h=1 RleD;Eil ReCase4
S i_i < (2iL‘m—h(L—1)+lL + lziLm—h(L—1)+3lL + izZiLm—h(L—1)+21L)
|QlP " iiz1 \h=1

q_4q
iM+1 —(i+DM|ilp q"
+ E 2 )2 | P 9
h:zh—153m2i(m—1)+l

x (17 1o/ D)y ||R'|72/2) R

il %_i’ il
|2 [P R'cQy

<y (Z gunasan gy zimz)
h:zh—ls3m2i(m—1)+l

i,l121 \h21

(1710/ =7 g | |R|2) R

a_9
% 2—(i+l)M(22h)p q’ sup —

2 1Q|P 7 rea
< sup—gg . (P19l |2l R|12)° R
QP 7 rea

since Q)| < 2%M0%°| < 22"|Q,0 <p <1< q <o and choosing M > 4mL with L
large enough.

In Case 4, firstly, since R' € A; j(R) and R € DL, one has

|27 x 24| < [BRn 321" x 2Y")| < |32 1" x 2Y") n Q°°| < zhl_l 13211’ x 2Y7)],
which follows h < 22™*1  Moreover, from |2I'| < |I|,|2Y'| < /|, one has
2im-D+l+o|p’| = |R| for some integer ¢ = 0. For each fixed ¢ > 0 and any R’, the
number of such R’s must be less than 7™. In this situation, we have the following
estimates:

L

1 |
" — l
E XR'EAi,l(R)r(R’R)_E 7 <—2i(m—1)+l+a> S 2

. ReCase4 020
Then with the same process, one has

1

1t 5 swp—g—y ) (1111 [l IR 72) R
@ |f_l|5_? R'CQ

We then complete the proof of (100).

When g = oo, for t = {tgr}gr € C;*% and f = X tgrpgs, We are going to prove

1
Sup — sup ||/ M=D||%2| g, % f (g, x))|
Q |Q|5_1 R=IXJSQ,RED

1

p sup sup |I'|a1/( _1)|]’|a2|tR’”R,|_1/2
——1 p!'=7"x1' !
Q |Q|p R'=I'xJ'cQ,R'€eD

Its proof is similar to the case of 0 < g < oo; hence we only give an outline.
We use the same symbols as above. With the same process, one has
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1

sup  |I|*/M=D|J192 |, * f (3, %))
-1 R=IXJSQ,RED

P
1
S——  sup 17|/ |2 e || R| 72
QL REXISORED | bt

x(ﬂAE>L1/(m 1) 1 <ﬂ/\ﬂ> 1
TaR dist(7, I\ \IJ'l " /I dist(/,J")
<1+—1Sf<1') ) (1+ 0 )

= 1 Sup z ( |I| )al/(m_l) ( |]| >a2
lQl%—l R=IXJCO,RED A /'

R'=I'x]J'eD

x<|z|Aﬂ>Ll“m b1 (A 1
Ta dist(Z, IN\" \IJ'l " ]I ;. dist(,J")

(1+% ) (1+57 )
[/ =D |2 e || RY| 12

1
S—3 sup 17|/ =D ]2 | | |RY| 712

R'=I'xJ'eD

() 0 T) :
1y 1)\l (1+dist(1,l’))M<1_I_dist(],]’))M

. £(I") £J")
=1 sup Z (R, Rp(R, ROII'|“/ =D |%2 ¢ ||R'| 72/
|Q|5_1 R=IXJSQRED o, &4,

R'€Ago(R) i21 R'€A;o(R) 121 R'€Ag(R) il21R'€A;(R)
- 27Dy (R, RO |I'| /D" |%2 |t ||R'| /% = By + B, + B3 + B,

We only estimate B, since estimates of B;, B, and B; can be concluded by applying the
same techniques.

For each integer h>1, let F'={R' =1"x]J € 4;;(R): |32'I'x2Y")NR| =
1 [ 7/ !
|2 x 21|}, Let

Dyt = AL, and o= | | R

I} il
R'€D},

gt TN U NEONDWEONPIEIND)

Then
1 .
Bo=—g— sup > N N 27EOMR(R R X [I'|/ D | | |R|

|——1 R=IXJSO,RED

e
To estimate the right-hand side of the above inequality, we only need to estimate

Z r(RR").

R’ED,il’l
Firstly, because R’ € A;;(R), one has 3R N 3(2'1' x 2YJ') = @. For R’ € D,ll'l, there are
also four cases:
Case 1: |21'| = |1], |2

i,lZl h=1 R’ED}I{Z
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Case 3: |2'| < |1, |2
It is easy to see that Case 2, Case 3 are none. Then B, = B} + B;.
For R’ € Case 1, one has

IRI < |3RN 32T x2Y)| < [3(21' x2Y") n Q®°| > 2,11_1 321" x 24|
We divide R’ € Case 1 into four categories:
Category 1.1 [I| < |I'|,|]| £ |J'|; Category 1.2 |I| < |I'],|]]| > |J'];
Category 1.3 |I| > |I'|,|J| < |J'|; Category 1.4 |I| > [I'|,|J]| > |J'[;
In Category 1.1, we have 2im-D+R/| = 2h=1=2m+n|R| for some integer n > 0.
Moreover, for any fixed n > 0 and R, the number of such R"’s is less than 77 2im-1+l
since 3R N 3(211" x 2Y") = @ and |21’ = |1],[2Y’| = |J]. Hence

[(m—1)+1
r(R,R") = z 7moi(m—1)+1 (L) < p2imL+2lL—hL
’ 2h—=1-2m+n ~ .

R'€Category 1.1 1n=0
In Category 1.2, one has 2{m—D+L 17| = 2h=1-2m+8|| for some integer & > 0. For each
fixed @ > 0 and R, the number of such I’’s must be less than 7™~ 12{m=1) Moreover,
from |J'| < |J| < |2Y’|, we have |2#)’| = |J| for some positive integer f with 1 < g < L.
For each fixed B > 0 and J, the number of such J”’s must be less than 72¢=5), Hence

l(m 1)(21(m 1)+l) 21 B R
m iLm—hL+
S kR <7 zz GO Ay |

ReCategory 1.2 n>0 f=1
With a similar argument, one has

Z T(R R') < j22iLm—hL+2IL
ReCategory 1.3 _ _
In Category 1.4, one has 2"~1 < 3m2im=D+ and with |R'| < |R| < |21’ x 2Y'|, one
has 2i{(m~D+|R’| = 24|R| for some integer 0 < A < i(m — 1) + L. For each fixed 1 > 0,
the number of such R"’s must be less than 72i(m~D+ gq

i(m-1)+!

2
T(R,R') — z 7m21(m—1)+l (W) < pim+l
ReCategory 1.4 A=0
Therefore

1
Bj = ZZ D 2R RN 1|/ ) s | [R|

1
——1 R=Ix C.Q R€ED
QP ] 1=1 h=1 R'eCasel

< sup ZZ Z 2-(+OMr(R, R ||
1, R=IXJSO,RED

QP i,l=21 h=1 R'eCasel

1
X ——— sup |I'|/ D) |t ||R| 72
|Qll|p 1 reql!

sup 17|/ =D %2 | R 2,
|Q|5_1 R,—I’X],gQ,RIED
With a similar argument for the rest, we can obtain the desired result. We then have

completed the proof.

< sup
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Theorem (5.2.12) [250] Suppose that 1, and ¢;/ .+ satisfy the same conditions in (85)-
(88). Thenif 0 <p < 1,1 < q < 0, a = (ay, ;) € R?, one has

1/q
L ~[GAR) @+ (A2 ]q 4
sup| —g— | ) 27lUmomrUnamla (7 £ e 2)| 2 (0)) i
L\ |QP a0 fre RETl ] REQ
1/2
1 i | .
~ sup ﬂ_ij Z 2-[UAR)a 1 +(jA2k)az]q Z (|(pj,k *f(xhx])l XR(x)) dx
AN [0 = RETl [ ;,REQ
for f € S,.

The proof of this theorem can follow from the y-transforms that correspond between the
multi-parameter Triebel-Lizorkin spaces Fp“’q and the discrete multi-parameter Triebel-
Lizorkin sequence spaces fp“’q indexed by the multi-parameter dyadic rectangles in R™
associated with the underlying structures of the composition of two singular integrals.
Since the definition of £,*?(R™) is independent of the choice of the functions y* and 2,
this theorem is immediate once we prove the following duality theorem (Theorem
(5.2.20)). Nevertheless, we offer another proof following the proof of Theorem (5.2.11).
The dual spaces for F,"? when 0 <p <1 are considerably different from those for

1 <p < oo and more difficult to get, in the multi-parameter settings. Therefore, the
following duality result is the third main theorem.

Proof. Suppose that ¢ and ¢ are functions satisfying conditions in (85)-(86) and
(87)-(88), respectively. For f € CMO,, setting g (x) = [RI* 2@ 1 (x" — x;, % — X))
with R €11, and tgr = (f, @r) = @jx * f(x;,x;), by Theorem (5.2.11), we have f =
Yrtr@r and t = {tg}z € C,"7. Then (100) gives

1/q
1 _ q
sp—g | > (9T OYI% £ (e x) )R
|Q|P 4" \R=IxJEQ.RED
1/q
1 I} - l; - q
S sup—— (1" / =" 1% | ¢ | |R'| 7 2) 7| R|

|Q|P 4" \R=IxJSQ.ReD
The conclusion of Theorem (5.2.12) follows immediately.

We give a characterization of imbedding of ¢” spaces into f,”? and imbedding of £,"“
into #" spaces. This result was first established by Verbitsky [248] in the dyadic cubes
with respect to an arbitrary positive locally finite measure on the Euclidean space and was
generalized by Bownik [225] to discrete anisotropic Triebel-Lizorkin sequence spaces.
Lemma (5.2.13) [250] (Theorem 1 (i)(ii) of [248]). Let 0 < p <r < q < c. Then

1/q
(leiqu)?)

iel

< Cllsller

LP

holds if
f sup [(¢7 P ONgillZ)” "™ dx < oo
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Suppose 0 < g <r <p < . Then

1/q
<Z|Si|q§0?>

= Clisller

4

LP

holds if

f sup [(@ O/ geZ)[/ ¢ dx < oo

Lemma (5.2.14) [250] (Theorem 1.1 of [243]). Let 0 < p < r < oo, I be any index set,
and {@,};; be a family in LP. Then, the inequality

SUP(|Si|<Pi) < Cllsll,r

LEI L?
holds for all scalar sequences s = {s;};c; € £" if and only if there exists a nonnegative
measurable function F > 0 with [ F(x)dx < 1, such that

-1/p .
Silé})”F p(pl”Lr’”(u) <@

where L™ (u) is a weak-L" with respect to the measure du(x) = F(x)dx defined by

1/r
IfllLreoqy = (sup t"u({x € R™ : |f(x)| > t})) < 0
t>0

for f € L™ (w).
Lemma (5.2.15) [250] (Remark 3 of [248]). If 0 < g =r < p < oo, then

‘ (Dsiwcp{’)ﬂq

holds if and only if there exists F > 0 such that
[ Feox <1 and nglle=voa|
l

where du(x) = F(x)dx.

Theorem (5.2.16) [250] Assume that IT is any subfamily D and {cg}rer IS any positive
sequence.

(i) Suppose 0 < p < r < g < oo. Then the inequality

= Cllsll,r

LP

L"(w) >0,

1/q
(Z|SR|q<cR>qu> < Clsllr (103)
ReIl LP
holds for all scalar sequences s = {sg}rer if and only if
[ sup (@ IR/ o <o (104)
Rell

(if) Suppose 0 < g < r < p < oo. Then the inequality

1/q
<Z|SR|q<cR)qXR> 2 Cllsllr (105)

LP
holds for all scalar sequences s = {sg}zen if and only if (105) holds.

To establish Theorem (5.2.16) we will follow the original approach of Verbitsky [248].
Proof. We begin with the proof of part (i). Firstly (104) = (103) is a direct consequence of
Lemma (5.2.13) since [(cpxr(x))Pdx = (cg)?|R].

Now suppose that (103) holds for p < r. By imbedding 9 & £ and Lemma (5.2.14),
there exists a non-negative measurable function F > 0 with [ F(x)dx < 1, such that
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-1/ — -1/
SUp|[F/Pcae| e, = SUP CRlIF TP 2kl o,y < (106)

where du = Fdx. Let f = F~Y/Py,; then Wfllpqwy = |R|*/P. Suppose p <s <r and
1/s=t/p+ (1 —-1t)/rwith 0 <t < 1. Applying the well-known interpolation inequality
(e.g. Proposition 1.1.14 of [231])

1 lsqy < ClIfIpeo gl f Lm0y
one has forany R €11,

1/s
-s/p+1 _ < t/p||p-1/p || ¢
<LF s/p+ 1dx> < C|R| ||F )(R”Lr,oo(“).
Letting § = s/p — 1 and combining the above inequality with (106), we obtain
1/8
- 1
(CR|R|1/T)W/(T ) (-J F_‘de> < C < oo,
IR| Jg
. s . . . 6+e 6+¢
On the other hand, by Holder’s inequality with exponents —,—5_one has

1/6 1/¢€
ifF“‘sdx ingdx >1
IR| Jg IR| Jg -

for all 6, > 0. Hence
1 1/¢e
(calRIVTYPT <€ (ﬁ | Fde) < C(M,(F )V
R

for x € R, where M, denotes the strong maximal operator. Since M, is bounded on L/¢ for
0 < &< 1,we have

j sup ((cg)T|IRDP/CP dx < j (M, (F&)(x))Yédx < j F(x)dx < oo.
ReIll

We then have completed the proof of part (i) of Theorem (5.2.16).

We now give the proof of part (ii). The second part of Lemma (5.2.13) gives the proof of
(104) = (105). Now suppose that (105) holds. We first prove (104) for g = r following
the original argument of Verbitsky [248]. By Lemma (5.2.15), there exists F € L1, F > 0,
such that

: 1-r/p r — r 1-r/p
I%relng (crxr) dx }%2};(%) JF dx > 0.

It follows from the above inequality that
1 p/(p-1)
[ sup (rRDP P gy dx < [ sup (— | Fl-"/pdy) Xe () dx
ReIl REeIl |R| R
< j (M (FY7/P)(x))P/®Mdx < C f F(x)dx < oo,

When g < r, we use the argument of Bownik [225] by taking advantage of the already
established duality of £;°*,p > 1. Note that by duality
(Clsg|?|tg|T)M/
lIsller = sup

t={tgr} ”t”{irq/(r—q)
Hence (105) is equivalent to the inequality

1/q 1/q
(lequltR|q> <C (lequ(CR)qXR> ”t”grq/(r—q)- (107)

REIl REIl

LP
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On the other hand, since 1 < p/q < oo, by the already established duality (fp%)* =
fo/treqy ONe has for a = (% (m—1), l)

S gl )]
Upv u,v
sup —— = su = |[vllf-aw = |lsup|vg||R|™? .(108)
u:{uR}”Z uR)(R”Lp/q u= {uR}” ”f“l /(P q) ReD Lp/(p—q)
Let
{ltqu(cR) 1, R € 1I;
Ugp =
0, R e D/,
and
{lSqu(CR)q, R € H;
uR =
0, R e D/II.
Then (108) may be rewritten in the following form by taking the gth roots:
X renlsr|?1tr19]11/4
sup = ||supltg|(cg)HIRI" 9y (109)
u={ug} |Crenlsz1?(cr)xr) Y4l Lo Rell RIVR R LPa/(-q)

Let p, =pq/(p —q),ry, =1q/(r —q) and ¢z = (cg)~|R|~*/4. Combining (107) with
(109) yields

supltg|(r) " xg|| < Clltllym
REIl LP1

forall t = {tg}z. Using the facts that p;r, /(r; — p1) = pr/(r — p),p; < 1y, and applying
(i) of Theorem (5.2.16), we get from the preceding inequality

j sup (6" [RDPY/ 179D g (x) dx = f sup ((co)"IRI)P/TP) yp () dix < oo.
ReTl ReIl

Hence (104) holds for g < r. We thus have completed the proof.
Theorem (5.2.17) [250] Suppose 1 < p < 00,0 < g < o, a = (a;,a,) € R% Then

~O,Nx . £—a,q
G = f
a,q ~a,q’
Proof. Forany s € f,”",t € fp, we have

2, s

RED

< [ DU e 7 Gl D g 2 G

RED

1/q A L/’
<J (Z('”“1“’"‘”'Jl“Z'SR')?R("))q> X(Z(“"“l“’”‘“l]l-“z|tR|)zR(x))q) dx

RED RED
= lisllgealltll, !

by duality if 1 < q < o or by |mbedd|ng 1o {’1 iIf 0 < g < 1. This yields that t is a
continuous linear functional on fp and
ltll gy < Nltll

For the converse direction, we split its proof intg 2 cases: (p,q) € (1,0) X [1,00) and
(1,00) x (0,1).
Casel: (p,q) € (1,) x [1,00). This case is elementary. Take any [ € (f,°?)*. Then
there exists some sequence t = t; such that I(s) = Y. sgtr for any s = {sgp}z € fp“'q.
Now we need a well-known result that

PN =17 (1) (110)

If1<p<oo,1<q < oo, where
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1/q
P =1f ={f}: Ifllrqey = (ZIM") <oy,
v LP
with the pairing (f,g) = [ X, f,G, for f € LP(19),g € LP'(19) (see e.g. [65]). Let
I: f,"% > LP(19) be defined by

1) = {fjs}; ey~ Where fi = Z ]2/ tm=D)| ]| %25 i ().
Relljg
Clearly, the map I is a linear isometry onto a subspace of LP(1?). By the Hahn-Banach
Theorem, there exists [ € (LP(19))* such that [o 1 =L and ||Z]| = IIZl. By (110), I(f) =

(f,g) forsome g € LP'(lq') with ||g||Lp/(lq/) < l. Hence
1) =106 = [ D fiade= [ D[ D W/ 0157066 | 9100 i
Jk Jjk \R€
=> D % (|1|“1/<m-1> iR~ | g-j,k<x)dx) =D D seta =)
Jk REHj_k R Jk REHj,k

forall s € f,°7, where ¢ = {tg}g With tz = [[|%/M=V|j|92|R|"V2 [ g, (x)dx for R € Il
Then

1
el e =D D <ﬁ | g,-,k>xR(x) < 10MsCa10Ml ot oty 1910t gy < NI

p Jjk REMj '
This completes the proof of Case 1.
Case 2: (p,q) € (1,) x (0,1). In this case, LP(1?) is not a normed space; hence we can’t
use the Hahn-Banach theorem.
Take l € (fp“’q)*. Then there exists some sequence t = ty such that for any s = {sgz}z €

i
p )
1/q
— ny — a/(m-1) 7|2z = q
U =) swle| < Clisllzaa = C|[{ ) (19T D11%] 55172 () (111)
R RED 1P
If we prove the estimates
||t||f—,a,oo — Sup(lll—m/(m—l) Ul_athleZR(x)) ) < o,
p RED Lp

we then complete the proof.
: - |1]#1/(m—1) @z
Deflne I1 = {R € D, tR * 0}, and Iet Up = SRtR' Cp =

IRI1/2|tg]

assume that sztz = 0 for all R € D by choosing proper s;. Moreover we can assume
sg = 0 if R ¢ II. Then (111) can be rewritten as

1/q
luller < ¢ (Zwmmm)

REeIl

for R € II. We may

LP
for all u = {ug} € II. Then (ii) of Theorem (5.2.16) with0 < g <r =1 < p < oo yields
[ sup (Ccnrn iR dx < e
REIl

that is,
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p/(p—1)
) dx < oo.

[ sup (s =iy gl IRI/22)
Rell

We thus have completed the proof.
Theorem (5.2.18) [250] Suppose 1 < p < 0,0 < g < o, a = (a;, a;) € R2. Then

Gy = 6o
Proof. We first assume 1 < g < co. Suppose t € Cp_“’q’. Forany s € f,”%, set

1/q
h(x) = (Z(lnalﬂm-”um|sR|;zR(x))q> ,

RED

and for k € Z,
Q = {x € R™: h(x) > 2},

1 1
By ={R€D:IRNQ|>ZIRLIRN Q| < S IRI}
One can obtain

k
,1p/q’

RED
1 1\
2, <|1I-“1/<m-1>|1|-“2|tR||R|‘i|R|q'>

2
k |REBg

1 1
2, (lll—alﬂm—ﬂur@|tR||R|—f|RI"’) x ('ual/(m—l)uwz|sR||R|f|RI "'>

REBy

p/q\ /P

1 _1\1
<2, <|1|“1/<m-1>|1|“2|sR||R|f|RI Q’> - (112)

REBy

Let O, = {x € R™, M (xq,)(x) > %}; then |Q| S |Q|. One sees that if R € By, then one
has R € (. SO

1174’
1 1\
Z <|1|"“1/(m‘1)lll‘“2ItRIIRI_flR|qI>
REBg
,p/a’
1 1 1N O 11
- 11 Z (Ul"“l/(m‘l)lll‘“zItRIIRI 2Il’?lq> RS NEl]_—aqr | QP 9.
|ﬁ|P q | ReBy, p
On the other hand, using the fact that if R € By, R S {,,, one also obtains
1 ~
§|R| < IR\Qp1] = [R 0 Qe \Qpy1 |-
Hence
1/q 1/q
1 _1\1 1.1 1\4
> (|1|“1/<m-1>|1|“2|sR||R|z|R| q) -1> (|1|“1/<m-1>|1|“2|sR||R|2 q q) RI
REBj REBy

1/q

< | D (/D15 RV R 0 B\ Qs

REBy
1/q

1/q
q
= ﬁ Z (I11@/ =D s |72 (1)) dx | < (ﬁ hq(x)dx> < 24|, Ve

Q\Qk+1 pep,, Qpe\Qg41
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Combining (112) with the above inequality, one obtains

1/p
: :SRtR S ”t”C—a,q’ (E 2kp|'Qk|> S “t”C—a,q’”S”f;vQ.
p P
k

ReD
Next, we will prove ¢, 7 2 (7). Let £ € (£;7)*. Then there exists some ¢ = {tz}z

such that for every s = {sg}z € f,"%,€(s) = Xgsgtg and

RE

R
Once having shown t € Cp_“'q , we will then complete the proof. For any open set O € R™
with finite measure, let X = {R € D : R € Q}, and let u be a measure on X such that the p-
measure of R is |R| if 1 < g < oo or u(R) = 1if g = 1. Then by the above inequality, one
has

1/q
_ _ _ _1/2\a _ _ _ _
( z (|I| a/(m 1)|]| |t ||R| 1/2) |R|> — ”l” ai/(m 1)|]| %|te||R] 1/2”1‘1'()(,01#)

REQ,RED

< llell geay-lisll gea.

1|7/ ]| =%2| g [ |R| 7"/ 2sg|R|

= sup
Islhaeam=t | pdgren
< ||€||(fa,q)* sup |||I|_a1/(m_1)|]|_a2ItR”Rl_l/ZSR'Rl”fa,q-
p ”SHICI(X,d,_L)Sl p

On the other hand,
| 11178/ =D |~z | ¢ ||R| Y 2 s IRIIIf;,q

1/q
q
= ( > (|1|“1/<m-1>|1|“2|1|-“1/<m-1>|1|-“2|R|-1/2|sR||R|;zR(x>))

RSQ,RED

_ ( > (|sR|xR(x))Q>1/q S{fn ).

RSQ,RED P RSQ,RED

LP
1/q 11
(Isplxr(x))dxp  |QfP 4
by Hoélder’s inequality since 0 < p <1 < q < . SO

, 1/q
( > (/D g |R|72)° |R|>
REQO,RED

11

1/q
1 1
< s q P q< g QP
< el geay  sup {jﬂ > (Isalxa()) dx} 10774 < (1] e 1047,

Islhacx,am=1 (70 p TR
thatis, t € Cp'“'q’.
When 0 < q < 1, by the trivial imbedding £, — £**, one has
() 2 (" =6
To show the other direction, as above, let £ € (fp“'q)*. Then there exists some t = {tg}z
such that for every s = {sg}z € f, ?,4(s) = Ygsgtg and

S

R

< ||t||(f~;,q)* S”f;'q'
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We now prove [[tlgsee = supq —i— SuPreq,ren /1™ V|74 [t R T2 < oo.
IQIP
Forany fixed R =1 X ] €D, let 5o = 1if Q = R; otherwise 6,z = 0. S0

sup |I|—a1/(m—1)|]|—a2|tR||R|—1/2= sup Z SQ'R|I~|—a1/(m—1)|]~|—az|Q|_1/2|tQ|

RCSQO,RED RCQREDQ —Txjca
a;/(m-1) |+ -« _
< sup 1l oy |0l I 11| = sup ||f||(fa,q)*|||R| allp
REQ,RED RSQ,RED p
= sup [l ooy R < sup |1l eyl
RCSQ,RED (f " RCSQO,RED (f )

since 0 < p < 1, which implies our desired results, and we thus have completed the proof
of Theorem (5.2.18).

We derive the duality of Theorem (5.2.19) and Theorem (5.2.20) from Theorem (5.2.17)
and Theorem (5.2.18), respectively, in the sequence space cases. It is known from
Proposition 3.1 in [139] that S, (R™) is dense in £, (R™) for 0 < p, q < oo.

Theorem (5.2.19) [250] Suppose 1 < p < 0,0 < g < 0, a = (a;, a,) € R?; then
S, g\« p—a,q’
| (F,)" = Et.
Namely, if g € FZ;,“'q, then the map 1, given by 1,(f) = (f, g), defined initially for
f € S, extends to a continuous linear functional on £, with ||, || < llgll e
p
Conversely, every [ € (£,"?)" satisfies | = [, for some g € F, 24 with [|1,]] = llgll, e

On dual spaces of multi-parameter Hardy spaces (see [102], [108], [129], [130], [131]
[132], etc.), the duality of Triebel-Lizorkin spaces has only been studied in the one-
parameter settings started in [65, 115]; see also [225] for anisotropic Triebel-Lizorkin
spaces, [236] for weighted anisotropic Triebel-Lizorkin spaces. For 0 < p,q < o, a € R,
the Triebel-Lizorkin space of one-parameter #,“? (R™) with the norm

q
(Zz-m b, *f|q>

JeL
LP(R™)
was investigated in [115, 65]. There it was shown that the dual space of %, (R™) is
) T“/q’ R™), 1<p<oo;
(FIR™M) =17 (R™) p=® (113)
Foerm/p-Demmy g <p <,

where F,o’7(R™) is defined to be the set of all £ € S{(R™) such that

1
Ifllzeagm = sup Q| f
Q dyadlc cubes ]__ log, 1(Q)

It is well known that Tp' (R™) is the classical Hardy space #,,0 < p < 1. From (113),
one has

1/q
2715y, « ik dx) < oo,

(}[p)* — j;'m(l/p_l):oo(Rm).
The method to obtain (113) no longer works in multi-parameter cases when 0 < p < 1. By
using techniques of discrete Littlewood-Paley theory developed in [108, 235] for flag
Hardy spaces, established the dual spaces for flag Hardy spaces. Using similar ideas of
discrete Littlewood-Paley theory, the dual spaces for Hardy spaces on product spaces of
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homogeneous type and on weighted multi-parameter Hardy spaces have been obtained in
[130, 131] and [133]. To give an idea of such dual spaces in the simplest form, we state

the dual space of multi-parameter pure product Hardy space H, = FpO'Z(IR" X R™) by
another form, for0 <p < 1,

p

(Hy)* = CMO,,
where f € CMO, is defined by

1/2
1
||f||CMop—sup< =~ > > (Iw,-*f(x,,x,)l"xR(@)dx)

|Q|P - @ jkez Rell [, REQ
for all open sets € R™ x R™ with finite measure (see [133]). Combining the techniques
developed in [65, 115] for one-parameter Triebel-Lizorkin spaces and [235] for multi-
parameter Hardy spaces, we investigate the dual spaces of the multi-parameter Triebel-
Lizorkin spaces associated with different homogeneities when 0 < p < 1. Before we state

the duality result, we first give the definition of CM0,"* (R™).
Proof. Let g € F;“'q'(IR{m),f € So(R™) and 1 < p < 00,0 < g < oo. Then by the identity
(93) one has (f, g) = (Syf, Syg). Hence

IKf 9l < ||Sl[)f||f;.q(Rm)”Slll.g”fp—,a,q’(Rm) S ”f”}:"g'q(]]gm)”g”Fp—,a,q’(Rm)

by Theorem (5.2.17) and Theorem (5.2.9). This proves that ||1, || < ”g”F‘“'q'(Rm)'

Conversely, suppose [ € (Fp“’q([Rm))*. Then I, =1 Ty € (f,"")", so by Theorem
(5.2.17), there exists t = {tp}x € fp‘,“’q’ such that

Li(s)=(st)= 2 Srtr

R
for all s = {sg}z € f, *(R™). Moreover ||¢]| g’ lli1 1l S ||| for the boundedness of
P

Ty Note that [; o Sy, = 1o Ty oSy, =L since Ty, o Sy, is an identity by Theorem (5.2.9).
Then letting g = T, (t) and f € S,(R™), one has
L(f) = L(Syp(F) = Sy (), ) ={f, Ty(®)) = (f, 9)
by (94), which implies that [ = [, and by Theorem (5.2.9) again, one has
lgll . o =T @, i S el -aqr = ML

p

We have then completed the proof of Theorem (5.2.19).
Theorem (5.2.20) [250] Suppose 0 < p < 1,0 < g < 0, a = (a;,a;) € R% Then
(EX)" = cM0, ™"
where q' is defined to be oo when 0 < g < 1.
By duality, one can obtain the boundedness of T; o T, on CMOI;“"".
Proof. One can go through the same process as above to finish the proof of Theorem
(5.2.20).
Theorem (5.2.21) [250] Suppose 0 <p <1, 1< g <o, a = (a;,a;) € R2 Then the
composition operator T = T; o T, is bounded on CM0,"?.
Proof. We assume that X; is the kernel of the convolution operator T;,i = 1,2, and T* is
the conjugate operator of T with the kernel Z*. One may check that
K+ f(x) =%, *7?1*f(x) =¥, * K, * f(x)
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for f € C, where K;(x) = %;(—x),i = 1,2. Hence T* is bounded on E for all
0<p,q<o,a €R? by Theorem 1.5 in [139] since X; satisfy Definition (5.2.1),
Definition (5.2.2), respectively.

Forv 1 < q < oo, there existsa 0 < § < oo such that §' = g. Then by Theorem (5.2.20),

ITOcpoza = sup KT gl = sup  [f, T ()l
P llgll g/ s1 g ~r<l
F;a,q F;a,q
< sup ”f”CMan”T*(g)” —a,g’ = sup ”f”cmo“’q”g” —a,q’
lgll, _gar<1 P Fp gl _qars1 P Fp
Fpa,q Fpa,q
<A, oo
p

We thus have completed the proof of Theorem (5.2.21).

The multi-parameter Triebel-Lizorkin spaces we study here are associated with the

composition of two singular integral operators with the specific dilations

6:(x',xy) = (0x',8x,),6 >0
and

§5:(x',xy) » (6x',6%x,),8 > 0.
The first is the classical isotropic dilations occurring in the classical Calderon-Zygmund
singular integrals, while the second is non-isotropic and related to the heat equations (also
Heisenberg groups).

These two dilations are motivated by the study of weak-(1, 1) boundedness of the
composition of two singular integrals by Phong and Stein [135]. This composition of such
two singular integral operators is particularly interesting because they essentially arise
naturally in the study of the d-Neumann problem (see [135], [232], [241], [242]). This
motivates us to study the function spaces associated with the composition of two such
dilations and then the boundedness of relevant operators. It is to note that the underlying
multi-parameter structure we study is intrinsic to the composition of these two dilations.
Nevertheless, the multi-parameter structures we consider are still in the framework of the
translation-invariant environment. The more general case of translation non-invariant
dilations will be studied in a forthcoming project.

Though we restrict our attention to the above two very specific dilations, all results can
be carried out to the composition with more singular integral operators associated with
more general non-isotropic homogeneities. To see this, let

A, Aj, Aim
8i ¢+ (Xq,Xg, X)) ™ (51‘ 1x1,5i sz,---,(‘il. Xm)
fors; >0,4;;,>0,1<i<nandl1<t<m.

2 2

2
For x € R™ we denote |x|; = \/|x1|1i,1 + |x, M2 4o x| 2im. Let @O € S(R™) with

_ 1
supp lp(l) = {(61' 62'"3 gm) € R™: E = |€|l < 2}
and
b (2-Tihir g, 2=Jikiz ~jiks g m
|l/J (2 e 51'2 e 52"“'2 ' l'mfm)| =1 v(flifZi'"rfm) € R /{0}
Ji€Z
Sety; i, ....j, (x) = 1/)}11) * gb](-zz)  wee z,b}:) (x), where
PP (x) = 2iilhiatdiat = +himy O (2Jidiny,, 2ikizyg, oo, 200, ).
Then we can obtain the following general discrete Calderon reproducing formula:

Theorem (5.2.22) [250] Suppose that Y@, i = 1,---,n, are functions satisfying the above

conditions, respectively. Then
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f (g, X, X))
m

— | | —(1A1,eN2 A2, ¢ N Nindnt) L
z z 2 o X (‘L/)JIJZ""’]n

Jir o Jn€Z (1, fm)ELZ™ t=1
% f) (2—(]'1/11,1/\1'2/12,1/\'"/\]'n/ln,1)[1’...’ 2—(J'1/11,m/\j2/12,m/\'"/\jnln,m)[m)
X l/)h,fz,“',]'n (x; — 2—(j1/11,1/\j2/12,1/\'"/\]'n/ln,1){1’...’ X
— 2_(jlll,mAjzlz,mA'"/\jn/ln,m),gm) ,
where the series converges in L*(R™), S, (R™) and S;(R™).
With the above discrete Calderén reproducing formula, the multi-parameter Triebel-
Lizorkin spaces with different homogeneities can be introduced as follows:
Definition (5.2.23) [250] Let 0 < p,q < o, a = (ay, &y, a,,) € R™. The multi-parameter
Triebel-Lizorkin type spaces with different homogeneities £,”?(R™) are defined by

BUR™) = {f € So(R™) = If llgmagm) < 0}

m

where

m
11l ) = z 1_[ 2= U1, ejz Az, ehAjnAn )P

J1,Jn€Z t=1

X Z |(1/)j1'j2"":jn * f) (2_(jlll'lAjZAzllA".Ajnln'l)‘eli"
({’1,~-~,fm)EZm

Q-

-, 27 nhumAizdam Aindnm) ¢, ) |q)(11 (e xr, (x2) - Xip, (Xm) )

LP(R™)
where {I;},-, ..., are dyadic intervals in R with the side length 1(1,) = 2-U1teNzAzeNNindno),
and the left end points of I, are 2=U1tutNadeeA-Aindni) £ | respectively.

Applying the same techniques, one can establish the duality theory (Theorem (5.2.19))
of the multi-parameter Triebel-Lizorkin spaces associated with these more general non-
isotropic dilations. The details of the proofs appear to be very lengthy and complicated to
present in the more general situation. Therefore, we shall not discuss these in more detail.
Corollary (5.2.24) [314] Suppose 0<e<1, a,_; = (a,,a,.1) € R% Then the

composition operator T,_; = T, o T, is bounded on CMO;{7-***¢,
Proof. We assume that &; is the kernel of the convolutlon operator T, i=r,r+1,and
T;*_, is the conjugate operator of T,._; with the kernel K *. One may check that

i ) ) = m*me](x) pe T x )

for f; € C°, where K;(x) = K;(—x),i = r,7 + 1. Hence T;_, is bounded on F77-* At2e

forall 0 < e < o, a,_; € R? by Theorem 1.5 in [139] since X;; satisfy Definition (5.2.1),
Definition (5.2.2), respectively.
For vV 0 < € < co. Then by Theorem (5.2.20),

Znn Dl ggosymrave = sup Z|<n_1(m,g,->|

lojll-ar-11+es1
- DT (o)< D Wl gyoyrssell s () pmaymnsne

”gJ” —Qr— 11"'¢?<1 g]l - 11+e<1
1+e Five
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s s Dl el gl e £ D1l see:

||gj||F—ar_1,1+651

We thus have completed the proof of Corollary (5.2.24).
Section (5.3) Triebel-Lizorkin and Besov—Lipschitz Spaces

Many have worked on proving boundedness of the one-parameter Fourier multipliers.
Mihlin [252] obtained the LP-boundedness of the one-parameter Fourier multiplier
operators with minimal smooth condition. Hormander [198] reformulated and improved
Mihlin’s theorem using the Sobolev regularity of the multiplier. Peetre [253] considered
the boundedness of the one-parameter Fourier multiplier operators on Triebel-Lizorkin
spaces.

The multi-parameter singular integral and Hardy space theory play an important role in
many aspects of harmonic analysis. Many have studied the pure product theory. This
theory includes the boundedness on multi-parameter LP spaces (1 < p < o0) and multi-
parameter Hardy spaces HP (0 < p < 1), etc. For more results related to multi-parameter
theory, see [96-105, 107, 108, 121, 129, 131, 133, 233, 235, 240, 242, 244, 245, 246,
254]. [120, 128, 139] established the boundedness of singular integral operators on multi-
parameter Triebel-Lizorkin and Besov—Lipschitz spaces. The atomic decomposition and
dual spaces for multi-parameter Triebel-Lizorkin spaces associated with the composition
of two singular operators studied by Phong and Stein [135] were given in [229, 250].

We establish the sufficient conditions for boundedness of multi-parameter Fourier
multiplier operators on multi-parameter Triebel-Lizorkin and Besov—Lipschitz spaces
(Theorem (5.3.11)). Furthermore, we also consider the weighted cases (Theorem (5.3.13)).
For the sake of simplicity of presentations, we will restrict our consideration to the bi-
parameter case of R™ x R™.

We denote by a = (ay, ay,...,a,) the n-dimension multi-index, by S(R™ x R™) the
spaces of Schwartz functions on R™ x R™ and by S*(R" x R™) the spaces of all tempered
distributions on R™ x R™. The bi-parameter Fourier transform and the Fourier inverse
transform of f are defined respectively by

F ) = j e 20 Etx2 ) f (x, ) dxy A
Rzn
and

U6 = [ emmtatinatif o, x)dnd,
R2M
for f € S(R™ x R™).
Definition (5.3.1) [255] A bi-parameter Fourier multiplier operator is defined as follows

T(f)(x1,x2) =f m(&,, &)e stz f (g, €,)déE dé,,

]RZTL
where m(é,¢&,) € L°(R™ x R™).

We denote by ™ (x) and ¥ (y) Schwartz functions whose Fourier transforms are
supported in {1/2 < |&| < 2}. Moreover, we require that they satisfy the vanishing
moment condition

| xp0edx= [ yu@dy =0
R R
for all multi-indices a and . The test function defined on R™ x R™ can be given by

Y(x,y) = PP P (),
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where @ (x) satisfies X ;cz[w @ (27/x)| = 1 for all x € {R™\(0)} and ¥@ (y) satisfies

Yrez| @ (27Fx)| = 1 forall y € {R™\(0)}.

Let S (R™ x R™) denote the space of Schwartz functions whose Fourier transform are
supported away from origin and (S (R" x R™))* be its dual. For f € (S*(R™ x R™))",
the Littlewood—Paley—Stein square function of f is defined by

2

2
g = D el

J.k

where the function
P (x,y) = 2U0F0mp M (273 (2K ).
Definition (5.3.2) [255] Let 0 < p,q < o, a = (ay, a,) € R2. The bi-parameter Triebel—
Lizorkin space F,”?(R™ x R™) is defined by
EXI(R™ x R™) = {f € (S*(R™ x R™))*": If llpea < oo},

where

1
q

i q
||f||F£“q — Z 21a1q+ka2q|¢jlk % f(.)|
ik
LP

Definition (5.3.3) [255] Let 0 < p,q < »,a = (a;, a,) € R%. The bi-parameter Besov—
Lipschitz space B,"? (R™ x R™) is defined by

By (R" x R™) = {f € (S™(R" x R™)": [|fll goa < o0},
where

1
q

”f”B;}'“ = <Z 2ja1q+kazq||¢j,k * f()”Zp) .
j.k

Here we need to emphasize that the definitions of bi-parameter Besov-Lipschitz and
Triebel-Lizorkin spaces are independent of 1) and 1), See [128, 250] for the detailed
proof. Therefore, we can choose Y™ = (& = in our proofs.

Definition (5.3.4) [255] The strong maximal operator is defined as follows
Msf(x,y) = sup

>o ( 1)” z)nf If (. v)ldud,

where R = {(u,v) E R*" X R™: |lu — x| <r,|v—y| <1}, and f is a locally integrable
function on R™ x R™.

Definition (5.3.5) [255] A nonnegative locally integrable function w is said to be in the
class A,(R™ X R™),1 < p < o if there exists a constant C > 0 such that

1 1 1 Pt
Ilew(xl Xp)dx,dx, mf w(xq1,%x;) P~ldxdx, <C
R

for any rectangle R =1 X J .
A nonnegative locally integrable function w is said to be in A; (R™ x R™) if there exists
a constant C > 0 such that

Mw(x1,%5) < Cw(xq,x3)
for almost every (x,,x,) € R™ X R", where M, denotes the strong maximal operator.,
The class A, (R™ x R™) is defined by
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A (R™ X R™) = U A, (R™ X R™).
1sp<oo

Definition (5.3.6) [255] Let 0 < p,q < o0, a = (a4, @y) € RZ. The weighted bi-parameter
Triebel-Lizorkin space F,*?(w, R™ x R™) is defined by
Fpa,CI(W, R™ x R") = {f € (S°(R" x R™))*: ”f”ngq(W) < oo},
where
1
q

”f”F;"q(w) = <z zja1q+kazq|¢j’k % f()|q>
- LP(w)
Definition (5.3.7) [255] Let 0 < p,q < o0, a = (aq, @y) € RZ. The weighted bi-parameter
Besov-Lipschitz space B, ! (w, R"™ x R™) is defined by
Bg'q(w, R" x R™) = {f € (S®(R" x R™))*: ”f”B,‘,"'q(W) < oo},

where
1
q

_ j k a
||f”3;"q(w) = Zk 2ja1q+ 05261”1/)].’]( *f(.)”Lp(W)
j

n

Corollary (5.3.8) [255] Let 0 < p < oo, N = E +
L”(R™ x R™) function that satisfies

|0galm (e )|<A;
£ L= il 1A

for all |a] < N, |B| < N and (¢,n) € (R™ x R™) with [¢]|n] # 0. Then T is bounded on
LPforl<p<owandonHP for0 <p < 1.

We need to point out that we offer a different way to deal with the boundedness of
Fourier multiplier operators on bi-parameter Triebel-Lizorkin and Besov-Lipschitz spaces
(mainly with index 0 < p < 1) instead of transforming Fourier multiplier operators into
bi-parameter Calderon-Zygmund operators. This way also allows us to avoid using atomic
decomposition and Journé’s covering lemma. We can obtain the boundedness of the multi-
parameter Fourier multiplier operators with limited smoothness assumption on the
multiplier m(&,n). We also remark here that using the multi-parameter Littlewood-Paley
theory to establish the LP(p > 1) boundedness of the multi-parameter and multilinear
Fourier multipliers with limited smoothness has been done in [224].

We will establish the boundedness of Fourier multiplier operators on weighted bi-
parameter Triebel-Lizorkin and Besov—Lipschitz spaces when the multiplier has only
limited smoothness. We only require the bi-parameter weight w to be in A, (R™ X R™)
(see [123] for weighted boundedness for Calderon—Zygmund operators and [234] for
Journé type operators and [128] on weighted Triebel-Lizorkin and Besov spaces in
product spaces).

Lemma (5.3.9) [255] ([198]). Let 1 < p,q < «. Then there exists a constant ¢ > 0 such that

{Z(Ms(fk))qf <c {Zlfqu}%

KEZ k€Z

— (p,Z)] + 1. Assume that m(&,n) is a

LP Lp
for all sequences {f; } of locally integrable functions on R™ x R".
The following lemma is an extension of one-parameter version due to Peetre [253] (see
also [251]).
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Lemma (5.3.10) [255] Let 0 < ¢ < o0 and 0 < r < oo. For any C1(R™ x R™) function u
whose Fourier transform is supported in {|¢| < cty, |n| < ct,}, assume that |u(x,y)| <

B(1+ |x|)~(1 + |y|)r for some B > 0. Then there exist two constants C; and C, such that
the following inequality is valid.

{1 Vaute—zpy =zl 1 |Vyu(x = 21,y = 2)| }

sup — nt s i 7
(1 + ]z DT (1 + talz D7

z1ERM,z, R

(1 + t ]2 )7 (L + ty|2])7

u(x —z,y — 1
<C  sup Jut e )| = < CM,([ul")(x, y)r,

21€RTZ,ERT (1 4 t1|21|) (1 + ;]2 D7
where M, denotes the strong maximal operator and the constants C; and C, depend only
onn,candr.
Proof. This proof is divided into two parts.
Part 1. We first show that

{1 Viu@—zy-z) 1 IV u(x — 2,y — 2,))| }

n n
D1+t ]z )T+ Gl 2 (L + ]z )7L+ 2 ])7

ulx—2z,y—2z
<C,  sup lu( 1 Y — 25)| (114)

HERMLER (1 4 ¢, |2, )F(1 + t,|2, )7
Select a Schwartz function ¥ on R™ whose Fourier transform is supported in {& : || <

2c} and is equal to 1 on {& : |€] < c}. Then ¥ (ti) P (ti) Is equal to 1 on the support of
the Fourier transform of u(&,n) and we can write

u(x —zy,y — z;) = (u( )‘l’( )lll (t;)) (x — 2,y — 2,)
_ ijnt{‘llj(tl(x 2y — Oty (y — 75 — m))u(E, m)dEdn .

We use the partial derivative to obtain
|Veu(x — 24,y — ;)|

< fRzntIl"'lKvxw)(h(x —Z; — ’f))”t?‘p(tz(}/ —Zy — n))u(f,n)|dfdn

sup
z1ERM,z,€R™

< Gy [ a0+ blx— 2 = E)VEA+ ol = 2, = u) Ve mldgdn.
R2M1

Therefore
1 |qu(x—zl,y—Zz)|

t n n
(1 + t1]z; D7 (1 + t5|2, D7
<[ aaaru-n- A+ aly -z - x ——— P ey,
R2" (1 + 6]z, D7 (1 + t5]2, )7
where N is an arbitrarily large positive integer and Cy is a constant which depends only on
N.
Since

)E 1+ t1|Z1|)r
(1+tq]x — SzD’”

1S(1+t1|x—21—f|

and
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n

n (14 t,]|z,])7
1<+ tyly -z, - F 22T
(1 + t,ly - nl)F

we obtain that
1 |Veu(x —z,y — 25)|

te n n
YA+ 4]z )T (1 + talz2 D)7

u )
< CNf | (5 m] _
R (1 +ty]x — ST (1 + taly —n)7
t' ty
X 7 - = dédn
A+tlx—z =& TA+tly—z—nl) " 7
<¢  sup lu(x— &y —n)| (115)

n n-
SERTNER™ (1 + 4, |EDT (1 + t,InD7
Similarly, we also obtain that

1 |Vyu(x — 21,y — 25)| lu(x — &,y —n)
= Y 7 7 <C; sup - (116)
21+ tylzi DT (A + L]z )7

— n
SERENERT (1 4+ ¢1|EDT (1 + t2InDT
Combining (115) and (116), we conclude the proof of Part 1.
Part 2. We show that

ux —z.,y—2 1
sup =20y 222l oy e ) (117)

SERZER" (1 4ty |7, )7 (1 + b2, )7

Let |€] < &, and |n| < §, for some §;, 5, > 0 to be chosen later. We use the mean value
theorem to obtain the estimate

ux—z,y—z) —ulx—z; =&y —2z,—n) = (Vyaw)(x —z; — 0§,y — 2z, — 0n) - €

+(Vyu)(x—zl—9€,y—zz—9n)-f 0<o<1)

for all z,,z, € R™. Therefore

lu(x — 21,y — z,)|

< sup (|(qu)(x —w,y —wp)|6; + |(Vyu)(x — W,y — W2)|52)

lwil=lz1|+61
lwal<|zz|+62
+lulx—z, =&y —2, —1n)l,
where w; = z; + 8¢ and w, = z, + 0n. Let Q, be a ball with radius equal to §; and z;
being the center, and Q, be a ball with radius equal to §, and z, being the center. By

raising to the power of r, averaging over Q, X Q, and raising to the power % we derive

lu(x — z,y — z,)|
< (7 sup  |(Vou)(x — wy,y —wy)|0; + |(Vyu)(x —Wn,Yy— W2)|52
|lwilslzq|+61
lwa|<|z2|+62

1

1 r
+<v1%6{16£1-fQ1 Qzlu(x_zl _Ely_ZZ _T’)l dfdn> 4

where C, = max{2", 2%} and v, is the volume of the unit ball in R™.

Set §, = i and 8, = é for some & < 1. Then we have |w,| < |z| +i, lw,| < |z,] +
£ 1 2 1
tp) 1+tylzg] — Tatawi| & 14talz] T 14tplwal

Therefore we can write
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lu(x — 21,y — 25)|

n n
(1 + t1lz D7 (A + 5]z, D)7

[Viu(x —wy,y —wp)le N [Vyulx —wy,y —wy)le

<G| sup n 7 n 7
|Wi|5|zi|+t_i (1 +twi D71+ w7 (1 + t[wi DT (1 + to|w, )7

1
et v e 4G = 71 = £y = 22 = )" dédn )
Va2 E|sg+lza| lnls+ |z | vt e

+

7 7 |
(1 + t1lz1 D7 (1 + to| 2z, D7 /

V,ou(x —wy, w,)le Vou(x —w w
SCm<Sup ViuCe —wiy—wale  [VyuG—woy—walle oo y)r>
WERnt1(1+t1|W1D (1+t2|W2|)r t2(1+t1|W1D (1+t2|W2|)r

Using (114) and setting € =
used the hypothesis

n n
Iu(x—zl,y—Zz)l B(1+ x|+ |z, Dr (1 + |yl + |z D)7
sup = < sup <

n n
:leiﬁz 1+ t1|Z1|) (1 +tzlz, D7 :ZEEZ (14 t1]z D7 (A + t,| 2,7

Combining (114) and (117), we conclude the proof of Lemma (5.3.10).
We are now ready to state our first main theorem.
Theorem (5.3.11) [255] Suppose that T is a Fourier multiplier operator defined on

R" x R™. Let p = (p,p;) ER%0<p,qg<oo,N = E ] + 1. Assume that
m(&,n)isa L™ (R™ x R™) function that satisfies

ogalmee,n)| < A
N T

for all |a| < N,|B| < Nand (&,n) € (R® x R™) with |&]||n] # 0. Then there exists a
constant C such that

< 1 with C; = 2¢& r, we can achieve (117), where we

rnti

mm(p q)

IT(HlIgpa < ClIfllgpa
and

IT(Pllipa < ClIfllgoa,
where the constant C is independent of f.

If p=(0,0) and q = 2, then £)*(R" x R™) = LP(R™ x R™) when 1 <p < o and
E)?(R® x R™) = HP(R" X R") when 0 <p <1. Then we can easily obtain the
boundedness of Fourier multiplier operators on LP(R™ x R™) and HP(R™ x R™) from
Theorem (5.3.11).

Proof. The proof is divided into two parts.
Part 1. We prove that

IT(HlIgea = Cllfllgoa. (118)
Let (&) be a Schwartz function whose Fourier transform is supported in {% <& < 2}

and satisfies Yyez|p(27%€)| = 1 for all & € {R™(0)}. Denote ¥, (§,1) = ,-P,-x (1)

i) =Y+ f and my(Em) = P(277E) P nm(E, n). It is easy to see that
m =}, x m; . By the orthogonality estimate, we have
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Bik (TUN 0 ¥) = jp * T (6, ¥) = s * (mf)Y (x,)

= <$(2‘f€)1l7(2"‘n) Z P7EP(27K n)mE mFE, n)) (x,5)

iK'

= (1;7(2-1'5)117(2-"77) D B2 U H(27 % D )m(E f &, n)) (x,y)

i1,i2

= (1/3(2‘1'5)&(2"‘7]) z M_i, k—i, (f»ﬂ)f(flﬂ)> x,¥),

where (i;,i, € {—1,0,1}). We only estimate that

@QITODE M EMFED) () s (Mo (HD ()
Pick r < min(p - q) such that N > % + ; By Lemma (5.3.10), we have
(BT Omy & miEM) )| = ijnmxk My x =&y = mdédn
|Ajk(f)(x —Z,Y — Zz)|

AN n
< sup — = Mm@ m|@ + 271EDTQA + 2¥|nDrdédn
21722€R™ (1 + 20|z, )7 (1 + 2Kz, |)7 /2"

r 1 .o n
< GM (|8, (D] )" f | (€, m)| (1 + 27167 (1 + 2K dédn .
RZ‘n
Next it suffices to estimate
. n n

[ I ml(1 + 271607 @ + 2¢m7agan,

R n
We can use the Holder’s inequality to write

. 1
[ Imaemla+ 21eD @ + 244D
R21

. n n
(1 +271EPN7 (1 + 2k|gDV 7
1

n n
(1+27[EDY 7 (1 + 2kpDV 7

d¢dn

< [|mfe (€, m (L + 271EDN (L + 2K D" , H
L2

It is easy to see that

1 1

(1 +20EDVF (1 + 26DVl
We only estimate ”m}fk(f,n)(l + 2f|f|)N(1 + 2K [nN

We use the obvious fact that
(1+2/1E)" < cn) z |(2f§)“| and (1+ 2¥nDN < c(n) z |(2kn)#|

|la|sN |BlsN

jn  kn

=(C2 22 2,

2

to obtain

[mycem(1 + 271" (@ + 261DV

2z

~ ( f Im & m|* (1 + 2716 (1 + zkmnwdc’dn)
Rzn

1

= m 2
1) <f | Xk(ffﬁ)|2|5“I2InBIZZZf'“'ZZkIBIdfdn>
R27M

la|=N,|B|=N
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N =

Vv 2
=C < f (agafm;y.) zzflalzzklﬁldfdn>
lal<N gl 7 RZT
3
=C 2/1al2klBl (J (af m,k) dédn)
la|<NTB|<N R2M
, 3
=C z 2 jlaloklp| (J |6?65(mj,k)(€, n)| dfdn) :
|la|<NIB|<N R2M

For multi-indices § = (84, 8,,...,60,) and y = (yl,yz,...,yn), we denote § < a to mean
5; <a; and y <ﬁ’ to mean y; < B; for all i =1,2,...,n. Considering that (&) is
supported on {& | L < |€] < 2}, we can use Leibniz’s rule to obtain

| Jogo (m,-k)<€,n)| dgdn
<D Coy | | [0 (070 () (2798) (0 7 (9)) 2 *maafme,m| el

0<a
1474 ,
. o 5
SECMZ 2jlal 2161 y-2KIB1p2Kly] fzf-lslg‘lszf“ @20y m(&,n)| ddn
o0<a k—1<|p|<ok+1
v<p 2% 1<|nl=2
< Z Cay2—21'|0!|221'I5I2—2kl,3I22kIy|Zjnzkn2—2j|6|2—2k|y|_
o<a
v<B
Then

1 1
. _n _n
(1 +271ED" 77 (@ + 24DV,

[myic €, m (@ + 271EDY (A + 2*19D¥ ]| ,

1
jn  kn

. 2 i
(222772 z Calﬁzllalzzklm (fz |(ag6[’;(mj'k)(€,n)| dfdn)
R n

la|sN,|BIsN
jn  kn

2
<C2 22 2 Z Caﬁzjlalzzklm < Z Cayzjnzkn2—2j|a|2—2k|ﬁ|> < oo,
|a|<N,|B|sN S<a,y<p

where C depends only on n, N, A, r. Therefore
1
Yiae* )Y s (Ms(|8; D)) )"

1

Win* (Mg f) s (Ms(B (O o))" G € (1,0,-1)).

1

1 q\4
F )
LP

Similarly we obtain

Then
Pik* Y s (M([8,O]) )

Therefore we conclude that

g = o) g <e( 3 (25

Jk

UACHGID)
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1 1
1\4 q q
< (z (szﬁkpz||(|Aj,k(f)|r)||zg> ) - (Z (zfpl+’<p2IIAj,k(f)Ile)q> = Clifllgpa

ik ik
for all f € S*(R™ x R™). Since S”(R" x R™) are dense in B{,"q, the operator T can be
extended to a bounded operator on Bg’q. Then the proof of Part 1 is accomplished.
Part 2. We show that
IT(Hlgpa < Clifllzpa: (119)

In Part 1, we have obtained

1
~ N7
Wi+ (mPY s (Ms([8;O)) )
for all fe€S®(R"xR™). Pick r <min{p,q} such that >,T>1. According to
Fefferman—Stein vector-valued inequality in the bi-parameter setting, we obtain
1

NAYX]
IT(Fllgpa = C ”(mf)\/”Fp‘q <cC (Z <2fp1+kpz (M5(|Aj,k(f)|r))?> )

ik
LP
1
rar 1

q q
=C (Z(zfpﬁkpzlAj,k(f)l)") = ClIfllzpa,
p Ik

q
<C (Z (ij1+kpz |Aj,k ) |r)r>
TE LT Lp

which concludes the proof of Theorem (5.3.11).

We prove the bi-parameter Fourier multiplier operators are bounded on weighted bi-
parameter Besov-Lipschitz and Triebel-Lizorkin spaces. First we state a well-known
vector-valued weighted maximal inequality.

Lemma (5.3.12) [255] Assume 1 < p,q < o and w € A, (R™ X R™). Then there exists a

constant C > 0 such that
q q
{Z(Ms(fk))q] <c {Z'f"lq}

keZ kEZ
LP(w) LP(w)

for all sequences {f;} of locally integrable functions on R™ x R™.

Theorem (5.3.13) [255] Suppose that T is a bi-parameter Fourier multiplier operator
defined on (R™x R™). Let p = (p;,p,) ER%L0<p,q<oo,N = [24. n ] +1.

2 min(p,q)
Assume that m(&,n) is a L*(R™ x R™) function that satisfies

ogafmee.m| < A
¢ OpmEm| = A i

for all |a| < N,|B| < Nand (¢,7n) € (R™ x R™) with |€][n] # 0. If w € A, (R™ X R™),
then the following inequalities are valid with the constant C independent of f :

D NT DM geaey < ClIfllseagy)
A NTONspaqy < Clflzpag).
We extend the above theorems to the cases where the multipliers m (&, n) have weaker

decay condition and worse singularity at the origin.
Proof. In the proof of Theorem (5.3.11), we have obtained the pointwise estimate

;TN s (Mo (O]

185




Pick 7 such that 1 < g,% < o0 and w € Ap, we have

1
18 () < € || (MU0 H)Y
By Lemma (5.3.12) and (120), we can derive that

”T(f)”BPq(W) =C ||( f) ||qu(w) (Z (2]a1+ka2

Jk
S C (Z <2ja1+ka2

jk

1 q
Jjaitkaz||A. r||r _ '
(Z (2 15,6 ||Lg(w)> > Clflgpacy

ik

< Cllay O, p - (120)

LP(w)

1
q

Ajk ((mf)v) ||Lp(w)>q>

1
1 q\4
Lp(w)>

(M(I8OI))

IA
QR

and

”T(f)”%"q(w) =C ( f) ||qu( ) <Z (2]a1+ka2

ik

1
q

s ()

LP(w)

1 q %
<C <Z <2ja1+ka2 (MS(lAj,k(f)lr))r> )
Jik

LP(w)

T

q
. N5
=C <Z(2(’“1+k“2)r|ﬂj,k(f)| )r> = Cllfllgpac)
Jj.k

p
Lr(w)

Q=

which concludes the proof of Theorem (5.3.13).

We have proved Theorem (5.3.11) and Theorem (5.3.13). Now we generalize the results
of Theorems (5.3.11) and (5.3.13) to more general cases where the multipliers have the
worse singularity at the origin.

Theorem (5.3.14) [255] Let p = (p1,p;) E RE, m = (m;,m,) ERT XRY,0<p,qg <o
and N = E +— ] + 1. Assume that m(&,7) satisfies

aqB
|af Oy m(S, 77)| = A4 || lal+ma |y |1B1+m,

for all |a| < N,|B| < Nand (¢,n) € (R* x R™) with |€][n] # 0. If w € A, (R™ X R™),
Then there exists a constant C such that

IT(HNlggma < Clifllgpema

min(p,q)

and
TN pema < ClIf llggma,

where the constant C is independent of f.
Proof. By the Littlewood—Paley decomposition, we can derive that

8 (T(f) =y xT(f) = (1/3(2_]'5)1/3(2_’(7]) z mi_i, k—i, ($, mf &, 77)) x,y),
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where (i, i, € {—1,0,1}). We only verify that

% , 1
(llj(z_jf)llj(z_kf)mj,k(f; mf (&, 77)) (x,y) S 277mkmz (M, (|4 (DD (6, 3))"
Pick 7 < min{p. q} such that N >+ = We write

(BEIOp@ OmuEmfEm) )=

my (&, mMA;  (F)(x = &,y —n)dédn

R27M

1 . n n
< M (|4 (O] ) jRanm,-V,k(f, m|(1+271€))" (1 + 2¥|nDrdédn.  (121)

Next we estimate
. n n
[, Il +271gl)7 @ + 24 inragan.
]R n

We use the Holder’s inequality to obtain

[ Imteem(a+ 21"+ 241D
R21

1
— 7 —m dédn
L+ 278D (L + 2K D™

_n__knog o T K[ [\N
< 272272 |mi(&m(1+ 210" (@ + 24n)

2

It suffices to estimate ”m]‘{k(f, m(1+ Zjlfl)N(l + 2K[p N
: N
| myi e m(1 +271€0" (@ + 26 mpY

2

L2
1

- 2
<C Z (j |77l]\'{k(f, 77)|2|€“|2|Uﬁ|222j|“|22k|ﬁ|d§'dn>
R2n

l|<N,|B|sN

=

. 2 2
=C Z Ca’ﬁzjlalzklb’l <J |(ag65(mj,k)(f,n)| dg‘dr]) : (122)
|a|<N,|B|<N R27
We use Leibniz’s rule to obtain

jﬂw ogal (mj,k)(f,n)rdfdn

< E C&y j];%zn 2—jla=8l-k|B-vI (65"5(1/7)) (2—]5) (a;f‘y(l/j)) (z—kn)a?al';’m(f’ n)|2 dédn
o<
Y<p

< z C&yz—zjlal221'I8I2—2k|ﬁl22kIVIzjnzknz—Zj(Ic?Hml)2—2k(lyl+mz)_ (123)

o<a
Y<p
According to (122) and (123), we derive

[mycem (1 +271e1)" (@ + 251DV

12
1
( \
<C Ca32j|a|2k|ﬁ| z C(Syzjnzknz—zj(|8|+m1)2—2k(|y|+m2)
la|<N,|B|sN \650:
. Y<p
= 27/mikma ¢ < oo, (124)

Combining (121) and (124), we have

W * (M )Y s 277makma (M (14, (H]) (6 9))"
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Similarly we also have
1
Vi * (mj—il,k—izf)v < 27/mamkms (Ms(|Aj,k(f)|)r(x: Y))r (i €{1,0,—1}).
Therefore
q
LP>

1
q

(MO

”T(f)”35+mq =C ||(mf)v||3p+m’q <C Z <2jp1+kp2

p -
Jk .

1,49\14

. .
=C 2(2“’1*"*’ZII(IA,-,R(f)| )”Zg) < ClIfllgpa
j.k
and

1 a\d
IT()llgpema = € | (mf)V”meq <c (Z <21'P1+kpz (M, (5 f)lr))r> )

.k
1
nir
q q
<c||| Y @relan ) ) || <cifigpe
.k

p

LT

which conclude the proof of Theorem (5.3.14).
Theorem (5.3.15) [255] Let p = (py, p2) € R4, m = (iny,m,) € Rt X R*,0 <p,q < =

and N = [E + mm(p,q)] + 1. Assume that m(&,n) SatISflei

ayB
|a§ an m(f,ﬁ)l =4 |€||a|+m1|n||ﬁ|+m2

for all |a| < N,|B| < Nand (§,n) € (R* x R*) with |€]|n] # 0. If w € A, (R™ X R™),
Then there exists a constant C such that
”T(f)”Bp+m,q(W) < C”f”BpHn,q(W)
14 14

and
IIT(f)IIF;m,q(W) < CIIfIIF~15+m,q(W),

where the constant C is independent of f.

We prove that the bi-parameter Fourier multiplier operators are bounded on bi-parameter
Besov—Lipschitz and Triebel-Lizorkin spaces (Theorem (5.3.11)). We are concerned with
the weighted cases (Theorem (5.3.13)). We extend the results to more general cases where
the multipliers have the worse singularity at the origin (see Theorems (5.3.14) and
(5.3.15)).

Proof. Since the proof is similar to that of Theorem (5.3.13).

Corollary (5.3.16) [314] Let 0 < € < oo. Then there exists a constant C,._; > 0 such that
1

D {2 (Msd(fk"))melm <Gy {Zlfkdll+26}1+12€

da k€EZ d k€EZ
L1te L1te

for all double sequences {f,%} of locally integrable functions on R x R™.
Corollary (5.3.17) [314] Let 0 <€ < . For any C}_;(R™ x R") function u,_, whose Fourier
transform is supported in {|&,_1| < (1 + €)t,, Iny_1] < (1 + €)t,41}, assume that w1 (1, Y1) <

(1+e)(A+ |x_1)1+e(1 + |y,_1|)1+e for some € > 0. Then there exist two constants C, and C,,; such
that the following inequality is valid.
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sup i |er_1ur—1(xr—1 —ZrYr-1— Zr+1)| n 1 |Vyr_1ur—1(xr—1 —ZrYr-1— Zr+1)|

n n n n
zreRYzr @R (U (1 4 6|2 DTFE(L + gy |20 DTFE T+ (14 |2, )TFE(L + tyyq |21 |)THE

|up—1(Xp—1 = Zp, Y1 — Zrs1)]
< Cr sup r—1\Ar—1 rYr-1 r+1

n n
ZrERYZr 1 R (1 4 ¢, |2, )T (L + trpq |21 ) THe
1

< Cr+1Msd(|ur—1|1+6)(xr—1» yr—l)m:
where M, denotes the strong maximal operators and the constants C, and C.,, depend only on n and
1+e
Proof. This proof is divided into two parts.
Part 1. We first show that

{l |er_1ur—1(xr—1 —ZrYr-1— Zr+1)| n 1 |vyr_1ur—1(xr—1 —ZrYr-1— Zr+1)|

n n n n
b (4t 2z DT + trpglzr DT T+ (4 b2 DTFE(L + tyyq |24 ) TFE

U1 (Xypq — 2, V1 — Z
<cC sup [t q (21 T Yr—1 ) (125)

n n -*
reRTZra R (1 4 612, DTFE(L + triq| 240 DTFE
Select a Schwartz function ¥ on R™ whose Fourier transform is supported in {&,_; : |&_1] < 2(1 + €)}

and is equal to 1 on {&,_; : |E,_1] < 1+ €}. Then ¥ (i—‘l)tﬁ (’ZT—‘l) is equal to 1 on the support of the

r+1

sup
ZrERn,Zr+1 ER"

Fourier transform of w,_; (&,-1,1n,-1) and we can write

Up1(Xpo1 = Zp, Yro1 = Zpp1) = <ﬁr—1(';')¢A (Z) P (

\%
)) (xr—l ~Zry Yr-1— Zr+1)

tri1
= f ) trr'llp(tr(xr—l —Zr— Er—l))t;}+1l/)(tr+1(yr—1 T Zr+1 T nr—l))ur—l(fr—l' nr—l)d’fr—ldnr—l .
RZ21
We use the partial derivative to obtain
|vxr_1ur—1(xr—1 —ZrnYr-1— Zr+1)|

< f]Rzntvr}-'-l|(er_1lp)(tr(xr—1 —Zr — fr—l))l |t77}+1¢(tr+1(3’r—1 —Zry1 — nr—l))ur—l(fr—llnr—1)|dfr—1d77r—1

=< (Cr—l)Nf A+ bl — 2 = G DTV (U Vot = Zrpn — o DTN U Grm M- DG Ay

R21

Therefore
l |er_1ur—1(xr—1 ~ZryYr-1— Zr+1)|

) n
A 612 DT b2 T

s ] t;lt11}+1(1 + trlxr—l — Zy — fr—ll)_N(l + tr+1|yr—1 — Zyy1 — nr—ll)_N
RZTL

N |ur—1(f1”—1' nr—l)l = dfr_ldnr—lr

(14 |2, DT + a2, )T
where N is an arbitrarily large positive integer and (C,_;)y IS a constant which depends

onlyon N.
Since
12, |)T+e
n_ 1+t.|z
1 < (1 + trlxr—l —Zy — Er—1|)1+e ( L n_
(1 + trlxr—l - fr—1|)1+e
and

n
_n_ (1 + tpiqlzp ) 1+e
1< (1 + tr+1|yr—1 —Zry1 nr—1|)1+6 - -

n
(1 + tr+1|yr—1 - nr—1|)1+6
we obtain that

l |er_1ur—1(xr—1 —ZrYr-1— Zr+1)|

n n
Ly (1 + tr|ZT|)1_+E(1 + tr+1|Zr+1|)1_+€
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[ty 1 (o1, Mo 1)
< (Cr—l)N.[ . LT . n_
R (1 4+t ]xpmg — &g DTHFE(L + g | Vo1 — Mroq ) THE
ty tri

X —N—L n dfr 1d77r 1
(1 + trlxr—l — Zy — fr—ll) 1te (1 + tr+1|yr—1 —Zyy1 — nr—lD “1+e

u X - , -
SC sup | r— 1( r—1 Er 1 Yr-1 Nyr- 1)| (126)

o1 €RLIr-1 ERY (1 + 1, |€ 1I)1+6(1 + tra - 1I)1+6
Similarly, we also obtain that

|Vyr_1ur—1(xr—1 —ZpYr-1— Zr+1)| < Cr sup |ur l(xr 1 fr 1 YVr—1 = Nr- 1)| (127)

bt (14 6|2 DI + bz ga)TRe SmiSR IR (1 €y [THE(L + by [,y TP
Combining (126) and (127), we conclude the proof of Part 1.
Part 2. We show that

[uy—q (x 1—2,}’ 1= Zrs1)| 1
nSllp n = = aces . n < Cr—lMsd(lur—1|1+6)(xr—1' YT—1)1+E' (128)
ZreR%Zr €RT (1 + ¢, Izr|)1+e(1+tr+1lzr+1l)1+e

Let |&,._4] < 6, and |n,_,| < §,, for some 6,, 5,.; > 0 to be chosen later. We use the
mean value theorem to obtain the estimate
ur—l(xr—l —Zry Yr-1— Zr+1) - ur—l(xr—l = Zy — fr—lr Vr—1— Zry1 — nr—l)
= (er_lur—l)(xr—l —Zr — (1 - E)Er—l' Yr-17 Zr+1 — 1- E)Ur—l) “$r-1
+ (Vyr_lur—l)(xr—l —Zr — (1 - E)Er—l' Yr-1 7 Zr+1 — (1- E)Ur—l) “$ro1 (0 <e< 1)
forall z,, z,.,; € R™. Therefore

|ur—1 (Xr—1 = Zp, Yr—1 — Zpy1)|

< sup (l(vxr_lur—l)(xr—l —Wr Yr-1— Wr+1)|6r + |(Vyr_1ur—1)(xr—1 — Wy, Yr—1— Wr+1)|6r+1)
|wr|<|zp|+6,

Wrs1lS|Zp g1+ 6r41
+ |ur—1(xr—1 —Zy — S;r—lryr—l —Zry1 T Tlr-1)|, .
where w, =z, + (1 —¢€)&,_; and w,p; =z, + (1 —€)n,_,. Let Q, be a ball with
radius equal to 6, and z, being the center, and Q,.,; be a ball with radius equal to §,,; and
z,,, being the center. By raising to the power of (1 + €), averaging over Q, X Q,,, and

raising to the power ( ) we derive

[ 1 (1 = Zp Yr1 — Zr+1)|

< (Cr—l)%+e | IEFp|+6 |(er_1ur—1)(xr—1 —Wr Yr—1— Wr+1)|6r + |(Vyr_1ur—1)(xr—1 —Wr Yr-1— WT+1)|6r+1
Wrl=(Zy r

[Wry1l=1Zr 4148741
1

1+€
+ ( 5n5n j j |ur—1(xr—1 —Zr — fr—l: Vr—1 = Zr41 — r]r—l)ll-'-6 dfr—ldnr—1> ’
n+r 1 Q

L r+1

where (Cr_1)14+¢ = max{217¢, 21+e} and v,,,,_ IS the volume of the unit ball in R™,

Set §, = i and &,,, = i for some € < 1. Then we have |w,| < |z,| + = Wy | <
€ 1 2 1 2

|z 11| + < a <
+ tre1 ’ 1+ty|zy| 1+t wyl 1+tr41|Zr4ql 1+trq|Wrgal
|ur—1(xr—1 ~ ZryYr-1 " Zr+1)|

n n
A+t |z DT+e(L + by 4] 24 [)THe

. Therefore we can erte

|Vx7~ 1ur 1(xr 1~ WrYra1 Wr+1)|6 + |Vyr_1ur—1(xr—1 —Wr, Yr-1— Wr+1)|E

n n
Wisr—1l=lZipr—al+g—— by (1+¢, |Wr|)1+e(1 + tr+1|Wr+1|)1+€ trar (1 + t we DIFe(L + gy lwyyq D14e

S (Cr—1)1+e,n \ Sup

Nr- 1|< +|Zr 1l

1
tr e 14e e
Uz—f 1 fl | r—1(xr—1 —Zy = Szr—l' Yr—1 = Zr+1 — nr—l)l dS(r—ldnr—l

2n <—
n+r—1€ |$‘r—1|—tr+|zr|

n n
1+ tr|Zr|)1+€(1 + tr+1|Zr+1|)1+E }
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Ve, Uro1 (X1 — Wy, Yrog — Wrgq)|€ Vo Up 1 (Xpeq — Wy, Ypoq — Wypp)|€
S(CT—1)1+€,n< Sup | Xr—1 T T ™ Jr r+ | + | Vy_1 41 T ' Yr r+ |

n n n n
Wirr=1ER" £ (1 + £ Wy DTFE(L + trpq Wiy 1 DTHE g (14 £ [y DTHE(L + trpq [ Wy DTHE
2n 1
+ e THeMg, ([t g ") (o1, Yoy ) TH€E ).

1

Using (125) and setting € = < 1 with C, = 2€ 1+¢, we can achieve (128), where we used

2(Cr-1)1+enCr

the hypothesis

n n
|ur—1(xr—1 —Zyy Yr—-1— Zr+1)| (1 + E)(l + |xr—1| + |Zr|)1+e(1 + |Yr—1| + |Zr+1|)1+e
Sup - = sup - i < oo
2l €R™ (1 + £, ]2, )TFe(L + tyyq|zpy,|)TrE  JorlERT (1 + tplz, DIHe(L + trya]Zpiq D1te
|Zr+1|ER |Zy41|ER

Combining (125) and (128), we conclude the proof of Corollary (5.3.17).
Corollary (5.3.18) [314] Suppose that T, are a Fourier multiplier operators defined on R™ x R™. Let

Pr—1= (P prs1) ERE0< €< o0o,N = [§+ = ] + 1. Assume that m,_,(&_1,1r-1) IS @
L* (R™ x R™) function that satisfies
1

Ar—14Br-1
|a‘fr—1 anr—l mr—1(fr—1! 77r_l)| = Ar—l Ifr_1||ar—1||77r_1||ﬁr—1|

for all |a,_1| < N,|Br-1]l < N and (&_1,m,-1) € (R™ X R™) with |&,._;||n,—1] # 0. Then there exists a
constant C,._; such that

min(1+€,142¢€)

Z”Td(fd)”BPr—L1+2€ < Cr_lz”fduspr_l,ﬂze
1+€ 1+€
d d
and
N UTaGF Dlggyossese < ooy D I Ulggyosnse,
1+€ 1+€
d d

where the constant C,_, is independent of the sequence f¢.

If pr_1=1(0,0) and e=1/2, then F)Z(R™xR™ = L'*¢(R" x R") when 0<e <o and
FY2(R™ x R™) = HY*€(R™ x R™) when —1 < € < 0. Then we can easily obtain the boundedness of
Fourier multiplier operators on L'+€(R™ x R™) and H1*€(R™ x R™) from Corollary (5.3.18).

Proof. The proof is divided into two parts.

Part 1. We prove that

Zqu(fd)u sprairze < Cyoy Zu £l yorsnsae. (129)
= 1+€ = 1+€

Let y¥(¢,_,) be a Schwartz function whose Fourier transform is supported in {%s [&—1] < 2} and

satisfies Yies[P(276-1)] = 1 for all &y € {R™(0)}. DeNote v,y (§r—1,7r-1) = - (§,_ )1, (1,_,), a A (£)
= Zd(lp;’,k * f4) and My gtr—1Er—1,Mr—1) = ¢(2_]fr—1)l/’(2_knr—1)mr—1(fr—pUr—1)- It is easy to see
that m,_y = Xj4r—1k+r—1 Mj+r—1,k+r—1. BY the orthogonality estimate, we have

> B TafF )1, ¥r-2) = ) By * TaF Do ¥r2) = Y Wi * (1T Gy, Vo)
a d da

:z $(2_j§r—1)$(2_knr—1)z llj(z_j,fr—l)lpA(z_k,nr—l)mr—l(57"—1:nr—l)fa(fr—llnr—1)> (xr—lJyr—l)

d JjlK!

= Z @(Z_jfr—l)ﬁ(z_knr—l)zlpA(Z_(j_il)fr—l)llj(z_(k_iz)nr—l)mr—l(fr—l:nr—l)fa(fr—lﬂnr—l)> (xr—liyr—l)

d ini

v
= Z J)(Z_jfr—l)lﬁ(z_knr—l) Z m(j—i1)+r—1,(k—i2)+r—1(Er—l' nr—l)ft\i(gr—l' 7]r1)> (xr—l' yr—l) ,
d iniz

where (iy, i, € {—1,0,1}). We only estimate that
~ . ~ — \
Z (l/)(z_] Er—l)l/)(Z_kfr—l)mj+r—1,k+r—1(51'—1: nr—l)fd (Er—l: nr—l)) (xr—lf yr—l)

d
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1
S D (Me (87 FODCtpor, o))
d
Pick (1 + €) < min((1 + €) - (1 + 2¢€)) such that N > g + i By Corollary (5.3.17), we have
~ . ~ — \%
Z |(lp(z_]fr—1)lp(2_k€r—1)mj+r—1,k+r—1(Er—lf nr—l)fd(fr—lf 777’—1)) (xr—ll yr—l)
d

f m]\'/+r—1,k+r—1(€r—1: nr—l)Aj,k(fd)(xr—l - S;r—lr Vr—1— nr—l)dszr—ldnr—l
]R n

. _n_ o
| 1\‘/+'r—1,k+'r—1(€'r—1' nr—l)l(l + 2} |$r—1|)1+€(1 + zklnr—1|)1+6d$r—1dnr—1

Z|Ajk(f )(xr 1~ Z Yr-1— r+1)|
zrzr+1€JR" (1 + 27|z, |)1+6(1 + 2k|z_r+1|)1+e R27"

< Gron 3 Mo (™G3 0) ™ [ sty DICL 206, DG+ 2l
Next it sTJffices to estimate .
f 2n|m]y+r—1,k+‘r—1(€‘r—1)nr—l)l(l + 2j|fr—1|)m(1 + 2k|7lr—1|)% dér_1dny_q.
We can use tﬁe Holder’s inequality to write . .

[ A N e I A LR U _ b
wen (1 + 2018, 1) T (1 + 257, )™

1 1
< [[mfrsiesra Gronme- D (L + 2716 D) (1 + 2400 DY) — —
(1 + 21&,_ 1)V 7T5 (1 + 2K|,_y )" Tre

LZ
It is easy to see that

jn  kn

1 1 _jn__kn
== T'—12 2 2 2,

_n_ n

(1 + 218y [)V 1% (1 + 2K[,_, )" T¥e 2

We only estimate [|my, s sr1 Gr-1,mr-) (1 + 27164 1)" L+ 250 a D)
We use the obvious fact that

A+ 216 D" < G Y |@g_ )% and (+2¢, DY <G ) |@H,-)0]

lar—1lsN |Br-1|sN

to obtain
. N
||mj\'/+r—1,k+r—1(§r—1'77r—1)(1 + 2/ |Er—1|) (1 + 2%|n,—, DV .2

1
2

2 . 2N
= (f 5 |m]\'/+r—1,k+r—1(€r—1: nr—l)l (1 + 2/ |Er—1|) (1 + Zklnr—ll)ZNdfr—ldnr—1>
R n

221Iar 12klBr-al g, dn,_ 1)

< Cr—1 Z (]2 | j4+r—1,k+1r— 1(61’ 1 M- 1)| |§706r !
R21

|ay—1|SN,|Br—1ISN

-en ¥ ([,

|ay—1|SN,|Br—1|SN

—C_, Z o letr1lpklBr—1| f
]Rzn

lar—1|=N,|Br-1|sN

—C_, Z 2 lar—119k|Br1] f
R2n

|0-'r—_1|_5NJ|_Br—1|5N
For multi-indices 6,_1; = (6y, 6y41,+++)Opar—1) aNd ¥o_1 = (Vr, Vrs1r---» Ynar—1), We denote 6T_1 <
ay_; to mean 6;,p_1 < Ajpr—1 aNd y,._4 </3r ; to mean yiir—1 < Biyr—q for al i=1,2,.

Considering that 1) (&,_,) is supported on {&,_ 1| L < |&-_1] < 2}, we can use Leibniz’s rule to obtain

_[2 agrr 11 f:f(m]‘*'r Lk+r— 1)(51‘ 1 Nr— 1)| dé—r 1d77r 1
R2N

(agrr 1165: My o= 1) (r-1,Mr-1) 221Iar 122klbrlge,_ dn,._ 1>
1
2

dfr—ldrlrﬂ)

(a;r 1165: S Mg Lictr— 1) (§r—1,Mr-1)

N[

2
agr 165: 11(mj+r—1,k+r—1)(fr—1'77r—1)| dfr—ldnr—1> .
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< 2 (Cr—l)t?r_l.yr_l ijn |2—jlar-1—5r_1I—kIBr_l—Vr_l| (agr_-ll—ér_l(l/j» (Z_jfr—1) (65:11 Vr- 1(1/;))

Sr_1sar_q
Yr-15Br-1 )
8 1%
X (27*1,-1)0 e 0g imr—l(fr—l»nr—1)| d&y_1dny_q
< (Cr_l)sr_llw_l2—21|ar-1|221|5r-1|2—2k|ﬁr-1|22klyr-1|
Sr-15ar—1
Yr-15Pr-1
2
Sr-1Yr-1
X ij—15|fr—1|52j+1 (afr 163 mr—l(fr—l:nr—1)| dfr—ldnr—l
2k_15|nr—1|52k+1
< (c, 1)5r 1VT_I2_2j|ar—1|22j|6r—1|2_2k|/3r—1|22k|)/r—1|2jn2kn2_2j|5r—1|2_2k|7r—1|_
Or—15ar—1
Vr-1=Pfr-1
Then
1 1

||mj\'/+‘r—1,k+‘r—1(f‘r—11n‘r—l)(l + 2j|€r—1|)N(1 + 2k|7)r—1|)N”L2

n
(1 + 2716, DV TH (1 + 2Ky, _, )" THe

L2
1
n 2

5T r—
& 11 gr 11(m]+T Lk+r— 1)(57' 11— 1)| dé,_ 1dnr 1)

'nk
2712 22

(€1 rp,.. 2011228187 <j
- r—1,Pr—1
R21

|ay—1|=N,|Br-1|sN

2
<C_42 ;2 > Z (Cr—1)ar_1,ﬁr_1Zjlar_ﬂZZklﬁr_ll< (Cr_l)ar_l’yr_lZjnzknz-Zanr—ﬂZ-Zklﬁr—ﬂ) < o0,
lar—1|<N,|Br—1lsN Sr—15Qr-1,Yr-15Pfr-1
where C,._, depends only onn, N, A,_4, (1 + €). Therefore
1

D i (e f DY S Y (Mo, (18 FHN ™ G )

d

a
Similarly we obtain
1

le’j,k * (m(j—i1)+r—1,(k—i2)+r—1f?i)V S Z (Msd(| k(fd)DHe(xr 1 YVr- 1)) (te{1,0,—-1}).
a

d
Then

1

z Yjgex (me_1f3Y S Z (Msd(lAj,k(fd)|)1+€(xr_1'yr—l))m.

d d
Therefore we conclude that

—\V
Z”Td(fd)”BfI;l'Hze = Cr—lZ ||(mr—1fd) ||B,1916_1,1+26

1

1+2€\ 1+2¢
L1+e>

1

1

SCr—lZ Z(zfpr+kpr+1 ( o (| k(fd)|1+e)>1+e

d \jk

1\ 1+2€ 1+2¢

< Cr—lZ z (ijr+kpr+1 (lAj,k(fd)|1+E) |Z+6>

da Jk
1
1+2¢
X d 1+2€
=S @ (£ o) = ¢, 12|If [
d Jjk
for the sequence f¢ € S (R™ x R™). Since S®(R™ x R™) are dense in BfT-" ”26, the operators T,; can

be extended to a bounded operators on ijel 1+2€ Then the proof of Part 1 is accomplished.
Part 2. We show that

ZIITd(fd)ll oroparze < Cr g Z||fd|| prpi+2e. (130)
7 F1+6 7 F1+E

In Part 1, we have obtained
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1
Z Yip* (me_1f9)Y s z (Ms (18 F O )
da

d
for the sequence f¢ € S®(R™ x R™). Pick (1 + €) < min{1 + 2¢,1 + 3¢} such that (11:2:, 1:;

According to Fefferman-Stein vector-valued inequality in the bi-parameter setting, we obtain

—\V
Z”Td(fd)”FfIELHZE = Cr—l 2 ||(mr—1fd) ||F1pIE_1,1+2e

)>1.

1

1 1+2e\ 1+2¢
; 1+e\\1+
<6 2|3 (2 (o s ) )
d jk
L1+e
1
1+€ 11te
1+2¢ \ 1+2€
i 1+e\1te
<6 ) |l 2 el )
d j.k
L
1 1
1+2€
, 1+2€
= o ) ||| 2@ s ) = Croa ) I ¥l py-aave,
d Jjk d
L1+E

which concludes the proof of Corollary (5.3.18).
Corollary (5.3.19) [314] Let =1 < € < oo, N = [ +m] + 1. Assume that m,_;(&p_1,1r_1)
isa L”(R™ x R™) function that satisfies

1

ar—1 3Br-
|a lanr fmr—1(fr—1:nr—1)| < Ara |fr_1||ar—1||7]r_1||ﬁr—1|

forall |a,_1| < N, |Br-1] < Nand (é,_1,mr-1) € (R™ X R™) with [é,_1||n,—1] # 0. Then T, is bounded
on L**€for 0 < e < ocoandon H'*€ for —1 < e < 0.

We show the bi-parameter Fourier multiplier operators are bounded on weighted bi-parameter Besov—
Lipschitz and Triebel-Lizorkin spaces. First we state a well-known vector-valued weighted maximal
inequality.

Corollary (5.3.20) [314] Assume 0 <e <o and w,_; € A;,(R™® x R"?). Then there exists a
constant C,_; > 0 such that

| [ERE >)} 25 I &

d keZ kEZ
L2 (w,_y) L (wy_q)

for all double sequences {f;¢} of locally integrable functions on R x R™.
Corollary (5.3.21) [314] Suppose that T, are a bi-parameter Fourier multiplier operators defined on

n n — 2 =ty "™
(R*xR™). Let p,_q=(prpry1) ER5,0< €< 00N = [2 + min(1+e,1+2€)] + 1. Assume that
my_1(&—1,Mr—1) 1sa L*(R™ X R™) function that satisfies

|6ar 1anﬁ: fmr—l(fr—llnr—1)| < Ar—l la |1 |Br—1l
Ifr—ll 1 |77r—1| 1

for all |a,_;| < N, |B,—1] < N and (&_1,7y—1) € (R® X R™) With |&,_;|[n,_1] # 0. If w,_; € Ao (R™ X
R™), then the following inequalities are valid with the constant C,_; independent of the sequence f¢ :

M) ZHTd(f d)”BfI;L”“(wr_o = CHZ”f dllé”r‘l'l”%wr_l)'
d
(ii) ”Td(fd)”ppr wivze, < Crog ) lIf? lor-sivae,
=

Fmally, we extend the above theorems to the cases where the multipliers m,_, (&,-1,1,-—1) have weaker
decay condition and worse singularity at the origin.
Proof. In the proof of Corollary (5.3.18), we have obtained the pointwise estimate

ZlAj,k(Td(fd))l < Z ( 5q (| k(fd)|1+6)>1+e
da

d
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1+26 1+3€
1+
1

D 1A (Gmea 7Y )||LW(WT LS 12 (I )
d
By Corollary (5.3.20) and (131), we can derive that

—_— V
T (FO| ,or—11+2 :C—Z”m_ ‘ ||
Z” d(f )”Bﬂ"el Wr_1) r-1 -~ ( r 1f ) Bf}:gl'lﬂe(wr—l)

Pick (1 + €) such that 1 < — <o and w,._; € Ai+2¢, We have

1+€

< Ca D 18O ey, (13D
da

L1+E(Wr—1)

1

1+2€
. k .V 1+2€
— jar+kariq d
_Z Z(Z T Af”‘((mr‘lf )) LI+E(w ))
7 r—1
1
1 1+2€\ 1+2¢
. 1+€e\ \1+e€
ar+ka d
3| 3 e o o)
d jk L**€(wyr_q)

1
1+2¢ | 1+2€

1
rtkay ay1 = d
(S (rtaarrs ) ) o T
Jj.k d

—4\V
Z”Td(fd)”FlpIE—L1+ZE(WT_1) = Cr—l Z ||(mr—1fd) ||Fpr_1,1+26(w )
a d 1+€ -

— Z Z (Zjar+kar+1
jk
[}

and

1
1+2€

5, ((mr_lfa)v)DHze

d
L**e(wr_y)
1 1
L 14+2€\ 1+2¢
: 1+€ 1+€
) (AR
d Jk
L**€(wy_q)
1
1+€ ' Tre
1+2¢ \ 112€
Gar+kare)(1+6) | A d 1+6)1+€ _ d
SO @erkerarala (7| = Coa ) I ¥llpgransaeg,
d Jk d
L(wy-1)

which concludes the proof of Corollary (5.3.21).
Corollary (5.3.22) [314] Let p,_1 = (py, Pr+1) € RE,m_; = (My, M) ERY X RT,0 < € < 0 and

n n T
N = [5 + m] + 1. Assume that m,_; (&,_1,1,-1) satisfies

1
Ar—1 4Pr-1 |
afr 1 anr 1mr 1(57' Ll 1) r 1 |€r_1||ar—1|+mr|nr_1||ﬁr—1|+mr+1

forall |a, 1| < N,|Br_1l < Nand (§_1,mr-1) € (R® X RM) With [§,_[I7,_1] # 0. If w,_; € A, (R™ X R™),
Then there exists a constant C,._; such that

DTG Dlgpy-smeosivae < Criy D Nf Ul gpr-some-sase
1+€ 1t+e
d d

and
E ”Td(fd)llplp_r—ﬁmr—l'ﬂze < Crq E ”fd”pf_'_r—l’rmr—l'l“e;
€ €
d

d
where the constant C,._; is independent of the sequence f.
Proof. By the Littlewood—Paley decomposition we can derive that

Z #(TaCFD) Z%R*Td(f)
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\

= z llj(z_jfr—ﬂllj(z_kﬂr-ﬂ z m(j—i1)+r—1,(k—i2)+r—1(S;r—lf nr—l)fa(fr—li 777"—1) (xr—ll yr—l)'
d i1iz

where (iy, i, € {—1,0,1}). We only verify that
z (lpA(2_jfr—l)lp’\(z_kfr—l)mj+r—1,k+r—1(Er—lrnr—l)ﬁ(fr—l' nr—l)) (xr—lr:Vr—l)

‘ , 1
S Z_er_kmrﬂ Z(Msd(|Aj,k(fd)|)1+e(xr—1' yr—l))1+6-
Pick (1 + €) < min{(1+¢€), (1 + 2¢)} such that N > — + — We write
Z ‘ lp(Z_Jfr—l)w(z_kfr—l)mj+r—1,k+r—1(’fr—l:nr—l)f (S;r—l'nr—l)) (xr—l'yr—l)
d

= Z ‘f m]\'/+r—1,k+r—1(€r—1vnr—l)Aj,k(fd)(xr—l - S;r—l'yr—l - nr—l)dfr—ldnr—l

IA

o 2 (100 o)) T s 2 G

nr71|)1+€d§r71dnr71' (132)

+ 2k
Next we estimate

. _n n_
j , |m1\‘/+r—1,k+r—1(fr—1»Ur—1)|(1 + 27181 [) (L + 25| _q DT+edE,_rdnyy .
R n
We use the Holder’s inequality to obtain
1 1

f | j4+r—1,k+r— I(Er 1 Nr— 1)|(1+2]|€r 1|)N(1+2k|nr 1|)N . N n N n dgr—ldr]r—l
(14 271§ )" 7TFe (1 + 2|,y )" 1€

_n__kn .
= CT—12 22 2 ||mj\'/+r—1,k+r—1(€r—1v nr—l)(l + zjlfr—ll)N(l + 2k|77r—1|)N||Lz-
: N
m]\'/+r—1,k+r—1(€r—1: nr—l)(l + Zjlfr—ll) (1 + Zklnr—ll)N 12

: N
||mj\'/+r—1,k+r—1(€r—1: nr—l)(l + 2/ |§r—1|) (1 + Zklnr—ll)N 12

It suffices to estimate |

1
2

< Cr—l Z (.fz | j+r—1,k+r— 1(51* 1 Nr- 1)| |Ear ! 22]|ar 1|22k|ﬁr 1|d§ 1d77r 1)
R n

|ay—1|<N,|Br-1ISN

1
2

. 2
—C_, z (€, 21811218 < f @20 (M- 1) G )| dfr_ldnr_1> . (133)
R

lar—1|sN,|Br-1]sN
We use Leibniz’s rule to obtain

2
fRZn ;rllarf:ll( +r—1,k+r—1)(€r—1r7’r—1)| dér_1dny_q

Z (Cro1)6,_ e 1] .

2n

2‘j|ar—1_6r—1|_k|Br—1_Vr—1| (agr—l_‘sr—1 (11;)) (Z_jgr—l)
r—1

Sr_15ar_q
Yr-15Br-1
2

x (027 (9)) @ 741,08 0 my 1 (G, ty—0)| s,y
< (Cr_1)s v 2=2jlar-1192j16r-119=2k|Br-1|92k|yr-11 D jn9kno=2j(|8r_1|+my) 9 =2k(|Vr—1|+Mr41) (134)
- r—-1¥Yr-1

Sr—150r—q

Yr-15Br-1

According to (133) and (134), we derive
: N
m]\'/+r—1,k+r—1(5r—1: 771'—1)(1 + Zjlfr—ll) (1 + Zklnr—ll)N 12
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1

2
< Cr—l z (Cr_l)ar_l'ﬁr_lzﬂar—l'Zklﬁr—ﬂ ( Z (Cr—l)5r—14’r—1 zjnzkn2—21(|5r—1|+mr)2—2k(|Vr—1|+mr+1)\‘

lar—1|N,|Br—1|SN Sr_15Qr—q
Vr-15Pr-1
= 2 Jmr—kmeaiC < oo, (135)

Combining (132) and (135), we have
1
— . 1 —
Z Vi * (Mjprogperr—af D)V S 27TMr—kimra Z (Msd(l ) +€(Xr Y- 1))1

d

d
Similarly we also have
1

Z Yjr* (m(j—i1)+r—1,(k—i2)+r—1fa)v < 27/ mr ki Z (MSa(| k(fd)DHe(xr v Yr- 1)> (i €{1,0,-1}).

d d
Therefore

E ”Td(fd)”B{’Igl"'mr—l'“'ze = Cr—l E ”(mr—lfd)v||31PI—1+mr—111+2€
€
d d

1
1 1+2€e\ 1+2€

SCr—lz Z(zfpr+kpr+1 ( o (| k(fd)|1+€)>1+f

d \ jk

SCr—lz Z(ijr+kpr+1 (| k(fa)|1+e)

d \ jk

L1+E>

1
1 14+2€\ 1+2€

1+€
| ) < Gy ) Il goy-anvae
d

and

—\V
P N (VI I
d 1+€

d
1 1
1 1+2€\ 1+2¢
: 1+€\ \1+e€
+k d
<6y z(zm pes (s, ([0 ) )
d jk
L1+€
1
14+€ 11+€
1+2¢ \ 112€

< Y [ @ faacrol ) < oo ) (1 llpsnee
7] j,k 7 1+e
L

which conclude the proof of Corollary (5.3.22).
Corollary (5.3. 23) [314] Let pr_1 = (pr, pr+1) E RE My = (M, mypy1) ERTXRT,0< € < 0

and N = E ] + 1. Assume that m,._; (¢,_1,n,_1) Satisfies

mln(1+e 1+2¢€)
1

Ar_1 4Br-1
|agr 1 aﬂr 1mr 1(57* 1 Nr— 1)| r 1 |€r_1||ar‘1|+mrl77r—1||BT_1|+mr+1

for all |ar—1| =< N; Iﬁr—ll <N and (fr—lv nr—l) € (Rn X Rn) with |§r—1||nr—1| # 0. If Wr_1 € Aoo(Rn X Rn)'
Then there exists a constant C,_; such that

d d
EHTd(f )||351;1+mr_1'1+26(wr—1) < Cr—1Z||f ||Bf_:6_1+mr_1,1+2e(wr_1)
d d

and
d d
E ”Td(f )”Ffle_ﬁmr_l,uze(wr_l) <Cr_1 E ”f ||Fﬂ~e_1+mr_1,1+26(wr_1),

d
where the constant C,._; is independent of the sequence .
Since the proof of Corollary (5.3.23) is similar to that of Corollary (5.3.21), we omit the details.
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Chapter 6
Characterizations of Logarithmic Besov Spaces in Terms of Differences

We show that By */? = BYY for b > — 1/2. We also determine the dual of B with

¢!
D,
Lipggl_“) and B,};fl’ which complement and improve embeddings established. We apply the
reiteration formula and limiting interpolation to investigate several problems on Besov

spaces, including embeddings in Lorentz—Zygmund spaces and distribution of Fourier
coefficients. We characterize BS;Z by means of Fourier-analytical decompositions,
wavelets and semi-groups. We also compare those results with the well-known
characterizations for classical Besov spaces B ;.
Section (6.1) Logarithmic Smoothness and Lipschitz Spaces

Besov spaces B, , play a central role in the theory of function spaces as can be seen by
Triebel [65-67]. For the complete solution of some natural questions as compactness in
limiting embeddings [165, 261] or spaces on fractals [270, 271], more general spaces have
been introduced where smoothness of functions is considered in a more delicate manner
than in B, ;. These spaces of generalized smoothness have been studied for long and from
different points of view. See, DeVore, Riemenschneider and Sharpley [226], Brézis and
Wainger [258], Gol’dman [275], Merucci [149], Kalyabin and Lizorkin [32], Cobos and
Fernandez [142], Edmunds and Haroske [268], Haroske and Moura [28], Farkas and
Leopold [144], Triebel [67, pp. 52-55].
As in the case of B; ,, spaces of generalized smoothness on R™ can be introduced by
following the Fourier analytic approach or by means of the modulus of smoothness. If we

take classical smoothness sand additional logarithmic smoothness with exponent b, the

first way leads to spaces ngf; and the second to spaces BS;Z. If1<p<oands>0,it

turns out that B;;Z = B;;Z with equivalence of norms (see [28, Theorem 2.5] and [65,

25.12];butif 0<p<1and 0 <q <1 then B;‘,gl/p_l) + B;‘,(ql/p_l) as it is shown in
[52, Corollary 3.10]). However, the relation between these two kinds of spaces when
s = 0 has not been described yet. This problem is stated in the report of Triebel [282, p.
6], where first results on this question have been shown: Working with spaces on the unit

cube Q™ in R™ and using the Haar basis, Triebel established in [282, Proposition 9] that
B0 (Q™) © Byr(Q™) provided that 1 <p < 2andb>00or2<p<ooandb >1/2 —
1/p. See also Besov [257], where spaces Bp,,1 < p,q < oo, are compared with certain
spaces defined by first differences.

s,b s,b
We compare spaces B, and B,

the help of logarithmic Lipschitz spaces Lip 9 We show embeddings between spaces

with the help of the limiting real method
1 1/q
4 B N B K(t,a) \%dt
(Ao Ar)oma =)@ € Ao+ llallzy, = f(tg(l—logt)") T =°
0

t

Here 8 = 0or 1,4, © A, and K(t, a) is the K-functional of Peetre. Among other things,
for b > —1/p we show that

0,b+1/p 0,b 0b+1/2 .
Byb* P & BYY o B if 1<p<2

0,b+1/2 0,b 0b+1/p -
By <> Bpp © Byp if 2<p <oo.
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Therefore, Bzofﬂ/z = B%S. This implies that the classical space BY,, defined by the

modulus of continuity, coincides with the space By,”?, defined by the Fourier transform,

with zero classical smoothness and logarithmic smoothness with exponent 1/2.
We also consider embeddings between spaces Bf,;g. According to [62, Theorem 2.8.1] or

[1, Corollary 5.4.21], if 1<p<r<w,1<q< and s> 0, then Byo/?7/"7* ¢
B; ;. Note that in the embedding the two spaces have the same differential dimension. The
limit case where s = 0 has been studied by DeVore, Riemenschneider and Sharpley [266,

Corollary 5.3 (ii)], where they showed that the embedding holds with a loss of a unit in the
exponent of the logarithmic smoothness. To be more precise, if 1 <p<r<ow,1<qg<®

and b > — 1/q. then Bpo/P~/"P*1 «, BY? This result has been improved recently by
Gogatishvili, Opic, Tikhonov and Trebels [274, Corollary 2.8] by showing that the
embedding holds with the loss of only 1/min{gq,r} in the exponent of the logarithmic
smoothness. We use limiting interpolation to derive the embedding B}(/»~/7+1/minar) o,

B following a more simple approach than in [274].

In addition we determine the dual of Bg;Z forl<p<o,1 <g<owandb>-1/q.

This is done with the help of logarithmic Lipschitz spaces Lipggz_“) introduced by Haroske
in [277] (see also [279, Definition 2.16], [267, p. 149]).

Finally we study embeddings between Lipschitz spaces Lipggl_“) and Besov spaces B,};S :
This problem was considered by Haroske [277, 279] and Neves [280] among other
authors. Our approach allows us to cover some critical cases which come up for the
techniques used in [277]. As a consequence, we complement and improve several results
of Haroske [277].

Subsequently, given two quasi-Banach spaces X,Y, we put X & Y to mean that X is
continuously embedded in Y.

If U,V are non-negative quantities depending on certain parameters, we write U S V if
there is a constant ¢ > 0 independent of the parameters in U and V such that U < cV. We
putU ~VifUsVandV < U.

Let A = (4,,4,) be a quasi-Banach couple, that is to say, two quasi-Banach spaces
Ay, A; which are continuously embedded in some Hausdorff topological vector space. The
Peetre’s K-functional is given by

K(t,a) = K(t,a; A, A1) = inf{llaglla, + tllaslla,}, t>0,a €4 +4,
where the infimum is taken over all representations a = a, + a, with a, € 4, and
a, € A;.

For0 <8 < 1and0 < g < oo, the real interpolation space /Tg,q = (Ao, A1)g,q is formed
by all a € A, + A; having a finite quasi-norm
1/q

[ dt
lalla,, = | [ (c2Ke@)' S
0

(as usual, when g = oo the integral should be replaced by the supremum). See [2, 259] or
[62].
For A = (ay, @) € R?, let £(t) = 1 + |log t| and
To
PA(E) = {{’ (t) for t € (0,1],
£%o(t) for t € (1,).
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Replacing t? by tf /£2(t) we obtain the spaces
1/q

_ oo ¢ dt
Agqn = (Ao A)pqn =4 a € A+ Arillallzy,, = | | (P K@ @) =] <o
0

(see [272, 273]). Under suitable assumptions on A and g, spaces (A4y,A1)gqa are well-
defined even if 8 =0 or 8 = 1. In the special case a, = a, = @, we simply write
(Ao, A1)gq,« Instead of (Ag, A1)6,q,(a,0)-

We shall also need the following limiting real spaces. Let A; © 4,,0 < g < o0 and
—0o <n<oo Forf =1orf =0, the space /T(g,,,),q = (Ao, A1) 6,m),q CONsists of all those

a € Ay with
1 1/q

B K(t, a) Tdt
”a”Z(G"?)Jq B f (t9(1 — log t)") t <
0

(see [276, 260, 262]). To avoid that Z(l,n),q = {0}, if 6 = 1, we assume that n > 1/q if
q<o,andn = 0if g = oo.

The following result is established in [305, Lemma 2.5] by using the connection between
limiting real spaces Z(Q,n),q and logarithmic spaces /Tg,qA [269, Proposition 1], and
reiteration results for logarithmic spaces [272, Theorems 5.9*, 4.7*, 5.7 and 4.7]. It will be
Important in our later considerations (we follows, [272] and so it is slightly different from
305]).
[Lem]l%a (6.1.1) [283] Let Ay, A; be quasi-Banach spaces with A, < A;. Assume that
0<6<1,0<pg<wandy <—1/q <n. The following continuous embeddings hold:

(@) (A0, A1)o,qy+1/minp.qy © (Ao, (Ao»A1)9,p)(1,_y),q < (Ao, A1)6,q,y+1/max{p,q}
(b) (Ao, A1)0,gn+1/minfp.q} © ((Ao;A1)9,p:A1)(O,_n)'q > (Ao, A1) 6,q,n+1/max(p,q}-
Remark (6.1.2) [283] Note that if y = — 1/q then (4,, (AO,Al)g’p)(l’l/q)’q = {0}, so none
of the embeddings in statement (a) of Lemma (6.1.1) hold in this case. As for statement (b)

when n = —1/q, if p = q we can determine explicitly ((AO,Al)e,p,Al)(O L INdeed,
by Holmstedt’s formula [279, Remark 2.1]

t1/(1-6) .
K(tl a; AO; A ) dS
K(t, a, (Ao, Al)@,p:Al) ~ < f <—1> _)

s? s
0

1/p

Hence, we obtain

£1/(1-6) 1/p

1
L K(t,a; Ao, A)\" ds dt
lallwaiopa)gu, "\ ) ToT0gz | T 5@ ) Tt
0 0

1

1 1 1/p 1/p
3 f K(t,a; Ay, A\’ f 1 dtds f K(t,a;AO,Al)(l (-1 ))1/,, Pds
B s? 1—logtt s st 8 0835 S '
0

s1-6 0
Therefore, if n = —1/q and p = q we still have the embedding of the right-hand side in
statement (b) of Lemma (6.1.1) because n + 1/max{p,q} = 0 and so (4, A1) g q.4+1/maxip.q}
= (Ao, A1)e,4- But the embedding of the left-hand side in (b) fails.
Other kind of limiting reiteration formulae can be seen in [263].
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Let S and S’ be the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions on R™, and the space of tempered distributions on R",
respectively. By F we denote the Fourier transform on S’ and by F~1 the inverse Fourier
transform.

Take ¢, € S such that

supp @, € {x € R™: [x| <2} and ¢y(x) =1 if |x|] < 1.
For j € N and x € R™ let ¢;(x) = 9o(27/x) — (277" x). Then the sequence (¢;);Z,
forms a dyadic resolution of unity, 72, ¢;(x) = 1 forall x € R".

For1<p<o,0<q <o ands,b € R, the space BSb consists of all f € S’ having a
finite quasi-norm

- 1/q
Ifllgso = <Z (27 +j>b||?‘1(<p,-?f)lle)q>

j=0
(with the usual modification if g = ). See [149, 142, 165, 28]. Note that if b = 0 then
B, coincides with the usual Besov space BS

Besov spaces of generalized smoothness can be also introduced by using the modulus of
smoothness as we recall next. Let f be a function on R", let h € ]R” and k € N. We put

QLG = flx+h) = f(x) and (A1) = AL(ALF) ().

The k-th order modulus of smoothness of a function f € L? is defined by
we(f 1), = Sup”A fll,, t>o0

If k=1we simply write w(f, t),, instead of wl(f t)p-

For1 < p < oo, the following connection holds between the K-functional for the couple
(Ly, Wp") and the k-th order modulus of smoothness: There are positive constants c¢; and
c, such that

K (£, f5 Ly, W) < min(L E)IfIl, + wi(f, 0p < K (85, f5 L, WF) (1)
forall f € LP and t > 0 (see [256, Theorem 5.4.12]).
For 1<p <o,0<qg<00,—0 <b <oo,5s >0 and k € N with k > s, the space

B consists of all f € LP such that /
1 1/q

d
llge = 71, +{ [0 —tog (0, T ) <o

0

See [266, 28]. Note that if s = 0 and b < —1/g, then BS” = L,.
If s > 0 it is well-known that the definition of B does not depend on the choice of
k > s (see [28, Theorem 2.5]). Next we show that the same property holds for B°b We

also characterize spaces Bp,q by interpolation.
Theorem (6.1.3) [283] Let 1 < p < 0,0 < g < 00,—0 < b <o and k € N.
(@) The space BS:Z does not depend on the choice of k € N.
(b) We have BS;Z = (Lp, Wp")(o,_b),q with equivalence of quasi-norms.
Proof. Let k € N,k > 1. Put

1/q

1 d
Fllggs = 11, +( [ (1= togoPar,0,)" @
0
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and
1/q

1 d
1555 = 1l + [(a-rog0ras0,)S

Our aim is to show the equivalence between the quasi-norms || - ”Bo,b and || - ||( »- Since
Pq
wr(fit)y < < 2k 1w(f, t)p, it is clear that ||f||( » S Ifllg ob. Let us check the converse

p q
inequality. Usmg Marchaud’s 1nequa11ty [1, Theorem 5 4. 4] for 0 < t < 1we obtain

w(f, t)p f wy (f, s)p ds jwk(f s)p ds J ,ds ka(f s)p ds
——+|Ifll. —
S p S

+11£l,

t S s
t t 1 t

Therefore, since wy(f,s),/ s* is equivalent to a decreasing function, applying Hardy’s
inequality [256, Theorem 6.4], we get

1 1/4q
(f((l —log )*w(f, t),, q%)
: 1 1/q 1
d
< ( [ -10g t)bﬂ{) I, + < |
0

0

1 q 1/q
wi(f,s dt
t(1 —logt)bf%s(kl)lds\ T)

t
1/q

= [IFI1%)
Bpg

1

S, + | | [tZ(l ~log t)?

0
This proves statement (a).
As for (b), using (1), we obtain

1 1/q
d
“f”(Lp'Wg)(o—b (f[(l — log t)bK(t f; Lp,Wk)]q t>

0

1 1/q
~ ( f [(1 ~log )P K (¢*, f; L;;%")]"?) ( f [ = 10g ) (¢¥11fl,, + wi(F,0),)] dt)
0

1 1/q
d
~Ifll, + ( [la-rogorwr.o,l" {) ~ Ifllgg
0

where we have used (a) in the last equivalence. This completes the proof.
In what follows we assume that BS;Z IS quasi-normed by (2). Next we compare Bg"f; and
0,b

B,

Theorem (6.1.4) [283] Let 1 <p < 00,0 < g <ocoand b > —1/q. Then

B}(j)(l;+1/m1n{2pq} N Bob N BO b+1/max{2pq}

wk(f! t)p]q g
t2

t

1/q

Proof. Recall that

pmln{p a F = Bp max{p,q}
where Fy, stands for the Triebel- L|zork|n space (see [65, Proposition 2.3.2/2 (iii)]).
Moreover, F,, = Hy [65, Theorem 2.5.6 (i)] and so Fr?,2 = L,. According to Theorem
(6.1.3) (b), Lemma (6.1.1) and [142, Theorem 5.3 and Remark 5.4], we derive
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0,b __ _ -
Bp,q - (LpJWpl)(O,—b),q © (Bg,max{Z,P}’H%)(Ol_b)‘q - ((HP 1!ng)l/z,max{Z,P}» H;)

(0,—b),q
_ 0,b+1/max{2,p,
< (Hp 1:H%)l/Z,q,b+1/max{2,P,q} =B, maxzpay,
Similarly, we have
0,b+1/min{2,p,q} __ — _
B, 4 i = (Hp', Hp)1/2,4p+1/min(2.p.q} © ((H7 L HE)1/2ming2,py H;)(O,—b),q
— (Ro 1 1 — RpoOb
- (Bp.min{Z.P}' Hp (0,~b)q <> (Lp Wp)0-b)a = Bplg-

Corollary (6.1.5) [283] Let1 <p <ocand b > —1/p.
() If 1 <p < 2thenByp™/? & BYS & B2*1/2,
(b) If 2 < p < oo then BS";,’“/Z o BS:ZI; o Bg,’gﬂ/p.

In particular, for b > — 1/2 we obtain with equivalence of norms

0,b+1/2 _ 0b
B;, = B;,.

Theorem (6.1.6) [283] Let 1 < p <7 < 0,0 < q < 0,b > —1/q and @ = n(1/p — 1/7).
Then

a,b+1/min{q,r} 0,b
_ B, > B,
Proof. According to [1, Corollary 5.4.20], we have

B, < L,. (3)
On the other hand, let k € N such that k > a and 0 < 8 < 1 such that 8k > a. By [1,
Corollaries 5.4.13 and 5.4.21], we derive
ka < (Ly, ka)e,p = Bg,lz{? ° Bg,lzc)_a' (4)
Interpolating embeddings (3) and (4) by the limiting real method we get
(Bg,r' I/Vpk)(o,—b),q © (Lr' Bf,lzg_a)(o,—b),q-
The target space in this embedding can be determined by using [305, Lemma 2.2(b)] and
Theorem (6.1.3) (b). Indeed,
(Lr, B2 0,-by.q = L W) 0-1),q = Ly (L, mk)ekT—a’p)(O,—b),q =By,
As for the domain space, Lemma (3.1.1) (b) yields
Bg',cllﬁl/mm{q,?‘} — (LprVVpk)a/k,q,b+1/min{q,r} N ((LprVVpk)a/k,r»VVpk)
This completes the proof.
Let1<p<o,1<qg<oand—oo <b<oo. Since Byy = (Hp', HE)1 /245, Using the
duality formula for spaces (Ag, 41)g4a (s€€ [265, Theorem 3.1] or [281, Theorem 2.4])
and that (Hy)' = H;,S [62, Theorem 2.6.1], it follows that

(B;?,'g), = BS;;I? where 1/p+1/p'=1=1/q+1/q

(see also [144, Theorem 3.1.10]).

In order to determine the dual space of By¢, we first establish an auxiliary result and
recall the definition of logarithmic Lipschitz spaces (see [277] and [279]).
Lemma (6.1.7) [283] Let Ay, A; be Banach spaces with A; continuously and densely
embedded in A,. Assume that 1 <qg<o,1/qg+1/q'=1, and n > —1/q. Then we
have with equivalence of norms

(AOJAl),(O,—n),q = (A, 'Aé))(l,n+1),q"

Proof. Since A; © A,, we have that K(t,a; Ag,4;) ~ llall4, for t = 1. Take any
T < —1/q. It follows that

0 1/q o 1/q

dt dt
( j [(1 - log O)°K(, f:Ao,Al)]qT> ~ < f (1 - log )" 7) lalla ~ llalla S lalliag apo—ra-
1 1

— k
(0,—b),q - (Bg,r’ I/l/p )(0,_b),q'

203



This yields that

(AOJAl)(O,—n),q = (AO»A1)o,q,(n,r) = (Al;Ao)Lq,(r,n)-
Since t+1/qg<0<n+1/q, we can apply the duality formula established in [264,
Theorem 5.6] to derive
(AOJAl),(O,—n),q = (AliAO)’l,q,(r,n) = (A,rAi))l,q’,(—n—l,—r—l)'
Density of the embedding A; < A, implies that A < 4. So K(t, g;A1,4p) ~
llgll 47 for t = 1. Now, using that K (¢, g)/t is a decreasing function we get
1/q'

‘ , dt
(f [t72(1 —log t)"" 'K (t, g; A, Ap)]9 7) ~ llglla
1

1

1/q
~K@,g;A% 4D | (1 —1log t)HHW@ < llgllar ar
y g5 Ay, Ay t - (A140) (1541),4""

0
Consequently, (Ao, A1) (0-n)q = (A1, A0) (1y+1).9'-
Definition (6.1.8) [283] Let 1 <p<oo,0<g<oand a > 1/q(a = 0ifgq = o). The

space Lipg;,_“) is formed by all functions f € L, having a finite quasi-norm

1/q
“d
1l i = I, + j el

Now we are ready to describe the dual space of BP‘Z. Recall that the usual lift operator I
is defined by

Lf = F1(1 + |x|®)S/?Ff, —00 < 5 < 00,
Theorem (6.1.9) [283] Let 1<p<oo,1<g<oand b >—1/q. The space (ngg
consists of all f € H.;' such that I_, f € L1p(1 P Dwith1/p+1/p' =1=1/q+1/q".
Moreover,
||f||(Bg:2)' ~ ||1-1f||Lip;1;,;z;—1)-
Proof. By Theorem (6.1.3) (b) and Lemma (6.1.7), we derive
(BS:Z) = ((Lp'Wpl)(O,_b),q) = (Hz:’l'l’p’)(l,bﬂ),qr'
On the other hand, lift operators
I_y:Hpt = Ly, Ig:Ly — Wa'
are bijective and bounded. Hence
K(t,f; Hot', Ly ) ~ K(t, 11 f; Ly, War' ) ~ min(1, O fll, + @U-1f, )y
where we have used (1)for the last equivalence. Consequently

1/q’ 1 , 1/q’'
,dt w(_f,t), 1" dt
||f||( (J-(l —log )72~ D’ T) “I—lfller + (f [t(l _ llog t)i+1] T)
0

~ - fll 6,-2-0.

We start by showing that Llpschltz spaces can be generated by interpolation from the
couple (L,, W, ™).
Lemma (6.1.10) [283]Letl <p< o, 0<g<mwanda>1/q(a = 0ifgq = o). Then
(Lp»W )(1 a),qg — Llp(l )
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with equivalent quasi-norms.
Proof. Using (1) we derive

) /4q
(K@= 1f5 L, W) dt
1y, —<J [ t(1 - log ° ] )

1/ 1/q
d
(f (1~ log ) “‘I—t> 71, + (f L(f) (fmt;i)] tt> "Wl

The next result describes the position of Lipschitz spaces between Besov spaces with
classical smoothness 1 and additional logarithmic smoothness.

Theorem (6.1.11) [283] Let1 < p < 0,0 < g <oanda > 1/q. Then
Bl —a+1/min{2,p,q} . Llp(l -) N Bl a+1/max{2pq}

Proof. By Lemmata (6 1.10), (6.1.1) (a) and [142, Theorem 5.3 and Remark 5.4], we
obtain

1,—
Llp( - = = Lp W) warg © Ups Bpmaxizp) warg = Lps (bps Wi 1/2,max(zp)) (La)q

1,—a+1/max{2,p,q
S (Lp W) 1/2,9,-at+1/max(zp.q) = Bpq e

Similarly, we derive

1,—a+1/ 2
By MY = (L, W1 2.0 -art/minzmay @ Ly Ly W1 /2min2 ) (1,00

(L-a)

= (Lpr Bp,min{z,p})(l,a),q © (Lpr VVp )(1,a),q Llp
Corollary (6.1.12) [283] Let1 <p < ccand a > 1/p.

(@) If1 <p < 2then B;:;“+1/p o Llp(l —a) Bl —a+1/2

(b) If 2 < p < o then B;:;““ﬂ Lip®™® & Bl —a+1/p.

p.p
If « > 1/2 we have

1-a+1/2
By **% = Lip{}

Next we recall a result of Haroske [267, Proposmon 16].
Proposition (6.1.13) [283] Let 1 < p < 0,0 < q,v < oo,a > 1/gand f > 1/v. Then

(L-a)

1 1
,8—;20(—— and v =q,

Llppqa)‘eLlppv 2 if,and only if, flx) = 1 z
f——>a—— and v <q.

v q

We show that combining Proposition (6.1.13) with the previous results we can derive
some complements and improvements of the results of [267].
Theorem (6.1.14) [283] Let 1 < p < 0,0 < q,v < o and a > 1/v. Then
(0 < g < min{2,p},

1 1 1

in{2,p} < q,v < d a> oo o

B, & LipSy @ if 4 min{2,p} <qv<q and a>-— min{2,p} ¢
1 1 1
, 2' < d 2=t —————.

min{2,p}<q<v and az—+ min{2,p} g

Proof. If 0 < g < min{2, p}, we obtain

1,—
B;, = Bp min{2,p} & (Lp'Bp min{2, p})(l a),v < (Lp'W )(1 v — Llp( a)-
If min{2,p} < q, let B = 1/min{2,p}. By Theorem (6.1.11) and Proposition (6.1.13),
we derive
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1
B;’q _ B;:;ﬁ+min{2,p,q} N Llppv B) N Llp(l a).
Corollary (6.1.15) [283] Let1 <p <o, 1 <g<oand0 < B =a—1/q. Then
B;:l_ﬁ S Llp(1 ),
Proof. Using again Theorem (6.1.11) and Proposition (6.1.13) we obtain
BYF o LiphF b o Llp(1 ),

p.1 p1
Proceeding as in Corollary (6.1.15), we can also derive the embedding
Bl,—a+1/q Li (1,-ao
pmin{2,p,q} Pp.q

provided that 1 < p < 0,0 < g < o and a > 1/q. This improves [267, embedding (29),

p. 793] because
Bl,—a+1/q Bl,—a+1/q
p.min{1,q} p.min{2,p,q}’ )
Note also that from Theorem (6.1.11) we can recover [267, embeddings (41), p. 796] for
1 < p < 0. Besides, Theorem (6.1.11) also yields that if « > 1/q then

Llp(l -) ‘—>Bl —-a+1/q

if max{2,p} <q,
and

By 0 Liplm® if ¢ < min{2,p).

1+€,1+€
€

e2te-1
Corollary (6.1.16) [314] Let € > 0. The space <BO' tre ) consists of all f,. € Hf_ﬂe such

—€(2+¢€)

that I_, f, € Lip,,, ¢ ) with e = —1/2. Moreover,

(557

Zuﬁn< ) D Mfill zetare

1t+e Llp(1+e 1+6)
(1+e 1+€)

Proof. By Theorem (6.1.3) (b) and Lemma (6.1.7), we derive

06 +e—-1 !
' 1+e€ _ 1 — -1
(B(1+e,1+e)> - <(L1+er W1+e)(0’_ 62+6_1),1+6> - (lef' L¥)(1 6(2+6)> 1+6

1+€
" 14+€ ) €

On the other hand, lift operators

-1 -1
1—1:H1+6 o L1+6, 1_1:L1+6 — W1+6
€ € €

are bijective and bounded. Hence

Z (t fr,H;&e,LHe) ~ ZK (t LifiLise W1+6)

~ ) min(1, OlIL_ il + Z W(U-fy D1re
where we have used (1) for the last equivalence. Consequently

1te 1+e

(‘)(1 1ﬂ:t)1+6 ledt

Z”fr”< _> (f“‘logt) )HGZMI VAREDY fl — s

t
1+€1+€ t(l - log t) 1+e

~ DMl zervo
L 1+e€

L1p1+e 1+e

We start by showing that Llpschitz spaces can be generated by interpolation from the
Couple (L1+e: Wl_-l-le)-
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Section (6.2) Approximation Spaces and Limiting Interpolation

There is a symbiotic relationship between approximation theory and interpolation theory
as can be seen by Bergh and Lofstorm [2], Triebel [62] and Petrushev and Popov [299].
The real interpolation method (44, A4;)e,q Plays an important role in this matter. Usually
0 < 6 < 1 but to cover some extreme cases, limiting versions have been also used, where
6 = 0,1 and logarithmic weights may be included. See Gomez and Milman [276], Evans,
Opic and Pick [273], Cobos, Fernandez-Cabrera, Kiihn and Ullrich [260], Cobos and
Kiihn [262] and Edmunds and Opic [269].

Given a quasi-Banach space X and an approximation family (G,),en, Of subsets of X,
approximation spaces X, are defined by selecting those elements of X such that

(n*YPE, (f)) belongs to ty.Here 0 < a < 0,0 <p < o and E,(f) is the error of best
approximation to f by the elements of G,,_,. These spaces have been studied by Butzer
and Scherer [287], Pietsch [300, 301], Petrushev and Popov [299], and DeVore and
Lorentz [15]. Limiting approximation spaces Xcgo"’) are defined by doing ¢ =0 and
inserting the weight (1 +logn)Y. They have been investigated by Cobos and Resina
[292], Cobos and Milman [291], Cobos and Kiihn [290], Fehér and Grassler [295]. As it is
shown in [292], even when y = 0, the theory of limiting approximation spaces does not
follow from the theory of spaces X7 by taking a = 0. Spaces X/ and Xéo"’) allow to

establish in an elegant and clear way a number of important results on function spaces,
sequence spaces and spaces of operators.

We continue the investigation on limiting interpolation and approximation spaces,
applying the results to problems on Besov spaces.

After reviewing basic concepts from approximation spaces and interpolation theory, we
establish some connections between limiting methods and the real method with a function
parameter. Is devoted to reiteration of approximation constructions. The construction (-);

Is stable by iteration [300, Theorem 3.2] and a similar property holds for (-)EIO”’) [295,
Theorem 2]. We study the stability properties when we apply first the construction ()7

and then (-)g’"’) or vice versa. As we will show, outside the case where p = q, the
constructions do not commute. The space (Xéo'y))g consists of those f € X such that

(n® P (1 + log n)Y*Y/4E, (f)) belongs to £, while the space (Xg)go’y) has a different
shape that we determine with the help of limiting interpolation.

We apply the previous results to investigate several problems on function spaces. We
first consider embeddings of Besov spaces B;f;;’ with @ > 0 into Lorentz—Zygmund
spaces. In the Banach case where parameters p,q are greater than or equal to 1, this
question was studied by DeVore, Riemenschneider and Sharpley [266] by means of weak

type interpolation. Our approach is different and results cover the whole range of

parameters. Then we consider Besov spaces BS}’}{ with zero classical smoothness and

logarithmic smoothness with exponent y. We show embeddings of BS"Z; into spaces of the

kind of the small Lebesgue space L® which include the embeddings into Lorentz—
Zygmund spaces established in [289]. We also study the relationship between smoothness
of derivatives of f and smoothness of f, and the behaviour of the conjugate-function

operator on B, Y.
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We investigate the distribution of Fourier coefficients of functions of BZ(,’,';’. Our results
complement and improve those of [266] for the Banach case. We also show estimates for
Fourier coefficients of functions in spaces close to L, and L,, which extend the estimates
of Hardy and Littlewood and of Bennett for functions in L(log L), [286, Theorem 1.6/
(a)] and the estimate of Cobos and Segurado for functions in L,(logL)_;,, [294,
Theorem 8.5].

Let (X, || - [[x) be a quasi-Banach space. We say that a sequence (Gy)nen, Of subsets of
X is an approximation family in X if the following conditions hold

Gy, = {0} and AG, € G, foranyscalar A andn € N, (5)
G, S Gyt forany n € N, = N U {0}, (6)
G, + G, € Gpypy foranyn,m € N. (7)

Givenany f € X and n € N, we put
En(f) = En(f; X) = inf{|lf — gllx : g € Gn_1}.
Leta > 0,0 < p < o and —o < y < . The approximation space XI(,“"’) = (X, Gn);“"’)
is formed by all those f € X which have a finite quasi-norm

oo 1/p
”f“nga,Y) = (Z (n*(1 + log n)VEn(f))pn‘1> if 0 <p <o
n=1

”f“x;,“w = sup{n®(1 + log )V E,, (f)}if p = co.

n=1
The space Xz(,“”’) is a quasi-Banach space with XZ(,“"’) & X, where the symbol & means

continuous embedding. The case a >0 and y =0 corresponds to the classical
approximation spaces, which have been studied in [292, 299, 300]. We write simply X}/

and || - ||Xg if y = 0. If a = 0 we obtain the limiting approximation spaces considered in
[14, 23, 292]. Note that Xéo’y) coincides with X if y < —1/q. Moreover, X7 < X(go”’) for

any choice of parameters. See [302] for properties of spaces XI(,“”’) ifa > 0.

Let us give a concrete example. Let X = #,,, the space of bounded sequences and let
G, = F,, the subset of sequences having at most n coordinates different from 0. Then, for
any ¢ € £, the sequence (E, (& £)) is the non-increasing rearrangement (¢,;) of the
sequence ¢. The space X coincides with the Lorentz sequence space ¢4, ,, the space
Xgo”’) is the Lorentz-Zygmund space ¢, ,(log £), and Xé“’y) is 41 /4, (log €),. Recall
that for 0 < r,q < coand —oo <y < oo,

00 1/q
£rq(log #), =€ € L0 €1l 05 ), = (Z(n”"(l +1log n)qfii)n‘l> <o
n=1

(the sum should be replaced by the supremum if q = o) and ¢, , = £, ,(log £), (see
[256, 300, 266]).

Let u, = 22", n € Ny. It is shown in [292, 295] that f € XC(IO'V) if and only if there is a
representation f = >, g, With g, € G, and

o 1/q
(2 (2"("+1/C’)||gn||x)q> < oo )

n=0
Besides, taking the infimum of the values (8) we obtain an equivalent quasi-norm to

Il - Il ;o This property is important for the proof of the following embedding result.
q
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In what follows, if U, VV are non-negative quantities depending on certain parameters, we
write U < V if there is a constant ¢ > 0 independent of the parameters in U and V such
thatU < cV.IfUs VandV s U,weputU ~ V.

Lemma (6.2.1) [305] Let X, Y be quasi-Banach spaces which are continuously embedded
in a Hausdorff topological vector space. Let (Gy)nen, b€ an approximation family such
that G,, € X n'Y for any n € N,. Assume that there are constants c, # > 0 such that

lglly < c(og(1+m)Pliglly, g €GuneN.

Then for 0 < g < o and y < —1/q we have that
X(O'B"'V) TN Y(O'V)
q q '

(0,8+y)
X q

Proof. By (8), there is a constant ¢c; > 0 such that for any f € , we can find a

representation f = Y77 g, (in X) with g,, € G, such that

o 1/q
(Z (zn<ﬂ+y+1/q>||gn||x>q> < allfllyorm-
n=0

Since

lgnlly S (ogun)?lignllx ~ 2™l gnllx,
we obtain that

o 1/q 0 1/q
(z<zn<y+1/q>||gnny)Q> sc2(2(2n<ﬁ+y+1/q>||gn||X)Q) <o

n=0 n=0
Now it is not hard to show that };_, g, IS convergent in Y. By compatibility, f =
Ym0 9n also in Y. Therefore, taking the infimum over all possible representations and
using again (8) we conclude that
Ifllyon < esllfllgomem.

We now review some notions from interpolation theory. By a quasi-Banach couple
A = (4,,4;) we mean two quasi-Banach spaces 4,, A; which are continuously embedded
in some Hausdorff topological vector space. Given t > 0, Peetre’s K-functional is defined
by

K(t,a) = K(t,a; A) = K(t,a; Ay, Ay)
= inf{llaolle + tllaglla, : a=ag+aq,q; € Aj}, a€l,+A.

Let 0 < 8 < 1and 0 < g < oo. The real interpolation space Ay, = (4¢,A1)g,4 CONSists

ofall a € A, + A, having a finite quasi-norm

0o 1/q
lalla,, = (j (t=0K (¢, a))q>

(when g = oo the integral should be replaced by the supremum). See [2, 62] or [259].
It is shown in [298] that we have
(Xg(;)’ng)e'q = Xg
with equivalence of quasi-norms. Here 0 < ap # a; < 0,0 < pg,p1,q < 0,0< 60 <1
and @ = (1 — 0)a, + Oa;y. The choice (X, G,) = (£, F,) and r; = p; = 1/a; yields that
({)ro»{’rl)e,q = ‘Br,q 9)
providedthat 0 <1y #1r, <cand 1/r = (1 — 0)/ry + 6/, (see [2] or [62] for another

proof). Moreover,
X, X5 )9q = X2 (10)

with § = 8a; (a more general formula is established in Proposition (6.2.7)).
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Replacing t? by a more general function p(t), we obtain the space /Tp,q = (Ao, A1) p,q»

Its quasi-norm is
e =y Uo7

(see [281]). Let A = (ap, @) € R?, put £(t) = 1 + |log t| and write
A (£70(0) fort € (0,1],
) = {faoo(t) for ¢ € (1, 00).
If p(t) = tP£2(t), we put

(AO:A1)p,q = (AO»A1)9,qA-
See [272, 273] for details on these spaces which, under suitable conditions on A, are well
defined even if 8 = 0 or 8 = 1. Note that our notation is slightly different from [272]. In
the special case ay = a, = a, we simply put (4, A1) p,q = (A0, A1)6,g,a-
The following limiting real methods will be also very useful in our considerations. Let
Al 5 A, 0<g<o and —co<n<oo. For 8 =1 or 6 =0, the space /T(@,n),q =
(Ao, A1) (6.m),q 1s formed by all those a € A, having a finite quasi-norm

([ Ka) \Tde)\Y*
lallzop, = fo <t9(1—1og t)n) t

(see [276, 260, 262]). To avoid that /T(L,,),q = {0}, when 8 = 1 we suppose that n > 1/q
ifq <oo,andn = 0if g = oo.

It is clear that the (p,q)-method and the ((8,7n),q)-method have the interpolation
property for bounded linear operators.

We establish now some connections among all these interpolation methods and we also
determine some concrete interpolation spaces.

We put K (t, a) for the K-functional of (4,, A;). If we work with a different couple, then
we write it explicitly in the notation of the K-functional.
Lemma (6.2.2) [305] Let A,, A; be quasi-Banach spaces with A; & A,. Suppose that
0<0<1,0<qr<oy<-—1/qand —o < n < co. Then we have with equivalence
of quasi-norms

(a) ((AOIAl)Q,T'Al)(L_y)’q = (AO’Al)(ll—V);Q'

(b) (Ao, (AO»A1)9,r)(1'_n)'q = (AO;Al)(l,—n),q'

Proof. Since (Ap, A1)gr © Ay, We have that
((AOJAl)H,rrAl)(l’_y)’q S (AOJAl)(l,—y),q-

To check the converse embedding, assume first that 0 < r < g . By Holmstedt’s formula
[279, Remark 2.1],

t1/(1-6)

-6 rds v
Kea (o Ao A~ (| GkGay )
0

Hence, we obtain

£1/(1-6)

1 1/r14 1/q
(1 —1logt)” 0 rds dt
~ Al R -0K (s, = had
”a”((AO'Al)G,T'Al)(]_,—y),q <J;) I t j; (S (S a)) S t
/ 1/q
([ [z teg T (f (s‘eK(s a))rﬁ ’ r@
0 t(l—G)r 0 ! S t
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1/q

Lre(1 —log £)Y" ar gy
s (f [ t@1=0)r (t_BK(S, a))Tt—l] T)
0

where we have used Hardy’s inequality [256, Theorem 6.4] in the last inequality.
Therefore ||a||(( 04061 A1) 1) S ||a||(A0,A1)(lr_y)_q and so

(A0, A1) (1,-)q © ((AO'A1)9,r»A1)(1’_y)’q-
If g <7, take 0 <7y < q. Using that(Ay, A1)gr, © (Ao, A1)e, and the previous case,
we derive
(A0, A1) 1,-y)q © ((Ao;A1)e,r0»A1)(1’_y)’q < ((AO»A1)9,r»A1)(1'_y)'q-

This completes the proof of equality (a). The statement (b) follows from similar
arguments.

In order to give some examples, recall that for 0 <p < 0,0 < g <o and —oo <y <
oo, the Lorentz—Zygmund space L, , (log L),, on the unit circle T is formed by all (classes
of) measurable functions f on T having a finite quasi-norm

2T d 1/q
— 1/p Y £x0\1? t
1Flliyqaogy, = | [£71+Nog el @] =
0

where f* is the non-increasing rearrangement of f. See [1, 256]. If p =q, then
L, ,(log L), coincides with the Zygmund space L,(log L),, and if in addition y = 0, then
the space becomes the Lebesgue space L, If y = 0 but p # g, we obtain the Lorentz space
Ly,

p.q
Lemma (6.2.3) [305] Let 0 <p < 0,0< g <o and y < —1/q. Then we have with
equivalence of quasi-norms

(Lp; Loo)(l,—y ).q = Loo,q (lOg L)]/
Proof. The K-functional of (L,, L.,) is given by

tb 1/p
Kt f) ~ < f*(S)pdS> (11)
0

(see [2, Theorem 5.2.1]). Assume that p < q. Using Hardy’s inequality [256, Theorem
6.4], we obtain

1/p q 1/q

Y@ —-logt) [ ¥ . dt
iy, = | | lf( [“roras) | ¢

1/q
(1- log t)YP UP g
([l rora] ")

1 dt\"?
~ ( jo [(1 - log t)yf*(t)]q7> ~ Nl tog 13,
Suppose now g < p. Take 0 <r <gq. Since L, = (L, Lo)1-r/pp (s€€ [2, Theorem
5.2.1]), by Lemma (6.2.2) (a) and the previous case, we derive
(Lp; oo)(l_ ) = ((er Leo)q- -r/p,p’ oo)(l M = (Lr;Loo)(l -¥).q — Loo,q(log L)y'
For 0 <p <o,0<r <o andy >—1/r, we designate by Y, ,.,, the collection of all
(classes of) measurable functions f on T such that
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1/r

2m t /1" 4
Iflly,,, = f l(l —log t)Y (f f*(s)pd8> ] Tt < oo,

Note thatif 1 <p < oo,r = 1andy = —1/p, the space Y}, ; _;/, coincides with the small

Lebesgue space L® (see [296]).
Lemma (6.2.4) [305] Let 0 <p < ,0<r<oco and y > —1/r. Then we have with
equivalence of quasi-norms

(Lp' LOO)(O’_]/)J' = Yp’r’y-
Proof. Inserting (11) in the quasi-norm of (LI,,LOO)(0 i and making a change of variables
we obtain

1 t1/p 1/p rdt
| f ”(Lp'Loo)(o,_y),T ~ fo l(1 —logt)” ( fo f*(g)PdS> -

1/r

1 t 1/p]" dt
~ j [(1 —log t)Y (j f*(s)l?ds> ] - ~ ”f”yp’r’y.
0 0

Lemma (6.2.5) [305] Let A,,A; be quasi-Banach spaces with A; < A,. Assume that
0<0<1,0<pg<oandy < —1/q < n. The following continuous embeddings hold

(a) (AOrAl)G,q,—y—l/min{p,q} © (AOf (AOfAl)B,p)(L_y),q < (AorAl)@,q,—y—l/max{p,q}’

(b) (AO;Al)G,q,—n—l/min{p,q} © ((Ao,A1)9,p, Al)(l,—n),q © (AO;Al)B,q,—n—l/max{p,q}-

Proof. Take @« > — 1/q. According to [269, Proposition 1] (which also works in the quasi-
normed case), we have that

(Ao, (AOJAl)H,p)(L_y)Iq = (Ao; (AOrAl)G,p)
By [272, Theorems 5.9* and 4.7*], we derive that

(Ao, A1) 1 1 S (Ao' (4y, A1), ) S (4g, Ar) 1 1 .
0.0~V -Gy D) P a-na 0.4~V ~margpay )

Now applying again [269, Proposition 1], we see that the space to the left is
(A0, A1)0,q-y-1/min{p,qy and the space to the right is (Ag, A1)g,q—y-1/max{p,q}- TNIS
completes the proof of the embeddings (a). The proof of (b) can be carried out in the same
way but using [272, Theorems 5.7 and 4.7].

Next we return to interpolation of approximation spaces. First we establish an auxiliary
result.

Lemma (6.2.6) [305] Let X be a quasi-Banach space, let (G,)qen, b€ an approximation

family and 0 < p < co. Then we have

1/r

1:‘1:(—%—05) '

n 1/p
K(n'?, f; X)/P,X) ~ (Z Ek(f)p> , mneNfeX.
k=1

Proof. Takeany f € Xand let g € X suchthat f — g € X;/p. Then
1/p 1/p
<

n 1/p n n
(Z Ek(f)P> < (Z (e — 9) + ||g||X>P> (Z Fu(f - g)P) + 1P glly
k=1 k=1 k=1

<If =gl + n'/?llgllx.

Taking the infimum over all g € X with f — g € X/?

o We obtain that
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n 1/p
(Z Ek(f)p> S K@mYP, f; X7, X).
k=1

Conversely, choose g € G,,_, satisfying that ||f — gl|x < 2E,,(f). It follows that

n 1/p
K (77, f; X/, X) < Ngllam +n'/7Ilf = gllx (2 Ek(g)p) +n'/PE, (f)
k=1

n 1/p n -
< (Z Ek<g)p> + (kz Ek<f)p>

because (E,,(f)) is decreasing. Besides, for 1 < k < n, we get
Ex(9) s Ex(f) +IIf —gllx < 3Ex(f).

1/p

Consequently,

n 1/p
K, f; X)/%,X) < (2 Ek(f)p> .
k=1

Now we can prove the following interpolation formula.
Proposition (6.2.7) [305] Let X be a quasi-Banach space and let (G,)nen, b€ an
approximation family. Suppose that « > 0,0 <7r,q < 0,0< 60 <1,—00 <y < o0 and
put p(t) = t?(1 + |log t])~7. Then we have with equivalence of quasi-norms
(Xg;X)p,q = Xcg(l_e)a']/)-
Proof. Let p > 0. We claim that
(X;/p:X)p,q — X‘g(l_g)aﬁ’). (12)

Indeed, since X;/p < X, we have that K(t, f; X;/”,X) ~tllflly for 0 <t < 1. This

yields that
q 1/q
dt

t

K(t f; X)'P, X)
tf(1+logt)™Y

gy~ .
Whence, using Lemma (6.2.6) and Hardy’s inequality [293, Theorem 1.2], we get

q 1/q
K (e 137 5) )
n

nf/P(1 + logn)~v
> G AN Y e 1\
~ (Z n(1=0)/p(1 + logn)Y (Z kT) ‘ E) ~ (Z [n(l—e)/p(l + log n)VEn(f)]q;) )

k=1 n=1
Take 0 <p <1/a. Let (1 —=2)/p=a and u(t) = tAP+2(1 + |log t|)7?. By (12)
and [281, Corollary 4.4], we get
XX pq = (X7, X030 X) pq = Kp'P, X)pq = XY
where we have used again (12) in the last equality.
We close with a Hardy-type inequality which can be proved as [1, Lemma 3.3.9].
Lemma (6.2.8) [305] Let y be a non-negative measurable function on (0, ), let —oo <

A<1 —o<y<owandl<q < oo Then
1/q

0o t q 16%e) 1/q
(f [t*-1(1+|logtl)y | ¢<s)ds] ﬂ) S(f [tﬂ(1+|logtw(t>]"ﬁ> -
0 0 t 0 t
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Let (Gn)nen, b€ an approximation family in the quasi-Banach space X. Since G,, € X/
and G,, © XCSO"’) for any n € N, the sequence (Gp)nen, is also an approximation family in

X, and Xéo”’). Hence, we can apply again these constructions. Suppose 0 < a, 8 < oo and
0 < p,r < oo. It was shown by Pietsch [300, Theorem 3.2] that

&y = x. (13)
On the other hand, Fehér and Grassler [295, Theorem 2] proved that
(Xéo,y))gom _ Xr(o,y+1/q+5) (14)

providedthat 0 < q,r < oo,y > —1/gqand § > —1/r.

We determine the space that arises applying the construction (-)7 to Xéo‘y). For this aim,

we first establish an inequality of Jackson’s type.
Lemma (6.2.9) [305] Let X be a quasi-Banach space and let (G,)neny, b€ an

approximation family in X. Suppose that 0 < g < o and y > —1/q. Then there is a
constant ¢ > 0 such that

Eyn1(f; X) < c(1 +logn)~0*YOE, (f; X7
forall f € X(go”’) and n € N.
Proof. We can find g,, g, € G,,_; such that
If = g1ll jon < 2E(f; XO7)
q
and
If — 91— 92llx < 2Ex(f — g1; X).
So, g, + g, € Gy,—, and

Epna(fs X) < If — 91 — 92llx < 2E.(f — 91 X). (15)
Since the sequence (E,, (f — g4)) is monotone, we obtain
n

1/q
If — gl”xé"'y) = (Z[(l + log k)YE, (f — gl;X)]qk‘l)

k=1

n 1/q

>E,(f —9g,;X) (Z(l + log k)qu‘1> > ¢, (1 + log n)Y*YIE, (f — g1; X).
k=1

Consequently, by (15) and the choice of g,, we conclude that

Eon1(f; X) < 2E,(f —g1;X) < c,(1+ logn)_(yﬂ/q)“f - g1||X‘§0.y)

< c(1 +logn)~Y*VaE, (f; Xéo’y)).
Theorem (6.2.10) [305] Let X be a quasi-Banach space and let (G,)nen, b€ an

approximation family. Suppose that « > 0,0 < p,q < coandy > —1/q. Then

0,y a,y+1/q

Proof. Take any f € (Xéo’y))g. Using Lemma (6.2.9) we obtain

00 1/p
||f||XI()a,y+1/q) = (Z [n®(1 + logn)"*YaE, (f; X)]pn‘1>
n=1

o0 1/p
< (Z [n“(l +logn)Y*VaE,, ., (f; X)]pn‘1>
n=1
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had 1/p
p
<c (Z [n“En(f; X(go,y))] n‘1> = C”f”(X‘go"’))g'
n=1

Conversely, according to [302, Theorem 3.3], there is a constant ¢ > 0 such that any
fe Xl(,“’y“/ 9 can be represented as f = 2., g, With g,, € G,n and

o 1/p
p
(Z [2m(1 + )Y/ g, 1] > < cllfllygreara-

n=0
Since
on 1/q
Igallyon = ) [(1+log k)Y E(gn; X010k
1 k=1
on 1/q

< DI +10gk)1% | llgallx < e (1 + )/ llgy iy,
k=1

we derive that
1/p

00 1/p 00
p
p
(Z |2 lgullygon) ) < (Z [27(1 4+ )7+ 2| gl ] ) < callf llycarssror
n=0 n=0

This yields that the series )., g, converges to f in XCSO'V). Finally, by [300, Theorem
3.1], we get

0

» 1/p
na
1f ll giomng < €5 (Z |27 lgnl o | ) < cllfllyrssro.

n=0

Writing down Theorem (6.2.10) in the special case 1 < p = q < o, with X being a
Banach space and (G,)nen, being a sequence of subspaces of X, we recover a result of
Almira and Luther [284, Theorem 6.1].

Example (6.2.11) [305] If X = ¢, and G,, = F,, the subset of sequences having at most n
coordinates different from 0, then for @« > 0,0 < p,q < o and y > —1/q, we obtain

(£enq (108 D)) = ((Beo) P)E = (Boo)s™ VP = 011,108 )y 11/-
It is more difficult to determine the resulting space when we apply the approximation

constructions in reverse order. We shall do it with the help of interpolation techniques.
Theorem (6.2.12) [305] Let X be a quasi-Banach space and let (Gp)nen, be an

approximation family. Suppose 0 < p < 0,0 < g <o and y = —1/q. Then we have
with equivalence of quasi-norms

X Xl/p — X(O'V)

X, p )(0,—V),q q -

Proof. Doing a change of variable, using Lemma (6.2.6) and Hardy’s inequality (see [293,
1l

Theorem 1.2]), we derive
= (1-logt)’tK (t7L, f; X,'P. X —)
wn ([ (r )]

o0 L qds 1/q
~ (f [(1 +logs)’s~/PK (sl/p,f; Xp/p,X) —)
1

S
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o 1/q
~ (Z [(1 +logn)Yn~VPK (nl/p,f; X;/p,X)]qn‘1>

n=1
1/q

(0]

n 1/p]?
1
i Z (1+logn)y(5kZEk(f)p> n”t

n=1

o0 1/q
- (Z[(l +log )Y En(F]1 n-l) = Il o

n=1

Corollary (6.2.13) [305] Let X be a quasi-Banach space and let (G,)nen, Pe an
approximation family. Suppose a > 0,0 < p,q < oandy = —1/q. Then
X, Xp)0,-v)a = Xcgo']/)

with equivalence of quasi-norms.

Proof. Take 0 < p < 1/a and put 6 = ap. By (10), we have that X7 = (X;/p,X)g'p.
Whence, according to Lemma (6.2.2) (b) and Theorem (6.2.12) we derive

X, Xp)0-1q = & (X, (X;/p'X)G,p)(O,—V),q = (X, X, )(0 -va = X(OY)
Now we can determine (Xg)go”’) by means of an auxiliary sequence space.
Theorem (6.2.14) [305] Let X be a quasi-Banach space and let (G,)nen, b€ an

approximation family. Suppose a« > 0,0 <p,gq<ocand y > —1/q. Take any 0 <r <
1/r. Then we have

0y) . :
f € (Xg)q ifand only if (E,,(f)) € (£1/ap ¥+)0,-y).q"
Proof. Using Corollary (6.2.13) and (13), we get
0y) 1/r—a
(x5), " = &5 (X5)," Dona = &5 X 0-na
In order to estimate the K-functional for the couple (X“,Xrl/r), take 0 < 8 < 1 such that

a = (1—-0)/r. By (10) we have X7 = (X:/r,X)g'p. Whence, according to Holmstedt’s
formula [279, Remark 2.1] and Lemma (6.2.6), we derive

k(200 X277 xg) = K (20 5 20 (27 ), )
P

1/p
~ 27’19/7‘ <f [ —BK u f Xl/T‘ ) pdu>
on/T u

1/p
~ 2n9/r Z [2 Hk/rK(Zk/r f Xl/r )] )

" 1/r1P 1/p

~ 2n9/r 2—0k/r EE](f)r
j=1

8

1/p
N 2n0/r 2 9k/rK(2k/r’ (E](f))' {’r,foo)]P>

k n
where we have used again Lemma (6.2.6) in the last equivalence but now with the couple

(4;, %), Viewing . as (£ 1” . Hence, reversing the steps and using (9), we conclude that
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(00]

du 1/
K(2m0/T,f; XYT, X&) ~ 2n0/7 (f [u®K (u, (E;()); i’r,f’oo)]p7>
Zn/r

~ K(Zne/r' (E](f)); fr: (‘Er: foo)e,p) ~ K(zn@/r’ (E](f)), errgl/a,p)-
This yields that
K(f5 X7/ XE) ~ K(& (B () £rbijap),  1St<oo
Reversing the couple, we obtain that
Kt f; X5 XY ~ Kt (B () Lajapty),  0<t<1.
Therefore

~ e ~ |l(E:
||f||(Xg);0:y) ”f“(Xp ,Xrl/ )(0’_’}/),[1 ||( ] (f))||('€1/(x,p"€7‘)(0'_y)'q
which completes the proof.

We proceed now to study the sequence space that arose in Theorem (6.2.14).
Definition (6.2.15) [305] Let @ > 0,0 < p,q < 0 and —oo < y < oo, We put

1/q
[0/0)

( . /1 )
Z=Zgpyq= {f € 4o €l = Z (1 + log n)” (Z(]'af;)pJ'l) n < o }
j=n

\ )
Note that when q = 1,Z,,,, ; is a small Lorentz sequence space in the terminology of
Fiorenza and Karadzhov [296].
Lemma (6.2.16) [305] Let @« > 0,0 <p,q <00,y =—1/q and 0 <r < min{l/«a,q}.
Then we have with equivalent quasi-norms

(gl/a'p’fr)(o,—y),q =ZN4y4,(0g?),

where €l zne, o ga0g ), = €11z + 1S ]le, 0 a0g 2),-
Proof. Let 1/6 = 1/r — a. According to [279, Theorem 4.2], we have that

1/p

+6 1/r o d
K(6,& €1 t1/ap) ~ (JO f*(v)rdv> + t(fts (veer ()’ 7”) ,0 <t < oo,

Here
ern _ (&1 fort € (0,1),
¢ (t)_{f,’fl forte[n—1,n),n = 2,3,....
Therefore,

de\"*
1€leys e ( j (= Tog K (& 1,370 T)

1/q
(f [ - log &yt K (8.5; fr,fl/a,pnq%)
1

N 5 1/r14 1/q
~ (fl (1—logt)rtt (L f*(v)rdv> } %)
o o d\ P dt v
+ (fl (1 —logt)Y (J (veE*(v)) ) ] T) =1+ 1,

For the term I;, a change of variables yields

o) t 1/r q
11~<f1 t-1/5(1—1ogt)V<f0 5*(v)rdv> ] ?)
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Since
1/q

1/r14 1/q
(jl [t‘1/5(1 —logt)Y (th*(v)rdv> ] ﬁ) < <f1[t1/r'1/5(1 ~logt)"]” ﬁ) S &
0 0 t 0 t
1 1/r
< < fo f*(v)rdv> < f [t7/8(1 +log £)"]” —) f [ ~1/8(1 +logt)” ( f & (v)rdv> ]

we obtain that

1) t 1/r74 dt Y
I ~ (J;) [t‘1/5(1 + |log t|)Y <j; f*(v)rdv> ] T)
oo t q/r q /4
=<f [t—r/5(1+|logt|)w (f f*(v)ﬁiv) ] %) .
0 0

Now using the Hardy-type inequality given in Lemma (6.2.8), we derive

- d 1/q o0 d 1/q
~ (f [¢1-7/8(1 + |log tDwg*(t)r]q/ Tt> = <f [t*(1 + |log t])YE*(¢)]4 Tt)
0 0

co

1 1/q
~ <Z [n*(1 + log n)VE,’;]qE> .

n=1

1/q
1/p]?
(1+ log t)Y <f (veer(v))° dv) ] %)

PRI NGIAN
=<Z f <1+logt)y<f (vee' W) U) ]7> -
n=1""

1/q

As for I, we get

5~<L

Hence

n

oo o 1/p]4
2 I(l + log n)Y <Z J]] (veg” (v))p dv) ‘ %
n=1 =

1/q

(o]

1/p
~ z I(l +log n)¥ <Z((J + 1)“€,+1) ) ‘
l/p‘

n=1

Similarly,

nz( Y

n=1

¢ +logn>y< D, (G+0) — 1

j=n+1

Consequently,
||f||(fl/ap ~ L+ 1

(Vq

~< [n*(1 +logn)’é, q—) <Z

~ WIS lle, g 008 £), + NS 1z

1+ logn)y< Z ((1 + 1)af]+1) j+1

j=n+1
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As a direct consequence of Theorem (6.2.14) and Lemma (6.2.16), we can now show the

following explicit description of (X“)( )

Theorem (6.2.17) [305] Let X be a quasi-Banach space and let (G,)nen, b€ an
approximation family. Suppose @ > 0,0 < p,q < o andy = —1/q. Put

W =Wapyq={f €X: (Ex(f)) € Zapyq)
with ||fllw = [(E.(f)]lz. Then we have with equivalence of quasi-norms

Oy) _ L(ay)
(Xg)q =X nw.
Corollary (6.2.18) [305] Let X be a quasi-Banach space and let (G,)pen, b€ an

approximation family. Suppose @ > 0,0 < g <o and y > —1/q. Then we have with
equivalence of quasi-norms
(Xa)(o]/) Xcga,y+1/q)

Proof. Using equality of the lower parameters, we obtain

- j 1/q
Ifllw = D GE)™ D (1 +lognyran!
j=1 n=1
1/q
Z(J“(l +log ) D) | = fllygarm

Therefore, applying Theorem (6.2.17), we derive
OY) _ 01 ~ ylay+1/q) _ ylay+1/q)
(Xg)q =X, nX, =X, :

Corollary (6.2.18) and Theorem (6.2.10) show that in the “diagonal case” where p = q
the order of application of the approximation constructions is not important.

0,y)

As we have seen in Theorem (6.2.17), in general (X3 “) cannot be realized as a space

X, (@) applications it is important to know the biggest (respectively, smallest) space

0,y)

X(“‘”) which is contained in (respectively, which contains to) (X“) . Next we

determine those spaces.
Theorem (6.2.19) [305] Leta > 0,0 < p,q < coandy > —1/q. Then
(ay+ (ay+
q q
Proof. Let 8 > a. By Corollary (6.2.13) and (13) we obtain that
(X2, = X XD 01

Moreover, according to (10), X/ = (X, Xf)gjp for a« = 6. Therefore, Lemma (6.2.5) (b)

and Proposition (6.2.7) yield the wanted embeddings.
Remark (6.2.20) [305] Embeddings in Theorem (6.2.19) are the best possible in the sense
that in general for any T > 0 embeddings

1
() y+————=—17)
min{p,q} (Xg)EIO,V)’ (16)

q
1
a\(0Y) (a’y+max{p,q}+r)
(x5), " =X, (17)
do not hold. We show it now by means of counterexamples.
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Take X = ¢, and G, = F,, S0 E,(&; £5) = &, As for (16), suppose that min{p, g} = p.
Given any T > 0, choose € > 0 such that t — € > 0. The sequence
f — (n—a(l + log n)—(y+1/p—r+1/q+e))
belongs to £1 /4, (108 €)y+1/p—1 = Xé“”’“/p_r). However, since
1/p

(00]

2(1 + logj)—(y+1/p—r+1/q+e)pj—1 ~ (1 + log n)—(y—‘r+1/q+e)
j=n
If T <y + 1/q + € and the series diverges otherwise, it follows that

(00

1/q
||€||(Xa)(o,y) > ||E]ly ~ (Z[(l +logn)¥ (1 + log n)_(V—T+1/q+e)]qn—1)
P/q

n=1

oo 1/q
= (Z(l + log n)Q(T_E)_ln‘1> = oo,

n=1

Hence, (16) does not hold.
As for (17), assume that max{p, g} = p. Givenany t > 0, let 0 < € < t and put

& = (n"%(1 + log n)~(r+1/p+1/q+e)),
g

We claim that € € (Xg)go’y). Indeed,

*® 1/q
”f”xtgm = I¢lle, 0 q008 £, = (Z(l + log Tl)_q/p_eq‘ln‘1> < o,
n=1

and
1/q

IElw = Z (1 + logn) (Z(l + lOgj)_(V+1/q+E)p—1j—1> n-1
n= =n

1
00 1/q
~ (Z(l + log n)‘Eq‘ln_1> < oo,
n=1

0,y)

Hence, according to Theorem (6.2.17), € € (Xg)q

L +7)
max{p,q}

. However, § & €14 4108 €)y11/q+7 +

(ay+

0 :
We apply the previous results to study several problems on Besov spaces.
In what follows we take X = L,(T), the Lebesgue space of periodic measurable
functions defined on the unit circle T, and we choose G,, as the set 0,, of all trigonometric
polynomials of degree less than or equal to n. Then X% is the (classical) Besov space

Bg,,,,XéO'V) coincides with the Besov space of logarithmic smoothness B, and XM with

B, (see [34,19,10]).
The following interpolation formulae follow from Proposition (6.2.7) and Corollary
(6.2.13):

(Lp,B;,’fr)p'q = ng’b where p(t) = t?(1 + |log t])7?, (18)
— poy
(Lp,BZ‘jfr)(o’_y)’q =B,, ify=-1/q. (19)

220



DeVore, Riemenschneider and Sharpley have established in [266, Corollary 5.5]
embeddings of spaces B;f;f’ with a > 0 into Lorentz—Zygmund spaces. They dealt with the

Banach case where the parameters are greater than or equal to 1. Next we extend those
results to the whole range of parameters. We start with known embeddings into L., (see
[168, Theorem 3.5.5]).

Theorem (6.2.21) [305] Let 0 < p < oo. Then
1/
B,1" © L.
Proof. According to [300, Theorem 3.1], there is a constant ¢ > 0 such that for any

f € B;’/lp there is a representation f = Y7, gn With g,, € O,n and

2P| gullL, < clifll jarp.
p Bp’1

n=0
Hence, using the Nikolskii inequality for trigonometric polynomials (see [297, 3.4.3] and
[284]), we derive that

1/, < annn% Zzn/pngnuL < clif -

Theorem (6.2.22) [305] Let0<p<q<oos—1/p—1/q 0<r<oand —oo<b<
oo, Then

By < Lg,(logL)y.
Proof. Combining Theorem (6.2.21) with the natural embedding L, < L, and
interpolating with the function parameter p(t) = t°(1 + |log t|)~® where 6 = 1 —p/q,
we derive the continuous embedding

(b0 B) o (k)
p,r
By (18), the space to the left is BSb and, according to [281 Lemma 6.1], the space to the

rightis L, ,-(log L)p. This completes the proof.

Theorem (6.2.23) [305] Let 0 < p < 0,0 <r <ocoand b+ 1/r < 0. Then
1/p,b+1/min{1,r}

Bp,r o LOO,T (log L)b
Proof. We interpolate by the limiting method with 8 = 1 the embeddings
B ola Ly,

to obtain that
1/p
(Lp,Bp'l )(1,—b),r - (LP'LOO)(L—D),T'
Lemma (6.2.24) [305] Yields that (Lp,Loo)(1 _pyy = Leor(log L)p. ON the other hand,

take 0 < a < p and put p(t) = t*/P(1 + |log t|)~2~1/min{lr} Using (18) and Lemma
(6.2.5) (a), we get

1/pb+1/m1n{1r} 1/a 1/a _ 1/p
B (153, (1 B, = B,

Consequently,
B;{,p ,b+1/min{1,r} N Loor(log L)b-

We focus the attention on Besov spaces Byy. Embeddings of By into Lorentz-
Zygmund spaces have been established by [289] (see also Caetano, Gogatishvili and Opic
[288] for the case of Besov spaces on R™ and by Triebel [282]). Now we show
embeddings into spaces Y, ,.,, introduced.
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Theorem (6.2.25) [305] Let 0<p <0, 0<r<o,b>-1/r,r<q and y=»>b+

1/r—1/q.Then By © Yy ...

Proof. This time we interpolate the embeddings

B S L, Lyl

by the limiting method with 8 = 0. Since y > —1/q, using (19) and Lemma (6.2.4), it
turns out that

B = (1, 5307)

p.4 > (Ly, Lw)(o,_y),q = Ypay

(0,—)/),61

Besides, by [295, Lemma 2], we have By? & B,Y. Therefore Byy © Yy, ..

Corollary (6.2.26) [305] Let 1 < p < 0. Then By "/ is continuously embedded in the
small Lebesgue space L®,

Now we study the relationship between smoothness of derivatives of f and the
smoothness of f. Let k € N. According to [266, page 70], if f € B,¥** then D¥f € B,
The following result shows that sometimes the loss of smoothness is less than a logarithm.

Theorem (6.2.27) [305] Let keN,1<p<ow0<g<wandy>-1/q.If f€ B:fmi“{z"’"”
then D¥f € B,V

Proof. Clearly D*: W, — L, is bounded and D*(0,) € 0,. Then E,(D*f; L,) <
En(f; W), and so

0, 0, 0,
DX : (W™ — (Ly)g™ = By

Is bounded. Moreover, it follows from the embedding B;’;,min{p,z} S Wi (see [168, Remark

4, page 164 and Theorem 3.5.4, page 169]) that (BX 10,05 & (WP, Finally, by
Theorem (6.2.19),
1

1

kYt minzp.a) (k¥ + min{qmin{p,2}Y ) ©.7)
Bp,q = (Lp)q © ((Lp)fnin{p,z})q "= (Bg,min{p,z})q .

1

Th k. oY Tminzrg 0y ;
erefore, D* : qu — Bp,q IS bounded.

We close with a result on the conjugate-function operator H, which is defined on L, (T)

by the principal-value integral
2TT—€

Hf (™) = lim f(e'* ) cot(y/2) dy

e—->0+ €
(see [38, Chapter IV]).
Theorem (6.2.28) [305] Let 0 < g < oo andy > —1/q.1f f € B)Y"" then Hf € B}
Proof. According to [304, Theorem 1V.3.16], we have that H : L; — L; o, is bounded.
Besides, by [1, Lemma 3.6.9], H maps any trigonometric polynomial in another

trigonometric polynomial with the same degree. Hence,
0,y+1 0,y+1 0,y+1
H: B = ()07 — (L)Y
is bounded.
Using the Nikolskif inequality in Lorentz spaces [303, Theorem 3], we obtain that

lgllL, slog(1+n)ligllL, .., 9 € On.
Therefore, Lemma (6.2.1) yields that

0,V+1 O,V O,V
([ ’ )( )(; ([ )( ) E; ’ .
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H:BY"™ — B
IS bounded.
The result above in the case 1 < g < oo can be found in [266, Corollary 6.3 and Remark
8.4]. Other estimates for H can be seen in [256, Section 1V.16] and [1, Chapter 3].

Given any integrable function f on T, its Fourier coefficients are defined by
A 1 (*® .
fm)=c,, = —j f(e™)e "™Xdx, m € Z.
21 ),

We write § for the operator assigning to any function f the sequence F(f) = (f(m)) of
its Fourier coefficients.

We use the reiteration results to study Fourier coefficients of functions in Besov spaces
with logarithmic smoothness.
Theorem (6.2.29) [305] Let 1 <p <2,1/p'=1-1/p,0<g<owandy>-—-1/q.If
f € B,Y then (f(m)) belongs to £, , (log o).,
maX{p .4}
Proof. By the Hausdorff-Young inequality, & : L, — £, is bounded. Besides §(0,) <
F,,+1, the subset of sequences having at most 2n+ 1 coordinates different from 0.
Therefore E; o 41)(F(f); €p1) S Ensr(f5 Lp) for n € N. It follows that

T BYY = (Lp, 0) " — (8,0, )P
is bounded. Now, according to Theorem (6.2.19), we have that

/ 1
A/p" Y +—rr )
Cr BT = ()P IQT 0 (h)g "D =t (l0g ) 4

max{p’,q}

This completes the proof.

The distribution of the Fourier coefficients of functions of BO” was considered by
DeVore, Riemenschneider and Sharpley in [266, Corollary 7. 3/(|)] They proved that if
1<g<owand f € BS}ZI’ then (f(m)) € £, 4(log £),. Theorem (6.2.29) improves this
result in two ways: On the one hand, if p # 1 and q # oo,

€, 4(log €)y+; G, 4(log ),

max{p’,q}
on the other hand g can now take values less than 1.

We study Fourier coefficients of functions in spaces close to L; and to L,. For this end,
we do not need the approximation constructions but limiting interpolation results
established.

It was shown by Hardy and Littlewood (case y = 1) and Bennett (case y > 0) that if
f € L(log L), then ¥7°_; (1 + log n)Y"*c;n™" < oo (see [286, Theorem 1.6/(a)]). Next we
extend this result to functions in L, ,(log L),,.

Theorem (6.2.30) [305] Let 0 < g<oandy >—1/q.If f € L, ;(10g L)y +1/min1,q3 then

z((l +logn)?c;)in"t < oo,

Proof. Since & : L; — £ and i‘f; L, — ¥, are bounded operators, we obtain that

& (L1, L) 0,—y)qg — (£1,€2)(0,-y),q DOUNdedly.
Take 0 < p < 1. By Lemma (6.2.2) (b) we have

(L1»L2)(0,—y),q = (Ll» (Lleoo)l/Z,Z)(O,—y),q = (Ll;Loo)(O,—y),q = ((Lpr Loo)l—p,lt Loo)(O,—)/),Q'
On the other hand, [281, Lemma 6.1] and Lemma (6.2.5) (b) yield that

qu(logL)y+1/m1n{1q} (LprLOO)l »,9,—y—1/min{1,q} © ((Lp:LOO)l -p, s 00)(0 -¥).q*
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Hence
% : Ll,q (log L)y+1/min{1,q} - (goolfz)(o,—y),q
Is bounded. Now we work with the space at the right side. We have
(fooffz)(o,—y),q = (Yoo (foo»f1)1/2,2)(0,—y),q = ('goorgl)(o,—y),q = foo,q(logf)y
where the last equality follows by using that K(n,&;41,€) = Yr=1¢x and Hardy’s
inequality. Consequently,
g’ : Ll,q (log L)y+1/min{1,q} — eoo,q (log f)y
Is bounded, which completes the proof.
Note that when g = 1 and y > 0, Theorem (6.2.30) recovers [286, Theorem 1.6/(a)].
Theorem (6.2.31) [305] Let0 < g <ocoandy < —1/q.If f € L, ;(10g L)y +1/min2,q; then

2(711/2 (1 + log n)”+1/“15"‘{2"1}67*1)qn‘1 < oo,

n=1

Proof. This time we interpolate by the other limiting method to obtain that
g (L1»L2)(1,—y),q — ({)oo»{)z)(L—y),q
is bounded. By [281, Lemma 6.1] and Lemma (6.2.5) (a), we get that
LZ,q (1Og L)y+1/min{2,q} = (Ll'L00)1/2,q,—y—1/min{2,q} © (Llr (L1:L00)1/2,2)(1,—y),q

= (Ll'LZ)(l,—y),q-

Besides, Lemma (6.2.5) (a) and Proposition (6.2.7) yield that
(goolfz)(l,—y),q = (foo' (300131)1/2,2)(1,—]/),61 © (‘Boo;’31)1/2,q,—y—1/max{2,q}
= eZ,q (log e)]/+ 1/max{2,q}*

Therefore

(8; : Lz,q (log L)y+1/min{2,q} - fz,q (log €)y+1/max{2,q}
boundedly.

Writing down Theorem (6.2.31) in the special case g = 2 and y = —1, we recover a

result of Cobos and Segurado [294, Theorem 8.5].
Corollary (6.2.32) [314] Let X be a quasi-Banach space and let (G,)nen, b€ an

approximation family. Suppose € = 0. Then we have with equivalence of quasi-norms
6 +e—1

O 7))
}(’)(1/1+E =X 1+€ ]
( 1+e )(0’_ 621++Ee_1)’1+ 1+€

Proof. Doing a change of variable, using Lemma (6.2.6) and Hardy’s inequality (see [293,

Theorem 1.2]), we derive

1 2re—1 1/1+ 1+6
€
E ||fr||(XX1/1+E L= E (jo [(1—logt) TR £ X X)] )

),1+€

1/1+4€

1+€

€24+e-1 1/1+€ 1te d
~ z j (1+logs) 1+e 5‘1/1+€K(51/1+6,fr; Xite X)]

1/1+€

i €2+e-1 1+e Hire
(1 + log n)—1+e n‘1/1+61((n1/1+6,fr; X11-|/-i+6:X)] Tl_1>

I . L& 1/1+€e]1te 1/1+e
e“+e—1
> |a+1ogmy e (;Z Ek(ﬂ)“f) ‘ n>
k=1

r €24e-1 1+e 1ite
(1 + logm) T¥e £, ()| n) = DA s,
| “1te

1+E

b
{3
2
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Corollary (6.2.33) [314] Let X be a quasi-Banach space and let (G,)pen, b€ an
approximation family. Suppose € > 0. Then we have with equivalence of quasi-norms

(0 62+E—1) (1+e.6)
T1tve ) — €,€
(Xé+6)1+6 1+ - X1+E
Proof. Using equality of the lower parameters, we obtain
; 1/1+€
- 1+€ - -1
Dl ={ D) GeEE) Y (A +lognymren
T j=1 r n=1
o 1/1+€
‘1+e € I+e. 4 —
~[ DD G + log By ()" = > Ifllygaseo
j=1 r r

Therefore, applying Theorem (6.2.17), we derive

(062+e—1) (062+E—1)
(Xlliee) ’ 1+e — X ’ 1+e nX(1+6,6) =X(1+E'6).

1+e€ — M+te 1+€ 1+€

Corollary (6.2.34) [314] Let 0 < € < 0. Then

1/1+€
Bl+6,1 © LOO'

Proof. According to [300, Theorem 3.1], there is a constant ¢ > 0 such that for any
f; € Bfﬁf there is a representation ¥, f; = Yoo X, g5, With g3, € O, and

[(00)

2, 2.2 ol = € 2 Ml
J J '

n=0
Hence, using the Nikolskii inequality for trigonometric polynomials (see [297, 3.4.3] and
[284]), we derive that

YAl <> Yllgall, s > > 2efgil, <c | ill aysse.
J n=0 j n=0 j J
2

€“+e—-1

Corollary (6.2.35) [314] Let 0 <e <o If feBO' ¢ then (f(m)) belongs to

1+€,1+€
{’iee’m.(log erer o

1
1+e max{$,1+e}

Proof. By the Hausdorff-Young inequality, & :L;,. — €1+ IS bounded. Besides

&(0,) € F,,4+1, the subset of sequences having at most 2n 4+ 1 coordinates different from
0. Therefore Ez 1) (§(f); €1+e) S Enyq(f; L14e) for n € N. It follows that

062+e—1 (0 62+€—1) ( 62+6—1)
% : Bl+€,11+'f€ = (L1+€’ 0n)1+6 e - (fﬁ' Fn)1+6 e
€
is bounded. Now, according to Theorem (6.2.19), we have that
€ €e4e—1 1
(0 62+6—1) € © €2+€—1) (1+e' 1+€ + max{¥,1+e}

= () F1re O Coodye

({)ﬁ' Fn)1-|:el+E
€ €

= f%’l_}_e(log ez re-1 1

1+€
1+e max{T,1+e}

This completes the proof.
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Section (6.3) Fourier-Analytical Decompositions with Wavelets and Semi-Groups
For f be a (complex-valued) Lebesgue measurable function in R",n € N,h € R™ and
k € N. We put
(AN = f(x+h) = f(x) and (AFFf)(x) = AR (AKS) (),
x € R™. The k-th order modulus of smoothness of a function f €L, 1<p <, is
defined by

wi(f, 0)p = lShl|1<pt||A’flf|Lp |, ¢>o0. (20)
Let
1<p<ow0<g<o and s>0. (21)
Let s < k € N. The classical Besov space B, ; on R" consists of all f € L,, such that
1 1/q
_ qdt
7185l = IFleoll +{ [ eswntr 0, 22)
0

is finite (as usual, if g = oo, the integral should be replaced by the supremum). See [65, p.
110] or [1, p. 332]. Besov spaces B, , have a central role in many aspects of the theory of
function spaces as can be seen, for example, by Triebel [62, 65, 66, 67, 311]. There are
numerous characterizations of these spaces in terms of other means. Let

0={0)20 ) 9O=1 §eR, (23)
Jj=0

be the usual dyadic resolution of unity in R™. Then B, , consists of all f € L,, such that
1/q

114l = D [l 1|’ (24)
j=0

is finite (the sum should be replaced by the supremum if g = oo). Furthermore ||
|B§,q||k+ and || - |B§,q||¢ are equivalent quasi-norms (see [62, 66]). Let
y

W) f(x =; e_lletl2 dy = (e thI”f ' X 25
OFC) = ooz | € # £y = (e9F©) (0 (25)
Rn

t > 0,x € R", be the Gauss—Weierstrass semi-group, W (0) = id (identity). Let p,q, s be
asin(21)and s/2 <m € N. Then B, , consists of all f € L,, such that

1 1/q
s AW () f . |I?dt
£ B3l ey = IF |Lo +<ft 2 ||em — L 7) (26)
0
is finite. Furthermore, || - |B;,q||(m) is an equivalent quasi-norm in the space Bj ;. See [62,

Theorem 2.5.2, p. 191], [66, Theorem 2.6.4, p. 152]. Another equivalent quasi-norm is

1

1/q
« s _ dt
F1B5all., = IF1L N+ [ 20w (@ = idlm L, || — (27)
(m) t
0

(see [306, Theorem 3.4.6 and Section 4.3.2] and [62, Section 1.13.2]). Finally we recall
the characterizations of the spaces B , in R™ in terms of wavelets. Let N, = N U {0} and

w={w :jeENy,GEG, mez} (28)
be the same real orthonormal wavelet basis in L, as [311, Section 1.2.1, pp. 13-14]. Let
b; 4 be the collection of all sequences
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A={NS€eC:jeN,GeG,mezr) (29)
such that
1/q

/
N Zz Y (Swer) a0

GeGJ \mezn
Is finite. Let again p,q,s be as in (21). Then B, consists of all f € L, which can be
represented as

F= Y NEamwLL deby, (3D
j,Gm
unconditional convergence being in L,,. This representation is unique,
M = NI =2, wh) = 22 [ FOwd,Godx, (32)
]Rn
and _
s f o 22 (1,90} (33)

is an isomorphic map of B; , onto b; ,. See [311, Theorem 1.20, pp. 15-16].

The complete solution of some natural questions has motivated the introduction of
Besov spaces where smoothness of functions is considered in a more delicate manner than
in By, (see, DeVore, Riemenschneider and Sharpley [266], Kalyabin and Lizorkin [32],

Farkas and Leopold [144]). Among them, logarithmically perturbed Besov spaces are
receiving a growing interest in recent times as can be seen Caetano, Gogatishvili and Opic
[288, 307], Besov [257] or Cobos and Dominguez [283, 289, 305]. These spaces have
classical smoothness zero and logarithmic smoothness with exponent b. They are near L,
but they have additional properties than L,, due to their structure of Besov spaces and their
logarithmic smoothness (see, [305, Theorem 5.1]). The most popular version imitates (22).
Let

1<p<ow0<qg<o and b>-1/q. (34)
Let w(f,t), = w,(f,t), according to (20) (first differences). Then ngg consists of all

f € L, such that
1/q

" d
71221 = lirleall +{ [ (= 1080w 0,)" S (35)

0
is finite. According to [283, Theorem 3.1] one can replace w(f,t), in (35) by
wi (f, t)p, k € N, which means that B> consists of all f € L,, such that

1 1/q
d
Ir1835ll,, = rle, |+ ( [la-1ogeraur, op]"%)
0

is finite. This property justifies to deal with this type of logarithmic Besov spaces of
perturbed main smoothness.

It is natural to investigate if Byo admits characterizations in terms of Fourier-analytical
decompositions, wavelets and heat kernels. Accordingly, we establish those
characterizations. They are new even for spaces ngg where b = 0.

Let ¢ be as in (23) and p, g, b be as in (34). The natural candidate of quasi-norm
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- 1/q
NV (RN}
= 0,b

does not characterize ngg but the Fourier-analytically defined space B, also with
logarithmic smoothness of exponent b but which is different from ngg (see [283, Theorem
3.3]). We show that BS:Z consists of all f € L, such that

oo oo 1/2 1 v
R 2
Izl ={ D a+pr |l D@ ol ] It
j=0 v=j
is finite and that || - |Bpyql|, is an equivalent quasi-norm to || - |ngg||(p . Therefore, in
+ +

contrast to (24), the Fourier-analytical characterization of BS;Z requires now an additional
truncated Littlewood-Paley construction.

Such new ingredient also appears in the characterization of Bg;Z by means of wavelets.
Let x; . be the characteristic function of the cube Q;,, = 27/m + 277/(0,1)" in R™ where

j €Ny and m € Z™. Let bg'fl be the collection of all sequences A according to (29) such
that

(00]

( 1/2 q\‘l/q
labgal ={ Y a+nr |l D D 1 omO | 1Ly (36)
j=0

v=j GEGY
mezv

is finite. Let p,q,b be as in (34). Then BS:Z consists of all f € L, which can be
represented as

— j’G - 'n/Z j Oyb
f - z Am 2 g LPG,m' /1 € bP,Q'
j,Gm

unconditional convergence being in L,. This representation is unique with A{,’f as in (32).
0

Furthermore, I in (33) is an isomorphic map of Bp;Z onto bg'f,.

However the truncated Littlewood—Paley construction does not appear in the following
characterization of BS:Z by means of heat kernels. Let W (t) be as in (25) and let p, q, b be
asin (34)and m € N. Then Bg;Z consists of all f € L,, such that

1 1/q

. _ dt
o = Il [ [ = toger?llwe = iarme, |
0

I£ 1B

is finite (equivalent quasi-norms).
The arguments rely decisively on real interpolation in limiting situations. We introduce
the spaces Byo and show another characterization by differences, as well as some results

on their structure. We deal with the indicated characterizations of ngg in terms of Fourier-

analytical decompositions, wavelets and heat kernels. Results on heat kernels are derived
from abstract results on semi-groups of operators which are of independent interest and
apply to the Cauchy—Poisson semi-group as well. We also ask for embeddings between
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BS:Z and their Fourier-analytically defined counterparts Bz‘,’,'f;. In addition we discuss the
structural differences of diverse quasi-norms of Bg;’; and their counterparts in B, , and

BYY.

Given two non-negative quantities U,V depending on certain parameters, we put U S V
if there is a constant ¢ > 0 independent of all parameters suchthat U < cV.If U SV and
V<sU wewritelU ~ V.

Let Ay, A; be Banach spaces with A; < A,, where & means continuous embedding. The
Peetre K-functional is defined by

K(t,a) = K(t,a; Ay, A;) = inf {{la — a;|Aoll + tlla;|A]l : a; € A1}, t > 0,a € A,.

As in [283], given 0 < g < o« and n € R, we define the limiting real method with 8 = 0

by
1 1/q
K(t,a) \'dt
(AO'AI)(O,T]),C[ =<ae€ AO : ||a|(A01A1)(0,77),Q|| = f <(1 — log t)n) T <
0

It is easy to check that the interpolation theorem for bounded linear operators holds for the
construction (-, o.m),q-
The space (4, A1) 0,4 IS quasi-normed and complete. It is a Banach space if 1 < g < oo.
Proceeding as in [283, p. 79], if 1<qg<o and n<1/q, we can compare
(Ao, A1) 0.1),¢ With logarithmic interpolation spaces (4y, A1)e,q,mr) Studied in [272, 264].
Indeed, take T < —1/q. It turns out that
(A0:A1)(o,n),q = (AO»A1)0,q,(—n,r) = (AerO)l,q,(T,—n)- (37)
Consequently, since t+1/q <0< —n+ 1/q, it follows from [264, Corollary 3.7] and
(37) that
A isdense in (Ag, A1) o If 1<qg<o and n<1/q. (38)
We establish now some auxiliary results. The first one refers to interpolation of couples
of vector-valued L,-spaces. Our measure space is R™ with the Lebesgue measure. So,
L,(A) = L,(R", A). The proof is similar to [62, Theorem 1.18.4]. Recall that
K(t,a; Ao, Ar) ~ Kp(t,a; Ao, Ar) = _inf  {llaolAoll” + tPllay |4, 1P}/
ajEAj
Lemma (6.3.1) [313] Let Ay, A; be Banach spaces with A; & A,. Let 1 < p < o and
b € R with b = — 1/p. Then we have with equivalence of norms

(Lp(A0) Lp(AD)) = Ly((Aos A1) 0-5)p)-

Proof. Consider the collection S of all functions v(x) = 27:1 aj)(ﬂj(x), where N € N,

a; € A;, the measure of ; < R™ is finite and Q; N Q,, = @ if j # k. By (38), the set S is
dense in (Lp (Ao), L, (Al))(0 .

”v |(LP(A°)’L (Al))(o,—b),p”p

) and in L, ((Ao, A1) (0,-p)p ) FOr v € S we have

dt
t

1 14
~f<(1—logt)b inf  {||vo|L, (40" +tp||v1|Lp(A1)||p}1/p>

v=v+v;
0 vj€lp(4))

1
dt
- [ -10g0y oGOl IP + 71l COLA ) dx -
0

f inf

v(x)=v¢(x)+v1(x)

R™ vj(0e(a))
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fj(l logt)bpl{ (t,v(x); Ay, A 1)p—dx~ f”v(x)l(Ao»Aﬂ(o b)p” dx
R™ 0

_ = [[vLp (Ao, 4D 0 p)™
This completes the proof.
Next consider the sequence space ¢, on N, and for A > 0 write

© 1/2
e} =3¢ = (Eyen, * 1616311 = (Z(Z”ISJ-I)2> <ot
j=0

If A is a Banach space, the vector-valued sequence space £4(A) is defined by

- 1/2
3(4) = §x = ()jen, * [x[£2A)| = <Z<2“lejlflll)2> <o
j=0

Lemma (6.3.2) [313] Let 0 < g < oo and b € R. Then we have with equivalence of quasi-
norms
q\ 1/4

(28D 0-prq =16 = () + €1l = z 1+ )P 16,152 <o
j=0 v=j

and || - || is an equivalent quasi-norm on (ﬁz,fz)(o‘_b)‘q.
Proof. Consider first the case 4 = 1. Since

1o 1/2
Ko(t, £, 43) ~ (2(min(1, t2V)|5v|)2> ,
v=0

we have for j > 0 that

0 1/2 o0 1/2
Ko(27,65 5, 83) ~ (Z(zv-flfv|>2> +< > |€v|2> .
v=0 v

=j+1
Hence

[0e]

1/q
R (zm f— f)]")

) j=0 g\ 1/4 - a 1/4
(Z (1 +])D(Z(2V Jlf D )1/2] > (Z (1 +])b(2|€v )1/2] ) -
Jj=0 =0

In the last expression, the first term is dominated by the second term. Indeed, if q/2 <1,
we obtain

o j a2\, j 1/4
> la+p® ) @)’ <[ D a+pmeuy aeg)s
j=0 v=0 j=0 v=0

1/q

0 o o] 1/q
D2y A+ )2V | s (Z(l +v>q"|fv|q)
v=0 j=v v=0
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q\ 1/q

(00]

<( > a +j>b(i|fv|2)1/2
j=0 v=j

If 1 < q/2 we use the variant of Hardy’s inequality given in [309, Lemma 3.1] (see also
[299, Lemma 3.10]). We get

e j 17217\ V4 o
> |a +j)bz-f<2(2V|€v|>2> -1
j=0 v=0 j=0
w 1/q - - 1/214
S<Z[<1+j>b2-fzf|fj|]"> <(D (1+j>b<2|€v|2>
j=0 j=0

j q/2 /a
(1+))227% 2(2%02‘
v=0

1/q

Consequently,
1/q

- - 1/274
lelce2 e 0-mall ~ | )|+ <2|fv|2>
v=j

j=0

The general case 0 < A follows by appropriate modifications.

Let BOb be the Besov spaces on R™ with logarithmic smoothness defined in (35) by
means of dlfferences Note that definition makes sense in a wider range of parameters than
(34). Namely

1<p< oo, 0<q < o, and b>-1/q
but the extreme value b = —1/q may give rise to jumps in the scale (see [308, Theorem
3.2 and Corollary 3.3] and Remark (6.3.8) below), and the cases p = 1,00 sometimes
require different type of arguments (see [308, Theorem 3.8]).

As we have pointed out, the quasi-norms
1 1/q

d
If1852, ||f|Lp||+<J[(1—10gt)bwk(f.t)p]q7t> . ken

0
are equivalent on B,~. This is the log-version of the quasi-norms (22) on the classical

Besov spaces B; , Wlth s < k. According to [65, Theorem 2.5.12, p. 110], the quasi-norm

(22) is equivalent to
1/q
S — h|—s4 q dh
IF1B5all, = I 1Loll + | 1A ARA Lol | (39)
|h|=1
The next result shows the characterization by differences in Bg;q corresponding to (39).
Theorem (6.3.3) [313] Let 1 < p < 0,0< g < o,b > —1/qgand k € N. Then

1/q
_ b
18321, ||f|Lp||+<|hlf<1(1 loglhl)" |4 1L, | |h|n>

is an equivalent quasi-norm on B¢
Proof. We shall use that

1/q
am(fi)p~f< j’HA fIL, | dh)
In]st
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(see [33, (2.4) and Appendix A]). We have

1 1/q
d
IriBg3l,, ||f|Lp||+<f [t~ og 0w (f, 0 ' t)
i 1 1/q
~ Ifle | + ( Ja-togorae [ ki dh—>
0 |h|<t

1

1/q
dt
=||f|Lp||+< [ sl | t‘"(l—logt)qudh>
|hl<1 ||
1/q
< it +< [ hstrlo, minc —loglhandh> = 71831,
|h|=1

Conversely,

1/q
h
71551, < 17l | +< | @ = toglhiy s, D W)
|hls1

o 1/q
h
= |I7|L, || + <z f (1 — loglhD™aw, (£, |h])? |h|”>

Jj=0 2-j-1<|p|<2-J

o 1/q
< [ty + <Z<1 )M, z-f>z>

J

:: 1/q
d
< IIF ||l + (f(l ~log )" 9w (f, t)Z%) = [l71Byall,.

Remark (6.3.4) [313] The special case of the semi-quasi-norm

1/q
dh
( | @ - 1oginb2 i, | |h|n>
|h|=1

when b = 0 and k = 1 has been used by Besov [257].
In our later characterizations the structure of BS;Z as approximation space will be useful.
We describe it now.
Let G, = {0} and for j € N put
G; ={g€Lp ssupp g € {x : |x| Sj}}. (40)
So if g € G; then g is an entire analytic function of exponential type j. Given f € L, and
jEN,let

Ei(f)p = inf{|[f = g|L,| : g € G;—1}
For1<p<o,a>00<qg<o0and—oo < b < oo put
1/q

(Lp)s = (Lp{GHE =Sf €Ly |f|LE| = Z(}""EJ-(f)p)qj‘1 < o0
j=1
and
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(0,b) (0,b)
(Lp)q = (Lp' {Gj})q
1/q

={reL,: ||flan®”|| = 2((1 +10gN°E;(f)p)" | <o (41)
=1

(see [62, 300, 295, 305]).

The following result can be proved using ideas of [297, Section 5.6] and [62, Section
2.5.4] but also by means of interpolation as we do.
Lemma (6.3.5) [313] Let 1 < p < 00,0 < g < and b = —1/q. Then we have

(0,b) 0,b
(Lp)q = Bpjg-
Proof. Take any 0 < a < 1. By [65, Theorem 2.5.3] (see also [62, Theorem 2.5.4]), we

know that (L,)g = By,. Whence, using [305, Corollary 3.5 and Lemma 2.2/(b)], we
derive

(0,p)
(Lp)q - (Lp' (Lp)z)(o’_b)’q - (Lp'Bg,p)(o,_b),q - (Lp' (Lp, Wpl)a,p)

= (Lp’ Wpl)(o’_b)’q = BS:Z

where the last equality follows from [283, Theorem 3.1].
In the proof of the previous lemma we have used that BS;Z = (L, W) (0-b)q [283,

(0,—b),q

Theorem 3.1]. We can show now that in this interpolation formula the Sobolev space Wp"
can be replaced by any fractional Sobolev space H; = F;,, any Triebel-Lizorkin space
E;,, or any Besov space B, ,,.

Theorem (6.3.6) [313] Lets > 0,1 <p<o0,0<u<o,0<g<oandb=>-1/q.For
A3, = F;, or By, we have with equivalence of quasi-norms BS;Z = (L, 45.) 0B
Proof. By [65, Proposition 2, p. 47], we have

S S S
p,mln(p,u) ‘_> Fp’u (_) Bp!max(p!u).

Hence, using [65, Theorem 2.5.3], [305, Corollary 3.5] and Lemma (6.3.5), we derive

_ _ (0,b) __ p0b
(Lp'Afv.u)(O,_b),q = (Lp'B;,maX(p,u))(O‘_b),q - (Lp' (Lp)fnaX(p,u))(o,_b),q - (Lp)q = Bpyg-
For the converse embedding, we obtain

BS:S = (Lp)flo‘b) = (Lp' (Lp)fnin(p.u))(o‘_b)‘q = (LP'B;,min(p,u))(o,_b),q = (L’P’Als%u)(o,—b),q'

With the help of the limiting real method for 8 = 0 we are going to characterize BS;Z by
using smooth dyadic resolutions of unity and the Fourier transform.

Subsequently S and S’ stand for the Schwartz space of all (complex-valued) rapidly
decreasing infinitely differentiable functions on R™, and the space of tempered
distributions on R™, respectively. If f € S’, we write f for its Fourier transform and f" for
its inverse Fourier transform. Take ¢, € S such that

supp @o € {x € R™: |x| < 2}and po(x) =1 if |x| <1.
For j e Nand x € R™ let ¢;(x) = 9o(27/x) — o (27/* x). The sequence (¢;)jen, i a
smooth dyadic resolution of unity, Y72, @;(x) = 1 for all x € R™.

Imitating the quasi-norm (24), for 1 <p < 00,0 < g < 0,5 > 0 and b € R, the Besov

spaces BS;Z are defined by
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1/q

, : ; . 2 q
Bt =dres s |IflBall = D (@5 + )l Il ) <oy (42)
j=0
(see [142, 47, 28, 144, 169]). We are mainly interested in the case s = 0. Spaces BZ‘,),'(’; also
have logarithmic smoothness but they are different from BS;Z although they are closely

related (see [283, Theorem 3.3] and [308, Theorem 3.2]). The characterization of BS;Z in
terms of Fourier-analytical decompositions has not been studied yet, even for the classical
space B ;. Next we establish it. We start with the diagonal case where p = g.

Theorem (6.3.7) [313] Let 1 <p <o and b = —1/p. Then f € L, belongs to BS;Z if
and only if

p\ 1/p

o w 1/2
|- 1833l = Z(1+J')b” (Zl(wvf)v(-)|2> Ll | <o

Moreover, || - |Bgf,|| is an equivalent norm on By>. If b = 0 we obtain

If p\ 1/p

o o 1/2
By, = if €Ly, : ||fIBy p” Z <z |(‘Pvf)v(‘)|2> Ly
j=o ||\v=i

Proof. We know that L, = F;?,z is a retract of L,(¥¢;) and that W' = F;},z Is a retract of
L,(¢3), the corresponding coretraction operator being Jf = (((pvf)v) y (see [62, p.
VEN,

|
<oo|$.

185]). For the vector-valued L, -spaces, using Lemmata (6.3.1) and (6.3.2), we obtain
(LoCe L)) | = Ly((B 8 0-)

1/p

p/2
=F =) lIfll = Z(lﬂ)b”(zvv(x)IZ) L[ < o0

Since B)» = (L,, Wyh) (see [283, Theorem 3.1/(b)Jor Theorem 3.4), and

1/p

(0,—b),q

p/2
”c«VSf”Lp(({;z’{;%)(o'_ Z(l _|_])bp j(Z |(§0vf) (x)| )

p\ 1/p

w - 1/2
Z(l + )PP <z |((pvf)v(')|2> Ly :
j=0 v=j

the wanted characterization follows from [62, Theorem 1.2.4].
Remark (6.3.8) [313] It is shown in [283, Corollary 3.5] that

By? = Byt % ifb > —1/2.
In the more recent paper [308, Corollary 3.3], it has been proved that in the limit case
b = —1/2 we have
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- 1/2

- , , AV 2
BY; /2 =BX0V2 = {fes Z (@ +1og® + )2 ||(0;) IL2]|) | <o
j=0
Using Theorem (6.3.7) we can see clearly the reason for this jump in the scale: It is owing
to the asymptotic behaviour of d, = ¥7_,(1 + j)*” which behaves as (1 +v)?**! if

b>—-1/2andaslog(1+v)ifb =—1/2.Indeed

- - 1/2
lFIBSEI" ~ > 1+ (Z |(<pvf)v(-)|2> IL,
j=o V=)
= Z(l + /)% f <Z |(<Pvf)v(x)|2> dx = f (Z |((pvf)v(x)|22(1 +j)2b> dx
j=0 R \V=J R \v=0 j=0

1/2\ 2 ||f|BO b+1/2|| ifh>—1/2
1ﬂ(jl(%f) (x)| ) '
=0 IF[BEO2|[* ifb = —1/2.
Next we study the non-diagonal case p = q. We work with the vector-valued sequence
spaces

o 1/p
&5 (A) = 3 (@ken, * [[(@| 6540 = (E(ZRSnakmkn)P) <oor.
k=0

Here s € R and (Ay)ken, IS @ sequence of Banach spaces. It is well-known that for
0<0<1,—0<s;#s; <ooand0 < g < oo, we have with equivalence of quasi-norms

(£ (Ak),fgl(Ak))e (=), = (1= 0)s+ 05, (43)

(see [62, Theorem 1.18.2] where (43) is proved for A;, = A, k € N,; arguments work also
in the general case).
Theorem (6.3.9) [313] Let 1 <p < 0,0 < g <o and b > —1/q. Then f € L, belongs
to B) if and only if

1/2 q\ 1/q

(0.0]

b . ANV 2
Irtseall, =( > [a+p (| Y| Ol ] I <o (44)

= V:j
(usual modification if ¢ = o). Furthermore, |- [B;q[|  is an equivalent quasi-norm on B.o.

Proof. Take by, b; suchthat —1/p < by, <b+1/g—1/p <b;.Wecanfind0 <6 <1
such that

b+1/g=00-6)(by+1/p)+6(b, +1/p). (45)
With this choice of parameters, Lemma (6.3.5) and [295, Theorem 5] yield that
Bya = (Byp’ By e (46)

Moreover, it follows from Theorem (6.3.7) and Lemma (6.3.2) that Bgfj IS a retract of
Ly((#2,€%) 0-b;)p), i = 0, 1. Note also that

w o 1/2
[((0)") o (2 8D0000) || ~ | D 1+ P (Zl(mvf)v<-)|2> Ly
=0 V=)
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1/p
2k+1_ P

- - 1/2
= > > (Z |(<pvf)v(-)|2> IL,
k=0 j=2k v=j-1

If 2% < j < 2K+1 — 1 then j ~ 2% and s0 B2 oL jbiP ~ 2KkbiP 2k = 2k(bi*1/D)P \Nhence,

Jj= Zk ,
oo 1/2 p\ /P
||(<¢,-f>V)|Lp<<ez,eg>m,_bi).p>||~<zzk<bi+1/m (3 [wnof) ) |

k=0 v=2k—1

write Rf = (((@yf))yapk_1)ken, and A, =L,(£,) for k€N, The previous
considerations and Theorem (6.3.7) show that

W By — £, ()
Is bounded for i = 0, 1. Interpolating this operator and using (43), (45) and (46), we derive
that

o)

R : BOb N £b+1/q(Ak)
Is also bounded. Therefore one has by (44)

£ 1Bzl ~<Z 2K/ ( 2 |(2./)"0) )
j=0

q\ 1/q
) = [l%r1eg ™ )l = £ (B
v=2k—

To check the converse mequallty, note that using L,(#,)-Fourier multipliers and
Littlewood—Paley theorem based on (¢,) where ¢.¢, = 0 if |t —v| > 1 one has

o 1/2
> (@) || = <Z|(<prf) 0] )

v=j+1

Hence
q

(o]

o 1/2
IFlBoalE = > |+ (ZW)%»F) L,
v=j

j=0

oo [oe) 1/2
<L+ Y 2w (Z |(<0vf)v(-)|2>
j=0 |

v=2J

oo oo q
2 Il + ) 270 a X" (p,7)" |1,
j=0

v=2J/+1

q

q

oo 2J
= Il + ) 27ty = (o, ) |1,
j=0 v=0

Letpu; = 22’ and consider the sets G; defined in (40). Since

2J A 2J
supp <Z(<pvf)v> = suppz o f € {x s lxl < pjgq),
v=0

we have Zv O(QDVf) €G Ii]+1

H Z(%f) Ly

1nf ”f 9|L ”_ u]+z(f)10

ﬂ]+2

236



Consequently, using [295, Lemma 1] and Lemma (6.3.5), we derive that

o 1/q
, (0,p)
IrlBsal, = (nmpn" +22](b+1/q”Eu,-(f)Z> ~ 1) ~ Nir1Beal.
Jj=0

This completes the proof.

We collect basic notation of wavelets as needed below following closely [311, Section
1.2.1, pp. 13-14]. As usual, C*(R) with u € N collects all (complex-valued) continuous
functions on R having continuous bounded derivatives up to order u (inclusively). Let

Yr € C*(R), Yy € C*(R), u €N, (47)
be real compactly supported Daubechies wavelets with

jl/)M(x)x”dx =0 forall veN, with v<u.
R

Recall that iy is called the scaling function (father wavelet) and y,, the associated
wavelet (mother wavelet). The extension of these wavelets from R to R*,2 <n €N, is
based on the usual tensor procedure. Let
G = (Gy,...,G,) € Gy = {F, M}",
which means that G, is either For M. Let
G = (Gy,...,Gy) € Gj = {F,M}™, jEN,

which means that G, is either For M where * indicates that at least one of the components
of G must be an M. Hence G° has 2" elements, whereas G/ with j € N has 2™~ elements.
Let

n
gl (x) = 202 Hzpcr(zfxr —-m,), Ge¢, menn (48)

r=1

where (now) j € N,. We always assume the Y and y,, in (47) have L,-norm 1. Then
Y={¥ . :Jj€ENy,GEG, mez"}
is an orthonormal basis in L, (R™) and

F=Y ) ) Nearewl,

j=0 GeGJ mezLn

with
M =N (f) = 22 f fOOPE G)dx = 2772(f, 9 )
RTL

in the corresponding expansion, adapted to our needs, where 277/ leé’m, are uniformly
bounded functions (with respect to j and m). The spaces B, , with p, g, s according to (21)

can be expanded in terms of W as described above in (31)—(33) where s < u € N. Thisis a
special case of [311, Theorem 1.20, pp. 15-16].

Let ;. be the characteristic function of the dyadic cube Q; ,,, = 277m+ 27700, 1)" in
R™ with sides of length 27/ parallel to the axes of coordinates and 2~/m as the lower left
corner. For s =0,1 and 1 <p < o, we write f,, for the space of all sequences 1 =

() with j € No, G € GJand m € Z" such that
1/2

, . 2
g2l = |[[ D 22 WamOl” | 1| <<

Jj,Gm
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We put
1/2

. ;2
XDV IS
J Gm

Lemma (6.3.10) [313] For s = 0,1 and 1 < p < oo, the space f,, can be identified with a

complemented subspace A;,Z of L, (45(€5)). The projection onto Af,,z associates to each
G ) i

h() = (hi(1)jen, = ((h{n (') gegi ) jen, € L, (£3(£2)) the function Ph defined by

mez"

(WD) gee) N3 (£2)

mez"

€§(£Z)= ((:u )Gegl)]ENo

mezm"

PRGO = (@ [ W 0)avXim () geojen, -

mez"
Qj,m

Proof. Given any 4 € f,, let R(4) be the function defined by R(1)(x) = (g;(x)) where
gj(x) = (Mf){jm(x)) Gecl - Since

mezm"

( \
1215521l = z 2% Z |}‘m | Xjm () |Lp|| = <Z 2j52||91'(')|Lp||2> Ly
]ENO GEG] / jENO
mezn

= [|[RDIL, (5|
we have that 7, is isometric to the subspace 4, = {RD): 1€ fpﬁz} of L,(£3(£3)). Itis
easy to check that Ph = h for any h € A}, ,. Let us show that P is bounded in L, (£3(£;)).
We have that

n W Oldvrneo s (erE e, xe R
Qj,m
where M is the Hardy—L.ittlewood maximal operator. Using the vector-valued estimate for
M (see [194, Theorem 1.1.1, p. 51]), we obtain

2 1/2
lPriL (sl < ([ D7D (2 [Fmieoldy | am | I
JEN, GEGJ Qjm
1/2 1/2
s\ D0 D e@ehe)” | || s || D) D) 2Ol I,
JENy GegJ JENy GeGJ
mezn mezn

= ||hlLy (32|
In addition, this also shows that if h € L,,(£3(£;)) then Ph € A3 ,. The proof is completed.

Lemma (6.3.11) [313] Let 1<p <o and b= —1/p. Then 1= (AL%) belongs to
(fp(TZ; fpl,z)(o,_b),p if and Only if

/2 1/p
||A||=( [ Dl ZZ|M|va(X) dx)

R™ j=0 v=j GeGJ
mezn"
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is finite. Moreover, ||4]| defines an equivalent norm in (fy,, f,:2) (0,-b) p-
Proof. By Lemmata (6.3.1), (6.3.2), we have that
(Lp(£2(€2)), Lp(83(£2))) 0-1)p = Lp (L2 €2) (0,-1)p (£2)).
Hence, according to Lemma (6.3.10) and the theorem on interpolation of complemented
subspaces [62, Theorem 1.17.1], we derive that

/2 1/p
IS i ol ~ Z(l + ) Z > el xvm(x)\ dx
R" J= \v =j GeGJ /
mez"

In what follows we work with the sequence of wavelets (lPé ) defined in (48) with
u > 1 and the sequence space bOb defined in (36) but allowingnow b > —1/q.
Theorem (6.3.12) [313] Let 1 <p <o and b = —1/p. Then f belongs to BOb if, and
only if, it can be represen_ted as f = Z],G,mkm 2~ J"/lelélm (unconditional convergence
being in L,) with AL = AL (F) = 2/™/2(F,w] ) and

/2 p\ /P
Ir1Boal,, = loudMbsall = Y a+n= ([ > > W me | 1L,
j=0 v=j GEGZV
mez"

is finite. Moreover, || - [Bpj|l,, _ defines an equivalent norm in B>,

Proof. The unconditional convergence in L, for any sequence (}\m ) € bOb follows from
a corresponding assertion for L, based on fp‘2 according to [311, Theorem 1.20] and

bg'f, o fp‘fz as a consequence of Lemma (6.3.11).
Let D be the operator defined by
D) = ) Nz
Jj,Gm
According to [311, Theorem 1.20], the restrictions
D: fyy — Ly and D : fr, — Wy
are isomorphisms. Interpolating and using Theorem (6.3.6) or [283, Theorem 3.1], we
obtain that
. 0 1 1 _ pob

D: (fp,z: fp,Z)(O,—b),p - (Lprmlp )(0,—b),p - Bp,p

Is also an isomorphism. As for the source space of this operator, by Lemma (6.3.11), we

know that
1/p

R" j=0 v=j GEGY

p/2
||(A#G)l(fp(?Zsz},Z)(o‘_b)’p|| ~ fZ(l + j)bP Z Z |mc;|2)(v,m(x) dx)

mezm"
1/2 P 1/p
] 2
=1 Ya+n ||| DD W am® | Ly
j=0 V=) GEGY
mez"

Furthermore, }\j;'lc = }\j;'lc (f) is again covered by [311, Theorem 1.20]. This completes the
proof.
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In order to study the case p # q, we first introduce some notation and we establish an
auxiliary result.

Forl<p<owandj€N,letP,;: L, — L, be the operator defined by

j-1
Puf = ). ) M2,
v=0 GEGY
mezn"

As {¥¢.,} is an unconditional Schauder basis in L, we have that
sup{[|Poi|Lp — Ly|| : j € N} < co.
Let V, = {0}and for j = 2,3,...with 2™ < j < 2™*1 m € N, put

m-1
Viey = Pym(Ly) ={g €L, g = z z cLE2-vm/2pY  with clS € €

v=0 GEGVY
mezn

Then (L, {V;}) is an approximation scheme in the sense of Pietsch [300]. Put
E'(f)p = inf{||f —glLyll : g €V} JEN,
and define the space (L, {Vj})go'b) as (41) but replacing the sequence (E;(f),) by
(B (F)p)-
Note that

Eyi(Fp ~ If = PoiflLoll,  JEN.

Indeed, given any g € V,;_,, we have
If = PoflLpll < [If = glLoll + lg = PoiflLoll = IF = glLpll + [P2i(g = NILy |l
S |IF = glL |l
Lemma (6.3.13) [313] Let 1 <p < 0,0 < q < o0 and b > —1/q. Then we have with
equivalence of norms

(0,b) _ pOb
(Lp' {Vj})q o BP,Q'

Proof. We start with the case 1 <p = q < 0. Put u; = 22j,j € N,. We have

71 DO ~ ALl + Y (i mE ), )
j=0

~ I 7+ - (2702 || = Bflny )
j=0

(o]

=Iflepll” + > 2w | 5N e cpramowy,, L,
=0

V:Z] GEGY

mezn

1/2 "

~rll”+ D 2o [N W A aom | 1y
j=0 v=2J GEGY

mezn

where we have used [67, Theorem 1.64](or [311, Theorem 1.20]) in the last equivalence.

Now the result follows from Theorem (6.3.12). Note that the above argument works even
ifb=—-1/p.

To establish the remaining case p # q, choose by, b; suchthat —1/p < by, < b+ 1/q —
1/p < by and take 0 < 6 < 1 with

240



b+1/q=(1—-06)(by+1/p)+06(bs+1/p).
According to (46), [295, Theorem 5] and the result just proved for the diagonal case, we
obtain that

Byo = By By )oq = (Lo (VDG (Lo, (WD V0q = (Lo, (DT
Theorem (6.3.14) [313] Let 1 <p < 00,0 < g < o0 and b > —1/q. Then f belongs to

SZ if, and only if, it can be represented as f = Z,cm7\m 2~ J"/leé,m (unconditional

convergence in L,) with MG =16y = 20m/2(f, ‘Pé ) and

12 P 1/p

IFIBES,. = IO Ibe5] = Z(anw ZZIWGIXM() Lol | <o

v=j GEGY
mezn

0,b - . - . 0,b
Moreover, || - |Bp,q||q;+ defines an equivalent quasi-norm in B

Proof. The unconditional convergence in L, is covered by the related argument at the

beginning of the proof of Theorem (6.3.12) and the above interpolation (46).
Using Lemma (6.3.13), we obtain

o 1/q
(o,p) ;
B~ 17 | )| ~ (nmpn” £y szﬂ/mg;;(f)g>
j=0

o 1/q
. q
. <||f|Lp||p+22’(b“/q)q B )
=0

12 q 1/q

(0]

~\||f|Lp||”+sz<b+l/q>q 3 W mO | 1 )
j=0

V:Z] GEGY
mez"

1/2 q\ /4

~ (iu + j)be i Z W om O | |Lp )
=g

Remark (6.3.15) [313] Comparing Theorem (6.3.14) with the corresponding result for
classical Besov spaces given in (30)—(33), we observe again an additional truncated

Littlewood—Paley-type construction. The corresponding sequence space being b q guasi-
normed by (36) in contrast to b, , in (30).

In order to take a closer look into these sequence spaces, consider the Banach case
1 < g < oo and notice that the norm (30) of b; , can be rewritten as

o g\ V4
|121b5,4]| = (Z 20 ) ) - (49)

> O I,

j=0 GegJ lmezn
Then it follows for some 0 < ¢; < ¢, < oo,
1/q
1/2 1
arl|Albg |l < ZZM 2 > R mO | Ly
v=j GEGY
mezn
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<o Absqll, A€ Dbi, (50)
where we used again s > 0. Hence one can replace b , in (30) by the middle term in (50).

Afterwards one can compare by , with b° b accordlng to (36).

To continue with the descrlptlon of relatlonshlps between classical and logarithmic
spaces, let

WH@ = > WEOltm@

GeGJ
mezZn

and

1/2
(00

W@ =[ D D WEO] pym @)

v=j GEGY
mezn

o 1/q
1718541, <Z 2f'SQIIAffILpll"> (51)
j=0

1/q

WF), 1L (52)

Then

and

o0
1183l = | D 2% |
j=0

are equivalent norms in Bj ;. This is covered by (30), (33) combined with (49), (50). The
norm-generating basic ingredient in the refined norm (52) is monotonically decreasing in
j, in contrast to their original counterpart in (51).

If one switches from B, , to their logarithmic counterpart BY
Theorem (6.3.14), the correspondlng norm to (52) is

718251, = | Y a+ie | (W), 1L,
=0

On the other hand, according to [157, Theorem 13] and the comments in [60, Section
1.3.3, pp. 54-60], the counterparts of (51), hence

pq, then as it is shown in

1/q

1/q

718231, = { 2+ pallwplLs |
7=0

is an equivalent norm in the space B,> which does not coincide with BJ'?

To finish we consider the embeddings
BO ,b+1/min{2,p,q} N Bo b N BO ,b+1/max{2,p, q}

established in [283, Theorem 3.3] for 1< p < oo, 0 <q< and b>—-1/q. As an

application of the characterizations by means of wavelets, we show next two results on the

optimality of the embeddings above.

Remark (6.3.16) [313] Let 1<p <o, 0<g<o and b>—1/q. Suppose that

p = max{2,p, q}. We are going to show that for any & > 0 we have B)'? -+ B°b+1/p+8.
Given € choose Bsuchthatb +1/g+1/p<pf <b+1/q+1/p+ €and put
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, 2/n/P(1 + j)~P if j €Ny, G =M, ...,M)

JG _ _

Am andm = (0,...,0),
_ 0 otherwise.

Then f =Yem A{;LGZ‘J"/ZlPé,m belongs to By-. Indeed, according to Theorem (6.3.14),

it is enough to show that
q\ 1/q

%) %) 1/2
7Byl = Z(l + (Z(ZW”H+v)‘ﬁ)2xv,(o,...,0)(-)> Ly < .

j=0 v=j

We claim that if x # 0 and j € N, then

- 1/2 w 1/p
(:E:(Zvn/p(l-+-v)_ﬁ)zkw(0win(x)> ~ (:E:(Zvn/p(l-+-V)_ﬁ)pkv(auxn(x)> (53)

v=j v=j
with constants in the equivalence which are independent of x and j. Indeed, assume

2 < p.The case p < 2 can be carried out similarly. Since £, — £,,, it is clear that
1/p 1/2

—B\P -B)?
D @ AN 0.0 | < D @A+ ) 10.0@
v=j v=J

To check the converse inequality, we distinguish two cases. If x ¢ 277(0,1)" = Q 7,(0,.,0)»
then xy (o,..0)(x) = 0 forv = j. So

o 1/2 o
(Z(Zvn/m +9)) 20,00 (x)) =0= <2(2”"“’<1 +)7) 0.0 (x))
v=j v=j

Suppose now that x € 277/(0,1)™ and let v, € N, the bigger value such that x € Qv...(0,.,0)-
We have

1/p

1/2 1/2

0 Vyx
2 _pN\2
D @A+ o 0@ | = D @M+
v=j v=j

Vx 1/2 Vy 1/p
= (Z(Z”n/m + vrﬁ)Z) S 2P (L+v)F < (Z(Zvn/m + vrﬂ)”)
v=0 v=j

o 1/p
= (Z(Zvn/p(l + V)_ﬁ)p)(v,(o ..... 0) (X))
v=j

which establishes (53).

Consequently, since —fp+1<0and (b —f + 1/p)q < —1, we get

IriBall, ~( > a+p|l{ Y @0+ re.00 | L
j=0 v=j

a/p\ /4

= Y a+pr f D @A+ Y p 0,0 () dx

j=0 R V=]
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1/q

o q/p
= 2(1 + j)b4 Z(Zvn/p(1+v) BYP2- Wl)

- a/p\ Y4 - 1/q
= (1 + )b (1+v)7FP ~ (1+)Pa(1 + j)-Ae+valp
(o3 5
= 2(1 + jH)(b=B+1/p)q < 0.
j=0
Therefore, f € BOb But, by our choice of 5, we have
o 1/q - 1/q
Z 2/na/p (1 +j)(b+1/p+s)q(zjn/p(1 _|_j)—ﬁ)q = 2(1 + j)b+1/p+e=f)a = 0,

j=0
Hence, according to [157, Theorem 13], we derive that f ¢ B,
Assume this time that p = min{2,p, q}. Let us show that for any € > 0 we have

BS,’ZH/p ®» B)o.Take fsuchthatb+1/p +1/q—e<B <b+1/p +1/q and put

as before,
}\}rzr,lc; _ {ZJn/p(l +j)‘B if jeENy,G=WM,...,M)and m = (0,...,0),
B 0 _ otherwise,
and f =¥ ¢ m My 272W)  Using (53) we derive

0b+1/p+£

g\ 1/q

[e%) [e%) 1/2
71831, ={ 2.+ Z(Z”n/mw)ﬁ)zxv.@.....@(-)) L,
j=0 v=j

- Z(l + /)P4 <Z(zvn/p(1 + v)_ﬁ)p)(v,(o,...,o)()

v=j

Thissumisoco if —fp+1=>0.1f—fp+1 <0, we have

0 o q/p
Z(l + j)ba (Z(Zvn/?’(l + v)‘f”)pz-vn> Z(l + j)ba (Z(l +v) ﬁp)
Jj=0 v=j

a/p\ /4
11BN, ~ D a+pra| ) a+wr 2(1 + i/
= &
So, Theorem (6.3.14) yields that f & Byo. However
1/q o
Z 27Ina/p (1  j)b+1/p-8)a (zjn/p(l _|_j)—ﬁ)q = Z(l + j)b+1/p-e- B)q>
=0 =0

which means, according to [157, Theorem 13], that f € Bg’,gﬂ/p £

First we show an abstract result on semi-groups of operators and limiting real

interpolation, and then we apply it to heat kernels and spaces BS:Z.
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Let A be a (complex) Banach space and let {T'(t) : 0 < t < oo} be a family of linear and
bounded operators from A into itself. The family {T'(t)};s, is called to be a strongly
continuous equi-bounded semi-group of operators in A if
) T(t+s)=T()T(s),t,s=0.

(if) T(0) = id(identity in A).
(iii) |IT(t)alA|l < M]la |A],t = 0,a € A.
(iv) lim;,o4 T(t)a = a,a € A.
The infinitesimal generator A of the semi-group {T'(t)};s, is defined by
Aa = ltilrgl(t‘lT(t)a —a)
whenever that the limit exists. The domain D (A) of A consists of all those a € A for which
the limit exists. The domain D(A™) of the m-th power of A is a Banach space endowed
with the norm
lalD(A™)Il = llalAll + IA™alAll, —m=12,....

The semi-group {T(t)};so is said to be analytic (or holomorphic) if in addition to (i)—
(iv), it satisfies
(V) T(t)a € D(A),foralla € Aand t > 0.

(Vi) t||AT (t)a|Al|| < Nlla |A|[,0 < t < o, a € A.
See [5,31,33] for more details on semi-groups of operators.

Consider the following modulus of continuity of order m € N

Wm(t™, a) = sup [[[T(s) —id]™alAll.

0ss<t

This modulus is related to the K-functional of the couple A, D(A™). Indeed, it is shown in
[306, Proposition 3.4.1] that

K(t™ a; A,D(A™)) S @ (t™, a) + min(1,t™)[la |All (54)
and

oy (t™, a) S K(t™, a; A, D(A™)). (55)
On the other hand, if the semi-group is analytic and we consider the modified K-
functional given by
R(t,a) =K(t,;A,D(A™) = inf {lla—a,All + tllA™a,]All},

a,ED(A™)
then it follows from [191, Theorem 5.1] that
K™ a; A, D(A™) ~ |[[T(s) — id]"alA]l. (56)
Theorem (6.3.17) [313] Let A be a Banach space, let {T'(t)};so be a strongly continuous
equi-bounded semi-group of operators in A, let me N,0 < g <o and b > —1/q. The
quasi-norm

t

1 1/q
d
lall, = llalAll + (f((l —log )@, (¢t™, a))q t>

is equivalent to the interpolation quasi-norm || - [(A4, D(A™))(0-p) 4| ON

(A, D(A™)) 0,~b).q-
In addition, if the semi-group {T' (t)}:s, IS analytic then
1/q

: dt
lall, = llalal +{ [ (1 = log 0 IIT(®) ~ id]al Ay

is also an equivalent quasi-norm on (A, D(A™))(0,-b),q-
Proof. Making a change of variable and using (54), we obtain
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1 1/q 1 1/q
|al(a, D), | = < f (1 -10g0)°K(t, a))q%> ~ ( f (- 10807k (e™, a))q%>
0 0

1 1/q 1/q
(f((l—logt)bwmam @)’ ) (f((l logobtm)q—) lalall ~ llal,

0
To check the converse inequality, note that (4, D(A™)),-p),q < A. Moreover, by (55), we
have

1 1/q 1 1/q
d d
(f (1 - log)*@(t™, @) t) ) (f (@ —togoeem a))th> el P D0l

0 0
Consequently, ||a|(4, D(A™))o,-byql ~ llalls.
Assume now that the semi-group {T(t)}:so IS analytic. To complete the proof we first
show that
K(t,a) ~ t||la|A|l + K(t, ), 0<t<1l  ac€A. (57)
Indeed, take any a, € D(A™). Using the triangle inequality in A and that t < 1, we obtain
Kt a) < lla — a;|All + tlla, |Al| + ¢][A™a, | All
< 2|la — a1 |All + ¢tllalAll + t][A™aq |A]l. N
Taking the infimum over all a, € D(A™) it follows that K(t,a) < t||a|A|l + K(t, a).
Conversely,
tllalAll + K(t,a) < tllalAll + lla — a;]All + t|A™ay | Al
< tlla — a1 |All + tlla|All + lla — aq [All + tl|A™ a4 Al
< 2|la — a1 |All + tllay [D(A™)].
Therefore, we derive (57).
Now (57) and (56) yield that || - ||, ~ || - 1A, D(A™))(0,-p)q||- This completes the proof.
Next we specify Theorem (6.3.17) for the case of the Gauss—Weierstrass semi-group
_x—=yl

1
W) = e [ € F0)y = (7).t > xR,
R"

W(0) = id.
Basic information about the use of {W (t)};so In connection with function spaces may be
found in [62, Section 2.5.2, pp. 190-192]. See also [306, Section 4.3.2], [66, Section 2.6.4]
and [312, Section 3.6.6]. The semi-group {W (&)} is analytic in L, for 1 < p < co and

its infinitesimal generator is the Laplacian operator A = Y7, az/ax]?. Hence, D(A™) =
wWymform=1,2,...

Since BS:Z = (Lp, W™)(0,-b),q (see [283, Theorem 3.1] or Theorem 3.4) as a direct
consequence of Theorem (6.3.17) we obtain the following characterization of BS:Z by

means of heat kernels.
Theorem (6.3.18) [313] Let 1 <p < 0,0 < g <o,b=>—1/qand m € N. Then f € L,

belongs to B% if, and only if,

1/q
d
17185l ¢y = 110 ||+<f(1—logt)b|| W —id™f|L, t>

s 0,b
is finite. Furthermore, || - |Bp'q||(m) is an equivalent quasi-norm in B,q.
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Comparing Theorem (6.3.18) with the corresponding result for classical Besov spaces
B; 4 given in (27) we observe that the truncated Littlewood—Paley construction does not
appear this time.

We consider harmonic extensions, that is, the case of the Cauchy—Poisson semi-group

PO =6 | ————— 0y = (7)) ) > 0. € R
re (Ix =y +t2) 2
where ¢, [[(1 + |x|?)~®+D/2|L, || = 1, with P(0) = id. This is also an analytic semi-
group in L, for 1 <p <o (see [62, Section 2.5.3] and [66, Section 2.6.4]). The
corresponding characterization reads as follows.
Theorem (6.3.19) [313] Let 1 <p < 0,0 < g <o,b=—1/qand m € N. Then f € L,

belongs to Byyg if, and only if,

1/q

d
Ir(Boale = IFles | + ju—logobu [P — id)™f|L, | =

is finite. Furthermore, || - |Bqu||(m)

Proof. For the semi-group {P(t)};so We have
AN f = (=1)™A™f and D(A*™) = W™,
Using again that ngg = (Lp, W™ 0,-p),q and Theorem (6.3.17), we obtain that the

wanted result holds for any even natural number m. To complete the proof, write
1/q

: 0,b
is an equivalent quasi-norm in B, ;.

d
1l = £, ]| + j(l—logt)bn [P(O) — il £, |

It suffices to show that for any m e N the quasi-norms || - ||,, and || - ||,,+1 are equivalent
onByy.

Take any f € B%. Using (56), we obtain

|[P(©) —id]™f|L,|| ~ K(t™, f; Ly, D(A™)) ~ sup |[P(s) —id]™f|L,|| = @m (E™, f).

By [266, (4.10)], we have that @, (t™*L, ) < wm(tm f) Hence
1 1/q

d
I fllmsr ~ || F|Lo]| + j( —log t)P @1 (t™+1, f))q t

0
1 1/q

b— rem qdt
S FlLll +( | (@ =1og0)@n@™ ) =]~ lIfllm
0
In order to establish the converse inequality, note that

B (t™, ) < ¢ j 51, 0 (5™, F)ds

t
(see [310, Theorem 1.4, (1.7)]). Therefore

1

1/q
d
1l ~ [IF1Lo ] + (f((l ~10g )@ (t™, £))" t)

0
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1/q

1 o0 q
Om+1 (™, f) dt

< IFIL, || + j (1 - logt)em ] s | S

0 ¢
) 1 q 1/q

D1 (8™, ) dt

~ el + | [ { 1= rogeyem [2retiPas ) 2
0 ?
! ° (s™+L ) @\
Om+1 (8™ f dt
+ j((l —logt)btm] e dS) - = |I£|L, || + J1 + J2-
0 1

Since @,,.1(s™*, f)/s™* ! is equivalent to the decreasing function K(s™*1, f)/s™*1,
we can still apply the extension of the Hardy inequality established in [256, Theorem 6.4]
to derive that

1 _ (tm+1 ) 74 1/q
w ,
"= (f (e togeye P o) T)

0

1 1/q
d
~ < [ a-tog02pe - id]m+1f|Lp||"7t> < Wfllmss.
0

As for J,, using that
D1 (S™ ) ~ K™, f5Lp, DA™ < [|f|Ly |
we get
1/q

1
bom th
Jo = | | (@=1ogt)’t™) — | If|Ly| S Ifllmss-
0

This yields that ||fl,, < Ilf|l,;n+1 and completes the proof.
Comparing (27) with Theorem (6.3.18), one might think that the counterpart of the
quasi-norm (26) for logarithmically perturbed Besov spaces is given by replacing in (26)

the term ¢~ 2% by (1 — log t)?9. However, the involved spaces are not By but Byy. We

shall need the spaces ngf;,s > 0, introduced in (42) and the logarithmic interpolation
spaces (Ao, A1)g,q,o formed by all those a € A, + A; such that the quasi-norm

o 1/q

qdt
lalao Aoasll = | [ (001 + Hoge k(e )" 5
0
Is finite. Here 0 < 8 < 1,0 < g < ocoand b € R. See [272, 264].
The following result refers to abstract semi-groups.
Theorem (6.3.20) [313] Let A be a Banach space, let {T'(t)}:», be an analytic semi-group
of operators in A, let 0 < s/2 <m € N,0 < g < o and b € R. The quasi-norm

1 1/q
_s qadt
lalls = llalal +< [ (750 - ogo? IamT(yalal) 7)
0

is equivalent to the interpolation quasi-norm on (A4, D(A™))s/2m,q,b-

Proof. Since [|alA|| < ||a|D(A™)]| for any a € D(A™), we have that K(t,a) = ||a|A]|| for
any a € A and t > 1. This yields that
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! 1/q
||a|(A,D(Am))S/2m,q,b ” ~ llalall+ (f (t‘s/zm(l _log )P K(t, a))q %)
0

1 1/q
qdt
~ llalAl +<f (£75/2(1 - 1og )P K (t™, ) T) .

0
Using that
e AMT (H)alAll S K(t™, a) (58)
(see [306, Lemma 3.5.4]), we get that [lalls S ||al(4, D(A™))s/amqn|- TO check the

converse inequality, note that
t

7 - idImalall s [ e IAmT@alAlldr (59)
0
(see [306, Lemma 3.5.5]). Hence, using (54), we obtainfor 0 <t < 1
t

K(t™ a) S @,,(t™ a) + t™]|alA|| jrm‘lllAmT(r)alAlldr + t™|alAll.

0
This implies that

1 t a /a
dt

lal(a, DA™)s/2masl < lalAll + < j <t-5/2<1 ~logt)” j rm-luAmT(r)alAndr) 7) .

0 0
By (iii), we have for 0 < 7 < u that

IAMT (walAll = IT(u — DA™T ()alAl| < M||A™T (z)alAll.

Hence, using the extension of the Hardy inequality established in [256, Theorem 6.4], we
derive that

1

1/q
m 1-3 bym—1|am 7dt
lalca, DA™ j2mapll S Nalall +{ | (€72 ~log )P e AT (®)alAll) — | = lalls.
0

Next we apply Theorem (6.3.20) to the Gauss—Weierstrass semi-group {W (t)}:so-

Subsequently I, stands for the usual lift operator defined by
If = (1 + x2)52f) s € R,

Theorem (6.3.21) [313] Let1 <p < 00,0 < q < o0,b € Rand m € N. Then

1 1/q
oMW (t)f Tdt
1F1BRR N oy = IH2f 1 | + < [ (ema - 10g 07 |5 I 7>

0

is an equivalent quasi-norm on Byy.
Proof. According to [47, Proposition 1.8], the operator I_, is an isomorphism from B;,’,'g

onto B4 The classical smoothness of BY5 is 2 > 0 so, by [28, Theorem 2.5], we know

that
1 1/q

dt
IF1Bz2I~rlL |+ | [ (62 —tog e wxmen (0 T ] - (60)
0
Moreover, for f € L, and t > 0, we have
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K(E20, £ Ly, W) ~ min(1, 2 D)||F|Ly || + wopnan (8, (61)
(see [1, Theorem 5.4.12]). It follows from (60) and (61) that
Bya = Wp W™ N1 yaminap 0 Big = Ly DA™ )1 emingn  (62)
where A = A is the infinitesimal generator of the semi-group {W(t)};so- Applying
Theorem (6.3.20) we get

1/q
£ 1Bog | ~ -2 Bg [l ~ ll1- szLpII+(f(t’"(l—1ogt)”||A’”“W(t)1 L))" > -

Next we use that
AW (DI, f = A _ W () f = A, A™W (t)f
and that, according to [56, p. 133],

gLy ]| = llatid = )7 g|Ly || ~ llglLo |

1 1/q
MW () f )q dt
t

,b

1820 ~ o lipll +( [ (em1 = toger® | It
0

Note that the operator I_, is necessary because in general B may not contain only

regular distributions (see [169, Theorem 4.3]).

Finally we consider the case of the Cauchy—Poisson semi-group {P(t)}:so-

Theorem (6.3.22) [313] Let 1 < p < 0,0 < q < oo,b € Randm € N. Then
1 1/q

O™mP(t)f Tdt
18820 = et + | [ (em =100 |t lia|)) T
0

This yields that

is an equivalent quasi-norm on Byy.
Proof. This time Az(m“)f = (—1)™1A™*1f and D(A2mD) = W™D By (62), we get

,q - (Lp» I/VpZ(m-I-l))1/(m+1),q,b - (LprD(Am+1))1/(m+1),q,b-
Therefore, applying Theorem (6.3.20) with s = 4, we obtain

1

1/q
d
18221 ~ 7l | + <f (£2m+ 0721 - log t)”IIAZ(’”“)P(t)fILpII)qTt> |

0
This means that for any even natural number m with m > 4 we have
1

1/q
dt
£ 1B 1| ~ [1F 12l + ( f (£m=2(1 - log t)bIIAmP(t)fILpII)"7> - (63)
0

Write ||f]|%, for the quasi-norm on the right-hand side of (63). We claim that for any

m € N with m > 2 we have
-l ~ Il s o0 By (64)
Indeed, by (vi), given any f € L,, we have
AP (O f|L, || = [|[AP(E/2)A™P(t/2)f|L,|| s ¢72||A™P(t/2)f|L, |-

Whence

1

1/q
d
I fllmsr S ||IF|Lp ||+<f(tm-2(1—logt)”llAmP(t/Z)flell)"{) ~ N fllmsr

0
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1/2

1/q
d
SIIfILp||+<f (tm-Z(l—1ogt)b||AmP(t)f|Lp||)"7t> < IIf Il

0

Conversely, by (58) and (57)

! 1/q
1515 = Nl + < [ (- ogerc (em. s Lp,u<Am>))"£>

t
0

1 1/q
~ [I£1L +< f (e2(1 —10g0)*R (e, £ Lp,D(Am)))q%> .

0
As we have seen in the proof of Theorem (6.3.19),

R (t™ f; Ly, DIA™)) ~ @ (E™, f).
Moreover, by [310, Theorem 1.4, (1.7)]

_ BOm1 (S f)
O (t"™ f) S tmf ) ds.

t
Now proceeding as in the proof of Theorem (6.3.19), using that m > 2 and the extension

of the Hardy inequality [256, Theorem 6.4], we obtain

! b ( m+1 ) 1 1/q
W s f dt
1fllm s |F]Lp || + (f <tm2(1 — log t)bf m+1sm+1 ds) T)

0 t

1 1 q 1/q
~ Sm+1’ dt
s (IF1L, | + (f (th(l —logt)? f wm+1s(m+1 f) ds) T)

0 t

1 1/q
d
+ ( [ @21 - 100y {) 1o |
0

1 1/q
@1 (™ O\ dt
S ”f'Lp” + <f (tm_l(l —logt)? m+1tm+1 ! > T)

0

1 1/q
d
e ( [ 2 - 10802 1P@ — 1™ I, )* )

t
0

1 t q 1/q
d
< [IFlL |l + < | <t—2(1 ~10g0)" | sm||Am+1P(s)f|Lp||> ;)

0 0
where we have used (59) in the last inequality. The extension of the Hardy inequality
implies now that

1 1/q
dt
171, = NIl + ( | (e -10g t)btmIIA’”“P(t)flell)q7) = 1l
0
This proves (64).
Now to complete the proof of the theorem we can proceed as in Theorem (6.3.21) with
the help of the lift operator I_,. Indeed, given any natural number m > 2, since
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AP()I_,f = NN 2[_,P(t)f = —AI_,A™2P(t)f,
by (63) and (64) we obtain

If1Boall ~ li=af |Bogll ~ lli- zfllm

1/q
— lLaof ] + j (em2(1 = log ) [|AL_,Am2P(O)f L, )" =
01 1/q
o Il + | [ (2 —togeranpfin, )
01 o, a 1/q
—laf L+ j(m—zu-logob PO, ) &

0
This finishes the proof.
Corollary (6.3.23) [314] Let A,_;, A, be Banach spaces with A, © A,_;. Let 0 < e < oo and
(62 + € —1)/1+ € € Rwith e > 0. Then we have with equivalence of norms
(L1+6(Ar—1)r L1+E(Ar))(0,—(62+E—1)/1+E),1+E = Lite ((Ar—l’AT‘)(O,—(EZ+E—1)/1+E),1+E) :
Proof. Consider the collection S of all functions v,_,(x,) = 27=1aj+r_1xﬂj+r_1(xn), where N € N,
ajir—1 € Ay, the measure of Q;,,_; € R™ is finite and Q;,,_1 N Qq4,. = @ if j # 1 + 2¢. By (38), the

set S is dense in (L1+e(Ar—1):L1+e(Ar))(0’_(62%_1)/“6)'”6 and in Ly, ((Ar—pAr)(0,—(ez+e—1)/1+e),1+e)-
For v,._, € S we have

1+€

Vo | (Lare@r) Lire (D) (o (o yeryirepnne

1 1+€
2 1

~ f ((1 —log(1 + e)(F+e-)/ive Anf vl lyge (Ao DI+ 4+ Ml Ly (A I3 1“) d((l : Ee))

01 Visr-1€L1+e(4j4r-1)

2 d(l1+¢)

— _ €“+e—1 : 1+€ 1+€ 1+€
= [a—togarenret [t s G Al (L Ol Gl A1) dy T

0 R™ Vipr—1(Xn)€Aj4r

d(1+e€
= '[ .[(1 - lOg(l + 6))62+E_1K1+6(1 + €, Ur—Z(xn);Ar—l' Ar)1+e¥
(1+e)
R™ 0
1+€ 1+e€

~ f Vr_o(xp) |(Ar—pAr)(O,—(e2+e—1)/1+e),1+e dxn = |[Vr_2 |L1+e ((Ar—l'AT)(0,—(62+6—1)/1+6).1+6)

]RTL
This completes the proof.

Next consider the sequence space ¢, on N, and for 2 > 0.

- 1/2
£ =138 = @jem, : leledl = | D @YD) <o
j=0
If A,_, is a Banach space, the vector-valued sequence space €4 (A,_,) is defined by
o 1/2
'E%(Ar—z) =3\%n = ((xn)j)jENo C Az ”xnl’?%(Ar—Z)” = Z(le”(xn)jl‘qr—zll)z < ®

j=0

Corollary (6.3.24) [314] Let —1<e<o and (e?+¢e—1)/1+€e€R. Then we have with

equivalence of quasi-norms
1/1+€

1+€
(1 +j)(62+6—1)/1+6(z|§v|2)1/2] ) < o
v=j

(£2»1’0%)(0,—(62+6—1)/1+6),1+e =43¢ = (fl 1l = (Z
0
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and || - || is an equivalent quasi-norm on (1?2,8%)(0‘_(Ez+€_1)/1+6),1+6.
Proof. Consider first the case 1 = 1. Since

o 1/2
K,(1+ €& 4,83 ~ <z(min(1, 1+ e)ZV)IEvI)2> )
v=0

we have for j > 0 that
i 1/2 o 1/2
K@ 60,0~ Y @IIEN |+ D I&F
v=0 v=j+1
Hence

o 1/1+€

Z[(l +j)(62+e—1)/1+5K2(2—j’ f)]HE

Jj=0

|| § | (32' gél)(o,—(62+e—1)/1+e),1+e

1+e\ 1/1+€
[00)

© J
~| (@ pErenire ) @ ig hH Y +
2 x| ) (3

Jj=0

1+e\ 1/1+€

(1 + e 1*6(Z|fv|2)1/2] >

v=j

In the last expression, the first term is dominated by the second term. Indeed, if (1 + €)/2 < 1, we obtain

w J (1+6)/2 1/1+E
. _ . 2

Z (1 +])2(62+e 1)/1+62(2V ]val)

j=0 v=0

o j 1/1+€
< Z(l +j)62+e—12—(1+e)jz 2(1+€)V|€v|1+€
j=0 v=0
o o 1/1+€
— Z 2(1+6)V|Ev|1+€ Z(l +j)62+€—12—(1+€)j
v=0 j=v
- 1/1+€ o o Ley 1/1te
< (Z(l + V)62+e—1|{:v|1+e> < z (1 +j)(52+e—1)/1+6(z|Ev|2)1/2
v=0 j=0 v=j

If 1 < (14 €)/2 we use the variant of Hardy’s inequality given in [309, Lemma 3.1] (see also [299,
Lemma 3.10]). We get

- j 1/271+e\ V1He B i (+e)/2\ /1€
(1 +j)(€2+€—1)/1+€2—j (2V|fv|)2 — (1 +j)2(ez+e—1)/1+52—2j (2V|fv|)2
1/1+€ 1/271+€ 11te
. 1+
s{ Dla+p@renmag 7)< 3 [l e 2
j:O ]=0 V:j
Consequently,
1/1+€

|| ¢ | (£2, 1l')%)(o,—(ez+e—1)/1+e),1+6

/ - - 1/2 1+E\
- N (e?+e-1)/1+€ . 2
\,Zo A+ (VZJ_M | ) /

Corollary (6.3.25) [314] Let 0 < € < w0 and (1 + 2¢) € N. Then

2 | 0. (e2+€-1)/1+€
|72 [Brre s

1/1+€
- 1he dh?
e = Pl +< f (1 —loglR? DS+ A2 F 2 Ll |h2|n>
|h2|<1

0,(e?+e-1)/1+¢

is an equivalent quasi-normon B _, ..

Proof. We shall use that
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1/1+€
— 1+e
w1+25(f2: 1+ 6)1+5 ~ ((1 + E) " ||A}142—2€f2|L1+5” dh2>

|h2|s14+€

(see [33, (2.4) and Appendix A]). We have

2 BO,(62+<—:—1)/1+E
||f | 1+€,1+€

(1+¢)

(1+2€)+

1 1/1+€
2 ed(1
= If 2|Lysell + (f[(l —log(1 + 6))(5 +E_1)/1+€w1+25(f2, 1+ 6)1+e]1+ a1+ 6))
0

||1+e

1 1/1+€
d(l1+e¢€)
~ 21l + ( Ja-wga+eptavam [ e can a+o )

0 |n2|s1+€
1/1+€

dh?

1

= IF* Lysell + J. |87 21 L1 4 f(l +€)(1 —log(1 + €))< &1
|n2|<1 |n2|

d(1+e¢)

||1+e
(1+e)

0,(e?+e-1)/1+€

1/1+€
||1+€|h2|_n(1 _ log|h2|)62+eldh2> — ||f2 |B1+e,1+6

142
S||f2|L1+e||+< f ALtz 2|, .
14+2€
|n2|=1

Conversely,
1/1+€
2

dh
ve < 2 Lasell + f 1- 108|h2|)62+6_1w1+26(f2' |h2|)%i§ |h2|n
|n2|=1

2 |0 (€2 +e-1)/1+€
||f |B1+e,1+e

1+

1/1+€
2

- dh
= [If?|Lsell + z j (1- 108|h2|)62+6_1w1+26(f2' |h2|)%i§ |nZ|n
j=03

—j-1<|h2|<27J

1/1+€
1+e€

Sl +( ) A+ DT wnne(£2,279),
j=0

1 1/1+€

B d(1+¢€)

S Nf2Lysell + f(l —log(1+ )+ Twy e (f21 + 6)%1?@
0

M2 BO,(62+6—1)/1+6
- f 1+€,1+€ (1+26)+'

Corollary (6.3.26) [314] Let 0 < € < oo . Then we have
0,(e24+e-1)/1+ 0,(e2+e-1)/1+
(L1+e)£+£6 e B1£§,1+Ee ) "
Proof. Take any € < 1. By [65, Theorem 2.5.3] (see also [62, Theorem 2.5.4]), we know that
(Li+e)ite = Bi7E14e- Whence, using [305, Corollary 3.5 and Lemma 2.2/(b)], we derive
0,(€2+e-1)/1 _ _
(L1+6)£+£6 rem1)/1+e) = (L1+6’ (L1+6)%-I-g)(O,—(62+6—1)/1+€),1+€ = (L1+e' Bll"'gfl"'e)(O,—(ez+e—1)/1+e),1+e
0,(e?+e-1)/1
= (Live (Live W11+E)1‘E'1+6)(0,-(62+e—1)/1+e),1+e = (L1+e W11+6)(0,—(62+6—1)/1+E)11+E = Bl-lgi,l-:i e

where the last equality follows from [283, Theorem 3.1].

0,(e2+e-1)/1+€ 1+2¢
We have used that B, ", = (L1+&: Wi¥E) (0~ (¢ +e-1)/1+€)1+¢ [283, Theorem 3.1]. We can show

now that in this interpolation formula the Sobolev space W"2¢ can be replaced by any fractional Sobolev

space Hi{¢ = Fif&,, any Triebel-Lizorkin space Fi'YS, ., or any Besov space Bi{¢, e

Corollary (6.3.27) [314] Let 0 <e <o and -(v,_,) <€ < 0. For Aiig,vr_zﬁ =

0,(e?+€e-1)/1+€

1+€ 1+€ i i i —
Fifev, ,+e O Bifew._,+e We have with equivalence of quasi-norms By .. =

1+e€
(L1+€’A1+E'”r—2+6)(o,—(ez+e—1)/1+e),1+e'
Proof. By [65, Proposition 2, p. 47], we have

1+e€ 1+€ 1+e€
Bl+e,min(1+e,vr_2+e) - F1+e,vr_2+e & Bl+6,maX(1+E,U7~_2+6)'

Hence, using [65, Theorem 2.5.3], [305, Corollary 3.5] and Lemma 3.3, we derive
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1+e€ ) ( 1+e )
(L1+ElA1+E,UT_2+E (0,—(e2+€—-1)/1+€) 1+€ < (Lite Bl+e,max(1+e,vr_2+e) (0,~(€2+e—1)/1+€) 1+€

_ 14 . (0,(e?+e-1)/1+€) _
- (L1+e' (L1+e)ma§<(1+e,vr_2+e) (0‘_(62_,_6_1)/1_'_6)‘1_,_6 - (L1+E)1+e =B

For the converse embedding, we obtain
0,(e2+e-1)/1+e _ (0.(e?+e-1)/1+€) _ 1+
B1+e,1+e - (L1+6)1+e - (L1+e' (L1+E mir61(1+6'17r—2+6) (0,_(€2+E—1)/1+€):1+6

1+€
© (L1+6, A1+e,vr_2 +6)(0,—(€2+6—1)/1+e),1+6'

0,(e?+e—1)/1+€
1+€,1+€

0,(e?+e-1)/1+€
1+€,1+€ '

— (L Bl+6 ) )
1+€e’ P1+emin(1+€,vy_+€) (0,—(62+6—1)/1+6),1+E

Corollary (6.3.28) [314] Let 0 < € < . Then f2 € L, belongs to B if and only if

/ . . 1/2 1+€ 1/1+E
) _ INVESIN

. \Zu D @3 O | I <.
=0 v=j

0,(e?+e-1)/1+€
1+€,1+€

0,(e?+e—1)/1+€
1+€,1+€

[ -[e

0,(e?+e-1)/1+€

Moreover, ” . |B Lrelte

is an equivalent norm on B
Qo+

If e = (—1 + V/5)/2 we obtain

1/1+€
1/2 1+€ /

[ee]

\
- . 2
Blicite = Jlfz € Liye: ||f2|B?+e,1+e||<p+ - Z z |(§05f2)v(')| IL1ve / < IL
Jj=0
)

k ==

Proof. We know that Ly,e = Fie, is a retract of L,,.(¥;) and that Wl = F{, ., is a retract of
Ly4c(£1), the corresponding coretraction operator being §f2 = (((pﬁfz)v)veNo (see [62, p. 185]). For the
vector-valued L, ,.-spaces, using Corollary (6.3.23) and (6.3.24), we obtain

(L1+e(€2); L1+e(€%))(0,_(62%_1)/“6),“6 =Liye ((le f%)(o,—(ez+e—1)/1+e),1+e)

. o (1+e)/2\ 1/1te I
= {fz =(£%) : IIf?ll = Z(l +j)eret Z|ﬁz2(xn)|2 |Lise|| < ml-
| j=0 V=) )

0,(e2+e-1)/1+€

Since B/, 1. = (Lite Wike) (o~ (e2+e-1)/1+€)1+¢ (5€€ [283, Theorem 3.1/(b)] or Theorem 3.4), and
o . (1+e)/2 1ite
. - 22\V 2
1572, (et y= | 2aspret [ Jorr) o) dx,
(0,—(e*+e-1)/1+€),1+€ =0 gn \v=j
1+€ 1/1+E

0o 0o 1/2
, . 2
= Da+pt 1 D | o | e ,
j=0 v=j /

0,(e2+e-1)/1+€
1+€,1+€

Corollary (6.3.29) [314] Let 0 < € < . Then f2 € L,,. belongs to B if and only if

1/1+€

- . 1/2 1+e€
¢+=<Z[“+”(€2+E—%E (leﬁf‘ﬂv(ﬂz) '\ ) <o (69
j=0 v=j

0,(e2+€-1)/1+€
1+€,1+€

2 |0, (62 +6-1)/1+€
||f |B1+€,1+€

IS an equivalent quasi-norm on
Q+

(usual modification if € = o). Furthermore, ” . |B

0,(e?+e-1)/1+€
Bl+e,1+e '
Proof. Take b,_;, b, such that —1/1+e<b,_; <(e?+€—1)/1+e<b,.. Wecan find 0 <e<1

such that

e=(e)(b_1+(1/1+e)+ (A —-€e)(b+(1/1+¢€)). (66)
With this choice of parameters, Corollary (6.3.26) and [295, Theorem 5] yield that
0,(e2+€e-1)/1+€ 0,by— 0,by
B1+e,1+e = (B1+e,11+e' Bl+e,1+e)1—6.1+6' (67)
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Moreover, it follows from Corollary (6.3.28) and Corollary (6.3.24) that B‘l)fe"f{;; is a retract of
Li+e((£2,€3) 0,-by,,_p1+e), E = 0, 1. Note also that

1(@272)) 1nse(CEer ) 0-tr-24) |

1/2 1+€
b 221V A |2 \

~ | Y prer @ N N2 O | e
j=0 v=) /

1/1+€

o 2t26_q

1
b SN \
= > > el M @) O | e
€=-1/2 j=21+2¢€ v=j-1

If 21%2¢ <j <222 _1 then j~ 21*2€ and so Z}Zi’;i—z:el jbi+r_1(1+e) ~ 2biyr1(1+20)(1+€) 91426 _

2(1+26)(bir_1+(1/1+)(1+€) \Whence,

|| ((q)}zfz)v) |L1+€((€2’g%)(oj—biw—ﬂjl‘*f)
o 1/2
2(1+ze)<bi+r_1+<1/1+e))(1+e>< z |(¢5f2)v(')|2> |L1+e
y=21+26_q

1te 1/1+¢€

k=0
Write Rf2 = ((92f2))yz1+2e_1) (1+26)en, aNd Apyoe = Lyye(€2) for (14 2€) € No. The previous
considerations and Corollary (6.3.28) show that

. pOPitr—1 bitr-1+(1/1+€)
R B1+e,1+e - £1+E (A142¢)

is bounded for i = 0, 1. Interpolating this operator and using (43), (66) and (67), we derive that

. 0. (e2+e-1)/1+€
R: B1+g,1+g - §+€(A1+2€)

is also bounded. Therefore one has by (65)

1/1+€
1/2 1+€

(o] (o] A 2
-1 z<1+ze>e< > |(<pv2f2)v(-)|> Lise
P+ V=21+26—1

€=—1/2

2 |0 (€2 +e-1)/1+€
72 [Brve.c

0,(e2+e-1)/1+€

= IR 215 e (Arraoll S || £2 [Brerre
To check the converse inequality, note that using L,,.(£,)-Fourier multipliers and Littlewood—Paley
theorem based on (<pf(62+6+1)/1+6) where <p3(62+6+1)/1+6g03 =0if [(—(e?+e+1)/1+e)—v|>1

one has

o o 1/2
272\V 2 22\ 2
> (@377) lae| = Y et O ] e
v=j+1 —(e2+€e+1)/1+€e=j
Hence
1/2 1+€

0,(e2+e—1)/1+€

2
||f |B1+e,1+e

e ~(e2+e-1)/1 N 222\ (|2
o= @l 5 ) Of | I
j=0 v

1/2 1+e€

, AV 2
NfPILselite 4y 275049 (Z @) O ) It
7=0

V:Zj
1+€

. A\ V
2 2Lyl + ) 25500 N (0272)" 1y,
=0

v=2J+1
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. 2] 1+€
. Ao\ V
= ULyl + Y 200 | F2 = N (2 72) L,y
j=0 v=0

Letpu; = 2%’ and consider the sets G; defined in (40). Since

A 2j

2]
AV N
supp Z(%Zf )| = suppz P2f% < {xn : lxnl < pjsa}
v=0 v=0

we have ¥'2_ ((p,,f ) €EG Gy and

#J+2

Ao\ V
fz—Z(%zfz) Live]| 2 L inf 1172 = g¥MLavell = By, (FDve
=0

Consequently, using [295, Lemma 1] and Corollary (6.3.26), we derive that
1/1+€

= IIfZIL1+eII“E+ZZJE(“E)E (b

5 BO,(62+6—1)/1+6
f 1+€,1+€

0, 1)/1
o [ s
This completes the proof.
Corollary (6.3.30) [314] For e = —1,0 and 0 < € < oo, the space }fl'ﬂf;“;e) can be identified with a
complemented subspace A1}S, of Ly, (£37€(¥¢2)). The projection onto AT}< , associates to each h%(-) =

i,G . .
(RZ()) jen, = (((hfnz)’ () gees )jen, € Li+e(£37€(£2)) the function Ph? defined by

m2ezh

PI2Go) = (@ [ (122" 0) v () e Dy,

m2ezn

2 |0 (€2 +e-1)/1+€
”f |B1+61+E

Qjmz2

Proof. Given any Aeﬁzﬁf), let R(2) be the function defined by R(2)(x,) = (g7(x,)) where
93 (xy) = (linz)(j,mz () gegi - Since

m2ezn
( A
el =l D) 299 > W tme O | e
\jENo GeGJ /
m2ezn

/2
(Zzﬂ“m ||g?<-)|ez||2> Lise]| = IRDIL1(E5 )]

JjENy

we have that jﬁfé’;e) is isometric to the subspace A{%E, = {R(/l) = ]ﬁ(elf)} of Ly, (£3T€(£,)). It is

easy to check that Ph? = h? for any h? € AT%E,. Let us show that P is bounded in Ly, (£37€(%,)). We
have that

j,G j,G
[ 122 0] dsinzymein = (M (2 ) ). 5 € R,
Qj,m2
where M is the Hardy-Littlewood maximal operator. Using the vector-valued estimate for M (see [194,
Theorem 1.1.1, p. 51]), we obtain

1/2
2

Pl () < (| Y D0 (2 [ [Por00da)  onldm | 2ime® | Ik

jENoégi;; QLmz
1/2 1/2
_ . 2 ) ; 2
= z z (M(21(1+6) (hfnz)"GD(.)) Lise|l < Z Z 221049 |(r2,,)"° (] |Lyse
JENg GegJ JjeNy GeGJ
m2ezn m2ezn
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= |h?|Ly e (837 (€.
In addition, this also shows that if h* € Ly, (£3*¢(£,)) then Ph? € AT}< ,. The proof is completed.

Corollary (6.3.31) [314] Let 0 < e < co. Then 2 = (W/$) belongs t0 ((F2)%4e2 (FD}1e2) 0 (e+e-1)/14)14¢
if and only if

8

(o8]

{ (11e)/2 \1/1+6
2
Al = fz(1+j)52+e-1 Z Z X251 Xz () dxn/

R™ j=0 v=; GEGY
m2ezn

is finite. Moreover, ||A]| defines an equivalent norm in ((f?)?1¢2, (fz)}ﬁ,z)(o’_(ez+e_1)/1+6),1+6.

Proof. By Corollary (6.3.23), Corollary (6.3.24), we have that
(L1+e(€2(€2));L1+e(£%(fz)))(o,—(ez+e—1)/1+e),1+e = L1+e((€2’f%)(o,—(52+e—1)/1+e),1+e(fz))-
Hence, according to Corollary (6.3.30) and the theorem on interpolation of complemented subspaces [62,

Theorem 1.17.1], we derive that

(1+6)/2 1/1+€
2o G2
||/1|((f2)(1]+e,2'(fz)he,z)(o,—(ez+e—1)/1+e),1+e ~ fz(l +])E et z Z |)\:n2| Xv,mz(xn) dxn
R™ j=0 v=j GEGY
m2ezn

0,(e?+e—1)/1+¢€

Corollary (6.3.32) [314] Let 0 < € < oo. Then f? belongs to B, , .
represented as f2 = ¥ m2 A 527/%29! . (unconditional convergence being in Li,¢) with AV =
MS(F2) = 22 (F2, W) ) and

if, and only if, it can be

0,(e?+e-1)/1+€ 0,(e?+e-1)/1+€

2 — J.G
”f |Bl+6,1+e vy ”O\mz) b1+e,1+e
1/2 1+e 1/1+€
oo oo
N e24e— v,G |2
Sl DXCET ntd (W PTOR BT
\j:O v=j GEGY /
m2ezn

o 0,(e?+e-1)/1+€ . . . 0,(e?+e-1)/1+€

is finite. Moreover, ” : |B1+E’1+E »,, d€fines an equivalent normin By,

" . j.G 0,(e?+e—1)/1+€
Proof. The unconditional convergence in Ly, for any sequence (A, ;) € b, .. follows from a

corresponding assertion for L,,. based on (f?)},., according to [311, Theorem 1.20] and

24—
bgf;;; D/are (f )Y, as a consequence of Corollary (6.3.31).

Let D be the operator defined by
DD = ) Wizl
j,Gm?
According to [311, Theorem 1.20], the restrictions

D: (f2)2+e,2 - L1+e and D: (fz)%+e,2 — W11+e
are isomorphisms. Interpolating and using Corollary (6.3.27) or [183, Theorem 3.1], we obtain that

. 0,(e?+e-1)/1+€
D: ((f2)2+6,2’ (fz)%+e,2)(0,—(ez+e—1)/1+e),1+e - (L1+EI W11+€)(0,—(€2+E—1)/1+€),1+E = B1+6,1+6

is also an isomorphism. As for the source space of this operator, by Corollary (6.3.31), we know that
|| (}\i,'l(;)l((fz)(1)+e,2f (fz)%+6,2)(0,_(62_'_6_1)/1_'_6),1_‘_6

(1+6)/2 1/1+E
N2 G2
~ fZ(l -f-])'S te-1 z Z |}\1r/n2| Xv,mz(xn) dxn
R j=0 v=; GEGY
m2ezn
1/2 1te 1/1+€
NeZ e G2
= Y a+p@ret i Y W me ) | I
j:O V:j GEGY
m2ezn
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Furthermore, Afrg = Afni (f?) is again covered by [311, Theorem 1.20]. This completes the proof.

Corollary (6.3.33) [314] Let 0 < € < 0. Then we have with equivalence of norms

(0,(e*+e-1)/1+€) _ 0,(e?+e- 1)/1+6
(L1+€’ {Vj})1+e B1+e 14€

Proof. We start with the case 0 < € < co. Put p; = 22j,] € N,. We have

€’ +e— e|IrTe : 1+e
|72 (e oot ~||f2|L1+e||1+f+Z(216E,;€.(f2>1+6) '
=0

1+€

= 1+€
~ 2Ll + Z (2|2 = nyfPitasc])
/=0 1+€
= 21l e+ Y 2NN N ey L
=0 V:Zj GeGY
2 n
meL 1/2 1+€
Ll e+ Y 2NN ) () | e
j=0 y=2) GEGY
m2ezn

where we have used [67, Theorem 1.64](or [311, Theorem 1.20]) in the last equivalence. Now the result
follows from Corollary (6.3.32). Note that the above argument works even if € = 0.
To establish the remaining case € # 0, choose b,_4, b, suchthat —1/1+ e <b,_; <(e?+e—-1)/1+€<
b, and take 0 < € < 1 with
e=(€)(by_1+1/1+e)+ (1 —-€)(b,+1/1+¢).
According to (67), [295, Theorem 5] and the result just proved for the diagonal case, we obtain that
0,(e*+e-1)/1+ by by by by
B1-EZ1+EE ) ¢ = (B$+e,11+el 24—5 1+e)1 €1+e — ((L1+E' {V })ﬁg 2 (L1+E'{V })ﬁ ))1—6,1+E
(0,(e*+e-1)/1+ )
= (Lyse UL/ 1
0,(e?+e—1)/1+€

Corollary (6.3.34) [314] Let 0 < € < oo. Then f? belongs to B, , . if, and only if, it can be
represented as f2 = ¥ m2 A252" J"/Zl}” . (unconditional convergence in Ly,.) with 2§ =A/5(f2) =
2/m/2(f2, 9] ) and

2 |0 (€2+e-1)/1+€ _ i.G 0,(e?+e-1)/1+€
||f |B1+e,1+e - (}\mz) b1+6,1+6
1/2 1+e 1/1+€

oo co

_ ~Ne2+e—1 v,G|?

a Z(1+])E : Z Z |}\m2| Xvm2 () |L1+e < .
j=0 v=j GEGY

m2ezn
M BO,(62+6—1)/1+6 defi ivalent . . BO(E +e- 1)/1+6
oreover, || - 1+el+e we erines an equivalent quasi-norm In 1+el+e

Proof. The unconditional convergence in L, is covered by the related argument at the beginning of the
proof of Corollary (6.3.32) and the above interpolation (67).
Using Lemma (6.3.13), we obtain
(0,(e?+€-1)/1+¢)
~ 72| e (1)

0,(e2+e—-1)/1+€
1+€

2 )
||f |B1+6,1+6

o 1/1+€
~ | I MLaselire + ) I ORY ()i

1/1+€
1+€

~ | WPLelite ) 20 || 2 = b p2
j=0
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1/1+€

1/2 1+€
(o] oo
) G2
| P2l 4 2O NN N G () | e
j=0 V:Zj GEGY
m2ezn
1/2 14e 1/1+€
(00 (00
NeZte .G |2
~ | Z(l +])E te-l Z Z P\;/nZl Xv,mz(') |L1+E
j=0 v=j GEGY
m2ezn

Corollary (6.3.35) [314] Let A,_, be a Banach space, let {T'(1 + €)}.-—, be a strongly continuous

equi-bounded semi-group of operators in A,_,, let m? € N, —1 < € < oo. The quasi-norm
1 1/1+€

2 — 2 1+6d 1+
lar—2lly = llay_2l4,— Il + f ((1 = log(1 + )+ D/ 1455, . ((1 + €)™, a,,)) ﬁ
0

is equivalent to the interpolation quasi-norm ” | (A,—2, D(A’"z))(0,_(Ez+6_1)/1+6),1+6 on

(AT—Z: D (Amz))(O,—(62+E—1)/1+6),1+E'
In addition, if the semi-group {T (1 + €)}.>_; IS analytic then

1/1+€
1+ed(1 + E))

1
la, I, = lla, Al + ( [ (@ = tog1+ @0/ ir + ) = idi a1 ) )
0

is also an equivalent quasi-norm on (Ar—_z, D(A™)) (g _(e24e-1)/146)1+¢-
Proof. Making a change of variable and using (54), we obtain

2
Ar—> | (Ar—z: D(Am ))(0,—(62 +E—1)/1+6),1+E ||
1 1/1+€

f ((1 - lOg(l + 6))(62+6—1)/1+€K(1 te ar_z))1+e%

01 1/14€
~ j ((1 —log(1 + 6))(62+6—1)/1+5K((1 n e)mz’ ar_z))lﬂ%
01 1/14€
= ] ((1 — log(l + E))(62+6_1)/1+Eam2((1 + E)mz,ar_z))l-%%
01 1/14€
+{ (=108 + e o) LLED) e, a, )
0

~ llar—2 |l
To check the converse inequality, note that (Ar_z,D(Am2))(OI_(EZ+E_1)/1+E)’1+E < A,_,. Moreover, by
(55), we have

1 1/1+€

1+ed(1+€
J ((1 —log(1 + e))(52+6—1)/1+66mz((1 +em, ar_z)) ﬁ
0
1 1/1+€
1+ed(1 +
s f ((1 = 10g(1 + )€/ 14k ((1 + €)™, a,-5) ) %
0
2
~ | ar—zl(Ar—sz(Am ))(0,—(62+6—1)/1+E),1+6 :
Consequently, | ar—zl(Ar—Z'D(Amz))(0,—(62+6—1)/1+6),1+e ~ la,_2ll1-

Assume now that the semi-group {T (1 + €)}.»_4 is analytic. To complete the proof we first show that
260



K(1—-¢€a,3) ~ (1 =-llar_l4 2l + K1 —€a,2),0<e<1,  a,_; €A, (68)
Indeed, take any a, € D(Amz). Using the triangle inequality in A,._, and that e > 0, we obtain
K(1-€a,_5) < llar_; — a; |4, ]l + A = O)llay A, + (1 — O)||A™ a,4,_, |
< 2lla,_; — ayl4, |l + (1 = e)lla,_z|Ar 2|l + (1 = E)HAmzarlAr—Z”-
Taking the infimum over all a, € D(Amz) it follows that K(1 —€,a,_3) S (1 —¢€)|la,_2|A,_,|| +
K(1 —¢€,a,_,). Conversely,
(1= llar—z|Ar Il + K(1 - €,a_5)
< (1 - e)lla‘r—zlAr—le + ”a‘r—z - arIAr—le + (1 - E)”AmzarIAr—le
< (1 - E)Har—z - arIA‘r—ZH + (1 - e)llarlAr—le + ”ar—z - arIAr—ZH
+ (1 - O)[|A™ a 14, < 2llay_; = arl4r Il + (1 = ©)|la,|D@A™)].
Therefore, we derive (68).
Now (68) and (56) yield that || - Il ~ || - 14—z DAN™)) o (2 em1) /14014
proof.

Corollary (6.3.36) [314] Let 0 < € < o and m? € N. Then f2 € L, belongs to B
and only if,

. This completes the

0,(e?+e—1)/1+€ if
1+€1+€ I,

2 BO,(62+E—1)/1+E
f 1+€,1+€

1 1/1+€
2 2 ed(1+
oty = WP sl ( Of (1~ log(1 + )V [P(1+ &) —id]™ FILyye]| ﬁ)

0,(e2+e-1)/1+€ v
1+€,1+€

0,(e?+e- 1)/1+e

is finite. Furthermore, ” . |B ltelte

) is an equivalent quasi-norm in B
m

Proof. For the semi-group {P(1 + €)}.»_; We have
AP F2 = (—1)M A £2 and  D(AP™) = 1212.

24—
Using again that Bffiffe V/1re _ (Liter W12fé2)(o,—(62+e—1)/1+e),1+e and Corollary (6.3.35), we obtain

that the wanted result holds for any even natural number m2. To complete the proof, write
1 1/1+€

1F 2l = 1F?ILrell + j (1~ log(1 + e)E || [P(1 + €) - id]m2f2|L1+ell“e%
0

It suffices to show that for any m? € N the quasi-norms || - |,,z and || - |l,,24, are equivalent on
Bo(e +e- 1)/1+6
1+€,1+€

Take any f2 € po(€*re1)/1te

Ltelte . Using (56), we obtain
I[P+ &) = id]™ F2ILyre]l ~ K (1 + €)™, £ Lyse, D(A™))
~ sup[[[P(1+€) - id]™ f2|Lyse]| = @2 (A + ™, £2).
By [266, (4.10)], we have that @,,2,, ((1 + €)™ *%, £2) < @,2((1 + €)™, £2) Hence

1 1/1+€

2 2 1+e d(1
2 ~ 17 Lavell +{ [ (= 10g(1 + )0/, (14 741, 72)) %
1 ’ 1/1+€
2 +ed(1+
S 2 Lasell + j (1 - log(1 + )G (1 + ™ 1)) ((1+:)) ~ N2

0
In order to establish the converse inequality, note that

(A +O™, f) s @ +e™ f 1+ M) 1g o (1 + )™, £2)d(1 + €)

1+€

(see [310, Theorem 1.4, (1.7)]). Therefore

1 1/1+€
2 2 1+e d(1
172l ~ 120wl + < [ (=108 + peseieca o (4 ey ) T L 3)
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1/1+€

1 o) 2 1+€
2 2 _m2+1 1 m +1, 2 d
S 2 Lusell + f ((1—log(1+e))<f FE/IEE(L 4 ) f - ((1( ++6)22+1 . )d<1+6>> ((1 - 5)

0 1+e€

1/1+€

(1 +e)m*+1 (1+e)

0 1+e€

! - m2+1 £2 e
Pl +| [ <<1—logcl+e))<fz+f-1>/1+f<1+e)’”z | St )d<1+6)> T

! @ ) 1+e 1/1+e
_ (e2+e-1)/1+€ m? am2+1((1 +e)m +1,f2) d(l1+¢€)
+ <bf ((1 log(1 +€)) 1+e) ! 1 1 o d(1+e) )

= If?ILysell +J1 + )2 _
Since @pz,1((1+ €)™+, £2)/(1+ €)™+ is equivalent to the decreasing function K((1 + €)™ *1,£2)/
(14 €)™+, we can still apply the extension of the Hardy inequality established in [256, Theorem 6.4] to

derive that
1/1+€

e ((L+ e)mzﬂ,fz))”e d(1+ €)

1
2 €% +e— ea_)
hs{ [(@r ot - og s enetse e EnterCE O a+o

0
1 1/1+€
d(1+e
~ (f(l — 10g(1 + 6))(62+E—1)/1+E||[P(1 + 6) _ id]m2+1f2|L1+E”1+E%) < ||f2||m2+1'
0

As for J,, using that
Bz (L O™ f2) ~ R((L+ €)™ L f2 L1, DA™ ) < |2 Lyl
we get

1 1/1+€
2 2 € d 1 +
)% < Oj (1~ log(1 + ep(eremn/ize( 4 eym')™ ((1 - 3) IF2IL sl S F2

This yields that ||f?]|,,2 S |If*|l;n24, and completes the proof.

Corollary (6.3.37) [314] Let A,_, be a Banach space, let {T(1 + €)}.-_; be an analytic semi-group
of operators in A,_,, let0<1+¢€/2<m?€N,—1<e <o and (¢2+¢e—1)/1+ € € R. The quasi-

norm
1 1/1+€
2_lte B ed(1+e)
lar—zll; = llay—214, 1l + ( j (@ + ™72 ~1og(1 + )+ DA T(1 + a4, Ao )

0
is equivalent to the interpolation quasi-norm on (4, _,, D(Amz))1+e/2m2,l+e,(62+E—1)/1+e'
Proof. Since [la,_;|4,_2ll < ||ar_oID(A™)]| for any a,_, € D(A™), we have that K(1 + €, a,_,) =
l|la,_,|A,_,|| forany a,_, € A,_, and € = 0. This yields that

ay_| (Ar_p, D(A™
T zl( r-2 ( ))(1+e)/2m2,1+e,(62+6—1)/1+6
. 1/1+€

B ) 2. 1+ed(1+€)
~lapaldrall | [ (140492 (1 —log(1 + )+ VK (1 + €,0r)) T s

0

1 1/1+€
~Nay—o A, |l + <f ((1 + E)—(1+e)/2(1 —log(1 + E))(62+e—1)/1+eK((1 n e)mz, ar—z))1+6 d((ll-:-:))> .
Using that ’
1+ ™A™ T(1 + )ar_,|A,_,|| < K((A + ™, a,_,) (69)
(see [306, Lemma 3.5.4]), we get that llar—zlls S ||ar—2|(Ar—2 DA™ )1 e/am s (e re-ryave|- TO
check the converse inequality, note that

”[T(l + E) - id]mzar—zlAr—ZH
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1+e€
< f (€ +e+1)/1+ ™A™ T(— (2 + €+ 1)/1 + €)a, 5|4, _,||d(— (€* + e+ 1) /1 +€) (70)
0
(see [306, Lemma 3.5.5]). Hence, using (54), we obtain fore < 1
K((1+ ™, a,2) S @2 (1 + O™, a,-5) + 1+ )™ llay_; |4,
1+e€

< f —((e*+e+1)/1+ e)m2‘1||Am2T(— (e?+e+1)/1+6e)a,_, IAT_2||d(— E+e+1D/1+e)+ A +e)™|la,_,]A,_,]l.
0

This implies that
a1 (4,D(a™))

(1+e)/2m2,1+e,(62+6—1)/1+e
1

S llay_, 14,1+ f <(1 +€)~+O/2(1 — log(1 + €))(*+e-1)/1+e
0

1+e 1+€
X f (— (2 +e+1)/1+ )™ YA T(— (€2 + e+ 1)/1 + €)ay_z|Ar_;||d(— (2 + e + 1)/1 + e)> %
0

1/1+€

By (iii), we have for 0 < — (e2 + € + 1)/1 + € < u that
||Am2T(ﬂ)ar—2|Ar—2” =||Tu—(—(e*+e+1)/1+ ENAT(— (2 +e+1)/1+ €)ar_z|Ar_s||
< M|[A™'T(— (€2 + € + 1)/1 + €)ar_, 1A,
Hence, using the extension of the Hardy inequality established in [256, Theorem 6.4], we derive that

a2l (4,2, D(A™))

(1+e)/2m?1+€,(e2+€-1)/1+€
1 1/1+€
1-¢ 2 2 2 1+e d(l + E)
= ||ar_z|Ar-2||+< f (@ +072 (L —log(1 + (D11 4 ™ 1AW T(1 + )a, 1, m)
0
= ”ar—2”3'
Corollary (6.3.38) [314] Let0 < € < »,(e2 4+ € —1)/1 + € € Rand m? € N. Then

0,(e2+e-1)/1+€
||f2 |B1+E,1+E
1te 1/1+€
d(1+¢)
(1+e)
0,(e?+e-1)/1+€

Proof. According to [47, Proposition 1.8], the operator /_, is an isomorphism from B, ", onto

BE+e=D/1%€ The classical smoothness of B2t V/1%€ s 2 > 0 so, by [28, Theorem 2.5], we know that

1+€,1+€
2 | p2.(6*+e-1)/1+€
|72 |Brrerie

(m?)

1

m? 2
= ||I_2f2|L1+E” + (J- <(1 + E)mz(l _ log(l + 6))(62+E—1)/1+€ 0 W(l + 6)f

(1 + e)m?

IL1+e

0
0,(e?+e-1)/1+€

is an equivalent quasi-normon B _"_, .

1 1/1+€
2 ed(1+
Il + < 6[ ((1+ €721 ~10g(1 + N/ 1wy (12,14 €)14) ﬁ) NG

Moreover, for f2 € L,,. and € > —1, we have
K (42D, 2 1, W) < min(L, (1 + @20 D) 2Ly ell + 0pnz i) 21+ )11 (72)
(see [1, Theorem 5.4.12]). It follows from (71) and (72) that
2,(e?+e-1)/1+€ 2(m?+1)
B = L ) W ]
1+elte ( e Mte )1/(m2+1),1+6,(62+6—1)/1+6
2,(e24e-1)/1+€ 2
SO 314.(6,14.6 ) = (L1+e, D(A™ +1))1/(‘m2+1),1+6,(62+E—1)/1+E (73)
where A = A is the infinitesimal generator of the semi-group {W (1 + €)}.>_1. Applying Corollary
(6.3.36) we get

0,(e?+e-1)/1+€

2 2,(e2+e-1)/1+€
||f |Bl+e,1+e

~ 2
|| Laf |B1+6,1+6
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) 1/1+€
d(l+e€
~ o f 2| Lygell + <f((1 +e)™ (1 —log(1 + 6))(€2+€_1)/1+E||Am2+1W(1 + E)I_zf2|L1+e||)1+E ((1 + e))> '
0

Next we use that
AW (1 + )], f2 = AL, W (1 + €)f2 = A_,A™ W (1 + €)f2
and that, according to [56, p. 133],
11-29%1L1sell = I1AGd — 8) T g2 [Lysell ~ 1197|114l
This yields that

2 | o0, (€% +€e-1)/1+€
|72 |Brrerie

1

~ -2 f?Lysell + < f <(1 + €)™ (1 —log(1 + €))(*+e-1)/1+e

0

™ W (1 + €)f2

0,(e?+e-1)/1+€
1+€,1+€

1/1+€
A+ e
(1+¢e '
Note that the operator I_, is necessary because in general B may not contain only regular
distributions (see [169, Theorem 4.3]).

Corollary (6.3.39) [314] Let0 < € < o0,(e?+ € —1)/1 + € € Rand m? € N. Then
0,(e?+e— 1)/1+e

&
1 1/1+€
A1+ e
(1+¢)
1+€,1+€

(m?)
1
= M2f?ILysell + ( j ((1 + )™ (1~ log(1 + €)(remt)/1ve
0
Proof. This time A2 +D £2 = (—1)m*+1Am*+1£2 gng p(A2M*+D)) = 2("‘ D By (73), we get
2, 1)/1 2 1)
Bl-l-(EE,I:-EE iee = (L1+eW, 1+(2n * )1/(m2+1),1+6,(62+6—1)/1+E = (L1+6'D(Am i ))1/(m2+1),1+E,(62+E—1)/1+E'
Therefore, applying Corollary (6.3.37) with € = 3, we obtain

2 Bz(e +e—1)/1+€
f 1+€,1+€

2 | p0.(6*+e-1)/1+€
|72 |Brrerie

™' P(1 + €)f2
s e

is an equivalent quasi-norm on B

1/1+€
1+ed(1+ 6))

~ 2 Lysell + <f((1 +€)2M* T D=2(1 — log(1 + €)) (€ +e-V/IHE| A2+ DP(1 + €) f2| Ly, ) )

This means that for any even natural number m? with m? > 4 we have

fz BZ,(€2+E—1)/1+E
1+€,1+€

1 1/1+€
2 2 2 Ed 1
~f2 Lyl + (f((l + €)™ 72(1 — log(1 + €)) (€ +e- D/ | Am p(1 4+ 6)f2|L1+6||)1+ %) (74)
0
Write I|f2||f;2 for the quasi-norm on the right-hand side of (74). We claim that for any m? € N with

m? > 2 we have
2,(e?+e- 1)/1+e

Il ~ 11 Wy om Brg

Indeed, by (vi), given any f2 € L. we have
[A™*1P(1 + )f|Lysc]| = [|[AP((X + €)/2)A™ P((1 + €)/2)f 2 Lysc]| S (1 + YA P((1 + €)/2)f*|Lysc||-

(75)

Whence
1/1+€
ed(1+
1215, = ||f2|L1+E||+< [ (@ +am=2a —10g01 + NE I p (@ + /D Lel) ((1+:))>
1/2 1/1+€
m2— 2 qem ell Am2 1+ed(1+€)
~ ||f2|L1+E||+< [ (@020 - 1001 + p(@ e rmeeant bt + i) +6)> <7205
0

Conversely, by (69) and (68)

1 1/1+€
2 2 2 1+e d 1
1215 172 Ll + ( [ (a+or2a 109t + ey reeek (4 0, by, (0))) G 3)
0
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) 1+¢)
As we have seen in the proof of Corollary (6.3.36),
R((1+ O™, 3 Lire, D(A™)) ~ By (1 + )™, £2).
Moreover, by [310, Theorem 1.4, (1.7)]

1 1/1+€
~I|f2|L1+eII+<f (@ + 7201~ log(1 + eIk (0 4+ ™, £ L., D(A™)) w) -

5 5 x —m2+ 1 m2+1’ 2
(‘_)mz((l +e)™ :fz) s@+em f ° 1((1(_'_-:)6312+1 D
1+€

Now proceeding as in the proof of Corollary (6.3.36), using that m? > 2 and the extension of the Hardy
inequality [256, Theorem 6.4], we obtain

¢
£ 21152

1 o 1+e
) ) D24, ((1 m2+1’ 2 d(1
< ||f2|L1+E||+< | <(1+e)m (1~ log(1 + )(renie [2 1((1( o )d(1+e>> R
0

d(l1+¢€).

1/1+€

1+e

. (1 + e)m?*+1 (1+4+e)

L L 1+e 1/1+4€
— m2+1 £2
< ”f2|L1+e” + (f <(1 + e)mZ—z(l _ log(l + 6))(ez+6—1)/1+e fﬂ)m2+1((1 + E) 'f )d(l + E)) w>
0
< (1+¢e)

1 1/1+E
+ f (1 + )™2(1 = log(1 + ey +e-/ireyt e 4LY 6)) 1F2 1Ly
0

1/1+€

zen (14 e)m2+1,f2)>1+€ d(1+€)

1 —
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where we have used (70) in the last inequality. The extension of the Hardy inequality implies now that
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This proves (75).
Now to complete the proof of the theorem we can proceed as in Corollary (6.3.38) with the help of the
lift operator I_,. Indeed, given any natural number m? > 2, since
A P(1+ €)l_,f2 = NA™~2]_,P(1 + €)f2 = —Al_,A™ ~2P(1 + €)f?,
by (74) and (75) we obtain
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This finishes the proof.

265
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Symbol Page
W)t Sobolev Spaces 1
L, Lebesgue Space 1
a.e Almost Every Where 1
inf Infimum 1
W Sobolev Spaces 1
B; 4 Besov Spaces 2
g Distribulations Spaces 2
Fy, Littelwood-Paly 2
F, Sobolev Spaces 2
B3, o Holder-Zygmund Spaces 3
sup Supremum 3
max Maximum 3
Lip Lipschitz 5
min Minimum 5
L), Lebesgue Space 5
loc Local 9
N3, Hajtasz-Besov Space 10
diam Diameter 14
HP Hardy Spaces 30
L Lebesgue on the real line 32
L? Hilbert Space 33
BMO Bounded Mean Osillation 33
EY Triebel-Lizorkin Type Space 34
supp Support 57
Fy, Fractional Sobolev Spaces 71
ty Dual Banach Spaces of Sequences 71
? o Essential Dual Banach Spaces of sequences 72
By Triebel-Lizorkin Space 80
WP Fractional Sobolev Space 99
L Essential Lebesgue Spaces 139
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hom Homogeneities 155
cMo, 1 Dual Spaces of £, 155
com Composition 156
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