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 يةلآا
ةٍ َ َْْ )يا بنُيَّ إنَّهَا إنِْ تكَُ مِثقْاَلَ حَبَّةٍ مِنْ خَرْدلٍَ فتَكَُنْ فيِ صَخْرَ 

بِيْر. فِي السَّمَا َْاتِ َ َْْ فيِ الأرَْضِ يأَتِ بِهَا اللهُ إنَِّ اللهَ لطَِيْفٌ خَ   

      [ 61لقمان: ] 
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Abstract 

In spite of all the successes of the Standard Model, it is unlikely to be the final 

theory. It leaves many unanswered questions. The minimal SM predicted vanishing 

of the neutrino mass, but the recent observations of neutrino oscillations confirm 

that neutrinos have finite masses providing a likely window to new physics beyond 

the standard model. There we will discuss possible theories of neutrino mass, from 

changes of the minimal SM all the way to the SU(5) and SO(10) grand unified 

theory. We shall discuss at length the see-saw mechanism which leads to neutrino 

Majorana mass, its realization in left-right symmetric theory and in SO(10). 
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  ملخص البحث

ية الآخيرة بالرغم من النجاحات التي حققتها نظرية النموذج العياري ولكن ليس هناك إحتمال أن تكون النظر  

 حيث تركت هذه النظرية العديد من الأسئلة من دون إجابات .

وترينو أكدت أن النموذج العياري المصغر توقع تلاشي كتلة النيوترينو ولكن المشاهدات الآخيرة لتذبذب الني

يوترونات كتل صغيرة فتحت باب لفيزياء جديدة مابعد النموذج العياري .للن  

    وهي عياري ناقش النظريات المحتملة لكتلة النيوترينو من التغيرات في النموذج الوف نفي هذا البحث س

see-saw mechanism  SU(5)   ناقش بعض الآلية المتأرجحةيدالكبير وكذلك سنالتوح ونظرية  

SO(10)   الفي و تؤدي إلى كتلة نيوترينو مايورانا وهذا مايتحقق في نظرية التماثلالتي 
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Chapter One 

Introduction 

(1.1) Introduction 

The theory of Standard Model (SM) was established for massless neutrinos and 

thus without including a mechanism for generating neutrino masses. In the SM 

neutrinos came purely with left-handed neutrinos as they have been introduced to 

solve the problem of a continuous spectrum in the beta decay in weak decay. As 

such the right-handed neutrinos are strictly speaking not part of the SM particle 

contents, no renormalisable neutrino mass term is possible. However, they are 

often considered to be a trivial extension, there was experimental evidence that at 

least two of those have a small but non-vanishing mass. Thus, a mechanism for 

generating neutrino masses has to be implemented in the SM and theories beyond. 

See-saw mechanism introduced three right-haded neutrinos into the standard model 

with very large Majorana masses and predicts that observed neutrinos are their 

own anti-particles. The Majorana masses of these right handed are expected to be 

either at TeV scale or at a higher scale. Together with the Dirac mass, this 

Majorana mass introduces a see-saw mechanism which is described as in follow.  

In addition to the standard see-saw mechanism (see-saw Type I), we consider the 

double see-saw and a see-saw with single right-handed neutrino dominance in 

order to generate a phenomenologically valid flavour structure for the SM 
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neutrinos. The see-saw mechanism provides an explanation for light masses of 

neutral fields. It was first introduced in the late 70’s (Senjanovi´c, 1981) and is 

mainly discussed in the context of neutrinos. There are three commonly used 

realizations for SM neutrinos (Type I to III) leading to similar results. Here, we 

explain the Type I and only comment on Type II and III. 

In the other hand, the Grand Unified Theories (GUTs) are one of the most 

appealing extensions of the SM where one can understand the origin of SM 

interactions. Here we will discuss the implementation of the different mechanisms 

for neutrino masses in the context of renormalizable SU(5) and SO (10) theories. 

SU(5) and Neutrino Masses : The original model proposed by Georgi and Glashow 

(Georgi & Glashow, 1974) in 1974 has been considered as the simple grand 

unified theory. This model is based on SU(5), the SM matter fields live in the 5 

and 10 representations, and the minimal Higgs sector is composed of 𝐻5 and 𝐻24.  

 

(1.2)The Importance of the Study 

Neutrino oscillation experiments have confirmed that neutrino changes flavor after 

propagating a finite distance. Thus neutrino has finite mass, but this mass is tiny   

≈ 1 eV The smallness of neutrino mass provides a window to the physics beyond 

standard model (SM). 

(1.3) Aim and main Objectives of the Study 

In this dissertation, we will discuss possible theories of neutrino mass, from the 

minimal changes of the SM all the way to grand unified theory; specifically we 

will limit ourselves with Pati-Salam group. We shall implement at length the     
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see-saw mechanism which leads to neutrino Majorana mass, its realization in left-

right symmetric theory and GUTs.  

 (1.4)The Outline of the Dissertation 

This Dissertation is orgnazied as follows: In chapter one we gave brief introduction 

to the subject, and we discussed the standard model of particle physics in details in 

chapter two , in Chapter three dealt with the implmentation of the three type of see 

saw mechanisms, SU(5) and SO(10) GUTs, finally we presented in chapter, four 

discussions and conclusions. 
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Chapter Two 

Introduction to The standard model 

(2.1) Introduction 

This chapter deals with  the structure of the standard model and its mathematical 

foundation, morever we will introduce the mechanism of spontaneous symmetry 

breaking (known also the higgs mechanism) to see how elementary particles obtian 

their masses. 

(2.2) What is the SM? 

The standard model is developed to describe the weak, strong and electromagnetic 

interactions in terms of  "gauge theories". It was dated back to the latter half of the 

20th century, as a collaborative effort of scientists around the world.(Georgi, H. & 

Glashow, S., 1974) .The current formulation was finalized in the mid-1970s upon 

experimental confirmation of the existence of quarks. Since then, discoveries of the 

top quark (1995), the tau neutrino (2000), and more recently the Higgs boson 

(2013) (al, 2012), have given further credence to the Standard Model. Because of 

its success in explaining many experimental results, the Standard Model is 

sometimes regarded as a "theory of almost everything". Mathematically, the 

standard model is a quantized Yang–Mills theory. In 1950's Yang and Mills 

considered (as purely mathematical exercise) extending gauge invariance to 

include non-abelian (i.e. non-commuting) transformations such as SU(2). In this 

case one needs a set of massless vector fields (three in the case of SU (2)), which 
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were formally called "Yang-Mills" fields, but are now known as "gauge fields" 

(L.F.Li, 1991). 

 (2.3)The Standard Model Lagrangian 

Quantum field theory provides the mathematical framework for the standard model 

in which a lagrangian controls the dynamics and kinematics of the theory. Each 

kind of particle is discribed in terms of dynamical field that pervades space-time. 

The construction of the standard model based on the modren method of 

construction of field theories by first postulating a set of symmetries of the system 

and then by writing down the most general renormlizabel lagrangian from it's 

particle (L.F.Li, 1991).  

The standard model is a gauge theory representing the fundamental interactions as 

changes in a Lagrangian function of quantum fields. It contain spinless, spin-(1/2) 

and spin -1 fields interacting with one another in a way governed by the 

Lagrangian which is invariant by Lorentz transformations (Weinberg, 1996).  

The Lagrangian of the standard model contains kinetic terms, coupling and 

interaction terms related to the gauge symmetries of the force carriers , mass terms 

and the Higgs mechanism term (Quigg, 2007). 

(2.3.1)The Fermion Sector 

The fermionic sector consist of quarks and leptons come in three families with 

identical properties except for mass. The particle content in each family is: 

1st family: lepton; l =  (
νe
𝑒
)
L 
, 𝑒𝑅 
−                                                                                (2.1) 

 Quark; 𝑞 =  (
𝑢
𝑑
)
𝐿
, 𝑢𝑅 , 𝑑𝑅                                                                                               (2.2) 
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2𝑛𝑑family: lepton; l = (
𝜈𝜇
𝜇−)𝐿

, 𝜇𝑅
−                                                                      (2.3)  

   Quark;𝑞 = (
𝑠
𝑐
)
𝐿
 , 𝑐𝑅  , 𝑠𝑅                                                                                          (2.4) 

3rd family: lepton; l = (
𝜈𝜏
𝜏−
)
𝐿
 , 𝜏𝑅

−                                                                      (2.5) 

    Quark; 𝑞 = (
𝑡
𝑏
)
𝐿
 , 𝑡𝑅  , 𝑏𝑅                                                                                        (2.6) 

(2-3-2) Gauge Boson Sector 

The gauge boson and the scalar lagrangians give rise to the free lagrangian for the 

photon, W, Z. and the Higgs boson .The standard model gauge boson lagrangian 

(gauge fields) is given by 

ℒ𝐺 = −
1

4
B𝜇𝜈𝐵

𝜇𝜈 −
1

4
𝑡𝑟(𝑊𝜇𝜈𝑊

𝜇𝜈) −
1

4
𝑡𝑟(𝐺𝜇𝜈𝐺

𝜇𝜈)                                             (2.7) 

𝐆𝛍𝛎 is the gauge field strength of the strong SU(3) gauge field. 

𝐖𝛍𝛎is the gauge field strength of  the weak isospin SU(2) gauge field. 

𝐁𝝁𝝂is the gauge field strength of the weak hypercharge U(1) gauge field. 

These fields respectively are defined as   

𝐺𝜇𝜐
𝑎 = 𝜕𝜇𝐺𝜐

𝑎 − 𝜕𝜐𝐺𝜇
𝑎 + 𝑔𝑠𝑓𝑎𝑏𝑐𝐺𝜇

𝑏𝐺𝜐
𝑐                                                                         (2.8) 

𝑊𝜇𝜐
𝑖 = 𝜕𝜇𝑊𝜐

𝑖 − 𝜕𝜐𝑊𝜇
𝑖 + 𝑔𝜖𝑖𝑗𝑘𝑊𝜇

𝑖𝑊𝜈
𝑖                                                                         (2.9) 

𝐵𝜇𝜐 = 𝜕𝜇𝐵𝜐 − 𝜕𝜐𝐵𝜇                                                                                                       (2.10) 
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(2.4) Higgs Mechanism 

The masses of elementary particle can not be included in the lagrangian because 

they will break the gauge symmetry. Therefor we need a mechanism that give 

masses to these particle.  An extra field called the Higgs field has to be added by 

hand to give the particles masses (Quigg, 2007). The Higgs field has a spin-0 

particle called Higgs boson. The higgs boson is electrically neutral. The extra field 

if it exists, is believed to fill all of empty space throughout the entire universe. 

Elementary particles acquire their mass through their interaction with the Higgs 

field. Mathematically we introduce mass into a theory by adding interaction terms 

into the Lagrangian that couple the field of the particle to the Higgs field. 

Basically, the lowest energy state of a field would have an expectation value of 

zero. By symmetry breaking we introduce a nonzero lowest energy state of the 

field. This procedure leads to the acquisition of mass by particles in the theory 

(Quigg, 2007). 

We can imagine the movement of elementary particles being resisted by the Higgs 

field, with each particle interact with the Higgs field at a different stregth. If the 

coupling between the Higgs field and the particle is strong then the mass of the 

particle is large. if it is weak then the particle has a smaller mass. A particle like 

the photon with zero rest mass doesn't interact with the Higgs field at all only 

through a loop. If the Higgs field didn't exist at all then all particles would be 

massless. This scalar particle has been discovered by the ATLAS (al, 2012) and 

CMS (al, 2012) experiments, which is compatible with the SM Higgs expectations 

with a mass 126 GeV. 

The addition of this new particle will add new terms into the lagrangian:  

ℒ𝐻𝑖𝑔𝑔𝑠 =
1

2
(𝐷𝜇𝜙)(𝐷𝜇𝜙) − 𝑉(𝜙)                                                                          (2.11) 
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Where the potential is given by 

𝑉(𝜙) =
𝜇2

2
𝜙∗𝜙 −

𝜆

4
𝜙4                                                                                        (2.12)        

Therefore equation (2.11) becomes:   

ℒ𝐻𝑖𝑔𝑔𝑠=
1

2
(𝐷𝜇𝜙)(𝐷𝜇𝜙) − (

𝜇2

2
𝜙∗𝜙 +

𝜆

4
𝜙4  )                                                         (2.13)    

Where 𝜆≡ Higgs self coupling. 

𝜙 =
1

√2
(
𝜙1 + 𝑖𝜙2
𝜙3 + 𝑖𝜙4

)                                                                                                       (2.14)       

Minimizing V(𝜙) that is by taking the first derivative with respect to 𝜙: 

𝜕𝑉

𝜕𝜙
= 0                                                                                                                           (2.15) 

We get  

𝜕𝑉

𝜕𝜙
= −(𝜇2𝜙 +  𝜆𝜙3  )                                                                                               (2.16)      

This equation has two solutions      

𝜙(−𝜇2 +  𝜆𝜙2) = 0                                                                                                     (2.17)        

𝜙 = 0 (𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)   𝑜𝑟    (−𝜇2 +  𝜆𝜙2) = 0                                           (2.18) 

Therefore  

〈𝜙2〉 =
𝜇2

𝜆
                                                                                                                      (2.19)        

〈𝜙〉 = √
𝜇2

𝜆
= 𝜈                                                                                                            (2.20)       

Where 𝜈 is known as the vacuum expectation value (VEV),  𝜈 = 246 𝐺𝑒𝑉. 



9 
 

(𝜙1
2 + 𝜙2

2 + 𝜙3
2 + 𝜙4

2) = 𝜈2                                                                             (2.21)     

Equation (2.12) represents the Higgs potential, which involves two new real 

parameters 𝜇 and  λ. We require that λ > 0 for the potential to be bounded; 

otherwise the potential is unbounded from below and there will be no stable 

vacuum state. 𝜇 takes the following two values: 

1- 𝜇2 > 0 in this case the vacuum corresponds to 𝜙 = 0, the potential has a 

minimum at the origin (see Figure 2.1). 

2- 𝜇2 < 0 in this case the potential develops a non-zero Vacuum Expectation 

Value (VEV) and the minimum is along a circle of radius of 246 (see 

Figure 2.2). 
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Figure2.1. The Higgs potential with: the case 𝜇2 > 0; as function of |Φ|.
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Figure2.2. The Higgs potential with: the case 𝜇2 < 0; as function of |Φ|. 

 

𝜙 =
1

√2
(
0
ν
)                                                                                                                  (2.22) 

Next we will see how to use this technique to give bosons and fermions a mass. 

(2-4-1) Gauge Bosons Mass 

To obtain the masses for the gauge bosons we will only need to study the scalar 

part of the lagrangian 

ℒ =
1

2
(𝐷𝜇𝜙)

†
(𝐷𝜇𝜙) − 𝑉(𝜙)                                                                                 (2.23) 

Where 𝐷𝜇is the covariant derivative. 
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𝐷𝜇 = (𝜕𝜇 + 𝑖𝑔𝜏
𝑎𝑊𝜇

𝑎 + 𝑖�́�
𝑌𝜙

2
𝐵𝜇)                                                                            (2.24) 

𝐷𝜇 = [𝜕𝜇 + 𝑖𝑔 (
𝑊𝜇3 𝑊𝜇

−

𝑊𝜇
+ −𝑊𝜇3

) + 𝑖�́�
𝑌𝜙

2
𝐵𝜇]                                                          (2.25) 

Then  

𝐷𝜇𝜙 = [𝜕𝜇𝜙 + 𝑖𝑔 (
𝑊𝜇3 𝑊𝜇

−

𝑊𝜇
+ −𝑊𝜇3

)𝜙 + 𝑖�́�
𝑌𝜙

2
𝐵𝜇𝜙]                                              (2.26) 

But we have  

ϕ =
1

√2
(
0
ν
)                                                                                                                     (2.27) 

Therefore, after carrying out some  algebra we get 

𝐷𝜇𝜙 =
𝑖𝑔

√2
(
𝑊𝜇3 𝑊𝜇

−

𝑊𝜇
+ −𝑊𝜇3

) (
0
ν
) +

𝑖�́�𝑌𝜙𝐵𝜇

√2
(
0
ν
)                                                      (2.28) 

=
1

√2
(
𝑖𝑔𝑊𝜇3 𝑖𝑔𝑊𝜇

−

𝑖𝑔𝑊𝜇
+ −𝑖𝑔𝑊𝜇3

) (
0
ν
) +

𝑖�́�

√2
(
0
𝐵𝜇ν)                                                           (2.29) 

=
1

√2
(
𝑖𝑔𝑣𝑊𝜇

−

−𝑖𝑔𝑣𝑊𝜇3
) +

1

√2
(
0

𝑖�́�B𝜇ν) =
1

√2
(

𝑖𝑔𝑣𝑊𝜇
−

−𝑖𝑔𝑣𝑊𝜇3 + 𝑖𝑔�́�𝐵𝜇
)                          (2.30) 

⇒ 𝐷𝜇𝜙 =
1

√2
(

𝑖𝑔𝑣𝑊𝜇
−

−𝑖𝑔𝑣𝑊𝜇3 + 𝑖𝑔�́�𝐵𝜇
)                                                                           (2.31)                                                                                              

Since (𝐷𝜇𝜙)
†
is the complex conjugate of 𝐷𝜇𝜙 then 

(𝐷𝜇𝜙)
†
=
1

√2
(−𝑖𝑔𝑣𝑊𝜇

+ 𝑖𝑔𝑣𝑊𝜇3 − 𝑖𝑔�́�B𝜇)                                                      (2.32) 

Therefore  
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(𝐷𝜇𝜙)
†
(𝐷𝜇𝜙) =

1

√2
(−𝑖𝑔𝑣𝑊𝜇

+ 𝑖𝑔𝑣𝑊𝜇3 − 𝑖𝑔�́�B𝜇) 
1

√2
(

𝑖𝑔𝑣𝑊𝜇
−

−𝑖𝑔𝑣𝑊𝜇3 + 𝑖𝑔�́�𝐵𝜇
)       

=
1

2
[𝑔2𝜈2𝑊𝜇

+𝑊𝜇
− + 𝜈2(𝑔𝑊𝜇3 − �́�𝐵𝜇)

2]                                                               (2.33) 

So  

1

2
(𝐷𝜇𝜙)

†

(𝐷𝜇𝜙) =
1

4
𝑔2𝜈2𝑊𝜇

+𝑊𝜇
− +

1

4
𝜈2(𝑔𝑊𝜇3 − �́�𝐵𝜇)

2
                               (2.34) 

From the above equation we obtain 

𝑚𝑤
2 =

1

4
𝑔2𝜈2 

𝑚𝑤 =
1

2
𝜈𝑔 

For Z boson, we use the orthogonal combination as 

𝑧𝜇 =
𝑔𝑊𝜇3 − �́�𝐵𝜇

√𝑔2 + �́�2
= (cos 𝜃𝑤𝑊𝜇3 − sin 𝜃𝑤 𝐵𝜇)                                                    (2.35) 

And the photon: 

𝐴𝜇 =
 1

√𝑔2 + �́�2
(�́�𝑊𝜇3 + 𝑔𝐵𝜇)                                                                                 (2.36) 

By using a rotation transformation  

(
𝑧𝜇
𝐴𝜇
) = (

cos 𝜃𝑤 −sin 𝜃𝑤
sin 𝜃𝑤 cos 𝜃𝑤

) (
𝑊𝜇3
𝐵𝜇
)                                                                         (2.37) 

cos 𝜃𝑤 =
𝑔

√𝑔2 + �́�2
   𝑎𝑛𝑑  sin 𝜃𝑤 =  

�́�

√𝑔2 + �́�2
                                               (2.38) 
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Multiply the second part of equation (2.34) by 
√𝑔2+�́�2

√𝑔2+�́�2
 we obtain 

1

4
𝜈2(𝑔𝑊𝜇3 − �́�𝐵𝜇)

2
∙
√𝑔2 + �́�2

√𝑔2 + �́�2
=
1

4
𝜈2(√𝑔2 + �́�2)2𝑧𝜇𝑧

𝜇                                (2.39) 

Thus  

𝑚𝑧=
2
1

4
𝜈2(𝑔2 + �́�2 )2                      

𝑚𝑧 =
1

2
𝜈√𝑔2 + �́�2                       

Although since 𝑔 and 𝑔 ́ are free parameters. The SM makes no absolute 

predictions for 𝑀𝑤and 𝑀𝑧, it has been possible to set a lower limit before the W-

and Z-boson were discovered. Their measured values are 𝑀𝑤 =

80.4 𝐺𝑒𝑉 and 𝑀𝑧 = 91.2 𝐺𝑒𝑉 (Weinberg ،1967). 

(2.4.2) Yukawa Interaction and Fermions Mass: 

In particle physics, Yukawa's interaction, named after Hideki Yukawa is an 

interaction between a scalar field and a Dirac field, the Yukawa interaction can be 

used to describe; the nuclear force between nucleons (which are fermions), 

mediated by Pions (which are pseudo scalar mesons) (J.donoghue, 1994). 

The Yukawa interaction is also used in the Standard Model to describe the 

coupling between the Higgs field and massless quark and lepton fields (i.e., the 

fundamental fermion particles). Through spontaneous symmetry breaking, as result 

these fermions acquire a mass proportional to the vacuum expectation value of the 

Higgs field (J.donoghue, 1994). 
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The Yukawa interaction is uniquely fixed by the dynamic of the system.  It is given 

by 

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 = 𝑌𝑑�̅�𝐿𝜙𝑑𝑅 + 𝑌𝑈�̅�𝐿𝜙
∗𝑢𝑅                                                                            (2.40)     

Using equation (2.22) we get  

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 = 𝑌𝑑(�̅�𝐿 �̅�𝐿)
1

√2
(
0
𝜈
)𝑑𝑅 + 𝑌𝑢(�̅�𝐿 �̅�𝐿)

1

√2
(
𝜈
0
) 𝑢𝑅

+ 𝑌𝑒(�̅�𝐿 �̅�𝑙)
1

√2
(
0
𝜈
) 𝑒𝑅                                                                        (2.41) 

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 =
𝑌𝑑

√2
(�̅�𝐿 �̅�𝐿) (

0
𝜈
)𝑑𝑅 +

𝑌𝑢

√2
(�̅�𝐿 �̅�𝐿) (

𝜈
0
) 𝑢𝑅

+
𝑌𝑒

√2
(�̅�𝐿 �̅�𝑙) (

0
𝜈
) 𝑒𝑅                                                                             (2.42) 

Then  

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 =
𝑌𝑑

√2
𝜈�̅�𝐿𝑑𝑅 +

𝑌𝑢

√2
𝜈�̅�𝐿𝑈𝑅 +

𝑌𝑒

√2
𝜈�̅�𝑙𝑒𝑅                                                  (2.43) 

From the last equation and analog to previous section we find that 

𝑚𝑑 =
𝑌𝑑

√2
 𝜈                       

𝑚𝑢 =
𝑌𝑢

√2
 𝜈                     

 𝑚𝑒 =
𝑌𝑒

√2
𝜈                           

Where Y is Yukawa coupling. You can see that Neutrino remain massless because 

it’s right partner does not exist in the SM.  
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(2.5) Full SM Lagrangian: 

To summarize the full standard model we can  write it as: 

ℒ = −
1

4
𝑊𝜇𝜈𝑊

𝜇𝜈 −
1

4
𝐵𝜇𝜈𝐵

𝜇𝜈 −
1

4
𝐺𝜇𝜈𝐺

𝜇𝜈 + �̅�𝛾𝜇 (𝑖𝜕𝜇 − 𝑔
1

4
𝜏𝑊𝜇 − �́�

𝑌

2
𝐵𝜇) 𝐿

+ �̅�𝛾𝜇 (𝑖𝜕𝜇 − �́�
𝑌

2
𝐵𝜇)𝑅 + |(𝑖𝜕𝜇 − 𝑔

1

4
𝜏𝑊𝜇 − �́�

𝑌

2
𝐵𝜇)𝜙|

2

− 𝑉(𝜙)+(𝑌𝑑�̅�𝐿𝜙𝑑𝑅 + 𝑌𝑈�̅�𝐿𝜙
∗𝑈𝑅+𝑌𝑒𝑙�̅�𝜙𝑒𝑅 + h. c.                      (2.44)  

L denotes a left-handed fermion (lepton or quark) doublet, and R a right-handed 

fermion singlet (J.donoghue, 1994). 
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Chapter Three 

Generating Neutrino mass through the See Saw Mechanisms 

 (3.1) Introduction  

In this chapter we will implement the technique that give mass to neutrino, that can 

be seen by  studying the three types of the see-saw mechanism which leads to 

Majoran neutrino at length (B. Bajc, 2010).  

(3.1.2) The See-Saw Mechanism  

The see-saw mechanism is a generic model used to understand the relative sizes of 

observed neutrino masses, of the order of few eV, compared to those of quarks and 

charged leptons, which are millions times heavier (Pal, 1998). 

The see-saw mechanism is the most likely way to explain how neutrinos got their 

masses, and why they are so small (W. Marciano, 1982).  

(3.2) Types of the See-Saw Mechanism 

There are several types of the see-saw mechanism each extending the standard 

model. 
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(3.2.1) Type I See-Saw Mechanism 

Since the right hand neutrino doesn’t present in the SM, simply we introduce the 

right-handed neutrino 𝜈𝑅, which allows inserting additional term into Yukawa 

interaction. 

ℒ𝑌
𝜈 = 𝑌𝐷ℓ̅𝐿𝜎2Φ

∗𝜈𝑅 +
𝑀𝑅
2
𝜈𝑅
𝑇𝐶𝜈𝑅 + ℎ. 𝑐.                                                                      (3.1) 

The Yukawa interaction defines the quantum numbers of the right-handed 

neutrino, it carries the lepton number. Majorana mass term is allowed for the right-

handed neutrinos, consistent with the gauge symmetries of the theory (Majorana, 

1937). 

The Yukawa interaction, which couples left-handed and right-handed neutrinos 

yields after spontaneous symmetry breaking as usual the Dirac neutrino mass 

matrix  𝑚𝐷 = 𝑌𝐷𝜐, so that the complete mass terms are given by  

ℒ𝑀
𝜈 = 𝑚𝐷�̅�𝐿𝜈𝑅 +

1

2
𝑀𝑅𝜈𝑅

𝑇𝐶𝜈𝑅 + ℎ. 𝑐.                                                                           (3.2) 

We can rewrite equation (3.2) in terms of two components spinners. 

𝜈 ≡ 𝜈𝐿 + 𝐶�̅�𝐿
𝑇                                                                                                                     (3.3) 

𝑁 ≡ 𝜈𝑅 + 𝐶�̅�𝑅
𝑇                                                                                                                 (3.4) 

Using the properties of charge-conjugation matrix (which can be found in any 

quantum field books (McMahon, 2008)).  

𝐶𝑇𝛾𝜇𝐶 = −𝛾𝜇
𝑇  , 𝐶𝑇 = −𝐶                                                                                      (3.5) 

We obtain the following relation 
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�̅�𝑁 = �̅�𝐿𝜈𝑅 + �̅�𝑅𝜈𝐿 = �̅�𝜈                                                                                               (3.6) 

�̅�𝑁 = 𝜈𝑅
𝑇𝐶𝜈𝑅 + ℎ. 𝑐.                                                                                                        (3.7) 

𝜈�̅� =  𝜈𝐿
𝑇𝐶𝜈𝐿 + ℎ. 𝑐.                                                                                                         (3.8) 

So that the full lagrangian with the kinetic terms will be 

ℒ =
1

2
 [�̇��̅�𝛾𝜇𝜕𝜇𝜈 + �̇��̅�𝛾

𝜇𝜕𝜇𝑁 −𝑀𝐿�̅�𝜈 − 𝑀𝑅�̅�𝑁 −𝑚𝐷�̅�𝑁 − 𝑚𝐷�̅�𝜈]                 (3.9) 

We now summarize the masses in the above equation with the following form of 

mass matrix 

ℒ𝑚
(𝜈)
=
1

2
(�̅�, �̅�) (

0 𝑚𝐷
𝑚𝐷
𝑇 𝑀𝑅

) (
𝜈
𝑁
) + ℎ. 𝑐.                                                                   (3.10) 

The mass matrix for the neutrino fields 𝜈 and N is 

(
0 𝑚𝐷
𝑚𝐷
𝑇 𝑀𝑅

)                                                                                                                   (3.11) 

Where 𝑚𝐷 = 𝑌𝐷𝜈. One can diagonalize this matrix by a similarity transformation 

using the orthogonal matrix 

(
1 𝜖
−𝜖𝑇 1

)                                                                                                                         (3.12) 

Where  𝜖 =
𝑚𝐷

𝑀𝑅
. This diagonalization is correct up to terms smaller than of order 

𝜖2, one obtains the mass matrix for the light neutrino to be 

𝑚𝜈
𝑙𝑖𝑔ℎ𝑡

= −𝑚𝐷
1

𝑀𝑅
𝑚𝐷
𝑇                                                                                                  (3.13) 

This is the original see-saw formula called type I. 

The diagrammatic representation of the see-saw in Figure 3.1.of the type I. show 

that the heavy neutrino propagator gives the see-saw result. 
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Figure 3.1. Diagrammatic representation of the Type I see-saw mechanism 

 

(3.2.2) Type II See-Saw Mechanism 

Instead of adding right-handed neutrino 𝜈𝑅 into the SM. We could choose Y=2, 

triplet scalar Δ𝐿. This will lead to new term in Yukawa interaction as 

ℒΔ = 𝑌Δ
−1ℓ𝑇𝐶𝜎2Δ𝐿ℓ + ℎ. 𝑐                                                                                          (3.14) 

See figure 3.2 
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Figure 3.2. Diagrammatic representation of the Type II see-saw 

Neutrino gets mass when Δ𝐿 gets a vacuum expectation value (VEV) as 

𝑀𝜈 = 𝑌Δ〈Δ〉                                                                                                                     (3.15) 

The VEV 〈Δ〉 results from the cubic scalar interaction  

Δ𝑉 = 𝜇Φ𝑡𝜎2Δ𝐿
∗𝛷 +𝑀Δ

2𝑇𝑟Δ𝐿
∗Δ𝐿 +⋯                                                                       (3.16) 

With  

〈Δ〉 ≡
𝜇𝜐2

𝑀Δ
2                                                                                                                        (3.17) 

The mass of the neutrino is 

𝑚𝜈 = 𝑌Δ
𝜇𝜐2

𝑀Δ
2                                                                                                                  (3.18) 

Where one would expect  𝜇 of order 𝑀Δ. If the scale 𝑀Δ >> 𝜐, then neutrinos are 

naturally light. 

(3.2.3) Type III See-Saw Mechanism 

In this type we introduce triplet fermions �⃗� 𝐹 in Majorana notation, (where for 

simplicity the generation index is suppressed and also an index counting the 

number of triplet). 

Δℒ(𝑇𝐹) = 𝑌𝑇ℓ
𝑇𝐶𝜎2𝜎 . �⃗� 𝐹𝛷 +𝑀𝑇�⃗� 𝐹

𝑇𝐶�⃗� 𝐹                                                                   (3.19) 

Exactly the same manner as before in type I, one gets a type III see-saw 

mechanism for 𝑀𝑇 >> 𝜐 
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𝑀𝜈 = −𝑌𝑇
𝑇
1

𝑀𝑇
𝑌𝑇  𝜈

2                                                                                                               (3.20) 

(3-3) Neutrino Mass in Left- Right Symmetric Model 

This section is devoted to the left right symmetric SM and the issue of the origin of 

the breaking of parity. This model played an important historic role in leading 

automatically to nonzero neutrino mass and the see-saw mechanism; there are two 

different possible left- right symmetries: party and charge conjugation. The latter is 

the finite gauge transformation in SO(10) and is thus rather suggestive still parity 

is normally identified with L-R symmetry so we will discuss next parity 

(Senjanovi´c, 1981). 

(3.3.1) Parity as L-R symmetry: 

Parity is the fundamental symmetry between left and right and its breaking we 

believe should be understood. In the SM parity is broken explicitly. So in order to 

break parity spontaneously we must enlarge the gauge group. The minimal model 

based on the gauge group is  

𝐺𝐿𝑅  =  𝑆𝑈(2)𝐿 ×  𝑆𝑈(2)𝑅 ×   𝑈(1) 𝐵−𝐿 

With quarks and lepton completely symmetric under L-R transformation 

𝑄𝐿 = (
𝑢
𝑑
)
𝐿
      

𝑅
↔     𝑄𝑅 = (

𝑢
𝑑
)
𝑅
                                                                                (3.21) 

𝐿𝐿 = (
𝑁
𝑒
)
𝐿
          

𝑃
↔          ℓ𝑅 = (

𝑣
𝑒
)
𝑅
                                                                        (3.22) 
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Notice: that the requirement of left- right symmetry leads to the existence of the 

right handed neutrino which means that the neutrino mass becomes a dynamical 

issue related to the pattern of symmetry breaking. 

In the SM the right hand neutrino is absent, 𝑀𝑅: here instead we have to explain 

why neutrinos are so much lighter than the corresponding charged leptons. In left 

right model the formula for the electromagnetic charge becomes. 

𝑄𝑒𝑚 = 𝐼𝑇𝐿 + 𝐼𝑇𝑅 +
𝐵 − 𝐿

2
                                                                                           (3.23) 

This is in contrast with standard model where the hyper charge is completely 

devoid of any physical meaning. Therefore L-R symmetry is deeply connected 

with L-R symmetry, the existence of right handed neutrinos impelled by L-R 

symmetry which is necessary to cancel anomalies when gauging B-L normally the 

B-L symmetry is global anomaly face symmetry of the SM but without 𝑣𝑅 the 

gauged version would have (𝐵 − 𝐿)3 anormaly. 

So our task is to break L-R symmetry to account for the fact that 𝑀𝑊𝑅 >> 𝑀𝑊𝐿, 

𝑊𝑅 and 𝑊𝐿 denoting right handed and left handed gauge boson respectively. In 

order to do so we need asset of left- handed and right handed higgs scalars whose 

quantum number will be specified later, imagine for the moment two scalars ϕ𝐿and 

ϕR with  

ϕL   
𝑃
→  ϕR                                                                                                                      (3.24) 

Assuming now no terms liners in the fields (since ϕLand ϕRshould carry quantum 

numbers under 𝑆𝑈(2)𝑅) we can write down the left – right symmetric potential as 
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𝑉 = −
𝜇2

2
(ϕL

2 + ϕR
2) +

𝜆

4
(ϕL

4 + ϕR
4) +

λ̅

2
 (ϕL

2 − ϕR
2)2                                        (3.25) 

Where we require 𝜆 > 0 for the potential to be bounded from below and we choose 

𝜇2 > 0 in order to achieve symmetry breaking in the usual manner. 

Let us rewrite the potential as: 

𝑉 = −
𝜇2

2
(ϕL

2 + ϕR
2) +

𝜆

4
(ϕL

2 + ϕR
2)2 +

λ̅ − λ

2
 (ϕL

2 − ϕR
2)                                (3.26) 

Which tell us that the pattern of  symmetry breaking depends crucially on the sign 

of �̅� − 𝜆 since the first two term don’t depends on the direction of symmetry 

breaking (of course 𝜇2 > 0 quarantines that < 𝜙𝐿 > = < ϕR > ≥ 0 is a maximum 

not a minimum of the potential).  

(3.3.2) Left – Right symmetry and massive neutrinos: 

What should we choose for the role of 𝜙𝐿 and 𝜙𝑅 scalars? From the neutrino mass 

point of view the ideal candidates should be triplets. 

ΔL(3̅L, IR, 2) ;  ΔR(1L, 3R, 2)                                                                                          (3.27) 

Where the quantum numbers denote SU(2)L  and SU (2)R , ∆𝐿 and ∆𝑅 are 𝑆𝑈(2)𝐿 

and 𝑆𝑈(2)𝑅 triplets respectively with 𝐵 − 𝐿 numbers equal to two. 

Writing ∆𝐿,𝑅= ∆𝐿
𝑙  𝑇𝑖  /2(𝑇𝑖 being the Pauli matrices) as usual for adjoint 

representations we found Yukawa couplings 

𝐿Δ =  ℎΔ(ℓ𝐿
𝑇 𝐶𝑖𝑇2 ∆𝐿 ℓ𝐿 + 𝐿 → 𝑅) + ℎ. 𝑐.                                                             (3.28) 
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To check the invariance of (3.28) under the Lorentz group and the group symmetry  

𝑆𝑈(2)𝐿  ×  𝑆𝑈(2)𝑅   ×  𝑈(1)𝐵−𝐿   

  Recall That ΨL
T CΨL is a Lorentz invariant quantity for a chiral Weyl spinor ΨL 

(and similarly for ΨR). 

Under the gauge symmetry 𝑺𝑼 ( 𝟐)𝑳: 

ℓ𝐿 →𝑈𝐿ℓ𝐿 , ∆𝐿 →𝑈𝐿∆𝐿𝑈𝐿
4 𝑈𝐿

𝑇  (𝑖𝑇2) = (𝑖𝑇2)𝑈𝐿
4                                                     (3.29) 

The same apply to 𝑆𝑈(2)𝑅. This proves the invariance of (3.28) under all the 

relevant symmetry now from their definition; the fields ∆𝐿,𝑅 have the following 

decomposition under the charge eigenstates:   

∆𝐿,𝑅=

[
 
 
 
∆+

√2
∆++

∆𝑜 −
∆+

√2]
 
 
 

𝐿,𝑅

                                                                                               (3.30) 

  Where we have used the fact that 𝑇𝑟∆𝐿,𝑅=  𝐷 and the charge is computed from 

the following formula 

𝑄 =  𝐼3𝐿 + 𝐼3𝑅 + (𝐵 − 𝐿)/2 

Note that an important consequence of doubly charged physical Higgs scalars of 

the spontaneous 𝐿 − 𝑅 symmetry breaking we know that for arrange of parameters 

of the potential the minimum of the theory can be chosen as:  

< ∆𝐿>= 0 and < ∆𝑅>=    (
0 0
𝑣𝑅 0

)                                                                     (3.31) 



26 
 

From the equation (3.28) we obtain the mass for the right handed neutrino 𝜐𝑅 

ℓ𝑚𝑎𝑠𝑠 = ℎ∆𝑣𝑅 (𝜈𝑅
𝑇   𝐶𝜈𝑅 + 𝜈𝑅

+ 𝐶+𝜈𝑅
∗ )                                                                       (3.32) 

Therefore the right handed neutrino gets a large mass 𝑀𝑅 = ℎ∆ 𝜐𝑅, which  identify 

with the scale of parity breaking. At the same time the original gauge symmetry is 

broken down to the standard model one  

𝑆𝑈(2)𝐿   ×  𝑆𝑈(2)𝑅   ×  𝑈(1)𝐵−𝐿  
<∆𝑅>
→    𝑆𝑈(2)𝐿  ×  𝑈(1)𝑌                                 (3.33) 

This can be seen by computing the gauge boson mass matrix and define the right- 

handed charged gauge boson as 

𝑊𝑅
± =

𝐴𝑅
1 ± 𝑖𝐴𝑅

2

√2
                                                                                                            (3.34) 

We get the masses of gauge bosons 

𝑀𝑊𝑅
2 = 𝑔𝑅

2  𝑣𝑅
2                                                                                                                  (3.35) 

𝑀𝑍𝑅
2 = 2(𝑔2 + 𝑔𝐵−𝐿

2 )𝑣𝑅
2                                                                                               (3.36) 

Where 

𝑍𝑅 =
𝑔 𝐵−𝐿 𝐴𝑅

3 + 𝑔𝑅𝐴𝐵−𝐿

√𝑔2 + 𝑔𝐵−𝐿
2

                                                                                           (3.37) 

 Here the new massive neutral gauge filled, the 𝑔𝑅 and 𝑔𝐵−𝐿 gauge couplines 

correspond to 𝑆𝑈 (2)𝑅 and (𝐵 − 𝐿)/2 respectively. 
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To complete the theory one needs a Higgs bi-doublet 𝜙𝜖(2𝐿, 2𝑅,0) which contains 

the 𝑆𝑀 Higgs, give masses to quarks and leptons. At the next stage of symmetry 

breaking the neutral componets of 𝜙 develop a vev and break the SM symmetry 

down to 𝑈(1)𝑒𝑚 as usual.  

< 𝜙 > =  (
𝑣1 0
0 𝑣2

)                                                                                                    (3.38) 

   Which yield the mass of the  𝑀𝑊
2 = 𝑔2𝑣2 = 𝑔2(𝑣1

2 + 𝑣2
2).  

 In the process we get the Dirac neutrino mass between 𝜈𝐿 and 𝜈𝑅 we end up with 

the type I see –saw mechanism for light neutrino masses. The Type 1 see-saw from 

Dirac Yukawa can be written as 

𝐿 = ℎ𝑄 ℓ̅𝐿 𝜙𝐿𝑅 + ℎ. 𝑐.                                                                                                  (3.39) 

After the symmetry breaking the neutrino Dirac mass term is 𝑚𝐷 = ℎ𝑄 < 𝜙 > the 

neutrino mass terms become.  

𝑚𝜈 = 𝑚𝐷ℓ̅𝐿ℓ𝑅 +𝑀𝑅  ℓ𝑅
𝑇  𝑐 ℓ𝑅 + ℎ. 𝑐.                                                                        (3.40) 

So the neutrino mass matrix takes clearly the see-saw form as discussed earlier. 

The important point here is that the mass of 𝜈𝑅 is determined by the scale of parity 

breaking and the smallness of the neutrino mass is reflection of the predominant 

𝑉 − 𝐴 structure of the weak interaction and provides a probe of parity restoration 

at high energies 𝐸 > 𝑀𝑊𝑅. 

Type II see-saw: 
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The gauge symmetry of the left- right model allows also for the following term in 

the potential that we have ignored before for simplicity. 

∆𝜈=∝ ∆𝐿
+ 𝜙∆𝑅𝜙

+                                                                                                         (3.41) 

Which implies that < ∆𝐿>can not vanish in equation (3.31) 

< ∆𝐿> = ∝
𝑀𝑊
2 < ∆𝑅>

𝜇∆𝐿
≈∝

𝑀𝑊
2

𝑀𝑅
                                                                              (3.42) 

This leads to type II see-saw. 

This also tell us that the prediction for neutrino mass depends crucially or 𝑀𝑊𝑅, 

however the left right symmetric model cannot give us its value. This will be cured 

in SO( 10 ) grand unified theory, where we will see that this scales tends to be very 

large, above the Tera energy scale Large Hadron Collider (LHC).  

(3.4) Neutrino Mass in 𝐒𝐔(𝟓) GUT Model 

The minimal group that can unify the standard model SM in single coupling 

is 𝐒𝐔(𝟓), a group of rank four. In the 𝐒𝐔(𝟓) model (Georgi & Glashow, 1974), the 

fermions of each generation are assigned to �̅�  and 𝟏𝟎 representations, denoted by 

𝚿𝟓and 𝚿𝟏𝟎 (Georgi & Glashow, 1974): 

𝚿𝟓 =

(
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dg

db

e+

−νc)

 
 
 and 𝚿𝟏𝟎 =
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√𝟐
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ur
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dg
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−ur
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−ub

0
−e+

−dr

−dg

−db

e+

0 )

 
 
                              (3.44) 

The breaking dynamics down of the gauge symmetry 𝐒𝐔(𝟓)  to 𝐒𝐔(𝟑)𝒄 × 𝐔(𝟏)𝑸 

is achieved by choosing only two Higgs multiplets 𝐻5 and  Φ24. As such the 
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vacuum expectation value of  Φ24  chosen such that it breaks 𝐒𝐔(𝟓)  to 𝐒𝐔(𝟑)𝒄 ×

𝐒𝐔(𝟐)𝑳 × 𝐔(𝟏)𝒀  as follows 

 

< Φ24 > = 𝑣 𝑑𝑖𝑎𝑔 (1, 1,1,− 
3

2
,−
3

2
)                                                                   (3.45) 

Let the gauge bosons of SU(5) model to be written as 

(
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Then the masses of heavy boson s X and Y will be  

 

𝑀𝑋
2 = 𝑀𝑌

2 =
25

8
𝑔2𝑣2 

The final stage of symmetry breaking down to electromagnetic U(1)  occurs via the 

non-zero VEV of the 5 dimensional Higgs field H (Georgi & Glashow, 1974): 

 

𝐻5 =

(

  
 

0
0
0
0
v

√2)

  
 
                                                                                                                (3.46) 

 

The masses of gauge boson will be  

𝑀𝑊
2 =

1

4
𝑔2𝑣2 𝑎𝑛𝑑 𝑀𝑍

2 =
𝑔2𝑣2

4 cos𝜃𝑊
2. 

The most general gauge invariant Yukawa couplings in the SU(5) group is given 

by 
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ℒ𝑌
𝑆𝑈(5)

= 𝑌1𝑇𝑖𝑗
𝑇𝐶−1Ψ𝑖𝐻𝑗 + 𝑌2𝜀

𝑖𝑗𝑘𝑙𝑚𝑇𝑖𝑗
𝑇𝑇𝑘𝑙𝐻𝑚 + ℎ. 𝑐.                                          (3.47) 

Here we displayed indices of SU(5), and  suppressed generation indices for the 

sake of simplicity. Also, complex conjugation is implied by lowering and raising 

of the indices. Thus, for example, Ψ𝑖 denotes the complex conjugate of Ψ𝑖. After 

the spontaneous symmetry breaking occur equation (3.47) yield the mass foe 

fermions 

𝑀𝑑 = 𝑀𝑙 = 𝑌1𝑣/√2  and 𝑀𝑢 = 𝑌2𝑣/√2   

As can be seen from above equation the neutrinos remain massless. Indeed, in the 

5 + 10 representation there is no room for the right-handed neutrino and so a mass 

term would be necessarily a Majorana mass term with a violation of B−L of two 

units. As such the SU(5) model is a fail tailor of the SM.  We can also have a mass 

term for the neutrino by implementing the see-saw in any of its three forms but we 

do not do it here as the neutrino mass cured in this model by the same way as we 

did in the Standard model. It is therefore, phenomenologically not viable. 

 

(3.5) Neutrino Mass in 𝐒𝐎(𝟏𝟎) GUT Model 

𝐒𝐎(𝟏𝟎) Family Unified: 

The minimal gauge group that unifies the gauge interactions of the standard model 

was seen in the previous subsection is 𝐒𝐔(𝟓). The masses of neutrino turned out to 

be masses just like the SM, in the minimal version of the theory neutrinos get 

neither Dirac nor Majorana mass terms. We found that the simple extension with 

the adjoint fermion representation provides a minimal and remarkably predictive 

theory with light fermionic triplet expected at LHC and whose decay rates probe 

the Dirac Yukawa couplings of neutrinos. We have a theory that works and 

furthermore gives serious hope for an old dream of verifying seesaw mechanism at 
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colliders. So why should one ever wish to go beyond 𝐒𝐔(𝟓)? We can think of at 

least two reasons. First, if one is to worry about the Higgs mass naturalness and it 

is not an interesting theory of fermion masses and mixings. This is where 𝐒𝐎(𝟏𝟎) 

fits ideally, for it also unifies matter besides the interactions. It works nicely 

without supersymmetry too; it provides a natural unification of gauge couplings 

through the intermediate scale of left right symmetry breaking (Senjanovi´c, 1981). 

One of the most important representations of 𝐒𝐎(𝟏𝟎) is a 16-dimensional spinor 

representation, which can be decomposed under 𝐒𝐔(𝟓) as 𝟏𝟔 = 𝟏𝟎 + 𝟓 + 𝟏. it 

unifies a family of fermions with an addition of a right handed neutrino per family. 

This minimal grand unified theory unifies matter on top of interactions suggests 

naturally small neutrino masses through the seesaw mechanism. Furthermore, it 

relates neutrino masses and mixings to the ones of charged fermions, and is 

predictive in its minimal version (K. R. Balaji, 2000).  In this Section we discuss 

some important features in this theory while focusing on its minimal realizations. 

The crucial representation is a self-dual five index anti-symmetric one responsible 

for right-handed neutrino masses. A number of different minimal realizations of 

𝐒𝐎(𝟏𝟎) depend on this construction, and what follows summarizes a few of them 

(B. Bajc, 2010).  

There are a number of features that make 𝐒𝐎(𝟏𝟎) special: 

1. A family of fermions is unified in a 16-dimensional spinorial representation; 

naturally right-handed neutrinos exist. 

2. Left Right symmetry is a finite gauge transformation in the form of charge 

conjugation. This is a consequence of both left-handed fermions 𝑓𝐿 and its 

charged conjugated counterparts residing in the same 16𝐹  representation. 
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3. Its other maximal subgroup, besides 𝑆𝑈(5) × 𝑈(1), and 𝑆𝑂(4) × 𝑆𝑂(6) =

𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 × 𝑆𝑈(4)𝑐 symmetry of Pati and Salam.  

4. The unification of gauge couplings can be achieved with or without 

supersymmetry. 

In order to understand some of these results, and in order to address the issue of 

construction of the theory, we turn now to the Yukawa sector (B. Bajc, 2010). 

(3.5.1) Yukawa Sector: 

The decomposition of 16𝐹  spinor representation is 

16⊗ 16 = 10⨁120⊕ 126 

Therefore the most general Yukawa sector in general will contain 10𝐻, 120𝐻 and 

126𝐻̅̅ ̅̅ ̅̅ ̅, respectively the fundamental vector representation, the three-index 

antisymmetric representation and the five-index antisymmetric and anti-self-dual 

representation. Thus Yukawa couplings is  

ℒ𝑦 = 𝑦10𝜓
𝑇𝐵Γi𝜓Φ𝑖 + 𝑦120𝜓

𝑇𝐵ΓiΓkψΦ[ijk] + y120ψ
TBΓiΓjΓkΓlΓmψΦ[ijklm]

−  

Note that the 126̅̅ ̅̅ ̅𝐻 is necessarily complex, 10𝐻 and 120𝐻̅̅ ̅̅ ̅̅ ̅ Yukawa matrices are 

symmetric in generation space, while the 120𝐻 one is antisymmetric. 

To understand the fermion masses, it is easier to work in the Pati-Salam language 

of one of the two maximal subgroups of SO(10), 𝐺𝑃𝑆 = 𝑆𝑈(4)𝑐 × 𝑆𝑈(2)𝐿 ×

𝑆𝑈(2)𝑅(the other being SO(5) × U(1). Let us decompose the relevant 

representations under Pati Salam group 𝐺𝑃𝑆 (Pati & Salam, 1974).  

16 = (4, 2, 1) + (4, 1, 2) 
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10 = (1, 2, 2) + (6, 1, 1) 

120 = (1, 2, 2) + (6, 3, 1) + (6, 1, 3) + (15, 2, 2) + (10, 1, 1) + (10, 1, 1) 

126̅̅ ̅̅ ̅ = (10̅̅̅̅ , 3, 1) + (10, 1, 3) + (15, 2, 2) + (6, 1, 1) 

Clearly, the see-saw mechanism, whether type I or II, requires 126:̅̅ ̅̅ ̅̅  it contains 

both (10,1,3) whose VEV gives a mass to 𝜐𝑅 (type I), and (10̅̅̅̅ , 3,1), which 

contains a color singlet, 𝐵 − 𝐿 = 2 field ∆𝐿, that can give directly a small mass to 

𝜈𝐿 (type II). A reader familiar with the SU(5) language sees this immediately from 

the decomposition under this group. 

126̅̅ ̅̅ ̅ = 1 + 5 + 15 + 45̅̅̅̅ + 50 

The singlet of SU(5) belongs to the (10,1,3) of 𝐺𝑃𝑆 and gives a mass for 𝜈𝑅, while 

15 corresponds to the (10̅̅̅̅ , 3,1) and gives the direct mass to 𝜈𝐿. 

Normally the light Higgs is chosen to be the smallest one, 10𝐻. Since 〈10𝐻〉 =

〈(1,2,2)〉𝑃𝑆 is a 𝑆𝑈(4)𝑐 singlet, the relation 𝑚𝑑 = 𝑚𝑒 follows immediately, 

independently of the number of 10𝐻 you wish to have. Thus we must add either 

120𝐻 or 126𝐻̅̅ ̅̅ ̅̅ ̅ or both in order to correct the bad mass relations. Both of these 

fields contain (15,2,2) in PS, and its VEV gives the relation 𝑚𝑒 = −3𝑚𝑑. 

As 126̅̅ ̅̅ ̅𝐻 is needed anyway for the see-saw, it is natural to take this first. The 

crucial point here is that in general (1,2,2) and (15,2,2) mix through ((10,1,3) and 

thus the light Higgs is a mixture of the two. In other words, ((15,2,2)) in 126̅̅ ̅̅ ̅𝐻 is in 

general non-vanishing. It is rather appealing that 10𝐻 and 126̅̅ ̅̅ ̅𝐻 may be sufficient 

for all the fermion masses, with only two sets of symmetric Yukawa coupling 

matrices. 
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An instructive failure: 

Before proceeding, let us emphasize the crucial point of the necessity of 120𝐻 or 

126̅̅ ̅̅ ̅𝐻 in the charged fermion sector on an instructive failure: a simple and beautiful 

model by cite. here model is non-supersymmetric and the SUSY lovers may place 

the blame for the failure here. It uses 〈16𝐻〉 in order to break 𝐵 − 𝐿, and the "light" 

Higgs is 10𝐻. Witten noticed an ingenious and simple way of generating an 

effective mass for the right-handed neutrino, through a two-loop effect which 

gives. 

𝑀𝑣𝑅 ≈ 𝑦𝑢𝑝 (
𝛼

𝜋
)
2

𝑀𝐺𝑈𝑇 

Where one takes all the large mass scales, together with 〈16𝐻〉, of the order 𝑀𝐺𝑈𝑇. 

Since  〈10𝐻〉 =  〈(1,2,2)𝑃𝑆〉 preserves quark-lepton symmetry, it is easy to see that 

𝑀𝑣  ∝  𝑀𝑢 

𝑀𝑒 = 𝑀𝑑 

𝑀𝑢  ∝  𝑀𝑑 

So that 𝑉𝑙𝑜𝑝𝑡𝑜𝑛 = 𝑉𝑞𝑢𝑎𝑟𝑘 = 1. The model fails badly. 

The original motivation here was a desire to know the scale of 𝑀𝑣𝑅 and increase 

𝑀𝑣, at that time neutrino mases were expected to be larger. But the real 

achievement of this simple, elegant, minimal SO(10) theory is the predictivity of 

the structure of 𝑀𝑣𝑅 and thus 𝑀𝑣.  
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Chapter Four 

Discussions And Conclusions 

 (4.1) Discussions 

When considering the SM family plus an additional SM gauge singlet, the        

right-handed neutrino, such theory allows type I and type II see-saw mechanisms 

for generating light neutrino masses.   

In type I see-saw mechanism, we can infer from the formula presented in equation 

(3.13) the following: 

If the scale 𝑀𝑅 << 𝑚𝐷, then neutrino would be predominantly Dirac particles. But 

if the scale 𝑀𝑅 ≈ 𝑀𝐷, we will have a messy combination of Majorana and Dirac 

particles, whereas for 𝑚𝐷 << 𝑀𝑅 we would have a Majorana case.  The Majorana 

neutrino mass is rather suggestive from the theoretical point of view. As such, it 

provides a window to new physics at scale 𝑀𝑅. The crucial prediction of this 

picture is the 𝐿 = 2 lepton number violation in processes such as neutrino less 

double beta decay 𝛽𝛽0𝜈. However, 𝛽𝛽0𝜈 depends in general on the new physics at 

scale 𝑀𝑅, and it is desirable to have a direct probe of lepton number violation. 

 

What happens if the neutrino has a pure Dirac mass nature? In this case and the 

smallness of Dirac mass essentially requires the smallness of Yukawa. The 

smallness of Dirac mass remains a puzzle  as controlled by small Yukawa, as much 

as the smallness of electron mass is controlled by a small electron Yukawa 

coupling.  
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In left right symmetric model, the neutrino mass matrix takes clearly the see-saw 

form as discussed earlier. The important point in this model is that the mass of 

neutrino  𝜈𝑅 is determined by the scale of parity breaking and the smallness of the 

neutrino mass is reflection of the predominant 𝑉 − 𝐴 structure of the weak 

interaction and provides a probe of parity restoration at high energies 𝐸 > 𝑀𝑊𝑅. 

The  SU(5) model is a fail tailor of the SM.  We can also have a mass term for the 

neutrino only ( renormalizable theory) by implementing the see-saw in any of its 

three forms. As such the neutrino mass will be cured in this model by the same 

way as the Standard model. It is therefore, phenomenologically not viable. 

 In SO(10) the see-saw mechanism, whether type I or II, requires 126:̅̅ ̅̅ ̅̅  it contains 

both (10,1,3) whose VEV gives a mass to 𝜐𝑅 (type I), and (10̅̅̅̅ , 3,1), which 

contains a color singlet, 𝐵 − 𝐿 = 2 field ∆𝐿, that can give directly a small mass to 

𝜈𝐿 (type II). 

 

 

(4.2) Conclusions 

In conclusion, we have studied the theory of standard model in some details and its 

extension to accommodate the neutrino mass by implementing the three type of 

sees-saw mechanisms and the explanation of the smallness of neutrino masses.  

From a strict minimal standard model point of view masses could vanish if no 

right-handed neutrinos existed (so no Dirac mass) and lepton number will be 

conserved (so no Majorana mass). 
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We also discussed the see-saw mechanism that explains the smallness of neutrino 

masses in term of the large scale where B-L violated. Thus neutrino masses are 

important to a probe into the physics at GUTs scale. 

SU(5) model has no right handed neutrino, therefore there will be no mass term for 

the neutrino, so it’s  a fail tailor of the SM.  But we can have mass term for the 

neutrino only (at renormalizable level) by implementing the three types of see-saw. 

However in SO(10) we have seen that naturally neutrino have mass due to the fact 

that the model is left right symmetric model. (M. Gell-Mann, 1979) 

 

 

Recommendation: This work may be extended by including the supersymmetric 

version of grand unified models.  
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