

 1

Chapter I

Introduction

1.1 Introduction

 As a result of the technological advances in recent years, we have become

increasingly dependent on global networks when engaging in social, business, and

educational activities. With the explosive use of computer networks, a number of

security issues on the internet and in computer systems have been raised.

 In the dawn of the information age, information has been attributed with an utmost

important asset of an organization .Especially, organization of financial, product

trading and data services via internet system need the highest security for customer’s

data, if those data are stolen by the people who have malicious intention, it will cause

high damage to the business and its effect to qualities to the provided services or the

system was become unavailable to provide the services that is requested from it’s.

Moreover, the network communication technology is the fast improved and more

complicated noun. If the organization doesn’t have an efficient security mechanism

for protecting data and network it makes the attackers to easily find vulnerabilities to

cause malicious activities on the networks.

 The using anti-threat applications such as antivirus software, firewalls and

spyware-detection programs are became not enough to detect and prevent the latest

malicious activates that resulting from advance tools and techniques that are used by

the intruders that make the needs for a technologies that help to detect and prevent

the unauthorized traffic that passed through a good intrusion detection with hybrid

approaches [1].

 Intrusion detection and prevention is the new technology that monitors the activities

on the network or on the specific devices like a servers to detect and prevent

unauthorized traffics. There are many types of intrusion detection techniques that can

be added to devices such as signature based and anomaly based intrusion detection

that full-filled to intrusion detection system such as snort system.

Snort is a free open source network intrusion detection and prevention system, has

capable of performing real-time traffic analysis and packet logging on IP networks.

Also , It can perform packets capturing and analysis for many types of protocols,

 2

content searching/matching, and can be used to detect a variety of attacks and like

flooding attacks .In additional to that it support two types of approaches signature

based and anomaly based detection techniques [2].

1.2 Problem Statements

 1.2.1 Background

 In the last decades, cyber-attacks have had a significant impact on the security

of businesses and organizations that resulting from rapid progression of

computer technology, computer violations are increasing at a fast pace.

Such malevolent activities become more and more sophisticated and can easily

cause millions of dollar in damage to an organization.

Through nay 2017, organizations have awarded hackers over $17 million in bounties

on Hacker One, and over $7 million awarded in 2016 alone. The detection of these

attacks is the most important issues for any organization and it can be done by the

using of two approach signature based and anomaly based detection for the detection

of attacks.

The signature base based on compared the observed data with predefined rules if it’s

match mean that there is types of attacks but the anomaly base detection compare the

observed behavior with the behavior of normal user if it’s different means that this

behavior of attacks. During the past year the devolved intrusion detection systems

have many shortages for detecting attacks and produce unacceptable results of

detection accuracy rate and false alarm rate.

 1.2.2 The problem

 The increasing number of cyber threats likes flooding attacks in the networks of

the organization and there were various approaches to intrusion detection are

currently being used, but they are relatively ineffective for detecting flooding attacks

and it will cause many problems such as:

1. May detect and prevent only known or unknown attacks.

2. Making a resource (e.g. CPU, memory, bandwidth, disk space) unavailable to

its legitimate users, by exhausting it

3. Bring a network or service down by flooding it with large amounts of traffic

[3].

4. The detection rate nearly is less than or equal to 95.5% and 1.8% for false

 3

positive rate, but in nowadays these values are not satisfied.

1.3 Importance of Research

 The proposed hybrid intrusion detection system that based on signature based and

anomaly detection that based on decision tree has ability to monitor the activities in

the network to detect flooding based attacks and it help the employees to do their task

more quickly. Also, It make the customers have guarantee to take few response time

to finish from required services without denial of their services.

1.4 Hypothesis

 Using of hybrid signature based and anomaly based detection model based on

decision tree that based on c4.5 algorithm a of data mining techniques that applied on

the proposed hybrid IDS on snort engine has capable of real-time intrusion detection

and network security monitoring for malicious activities or unauthorized traffics such

as flooded messages .Also its offer several advantages over alternative systems and

can represented it’s in:

 i. Providing higher security.

 ii.It’s support high availability and stability.

 iii. Producing better detecting results in terms of normal and abnormal behaviors

of captured packets than the existing results of currently used system.

1.5 Objectives of the Research

 The research aim to:

1. Collect dataset about the normal behaviors for valid users.

2. Build secure and robust hybrid IDS/IPS based on signature and anomaly

detection based on decision tree and neural network to provide high detection

rate and low false alarm.

3. Demonstrate how some types of distributed denial of services (DDOS) attacks

or flooding attacks that will occur and implement the behaviors of them

through various types of flooding messages.

4. Analysis the performance of proposed IDS/IPS system.

5. Evaluate the proposed of hybrid intrusion detection system.

1.6 Methodology

 For this research, will trying to find a method that provides the best way to

detect malicious activities and to solve the shortage of existing instruction detection

 4

system and this done by build enhanced hybrid instruction detection system that

based on signature technique and anomaly based technique by using decision tree of

data mining classification techniques to make deep packets inspection that help in

detecting of known and unknown attacks and providing better results of detection

accuracy rate and false alarm rate than existing results.

 1.7 Boundaries

 The proposed intrusion detection system was based on linux operating system

(Ubuntu, Kali) through using the signature and anomaly detection that is based on

decision tree of data mining technique under using snort and weka to detect some types

of flooding attacks such as: ICMP flood, TCP flood, UDP flood, SYS flood and HTTP

flood and will use iptabel firewall for prevention them.

1.8 Contents of Research

 Chapter one is introduction, this chapter gives introduction about the project,

defining the problems, important, proposed solution, objectives and boundaries.

Chapter two is literature review, it’s consists of two parts. Part one represents a

general background about the sending and receiving data or the observed data and

approaches of detection. Part two is the related studies and security techniques that

used in the organization for detecting flooding attacks.

 Chapter three also contains two parts, First part explains the tools and techniques

that is used in this project, and the second part is the project methodology that will be

taken and will represented it by drawing graphs that illustrate the project

functionality.

Chapter four is implementation and results analysis, this chapter conation

implementation for the proposed hybrid intrusion detection system and analysis the

results. Chapter five is the conclusion and future works that contains the results of the

project and recommendations for the future works.

 5

Chapter II

Literature Review and Related Works

2.1 Background

 This chapter will discuss about the data that are transmitted on the network and the

important of quality of service for the requested services from the servers and the

types and technique of instruction detection system, also it contains the literature

review for related studies with their security techniques that were used for intrusion

detection.

 The computer networks and internet play important role in our life and there are

daily interactivity with applications to do their tasks inform of transaction, banking,

shopping through the internet. As rapid growth of these applications there are many

new threats or malicious activities that effects to the resources or the performance on

the network that cause denial of services to the services that are provided to the

customers, so that the security for detecting unauthorized activities are become very

important on the networks

The unauthorized activities into a computer system or network are one of the most

serious threats to computer security that effect to the resources on the networks so

that will need more accurate intrusion detection system to maintains the

confidentiality , integrity and availability of security features on the networks.

Intrusion as term that can be defined as any unauthorized activities on the computers

network or on the internet with the regardless the types of intrusion approaches or

their methods that are flows .The need of the efficient system called intrusion

detection system(IDS), to detect attacks will become the most issues today [4].

2.2 Intrusion Detection System

 Intrusion Detection System (IDS) is meant to be a software application which

monitors the network or system activities and finds if any malicious operations occur

and this is done through using different types of intrusion detection approaches,

techniques, methods and algorithms. If the intrusion is detected more quickly , it

enable the network administrator to early identify the type of intrusion and select the

appropriate protection mechanisms that prevent the intruders from effecting to the

 6

systems , resources and from causing any damages to the systems , so that we must

select the appropriate types of IDS location ,techniques and deployment methodology

[5].

2.2.1 Deploying Intrusion Detection Systems (IDS’s)

 Intrusion detection technology is a necessary addition to every large organization’s

computer network security infrastructure to detect the malicious activities. However,

given the deficiencies of today intrusion detection products, and the limited security

skill level of many system administrators that effect to the development of IDS, an

effective IDS deployment requires careful planning, preparation, prototyping, testing,

and specialized training.

2.2.2 Types of Deploying IDS’s

 1. Network Based Intrusion Detection System (NIDS)

 In this type of IDS the system sensor was located behind the external firewall or It

is most specially denoted at a boundary between networks such as in routers,

firewalls, virtual private networks to detect the attacks that originating for outside

worlds and try to penetrate the network’s perimeter defense [6].

The internal host systems are protected by an additional NIDS to mitigate exposure

to internal compromise. The use of multiple NIDS within a network is an example of

a defense-in-depth security architecture to create more than one level of the detection,

such as represented in figure 2.1:

 Figure 2.1: NIDS Network [6]

 7

The main disadvantage of this type of intrusion detection system is that it has a single

point of failure. Moreover, it is weak against denial of service attacks. It monitors the

whole network and denoted at the boundary of the network. But it is not suitable for

securing each of the hosts within the network. If an intruder can bypass it, all the

systems within the network would be in troubling the problem so that it must

configured it with the good security mechanisms [7].

2.Host Based Intrusion Detection System (HIDS)

 Host-based IDS (HIDS) technology, software engineer are installed on each of the

computer hosts of the network to monitor the events occurring within that host only

not the whole network as it see in figure 2.2:

Figure 2.2: HIDS Network [7]

HIDS notice network traffic and system-specific settings such as software calls,

local security policy, local log audits. For analysis they use host system’s logging and

other information or action that occur on the system and registered on log file and it

provide these advantages:

1. Monitors system activities and can detect attacks that network IDS fail to

detect them without require additional hardware

2. It provide near real time detection for an attacks that success or failure for an

attacks to the system [8][9].

 8

3. Wireless Intrusion Detection System

 A wireless local area network intrusion detection system is similar to NIDS in

that it can examine wireless network traffics and analyze them to identify which

external users that trying to connect to our access point (AP) to cause any types of

malicious activities .This type of IDS are developed into access points or in wireless

routers or behind the firewall [10]..

Generally, the efficiency of detection attacks depends on the types of detection

techniques that full-filled on the intrusion detection systems.

2.3 Techniques of Intrusion Detection System

 The most commonly types of techniques that used by intrusion detection systems

for detecting intruders are misuse detection (also called signature based detection)

and anomaly detection (Behavior Detection).

 2.3.1 Signature Based Detection

The signature is a pattern that corresponds to a known threat. It’s also known as

knowledge based detection or misuse detection In signature based detection,

observed events are compared against the pre-defined signatures in order to identify

possible unwanted traffics if it’s match with the predefined rules or knowledge that

defined in IDS system as a represented this operations in figure 2.3:

Figure 2.3: Typical Knowledge-Based IDS [8]

 This type of detection technique is very fast and easy to configure. It’s is very

effective at detecting known threats but largely ineffective at detecting previously

unknown attacks that use new techniques or different approaches that commonly

unknown so that to detect these types of attacks will require to update the detection

rules of IDS. Still some organizations use signature base approach by taking it

limited capabilities of it’s and may be a curate for detecting the attacks that attacks

them [10].

 9

 2.3.2 Anomaly Based Detection

 Anomaly based detection is another approach of intrusion detection techniques. It

was inverted to solve the shortages of signature based detection and provides many

features for detecting unknown attacks.

In this types of detection, An IDS that looks at network traffic and detects data that is

incorrect, not valid, or generally abnormal is called anomaly based detection. This

method is useful for detecting unwanted traffic that is not specifically known. For

instance, anomaly based IDS will detect that an Internet protocol (IP) packet is

malformed. It does not detect that it is malformed in a specific way, but indicates that

it is anomalies. Compares definitions of what activity, is considered normal against

observed events to identify significant deviations. This method uses profiles that are

developed by monitoring the characteristics of typical activity over a period of time

[11].

Then the IDPS will compares the characteristics of current activity to thresholds

related to the profile if it’s anomalies mean that there are abnormal activities of

attacks as it show this process in figure 2.4:

Figure 2.4 : Typical Anomaly-Based IDS [8]

.One of the advantages of using a anomaly based detection approach, it can be very

effective at detecting previously unknown threats, but the common problems with

anomaly-based detection when including malicious activity within a profile,

establishing profiles that are not sufficiently complex to reflect real-world computing

activity, and generating many false positives alarms [12].

 2.3.3 Statefull Protocol Inspection

 Statefull protocol inspection is similar to anomaly based detection, but it can also

analyze traffic at the network and transport layer and vended-specific traffic at the

application layer, which anomaly-based detection cannot do. It’s compares

 10

predetermined profiles of generally accepted definitions of benign protocol activity

for each protocol state against observed events to identify deviations [10].

The common Problems with stateful protocol analysis include that it is often very

difficult or impossible to develop completely accurate models of protocols, it is very

resource-intensive, and it cannot detect attacks that do not violate the characteristics

of generally acceptable protocol behavior [13].

 Nowadays the using of only one types of intrusion detection techniques was became

inefficient to detect unauthorized activities , so the need of developing hybrid

intrusion detection systems with the good methods of intrusion detection techniques

was become the most issues.

 2.3.4 Hybrid Intrusion Detection Systems (HIDS)

 An IDS that use a mix of both techniques of intrusion detection such as signature

based and anomaly based detection techniques to obtain the features of both

techniques for detection the malicious activities with high accuracy and detection

rates with low false alarm rate [14]

The anomaly based detection technique need method that have specific algorithm

that used to detect anomalies. The decision tree of data mining techniques will

selected it as appropriate technique that provide method that help to detect the

unauthorized activities or attacks .

2.4 Data Mining Techniques

 Data mining (DM) is the process of automatically searching large volumes of data

for patterns using association rules to extract information that help to obtain or build

knowledge that can used to solve problems in particular domains by using data

mining techniques. DM is also called Knowledge-Discovery and it’s provides many

techniques with their own advantages and features that can use this technique used in

many fields such as for intrusion detection to help in finding and identifying the

normal and abnormal activities according to predefined thresholds [15].

2.4.1 Most common data mining techniques

I. Classification: It’s attempt to build predefined classification model for

classifying attacks or the objects according to particular class [16].

 11

II. Clustering: it’s aim to define a set of cluster and each cluster contain data or

object that like each other to enable to analyze and identify the similarity and

dissimilarity between the objects.

III. Association: Describes relationships within tuples. Detection of

irregularities may occur when many tuples exhibit previously unseen relationships. It

can be used for general analysis similar to categorization, or for detecting outliers

that may or may not represent attacks [16].

The main function of the model that we are interested in is classification, as normal,

or malicious, or as a particular type of attack and it provide high accuracy with the

different rates it depend on the types of techniques that provides methods that are

used .The common representations for data mining techniques include rules, decision

trees, linear and non-linear functions [15][16].

2.5 Data Mining Classification Techniques

 Classification is the process of finding a set of models (or functions) which

describe and distinguish data classes or concepts, for the purposes of being able to

use the model to predict the class of objects whose class label is unknown. The

derived or classification model is based on the analysis of a set of training data (i.e.,

data objects whose class label is known).

The classification model may be represented in various forms, such as classification

(IF-THEN) rules, decision trees, mathematical formula, or neural networks [16].

 2.5.1 Decision Trees:

 A decision tree is the data mining method technique that can be represented as

form of tree structure, where each node denotes a test on an attribute value, each

branch represents an outcome of the test, and tree leaves represent classes or class

distributions. The decision tree consists of nodes that form a rooted tree, meaning it is

a directed tree with a node called a “root” that has no incoming edges and it’s a

parent node to all other nodes. All other nodes have exactly one incoming edge. A

node with outgoing edges is referred to as an “internal” or “test” node. All other

nodes are called “leaves” (also known by decision nodes) [16].

 Naturally, decision tree can be easily converted to classification rules and the

complexity of tree has a crucial effect on its accuracy. The tree complexity is

explicitly controlled by the stopping criteria used and the pruning method employed

of particular algorithm.

 12

 The most Common Algorithms for Decision Tree are:

I. ID3

“The ID3 algorithm is considered to be a very simple decision tree algorithm

[Quinlan (1986)]. Using information gain as splitting criteria, the ID3 ceases to grow

when all instances belong to a single value of a target feature or when best

information gain is not greater than zero. ID3 does not apply any pruning procedure

nor does it handle numeric attributes or missing values “[16].

II. C4.5

“C4.5 an evolution of ID3, presented by the same author [Quinlan (1993)], uses

gain ratio as splitting criteria. The splitting ceases when the number of instances to be

split is below a certain threshold. Error-based pruning is performed after the growing

phase. C4.5 can handle numeric attributes. It can also induce from a training set that

incorporates missing values by using corrected gain ratio criteria as presented above

“[16].

III. CART

“ CART stands for Classification and Regression Trees. It was developed by

[Breiman et al. (1984)] and is characterized by the fact that it constructs binary trees,

namely each internal node has exactly two outgoing edges. The splits are selected

using the towing Criteria and the obtained tree is pruned by Cost-Complexity Pruning.

When provided, CART can consider misclassification costs in the tree induction. It

also enables users to provide prior probability distribution” [17].

2.6 Related Works:

 In the recent years, various hybrid IDS systems have been developed to achieve

the best possible performance. In this section, we will review some of these methods

P.Akshaya [18] has developed intrusion detection system based on genetic algorithm

and neural network to take the advantages of classification abilities of genetic

algorithm and neural network for intrusion detection system to detect new attacks

with high detection rate and low false negative and it used the KDD99 benchmark

dataset and obtained reasonable detection rate. The result of classification rate for

experiment result for known attacks were 80%, and for unknown attacks were 60%

L. Khalvati , M. Keshtgary and N. Rikhtegar [19] have proposed intrusion detection

system that is based on novel hybrid learning approach that combine the K-Medoids

 13

clustering and Selecting Feature using the support vector machine method to provide

a better accuracy and detection rate and also false alarm rate than the others. The

experimental results on the KDDCUP’99 dataset have shown that this method is

capable of achieving 91.5 % for the accuracy, 90.1% for detection rate and 6.36 for

False alarm rate for detecting DOS attacks.

Pradhnya Kamble, R. C. Roychaudhary [20] have proposed hybrid approach for

intrusion detection that based on using two a new learning methodology

towards developing a novel intrusion detection system (IDS) by Back

propagation neural networks (BPN) and Extreme Learning Machine(ELM).

Specifically, this paper proposes the application of an Extreme Learning Machine

based approach to the network-based intrusion detection system (IDSs). Good

performance is achieved and preliminary results are reported in this paper.

Özge C epheli1Saliha Büyükçorak, and Güneg Karabulut Kurt [21] have build hybrid

instruction detection system that based on signature based and anomaly based IDS

for detecting DDoS under using expectation maximization algorithm. The results

show that the proposed hybrid model of intrusion detection system has a 92.1% TPR

and 1.8% FPR, and with signature-based detector we get 64.7% TPR and 13.2%

FPR.

Aliya Ahmad , Bhanu Pratap Singh Senga [22] were developed instruction detection

system based on support vector machine using BAT Algorithm to identify all

intrusion correctly and minimized the false alarm generation to increase the

performance of the system. The experimental results have shown that the proposed

IDS had accuracy reaches up to 94.309% with minimum FPR and FNR whereas

classification rate for Existing Method (IG-ABC SVM) is 89.799%.

 Table 2.1: Comparison Table

N

o

Paper Name Author Techniques Result Open Issues

1

Intrusion

Detection

System Using

Machine

Learning

Akshay

a

Genetic

algorithm and

neural

network

based on

They Proposed intrusion

detection model has ability

to recognize an attack, to

differentiate one attack

from with result for

1.The suggested model

will became ineffective

in nowadays because it

has 60 80% for

detection rates and the

 14

Approach [18] machine

learning

known attacks were 80%,

and for unknown attacks

were 60% .

enhancement is required

2. The proposed system

does not has ability to

detect known attacks.

3. There are several

method that can increase

detection rate and

decrease the false alarm.

2 Intrusion

Detection

Based on a

Novel Hybrid

Learning

Approach [19]

L.

Khalvati

 , M.

Keshtga

ry and

N.

Rikhteg

ar

K-Medoids

clustering and

SVM

algorithms

They have proposed IDS

that is based on novel

hybrid learning approach

that has capable of

achieving 91.5 % for the

accuracy, 90.1% for

detection rate and 6.36 for

False alarm rate for

detecting DOS attacks.

1.The clustering

approach that it used has

low a curacy if they use

the classification

technique we obtain

better results.

2. It can detect unknown

attack only with

unsatisfied values of

accuracy, detection rate

and false alarm rate.

3 Discrimination

Prevention in

Data Mining

for Intrusion

and Crime

Detection [20]

Pradhny

a

Kamble,

R. C.

Roycha

udhary

Back propag

-ation neural

networks

and Extreme

Learning

Machine

Proposed hybrid approach

for intrusion detection that

based on using two a new

learning methodology

towards developing

 a novel IDS system.

The proposed system is

not easy to configure

and it require more

training time but it has

self adaptive learning

 15

N

O

Paper Name Author Techniques Results Open Issues

4 Intrusion

Detection

System Based

on Support

Vector Machine

Using BAT

Algorithm [21]

Özge C

epheli1

Saliha

Büyükç

orak,and

GüneG

Karabul

ut Kurt

Signature

based and

Anomaly

based under

using EM

algorithm

Build signature based and

anomaly based IDS for

detecting DDoS that has a

92.1% TPR and 1.8%

FPR, and with

signature-based detector

we get 64.7% TPR and

13.2% FPR.

1.The produced model

can able to detect

know and unknown

attacks with high value

of TPR and FPR and

them need to decrease

2.They doesn’t use any

effective protection

mechanism

5 Intrusion

Detection

System Based

on Support

Vector Machine

Using BAT

Algorithm [22]

Aliya

Ahmad ,

Bhanu

Pratap

Singh

Senga

Support

Vector

machine

using BAT

Algorithm

Proposed induction

detection system that

improves the detection

accuracy and reduces false

alarm rate with accuracy

reaches up to 94.3%

1.It enhanced the

accuracy to 94.3 for

detecting know attack

but it doesn’t detect

known attacks.

2. It requires good

preprocessed dataset to

work well.

2.6.1 Evaluation of literature review and related works

 From reading the related studies, I found that the most intrusion detection

systems that was proposed have many shortages such as them have unsatisfied results

of accuracy of detection rate and false positive rate for the detection of the attacks

in nowadays and it can detect known or unknown attacks so that will need to

enhanced it by building hybrid IDS/IPS system to provide better results than existing

systems and this is the main goals of this thesis (see table 4.1).

 16

Chapter III

Methodology

3.1 Introduction:

This chapter mainly contains the methodology and definition of require tools for

developing the proposed instruction detection system. The project aim to build

efficient hybrid intrusion detection system that is based on signature based detection

and anomaly detection based on decision tree and neural network to detect the

flooding attacks with high accuracy and detection rates.

Today intrusion detection system is still in infancy and need lot of research work

to be done to make the intrusion detection even more successful. There are a huge

number of issues and challenges in current intrusion detection system which needs

the immediate and strong research attention to make enchantment for it’s.

The issues and challenges are as:

1. Deficiency or incomplete Data set:

The updated data set has high effective for accuracy of detection and the cleaning of

the data set are very important for building the model of detection.

2. The signature based intrusion detection system detects only known attacks.

3. Detection Algorithms:

The IDS need efficient algorithm that enable to detection of attacks with high

accuracy of detection rates that implement under the appropriate tools.

3.2 The required tools:

3.2.1 Ubuntu:

 Ubuntu is a complete linux operating system, freely available with friendly user

interfaces that support many types of languages to make easily interaction with the

software s on it’s and it make the people should have the freedom to customize and

alter their software in whatever way they see fit and it is suitable for both desktop and

server use with the version 17.10 and it’s has many features that provide it’s [23].

Features of using ubuntu:

1. Friendly user interface and it also support the command line interface with the

upgraded version of the kernel.

 17

2. Fast, secure operating system and with thousands of apps that available for

download.

3.2.2 Snort:

 Snort is an open-source; free and lightweight network intrusion detection system

(NIDS) software created by martin roesch in 1998 for linux and windows to detect to

the malicious acclivities that was occurred

Snort is a packet sniffer that monitors network traffic in real time to capture and

analyze each packet closely to detect a dangerous payload or suspicious

anomalies.Snort is currently the most popular free network intrusion detection

software , it used in building the proposed hybrid IDS because it provide the following

features :

 1. Real time intrusion detection: it help to detect attacks more quickly and on real

time with the using predefined rules and anomalies.

 Snort rules are easy to write and it’s greater accuracy

 2. High adaptability and its support three mode that can be used to solve your own

network security problems.

 Snort Modes:

 Snort operates in three basic modes: packet sniffer, network intrusion detection

mode and packet logger mode.

 1. Packet Sniffer Mode

 In packet sniffer mode the snort can be used as packet sniffer to capture the packets

and analyze them and can also log these packets to a log file or into the database. The

file can be viewed later on [24].

 2. Network Intrusion Detection (NID) Mode

 In network Intrusion Detection mode, Snort logs only those packets which match a

certain rule (pre-defined attack signatures) and generates alarms. Common rules

(signatures) can be obtained from the installation files it’s self, and new rules keep

updating regularly [25].

 3. Packet logger mode

 This mode is used to log a packet in log file.

 18

 3.2.3 Wireshark

 Wireshark is an open source tool that is used for packets capturing and analyzing. It’s

referred to it’s as a packet sniffers or network analyzer. It can be used to examine the

details of traffic at a variety of levels to provide information that is needed by the

network administrators such as: date and time of capture of packet, source ip address,

source port number, destination ip address, destination port,…. etc [26].

 Advantages of using Wireshark:

 a. Network administrators use it to troubleshoot network problems.

 b.Network security engineers use it to examine security problems.

 c,Using it to verify network applications

 3.2.4 Weka:

 Weka (Waikato Environment for Knowledge Analysis) is tool that contains a set or

collection of machine learning algorithms for data mining tasks. The algorithms can

either be applied directly to a dataset or called from your own Java code. Weka

contains tools for data classification, clustering, regression, association rules, and

visualization. It is written in java, developed at the university of Waikato in new

zealand [27].

Advantages of using Weka:

1. It’s available free and it’s open source tool.

2. Its portable software and cam run on any platforms.

3. Ease of use due to it has friendly user interfaces

4. It’s contain a set of techniques that can be use for data preprocessing ,

transformation and building model that help to discovers knowledge from large

dataset.

 The proposed method of data mining techniques are applied it on the network

security laboratory knowledge discovery data mining (NSL-KDD) dataset with 41

features and generally it consist from 42 feature one of them is used as the class.

3.2.5 Dataset Description

 The NSL-KDD data set is the updated version of the KDD cup99 data set .It’s can be

used by many types researchers to analysis it for solving many problems by

employing different techniques and tools with a universal objective to develop an

 19

effective intrusion detection system. It’s stand for network security laboratory

knowledge discovery data mining [28].

3.3 Project Methodology

The collected data-set or observed traffics are need to prepossessed to help the

hybrid IDS techniques to detect attacks.

After that the observed traffic are passed to hybrid IDS (Signature and Anomaly)

detection system as seen in figure 3.1. In signature based detection, The

detector(Engine) will compare the observed traffics against the pre-defined

signatures in order to identify possible unwanted traffic after the observed traffic are

matches with the pre-defined signatures then it will generate attacks alert messages to

the administrator as shown in the top part in the below figure 3.1:

 Figure 3.1: Architecture of the proposed Hybrid IDS

 From the above figure 3.1, In Anomaly based detection engine, the anomaly base

detector must receive processed dataset so that will need to preprocess it by

extracting the important features (e.g . duration , protocol, service ..,etc) and cleaning

data-set from any noise or irrelevant values then will reduce the features by remove

similarity attributes after that will be able to transfer it to required format that will

needed by the methods of the proposed hybrid intrusion system and there is no

significant differences between preprocess in figure 3.1 and 3.2 but the figure 3.2

illustrate operation of anomaly based model with the more details and that it’s seek to

define it.

Observed
Traffic

Signature Base Detector

Preprocess

Anomaly Base Detector

Decision
Combiner

Attacks
Alerts

 20

The removing of irrelevant features from the dataset can be done by using Info gain

feature selection technique and it help to develop a robust classifier that will be

computationally efficient and effective techniques for cleaning data-sets as

represented steps in figure 3.2:

Figure 3.2: Steps of building proposed Anomaly detection model

After that , the prepossessed dataset are passed to the classifier of the proposed

intrusion detection system that work with hybrid techniques as it saw in figure 3.1,

then the training dataset are passed to classifier to classify it as normal and abnormal

traffics according to predefined classification as it’s represented in figure 3.2.

Features Extraction

Reduce Features

Preprocessing

 Decision tree based on C4.5
algorithm

Test Dataset

Training
Dataset

Normal
Traffic

Abnormal
Traffic

NSL-KKD

dataset

Classify
Traffic

 21

 As it saw in figure 3.1, the hybrid techniques with their methods will work together

by using decision combiner to work as logical module that generate decision for

detecting attacks based on signature and anomaly detection technique to

provide high accuracy of detection rates to help administrators to choose and

configure the appropriate protection mechanism.

 3.3.1 Reasons of using classification techniques

 Because the classification techniques are useful to handle large amount of data.

Classification is used to predict categorical class labels. Classification models are

used for classifying newly available data into a class label.

 3.3.2 Reasons of using decision tree based on C4.5

 Because it’s divides the classification problem into sub-problems. It builds a

decision tree which in turn is used to develop a model that is used for the

classification purpose. The decision tree provides these features:

1. Decision trees can be very fast and power efficient.

2. Decision trees have an easy to follow natural flow from visual representations of

the data so that it’s easy to understand.

3. They are easy to program for computer systems with IF, THEN, ELSE statements

The C4.5 algorithm has many features such as it can dealing with both continuous

and discrete attributes, missing values and pruning trees after construction and it

produce more accurate model.

3.4 Network Assumption

 In this project, Azab Company is taken as case-study to building the proposed

hybrid intrusion detection system. To detect the some types of flooding attacks that

commonly populated and it threats most organization.

 Azab is the one of the biggest company in sudan that attempt to do business

investment in telecommunication sectors, construction and industrial projects. The

security mechanism that was used in this company was became inefficient to detect

the popular types of flooding based or distributed denial of service attacks and it’s need

to more effective security mechanism to detect the malicious activities that will threats

the most types of companies and cause denial of services.

 22

Chapter IV

Implementation And Results Analysis

4.1 Introduction

 This chapter contain implementation for the proposed hybrid intrusion detection

system and analysis the results. The implementation of the proposed system requires

the definition and installing of many packets.

4.2 Installation Steps

 The preparation of the proposed detection system must be done firstly by installing

all the prerequisites packages from the ubuntu repositories:

$ sudo apt-get install –y openssl libpcre3-dev libssl-dev build-essential libpcap-dev

libdumbnet-dev bison flex zlib1g-dev liblzma-dev

The preparation of intrusion detection environment was done through different steps

the divided to many points to make the system will able to detect the attacks

4.2.1 Installing snort packages

 These important packages that must be installed:

- openssl and libssl-dev: Provides security feature.

- build-essential: it need for compiling software.

- bison, flex: it used as parser.

- libpcre3-dev: Library of functions to support regular expressions required by

snort.

- libpcap-dev: Library for traffic capture .

After that will create snort-src folder in home directory to download, extract, configure

and install the packages such as snort and Data Acquisition library (DAQ) .

After the download of the source (e.g.snort) then will need to extract it and navigated to

it’s by using this command :

 $cd snort-2.9.7.6 # To navigate to it’s to install and configure iit.

$./configure --enable-sourcefire # To configure/setting up snort

$make

$sudo make install # To install snort package

 23

Through previous steps the installation of snort was done and the of snort -v command

will show the version of installed snort.After that will need to configure snort to work as

network intrusion detection.

4.2.2 Configuration of snort to run as network intrusion detection system:

Firstly , we need to create new user and group with the name snort to owener them

some files.

$sudo useradd snort -r -s /sbin/nologin -c SNORT_IDS -g snort # To create new

snort user.

$sudo groupadd snort # To create new snort group

Next, will need to create a number of files and folders that snort expects when

running in NIDS mode. It was building as the following structure:

/etc/snort/rules/local.rules # to assign your own rules

/etc/snort/sid-msg.map # to define the snort’s signature ID.

Then must change the ownership of those files to our new snort user. Snort stores the

configuration files in /etc/snort.conf and it stores the rules in etc/snort/rule and stores

its logs in /var/log/snort.

Secondly, the definition of the network address that monitor it must done on this step

vi modification of snort configuration file (/etc/snort/snort.conf) in the line to ipvar

HOME_NET 172.16.34.0/24 and EXTERNAL_NET to any.

Finally, we want to enable one included rule file: /etc/snort/rules/local.rules by

uncommitted it to enable the definition of our rules. And test the configuration of

snort by running this command:

sudo snort -T -c /etc/snort/snort.conf -i ens32

 # option T for test , c for specify the conf file and i for determination of NIC

The output of this command is :

Snort successfully validated the configuration!

Snort exiting

It’s mean that the snort was configured successfully and can add and use the

rules that is need for the detection.

4.3 Building of signature detection model

 The signature detection method will need to define signatures or rules to detect the

types of attacks that match the predefined signatures then the next phase is to define

the signatures and test it as in the next following points.

 24

 4.3.1. Writing and Testing Snort’s Rule

 The intrusion detection system must full-filled with known signature if it’s based on

signature detection technique..In the project will define signatures for flooding

attacks like ICMP flooding and make snort to generate alert when the signatures are

matches.

The definition of rules will done by edit the intended rules in this file

/etc/snort/rules/local.rules such as the definition of ICMP messages:

alert icmp any any -> $HOME_NET any (msg:"ICMP test detected"; GID:1;

sid:10000001; rev:001; classtype:icmp-event;)

This rule says is that for any ICMP packets it sees from any network to our home

network, generate an alert with the message “ ICMP test. detected” The other

information here (GID, REV, classtype) are used for group the rule, then will need to

make sure this path /etc/snort/rules/local.rules that found in snort.conf file is

uncommitted.

Before testing the rules the most important thing that must known is the internet

protocol address of target networks or devices and this is will done through typing

ifconfig command on linux operating system as seen in figure 4.1:

 Figure 4.1 : Information about network interface

After that will need to make snort to works as NIDS to monitor the traffic vi running

this command:

$sudo snort -A console -q -u snort -g snort -c /etc/snort/snort.conf -i ens32

Note:

-A console ~ it print alerts in terminal interface

-q : Quiet. Don't show extra details ,-u snort : run snort as snort user , -g snort :run

snort as snort group, -c /etc/snort/snort.conf ~ the path of snort configuration file

-i ens32~ the interface to listen on

 25

The test of snort will done from other terminal or device will pinging the Target

destination (ip address: 172.16.34.128) with 64000000 packets size as will show in th

figure 4.2:

Figure 4.2 : Pinging the target

The monitoring events for the behavior of flooding ICMP messages will show it if

will return to the terminal of IDS system as it see in figure 4.3:

 Figure 4.3: Detect of ICMP flooding attacks

 The resulting of ICMP flooding attacks cause the high utilization of resources

(CPU , memory , buffer of network) as will represented in figure 4.4 :

 Figure 4.4: effect of ICMP flooding messages

 26

 4.3.2. Load balancing on snort server

 The snort server always work in detection mode to monitor all the traffic and this

cause high load to it’s, so that to reduce the load will need to install and configure

barnyard2.

First, will need to install some pre-requisites packages:

$sudo apt-get install -y mysql-server libmysqlclient-dev mysql-client autoconf libtool

The abc123# will choose it as root password.

Next, will need to edit the snort.conf file to tell snort to output event in a binary form

through using unified2 binary format by adding this line :

 output unified2: filename snort.u2, limit 128

Secondly, will come to installation and configuration of Barnyard2:

 Before the installation, will need to download the source of packet through using

following command:

 wget https:// github.com/firnsy/barnyard2/archive/7254c24702392288fe6be9

48f88afb74040f6dc9.tar.gz -O barnyard2-2-1.14-336.tar.gz.

 Then will extract the source and move the files to barnyard2-2-1.14-336 to rightly

configure it.

After that, the determination of MYSQL library packet that needed to compatible it

with Barnyard2 by running this command :

$./configure --with-mysql --with-mysql-libraries=/usr/lib/x86_64-linux-gnu

Then continue with the install:

$ make
$sudo make install # to install barnyard2

Barnyard2 is now installed to /usr/local/bin/barnyard2. To configure snort to use

Barnyard2, we need to copy a few files from the source package:

$cd ~/snort_src/barnyard2-2-1.14-336

$sudo cp etc/barnyard2.conf /etc/snort # this step for coping

Then will need to create barnyard2 diracrty in log directory and change the

ownership to snort user and group

$sudo mkdir /var/log/barnyard2

 $sudo touch /var/log/snort/barnyard2.mofti

Sudo chown snort.snort /var/log/snort/barnyard2.mofti

$sudo touch /etc/snort/sid-msg.map

 27

Thirdly, the create of the database must be done to make Barnyard2 save alert to the

database by setting and typing this commands :

$ mysql -u root -p

mysql> create database snort; # To create snort DB

mysql> use snort; # To use snort DB

mysql> source ~/snort_src/barnyard2-2-1.13/schemas/create_mysql

mysql> CREATE USER 'mofti'@'localhost' IDENTIFIED BY 'abc123#';

mysql> grant create, insert, select, delete, update on snort.* to 'moftit'@'localhost';

To give mofti authority for dealing with DB .

mysql> exit

Now that the snort database has been created, we need to tell Barnyard2 about the

details of the database so that will need to edit to the Barnyard2 configuration file:

$sudo vi /etc/snort/barnyard2.conf and at the end of the file, append this line that it

show in figure 4.5:

 Figure 4.5: Information about the db connection

 After the configuration of Barnyard2 to work with snort, will need to test them

together and generate alert that require to run snort as a daemon though using this

command to run snort as process or daemon as will see it in figure 4.6:

 Figure 4.6: Creation of the daemon

 Then Pinging the IP address (172.16.34.128) of the interface specified above ens32).

If you check snort’s log directory, you should see a file called snort.u2.12356. These

are the binary alerts that snort has written out for Barnyard2 to process.

Now we want to tell Barnyard2 to look at these events and load into the snort

database instance. We run Barnyard2 with the following flags:

sudo barnyard2 –c /etc/snort/barnyard2.conf -d /var/log/snort -f snort.u2 -w

/var/log/snort/barnyard2.waldo -g snort -u snort and It give this output as it see in

figure 4.7 :

 28

 Figure 4.7: Information about barnyard

 The stopping of barnyard2 from running will done by using ctrl+c , then to stop the

snort daemon must use ps to find and terminate it by typing sudo kill <pid>.

 4.3.3. Installing and configuring BASE

 BASE is graphical web interface that is used to mointer network activities and

provide efficient for most public that deals with graphical user interface and it’s

difficult for doing administrative task by using the command line so that will need to

customize the GUI web application like BASE interface to help for solving the

problems. BASE is a simple web GUI for snort, it’s easy for configuration and

simple to use .

There are some pre-requested packets that must be installed such as:

1. sudo add-apt-repository ppa:ondrej/php

2. sudo apt-get install -y apache2 libapache2-mod-php5.6 php5.6-mysql php5.6-cli

php5.6 php5.6-common php5.6-gd php5.6-cli php-pear php5.6-xml

3. sudo pear install -f --alldeps Image_Graph # To install Pear image graph.Then will

need to download and install ADODB.

ADODB is a PHP database class library to provide more powerful abstractions for

performing queries and managing databases

cd ~/snort_src

$wget https:// sourceforge.net/projects/adodb/files/adodb-php5-only/adodb-520-

for-php5/adodb-5.20.8.tar.gz # To download the packet

then will need to extract archive folder and navigate to adodb source and change the

ownership of it’s by using this command :

#sudo chmod -R 755 /var/adodb # To set specific permission

 29

Next step is to download BASE and copy to apache root through running these

commands:

$cd ~/snort_src

$wgethttp://sourceforge.net/projects/secureideas/files/BASE/base- .4.5/base-1.4.5.tar.

gz

$tar xzvf base-1.4.5.tar.gz

$sudo mv base-1.4.5 /var/www/html/base/

After that will need to create the BASE configuration file by using this command:

$cd /var/www/html/base # to nabigate to base folder

$ sudo cp base_conf.php.dist base_conf.php

Now edit the config file:

$sudo vi /var/www/html/base/base_conf.php

With the following settings (note that the trailing slash on line 80 is required, despite

the instructions in the configuration file):

$BASE_urlpath = '/base'; # line 50

$DBlib_path = '/var/adodb/'; #line 80

$alert_dbname = 'snort'; # line 102

$alert_host = 'localhost';

$alert_user = 'snort';

$alert_password = 'MySqlSNORTpassword'; # line 106Then restart Apache to

update the setting and configuration:

$sudo service apache2 restart # Then restart the apache service

Then will generate ICMP flooding messges to the target device by running this

command:

 ping 172.16.34.128 –s 65500 # s for determine the size of messages

The result of running that command is sending flooding message with the 655000

bytes

The last step to configure BASE is done via http:

1. Browse to http://localhost/base/index.php and click on the setup page link.

2. Click on the Create BASE AG button on the upper right of the page.

3. Click on the main page link to show the types of attacks that was occurs and it

display the effect ion of flooding as in figure 4.8:

 30

Figure 4.8: Interface of base module

 From the previous figure 4.8 the red line illustrate that is ICMP flooding message ,

to show the details of sources and destination of the messages click on ICMP tag and

it’s display in figure 4.9 :

 Figure 4.9: Information about the interfaces and protocol

4.4 Building of anomaly detection model

 Anomaly detection model need a profile or model to classify a traffics the model

will create it by using data mining techniques (Decision Tree and Neural Network)

under using weka tools through the following parts after opening weka by using this

command : java -jar weka.jar then will need to importing data-set.

4.4.1 Importing and preprocessing data-set:

The building of anomaly detection model require processed imported data set

before training it by using the specified algorithm ,so that that will need to import

 31

the NSL -KDD train data -set as represented by figure 4.10:

 Figure 4.10: Importing of data-set

After that, will reprocess it by extracting the important features and cleaning it

from any noisy or duplicated values all that done on total 42 features as it appear in

figure 4.11:

Figure 4.11: Removing irreverent features

42 feature was processed it and extracted to become 30 features that only need

for the detection to pass it to algorithms.

4.4.2. Working of data mining algorithms

 After processing data set then will pass it to enhanced decision tree algorithm to

classify a traffic to normal and abnormal, such as the following figures 4.12:

 32

Figure 4.12: Classification of traffics base on no of packets

 The previous figure differentiate the behavior of valid users form invalid users

Attacker) according to number of packet that are sent. If there are .04 (4) packets or

less than it as inbound traffic this mean the normal traffic for valid user else this is

abnormal traffics that is sent by attacker that act as ICMP flooding attacks or may be

use other type of flooding attacks as it see in figure 4.13 :

Figure 4.13: Classification of traffics

 Attackers can also cause denial of services to services that provides to user by

using TCP or UDP flooding messages to full the destination’s buffers with large a

mounts of traffics that represented in the figure 4.14 :

 Figure 4.14: Classification of TCP traffics

 33

 After the building the proposed enhanced hybrid instruction detection with hybrid

approach signature and anomaly based detection that it based on the decision tree

then will test the system with many types of attacks behaviors.

4.5 Testing of attacks behaviors

 4.5.1 Nmap scanning attacks

 This type of attacks attempt to obtain information a bout the target device such as

the information of the used of operating system and open and closed ports as in

figure 4.15 after using the nmap –A –v 172.16.34.128 command :

Figure 4.15: Output of scanning process

Figure 4.15 illustrate that there are many open tcp ports such as 445,80 and

53.When the traffics of scanning process come to the instruction detection system

then it compare the observed traffics with the signature in IDS system as in figure

4.16 if it’s matched the rules:

 Figure 4.16: Result of detection nmap scanning attacks

 Figure 4.16 show that there are malicious activities from nmap scanning attacks to

attempted information leak and can use that information that it saw in figure 4.15 to

attacks the target.

 4.5.2 SYS flooding attacks

The behavior of this type of attacks was done by sending many SYN messages to

the target and fill it’s buffers vi using this command as it found in figure 4.17:

 34

Figure 4.17: Command for SYS flooding attacks

The target (HIDS) system cause alerts message after it receive abnormal traffics of

sys flooding attacks and cause the flowing results of detection as in figure 4.18:

 Figure 4.18: Result of detection of TCP /SYS flooding attacks

Figures 4.18 notify that, there are bad traffics of tcp or sys messages with the

flowing source ip address and destination ip address that are displayed in figure 4.19:

Figure 4.19: Information about src and dst of messages

This flooding sys messages cause high load to the server that can be represented

as in figure 4.20:

 35

Figure 4.20: Effect of sys attacks on the resources

 Figure 4.20 illustrates that the target devise it receive large amount of sys flooding

messages from the hacker device and these amount of traffic to the target device

make the result of increasing of the loads with the changing of the time that

represented in x dimension in figure 4.20 .

4.5.3 UDP flooding attacks

 This types of attacks are occurs by sending many udp packet to the target to slow

the system by filling it storage capacity such as RAM and that effect to resources as it

seen in figure 4.21:

 Figure 4.21: Effect of UDP flooding attacks on the resources

 Figure 4.21 show that the number of packets is increasingly received and it cause

denial to services.

Then the proposed hybrid IDS system is enable to detect these types of attacks by

running this command to change to detection mode as in represented it in figure 4.22:

 36

Figure 4.22: Result of detection UDP flooding attacks

4.5.4 HTTP Flooding attacks

 This types of attacks was done by sending many requests to target to open channel

or session that carry many inbound traffics this was occurs by running this command

that it written in figure 4.23:

 Figure 4.23: Result of sending many no of the requests

 Figure 4.23 illustrate the number of request that send to the target that has ip

address: 172.16.34.128 and it cause high load as represented in figure 4.24:

Figure 4.24: Load on the target device

 37

 Figure 4.24 show that the target device receive many inbound traffics that coming

from unauthorized users and it cause high load with the large amount of packets

that increasing with the changing of the time (s).

All these types of tested attacks will send flooding messages to the target to slow it

performance and cause denial to provided services and it also effect to availability of

it’s by full-filled with the large amount of traffics and it was become difficult to

process the received requested efficiency with good response time because there are a

high traffic coming to the sever resulted from unauthorized activities to its as

represented in the following figure 4.25:

Figure 4.25: Amount of unauthorized traffics

 The activities on the networks it need to continuously monitoring it to detect the

unauthorized activities that cause flooding or unauthorized traffics to try to prevent it

early before it cause high damage to the resources or effect to the provided services

to the clients, so that there is high importance to the intrusion prevention system.

4.6 Intrusion Prevention System

 Instruction prevention system is system that is configured to prevent or restrict the

unauthorized activities or traffics and this is done by many system like firewall,

pefsense , access control list and iptablesetc.

 4.6.1 Iptables:

 Iptables is an application that allows users to configure specific rules that will be

enforced by the kernel’s netfilter framework. It acts as a packet filter and firewall that

examines and directs traffic based on port, protocol and other criteria.

 38

For example, the following command adds a rule to the beginning of the chain that

will drop all packets from the address 172.16.34.132:

iptables -I INPUT -s 172.16.34.132 -j DROP

The samples:

-I: mean insert new rules

-s: Indicate for source address of the device.

-j: stands for jump. It specifies the target of the rule and what action will be

performed if the packet is a match.

Some system administrators want to block incoming ping requests due to security

concerns. While the threat is not that big and this is done by using this command:

 # iptables -A INPUT -p icmp -i ens32 -j DROP

In case if only want to block TCP traffic from that IP address, i can use the -p option

that specifies the protocol. That way the command will look like this:

 # iptables -A INPUT -p tcp -s 172.16.34.32 -j DROP

You may use a port to block all traffic coming in on a specific interface. For example:

iptables -A INPUT -j DROP -p tcp --destination-port 23 -i ens32

Description of the samples:

-A : To append new rules , -i : To specify the interface that implement the rules on

it’s , -m: is for match.

To allow incoming traffic from multiports must types this command:

iptables -A INPUT -p tcp -m multiport --destination-ports
2,25,53,80,443,465,5269,5280,8999:9003, 5222 -j ACCEPT

Iptables can use it to block all traffic and then only allow traffic from certain IP

addresses. These firewall rules limit access to specific resources at the network layer.

Below is an example sequence of commands:

iptables -A INPUT -s 172.16.0.0/16 -j ACCEPT

iptables -I INPUT -s 172.16.34.132 -j DROP

iptables -P INPUT DROP

iptables -P FORWARD DROP

 The final two commands set the default policy for all inputs and forward chains to

drop all packets. Then, to add new rules that disable the outgoing ICMP traffics

must use this command:

 39

 # iptables -A OUTPUT -p icmp --icmp-type 8 -j DROP

The following iptables rule will block all incoming traffic from 172.16.34.128 where

source port is port 80 / www and it’s used to block an access to a specific website as

in figure by using the following commamd:

 # iptables -A INPUT -s 172.16.34.128 -p tcp --sport 80 -j DROP

Figure 4.26 illustrate that the status of the target before it flooded and the status of its

after the flooding it with the large amount of inbound traffics that represented with

high curve as it see in figure 4.26 :

Figure 4.26: Effecting of prevention mechanism after the flooding

 After the monitoring process would notify that there is a huge amount of traffics

that need to prevent or drop it. Then after the dropping process it the performance of

the network was enhance as it show in figure the curve was going to down that

mean there is high throughput on the network to provided services.

Verification of iptables Rule sets:

To check your set up iptable rules we must use the v option for a verbose output:

 # sudo iptables -vL

If you want to log the dropped packets on network interface ens32, you can use the

following command:

 # iptables -A INPUT -i ens32 -j LOG --log-prefix " Recycle Bin:"

The messages are logged in /var/log/messages and you can search for them with:

 # grep " Recycle Bin:" /var/log/messages.

 40

4.7 Evaluation of proposed model

 The proposed model of enhanced hybrid intrusion detection and prevention system

that based on signature and anomaly based detection of decision tree algorithm will

work more efficient by make deeply packet inspection for detecting and preventing

the flooding attacks.

In anomaly based detection technique ,the proposed decision tree algorithm make

enhancement of accuracy of detection rate to became 99.8 % and it reduce the values

of true and false positive to these values for normal and anomaly traffics as it see in

figure 4.27:

 Figure 4.27: Results of classification

Table 4.1 contains simple accuracy comparisons between the proposed algorithms

and many other algorithms as in table 4.1:

Table 4.1 : Comparison between the previous results

Algorithm Accuracy rate

Gentic algorithms+ Neural

Network

80%

K-Medoids + SVM 91.5

Decision Stump 92.4%

EMA 92%

BAT Algorithm 94%

The Proposed algorithm 99.8%

 41

Chapter V

Conclusion And Future Work

5.1 Conclusion

 In this thesis, a new hybrid intrusion detection method that integrates a signature

detection model and an anomaly detection model is introduced .The observed data

will pass to detection engine and compare it with predefined rules or signature if it’s

match mean that there is attacks .Then it use decision tree that is based on c4.5

algorithm to build anomaly detection model to classify a traffics according to the

behaviors.

 The results show that the proposed hybrid intrusion detection system with hybrid

approaches of detection are signature based and anomaly based detection through

using decision tree of data mining techniques has a ability of detection attacks (e.g :

ICMP flooding , SYS flooding , UDP flooding , HTTP flooding and Port scan attacks)

with the faster time and higher detection rate that reach to 99.8% and also it reduces

the number of false positives on the detection system to 0.001 when it compares with

previous result of IDS as it saw in figure 4.27 and table 4.1

 Hence, the security of a network can be enhanced through implement the proposed

enhanced hybrid intrusion detection system that provide higher accuracy in terms of

anomaly detection and faster execution time in terms of signature based detection.

The performance of new hybrid intrusion detection system was tested with

NSL-KDD Cup99 Dataset.

 In additional to that, the thesis aimed to build protection mechanism through using

iptables firewall to define rules that prevent the tested attacks as it saw in figure 4.26.

5.2 Future Work

 This project has studies and implementation for enhancing the hybrid intrusion

detection system by applying signature and anomaly based detection vi using

decision tree based on C4.5 algorithm and reach to acceptable results.

However, there are still several areas where need more work to researches and

can be done in future such as try to build intrusion detection systems using

different data mining algorithms and to punish mark these systems using various

types of flooding attacks or distributed denial of service attacks.

 42

 In additional to that , the proposed mode of the enhanced hybrid system can be

implemented in various types of the network such as in wireless networks ,

multi-protocol label switching networks and software defined networks .

 Also, there are many protection system (e.g. pefsense) that can be used to protect

the resources for unauthorized activities and can be integrated with the proposed

enhanced hybrid IDS.

 43

References

[1] William Stallings, “Network security essentials: application and standards”, in

Pearson Education, -Inc person highered., ISBN 10: 0-13-610805-9 ISBN 13:

978-0-13-610805-4, 4 edition ,2011.

[2] https://www.snort.org/ , last access : 5 Dec 2017.

[3] From interview of IT employee in the organization, and related papers.

[4] Roberto, luigi,”Intrusion Detection Systems” in Springer, ISBN-13 9780387772

653, 2008th Edition, 2008 .

[5] Stephen Northcutt and Judy Novak, “Network Intrusion Detection”, ISBN-

1 : ISBN: 978-0735712652, 3rd Edition, September 2002.

[6] Alan Schwartz, Gene Spafford, Simson Garfinkel ,”Practical UNIX and Internet

Security “in O'Reilly Media, Inc , ISBN: 0596003234,3rd Edition ,February 2003 .

[7] Ali A. Ghorbani , Wei Lu , Mahbod Tavallaee , “Network Intrusion Detection and

Prevention” by Springer ,ISBN: 978-1461424741, ASIN: 1461424747 ,2010

edition ,February 25, 2012.

[8] Carl Endorf,Gene Schultz,Jim Mellander ,”Intrusion Detection & Prevention” in

Tata McGraw-Hill Education Pvt. Ltd. , ISBN 13: 9780070616066 ,first edition ,

2006 .

[9] B.Santos Kumar, T.Chandra Sekhara Phani Raju, M.Ratnakar, Sk.Dawood Baba,

N.Sudhaka ,“Intrusion Detection System- Types and Prevention” ,in International

Journal of Computer Science and Information Technologies . Vol. 4 (1), 77 - 82.2013.

[10] J.David Irwin, Chwan-Hwa Wu,”Introduction to Computer Networks and

Cybersecurity” ,in CRC Press , ISBN: 9781466572133 , fourth edition , April 2016.

[11] David J. Marchette,”Computer Intrusion Detection and Network Monitoring: A

Statistical Viewpoint” in Springer, ISBN: 9780387952819, 1st Edition, 2001.

[12] Rafeeq Rehman, Refeeq Rehman,”Intrusion Detection with Snort: Advanced Ids

Techniques Using Snort, Apache, MySQL, PHP, and Acid” in Prentice Hall ,

ISBN:9780131407336 , 2nd Edition ,2003.

[13] Northcutt, Stephen, “Network Intrusion Detection”, in Pearson Education, ISBN:

9780735712652, 3rdEdition, 2002.

[14] Christopher Kruegel, Fredrik Valeur, Giovanni Vigna ,”Intrusion Detection and

Correlation” , in Springer-Verlag New York Inc ,ISBN:9781441936240 , 1st Edition ,

2010 .

 44

[15] Jeffrey Pusluns; Jay Beale; Brian Caswell; James C. Foste,”Snort 2.0 - Intrusion

Detection”, in Elsevier Science & Technology Books, ISBN: 9781931836746,

2ndedition, 2003.

[16] Jiawei Han, Micheline Kamber, Jian Pei,”Data mining: concepts and techniques”,

Morgan Kaufmann, ISBN: 978-0-12-381479-1 ,3rd Edition, 2011.

[17] Ian Witten Eibe Frank,”Data Mining Practical Machine Learning Tools and

Techniques”, in Morgan Kaufmann, ISBN: 9780080477022, 2nd Edition, 8th June

2005.

[18] P.Akshaya,”Intrusion detection system using machine learning approach” in

International journal of engineering and computer science, ISSN: 2319-7242, Vol. 5,

Issue 10, Oct. 2016.

[19] L. Khalvati , M. Keshtgary and N. Rikhtegar , “Intrusion detection based on a

novel hybrid learning approach “ , in Journal of AI and data mining , Vol. 6, No

1,157-162, 2018.

[20] Pradhnya Kamble, R. C. Roychaudhary , “Discrimination Prevention in Data

Mining for Intrusion and Crime Detection”, in International Research Journal of

Engineering and Technology , Vol. 4 , 2016.

[21] Özge cepheli1, Saliha Büyükçorak, and Güneg Karabulut Kurt,” Hybrid intrusion

detection system for DDoS Attacks” in Journal of electrical and computer engineering,

Vol. 2016, 2016.

[22] Aliya Ahmad , Bhanu Pratap Singh Senga .” Instruction detection system based on

support vector machine using BAT algorithm” in international journal of computer applications, Vol.

158 – No 8, January 2017.

[23] Matthew Helmke,”Ubuntu Unleashed”, Addison-Wesley Professional, ISBN: 9

78-0134985466, 13th Edition, August 19, 2018.

[24] Caswell Jay Beale Andrew Bake, “Snort Intrusion Detection and Prevention

Toolkit”, in Syngress , ISBN: 9780080549279 ,1st Edition, 27th March 2007.

[25] http://www.snort.org/docs/snort_manual/ -last access on 22/2/2018.

[26] https://www.cs.waikato.ac.nz/~ml/weka/documentation.html - last access on

5/4/2018.

[27] https://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html

-last access on 6/5/2018.

[28] https://www.unb.ca/cic/datasets/nsl.html -last access on 12/6/2018.

 45

Appendix A

I. Rules of signatures based detection

$Id: local.rules

LOCAL RULES

This file intentionally does not come with signatures, I add these signatures
manually to work together to enhance the efficiency of the detection

This rules add more accuracy to the intrusion detection system by make deep
packet section by consider the size of packets.

Nmap port scanning rule:

These rules will listen to the messages/packets that are based on TCP protocol

when it use nmap for scanning process:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap XMAS";

flow:stateless; flags:FPU,12; reference:arachnids,30; classtype:attempted-recon;

sid:1228; rev:7;)

ICMP Flooding rules:

These rules will listen to the messages that are based on icmp protocols and it

display different types of messages:

alert icmp any any -> $HOME_NET any (msg:"ICMP test detected";GID:1;

classtype:icmp-event; sid:10000001; rev:001;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Echo Reply";

icode:0; itype:0; classtype:misc-activity; sid:408; rev:5;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Echo Reply

undefined code"; icode:>0; itype:0; classtype:misc-activity; sid:409;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Large ICMP

Packet"; dsize:>800; reference:arachnids,246; classtype:bad-unknown; sid:499;

rev:4;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING";

icode:0; itype:8; classtype:misc-activity; sid:384; rev:5;)

TCP Rules:

These rules will listen to the messages that are based on TCP protocols and it

display different types of messages:

alert tcp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD-TRAFFIC tcp

port 0 traffic"; flow:stateless; classtype:misc-activity; sid:524; rev:8;)

 46

alert udp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD-TRAFFIC udp

port 0 traffic"; reference:bugtraq,576; reference:cve,1999-0675; reference:nessus ,

10074 ; classtype:misc-activity; sid:525; rev:9;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC data

in TCP SYN packet"; flow:stateless; dsize:>6; flags:S,12; reference :url , ww

w .cert .org/incident_notes/IN-99-07.html;classtype:misc-activity; sid:526; rev:11;)

alert ip any any <> 127.0.0.0/8 any (msg:"BAD-TRAFFIC loopback traffic";

reference:url,rr.sans.org/firewall/egress.php; classtype:bad-unknown; sid:528; rev:5;)

alert tcp any any -> 172.16.34.0/24 any (flags: SF; msg: "SYNC-FIN packet

detected";)

UDP Rules:

These rules will listen to the messages that are based on UDP protocols and it

display different types of messages when it greater than particular size:

alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC data

in UDP packet"; flow:stateless; dsize:>40; reference :url,www.cert.org/ incident

_notes /IN-99-07.html; classtype:misc-activity; sid:526; rev:12;)

alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Large UDP

Packet"; dsize:>4000; reference:arachnids,247; classtype:bad-unknown; sid:521;

rev:2;)

IP Rule:

#This rule will listen to the message that is based on ip protocols and it display Large

size IP packet detected messages when the size of message is greater than 6000 :

alert ip any any -> 172.16.34.0/24 any (dsize: > 6000; msg: "Large size IP packet

detected";).

HTTP Flooding Rules :

This rule will listen to the message that is use http protocols and it display GET

matched message when it matched with the get method of the request http message:

alert tcp any any -> 172.16.34.0/24 80(content: "GET"; msg: "GET matched";)
alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"HTTP Packets

Detected"; sid:10000003;)

 47

Appendix B

ii.Anomaly Detection code

 /* java code for decision tree based on C4.5 algorithm:
package weka.classifiers.trees;

import java.util.*;

import weka.core.*;

import weka.classifiers.*;

public class J48consolidated extends AbstractClassifier implements OptionHandler,

Drawable, Summarizable ,Matchable, Sourcable, AdditionalMeasureProducer ,

PartitionGenerator WeightedInstancesHandler , TechnicalInformationHandler, {

 /** for serialization */

 static final long serialVersionUID = -217733168393644455L;

/** The default value set for the percentage of coverage estimated necessary to

adequately cover **/

 * the examples of the original sample with the set of samples to be used in the

consolidation process */

 /** The decision tree */

 protected ClassifierTree m_root;

/* protected means that the member can be accessed by any class in the same

package or in another package */

/** Use MDL correction? */

 protected boolean m_useMDLcorrection = true;

 /** Unpruned tree? */

 protected boolean m_unpruned = false;

 /** Collapse tree? */

 protected boolean m_collapseTree = true;

 /** Confidence of tree level */

 protected float m_CF = 0.25f;

 /** Minimum number of instances */

 protected int m_minNumObj = 2;

 /**

 * Determines whether probabilities are smoothed using Laplace correction when

 * predictions are generated

 */

 48

 protected boolean m_useLaplace = false;

 /** Use reduced error pruning? */

 protected boolean m_reducedErrorPruning = false;

 /** Number of folds for reduced error pruning. */

 protected int m_numFolds = 3;

 /** Binary splits on nominal attributes? */

 protected boolean m_binarySplits = false;

 /** Subtree raising to be performed? */

 protected boolean m_subtreeRaising = true;

 /** Cleanup after the tree has been built. */

 protected boolean m_noCleanup = false;

 /** Random number seed for reduced-error pruning. */

 protected int m_Seed = 1;

 /** Do not relocate split point to actual data value */

 protected boolean m_doNotMakeSplitPointActualValue;

 /**

 Returns a string describing classifier

 public String globalInfo() {

 return "Class for generating a pruned or unpruned C4.5 decision tree. For more "

 + "information, see\n\n" + getTechnicalInformation().toString(); }

// Returns default capabilities of the classifier.

 @Override

/ *Override is used to define the behaviors that specific to the other class or it mean

the sublass use the methods of superclass */

 public Capabilities getCapabilities() {

 Capabilities result;

// will want to resrve space on memory for the object

 p = new Capabilities(this);

 result.disableAll();

 // attributes

 p.enable(Capability.NOMINAL_ATTRIBUTES);

 p.enable(Capability.DATE_ATTRIBUTES);

 p.enable(Capability.MISSING_VALUES);

 49

 p.enable(Capability.NUMERIC_ATTRIBUTES);

 p.enable(Capability.MISSING_CLASS_VALUES

 // class

 p.enable(Capability.NOMINAL_CLASS););

 // instances

 p.setMinimumNumberInstances(0);

 return result;}

 /**

 * Generates the classifier.

 * @param instances the data to train the classifier with

 */

 @Override

 public void buildClassifier(Instances instances) throws Exception {

 getCapabilities().testWithFail(instances);

 ModelSelection mSelection;

 if (m_binarySplits) {

 modSelection = new BinC45MSelection(m_minNumObj, instances,

 m_useMDLcorrection, m_doNotMakeSplitPointActualValue);

 } else {

 modSelection = new C45MSelection(m_minNumObj, instances,

 m_useMDLcorrection, m_doNotMakeSplitPointActualValue); }

 if (!m_reducedErrorPruning) {

 m_root = new C45PruneableClassifierTree(modSelection, !m_unpruned,

m_CF,

 m_subtreeRaising, !m_noCleanup, m_collapseTree);

 } else {

 m_root = new PruneableClassifierTree(modSelection, !m_unpruned,

 m_root.buildClassifier(instances

 m_numFolds, !m_noCleanup, m_Seed); });

 if (m_binarySplits) {

 ((BinC45ModelSelection) modSelection).cleanup();

 } else {

 ((C45ModelSelection) modSelection).cleanup(); } }

 50

 /**

 * Classifies an instance.

 * @param instance the instance to classify

 */

 @Override

 public double classifyInstance(Instance instance) throws Exception {

 return m_root.classifyInstance(instance); }

 /**

// Returns class probabilities for an instance.

 * @param instance the instance to calculate the class probabilities for

 * @return the class probabilities

 * @throws Exception if distribution can't be computed successfully

 */

 @Override

 public final double[] distributionForInstance(Instance instance)

 throws Exception {

 return m_root.distributionForInstance(instance, m_useLaplace); }

// Returns the type of graph that is used

 @Override

 public int graphType() {

 return Drawable.TREE; }

// Returns graph describing the tree.

 * @return the graph describing the tree

 * @throws Exception if graph can't be computed

 */

 @Override

 public String graph() throws Exception {

 return m_root.graph(); }

// Returns tree in prefix order.

 @Override

 public String prefix() throws Exception {

 return m_root.prefix(); }

 /**

 51

 * Returns tree as an if-then statement.

 * @return the tree as a Java if-then type statement

 * @throws Exception are used if something goes wrong

 */

 @Override

 public String toSource(String className) throws Exception {

 StringBuffer[] source = m_root.toSource(className);

 return "class " + className + " {\n\n"+ " public static double classify(Object[]

i)\n" + " throws Exception {\n\n" + " double p = Double.NaN;\n" +

source[0] // Assignment code + " return p;\n" + " }\n" + source[1 + "}\n"; }

// Support code

 /**

 * Returns an enumeration describing the available options.

 * Valid options are:

 * -U: Use unpruned tree

 * -L : * Do not clean up after the tree has been built.

 * -A : If set, Laplace smoothing is used for predicted probabilites.

 * -M number: it’s Set minimum number of instances per leaf. (Default: 2)

 * -C confidence

 * Set confidence threshold for pruning. (Default: 0.25)

 * -N number: to Set number of folds for reduced error pruning. One fold is used

 * Use reduced error pruning. No subtree raising is performed. as the

 * pruning set. (Default: 3)

 * -B: to Use binary splits for nominal attributes.

 * -S : for Don't perform subtree raising.

 return an enumeration of all the available options.

 */

 @Override

 public Enumeration<Option> listOptions() {

 Vector<Option> newVector = new Vector<Option>(13);

 newVector.addElement(new Option("\tUse unpruned tree.", "U", 0, "-U"));

 newVector.addElement(new Option("\tSet confidence threshold for pruning.\n"

 + "\t(default 0.25)", "C", 1, "-C <pruning confidence>"));

 52

 newVector.addElement(new Option("\tSet number of folds for reduced error\n"

 + "\tpruning. One fold is used as pruning set.\n" + "\t(default 3)", "N",

 1, "-N <number of folds>"));

 newVector.addElement(new Option("\tDo not collapse tree.", "O", 0, "-O"));

 newVector.addElement(new Option("\tUse binary splits only.", "B", 0, "-B"));

 newVector.addElement(new Option("\tDo not perform subtree raising.", "S", 0,

"-S"));

 newVector.addElement(new Option("\tSet minimum number of instances per

leaf.\n" + "\t(default 2)", "M", 1, "-M <minimum number of instances>"));

 newVector.addElement(new Option("\tUse reduced error pruning.", "R", 0,

"-R"));

 newVector.addElement(new Option("\tDo not use MDL correction for info gain

on numeric attributes.", "J", 0, "-J"));

 newVector.addElement(new Option("\tSeed for random data shuffling (default

1).", "Q", 1, "-Q <seed>"));

newVector.addElement(new Option("\tLaplace smoothing for predicted

probabilities.", "A", 0, "-A"));

 newVector.addElement(new Option("\tDo not use MDL correction for info gain

on numeric attributes.", "J", 0, "-J"));

 newVector.addElement(new Option("\tSeed for random data shuffling (default

1).", "Q", 1, "-Q <seed>"));

 newVector.addElement(new Option("\tDo not clean up after the tree has been

built.", "L", 0, "-L"));

 newVector.addElement(new Option("\tDo not make split point actual value.",

"-doNotMakeSplitPointActualValue", 0, "-doNotMakeSplitPointActualValue"));

 newVector.addAll(Collections.list(super.listOptions()));

 return newVector.elements(); }

 @Override

 public void setOptions(String[] options) throws Exception {

 // Other options

 String minNumString = Utils.getOption('M', options);

 if (minNumString.length() != 0) {

 m_minNumObj = Integer.parseInt(minNumString);

 53

 } else {

 m_minNumObj = 2; }

 m_binarySplits = Utils.getFlag('B', options);

 m_useLaplace = Utils.getFlag('A', options);

 m_useMDLcorrection = !Utils.getFlag('J', options);

 // Pruning options

 m_noCleanup = Utils.getFlag('L', options);

 m_unpruned = Utils.getFlag('U', options);

 m_collapseTree = !Utils.getFlag('O', options);

 m_doNotMakeSplitPointActualValue = Utils.getFlag(

 m_subtreeRaising = !Utils.getFlag('S', options);

"doNotMakeSplitPointActualValue", options);

 if ((m_unpruned) && (!m_subtreeRaising)) {

 throw new Exception("Subtree raising doesn't need to be unset for unpruned

tree!");}

 m_reducedErrorPruning = Utils.getFlag('R', options);

 if ((m_unpruned) && (m_reducedErrorPruning)) {

 throw new Exception("Unpruned tree and reduced error pruning can't be

selected " + "simultaneously!");}

 String confidenceString = Utils.getOption('C', options);

 if (confidenceString.length() != 0) {

 if (m_reducedErrorPruning) {

 throw new Exception("Setting the confidence doesn't make sense "+ "for

reduced error pruning.");

 } else if (m_unpruned) {

 throw new Exception(

"Doesn't make sense to change confidence for unpruned " + "tree!");

 } else {

 m_CF = (new Float(confidenceString)).floatValue();

 if ((m_CF <= 0) || (m_CF >= 1)) {

 throw new Exception(

"Confidence has to be greater than zero and smaller " + "than one!"); } }

 } else {

 54

 m_CF = 0.25f; }

 String numFoldsString = Utils.getOption('N', options);

 if (seedString.length() != 0) {

 m_Seed = Integer.parseInt(seedString);

 } else {

 m_Seed = 1; }

 super.setOptions(options);

/* super is keyword that is used inside a subclass to call a methods from super-class.

 Utils.checkForRemainingOptions(options); }

 if (numFoldsString.length() != 0) {

 if (!m_reducedErrorPruning) {

 throw new Exception("Setting the number of folds" + " doesn't make

sense if" " reduced error pruning is not selected."); }

 else {

 m_numFolds = Integer.parseInt(numFoldsString); }

 } else {

 m_numFolds = 3; }

 String seedString = Utils.getOption('Q', options);

 Gets the current settings of the Classifier.

 @Override

 public String[] getOptions() {

 Vector<String> options = new Vector<String>();

 if (!m_collapseTree) {

 options.add("-O"); }

 if (m_noCleanup) {

 options.add("-L"); }

 if (m_unpruned) {

 options.add("-U"); }

 else {

 if (!m_subtreeRaising) {

 options.add("-S"); }

 if (m_reducedErrorPruning) {

 options.add("-R");

 55

 options.add("-N");

 options.add("" + m_numFolds);

 options.add("-Q");

 options.add("" + m_Seed);

 } else {

 options.add("-C");

 options.add("" + m_CF); } }

 if (m_binarySplits) {

 options.add("-B"); }

 options.add("-M");

 options.add("" + m_minNumObj);

 if (m_doNotMakeSplitPointActualValue) {

 options.add("-doNotMakeSplitPointActualValue"); }

 if (m_useLaplace) {

 options.add("-A"); }

 if (!m_useMDLcorrection) {

 options.add("-J"); }

 Collections.addAll(options, super.getOptions());

 return options.toArray(new String[0]); }

 public String seedTipText() {

 return "The seed used for randomizing the data " + "when reduced-error pruning

is used.";

public String useMDLcorrectionTipText() {

 return "Whether MDL correction is used when finding splits on numeric

attributes."; }

public boolean getUseLaplace() {

 return m_useLaplace; }

 public void setUseLaplace(boolean newuseLaplace) {

 m_useLaplace = newuseLaplace; }

 public int getSeed() {

 return m_Seed; }

 public void setSeed(int newSeed) {

 m_Seed = newSeed; }

 56

 public String useLaplaceTipText() {

 return "Whether counts at leaves are smoothed based on Laplace."; }

//Get the value of useMDLcorrection.

 public boolean getUseMDLcorrection() {

 return m_useMDLcorrection;}

// Set the value of useMDLcorrection.

 public void setUseMDLcorrection(boolean new useMDLcorrection) {

 m_useMDLcorrection = newuseMDLcorrection; }

// Returns a description of the classifier.

 @Override

 public String toString() {

 if (m_root == null) {

 return "Not able to build classifiert"; }

 if (m_unpruned) {

 return "J48consolidated unpruned tree\n------------------\n" +

m_root.toString();

 } else {

 return "J48 consolidated pruned tree\n------------------\n" +

m_root.toString(); } }

// Returns the number of leaves

 public double measureNumLeaves() {

 return m_root.numLeaves(); }

// Returns a superconcise version of the model

public String toSummaryString() {

 return "Number of leaves: " + m_root.numLeaves() + "\n"+ "Size of the tree: " +

m_root.numNodes() + "\n"; }

// Returns the size of the tree

 public double measureTreeSize() {

 return m_root.numNodes();

public double measureNumRules() {

 return m_root.numLeaves(); }

 @Override

 public Enumeration<String> enumerateMeasures() {

 57

 Vector<String> newVector = new Vector<String>(3);

 newVector.addElement("measureTreeSize");

 newVector.addElement("measureNumRules");

 newVector.addElement("measureNumLeaves");

 return newVector.elements();}

 @Override

 public double getMeasure(String additionalMeasureName) {

 if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0)

{

 return measureNumRules();

 } else if (additionalMeasureName.compareToIgnoreCase("measureTreeSize")

== 0)

{

 return measureNumLeaves();

 } else {

{

 return measureTreeSize();

 } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves")

== 0) else{

 throw new IllegalArgumentException(additionalMeasureName + " not

supported (j48Consolodated)"); }}

 public String unprunedTipText() {

 return "Whether pruning is performed."; }

 public boolean getUnpruned() {

 return m_unpruned;}

 public void setUnpruned(boolean v) {

 if (v) {

 m_reducedErrorPruning = false; }

 m_unpruned = v;}

 public String collapseTreeTipText() {

 return "Whether parts are removed that do not reduce training error."; }

//* Get the value of collapseTree

 public boolean getCollapseTree() {

 58

 return m_collapseTree; }

// Set the value of collapseTree.

 public void setCollapseTree(boolean v) {

 m_collapseTree = v; }

 public String confidenceFactorTipText() {

 return "The confidence factor used for pruning (smaller values incur "+ "more

pruning).";}

 public float getConfidenceFactor() {

 return m_CF; }

 public void setConfidenceFactor(float v) {

 m_CF = v; }

// Returns the tip text for this property

 public String minNumObjTipText() {

 return "The minimum number of instances per leaf."; }

// need to Get the value of minNumObj.

 public int getMinNumObj() {

 return m_minNumObj; }

// Set the value of minNumObj.

 public void setMinNumObj(int v) {

 m_minNumObj = v; }

 public String reducedErrorPruningTipText() {

 return "Whether reduced-error pruning is used instead of C.4.5 pruning."; }

// Get the value of reducedErrorPruning.

 public boolean getReducedErrorPruning() {

 return m_reducedErrorPruning; }

// Set the value of reducedErrorPruning. Turns unpruned trees off if set.

 public void setReducedErrorPruning(boolean v) {

 if (v) {

 m_unpruned = false; }

 m_reducedErrorPruning = v; }

// Returns the tip text for this property

 public String numFoldsTipText() {

 return "Determines the amount of data used for reduced-error pruning. "

 59

 + " One fold is used for pruning, the rest for growing the tree.";]

// Get the value of binarySplits.

 public boolean getBinarySplits() {

 return m_binarySplits; }

// Set the value of binarySplits.

 public void setBinarySplits(boolean v) {

 m_binarySplits = v; }

// Returns the tip text for this property

public String subtreeRaisingTipText() {

 return "Whether to consider the subtree raising operation when pruning."; }

// Sets the value of doNotMakeSplitPointActualValue.

 public void setDoNotMakeSplitPointActualValue(

 this.m_doNotMakeSplitPointActualValue =

m_doNotMakeSplitPointActualValue;}

/ Get the value of numFolds.

 public int getNumFolds() {

 return m_numFolds; }

// Set the value of numFolds.

 public void setNumFolds(int v) {

 m_numFolds = v; }

// Returns the tip text for this property

 public String binarySplitsTipText() {

 return "Whether to use binary splits on nominal attributes when "+ "building the

trees."; }

// Get the value of subtreeRaising.

 public boolean getSubtreeRaising() {

 return m_subtreeRaising; }

// Set the value of subtreeRaising.

 public void setSubtreeRaising(boolean v) {

 m_subtreeRaising = v; }

// Returns the tip text for this property

 public String saveInstanceDataTipText() {

 return "Whether to save the training data for visualization."; }

 60

// Check whether instance data is to be saved.

 public boolean getSaveInstanceData() {

 return m_noCleanup; }

// Set whether instance data is to be saved.

 public void setSaveInstanceData(boolean v) {

 m_noCleanup = v; }

 public String doNotMakeSplitPointActualValueTipText() {

 return "If true, the split point is not relocated to an actual data value."

 + " This can yield substantial speed-ups for large datasets with numeric

attributes."; }

 Gets the value of doNotMakeSplitPointActualValue.

 public boolean getDoNotMakeSplitPointActualValue() {

 return m_doNotMakeSplitPoint ActualValue; }

 boolean m_doNotMakeSplitPointActualValue) {

// Returns the revision string.

 @Override

 public String getRevision() {

 return RevisionUtils.extract("$Revision: 14508 $"); }

 // Builds the classifier to generate a partition.

 @Override

 public void generatePartition(Instances data) throws Exception {

 buildClassifier(data); }

// Computes an array that indicates node membership.

 @Override

 public double[] getMembershipValues(Instance inst) throws Exception {

 return m_root.getMembershipValues(inst); }

// Returns the number of elements in the partition.

 @Override

 public int numElements() throws Exception {

 return m_root.numNodes(); }

// Main method for testing this class

 public static void main(String[] argv) {

 runClassifier(new J48Conslidates(), argv); }}

