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 الايَة

 

 قال تعالى8

 

ثاَحٌ ) كَاجٍ فٍِهاَ مِصأ ضِ مَثمَُ نىُرِهِ كَمِشأ رَأ مَاوَاخِ وَالْأ ُ نىُرُ انسه اللهه

يٌّ ٌىُقذَُ مِنأ شَجَرَجٍ  كَةٌ دُرِّ جَاجَحُ كَأنَههَا كَىأ ثاَحُ فًِ زُجَاجَحٍ انسُّ انأمِصأ

تٍِهحٍ ٌَ  قٍِهحٍ وَلََ غَرأ أٌتىُنحٍَ لََ شَرأ أٌتهُاَ ٌضًُِءُ وَنىَأ نمَأ مُثاَرَكَحٍ زَ كَادُ زَ

 ُ رِبُ اللهه ُ نِنىُرِهِ مَنأ ٌشََاءُ وٌَضَأ وُ ناَرٌ نىُرٌ عَهىَ نىُرٍ ٌهَأذِي اللهه سَسأ تمَأ

ءٍ عَهٍِمٌ  أً ُ تكُِمِّ شَ ثاَلَ نِهنهاشِ وَاللهه مَأ  (الْأ
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Abstract 

Quantum correlations between particles are usually formulated by assuming 

the persistence of an entangled state after the particles have separated. When 

entanglement is present, Bell‘s Inequalities are violated but when entanglement 

is destroyed, Bell‘s inequalities are satisfied.  

The aim of this work is to  build computer program using Matlab software to  

simulate Ekert protocol of quantum cryptography by implement  event-based 

simulation method. And by used two types of probabilistic polarizing beam 

splitter. Since we used the argument of Malus intensity law to represent the 

quantum probability amplitude for each  single photon in type1 and the 

Hadamard transformation of  single photon to represent quantum probability 

amplitude for each single photon in type2. The program calculated the 

quantum correlation of each two polarized entangled photons as a value of Bell 

inequality (S) . The obtained results   of (S) value after implemented suitable 

time tag model was in average S = 2.6 for type1, and S = 2.7 for type2. And 

this  results investigated strong quantum correlation, and  very  agreement with 

that result of maximum correlation expected by quantum mechanics theory 

calculated for polarized entangled photons (S =2.83). 

After running the simulation program of Ekert protocol the results of  

established secret key between two legitimate users and the variation of (S) 

value  showed very good ability of program for detecting eavesdropper, that by 

an obvious decrease in (S) value. When eavesdropper was present the value of 

(S) decreased to S = -0.29 and S = 0.19for type1 and type2 respectively.    

 

 

 

 



V 
 

 انمستخهص

الارتباط الكمي بين الجسيمات يبرىن عادة بافتراض وجود حالة ترابط بين الجسيمات بعد 
مدى  تعدىأن تفصل بينيا مسافة. ففي حالة وجود الترابط فان قيمة الارتباط الكمي ت

( وعند فقدان حالة الترابط فان قيمة الترابط الكمي تكون في مدى  Bellمتراجحة بيل) 
 . (Bell) متراجحة بيل

 Ekertتيدف ىذه الدراسة لبناء برنامج حاسوب باستخدام برمجية الماتلاب لمحاكاة نموذج 
لمتشفير الكمي و ذلك بتوظيف طريقة الحدث المنفرد لعمل نوعين من المستقطبات 
الضوئية ذات المحاكاة الاحتمالية. حيث استخدمنا قانون مالوس لمشدة الضوئية لتمثيل 

ية لكل فوتون عمى حدا بالنسبة لمنوع الأول، و تحويلات ىادمارد لمفوتون السعة الاحتمال
 لتمثيل السعة الاحتمالية في النوع الثاني.

تم حساب الارتباط الكمي لمفوتونات المترابطة إستقطابيا و ذلك بحساب قيمة متراجحة     
Bell(S) النتائج المتحصمو لقيمة .(S) الزمني وجد أن    بعد توظيف نموذج مناسب لمتطابق

لمنوع الثاني، و ىذه النتائج  S=2.7بالنسبة لمنوع الأول  و  S=2.6في المتوسط  (S)قيمة 
توضح ارتباط كمي قوي و تتوافق بشدة مع قيمة الارتباط الكمي العظمى المتوقعة حسب 

 ، وجد أن نتائج Ekert.بعد تشغيل برنامج محاكاة نموذج (S=2.83)نظرية ميكانيكا الكم 
توضح إمكانية عالية لمنموذج في  (S)المفتاح المتوزع بين المستخدمين و التغير في قيمة 

 S. حيث نقصت قيمة (S)كشف المتجسس و ذلك بملاحظة النقصان الواضح في قيمـة 
 لمنوع الأول و الثاني عمى التوالي. S=0.19و  S=-0.29إلى 
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Chapter one 

Introduction 

 

1.1. Introduction: 

Cryptography from Greek Krypto's "hidden" and graphein "writing" (Thomase. 

Copeland, 2000) is the art of creating secure codes, whereas cryptanalysis deal 

with breaking this codes. 

The need of safety communication has increased tremendously during the last 

decade , since more and more sensitive information are transported and more 

people are concerned .  

Cryptography has been used for long time to safeguard military and diplomatic 

communications. But the downing of the information age revealed an urgent 

need for cryptography in the private sector(Dannis Luciano, Gorden Prichett 

19987). A Cryptography is a tool used to protect information in computing 

system. It is used everywhere and by millions of people worldwide on a daily 

basis. It used to protect data at rest and data in motion. 

The basic terminology is that cryptography refers to the science and art of 

designing ciphers." Cryptography is the mathematical foundation on which one 

build secure system. It studies ways of securely storing, transmitting, and 

processing information(Luca Travisan 2009). Cryptography is where security 

engineering meets mathematics (John F.kenny 2009). It provides us with the 

tools that underlie most modern security protocols. It is probably the key 

enabling technology for protecting distributed systems. 

Classical cryptography  use  keys  to encode and decode messages. The 

encoding of a message, makes it unavailable to any party who does not have  

the private key .  
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The one-time pad  cipher is an example of a classical secure algorithm. In the 

one-time pad, the sender and receiver share a secret random key. The secret 

key is composed of a sequence of random bits and it must be as long as the 

message to be encrypted. The problem with the one-time pad cipher is that the 

key has to be transfer  between two parties securely.  

But Quantum key Distribution (QKD) is a proposal to solve the problem of 

key distribution between two distant parties by using the quantum properties of 

single photons .  

Actually, QKD is a new emerging technology for protecting sensitive data 

during transmission process in a new communications environment. So, many 

researchers have focused on the simulation of QKD to achieve a secure 

communication for files depending on different simulator environments. 

1.2 Research problem: 

Quantum cryptography is one of the important modern information science 

branch ,and the need of security communication is increasing every day. 

 Classical cryptography algorithms have a real  problem in key distribution, 

and  quantum mechanics concepts propose to solve it. 

The use of quantum key distribution(QKD) began science 1984 (BB84 

protocol), after that many projects and experiments had done for security 

purpose. 

The set up of QKD experiments now a days is not available in our country, that 

it is not able to do real experiments in QKD field. Instead of that one can use 

simulation computer programs to modeling QKD protocols . 

To observe how the eavesdropping effect can be detected in EKERT protocol 

this work aims to make simulation program of EKERT protocol with and 

without the present of eavesdropper to check what variation that well be 

happen by compare the values of CHCH's inequality.  
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1.3 Objectives: 

The general objective of this work is to study the quantum cryptography 

simulation by using Matlab, and the specific objectives helping to complete the 

general one are: 

 Using MATLAB program to build a model of event based simulation of 

polarizing beam splitter (PBS) to analyze single photon polarization on 

quantum mechanics concept . 

 Using the PBS to model an EKERT protocol simulation program to 

establish a secret key between two users. 

 To verify that the simulation program can easy detect eavesdropper . 

1.4 Research Methodology: 

The methodology of this thesis is the using theoretical and modeling of 

quantum cryptography protocols implementing Matlab software package. 

1.5 Thesis Layout: 

The first chapter of this thesis was a brief description of the research 

methodology, problem statement and objectives. Theoretical aspects of 

quantum fundamental concepts are presented in chapter two. Chapter three 

describes the cryptography, and quantum cryptography in general in addition 

to the literature review. 

Chapter four presents and discussed the event based simulation of  quantum 

experiments,  then the event based simulation was used in implementation of 

Ekert protocols, and also the chapter contains the results and discussion of the 

simulated experiments. Finally, the chapter presented  the conclusion and 

recommendations for future work. 
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Chapter Two 

Quantum mechanics background: 

  2.1-Introduction: 

Quantum mechanics is the  mechanics that describe the behavior and properties 

of very small objects , like electrons, photons, and atoms.( 

en.wikipedia.org/wiki/)  And Quantum mechanics is often seen as the 

mathematics of objects that are sufficiently small and of sufficiently low 

energy that the act of observing one of them by hitting it with a photon of light 

disturbs the object that is being observed- alter its momentum or position  or 

energy.  

In the macroscopic world it is presumed the hitting an object , say a cricked 

ball , with a photon of light to observe it will not  disturb the object. It is 

disturbance or non disturbance by observation that is seen as differentiating the 

very small objects of quantum mechanics from the macroscopic objects of 

Newtonian mechanics . This disturbance is often associated with uncertainty  

in the values of some of the dynamic variables. And Uncertainty is a central 

feature of quantum mechanics. Quantum mechanics is formulated as 

mathematical operators , eigen-functions  , and eigen-values. The continuous 

dynamic variables such as energy or momentum of Newtonian mechanics are 

each taken to be associated with operator.  For each variable there is one, and 

only one corresponding operator. 

In Newtonian mechanics the variable can take any real value . since in 

quantum mechanics the only allowed values of variables are the eigen-values 

of the associated operator . These eigen-values are often discreet rather than 

continuous.  
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Operators are also different from Newtonian variables in that they often do not 

commute with each other. There is no concept  to non commutation in 

Newtonian mechanics. 

2.2-Dirac notation 

Dirac introduced the symbol  , pronounced ‗ket psi‘, to denote a complete set 

of amplitudes for the system. If the system consists of a particle trapped in a 

potential well,   could consist of the amplitudes  of the spectrum of possible 

energies, or it might consist of the amplitudes )(x  that the particle is found at 

x, or it might consist of the amplitudes )( p   that the momentum is measured 

to be p. 

Using the abstract symbol   enables us to think about the system without 

committing ourselves to what complete set of amplitudes we are going to 

use, in the same way that the position vector x enables us to think about a 

geometrical point independently of the coordinates (x, y, z), (r, θ, φ) or 

whatever by which we locate it. That is,   is a container for a complete set 

of amplitudes in the same way that a vector x is a container for a complete set 

of coordinates (James Binnery, David skinner 2014). 

2.3-Linear vector spaces 
 
The analogy between kets and vectors provides ability to using kets as a to 

represent the vectors. 

 By describe  scalars (complex numbers) by a, b, c,….,  and vectors by 

,.....,    

 A linear vector space V is a set of  vectors( ,.....,  )  which are closed under 

addition and scalar multiplication. That is, if  and     are in V, then 

  baC    is also in                                                    (2.1)     
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We usually write vectors as column matrices: 

   









b

a
C                                                                       (2.2) 

 

A set of vectors  ;  ;. . .  ;  , are linearly independent if the relation, 

0
1




n

N

n

n ec                                                                       (2.3) 

can only be true if: cn = 0,for  n = 1; . . . ; N. Otherwise, the set of vectors are 

linearly dependent, which means that one of them can be expressed as a linear 

combination of the others. 

The maximum number N of linearly independent vectors in a vector space V is 

called the dimension of the space, in which case the set of vectors provides a 

basis set for V. Any vector in the space can be written 

as a linear combination of the basis vectors.  

 Let ,  be a basis in V. Then any vector   in V can be represented by: 

 

n

N

n

n ea



1

                                                                    (2.4) 

where an is a  complex numbers. Thus the component an is unique for the basis 

set . 

An inner product maps pairs of vectors to complex numbers. It is written as:  

 

The inner product must have the properties: 

1.  =  = a complex number. 

2.    =  +  .                  (2.5) 

3.    =  +  

4. ≥ 0, with the equality holding only if   =  . 

The norm, or length, of a vector is defined by ≡  > 0.                  
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Hilbert space is a linear vector space with an inner product for each pair of 

vectors in the space. Using our examples of linear vector spaces, one possible 

definition of the inner products is: 

 =  +  + · · · +  ;                                          (2.6) 

 A basis set  en ,  are orthonormal if 

  = ij  :                                                                             (2.7) 

Where    ij = 0; when i ≠ j. 

                ij = 1;  when i = j. 

the important  property of the inner product is: the Schwartz inequality. 

 The Schwartz, or triangle, inequality states that for any two vectors 

in V, 

 . .                                                             (2.8) 

Physical systems are represented in quantum theory by a complex vector space 

V with an inner product. The state of the system is described by a particular 

vector    in this space. All the possible states of the system are represented by 

basis vectors in this space. Observables are represented by Hermitian operators 

acting in this vector space. The possible values of these observables are the 

eigen values of these operators (John F.D., 2009). 

2.4-Operators 

An operator A is an object that maps a vector   ϵV to another vector   

V. We write:  

A   =  .         (2.9) 

For any operator A, if we can find a complex number a and a ket   such that    
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A   = a   ;  

then a is called the eigen value and   is the eigenvector. 

2.5-Pauli operators 

Physics properties can be associated with operators A,  with linear maps of the 

form 
 aA 

. 

The famous , important matrices operators are the Pauli matrices operators  

( zyx  ,,
) .  let us consider an example: The Pauli-z-matrix z  acts as: 

11

00





z

z





                                                         (2.10) 

We hence note that the vectors 
10 and

 are eigenvectors of z  : Up to a 

complex number  +1 and -1, the respective eigen values  we obtain again the 

same vector if we apply z  to it. Similarly, we find that the Pauli-x matrix x  

acts as: 





x

x





                                                         (2.11) 

 

And  the Pauli-y-matrix y
has the property that 





y

y





                                                        (2.12) 

 

 Physical properties are associated with operators, in fact with Hermitian 

operators, such Hermitian operators are called observables. Pauli operators are 

examples of Hermitian operators. A measurement along the z axis corresponds 

to the Pauli-z-matrix, and similarly for the other Pauli matrices. So the first 

measurement corresponds to a ―measurement of the observable Pauli-z‖. After 

the measurement, the system will be in an eigenvector of the respective 

observable, the outcome of the measurement being the eigen value of the 
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eigenvector. For example, we measure the spin along the z axis, hence 

―measure the observable Pauli-z‖. If we get the value +1, we will obtain the 

state vector  00 x  after the measurement, corresponding to spin up. In 

case of the value  -1, we obtain the state vector 11 x  after the 

measurement. Since 0  is an eigenvector of z , if we will repeat measuring 

z , we will repeatedly get the outcome +1 and the post measurement state 

vector 0  . This is why then the spin is always pointing into the same direction. 

If we at some point measure along the x axis, the situation is quite different. 

Neither 0  not 1  are eigenvectors of x . We will see that this fact is 

essentially responsible for the two outcomes, spin left and spin right, being 

obtained in a probabilistic fashion. After the measurement, the state vector is 

an eigen state of the observable measured, i.e., 

)10(
2

1
)10(

2

1

)10(
2

1
)10(

2

1





x

x

and





                                                                     (2.13) 

 The matrix form of the Pauli operators are :   













10

01
z                                      (2.14) 

The vectors 
0

 and 
1

 are already eigenvectors of z , so we should not be 

surprised to see that the matrix form is diagonal. Similarly,  the matrix form of 

the other two Pauli operators as  

 

,
0

0
,

01

10







 











i

i
yx                                                                                   (2.15) 
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2.6-Superposition Principle: 

When two waves meet they overlap and interact. Sometimes they add to make 

a wave bigger, sometimes they cancel each other out, and often it‘s a 

combination of both. Noise-cancelling headphones listen to regular and 

constant noise around you and play the exact opposite sound to cancel 

annoying noises like jet planes engines. This phenomenon is known 

as superposition. 

Confusingly, however, in the quantum world superposition can mean 

something different entirely. At the quantum scale, particles can also be 

thought of as waves. Particles can exist in different states, for example they can 

be in different positions, have different energies or be moving at different 

speeds. But because quantum mechanics is weird, instead of thinking about a 

particle being in one state or changing between a variety of states, particles are 

thought of as existing across all the possible states at the same time. It‘s a bit 

like lots of waves overlapping each other. This situation is known as 

a superposition of states. If we are thinking in terms of particles, it means a 

particle can be in two places at once. This doesn‘t make intuitive sense but it‘s 

one of the weird realities of quantum physics. 

However, once a measurement of a particle is made, and for example its 

energy or position is known, the superposition is lost and now have a particle 

in one known state. (Physics.org).    

Consider a system with k distinguishable (classical) states. For example, the 

electron in a hydrogen atom is only allowed to be in one of a discrete set of 

energy levels, starting with the ground state, the first excited state, the second 

excited state, and so on.  

If we assume a suitable upper bound on the total energy, then the electron is 

restricted to being in one of k different energy levels — the ground state or one 



11 
 

of k -1 excited states. As a classical system, we might use the state of this 

system to store a number between 0 and k - 1. 

The superposition principle says that if a quantum system can be in one of two 

states then it can also be placed in a linear superposition of these states with 

complex coefficients. 

Let us denote the ground state of our k-state system by 0 , and the successive 

excited states by 1,...,1 k . These are the k possible classical states of the 

electron. 

The superposition principle tells us that, in general, the quantum state of the 

electron is  

1...210 1210   kk   

 where 1210 ,.....,, k  are complex numbers normalized so that 1
2

 j j  

 j  is called the amplitude of the state j . For instance, if k = 3, 

the state of the electron could be 

         2
2

1
1

2

1
0

2

1
  

or     2
2

1
2

1
0

2

1 i
  

 or 2
2

21
1

2

1
0

2

1 iii 






   

The superposition principle is one of the most mysterious aspects about 

quantum physics. One way to think about a superposition is that the electron 

does not make up its mind about whether it is in the ground state or each of the 

k – 1 excited states, and the amplitude 0  is a measure of its inclination 

towards the ground (www.inst.ees.berkeley.edu). 

 

http://www.inst.ees.berkeley.edu/
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2.7-Quantum measurement : 

Physics is about the quantitative description of natural phenomena. A 

quantitative description of a system inevitably starts by defining ways in which 

it can be measured. If the system is a single particle, quantities that we can 

measure are its x, y and z coordinates with respect to some choice of axes, and 

the components of its momentum parallel to these axes. We can also measure 

its energy, and its angular momentum. The more complex  system is, the more 

ways there will be in which we can measure it ( J Binney, D. Skinner, 2013). 

Associated with every measurement, there will be a set of possible numerical 

values for the measurement ( the spectrum of the measurement). For example, 

the spectrum of the x coordinate of a particle in empty space is the interval [-∞, 

∞], while the spectrum of its kinetic energy is [0, ∞].  

When the spectrum is a set of discrete numbers, we say that those numbers are 

the allowed values of the measurement. With every value in the spectrum of a 

given measurement there will be a quantum amplitude that we will find this 

value if we make the relevant measurement.  Quantum mechanics is the 

science of how to calculate such amplitudes given the results of a sufficient 

number of prior measurements (J.Binnery 2008). 

In practical if we about investigating some physical system: some particles in 

an ion trap, a drop of liquid helium, the electromagnetic field in a resonant 

cavity. What do we will know about the state of this system, there are two 

types of knowledge: first, a specification of the physical  nature of the system 

(e.g., size & shape of the resonant cavity), and, second, the information about 

the current dynamical state of the system. 

 In quantum mechanics information of type one is used to define an object 

called the Hamiltonian 'H' of the system . And information of type two is more 
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subtle. It must consist of predictions for the outcomes of measurements you 

could make on the system.  

Since these outcomes are inherently uncertain, your information must relate to 

the probabilities of different outcomes, and in the simplest case consists of 

values for the relevant probability amplitudes.  

In quantum mechanics, then, knowledge about the current dynamical 

state of a system is embodied in a set of quantum amplitudes.  

In classical physics, by contrast, we can state with certainty which value we 

will measure, and we characterize the system‘s current dynamical state by 

simply giving this value. Such values are often called ‗coordinates‘ of the 

system. Thus in quantum mechanics a whole set of quantum amplitudes 

replaces a single number. 

The state of a quantum system, |  , is a vector in a complex vector space. If 

the set of vectors {| }, (where N may be ∞) is an orthonormal basis for this 

space, then we can always express |  as   |  =  

for some complex coefficients , where  = 1. 

The basis of quantum measurement theory is the following postulate: We can 

choose any basis, and look  which one of these basis states the system is in. 

 When we do so, we will find the system to be in one of these basis states, even 

though it may have been in any state | before the measurement. Which basis 

state we find is random.  

If the system is initially in the state | then the probability that we will find 

state | is given by .   

A measurement like this, for which the result is one of a set of basis states, is 

called a Von Neumann measurement. 
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Quantum measurement theory springs from the theory of self-adjoin operators. 

Specifically, to every classical observable we associate a self- adjoin linear 

operator A which acts upon the elements of H. We then associate; the possible 

meter-readings which can result from  A-measurement with the real eigen 

values of A; and the possible quantum state immediately subsequent to such a 

measurement with the eigenvectors of A.  Each observable contrives spectrally 

to erect its own individual ‗orthogonal scaffold (| " in the space of states 

(Nicholas Wheeler,2009).  For the idealized measurement process if we have a 

System S, in unknown quantum state | , is presented to the measurement 

device represented by the operator A . After the interaction is complete; 

The device is in the state "a" reported by its read-out mechanism, and this is 

interpreted to mean that, the system S is in state | . 

Quantum mechanically fundamental is the fact that repetitions yield 

statistically scattered results, and we can obtain 

 

1a
 with probability 

2

11 aP 
  

2a
 with probability 

2

22 aP 
                                   (2.16) 

na
 with probability 

2

nn aP 
  

Quantum measurement is by this scheme a ‗state-preparation process,‘ and 

measurement devices are, in effect, sieves the input state  |   

and the device acts probabilistically to pass one of the eigen-components, and 

to annihilate all others. 

We assert that a measurement has actually taken place on these grounds: if the 

output |  of a measurement which registered an is immediately re-presented 

to an A-meter . And repeated A-measurement yield: 

| with probability P1 = |  | |2  = 0 

|  with probability P2 = |  | |2  = 0 
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| with probability Pn = | | |2  =  

which is to say: we recover (or ‗confirm‘) the previous result with certainty. 

The expected average of many independent A-measurements i.e., of the results 

obtained when many identical copies of |  are presented serially to an A-

meter can be described 

 AaaaaaPaa iiiii i

n

i

ii   )(
2

                 (2.17) 

but alternative descriptions exist and are sometimes more useful. For example, 

let (|  )be some arbitrary orthonormal basis in the space of states. Drawing 

upon the completeness condition , we have 

 AnnAnAnnA
nnn

 

 

Where 

   projects onto   

  trAA   

So  trAAa   

Quantum mechanics attempts to describe not where the next particle 

will land on the detection screen‘ but statistical features of the pattern formed 

when many identically-prepared particles are directed at the screen (Nicholas 

Wheeler,2009). 

2.8-Uncertainty principle: 

In classical mechanics the state of a particle in a one-dimensional world is 

completely determined by the value of its position x(t) and momentum p(t),  by 

its trajectory. The situation is radically different in quantum mechanics. The 

probabilistic interpretation of the wave function implies that we can at best 

obtain the probability density for a particle to be at a given position x at time t. 

As a consequence the concept of classical trajectory used in Newtonian 

mechanics does not make sense in quantum mechanics. The position and 
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momentum of the particle can be defined, but their values cannot be measured 

simultaneously. 

On the other hand, when the scales in the problem are much larger than the 

Planck constant h, we expect to recover the classical results. 

These two features are summarized in the so-called uncertainty relations, first 

derived by Heisenberg. The uncertainty relations state that, if the position and 

momentum are measured simultaneously, with respective precisions ∆x and 

∆p, then: 

2
.


 px                                                                         (2.18) 

It is clear from equation above that if the position of the particle is known 

exactly, then the knowledge of its momentum is completely lost. In general the 

product of the two uncertainties has to be greater than
2


  

It is important to appreciate that Heisenberg‘s inequalities reflect a physical 

limitation. A better experimental apparatus would not allow a higher precision 

to be obtained. The uncertainty is a property of the dynamics of the system. 

They also encode the idea that in quantum mechanics the measurement of a 

quantity interferes with the dynamics. If we measure exactly the position of the 

particle, then we lose all knowledge of its momentum.  Hence the concept of 

determinism is lost during the measurement process.  

2.9-Photon's Polarization: 

In order to predict the behavior of a quantum system, we need to know 

precisely the physical properties of all states. One of the most simple physical 

systems is the polarization of the photon. The dimension of its Hilbert space is 

just two, yet it is quite sufficient to show how amazing the world of quantum 

mechanics can be. 

Suppose we can isolate a single particle of light, photon, from a polarized 

wave. The photon is a microscopic object and must be treated quantum-

mechanically. To define the associated Hilbert space of photon. We first notice 

that the state of the photon obtained from a horizontally polarized wave, whose 

state we denote as H , is incompatible with its vertical counterpart,  V an 
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H photon can never be detected in a V state. If we prepare a horizontally 

polarized photon and send it through a polarizing beam splitter, it will always 

be transmitted and never reflected. This means that states H and V are 

orthogonal. So  that states H and V  form an orthonormal basis in the 

corresponding Hilbert space. 

when, these states are orthogonal and thus they are linearly independent . And,  

any polarization state of the photon can be written as  linear combination of 

states H and V  

VH                                                                     (2.19) 

We will call the basis {|H⟩ , |V ⟩} the canonical basis of our Hilbert space. 

For a classical wave, shifting the phases of both horizontal and vertical 

component by the same amount does not change the polarization of the wave. 

A similar rule applies to quantum states. Multiplying a state vector by ie  does 

not change the physical nature of a state. For example, |V⟩     i|V⟩ and - |V⟩ 

represent the same physical object, as well as, say,                 

)(
2

1
)(

2

1
ViHandViH   . This rule turns out to be very general: it works 

for all states in the entire domain of quantum mechanics. 

Table 1.1: Important polarization states: 

state  designation  Notation 

VH  sincos   
linear polarization at angle θ to 

horizontal  
|θ⟩ 

)(
2

1
VH   +45◦ polarization  

|+45◦⟩ or 

|+⟩ 

)(
2

1
VH   -45◦ polarization  

|-45◦⟩ or |-

⟩ 

)(
2

1
ViH   Right circular polarization  |R⟩ 

)(
2

1
ViH   Left circular polarization  |L⟩ 

 

The ±45◦ polarization states are also called diagonal polarization states. 
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In classical, macroscopic physics, the concept of measurement is 

of technical rather than fundamental nature. This is because we can precisely 

measure the state and  evaluate  the system without disturbing it. In the 

quantum world, the situation is different: we are big and the things we want to 

measure are small. Therefore, any measurement will change the quantum state 

of our system.  

 Suppose a single photon in state VH    hits a polarizing beam 

splitter (PBS) [Fig. 2.1(a)]. If we were dealing with a classical wave, we would 

expected it to split: a part would be transmitted through the PBS, and the 

remainder reflected. But the photon is the smallest energy portion of light, and 

cannot be divided into parts. So what will happen to it? The experiment shows 

that the outcome will be random: the photon will go through the PBS with a 

probability |α|
2
, and be reflected with a probability|β|

2
. 

If a large number N of photons are incident on the PBS (e.g. in the case of a 

classical wave), on average |α|
2
N of them will be transmitted, and |β|

2
N 

reflected. This means that the total flux of energy in the transmitted and 

reflected channels will be proportional to |α|
2
 and |β|

2
, respectively. This is 

remarkably consistent with the classically expected . 

As in classical, the part of the classical wave that is transmitted through the 

PBS will become horizontally polarized. The same happens with photons. 

After the PBS, the photon state in the transmitted channel will become H  

(and in the reflected channel |V⟩). If we place a series of 

additional PBS‘s in the transmitted channel of the first one, the photon will be 

transmitted through all of these PBS‘s. 

The photon propagating through a PBS gives us an example of the photon 

polarization state measurement. Into both output channels of the PBS, we can 

place single-photon detectors — devices that generate  a macroscopic electric 

pulse whenever a photon hit their sensitive areas. Of the two detectors, only 

one will click — thus providing us with some information about the photon‘s 

initial polarization. 

Above, we discussed the apparatus for measuring the polarization of the 

photon in the canonical basis. What if we want to measure it in some other 

basis? We can take advantage of the optical element called the wave plate 
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which inter converts polarization states of a photon into one another. 

Here are some examples. 

Fig 2.1(a-b-c) 

 

 

 

The setup shown in Fig. 2.1(a) measures the photon polarization in the 

canonical ( H , V ) basis: A polarizing beam splitter sends the horizontal and 

vertical polarization components to different single-photon detectors. A ―click‖ 

in one of the detector signifies that a measurement has occurred. This 

measurement is destructive, because the photon is absorbed by the detector 

photocathode. 

The setup in Fig. 2.1(b) performs the measurement in the diagonal (|±45◦⟩) 

basis: A λ/2 wave plate at 22.5◦ first converts the +45◦ and -45◦ components 

into horizontal and vertical and then a polarizing beam splitter sends these into 

separate detectors . 

Measurement in the circular polarization (|R⟩ , |L⟩) basis [Fig. 2.1(c)]: a λ/4 at 

0◦ first converts the circular components into ±45◦ components, then a λ/2 
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wave plate, again at 22.5◦, converts them into horizontal and vertical 

components which are then split by a polarizing beam splitter. 

Although a single measurement provides us with some information about the 

initial state of a quantum system, this information is very limited. For example, 

suppose we have measured a photon in the canonical basis and found that the 

photon has been transmitted through the PBS. The only thing we learn from 

this measurement is that the photon was not vertically polarized. But for any 

other initial state, the result obtained is fully possible. 

Suppose now we have performed the same measurement many times. Now we 

know much more! Since we have the statistics, we can calculate, with some 

error,  

PH = | ⟨H| ψ⟩ |2 and PV = | ⟨V | ψ⟩ |2, i.e. learn about the absolute values of the 

state components. But the complex phases of these components are still 

unknown. For example, if we observe PH = PV = 1/2, state |ψ⟩ could be |H⟩ or 

|V ⟩ or |+⟩ or |-⟩ or many other options. What can we do about this? 

if we perform additional sets of measurements in other bases. Then we obtain 

additional numbers, and it is easier for us to solve the equations for α and β. As 

it turns out, this approach to measuring quantum states can be generalized to 

other quantum systems, including those of higher dimension. 

The procedure of obtaining complete information about the quantum state by 

performing series of measurements in several different bases on the state‘s 

multiple identical copies is called quantum tomography.(Noah 2014) 

2.10-Polarization qubit: 

Let us consider an elementary experiment with light polarization. A light 

beam is sent to (PBS) whose output ports are monitored by photo detectors. 

The intensities measured by the detectors will be proportional to squared 

absolute values |Ex|
2
 and |Ey|

2
 of the elements of the Jones vector describing the 

input beam. Suppose now that we decrease the amplitude of the incident wave 

and detect light with very sensitive photo detectors, such as photomultipliers. 

A meaningful question one may now ask is what happens if we send a single 
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photon to the (PBS)—which of the two detectors will register it? All 

experimental facts conclude that the outcome is probabilistic: everything that 

can be predicted is the chance that one or another detector will click.  

The polarization of a single photon is described by an object analogous to the 

Jones vector. It has two complex components α  and β , but their interpretation 

is now different: their squared absolute values |α|
2
 and |β|

2 
specify the 

probabilities that the photon will generate a click on one or another detector. 

Because there is no other path for the photon to take at the exit, we require that 

the normalization condition  

|α|2  + |β|2 = 1 is satisfied. A macroscopic light beam can be thought of as 

composed of a large number of photons with the same polarization. Therefore 

it is natural to assume the polarization state of an individual photon is 

described by the Jones vector rescaled to satisfy the normalization condition. 

When many photons are sent to the (PBS), this will reproduce the division of 

classical intensities between the output port. For example, a photon polarized 

linearly at an angle  will be described by a vector 














sin

cos
                                                                 (2.20) 

and the probabilities of clicks are  and . This is the quantum 

analog of the Malus law. 

It will be useful to denote horizontal and vertical polarization states of a 

single photon with: 











0

1
H  ,                   










1

0
V                                           (2.21)                            

The states H  and V  can be identified unambiguously using a (PBS). If we 

are tasked with encoding a classical message in the form of a string of bits into 

the polarization of a train of photons, the solution is straightforward: send the 
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bit value 0 as H , the bit value 1 as V  and tell the receiving party to read out 

the message using a (PBS) and two single-photon detectors. 

However, quantum mechanics offers us a possibility to prepare an arbitrary 

superposition state which can be seen most directly by rewriting , 

VH    

where  |α|
2
 + |β|

2
 = 1.  

This quantum mechanical generalization of the bit is called a qubit (Banaszek 

et al., 2012). 
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Chapter Three 

Cryptography 

3.1History of Cryptography:- 

Human desire to communicate secretly is at least as old as writing itself and 

goes back to the beginnings of civilization. Methods of secret communication 

were developed by many ancient societies, including those of Mesopotamia, 

Egypt, Sudan, India, China, and Japan, but details regarding the origins of 

cryptology, i.e., the science and art of secure communication, remain 

unknown. 

The ancient Egyptian  civilizations left behind document of Hieroglaphs in the 

Giza pyramids, some of them are attempted to be an early example of secret 

writing.  

The modern history of cryptography can be retained back to Julius Caesar 

cipher.  "Julius Caesar enciphered his dispatches by writing D for A, E for B 

and so on" (sergienko, 2005). Then Augustus Caesar  changed the imperial 

cipher system to  be C  written for A, D for B, and so on.  The Arabs 

generalized this idea to the mono alphabetic substitution, in which a keyword 

is used to permute the cipher alphabet.  

There are basically two ways to make a stronger cipher: the stream cipher and 

the block cipher. In the first one,  the encryption rule depend on a plaintext 

symbol‘s position in the stream of plaintext symbols, while in the second it 

encrypt several plaintext symbols at once in a block. 

3.2 Cryptographic algorithms: 

 Encryption and decryption in cryptography are performed by what are so 

called cryptographic algorithms. They may be mathematical or otherwise. 

Cryptographic algorithms all in two types : 
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3.2.1 Restricted cryptographic algorithms: 

  In which a key is not used in the process of encryption and decryption , and 

security is based on keeping the way that algorithms ways secret. 

Unfortunately they are easily broken, so they can be used in low security 

applications. 

3.2.2 key- based cryptographic algorithms: 

This cryptography depend on using a secret key, and the key used in the 

process of encryption and decryption.  

 The Key-based cryptography has two types: Symmetric and Asymmetric 

algorithms. 

a. Symmetric algorithms: 

 In symmetric algorithms the process of encryption and decryption requires  

each party  access to the same secret key. This needs to be known to both sides 

, but need to be kept secret. And this key use by sender to encrypt the message 

and by the receiver to decrypt it.  

Encryption algorithms which have this property are called symmetric 

cryptosystems or secret key cryptosystems. In fact all historical ciphers pre 

1960 are symmetric. 

b.   Asymmetric algorithms: 

 There is a form of cryptography which uses two different types of key, one is 

publicly available and use for encryption whilst the other is private and used 

for decryption. 

These types of cryptosystems are called  A symmetric cryptosystems or public 

key cryptosystems. 
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Usually  in cryptography the communicating parties are denoted by A and B . 

However often one uses the more user – friendly names of Alice and Bob. But 

it is  not assume that the parties are necessarily human, one could be describing  

a communication being  carried out between two machines. The Eavesdropper, 

bad girl, adversary or attacker is usually given the name Eve. 

3.3 Kirchhoff's Principle : 

Cryptosystem are designed to cope with the worst case scenario. If adversary 

has infinite computing resources , can gain access to plaintext / cipher text 

pairs and thus can study the relationship between each pair ,and knows the 

encryption and decryption algorithm. So can abstracts  plaintext from cipher 

text values at will. The only element not accessible to this adversary is the 

secret key, and thus the security of a cryptosystem depends completely on the 

security of the key. This is a long standing design philosophy first established 

by Auguste Kerckhoff 1883: “The security of a cryptosystem must not depend 

on keeping the secret of the cryptoalgorithm. The security must depends only 

on keeping the secret of the key‖ (Kennedy, 2008).  

3.4 Key Distribution: 

Key establishment is important stage,  indeed, cryptography itself would 

probably vanish  if keys could not be produced successfully. However, there is 

another important task is a key distribution. 

Traditionally, symmetric encryption suffered one enormous shortcoming,  it 

was necessary for either the sender or the recipient to create a key and then 

send it to the other party. While the key was in transit, it could be stolen or 

copied by a third party who would then be able to decrypt any ciphertexts 

encrypted with that key. 
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The one-time pad cipher used physical way to distribute the keys. Users have 

to agree secretly  on the key, a long, random sequence of 0‘s and 1‘s. Once 

they have done this, they can use the key for enciphering and deciphering, and 

the resulting cryptograms can be transmitted publicly, for example, 

broadcasted by radio, posted on the Internet, or printed in a newspaper, without 

compromising the security of the messages. But the key itself must be 

established between the sender and the receiver by means of a secure channel 

for example, a secure telephone line, or via a private meeting or hand delivery 

by a trusted courier. 

Such a secure channel is usually available only at certain times and under 

certain circumstances. Furthermore, even if a secure channel is available, this 

security can never be truly guaranteed. A fundamental problem remains 

because, in principle, any classical private channel can be monitored passively, 

without the sender or receiver knowing that the eavesdropping has taken place. 

This is because classical physics   allows all physical properties of an object to 

be measured or copied  without disturbing those properties. And this is not the 

same case in quantum theory, which forms the basis for quantum 

cryptography.  

3.5 Quantum cryptography: 

Classical cryptography" relies on the use of ‗keys‘ (specific sequence of bits) 

to encode and decode private messages. In this way the security of a message 

in transmission through a public channel depends on the security of the key 

that was used to encode it.  

The one-time pad cipher  is an example of  classical cryptography. In the one-

time pad, the sender and receiver share a secret random key. The secret key is 

composed of a sequence of random bits and it must be as long as the message 

to be encrypted. The sender encodes the private message with the random 
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secret key via the addition of each bit of the message with a bit of the key. The 

receiver, who knows the random secret key, decodes the encrypted message by 

adding it  with the secret key. The security of the one-time pad was 

mathematically proven by Shannon . And One-time pad If implemented 

correctly, cannot be broken at any point, even if the eavesdropper has 

unlimited computational power. 

The problem with  One-time pad is that the key has to be as long as the 

message, random, kept secret, and it should be used only once for encryption. 

Without these conditions, the security of the private message cannot be proven. 

Hence, the problem of secure communication between two parties translates 

into a problem of distributing random secret keys between them. 

Quantum key distribution (QKD) is a proposal to solve the problem of key 

distribution between two distant parties.  

The first protocol for QKD was proposed in 1984 by Charles Bennett and 

Gilles Brassard, a protocol that is still widely used . The goal of QKD is to 

establish a secure key between two parties, typically named Alice (the sender) 

and Bob (the receiver) who are communicating through a public channel. 

The idea behind QKD is to use quantum properties of single photons  to 

distribute a secure key. These properties include the fact that the state of single 

photons are perturbed when they are measured and also that it is not possible to 

create a perfect copy of them . 

If Alice encodes information in single photons and sends them to Bob, then the 

two parties can establish an identical and random sequence of bits that is only 

known to them and nobody else. This string of bits can used as a secret key. 

An eavesdropper (Eve) can try to intercept the photons in transmission and 

measure them, but it is impossible to do that without leaving a trace. Also Eve 

cannot copy the quantum signals  and therefore the security of the key in 
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transmission is, in principle, guaranteed. 

 The goal of Eve is to obtain full or partial information about the key that is 

being distributed between Alice and Bob. If Eve obtains information about the 

key then she can obtain information about the private message. Any errors 

found in the secret key are attributed to information about the key that Eve has 

learned through some form of eavesdropping. Note that this means that Alice 

and Bob can quantify the amount of information that the eavesdropper has 

about the key. If the disturbance from eavesdropping is below a specific limit, 

the information that Eve learned can be removed through classical post-

processing . 

The possibility to verify the security of the key before it is used for encoding is 

a feature of QKD and is not possible with any classical protocol (William K. 

Wootters and H. Zurek, 2009). 

3.6 Elements of quantum cryptography: 

In this content we will mention some of  quantum concepts which regard as  

elements of  Quantum Key Distribution. 

a-Qubit:  

The classical unit of information is the Bit, it can take the values 0 or 1 and it 

can be identified with the state of a classical system (on-of). In the quantum 

counterpart the unit of information is the quantum bit or Qubit. A qubit can be 

implemented using a quantum system; that is to say a system described by two 

orthogonal basis states. 

In mathematical terms, the state of a qubit is a normalized vector in a two-

dimensional complex vector space with an inner product   = 1.  
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Unlike classical bits, qubits can also be in a linear superposition of the basis 

states: 
 

10      where   and   are complex numbers that satisfy 

22
   = 1.

 

There are different ways to create qubits. Any degree of freedom belonging to 

a two-level quantum system can be used. The most relevant using are photons 

polarization, which give rise to the so-called photonic qubits.  The polarization 

of the photon can be use to form polarization qubits . 

When using polarization, the two orthogonal basis states are horizontal 0H  

and vertical 1V  . 

Moreover, a pair of linear superposition of the basis states are defined, for 

example, by the diagonal polarization states: 

)(
2

1
VH    and   )(

2

1
VH     in which the states   and   also 

form a basis. 

Another difference between bits and qubits is the measurement process and 

result. When a classical bit is measured it outputs one of two values, ‗0‘ or ‗1‘, 

according to the value that the bit has. 

A measurement on a qubit is different since measuring a qubit is only an 

attempt to determine its state. When a quantum state i  is measured, its state 

is projected  onto the subspace mm , where m  is a label of the possible 

results of the measurement. The probability of projecting onto m  is given by: 

P = 
2

im  

This means that the result of the measurement depends on the basis chosen to 

measure the qubit. For example if the state to be measured is 0  and we 

measure it in the basis  1,0  then it is projected onto the state 0  100% of the 
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time. However, if the state to be measured is 0  and we measure it in the 

basis  ,   then it is projected onto the state   only with probability  

P = 
2

1
.  

In addition , a measurement on a qubit disturbs or modifies its state and the 

quantum state resulting from the measurement is the new state after the 

measurement. 

Bennet and Brassard realized the use of this fundamental property of quantum 

states for cryptographic purposes. If the eavesdropper tries to obtain 

information about the qubits while they are in transmission she must measure 

them. However, when performing the measurement she changes the quantum 

state if the basis she chooses to measure is not the same in which the qubit was 

prepared in, leaving a trace or creating an error that Alice and Bob can detect. 

In addition, it is fundamentally impossible for Eve to measure a single qubit in 

two different bases simultaneously (William K. Wootters and H. Zurek, 2009) 

 b-Nocloning theorem: 

The principle of superposition is a cornerstone of quantum mechanics. It says 

that when two evolving states solve the Schrödinger equation, any linear 

combination of the two is also a solution. For that reason, waves from the two 

slits in the double-slit experiment simply add together to create the familiar 

interference pattern. The superposition principle also prohibits the arbitrary 

copying of quantum states. 

By imagine a machine that can copy the state of a photon or an electron. When 

the original enters, two copies come out, each having the same state as the 

original. If such a machine were successful, it would convert the state 0  to  

00  and 1  to 11 . The problem arises when we send a linear combination, 

10   , through the hypothetical cloner. If 0  and 1  are cloned 

correctly, then because of the linearity of quantum mechanics, the output for 
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their superposition must be the superposition of the outputs, 
 

1100   .                                                  (3.1) 

But we want +    = ( 10   )( 10   ), the original and a copy of  . 

That is not the state   we get! . 

Perfect copying can be achieved only when the two states are orthogonal, 

and even then one can copy those two states (or perhaps a larger collection 

of mutually orthogonal states) only with a copier specifically built for that 

set of states. Thus, for example, one can design a copier for any orthogonal 

pair of polarization states of a photon, but a copier that works for 

{ 0 , 1 } will fail for {  ,  }, and vice versa. 

In sum, one cannot make a perfect copy of an unknown quantum state, 

since, without prior knowledge, it is impossible to select the right copier for 

the job. 

The impossibility of cloning may seem at first an annoying restriction, but 

it can also be used to one‘s advantage , for instance, in a quantum key 

distribution protocols (Itzel, 2013) 

c-Entanglement 

Entanglement is a purely quantum phenomenon, it is not supplied with a 

classical counterpart; it is in this way that the quantum state of two or more 

physical systems depends on the states of everyone of the systems that 

compose it (Danny Laghi,2013). 

For a system of two qubits. Consider the two single photons , each regarded as 

a 2-state quantum system. Since each photon can be in either of the horizontal 

0  or vertical 1  polarization state, classically the two photons are in one of 

four states – 00, 01, 10, or 11 – and represent 2 bits of classical information. 
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By the superposition principle, the quantum state of the two photons can be 

any linear combination of these four classical states: 

11100100 11100100                        (3.2) 

where   
ij

ij 1
2

  

Suppose the first qubit is in the state  1
5

4
0

5

3
 , and the second qubit is in the 

state 1
2

1
0

2

1
 , then the joint state of the two qubits is             

 ( 1
5

4
0

5

3
 )( 1

2

1
0

2

1
 ) = 11

25

4
10

25

4
01

25

3
00

25

3
  

In fact, there are states such as 

)1100(
2

1
                                                            (3.3) 

 which cannot be decomposed in this way as a state of the first qubit and that of 

the second qubit.  Such a state is called an entangled state. When the two 

qubits are entangled, we cannot determine the state of each qubit separately. 

The state of the qubits has as much to do with the relationship of the two qubits 

as it does with their individual states. 

If the first or second qubit of   is measured then the outcome is 

0 with probability 
2

1
 and 1 with probability

2

1
 . However if the outcome is 0, 

then a measurement of the second qubit results in 0 with certainty. This is true 

no matter how large the spatial separation between the two particles. 

The state  , which is one of the Bell basis states, has a property which is 

even more strange and wonderful. The particular correlation between the 

measurement outcomes on the two qubits holds true no matter which  rotated 

basis are used to measure in. if we use a rotated basis vandv  where: 
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 vv 0  and  vv 1  this can be seen as 

)1100(
2

1
 = 

  ))(())((
2

1
vvvv  ))(())((

2

1   vvvv   

)(
2

1
))()((

2

1 2222   vvvvvvvv          (3.4) 

d-Entangled Photon Sources: 

The ability to produce single photons and entangled photon pairs in desired 

quantum states is essential in any system intended to handle quantum 

information. Single photons serve as qubits in quantum computers, and the 

most powerful operations in those computers are performed by entangling 

them. Further, entangled pairs of photons are the carriers for signals in 

quantum cryptography. 

Traditionally, single photons could only be produced by the aggressive 

attenuation of stronger signals. Entangled photons were traditionally produced 

by spontaneous parametric down conversion. In the latter process, a 

nonlinear optical crystal annihilates a high-frequency photon and creates two 

lower-frequency photons. This is a random process with a very low probability 

of happening, so it requires a very high-intensity source at the input, but this is 

relatively easy to supply, so SPDC remains a proven method of generating 

entangled photons. 

As random processes, these two methods share a pair of distinct but 
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related disadvantages: First, it seriously limits the system's ability to produce 

a photon at a specific time, which is an impediment to creating any kind of 

clock-based quantum system. Second, it means that there may be multiple 

photons created at a given time, which destroys the absolute security of 

quantum cryptography. 

The condition that photons should be separated in time may be called 

Anti bunching or sub-Poisson behavior. These are the photon producers 

that may properly be called sources of single and entangled photons, and the 

desire to create effective implementations of them has driven much of the 

recent research in quantum optics. In the last decade in particular, many 

novel sources have been developed to address this need (Sources of Single and 

Entangled Photons Scott Barker November 1, 2011). 

It is important to point out that exists a wide variety of nonlinear crystals that 

can be used for SPDC in a given range of frequencies [6]. That is the case of 

KTiPO3, RbTiPO4, LiNbPO3, LiTaO3 and BaB2O4. In fact, most of the 

nonlinear crystals are birefringent, therefore they produce two types of phase 

matching, or regimes where we have constructive interference. Such phase 

matching condition obeyed the conservation of energy and momentum. We 

have two types of phase matching , type I and type II. In type I the down-

converted photons are parallel to each other and perpendicular to the pump 

photon, while type II the down-converted photons have orthogonal 

polarizations. 

Other important sources are semiconductor nanostructures, particularly 

quantum dots, where electrons and holes can be trapped to form excitonic 
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complexes  (states consisting of bound electron–hole pairs) that eventually will 

suffer radioactive decay similarly to atomic cascades. 

In fact this technique is closely related to the generation of entangled photons 

in single atoms, therein the reason to call quantum dots as artificial atoms. In 

such radioactive decay process photons emits entangled photons with certain 

polarization that can be controlled. It is important to mention that this 

technology has made real the possibility to have compact sources of entangled 

photons. Example of that can be devices like semiconductor light emitting 

diodes.( O.S. Magaña 2010) 

The most popular method of producing entangled photons is through 

spontaneous parametric down conversion (SPDC). A 100mW ion-argon laser 

pump beam is incident on a pair of orthogonally polarized type I Beta Barium 

Borate crystals. As the pump beam interacts with these nonlinear crystals, 

single photons split into entangled ―signal‖ and ―idler‖ photons with 

wavelengths longer than the pump. Because a type I crystal is used, the 

polarization of the signal and idler photons will be identical but opposite of the 

pump polarization.(Graham Jensen 2017). 

 

Fig.3.1 generation of polarizing-entangled photon states with nonlinear crystal. 
(Adeline.al 2017)  
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3.7 Electro-optic modulator (EOM): 

EOM is an optical device in which a signal-controlled element exhibiting 

the electro-optic effect is used to modulate a beam of light. 

The modulation may be imposed on the phase, frequency, amplitude, 

or polarization of the beam. Modulation bandwidths extending into 

the gigahertz range are possible with the use of laser-controlled modulators. 

The electro-optic effect is the change in the refractive index of a material 

resulting from the application of a DC or low-frequency electric field. This is 

caused by forces that distort the position, orientation, or shape of the molecules 

constituting the material. Generally, a nonlinear optical material (organic 

polymers have the fastest response rates, and thus are best for this application) 

with an incident static or low frequency optical field will see a modulation of 

its refractive index. 

The simplest kind of EOM consists of a crystal, such as lithium niobate, whose 

refractive index is a function of the strength of the local electric field. That 

means that if lithium niobate is exposed to an electric field, light will travel 

more slowly through it. But the phase of the light leaving the crystal is directly 

proportional to the length of time it takes that light to pass through it. 

Therefore, the phase of the laser light exiting an EOM can be controlled by 

changing the electric field in the crystal. 

Note that the electric field can be created by placing a parallel 

plate capacitor across the crystal. Since the field inside a parallel plate 

capacitor depends linearly on the potential, the index of refraction depends 

linearly on the field (for crystals where Pockels effect dominates), and the 

phase depends linearly on the index of refraction, the phase modulation must 

depend linearly on the potential applied to the EOM. 

https://en.wikipedia.org/wiki/Electro-optic_effect
https://en.wikipedia.org/wiki/Light_beam
https://en.wikipedia.org/wiki/Modulation
https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Amplitude
https://en.wikipedia.org/wiki/Polarization_(waves)
https://en.wikipedia.org/wiki/Gigahertz
https://en.wikipedia.org/wiki/Laser
https://en.wikipedia.org/wiki/Electro-optic_effect
https://en.wikipedia.org/wiki/Nonlinear_optics
https://en.wikipedia.org/wiki/Organic_polymer
https://en.wikipedia.org/wiki/Organic_polymer
https://en.wikipedia.org/wiki/Optical_field
https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Lithium_niobate
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Capacitor
https://en.wikipedia.org/wiki/Linearly
https://en.wikipedia.org/wiki/Pockels_effect
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The voltage required for inducing a phase change of  is called the half-wave 

voltage. For a Pockels cell, it is usually hundreds or even thousands of volts, so 

that a high-voltage amplifier is required. Suitable electronic circuits can switch 

such large voltages within a few nanoseconds, allowing the use of EOMs as 

fast optical switches. 

Depending on the type and orientation of the nonlinear crystal, and on the 

direction of the applied electric field, the phase delay can depend on the 

polarization direction. A Pockels cell can thus be seen as a voltage-controlled 

wave plate, and it can be used for modulating the polarization state. For a 

linear input polarization (often oriented at 45° to the crystal axis), the output 

polarization will in general be elliptical, rather than simply a linear polarization 

state with a rotated direction. 

3.8  EPR Paradox: 

In 1935 Albert Einstein, Boris Poldosky, and Nathan Rosen published the 

paper, Can quantum-mechanical description of physical reality be considered 

complete?. The problem lined out therein was later named the EPR paradox, 

after its authors (Qubits and Quantum Measurement ,Chapter 1, 2018).The aim of the 

paper was to demonstrate, on theoretical grounds,  that quantum theory, and 

more specifically the quantum wave function, does not contain all the 

information about a system. In other words, all Information that  interpreted as 

the theoretical elements, should be have a corresponding element in physical 

reality.  

That means  the results predicted by the theory agrees with what can be 

observed by experiments. And secondly that all things that have a physical 

reality have a theoretical counterpart in the theory.  In other words the theory 

should describe all of reality and be correct.  
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By  consider a system of one particle that has only one degree of freedom and 

is described by the wave function . And the observable physical quantity   of 

this system corresponding to the quantum mechanical operator A, since           

A   = a   : If a is a number it is true that the physical quantity   has the 

value a. According to the criterion of physical reality we may regard  there is 

an element of physical reality corresponding to the measured value of   . In 

other words we have measured something that exists. In quantum mechanics it 

is true that if two different physical quantities have the non commuting 

operators X and Y , so that XY ≠ Y X, then it is not possible to know them both 

simultaneously.  This means for the previously stated,  that quantum mechanics 

is either incomplete as it cannot describe both of the physical quantities 

corresponding to the operators at once, or that the physical quantities 

themselves do not exist simultaneously.  This is referred to as the quantities not 

having simultaneous reality(Danny Laghi, 2013) 

The main argument of EPR is based on three requirements: 

a-Completeness: Every element of physical reality must have a counterpart In 

the physical theory in order for the theory to be complete. 

b-Realism: If the value of a physical quantity can be predicted with certainty, 

without disturbing the system, then the quantity has physical reality. 

c-Locality: There is no action at a distance. Measurements on a (sub)system do 

not affect measurements on (sub)systems that are far away. 

EPR then conclude that under certain circumstances quantum mechanics is not 

a complete theory. 

To  understand this claim, let us consider two spin 
2

1
 particles in the spin 

entangled state  , (the antisymmetric  Bell state) , and let them propagate 
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in opposite direction along x-axis from the source . let then two observers , 

Alice and Bob , perform spin measurement along the z-direction . quantum 

mechanics tell us that for state, 

                                 (3.5) 

The result measured by Alice undetermined , i.e. either ↑ or ↓ , but if Alice 

measure ↑ , then Bob will measure ↓ with certainty and vice versa, which a 

sings physical reality to the spin of Bob's particle in the sense of EPR. Since 

there is no disturbance or action at a distance , EPR conclude , quantum 

mechanics does not contain any information about predetermined measurement 

outcomes and is there for incomplete. 

To account for the missing information , there must be some inaccessible 

parameter, a hidden variable , to determine which spin eigen value is realized 

in the measurement . EPR then demand a hidden variable theory (HVT) to 

explain this problem. 

In the same year as the EPR paper was published , Bohr replied ( using the 

same title for his paper as EPR , i,e. "can quantum- mechanical description of 

physical reality be considered complete ?" criticizing their perception of reality 

and sweeping away their arguments without really answering the interesting 

paradox presented in the EPR paper. But  due to Bohr's great authority the 

physical community followed his view that the quantum mechanics is 

complete and the case rested for nearly 30 years until John Bell published his 

famous article in 1964 , presenting away to solve the debate (A. EINSTEIN, 

1935). 

3.9 Bell's Theorem 

John Bell published his paper On the Einstein Podolsky Rosen Paradox in 
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1964, and in it he proved that any local deterministic hidden variable theory is 

incompatible with the predictions of quantum mechanics.   

The hidden variable idea rests on the thought that quantum mechanics as we 

know it only offers a statistically correct description of reality, and that there 

are some finer details (hidden variables) that are waiting deeper down.  

Bell's work produced, among other things, the Bell inequalities, a set of 

inequalities which any local hidden variable theory that takes separability into 

consideration must satisfy in some form. Quantum mechanics does not satisfy 

these, and hence the predictions of hidden variable theories and quantum 

mechanics are differ. 

3.9.1 Derivation of Bell's First Inequality 

Arguing against the simplified form of the EPR paradox presented by David 

Bohm, Bell derived his result as follows.  

The spin of the two particles is denoted as 1 , 2 . The spins can be measured 

along the unit vectors a and b to yield the results A = 1 · a   and  B = 2 ·b 

respectively. The assumption is made that the orientation of the measurement 

vectors a and b can be chosen independently of each other. Hidden variable 

theories hold that the spin of the particles are described by one or more 

parameters in such a way as to form a more complete description of the state 

than the description given by quantum mechanics. Let this  parameters be λ, 

the measurement of 1 · a  yielding A can then be described by a and λ. And 

similarly 2 ·b  yielding B can be described by b and λ. The dependences of A 

and B on λ are not restricted by any assumptions apart from the locality 

assumption which may be formulated as 

 [A(a)B(b)](λ) = A(a, λ)B(b, λ)                                                       (3.6) 

This equation states that A and B have a separate dependence upon λ. They can 

be described as separate systems. 
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The possible results of a spin measurement on a spin-
2

1
  particle are 

2


 . To 

simplify it is assumed instead that 

 A(a, λ) = ±1;   B(b, λ) = ±1                                                              (3.7) 

Let ρ(λ) be the probability distribution of the hidden variable parameter. The 

only assumption made about this distribution is that it is normalized and 

therefore must equal unity when integrated over all the possible values of λ, 

 1)(  d                                                                                         (3.8) 

The quantum mechanical expectation value of the product of A and B is 

babaEQM .).).(.( 21                                       (3.9) 

whence it follows that if                                      

    1).).(.( 21   baba                                                          (3.10) 

The above equation expresses spin conservation and it is important to note that 

given the locality assumption (3.7) and the assumption that the measurement 

directions a and b can be chosen independently the above equation implies 

determinism.  If the two measurements and systems cannot affect each other, 

occur along the same axis and we know that one will measure as spin up and 

the other as spin down (3.5), then they must have had those properties all 

along.  

If  hidden variable expectation value E is given by, 

  dbBaAE ),(),()(                                                                    (3.11) 

Taking (3.7) and (3.8) into account it follows that E (equation (3.6)) cannot be 

lower than -1. Furthermore E is equal to -1 for a = b if and only if 

),(),(  aAbB   

Assuming ),(),(  bAbB   according to (3.11) for all possible values of λ, 

yields the expectation value 

  dbAaAE ),(),()(                                                      (3.12) 

Now introducing a third unit vector C as a direction for the spin measurement. 
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The result of a measurement C of the c component of the spin depends on the 

hidden variable parameter λ though again no assumptions are made as to the 

nature of that dependence. 

Defining the expectation value of the measurement of the product of A and C 

following the same procedure as led up to equation (3.12) allows us to write 

the expectation value difference 

 dcAaAbAaAcaEbaE )],(),(),(),()[(),(),(                        (3.13) 

Using the fact that A(b; λ)
2
 = 1 which is a consequence of (3.7), equation 

(3.13) can be written as 

 dcAbAbAaAcaEbaE ]1),(),()[,(),()(),(),(                         (3.14) 

From (3.7) we have that 

),(),(11),(),(  cAbAcAbA   

and also that 

1),(),(  bAaA  

Rewriting (3.14) as    dcbaf ),,,(  

where f  is a function of a, b, c, and  , it must hold that 

 dcbafdcbaf   ),,,(),,,(                                                            (3.15) 

Therefore Bell's inequality can be derived from equation (3.9) 

  )),(),(1()(),(),(  cAbAdcaEbaE                                          (3.16) 

The second term on the right side of the inequality is precisely the expectation 

value of a measurement of the product of B and C (equation (3.7) with a = c). 

And so the inequality can be written as 

1),(),(),(

),(1),(),(),(),()()(),(),(



  
cbEcaEbaE

cbEcaEbaEcAbAddcaEbaE 
                  (3.17) 

This is Bell's inequality, and all deterministic hidden variable theories 

preserving locality must satisfy it. Straying from Bell's original paper the 

disagreement between quantum mechanics and local hidden variable theories 
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can be illustrated using the following counterexample first presented by 

Clauser and Shimony . 

Take a, b and c to lie in the same plane with the angle from a to b being 
3


 

radians. And c is such that the angle from b to c is also 
3


 radians thereby 

making the angle between a and c  2
3


 radians. Using the fact that cos

.

.


ba

ba
 , 

where θ is the angle between the vectors, we have that 

a ·b = b · c = cos
3


 =

2

1
;   a · c = cos2

3


 = -

2

1
                             (3.18) 

because a, b and c are unit vectors and therefore their magnitude is unity. 

Using the quantum mechanical expectation values (3.4) instead of the 

expectation values for the hidden variable description of reality in the 

inequality (3.12) yields 

                                                                  (3.19) 

 

This is a clear violation of Bell's inequality. Quantum mechanics and in other 

side all deterministic hidden variable theories preserving locality ,give 

different predictions of experimental outcomes and therefore different 

descriptions of reality. But many experiments have validated the predictions 

made by quantum mechanics. 

3.9.2 CHSH inequality: 

The original Bell inequality (3.12) relies strongly on the fact that equation (3.5) 

holds perfectly. An experiment testing this Bell inequality requires the use of 

perfect analyzers and detectors. Such devices do not exist (A. EINSTEIN  et al., 

1935). Therefore Bells theorem cannot be verified using this relation. In 1969 

J.F. Clauser, M.A. Horne, A. Shimony and R.A. Holt presented the CHSH 

2

1
1

2

1
1

2

1

2

1

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inequality, which is a Bell inequality that does not use this assumption and is 

therefore more suitable for experimental verification (Hoglund, 2013). 

Labeling  λ the set of additional parameters and A( λ, a) and B( λ, b) the results 

respectively obtained from analyzer 1 oriented respectively along a, and 

analyzer 2 oriented along b, these quantities can only assume values 1 hence 

the quantity )],(1[
2

1
aA    could assume only values +1 (in case of result +1 

and 0 otherwise), and analogously, the quantity  

  )],(1[
2

1
aA                                                                                    (3.20) 

could assume only values +1 (in case of result -1 and 0 otherwise). Hence, 

given the probability distribution of λ, that is )( , the expectation values for 

single detection are found to be: 

  )],(1)[(
2

1
)( aAdaP   

  )],(1)[(
2

1
)( bBdaP                                                               (3.21)                                           

Whereas for combined detections: 

  )],(1)][,(1)[(
4

1
),( bBaAdbaP   

  )],(1)][,(1)[(
4

1
),( bBaAdbaP   

  )],(1)][,(1)[(
4

1
),( bBaAdbaP   

  )],(1)][,(1)[(
4

1
),( bBaAdbaP                                           (3.22) 

Substituting these quantities in correlation coefficient, 
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),(),(),(),(),( baPbaPbaPbaPbaE    

After some straightforward passage, find that the correlation coefficient, 

averaged over the distribution of λ, is given by: 

 ),(),()(),( bBaAdbaE                                                        (3.23) 

Now define a new quantity, that allowed us to write the inequalities 

representing in explicit form, the correlation coefficient quantity which can be 

denoted by, 

)],(),()[,()],(),()[,(

),(),(),(),(),(),(),(),(),,,,(

'''

''''''

bBbBaAbBbBaA

bBaAbBaAbBaAbBaAbbaaS








           (3.24) 

since A and B can assume only the value 1 , then 

),,,,( '' bbaaS   2 ,                                                                       (3.25)         

From which averaging over the distribution of λ one gets, 

2),,,,()(2
'

'   bbaaSd   

That yield 

2)]','(),'()',(),([2  baEbaEbaEbaES                            (3.26) 

 These inequalities are well-known as BCHSH inequalities. These inequalities 

are based on a combination of four correlation coefficient of polarization, 

measured along four orientations of the polarizers. Then S is measurable 

quantity. 

However, CHSH inequalities in some particular situations  are in conflict 

with Quantum Mechanics. Indeed if we put the system in the angles,
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Substituting the quantities E with their quantum mechanical values we get, 

)','(),'()',(),( baEbaEbaEbaES   

)5.22()5.22()5.67()5.22( EEEES     and, 

)2cos(),( abQM baE   

So, 

)45cos()45cos()135cos()45cos( QMS  

22QMS                                                                         (3.27) 

This quantum prevision deeply violates the upper limit of inequalities. 

With respect of three independent angle when  

ab = ba ' = ''ba =     one find  

                                    (3.28) 

This equation representing the behavior of S varying with angle  . 

In conclusion, Bell‘s Theorem brings out a conflict between theories with 

hidden variables and certain quantum mechanical previsions  and provides a 

quantitative criterion to clarify this conflict (William K. Wootters and H. Zurek 

2009). 

3.10 Quantum Channels 

Quantum states can be used to transmit information between two authorized 

parties, conventionally named Alice and Bob. Theoretically, it will make no 

difference whether atoms, ions, molecules, electrons or any other quantized 

particles are involved in the exchange. From a practical perspective, however, 

it is the quantum of light – the photon – which is the preferred option, because 

photon quantum states can be transmitted over longer distances without 
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decoherence than the other quantum candidates. There are  losses due to 

scattering, but provided they are accounted for and dealt with effectively they 

do not affect the overall security of a QKD protocol.  

Any medium which allows light to propagate will henceforth be referred to as 

a ‗quantum channel‘. (Examples are line-of sight free space or optical fibers.). 

The channel itself is not quantum, it merely carries quantum information. 

3.11 Quantum Theory and Quantum Key Distribution 

Quantum key distribution uses basic quantum properties to detect 

eavesdroppers in one of two ways: either by relying on the Heisenberg 

Uncertainty Principle or by the violation of Bell‘s Inequalities in entanglement 

based schemes. Heisenberg - based protocols use the fact that measuring a 

quantum state changes it: the eavesdropper will introduce errors into the 

information transfer along a quantum channel which should always be detected 

by the protocol. 

Entanglement - based protocols do not have any information to eavesdrop! 

Information only springs into existence when the entangled quanta are 

measured: the eavesdropper‘s only potential ploy is to attempt to inject extra 

quanta into the protocol. The extra quanta decrease the value of Bell‘s 

inequality, and so the eavesdropper will also be detected in this case. 

Quantum no-cloning further ties the eavesdropper‘s hands, as no copies of 

quanta can be taken for processing later. 

3.12 Quantum Key Distribution Protocols, general methodology : 

quantum mechanical properties can be used to transfer information from Alice 

to Bob, and any attempted eavesdropping by Eve will always be detectable. 

But how can this be turned into a working cryptographic key distribution 

protocol? A combination of quantum processing and well established classical 

procedures is needed. 
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 Three distinct stages are needed: raw key exchange, key sifting and key 

distillation, with the option to discard the secret key at any of the stages if it is 

deemed that not enough security could be obtained from it.  

3.12.1.Raw Key Exchange 

This is the only quantum part of Quantum Key Distribution! Alice and Bob 

exchange ‗some quantum states‘  so quantum information is passed along a 

quantum channel from Alice to be measured by Bob, with or without the 

presence of Eve. 

 3.12.2.Key Sifting 

Alice and Bob decide (classically) between them which of the measurements 

will be used for the secret key. The decision making rules depend on which 

protocol is being used, and  some measurements will be discarded e.g. if the 

settings used by Alice and Bob did not  match. 

3.12.3.Key Distillation 

The need for further processing after the key sifting stage was determined by 

Bennett et al  when reviewing experimental results (practical channels are 

lossy, and the protocol needs to be workable even in the presence of 

transmission errors) and  how the use of an authenticated public channel could 

repair the information losses from an imperfect private channel. Thus error 

correction and privacy amplification are required, which are the first two steps 

in the key distillation stage of the classical post-processing of the remaining 

secret key bits. The third (and arguably most important!) final process is 

authentication, which counteracts man-in-the-middle attacks (MITM). 

3.13.BB84 Protocol 

The BB84 protocol is the most popular QKD protocol at the moment. It is 

named after its inventors, Bennett and Brassard . 

The procedure of BB84 is as follows . 

• In BB84, Alice sends Bob a sequence of photons, each independently chosen 

from one of the four polarizations vertical, horizontal, 45-degrees and 135-
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degrees. 

 •For each photon, Bob randomly chooses one of the two measurement bases     

(rectilinear and diagonal) to perform a measurement. 

• Bob records his measurement bases and results. Bob publicly acknowledges 

 his receipt of signals. 

• Alice broadcasts her bases of measurements. Bob broadcasts his bases of 

measurements 

Table 3.1: Procedure of BB84 protocol: 

 

• Alice and Bob discard all events where they use different bases for a signal. 

The remaining bits are defined as \sifted bits". 

• Alice and Bob each convert the polarization data of all remaining data into 

a binary string called a raw key (by, for example, mapping a vertical or 45- 

degrees photon to \0" and a horizontal or 135-degrees photon to \1"). They 

can perform classical post-processing such as error correction and privacy 

amplification to generate a final key. 

3.14 B92 Protocol 

The B92 protocol is a variant of the BB84 scheme, still using polarized 

photons, but this time with non-orthogonal quantum states for encoding 

information. Two quantum states are used, instead of the four required in 

BB84. Alice randomly chooses one or other of these quantum states and sends 

them to Bob via a quantum channel. Bob has two methods to measure the 

arriving photons, which will either register ―detection‖ or ―no detection‖. 
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During the Key Sifting stage, Bob tells Alice which photons he ―detected‖, but 

not his actual measurement, and all other photons are discarded. Error 

correction and privacy amplification continue as normal, to verify that the 

secret key is the same for both Alice and Bob. 

  3.15 E91 Protocol 

In 1991, Ekert proposed a method of using Bell‘s inequalities to perform key 

distribution via entangled polarized photons in a quantum channel. These  

entangled photons can be created by Alice, Bob or a trusted third party (TTP), 

and each pair is separated in a way that results in Alice and Bob receiving one 

of each pair. This is arguably a more secure method of using polarized 

photons, as there is not information to  be eavesdropped: it only springs into 

existence at the moment of measurement. 

Alice and Bob both independently and randomly choose from two different 

orientations of their analyzers to measure the polarizations of the photons, and 

the choice of analyzer is the basis for the publicly discussed key sifting stage.  

The measurements are divided into two groups: the first is when different 

orientations of  the analyzer were used, and the second when the same analyzer 

orientation was employed. Any photons which were not registered are 

discarded. Alice and Bob then reveal the results of the first group only, and 

check that they correspond to the value expected from Bell‘s inequality             

( 22 ):  if this is so, then Alice and Bob can be sure that the results they 

obtained in the second group are correlated and can be used to produce a secret 

key string (Sheila Cobourne,2011). 

3.16 Literature review: 

Quantum Key Distribution(QKD) is a new technology for protecting sensitive 

data during transmission process in a new communications environment. So, 

many researchers have focused on the simulation of QKD to achieve a secure 

communication for files depending on different simulator environments. 

(Shuang Zhao1.al 2007) proposed an event-by-event simulation model and 

polarizer as the simulated  component for QKD protocols i.e. BB84 protocol 

by Bennet and Brassard  and Ekert‘s  protocol with presence of Eve and 

misalignment measurement as scenarios. they used Wigner inequality and 10
8
 

photon pairs. 
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D. S. Naik et al., in (1999) proposed the ways of Eavesdropping on the Ekert's 

protocol. They  investigated several possible eavesdropper strategies, including 

pseudo-quantum non-demolition measurements. and  they discuss a procedure 

to increase her detectability. In a typical 10 minute run of their system, they 

observed  S=2.67 for the 40 minutes of collected data(real experiment).  

Sara Idris Babiker Mustafa in 2005. Presented simulation software for a 

quantum cryptography based on Ekert . they considered  Bell's theorem in 

simulation . there work without representing Eavsdropper.( S=2.5) 

Dietrich Dehlinger and M. W. Mitchell in (2002).  used polarization-entangled 

photon pairs to demonstrate quantum non-locality in an experiment. 

 The photons are produced by spontaneous parametric down conversion using 

a violet diode laser and two nonlinear crystals.   they demonstrated   

polarization correlations of the entangled photons.  A test of the Clauser, 

Horne, Shimony, and Holt version obtained S= 2.30760.035. (real experiment). 

Siddeq Y.Ameen et al. in (2006) proposed a model of Ekert protocol using 

more than three angles to calculate Bell's inequality . and they used Jones 

matrices to model the optical components. 

H. De Raedt.al (2010) they discuss recent progress in the development of 

simulation algorithms that do not rely on any concept of quantum theory but 

are nevertheless capable of reproducing the averages computed from quantum 

theory through an event-by-event simulation. The simulation approach is 

illustrated by applications to Einstein–Podolsky–Rosen–Bohm experiments 

with photons. They used 10
6
 photons pairs and  obtained S=2.73. 

K. Michielsen.al   (2014) . they found S = 2:62 which compares very well with 

the values between 2 and 2.57 extracted from different sets of experimental 

data of Weihs et al. However, for W = 2 ns (results not shown), the results for 

the two-particle correlations fit very well to the prediction of quantum theory 

for the EPRB experiment. From these data we extract S = 2:82.
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                              CHAPTER FOUR    

 Event-based simulation of quantum physics experiments 

4.1 Introduction: 

Computer simulation is widely regarded as complementary to theory and 

experiment (D.P. Landau, K.al 2000). The standard approach is to start 

from one or more basic equations of physics and to employ a numerical 

algorithm to solve these equations. This approach has been highly 

successful for a wide variety of problems in science and engineering. 

However, there are a number of physics problems, for which this 

approach fails, simply because there are no basic equations to start from. 

Indeed, as is  quantum theory has nothing to say about individual events . 

Reconciling the mathematical formalism that does not describe individual 

events with the experimental fact that each observation yields a definite 

outcome is referred to as the quantum measurement paradox and is the 

most fundamental problem in the foundation of quantum theory . 

In view of the quantum measurement paradox, it is unlikely that we can 

find algorithms that simulate the experimental observation of individual 

events within the framework of quantum theory. Of course, we could 

simply use pseudo-random numbers to generate events according to the 

probability distribution that is obtained by solving the time-independent 

Schrodinger equation. However, the challenge is to find algorithms that 

simulate, event-by-event, the experimental observations of, for instance, 

interference without first solving the Schrodinger equation(H. De Raete.al 

2010) 

The mathematical framework of quantum theory allows for   calculation 

of numbers which can be compared with experimental data as long as 

these numbers refer to statistical averages of measured quantities, such as  
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an interference pattern, and the specific heat ( Michielsen and Raedt, 

2010) . 

But in some experiments like single-particle interference experiments the 

interference pattern is built up by successive discrete detection events, 

and in Bell-test experiments the two-particle correlations are computed as 

averages of pairs of individual detection events recorded at two different 

detectors and seen to take values which correspond to those of the singlet 

state in the quantum theoretical description. 

So why individual entities which do not interact with each other can 

exhibit the collective behavior that gives rise to the observed interference 

pattern and why two particles, which only interacted in the past, after 

individual local manipulation and detection can show correlations 

corresponding to those of the singlet state.  

An event-based simulation model provide answer by reproduces the 

statistical distributions of quantum theory without solving a wave 

equation but by modeling physical phenomena as a sequence of events 

whereby events can be particle emissions by a source, signal generations 

by a detector, interactions of a particle with a material and so on.  

The assumption of the event-based simulation approach is that from 

current scientific knowledge derives from the discrete events which are 

observed in laboratory experiments and from relations between those 

events,  event-based simulation approach can provide what we can say 

about these experiments but not what \really" happens in Nature.  

The general idea of the event-based simulation method is that simple 

rules define discrete-event processes which may lead to the behavior that 

is observed in experiments. The basic strategy in designing these rules is 

to carefully examine the experimental procedure and to devise rules such 

that they produce the same kind of data as those recorded in experiment. 
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Event based model started by search for useful rules by asking question in 

example by what kind of discrete-event rule should a beam splitter 

operate in order to mimic the build-up, event-by-event, of the correlation  

observed in the  EPR experiment. 

The event-based approach has successfully been used for  simulations of    

Mach-Zehnder interferometer experiments and quantum cryptography 

protocols. 

In this chapter, we used the event-based simulation method   to build 

Ekert's protocol of quantum cryptography a summing that the source of 

entangled photon operate by using  laser beam.  And we will test whether 

or not a Bell-CHSH (Clauser Horne-Shimony-Holt) inequality can be 

violated. And we will use the variation in CHSH value to detect the case 

of eavesdropping.  

4.2 Ekert's Protocol: 

In 1991, Artur K. Ekert suggested a different approach for quantum key 

distribution . His idea is based on entangled particles with the help of 

Bell‘s theorem, it can be tested if eavesdropping has take place. The Ekert 

protocol,  also called Einstein-Podolsky-Rosen protocol due to its direct 

connection to the EPR paradox.  

The protocol works as follows: 

 A source emits pairs of qubits in a maximally entangled state like: 

)1100(
2

1
                                                       (4.1) 

• Alice and Bob choose randomly between three bases, obtained by 

rotating the horizontal-vertical basis ⊕ around the z-axis by angles : 

 

 01 a            ,                01 b  
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
8

1
2 a             ,              

8

1
2 b                                (4.2) 


4

1
3 a            ,               

8

1
3 b  

Where a  is the Alice choice angle,  and b  is Bob choice angle. 

•  After the transmission has taken place, Alice and Bob release publicly 

which basis they have chosen for each measurement. They separate the 

measurements into three groups: 

 First group: Consisting of measurements using different orientation of 

the analyzers. 

 Second group: Consisting of measurements using the same orientation 

of the analyzers. 

 Third group: Consisting of measurements in which at least one of 

them failed to register a particle. 

Note that the first group is used to test Bell‘s inequalities and the second 

group to establish a secure key, while the third group is discarded. 

•  Finally, Alice and Bob announce publicly only their results of the first 

group. Thus, they can check if eavesdropping has taken place. 

If no eavesdropper has perturbed the system, Alice and Bob can use the 

measurements of the second group to obtain a secret string of bits,  

known as the key. 

Assuming a source that emits pairs of photons, each measurement can 

yield two results: 

• +1 for photons that are measured in the first polarization state of the 

chosen basis 

• -1 for photons that are measured in the second polarization state of the 

chosen basis  
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Revealing the basis, Alice and Bob can obtain a bit of information. 

Alice and Bob calculate statistic correlation using equation(4.3),In order 

to check the  eavesdropping. 

),( b

j

a

iE  ),( b

j

a

iP  + ),( b

j

a

iP  - ),( b

j

a

iP  - ),( b

j

a

iP                 (4.3) 

which is the correlation coefficient of the measurements performed by 

Alice and Bob in the independently and randomly chosen basis.  

),( b

j

a

iP   denotes the probability that +1 has been obtained by Alice in 

the basis rotated by the angle a

i   and -1 by Bob in the basis rotated by the 

angle a

j . 

According to the quantum rules 

),( b

j

a

iE  )](2cos[ b

j

a

i                                                                (4.4)                              

For bases with the same orientation, in this case a

1  ; b

1  and a

2 ; b

2 , 

quantum  mechanics predicts total correlation. So Alice and Bob obtain      

),( b

j

a

iE  )](2cos[ b

j

a

i   =1                 (4.5) 

The correlation coefficients for which Alice and Bob used bases with 

different orientation can be composed to define the quantity S, 

),( 21

baES  + ),( 41

baE  + ),( 23

baE  - ),( 43

baE                                   (4.6) 

This quantity  S is  the generalized Bell‘s theorem proposed by Clauser, 

Horn, Shimony and Holt, better known as CHSH inequality . Quantum 

mechanics predicts, 

22S                                                                                       (4.7)            

CHSH inequality can be used to guarantee a secure key distribution. 

Recalling that the  Alice and Bob have divided their measurements into 

three groups, they can now use their results of the first group 

(measurements with different orientation) to establish the value of S. If 
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the particles were not directly or indirectly disturbed by Eve, they should 

reproduce the result of equation (4.7).This assures that the results of the 

second group (measurements with the same orientation) are correlated 

and can be used to establish a secure key . 

4.2.1 Eavesdropping: 

 Eve always trays to get information about the transmitted key. In order to 

emphasis that Bell‘s theorem can indeed  detect eavesdropping, it is 

useful to take a closer look at an eavesdropper, strategies. Eve gets no 

useful information, if she intervenes during the transmission, because at 

this time no information is encoded in the particles. The requested 

information is "formed" only after the measurements done by the 

legitimate users and the public announcement  have taken place. 

One strategy may be that Eve substitutes her own prepared data for 

Alice‘s and Bob‘s data to misguide them. But because she does not know 

which orientation of the analyzers the two will choose, Eve‘s tampering 

will eventually be detected. In this case, Eve‘s intervention will be the 

same as introducing elements of physical reality to the polarization 

directions and will lower S below its quantum value. 

The most favorable method for eavesdropping is Eve herself prepares 

each particle separately giving her total control  over the state of 

individual particles. The well defined polarization directions may vary 

from pair to pair. Therefore, it is convenient to introduce the probability 

),( baP  with which Eve prepares Alice‘s particle in state a  and Bob‘s 

particle in state b . However, Alice and Bob will detect Eve by 

estimating the value of S. 
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The  density operator is of Eve measurement given by: 

babbaaba ddP 


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
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                               (4.8) 

This lead to new correlation coefficient given by 
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Rewriting CHSH S equation (4.6) with modified correlation coefficients, 

one obtain: 
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                        (4.9)        

which implies that S will be  22  S  --             (4.10). 

The  result of equation (4.10) confirms the assumption that Alice and Bob 

will notice Eve‘s tampering, because the result (4.10) will always be 

smaller than the requested one ( 22S  )   (Petra Pajic, 2013). 
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4.3 Event -based simulation procedure of Ekert's protocol (E91): 

Computer simulation is a powerful methodology to model physical 

phenomena, but within the framework of quantum theory, no algorithm 

has been found to perform a simulation of quantum phenomena. But from 

a computational viewpoint, quantum theory provides us with a set of rules 

(algorithms) to compute probability amplitudes. Therefore we will use 

this algorithms to perform an event-based simulation of the E91 without 

using the machinery of quantum theory. The present simulation rules are 

out of any method based on the solution of the (time-dependent) 

Schrodinger equation and  outside of the  framework that quantum theory 

provides.   

4.3.1 Entangled photons source: 

To simulate the source of entangled photons we used random generation 

function to generate angles in the range of  [0 , 360],  to represent emitted 

photons polarization. Then  the typical two polarized photons are traveled 

one to Alice and the other to Bob at the same time.  

A schematic diagram of the simulation procedure is shown in fig(4.1). In 

the simulation algorithm, the source generates pairs of photons   1 and 2 

travel to Alice and Bob, respectively.  

Each photon carries a two-dimensional unit vector given by 

 

                                (4.11) 
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Fig:4.1 EPR experiment setup . 

where   represent the photon polarization ,and n labels the number of 

the photon (number of event). The distribution of  is taken to be 

uniform over the interval [0,2π].  And we assumed the pair of photons 

travel through free space in ideal quantum channel with no effect on their 

polarization.  

4.3.2 Electro-optic modulator (EOM): 

When the photon arrives at Alice/Bob station , it passes through a 

modulator that rotates the polarization of the photon by an angle chosen 

randomly from [  01 a ,  
8

1
2 a ,  

4

1
3 a ]  for Alice,  

and from [  01 b ,
 


8

1
2 
b ,

 


8

1
3 b ] for Bob.            

The EOM in station i = 1, 2 rotates the polarization of the incoming 

photon by an angle θi, and the new polarization angle of photon becomes   

 = (  .  Alice and Bob choose θi randomly and independently. 



61 
 

Furthermore, to realize the Ekert protocol on the computer, we assume 

that the orientation of each a modulator can be changed at any time. 

4.3.3 Polarizing beam splitter (PBS): 

A polarizing beam splitter PBS is used to redirect photons depending on 

their polarization. For simplicity, we assume that the coordinate system 

used to define the incoming photons coincides with the coordinate system 

defined by two orthogonal directions of  PBS.  

Polarizing beam splitter, is an important part in quantum cryptography .  

For event-based simulation of quantum mechanics , there are two 

methods to simulate polarizing beam splitter: 

 Deterministic polarizing beam splitter (DP) and probabilistic polarizing 

beam splitter (PP). 

4.3.4 Probabilistic polarizing beam splitter (PP): 

In this work we modeled two types of  PP , and used them for simulation 

an Ekert's protocol. 

The simulation model for a probabilistic polarizing beam splitter is 

defined by the rule 

 if  > 0.5     xn = 0 

if  < 0.5     xn = 1                                (4.12) 

where   is angle different between polarization of incident photon and 

EMO rotation . It is easy to see that for fixed , this rule generates 

events such that the distribution of events complies with Malus law. 

In this work also we built a probabilistic polarizing beam splitter using 

Hadamard gate transformation  and we called it as (PPH). 
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The Hadamard gate (H ) turns basis states into superposition states: 

      H =                                                                               

The Hadamard gate transformations  is analogous to polarizing beam 

splitter transformations, turns basis states into superposition states: 

)10(
2

1
1

)10(
2

1
0





H

H

                            (4.13)                                                   

 

And  for general Qubit     
10  Q

 

                                                                                                                         

)1)(0)((
2

1
 QH

             (4.14)                                                

Where )(    is now the probability amplitude to find the photon in the 

upper outgoing beam, and )(    is the probability amplitude for finding 

it in the lower outgoing beam. 

For the specific case of either 0 or 0 , we find that the photon will 

be found with equal probability in either of the outgoing beams. 

For another specific case, )(    , we find that the photon will definitely 

be found in the upper beam and never in the lower beam. 

Using above probability amplitudes we simulate a (PPH), and by using 

suitable time tag we implement this (PPH) to model an Ekert protocol. 

4.3.5 Time tag: 

In any real EPR experiment, one needs a criterion to decide whether two 

photons form a single two-particle system (entangled) or whether they 

may be considered as two single-particle systems. As EPR experiments 

with photons used  coincidence in time to identify a single pair of two 
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photons. And because time coincidences play an essential role in real 

quantum cryptography experiments. In practice, Alice and Bob add time 

tags to their detection events in order to be able to count coincidences. 

 As the optical components (polarizer) induce time delays, it is reasonable 

for a photons to experience a time delay when it passes through the 

detection system. To mimic this, we introduce the time delay into our 

simulation algorithm. At each station, we generate a time tag that depends 

on the local settings only.  Then, we compare the difference between the 

two time tags with a certain time window W. 

If this difference is smaller than W , the detection events are considered to 

be coincident. Otherwise, they are  discarded. 

When light passes through an EOM (which is essentially a tune able wave 

plate), it experiences a retardation depending on its initial polarization 

and the rotation by the EOM. Therefore, in the case of single-particle 

experiments, we hypothesize that for each photon this delay is 

represented by the time tag ,(K.Michielsen.al  2014). 

 

                                                                     (4.15)  

 

Where 0< < 1 is a uniform pseudo random number,   is angle between 

polarization of incident photon and EMO rotation .                          

For    =T0 sin
4
 ( n)                                           (4.16)  

 This time-tag model, in combination with the model of the polarizing 

beam splitter, rigorously reproduces the results of quantum theory of the 

EPR experiments . Where T0 is an adjustable parameter. In this work , 

For (PP) we used T0= 2000,  W=2, and sin
4
(2                (4.17) 

And for (PPH) we used T0= 1000,  W=2, and sin
4
(         (4.18) 
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The model of time tag assumes that the maximum time delay for  

photon passing through a polarizer depends only on the angle difference 

between the polarization of the incident photon and the internal 

orientation of the polarizer.   

4.3.6 Detector: 

As the photon leaves the polarizing beam splitter, it generates a signal in 

one of the two detectors. In the protocol, the firing of a detector is 

regarded as an event. We consider ideal experiments only,  meaning that 

we assume that detectors operate with 100% efficiency.  

We assume that the two stations are separated spatially and temporally 

such that the observation at station 1  cannot have  any effect on the data 

registered at station 2 , and vice versa.  

At the nth event, the data recorded at station 1, 2 consists of xn= ±1, 

specifying which of the two detectors fired.(H.De Raedt.al 2010). 

The simulation program generated the data sets Xi for N events, and  

analyzed these data sets in  same manner as the experimental data are 

analyzed in EPR experiment, by using selection procedure to select 

photon pairs by a time-coincidence window W .  

In this work we first made an event- based simulation model of Ekert's  

protocol by implementing a probabilistic polarizing beam splitter (PP) 

without using time tag for little number of photon pairs (100-500). After 

that and by using  time tag(4.16) and parameters (4.17) for (10
3
 ,10

4
 , 10

5
 

)  photon pairs . The model calculated CHSH inequality ,with and without  

Eve. 

Secondly we implement the Hadamard probabilistic polarizing beam 

splitter (PPH), for simulate event-based model of Ekert's protocol, using 

the   time tag (4.16) and parameters (4.18) for (10
3
 ,10

4
 , 10

5
 ) photon 

pairs , and we calculated CHSH inequality, with and without of Eve. 
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P1 = [Ø - θa]

P2 = [Ø - θb]
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Stop
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Yes

Yes

No

No

  compare cos²P1, cos²P2 with 0.5 and
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Calculate T1 ,T2

S > 2

No

Yes

 

Fig: 4.2 Ekert protocol follow chart with time tag. 

4.3.7  Eavesdropping : 

To simulate Eavesdropper strategy we used two random generation 

functions to generate angles [0,360], to mimic Eve measurements for 

Alice and Bob sides.   
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4.4 Results: 

First of all the equations was used to build the Matlab model. 

Figure (4.3) shows the follow chart of model at first time using PP 

without time tag model as a semiclassical experiment . 

 

Fig.4.3: the flow chart of Ekert's protocol without using time tag. 

The results of S as function of number of pairs obtained using  

probabilistic polarizing beam splitter without time tag  is presented in 

table (4.1) 

 

 

 



67 
 

Table 4.1: result of S as function of number of pairs: 

N 50 100 150 200 250 300 350 400 450 500 

S 2.60 2.50 2.33 2.340 2.43 2.08 2.22 2.25 2.27 2.35 

'' 2.29 1.89 2.38 2.39 2.17 2.0 2.20 2.14 2.18 2.30 

'' 2 2.10 2.41 2.17 2.11 2.04 2.15 2.18 2.16 2.37 

'' 2.17 2.09 2.40 2.17 2 2.04 2.11 2.10 2.14 2.28 

'' 2.24 2.10 2.34 2.09 2.08 2.08 2.17 2.08 2.10 2.14 

'' 2.09 2.12 2.39 2.07 2.10 2.11 2.06 2.12 2.0 2.17 

'' 2.17 2.09 2.26 2.06 2.05 2.06 2.08 2.13 2.04 2.19 

'' 2.08 2.12 2.17 2.05 2.04 2.02 2.12 2.08 2.02 2.19 

'' 2.15 2.15 2.15 2.10 2.07 2.08 2.14 2.06 2.02 2.16 

'' 2.16 2.16 2.19 2.04 2.02 2.11 2.14 2.08 2.04 2.14 

               The results showing in table (4.1) is plotted in figure (4.2). 
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Figure 4.4 value of S as function of number of pairs 

Table 4.2 : S value of different number of photon pairs (n)using PP with  

time tag model. 

n =  (103) n = (104) n = (105) 

4 2.73 2.77 

non 1.83 2.44 

3 2.71 2.62 

3.33 2.05 2.77 

non 2.18 2.53 

2.5 2.43 2.41 

non 2.86 2.70 

4 2.55 2.45 

non 2.62 2.69 

non 2.07 2.48 

Table4.2  show the value of S of different numbers of photon pairs (103, 

104, 105) using (PP) with time tag model. 
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Figure 4.5(a) shows the  value of S as a function of angle difference       

between Alice and Bob polarizer using (PP) and suitable time tag. 
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correlation angle
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(a) 

Fig 4.5(a) :   show the value of S as a function of angle difference  

between Alice and Bob polarizer using (PP) and time tag. every point 

plotted using 10
5
 photon pairs.  
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 Figure 4.5(b) show quantum theory expectation )6cos()2cos(3)(  S of 

S as function of angle difference  between Alice and Bob polarizer. 

Table (4.3) showed the results for 300, 600, and 1000 number of pairs 

obtained by used Hadamard gate as a beam splitter without time tag. 
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300 600 1000 n 

2.96 2.84 2.84 S 

2.53 2.70 2.76 " 

2.61 2.76 2.78 " 

2.59 2.70 2.76 " 

2.57 2.64 2.70 " 

2.49 2.64 2.73 " 

2.55 2.67 2.74 " 

2.55 2.68 2.74 " 

2.58 2.67 2.73 " 

The Correlation (S)  when the number of photon pairs is 1000 is plotted 

in figure (4.6).  
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Figure 4.6 : Relation between  CHSH bell's value (S) of (1000) photon pairs and 

number of trial (n).  

And to see the effect of the number of photon pairs on (S) 600 number of 

trials is used and the obtained results is shown in figure (4.5). 
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Figure 4.7: Relation between  CHSH bell's value (S) of (600) photon pairs and 

number of trial (n).  

And that when the number of trials was 300, is shown in figure (4.8). 
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Figure 4.8: Relation between  CHSH bell's value (S) of (300) photon pairs and 

number of trial (n). 

Table4.4   

N = 103  n = 104  n = 105 

1.77 3.06 2.72 
3.25 2.38 2.74 

2.34 2.66 2.74 
2.25 2.38 2.79 

3.00 2.97 2.71 

3.40 2.61 2.67 
non 2.42 2.63 

2.10 2.52 2.67 
2.21 3.02 2.71 

3.31 2.52 2.53 
Table4.4  show the value of S of different numbers of photon pairs (103, 

104, 105) using (PPH) with suitable time tag. 
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Figure 4.9 shows the quantum correlation using PPH and in the use of the 

time tag. 
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 Fig.4.9(a): quantum correlation as function of angle obtained using   

(PPH). 
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 Fig4.9(b) show theoretical quantum correlation plotted for equation 

  Where  is the angle difference between Alice and Bob 

polarizer. 

Table 4.5 results of First 100 running of Ekert's protocol simulation 

when Alice and Bob chose same angle randomly and independently. 

Using (PP) with time tag In the absent of Eave.  S = 2.6306 
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Alice 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 

Bob 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 

 

Table4.6 results of First 100 running of Ekert's protocol simulation 

when Alice and Bob chose same angle randomly and independently. 

Using (PP) with time tag In the present of Eave. S =  -0.2913 

Alice 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 
Bob 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 

 

Table 4.7 results of First 100 running of Ekert's protocol simulation 

when Alice and Bob chose same angle randomly and independently. 

Using (PPH) with time tag In the absent of Eave.  (S = 2.75). 

Alic
e 

1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 

Bob 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
Table4.8 results of First 100 running of Ekert's protocol simulation 

when Alice and Bob chose same angle randomly and independently. 

Using (PPH) with time tag In the present of Eave.  S = 0.19. 

Alice 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 

Bob 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
 

 

 

 

 

 

 

 



73 
 

4.5 Discussion: 

CHSH Bell's inequality for local hidden variables theory constrain that is 

-2 LHV . and  Quantum mechanics prediction for CHSH is     SQM 

=2.83. By this comparison any result's of S value above "2" will 

recognized as a violation of classical correlation (SLHV). 

The results presented in fig 4.4 shows an obvious violation of S but the 

result was not stable (1.89 to 2.5) because the model described in  fig 4.3, 

was not implement  time tag to determine the coincident of photon pairs. 

And also the number of photon pairs was little (50 to 500) .since really 

EPR experiment requires about 105 photon pairs. 

By using PP with suitable time tag in Ekert protocol model , the result 

presented in table 4.2 shows a good value of CHSH inequality S=(2.41  to 

2.77), when number of photon pairs about 10
5 

 and by compare this result 

with the real experiment study done by (D. S. Naik et al., in (1999) 

S=2.67) result considered very good, and also comparing to result 

obtained using event-based simulation in study( H. De Raedt.al (2010) S 

= 2.73) the result consider in the same range.  And by plotting S as a 

function of angle between Alice and Bob polarizer as shows in fig4.5(a) 

the results showed a very good agreement with that results predicted by 

quantum theory  eq(3.28) that plotted in fig4.5(b) . 

The relation between CHSH bell's inequality value (S) and number of 

trial (n) showed in fig (4.6 ,4.7 and 4.8).  Figure 4.4 it was seen that the 

value of CHSH bell's inequality (S)  above 2.7 and  this value was near 

to the value that predicted by quantum mechanics 2.83. And also it 

was find that as the results showed there is a stability of the value (S) 

for all trials. And from figure 4.7 one find the value of CHSH bell's 

inequality (S) was found to be above 2.6 and this value is slightly 

different from the value predicted by quantum mechanics. And also it was 

found that there is some variations of the value (S) for the used trials. 

Figure 4.8 depicts the value of CHSH bell's inequality (S) as above 2.5 

and the obtained value in this case is different also by small amount from 

the value that predicted by the quantum mechanics.  
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These values of CHSH in figures (4.6, 4.7 and 4.8) are good agreement 

with quantum predicted value (2.83). but this method of modeling of EPR 

by represent PP as Hadamard gate without using time tag is not sufficient 

to verify the value of CHSH that predicted by quantum mechanics for all 

angles. 

By using specific time tag Eq.(4.16 and 4.18) we implemented the beam 

splitter transformations relations (Hadamard gate transformations 

Eq.(4.14)) to simulate event-based polarizing beam splitter and used it to 

model Ekert's protocol. The results showed in table (4.4) when n=10
5
 

(S=2.7) showed a  very good agreement  with that predicted by quantum 

theoretical  (S=2.83). 

The correlation of photons pair as function of angle between Alice and 

Bob polarizer showed in Fig (4.9a). The results obtained by using PPH in 

Ekert's protocol  showed a good agreement with theoretical correlation 

predicted  by quantum theory Eq.(4.4) which plotted in fig(4.9b).    

After 100 times running of ekert protocol without present of Eve and by 

record  the values of Alice and Bob measurements  when they used same 

polarizing angles the results showed in tables(4.5, 4.7) were the same . 

 Tables (4.6, 4.8) showed results of Alice and Bob measurements when 

they chose same polarization angles in the present of Eve. In table 4.6 the 

disturbance caused by Eve is about (57%) and S value decrease from 2.63 

to -0.29.  And in table 4.8 the disturbance is about (43%) and S value 

down from 2.75 to 0.19.  

This clear decrease of S enable protocol to detect Eavesdropping 

immediately.    
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4.6 Conclusion: 

In this work the trial of modeling quantum cryptography and  testing the 

quantum correlation by using  MATLAB program model was 

established by representing the probability amplitude of single photon 

emerged from PBS and Hadamard gate transformation. And by treating 

the entangled pairs measurement independently the model calculated the 

CHSH Bell's inequality with and without eavesdropper and we observed 

that the  model can easily check the present of eavesdropper . The result 

showed violation of classic constrains. So by this argument one can get 

results of CHSH Bell's inequality have value above '2'.. And the 

representing of polarizing beam splitter by just comparing (cos
2
) 

with(sin
2
) without regarding time tag of photon pairs is not sufficient to 

give exact quantum prediction results. 

 Ekert's protocol is regarded as implementing of EPR experiment idea. 

And by results of correlation obtained above one can assume the event-

based simulation of quantum cryptography is a good approach to obtain 

general quantum results from simple computational rules.  
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4.7 Recommendations: 

Quantum cryptography is regarded as a modern searching field, there are 

daily progressing in simulation method. The recommendation can  

establish as follow: 

• Make simulation of ekert protocol with study the effect of quantum            

channel . 

• Built model of Ekert's protocol  with other Eve strategies and how to 

detect it. 

• Simulate ekert protocol and try to decrease the number of implemented 

photon pairs by searching for suitable time tag. 

• Build model of Eve to attack Ekert's protocol without make disturbance              

on S value. 
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