SUDAN UNIVERSITY FOR SCIENCE AND TECHNOLOGY R

College of Graduate Studies

College of Computer Science and Technology

Hybrid Based Network Intrusions Detection Systems
aSoid| 9 sY5oJl CoLaiSY aizgll dolaiVl

Fulfillment of the requirements of Master of Science degree in Computer Science

By: Malik Khalil Mohamed Alfaki

Supervision of

Dr. Mohammed Al-Ghazali Hamza Khalil

November 2018

DECLARATION

I hereby declare that the work reported in this M.Sc. thesis titled as “Approach for
Anomaly-based Intrusion Detection System using SNORT” submitted at the Faculty
of Computer Science / Sudan University of Science and Technology, is an authentic
record of my work carried out under the supervision Dr. Mohammed Al-Ghazali

Hamza. I have not submitted this work elsewhere for any other degree.

Dedication

To my family special to who I carry his name with pride (my father) and
to the greatest woman that I have met that always support me (my
mother) who are support me to complete the educational road, all of you
are my strength and thanks for everything. I would like to extend my
sincere thanks to my colleagues, lecturers and the others for contributing
and supporting me directly and indirectly. Thanks for your support,
comments and advice. Finally, thank you to all and who commitment in

making this project successful.

II

ACKNOWLEDGMENT

I wish to express my deepest appreciation to all those who helped me, in
one way or another, to complete this project. First and foremost I thank
God almighty who provided me with strength, direction and purpose
throughout the project. Special thanks to my project supervisor Associate

Professor Dr. Mohammed Al-Ghazali Hamza for all his patience,

guidance and support during the execution of this project. Through her
expert guidance, I was able to overcome all the obstacles that I
encountered in these enduring ten months of my project. In fact, she
always gave me immense hope every time I consulted with her over

problems relating to my project.

III

ABSTRACT

Intrusions detection systems (IDSs) are systems that try to detect attacks
as they occur or after the attacks took place. IDSs collect network traffic
information from some point on the network or computer system and
then use this information to secure the network. The Intruder is someone
without permission or privilege try to access to system resource performs
unnecessary/unauthorized activities, intrusion detection means detecting
unauthorized activity or attacks upon system or network. An IDS is a
system that generates an alarm when suspicious activity or use on system
or network when it configured its monitor the gateway or host to identify
the intruder. Two type of detect method: anomaly detection (also called
behaviour-based) and signature-based (also named misuse or pattern
based), signature-based detection identify the intruder by matching
according to predefined signature of attack, if signature match is
classified as an attack, but it cannot detect the attack that is not stored in
the signature database which cannot detect novel attack (zero-day
attack). Anomaly detection can detect both the known and novel attack
due to that anomaly detection based on the preserve profile for normal
activity of system or network if any deviation is considered as an attack.
This research provides a review of various Intrusion Detection Systems
and its tools by focusing on SNORT IDS-an open source tool, also
provide an extension for SNORT by adding pre-processor to detect
anomalies, that make the system hybrid based detection which increase

the rate of intruder detection.

IV

Condl anle

o Lgigan ale cilangll Slis) Jglad daldsi a (IDS) Jalaitl oye ddsll datini
sle Lo ddaly (o A< dill g p0 45 pa Giloglas pany DS agii \cilangll ¢ g way
oaadll 8 ey ¢ dSadll (el Glagladl 63 analid Al yigauacl aUA of dSadll
i glaas agdy jliial o (3] (g pands 98 Bl cgwladl ale 8 S ol Jaaall
ALl ¢ L 7 s il [dayg s A8 ddadi] 3y agiag Al uylge) Jgooll
9 A e ad bl () RSy agdy allad (5o oylue ga (IDS) S dis
blis ugag wie el audgis agds (IDS) altay (o) Ldsads of alldy Ao Glaan
A &SI Gyda (e Glegh ¢ dSudll of Al Lo aladil s geu sl T e
9 ¢ (AlaaiwY) s je AU Sgluall A8l jo AUAY L] anle Bllay) 393l (e
SLAESYTg (asiall Taall LAk cawg) oyl g daaill o wainy SLA ¢ gl
agagll Laul G5y Gallaill A e Jasall daga vany 3l padl baall Jle 23
agan il e Fiimy Ja ol Galai ai 13) ¢ @lily Sael 8 3k s sasll
Glily Sasl S alyiad aiy al il agagdl e RIS @isay ¥ ady all 014 (S
zero day) o S, il wgus agaa Ge A A i<ay Y ad) JLEIL g,
Lida el e agaaill aliy 3edddl (e AdSH Al 4 el LT ., (attack
iag LaLanll 1aa e S padl o LS 13 dsedll gf aldsll caalall Jaldill AU
S0 Giaall 1aa auly L ¢ e E JgA igua gl agaa ¢ g3g dulldial g agaa
siiall dagids 3] de AS A A (o Lghilgaly Hudill AiS daldn] Al dale
) alliil gellakl G3Ld] 3l e falwiol ayois 7 &y Las « (SNORT) oy
Tod e AALS Unaa altanll Jans Las ¢ 33l a¥lall ge Sa<it (SNORT

Sl of Al e RISI Juas wijs @Al g aalg allds & Aas) 5k

Figure
2.1
2.2
2.3
2.4
2.5
3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3

4.4

4.5

4.6
4.7

4.8
4.9

4.10

4.11
4.12

4.13

List of Figures

Host IDS
Network IDS
IDS Before Gateway Firewall
IDS Within De-Militarized Zone (DMZ)

IDS inside the private Network

SNORT components
BASE interface
Proposed New System Architecture
System process view
CommView — Main page
Snort Sniffer mode
Sniffed Packet Detail
DDOS (TFN) ICMP possible communication
BASE alert of ICMP traffic

BASE Alert (DDOS ICMP possible
communication)

BASE Alert (DDOS ICMP possible
communication)

BASE Alert (large UDP Packet)

BASE Alert (BAD TRAFFIC TCP, UDP port 0
traffic)

BASE Alert (BAD TRAFFIC data in TCP SYN
packet)

BASE Alert (BAD TRAFFIC same SRC/DST IP
address)

BASE Alert (BAD TRAFFIC loopback traffic)
Snort Result number of Packets Processed

Number of Alerts for Darpa Signature test

Page

10
11
11
11
20
22
24
26
27
31
31
35

35

36

37
37

38

39

40

41
43

44

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

Time Chart vs Number of Alert (Signature
Detection test)

BASE Alerts about DARPA Evaluation (Signature
Detection test)

Alert Category from DARPA Evaluation (Signature
Detection test)

number of alert per-day (Signature Detection test)
Time of alert per-hour (Signature Detection test)

The result of Snort with SPADE number of Packets
Processed

Number of Alerts for anomaly data test

Time Chart vs Number of Alert per-day (Anomaly
Detection test)

Alert Categorization vs number of alerts (Anomaly
Detection test)

BASE Alerts about DARPA Evaluation on anomaly
pre-processor

number of alert per-day (Anomaly Detection test)

Time of alert per-hour (Anomaly Detection test)

VI

44

45

46

46

47

48

49

49

50

50

51

52

LIST OF ABBREVIATIONS

IDS: Intrusion Detection System. A system that detects any intruder activity. SNORT
is example of IDS.

HIDS: Host Intrusion Detection System, a system that detects an intruder in a single
host

NIDS: Network Intrusion Detection System, a system that detects intruder for the
network usually single device.

SNORT: Free Software develops for Intrusion Detection.

Alert: A message generated when any intruder activity is detected. Alerts may be sent
in many different forms, e.g., pop-up window, logging to screen, e-mail and so on.
Snort Configuration File: The snort.conf file, which is the main configuration file
for Snort. It is read at the time when Snort starts.

Snort Rule: A way of conveying intruder signatures to Snort.

Signature: A pattern that corresponds to a known threat.

Anomaly: abnormal activity or deviation from normal activity.

Preprocessors: one of snort component for performing some operation for the
packet which is rearranged or modified before the packet goes to the detection
engine.

ICMP: internet control message protocol network protocol used to echo and replay
the message

Flow: A particular network communication session occurring between hosts.

IDPS: intrusion detection/ prevention system

VII

TABLE OF CONTENTS

TABLE OF CONTEINTS. ...ttt ettt e st e a s s e e s se s e e s ans e aane e sannens
CHAPTER ONE. ..ot s e ae s 1
INTRODUCGTTON. .ttt ittt e s e st s e s e e s e s s s a s s e e nesn e neraeaaesaneanneaneanes 1
) o 1
1.1 Brief history Of idS......uvuiriieiiieie e 3
0 1 0 7T i T PP 4
1.2 Problem StAtEIMENT. ... v ueueueeetetseeaa ettt et ee e et e e e e e e s e e et e a e ara e e e e neaeeneeanns 5
RGO 1) =T al 1A PP 6
1.4 Organization Of theSiS. i i 7
L N S 0 170 T 8
P00 Y I 8
1. INTRODUCGTTION. ..ttt ittt et st e s e e e s e s e s e s s e s sane s saa e s sannesanneanns 8
2.1 Intrusion Detection SyStem OVEIVIEWevuiuiuiersiiiieiiinirsrasrrsrsaaaaaaes 8
2.1.1 Operation and Function of IDS.........ccvviiiiiiii e 8
2.1.2 Classification of Intrusion Detection SYStemM..........covurereuiereiinrererererereenanannns 8
2.1.3 Limitation of Intrusion Detection SyStem........cuuveirirriniriiniiininiiiin. 10
2.1.4 Intrusion Detection Sensor Placement...........ocuvvuviuiiniiniiiiiiiniiineenn 10
2.1.5 IDS processing of the information...........ovevviniiiiin 11
2.1.6 How to protect IDS itSelf.........ovviiuiiiiiiiiiiii e 12
2.2 Intrusion Prevention SYSTeIm.......ouvuiuiiiiiiiiiis e 13
2.3 Related WOTK.viiiiiiiii e 13
L N ol 0 N 2) 19
METHODOLOGY ettt ettt ae e aas e e e s e se s e se e s s sesae s aneeansaneesaness 19
| TE Yol L8 e o) s PP 19
3. Research Methodologies and Tools to be adopted............coooviviiiiiniiiie 19
3.1 Operating ENVITONIMENT. uveieeitieeereeeeee e e e s e e e e e s e s neae e e e e neneeseennes 19
o 0 1 1 PP 20
3.1.2 BASE (Basic Analysis and Security ENgine).........coveuvevirniniinneienenanennanenen. 21
3. 1.3 ADOD B ..ttt 22
S LA PHP e 22
3.1.5 ViTtUAL BOX. . tuiuitiiititiis st s e e e e e et e e et 22
3.2 Improving the current IDSS SYStEIMS. ... uuuuruireneneeneneerenrenreneeernenenrenenenenreaenenes 23
3.3 Proposed New System ATChIteCtUIe.uuuiseriet et eeieieieeteete e e ee e et ene e e enens 23

3.4 Statistical Packet Anomaly Detection Engine (SPADE) Preprocessor..............ovuvuuns. 24

3.4.1 The concept of Anomaly detection with SPADE.........ccocovvviiiiiiiniiniiiinenen, 24

3.4.2 FUNCHON Of SPADE.....cuiiiiiiiiie et e e e e e e e 25
3.5 SYSLEIM PrOCESS VIBW . .uuiueuiiniiitiiisiiee et e et e e e e e e e e enenes 25
3.6 EVAluating IDS. . .. eieiiiiiieee e et sttt e e et e e e e e e e 27
3.6.1 Using CommView to Generate Packet..........v.vviuviiiriiniiiiiiiiiiiiniinienenen 27
3.6.2 DARPA Intrusion Detection System Data Set...........cceverrvrrenrenrenennennennennens 28
3.7 Validation and SUTEMESS. . ..u.iueuititieitieiasiretae et ea e s e s aeneneneaenanens 28
3.8 RESUIL PrOSENMTAtION. .. vu vt eeuetsesetseneeaeeea et etsese e e ee e e es s enen e e s e eneneaneaeneneneeenas 28
T T 111130 12 29
L N S 0 2 1 30
ReSUItS aNd DiSCUSSIONS. 1t vuvueneeietetenseneeeeess e en e eeee e e en s e eneeernenenrenenenees 30
L Tu Yo T L8 a0 s PP 30
4.1 Operate With SNORTuiiiiiiiii e e e e e et e e e e e e e aeenes 30
O I) Y < Y (o T [T PP 30
4.1.2 Network Intrusion Detection MOde.........c.veiriinreneiiiniineneeeeeenenneneeneenens 32
4.1.3 Working With TULeS........ccuiuiiiiiiiiii e 33
4.2 Implementation Part 1: Experimentation Signature Rule Set............coovivviiiiininnnn. 33
4.2.1 Signature 1 : DDOS (TFN) ICMP possible communication..............c.ccevuune... 34
4.2.3 Signature 3: large UDP Packet.........ccvvuviiiiiiiiiiiii e 37
4.2.5 Signature 5: BAD TRAFFIC data in TCP SYN packet.........ccovuviuiinieniininnenss 38
4.2.6 Signature 6: BAD TRAFFIC same SRC/DST IP address..........cocovevuinininninss 39
4.2.7 Signature 7: BAD TRAFFIC loopback traffic...........ccocovviiiiiiiininiiinenns 40
4.3 Experimentation signature base detection Evaluation.............c.cooviiieiiiiiiiiiinnnnenn. 42
4.4 Experimentation SPADE Anomaly base detection Evaluation SPADE preprocessor.....47
5. ReSult and DiSCUSSION. ... tuuteutteieetsette e ee e ea et e et e et e e e e e e e eaeeaaaeeees 52
CHAPTER FIVE. . i e 53
Conclusion & ReCOMMENdation.ucueueuiiuiiiiiaiete e e e e nanaeees 53
REFEREINCEttt vt e e e e e e s e e s e e a e s e en e nnennes 55
ADPPEINAIX A ieiiiiiiiiit et 59
AN 0] Y3 1 a1l = TP 66
APDPENAIX Chivneeieti et ettt et e e 67

APPENAIX Dttt e a e 76

Chapter One

INTRODUCTION

CHAPTER ONE

INTRODUCTION

Preface

Nowadays with the spreading of the Internet and online procedures
requesting a secure channel, it has become an inevitable requirement to
provide network security. There are various threat sources including
software bugs mostly as the operating systems and software used

becomes more functional and larger in size.

Intruders who do not have rights to access these data can steal valuable
and private information belonging to network users. Firewalls are
hardware or software systems placed in between two or more computer
networks to stop the committed attacks, by isolating these networks using
the rules and policies determined for them. It is very clear that firewalls
are not enough to secure a network completely because the attacks
committed from outside of the network are stopped whereas inside
attacks are not. This is the situation where intrusions detection systems
(IDSs) are in charge. IDSs are used in order to stop attacks, recover from
them with the minimum loss or analyze the security problems so that they

are not repeated [1].
Background of research

Computer Network is a collection or a set of the device the connected
together which can be capable to exchange information and data. As the
computer network was spread wide, the needing of the security becomes
most important because lots of vulnerabilities and threats are come up

on a computer network.

Due to this increase with the appearing of the Internet revolution, a lot

of problem and security issue have been arising to forcing security for
the system and critical information across the network. Most companies
and organization’s use the internet to provide a channel of
communication with their customer’s and people to give them
Availability of the service’s, so while this information available for the
harmless user’s in the same hand this information available for

malicious user’s.

For protecting from the negative side of availability of information’s
most organization use or deploy Different traditional security way for
protection against threat such as Firewalls, even in this case firewall not
became safeguard against this threat for simple reason such as cannot
analysis into packet to mining for the malicious activity or data to
determine it harm or not, so the security issue is keeping arising, as
result many technologies are created and developing to decrease this
issue and provide protection for network while at the same time provide

secure way to share information to outside via internet and networks.

Network security is the process of detection and prevention of computer
information and resources, detection method help to detect who’s not
authorize access and prevention allow to avoid those suspect which

known as an intruder.

Intrusion Detection System (IDS) is the software that monitors the
network traffic and analysis packet to determine the malicious activity
against security, the main objective of this software is to detect and
inform about the suspect activity in the network or the system, The
concept of Intrusion Detection / Prevention System (IDPS) is arising
and gain popularity this software and tools enhance the concept of
security level for organization and play important role in security in the

depth method.

1.1Brief history of ids

The concept of detecting the intrusion’s, system misuse and the
intruders or looking for some kind of malicious activity and user’s
abnormal activity is discussed by James Anderson in his report titled
“Computer Security Threat Monitoring and Surveillance” [1] to US Air

Force in the year 1980.

In 1984 there was the first prototype of Intrusion Detection System
which monitors the user activities “Intrusion Detection Expert System”
(IDES), also in 1988 first IDS “Haystack” which depend on the patterns
and statistical analysis for detecting malicious activities, but it has

lacked in detecting in the real-time traffic and analysis.

In 1989 at University of California Davis' Lawrence Livermore
Laboratories, they built IDS called “Network System Monitor” (NSM)
for analyzing the network traffic, which developed to IDS named
“Distributed Intrusion Detection System” (DIDS) and (Stalker) first IDS

based on the (DIDS) which is commercially available.

In the 90’s SAIC developed “Computer Misuse Detection System”
(CMDS), a host-based IDS. The Intrusion Detection System began to
gain popularity and market in 1997, in the same that year security
market leader, ISS was developed IDS software which called “Real
Secure”. So many companies aware about the importance of security
software which can be provided to the customer so the commercial IDS
world expanded its market-based. Snort is was launched by Martin
Roesh in 1998 which is an open source intrusion detection system and
getting success in the market base and gain a good reputation, other IPS

with is founded by Okena Systems in 1999 is the first intrusion

Prevention System which name “Strom Watch”, which IPS can add
extra level of defense in the network by providing protection to it which
co-operate with firewall.Host-based intrusion Detection Company,
mCentrax Corporation, emerged as a result of a merger of the
development staff from Haystack Labs and the departure of the CMDS
team from SAIC.

1.1.1 Types of ids

Depending on the needing of the IDS or the way that IDS will be

deployed/ Implemented, it can be classified into two major types:
Network Intrusion Detection System

This type of IDS which Design to analysis and monitor each packet
in the network and determine the abnormal and malicious activity in the
packet this IDS designed to fill the gap by a firewall’s simplistic

filtering rules.
Host Intrusion Detection System

This type of IDS configures and install in computer and host who
monitor the device activity which includes all login attempts, process
schedules, system files integrity checking system call tracing and kernel

activity to find any abnormal activity or processes.

DETECTION TECHNIQUESThere are two main approaches to
detecting, which is signature-based detection and anomaly-based

detection.
Signature-based detection

The type use matching techniques against a well-known attack signature

or pattern, the sensor of IDS will be deployed to monitor and compare

the traffic if the packet match with library or database of known
signatures of attack then the attack is detected [2]. This technique is
useful to detect already known attacks but not the new ones if signature

not in the database it will not detect the attack.

An advantage of Signature detection [3] does not only detect the
intrusion it’s also can detect the attempts of intrusion, but partial

signature may also indicate an intrusion attempt.
Anomaly-based detection

In this type is detect abnormal activity and behaviour in the system and
deviation from normal behaviour is considered as abnormal activity, the
detection depends on many measurement and metrics which may
include traffic rate, number of packets for each protocol etc, is called
normal profile, these profiles compare with any new activity in the
system everything out of this profile is classified as malicious activity,
the detection is done by heuristics or rules, rather than patterns or

signatures[4].

1.2 Problem statement

According to the above discussion intrusion can pose a serious security
risk and choosing the appropriate security architecture and software’s is
the most of one important security goals for any company or
organization, using these technologies and software provide level and
layer of defences to fight existing threats and provide the ability to
analysis data inside the network. Most intrusion detection system use
one of these two ways misused detection or Anomaly detection, to

secure the system’s and both of them have their own limitations.

The pros and cons of these two techniques is that not better than each

other, the signature detection is able to detect the malicious activity if
the pattern is matched, on the same hand is not able to detect to if the
pattern is not recognized and stored in databases, the anomaly detection

method is able to detect attack.

For this, it needs an intelligence solution or system that fill the gap,
system that increase the detection rate of the malicious activity, which
can detect based on signature detection method and anomaly detection

combined together.

1.3 Objectives

A reliable and efficient intrusion detection system (IDS) is one of the
main and important components in any network. With this component is
can alert administrators of possible attackers and provide a view of the

network’s status, the objective of this project is that:

1- To study appropriate security architecture for protection by
examining the origins of detecting, analyzing, and reporting of
malicious activity.

2- To create System of detection which by combines the two
detection techniques together in one system by using SNORT tool

3- To provide a comparative study on the tool before and after

adding the anomaly detection technique.

Network security importance was increased in last year’s, cause many
companies and home user’s kept the sensitive information and data in a
computer, so they are needing a method to protect their information
form exploit it, one of this method is Intrusion Detection System (IDS).
with simulating experimental studies in virtual environment to
implement approach for detection method by combining the two

techniques of detection (Anomaly, Signature) in one system, this project

is performed by implementing an open source signature-based IDS
called SNORT, this software come with a complete package for
Signature Detection, by adding anomaly Detection method make

SNORT for effective defense against the Network attacks.

1.4 Organization of thesis

This research organize as follow, Chapter 1 contain an introduction to
the research topic, Types and techniques for IDS, statement of problem,
objective and scope, chapter 2 contain discusses published information,
related work and theoretical focus that in the area of project and general
information about system architecture, chapter 3 this section research
methodology, inside this chapter research design and procedures were
presented as well as equipment, Assumptions, chapter 4 which contain
result and discussion about the implementation of work and finally the

conclusion and future work at Chapter 5.

Chapter Two

THEORETICAL FOCUS AND RELATED
LITERATURE

CHAPTER TWO
LIT REVIEW

1. INTRODUCTION

The focus of this chapter is to provide the theoretical base information
for the study such as operation and function of IDS, classification,
limitation and deployment and then related work in the field of IDS is

also covered.

2.1 Intrusion Detection System Overview

The rapid growth of computer networks has changed the prospect of
network security; up to this time, the researcher has been developing
Intrusion Detection System (IDS) to detect a different type of attack and

malicious activity in the different environment.

The idea behind have intrusion detection system is that you have a
device that can see all the traffic that passes through the network, it all
time looks on the traffic based on pre-defined detection rule, this system
will generate an alert if there any match between the detection rule and

incoming packet.

2.1.1 Operation and Function of IDS

An intrusion detection system is created to serve three major functions
which is: monitor, detection and response to unauthorized activity in the
company, which by that intrusion detection can use based rule policies
match for detecting this activity with predefined security even then IDS

send an alert if detect one of this event.

2.1.2 Classification of Intrusion Detection System

Intrusion detection system can be classified based on many factors the

position where the intrusion detection system takes place this can

determine the type of IDS ",
Host Intrusion Detection System

Used to detect the malicious activity on the host or individual device
like a server, which monitors the OS activity and application looking for
any malicious movement, The function is a monitor only that device that
installed inside, the decision-based host activity usually like (audit

trails) and Logs files.

. %
[— |
B | L= =4
I._ | Ii
FRoaater

Imbcsrmees i

Figure 2.1: Host IDS
Network Intrusion Detection System

This type operates with the network data flow traffic monitor all this
traffic and looks for intruder packet that has been passed within network
traffic, the process of monitor an entire network with a few sensors in
key positions, normal this type of IDS set in the entry point of the

network.

Sarvar /";ﬂ-’ e Int i
ot .. Nerme
= 1 - —
1
1

Figure 2.2: Network IDS

2.1.3 Limitation of Intrusion Detection System

The limit of Intrusion Detection Systems is protection which that IDS
that they cannot preempt or prevent network attacks traffic because IDS
sensors are based on packet sniffing (packet capture) technologies that
only watch network traffic that pass through it cannot take any action to

stop these traffic [6].

In the case of the preventing or stop the malicious traffic, it can be used
Intrusion Prevention System, is that software used to protect the device

or network form attacking by stop the packets of attack.

2.1.4 Intrusion Detection Sensor Placement

The most important roles in detection are the sensor which for effective
monitoring of the network traffic, three positions can be used to placing

the sensor in the system [6]:

1- Before the Gateway firewall: here the IDS will monitor and analysis
all the traffic that passed through the network, which handles a large

packet.

10

= -~ . E
U S

Figure 2.3: IDS before Gateway Firewall

2- Within De-Militarized Zone (DMZ): in this case, the IDS will
monitor and analysis the packet that is filtered by a firewall, the work of

IDS it reduced, due to firewall packet filter.

I'/iPrivatc _\7)

¢~ Network e
M
E 1DS Public

= = server

Figure 2.4: IDS within De-Militarized Zone (DMZ)

3- Finally IDS can be placed inside the network which can monitor the

local traffic for malicious activity that from local area.

==
| /——-’/_\\‘l_
[~ Private \Lﬂx
B

¢ MNetwork =
l_.-&_‘ﬁi_’_)l_j——‘j

Public Server's

Figure 2.5: IDS Within Privide LAN

2.1.5 IDS processing of the information

When all information and data is required, the next step for IDS is to
analysis that collected data by using analysis data engine to determine

the malicious traffic or activity on the system and this done by:

11

Misuse detection engine: this detection base on the predefined
knowledge ' such as signature detection based on matching the
signature to packet and activity and rule detection which based on the

like define set of (if-then) rule for the detect attack [8].

Stateful protocol analysis: general predefined profile of protocol
activity is set and compare with a new activity to define the deviation

and classified as intrusion activity [9].

Anomaly Detection: the main objective of this type is to find anomalies
and abnormal activity, the activity will be classified as attack activity,
many measurements can be used for this approach some of them depend
on the Statistical based methods, rule-based method, profile base
method and Model-based methods; these methods will be discussed

further in chapter 3.

2.1.6 How to protect IDS itself

IDS systems protect our system and our information form arising
attacks, but there is important thing that must putted in mind is that how
to protect the system that your IDS is running on, cause when your IDS
is effect or compromised by attack in the case you will get a false alarm
(wrong alert), there is many method and way’s to protect your system of

IDS form many recommendations, [10] provide some of it:

> It better to not run any service with IDS sensor, cause this service
can be used as an entry to attack, simply can be easily exploited by

an attacker.

> Always be up to date with you IDS software, for the simple reason is
that most threats are discovered by the vendor, so it’s better to get

the last release which can contain new defense ways and method.

12

> Denial of service (DOS) most common attack that can stop your
IDS system, so configure your IDS to not a response to any ICMP

echo-type protocol

> You can use block techniques such as IPTABLES for protection.

2.2 Intrusion Prevention System

An Intrusion Prevention System is a module added to the Intrusion
Detection System. This module provides the ability to perform specific
tasks automatically. Intrusion Prevention Systems perform the same
analysis as Intrusion Detection Systems but, because they are inserted
in-line, between other network components, they can block malicious
activity, An IT administrator can define the actions to be taken by the
IPS when the attack comes automatically disconnects and drop the

packet’s 1,

Recently, Robert "* states that Intrusion Detection Systems (IDS) and
Intrusion Prevention Systems (IPS) respectively are complete network-
level defences. The basic difference between the two technologies lies in
how they provide protection for host and network environments,
Intrusion Detection System analyzes network traffic and generates alerts
when malicious activity is discovered and intrusion prevention system

to protect against this malicious activity

2.3Related Work

Numerous research works are going on these days in IDS for better
improvement in the performance and functionality Of Detection
Systems. Intrusion detection system software like SNORT is based on
signature pattern matching [13], matching pattern-based detection which
is matching the network traffic for well-known attack signature, this

technique is well with the all known attack type the negative side is that

13

it’s vulnerable to novel attacks, so another approach is founded with is
anomaly based detection this type based on the abnormal or the
anomalies activity, the deviation from normal will be classified as

suspicious activity.

In [14] discuss and implement the signature-based detection approach
by using snort software, the IDS can be detected and analyze the real-
time network traffic, Basic analysis and security engine (BASE) is also
used to see the alerts generated by Snort, it’s also mentioned that the
advantages of signature IDS such as there are low false positive alert
cause all attack signature is known and clearly defined, secondly is that
the signature is easy to use and implement, in the disadvantage is
discuss that the signature IDS is needed more knowledge about attack
pattern before the signature be out of date, secondly it may not be

practical inside attack involve abuse privilege

A detailed review in hybrid IDS is displayed in [15] presented much
major research done in the Hybrid IDS. Much information is mentioned
about IDS as general, for the performance of IDS many measurements

are discussed as follows:

first false positive alert or event which is the IDS begin to define
intrusion activity but this activity is none attack, second false negative
this event happens when the IDS system is not able or fail to detect the

intrusion/attack while it’s, in fact, is a real attack.

After viewing many papers and research this paper conclude, that when
it using anomaly-based detection will be able to detection unknown
attack will be increased and the rate of the false positive and false
negative, and if you use the signature-based detection method here will

not be able to detect the unknown or the new attack, cause their

14

signature is not stored in the database.

Comparison of performance for differing hybrid IDS is discussed, the
comparison is based here on the many measurements which are (AC =
Accuracy, DR = Detection Rate, FP = False Positive, FA = False
Negative).

With a general overview of various Intrusion Detection tool, [16]
proposed a new approach for hybrid IDS by using snort which called H-
SNORT which extend the capabilities of Snort. The enhance of the snort
will be by the automatically generate patterns of misuse from attack
data, the new pre-processor base on de-fragmentation of the package in

the network to avoid evasive attacks in the IDS.

7 Describe that the Intrusion Detection System is becoming necessary,
provide the comparison of the Detection method, general presentation
techniques of Intrusion (Detection and Prevention) System’s, on the
other side description of the evaluation, comparison and classification

features of the IDS and the IPS.

Secondly, the characteristics of IDPS technologies and provides
recommendations for designing, implementing, configuring, securing,

monitoring, and maintaining them is discussed.
For the Host IDS it classifies the Host IDPS into two types:

1- The HIDS Based Application. The IDS of this type receive the data in
the application

2- The HIDS Based Host. The IDS of this type receive the information

of the activity of the supervised system.
For the second type of the IDS, it classifies the Network IDS into:

1- Passive IDS this type of IDS which can provide alert to admin

15

without take an action

2- Active IDS this type can react with the intrusion after detection it like

(block, drop and stop)

Anomaly Detection IDS error classified into two types approach which
1- False positives (incorrectly identifying benign activity as malicious)
2- False negatives (failing to identify malicious activity).

181 provide general study about open source network intrusion detection
software (SNORT), this study cloud help in the analyzing the
performance of SNORT IDS through generate alert in high speed
network traffic, also it mentioned that snort is the single-threaded
application which has five mode: Packet Sniffer Mode, Packet logger
mode, Detection mode, Prevention Mode/ Inline Mode include (Drop,

Reject, drop).

For Detection Criteria of NIDS, the main function of snort is two:
Packet Sniffing and Packet Logging. Snort is Signature-based detection
so the rule in the snort is divided into main part or two logical section:

Rule header, Rule Option.

Rule header contains packet information such as rule's action, protocol,
source and destination IP addresses. Rule option is two common type in

Snort (Alert and Logging).

The result of this experiment is found out the snort signature of attack
and the number of sources that generate the attack and the destination
for the attack also every signature have a unique ID, the result of that
which is every alert provided with full detail and information of

signature.

Comparative analysis of signature-based intrusion detection and

16

anomaly-based intrusion detection systems are discussed here . Snort
and PHAD Detection Systems are used in this here where is Snort is
Signature-based Detection and PHAD is Anomaly-based detection,
Snort is lightweight signature-based detection depend on the pattern
match and compare the signature on the database to detect the attack,
while the PHAD is the time-based protocol anomaly detector for
network packets, to apply the time based protocol detection to anomaly
the formula is became = TN/R , where is N the number of the packet is
observed during the period, R the number of distinct values of a
particular packet field observed during time and T is time since last

anomaly detection.

For the evaluation of PHAD and SNORT in this experiment has been
evaluating by using 1999 DARPA off-line IDS evaluation data set which
contain the network traffic TCP-DUMP files. The period of this
evaluation and measured by weeks: week3, week4 and week5. Week3
perform attack for training the PHAD on the detection and week4 and
week5 is performing the real attack for the testing phase. Snort also

evaluate and tested by DARPA Data-set.

The detection rate may be measured by this formula: 6 = d/n which is:
6 = Intrusion detection rate.

d = number of the detected attack.

n = number of the actual attack.

For PHAD the number of detected attack have been detected = 5, total
number of data-set of actual attack = 201, so the detection rate for

PHAD is 6 = 5/201 * 100 = 2.49%.

For the SNORT no of detected attack = 116, detection rate: 6 = 116/201

17

*100 =57.71 %.

So the compared analysis between the PHAD and SNORT is done with
the following parameter: alarms generated protocol wise and detection

rate. It has been found and concluded that Snort is better in performance

than PHAD.

Intrusion detection and intrusion prevention system with most common
free based software tool (SNORT) is discussed on [10] which mentioned
that the main drawback of Network Intrusion Detection system that
monitors traffic is that attacker can evade the detection by exploiting

ambiguities in the traffic stream as seen by the NIDS [19].

According to for the Host IDS is have an advantage over Network IDS
is that H-IDS can access the encrypted information when it’s sending
over the network for source to destination, in the side of detection
techniques the Statistical Anomaly-Based Intrusion Detection System is
taking place in this paper, in the way that detection work, profile is
created from the normal activity this profile consist of metric data such
as number of packets (traffic), the number of packet for each protocol

[20].

In the same hand of detection techniques, Stateful Protocol Analysis
Intrusion Detection Prevention System also mentioned and it concept
that improvement of the packet filter concept by comparing the e packet,
connection (Protocol) with pre-defined protocol profile to find

deviation.

Many aspects are discussed also such as work with the snort rule, snort
alert and other things. Finally, the experiment is successfully
implemented and performed on Windows OS, attack of the specific

signature is detected and alert is generated successfully by snort rules.

18

Chapter Three

METHODOLOGY

CHAPTER THREE

METHODOLOGY

Introduction

This chapter demonstrates the research design and procedures were

presented as well as instrumentation, and the explanation of the

methodology to be followed to achieve the research objectives.

3. Research Methodologies and Tools to be adopted

For the implement the desired system architecture, many tools and

techniques will be needed and used to perform many tasks, below here a

summary of the tools and software that will be used for.

3.1 Operating Environment

This project implement of Linux platform with free open source

software SNORT. The Operating system that will be used is Linux

Centos Operating system with following software packet:

>

v VvV Vv VWV 'V V¥V

A\

SNORT (Network Intrusion Detection System).
BASE (basic analysis and security engine).
MySQL and ADODB.

PHP.

Apache?

DARPA dataset

Virtual Box (virtual machine player)

Packet generator

19

3.1.1 SNORT

Snort lightweight open source system became widely used in many
company and organization cause it’s flexibility and easy to use and
configure, snort work as a packet sniffer which mean that it’s capture
every packet that transmits over the network and displays this packet in
different level of detail such detail of network layer or data link layer.

You can get it from snort website "

Components of SNORT

Snort is based on many components this component is cooperation
together to detect an incoming attack and how to respond for this action;

the components are five as follow:
1. Packet Decoder 2. Preprocessors
3. Detection Engine 4. Logging and Alerting System

5. Output Modules

Figure 3.1: SNORT components

All this component work together from packet decoder until the output
module provides information about attack packet which used to make a
decision either drop, log or generate an alert. The above components

each one has a specific function to perform as follow [22].

20

Packet Decoder

The network interface could be Ethernet, SLIP, or PPP... etc., the packet
decoder collects these packets from the different network interface and

prepare this packet for the next step which is handled by Preprocessors.
Preprocessors

This component used by snort to performing some operation for the
packet which is rearranged or modified before the packet goes to the

detection engine cause if there is any corruption to fix.
Detection Engine

It’s the main and important component in this components, which the
main function is that to detect the malicious activity or attack which
done be perform SNORT detection rule, this rule read the data inside
packet to find any matches with pre-define attack activity, if found the

alert will be generated and send to next step otherwise packet dropped.
Logging and Alerting System

Depending on the configuration of the snort after detection engine detect
any activity, result of the detection may be either alert or log the activity
or both of them, log file is used by snort to log or save any activity that

detects, for this project the file stored in the /var/log/snort by default.
Output Modules

After the alert is generated alert the output modules to save this alert,

according to the way of how these users want to deal or use this data.

3.1.2 BASE (Basic Analysis and Security Engine)

A web page written with PHP which provides user front-end friendly

interface can be used to perform some query on the alert database.

21

ntO § [Rumning | - Orack VM VirmalBox =

o
-.‘ Applications Places System -%®Qg@ : | a:01prMm Q)
(=]

Basic Analysis and Security Engine (BASE) 1.3.8 (jodie) - Mozilla Firefox
File Edit ¥View History Bookmarks Tools Help

0 v ?& ﬁ |\3* http://localhost/base/base_main.php ~ | [-"v @y

[f5 Most Visited ¥ [@)CentOS [Support™

[[@) Basic Analysis and Security ... x | /#. Problem loading page x ‘ - =
Basic Analysis and Security Engine (BASE) B

Search

Gmpn Ak Dan
Gmph Aleri Detection Time

SensorsTont: 0/0 Trame Prote by Prowcot
Unique Al ris: O TCP e

50
Toml Mumber of Aleris: O I 1
Lo o

o
- Lrape 1P me= 0 ISP (%)

Portscen Trafmc (099
* De=Poms: 0 I 1

A Group MAIMErRCE | Cache & SRius | AdminisiaIon

3.8 (jedie) (by Kevin Johnson and the BASE Project Team

Click here to hide all windows and show the desktop.

[« [1snort |[@ Basic Analysis and Security Engine (BASE... | I |

Figure 3.2: BASE interface

BASE reads both tcpdump binary log formats and Snort alert formats,
BASE most be connect and configure with database to save alert which
for future check, database like (MYSQL), also BASE can provide
graphical overview both layer-3 and layer-4 packet information, also
can provide statistical information based on IP protocol, sensor,
signature, protocol. The BASE is allowed to administrator easy

management the alert data, categorize the alert and delete them.

3.1.3 ADODB

Active Data Object Database It is a database abstraction library for PHP
and Python-like Microsoft ActiveX data.

3.1.4 PHP

The scripting language used for web development with working with

HTML, which supports use with database MY SQL.

3.1.5 Virtual Box

Virtual machine player which used to run multiple machines in

22

simultaneously mode in a single device. the project uses VM cause to
implement this project on real it requires many devices so because of the
lack of possibilities and hasn’t hardware requirements to do it, so it's
implemented in a simulation and find the best tool of simulations we

have virtual machine workstation (Virtual Machine).

3.2 Improving the current IDSs systems

Many ideas have been proposed for improving the current systems in
use. Sekar et al. propose that a new intrusion detection rules language be
developed to make creating rules for different IDSs and published in
this paper “A High-Performance Network Intrusion Detection System”
[23] , another proposed improving proposed by Barruffi, Milano, and
Montanari which by automatic responses action can be added into IDSs
system to respond to attacks without relying on the administrator and

allow the system to manage intrusion recovery ¥

, Shen et al. proposed
“a hybrid of distributed, redundant, and cross-corroborating techniques
25 Others believe that a new system of communication protocols or a
redesign of routing protocols should be developed to help combat many

problems stemming from an inability to effectively trace attackers.

3.3 Proposed New System Architecture

The below figure illustrates the structure of the system which based on

the snort component figure.

23

-'I.
]Illl\."|1'ul'fz
L'
4

hot] Detections r) !

R p— Engine - -
Signature + Anamoly | " ;
Preprocessor j L | Output Alertor |

Losg o o file 3

Chutpast
Modules

Figure 3.3: Proposed New System Architecture

The basic idea behind the new system is that by adding new
preprocessor (SPADE) to the snort allow snorting to be capable to detect

the anomaly behaviour on the system.

3.4 Statistical Packet Anomaly Detection Engine (SPADE)

Preprocessor

Spade is pre-processor plug-in for the Snort intrusion detection engine,
it can detect the abnormal activity in the network traffic, a spade was
created by Stuart Stanford and James Hoagland, were working in the

Defense Advanced Research Projects Agency (DARPA).

3.4.1 The concept of Anomaly detection with SPADE

Each network have normal traffic for example if you have web Server
running web service, in normal you will receive a large number of
outside IP address for the single port TCP/80, another example if your
running DNS service also you expect to receive a number of internal
request to port UDP/53. All these activities and requested can be
categorized as normal network behaviour, the “Abnormal activity”

could be like getting a request from the external network to your DNS

24

server to port 80 TCP.

Snort signature-based detection cannot detect these activities simply
cause this activity not defined in the signature rules file, SPADE
preprocessor can do this thing, which allows to you to detect this

activity that no prewritten signatures for, detect the zero-day attack.

3.4.2 Function of SPADE

To detect abnormal activity SPADE store information about the
occurrence of a different type of packet over the network, the higher
value assigned to recent occurrence gradually phases out older

occurrences.

Form above example the probability table probability can provide
information of a packet to the DNS server on port 53 is 10%
(P(dest_ip=DNS_SRY, dest_port=53) =10%) whereas the probability of
a packet to the DNS server on port 80 is 0.1% (P(dest_ip=DNS_SRYV,
dest_port=80)=0.1%). by using and compare this information can detect
something uncommon about packets, SPADE converts this probability
into “raw anomaly score” and then into a “relative anomaly score”, this
production number which is 0 or 1, which can be easy to the

comparison.

The calculation will be the probability of packet X the “raw anomaly
score” a(X) is equal to —log2(P(X)) to find “relative anomaly score” the
divide with the maximum possible of “raw anomaly score”, this
produces two results 0 or 1, zero is normal while one not normal

activity.

3.5 System Process View

The below figure show clearly how actually IDS system work, after

25

install and configure the necessary tools and software packages.

Intruder attack
trafific

Incoming traffic

Data preprocessor
Achivity data
Smort sensor
System activity are observed capture the intruder
activity
-
Detection model Detection algorithm MNormal action distinct by evidence
D= 1 Allert
Action
15
i S, Alert filver ;
Drecision criteria Report
b
User looks of Store alert data in
imtrusion data MYSOL database by
collected by using output plug-in
snort through
web browser.
—

Apache server with
B # PHP and MYSOL
libraries installed.

Figure 3.4: System process view

The figure above demonstrates the IDS processes since the traffic
passed through the network interface till this traffic classified, checked

and reported by IDS, the steps as follow:

The attacker packet with a specific signature pass through the network
interface where snort sensor is deployed and configure, then the packet
goes through data pre-processor, the output of this is activity data that

reside in the packet will by mining it will send to the snort sensor to

26

capture intruder activity , this activity passed in the detection algorithm
the detection algorithm distinct Normal action against the abnormal
activity if the misuse or abnormal activity detect the IDS will generate
alert the alert with three option, one is to take action against this activity
which blocks it and in this case this is IPS (Intrusion Prevention System)
if IPS implemented, second is to report this activity without action will

take, finally may take both actions together.

3.6 Evaluating IDS

After deploying and implement the IDS it a test and evaluate to make
sure the system is running probably and with full functionality, to carry

out this we can use many tools and data, and it’s discussed below.

3.6.1 Using CommView to Generate Packet

It’s used to generate customized network packet for specific purpose to
test IDS, in this test we create the TCP/UDP/ICMP packet which this
packet deviate from normal packet behaviour and it sends over the
network, this packet must be capture by IDS according to rule the is

wrote beforehand and then generate alert.

-0l x|
File Search “iew Tools Settings Rules Help
S0 e A "'ﬂ| =T 675
WY #1edFnd gy
‘ ‘ 3Corm Gigabit LOM (30940) - Packet Scheduler Minip: ¥
W Latest IP Connections | % Packets | j:] Lagaging | @Rules | g) Alatms |
Local IP = |Rem0te P | In | Ot | Direckion | Sessions | Ports |Hostname | B teslProcess |A
=
Capture: On |Pkbs: 78011 in [44995 out [5337 pass Auto-saving: On Rules: OFf Alarms: OFF 7% CPU Usage ‘ &

27

Figure 3.5: CommView — Main page

3.6.2 DARPA Intrusion Detection System Data Set

Lincoln Labs’ intrusion detection evaluation is another way that used for
testing and Evaluation the SNORT IDS system, Lincoln offered dataset
for testing known by DAPRA dataset, testing IDSs by using network
traffic and audit logs collected in simulation network, the IDS test with

this data to find out the number of alert that will be generate '

There is two type of intrusion DARPA Intrusion Detection Evaluation:

an off-line evaluation and a real-time evaluation.

Intrusion Detection System was testing on the offline mode the test by
using network traffic and audit logs collected on a simulation network,
the system process this data and identify the intrusion attack activity the

in a file usually the file is (tcpdump) file.

Additional, type of testing in real-time evaluation is sent to AFRL (Air
Force Research Laboratory) which IDSs system inserted into network

tested to detect any attacks attempts.

3.7 Validation and Sureness

Testing the system using DARPA data set will be Performing to IDS
system before and after the Pre-processor is added and compare the
result of the total alert the generated by, also to make sure that IDS

systems are working probably.

3.8 Result presentation

At the end of the above system processes, it should to presenting the
results in order to compare them against objectives of research that must

be achieved.

28

3.9 Summary

This chapter illustrations up to the research methodology which includes
a detailed description instrumentation (tools and the system
environment) that used to implement the proposed system, also provide
the new system process overflow and how to evaluate and validate the

new system.

29

Chapter Four

RESULTS AND DISCUSSIONS

CHAPTER FOUR
Results and Discussions

Introduction

Here in this chapter include the discussion and the result of testing After
install and configure needed package and software, for carrying out this
work, it has been parted in section first implement IDS with signature-
based detection, second implement the anomaly detection and finally

implement and test the IDS with this two techniques together.

4.1 Operate With SNORT

Snort can be operated in two basic modes: packet sniffer mode and
NIDS mode. The packet sniffer mode is like dumping or TCP dump,
when work with the sniffer mode snort will sniff all packet that passed
through the network, also can log all this sniffed packet in file which
can be view or check later, snort that operates in this mode no intrusion
detection activity is done, the intrusion detection is done when SNORT
operate NIDS mode, which snorts use rule for detection the intruder

activity on the network.

4.1.1 Sniffer Mode

Simply this mode performed like normal tcpdump program, SNORT
capture and display any packet that passed through the network, this

packet can be displayed in a different level of detail on the console.
To issue this mode you can use the following command.

[root@Server ~]# snort -v

30

root@Server:—

File Edit View Terminal Tabs Help

[root@Server ~]# snort -v [<]
Running in packet dump mode

--== Initializing Snort ==--
Initializing Output Plugins!
L2

*** interface device lookup found: eth®
EAEE

Initializing Network Interface ethO
Decoding Ethernet on interface eth®

--== Initialization Complete ==--

' -*= Snort! <*-
o")~ Version 2.8.6.1 (Build 39)
ren By Martin Roesch & The Snort Team: http://www.snort.org/snort/snor
t-team
Copyright (C) 1998-2010 Sourcefire, Inc., et al.
Using PCRE version: 6.6 06-Feb-2006

Not Using PCAP_FRAMES

Figure 4.1: Snort Sniffer Mode

root@Sserver:~

File Edit Wiew Terminal Tabs Help

—t=d=d=d=d=d=d=t=t=t=t=t=d=d =t =t =ttt =t =t ===t =t =t =t =t =t =t =t =t =t =t =t ==+ -

07/12-17:17:52.449083 10.0.0.1 -> 10.0.08.2
ICMP TTL:64 TOS:0x0 ID:59328 IplLen:20 DgmLen:60
Type:® Code:® 1ID:1 Seq:8 ECHO REPLY

07/12-17:17:53.448224 10.0.0.2 -> 10.0.0.1
ICMP TTL:128 TO0S:@x0 ID:762 IplLen:20 DgmLen:60
Type:8 Code:® 1ID:1 Seq:9 ECHO

97/12-17:17:53.448335 10.0.0.1 -> 10.0.8.2
ICMP TTL:64 T0S:0x0 ID:59329 IplLen:20 DgmLen:60 I
Type:0® Code:® 1ID:1 Seq:9 ECHO REPLY

=t=t=+=t+=t=+=+=+=+=+=+=+=+=+=+=+

H7/12-17:17:54.448122 10.0.8.2 -> 10.0.0.1

ICMP TTL:128 TO0S:0x0 ID:763 IpLen:20 DgmLen:60

Type:8 Code:0 1ID:1 Seq:10 ECHO
=t=t=+=t=+=t=+=+=+=+=+=+=+=+=+=+=+

07/12-17:17:54.448149 16.0.0.1 -» 10.0.8.2
ICMP TTL:64 T0S:0x0 ID:59330 IplLen:20 DgmLen:60
Type:0 Code:0 ID:1 Seq:10 ECHO REPLY

(]

Figure 4.2: Sniffed Packet Detail

After sniffing done (Stop sniff process) SNORT provides detail about all

sniffed packet such as:
- Date and time packet was captured
- Source and Destination IP address

- Source and Destination of packet Port number

31

- Packet ID

- Received Packet
- Analyzed packet
- Dropped packet

And other information that related with the packet, also Sniffer mode
can be used to capture packet in a different level of detail such as
information about application layer data and information about protocol

TCP, UDP and ICMP.
>> snort -dv
This command for display packet with data link layer
>> snort -dev
Will display all the packet in hexadecimal format and ASCII format.

And many other command and option can be used in different purpose

check out this book for addition command [*?!

4.1.2 Network Intrusion Detection Mode

In the intrusion detection system the all the packet that passed through
the network it checked and applied to rules, these rules contain some
signature of the attack, with this signature if the packet is matched it the
alert will generate, otherwise if not match any rule the packet drop and

not logged in the system.

The Snort get the rule and configuration from configuration file it’s
saved as snort.conf, this file contains all rule path the save in rules

directory.

To activate SNORT in network intrusion detection mode you can issue

32

the following command:
[root@Server ~]# snort -c /etc/snort/snort.conf —i ethO

When this command is running is read all setting and configuration such

as rules, preprocessor and network interface setting.

4.1.3 Working with rules

All Snort operation is based on the rule of detection intruder, this rule is
known as signature rules, it divides into two main parts: rule header and

rule option.

According to the need, it can modify the rules, the rule header contains
the specific action that will token if the packet match rule, the option
contains an alert message and which part that in the package the

generate the alert message.

Header of rule contain (Action, Protocol, Source Address, Source Port,

Direction, Destination Address, and Destination Port).

The action contains the action that should be taken for the matched
packet usually alert or log, with the below rule will clearly show the

component
Alert ip any any -> any any (msg : “IP Packet Detected*;)

Action = Alert, Protocol = IP, Source Address = any address, Source
Port = any port, Direction = -> , Destination Address = any port ,

Destination Port = any port .

4.2 Implementation Part 1: Experimentation Signature Rule Set

Signature base detection snort look for attack signature and match this
signature with predefined rule’s stored in a database or (rules) file,

which will be later required in snort configuration file for detection.

33

Seven snort signature will be generated and test by snort IDS system,
the uses of packet generator are to create and generate packet according
to a specific parameter, the common value for some parameter are as

follow:
 Internet Protocol version = 4
o Header length of IP = 20 bytes
e Service Type =0
e Source IP address = 10.0.0.2

e Destination IP address = 10.0.0.1

4.2.1 Signature 1 : DDOS (TFN) ICMP possible communication

This signature creates an event when ICMP traffic sent between TFN
(Tribe Flood Network) when this flood of a packet sent to the network
only explanation for this event is that there is an attempt for denial of

service attack (DOS) attack.

To generate this packet I can be used this parameter (ID=0, Type=0,

packet-size=105) as shown in figure 12.

The object from this is Attempts to ”flood” a network, thereby
preventing legitimate network traffic and attempts to prevent a particular

individual from accessing a service.

34

k"‘ Send Packets via Local Area Connection — 13 =]
=l- ETHERNET: Etype = = | [exee: ee se ee Aa aa AA @2 Se @2 BB BE BE @8 82 45 @@ .F.222 FP.nen..E
pestinationadd lexle: @8 5C 11 11 88 88 B8 81 23 2B 81 81 81 81 82 82 . h....€.#<......

. Sourceaddress: - | [B¥28: 82 22 @8 82 TC AC 22 88 81 88 21 42 43 44 45 26 |-.... ABCDEF
e _’l—l lex38: 47 42 49 44 4B 44 4C 4D 4E 4F 58 51 52 53 54 55 GHIJKILMNOPQRSTU
lex48: 56 57 SE 59 GA 28 28 28 28 28 28 28 28 28 28 28 WWXYD
Wisual Packet Builder lexSe: 28 28 28 28 28 28 28 28 28 28 28 28 28 20 28 28
lexE8: 28 28 28 28 28 28 28 28 28 28
= [-
Tt tes =
ICMP
TCP
uDP =10l =]
Packet Type: IICMP vI
Type Code Checksum Al
Packe = —
|0 : Echo Reply = o = O |oxzcac =
= jin] Seguence
Foas Jo =i |zss =
ICHMP Data [64 bytes] =
Data Size
|52 = -
o | cencel |

Figure 4.3: DDOS (TFN) ICMP possible communication

When the packet sent through the network and detected with snort
system the BASE provides the following description about the detected
packet.

Bax=zic Analy=i=s and Security Engine (BASE) 1.3 .8 (jodie) - Mozilla Firefox

Hie Edit Miew Higtory Bookmarks Tools Help
@ = v & 0 N [[®) | http :/Mocainostbasemase_main php -| 29+ -

" 05 5| @) Cen uppo
5] Most Visited * CentDS Support ™

| [®)] Basic Analysis and Security Engi... | 4 Bk

Alert discription

Benm

S A Deecion Tim

SenmTomE L) 4 Tt P oy o
i Al i 1 TR
[

Yo M o A 543 I 1

1 R,

= D moo 1
T R L0

* o P 0 ___i
& @ ERm UDPE ot bl

& Dk Porta: I |
. 5o uegm

Bk 8 B Bbermine | Casbe & Siius | Sdkrisie b

Figure 4.4: BASE alert of ICMP traffic

35

Basic Analysis and Security Engine (BASE]) : Query Results - Mozilla Firefox

Ble Edit View History Bookmarks Iools Help

- - @ ﬁ @ hitp:iocalhostbase/base_gry_main php?&num_result_mws=-1&submit=Quer ¥ | M~

B3 Most Visited™ @ CentO5S [Support™

i @ Basic Analysis and Security Eng... @

Cuieried an . Wed Decambes 31, 2000 21.202%

Meia Criieria any ® Sanaoea

IPCr any & Umnage Aleris

® [classdoaions)

& Unique addresses Sounce | Desinadion
® Lipigue [P links

® Source Pon. TCP | UDP

* Desiinaion Po TCOPF | UDP

Lager 4 Critetia none

Pargload Criveria sy

= Time profile of alers

Displaying alers 141 of 41 ol

| | (¢ = Sinmaiine = = Timesmmp = = Source Addresa > = Desi. Address = < Laysr 4 Pooo =
] eRed) [ove] ica] farachMIDS] [local] [seer DDOS iomp possible communicatson 20031231 21 2018 Wooz 152 158 1.0 ICMP

Figure 4.5: BASE Alert (DDOS ICMP possible communication)
4.2.2 Signature 2: MISC source port 53 to 1024

The event of detection of this attack it will be generated when the non-

legitimate traffic passed through the network through the firewall.

Normally the DNS uses the UDP protocol, DNS traffic from port 53
using either UDP or TCP should be to a port above 1023. An attacker
could use a source port of 53 for TCP connections to bypass a poorly

configured firewall.

One explanation of such packets being transmitted in the network could

be an attempt to ‘spoofing DNS attack’
To generate the packet the parameters are set as follow:
- TCP packet with source port 53 to 1024 with SYN flag set

- Header length with 5 and no checksum option.

36

Baslc Analysis and Security Engline (BASE) ! Query Results - Moazilla Firefox

Hie Edar Miew Higtory Bookmarks Jookls Help

-« - % [5 hip focahostbasebase_gry_man php?Gaum_resull_rows=-1&submit=CQuer = | |3+ a
S5 Most Visited ™ |@ CentO5 [Support™
ganic Anaty siw and Seoority Cngne (BASES L 3.8 [jedle oxis Firetes -
[@) Basic Analysis and Security Enqi| &= Bhe E yew Hglery Desmesarks sk ey -
- - B i [+ oscarcwnmstats men prp - - o =
Basic AnalySIS and Sej et lle N T o .
& Baver destyn aon Seorty Inp.| # =
fe— |]

ried on _ Wed Decemnber 31 2005 2127 26
MEta Crasria any
1P Critedia any
Layer 4 Criterin none
Payload Criteria any

s | e g

[1 in = - - = < Source Address = « Desn. Address = < Layer 4 Piow =
1 WREET] [ArachMIDE] [locsl] fsnor | MISC saurce pom 53 io <1024 2000.12-J0 21:3630 mooz sy T2 16] 01024 TCR

sOURCE port 53 destination port 1024

Figure 4.6: BASE Alert (DDOS ICMP possible communication)

4.2.3 Signature 3: large UDP Packet

Snort generate an alert when large UDP packet detected in a normal
scenario the UDP packet payloads small than 4000 since this protocol
designed to be used for the transmission of smaller payloads, the

probability for payloads more than 4000 that means is the possibility of
‘DOS — Denial of Service’.

To generate this packet it can set the packet data size more than 4000

just.

Basic Analysis and Security Engine (BASE) : Query Results - Mozilla Firefox
File Edit View History Bookmarks Tools Help

« o o> ?q)) @ @ ntpomocainostmasespas

[Most Visited > (@] CentOS [Support™

[[@] Basic Analysis and Security Engu...} &+

Basic Analysis and Security f==.

Home | Search

Queried on - Wed December 31, 2003 21:51:21
Meta Criteria any

any

e none
Payload Criteria any

Toamg ey
Y Suwice Fuin o

- e
* Destination Port TCP | UDP

® Time profile of alerts

Displaying alerts 1-24 of 24 total

] 1+ = Signature > = Timesamp > = Source = Dest = < Layer 4 Proto >
[] #0@6-1) [arachNIDS] [lecal] [snori MISC Large UDP Packet 2006-12-31 21:50:41 100021 192.168.1.0:2 uDP

Figure 4.7: BASE Alert (large UDP Packet)

37

4.2.4 Signature 4 and 5: BAD TRAFFIC TCP, UDP port 0 traffic

IDS (e.g. Snort system) generate alert when receiving TCP, UDP packet
with destination filed port (0), at all normal situation the TCP, UDP
packet doesn’t have destination port (0), the explanation of this activity
is which can be one of the attack phases is that is (reconnaissance
activity) it’s used by attacker to indicate the existence of host in the
network at a particular address which is listening to requests as an as a

prelude to an attack.

Basic Analysis and Security Engine (BASE) : Alert Listing - Mozilla Firefox

File Edit View History Bookmarks Tools Help

@ 5 - @ O @ (8 rpmocancsng

fle Edt YView Hglory Bookmarks Tools Help
[55 Most Visited¥ [@|CentOS [JSupport™ « S -® @ (8 rep ocamestbasemase_man shp -~ 3

Basic Analysis and Security Engine (BASE) 1.3.8 (jodie) - Mozilla Firefox — o x gl

| [@ Basic Analysis and Security Engi,..| @ tht Vieted™ _BICu0s BrSuweent

Basic Analysis and Securit
Home | Search

Queried on : Thu January 01, 2004 01 45:21
Meta Criteria any
IP Critenia any
ayer 4 Criteria none
Payload Criteria any

5B ngi -

.....

o TP (3 UOP (1
Displaying alerts 1-2 of 2 iotal

< Sianature > < Classification > < Total # > Sensor # < Source Address > < Dest. Address > < First> < Last>
0 [local] [snor BAD-TRAFFIC fcp port O traffic miscactiviy 118(52%) 1 1 1 20040101 20040101
01:42:15 01:42:27
O [nessus] [cve] [icat] [bugtrag) fncall fenar | BAD-TRAFFIC udp port misc-activity 110(450%) 1 1 1 20040101 2004-01-01
0 traffic 01:42:50 014310

ACTIOM
T

|r,. = =a T v, | e = 1

Figure 4.8: BASE Alert (BAD TRAFFIC TCP, UDP port 0 traffic)

4.2.5 Signature 5: BAD TRAFFIC data in TCP SYN packet

When TCP packet contain SYN flag is dedicate that the source host
want to request for a connection establishment with destination host, in
normal scenario this packet doesn’t contain any data, these packet used
for synchronizing sequence numbers in communication time, SYN
packet size is 6 byte if the size of packet increased this may indicate that

there attempt of denial of service attack.

To generate this packet use TCP packet with SYN flat set and data size

38

greater than 6 bytes.

Basic Analysis and Security Engine (BASE) 1.3.8 (jodie) - Mazllla Firefax
Ble Edit Vew Higtory Bookmarks Tools Hew

- 8 %s5 - Mozilla Firefox

I -] @ (& nop ocanostbasebase_main prp ~| 4= 5
BIMost Visted ™ (6 CentDS [JSupport™ i=-1&submit=Quel '| "'l' CY
@ Basic Analysis and Securty Engi... ¥ -
Basic Analysis and Security Engine (BASE)
i o e i
. e =
e _
vl
T T
[Back]
p———— Pe—
oty mgiing
Tomni Wumbe s of Aty 171 —
» Sec P wiivs 1 [‘" 2 1501S
* fx-u W:ﬁ:l‘lj s que Alerts

I classifications)
que addresses: Source | Destination
- . - - ' . —=xue IP links
_— * Source Port: TCP | UDP
Destination Port: TCP | UDP

» Time profile of alerts

Displaying alerts 148 of 227 total

] D < Signature > < Timestamp > < Source < Dest. > e
[] #(@2-1) ([ur] [local] [snorf BAD-TRAFFIC data in TCP SYN packet 20040101 015642 10002:1 168.192.1.0:2 CcP

Figure 4.9: BASE Alert (BAD TRAFFIC data in TCP SYN packet)

4.2.6 Signature 6: BAD TRAFFIC same SRC/DST IP address

IDS system like snort generate an alert when the packet passed through
snort with the same source and destination IP address, normally TCP
packet doesn’t have the same IP address for source and destination host

except loopback packet.

Some of the TCP stacks crashed with TCP SYN flag packet that with the
same Source and Destination IP when the TCP stack is crash the
attacker can send a packet with spoofed IP address, which is the IP of

the Destination Host.

Simply to create this packet which you can set a flag and the source and

destination IP addresses.

39

2) Basic Analysis and Security Engine (BASE) : Query Results - Mozilla Firefox

Hle Edit View History Bookmarks Tools Help

Basic Analysis and Security Engine (BASE) 1.3.8 (jodie) - Mozilla Firefox

@ - @) @ @ ntpmocainostba AR . J
¥ 3 8] | hitp-/Aocainostiba @ - @) [e mocainestbasebase_main php -] 28 QY
5 Most Visited ¥ [@]CentOS [JSupport™ I A | B = IAOK | B Suppod. >

© Basic Analysis and Securty Engl...| ¥

Basic Analysis and Security Engine (BASE) i

| |@ Basic Analysis and Security Engi...| <+

Basic Analysis and Securi

Home | Search

=

Queried on | Wed December 31, 2003 214327

Meta Criteria any
IP Criteria any
Layer 4 Criteria none

Payload Criteria any

Prrtan Traf

i~
Same ip address ® Time profile of alerts

Displaying alerts 1-11 of 1L *al

] (] < Signature > = Timestamp > < Source Address> < Dest. Address> < Layer 4 Protw >
[] #-41-1) [cve] [icar] [bugtrag] [local] [snort] BAD TRAFFIC SAME SRC/DST IP ADDRESS 2003-12-31 21:36:53 100021 10002:2 TCP

seqmnmmnnemm s : o

Figure 4.10: BASE Alert (BAD TRAFFIC same SRC/DST IP

address

4.2.7 Signature 7: BAD TRAFFIC loopback traffic

Loopback packet in the normal and general scenario is destined to
localhost and detected by loopback interface which is 1o0. snort and
other IDS generate an event when detect loopback packet that sent over
the network this packet may indicate there is unauthorized network use,

reconnaissance activity, the attacker use spoofed source IP address in the

packet.

For generating this packet TCP packet with source IP as 127.0.0.0 and

destination IP address is IP of IDS server.

40

2 Basic Analysis and Security Engine (BASE) : Query Results - Mozilla Firefox =0
File Edit View History Bookmarks Tools Help

a 5 - @ 7 @ [[6)] ntip:nocalnostbase/base_ary_maingpandt a2 ey

- | (3D

%5 Most Visited ™ [g|CentOS [JSupport™
i3 PP

| E Basic Analysis and Security Engi...l)

Basic Analysis and Security Engine (

Queried on - Wed December 31, 2003 22:2345
Meta Criteria any
IP Criteria any
Layer 4 Criteria none
Payload Criteria any

Unique Alerts
(classifications)
Unique addresses: Source | Destination
Unigue IP links
Source Port: TCP | UDP
Destination Port: TCP | UDP

Time profile of alerts

Displaying alerts 1-10 of 10 total

n [[+] < Sinnature > < Timestamp > < Ganres Addrece s cNeeat Addrsces
[] #-{42-1) [url] flocal] [snor BAD-TRAFFIC loopback traffic 2003-12-31 22233 1270001

< Layer 4 Proto >
1000.12 TCP

Figure 4.11: BASE Alert (BAD TRAFFIC loopback traffic)

41

4.3 Experimentation signature base detection Evaluation

Snort signature base detection the rule can be set by two way you can
customize the rule and include the rule that you need in your IDS
system secondly you can use full snort rules which provide for free by
snort community, this kind of rule helpful to detect 0 day attack
according to predefined rules, cause most of it came with updated to the

last signature of attack.

For the experiment of the signature-based detection method, all snort
signature rule is imported and stored in the rule directory and were

called in the snort configuration file.

In this experiment we run snort and passing DARPA 1999 dataset to

snort sensor with the following command:
[root@Server ~]# snort -r darpa.tcpdump -c snort.conf

This means snort read the data from darpa dump file and apply the snort

configuration that in .conf file for detection any attack activity.

After running the command and start snort IDS system the result as

shown:

42

«® Applications Places System %@@@@ 6:59 PM '@JEI

root@Server:~/Desktop

File Edit Wiew Terminal Tabs Help

\
root@Server: ~/Desktop x |rcct@Server:——fDe5ktcp x
Run time for packet processing was 11.62271 seconds :E
database: Closing connection to database "snort"
Snort processed 1483784 packets.
Breakdown by protocol (includes rebuilt packets):
ETH: 1483784 (1le8.808%)
ETHdisc: B (B.000%)
VLAN: B (B.000%)
IPVE: B (B.000%)
IPE EXT: B (0.000%)
IPGopts: B (6.000%)
IPGdisc: @ (B.000%)
IFP4: 1348916 (96.097%)
IP4disc: @ (B.000%)
TCP 6: © (B.000%)
UDP 6: @ (0.000%)
ICHMPE: B (B.000%)
ICMP-IP: © (B.000%)
TCP: 1288201 (91.772%)
UDP: 59679 (4.252%)
ICMP: 1836 (B.874%)
TCPdisc: @ (B.000%)
UDPdisc: @ (B.000%) L
ICMPdis: © (B.000%)
FRAG: @ (B.000%) ||
FRAG 6: B (B.000%)
ARP: 9383 (B.663%)
EAPOL: @ (B.000%)
ETHLOOP: 79685 (B.563%)
IPX: B (0.000%)
OTHER: 37580 (2.677%)
DISCARD: © (B.000%) =
[root@...][@ Basic ...][Eh Comp...][=y][0 war][I log][= snort] ﬁ

Figure 4.12: Snort Result number of Packets Processed

The above figure shows the total number of the packet was founded on
the DARPA tcpdump file, these packets are processed by snort Signature
pre-processor to be passed for the next stage which is detection engine

which on figure 21.

The figure21 show that a total number of altering that have been
detected by detection engine and how many numbers of these alert have

been logged.

43

root@Server:~/Desktop

File Edit Wiew Terminal Tabs Help

uppP: 187257 (6.992%) EZ
ICMP: 10871 (@.870%)
TCPdisc: @ (@.000%)
UDPdisc: @ (@.000%)
ICMPdis: @ (B.000%)
FRAG: @ (B.000%)
FRAG 6: 0 (@.000%)
ARP: 5642 (@.368%)
EAPOL: @ (B.000%)
ETHLOOP: 7907 (@.515%)
IPX: @ (B.000%)
OTHER: 1320 (B.086%)
DISCARD: @ (B.000%)
InvChkSum: @ (B.000%)
S5 G 1: 1 (B.000%)
55 G 2: 41725 (2.720%)
Total: 1534057 I |
Action Stats:
ALERTS: 35082
LOGGED: 35082
PASSED: @

Figure 4.13: Number of Alerts for Darpa Signature test

Tirme ChartTime uws Mumbesr of Alarts NE011999 0F021999

S000H
2500 -H
Zo00-H
1500
10l H
SO0
| | |ET| || |0= 03]
=l 7] | —_——
= — Cot | [or] =+ [T (¥
1

Figure 4.14: Time Chart vs Number of Alert (Signature Detection test)

To get more viewers on the result of the IDS system we can use Basic
Analysis and Security Engine (BASE) to show more detail, as shown on

figure22 below.

44

Basic Analysis and Security Engine (BASE) 1.3.8 (jodie) - Mozilla Firefox

File Edit View History Bookmarks Tools Help

o 5 v ?@ kﬂ ﬁ [http:/flocalhost/base/base_main.php vl [-"v

[} Most Visited ™ CentOS i Support ™

| @] Basic Analysis and Security ... x |[6] Basic Analysis and Security ... X | @

Basic Analysis and Security Engine (BASE)

listing Se * Destination 1P

listing S estination IP

listing =, estination IP

TCP ICMP

TCP

TCP Search

TCE Graph Alert Data
Graph Alert Detection Time

TCP
Destination

- Most frequent 5 Unique Alerts

SensorslTotal: 1/ 1 Traffic Profile by Protocol
Unigue Alerts: 35 TCP (68%)
atat numbar | |
Total Number of Alerts: 3502
UDP (0%)
* Src |Paddrs: 224 I |
* Dast. IPaddrs: 78
* Unique IF links 665 ICMP (32 %)

* Source Ports: 140 |

Portscan Trafic (D%)
* o TCP(140) UDP(0)
* Dest Ports: 1807

rcot@Server:~fDeslct0p|

gure 4.15: BASE Alerts about DARPA Evaluation

(4]

The base figure shows that the total number of alert that events created

and is equal to 3502 alerts.

Correspondingly, you can show the type and category of that attack that

has been detected with IDS system which is 9 types shown in the figure

below.

45

Basic Analysis and Security Engine (BASE) : Classification - Mozilla Firefox

Fle Edit View History Bookmarks Tools Help

@0 TR0 v

Most Visited ¥ CentOS [ZiSupport™

3~ Q|

‘ Basic Analysis and Security ... % ‘i, Problem loading page x l & 7
[Back]
Queried on : Mon Ssptember 17, 2018 19:45:39
Meta Criteria any
|P Critzria any
Layar 4 Criteria. nane =
Payload Criteria any
Cizplaying alerts 1-9of 9 total
< Classification > <Total#> <Sensor#> < Signature = < Source Address = < Dest. Address = < First = < Last>

D misc-activity 3056 (596) 1 & 185 B lee-03-0L 08:00:47 198e-03-02 05:55:13

D policy-violation 182 (56 1 4 10 2 lwe030L 08:10:40 1880301 1608003

|:| attamptad- recon 131 (4%) 1 T Y 38 1986-03-01 08:20:02 19880301 2001718

D webr-application-activiy B2 (296 1 B 15 20 19980301 08:35:05 19980301 19:34:49

D shellcode-detect 28 (1%) 1 3 5 8 LEe-030L 9,308 Lse030L 1m0 |

D atmpted-doe 4 () 1 1 1 3 loee03-0L 094368 19980301 12:62:30

D bad-unknown 15 (6] 1 2 10 10 1900301 09:66:2 1998-03-01 16:66:2

D alfe mpted-usar 3 (M) 1 2 3 3 Lwe0F0L 11820 1=8e-0301 14:08:49

D web-application-attack 6 (096) 1 1 3 3 19980301 10:21:43 1998-03-01 16:48:16

Figure 4.16: Alert Category

Next figure also shows the number of alerts that have been captured per-

day

Basic Analysis and Security Engine (BASE) : Time Profile of Alerts - Mozilla Firefox

File Edit View History Bookmarks Tools Help

'43 E:> v ?g‘a I\j ﬁ [http:/localhost/base/base_stat_time php?time_sep[0]= ¥

7| Most Visited ™ . \@|CentOS [Support™

| . Basic Analysis and Security .. |. ‘@] Basic Analysis and Security .. l
Basic Analy5|s and Security Engine (BASE)
[Back]

Queried on : Tue Octoher 09, 2018 08:34:07
Meta Criteria any
IP Criteria any
Layer 4 Crileria mome
Payload Crileria amy
Profile by - O Hour @ Cay o Month x
[cetoezn & |(March (& |[L | [me (&]~ [wah (&2 | [& || Profle sl |
| Time | # of alerts | Alert
[0t /1089 [] -]
[p312/1288 [7 []

46

Figure 4.17: number of alert per-day

«® Applications Places System %@Q@ 7:55 PM @J}‘,l

Basic Analysis and Security Engine (BASE) : Time Profile of Alerts - Mozilla Firefox

Fle Edit WView History Bookmarks Tools Help

43 - ?43 ﬁ [@ http:/flocalhost/base/base_stat_time php?time_sep[0]= V] [-'lv 'fl;]

Most Visited ™ @ CentOS [Support™

| @ Basic Analysis and Security ... x | /7. Problem loading page x l Lol w7
03/1/1999 8 00:00 - B:59:59 214] [«]
03/1/1990 g:00:00 - 9:56:58 8 |
03/1/1990 10:00:00 - 10:58:59 =8 1
03/1/1999 11:00:00 - 11:658:58 436]
S 1s98 Zoon00 Z5wes w7 o
03/1/1998 13:00:00 - 13:59:59 s]
03/21/1999 14:00:00 - 14:59:58 151] —
03/1/1999 15:00:00 - 16:58:59 260]
03/2/1999 16:00:00 - 16:50:50 260]
03/1/1998 17:00:00 - 17:59:58 133]
03/1/1999 18:00:00 - 16:58:58] |]
03/1/1999 19:00:00 - 18:58:58 5 |] i
03/1/1999 20:00:00 - 20:58:59 49 |]
03/11980 21:00:00 - 21:59:58 B 14 []
03/1/ 1999 22:00:00 - 22:58:58 14 | |
03/ 1998 23:00:00 - 23:650:59 1z |i
03/2/1999 0:00:00 - 0:59:59 12 []
03/2/1999 1:00:00 - 15959 12]
03/2/1999 2:00:00 - 2:59:59 12 | | E
Done

[fi root@...]L Basic ...][b [Com...][=R][0 var][= log][2 snort [| ﬁ

Figure 4.18: Time of alert per-hour

4.4 Experimentation SPADE Anomaly base detection Evaluation

SPADE preprocessor

The basic operation of this will be that Spade will monitor the network
and report anomalous events, SPADE alert will be configured to
generate specify event alert, for example, packet (X) over a certain
value will generate an alert, sending a standard Snort alert through the

normal Snort alerting mechanisms.

In this work SPADE will be tested by using also DARPA data-set which
contain network packet within TCP dump file, this file contains an
anomaly packet which is most of it is an ICMP misuse packet, which

can be used by an attacker to perform Denial of Service attack.

After adding and plug the SPADE pre-processor, run snort and passing

DARPA 1999 dataset to snort sensor with the following command:
[root@Server ~]# snort -r darpa.tcpdump -c snort.conf

This means snort read the data from DARPA dump file and apply the

snort configuration that in .conf file for detection any attack activity.

After running the command and start snort IDS system the result as

shown:

root@server:—/Desktop

File Edit Miew Terminal Tabs Help
Run time for packet processing was 12.995865 seconds [=]
database: Closing connection to database "snort"”
Snort processed 1774886 packets.
Breakdown by protocol (includes rebuilt packets):
ETH: 1774886 (1lo0.000%)
ETHdisc: @ (B.080%)
VLAN: © (0.080%)
IPVE: B (0.080%)
IP6 EXT: B (0.080%)
IP6opts: @ (B.0080%)
IPGdisc: @ (B.080%)
IP4: 1759512 (99.134%)
IP4disc: @ (B.0600%)
TCP 6: B (B.000%)
upP 6: @ (0.080%) |
ICMPE: @ (0.080%)
ICMP-IP: © (0.080%) —
TCP: 1622841 (91.434%)
upP: 134129 (7.557%)
ICMP: 2542 (B.143%)
TCPdisc: @8 (B.080%)
upPdisc: 8 (0.080%) B3

Figure 4.19: Result of Snort with SPADE number of Packets

Processed

The above figure shows the total number of the packet was founded on
the DARPA tcpdump file, these packets are processed by snort Signature
and SPADE pre-processor to be passed for the next stage which is

detection engine which on figure 28.

The figure28 show that a total number of altering that have been
detected by detection engine and how many numbers of these alert have

been logged.

48

File Edit Wiew Terminal
Total: 1774886

Action
ALERTS: 505
LOGGED: 5854
PASSED: ©

Frag3 statistics:

Total Fragments:
Frags Reassembled:
Discards:

Memory Faults:
Timeouts:

Overlaps:

Anomalies:

Alerts:

Drops:

FragTrackers Added:
FragTrackers Dumped:
FragTrackers Auto Freed:
Frag MNodes Inserted:
Frag MNodes Deleted:

Stream5 statistics:

root@Server:~/Desktop

Tabs Help

Figure 4.20: Number of Alerts

[

(4]

For above graph as seen the number of alerts is increased against the

alert that generates by snort signature pre-processor on the first

experiment, the increase is a result of a number of packets that detected

with signature pre-processor and SPADE pre-processor, more details on

next figures.

BASE ChartTire ws Hurber of Alerks 03031939 03041993

45004

EX LT ES

FS001

LR

25004

Zu004

15004

10004

Rk

13451999

1344

Figure 4.21: Time Chart vs Number of Alert per-day

49

BASE ChartSignature Claszzification us Hurmber of Alerts

4500
4000+
5004 z
ot -
sonn Y = i
- -
25004 4 £ £
2000 : 5 £ i i ¥
E 3 2 ey 3 5 3 £ w
15004) o]] e W e [-]
1000 z i T i i g a i
4 = = @ T2 o= -+ -
sooff % L R . [1:3x] 3 3 E:}E 5w
h . - E E % 3 5 o
2 % - % % 3 § s 3
£ -]] 'S g 0 -] g] -]

Figure 4.22: Alert Categorization vs Number of Alerts

Basic Analysis and Security Engine (BASE) 1 Mozilla Firefox

File Edit WMiew History Bookmarks Tools Help
43 E:> v @,‘a (% ﬁ [@ http:/flocalhost/base/base_main.php 'l [""l'

[Most Visited ¥ @ CentOS [ZiSupport™

@ Basic Analysis and Security Engi

listing 3 ination IP
listing IP Destination 1P
TCP ! IcMpP
TCP

TCP 3 search

TcP Graph Alert Data

- Graph Alert Detection Time

Destination

- Most i t 15 Unique Alerts
- Most frequent 5 Unique Alerts

Sensors/Total: 1/ 1 Traffic Profile by Protocol
Unigue Alerts: 38 TCP (49%)

Categories: 10 |
Total Number of Alerts: 5054

UDP (0%)
= Src P addrs: 222 I |
® Dot IP addrs: 79 —
* Unique IP links 715 ICKP [51%)

* Source Ports: 172

Portscan Trafic (0%)

o TCP(172) UDP(0}
Dest Ports: 1836

[«

| @ TCP(1836) UDF(0)
Done

Figure 4.23: BASE Alerts about DARPA Evaluation on anomaly

pre-processor

In this time the alerts show that the number of unique alerts was
increased from a previous time and the ICMP detection percentage is
increased to 51% this explains that there is an abnormal activity on

passed packets.

Basic Analysis and Security Engine (BASE)

Home | Search

[Back]

Queried on : Tue Ocoher 09, 2018 10:49:52
Mata Criteria any
IP Criteria any
Layer 4 Criteria mone
Fayload Criteria any

Profile by : D Heur @ Cay D Manth

[betieen & |(March &]E] (128 a]- [Mach (&]E] (128 & | Proile alert |

| Time | #of alerts | Alert

[nai3/1080 | 4y]
[iia/ 100 | 175 [

BASE13 [y Kevin Johnson and the BASE Project Team

Builton ACID by Roman Danyliw)

Figure 4.24: number of alert per-day

51

Fle Edit Miew History Bookmarks Tocls Help

43 v ?43 ﬁ [@ http:/Mocalhost/base/base_stat time . php?time_sep[0]= '] [-'l' 'ﬂ‘g

Most Visited ™ @ CentOS [JSupport™

[@ Basic Analysis and Security ... % | @ Basic Analysis and Security ... x
]
. 1

L

D

Fz'znsss END0:00 - B: 5900 |

paansea 50000 - 5:m:m [

M AISEE 10:00: 00 - 10 56: 55

W HISEE 11: 00:00 - 11: 55: 15

1900 12:00: 00 - 12: 59: 59

1900 1 3:00: 00 - 13: 59: 59

2 BSEE 14:00: 00 - 14: 76: 59

3 H15E6 15:00: 00 - 15: 79: 19

3 H19E6 16:00: 00 - 16: 79: 19

[rr——— I
]
]
[
[
[
[

b:‘:’lsaa 16:00: 00 - 18: 79: 59

Fz‘z’.lsss 19:00:00 - 19: 5 59

Pz'znssszo:o-o:o-o - 2o

kz'znsss FL:00:00 - 21590 59

pranzes z:00:00 - 220

Pz'z'lses L0000 - 239D

VRM1EE6 0:00:00 - 0: 59: 59

1906 1:00:00 - 1: 99: 59

1SS 200000 - 21081

AISEE 200000 - 3081

1SS 0000 - 41081

1506 5:00:00 . 5991

AT N T T A - A T

Done

(]

Figure4.25: Time of alert per-hour

5. Result and Discussion

A network intrusion detection system like SNORT has typically used
signature detection, which by matching the pattern in the network traffic
with a predefined pattern of attack, but the method have dis-advantage
whereby cannot detect the novel attack. An alternative approach is
anomaly detection method which based on normal traffic and signals
any deviation from this model as suspicious, the process of combine
these two techniques can offer many advantages like increase the
detection rate, this mission can be done by add preprocessor to the

SNORT architecture.

After configure the snort to be detect attack according to signature-
based detection we inject it by using DARPA dataset the result is shown
in Figure 4.15 and 4.16, it show that show that the total number of alert

that events created and is equal to 3502 alerts, and the category of these

52

alert classified into 9 type which shown in figure 4.16.

However Spade cannot tell you about is this packet is an attack or
misconfigured, it just concerns about the normal and abnormal activity
after adding and configure anomaly preprocessor for snort, we inject
both systems and see the result for detection the total number of alerts
have been increased to 5054 alerts as shown in figure 4.23, another
comparison from previous time and the ICMP detection percentage is
increased to 51% this explains that there is an abnormal activity on
passed packets, the result is shown that the high performance for system

that with anomaly preprocessor.

Although this result of detection is grows the drawback to anomaly
detection is an alarm is generated any time traffic or activity deviates
from the defined “normal” traffic patterns or activity. This means it’s up
to the security administrator to discover why an alarm was generated.
Anomaly-based systems have a higher rate of false positives because
alarms are generated any time a deviation from normal occurs. Also As
stated earlier, the signature based techniques are good but has the
obvious short comings like failure to detect novel attacks, increasing

signature database etc.

In summary, the results show that the approach followed in this thesis is
quite effective in detecting network attack but it’s also need to human
intervention to discover and make sure about why this alarm is generate

and created also to distinguish if this alarm is false or not.

53

Chapter Five

CONCLUSION

CHAPTER FIVE

Conclusion & Recommendation

5 Conclusion

IDS can be deployed to increase security and control within a corporate
computing environment, almost IDS use one of these two method for
detection which is misused detection or Anomaly detection, for secure
the system’s and both of them have their own limitations, for misuse
(Signature) Detection the system only detect the attack signature that
store in database signature file and anomaly detection also may
sometime send false alarm about attack, also This research shown how
to implement and design IDS system for your security needing, it
proposes that how to integrate both IDS method (Signature and
Anomaly) in the Snort software which is based on signature detection
for anomaly method we use SPADE Statistical Packet Anomaly
Detection Engine preprocessor, after that testing the system using
DARPA dataset, to validate this system we also inject the same data set
to the signature-based IDS system, and the result is come out with high

value of detection for system with anomaly preprocessor.

The research is come out with the following point it must be kept in

mind which can be followed to get the highly secured infrastructure

- Intrusion Detection system is no a solution for all security concerns,
IDS perform an excellent job in process of detect, monitor and report
and in order to have good security policy IDS need to integrate with

IPS.

- Successful intrusion detection requires that a well-defined policy must

be followed to ensure that intrusions and vulnerabilities, virus

53

outbreaks, etc. are handled according to corporate security policy

guidelines

- IDS require human intervention when the attack to detecting and
report even is blocked, the IDS system requires administrator

intervention to prevent the occurrence of the same attack in future.

- For Signature detection method when you deploy snort is important to
make sure that you are using the rule that is relevant and up to date,

otherwise, the system will be much less efficient.

- If work on the anomaly based detection this can generate a large
number of false positive and false negative alarm, this may decrease the
performance due to a large number of false positive, but the system
work on misuse detection method it’s impossible to detect unknown
attack, to solve this problem a hybrid IDS are created and develop
which uses both anomaly and misuse based ids to find out the unknown
attacks and to raise the detection rate and lower false positive and false

negative.

- The challenging that could be faced when deploying the IDS is that
when you compared with the other IDSs system, Detection rate and
false alarm rate are the best-suited evaluation metric for IDS system, the
detection rate is the total intrusion injected in traffic and false alarm rate
is like false positive alarm, So for Future work it's trying to test the
system with real Network traffic to get better result on validating the

system.

54

[1]

[2]

[3]

REFERENCE

J. P. Anderson, “Computer Security Threat Monitoring and
Surveillance”, Technical Report April 1980,
http://csrc.nist.gov/publications/history/ande80.pdf

Hybrid 1Ids System Using Snort Okasha Eldow*,Punit
Lalwani** m.b.Potdar*** Gtu Pg School, Gandhinagar,
Bhaskaracharya Institute For Space Applications And Geo-
Informatics Bisag, Gandhinagar, Gujarat, India, Volume 7 -«

Number 2 March 2016 - Sept 2016 Pp. 16-19

Dinakara K (06CS6026) “Anomaly-based Network Intrusion
Detection System” Computer Science and Engineering,
Department of Computer Science and Engineering Indian Institute

of Technology Kharagpur -721302, India (May 2008)

[4] Kaur T, Kaur S. Comparative analysis of anomaly based and

signature-based intrusion detection systems using PHAD and Snort.

[5]Kenkre, Poonam Sinai, Anusha Pai, and Louella Colaco. "Real-time

intrusion detection and prevention system." Proceedings of the 3rd
International Conference on Frontiers of Intelligent Computing;:

Theory and Applications (FICTA) 2014. Springer, Cham, 2015.

[6] Drum R. IDS and IPS placement for network protection. CISSP

(March 26, 2006). 2006 Mar.

[7] D. J. Brown, B. Suckow, and T. Wang, “A Survey of Intrusion

Detection Systems,” 2002

[8] White paper, “Intrusion Detection: A Survey,” ch.2, DAAD19-01,

NSF, 2002

55

[9] K. Scarfone, P. Mell, “Guide to Intrusion Detection and Prevention

Systems (IDPS),” NIST Special Publication 800-94, Feb. 2007.

[10] Kurundkar, G. D., N. A. Naik, and S. D. Khamitkar. "Network
intrusion detection wusing Snort." International Journal of

Engineering Research and Applications 2.2 (2012): 1288-1296.

[11] Guimaraes, Mario, and Meg Murray. "Overview of intrusion
detection and intrusion prevention." Proceedings of the 5th annual
conference on Information security curriculum development. ACM,

2008.

[12] Rehman, R. U. (2003). Intrusion detection systems with Snort:
advanced IDS techniques using Snort, Apache, MySQL, PHP, and
ACID. Prentice Hall Professional.

[13] Roesch, M. (1999, November). Snort: Lightweight intrusion
detection for networks. In Lisa (Vol. 99, No. 1, pp. 229-238).

[14] Kumar, Vinod, and Om Prakash Sangwan. "Signature-based
intrusion detection system using SNORT." International Journal of
Computer Applications & Information Technology 1.3 (2012): 35-
41.

[15] Megha, “Gupta Hybrid Intrusion Detection System: Technology and
Development” International Journal of Computer Applications

(0975 — 8887) Volume 115 — No. 9, April (2015)

[16] Garg, Mukta. "Intrusion Detection System in Campus Network:
SNORT-the most po rful Open Source Network Security Tool."
volume 1, issue 4, October (2 0 1 4).

[17] Gupta, Abhishek, et al. "Network intrusion detection types and

analysis of their tools." International Journal of Engineering 2.1

56

(2012): 63-69.

[18] Rani, Suman, and Vikram Singh. "SNORT: an open source network
security tool for intrusion detection in campus network
environment." International Journal of Computer Technology and

Electronics Engineering 2.1 (2012): 137-142.

[19] T. H. Ptacek and T. N. Newsham, “Insertion, Evasion and
Denial of Service: Eluding Network Intrusion Detection”,
Secure Networks, Inc., Jan. 1998.

http://www.aciri.org/vern/Ptacek- NewshamEvasion-98.ps.

[20] Anomaly-based network intrusion detection: Techniques,
systems and challenges by P. Garci’aTeodoro, J. Di’az-
Verdejo, G. Macia -Ferna'ndez & E. Va'zquez in computers &

security 28 (20 09) Elsevier PP.18-28

[22] Rehman, r.u., intrusion detection systems with SNORT: advanced
ids techniques using snort, Apache, MySQL, PHP, and acid. 2003:

prentice hall professional.

[23] Sekar, R. et al. A High-Performance Network Intrusion Detection
System. Proceedings of the 6th ACM conference on Computer and
Communications Security. Singapore, November 1999. New York:

ACM Press, 1999.

[24]Barruffi, Rosy, Michela Milano, and Rebecca Montanari. “Planning
for Security Management”. IEEE Intelligent Systems & Their
Applications. Los Alamitos, CA: IEEE Computer Society,

Publications Office.

[25] Shen, Y. Peggy et al. Attack Tolerant Enhancement of Intrusion
Detection Systems. Proceedings of MILCOM 2000, 21st Century

57

Military Communications Conference. Los Angeles, CA, 22-25

New York: Institute of Electrical and Electronics Engineers, 2001.

[26] https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-

evaluation-data-set

58

Appendix A

A1l: Installing and Configuring the Necessary Prerequisites

In order for a BASE to function properly, install and configure a back-
end database (MySQL) to store the Snort alerts. also install Apache
and compiled Snort with MySQL support. PHP and couple of PHP add-
ons are also needed. ADODB is an object-oriented PHP library used to
interface to the database.

Required Package

yum install -y gcc flex bison zlib * libxml2 libpcap * pcre * tcpdump git
libtool curl man make dag

yum groupinstall - "Development Tools"

Prepare separate installation files

libdnet-1.12.tgz SV: Truong Ngoc Hien, Ho Duy Quang
libdnet-1.12-6.e16.x86_64.rpm Class: 23CCANO04
libdnet-devel-1.12-6.e16.x86_64.rpm

MySQL
Shell > yum install mysql
Shell > yum install dlevel
Shell > yum install php mysql
(here will download and install MYSQL and a necessary packet that
needed)
Apache2

It is the most widely used in web servers software. Download and
unpack Apache httpd server version 2.2.0 from the Apache httpd server
website. To install apache2 follow the steps: must unpack it by using
this command:

Shell > tar — zxvf httpd .tar.gz
Shell > cd httpd

Shell > ./configure

Shell > make

Shell >make install

59

PHP

That is especially suited for b development and can be embedded
into HTML.

Shell > tar —xvf php-4.4.2.tar
Shell > cd php-4.4.2.tar
Then configure PHP using the following commands:

Shell > ./configure --with-mysql --with-apxs2 =/usr/local/apache2/bin/apxs --with-
gd --with-zlib

Shell > make

Shell > make install

After the installation edit the httpd.conf file
(/usr/local/apache2/conf/httpd.conf) with our text editor. We add the
following line to httpd.conf.

Include conf.d/*.conf

This allows us to create a specific configuration file for each
module that we install, for instance php.conf. Now, we create a
directory in our apache directory called conf.d.

mkdir /usr/local/apache2/conf.d
cd /usr/local/apache2/conf.d

We make a file called php.conf located at
/usr/local/apache2/conf.d/php.conf with the following contents:

pup Configuration for Apache

Load the apache module

LoadModule php4_module modules/libphp4.so

Cause the PHP interpreter handle files with a .php extension.
<Files *.php>

SetOutputFilter PHP

SetInputFilter PHP

LimitRequestBody
9524288 </Files>

AddType application/x-httpd-php .php AddType application/
x-httpd-php-source .phps
Add index.php to the list of files that will be served as directory

Indexes.

Lo CNNDU N I B

We could have just inserted the above in the httpd.conf file, and omit the

60

conf.d step but this approach is a much cleaner way to do it
Testing PHP and Apache

First we need to turn on and set to start the services will need. For that we
do the following:

Shell > chkconfig mysql on
Shell > chkconfig httpd on
Shell > service httpd start

Shell >service mysqld start
Snort

The following is the installation procedures on Centos Linux
operating system:

shell> tar —xzvf snort-2.2.0 .tar.gz
shell> cd snort-2.2.0
shell> ./configure —with-mysql=/usr/local/mysql
#the above connect the snort with our database that will create it later
shell> make
shell> make install
Install snort rule
shell> useradd snort
shell>groupadd —g snort snort
shell> mkdir /etc/snort
shell> mkdir /var/log/snort
shell> cd /etc/snort/rules
shell> cp * /etc/snort
shell> cd ../etc
shell> cp snort.conf /etc/snort
shell> cp *.config /etc/snort

Snort configuration file .

Then we need to modify the snort.conf file which is located in
/etc/snort. We need to make the following changes:

vi /etc/snort/snort.conf

ipvar HOME_NET nao> ipvar HOME_NET 192.168.x.x

61

ipvar EXTERNAL_NET any> ipvar EXTERNAL_NET! §$
HOME_NET

var SO_RULE_PATH ../so_rules> var SO_RULE_PATH / etc / snort /
so_rules

var PREPROC_RULE_PATH ../preproc_rules> var
PREPROC_RULE_PATH / etc/snort/preproc_rules

var WHITE_LIST PATH ../rules> var WHITE_LIST PATH / etc / snort
/ rules

var BLACK_LIST PATH ../rules> var BLACK _LIST PATH / etc/
snort / rules

Now we need to tell snort to log to MySQL. We go down to the output
section and un-comment the following line. The password we create
here is needed later on when we set up the Snort user in mysql.

(output database: log, mysql, user=snort password=snort dbname=snort
host=localhost)

Setting up the database in MySQL

Following are instructions for setting up the database in MySQL to be
used by Snort. For the snort user, the password is what we put in the
output section of the snort.conf in section 2.5.

mysql

mysql> SET PASSWORD FOR root@localhost=PASSWORD('password’):

=Query OK. 0 rows affected (0.25 sec)

mysqgl> create database snort;

=Query OK, 1 row affected (0.01 sec)

mysql> grant INSERT.SELECT on root.* to snort@localhost:

=Query OK., 0 rows affected (0.02 sec)

mysql> SET PASSWORD FOR snort@localhost=PASSWORD('password_from_snort.conf):

=Query OK., 0 rows affected (0.25 sec)
mysql> grant CREATE. INSERT. SELECT, DELETE. UPDATE on snort.* to snort{@localhost:
=Query OK. 0 rows affected (0.02 sec)
myvsql> grant CREATE. INSERT. SELECT, DELETE. UPDATE on snort.* to snort;
=Query OK. 0 rows affected (0.02 sec)
mysql= ext
Thesywe have to create tables for our database so we will execute this

command :

shell> Mysql —u root —p < ~/snortinstall/snort-4.3.0/schemas/create_mysql
snort

62

Enter password: the MySQL root password

Now we need to check and make sure that the Snort DB was created
correctly.

As we see in the databases we have snort database that we have been
creating it which include many 16 rows in the set . that means we have
created snort database correctly.

mysql -p

=Enter password:

mysql> SHOW DATABASES:
(You should see the following)

| Database

| mysql
| Snort
| test

3 rows in set (0.00 sec)

mysql= use snort
=Database changed
mysql= SHOW TABLES:

| data

| detail

| encoding

| event

| icmphdr

| iphdr

| opt

| reference

| reference system
| schema

| sensor

| sig_class

| sig_reference
| signature

| tephdr
| ndphdr

16 rows in set (0.00 sec)
exit:

A2: Installing and Configuring BASE
Downloading and Installing BASE

To install BASE, first, we go to our snort download directory. Then
type “yum install php-gd”. This will install gd for proper graphing in
the BASE. This will ask for the following, choose Y (YES)

Transaction Listing:
Install: php-gd.i386 0:4.3.10-3.2
Is this ok [y/N]: v
After we download it we will unpack it and make install and configure
as we do last time.

Configuring BASE

63

To configure BASE, we go to our download directory and do the
following:

shell> cp base-1.3.8.tar.gz /var/www/html
shell> cd /var/www/html

shell> tar —xzvf base-1.3.8.tar.gz

shell> cd base-1.3.8.tar.gz

shell> cp base_conf.php.dist base_conf.php
shell> cd /

shell> cp /var/www/html/base-1.2 /usr/local/apache2/htdocs/

Then we edit the “base_conf.php” file in /usr/local/apache2/htdocs/
and insert the following perimeters:

$BASE_urlpath = "/base";

$DBIib_path = "/usr/local/apache2/htdocs/adodb";
$DBtype = "mysql";

$alert_dbname = "snort";

$alert_host = "localhost";

$alert_port ="";

$alert_user = "snort";

—_n

$alert_password = "password_from_snort_conf";

$archive_dbname = "snort";

$archive_host = "localhost";

nm,

$archive_port ="";

$archive_user = "snort";

$archive_password password_from_snort_conf ";

Now we should have a functional BASE ready to use. Open a web
browser and if the browser is on the localhost, type http://localhost/base-
1.3.8 to begin using the GUI to view and manage alerts. The page we see
is as below (Figure 3)

64

http://localhost/base-1.3.8
http://localhost/base-1.3.8

Seamch
Gmph Aker Dot
Gmaph Akn Detection Time

- Most e que T 5 Unique Alers

SensorsTomnl: 0/ 0

Tratic Prolle by Prodcol
Unigque Alers: 0

TP o)
Categories: O
Todal Number ol Aleris: O 1 |
=
= Snc 1P sdars: 0 L]
® D=t IP acics: O 1]
- Lnicue IF k= 0 TP (D7)
* Souce Ports: O 1 1

Portscan Traffc [09)

Aler Group M e Cache & Stius | Administmticn

Figure: BASE Main Page

65

Appendix B

Include the signature detection rules

This file intentionally does not come with signatures. we Put our local
signatures rules

alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"DDOS icmp
possible communication"; icmp_id:0; itype:0;
content:"ABCDEFGHIJKILMNOPQRSTUVWXY?Z"; reference:arachnids,425;
reference:cve,2000-0138; classtype:attempted-dos; sid:222; rev:3;)

alert tcp SEXTERNAL_NET 53 -> $HOME_NET :1024 (msg:"MISC source port 53
to <1024"; flow:stateless; flags:S,12; reference:arachnids,07; classtype:bad-
unknown; sid:504; rev:7;)

alert udp SEXTERNAL_NET any -> $SHOME_NET any (msg:"MISC Large
UDP Packet"; dsize:>400; reference:arachnids,247; classtype:bad-unknown;
sid:521; rev:2;)

alert tcp SEXTERNAL_NET any <> $SHOME_NET 0 (msg:"BAD-TRAFFIC tcp
port 0 traffic"; flow:stateless; classtype:misc-activity; sid:524; rev:8;)

alert udp SEXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD-TRAFFIC
udp port 0 traffic"; reference:bugtraq,576; reference:cve,1999-0675;
reference:nessus,10074; classtype:misc-activity; sid:525; rev:9;)

alert tcp SEXTERNAL_NET any -> SHOME_NET any (msg:"BAD-TRAFFIC data
in TCP SYN packet"; flow:stateless; dsize:>6; flags:S,12; reference:url,www.cert.org/
incident_notes/IN-99-07.html; classtype:misc-activity; sid:526; rev:11;)

alert tcp any any -> any any (msg: "BAD TRAFFIC SAME SRC/DST IP
ADDRESS"; sameip ;reference:bugtraq,2666 ; reference: cve,1999-0016 ; classtype:
bad-unknown ; sid: 527 ; rev : 8 ;)

alert ip any any <> 127.0.0.0/8 any (msg:"BAD-TRAFFIC loopback
traffic"; reference:url,ir.sans.org/firewall/egress.php; classtype:bad-
unknown; sid:528; rev:6;)

alert tcp SEXTERNAL_NET any -> $SHOME_NET 80 (flags: S; msg:"hping flood
possible dos"; flow: stateless; threshold: type both, track by_src, count 70, seconds
10; sid:10001;rev:1;)

66

Appendix C

This Appendix include snort configuration file
BB R R R R S R T R
This file contains a sample snort configuration.
You should take the following steps to create your own custom configuration:
#
1) Set the network variables.
2) Configure the decoder

3) Configure the base detection engine

#
#
#
4) Configure dynamic loaded libraries
5) Configure preprocessors

6) Configure output plugins

7) Customize your rule set

HHHEHHH A

Step #1: Set the network variables. For more information, see README.variables
HHHHHHH AR

Setup the network addresses you are protecting

var HOME_NET any

Set up the external network addresses. A good start may be "any"

var EXTERNAL_NET any

List of DNS servers on your network

var DNS_SERVERS $HOME_NET

List of SMTP servers on your network

var SMTP_SERVERS $SHOME_NET

List of web servers on your network

var HTTP_SERVERS $SHOME_NET

List of sql servers on your network

var SQL_SERVERS $HOME_NET

List of telnet servers on your network

var TELNET_SERVERS $HOME_NET

List of ports you run web servers on

portvar HTTP_PORTS [80,2301,3128,7777,7779,8000,8008,8028,8080,8180,8888,9999]

List of ports you want to look for SHELLCODE on.

67

portvar SHELLCODE_PORTS 180

List of ports you might see oracle attacks on
portvar ORACLE_PORTS 1521

other variables, these should not be modified

var AIM_SERVERS
[64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.200.0/24,205.188.3.0/24,205.188.
5.0/24,205.188.7.0/24,205.188.9.0/24,205.188.153.0/24,205.188.179.0/24,205.188.248.0/24]

Path to your rules files (this can be a relative path)

Note for Windows users: You are advised to make this an absolute path,

such as: c:\snort\rules

var RULE_PATH /etc/snort/rules

var SO_RULE_PATH /etc/snort/so_rules

var PREPROC_RULE_PATH /etc/snort/preproc_rules

HIHHEHHEHHHEH A

Step #2: Configure the decoder. For more information, see README.decode
HHH A A

Stop generic decode events:

config disable_decode_alerts

Stop Alerts on experimental TCP options

config disable_tcpopt_experimental_alerts

Stop Alerts on obsolete TCP options

config disable_tcpopt_obsolete_alerts

Stop Alerts on T/TCP alerts

config disable_tcpopt_ttcp_alerts

Stop Alerts on all other TCPOption type events:

config disable_tcpopt_alerts

Stop Alerts on invalid ip options

config disable_ipopt_alerts

Alert if value in length field (IP, TCP, UDP) is greater th elength of the packet
config enable_decode_oversized_alerts

Same as above, but drop packet if in Inline mode (requires enable_decode_oversized_alerts)
config enable_decode_oversized_drops

Configure IP / TCP checksum mode

config checksum_maode: all

Configure maximum number of flowbit references. For more information, see README.flowbits

config flowbits_size: 64

68

Configure ports to ignore

config ignore_ports: tcp 21 6667:6671 1356

config ignore_ports: udp 1:17 53

HHHHHHHHH AR A

Step #3: Configure the base detection engine. For more information, see README.decode
HHHEHHHHHH AR AR A A

Configure PCRE match limitations

config pcre_match_limit: 1500

config pcre_match_limit_recursion: 1500

Configure the detection engine See the Snort Manual, Configuring Snort - Includes - Config
config detection: search-method ac-bnfa max_queue_events 5

Configure the event queue. For more information, see README.event_queue

config event_queue: max_queue 8 log 3 order_events content_length

Configure Inline Resets. See README.INLINE

config layer2resets: 00:06:76:DD:5F:E3

i G G G

Step #4: Configure dynamic loaded libraries.

For more information, see Snort Manual, Configuring Snort - Dynamic Modules
HHHHHH AR

path to dynamic preprocessor libraries

dynamicpreprocessor directory /usr/local/lib/snort_dynamicpreprocessor/

path to base preprocessor engine

dynamicengine /usrt/local/lib/snort_dynamicengine/libsf_engine.so

path to dynamic rules libraries

dynamicdetection directory /usr/local/lib/snort_dynamicrules

HH S

Step #5: Configure preprocessors

For more information, see the Snort Manual, Configuring Snort - Preprocessors
HHHEHHHHHH AR AR A A

Target-based IP defragmentation. For more inforation, see README.frag3
preprocessor frag3_global: max_frags 65536

preprocessor frag3_engine: policy windows timeout 180

Target-Based stateful inspection/stream reassembly. For more inforation, see README.stream5
preprocessor stream5_global: max_tcp 8192, track_tcp yes, track_udp no

preprocessor streamb_tcp: policy windows, use_static_footprint_sizes, ports client 21 22 23 25 42 53

69

7980 109 110 111 113 119 135136 137 139 143 110 111 161 445 513 514 691 1433 1521 2100 2301
3128 3306 6665 6666 6667 6668 6669 7000 8000 8080 8180 8888 32770 32771 32772 32773 32774
32775 32776 32777 32778 32779, ports both 443 465 563 636 989 992 993 994 995 7801 7702 7900
7901 7902 7903 7904 7905 7906 6907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
7919 7920

preprocessor streamb5_udp: ignore_any_rules

performance statistics. For more information, see the Snort Manual, Configuring Snort -
Preprocessors - Performance Monitor

preprocessor perfmonitor: time 300 file /var/snort/snort.stats pktcnt 10000
HTTP normalization and anomaly detection. For more information, see README.http_inspect
preprocessor http_inspect: global iis_unicode_map unicode.map 1252
preprocessor http_inspect_server: server default \
apache_whitespace no \
ascii no \
bare_byte no \
chunk_length 500000 \
flow_depth 1460 \
directory no \
double_decode no \
iis_backslash no \
iis_delimiter no \
iis_unicode no \
multi_slash no \
non_strict \
oversize_dir_length 500 \
ports { 80 2301 3128 7777 7779 8000 8008 8028 8080 8180 8888 9999 } \
u_encode yes \
non_rfc_char { 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 } \
webroot no

ONC-RPC normalization and anomaly detection. For more information, see the Snort Manual,
Configuring Snort - Preprocessors - RPC Decode

preprocessor rpc_decode: 111 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779
no_alert_multiple_requests no_alert_large_fragments no_alert_incomplete

Back Orifice detection.

preprocessor bo

FTP / Telnet normalization and anomaly detection. For more information, see README .ftptelnet
preprocessor ftp_telnet: global encrypted_traffic yes check_encrypted inspection_type stateful

preprocessor ftp_telnet_protocol: telnet \

70

ayt_attack_thresh 20\
normalize ports { 23 } \
detect_anomalies
preprocessor ftp_telnet_protocol: ftp server default \
def_max_param_len 100 \
ports { 21 2100 } \

ftp_cmds { USER PASS ACCT CWD SDUP SMNT QUIT REIN PORT PASV TYPE STRU
MODE }\

ftp_cmds { RETR STOR STOU APPE ALLO REST RNFR RNTO ABOR DELE RMD MKD
PWD }\

ftp_cmds { LIST NLST SITE SYST STAT HELP NOOP } \

ftp_cmds { AUTH ADAT PROT PBSZ CONF ENC } \

ftp_cmds { FEAT OPTS CEL CMD MACB }\

ftp_cmds { MDTM REST SIZE MLST MLSD } \

ftp_cmds { XPWD XCWD XCUP XMKD XRMD TEST CLNT } \

alt_max_param_len 0 { CDUP QUIT REIN PASV STOU ABOR PWD SYST NOOP } \

alt_max_param_len 100 { MDTM CEL XCWD SITE USER PASS REST DELE RMD SYST
TEST STAT MACB EPSV CLNT LPRT }\

alt_max_param_len 200 { XMKD NLST ALLO STOU APPE RETR STOR CMD RNFR HELP } \
alt_max_param_len 256 { RNTO CWD } \
alt_max_param_len 400 { PORT }\
alt_max_param_len 512 { SIZE } \
chk_str_fmt { USER PASS ACCT CWD SDUP SMNT PORT TYPE STRU MODE } \
chk_str_fmt { RETR STOR STOU APPE ALLO REST RNFR RNTO DELE RMD MKD } \
chk_str_fmt { LIST NLST SITE SYST STAT HELP } \
chk_str_fmt { AUTH ADAT PROT PBSZ CONF ENC } \
chk_str_fmt { FEAT OPTS CEL CMD } \
chk_str_fmt { MDTM REST SIZE MLST MLSD } \
chk_str_fmt { XPWD XCWD XCUP XMKD XRMD TEST CLNT } \
cmd_validity MODE < char ASBCZ >\
cmd_validity STRU < char FRP >\
cmd_validity ALLO <int [char R int] >\
cmd_validity TYPE < { char AE [char NTC]| char I | char L [number] } >\
cmd_validity MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] string >\
cmd_validity PORT < host_port >
preprocessor ftp_telnet_protocol: ftp client default \

max_resp_len 256 \

71

bounce yes \
telnet_cmds no
SMTP normalization and anomaly detection. For more information, see README.SMTP
preprocessor smtp: ports { 25 587 691 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
alt_ max_command_line len 260 { MAIL } \
alt_max_command_line_len 300 { RCPT } \
alt_max_command_line_len 500 { HELP HELO ETRN } \
alt_max_command_line_len 255 { EXPN VRFY }
Portscan detection. For more information, see README.sfportscan
preprocessor sfportscan: proto { all } memcap { 10000000 } sense_level { low }

ARP spoof detection. For more information, see the Snort Manual - Configuring Snort -
Preprocessors - ARP Spoof Preprocessor

preprocessor arpspoof
preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:0:0f:00
SSH anomaly detection. For more information, see README.ssh
preprocessor ssh: server_ports { 22 } \
max_client_bytes 19600 \
max_encrypted_packets 20 \
enable_respoverflow enable_sshlcrc32 \
enable_srvoverflow enable_protomismatch

SMB / DCE-RPC normalization and anomaly detection. For more information, see
README.dcerpc2

preprocessor dcerpc2: memcap 102400, events [co]
preprocessor dcerpc2_server: default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-server 593], \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 1025:], \
smb_max_chain 3
DNS anomaly detection. For more information, see README.dns
preprocessor dns: ports { 53 } enable_rdata_overflow
SSL anomaly detection and traffic bypass. For more information, see README.ssl

preprocessor ssl: ports { 443 465 563 636 989 992 993 994 995 7801 7702 7900 7901 7902 7903
7904 7905 7906 6907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 },
trustservers, noinspect_encrypted

R

72

Step #6: Configure output plugins

For more information, see Snort Manual, Configuring Snort - Output Modules
HIHHEHHEHE A

syslog

output alert_syslog: LOG_AUTH LOG_ALERT

pcap

output log_tcpdump: tcpdump.log

database

output database: alert, <db_type>, user=<username> password=<password> test dbname=<name>
host=<hostname>

output database: log, <db_type>, user=<username> password=<password> test dbname=<name>
host=<hostname>

output database: log, Mysql, user=snort password=abc123 dbname=snort host=localhost
unified2

output unified2: filename snort.log, limit 128

prelude

output alert_prelude

metadata reference data. do not modify these lines

include classification.config

include reference.config

HHH AR AR R R R AR R R R AR AR
Step #7: Customize your rule set

For more information, see Snort Manual, Writing Snort Rules
TR R R R R TR
site specific rules

include $RULE_PATH/local.rules

include $RULE_PATH/exploit.rules

include SRULE_PATH/ftp.rules

include $SRULE_PATH/telnet.rules

include SRULE_PATH/rpc.rules

include $RULE_PATH/rservices.rules

include $RULE_PATH/dos.rules

include $RULE_PATH/ddos.rules

include $RULE_PATH/dns.rules

include SRULE_PATH/web-cgi.rules

include $RULE_PATH/web-coldfusion.rules

73

include $RULE_PATH/web-iis.rules
include $RULE_PATH/web-frontpage.rules
include $RULE_PATH/web-misc.rules
include $SRULE_PATH/web-client.rules
include SRULE,_PATH/web-php.rules
include SRULE_PATH/sql.rules

include $SRULE_PATH/x11.rules

include $RULE_PATH/netbios.rules
include $RULE_PATH/misc.rules
include SRULE_PATH/attack-responses.rules
include $RULE_PATH/oracle.rules
include SRULE_PATH/mysql.rules
include SRULE_PATH/smtp.rules
include SRULE_PATH/imap.rules
include $RULE_PATH/pop2.rules
include SRULE_PATH/pop3.rules
include SRULE_PATH/nntp.rules
include $SRULE_PATH/backdoor.rules
include $RULE_PATH/snmp.rules
include SRULE_PATH/icmp.rules
include $RULE_PATH/tftp.rules

include $RULE_PATH/scan.rules
include $RULE_PATH/finger.rules
include $RULE_PATH/web-attacks.rules
include $RULE_PATH/shellcode.rules
include $RULE_PATH/policy.rules
include $RULE_PATH/info.rules

include $RULE_PATH/icmp-info.rules
include $RULE_PATH/virus.rules
include $SRULE_PATH/chat.rules

include $RULE_PATH/multimedia.rules
include SRULE_PATH/p2p.rules

include $SRULE_PATH/spyware-put.rules
include SRULE_PATH/specific-threats.rules
#include SRULE_PATH/voip.rules

include $RULE_PATH/other-ids.rules

74

include $RULE_PATH/bad-traffic.rules

decoder and preprocessor event rules

include SPREPROC_RULE_PATH/preprocessor.rules
include $PREPROC_RULE_PATH/decoder.rules
dynamic library rules

include $SO_RULE_PATH/bad-traffic.rules

include $SO_RULE_PATH/chat.rules

include $SO_RULE_PATH/dos.rules

include $SO_RULE_PATH/exploit.rules

include $SO_RULE_PATH/imap.rules

include $SO_RULE_PATH/misc.rules

include $SO_RULE_PATH/multimedia.rules

include $SO_RULE_PATH/netbios.rules

include $SO_RULE_PATH/nntp.rules

include $SO_RULE_PATH/p2p.rules

include $SO_RULE_PATH/smtp.rules

include $SO_RULE_PATH/sql.rules

include $SO_RULE_PATH/web-activex.rules

include $SO_RULE_PATH/web-client.rules

include $SO_RULE_PATH/web-misc.rules

Event thresholding or suppression commands. See threshold.conf

include threshold.conf

75

Appendix D

Extract Spade compressed file and navigate inside the file and copy the content of the
folder to the top of snort distribution directory.

Commands :

Shell> tar -zxvf spade

Shell> cd patches

Shell> gedit snort.conf.patch

#remove the snort.conf patch line to be adding latter
Shell> cd ..

Shell> make

[W' root@Server:~/Desktop/Spade-040223.1
File Edit View Terminal Tabs Help

[root@5erver Spade-0408223.1]# make jE
cp patches/packets.[ch] /root/Desktop/snort-2.8.6.1/src//

perl -pl -e '$_.="packets.c packets.h “\\n" if m/"snort_SOURCES\s*=/' /root/Desk
top/snort-2.8.6.1/src//Makefile.am

perl -pi -e 's/~(\s*if\s*\()dump ready/s1 ©/' /root/Desktop/snort-2.8.6.1/src//1| |
0g.cC

Packet cloning installed!

(cd src; make plugin)

make[1l]: Entering directory ~/root/Desktop/Spade-048223.1/src’

cp spp_spade.c spp spade.h ..;

make[l]: Leaving directory " /root/Desktop/Spade-040223.1/src’

cp spp_spade. [ch] /root/Desktop/snort-2.8.6.1/src//preprocessors//

perl -pl -e '$_.="spp_spade.c spp_spade.h “\A\n" 1f m/"1libspp_a_ SO0URCES\s*=/" /ro
ot/Desktop/snort-2.8.6.1/src//preprocessors//Makefile.am

perl -pi -e 's .="#include \"preprocessors/spp_spade.h\"\n" if m/™\s*#include.*s
pp_conversation.h/" Jfroot/Desktop/snort-2.8.6.1/src//plugbase.c
perl -pi -e '3 _.=" SetupSpade();\n" if m/™\s*SetupConvis*(\s*)/" /root/Deskto

p/snort-2.8.6.1/src//plugbase.c

cp spade.*conf /root/Desktop/snort-2.8.6.1/etc

chmod +w /root/Desktop/snort-2.8.6.1/etc/spade.*conf

cp README.S5pade Usage.Spade /root/Desktop/snort-2.8.6.1/doc

Spade installed!

Don't forget to type 'make no-automake' if you don't have automake installed
[root@Server Spade-040223.1]#

After run make command if everything all-right the spade will be installed
successfully.

After the we have to add to snort configuration file by adding spade log file path

preprocessor spade: logfile=/var/log/spade/spade.log
statefile=/var/log/spade/state.rcv cpfreq=25000 dest=alert adjdest=none

And then adding the home network for spade, here is set to any network class.
preprocessor spade-homenet: any

You now need to set up some detectors for SPADE to work with. Detectors are

76

set up with the following line, and the options detailed in the table below.

preprocessor spade-detect: { <optionname>=<value> }

The you have to include spade.conf file inside snort configuration file.

SPADE configuration file

Example configuration file for Spade v021026.1 and later

use this as your snort config file (-c option) to run Snort Spade-only
include it in your snort config file or put lines of this form in it

set this to a directory Spade can read and write to store its files

var SPADEDIR.

see the Usage.Spade file for the full meaning of and all the options
available for all these lines

This is the main Spade configuration line; it must appear first.

Here are some options for this line:

+ dest: the Snort facility that the Spade output should go to

(alert, log, or both)

+ state file: where Spade's persistant data is stored

+ logfile: where Spade will store information about its run

+ Exports, Xdips, Xsips,Xsports: like below but with global application

preprocessor spade: dest=alert logfile=$SPADEDIR/spade.log
statefile=$SPADEDIR/spade.rcv

This line sets up your Spade homenet. Set this to the network that is

connecting to the larger network at the point Spade is running.

It is important to configure this line.

Your networks should be like [10.0.0.0/8,192.168.0.0/16] or space separated
preprocessor spade-homenet: any

Turn on some detectors with "spade-detect" lines. Each of these enables

a cetain type of detector for a certain type of packet. If you start to

feel overwhelmed, use Xdports, Xdips, Xsips, and/or Xsports on the lines

below to suppress reports you don't care about, and/or disable some of

your detectors these that you care least about.

77

These detect packets going to seemingly closed dest ports

You can add thresh=N to override the default reporting threshold.

preprocessor spade-detect: type=closed-dport tcpflags=synonly wait=3

preprocessor spade-detect: type=closed-dport tcpflags=weird thresh=0.5

#preprocessor spade-detect:
#preprocessor spade-detect:
#preprocessor spade-detect:
#preprocessor spade-detect:
#preprocessor spade-detect:
#preprocessor spade-detect:
#preprocessor spade-detect:
#preprocessor spade-detect:
#preprocessor spade-detect:

#preprocessor spade-detect:

type=closed-dport tcpflags=synack

type=closed-dport tcpflags=established
type=closed-dport tcpflags=teardown

type=closed-dport proto=udp wait=5

type=closed-dport to=nothome tcpflags=synonly wait=>5
type=closed-dport to=nothome tcpflags=weird
type=closed-dport to=nothome tcpflags=synack
type=closed-dport to=nothome tcpflags=established
type=closed-dport to=nothome tcpflags=teardown

type=closed-dport to=nothome proto=udp wait=7

These detect packets going to a seemingly non-live IP

#preprocessor spade-detect:

type=dead-dest tcpflags=synonly wait=2

preprocessor spade-detect: type=dead-dest tcpflags=weird wait=2

preprocessor spade-detect: type=dead-dest tcpflags=synack wait=2

#preprocessor spade-detect:

type=dead-dest tcpflags=setup wait=2

preprocessor spade-detect: type=dead-dest tcpflags=established wait=5

preprocessor spade-detect: type=dead-dest tcpflags=teardown wait=2

preprocessor spade-detect: type=dead-dest proto=udp wait=2

preprocessor spade-detect: type=dead-dest proto=icmp icmptype=noterr wait=2

#preprocessor spade-detect:

type=dead-dest proto=icmp icmptype=err wait=2

These detect unusual use of a dest port by a source IP

You can add thresh=N to override the default reporting threshold.

#preprocessor spade-detect:
#preprocessor spade-detect:
#preprocessor spade-detect:

#preprocessor spade-detect:

type=odd-dport proto=tcp wait=2
type=odd-dport proto=udp wait=5
type=odd-dport from=nothome proto=tcp

type=odd-dport from=nothome proto=udp

These detect ICMP packets with an unusual type and code

You can add thresh=N to override the default reporting threshold.

78

preprocessor spade-detect: type=odd-typecode

preprocessor spade-detect: type=odd-typecode to=nothome

These detect unusual connections to a dest IP by a source IP when the
dest port has predictable dest IPs
You can add thresh=N to override the default reporting threshold.

#preprocessor spade-detect: type=odd-port-dest proto=tcp Xdports=80
#preprocessor spade-detect: type=odd-port-dest proto=udp Xdports=80

#preprocessor spade-detect: type=odd-port-dest from=nothome proto=tcp
Xdports=80

#preprocessor spade-detect: type=odd-port-dest from=nothome proto=udp
Xdports=80

This line causes Spade to adjust the reporting threshold for a given

detector automatically; repeat it for each detector that you want to apply
itto

Target is the target rate of alerts for normal circumstances

(0.01= 1% or you can give it an hourly rate)

After the first hour (or however long the period is set to with "obsper"),

the initially configured reporting threshold is ignored

To use this, you will need to an option of the form id=<label> to the

spade-detect line of the detector you want to be adapted and set

id=<label> below to match

This mode is recommended for users getting started that are using absolute
anomaly scores; relative score users might want it as well.

#preprocessor spade-adapt3: id=<label> target=0.01 obsper=60

some other possible Spade config lines:

offline threshold advising for a detector

#preprocessor spade-threshadvise: id=<label> target=200 obsper=24

periodically report on the anom scores and count of packets seen by a detector

#preprocessor spade-survey: id=<label> surveyfile=$SPADEDIR/survey.txt
interval=60

print out certain all known stats about packet features

#preprocessor spade-stats: entropy uncondprob condprob

79

	Chapter One
	1.1 Brief history of ids
	1.2 Problem statement
	1.3 Objectives
	1.4 Organization of thesis
	Chapter Two
	THEORETICAL FOCUS AND RELATED LITERATURE
	1. INTRODUCTION
	2.1 Intrusion Detection System Overview
	2.2 Intrusion Prevention System
	2.3 Related Work
	Chapter Three
	METHODOLOGY
	Introduction
	This chapter demonstrates the research design and procedures were presented as well as instrumentation, and the explanation of the methodology to be followed to achieve the research objectives.
	3. Research Methodologies and Tools to be adopted
	3.1 Operating Environment
	3.2 Improving the current IDSs systems
	3.3 Proposed New System Architecture
	3.4 Statistical Packet Anomaly Detection Engine (SPADE) Preprocessor
	3.5 System Process View
	3.6 Evaluating IDS
	3.7 Validation and Sureness
	3.8 Result presentation
	3.9 Summary
	Chapter Four
	RESULTS AND DISCUSSIONS
	4.1 Operate With SNORT
	4.2 Implementation Part 1: Experimentation Signature Rule Set
	4.3 Experimentation signature base detection Evaluation
	4.4 Experimentation SPADE Anomaly base detection Evaluation SPADE preprocessor
	Chapter Five
	CONCLUSION

