SUST Journal of Engineering and Computer Sciences (JECS), Vol. 19, No.2, 2018

High Speed Low Power Cyclic Redundancy Check-32 using FPGA

Mohamed S. Abdulnabi, Hisham Ahmed
Computer and Network Engineering, Sudan University of Science and Technology
mohd.salah181@gmail.com, hisham@ieee.org

Received : 15/12/2018
Accepted : 22/01/2019

ABSTRACT- Cyclic Redundancy Check (CRC) is a method used for error detection technique and data
integrity. CRC take a block of a message’s bits and divide it by a binary number called polynomial, the
result of this division is the checksum that will be added to the message. On the receiver side, the same
division will be performed to get the remainder which could be compared with the transmitted checksum
if there are no differences that are mean there are no errors. This paper aims to design CRC32 that applied
in the Ethernet frame by using Field Programmable Gate Array (FPGA) Virtex-7. Lookup tables and
slicing-by-16 algorithm are used together to calculate the CRC32 in parallel. Xilinx ISE used as IDE and
synthesis tool and I-Sim used for simulation purposes. The result of this design is 1.250 ns which is the
processing time and 102.4 Gbps which is the throughput, furthermore the power consumption is very low
as well as the device utilization.

o degane B8 ol Ludil 0is 5 Aniaa §ipa Clilsl] Jyay Jled ausiiud Lili ge Hle 38 (Gt P jLis) — paliiua
Al) ol sl fis ¢ kel e dadl) Lilae o el ¢ Cplly dine sie o igTend aF ey Ll lghipa A Ay Sl
dypastt Jof o Liaf dacidl) SL Ao Joaant) Jof o lig JLSY) i elia) al Jubivnal] Lali o - lglless) o) Uleasl) Lilgi
U odb pls ins Al ld digleaia midl) ils [l Jlw¥) g diali (o dbespal] piisal) daid po lgTiylio aliuw Uy pisall dad o
lgdubsi b oo dlip Cidy) alGd 4 aiiia oilly 32 £5ill Gu ot S LSS aveal dinb magi 43l 0ds . o UasY) e
Ol 16 A gepdidl) ol 5 sl Jolia (Ao o puaall . 7 Sy £oill (o daapll ALl dubbisd Sljsd) dpdas Ao
a7 LS gf) (5 (o illg puSibifi) Aaalil) AbalSial) mvaall diy ofiiics] a7 . dujlpia diipdas (894l P i) Gl il Glaudiew
S culas 102.4 (Glaw Slilsl) Jiea GIS Laiy Ll 4ili 1.250 36 Sefay) odb (o @il dadleal) o pics (5 Slaal plasic)

cAngll ALlEY Ludhbiall cilipl) ddpiaass dalisl) ,ilpdl) igia) Galési) IS g d<lgiual] §uadl ialisi) dbiadla g Luili

Keywords: CRC32, FPGA, Xilinx

INTRODUCTION senders and transmitter for digital communication,
These and the following days, data communication ~ and suitable protocol stacks that will allow them
and the internet considered one of the very able to communicate with each another and with
important aspects of human life. The internet users, so the loT is becoming a vital part of the
already impacting the growth of science, business, Internet [1].
government, humanity, and communication. The The loT applications such as smart home,
advances in communications technologies and wearables, smart city, smart grids, connected car,
services add a great value for the exchange of data ~ and smart farming already started and working and
between the connected devices. diverse it is traffic expected to increased every day.
applications are widely found that span across Internet traffic increased continuously with
fields as never before. dramatic growth. in 1992, the internet networks
Nevertheless, the Internet of Things (loT) is a traffic reached approximately 100 GB per day.
recent communication field that will add great Then after ten years, in 2002, internet traffic raised
value in the near future, in which the sensors and up to 100 GB per seconds (GBps). In 2015,
devices will be equipped with microcontrollers, internet traffic exceeded 20000 GBps. By 2020
global IP traffic expected to reach 2.3 Zettabyte

50

mailto:mohd.salah181@gmail.com

SUST Journal of Engineering and Computer Sciences (JECS), Vol. 19, No.2, 2018

per year (Zettabyte is 10** bytes), or 194 Exabyte
(Exabytes is 10" or 1 billion Gigabytes) per
month. Furthermore, the fixed broadband speed
will reach up to 47.7 Mbps by 2020. In addition to
that, by 2020 the expected video traffic will be
about million minutes of video per each minute in
addition to that, the traffic that generated from the
video on demand (VoD) will be equivalent to 7.2
Million DVD per month. Mobile users will
generate traffic can reach up to 30.6 Exabytes per
month by 2020. In general, IP traffic can reach
511 terabits per seconds (Tbps) in 2020, this is
equal to 142 million people watching high-
definition (HD) video in the same time, all day,
every day.

The processing time for the Ethernet CRC32
(Cyclic Redundancy Check 32) will be affected
when the speed of data traffic exceeded network
devices processing capability. However, the
processing time that used currently for the CRC32
in the core and backbone devices does not handle
the expected increment in the traffic, according to
that the processing time should be decreased and
throughput of the CRC32 must be increased as
much as possible. This paper talks about the
CRC32 design in the Ethernet frame using Xilinx
Virtex-7 Field Programmable Gate Array (FPGA).
The design depends on the slicing-by-16 algorithm
that can perform the needed CRC32 calculations
in parallel.

The CRC computation using lookup tables
explained by Sarwate, he proved the calculation of
checksum value through lookup table method is
highly efficient when it compared to the traditional
methods such as Linear Feedback Shift Register
(LFSR) which process the data in a serial manner
[2]. Anand and Bajarangbali in [3] used slicing by
16 algorithm and reduced lookup tables to
implement the CRC algorithm on the FPGA and
the achieved throughput was 40 Gbps. In [4], [5]
and [6] there are other studies discussed the
implementation of the CRC in parallel.

Algorithm and types of CRC

The function of Cyclic Redundancy Check (CRCs)
deployed in most of the digital communications
and storage systems, that is to detect accidental
errors in the data. The binary data that handled are
subjected to a CRC which will get binary check
sequence with a fixed length. This fixed length of
the check sequence is attached to the data that will

51

be transmitted and act to find out the correctness.
In the receiver side, CRC performed on the data
one more time and the result is compared to the
attached check sequence. If it is matched, that is
mean the data does not corrupted. [7]. The bits in
the CRC treated as a binary polynomial using
specific width, after that it finds out the remainder
using the division of data bits with a polynomial.
the resulted remainder of this calculation known as
the checksum that must be added to the data bits.
Also at the receiver side, the data and the
checksum divided by the polynomial, if the result
was zero it means the data was received correctly
[8].

There are various types of CRC, its length and its
polynomial depends on the application that works
on. Table 1 illustrates some of these types.

Tablel: various types of CRC

Name Uses Polynomial
CRC-1 most hardware 0x1
CRC-3 | mobile networks 0x3
CRC-4 ITU-T G.704 0x3
CRC-5 Gen 2 RFID 0x09
CRC-6 | mobile networks 0x27
CRC-8 DVB-S2 0xD5
CRC-10 ATM 0x233
CRC-11 FlexRay 0x385
CRC-14 | Radio Channel 0x0805
CRC-15 CAN 0x4599
CRC-16 USB 0x8005
CRC-24 0S-9 RTOS. 0x800063
CRC-32 Ethernet 0x04C11DB7

Mathematically, a k-bit message can be considered
as the coefficients of a polynomial B(x) = bk-1xk-
1 + ... + blx]l + b0x0. The most significant bit
starts the data stream. Furthermore, an (m+1) bit
generator polynomial P(x) = xm + pm-1xm-1 + ...
+ p1x1 + pOx0 of order m is selected. Calculations
are performed in modulo-2 arithmetic. The CRC is
the remainder of the division of xm B(x) by P(x)
and will be appended to the message [4].

CRC is designed for the detection of errors which
is common in the communication channels. The n-
bit CRC called CRCn when it is value is n bits
long. for example, when one bit used it is called
CRC-1, this type called parity check as well and in
this type only one bit added to the original
message, another example in CRC-4 the number
of bits that attached to the original message is 4
and so on in the other CRC-n. this paper focuses

https://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Polynomial_representations
https://en.wikipedia.org/wiki/ITU-T
http://www.itu.int/rec/T-REC-G.704-199810-I/en
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/DVB-S2
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/OS-9
https://en.wikipedia.org/wiki/Ethernet

SUST Journal of Engineering and Computer Sciences (JECS), Vol. 19, No.2, 2018

on the Ethernet frame CRC which is the CRC32.
This type has a fixed polynomial value equal to
0x04C11DB7. The transmitted message contains
the original message and the reversed-byte
swapped CRC for example if the message has the
hex value (31 32 33 34 35) the Ethernet CRC32
will be OxCBF53A1C, and the transmitted
message will be (31 32 33 34 35 1C 3A F5 CB).
the FCS (Frame Check Sequence) field in the
Ethernet frame is the CRC. Behind that, The
Ethernet frame consists of the source and
destination MAC, Ethernet frame length, in
addition to the data, the Ethernet frame illustrated
in Figure 1.

Later when these values generated it will be
transferred to the FPGA and then saved inside
RAMs, these RAMs designed inside the FPGA to
reduce the transfer time, the design area and the
power. This PC can be replaced by a
microprocessor located outside the FPGA or inside
it in the real systems, but for simulation purposes
the pre-computed values generated through
software written in Java.

output

Dataln

CRC32
lookup Tables
(RAMSs)

CRC32

R Processor

—intemal signals—| clock

Dala and Pad | FCS
46 - 1500 i

Preamble| SFD | Destination | Source Length
7 1 6 6 2

Figure 1: Ethernet Frame format

The System Design

The purpose of this paper is to decrease the needed
time to perform the processing of the CRC32
algorithm by performing parallel operations using
the FPGA. the CRC32 computation performed by
the lookup table and slicing by 16 methods. By
using this method the lookup table possible values
of the CRC32 precomputed and saved. The pre-
computed values will be used in the calculation of
the final checksum value.

In the calculation of the CRC Each byte will catch
its own CRC32 value which will be used as an
argument in the operations that can find the result.
The algorithm could be implemented based on one
lookup table, but for efficiency enhancements of
the system multiple lookup tables implemented
simultaneously and work with another technique
called slicing by N. FPGA Virtex-7 used as a
platform for the design. the code is written through
Very High Speed Integrated Circuit Description
Language (VHDL).

Behind that, the code synthesized by Xilinx
synthesis tool. then the simulation executed on
ISim which is Xilinx simulation tool, VHDL used
to write the simulation code as well as the
implementation code. However, during the
initialization of the system the precomputed values
prepared. Figure 2 shows that a FPGA connected
to PC, the purpose of the PC in the design is to
generate the pre-computed values of the lookup
tables using Java program.

52

Figure 2: block diagram

Generation of Lookup Tables

The purpose of lookup tables is to decrease the
number of the needed operations to calculate the
CRC32 for the Ethernet frame. as long as the
divisor (polynomial) is always fixed we can pre-
compute the division for all bytes and save the
remainder in a lookup table. This could be
performed through the below code

for (int dividend = 0; dividend <=
255; dividend ++)
{
int temp = dividend;
for (int bits=0; bits<8; bits++)

// generate the CRC
temp (temp >>1) ~
0x04C11DB7) ;
crcTable[dividend] temp; }

In this code, in each repetition the dividend
(beginnig from 0x00 to OxFF) saved in a
temporary variable named temp, after that the
temporary variable treated in term of bits in the
second for loop. the equation behind the second
for loop checkup the LSB of the temp, if it is ‘1’
then the shifted right value of the temp will
perform xor with the polynomial, this operation
remains for the eight bits to find out the remainder
of (dividend mod polynomial).

The value of this remainder saved in the lookup
table Array that indexed by the dividend. The
flowchart in Figure 3 shows the generation of the
lookup table. Now using this lookup table, we can

((temp &1) *

SUST Journal of Engineering and Computer Sciences (JECS), Vol. 19, No.2, 2018

find out the value of CRC32 for only one byte in
the period. but in order to achieve parallel
processing another 15 tables will be generated,
they are generated based on the values on this
table. This point will be explained more in the next

section.

dividend <= 255

=

yes

temp = dividend
BitCounter = 0

P ——.

BitCounter < & o

yes
h
temp = (LSB(temp) & Polynomial)
xor SHR(temp)

lookup table [dividend] = temp

dividend ++

BitCounter ++

Figure 3: Flow chart for lookup table generation

Slicing by 16 algorithm

The design going to find out the CRC32 for 16
bytes (128 bit) in one operation which means
another 15 additional lookup tables must be
generated as well. The process that used to
generate these tables depends on the first lookup
table that already generated, the below code
responsible for generating the CRC32 values for
these lookup tables. any value for each byte on
each lookup table depends on the prior lookup
table, this preceding value shifted 8 times to the
right and then xor with lookup table O that indexed
by the LSB byte from the prior lookup table.

for (inti=0;1i<=255;1++)
{

crcTablel[1] =
(crcTableO[1]>>8) *
crcTableO[(int) (crcTableO[1] &O0XFF)

17
crcTable2 [i]

53

(crcTablel[1]>>8) ~
crcTableO[(int) (crcTablel[i] &
OxFF)];

crcTablel5[i]=

(crcTableld [1]>>8) ~©
crcTableO[(int) (crcTableld[i] &
OxFF)1;}

Lookup table inside the FPGA

A lookup table could be considered as RAMs, it
could be implemented outside the FPGA or inside
it. But if it is implemented outside the FPGA the
cost will be increased and the design area as well,
not yet the power consumption may be
increaseded too. So in order to optimize the design
as much as possible the lookup table implement
inside the FPGA. One of the aspects to implement
the lookup tables inside the FPGA is the
transferring speed, as the transfer speed between
the outside RAMs and the FPGA is slower than
the transfer rate if the RAMs are implemented
inside the FPGA. By using VHDL The sixteen
RAMs created inside the FPGA. A new type
named lookup Table defined as array consist of
256 locations, each one has 28 bit. After that
sixteen signal of this type has defined. Then these
memory locations loaded with the precomputed
values during the initialization.

Slicing-by-16 CRC32

The entity in VHDL describes the ports of the
circuit. In this project, the system entity consists of
6 ports illustrated in Figure 4. As illustrated in
Figure 5, the stream of the data saved in a buffer.
Splitting circuit slices the data into 12 bytes and 4
bytes. Each byte of the twelve will be used to
address the RAMs (from RAMO to RAM11), the
remaining 32 bits XORed with the previous
CRC32 value and then sliced into four bytes, each
one used to address the RAMs (from RAM12 to
RAM15).

The addressed values in the RAMs XORed
together to get the new value for the CRC32.
There is no considerable time to get the output
from the xor gates, so the sixteen RAMSs could be
accessed at the same time. The implementation of
the code in the VHDL performed concurrently,
that is will support to achieve the operation of this
algorithm in parallel.

SUST Journal of Engineering and Computer Sciences (JECS), Vol. 19, No.2, 2018

——¢Clk———

reset——»
———stat———» ':I’Eensl:?y" L—crc_32 (32 bity
—end——»

——dataln (128 bit)—»

Figure 4: Design Ports

Results and Discusions

The simulation written by VHDL and Isim version
14.5 simulator is used to perform it. Isim has the
capability to create a component to act like the
tested device so that one component created to do
that. this component has the same ports in the
design entity. After that, the Isim can generate the
needed clock pulses and attach it to the simulated
component. The generated clock pulses are 800
MHz which is equal to the proposed clock source.
The simulation has two processes working
concurrently, the first process which is already
discussed which can generate the clock pulses and
the second process responsible for the simulation
stimulus. Inside the process of the stimulus 128
bits randomly assigned to the Dataln signal in a
period specified in simulation code, behind that
the control signals such as start, end and reset also
considered in the simulation code. Figure 6
illustrates how the control signals and the dataln
stimulated in the simulation.

The throughput of this design is 102.4 Gbps which
means the processing time is 1.250 ns. The design
simulated based on virtex-7 FPGA specifications.
The oscillator frequency is 800 MHz. In this work

the resulted throughput considered very high,
however it is also higher than the throughputs that
mentioned in the previous works. Behind that, the
consumed power is 0.158W and the dynamic
power consumption is only 0.015W. so most of the
power consumption generated from the leakage
which is around 0.143W. According to that the
power consumption is low and could be
considered very low when compared to the
maximum power value that generated from virtex-
7 FPGA.

In Figure 5 the function of the highlighted
combinational circuit is to perform xor operation
between the prior result and the dataln LSB. This
circuit is a combinational circuit it does not
depends on the clock. On another hand, the buffer
sends the data to the entity dataln port when the
clock falling edge received.

The output of the combinational circuit could be
found in time between the falling edge and the
rising edge. Behind that, the none-highlighted
circuit is responsible for finding out the final
result, this circuit triggered by the rising edge of
the clock pulses.

Accordingly, the none-highlighted circuit added to
process with the related sensitivity list in VHDL
code in order to perform its work during the high
pulse. Figure 6 shows the connection between the
dataln, the output of the CRC32 and the related
pulse. the utilized resources in the FPGA which
could be considered very low, can allow the
system designer to combine it inside any system.
The number of slices register that used is 27 from
408000, the number of slice LUTs is 550 from
204000. Table 3 illustrates the device utilization
summary generated by Xilinx ISE.

Table 3: device utilization summary

Device Utilization Summary (estimated values) [-1
Logic Utilization Used Available Utilization
Mumber of Slice Registers 7 408000 0%
Number of Slice LUTs 550 204000 0%
Mumber of fully used LUT-FF pairs 7 550 4%
Mumnber of bonded I0Bs 164 600 27%
Mumber of BUFG/BUFGCTRL [BUFHCES 2 200 1%

54

SUST Journal of Engineering and Computer Sciences (JECS), Vol. 19, No.2, 2018

115.000 ns

R
—

117

0a0b0q0d0e0f0 10203040 50507080901

|

Figure 6: Clock frequency, dataln the 4th row and the CRC32 output in the 6th row

|
|
Dataln (127 downto 120 TO
| L™ |
|
Dataln {119 downto 112
' |
' [
' |
' [

! ; i%b_i CRC32
Dataln (3¢ downto 32 T11

Dataln (31 downto 0)

1020304050607

stream 128 bit
of data input Buffer

I

———31 downto 24 T2
|
| I
| I
|

7 downto 0—4@7

»> nﬂ datain[1

> B oac

& clk_period

X1: 115.625ns f X2: 114.375ns J AX: 1.250ns

Figure 7: After 1.250 ns since the dataln provide the input, the CRC32 calculated

55

SUST Journal of Engineering and Computer Sciences (JECS), Vol. 19, No.2, 2018

Cc/w)

1.4

Effective TJA Max Ambient Junction Temp

Total

Quiescent
0.1

Dynamic

Supply Power (W) 0.158] 0.015

C)

©)
8438 252

Medium (10"x10%) |

v

Figure 8: Power consumption

Concolusion

the computation of the CRC32 is extremely
affected by the increase of the data rates as the
current processor cannot handle it. The purpose of
this paper is to improve the processing speed of
the CRC32 in order to encounter the new
requirements and speed. The needed throughput is
100 Ghps so that in order to achieve it, the FPGA
used in the design. The main reason to select
FPGA s its concurrent behavior, it can execute
more than one operation in parallel. Behind that,
more than one algorithm has studied and the
slicing by 16 algorithms selected, this algorithm
reduces the computation of the CRC32 by creating
lookup tables hold all the possible values of the
CRC32. The code of the design and the simulation
written by VHDL. The simulation test shows that;
the achieved processing time is equal to 1.250 ns
and the throughput is equal to 10.24 Gbps behind
that, the consumed power and the device
utilization are very low.

56

References
[21(])1%isco, "The Zettabyte Era: Trends and Analysis,"”

[2] Sarwate, D.V.“Computation of Cyclic Redundancy
Checks via Table Lookup,” Comm. ACM, vol. 31, no.
8, pp. 1008-1013, Aug. 1988.

[3] P. A. Anand and D. Bajarangbali, "Design of High
Speed CRC Algorithm for Ethernet on FPGA Using
Reduced LookuP Table Algorithm," presented at the
Iz%lfeE Annual India Conference (INDICON), India

[4] M. Braun, J. Friedrich, T. Grin, and J. Lembert,
“Parallel CRC computation in FPGAs,” in Proc. 6th Int.
Workshop Field-Program. Logic, Smart Ap{)l., New
Paradigms Compilers iFPL), London, U.K., 1996, pp.
156-165, Springer-Verlag.

[5]1 C. Cheng and K. Parhi, “High-speed_ parallel CRC
implementation based on unfolding, pipelining, and
retiming,” IEEE Trans. Circuits Syst. II, Expr. Briefs,
vol. 53, no. 10, pp. 1017-1021, Oct. 2006.

[6] C. Kennedy and A. Reyhani-Masoleh, “High-speed
arallel CRC circuits,” in Proc. 42nd Asilomar Conf.
ignals, Syst. Comput., Oct. 2008,

pp. 1823-1829.

[71 Tomas Zavodnik and Lukas Kekely, “CRC Based

Hashln% in FPGA Using DSP Blocks,” presented at the

IEEE 17th International Symposium on Design and

Diagnostics of Electronic Circuits & Systems, 2014.

[8] T. Ramabadran and S. Gaitonde, “A tutorial on CRC

computations,” |[EEE Micro, vol. 8, no. 4, pp. 62-75,

Aug. 1988.

