
SUST Journal of Engineering and Computer Sciences (JECS), Vol. 91, No.2, 8192 

 

50 

 

High Speed Low Power Cyclic Redundancy Check-32 using FPGA  
 

 
Mohamed S. Abdulnabi, Hisham Ahmed 

Computer and Network Engineering, Sudan University of Science and Technology 

             mohd.salah181@gmail.com, hisham@ieee.org 
 

Received : 15/12/2018 

Accepted : 22/01/2019 
 

ABSTRACT- Cyclic Redundancy Check (CRC) is a method used for error detection technique and data 

integrity. CRC take a block of a message‟s bits and divide it by a binary number called polynomial, the 

result of this division is the checksum that will be added to the message. On the receiver side, the same 

division will be performed to get the remainder which could be compared with the transmitted checksum 

if there are no differences that are mean there are no errors. This paper aims to design CRC32 that applied 

in the Ethernet frame by using Field Programmable Gate Array (FPGA) Virtex-7. Lookup tables and 

slicing-by-16 algorithm are used together to calculate the CRC32 in parallel. Xilinx ISE used as IDE and 

synthesis tool and I-Sim used for simulation purposes. The result of this design is 1.250 ns which is the 

processing time and 102.4 Gbps which is the throughput, furthermore the power consumption is very low 

as well as the device utilization. 
 
 

في ىحه التقشية يتم أخح مجسهعة من إختبار التكخار الجوري ىه عبارة عن تقشية تدتخجم لزسان وصهل البيانات برهرة صحيحة.  –السدتخمص 
فتو البيانات وىي في صهرتيا الثشائية ومن ثم قدستيا عمى عجد محجد وثابت ، الستبقي من عسمية القدسة يدسى السختبخ ، ىحا السختبخ يتم اضا

 نياية الخسالة السخاد ارساليا. من ناحية السدتقبل يتم إجخاء نفذ الإختبار وذلك من أجل الحرهل عمى باقي القدسة أيزاً من أجل الحرهل الى
لخسالة حه اعمى قيسة السختبخ والتي سيتم مقارنتيا مع قيسة السختبخ السخسمة من ناحية جياز الإرسال فاذا كانت القيم متداوية فان ذلك يعشي خمه ى

والحي يدتخجم في شبكات الإيثخنت وذلك عن طخيق تطبيقيا  23من الأخطاء. ىحه الهرقة تهضح طخيقة ترسيم أختبار التكخار الجوري من الشهع 
حان والم 61. الترسيم مبشي عمى ججاول البحث و خهارزمية التذخيح الى 7مرفهفة البهابات السشطقية القابمة لمبخمجة من الشهع فيختكذ عمى 

إس إي كسا تم يدتطيعان تشفيح حدابات إختبار التكخار الجوري بطخيقة متهازية. تم استخجام بيئة الترسيم الستكاممة التابعة لدايمشكذ والتي تدسى أي 
جيجابت لكل  ..613نانه ثانية بيشسا كان معجل البيانات يداوي  6.3.1استخجام السحاكي أي سيم. زمن السعالجة الشاتج من ىحه الإجخاءات ىه 

 ثانية مع ملاحظة إنخفاض القجرة السدتيمكة و كحلك إنخفاض استيلاك الجوائخ الستاحة بسرفهفة البهابات السشطقية القابمة لمبخمجة.

Keywords: CRC32, FPGA, Xilinx 

 

INTRODUCTION 
These and the following days, data communication 

and the internet considered one of the very 

important aspects of human life. The internet 

already impacting the growth of science, business, 

government, humanity, and communication.  The 

advances in communications technologies and 

services add a great value for the exchange of data 

between the connected devices. diverse 

applications are widely found that span across 

fields as never before.  

Nevertheless, the Internet of Things (IoT) is a 

recent communication field that will add great 

value in the near future, in which the sensors and 

devices will be equipped with microcontrollers, 

senders and transmitter for digital communication, 

and suitable protocol stacks that will allow them 

able to communicate with each another and with 

users, so the IoT is becoming a vital part of the 

Internet [1].  

The IoT applications such as smart home, 

wearables, smart city, smart grids, connected car, 

and smart farming already started and working and 

it is traffic expected to increased every day. 

Internet traffic increased continuously with 

dramatic growth. in 1992, the internet networks 

traffic reached approximately 100 GB per day.  

Then after ten years, in 2002, internet traffic raised 

up to 100 GB per seconds (GBps). In 2015, 

internet traffic exceeded 20000 GBps. By 2020 

global IP traffic expected to reach 2.3 Zettabyte 

mailto:mohd.salah181@gmail.com


SUST Journal of Engineering and Computer Sciences (JECS), Vol. 91, No.2, 8192 

 

51 

 

per year (Zettabyte is 10
21

 bytes), or 194 Exabyte 

(Exabytes is 10
18

 or 1 billion Gigabytes) per 

month. Furthermore, the fixed broadband speed 

will reach up to 47.7 Mbps by 2020. In addition to 

that, by 2020 the expected video traffic will be 

about million minutes of video per each minute in 

addition to that, the traffic that generated from the 

video on demand (VoD) will be equivalent to 7.2 

Million DVD per month. Mobile users will 

generate traffic can reach up to 30.6 Exabytes per 

month by 2020. In general, IP traffic can reach 

511 terabits per seconds (Tbps) in 2020, this is 

equal to 142 million people watching high-

definition (HD) video in the same time, all day, 

every day. 

The processing time for the Ethernet CRC32 

(Cyclic Redundancy Check 32) will be affected 

when the speed of data traffic exceeded network 

devices processing capability. However, the 

processing time that used currently for the  CRC32 

in the core and backbone devices does not handle 

the expected increment in the traffic, according to 

that the processing time should be decreased and 

throughput of the CRC32 must be increased as 

much as possible. This paper talks about the 

CRC32 design in the Ethernet frame using Xilinx 

Virtex-7 Field Programmable Gate Array (FPGA). 

The design depends on the slicing-by-16 algorithm 

that can perform the needed CRC32 calculations 

in parallel. 

The CRC computation using lookup tables 

explained by Sarwate, he proved the calculation of 

checksum value through lookup table method is 

highly efficient when it compared to the traditional 

methods such as Linear Feedback Shift Register 

(LFSR) which process the data in a serial manner 

[2]. Anand and Bajarangbali in [3] used slicing by 

16 algorithm and reduced lookup tables to 

implement the CRC algorithm on the FPGA and 

the achieved throughput was 40 Gbps. In [4], [5] 

and [6] there are other studies discussed the 

implementation of the CRC in parallel. 
 

Algorithm and types of CRC    

The function of Cyclic Redundancy Check (CRCs) 

deployed in most of the digital communications 

and storage systems, that is to detect accidental 

errors in the data. The binary data that handled are 

subjected to a CRC which will get binary check 

sequence with a fixed length. This fixed length of 

the check sequence is attached to the data that will 

be transmitted and act to find out the correctness. 

In the receiver side, CRC performed on the data 

one more time and the result is compared to the 

attached check sequence. If it is matched, that is 

mean the data does not corrupted. [7]. The bits in 

the CRC treated as a binary polynomial using 

specific width, after that it finds out the remainder 

using the division of data bits with a polynomial. 

the resulted remainder of this calculation known as 

the checksum that must be added to the data bits. 

Also at the receiver side, the data and the 

checksum divided by the polynomial, if the result 

was zero it means the data was received correctly 

[8].  

There are various types of CRC, its length and its 

polynomial depends on the application that works 

on. Table 1 illustrates some of these types. 

Table1: various types of CRC 

Name Uses Polynomial 

CRC-1 most hardware 0x1 

CRC-3 mobile networks 0x3 

CRC-4 ITU-T G.704 0x3 

CRC-5 Gen 2 RFID 0x09 

CRC-6 mobile networks 0x27 

CRC-8 DVB-S2 0xD5 

CRC-10 ATM 0x233 

CRC-11 FlexRay 0x385 

CRC-14 Radio Channel 0x0805 

CRC-15 CAN 0x4599 

CRC-16 USB 0x8005 

CRC-24 OS-9 RTOS. 0x800063 

CRC-32 Ethernet 0x04C11DB7 

 

Mathematically, a k-bit message can be considered 

as the coefficients of a polynomial B(x) = bk-1xk-

1 + … + b1x1 + b0x0. The most significant bit 

starts the data stream. Furthermore, an (m+1) bit 

generator polynomial P(x) = xm + pm-1xm-1 + … 

+ p1x1 + p0x0 of order m is selected. Calculations 

are performed in modulo-2 arithmetic. The CRC is 

the remainder of the division of xm B(x) by P(x) 

and will be appended to the message [4]. 

CRC is designed for the detection of errors which 

is common in the communication channels. The n-

bit CRC called CRCn when it is value is n bits 

long. for example, when one bit used it is called 

CRC-1, this type called parity check as well and in 

this type only one bit added to the original 

message, another example in CRC-4 the number 

of bits that attached to the original message is 4  

and so on in the other CRC-n. this paper focuses 

https://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Polynomial_representations
https://en.wikipedia.org/wiki/ITU-T
http://www.itu.int/rec/T-REC-G.704-199810-I/en
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/DVB-S2
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/OS-9
https://en.wikipedia.org/wiki/Ethernet


SUST Journal of Engineering and Computer Sciences (JECS), Vol. 91, No.2, 8192 

 

52 

 

on the Ethernet frame CRC which is the CRC32. 

This type has a fixed polynomial value equal to 

0x04C11DB7. The transmitted message contains 

the original message and the reversed-byte 

swapped CRC for example if the message has the 

hex value (31 32 33 34 35) the Ethernet CRC32 

will be 0xCBF53A1C, and the transmitted 

message will be (31 32 33 34 35 1C 3A F5 CB). 

the FCS (Frame Check Sequence) field in the 

Ethernet frame is the CRC. Behind that, The 

Ethernet frame consists of the source and 

destination MAC, Ethernet frame length, in 

addition to the data, the Ethernet frame illustrated 

in Figure 1. 

 

 
Figure 1: Ethernet Frame format 

The System Design 
The purpose of this paper is to decrease the needed 

time to perform the processing of the CRC32 

algorithm by performing parallel operations using 

the FPGA. the CRC32 computation performed by 

the lookup table and slicing by 16 methods. By 

using this method the lookup table possible values 

of the CRC32 precomputed and saved. The pre-

computed values will be used in the calculation of 

the final checksum value.  

In the calculation of the CRC Each byte will catch 

its own CRC32 value which will be used as an 

argument in the operations that can find the result. 

The algorithm could be implemented based on one 

lookup table, but for efficiency enhancements of 

the system multiple lookup tables implemented 

simultaneously and work with another technique 

called slicing by N. FPGA Virtex-7 used as a 

platform for the design. the code is written through 

Very High Speed Integrated Circuit Description 

Language (VHDL).  

Behind that, the code synthesized by Xilinx 

synthesis tool. then the simulation executed on 

ISim which is Xilinx simulation tool, VHDL used 

to write the simulation code as well as the 

implementation code. However, during the 

initialization of the system the precomputed values 

prepared. Figure 2 shows that a FPGA connected 

to PC, the purpose of the PC in the design is to 

generate the pre-computed values of the lookup 

tables using Java program.  

Later when these values generated it will be 

transferred to the FPGA and then saved inside 

RAMs, these RAMs designed inside the FPGA to 

reduce the transfer time, the design area and the 

power. This PC can be replaced by a 

microprocessor located outside the FPGA or inside 

it in the real systems, but for simulation purposes 

the pre-computed values generated through 

software written in Java. 

 

 

Figure 2: block diagram 

Generation of Lookup Tables 

The purpose of lookup tables is to decrease the 

number of the needed operations to calculate the 

CRC32 for the Ethernet frame. as long as the 

divisor (polynomial) is always fixed we can pre-

compute the division for all bytes and save the 

remainder in a lookup table. This could be 

performed through the below code 
for (int dividend = 0; dividend <= 

255; dividend ++)  

{ 

int temp = dividend; 

 for (int bits=0; bits<8; bits++) 

// generate the CRC  

temp = (temp >>1) ^ ((temp &1) * 

0x04C11DB7);    

crcTable[dividend] = temp;} 

In this code, in each repetition the dividend 

(beginnig from 0x00 to 0xFF) saved in a 

temporary variable named temp, after that the 

temporary variable treated in term of bits in the 

second for loop. the equation behind the second 

for loop checkup the LSB of the temp, if it is „1‟ 

then the shifted right value of the temp will 

perform xor with the polynomial, this operation 

remains for the eight bits to find out the remainder 

of (dividend mod polynomial).  

The value of this remainder saved in the lookup 

table Array that indexed by the dividend. The 

flowchart in Figure 3 shows the generation of the 

lookup table. Now using this lookup table, we can 



SUST Journal of Engineering and Computer Sciences (JECS), Vol. 91, No.2, 8192 

 

53 

 

find out the value of CRC32 for only one byte in 

the period. but in order to achieve parallel 

processing another 15 tables will be generated, 

they are generated based on the values on this 

table. This point will be explained more in the next 

section. 
 

 

Figure 3: Flow chart for lookup table generation 

Slicing by 16 algorithm 

The design going to find out the CRC32 for 16 

bytes (128 bit) in one operation which means 

another 15 additional lookup tables must be 

generated as well. The process that used to 

generate these tables depends on the first lookup 

table that already generated, the below code 

responsible for generating the CRC32 values for 

these lookup tables. any value for each byte on 

each lookup table depends on the prior lookup 

table, this preceding value shifted 8 times to the 

right and then xor with lookup table 0 that indexed 

by the LSB byte from the prior lookup table. 

for(inti=0;i<=255;i++) 

{ 

crcTable1[i] =  

(crcTable0[i]>>8) ^ 

crcTable0[(int)(crcTable0[i]&0xFF)

]; 

crcTable2[i] =  

(crcTable1[i]>>8) ^ 

crcTable0[(int)(crcTable1[i] & 

0xFF)]; 

… 

crcTable15[i]= 

(crcTable14[i]>>8) ^ 

crcTable0[(int)(crcTable14[i]& 

0xFF)];} 

Lookup table inside the FPGA 

A lookup table could be considered as RAMs, it 

could be implemented outside the FPGA or inside 

it. But if it is implemented outside the FPGA the 

cost will be increased and the design area as well, 

not yet the power consumption may be 

increaseded too. So in order to optimize the design 

as much as possible the lookup table implement 

inside the FPGA. One of the aspects to implement 

the lookup tables inside the FPGA is the 

transferring speed, as the transfer speed between 

the outside RAMs and the FPGA is slower than 

the transfer rate if the RAMs are implemented 

inside the FPGA. By using VHDL The sixteen 

RAMs created inside the FPGA. A new type 

named lookup Table defined as array consist of 

256 locations, each one has 28 bit. After that 

sixteen signal of this type has defined. Then these 

memory locations loaded with the precomputed 

values during the initialization. 

 

Slicing-by-16 CRC32 

The entity in VHDL describes the ports of the 

circuit. In this project, the system entity consists of 

6 ports illustrated in Figure 4. As illustrated in 

Figure 5, the stream of the data saved in a buffer. 

Splitting circuit slices the data into 12 bytes and 4 

bytes. Each byte of the twelve will be used to 

address the RAMs (from RAM0 to RAM11), the 

remaining 32 bits XORed with the previous 

CRC32 value and then sliced into four bytes, each 

one used to address the RAMs (from RAM12 to 

RAM15).  

The addressed values in the RAMs XORed 

together to get the new value for the CRC32. 

There is no considerable time to get the output 

from the xor gates, so the sixteen RAMs could be 

accessed at the same time. The implementation of 

the code in the VHDL performed concurrently, 

that is will support to achieve the operation of this 

algorithm in parallel. 
 



SUST Journal of Engineering and Computer Sciences (JECS), Vol. 91, No.2, 8192 

 

54 

 

 
Figure 4: Design Ports 

 

Results and Discusions 
The simulation written by VHDL and Isim version 

14.5 simulator is used to perform it. Isim has the 

capability to create a component to act like the 

tested device so that one component created to do 

that. this component has the same ports in the 

design entity. After that, the Isim can generate the 

needed clock pulses and attach it to the simulated 

component. The generated clock pulses are 800 

MHz which is equal to the proposed clock source.  

The simulation has two processes working 

concurrently, the first process which is already 

discussed which can generate the clock pulses and 

the second process responsible for the simulation 

stimulus. Inside the process of the stimulus 128 

bits randomly assigned to the DataIn signal in a 

period specified in simulation code, behind that 

the control signals such as start, end and reset also 

considered in the simulation code. Figure 6 

illustrates how the control signals and the dataIn 

stimulated in the simulation. 

The throughput of this design is 102.4 Gbps which 

means the processing time is 1.250 ns. The design 

simulated based on virtex-7 FPGA specifications. 

The oscillator frequency is 800 MHz. In this work 

the resulted throughput considered very high, 

however it is also higher than the throughputs that 

mentioned in the previous works. Behind that, the 

consumed power is 0.158W and the dynamic 

power consumption is only 0.015W. so most of the 

power consumption generated from the leakage 

which is around 0.143W. According to that the 

power consumption is low and could be 

considered very low when compared to the 

maximum power value that generated from virtex-

7 FPGA.  

In Figure 5 the function of the highlighted 

combinational circuit is to perform xor operation 

between the prior result and the dataIn LSB. This 

circuit is a combinational circuit it does not 

depends on the clock. On another hand, the buffer 

sends the data to the entity dataIn port when the 

clock falling edge received.  

The output of the combinational circuit could be 

found in time between the falling edge and the 

rising edge. Behind that, the none-highlighted 

circuit is responsible for finding out the final 

result, this circuit triggered by the rising edge of 

the clock pulses.  

Accordingly, the none-highlighted circuit added to 

process with the related sensitivity list in VHDL 

code in order to perform its work during the high 

pulse. Figure 6 shows the connection between the 

dataIn, the output of the CRC32 and the related 

pulse. the utilized resources in the FPGA which 

could be considered very low, can allow the 

system designer to combine it inside any system. 

The number of slices register that used is 27 from 

408000, the number of slice LUTs is 550 from 

204000. Table 3 illustrates the device utilization 

summary generated by Xilinx ISE.  

 

Table 3: device utilization summary 

 
 
 

 



SUST Journal of Engineering and Computer Sciences (JECS), Vol. 91, No.2, 8192 

 

55 

 

 

 
Figure 6: Clock frequency, dataIn the 4th row and the CRC32 output in the 6th  row 

 

 
Figure 5: CRC32 using slicing-by-16 

 

 

 
Figure 7: After 1.250 ns since the dataIn provide the input, the CRC32 calculated 

 



SUST Journal of Engineering and Computer Sciences (JECS), Vol. 91, No.2, 8192 

 

56 

 

 
Figure 8: Power consumption 

 

 

Concolusion 
the computation of the CRC32 is extremely 

affected by the increase of the data rates as the 

current processor cannot handle it. The purpose of 

this paper is to improve the processing speed of 

the CRC32 in order to encounter the new 

requirements and speed. The needed throughput is 

100 Gbps so that in order to achieve it, the FPGA 

used in the design. The main reason to select 

FPGA is its concurrent behavior, it can execute 

more than one operation in parallel. Behind that, 

more than one algorithm has studied and the 

slicing by 16 algorithms selected, this algorithm 

reduces the computation of the CRC32 by creating 

lookup tables hold all the possible values of the 

CRC32. The code of the design and the simulation 

written by VHDL. The simulation test shows that; 

the achieved processing time is equal to 1.250 ns 

and the throughput is equal to 10.24 Gbps behind 

that, the consumed power and the device 

utilization are very low. 

 

 

 

References 
[1] Cisco, "The Zettabyte Era: Trends and Analysis," 
2016. 

[2] Sarwate, D.V.“Computation of Cyclic Redundancy 
Checks via Table Lookup,” Comm. ACM, vol. 31, no. 
8, pp. 1008-1013, Aug. 1988. 

[3] P. A. Anand and D. Bajarangbali, "Design of High 
Speed CRC Algorithm for Ethernet on FPGA Using 
Reduced Lookup Table Algorithm," presented at the 
IEEE Annual India Conference (INDICON), India 
2016. 

[4] M. Braun, J. Friedrich, T. Grün, and J. Lembert, 
“Parallel CRC computation in FPGAs,” in Proc. 6th Int. 
Workshop Field-Program. Logic, Smart Appl., New 
Paradigms Compilers (FPL), London, U.K., 1996, pp. 
156–165, Springer-Verlag. 

[5] C. Cheng and K. Parhi, “High-speed parallel CRC 
implementation based on unfolding, pipelining, and 
retiming,” IEEE Trans. Circuits Syst. II, Expr. Briefs, 
vol. 53, no. 10, pp. 1017–1021, Oct. 2006. 

[6] C. Kennedy and A. Reyhani-Masoleh, “High-speed 
parallel CRC circuits,” in Proc. 42nd Asilomar Conf. 
Signals, Syst. Comput., Oct. 2008, 
pp. 1823–1829. 

[7] Tomas Zavodnik and Lukas Kekely, “CRC Based 
Hashing in FPGA Using DSP Blocks,” presented at the 
IEEE 17th International Symposium on Design and 
Diagnostics of Electronic Circuits & Systems, 2014. 

[8] T. Ramabadran and S. Gaitonde, “A tutorial on CRC 
computations,” IEEE Micro, vol. 8, no. 4, pp. 62–75, 
Aug. 1988. 

 


