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Abstract 

 

The standard model of particle physics is currently an accepted theory at low 

energies; however, it doesn’t address the unification of gauge coupling constants. 

In this dissertation, the renormalization group equations at one loop order in the 

standard model, both in 4D and 5D, in addition to Pati-Salam model (4D and 5D) 

have been studied. We found, both analytically and numerically, that a natural and 

successful gauge coupling unification could be achieved in 4D Pati-Salam model 

with MR = 1011GeV, and that the unification occurred there at Λ = 1013GeV; 

further in  and 5D Pati-Salam model a unification occurred too with MR = 107GeV 

and compactification scale  
1

𝑅
= 106GeV at high energy scale, these results show 

that the gauge coupling constants are almost unified at high energy in Pati-Salam 

model. 
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 ملخص ال

 

ضه, ولكن في هذه النظرية ولية  تعتبر حاليا نظرية معتمدة عند طاقات منخفالنظرية القياسية للجسميات الأ

معادلات المجموعات  نظرية ترسدا طروحة قتران القياسية. في هذه الاا ثوابت الإ يؤخذ في الاعتبار توحيدلا 

جد تحليليا وحسابيا بعاد. وا أخمسة و  ي اربعةسلام ف-ذج القياسي  ونموذج باتيلاولي في النمو المعايرة للرتبة ا

MRذا كان إبعاد أربعة أقتران توحدت في نموذج باتي سلام في ن ثوابت الإأبنجاح وطبيعيا  = 1011GeV 

Λوتوحدت في هذه الطاقة ثوابت الاقتران عند طاقة  = 1013GeV   ذا كان إ وجد انه بعادأوفي خمسة

MR = 107GeV 1  و
R
= 106GeV  تتوحد ثوابت الاقتران عند طاقة  طاقة عاليةعند مقايسΛ =

107GeV سلام عند طاقة عالية. -تتوحد في نموذج باتيالقياسية  وهذة النتائج توضح ان ثوابت الاقتران 
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Chapter One 

General Introduction 

 

(1.1)  Introduction 

 Unification of the forces of nature is one of the most important ideas in the 

fundamental physics of the twentieth century. Early attempts at a unified field 

theory, including gravity and electromagnetic interactions, were in hindsight 

premature (T.~Kaluza, 1921). However, the Standard Model, describing with 

remarkable success the strong, weak and electromagnetic interactions of the three 

known families of quarks and leptons, seems to provide a much more propitious 

starting point for unification (A.D.Martin, 1984). It is entirely possible that there 

are no new low energy gauge interactions. Moreover quarks and leptons appear to 

be equally fundamental and elementary. Finally, the merging of the three low 

energy gauge couplings at a high energy scale 𝑀𝐺𝑈𝑇 = 1016GeV provides 

significant evidence for a grand unification within four dimensional models (L. J. 

Hall and Y. Nomura, 2002). 

A higher dimensional gauge theory is non-renormalize able and should be defined 

as a cutoff theory in which the theory is valid (L. J. Hall and Y. Nomura, 2002). 

This implies a highly sensitive dependence on an unknown short distance physics. 

This is a problem for gauge coupling unification if it affects how the difference of 

any two gauge couplings runs above the compactification scale. 
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(1.2) The importance of the research 

 The ultimate goal in particle physics is the unification of the well-known four 

forces (weak, electromagnetic, strong and gravity). 

(1.3) The main objective of the research  

The main purpose of this is dissertation is to unify the gauge coupling constants in 

Pati-Salam model in extra dimension. 

(1.4) The outline of the research   

 This research project is constructed as follows: In chapter one we gave a concise 

introduction; in chapter two we studied the Standard Model of particle physics 

with some details; meanwhile, in chapter three  we dealt with the Renormalization 

group equations and Beta function, and finally, in chapter four we presented our 

numerical results, discussion and conclusion. 
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Chapter Two 

The Standard Model of Particle Physics 

 

(2.1) Introduction 

In this chapter, we will present the complete studies of the standard model and its 

mathematical construction, and then we will discuss the Higgs mechanism knows 

as spontaneous symmetry breaking, which had led to understanding of how 

elementary particles obtain their masses. 

(2.2) Definition of standard model (SM) 

The SM is a gauge theory, based on the symmetry group 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 ×

𝑈(1)𝑌  so far provides the most accurate description of nature at subatomic level. It 

is based on the quantum theory of fields (J.donoghue, 1994). In quantum field 

theory there is one field for each type of particle, i.e. matter particles and force 

particles. SM describes strong, weak and electromagnetic interactions, via the 

exchange of the corresponding spin-1 gauge fields: eight massless gluons and one 

massless photon, respectively, they stand for the strong and electromagnetic 

interactions, and three massive bosons, 𝑊±and 𝑍, stand for the weak interaction; 

while, fermionic matter content is given by the known leptons and quarks 

(A.D.Martin, 1984). 

(2.3) Classification of elementary particle  

The particles that have been identified in high-energy experiments fall into distinct 

classes: They are, the leptons (Electron, Neutrino, and Muon) all of which have 



4 
 

spin 
1

2
 and they may be charged or neutral. The charged leptons encounter 

interactions  of both electromagnetic and weak nature, meanwhile the neutral ones 

encounter a weak interaction (A.D.Martin, 1984). There are three well-defined 

lepton pairs, thes electron (𝑒−) and the electron neutrino(𝜈𝑒), the muon(𝜇) and the 

muon neutrino (𝜈𝜇)and the tau (𝜏−) (the much heavier charged lepton) and it tau 

neutrino (𝜈𝜏). And all these particles have antiparticles, in accordance with the 

predictions of relativistic quantum mechanics “lepton-type” conservation laws, 

which state that: the number of plus, the number of minus and the number of the 

corresponding  antiparticles  is conserved in weak reactions; and similarly for the 

muon and tau-type leptons. These conservation laws should be followed 

automatically in the standard model if the neutrinos are massless. However, 

recently evidence for a tiny nonzero neutrino masses subtle violation of these 

conservations laws has been observed.  

(2.4) Lagrange of the standard model 

In order to obtain the Lagrangian of SM we started from the free particle 

Lagrangian and replaced the ordinary derivative by the covariant derivative in 

order to have local gauge invariance (A.D.Martin, 1984).   

ℒ𝑆𝑀 = ℒ𝐺𝑎𝑢𝑔𝑒 + ℒ𝐹𝑒𝑟𝑚𝑖𝑜𝑛 + ℒ𝐻𝑖𝑔𝑔𝑠 + ℒ𝑌𝑢𝑘𝑎𝑤𝑎
                                                                      (2.1) 

(2.4.1) The fermions sector 

The fermions matter content is given by the known leptons and quarks, which are 

organized in a three-fold family structure (A.D.Martin, 1984): 

1/ Leptons: 

• Left lepton: 

𝑙𝐿 ≡ (
𝜈𝑒
𝑒
)
𝐿1𝑠𝑡

(
𝜈µ
µ )𝐿2𝑛𝑑

(
𝜈𝜏
𝜏
)
𝐿3𝑟𝑑
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• Right lepton: 

𝑙𝑅 ≡ 𝑒𝑅µ𝑅𝜏𝑅 

2/ Quarks: 

• Left quarks: 

𝑞𝐿 ≡ (
𝑢
𝑑
)
𝐿 1𝑠𝑡

(
𝑐
𝑠
)
𝐿 2𝑛𝑑

(
𝑡
𝑏
)
𝐿 3𝑟𝑑

 

• Right quarks:  

𝑞𝑅 ≡ 𝑢𝑅𝑑𝑅𝑐𝑅𝑠𝑅𝑡𝑅𝑏𝑅 

Fermions are described by the Dirac equation: 

ℒ𝐹𝑒𝑟𝑚𝑖𝑜𝑛𝑠 = 𝑖 �̅�𝛾𝜇𝐷𝜇𝜓 −𝑚�̅�𝜓                                                                              (2.2) 

(2.4.2) The bosons sector 

The gauge fields lagrangian is given by (A.D.Martin, 1984): 

ℒ𝐺𝑎𝑢𝑎𝑔𝑒 =
−1

4
𝐹𝜇𝜐
𝑎 𝐹𝑎𝜇𝜐

−1

4
𝐵𝜇𝜈𝐵

𝜇𝜈 −
1

4
𝑊𝜇𝜈  𝑊

𝜇𝜈 − 
1

4
𝐺𝜇𝜈 𝐺

𝜇𝜈                     (2.3) 

Where: 

• Electromagnetic field strength tensor is:  

𝐵𝜇𝜐 = 𝜕𝜇𝐵𝜐 − 𝜕𝜐𝐵𝜇 + 𝑔′
𝑌

2
 𝐵𝜇 𝐵𝜐                                                                           (2.4) 

• Weak interaction field strength tensor is: 

𝑊𝜇𝜈  = 𝜕𝜇𝑊𝜐 − 𝜕𝜐𝑊𝜇 + 𝑔𝑇𝑎𝑊𝜇
𝑎𝑊𝜐

𝑎=1..3                                                            (2.5) 

• Strong interaction field strength tensor is:    

𝐺𝜇𝜐 = 𝜕𝜇𝐺𝜐 − 𝜕𝜐𝐺𝜇 + 𝑔𝑠𝑇
𝑎𝐺𝜇

𝑎𝐺𝜐
𝑎=1…8                                                             (2.6) 
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(2.5) Higgs mechanism (spontaneous symmetry breaking) 

The Higgs mechanism is an important part of the Standard Model of particle Physics; it 

provides masses for the gauge bosons of the weak interaction and for fermions. The 

electroweak theory in which the Higgs mechanism plays a prominent role had a 

ssconvincing experimental verification. The Higgs mechanism is generally described as a 

case of spontaneous symmetry breaking. Therefore, the put that the Higgs mechanism can 

take in the lagrangian of the SM is as follows (Quigg, 2007):   

ℒ𝐻𝑖𝑔𝑔𝑠 = −
1

2
(𝐷𝜇𝜙)

†(𝐷𝜇𝜙) − 𝑉(𝜙)                                                                       (2.7) 

Where 

The Higgs potential is given by 

    𝑉(𝜙) = −
𝜇2

2
𝜙∗𝜙 −

𝜆

4
𝜙4                                                                                       (2.8) 

Therefore equation (2.7) becomes 

 ℒ𝐻𝑖𝑔𝑔𝑠 = −
1

2
(𝐷𝜇𝜙)

†(𝐷𝜇𝜙) +
𝜇2

2
𝜙∗𝜙 +

𝜆

4
𝜙4                                                 (2.9) 

Take the first derivative of 𝑉(𝜙) : 

𝜕𝑉

𝜕𝜙
= −𝜇2〈𝜙〉 −  𝜆〈𝜙3〉 = 0                                                                                       (2.10) 

We get:  

(−𝜇2 −  𝜆〈𝜙2〉)〈𝜙〉 = 0                                                                                               (2.11) 

This equation has two solutions 

〈𝜙〉 = 0(Trivial solution)                                                                                  (2.12) 
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Or: 

−𝜇2 −  𝜆〈𝜙2〉 = 0                                                                                                         (2.13) 

Therefor: 

〈𝜙2〉 =
−𝜇2

𝜆
                                                                                                                    (2.14) 

Therefore: 

〈𝜙〉 = ±√
−𝜇2

𝜆
= 𝑣                                                                                                       (2.15) 

Which contains two new real parameters 𝜇 𝑎𝑛𝑑 𝜆 we require 𝜆 > 0  for the potential to 

be bounded; otherwise the potential is unbounded from below and there will be no stable 

vacuum state. But 𝜇  takes the following two cases: 

• 𝜇2 > 0 Then the vacuum corresponds to Φ = 0, the potential has a minimum at the 

origin as picture figure 2.1. 

• 𝜇2 < 0 Then the potential develops a non-zero Vacuum Expectation Value (VEV) and 

the minimum is along a circle of radius 
𝑣  

√2
=

246

√2
 as depicted in figure 2.2. 
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Figure 2.1: The Higgs potential 𝑉(𝛷) with, the case 𝜇2 > 0; as function of |𝛷|  =

 √𝛷†𝛷 
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Figure 2.2: The Higgs potential 𝑉(𝛷) with, the case 𝜇2 < 0; as function of|𝛷|  =

 √𝛷†𝛷 

Where 𝜈 is known as the vacuum expectation value (VEV), 𝜈=246 GeV. 

Hence we can choose the Higgs fields as  

𝜙 =
1

√2
(
0
𝑣
)                                                                                                         (2.16) 
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(2.6) The Higgs boson mass 

Fundamental scalar field with self-interactions (H.~-U.~Yee, 2003):   

𝑉 = −
1

2
𝜇2𝜙†𝜙 +

1

4
 𝜆(𝜙†𝜙)

2
                                                                       (2.17) 

𝜙 =
1

√2
(

0
ℎ + 𝑣

)                                                                                                (2.18) 

Since 𝜙† is the complex conjugate of 𝜙: 

 𝜙† =
1

√2
(0 ℎ + 𝑣)                                                                                         (2.19) 

Plug equations (2.18) and (2.19) in equation (2.17) we obtain the mass of Higgs boson: 

 mH = √2λv2   and     mH = √2μ2                                                                               (2.20) 

Where: 

 𝜆 Is the Higgs self-coupling parameter in 𝑉(𝜙). 

(2.7) The fermions masses (Yukawa interaction) 

A fermonic masses term ℒ𝑚 = −𝑚�̅�𝜓 = −𝑚(�̅�𝐿𝜓𝑅 + 𝜓𝑅�̅�𝐿) is not allowed, 

because it breaks the gauge symmetry however, since we have introduced an 

additional scalar doublet into the model, and write the following gauge-invariant 

fermions-scalar coupling (Falcone, 2002).  

From Yukawa interaction: 

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 = 𝑌�̅�𝐿𝜙𝜓𝑅 + h. c. = mψ�̅�𝐿𝜓𝑅                                                           (2.21) 

Can be written also as: 
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ℒ𝑦𝑢𝑘𝑎𝑤𝑎 = 𝑌𝑑�̅�𝐿𝜙𝑞𝑅 + 𝑌𝑢�̅�𝐿𝜙
∗𝑞𝑅 + 𝑌𝑒𝑙�̅�  𝜙𝑙𝑅                                                 (2.22) 

Now using equation (2.16) we obtain 

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 =
𝑌𝑑

√2
(�̅�𝐿  �̅�𝐿) (

0
𝑣
) 𝑑𝑅 +

𝑌𝑢

√2
(�̅�𝐿  �̅�𝐿) (

𝑣
0
)𝑢𝑅

+
𝑌𝑒

√2
(�̅�𝐿  �̅�𝐿) (

0
𝑣
) 𝑒𝑅                                                                               (2.23) 

Therefore: 

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 =
𝑌𝑑

√2
𝑣�̅�𝐿𝑑𝑅 +

𝑌𝑢

√2
𝑣�̅�𝐿  𝑢𝑅 +

𝑌𝑒

√2
𝑣�̅�𝑙𝑒𝑅                                                   (2.24) 

Compare equation (2.24) with equation (2.21) we obtain the masses of the 

quarks (𝑢, 𝑑) and lepton(𝑒): 

𝑚𝑑 =
𝑌𝑑

√2
𝑣   ,𝑚𝑢 = 

𝑌𝑢

√2
𝑣 ,     𝑚𝑒 =

𝑌𝑒

√2
𝑣                                                                (2.25) 

(2.8) The gauge bosons masses 

To obtain the masses for the gauge bosons we need to study the scalar part of; the 

lagrangian (P.~W.~Higgs, 1964).  

ℒ =
1

2
(𝐷𝜇𝜙)

†
(𝐷𝜇𝜙) − 𝑉(𝜙)                                                                                     (2.26) 

Where: 

 𝐷𝜇is the covariant derivative and given by: 

𝐷𝜇 = (𝜕𝜇 + 𝑖𝑔𝑇𝑎𝑊𝜇
𝑎 + 𝑖�́�

𝑌𝜙

2
𝐵𝜇)                                                                            (2.27) 
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𝑇𝑎𝑊𝜇
𝑎 = 𝑇1𝑊𝜇

1 + 𝑇2𝑊𝜇
2 + 𝑇3𝑊𝜇

3                                                                           (2.28) 

𝑇𝑎 =
𝜎2

2
                                                                                                                          (2.29) 

𝑇𝑎𝑊𝜇
𝑎 =

1

2
[(

0 𝑊𝜇
1

𝑊𝜇
1 0

) + (
0 −𝑖𝑊𝜇

2

𝑖𝑊𝜇
2 0

) + (
𝑊𝜇

3 0

0 −𝑊𝜇
3)]

=
1

2
(

𝑊𝜇
3 𝑊𝜇

1 − 𝑖𝑊𝜇
2

𝑊𝜇
1 + 𝑖𝑊𝜇

2 −𝑊𝜇
3 )                                                         (2.30) 

𝐵𝜇 = (
𝐵𝜇 0

0 𝐵𝜇
)                                                                                                             (2.31) 

Putting equations (2.30) and (2.31) in equation (2.27)we get: 

𝐷𝜇 =  𝑖𝑔
1

2
(

𝑊𝜇
3 𝑊𝜇

1 − 𝑖𝑊𝜇
2

𝑊𝜇
1 + 𝑖𝑊𝜇

2 −𝑊𝜇
3 ) + 𝑖�́�

𝑌𝜙

2
(
𝐵𝜇 0

0 𝐵𝜇
)                                 (2.32) 

      𝐷𝜇 = (𝑖𝑔
1

2
(

𝑊𝜇
3 𝑊𝜇

1 − 𝑖𝑊𝜇
2

𝑊𝜇
1 + 𝑖𝑊𝜇

2 −𝑊𝜇
3 ) + 𝑖�́�

1

2
(
𝐵𝜇 0

0 𝐵𝜇
))                        (2.33) 

= (
𝑖

2
(

𝑔𝑊𝜇
3 𝑔(𝑊𝜇

1 − 𝑖𝑊𝜇
2)

𝑔(𝑊𝜇
1 + 𝑖𝑊𝜇

2) −𝑔𝑊𝜇
3

) +
𝑖

2
(
�́�𝐵𝜇 0

0 �́�𝐵𝜇
))                          (2.34) 

𝐷𝜇 = (
𝑖

2
(
𝑔𝑊𝜇

3 + �́�𝐵𝜇 𝑔(𝑊𝜇
1 − 𝑖𝑊𝜇

2)

𝑔(𝑊𝜇
1 + 𝑖𝑊𝜇

2) −𝑔𝑊𝜇
3 + �́�𝐵𝜇

) )                                                      (2.35) 

And if the covariant derivative in(2.35)operator in a function 𝜙  and we substitute 

for 𝜙  as it defined in equation (2.15) we obtain:                                          

𝐷𝜇𝜙 =
𝑖

2√2
(
𝑔𝑊𝜇

3 + �́�𝐵𝜇 𝑔(𝑊𝜇
1 − 𝑖𝑊𝜇

2)

𝑔(𝑊𝜇
1 + 𝑖𝑊𝜇

2) −𝑔𝑊𝜇
3 + �́�𝐵𝜇

)(
0
𝜈
)                                            (2.36) 
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𝐷𝜇𝜙 =
1

2√2
(
𝑖𝑔𝑣(𝑊𝜇

1 − 𝑖𝑊𝜇
2)

𝑖𝑣(−𝑔𝑊𝜇
3 + �́�𝐵𝜇)

)                                                                            (2.37) 

Since (𝐷𝜇𝜙)
†
is the complex conjugate of 𝐷𝜇𝜙: 

(𝐷𝜇𝜙)
†
=

1

2√2
(−𝑖𝑔𝑣(𝑊𝜇

1 + 𝑖𝑊𝜇
2) −𝑖𝑣(−𝑔𝑊𝜇

3 − �́�𝐵𝜇) )                            (2.38) 

Therefor: 

(𝐷𝜇𝜙)
†
(𝐷𝜇𝜙) = 

1

8
(− 𝑖𝑔𝑣(𝑊𝜇

1 + 𝑖𝑊𝜇
2) −𝑖𝑣(𝑔𝑊𝜇

3 − �́�𝐵𝜇))(
𝑖𝑔𝑣(𝑊𝜇

1 − 𝑖𝑊𝜇
2)

𝑖𝑣(−𝑔𝑊𝜇
3 + �́�𝐵𝜇)

)                 (2.39) 

Define 𝑊𝜇
− = (𝑊𝜇

1 − 𝑖𝑊𝜇
2) and𝑊𝜇

+ = (𝑊𝜇
1 + 𝑖𝑊𝜇

2), we get: 

(𝐷𝜇𝜙)
†
(𝐷𝜇𝜙) = 

1

8
(− 𝑖𝑔𝑣𝑊𝜇

+ −𝑖𝑣(𝑔𝑊𝜇
3 − �́�𝐵𝜇)) (

𝑖𝑔𝑣𝑊𝜇
−

𝑖𝑣(−𝑔𝑊𝜇
3 + �́�𝐵𝜇)

)                                  (2.40) 

(𝐷𝜇𝜙)
†
(𝐷𝜇𝜙) =

1

8
(𝑔2𝑣2𝑊𝜇

+𝑊𝜇
− + 𝑣2(𝑔𝑊𝜇

3 − �́�𝐵𝜇)(−𝑔𝑊𝜇
3 + �́�𝐵𝜇))       (2.41) 

Therefore the mass of the 𝑊boson is: 

𝑚𝑊±
2 =

1

4
𝑔2𝑣2 → 𝑚𝑊± =

1

2
𝑔𝑣                                                                                (2.42) 

We will not derive the mass of the Z boson here as can be found in any text book, 

e.g. (Broken symmetries, massless particles and gauge fields). 
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Chapter Three 

 

Renormalization Group Equations and Beta function 

 

(3.1) Introduction 

In this chapter, we will discuss the Renormalization Group Equations and we will 

calculate the numerical coefficients values of Beta function for gauge couplings in 

the standard model, extra dimension model and Pati-Salam model (J.C. Pati and A. 

Salam, 1974) 𝑆𝑈(4) × 𝑆𝑈(2)𝑅 × 𝑆𝑈(2)𝐿 at one loop order (A.J.G.hey, 1993).  

 (3.2) Renormalization Group Equations (RGEs) 

The generic structure of the one loop RGEs for the three gauge couplings constants 

of the standard model (SM) is given by (A.~Abdalgabar, 2013): 

16𝜋2
𝑑𝑔𝑖
𝑑𝑡

= 𝑏𝑖𝑔𝑖
3                                                                                                         (3.1) 

Where 𝑡 = ln (𝜇/𝑀𝑍) and contains the energy scale parameter 𝜇. We chose to use 

the Z mass as a reference scale, so that for 𝜇 = 𝑀𝑍  we have 𝑡 = 0 and we can fix 

the initial conditions of the running. The coefficients 𝑏𝑖 will be calculated for 

various models. 

(3.3) Gauge correction in the standard model at on loop 

We will consider first correction the gauge coupling in the standard model in 

details and the calculation of other models will follow (Weinberg, 1996). The 

correction of gauge couplings constants receives contributions from the diagrams 
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in Figure 3.1. The numerical coefficients 𝑏𝑖  appear in equation (3.1) can be 

calculated from the Feynman diagrams presented in figure (3.1). In this work we 

do not calculate all the diagrams (only their result will be given in next section 

(Beta function)). We will give a detailed calculation for one diagram, i.e. figure 

(3.1 b). 

 

Figure 3.1: Diagrams contributes to the gauge correction in the Standard model 

Now convert the diagram in figure (3.1.b) by using Feynman rules as 

𝐼𝜇𝜈 = 𝑇𝑟∫
𝑑𝑑𝑝

(2𝜋)𝑑
𝑖

𝑝 − 𝑚
𝑖𝑔𝛾𝜇𝑇𝑎

𝑖

𝑝 − 𝑘̸ − 𝑚
 𝑖𝑔𝛾𝜈𝑇𝑏                                         (3.2) 

= 𝑔2𝑇𝑟(𝑇𝑎𝑇𝑏)∫
𝑑𝑑𝑝

(2𝜋)𝑑
 𝑇𝑟 (𝛾𝜇 (

𝑝 + 𝑚

𝑝2 −𝑚2
) 𝛾𝜈 (

𝑝 + 𝑘̸ + 𝑚

(𝑝 − 𝑘̸)2 −𝑚2
))               (3.3) 

From equation (3.3) take the 𝑇𝑟(𝛾𝜇(𝑝 + 𝑚)𝛾𝜈(𝑝 + 𝐾̸ + 𝑚)) to be  𝑁𝜇𝜈 and let 

𝑚 = 0 we obtained the: 

 𝑁𝜇𝜈 =  𝑇𝑟(𝛾𝜇𝑝 𝛾𝜈(𝑝 + 𝐾̸ )) = 𝑇𝑟(𝛾𝜇𝛾𝜌𝛾𝜈𝛾𝜎)𝑝𝜌(𝑝 + 𝑘̸)σ                             (3.4) 
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To evaluate the above equation we must use what is so called trace technology 

(McMahon, 2008) 

𝑇𝑟(𝛾𝜇𝛾𝜌𝛾𝜈𝛾𝜎) = 4(𝑔𝜇𝜌𝑔𝜈𝜌 − 𝑔𝜇𝜈𝑔𝜌𝜎 + 𝑔𝜇𝜎𝑔𝜌𝜈)                                             (3.5)  

Now substituting equation (3.5) into equation (3.4) we obtain:  

𝑁𝜇𝜈 = 4(gμρgνρ − gμνgρσ + gμσgρν)pρ(p + k)σ                                                 (3.6) 

After a little algebra the above equation becomes: 

𝑁𝜇𝜈 = 4(𝑝𝜇(𝑝𝜈 + 𝑘̸𝜈) − 𝑔𝜇𝜈𝑝(𝑝 + 𝑘̸) + 𝑝𝜈(𝑝𝜇 + 𝑘̸𝜇))                                     (3.7) 

Substitute equation (3.7) in equation (3.3) yields: 

𝐼𝜇𝜈 = 𝑔2𝑇𝑟(𝑇𝑎𝑇𝑏)∫
𝑑𝑑𝑝

(2𝜋)𝑑
 (

𝑁𝜇𝜈

(𝑝2 −𝑚2)((𝑝 − 𝑘̸)2 −𝑚2)
)                             (3.8) 

Define:  

 𝑏 = 𝑝2 −𝑚2,        𝑎 = (𝑝 − 𝑘̸)2 −𝑚2,         𝑇𝑟(𝑇𝑎𝑇𝑏) = 𝐶2(𝑅)                        (3.9) 

Substituting equation (3.9) in equation (3.8) we get: 

𝐼𝜇𝜈 = 𝑔2𝐶2(𝑅)∫
𝑑𝑑𝑝

(2𝜋)𝑑
 (
𝑁𝜇𝜈

ab
)                                                                                (3.10) 

(3.3.1) Feynman parameterization Technique  

In order to evaluate the integral presented in equation (3.10), we employ the 

Feynman technique which is given by (Weinberg, 1996) 

1

𝑎𝑏
= ∫𝑑𝑧 

1

(𝑏 + (𝑎 − 𝑏)𝑧)2
 

1

0

                                                                                     (3.11) 
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Using equation (3.11), equation (3.10) becomes: 

𝐼𝜇𝜈 = 𝑔2𝐶2(𝑅)∫
𝑑𝑑𝑝

(2𝜋)𝑑
∫𝑑𝑧

𝑁𝜇𝜈

(𝑏 + (𝑎 − 𝑏)𝑧)2
                   

1

0

                                  (3.12) 

Now consider the denominator in equation (3.12) 

(𝑏 + (𝑎 − 𝑏)𝑧) = 𝑝2 −𝑚2 − 2𝑝𝑘̸𝑧 + 𝑘̸2𝑧                                                             (3.13) 

Let us redefine  𝑝 = 𝑞 + 𝑘̸𝑧 ,      𝑑𝑝 = 𝑑𝑞 and substitute it in equation (3.13) we 

obtain  

(𝑞 + 𝑘̸𝑧)2 −𝑚2 − 2(𝑞 + 𝑘̸𝑧)𝑘̸𝑧 + 𝑘̸2𝑧 = 

𝑞2 + 2𝑞𝑘̸𝑧 + 𝑘̸2𝑧2 −𝑚2 − 2𝑞𝑘̸𝑧 − 2𝑘̸2𝑧2 + 𝑘̸2𝑧 = 𝑞2 − 𝑘̸2𝑧2 −𝑚2 + 𝑘̸2𝑧

= 𝑞2 + 𝑘̸2𝑧(1 − 𝑧) − 𝑚2                                                                    (3.14) 

 Now let us rewrite 𝑎 as: 𝑎 = 𝑘̸2𝑧(1 − 𝑧) − 𝑚2and plug it in equation (3.14) the 

equation, it becomes  𝑞2 + 𝑎 and substitute this in equation (3.12), the integration 

becomes: 

𝐼𝜇𝜈 = 𝑔2𝐶2(𝑅) ∫
𝑑𝑑𝑞

(2𝜋)𝑑

∞

−∞

∫𝑑𝑧
𝑁𝜇𝜈(𝑞)

(𝑞2 + 𝑎)2
       

1

0

                                                       (3.15) 

Similarly the numerator 𝑁𝜇𝜈 with this change of variable becomes: 
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𝑁𝜇𝜈 = 4[(𝑞𝜇 + 𝑘̸𝜇𝑧)(𝑞𝜈 + 𝑘̸𝜈𝑧 + 𝑘̸𝜈) − 𝑔𝜇𝜈(𝑞 + 𝑘̸𝑧)(𝑞 + 𝑘̸𝑧 + 𝑘̸)

+ (𝑞𝜈 + 𝑘̸𝜈𝑧)(𝑞𝜇 + 𝑘̸𝜇𝑧 + 𝑘̸𝜇)]

= 4[𝑞𝜇𝑞𝜈+𝑞𝜇𝑘̸𝜈𝑧 + 𝑞𝜇𝑘̸𝜈 + 𝑘̸𝜇𝑞𝜈𝑧 + 𝑘̸𝜇𝑘̸𝜈𝑧2 + 𝑘̸𝜇𝑘̸𝜈𝑧 − 𝑔𝜇𝜈𝑞2

− 𝑔𝜇𝜈𝑞𝑘̸𝑧 − 𝑔𝜇𝜈𝑞𝑘̸ − 𝑔𝜇𝜈𝑘̸𝑞𝑧 − 𝑔𝜇𝜈𝑘̸2𝑧2 − 𝑔𝜇𝜈𝑘̸2𝑧 + 𝑞𝜈𝑞𝜇

+ 𝑞𝜈𝑘̸𝜇𝑧 + 𝑞𝜈𝑘̸𝜇 + 𝑘̸𝜈𝑞𝜇𝑧 + 𝑘̸𝜈𝑘̸𝜇𝑧2

+ 𝑘̸𝜇𝑘̸𝜈𝑧]                                                                                                 (3.16) 

Keeping only terms which is quadratic in 𝑞 as odd power in q gives zero in the 

integration we arrive at.  

𝑁𝜇𝜈 = 4[2𝑞𝜇𝑞𝜈 + 2𝑧2𝑘̸𝜇𝑘̸𝜈 + 2𝑧𝑘̸𝜇𝑘̸𝜈 − 𝑔𝜇𝜈𝑞2 − 𝑔𝜇𝜈𝑘̸2𝑧(𝑧 + 1)]               (3.17) 

Substitute equation (3.17) in the integer and in equation (3.15): 

𝐼𝜇𝜈 = 𝑔2𝐶2(𝑅) ∫
𝑑𝑑𝑞

(2𝜋)𝑑

∞

−∞

∫𝑑𝑧 (
8𝑞𝜇𝑞𝜈

(𝑞2 + 𝑎)2

1

0

+
8𝑧2𝑘̸𝜇𝑘̸𝜈 + 8𝑧𝑘̸𝜇𝑘̸𝜈 − 4𝑔𝜇𝜈𝑘̸2𝑧(𝑧 + 1) − 𝑔𝜇𝜈𝑞2 

(𝑞2 + 𝑎)2
)                 (3.18) 

To evaluate the above integrals, we will compare them with the standard integrals 

(3.3.2)  Standard Integrals 

∫ 𝑑𝑑𝑞

∞

−∞

𝑞𝜇𝑞𝜈

(𝑞2 + 𝑎)𝑛
=
𝑖𝜋

𝑑
2⁄  Γ (𝑛 −

𝑑

2
− 1)𝑔𝜇𝜈

2Γ(𝑛)𝑎𝑛−
𝑑

2
−1

                                     (3.19. (I)) 

∫ 𝑑𝑑𝑞

∞

−∞

𝑞2

(𝑞2 + 𝑎)𝑛
=
𝑖𝜋

𝑑
2⁄  Γ (𝑛 −

𝑑

2
− 1)

2Γ(𝑛)
 

𝑑

𝑎𝑛−
𝑑

2
−1
                              (3.19. (II)) 
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∫ 𝑑𝑑𝑞

∞

−∞

1

(𝑞2 + 𝑎)𝑛
=
𝑖𝜋

𝑑
2⁄  𝛤 (𝑛 − 

𝑑

2
)

𝑎𝑛−
𝑑

2

                                                    ( 3.19(III)) 

Comparing equation (3.18) with the standard integrals in equation (3.19) we 

get:  

8 ∫ 𝑑𝑑𝑞
𝑞𝜇𝑞𝜈

(𝑞2 + 𝑎)2
=
4𝑖𝜋

𝑑
2⁄  𝛤 (1 − 

𝑑

2
) 𝑔𝜇𝜈

𝑎1−
𝑑

2

                                                 (3.20)

∞

−∞

 

8𝑧𝑘̸𝜇𝑘̸𝜈(𝑧 + 1) ∫ 𝑑𝑞

∞

−∞

  
1

(𝑞2 + 𝑎)2
= 8𝑧𝑘̸𝜇𝑘̸𝜈(𝑧 + 1)

𝑖𝜋
𝑑
2⁄  𝛤 (2 −

𝑑

2
)

𝑎2−
𝑑

2

           (3.21) 

4𝑔𝜇𝜈 ∫ 𝑑𝑞

∞

−∞

  
𝑞2

(𝑞2 + 𝑎)2
= 4𝑔𝜇𝜈

𝑖𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
)

2
 
𝑑

𝑎1−
𝑑

2

                                       (3.22) 

4𝑔𝜇𝜈𝑘̸2𝑧(𝑧 + 1) ∫ 𝑑𝑞

∞

−∞

  
1

(𝑞2 + 𝑎)2
=   4𝑔𝜇𝜈𝑘̸2𝑧(𝑧 + 1) 

𝑖𝜋
𝑑
2⁄  𝛤 (2 −

𝑑

2
)

𝑎2− 
𝑑

2

    (3.23) 

Plugging all the ingredients in our desired integrals we obtain: 

∫ 𝑑𝑞
4[2𝑞𝜇𝑞𝜈 + 2𝑧2𝑘̸𝜇𝑘̸𝜈 + 2𝑧𝑘̸𝜇𝑘̸𝜈 − 𝑔𝜇𝜈𝑞2 − 𝑔𝜇𝜈𝑘̸2𝑧(𝑧 + 1)]

(𝑞2 + 𝑎)2
 =

∞

−∞
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4𝑖𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
) 𝑔𝜇𝜈

𝑎1− 
𝑑

2

 +   8𝑧𝑘̸𝜇𝑘̸𝜈(𝑧 + 1)
𝑖𝜋

𝑑
2⁄  𝛤 (2 −

𝑑

2
)

𝑎2−
𝑑

2

−   4𝑔𝜇𝜈
𝑖𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
)

2
 
𝑑

𝑎1−
𝑑

2

−   4𝑔𝜇𝜈𝑘̸2𝑧(𝑧 + 1) 
𝑖𝜋

𝑑
2⁄  𝛤 (2 −

𝑑

2
)

𝑎2− 
𝑑

2

                                               (3.24) 

Substitute equation (3.24) into equation (3.18):  

∫
dz

(2π)d
 (4𝑔𝜇𝜈

𝑖𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
)

𝑎1− 
𝑑

2

− 2𝑔𝜇𝜈
𝑖𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
) 𝑑

𝑎1−
𝑑

2

1

0

+ 8𝑧𝑘̸𝜇𝑘̸𝜈(𝑧 + 1)
𝑖𝜋

𝑑
2⁄  𝛤 (2 − 

𝑑

2
)

𝑎2−
𝑑

2

− 4𝑔𝜇𝜈𝑘̸2𝑧(𝑧 + 1) 
𝑖𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
)

𝑎2−
𝑑

2

)                                              (3.25) 

Now the first term upon integration on z, gives us: 

∫
𝑑𝑧

(2𝜋)𝑑
(4𝑔𝜇𝜈

𝑖𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
)

𝑎1− 
𝑑

2

)
4𝑔𝜇𝜈𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
)

𝑎1− 
𝑑

2

= ∫𝑑𝑧 (
1

𝑎1− 
𝑑

2

)

1

0

1

0

      (3.26) 

Rewrite:  

𝑎1− 
𝑑

2 = 𝑎2− 
𝑑

2  .  𝑎−1                                                                                                       (3.27) 
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We get: 

4𝑔𝜇𝜈𝑘̸2𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
)

(2𝜋)𝑑  𝑎2− 
𝑑

2  
∫ 𝑑𝑧

1

0

(𝑧 − 𝑧2) =
4𝑔𝜇𝜈𝑘̸2𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
)

(2𝜋)𝑑 𝑎2− 
𝑑

2  
(
1

2
−
1

3
)    

=
4𝑔𝜇𝜈𝑘̸2𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
)

(2𝜋)𝑑  𝑎2− 
𝑑

2  
(
1

6
) =

2

3

𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
)

(2𝜋)𝑑 𝑎2− 
𝑑

2  
gμνk2                                    (3.28) 

The second term gives us: 

∫
𝑑𝑧

(2𝜋)𝑑

1

0

(−2𝑔𝜇𝜈
𝑖𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
) 𝑑

𝑎1− 
𝑑

2

) =
−2𝑔𝜇𝜈𝑘̸2𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
) 𝑑

(2𝜋)𝑑 𝑎2− 
𝑑

2  
∫𝑑𝑧

0

1

(𝑧 − 𝑧2) 

=
−2𝑔𝜇𝜈𝑘̸2𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
) 𝑑

(2𝜋)𝑑 𝑎2− 
𝑑

2  
(
1

6
) = −

1

3

𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
)𝑑

(2𝜋)𝑑 𝑎2− 
𝑑

2  
gμνk2                     (3.29) 

The third term gives: 

∫
𝑑𝑧

(2𝜋)𝑑

1

0

(8𝑧𝑘̸𝜇𝑘̸𝜈(𝑧 + 1)
𝑖𝜋

𝑑
2⁄  𝛤 (2 − 

𝑑

2
)

𝑎2−
𝑑

2

)

= 8𝑘̸𝜇𝑘̸𝜈
𝑖𝜋

𝑑
2⁄  𝛤 (2 − 

𝑑

2
)

𝑎2−
𝑑

2

∫
𝑑𝑧

(2𝜋)𝑑

0

1

(𝑧2 + 𝑧) = 8𝑘̸𝜇𝑘̸𝜈
𝑖𝜋

𝑑
2⁄  𝛤 (2 − 

𝑑

2
)

(2𝜋)𝑑𝑎2−
𝑑

2

(
1

3
+
1

2
)

= 8𝑘̸𝜇𝑘̸𝜈
𝑖𝜋

𝑑
2⁄  𝛤 (2 − 

𝑑

2
)

(2𝜋)𝑑𝑎2−
𝑑

2

(
1

6
)

=
4

3

𝑖𝜋
𝑑
2⁄  𝛤 (2 − 

𝑑

2
)

(2𝜋)𝑑𝑎2−
𝑑

2

kμkν                                                                                           (3.30) 
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The last term gives us:  

∫
𝑑𝑧

(2𝜋)𝑑

1

0

(−4𝑔𝜇𝜈𝑘̸2𝑧(𝑧 + 1) 
𝑖𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
)

𝑎2−
𝑑

2

)

= −4𝑔𝜇𝜈𝑘̸2
𝑖𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
)

𝑎2−
𝑑

2

∫
𝑑𝑧

(2𝜋)𝑑
(𝑧2 + 𝑧)

0

1

= −4𝑔𝜇𝜈𝑘̸2
𝑖𝜋

𝑑
2⁄  𝛤 (1 −

𝑑

2
)

(2𝜋)𝑑𝑎2−
𝑑

2

(
1

3
+
1

2
) = −4𝑔𝜇𝜈𝑘̸2

𝑖𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
)

(2𝜋)𝑑𝑎2−
𝑑

2

(
1

6
)

= −
2

3

𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
)

(2𝜋)𝑑  𝑎2− 
𝑑

2  
gμνk2                                                                                       (3.31) 

We have used  𝑎𝛼 = 1 − 𝛼 log 𝑎 and neglecting the finite terms, we obtain:  

2

3

𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
)

(2𝜋)𝑑 
𝑔𝜇𝜈𝑘̸2 −

1

3

𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
) 𝑑

(2𝜋)𝑑
𝑔𝜇𝜈𝑘̸2 +

4

3

𝑖𝜋
𝑑
2⁄  𝛤 (2 − 

𝑑

2
)

(2𝜋)𝑑
𝑘̸𝜇𝑘̸𝜈

−
2

3

𝜋
𝑑
2⁄  𝛤 (1 −

𝑑

2
)

(2𝜋)𝑑
𝑔𝜇𝜈𝑘̸2

=
4

3

𝑖𝜋
𝑑
2⁄  𝛤 (2 − 

𝑑

2
)

(2𝜋)𝑑
𝑘̸𝜇𝑘̸𝜈 −

4

3

𝜋
𝑑
2⁄   𝛤 (2 −

𝑑

2
)

(2𝜋)𝑑 
𝑔𝜇𝜈𝑘̸2                (3.32) 

(3.4)The Beta function 

Beta function (β(𝑔)) gives the rate at which the renormalized coupling constant 

changes as the renormalization scale (𝜇) is increased (Collins, 1984). 

β(𝑔) = 𝑔𝜇
𝜕

𝜕𝜇
(−𝛿1 + 𝛿2 + 𝛿3).                                                                                 (3.33)     

Where 𝛿 contain the contribution of all diagrams in figure 3.1.  
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𝛿1 = −
g2

16π2
 
Γ (2 −

d

2
)

(𝜇2)
(2−

d

2
)
(𝐶2(𝑅) + 𝐶2(𝐺))                                                              (3.34) 

𝛿2 =
g2

16π2
 
Γ (2 −

d

2
)

(𝜇2)
(2−

d

2
)
 𝐶2(𝑅)                                                                                      (3.35) 

 𝛿3 =
g2

16π2
 
Γ (2 −

d

2
)

(𝜇2)
(2−

d

2
)
(
5

3
𝐶2(𝐺) −

4

3
𝑛𝑔𝐶(𝑅))                                                      (3.36) 

Substitute 𝛿 in beta function equation we get: 

β(𝑔) = 𝑔𝜇
𝜕

𝜕𝜇
[−

g2

16π2
 
Γ (2 −

d

2
)

(𝜇2)
(2−

d

2
)
 (𝐶2(𝑅) + 𝐶2(𝐺)) +

g2

16π2
 
Γ (2 −

d

2
)

(𝜇2)
(2−

d

2
)
 𝐶2(𝑅)

+  
g2

16π2
 
Γ (2 −

d

2
)

(𝜇2)
(2−

d

2
)
(
5

3
𝐶2(𝐺) −

4

3
𝑛𝑔𝐶(𝑅))                                   (3.37) 

Now differentiate: 

𝛽(𝑔) =
−g3

16π2
Γ (2 −

d

2
) 𝜇

𝜕

𝜕𝜇
 (

1

(𝜇2)
(2−

d

2
)
) {[𝐶2(𝑅) + 𝐶2(G)] −  𝐶2(𝑅)

+ 
1

2
 (
5

3
𝐶2(G) −

4

3
ngC(R))}                                                             (3.38) 

𝛽(𝑔) =
−g3

16π2
(4 − 𝑑)Γ (2 −

d

2
) (

1

𝜇4−𝑑
)(

11

6
𝐶2(G) −

4

6
ngC(R))                   (3.39) 

Setting 𝑑 = 4 − ε. where ε small value, equation (3.39) becomes 
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𝛽(𝑔) = 

−g3

16π2
(4 − (4 − 𝜀 ))Γ (2 − (

4 − 𝜀

2
)) (

1

𝜇4−(4−𝜀 )
) (

11

6
𝐶2(G)

−
4

6
ngC(R))                                                                                                                  (3.40) 

𝛽(𝑔) =
−g3

16π2
(𝜀)Γ (

𝜀

2
) (

1

𝜇𝜀
) (

11

6
𝐶2(𝐺) −

4

6
𝑛𝑔𝐶(𝑅))                                       (3.41) 

So: 

𝛽(𝑔) =
−g3

16π2
(𝜀 ) (

2

𝜀 
) (

1

𝜇𝜀
) (

11

6
𝐶2(𝐺) −

4

6
𝑛𝑔𝐶(𝑅))

=
−g3

16π2
(2) (

1

𝜇𝜀
) (

11

6
𝐶2(𝐺) −

4

6
𝑛𝑔𝐶(𝑅))                                    (3.42) 

Therefore: 

𝛽(𝑔) =
𝑔3

16𝜋2
(−

11

3
𝐶2(𝐺) +

4

3
𝑛𝑔𝐶(𝑅))                                                              (3.43) 

Now considering the contribution from the Higgs boson, the equation (3.43) 

modified to: 

𝛽(𝑔) =
𝑔3

16𝜋2
(−

11

3
𝐶2(𝐺) +

4

3
𝑛𝑔𝐶(𝑅) +

1

3
𝑛ℎ𝐶2(𝑅))                                      (3.44) 
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(3.4.1) Calculation of the numerical coefficients 𝑏𝑖
𝑆𝑀 in the SM 

Now we are in the right position to calculate the numerical coefficients in the SM 

models (Collins, 1984). 

𝑏𝑖
𝑆𝑀 = −

11

3
𝐶2(G) +

4

3
ngC(R) +

1

3
nh𝐶2(𝑅)                                                         (3.45) 

Consider now the strong Interaction which is based on group SU(3); we have 

𝐶2(G) = 3,   ng = 3, C(R) = 1,  𝑛ℎ = 1, 𝑎𝑛𝑑 the Higgs has no color so 

𝐶2(R) = 0, therefore:  

𝑏3
𝑆𝑀 = −

11

3
× 3 +

4

3
× 3 × 1 + 0 = −7                                                      (3.46) 

For the Weak Interaction which is based on group SU(2)𝐿; we have  

𝐶2(G) = 2,     ng = 3,      C(R) = 1, 𝑛ℎ = 1,      𝐶2(𝑅) =
1

2
,we get:     

   𝑏2
𝑆𝑀 = −

11

3
× 2 +

4

3
× 3 × 1 +

1

3
× 1 ×

1

3
= −

19

6
                                           (3.47) 

Finally for the Electromagnetic Interaction Hypercharge U(1)𝑌; we have to replace 

in equation (3.43) C2(G), C(R)and C2(R) by (
Y

2
)
2
but gauge bosons have no 

hypercharge, so we set 𝐶2(G) = 0  

𝑏1
𝑆𝑀 =

4

3
𝑛𝑔 (

𝑌𝜓

2
)
2

+
1

3
𝑛ℎ (

𝑌Ф
2
)
2

                                                                   (3.48) 

Now using the hypercharge of all the standard model particles which can be found 

in any text book e.g. (Renormalization Group Analysis of the Kobayashi-Maskawa 

matrix), we get: 
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𝑏1
𝑆𝑀 = 

4

3
× 3 ×

1

2
(2 ×

1

36
× 3 +

4

9
× 3 +

1

9
× 3 + 2 ×

1

4
+ 1) + (

1

3
× 1 × 2 ×

1

4
)

+
1

6
=
41

6
                                                                                     (3.49) 

The factor 
1

2
 appeared in the above equation is representing the helicty. 

We use the SU(5) normalization, we end up with:                                                 

𝑏1
𝑆𝑀 =

41

6
×
3

5
=
41

10
                                                                                         (3.50) 

 (3.4.2) Calculation of the numerical coefficients 𝑏𝑖
𝑆𝑀+3𝑠𝑐𝑎𝑙𝑎𝑟𝑠 with 

additional scalars 

In this model we assume a part of the scalar Higgs boson there is two additional 

scalar bosons that is nh = 3. Note that the coefficients  𝑏3
𝑆𝑀 does not change only 

𝑏2
𝑆𝑀 and 𝑏1

𝑆𝑀 will be modified as follow 

𝑏2
𝑆𝑀+3𝐻𝑖𝑔𝑔𝑠

= −
11

3
(2) +

4

3
× 3 × 1 +

1

3
× 3 ×

1

2
=  

−16

6
                                 (3.51) 

And  

𝑏1
𝑆𝑀+3𝐻𝑖𝑔𝑔𝑠

=
4

3
× 3 ×

1

2
(2 ×

1

36
× 3 +

4

9
× 3 +

1

9
× 3 + 2 ×

1

4
+ 1)

+ (
1

3
× 3 × 2 ×

1

4
) =

43

6
                                                                     (3.52) 

With SU(5) normalization, we get: 
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𝑏1
𝑆𝑀+3𝐻𝑖𝑔𝑔𝑠

=
43

6
×
3

5
=
43

10
                                                                                       (3.53) 

(3.5) The Standard Model in five dimensions (Extra Dimension (EXD)) 

We will define the SM in a five dimensional flat space time, and the fifth 

coordinate is compactified in a circle of radius 𝑅, where 𝑅 is the size of the extra 

dimension, note that, the standard four-dimensional coordinates will be denoted 

by ( 𝑥𝜇) whereas the fifth-dimension coordinate will be represented by (𝑦).  As a 

result of compactification, each of the field expands into a series of modes known 

as Kaluza–Klein(𝐾̸𝐾̸) particles (N.~Maru, 2010). 

In the context of universal extra-dimensional (UED), basically we assume that all 

fields and gauge parameters are periodic functions on this coordinate and expand 

them in Fourier series with respect to it. In general, for a given field, one has: 

𝑓(𝑥, 𝑦) =
1

√2𝜋𝑅
𝑓0(𝑥) +∑𝑓𝑛+(𝑥)cos (

𝑛𝑦

𝑅
)

∞

𝑛=1

+∑𝑓𝑛−(𝑥) sin (
𝑛𝑦

𝑅
)

∞

𝑛=1

           (3.54) 

Where the zero modes 𝑓0(𝑥) represent the standard model particles and 

𝑓𝑛(𝑥) mode represents the extra dimension KK particles.  

We assume all the standard model particles can access the full space time. 

Therefore all the fields will have KK expansions. The zero-mode will be identified 

as the SM fields and the rest will be the excited KK modes and will contribute at 

energy ≥ 𝑅−1. 

The gauge coupling constants RGEs evolution in EXD are given by: 

16π2
dgi
dt

= bi
SMgi

3 + (𝑆(𝑡) − 1)bi
5Dgi

3                                                                    (3.55) 
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The beta-function coefficients bi
SM are those of the usual SM given in (3.47-50), 

which correspond to the zero-mode states, while the new beta-function coefficients 

bi
5D are given by  bi

5D = (
81

10
,
7

6
, −

5

2
)  comes from the excited KK states; and will 

be calculated in next section and, 𝑆(𝑡) = 𝑚𝑍𝑅𝑒
𝑡 = 𝜇𝑅 , is the sum of KK modes 

for  𝑚𝑍 < 𝜇 < Λ  (where Λ is the cut-off scale in which the theory is valid). 

(3.5.1) Calculation of the numerical coefficients 𝑏𝑖
5𝐷in Extra 

Dimensions 

In the same way that we used a beta function in the standard model, we used it here 

to prove that the beta function in extra dimensional models is given by: 

𝑏𝑖
5𝐷 = −

11

3
𝐶2(G) +

8

3
ngC(R) +

1

3
nh𝐶2(𝑅) +

1

6
𝐶2 (G)                         (3.56) 

The factor two different in the fermionic contribution in the SM and EXD because 

both sine and cosine will contribute, and the last term is representing the 

contribution from the A5 fields. Following the same procedures as we did for the 

SM case, we arrive at  

 𝑏3
5𝐷 = −

5

2
 , 𝑏2

5𝐷 =
7

6
 𝑎𝑛𝑑  𝑏1

5𝐷 =
81

10
                                                             (3.57) 

 (3.5.2) Calculation of the numerical coefficients 𝑏𝑖
5𝐷 in 5D plus 

additional adjiont scalars 

If assume that we have four scalar bosons transforming in the adjoint 

representation, the last term in equation (3.56) will be changed to  
4

6
𝐶2 (𝐺) 

𝑏𝑖
5𝐷+4𝑠𝑐𝑎𝑙𝑎𝑟𝑠 = −

11

3
𝐶2(𝐺) +

8

3
𝑛𝑔𝐶(𝑅) +

1

3
𝑛ℎ𝐶2(𝑅) +

4

6
𝐶2 (𝐺)        (3.58) 
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In a similar manner, we obtain: 

𝑏3
5𝐷+4 = −1,     𝑏2

5𝐷+4 =
13

6
   𝑎𝑛𝑑 𝑏1

5𝐷+4 =
81

10
                                        (3.59) 

(3.6) Pati-Salam (PS) model 𝑺𝑼(𝟒) × 𝑺𝑼(𝟐)𝑹 × 𝑺𝑼(𝟐)𝑳in 4D 

In Pati- Salam (J.C. Pati and A. Salam, 1974), the one loop beta coefficients for a 

𝐺1 × 𝐺2 gauge group are given by the following equation: 

bi
𝑃𝑆 =

2

3
T(R1)d(R2) +

1

3
T(S1)d(S2) −

11

3
C2(G1)                                 (3.60) 

Where (𝑅1, 𝑅2) is the fermions representation and (𝑆1, 𝑆2) is the scalars 

representation.  The other symbols that appeared in the above equation(3.60) are; 

𝑇(𝑅𝑖) denotes the Dynkin index of the representation 𝑅𝑖, 𝑇(𝑆𝑖) is the Dynkin index 

of the representation 𝑆𝑖, 𝐶2(𝐺𝑖 , ) is the quadratic Casmir operators of the group 𝐺𝑖, 

𝑑(𝑅𝑖) and 𝑑(𝑆𝑖) are the dimensions of the representation 𝑅𝑖 and 𝑆𝑖 respectively.   

Considering the theory with gauge group PS: SU(4) × SU(2)R × SU(2)L × Z, 

where Z represents the parity in which L ↔ R, we have three family in 

representation of fermions (4,2,1) ⊕ (4,̅  2, 1) plus scalars in (1, 2, 2) ⊕

(10, 3, 1) ⊕ (10,̅̅ ̅̅  1, 3). Here we associate SU(4) with G1 and SU(2)R with G2 and 

SU(2)L with G3. Thus R1 and S1 denote the corresponding representation of SU(4) 

and the rest will follow. Now plugging all the ingredients in the above 

equation(3.60) we obtain: 
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𝑏𝑆𝑈(4) =
2

3
(
1

2
× 1 × 2 +

1

2
× 2 × 1) (3)

+
1

3
(3 × 1 × 3 + 0 × 2 × 2 + 3 × 3 × 1) −

11

3
× 4

= −
14

3
                                                                                         (3.61) 

Now we associate SU(2)R with G1 and SU(4)  with G2 and SU(2)L with G3. Thus 

R1 and S1 denote the corresponding representation of SU(2)R , therefore  

𝑏𝑆𝑈(2)𝑅 = 

2

3
(0 × 4 × 2 +

1

2
× 4 × 1) (3) +

1

3
(2 × 10 × 1 +

1

2
× 1 × 2 + 0 × 10 × 3)

−
11

3
(2)

=
11

3
                                                                                              (3.62) 

Finally, we identify SU(2)L with G1 and SU(4)  with G2 and SU(2)R with G3. Thus 

R1 and S1 denote the corresponding representation of SU(2)L , thus: 

𝑏𝑆𝑈(2)𝐿 = 

2

3
(
1

2
× 4 × 1 + 0 × 4 × 2) (3) +

1

3
(0 × 10 × 3 +

1

2
× 1 × 2 + 2 × 10 × 1)

−
11

3
(2)

=
11

3
                                                                                              (3.63) 
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(3-7) Pati-Salam model 𝐒𝐔(𝟒) × 𝐒𝐔(𝟐)𝐑 × 𝐒𝐔(𝟐)𝐋 in 5D 

Consider now Pati-Salam model in five dimensional, as we saw in 5D SM there 

will be and additional contribution from A5 loop and keep in mind that the 

fermions expansion comes with sine and cosine as result there will be an additional 

factor two in front of the fermionic contribution, thus we obtain 

bi
5𝐷𝑃𝑆 =

4

3
T(R1)d(R2) +

1

3
T(S1)d(S2) −

11

3
C2(G1) +

1

6
C2(G1)                    (3.64) 

Using the same numbers as in 4D PS model we get 

𝑏𝑆𝑈(4) = 

4

3
(
1

2
× 1 × 2 +

1

2
× 2 × 1) (3) +

1

3
(3 × 1 × 3 + 0 × 2 × 2 + 3 × 3 × 1) −

11

3
(4)

+
1

6
(4) = 0                                                                                             (3.65) 

𝑏𝑆𝑈(2)𝑅 = 

2

3
(0 × 4 × 2 +

1

2
× 4 × 1) (3) +

1

3
(2 × 10 × 1 +

1

2
× 1 × 2 + 0 × 10 × 3)

−
11

3
(2) +

1

6
(2) = 8                                                                           (3.66) 

𝑏𝑆𝑈(2)𝐿 = 

4

3
(
1

2
× 4 × 1 + 0 × 4 × 2) (3) +

1

3
(0 × 10 × 3 +

1

2
× 1 × 2 + 2 × 10 × 1)

−
11

3
(2) +

1

6
(2) = 8                                                                           (3.67) 
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Chapter Four 

 

Numerical Results, Discussions and Conclusion 

 

(4.1) Introduction 

This chapter devoted to our numerical results and discussions for the SM, 5D SM, 

4D Pati-Salam model as well as its extension in extra dimension models. We used 

the method of the RGEs at on-loop level for gauge coupling constants in the SM 

and Pati-Salam models as well as their extension in extra dimensions; we obtained 

a set of RGEs and solved them numerically by using the software Mathematica 

version 9and numerical results are shown here.  

(4.2) Numerical results and discussions 

We used the initial values adopted at the MZ scale as follows: for the gauge 

couplings g1(MZ) = 0.462, g2(MZ) = 0.651 and g3(MZ) = 1.22. 

 

Figure 4.1: Show the running of the gauge coupling constants in the SM 
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Figure 4.2: Show the running of the gauge coupling constants in the5D SM 

In theory of extra dimensions case the SM fields are identified as the zero modes  

and their result is given in figure 4.1 and figure 4.3 respectively; and Kaluza-Klein 

(KK) modes will be our new states, so they will contribute to our RGEs and their 

effect is presented in figure 4.2 and figure 4.4. As can be seen from figure 4.3 for 

 MR = 1011GeV there is unification at Λ = 1013GeV. 
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Figure 4.3: Show the running of the gauge coupling constants in 4D Pati-Salam 

model with MR = 1011GeV.   

 

Figure 4.4: Show the running of the gauge coupling constants in 5D Pati-Salam 

model with MR = 107GeV and the compactification scale 
1

𝑅
= 106GeV 
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(4.2) Conclusion 

We have considered 5D orbifold SM and Pati-Salam models and within them we 

have addressed the unification issues. Orbifold constructions give an attractive 

resolution of several outstanding problems of grand unified theories (GUTs), but 

some extensions are still needed to have full control of difficulties which even 

appear outside GUTs. Essentially in thesis dissertation we have addressed the 

question of gauge coupling unification, which in the presence of KK states gets 

new facets. The effect of these new states as shown in figure 4.3 is power law 

unification. We have considered the Pati-Salam 𝑆𝑈(4) × 𝑆𝑈(2)𝑅 × 𝑆𝑈(2)𝐿 GUTs, 

and we derived the one loop renormalization group equations for various scenarios 

i.e SM, 5DSM, PS, 5DPS. Within 𝑆𝑈(4) × 𝑆𝑈(2)𝑅 × 𝑆𝑈(2)𝐿, low scale 

unification can take place is also possible, in some cases the 𝑆𝑈(4) × 𝑆𝑈(2)𝑅 ×

𝑆𝑈(2)𝐿 predict colored triplet states in the few TeV range.  

 

(4.3) Recommendation  

To extend this work, we recommend that one may wish to consider other GUTs 

models or do the calculation for up to two loop order. 
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