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Abstract

The standard model of particle physics is currently an accepted theory at low
energies; however, it doesn’t address the unification of gauge coupling constants.
In this dissertation, the renormalization group equations at one loop order in the
standard model, both in 4D and 5D, in addition to Pati-Salam model (4D and 5D)
have been studied. We found, both analytically and numerically, that a natural and
successful gauge coupling unification could be achieved in 4D Pati-Salam model
with Mg = 10'1GeV, and that the unification occurred there at A = 103GeV;

further in and 5D Pati-Salam model a unification occurred too with Mg = 107 GeV
and compactification scale % = 10%GeV at high energy scale, these results show

that the gauge coupling constants are almost unified at high energy in Pati-Salam

model.
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Chapter One

General Introduction

(1.1) Introduction

Unification of the forces of nature is one of the most important ideas in the
fundamental physics of the twentieth century. Early attempts at a unified field
theory, including gravity and electromagnetic interactions, were in hindsight
premature (T.~Kaluza, 1921). However, the Standard Model, describing with
remarkable success the strong, weak and electromagnetic interactions of the three
known families of quarks and leptons, seems to provide a much more propitious
starting point for unification (A.D.Martin, 1984). It is entirely possible that there
are no new low energy gauge interactions. Moreover quarks and leptons appear to
be equally fundamental and elementary. Finally, the merging of the three low
energy gauge couplings at a high energy scale Mg, = 101°GeV provides
significant evidence for a grand unification within four dimensional models (L. J.
Hall and Y. Nomura, 2002).

A higher dimensional gauge theory is non-renormalize able and should be defined
as a cutoff theory in which the theory is valid (L. J. Hall and Y. Nomura, 2002).
This implies a highly sensitive dependence on an unknown short distance physics.
This is a problem for gauge coupling unification if it affects how the difference of

any two gauge couplings runs above the compactification scale.



(1.2) The importance of the research

The ultimate goal in particle physics is the unification of the well-known four
forces (weak, electromagnetic, strong and gravity).

(1.3) The main objective of the research

The main purpose of this is dissertation is to unify the gauge coupling constants in
Pati-Salam model in extra dimension.

(1.4) The outline of the research

This research project is constructed as follows: In chapter one we gave a concise
introduction; in chapter two we studied the Standard Model of particle physics
with some details; meanwhile, in chapter three we dealt with the Renormalization
group equations and Beta function, and finally, in chapter four we presented our

numerical results, discussion and conclusion.



Chapter Two

The Standard Model of Particle Physics

(2.1) Introduction

In this chapter, we will present the complete studies of the standard model and its
mathematical construction, and then we will discuss the Higgs mechanism knows
as spontaneous symmetry breaking, which had led to understanding of how

elementary particles obtain their masses.
(2.2) Definition of standard model (SM)

The SM is a gauge theory, based on the symmetry group SU(3), X SU(2), X
U(1)y so far provides the most accurate description of nature at subatomic level. It
is based on the quantum theory of fields (J.donoghue, 1994). In quantum field
theory there is one field for each type of particle, i.e. matter particles and force
particles. SM describes strong, weak and electromagnetic interactions, via the
exchange of the corresponding spin-1 gauge fields: eight massless gluons and one
massless photon, respectively, they stand for the strong and electromagnetic
interactions, and three massive bosons, W=*and Z, stand for the weak interaction;
while, fermionic matter content is given by the known leptons and quarks
(A.D.Martin, 1984).

(2.3) Classification of elementary particle

The particles that have been identified in high-energy experiments fall into distinct

classes: They are, the leptons (Electron, Neutrino, and Muon) all of which have



spin% and they may be charged or neutral. The charged leptons encounter

interactions of both electromagnetic and weak nature, meanwhile the neutral ones
encounter a weak interaction (A.D.Martin, 1984). There are three well-defined
lepton pairs, thes electron (e™) and the electron neutrino(v, ), the muon(u) and the
muon neutrino (v,)and the tau (z~) (the much heavier charged lepton) and it tau
neutrino (v;). And all these particles have antiparticles, in accordance with the
predictions of relativistic quantum mechanics “lepton-type” conservation laws,
which state that: the number of plus, the number of minus and the number of the
corresponding antiparticles is conserved in weak reactions; and similarly for the
muon and tau-type leptons. These conservation laws should be followed
automatically in the standard model if the neutrinos are massless. However,
recently evidence for a tiny nonzero neutrino masses subtle violation of these
conservations laws has been observed.

(2.4) Lagrange of the standard model

In order to obtain the Lagrangian of SM we started from the free particle
Lagrangian and replaced the ordinary derivative by the covariant derivative in

order to have local gauge invariance (A.D.Martin, 1984).

LSM = LGauge + LFermion + ['Higgs + LYukawa (2-1)

(2.4.1) The fermions sector

The fermions matter content is given by the known leptons and quarks, which are

organized in a three-fold family structure (A.D.Martin, 1984):
1/ Leptons:

o Left lepton:

= () () e (),



e Right lepton:

IR = erHRTR
2/ Quarks:

o Left quarks:

L= (Z)L 15t (SC‘)L 2nd (Z)L 37

¢ Right quarks:

qr = URdRCrSrtrbR
Fermions are described by the Dirac equation:
Lrermions = L Yy*Dyh — myip (2.2)
(2.4.2) The bosons sector

The gauge fields lagrangian is given by (A.D.Martin, 1984).

Loauage = Bl 7 BB = 3 Wy W = 3 Gy G 23)

Where:

e Electromagnetic field strength tensor is:

B

Y
w = 0,B, — 0,B, + g’z B, B, (2.4)

e \Weak interaction field strength tensor is:
M/;w = auVVv - avM/u + gTaI/VuaVVva=1"3 (2.5)
e Strong interaction field strength tensor is:

G = 0,G, — 8,G, + g;T*G,*G,* " (2.6)



(2.5) Higgs mechanism (spontaneous symmetry breaking)

The Higgs mechanism is an important part of the Standard Model of particle Physics; it
provides masses for the gauge bosons of the weak interaction and for fermions. The
electroweak theory in which the Higgs mechanism plays a prominent role had a
ssconvincing experimental verification. The Higgs mechanism is generally described as a
case of spontaneous symmetry breaking. Therefore, the put that the Higgs mechanism can

take in the lagrangian of the SM is as follows (Quigg, 2007):

1
LHiggs = _E(Du(p)T(Du(p) - V((l)) (2.7)
Where

The Higgs potential is given by

2 A
V() = - ¢'p - 79" (28)

Therefore equation (2.7) becomes

LHiggs = _%(Dugl))T(Duqb) + M?qu*qb + %9’54 (2.9)
Take the first derivative of V(¢) :

% - ) - M) = 0 (2.10)
ap M '
We get:

(—u* — Up*N{p) =10 (2.11)

This equation has two solutions

(¢p) = 0(Trivial solution) (2.12)



Or:

—u? — M¢p?) =0 (2.13)
Therefor:

(%) = _TMZ (2.14)
Therefore:

(p) == —H_ v (2.15)

Which contains two new real parameters u and A we require A > 0 for the potential to
be bounded; otherwise the potential is unbounded from below and there will be no stable

vacuum state. But u takes the following two cases:

« u? > 0 Then the vacuum corresponds to ® = 0, the potential has a minimum at the

origin as picture figure 2.1.

« u? < 0 Then the potential develops a non-zero Vacuum Expectation Value (VEV) and

the minimum is along a circle of radius :;—E = % as depicted in figure 2.2.



We set 1=0.129, m,=125 GeV and |-4?| = (88.0 GeV)?

V(®@)x(10*GeV)?
o

2300  -200  —100 0 100 200 300
||
Figure 2.1: The Higgs potential V(&) with, the case u? > 0; as function of |®| =

ot



We set 1=0.129, m,=125 GeV and |-4?| = —(88.0 GeV)?

V(®@)x(10*GeV)?
o

2300  -200  —100 0 100 200 300
||
Figure 2.2: The Higgs potential V(@) with, the case u? < 0; as function of|®| =

dtP
Where v is known as the vacuum expectation value (VEV), v=246 GeV.

Hence we can choose the Higgs fields as

¢ = \/—15(2) (2.16)



(2.6) The Higgs boson mass

Fundamental scalar field with self-interactions (H.~-U.~Yee, 2003):

V= —%uzd)*d) +% Aptp)’ (2.17)
_1r0
b = Ti(h+v) (2.18)

Since ¢ is the complex conjugate of ¢:

¢t = \/—17(0 h+ ) (2.19)

Plug equations (2.18) and (2.19) in equation (2.17) we obtain the mass of Higgs boson:
my =V2AvZ and my = \/Z_uz (2.20)
Where:

A Is the Higgs self-coupling parameter in V (¢).

(2.7) The fermions masses (Yukawa interaction)

A fermonic masses term £L,, = —myp = —m(P,Pr + PYrY,) is not allowed,
because it breaks the gauge symmetry however, since we have introduced an
additional scalar doublet into the model, and write the following gauge-invariant
fermions-scalar coupling (Falcone, 2002).

From Yukawa interaction:

Lyukawa = Yl/_)Ld)l/JR +h.c.= mllﬂ/;Ll/)R (2.21)

Can be written also as:

10



Lyukawa = YuqLPqr + YuqrLo qr + Yel_L Plg (2.22)

Now using equation (2.16) we obtain

Y - Y, _
Lyukawa = \/_% (ﬁL dL) (2) dg + T% (ﬂL dL) (g) Ug

Ye _ _ /0
+ \/_E (UL eL) (‘U) eR (223)
Therefore:
Yd - Yu — Ye —
Lyukawa = ﬁvdeR + ﬁvuL ug + ﬁveleR (2.24)

Compare equation (2.24) with equation (2.21) we obtain the masses of the

quarks (u, d) and lepton(e):

myg=—v ,my = v, m,=—v (2.25)

V2

(2.8) The gauge bosons masses

To obtain the masses for the gauge bosons we need to study the scalar part of; the
lagrangian (P.~W.~Higgs, 1964).

1 t
L=>(Du) (D) = V() (2.26)

Where:

D,is the covariant derivative and given by:
R £
D, = (6” + igT* W, + lngu) (2.27)

11



T W2 = TW! + T?W?2 + T3W} (2.28)

o
Te = — (2.29)
2
1/ 0 wl 0 —iw2\ (WE 0
T W, =< 1 Ll R + 3
2 % 0 lVVM 0 0 —%
1 w3 wl—iw?
=-( o e (2.30)
2\W2 + w2 W
B, 0
B, = ( 0 Bﬂ) (2.31)
Putting equations (2.30) and (2.31) in equation (2.27)we get:
1 w3 wl—iw?2 Y, /B 0
D, = ig= " " " +"—¢(“ ) 2.32
u lg 2 <VVM1 + lVV‘uz _%3 ) lg 2 0 BM ( )
1 w3 wl—iw? 1/B, O
D, = [ig= # # # +"—(“ ) 2.33
u (lg 2 <V|/Ml + lVV”Z _VV”3 ) Lg 2 0 Bﬂ ( )
i w3 Wl —iw?2 i (GB, O
== % g(Wi — W) (T ) (2.34)
2\g(Wt +iw2)  —gWi 2\ 0 g5,
[ W3+ gB wl—iw?2
Dﬂ=<_<g hT I 9 “ ,“)>> (2.35)
2\g(W +iw2) —gW?+ gB,

And if the covariant derivative in(2.35)operator in a function ¢ and we substitute
for ¢ as it defined in equation (2.15) we obtain:

D,

i < gwW2 + 4B, g(Wi - in)) (©) (2.36)

C2V2\g(W! +iW2) —gW32 + gB,

12



1 (igv(Wi —iw?) )

D,p =——= 2.37

k® 22 (iv(—gW,f‘ +gB,) (237)
Since (DH¢>)+is the complex conjugate of D, ¢:

1
(0,9)" === (—igo(Wt + W2) —iv(-gWg? - 48,)) 239)
2V2

Therefor:
(D#qb)T(D#qb) =
—(—igv i —iv(gW; — g , ) :
8 # # K #2\iv(-gW,2 + ¢B,)
Define W~ = (W} — iW;2) andW,; = (W + iW,2), we get:
(D#qb)T(D#qb) =
1 igvW,~
= 7 + i 3 _ yé
8( igvW, iv(gW? — gB,)) <iv(—gW#3 N gB#)> (2.40)

1
(Du‘»b)Jr(Du(»b) = §(92v2%+%_ + vz(ngf - g’Bu)(—ngf + gBM)) (2.41)
Therefore the mass of the Whoson is:

1 1

= 2922 > mys = gv (2.42)

2
mWJ_,

We will not derive the mass of the Z boson here as can be found in any text book,

e.g. (Broken symmetries, massless particles and gauge fields).

13



Chapter Three

Renormalization Group Equations and Beta function

(3.1) Introduction

In this chapter, we will discuss the Renormalization Group Equations and we will
calculate the numerical coefficients values of Beta function for gauge couplings in
the standard model, extra dimension model and Pati-Salam model (J.C. Pati and A.
Salam, 1974) SU(4) X SU(2)r X SU(2),, at one loop order (A.J.G.hey, 1993).

(3.2) Renormalization Group Equations (RGEs)

The generic structure of the one loop RGEs for the three gauge couplings constants
of the standard model (SM) is given by (A.~Abdalgabar, 2013):

dg; .
2290 _ pigs (3.1)

16
Tt

Where t = In(u/M;) and contains the energy scale parameter u. We chose to use
the Z mass as a reference scale, so that for u = M, we have t = 0 and we can fix
the initial conditions of the running. The coefficients b' will be calculated for
various models.

(3.3) Gauge correction in the standard model at on loop

We will consider first correction the gauge coupling in the standard model in
details and the calculation of other models will follow (Weinberg, 1996). The

correction of gauge couplings constants receives contributions from the diagrams

14



in Figure 3.1. The numerical coefficients b' appear in equation (3.1) can be
calculated from the Feynman diagrams presented in figure (3.1). In this work we

do not calculate all the diagrams (only their result will be given in next section

(Beta function)). We will give a detailed calculation for one diagram, i.e. figure
(3.1 b).

p+k b4
a, 1 a,
b,v a bv Ml),u
AVAVAV, p+k
p
(a)

p

’/‘L
p+k
()]

(o)

N
o b¥ f\f\/\,\/ /‘fv\/\J
(@) T Tk

Figure 3.1: Diagrams contributes to the gauge correction in the Standard model

Now convert the diagram in figure (3.1.b) by using Feynman rules as
dp i
(2m)?y —m

[

— ngr(TaTb)j (Czlj:)?d Tr <yu (;i—:lz) v ((pﬁ_+kl;’2+_mm2)> (3.3)

From equation (3.3) take the Tr(y* (@ + m)y* (¥ + K + m)) to be N, and let

l,, =Tr igyHT®

m = 0 we obtained the:

Ny = Tr(y*Fov" W+ K)) = Tr(y*yPy 'y )p,(p + k) (3.4)

15



To evaluate the above equation we must use what is so called trace technology
(McMahon, 2008)

Tr(y*yPy*y%) = 4(g"*g"" — 9" g*° + g"*g") (35)
Now substituting equation (3.5) into equation (3.4) we obtain:
NHY = 4(ghPg™ — g"gP? + ghogP)p, (p + K)g (3:6)
After a little algebra the above equation becomes:

= 4(pt (" + k) — g*'p(p + k) + p” (" + k) (3.7)

Substitute equation (3.7) in equation (3.3) yields:

NHY
— 2 aTb
=80T [ 557 (= —r =) (3.8)
Define:
b=p?>-m? a=@pm-k)?-m?  Tr(T°T?) = C,(R) (3.9)
Substituting equation (3.9) in equation (3.8) we get:
2 NI«W
Cz(R)j 2n )d ) (3.10)
(3.3.1) Feynman parameterization Technique
In order to evaluate the integral presented in equation (3.10), we employ the
Feynman technique which is given by (Weinberg, 1996)
1
L _ f d ! 3.11
ab Z(b+(a—b)z)2 (3.11)
0

16



Using equation (3.11), equation (3.10) becomes:

d%p 2 N®v
Iy = gZCZ(R)j(ZT)dJ. dz b+ @=Db)2)? (3.12)

Now consider the denominator in equation (3.12)
(b + (a—b)z) =p? —m? — 2pkz + k?z (3.13)

Let us redefine p = q+ kz, dp = dq and substitute it in equation (3.13) we

obtain
(q + kz)> —m? —2(q + k2)kz + k?z =

q? + 2qkz + k?z? —m? — 2qkz — 2k?z% + k?z = q* — k?z2 —m? + k?z
=q*>+k%*z(1 —z) —m? (3.14)

Now let us rewrite a as: a = k?z(1 — z) — m?and plug it in equation (3.14) the
equation, it becomes g + a and substitute this in equation (3.12), the integration

becomes:

far M@ @19

, [ d%
Iy =9 C,(R) f 2n)d z (9% + a)2

0

Similarly the numerator N#V with this change of variable becomes:

17



N*Y =4[(g* + k*z)(q* + k¥z+ kY) — g™ (q + kz)(q + kz + k)
+ @V + kVz)(qg* + ktz + k)]
= 4[q"tq"+q*kVz + q*kY + kHq¥z + k*kVz? + kPkVzZ — g'vg?
— 9" qkz — g""qk — g""kqz — g*"k*z* — g*"k*z + q"q"
+ qVkHtz + q"k* + kVqHz + kVkHZ?
+ ki 7] (3.16)

Keeping only terms which is quadratic in g as odd power in q gives zero in the

Integration we arrive at.
NW = 4[2q*q" + 2z*kFkY + 2zk*kY — g*Vq* — g"'k?z(z + 1)] (3.17)

Substitute equation (3.17) in the integer and in equation (3.15):

[o's) 1
dq 8q"q”

_ 2 -

hov = 97C2(R) f @n) f dz ((qz T o)
— 00 0

8z%kHFkY + 8zkHkY — 4g*Vk?z(z + 1) — g*q?
+
(g + a)?

(3.18)

To evaluate the above integrals, we will compare them with the standard integrals

(3.3.2) Standard Integrals

o

. dy d .

[TpmY imr 2" {n———1)g"

jddq 77 (-3 _ ) (3.19. (1))

Jo @ +a) 2r(n)a’ "z

% , d/zl_.( —2—1)
q> I n—s; d
d —
j G o = e g (3.19. (1))

— 00

18



q 2 -
Jo @ tan a

s w21 (n— ¢
fdd 1 g ZF(n 2) (3.19(1ID)

d
n__
2

Comparing equation (3.18) with the standard integrals in equation (3.19) we

get:
. fmdd ¢ 4in/2 1 (1 ) g* .
J q(qz n a)z - al_g ( . )
* Y _4a
8zkH*kV(z+ 1) j dq ; = 8zk*kV(z+ 1) m el (2 2) (3.21)
(9% + a)? a3
* i _a
49 | dg A Gt I (3.22)
J o7 (@*ta)? 2 als
* i _4a
49" k?z(z + 1) j dq 1 = 4g"k%z(z+ 1) e F(Z 2) (3.23)
(q* + a)? a2

Plugging all the ingredients in our desired integrals we obtain:

o

j o 4204 + 227 KA + 22KHKY — gH'q? — g2z + 1)
! (¢7 + a)?

— 00

19



4in’l2 (1 — %) gty

in2 (2 - g)

7 + 8zk*kV(z +1) —=
a2 a2
in2r(1-5) ¢
— 4gmv 2 .
2 1-=
a 2
in2r(2-%)

— 4gMk%z(z+ 1) =

a” 2
Substitute equation (3.24) into equation (3.18):

g dz lﬂd/zf(l—g) in /ZF(l—g)d
j 2m)d 4g"" a 29" d
) (2m) a3 a5

in2r (2 - %)
+ 8zk*kV(z+ 1) -
a® 2
in2r(1-5)
—4g"k*z(z + 1) —Z
a” z
Now the first term upon integration on z, gives us:

: dz in /ZF(l——) 49" /21”(1—3) :
j > )d 4g,uv -~ = f dz
) (2w A3 a3 ) al
Rewrite
al_g =a*"z.a!

20
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(3.25)

(3.27)



We get:

4gHV k% /zr 1-%) 4gwk2nd/zr(1—5) 1 1
jdz(z—z 2 ( )

_ - _Z
(2m)4 a?” (2m)¢ a2 2 3

_ 4gwi?n2r (1-5) (1) _a2m Yar(1- —)

_ - gV (3.28)
(2m)d a*" 2 (27T)d 2=
The second term gives us:
b dy in2r(1-5)d\ —2g*k*n%2r(1-5)d [
f 274 —2g" T = —= sz(z—zz)
0 (2m) a'"z (2n)d a*" 2 1
—Zg‘“’kznd/zf(l—g)d 1 17Td/21”(1—g)d
_ 2 (g) = 2/ ghvie? (3.29)

(2m)4 a? (2m)4 a?” 2

The third term gives:

1 . dy _d
j dz 8zkHkV(z+ 1) mel (2 )

(2m)4 2-4
0

a 2

ind/z r (2 B g) 0 dz (Zz + Z) = 8kHkV ir[d/z r (2 B g)

1 1
= 8Kk (5+3)
2—% 4 (Zﬂ)d (zn)daz—g 3 2

a

ind/ZF(Z — g) 1
B (5)
41.7'[ Uz F(Z — —)
~3

kMK (3.30)
(2m)4a’
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The last term gives us:

()
—4g*Vkz(z+ 1

of (2m)4 g ( ) az—g

. d a4\ 0
= —4g"'k? e (1 2) i (2% +2z)

az—g J (2m)4

ind/zf(1—2) 1 1 ind/ZF(l—g) 1

=k o (5+3) = 0 = (5)
(2m)4a* "z (2m)4a* "z
ynlor(1-9)

- _Z 27 ghvi2 (3.31)

d
3 (2m)¢ a2

We have used a® = 1 — alog a and neglecting the finite terms, we obtain:

/ _Z a/ _4a i/ _d
En 2F(1 Z)ngZ_ln 2F(1 Z)dg“"k2+§m ZF(Z Z)k“k"
3 (2m)d 3 (2m)4 3 (2m)d
a/ _4a
_zn 2 F(l 2) ngz
3 (2m)4
b (d) artr(eed)
S u,v _ _ uv
3 2m)a kH*k 3 2m)d gtk (3.32)

(3.4)The Beta function

Beta function (B(g)) gives the rate at which the renormalized coupling constant

changes as the renormalization scale (u) is increased (Collins, 1984).
d
B(9) = g5 (=81 + 8, +85). (3.33)

Where § contain the contribution of all diagrams in figure 3.1.
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¢ 19

6, = — :

1 1612 ( 2)( __) (CZ(R) + CZ(G)) (3 34)
_ e T(2-3)

5 =12 ppeE C,(R) (3.35)

83 =7 61T (Z_g)< C,(G) — ngC(R)> (3.36)

Substitute ¢ in beta function equation we get:

¢ 129

d
B(g) = g#ﬁ[_ 1612 ( 2)( __)

g2 T(2-3)(s LA ;
= e =C2(6) =3 CR) (3.37)

2 r(2-4¢
gﬂz ( Zd) CZ(R)
w2

(C,(R) + C,(®)) +

Now differentiate:

b =5 (2= ) [ —— {[CZ<R)+CZ(G)]— C.(R)
2/ au (#2)(2‘5)
1 5 4
+5 (—CZ(G) ~n C(R)>} (3.38)
—g3 d 1 11 4
p9) = 15z 4~ (2-3) (=a) ( 6:(6) - C(R)) (3:39)

Setting d = 4 — &. where & small value, equation (3.39) becomes
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B(g) =

16 > (4 (4—¢))r (2 _ (4 ; 8)) (#4_(14_8)) (% C,(G)

4
- gngC(R)>

B(g) = Tom 2(e)F( ) (:)(11 CZ(G)—anC(R)>

So:

80 = 180 (3) () (@ - grocm)
- 1_52 (2) (%) (11 C,(G) — 4ngC(R)>

Therefore:

80) = 1 (- 3 (0 + 3nC®)

Now considering the contribution from the Higgs boson, the equation (3.43)

modified to:

3

g (1 4 1
HORE = (—?czm) +3mC(R) + gnhczm))
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(3.4.1) Calculation of the numerical coefficients b in the SM

Now we are in the right position to calculate the numerical coefficients in the SM
models (Collins, 1984).

o 11 4 1

Consider now the strong Interaction which is based on group SU(3); we have

C,(G) =3, ng = 3,C(R) =1, n, = 1,and the Higgs has no color so
C,(R) = 0, therefore:

11 4
b35M=—?><3+§><3><1+0=—7 (3.46)
For the Weak Interaction which is based on group SU(2);; we have

1
C;(G)=2, ng=3, CR)=1Ln,=1 (C(R)= 5 we get:

bsM = 11><2+4><3><1+1><1><1— L (3.47)
z2 3 3 3 3 6 '

Finally for the Electromagnetic Interaction Hypercharge U(1)y; we have to replace
2
in equation (3.43) C,(G), C(R)and C,(R) by (;—() but gauge bosons have no

hypercharge, so we set C,(G) = 0

4 Yp\2 1 (Yp\®
=3 (3) +3m(3) G4

Now using the hypercharge of all the standard model particles which can be found
in any text book e.g. (Renormalization Group Analysis of the Kobayashi-Maskawa

matrix), we get:
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SM _
by™ =

4 1 1 4 1 1 1 1
—><3x—(z><—><3+—><3+—><3+2><—+1)+<—x1><2><—)

3 2 36 9 9 4 3 4
b= 3.49
6_6 (' )

The factor % appeared in the above equation is representing the helicty.

We use the SU(5) normalization, we end up with:

41 3 41
SM _ g
by" = c ><5 10 (3.50)

3.4.2) Calculation of the numerical coefficients pSM*3scalars yith
( i

additional scalars

In this model we assume a part of the scalar Higgs boson there is two additional
scalar bosons that is n;, = 3. Note that the coefficients b3™ does not change only

b>M and b;™ will be modified as follow

. 11 4 1 1 —16
pSMA3HIGGS _ T () 1 —x3X14-—X3X—= — 3.51
And

. 4 1 1 4 1 1
bSM+3H‘ggS=—><3><—<2><—><3 —X3+-X3+2x~— 1)

1 3 2 36 <O TgXoTgxataxys
+(1 3 %2 1) 43 3.52
=X3X2X=)=— :
3 4 6 (3.52)

With SU(5) normalization, we get:
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; 43 3 43
SM+3Higgs
= — X == .
b; c X< 1o (3.53)

(3.5) The Standard Model in five dimensions (Extra Dimension (EXD))

We will define the SM in a five dimensional flat space time, and the fifth
coordinate is compactified in a circle of radius R, where R is the size of the extra
dimension, note that, the standard four-dimensional coordinates will be denoted
by ( x*) whereas the fifth-dimension coordinate will be represented by (y). As a
result of compactification, each of the field expands into a series of modes known
as Kaluza—Klein(KK) particles (N.~Maru, 2010).

In the context of universal extra-dimensional (UED), basically we assume that all
fields and gauge parameters are periodic functions on this coordinate and expand
them in Fourier series with respect to it. In general, for a given field, one has:

FGy) = ==F"C0 + DI wees(gy+ ) sin() @50

Where the zero modes f°(x)represent the standard model particles and
f™(x) mode represents the extra dimension KK particles.

We assume all the standard model particles can access the full space time.
Therefore all the fields will have KK expansions. The zero-mode will be identified
as the SM fields and the rest will be the excited KK modes and will contribute at

energy = R~

The gauge coupling constants RGEs evolution in EXD are given by:

dg;
16m? d—t‘ = bMg? + (S(t) — 1)b}Pg? (3.55)
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The beta-function coefficients b™ are those of the usual SM given in (3.47-50),
which correspond to the zero-mode states, while the new beta-function coefficients
81 7 5

10,6,—5) comes from the excited KK states; and will

b?P are given by bP = (
be calculated in next section and, S(t) = myRe® = uR , is the sum of KK modes
for m, < u < A (where A is the cut-off scale in which the theory is valid).
(3.5.1) Calculation of the numerical coefficients b?”in Extra

Dimensions

In the same way that we used a beta function in the standard model, we used it here

to prove that the beta function in extra dimensional models is given by:
b3l = —%CZ(G) +§ngC(R) +§nhcz(R) +%C2 (G) (3.56)

The factor two different in the fermionic contribution in the SM and EXD because
both sine and cosine will contribute, and the last term is representing the
contribution from the A fields. Following the same procedures as we did for the

SM case, we arrive at

5 7 81
5D — _ _ 5D _ _ 7 p——
b3’ =~5, b3’ =-and b}’ = = (3.57)

(3.5.2) Calculation of the numerical coefficients b?? in 5D plus

additional adjiont scalars

If assume that we have four scalar bosons transforming in the adjoint

representation, the last term in equation (3.56) will be changed to %Cz (@)

11 8 1 4
pP+ascalars — _ 3 C(6) +3nCR) + 51, G(R) + 26, (6) - (3:58)
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In a similar manner, we obtain:

b§D+4 — _1, b25D+4- — E and b15D+4- — g

6 10 (3:59)

(3.6) Pati-Salam (PS) model SU(4) X SU(2)g X SU(2),in 4D

In Pati- Salam (J.C. Pati and A. Salam, 1974), the one loop beta coefficients for a

G, X G, gauge group are given by the following equation:
ps 2 1 11
b" = ST(RDA(R,) + 5 T(S)A(S;) ~ 5 C2(Gy) (3.60)

Where (Rq,R,) is the fermions representation and (S;,S,) is the scalars
representation. The other symbols that appeared in the above equation(3.60) are;
T (R;) denotes the Dynkin index of the representation R;, T'(S;) is the Dynkin index
of the representation S;, C,(G;,) is the quadratic Casmir operators of the group G;,

d(R;) and d(S;) are the dimensions of the representation R; and S; respectively.

Considering the theory with gauge group PS: SU(4) X SU(2)g X SU(2). X Z,
where 7 represents the parity in which L < R, we have three family in
representation of fermions (4,2,1) @ (4, 2,1) plus scalars in (1,2,2) &
(10,3,1) @ (10, 1, 3). Here we associate SU(4) with G, and SU(2)g with G, and
SU(2);, with G5. Thus R, and S, denote the corresponding representation of SU(4)
and the rest will follow. Now plugging all the ingredients in the above

equation(3.60) we obtain:
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2/1 1

1 11
+§(3><1><3+0><2><2+3><3><1)—?><4

14

== (3.61)

Now we associate SU(2)g with G, and SU(4) with G, and SU(2),, with G5. Thus
R, and S; denote the corresponding representation of SU(2)y , therefore
bsu@)r =
2 1 1 1
§(0><4><2+§x4x1)(3)+§(2x10x1+§><1><2+0><10><3)
11 @
3

11

- (3.62)

Finally, we identify SU(2),, with G; and SU(4) with G, and SU(2)g with G3. Thus

R, and S; denote the corresponding representation of SU(2);, , thus:

bsu(z), =
2/1 1 1
§(§><4><1+0><4><2)(3)+§<0><10><3+§><1><2+2><10><1)
11(2)
3

11

- (3.63)
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(3-7) Pati-Salam model SU(4) x SU(2)g X SU(2), in5D

Consider now Pati-Salam model in five dimensional, as we saw in 5D SM there
will be and additional contribution from A¢ loop and keep in mind that the
fermions expansion comes with sine and cosine as result there will be an additional

factor two in front of the fermionic contribution, thus we obtain

bi*P" = 2T(R)A(R,) + £ T(S1)d(S2) — 5 C2(Gy) +2C2(Gy) (3.64)
Using the same numbers as in 4D PS model we get
bsu(4) =
41 1 1 11
§<§><1><2+E><2><1)(3)+§(3x1x3+0x2x2+3x3x1)—?(4)
1
+ 8(4) =0 (3.65)

bsy2)r =

2 1 1 1
§(0><4><2+5><4x1)(3)+§(2x10x1+§><1><2+0><10><3)

11(2)+1(2)—8 3.66
bsy(z), =

4 /1 1 1
§(§x4x1+Ox4x2>(3)+§(0x10><3+§><1><2+2><10><1)

112 12—8 3.67
- @+ = (3.67)
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Chapter Four

Numerical Results, Discussions and Conclusion

(4.1) Introduction

This chapter devoted to our numerical results and discussions for the SM, 5D SM,
4D Pati-Salam model as well as its extension in extra dimension models. We used
the method of the RGEs at on-loop level for gauge coupling constants in the SM
and Pati-Salam models as well as their extension in extra dimensions; we obtained
a set of RGEs and solved them numerically by using the software Mathematica
version 9and numerical results are shown here.

(4.2) Numerical results and discussions

We used the initial values adopted at the M, scale as follows: for the gauge

couplings g; (M) = 0.462, g,(M;) = 0.651 and g3(M5) = 1.22.
Gauge coupling unification in 4D Standard Model

1.2}
[ — 91

1.0
! — 9
g3

Coupling Constants
=
0

”

:-—-:_________ 1
e 1

0 5 10 15
Log E/(GeV)]
Figure 4.1: Show the running of the gauge coupling constants in the SM
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5D Standard model

1.2p
| — 91
2 1-0f —%
%‘ : g3
3 081 )
< |
=’ 0.6} i
) | /
0.4f
1 2 3 4 5 6 7
Log[E/(GeV)]

Figure 4.2: Show the running of the gauge coupling constants in the5D SM

In theory of extra dimensions case the SM fields are identified as the zero modes
and their result is given in figure 4.1 and figure 4.3 respectively; and Kaluza-Klein
(KK) modes will be our new states, so they will contribute to our RGEs and their
effect is presented in figure 4.2 and figure 4.4. As can be seen from figure 4.3 for

My = 1011GeV there is unification at A = 103GeV.
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Gauge coupling unification in 4D Pat—SalamModel with Mp=10'! GeV

1.2}
&0 ' — 91
1.0F
% ] — 92
= : 93
S 0.8}
o [
= i
5 0.6 _/.
L S
0.4}
0 5 10 15 20
log (E/GeV)

Figure 4.3: Show the running of the gauge coupling constants in 4D Pati-Salam
model with Mg = 1011GeV.

1
Unification in 5D Pat—SalamModel with Mgz=10" GeV and with 2 =10° GeV

1.2}
&0 ' — G4

1.0
%‘ - — dL
= 9r
o
(Ei 0.8
%ﬂgﬁ.__ o o
8 0.6f —

0.4}

0 2 4 6 8 10

log (E/GeV)

Figure 4.4: Show the running of the gauge coupling constants in 5D Pati-Salam
model with Mg = 107GeV and the compactification scale % = 10°GeV
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(4.2) Conclusion

We have considered 5D orbifold SM and Pati-Salam models and within them we
have addressed the unification issues. Orbifold constructions give an attractive
resolution of several outstanding problems of grand unified theories (GUTS), but
some extensions are still needed to have full control of difficulties which even
appear outside GUTSs. Essentially in thesis dissertation we have addressed the
guestion of gauge coupling unification, which in the presence of KK states gets
new facets. The effect of these new states as shown in figure 4.3 is power law
unification. We have considered the Pati-Salam SU(4) X SU(2)g X SU(2), GUTs,
and we derived the one loop renormalization group equations for various scenarios
i.e SM, 5DSM, PS, 5DPS. WithinSU(4) X SU(2)z X SU(2),, low scale
unification can take place is also possible, in some cases the SU(4) X SU(2)g X

SU(2), predict colored triplet states in the few TeV range.

(4.3) Recommendation

To extend this work, we recommend that one may wish to consider other GUTSs

models or do the calculation for up to two loop order.
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