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Abstract

The controller is an element which accepts the error in some form and
decides the proper corrective action. The block diagrams is shorthand
pictorial representation of control system of the cause-and-effect relationship
between input and output of physical system or dynamic system is time
invariant, is shifting the input of the time axis leads to an equivalent of
shifting of the output along the time with no other changes. The aim of this
research is study systems that the time invariant system and controllable.
The controllability conditions are exactly the same in terms of the matrices
for the discrete and continuous case. So we are justified in making multiple
inputs, multiple outputs. Control system is a method for using any models of
no solution for transfer functions and has extended to multiple inputs,
multiple outputs gained selection stability and process. It has been shown
that the properties of zeros mean error and single input; single output case
can be also achieved. Bounded variance amplification that was seen for the
multiple inputs, multiple outputs case. A design procedure is presented to
achieved ideal multiple inputs, multiple outputs control case into more
sensitive modeling error which are inherent in practical process. Our
application is the first solution follows from a general result on the global
stabilization of controllable linear system with delay in the input by bounded
control laws with a distributed term.
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Introduction

Control theory is an important branch of mathematics that has several
applications of distinct area technology, Engineering, Economics, sociology,
among others. Control theory has many applications in our life’s style
Control theories commonly used today are classical control theory (also
called conventional .Control theory), modern control theory, and robust
control theory. This book, presents comprehensive treatments of the analysis
and design of control systems based, on the classical control theory and
modern control theory. Automatic control is essential in any field of
engineering and science automatic. Control is an important and integral part
of space-vehicle systems, robotic systems, modern, manufacturing systems,
and any industrial operations involving control of temperature, pressure,
humidity, flow, etc. It is desirable that most engineers and scientists are.
Familiar with theory and practice of automatic control all necessary
background materials are included. Mathematical, background materials
related to Laplace transforms and vector-matrix analysis, are presented
separately in appendixes. The first significant work in automatic control was
James Watt’s centrifugal governor, for the speed control of a steam engine in
the eighteenth century other, significant works in the early stages of
development of control theory were due to Minorsky Hazen, and Nyquist
among many others .Minorsky worked on, automatic controllers for steering
ships and showed how stability could be determined, from the differential
equations describing the system, Nyquist, developed a relatively simple
procedure for determining the stability of closed-loop, systems on the basis
of open-loop response to steady-state sinusoidal inputs .Hazen, who
introduced the term servomechanisms for position control systems,
discussed the design of relay servomechanisms capable of closely following
a changing, input. Modern control theory is based on time-domain analysis
of differential equation, systems. Modern control theory made the design of
control systems simpler because. The theory is based on a model of an actual
control system. However, the system’s, stability is sensitive to the error
between the actual system and its model. This means that when the designed
controller based on a model is applied to the actual. System, the system may
not be stable. To avoid this situation, we design the control. System by first
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setting up the range of possible errors and then designing the controller.in
such a way that, if the error of the system stays within the assumed, range,
the designed control system will stay stable. The design method based on
this. Principle is called robust control theory. This theory incorporates both
the frequency response, approach and the time-domain approach. The theory
IS mathematically very, complex.
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Chapter one

Introduction

1. Background

The concept of a control system is to sense deviation of the control of the
output from the desired value and correct it till the desired output is
achieved. The deviation of the actual output from its desired value is called.
An error the measurement of error is possible because of feedback. The
feedback allows us to compare the actual output with its desired value to
generate the error. The error is denoted by as e (t) the desired value of output
Is also called reference input or a set point the error obtained is required to
be analyzed to take the proper corrective action. The controller is an element
which accepts the error in some from and decides the proper corrective
action. The output of the controller is then applied to the process or final
controller element this brings the output back to its desired set point value.
The controller is the beart of a control system. The accuracy of the entire
system depends on how sensitive is the controller has its own logic to handle
the error. Now it is manipulating such an error the controllers such as
microprocessors microcontrollers, computers are used such controllers

execute certain algorithm to calculate the manipulating sign



Definition of input 1.1

The input is the stimulus excitation or command Applied to a control system
typically from an external energy source.

Definition of output 1.2

The output is the actual response obtained from a control system .It may or
may not be equal to the specified response implied by the .Inputs and output
can have many different forms inputs for examples may be physical
variables or more abstract quantities such as reference, set point or desired
values for the output of the control system.

Definition of open loop control 1.3

An open loop control system is one in which the control action is
independent of the output.

Definition of closed loop control 1.4

A closed loop control system is one in which the control action is somehow
dependent on the output closed loop control systems are more commonly

called feedback control system.

Definition of feedback control 1.5

Is that property of a closed loop system which permits the output or some

other controlled variable to be compared which the input to the system.

Characteristics of feedback 1.6

The presence of feedback typically imparts the following to a system.



A- Increased accuracy.
B- Tendency toward oscillation or in stability

C- Reduced sensitive of the ratio of output to input to variation in system
parameters and other Characteristics.

E- Reduced effects of external disturbances or noise
H- Increased band width

The bandwidth of a system is a frequency response measure of how well the
system responds to (or filters) variation or frequencies the input signal.

1.1 Control system models or representations

To solve a control systems problem, we must put the specification or
description of the system configuration and its components into a form
amenable to analysis or design. Three basic representations (models) of
components and systems are used extensively in the study of control
systems.

1- Mathematical models in the form of differential equations difference
equations and or other mathematical relation for example Laplace and

Z-transforms.
2- Block diagrams.

3- Signal flow graphs.



1.1.1 Block diagrams: Fundamentals

A block diagram is a shorthand pictorial representation of the cause and
effect relationship between the input and output of a physical system .The

simplest form of the block diagram is single block with one input and one
output

Block

Input output

[ [
» »

Figure (1.1) block diagram single inputand single output

The operation of addition and subtraction have a special representation the
block becomes a small circle called a summing point with the appropriate
plus or minus sign associated with the arrows entering the circle the output

is the algebraic sum of the inputs any number enter a summing point for
examples

e i e
Figure (1. Ei 1
Figure (1.2) ) ) ) igure (1.

addition Difference points Summing points +
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1.1.2 Error

Figure (1.6) Basic control systems

The error detectors compare the feedback signal b (t)with the reference input

r(t) to generate an error.

~e(t) =b(t)
—r(t)

(1.1)

This gives absolute indication of an error the range of the measured variable

b(t)

Thus span = b, — bin

The Hence error can be expressed as



r—>b

ep =
bmax - bmin

%X 100 (1.2)
Where e, = error as % of span
1.Examplel

The range of measured variable for ascertains control system is 2 mv to 12
mv and a set point 7 mv. Find the error as percent of span when the
measured variable is 6.5 mv.

bpox =12mv by =2mv ,b=65mv r=7mv

r 7—6.

=P  %100="%2%x100="5

bmax—bmin 12-2

€p

1.1.3 Variable Range
In practical systems, the controlled variable has a range of values within.

Which the control is required to be maintained. This range specified as the
maximum and minimum values allowed for the controlled variable. It can be
specified as some nominal values and plus minus tolerance allowed about

this value such range is important for the design of controllers

1.1.4 Controller Output Range

Similar to the controller variable a range is associated with a controlled
output variable and minimum values. But often the controller output is
expressed as a percentage where minimum controller output is 0% and
maximum controller outis 100% but 0% controller output does not mean
zero output. Forexample it is necessary of the system that a steam flow
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th
corresponding to G) opening of the values should be minimum Thus 0%

th
controller output in such case correspondsto the G) opening of the value.

The controller output as a percent of full scale when the output changes

within the specified range is expressed as

p=——min_ 100 (1.3)

p = Controller output as a percent of full scale
U = Value of the output
U, ax = Maximum value of controlling variable

Upnin = Minimum value of controlling variable

1.1.5 Control Lag

The control system can have a large associate with it, the control lag is the
time required by the process and controller loop to make the necessary
changes to obtain the output at its set point the control lag must be compared
with the process lag while designing the controllers for example. Ina
process value is required to be open or closed for corresponding the output
variable physically the of opening. Or closing of the value is very slow and
is the part of the process lag. In such a case there is no point in designing a
fast controller than the process lag.



1.1.6 Dead Zone

Many a times a dead zone is associated with a process controlloop the time
corresponding to dead zone is called dead time. The elapsed between the
instant when error occurs and instant when first corrective action occurs is
called dead time .Nothing happens the error occurs this part is also called
dead hand the effect of such dead time must be considered while the design
of the controllers.

1.2 classifications of the controllers

The classification of the controllers is based on the response of the
controllers and mode of response of the controller

1.2.1 Discontinuous controller Mode

The discontinuous mode controllers are further classified as ON, OFF
controllers and multiposition controllers. For example in a simple
temperature control of a room the heater is to be controlled it should be
switched on or off by the controller when temperature crosses its set point.
Such an operation and the mode of operation is called discontinuous mode
of controller but in some process control systems simple on/off decision is
not sufficient for example controlling the steam slow by opening or closing
the value in such case a smooth opening or closing of value is necessary.
The controller in such a case is said to be operating in a continuous mode
thus the controllers are basically classified discontinuous controllers

1.3.1 Continuous Controller Mode

The continuous mode controllers are further classified as derivative

controllers. Some continuous mode controllers can be combined to obtain



composite controller mode. Forexample of such composite controllers are
Pl, PD and PID controllers. The most of the controllers are placed in the
forward path of control system but in some cases input to the controller is
controlled though a feedback path. The example of such a controller is rate
feedback controller but in the continuous controller output smoothly
proportional of the error or proportional to some form of the error.
Depending upon which form of the error is used as the input to the controller
to productthe continuous controller output these controllers are classified as.
Proportional control mode, Integral control mode and Derivative control
mode

1.3.1.1 Proportional Control Mode

In this control the output of controlis simple proportional to the error e (t)
the relation between the error e (t) and controller output P is determined by
constant called proportional gain constant denoted by as K,,, The output of
the controller is a linear function of the error e (t) . Thus each value of the
error has error has a unique value of the controller output. The range of the
error which covers 0 % to 100% controller output is called proportional
hand. Now though there exists linear relation between controller output and
the error for a zero error the controller output should not be zero otherwise
the process will come to halt. Hence there exists some controller output P,
for the zero error. Hence mathematically the proportional control mode is

expressed as
P(t) = kye(t) + P, (1.4)
Where  k,, = Proportional gain constant

po = controller output with zero error

9
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Figure (1.7) the error may be positive or negative the proportional hand

The error may be positive or negative the proportional hand is

mathematically defined by

100
Py =22 (1.5)
(4

1.3.1.2 Characteristic of proportional control mode
The various characteristics of the proportional mode are
1-When the error of zero, the controller output is constant equal to P,

2-1f the error occurs, then for every 1% of the error the correction of the K,

% is achieved if the error is positive K,, correction gets addedto F, and

if error is negative K, % correction gets subtracted from F,

10



3-The band of error exists for which the output of the controller is the
between 0 % to 100 % without saturation

4-The gain P, and error band Pgare inversely proportional to each other

1.3.2 Offset

The major disadvantage of the proportional control mode is that it produces
an offset error in the output When the load changes the output deviates from
the set point such a derivation is called offset error or steady state error such
an offset error is the offset error depends upon the relation rate of the
controller slow reaction rate produces small offset error while fast reaction
rate produces large offset error. The dead time or Transfer lag present in the
system further worsens the result it produces notonly the large offset at the
output but the time required to achieve steady state is also large. The offset
error can be minimized by the large proportional gain K,, which reduce the
proportional hand. If k, is made very large the proportional band comes so
small that .It acts as an on, off controller producing oscillations about the set
point instead of an offset error. The proportional controller can be suitable

where

A- Manual reset of the operating point is possible
B- Load changes are small

C- The dead time exists in the system is small

11
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Figure (1.8) offset error in proportional mode

1.3.1.3 Integral Control Mode

In the proportional control mode, error reduces but cannot go to zero. It
finally produces an offset an offset error it cannot adapt with the changing
load conditions. To avoid this control mode is oftenly used in the control
systems which is based on the history of the errors. This mode is called
integral mode or reset action controller the value of the controller output p(t)
Is changed at a rate which is proportional to the actuating error signal e(t)

mathematically it is expressed as

PO = ke(t) (1.6)

at
Where k; = constant relating error and rate the constant k; also integral

constant integrating the above equation actual controller output at any time t

can be obtained as
P(t) = k, j e()dt + p(0) 1.7)

P (0) = controller output when integral action starts at t=0

12
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{a) Error (k) Controller output

Figure 1.9 Integral mode

The scale factor or constant k; expresses the scalling between error and the
controller output thus a large value of k; mean that a small error produces a
large rate of change of p(t) and viceversa If there is positive error this is
shown in the figure 1.8 controller output begins to ramp up. The input error
step it can be seen that when error is positive the output p(t) ramp up

et
dt

Figure (1.10) the step response of integral control mode

The step response of integral control mode is shown in figure 1.10

The integration time constant is the time taken for the out to the change by
an Amount equal to the input error step this is shown in figure 1.11 it can be
seen that when error is positive the output ramps up, For zero error there is

13



no change in the output and when error is negative the output p (t) ramps

down

e{t)y

29

When error
rero, pit)is
constant

Figure (1.11) step response

1.3.1.4 Characteristics the integral mode

The integrating controller is relatively slow controller its output at a rate
which is dependent on the integrating time constant until the error signal is
can celled compared to the proportional control. The integral control
requires time to build an appreciable output. However it continuous to act till
the error signal disappears this corrects the problem of the offset error in the

proportional controller. Thus for an integral mode

A- If error is zero, the output remains at a fixed value to what is was when

the error became zero.

14



B- If the error is not zero, then the output begins to increase at a rate k; %
per second forevery +1% for error in some case the inverse of k; called

integral time is specified denoted as T;

T; = integral time (1.8)

1

=%
It is expressed in minutes instead of second. The comparison of

proportional and integral mode behavior at the time of occurrence of an error

signal is tabulated below.

Controller Inttial behavior Steady state behavior

P Acts Immediately Offset error always
Action according to present larger the

k k,, smaller the error

p

1 Acts slowly it is Error signal always

. mes zer
The time integral of becomes zero

the error signal

It can be seen that proportional mode is more favorable at the start while the
integral is better for steady state response in pure integral mode, error can
oscillate about zero and can be cyclic ,Hence is practice integral mode is
never used alone but combined with the proportional mode to enjoy the
advantages of both the modes.

15




1.3.1.5 Derivative control Mode

In practice the error is function of time and at a particular instant it can be
zero but it may not remain zero for ever after that instant. Hence some action
IS required corresponding to the rate at which the error is changing. Such

a controller is called derivative controller. In this mode the output of the
controller depends on the time rate of change of the actual errors. Hence it is
also called rate action mode anticipatory action mode. The mathematical

equation for the mode is

p(t) = ky <, (1.9)

Where k,; = Derivative gain constant indicates by now much % the
controller output must change for every % per sec of the change of the error.
Generally k,; is expressed in minutes. The important feature of this type of
control mode signal there is a unique value of the controller output. The
advantage of the derivative control action is that it responds to the rate of
change of error and produce of significant correction before the magnitude
of the actuating error becomes too large. Derivative control thus anticipates
the actuating error initiates an early corrective action and tends to increase
stability of the system improving the transient response

1.3.1.6 Characteristics of Derivative Control Mode

The figure 1.12 shows how derivative mode change the controller output for
the various rates of the change of the error

16
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Figure (1.12) the derivative mode changes the controller
output for various rates of change of the error.

The derivative mode changes the controller output for various rates of
change of the error. The controller output is 50% for the zero error when
error starts increasing the controller output suddenly jumps to the higher

value it further jumps to higher value for higher rate of increase of error then
error becomes constant the output returns to 50% when error is decreasing
Having negative slope controller output decrease suddenly to a lower value.
The Various Characteristics of the derivative mode are

A- For a given rate of change of error signal there is a unique value of the
controller output.

B- When the error is zero the controller output is zero.

C- When the error is constant - i-e rate of change of error is zero the
controller output is zero.

D- When error is changing the controller output changes k; %

17



For even 1% per second rate change of error
Note:
Hence it is never used along its gain should be small because faster rate of
change of error can cause very large sudden change of controller output
this may lead to the instability of the system.
1.3.1.7 Composite Control Modes
As mentionable earlier due to offset error proportional mode is not used
alone similarly integral and derivative modes are also not used individually
in practice. Thus to take the advantages of various modes together the
composite control modes are used the various composite controller modes
are.

I. Proportional integral mode (PI).

ii. Proportional Derivative mode (PD).
li.Proportional + integral + Derivative mode (PID)
Let us see the characteristics of these three modes
Proportional Integral Mode (Pl Control Mode)

This is a composite control mode obtained by combining the Proportional
mode and the integral mode. The mathematical expression for sucha
composite control is

t

P() = k, e(t) + Kk, j e(t)dt + P(0) (1.10)

0

Where P(0)= initial value of the output at t=0.The important advantage of

this control is that one to one correspondence of proportional mode is

18



available while the offset gets eliminated due to integral mode the integral
part of such a composite control provides a reset of the zero error output
after load change occurs.

elt)
Errar 4

0 > T

pit)
Contraliar
output

Rise in oulput due to integral
action between limes t, and L,

Immediate nse due to
proportional action

Timea

Integral acton lime
Figure (1.13) Behavior of P1 controllers

The composite PI mode completely removes the offset problems of
proportional mode such a mode can be used in the system with the frequent
or large load changes. But the process must have relatively slow changes in
the load to prevent the oscillations.

Proportional + Derivative Mode (PD control mode)

The series combination of proportional and derivative control mode gives
proportional plus derivative control mode. The mathematical expression
for the PD composite control is

19



P(t) = kye(t) + kykq dfl—i” +P(0) (1.11)

The behavior of sucha PD control to a ramp type of the input in the figure

Ermor e(L)

Controller
output

Rise in signal due 1o proportional
action betwean limes ty and Ly

Immediate rise due (o
derivative action

Timea

L=

—
-

—
=]

Figure (1.14) Behavior of PD controllers

Rise in signal due to proportional action between time t; and ¢,
Immediate rise due derivative action
1.3.1.8 Behavior of PD Controller
The ramp function of error occurs at t = t, the derivative mode cause a

step I, at t, and proportional mode cause arise of V,; at t,.This is for
direct action PD control Proportional derivative Type of Controller. A
controller in the forward path which changes the controller output
corresponding to proportional plus derivative of error signal is PD

controller

de(t)
dt

l.e. output of controller = ke(t) + T, (1.12)

20



Taking Laplace =

kE(s) + s T4E(s) = E(s)[k+ s T,] (1.13) the transfer
function of such controller is [k + s T,] this can be realized as shown in the
R(s) " _ wi  liguegs(15)
> @ K > s(s+2iwy) >
A Plant
STy

Figure (1.15) controller
output of PD controller

Assuming k = 1

We can write

(1+sTg)w3
s(s+2¢wy)

G(s) = (1.14)

And

cs) (1+sT w3
R(s)  s2+S[2wn+wd Tyl+wi

(1.15)

Comparing denominator with standard form w,, is same as in the previous p

type controller
And
26w, = 2¢w, + w2 T, and & =

£+ dnld (1.16)

2

21



: . . T
Because of this controller damping ratio increases by factor % le.

system becomes type in nature. Now as order increase by one system

relatively becomes less stable as k; must be designed in such a way system
will remain in stable condition second order system is always stable. Hence
transient response gets affected badly if controller is not designed properly.

While
k, =lims,,G(s)H(s) =0 <« ey =
0 (1.17)

k, =lim,,,sG(s)H(s) =0 ¢e, =0

Hence as type is increased by one error becomes zero for ramp type of
inputs steady state of system gets improved and system becomes more
accurate in nature. Hence Pl Controller has following Effect

I. it increase order of the system
ii. it increase type of the system

ii. Design of k; must be proper to maintain stability of system so It makes

system relatively state error reduce tremendously for same type of inputs. In
general this controller improves steady state part affecting the transient part

1.3.1.9PID Type of Controller

As PD improves transient and Pl improves steady combination of two may
be used to improve overall time response of the system this can be realized
as shown in the Figure (16)
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R(s)

A

K

Plant
And

Controller

C(s)

Figure (1.16) the design of such controller is complicated in practice

The design of such controller is complicated in practice, Rate Feedback

Controller (output Derivative Controller). This is achieved by feeding back

the derivative of output signal internally using a tachogenerator and

comparing with the signal proportional to error as shown this is called minor

loop feedback compensation output of controller

d e(t)
dt

kE(t) — k,

Take Laplace

= Output controller kE (s) — sk, c(s)

(1.18)

(1.19)

This can be realized as shown in the lower Figure (17)
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2
Wn

C(s)

R(s) l __n
, K _.®_. S(s+24Wy)

|— 1

Figure (1.17) controller output PID controller .
gure (L.17) P /&ssumlng k=1

Let us study its effect on same system which is considered earlier
With

2

Time constant (T) is the time required by the system output to reach 63.2%
of its final value during the first attempt. The equation for the actual
response

c(t)is

)

sin(w,t + 0) } and wy

)

=wn\/? (1.21)

= Damped Frequency of Oscillations and

-1 Jl;_éz (1.22)

e —Cwnt

(
cC(t)=1- {
\

=

0 = tan
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1.3.6 Steady State Error

Consider a simple closed loop system using negative feedback as shown in

the Figure (18)

R(s) E(s) Cls)
R G(s)

A 4

H(s)

<

Figure (1.18) Steady State Error
Where

E(s) = Error signal and

B(s) = Feedback signal
E(s) = R(s) — B(s) But B(s) = C(s)H(s)and C(s) =
E(s)G(s) (1.23)

E(s) = R(s) — C(s).H(s)
E(s) = R(s) —E(s)G(s)H(s)
R(s)=E(s)+ E(s)G(s).H(s)

R(s)
1+ G(s).H(s)

~E(s) =

Fornon-unity Feedback

For unity Feedback

25
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This E(s) is error in Laplace domain and is expression in‘s’ .We want to
calculate the error value in time domain. Corresponding error will be e(t)

now steady state of the system is that state which remains as t — oo

Steady state error
e = lim,_ . e(t) (1.29)

Now we can relate this in Laplace domain by using final value theorem
which states that

limg,o, F(t) = lim;o sF(s)LX f ()} (1.30)
Therefore
e = gim e(t) = lirré SE(s) (1.31)

Where E(s) is L{e(t)}

. SR(s)
e,s = lim

s>0 14+ G(s)H(s) (132)

For negative feedback system use positive sign in dominator while use
negative sign in denominator if system uses positive feedback From the
above expression it can be concluded that stead state error depends on, i.
R(s) i.e. Reference input its type and magnitude

i. G(s).H(s)1.e. open loop transfer function

lii. Dominant non linarites present if any
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2.Example 1

The figure (1.19) shown PD controller used for the system .Determine the

value of T; so that system will be critically damped calculate its, settling

time

R(s) __*
. @7 1, S(S+ 1.6)

4

C(s)

ST,

Figure (1.19) PD controller

G(s)= Gxsfart H(s) =1

s(s+1.6)

(1+sT )4
. Cs) _ s(s+1.6) _ (1+5 Ty)4

"R(s) | 1+ 88Tt T 249 6544Ts+4
s(s+1.6)

Comparing denominator with standard form
w:=4 w,=2 And
2¢w, = 1.6 +4T,

_ 1.6+4T,
B 4

Now system required is critically damped ie. (=1

1.6+ 4T,
1=——1

== 16+4T,

27
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~ 4Ty =4—-1.6=2.4 w=Tg=—=10.6
4 . .
~=T, = —=2sec Andsettling time —
2X1

3.Example 1
APID controller has k, = 2.0 ,k; = 2,2 sec™"
k, =2sec And P (0)=40%

Draw the plot of controller output for error

error Ep%

s /\4
! ! ! } } } } > t sec

-4- Figure (1.20) PID controller
k,=2| k, =22 sec™? kp = 2sec

P,(0) = 40%

For0-2 E, =m,t where m; = slope

N

E, =t For0-2sec 222 -1 for2-4 E, =myt +c,

N
o

Two point on the line are (2,2) c,,4(4,-3)

m :3’2_371:_3_2:_25
2 xz_xl 4_2 .
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At(2,2) = —25%X2+c,=c, =7

~E, = —25t+7 For 2-4 sec

For 4-6 sec

Two points on the line are (4,-3)

amy = =>=15
~E,=15t+c;

A+ ¢, xAt (4,-3) =-3=1.6

s 03 =—9

~E,=+1.5t—9 For4-6sec

The mode Equation for PID controller

P = kpEp + KK, [ Ep dt + KoKy =2 + P, (0)

#P=2Ep + 44, Epdt+4 =2+ 40
For0-2
PL=2t+44 [ tdt+4 L () +40=21+22%+ 4 +40

This plotted for 0-2 sec
At the end of 2 sec

The integral term has accumulated to
2
P(2)=44 [ tdt+40=44x [%] +40 = 48.8%

For 2-4 sec
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P, =2(—2.5t+7) + 4.4 [, (—2.5¢ + 7)dt + 4% (—2.5t+7) + 48.8

—5t+14+4.4{-1.25(t*—4)+7(t—2)}— 10+ 48.8
=—-5.5t%+25.8t+13.2

This is plotted for 2-4 sec

At the end of 2 sec the integral term has accumulated to

P (4)=44(-125(t>*—4)+7) + 7(t* — 4)}|,_, + 48.8 = 44.4%

For 4-6 sec

Py=2(15t-9)+44 [[(1.5t—a)dt+4 %(1.5 t—a)+ 44.4 = 3t-

18 +4.4[0.75 t2-at]T + 4 x 1.5+ 444 =3 t — 18 + 44 {0.75(t2 — 16) —
9(t—4)}+6+444=33t2—36.6t+ 138

This is plotted for 4-6 sec

After 6 sec error is zero hence the out will simply be the accumulated
integral response providing a constant out put
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The complete graph of controller outputis shown in the figure (21)

I | - 5 [ ! : i f i : !

T Controller Ty T T T T el e W | e o —E e

L output | ESr, DT, IC g e | CEC0 SRR | T St
(%) : =2 R =] Scale

oo C e s | t TP On X-axis —s1 uni

L=1sec
1=5"%

454'

pt—d-— g0 o = E__._.__._:__-...:,.._ e On y-axis —s 1 um =i
S8 e PN E . §6.8 | T e ey ' .;
| e BT H ' | I ‘ i
- 55 — ;
B R ]
S L eV et :.'.-_l..- . SIS ST L FIGH S
Pt LS oy TS Ll

' i
| 11
frifes

o e =BT i 21 z fre
: 40— : -
= 35 - s
ZER R E L o
: 30 - t .—.-?--.2 -
irind NN M bt | S ) L 1

| il wact] Exied il |

[ CTme 1|
Ii 4| i [
1 = LEL] e i e

Figure (1.21) graphical solution of PID controller

4.Example 1
Temperature control system has the block diagram given in figure

The input signal is a voltage and represents the desired temperatures &, is a
unit step the integral term and

() D(s) =1 (i) D(s)= 1+%
(iii) D(s) =1+0.3s
What is effect of the integral term in the PI controller and derivative term in

PD controller on the steady state error
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) —

]
Figure (1.22) PD controller on
the steady state error

For given system

H(s) = 0.02

R(s) = 9.02

N

ess = limg 4 s F(s)= lim,_,,

D(s) =1

o ess - lims_)o

(i) D(s) = 1+ E

’ y a
g RS N —w | U
D(s) (s+H)(s+2)
Controller plant
0.02
200D(s
G(S) — ( )
(s+1)(s+2)
SR(s)
1+G(s)H(s)
$%0.02 002
Lgxo 0z 1_|_2(;0><0.02 = 6.66 X 1073
(s+1)(s+2)" 2
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0.02
SX——

: = 1 _ -3
- ess = limgg 200(1+0fg3s)x0 02] = 6.66 X 10
(s+1)(s+2) "

Due to Pl controller the steady state error reduces drastically while PD
controller has no effect on the stead state error

5.Example 1

An integral controller is used for temperature control within arrange 40-60c°
the set point is 48 ¢, the controller output is initially 12% .When error is
zero the integral constant k; = —0.2% controller output per second
percentage error if the temperature increase 54c¢,Calculate the controller

output After 2 sec for a constant error

For integral controller
P(t) = k, j E, dt + P(0)

Controller output initially denoted by P(0) = 12% the integral constant
denoted by k;, = —0.29% sec % error

E, = Error = constant =—_—>— x 100

Now r= set point =48¢°
b= Actual temperature = 54c°
b = 60c°<b,,_, =40c°

48 — 54

E,= ———x100=—30
P60 —40

f EPdt=Ep t As error is constant
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P (t) = (-0.2) (-30)(t)+12

Att =2=(0.2)(30x2)+12=24%
This controller output after 2 sec
Example 1.5

A proportional controller is employed for the cont. of temperature in the
range 50c® -130c® with a set point of 73.5 ¢° the zero error controller
output is 60% what will be the offset error resulting from a change in the

controller output to 55% the proportional gain is 2% find the offset in c°
For proportional control mode

P = kpEp + P(0)

P (0) = controller output with no error =50%

k, =Proportional gain = 2% per second

g _P—P _55-50
PT k2

For the design of a control system it’s important to understand how the

system of interest behave and how it respond to deferent control design the

Laplace transform as discussed in the Laplace transform module is a
valuable tool that can be used to solve differential equations and obtain the
dynamic

A Transfer function G(s) is defined as the following relation between the
output of the system Y(s) and the input to the system U(s)

Y(s)
U(s)

G(s) =

34
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The roots of polynomial U(s) poles of the system and roots of Y(S) is called
the zeros of the system If the input of the system is a unit impulse (U(S) =1)

1.4 Blok Diagrams and Transfer functions

The combination of Blok Diagrams and Transfer functions is a powerful
way to represent the control systems. Transfer function relating different
signals in the system. Derivation of transfer functions from state model.

Consider a standard state model derived for linear time invariant system as
X(t) = AX(t) + BU(t) (1.34)

Y(t)=CX(t)+ DU(¢t) (1.35)
And taking the Laplace transfer of both sides

[SX(s) — X(0)] = AX(s) + BU(s) and Y(s) = CX(s) + DU(s)  (1.36)

Note that as the system is time invariant the coefficient of matrices A, B, C
and D are constant while the definition of the transfer function is based on
the assumption of zero initial condition

X(0=0)

. SX(s) = AX(s) + BU(s) and SX(s) — AX(s) = BU(s) (1.37)

Now S is an operator while A is matrix of order (nxn), hence to match the

orders of two terms on lift hand side multiply “S” by identity matrix I of the
same order

~ SIX(s)AX(s) = BU(S) and [SI — A]X(s) = BU(s) (1.38)
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Multiplying both sides by [ST — A] ™1

[ST — A]7Y[SI — A]X(s) = [SI — A]"*BU(s) (1.39)
. X(s)=[SI — A]"1BU(s) (1.40)
Substituting in the equation (1.36) we get

Y(s) = C[SI — A]7*BU(s) + DU(s) and Y (s)
= [C(ISI — A]"'B + D)U(s)] (1.41)

L T(s) =22 = C[SI—A]'B+D But [SI— A]"* =254

(1.42)

The state model of a system is not unique but the transfer function of
obtained from any state model is unique. It is independent of the method
used to express the system in state model form.

1.4.1 Characteristicequation

It is seen from the excretion of transfer function that the denominator

is [SI— A] the equation obtained by equating denominator of transfer
function to zero is called characteristic equation the root of this equation are
the closed loop poles of the system thus the characteristic equation of the
systemis [SI — A] = 0 The stability of the system depends on the roots, the

roots of the equation [ST — A] = 0 are called Eigen values of matrix A and

this are generally denoted by A
7 .Examplel

Consider a system having state model

i) =17 ‘3][] 3] v And
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v=0 alfy]

With D=0 obtain

_1 _ Adjlsi-4]
|s 1-Al

[sI—A]

+ 2 3

[SI_A]z[ —4 §-—2l

C [Ci1 C]" _ys—-2 4 1" _s-2 -3
Adj_[cu Cyaz) _[—3 S+2] _[ 4 S+2

sl —Al=(+2)(-2)+12=5>-45S+12=5%+8

[S—Z —3]
_ 11 =Lla s+2l
[sT—4] 52+8
$S-2 =373
TF= h 1][ 4 S+2][5] _ [85+1]
. 5%+8 S2+8
u G PN y N N

Figure (1.23) product of the transfer functions.

The transfer function of the systemis G = GG, Ie the productofthe
transfer functions.

—>
G

»
>

\ 4
D
i

Figure (1.24) a parallel connection of systems
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Consider a parallel connection of systems with the transfer functions G, and
G,.Let u = eSt be the input to the system the pure exponential output of

first system y, = G, u and the output of the second systemis y, = G,u
The pure exponential output of the parallel connection is thus
y=Gu+ G,u= (G, +G,)u

The transfer function of the parallel connection is thus

G =G, +G,

u © Gl y
—>

<

Figure (1.25) feedback connection of systems
Consider a feedback connection of systems with the transfer functions G,

and G,.Let r = et be the input to the system y the pure exponential output

and be the pure exponential part of the error. Writing the relations for the
different blocks and a summation unit we find

y=G,e ande=r—0G,y

Elimination of e gives y = G, (r — G,y.Hence (1+G, G,) y= G;r

Which implies y = 210 .r.The transfer function of the feed Feedback

1+12

connection is thus

G1(s)
G, (s) + G, (s)

G(s) =

38



E
P

R(s)

Control

Gp (5)

yer(s)

Plant

v

Vi

Figure (1.26) Closed loop transfer function feed back

cl (5)
Yeo = Gch(R - ycl) ) T(s) = le(sj
G,G
RG,G, = y,(G,G, +1 Yo = R—2°—
pYc cl( pYc ) cl 1+GpGC
G,G
T(s) = p~ic 1.43
&) =176, (1.43)
errgg(s G (s ySs)
p »
H(s)

Figure (1.27) Closed loop transfer function with a senor transfer function

y =G,G.(R—y(s)H(s)=y = G,G.R — G,G.Hy

(1+6G,G6.H)y =G,G.R

T(S) = y(s) = GpGC
R(s) 1+GpGCH

39
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1.5 Signal flow graphs

A signal flow graph is pictorial representation of the simultaneous equations
describing a system. It graphically displays the transmission of the signal
through the system as does the block diagram. But it is easier draw and

therefore easier to manipulate than the block diagram. The properties of
signal flow graphs are represented

1.5.1 Fundamental of signal flow
Let us first consider the simplest equation

X = A,_]x] (1.45)

The variables x; and x; can be functions of time complex frequency or other

quantity they many even constants which are variables in mathematical
sense.

For signal flow graphs 4;; is a mathematical operator mapping x; into x;
and is called the transmission function .For example A;; may be a constant
in which case x; is a constant times x; in equation (1.45) if x; and x; are
functions of s orz A;; may be transfer function 4;;s and A;;z the signal
flow graph for equation (1.45)is given in figure 1this simplest form of a
signal flow graph .Note that the variables x;and x; are represented by a
small dot called anode and the transmission function A;; is represented by a
line with arrow called a branch

Node Ay Node
> - -
X Branch X,

Figure (1.28)

Every variable in a signal flow graph is designated by anode and every
transmission function by a branch. Branches are always unidirectional. The
arrow denotes the direction of signal flow graph

Example 1.8

Ohm,s law state that E = RI where E is a voltage | a current and R a
resistance the signal flow graph for this equation is given by
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R
>

Figure (1.29)
The addition rule

The value of the variable designated by anode is equal to the sum of the all
signals entering the node in the other words the equation represented by

xl' == ZAijxi (146)

Figure (1.30)

The Transmission Rule

The value of the variable designated by anode is transmitted on every branch
leaving that node in other words the equation

xi = Aikxk l
=12, ,nk fixed (1.47)

Is represented by

41



1

Figure (1.31)

Example 1.9

The signal flow graph of simultaneous equations Y = 3X ,Z = —4x is
given by figure (1.32)

__.-11"

X e

. =t
Figure (1.32) —4

The Multiplication Rule

A cascaded (series) connection of n — 1 branches with transmission
function equal to productofthe old onesthatis x, = A,; A3, Az

"'An(n—l) . xl

The signal flow graph equivalence represented by figure

Ay Per Aﬂh—ll AEIAH s Apin-1
*>—n—9 »-

—e
x‘l xn-l xn x1 xn
Figure (1.33)
Example 1.10

The signal flow graph of the simultaneous equation Y = 10x,Z = —20x is
the given by the by figure
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10 ~20 —200

® > ® > ® which reduces to . > *
X Y 4 X Z
Figure (1.34)
Definitions 1.8
The following terminology is frequently used in signal flow graph theory
the example associated with each definition refer to figure
Ay
[ -
X,

Figure (1.35)

Definition 1.8.1

A path is a continuous, unidirectional succession of branches along which co
node is passed more than once

For example x, to x, to x5 to x, ,x, to x;and backto x, to x; to x, to x,
are paths

Definition 1.8.2

An input node or sourceis anode with only outgoing branches .For example
x; 1S an input node

Definition 1.8.3

An output node or sink is anode with only incoming branches For example
X, IS an output node

Definition 1.8.4

A forward path is path from the input node to the output. For
examplex; to x, to x5 to x, are forward path

Definition1.8.5

A feedback path or feedback loop is a path which originates on the same
node
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For example x, to x; and back to x, is a feedback path
Definition 1.8.6

A self-loop is a feedback loop consisting of a single branch .ForexampleA;;
Is a self-loop

Definition 1.8.7

The gain of branch is transmission function of that branch gain encountered
in traversing a path .For example the path gain of the forward
fromx, tox, tox; tox, isA, A3, A3

Definition1.8.8

The loop gain is productofthe branch gains of the loop .Forexample the
loop gain of the feedback loop form x, to x5 and back x, is A3,A,5

1.5.2 Construction of signal flow graph

The signal flow graph of linear feedback control system whose components
are specified non interacting transfer functions can be constructed by direct
reference to block diagram of the system. Each variable of the block diagram
becomes anode and each block becomes branch

O O
a b ab
L T - O — o - O
Xq X X X3
a
a+b
. _ O—— O
X, he: X, X




ac

X,
be
X
ab
1-be
a XJ h X3 ab X3
oO—bpp Q > = — o o
Xl \’j Xl i ) 15{1 1{3
c be
R C G(s)
ﬂh G(s) 1 © o, > O
R(s) R(s)
: E(: Ci(s) 1 G(s)
R(s) (s) o ) i o &
R(s) Eiﬁlui?(s)
-H(s)
H(s) ——
N(s)

R(s) E(s)
G(s)

GQ(SJ

His) =




1.5.3 Block diagram Reduction using flow graphs and the General
input-output gain formula

Often the easiest way to determine the controlratio of complicated block
diagram into a signal flow graph

Example 1.11

Let us determine the control ratio %and the canonical block diagram of the

feedback control system

Gy

\J

Figure (1.36)

The signal flow graph is gives in figure (1.36) there are forward path

Pl - G162G4 'PZ - GlG3G4_

*m
Y=
Y=
L 1n]

Figure (1.37)
There are three feedback loops

p11 = GG, H, Py =—-G,G,G, Hy ,P;; = —G,G3G,H,
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There are no nontouching loops and all loops touch forward paths than
A=1,A,=1

Therefore the control ratio is

T {’:‘ Plﬁ'l - Pz 52 GIGIG‘ + GlGde
R A 1 -GGy H, + G,G.G, H, + G,G,G, H,

—— GGG, + Gy)
1 — G,Gy H, + G,G,G, H, + G,G G H,
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Chapter two

Time Invariant system

2. Introduction

A dynamic system is Time invariant if shifting the input on the time axis
leads to on equivalent shifting of the output along the time axis with no other
changes in other words a time invariant system maps a given input trajectory
u(t) no matter when it occurs. Many physical systems can be modeled as
linear time invariant (LTI) systems very general signals can be represented
as linear combinations of delayed impulses by the principle of super position
the response y[n] of a discrete time (TLI) system is the sum of the response
to the individual shifted impulses to the individual shifted impulses marking

up the input signal x[x]

Y(t —1) =Flu(t —1)] (2.1)

The formula above says specifically that if an input signal is delayed by

some amount T so will be the output and with no other changes

/\,% NT)

Figure (2.1) Figure (2.2)
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y(t) y (t-1)

/\/\ A

g

Figure (2.3) Figure (2.4)

An example of a physical time varying system is the pitch response of a
rockety (t) when the thrusters are being steered by an angle u (t). You can
see first that this is an inverted pendulum problem and unstable without .A
closed loop controller it is time varying because as the rocket burns fuel its
mass is changing and so the pitch responds differently to various inputs
throughout its flight. In this case the absolute time coordinate is the time
since lift off. To assess whether a system is time varying or not follow these
steps replace u (t) with u (t-7) on one side of equation replace y (t) with y(t-

7) on the other side of the equation and then check if they are equal Hoer
several examples.

Y () =u®’
This system is clearly time invariant because it is a static map Next

1. Example 2

y(t) =f,/u(t) dt

Replace u (t) with u (t-t) in the right hand side and it the
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y(t) =j\/u(t1—‘[) dt, =j _ Jyu(ty) dt,

The left hand side is simply

yu—ﬂ=f_¢modq
0

Clearly the right and left hand sides are different hence the system is not
time invariant. As another example consider

2.Example 2

y© = [ we) d

The right hand side becomes with the time shift

t t—71
f u2 (tl - T) dt1=f uz (tz) dtz
t—5 t—5—-1
Whereas the left hand side is
t—71
ye-n=| v dy
t—-5-1

The two sides of the defining equation are equal under a time shift t and so
this system is time invariant. Time invariant also known as shift invariance
describe function independence from the location of t = 0 on the time lime
By definition a time invariant describe S a function's independence from the

location of t=0 onthe time lime By definition a time invariant systems
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output will shift in tine if its input shifts in time but otherwise will remain
exactly the same in other words a time invariant function does not words a
time invariant function does not care what time it is we describe time

invariance with the following notation
GivenY(t) = f(t)theny(t—s) = f(t —s) (2.2)

System because is a crucial property of real system because it allows us to
assume that a system will respond in a predictable manner at any time
modeling time dependent systems are often highly influenced by initial
condition and system definition

3.Example 2
Is the systemy =t + x(t) time invariant?

To prove whether or not the above system is time invariant we must a

mathematical technique called proof by contradiction proof by contradiction
IS often used when two separate conditions can be tested on the same system
or mathematical contract. In this case we can compare the results of the time

shifted system with the solution assuming that the system is time invariant
thus the shifted system is represent the original system as

yi () =y(t—s) +x(t—s)

Now if we define the input function to be x(t — s) = x; ¢, (t) Which we

may assume if and only if the system is time invariant then we represent the

original systemas y,(t) =t +x(t—s)

Since y; #y, we may conclude that the systemis not time invariant

through proof by contradiction
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Example 2.4

Is the system y = ax(t) + B time invariant?  (Note c.and 3 are
constant)

We will use of some method a gain on the new system described above
The shifted system is represented as y, (t) = y(t —s) = ax(t—s) + B

Again if we  x(t —s) = xg5.(t) and (other by assume system the system

Is time in variant). Than we represent the original system as
Vo (t) = axgpipe(t) + B = ax(t —s) +
Since y; = y, we may conclude that the system is time invariant

2.1 Solving the time invariant state Equation

In this part, we show obtain the general solution of the linear time
invariant system equation .We shall first consider the homogeneous case and

then the nonhomogeneous case.
2.1.1 Solution of Homogeneous state Equations

Before we solve vector matrix differential equations .Let u review the
solution of the scalar differentia

X =ax (2.3)
In solving this equation, we may assume a solution x (t) of the form

x(t) = by + byt + byt2* bt (24)
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By substituting this assumed solution in to Equation (2.3) we obtain

b, + 2b,t 4+ 3byt2*+ byt
= Qa (bO + b1t + b2t2+ ...... +bktk+... )X(O) (25)

If the assumed solution is to be the true solution Equation (2.5) must hold for
any t, Hence, equating the coefficients of the equal powers of t , we obtain

b1=ab0 ,2b2=ab1 ,b2=%ab1=_a2b0 ) b3 =_a2b0=
—a’hy b= db,

3%x2

The value of b, is determined by substituting t = 0 into equation (2.4), or

Hence, the solution x (t) can be written

1 1
x(t) = (1 +at+2— a’t? + - +k aktk + )x(O) = e x(0)

We shall now solve the vector matrix differential equation

y = AX (2.6)

Where X = n — vector
A =n x n constant matrix

By analogy with the scalar case, we assume that the solution is in the form
of vector power series in t, or by substituting this assumed solution in to
equation (2.5) we obtain
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b, + 2b,t + 3b3t2+ ------ +kbjth14... 2.7)
— 4 (b0 + byt + byt 2+ thiti ) (2.8)

If the assumed solution is to be true solution, equation (2.8) must hold for all
t. thus by equating the coefficients of like powers of t on both sides g
equation (2.8) we obtain

b, = Ab, ,2b, = Ab, by, =~ Ab =2 A%b, , by == A%b, =

1 1
— A%y b =— Ak,

3X2

By substituting t = 0 into equation (2.7) we obtain

x(0) = by.Thus, the solution x (t) can be written as

1 1
x(t) =1+ At+ 5,4%2 + ---+EA"tk + -+ )x(0)

The expression in the parentheses on the right hand side of this last equation

IS an n x n matrix because of the similarity to the infinite power series for a
scalar exponential we

14 At 4~ APE2 4 o AR LR 4o = A0

In terms of the matrix exponential is very important in state space in state
space analysis of linear systems, we shall next examine its properties

Definition 2.1

It can be proved that the matrix exponential of an n x n matrix A
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(o]

Akt¥
At __
e —E = (2.9)

k=0

Converges absolutely for all finite t Hence, computes calculations for
evaluating the dements e“¢ by using the series expansion can be easily
carried out .Because of the convergence of the infinite series

eAt

[00]

ARtk
- z (2.10)

k!
k=0

The series can be differential term to give

deAt A3 t2 Ak tK—l
=A+A%t+ + et
dt 2! (k—1)!

(2.11)

2 = Ae4t

242 k-1,.K-1
t _|__|_A t +]
21 (k—1)!

= A [1 + At +
th Ak—ltK—l

TRy T

=A[1+At+ ] = Ae4t

The matrix exponential has the property that
eAt+S) — pAtpAs (212)
This can be proved as follows

ARtk [x Ak sk
At ,As __
¢ es—(E k! )(Z k!)

k=0 k=0

| ki )k
_ k o0 tlS _ k (l+t) _ A S
= Zk=oA (Zi=0 !(k—1)!) = Lo AT T = e o
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In particular, if s = -t, then

Atp=At — pA(t-t) — 1

e e
Thus, the inverse of e4t ise™4¢ since the inverse of e4t always exists e4t
Is nonsingular, it is very important to remember that

et(AFB) = pAteBt  if AR = BA ,et(*B) = e4teBt if AB + BA

To prove this note that

A+ B)? A+ B)3
( )t2+( )t3+
2! 3!

atgpt — (144 At? A3 1B B*t* A3t®
efte™ =(1+At+—r+— o J|1+Bt+— -+ — 0+

et =1+ (A+ Bt +

B A%t?  A3t3 A’Bt3® AB%*t® B3t
=14+ (A+B)t+ o + 3 + o + T + T

Hence

eAteBt

At ,Bt

—e’te
__BA—-AB 2_I_BAZ+ABA+BZA—BAB—2AZB—AB2t3

2! ‘ 3!

The difference between e4teBtand e4teBt vanishes if A and B commute
Laplace transforms Approach to the solution of Homogeneous state equation
Let us first consider the scalar case

X =ax (2.13)

Taking the Laplace transform of equation (2.13) we obtain
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SX(s) —X(0) = aX(s) (2.14)
Where X (s) = ¢[x] for solving (2.14) for X(s) gives

X(s) = 22 = (s - ) 1x(0)

The inverse lap lace transform of this last equation gives the solution
x(t) = e%

The foregoing to the approach to the solution of the homogeneous scalar
differential equation can be extended to the homogeneous state equation

X =AX (2.15)
Taking the Laplace transform of both sides of equation (2.15)
SX(s) —X(0) = AX(s)
Where X(s) = ¢[x]Hence (SI —A)X(s)X = X(0)
Premultiplying both sides of this last equation by (ST — A)~! we obtain
X(s) = (SI — A)~1 x(0)

The inverse Laplace transformation of X(s) gives the solution x (t), Thus

x(t) = @~ [(SI—A)"]x(0) (2.16)
Note that
A A?
A1 — -
(SI — A) 5 +S2 +S3
_|_ .o
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Hence the inverse Laplace transform of (ST — A)~! gives

1 1
P H(SI-A)1]=1+At +5A2t2 n ...+EAktk+
=e  (2.17)

The Laplace transform of a matrix is the matrix consisting of the inverse
Laplace transform all elements form equation (2.16) and (2.17) the solution
of equation (2.15) is obtained as

X(t) = e*tX(0)

The importance of equation (2.17) lies in the fact that it provides a
convenient means for finding the closed solution for matrix exponential

2.2 State Transition Matrix

We can write the solution of the homogeneous state equation

X = AX (2.18)

X(t) = 0()X(0) (2.19)
Where@(t) is an n x n matrix and is the unique solution of
o) =A0() , 6(0)=1
To verify this note that
X(0) = 0(0)x(0) = Xx(0)

And
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X)) =0 (®)X(0) = A0(6)X(0) = AX(t)

We thus confirm that equation (2.19) is the solution of t equation (2.16) from
equation (2.17).and (2.18) we obtain

B(t)=e’t =@ ' [(SI-A)"]
Note that
O (t) = e 4 = @(-t)

From equation (2.19) we see that the solution of condition, hence the
unique matrix @(t) is called the state information matrix.

The state information contains all the information about the free motions of
the system defined by (2.3)

If the Eigen values 3;  , ,-+,3, ofthe matrix A are distinct, than @(t)

will contain the n-exponentials

In particular, if the matrix A is diagonal, then

Mt
el

o(t) =eft = e

(Adiagonal)

If there is a multiplicity in the Eigen values for example A are A4, Ay, A3,A4,
}\45, ...,}Ln

Then ¢ (t) will contain, in addition to the exponential eklt,ekzt,...,ek”t terms
like te"1" and t2e’1"
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2.2.1 Properties of State Transition Matrix

We shall now some matrix the important properties of state transition matrix
@(t) for the time invariant system

X = AX
For which
B(c) = e
We have the following
1. ¢()=e4°=1
2.0(t) = eAt =AD" = [@(—1)] " or 671(t) = B(—t)
3.0(t; +1t,) = eAtatta) = edtigflz = @(£,)@(t,) = B(t,)D(t,)
4.[0(O)]" = d(nt)
5.0(t; — t)0(t, — o) = B(t; — to) = B(t; — £0)B(t, — ty)

5.2 Example

Obtain the state transition matrix ¢(t) of the following system

a5 2

Obtain also the inverse of the state transition matrix ¢ *(t) for system
0 1
A=
2
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The state transition matrix @(t)is given by
o) = e’ =7t [(SI - A)7']

Since

S 0 0 2 S -1
SI'A: — =

{O S} {—2 —3} {2 S+3}
The inverse of (SI - A) is given by

~ (S+1)(S+2)

-l 1 S+3 1
ot ]

[ S+3 1
(st1)(s+2) (s+l)(s+2)

) i
L (s+1)(s+2  (stl)(s+2

Hence

() =eM =g [SI-A) ] =

Noting that @1 (t) = @(—t) we obtain the inverse of the state transition

matrix as follows

2t t 2t

2el _e el —e

ol(t)=eAt =
_2el 4202t _gt 1 0p2t

2.3 Solution of non-homogeneous state equations
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We shall begin by considering the scalar case
X =ax+bu (2.20)

let us rewrite equation (2.20) as X' — ax = bu multiplying both sides of

this equation by e~*‘we obtain

d
e" [ X (t) —ax(t)] = E[ e~ *x(t)] = e *bu(t)
Integrating this equation between o and t give
t

e x(t) —x(0) = J e~ bu(t) dt

0

or

t

x(t) = e x(0) + e* j e~ *bu(t)dr

0

The first term on the right hand side is the responseto the initial condition

and the second term is the response to the nonhomogeneous state equation
described by

X =AX +BU (2.21)
Where X =n - vector

U =r — vector

U =n x n constant matrix

U =n x r constant matrix
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By writing equating (2.21) as X' — AX(t) = BU(t) and premultiplying both

sides of this equation by e~“‘we obtain

d
e [ X (t) — AX ()] = pp [e™4tX(t)] = e 4*BU(t)

Integration the preceding equation between o and t gives
t

e Atx(t) —x(0) = f e 4 Bu(t)dr
0

Or
t
x(t) = e4tx(0) + eAtj eACt=DBy(1)drt (2.22)

0

Equation above can also between as

X(t) — @)X (0) + [ B(¢ — D)Bu() dr (2.23)

Where @(t) = e4t

Equation (2.22) and (2.23) is the solution of equation (2.21) the solution x(t)
is clearly the sum of a term consisting of the transition of the initial state and
a term arising from the input vector. Laplace transforms Approachto the
solution of nonhomogeneous state equation. The solution of the
nonhomogeneous state equation

X =AX+ BU (2.24)

Can also be obtained by the Laplace transform approach, the Laplace
transform of this last equation yields
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SX(s) —X(0) =AX(t) + BU(t)
Or

(SI — A)X(s) = (0) + BU(s) (2.25)

Premultiplying both sides of this last equation by (2.25) (SI — A)~!

We obtain
X(s) =(SI —A)1X(0)+ (ST — A)~* BU(s)
Using the relationship given by equation (2.17) gives
X(s) = 0[e”*]X(0) + @[e**]BU(s)
The inverse Laplace transform of this last equation can be obtained by use of
the convolution integral as follows.
t

x(t) = e?*x(0) + e“”f eAt=DBu(r)dr (2.24)

0

Solution in term s of x(ty),thus for we have assumed the initial time to be
zero. If however, the initial time is given by to instead of o, them the saluted
to above equation must be modified to

t
x(t) = eAEDx(0) + e‘“f eAt=-DBy(1)dr
0

6.2 Example
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Obtain the time response of the following system

< AR
X5 -2 3] | %1
Where u (t) is the unit step function occurring att = 0 or U(t) = I(t)

For this system

Aol Sl

The state transition matrix @(t) = e“ was obtained

The responseto the unit step input is then is obtained as

X(t)=

At e~ (t—1) —e -2(t—-1) e—(t—r) _ e—Z(t—T) ] 0
€ x(0)+f [ e~t-T) 4 2o—2(t-1) _p—(t-1) 4 9p—2(t-7) [1][1]dT
Or

1
X, () =[ 2e7t — e ] X,(0)] __e e
X, (t) —2et+2e2t —et 4 26‘2’: X, (0) oot _ -2t

If the initial state is zero x (0) = 0.Then u (t) can be simplified to

1 1
X O] _|F-e +_e—2t]

X, (0]~ !

et — g2t

2.4 State model of linear system

Consider multiple input multiple output nth order
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Number of inputs=m

Number of outputs=p

Uy = = T
U " MIMO — "2
Inputs SYSTEM Outputs
Figure (2.5)
Xy X3 X3 Xa
Slate varlables
"y (8) ] xq ()] RAG)
U, (t) x, (8) Y, (1)
U(t) = : , X(®)=1 : JY(o) =1 :

LUy, (1) Ly, () Yy (8).

All Colum vectors having orderm X 1,n X 1 and p X 1 respectively

For such a system the state variable representation can be arranged in the
form of n fist order differential equations

dx, (t)

dt _ 1('xl,xZ, ------- Xn U]_ ....... Um)
dx,(t)

dt o 2(951,952, ------- XnUq .o Um)
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dx,(t)
dt - fn(xl,xZ’ ...... ,xn’Ul’ ...... ,Um’)

fi
Where f = lﬁ‘ Is the functional operator

Integrating the above equation

t
X(O = X6+ [ Firssntn, iyt (2:26)
to

Thus n state variables and hence state vector at any time t can be determined

uniquely any n dimensional time invariant system has state equation in
functional form as

d
d—’: = f(X,U) (2.27)

While outputs of such system are dependent on the state and instantaneous
Inputs functional output equation can be written as

X(@t)=gkxuw) (2.28)
Where g is functional output

For the time invariant system the same equation s can be written as

2—’; =f(X,U,t) - State equation
Y()=9gX,U,t) - Output equation

Diagrammatically this can be represented in the figure above
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U(t) Instantanecus

input
Input X(t)
Ui - Y1)
T Quiput
Figure (2.6
X(t) gure (2.6)
Initial state

Input-output state description of system

The functional equations can be expressed in terms of linear combination of

system states and inputs as

i] = ﬂl] Kl + ﬂ]zxi + ..k alnxn + h11U1 + h]i[.]z L R blm Um

il =an X1 + ﬁqu eir azn)(“ +b‘21U1 +b‘22U2+ i +I‘sz Um

in = anl xl + ﬂ.rax!"l' e ﬁmx“‘" thl + me:"" ves ¥ b.'l'lﬂ'l UI:'I'I

For linear time invariant systems the coefficients a;; and b;; thus all

equations can be written in the vector matrix form as

X (t)=AX(t)+ BU(t) (2.29)
Where

X (t) =state vector matrix of ordernx 1

U(t)=input vector matrix of order mx 1

A=system matrix or Evaluation matrix of order nx n

B=input matrix of control matrix of order nx m
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Similarly the output variables at time t can be expressed as the linear
combinations of the input variables and state variables at time t as

?l{t] =on x|{ﬂ + . * Cin xnl:t:l + dlI Ul.[ﬂ + 0 * d'lm Um{t:l

Yp(t) = €py Xg(B) + oo+ €y Xg(®) + iy Uglt) + oo + dpy Uph(8)

For linear time invariant systems, the coefficients C;; and d;;are constants

thus all the output equations can be written in the vector matrix form as
Y () =CX (t) +DU (t)

Where

Y (t) =output vector matrix of orderpx 1

C=output matrix or observation matrix of order px n

D=Direct transmission matrix of order px m

The two vector equations together is called state model of linear system

X (t) =AX(t)+ BU(t) State equation

Y(t) = CX(t) + DU(t) Output equation

This state model of a system

For linear time invariant system the matrix A,B,C and D are also time
dependent. Thus

X(@t)=A®)X(t) + B(t)U(¢t) (2.30)
Y(t)=C()X(t) + D(t)U(t)
For linear time invariant system
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2.5 State model of single input-single output system
Consider a single input —single output

—But its order n hence n state variable are required to define state of system

in such case the state model is

X (t)=AX(t)+ BU(t) (2.31)
Y(t)=CX(t)+ dU(t)

Where

A =nxn Matrix B=n X1 matrix

C = 1 X n Matrix d=constantand u(t)=single scalar input variables

In general remember the order of various matrices

A =Evoluation matrix - n X n

B =Control matrix— n X m

c =Observation matrix— p X n

D =Transimission matrix — p X m
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Chapter Three

Controllable Pairs of matrice

3. Introduction

A system is said to be controllable at time t,,if it is possible by means of an
unconstrained control vector to transfer the system from. Any initial state
X(t,) to any other state in a finite interval of time. A system is said to be
observable at time ¢t if, with the system in state X (t,), it is possible to
determine this state from the observation of the output over a finite time
interval. The concepts of controllability and observability were introduced
by Kalman,s they Play an important role in the design of control systems in
state space. In fact, the Conditions of controllability and observability may
govern the existence of a complete Solution to the control system design
problem. The solution to this problem may not, exist if the system
considered is not controllable. Although most physical systems are
.Controllable and observable, corresponding mathematical models may not
possess the Property of controllability and observability Then it is necessary
to know the. Conditions under which a system controllable and observable
this deals with controllability and the next discusses observability in what
follows, we shall first derive the condition for complete state controllability.
Then we derive alternative forms of the condition for complete state
controllability followed by discussions of complete output controllability.

Finally, we present the concept of stabilizability

3.1 Complete State Controllability of Continuous-Time Systems.

71



Consider the, Continuous-time system.
1). (3 x =Ax+BU

Where x = state vector (n-vector)

U=control signal (scalar)

n=nxn matrix

B=nx 1matrix
The system described by Equation (3.1) is said to be state controllable at
t =t, if it is possible to construct an unconstrained control signal that will
transfer an initial state to any final state in a finite time interval If every state
is controllable, then the system is said to be completely state controllable We
shall now derive the condition for complete state controllability. Without
loss of generality, we can assume that the final state is the origin of the state
spaceand that the Initial time is zero .or t, = 0.The solution of Equation
(3.1 is
X (t) =e“tx (0) + [ eA“"? BU (t)dr
Applying the definition of complete state controllability just given, we have
X (t;) =4t x (0) +[* e4®1—7 BU(1)dr
Or

5]

X(0)=— [,"e " BU(r)dz

2).(3

By definition of e~4‘can be written
e~ = FhTj ar (A"

3).(3
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Substituting Equation (3.3) into Equation (3.2) gives

X (0) = — TPzt A*B [ e (r) U (r) dt
4).(3

Let us put fotl ay(t) u(r) dr = B;, .Then Equation (3.4) becomes

X (0)=—-Y2A*BB,=—[B: AB : - A" 1B]
5).(3
If the system is completely state controllable, then, given any initial state x
(0) Equation (3.5) must be satisfied. This requires that the rank of the nxn
matrix

[B:AB: .- A" !B]
From this analysis, we can state the condition for complete state
controllability as follows. The system given by Equation (3.1) is completely
state controllable if and only

If the vectors B, AB,---, A" 1B are linearly independent, or the nxn matrix

[B:AB: - A" 1B]
Is of rank n
The result just obtained can be extended to the case where the control vector
u is n-dimensional. If the system is described by
X =AX+BU
Where U is an r-vector, then it can be proved that the condition for complete
state. Controllability is that the nxnr matrix
[B:AB: .- A" 1B]
Be of rank n, or contain n linearly independent column vectors. The matrix

[B:AB:--- A" 1B]
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Is commonly called the controllability matrix
1 Consider the system given by.Example 3

o=l L1+l

The system is not completely state controllable.

Since [B : AB] = [ =singular matrix

3:1:1 Alternative Form of the Condition for Complete State
Controllability. Consider the system defined by
6). X =AX +BU (3
Where x = state vector (n-vector)

U=control signal (scalar)

n=nxn matrix

B=nx 1 matrix
If the eigenvectors of A are distinct, then it is possible to find a
transformation matrix P such that
A o 0
p~1AP=D=| l}

0 e 3

Note that if the eigenvalues of Aare distinct, then the eigenvectors of Aare
distinct; however, the converse is not true. For example, an nxn real
symmetric matrix having, multiple eigenvalues has n distinct eigenvectors.
Note also that each column of the Matrix is an eigenvector of A associated
with ;= (i=1, 2,---,n)
Let us define
7). X=Pz (3
Substituting Equation (3.5) into Equation (3.4), we obtain
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By defining
Z=PT'APZ + P1BU (3.8)
By defining

P~'B=F= (f;;).We can rewrite Equation (3.7) as

Z'1= Mz, f11u1+ f12u2+...+ firu,
Z2= 2z, f21u1+ f22u2+...+ f2rur

Z'n=nz,, fn1u1+ fn2u2+... + fnrur

If the elements of any one row of the nxr matrix F are all zero, then the
corresponding state variable cannot be controlled by any of the u;. Hence,
the condition of complete state controllability is that if the eigenvectors of A

are distinct, then the system is completely State controllable if and only if
no row of P~1B has all zero elements. It is important. To note that, to apply
this condition for complete state controllability, we must put the matrix
P~1AP in Equation (3.8) in diagonal form If the A matrix in Equation (3.6)
does not possess distinct eigenvectors, then diagonalization is impossible. In
such a case, we may transform A into a Jordan canonical Form. If for
example, A has eigenvalues and has n-3 distinct. Eigenvectors, then the
Jordan canonical form of A'is

3, 1 0 0
0 3% 0 0 0
Jj=lo o0 3 1 :

:0 i
0 0 0 0 3

The square sub matrices on the main diagonal are called Jordan blocks.

o

Suppose that we can find a transformation matrix S such that
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ST1AS =]

If we define a new state vector z by

X=S5Z (3.9)
Then substitution of Equation (9) into Equation (6) yields

Z-=S"1ASZ+S' BU
=J]Z+S1BU (3.10)

The condition for complete state controllability of the system of Equation
6) may. Then be stated as follows: The system is completely state .(3

10) are .controllable if and only if, No two Jordan blocks in J of Equation (3
associated with the same eigenvalues, the elements of any row of that
3) .correspond to the last row of each Jordan block. Are notall zero, and (3
the elements of each row of that correspond to distinct, Eigenvalues are not
all zero.

2 the following systems are completely state controllable:.Example3

=10 S1Lal+ (5
Since [B: AB] = [é __120] = nonsingular matrix the system s

completely state controllable
3.1.2 Conditions for Complete State Controllability in the Plane

The condition for complete state controllability can be stated in terms of
transfer functions or transfer matrices. It can be proved that a necessary and
sufficient condition for complete state controllability is that no cancellation
occurin the transfer function or transfer matrix. If cancellation occurs;the

system cannot be controlled in the direction of the canceled mode.

3 Consider the following transfer function .Example 3
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X©S)  (s+25)
Ues) (s+25)(s—1)

Clearly, cancellation of the factor (s+2.5) occurs in the numerator and

denominator of this. Transfer function. (Thus one degree of freedom is lost.)
Because of this cancellation, this system is not completely state controllable.
The same conclusion can be obtained by writing this transfer function in the

form of a state, Equation a state-space representation is
s _[205 115][ [
Since [B: AB] [

The rank of the matrix is [B : AB] .Therefore, we arrive at the same
conclusion: The system is not completely state controllable.
4 Show that the system described by.3 Example
X =AX+BU
Y =CX
Where x = state vector (n-vector)
U=control vector(r-vector)
Y = output control (m-vector) (m< n)
A=nxn matrix
B =nXx r matrix
C =mXnmatrix
Is completely output controllable if and only if the composite mxnr matrixP,

where

P=[CB:CAB:CA%B: - : CA"1B]
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Is of rank m (Notice) that complete state controllability is neither necessary
nor sufficient for complete output controllability
Suppose that the system is output controllable and the output y (t) starting
from any y (0) the initial output can be transferred to the origin of the output
spacein a finite time interval
O<t<thatis

y(T)=Cx(T)=0
Since the solution of Equation P is

X(t) = eAt[X(0)+f(fe‘AtBu(r)dr] (3.11)

At t= Twe have

AT[X(0)+, e 4TBu@ ar] (3.12)

X(t)=e
Substituting Equation (3.12) into Equation (3.11), we obtain
Y (T) = Cx(T)

_ CeAT[X(0)+f0Te‘ATBu(r) dt] =0 (3.13)
On the other hand, y (0) =Cx (0). Notice that the complete output
controllability means that the. Vector Cx(0) spans the m-dimensional output
space. Since e4T is nonsingular, if Cx(0) spans the m-dimensional output

space, so does Ce4Tx(0), and vice versa. From Equation (3.3) we obtain
T

Ce4Tx(0) = —CeATf e"BU(T — 1)dt

0

Note that e4” | OT e Bu(T — t)drcan be expressed as the sum of A'B;; that
IS
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p—-1

T T
j eATBU(T_T)dT=z )/U ALB]
0 i=0  j=0

Where

T
Yij = f Aio)u; (7)(T — 1)dt = sclar
0

And «;(7) satisfies
eA‘c=Zf=_11ai(T) Al

(P: degree of the minimal polynomial of ( 3.12))

And is theB;; jth column of Therefore, we can write Ce#"x(0 as
p-1 T

CBATX(O) == _2 yl] C ALB]
0

i=0 j=

From this last equation, we see that Ce“"x(0) is a linear combination of

CA"B]- . (i=0, 1, 2, p,P-1; =1, 2, p, r). Note that if the rank of Q, where
M= [CB:CAB:CA?B:----:CA" 1B] (p<n)

Is m, then so is the rank of P, and vice versa. [This is obvious if p=n. If p<n,

then the CA"B]-.(Where p < h<n-1) are linearly dependent onCB; ,CAB; ,

CAP~1B; . Hence, the rank of p is equal to that of Q.] If the rank of P is m,

then Ce47x (0) spans the m-dimensional output, space. This means that if
the rank of P ism, then Cx(0) also spans the m-dimensional output space,
and the system is completely output controllable. Conversely, suppose that
the system is completely output controllable, but the rank of P is k, where
k<m. Then the set of all initial outputs that can be transferred to the origin is

of,
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K-dimensional space hence, the dimension of this setis less than m. This
contradicts the assumption, that the system is completely output controllable.
This completes the proof. Note that it can be immediately proved that, in the
system of Equations (3.12) and (3.13), state controllability on

0 <t <T implies complete output controllability on0 <t< T, if and only if

m rows of C are linearly in depend

5 obtain a state-space equation and output equation and test .3 Example
controllable for the system defined by

Y(S) 25°+s*+s+2

US) s3+4s?2+5s+2
From the given transfer function, the differential equation for the system is

Yy +4y +5y +2y=2u"+u +u +2u
Comparing this equation with the standard equation given by Equation
y't+ay +a,y +2y=byu”+bu +bu +bsu

We find
a, =4,a,=5,a; =2
by =2,by =1,b, = 1,b; =2
and
Bo=by =2

By=b;-a,fy=1-4%x2=-7
By=by- a:f1- a,fo=1-4X (-7)-5%x2=19
ﬁ3:b3_a1ﬁ2_a231_a330 =2-4x%x19-5% (-7)-2%x2=-43
And

X1=Y-PoUu=Yy-2u

Xp=X'1 — P1U=X"1 47y
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X3 = x'z - ﬁzu = x'z - 19u

And
X1 = Xa—7u
X2 = X2419u
X'3= —QA3X; — Ay Xy — A1 X3, U = —2 X, — 5%, — 4x,_43u

Hence, the state-space representation of the system is

X1 0 1 0 X1 -7
X1 =10 0 1 X2|+1 19 |+ 2U
X3 -2 =5 =211X3 —43

X1
Y=[1 0 O][le
X3

Test controllable
Controllability matrix=[B : AB : A*B]

Since
-7 0 1 0 -7 19
B=119 |,AB=|0 0 1”19]=[—43]
—43 -2 -5 -211-43 5
0O O 1 —43
A?=|-2 -5 —2|,A%B=| 5§ ]
4 8 -1 167
-7 19 —43
M=[B:AB:A’B]==| 19 —43 5 ]
—43 5 167

|IM|=61492= 0 is systemis complete controllable

Example3.6 the following systems are completely state controllable
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2 0 0 0 1
a=fo 2ol m=fio| c=1 90 =[5 )
0 3 1 0 1
0 2 4 0 O 0 4
A=12 0 A’=10 4 0| A*B=1]4 0
3 1 0 9 1 9 1
01 0 2 0 4
M=]1 0 2 0 4 0
01 3 1 9 1

Rank (M)=3 , det(left half)=-1(3)=-3+0 fully state controllability

3.1.3 Vander Monde Matrix

If the state model is obtained using the phase variables then the matrix A is
in bush for or phase variable form as

[ ! 0 0
0 0 1 )
A = :
() 0 0 1
T e e ]

And the characteristic equation i.e. denominator of T(s) is
F(s)=s"+a;s"'+-+a,,s+a,=0

In such a case model matrix takes a form of a special matrix as
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[ 1 1 1 7
-;L'l d.\.-’L: A....
Vo= 2 2 K 2
':I"I ?"E }"n
R

Such a model matrix for matrix A which in phase variable is called Vander
monde matrix

Example 3.7 consider a state model with matrix A as

¥ 2 0
.-"“l- = 4 ” 1
458 =34 -4

Determine (a) characteristic equation (b) Eigen values (c) Eigen vector and
model matrix ,also prove that the transformed M~ AM a diagonal matrix

(a) Characteristic equation is |3 — A

1 0 0 0 2 0 A =2 0
A=23210 1 Of—| 4 0 1({=0,]4 0 1 |=0
0 0 1 —-48 —-34 -9 48 34 131+9

P¥(3+9)+2x48+0+0—-8(3+9)+3423=0
B +932+263+24=0
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This is required characteristic equation

(b) To find Eigen values test X = —2 for root

-2 1 g 26 24

-2 =14 =24

1 7 12 0

Q+2)(2+73+12)=0ie(3+2)+3)3+4)=0
l.e My =—2,0,=-3 andl; = —4

These are the Eigen values of the matrix A

(c) To find Eigen vectors, obtain matrix [X;I — A] for each Eigen values by
substituting value of X in above equation

-2 =2 0
Fory, =-2,[-Al=|-4 -2 -1
48 34 7
_Cll
M, = |Ci2 | where cqq 15 ci3cofactor of Tow 1
-613
20 ] 1
M, =|-20|=|—-1| thecommon factor can be taken out
40 | 2
-3 =2 0
Fori,=-3,[0;]-Al=|-4 -3 -1
48 34 6
Ciq 16 2
M2: Clz =|-24|=1|-3
Cis 8 1
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Ford;=—-4 [D,1—-A] =

Ci1
M; = Ciz| =

Cl 3

—4 —4 -1
48 34

2l

M;,M, and M5 are the eigen vectors corrsesponding to the eigen values

—4 -2 0]

21,2, and g
(d) The modal matrix is
1 2 1
-2 1 4

Let us prove M~*AM = is adiagonal matrix

Adj[M] _ [cofactor of M]"

_1:

M| M|
-10 8 -71" [-10 -7 -1
AdjiM]=|-7 6 -5| =| 8 6 1
-1 1 -1 -7 -5 -1
1 2 1 Adj[M] 10 7 1
M| =|-1 -3 =2|=-1, ] =|-8 -6 -1
-2 1 4 7 5 1
0 2 0
AM =] 4 0 1 —1 —3 —2
—48 —-34 -9 —3 —16
10 7 17
M 'AM=|-8 —-6 -1
7 5 1] —3 —16
3, 0 0
[o y, 0]l=A
0 0 i

3.1.4 MIMO System
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Formultiple inputs multiple output systems a single transfer function does
not exist. There exists a mathematical relationship between each output and
all the inputs. Hence for such systems there exists a transfer matrix rather
than transfer function but method of obtaining transfer matrix remains same

as before.

8 Determine the transfer matrix for MIMO system given by.Example 3
)= SIGl=0 1w
al= o1 Gl
From given state model

e[ Lle-ft 2e=F Ho-m

T.M= C[SI— A]"*B+D

_[s -3
[s1 A]_[Z s+3]
o a1 [Cin C12]T_S+5 —ZT_S+5 3
|ISI —A| =52+ 55+65=(s+2)(s+3)
- [SI—A] :Adj[SI—A]_ [S_+25 i]

Isi—al  (s+2)(s+3)

HR W

(s+2)(s+3)

~ T.M=C[SI—A]"'B=

[2 1 [s+8 s+3] [35+14 3s+14]
=1 0lls—2 s-21_1 548 s+8
(s+2)(s+3) (s+2)(s+3)
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3.1.5 Gilbert’s Test for controllability

For Gilbert’s test it is necessary that the matrix A must be in canonical form
.Hence the given state model required to be transformed to the canonical
form first to apply the Gilbert test

Consider single input linear time invariant system represented by
X =AX(t)+ BU(t)

Where A is not in the canonical form then it can be transformed to be
canonical form by the transformation X (t) = MZ(t) Where M=model
matrix. The transformed state model, as derived earlier take the form

Z({)=VZ(t)+B~U(t)
Where V= diagonal matrix
B~=M"1B

It is assumed that the Eigen values of A are distinct in such a case the
necessary and sufficient condition for are complete state controllability is
that the vector matrix B~should not have any zero elements If it has zero
elements then the corresponding state variables are not controllable if the
Eigen values are repeated then matrix A cannot be transformed to Jordan
results Jordan canonical form, as

-
vhy 1,0 0 0 O 0
|
v 0 M1 0 D 0 Do 0

= YTy TRTTTTTEY o
A o 0 by 0 : 0 0
Jordan 0 0 : 0 A 1y 0 0
WHENT 0 100 A 0 0
0 0 0 0 0 g 0
D Qereosememsenssmmms s issssnne R

In such a case the condition for complete state controllability is that the
elements of any row of B~ that corresponds Jordan to the last row of each
Jordan block are not all zero

Example 3.9 consider the system with state equation
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X1 0 1 0 J{I 0
Xa|=]0 0 1[X,|+jofjum
X;| |6 -11 -6f[X,]| 1

Estimate the state controllability by (i) kalman,s test and (i1) Gilbert’s test

()  Kaman,s test

M = [B: AB: AB]
0o 1
AB = 0 0
—6 —-11 —6
1
A2 = 6 —11 —6
- —11 —6 —11 —6 36 60 25
A%B =

L IH o [0 W

= 1,thus |M| is nonsingular

Hence the rank of M is 3 which is n thus the system is completely state
controllable

(i)  Gilbert test. Forthis it is necessary to express A in the canonical
form find the Eigen values of A

3 -1 0
31— A] = b —1|=0 ,3¥+6)+1134+6=0
6 11 x+6
G+DA+2)(3+3)=0,3 =-1, =-=2, }3=-3
M = 31 l2 J3 [ —2 —3]
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l : ]
-5 8 -3
L _AdjM] 11 2 1 z[_gg 2.5 0.5

4 -1
M| 15 05

3 25 05

H

1 1.5 0.5

As matrix A is in phase variable form the model matrix M is Vander monde
matrix.As none of the elements of B~are zero the system is completely state
controllable. As Gilbert’s test requires transforming matrix A into canonical

form it is time consuming and hence kalman,s test is popularly used to test
controllability

B~=M"B =

3.1.6 Output controllability

In the practical design of a control system, we may want to control the
output rather than the state of the system. Complete state controllability. is
neither necessary nor sufficient for controlling the output of the system for
this reason, it is desirable to define separately complete output
controllability.

Consider the system described by

14). x =AxX+Bu (3
Y = CX + Du (3.15)
Where x = state vector (n-vector)
U=control vector(r-vector)
Y = output control (m-vector)
A=nxn matrix
B =nx r matrix

C = m Xnmatrix
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D =m X r matrix
The system described by Equations (3.14) and (3.15) is said to be
completely output. Controllable if it is possible to constructan unconstrained
control vector u (t) that will. Transfer any given initial output yAtO B to any
final output yAtl B in a finite time interval t, <t <t, It can be proved that
the condition for complete output controllability is as follows:
15) is completely output .14) and (3.The system described by Equations (3
controllable. 1f and only if the m x(n+1) r matrix
[C:CAB:CA?B: - i CA" 1B : D]
4.1.7 Uncontrollable System.
An uncontrollable system has a subsystem that is physically disconnected
from the, Input

3.20BSERVABILITY
We discuss the observability of linear systems. Consider the unforced
System described by the following equations
16).x° =AX (3
Y =CX (3.17)
Where x = state vector (n-vector)

Y = output control (m-vector)

A=nxn matrix

C =mX n matrix
The system is said to be completely observable if every state x (t,) canbe
determined from the observation of y(t) over a finite time interval, t, <t<

ty
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The system is therefore completely observable if every transition of the
state eventually affects every element, of the output vector. The concept of
observability is useful in solving the problem of reconstructing
unmeasurable state variables from measurable variables in the minimum
possible length of time we treat only linear, time-invariant systems.
Therefore, without loss of generality, we can assume that t,=0 the concept
of observability is very important because, in practice, the difficulty.
Encountered with state feedback controlis that some of the state variables
are not. Accessible for direct measurement, with the result that it becomes
necessary to estimate the unmeasurable state variables in order to construct
the control signals. It will be. Shown in that such estimate of state variables
are possible if and only if the system is completely observable. In discussing
observability conditions, we consider the unforced system as given By
17).The reason for this is as follows: If the system s .16) and (3.Equations (3
described

x =Ax+BU

Y=CX+DU

Then

X (t) =e4tx (0) + [ eA“~® Bu(r)dr
Andy () is
Y (t) = e4x (0) +[ e*“~® Bu(t)dt + DU
Since the matrices A, B, C, and D are known and u (t) is also known, the last
two terms, on the right-hand side of this last equation are known quantities.

Therefore they may be subtracted from the observed value of y (t). Hence,

for investigating a necessary and sufficient condition for complete
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Observability, it suffices to consider the system described by Equations
17).16) and (3.(3

3.2.1 Complete Observability of Continuous-Time Systems.

17).The output .16) and (3. Consider the system described by Equations (3
vector Y (t) is

Y (t) =Ce“tX (0).

12), we have.10) or (3.Referring to Equation (3

et = Yo ar(T)A"

Where n is the degree of the characteristic polynomial. Note that Equations
(3.8) and (3.10) with m replaced by n can be derived using the characteristic
polynomial. Hence we obtain.

y(£) = Tpzhay(t) CAX(0)

y(t = ay,(t)CX(0) + a; (t)CAX(0) + -+ a,,_, () CA™ 1 X(0 (3.18)
If the system is completely observable, then, given the output y (t) over a
(3.18) .time interval t, <t <t,X (0) is uniquely determined from Equation

It can be shown that this requires the rank of the nmxn matrix

[ ¢
o

[CA;”‘1|

From this analysis, we can state the condition for complete observability as
follows the system described by Equations (3.16)and 3.17) is completely

observable if and only if the nxnm matrix
[CT: AT CT i veeee : (AT)™2 CT ]
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Is of rank n or has n linearly independent column vectors. This matrix is
called the.observability matrix
10.3 Example

consider the system .Is this system controllable and observable. Since the

[l =15 SR+

rank of the matrix

v=i1 0[]

2
[B:AB] = [(1) —11]
Is 2, the system is completely state controllable. For output controllability,
let us find the rank of the matrix [CB : CAB] since
[CB : CAB] =[1 0]
The rank of this matrix is 1. Hence, the system is completely output
controllable. To test the observability condition, examine the rank of
[CT : AT CT ]
Since
[cm:amcr =) 1]

The rank of [CT : AT CT ] is 2. Hence, the system is completely observable

3.2.2 Conditions for Complete Observability in the Plane

The conditions for complete observability can also be stated in terms of
transfer functions or transfer matrices. The necessary and sufficient
conditions for complete observability are that no cancellation, occur in the
transfer function or transfer matrix. If cancellation occurs, the canceled,
mode cannot be observed in the output
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Example3:11
Show that the following system is not completely observable.

X =AX+ BU
Y=C
Where
X4 0 1 0 0
X=|X,|, A=1]0 0 1|, B=|0|, C=[4 5 1]
X, -6 —-11 -6 1

Note that the control function u does not affect the complete observability of
the system to examine complete observability, we may simply set u=0. For

this system, we have

4 -6 6
[CT : CTAT : (AT)?CT] =[5 —7 5]

1 -1 -1
Note that
4 —6 6
5 =7 5 (=0
1 -1 -1
Hence, the rank of the matrix [CT : CTAT : ------ (AT)2C"] is less

than3.Therefore, the system is not, completely observable.
Comments. The transfer function has no cancellation if and only if the
system is completely, state controllable and completely observable. This
means that the canceled transfer, function does not carry along all the
information characterizing the dynamic system.
3.2.3 Alternative Form of the Condition for Complete Observability.
Consider the System described by Equations (13) and (14), rewritten

X =AX (3.19)
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Y = CX (2.20)

Suppose that the transformation matrix P transforms A into a diagonal

matrix, or
P~AP=0D
Where D is a diagonal matrix let us define
X =PZ

Then Equations (16) and (17) can be written

Z =P 1APZ=DZ

Y =CPZ

Hence

Y(t) = CPe4tZ(0)
The system is completely observable if (1) no two Jordan blocks in J are
associated with, the same eigenvalues, (2) no columns of CS that correspond
to the first row of each. Jordan block consist of zero elements, and (3) no
columns of CS that correspond to, distinct eigenvalues consist of zero
elements

3.2.4 Gilbert test observability

It is known that for Gilbert test the state model must be expressed in the
canonical form; consider the state model of linear time invariant system, as

X(t)=AX({t)+BU(t) and Y(t) = CX(t)
Use the transformation X(t) = MZ(t) where M = model matrix
L Y(t) = CMZ(t) = C~Z(t) where C~ = CM

For a single input single output system
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210)
Z, (t)‘
Za(0)

=C71121(1) CT1225(1) -+ C7 152 (T)

Due to the canonical form all the state are decoupled and not like the each
other. Hence for the system to be observable each term corresponding to
each state must be observed in the output Hence none of the coefficient of
the C~ must be zero thus the systemis the complete observable if all the
coefficients of C~ are nonzero coefficient none of the coefficient is zero if
any element is zero the corresponding state remains unobservable i.e
shielded from observation

Y() =C"Z(t) =[C"1; C7 1, "'C~1n]l

Example 3.12 evaluate the observability of the system with using Gilbert’s
test

0 1 0 0
A=1|0 0 1|,B=|0]landC=1[3 4 1]
0 -2 -3 1

For Gilbert’s test find the Eigen values

A -1 0
[M—A] =10 —1]=0 ,234+3)3+23=0
0 2 3+3

AO243342)=0 3G+ 1DG+2)=0
11=0,12 =_1,J3 = -2

As the Eigen values are distinct the model matrix M is the Vander Monde
matrix

1 1 1 1 1 1
M=% 3 XM =[0 —1 —2]
bYEED P e 0 1 4
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When the model transformed form

1 1 1
C-=CM=[3 4 1]|10 -1 =-2|=[3 0 -—1]
0 1 4

As there is one zero elements in C~ the system is not complete observsble

Example 3.13 Use controllability and observability matrices to determine
whether the system represented by the flow graph shown the figure is
completely controllability and completely observability

The value of variable at the node is an algebraic sum of all signals entering
at the node

X3 = X;+X,+2, X2= x]-EK: +J~:3+2u
]
}it = —3){|+X2, Y=}{1+2}{2—13
-3 1 0 )
A=|1 -2 1|,B={2|,C=]1 2-1]
1 1 0 2
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Forcontrollability M_[5. 5. 42g5] forn=3

1 O07[0] [2
=2 1(|2]1=1-2
1 01131 L2

AB =

1 O01[-3 1 0] (10 -5 1
A? = -2 1|11 -2 1|=|1-4 6 -2
0l -2 -1 1
117710 —8
A’B = |- =212l =1| 8
2 0
0O 2 -8
M=|2 -2 8 ~ |M| = —-32+#0hencerankn=3 =n
2 2 0

The system is fully state controllable

Forobservablility M, [cT. ATcT . AT?cT] , n=

oo ff S
SRIRY ERH

1 -2 ,
"M, =|2 -4 8 |M|—0and| |=o
1 2 -4

Thus 2 x 2 determinant is zero hence the system is not observable
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3.3 Principle of Duality
We shall now discuss the relationship between controllability and
observability .We shall introduce the principle of duality, due to Kaman, to
clarify apparent analogies between controllability and observability.
Consider the system S, described by
x =Ax+Bu
Y =CX
Where x = state vector (n-vector)
U=control vector(r-vector)
Y = output control (m-vector)
A=nxn matrix
B =nx r matrix
C = m Xnmatrix
D =m X r matrix
And the dual system S, defined by
Z=AZ+CV
n=B"Z
Where
Z=State vector (n-vector)
V=control vector (m-vector)
n=output vector(r-vector)
A" = conjugate transpose of A
B* = conjugate transpose of B
C* = conjugate transpose of C
The principle of duality states that the system S, is completely state

controllable.(Observable) if and only if system S, is completely observable
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(state controllable).To verify this principle, let us write down the necessary
and sufficient conditions for complete state controllability and complete
Observability for systems S; and S,
For systemsS;
1. A necessary and sufficient condition for complete state controllability is
that the. Rank of the nxnr matrix
[B:AB:--- A" 1B]
Ben
2. A necessary and sufficient condition for complete observability is that
the rank of the nxnm matrix
|cT AT CT i AT (T |
Be n:
For system S,
A. A necessary and sufficient condition for complete state controllability is
that the. Rank of the nxnm matrix
[CT: AT CT i veeee : (AT CT ]
Ben
B. A necessary and sufficient condition for complete observability is that the
rank of the nxnr matrix
[B:AB: - A" 1B]
Be n.
By comparing these conditions, the truth of this principle is apparent. By use
of this, principle, the observability of a given system can be checked by

testing the state controllability, of its dual
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3.4 Detectability.
For a partially observable system, if the unobservable modes are, stable and
the observable modes are unstable, the system is said to be detectable. Note,

that the concept of detectability is dual to the concept of stabilizability
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Chapter Four

Bounded controls

4. Introduction

Time delay often occurs in engineering system. Since the existence of time
delay usually instability of the system the study onthe Time delay systems
has received considerable attentions and many stability criteria for time
delay systems can be found in the literature. Stability criteria for time delay
systems. Tend to fall into one of the two categories: delay independent and
delay dependent .As the name implies delay independent criteria provide
conditions which guarantee stability for any length of the time delay on the
other hand delay dependent criteria exploit a priori knowledge of upper
bounds on the a mount of time delay, These criteria since more information

about the Time delay is assumed to be known

4.1 stability
Definition of stability 4.1

A continuous system (discrete time system) is stable if its impulse response
yi(t) (koneke delta response y¢(t) approaches zero at time approaches
infinity.

Alternatively the definition of a stable system can be upon the response of

the system to bounded inputs that is inputs whose magnitudes are less than

some finite value for all time.
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Other definition of stability 4.2

A continuous or discrete time system is stable if every bounded input
produces a bounded output (BIBO) also definition. The system is stable if

f(t) >0 as t-»> o

f(t)A

MAYN

The system is an unstable if f(t) - o as t— o

A

f(t) /
/N . T
S\

The system is a marginally stable f(t) does not decay to 0 or go to o as
t— oo




Consideration of degree of stability of a system often provides valuable
information about its behavior. That is if it stable how close is it to being
unstable and Definition of stability

v

e ot eiwt %

Poles on the iw axis: marginally stable in above figure we define stability the

closed loop transfer function left hand side (BIBO).
4.1.1 Characteristic Root locationsfor continuous systems

A major result of chapter 3 is that the impulse response of a linear time
invariant continuous system is a sum of exponential time functions. Whose
exponents are the roots of the system characteristic equation A necessary
and sufficient condition for the system to be stable is that real parts of the
roots of the characteristic equation have negative real parts. This ensures that
the impulse responsewill decay exponentially with time. If the system has
some roots with real parts equal to zero but none with positive real parts the
system is said to be marginally stable. In this instance the impulse response
does not decay to zero although it is bounded but certain other inputs with
produce unbounded outputs therefore marginally stable system unstable.

104



Example 4.1

Differential Equation

(S +D)y (S) =U(©S)

Has the characteristic equation
$*+1=0

This equation has the two roots + |

Since these roots have zero real parts the system is not stable it is however
marginally stable since the equation has no roots with positive real parts. In
response to most input or output will contain term of the form y=t constant

This is unbounded

4.1.2 Routh stability criterion

The Routh criterion is a method of determining continuous system stability
for system with an nth order characteristic equation of the form

n—1
S Ap_q A3 G et e e et e eaieeeaaas
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Where a, ,ap_1,0ceenvnnn.. ,a, are the coefficient of the characteristic
equation and

b1=an—1an—2—anan—3
an-1
b, a, _ja,_,-aya,_
2= n—-1*n—4 n“*n-—>5 etc
An-1
Cl_b1a3—an—1b2 c, =P19n-5-0n_1b3 ete
- b 2T b
1 1

The table is continued horizontally and vertically unit only zero are obtained

before the next row is computed without disturbing the properties of the
table.

The Routh criterion .all the roots of the characteristic if the elements of the
first column of the Routh table have the same sign. Otherwise the number of
roots with positive real parts is equal to the number of change of sign

Example 4.2

S+ 6S%+125+8 =0

1 12

s3 0

§2 6 8 0

§1 “ 9 6X12—1X8 64
6 blzan—lan—z—anan—3 = ? = ?

s0 8 an—-1

Ci=g
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Since there are no changes of sign in the first column of the table all the
roots of the equation have negative real parts. Often it is desirable to
determine arrange of value of a particular system parameter for which the
system is stable. This can be accomplished by writing the inequalities the
ensure that there is no change of sign in the first column of the Routh table
for the system

These inequalities then specify the range of allowable values of the
parameter.

For no sign change in the first column it is necessary that the condition
1+K>08—-K>0

Be satisfied .thus the characteristic equation has roots with negative real
parts if -1< k <8, the simultaneous solution of these two inequalities. a row

of zero the S row of the Routh Stable indicates that the polynomial has a pair
of roots which satisfy the auxiliary equation formed as flows

AS? +B =0
Where A and B are the first and second elements of the S? row zero in the

To continue the stable the zero in the S row are replaced with the
coefficients of the derivative of auxiliary equation is 2AS+0=0

The coefficients 2A and 0 are then entered into the Srow and the table is
continued as described above
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Example 4.3

s*+2s34+3524+4s5+5=0

The system unstable 2 poles RHP
Specialcase 1
Example4.4

s34+2s?+s5s4+2=0

11
2 2
0c 0
1 0
E =0.0001

The system is stable
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Special case 2

Example 4.5

s° 4+ 2s* 4+ 2453+ 4852 —255—-50=0

s5 1 24 -25
s* 2 48 -50
s3 05 Oy 0

52 24 50 )
st 112,7 0
s© -50

The system is unstable
| poles RHP
4.1.3 Hurwitz stability criterion

The Hurwitz criterion is another method for determining whether all the
roots of the characteristic equation of a continuous system have negative real
parts.

This criterion is applied using determents formed form the coefficients of the
characteristic equation.

It is assumed that the first coefficient a, is positive the determinants A; | =

Are formed as the principal minor determinants of the determinant
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a, if nodd
N | A s O .
a, if neven
a, if nodd
B O A, a :
n-2 a, if neven
0 0 o I O
0.t e, 0 o T o O
P a
The determinant are thus formed as follows
Alz An-1
A 9n-1 n-s =a,_;0 a, a
2 an an_z n-1“%n-2 n Yn-3

an—l an—3 an—S

A3=| An Ap-z Ana|= Ap_ g Ap 5 Ay 310, Ay 10y —a
0  ap1 aps

And soonupto 4,_,

All the roots of the characteristic equation have negative real pats if and only

If n=3
a, a, 0
A3 = a3 Cll O = azalao_a02a3 ,AZ_ ap a0|_a _
= =azaj;—asaop
0 a, ag az a1
A>0 =1L2, ,n
A =a,

Thus all the roots of the characteristic equation have negative real parts if
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a,a,a, - aza;>0 «a,a, - aga;>0 «a,>0

| An-1 Ap—3 Ap—s5 |

Andp_2an- 4 8 24 0
A5 I ol UL
i 0 8 24

Example4.6

Determinant if the characteristic equation below represents a stable or au
stable system using the Hurwitz criterion method

s3 4853 +245+24=0

8 24 0
A; =11 14 0
0 8 24

Ay =8(14%24—0x8)—24(1x24—0)+0(1x8—0) =
2688 — 576 = 211

Aj—g

||8 24

1 14| 88

In this method the system is a stable iffA;> 0
= 2112 >0 the system is stable
A, =a, =8

..Each determinant is positive
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. The system s a stable.

Example4.7

For what range of values of K is system with following characteristic
equation stable using Hurwitz method

S2+ks+2k—1=0
The Hurwitz determinant for this system

Ak 0
2
2—| 5 k|—2k k=k(2k-1)

A=k
In order for this determinant stable positive
It is necessary that K>0 an 2K-1>0
Thus the system is stable if K >
Example4.8

Determine the Hurwitz condition for stability of the following general fourth

order characteristic equation assuming a, Is positive
4 3 2 —
a,S+ta; S"+a, S*+a, S+a, =0

The Hurwitz determinants are

a; a; 0 0
a, a, ap 0 N 2
A4= =a,(a,a,a, —asag)- aia,a
4 0 a3 al 0 3(210 30) 140%4
0 a, a, ag
a; a; 0
A.=la, a, O0|= a.a, a,—aya?-a,a?
3 2 0 3“2 % 0*3 441
0 a, a
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A =az

as a1|

A:|
2 laga,

— Azd; -0,0q

as a, a;- <asa,- a,a,; >0 «The conditions for stability are then a; >0

a,a3 -a,as>0

as (a, a,ay — azag)- a3a,a,>0

Is the system with the following characteristic equation stable?
S*+3S°+6S° +9S+12=0

Substituting the appropriate values for the coefficient in the general

condition of above Example of Example (3 )we have

a, =12«a,=9 <wa,=6 <wa3;=3 «a,=1

a;>0= 3>0

asa, - a,a,>0 =3.6-1.9>0=189=9>0

a;a,a, - Aya% -a,a3> 0 =(3.6.a) - (3)*- (1)(@)> 0 = 162-108-81 >0 =
-27< 0

3((6.9,12) -3(12)°) - (9)*(12)(1)>0

= 3(648) - 432) - 972 > 0 =648 — 972 = -324< 0

Since the last two conditions are not satisfied the system is unstable
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4.1.4 Continued Fractionstability criterion

This criterion is applied to the characteristic equation of a continuous

system by forming a continued fraction form the odd and even portion of the
equation in the following manner

Let Q(S) = a, S"+a,,_, S +.... +a, S+a,
Q:(8)= a,S™a,_, S +........

QxS)= ap_1 S Ha, 3 S+ ...

Q1 (5)

2

Form the Fraction and then divide the denominator into the

numerator and Invert the remainder to form a continued Fraction as follow:

Q) _ ai(ayp - Mg sy
Q2(S) 0,
1
= hls + —
1
1
hS+ <
1
haS+ 2
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hy,ooonni.l. h, are all positive then all roots of Q(S) =0 have negative «If h;
real parts

Example4.9
Using the continued Fraction stability criterion the polynomial
(S) = S° +45%+8S+12
Is divided into the two parts
(S)=S*+8S
(S) = 4S°+12

The continued Fraction for IS

S S3+85 1
Ql()_ _]/4S+ :]/4S+4_ 1

Qy(s)  4s?+12 4s% +12 =St 5s

12

=~ All coefficient of s are positive, the polynomial has all roots in the left —

plane and the system with the characteristic equation  (s)=0
~The system is stable
Example4.10

Determine bounds the parameter k which a system the following
characteristic equation is stable

S® +14s°+565+K=0

The continued Fraction for is

S) _s3456s 1
Ql( ) — =3 +(
Q2(S) 14s%+k 14

56—k 1 14 1
S=—s+ S+ e
12 P TS Y |sek |5
14 k
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For the system to be stable the following condition must be satisfied
56--> 0

14
And k>0 that is 0 <k <784

Example 4.11

Derive conditions for all the roots of a general third order polynomial to
have negative real parts

For Q(S)=ass®+a,s*+a;s+a,

The continued Fraction for is

3 a asz aop
Q1(s az s°+aq s as [ 17 4 ] as a, 1
p ES; = n =—S +2—+2 S = —s+ WGBa, | S + azq
2 2 0 2 2 0 2 a 1 —7;JL s

The condition for all the roots of Q(s) to have negative real parts are then

as ap
0 B0
2 5>0—27>0 £>0

QAo a a

az
Thus if a5 is positive the required conditions are a, , a, , a,>0and
as; a, >0—a, a,

Note that if a; is not positive (s) should be multiplied by -1 before
checking the above condition

4:1:5 Stability criterions for Discrete Time systems

The stability of discrete systems is determined by the roots of the discrete
system characteristic equation
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a,z" + a,_z" +a,z+ ay-0

However in this case the stability region is defined by the unit circle |Z]|=1
in the Z- plane .A necessary and sufficient condition for system stability is
that all roots of the characteristic equation have a magnitude less than one.
That is be within the unit circle this ensures that the kronecker delta response
decays with time .A stability criterion for discrete system similar to Routh
criterion is called the jury test for this test the coefficients of the

characteristic equation are first arranged in the Jury array row.

1

Ay A7 Ay eeeeen e Qg Ay

2

An Ap—1 QAp-2 a Qo

3

by b, b,. b, .

4

bn-y bnz  bn3 by

5 Co C1 Co wevven vun Cn-1

2n-5 T'O 1”1 7"2 T3

2n-4 7"3 TZ Tl ro

Where 23 S, S; S,
b, = |a0 an—kl co= by bp_1-x
ol an ag k b,_, by

0_|r3 T '51=|r3 1 2_|r3 T
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The first two rows are written using the characteristic equation coefficients
and the next two rows are computed using the determinant relationships
shown above .The process is continued with each succeeding pair of rows
having one less column than the previous pair unit row 2n-3 is computed

which only has three entries the array is then terminated .Jury test:

Necessary and sufficient conditions for the rootQ(Z) =0, To have
magnitudes less than one are

Q(1)>0

Q(-1)>>0 Jfor neven
<0 for n\l odd
lao|<a,

|bo >y, 1|

lcol<len-|

|75 1>175]
|50 1>1s,|

Note that if the Q(1) or Q (-1) condition above are not satisfied the system is
unstable and it is not necessary to construct the array

4.2 Stabilization by bounded delayed control

Time delay often occurs in engineering system. Since the existence of time
delay usually instability of the system the study on the Time delay systems
has received considerable attentions and many stability criteria for time
delay systems can be found in the literature. Stability criteria for time delay
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systems. Tend to fall into one of the two categories: delay independent and
delay dependent, As the name implies delay independent criteria provide
conditions which guarantee stability for any length of the time delay on the
other hand delay dependent criteria exploit a priori knowledge of upper
bounds on the a mount of time delay .These criteria since more information
about the Time delay is assumed to be known

Consider the following linear time delay stem

X (t) =Bx(t) + Byx(t — T(t)) (4.1)
Where T(t) is a unknown time varying parameter which satisfies

ITO|<d  ve=0«0<T(H<h

XeR™ is the state B and B;eR™™ are constant matrices

In is used to denote n-dimensional identity matrix. Given a matrix M , the
transposition an the conjugate transposition are denoted by M and M

™ and “respectively .A matrix M is called positive definite if m belongs to H"
XMX >0 forall xeC® x# 0,The notation M >0 is used to denote positive
definiteness the positive semi definiteness negative definiteness and negative
semi definiteness have similar definitions except that the > is replaced by
">"," <"and < respective. We use L, to denote the space of square
assumable Function defined to time interval [0,00).Given asignal fin L,
space .We use ||f|| L, denote the L,norm off to denote the L,induced norm

of G Dgnote the time delay operator and let

ABe(Dr-1)° ~ that is
D (v): = v(t-T(1)) , and

t=T(t)

AW) =" v(a)de
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Lemma (A)

Operator A is bounded L,spacethe L, induced norm of A;is equal to h and
A

Satisfies integral quadratic defined by
o(v,W)= [;” A2 v(t) X v(t) -w(t) X w(tydt

Where X=X is any positive definite matrix

Proof

Let X=X> 0o andw = Awe have

W) = — ftt_m) v(0)dd and
WOWe(t) = - (f,;, w6 Xv(dodn) X - ([, vindn)

= )it oo V(@)X v(n) dfdn

Using the Cauchy Schwartz in equality formula we get.

wxW < [ Jxv@m)) x v(m) ([, v(0)x v(n)dédn

Sh( / [ v(@ xv(mdadn [[ vmXvmdn<h [ v(8) x v(8)ds
This is turn implies

Jw®) xwtyde < [“hv (0)x (8)do =h [~ ( f_oh v(t+s) X v(t+s) ds)dt

<h f_oh( ) 0°° v(t) Xv(t)dt) ds= [ Ooo h? v(t)xv(t)dt
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.A Bounded by h #
4.3 Stability criteria based on integral quadratic constraints
Lemma (B)
Let me R™*™be a constant matrix then the time delay system
X(t)= Bx(t)+ Bgx(t-T(t)) can be equivalent formulated as.
X(t)=(B+mBy)x t (X)+ (I,-m)Bqw; (H)+mB4Bw,(t) + mB2ws;(t)...(4.2)
Where w, (t) =x(t-T(t))

t—-T(t) t—-T(t)

ws®=L""" wy(0)d8 wy=[ " x(6)d6

Using one can put the linear time delay system standard linear fractional

transformation setup for robustness analysis as shown in figure (1)

The linear time invariance (LTI) system G has a state space representation
X(t) = A,x(t) + Byvy(t)+ Boy(t) (4.3)
vi(t) = x(H)

o = [ X(0)
V2(t) - [Wl (t)

w,= D7(V,) and matrices ‘Where w,= D+(Vy)
§2= [ deB mBé] ‘El =(In'm)Bd ‘A =B + de

Since system(4.1) ,(B) and (4.3) are equivalent stability of any one system
implies stability of the other Two.
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DT

Figure (4.4)

Stability criteria derived in the previous topic are used on simple norm
bounded type of integral quadratic constraint for Dt and A which might be
very conservative .Less conservative criteria can be derived provided (ICS)
which better characterize Dt and A are a viable in this topic stronger (ICS)

for Dy and A are derived .
Lemma (C) ( swapping lemma for operator Dy)

Let H be a stable linear invariant system with state and let T denote operator
of multiplying I- e

T(V(t)): =T(t) v(t) then

Dr 0 H(s)= H(s) °Dr- H(s)°T°sH(s)

Proof

Let V be any L, Function and defined y and Z to be
y(0)=0 9(t) = A,y(t) + V(1)
2(0)=0 2= A,z(t) + V(t-T(t))

Let r(t) = y(t-T(t)) - z(t) and we have

7(t) =yt TANA-T() - 2(t)
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y(t- TM) 0= A (Y(ETO) - 2(1) - T()

= Anr(t) - T®OD1(y ()

Which implies D(HV) = HoD (V) - HoDT(%(H\O)
This conclude the proof

Lemma (D)(swapping lemma for operator A)

Let Hand T be the operators as defined in lemma 2 then
AOH(S) =H(s)0A - H(s)oToD0oH(s)

Proof

The proofis similar to the of lemma

z and x to be «Let V beany L, Function and defined y
y(0)=0 (1) = Apy(t) + V(D)

2(0)=0 = A,z(t) + [

T

v (0)do

t=T(t)

M=/, " y(®)de—z()
One can easily verify that

#(1) =y(t- TOXL-T®) Y- 2(0)
yEDO0=f y(0) de —(t) —T(t)

=4, [ y(8) A6 — A,z(t) — T(H0 y(t — T)(t)
=A,r(® - T(®) 0D (y ()

Which implies A(HV) = HoA(V)- HoToD (HV) this concludes the proof
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4 .4 Bounded by a neighborhood

Corollary(i)

Let ycR™ and pick any T > 0 and any integer q > 1

Then RZ(0) + eTARL(0) +.......... +e(@-DTART(0)=RI(0)

Lemma(E) if Cis an open convex sub set of R™ and L is a sub spaceof R™
contained in C then ¢ +L =C

Proof

so we only need prove the other inclusion pick any «Cleary ¢ =¢c +0< C +L

X € Cand ye L then forall e+0

1

ey = () i+ e+ (5) ()]

Since C is open (1+<)xeC for some sufficiently small € > 0

Since L is a sub space (1:—6) yeLcc

That x+y €C by convexity
Lemma (H)
T>0then detucR™ and pick any Two S
R;(0) + e™R;(0)=R;"7(0)
Proof

Pick.

x; = [ eTDA Bw,(Tydt= [ eS+T-DA By, (T-s)dt and
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x = [ eC7DA Bwy(T)dt
Note that ‘With inputs w; U- valued
eTx, = fOS eGtT-DA By, (T )dt

Thus x, + e™x, = [T e6+T-DA Bw(T )dt
0

w,(T) 0<T<S
wy(T—s)s<T<S+T

Where w(s)= {
w(s)eU forall Te[O0,s+T]

Thus RT(0) + e R3(0) < R3*T(0)

The converse inclusion follows by reversing these steps

There fore RT(0) + e™RS(0)=R51T(0)

Lemma (1)

Assume that (A, B) is controllable and u< R™ is an eigh borhood of 0 then
JR <R, (0) forall k

Proof

First replacing if necessary U by a convex subset we may assume without
loss of generality that u is a convex neighborhood of Owe prove that
statement by induction on k the case k=0 being trivial so assume that

V=anyV, +iV,V;eR, (0) <]} , R, (O)and take anyVe], . ,

First pick any T >0 sothat e*"/= e/ forall j =
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If =0 one may take any T >0

Otherwise, we may use for instance

T= IBI =T next choose any &> 0 with the property that V;: = §VZeRZ(0)

There is such a 6 because R,, (0) contains O in its interior

Since VeKer(AI-A)* where V =5V

e@=2DT \/ = (1+T(A-LI) +§(A—-M)2 SN YV=V+W VT
Where we]y_;

Thus

eXTV= eV = T4V - eTw = eT4V- ¢*TV VT =T

Decomposing into real and imaginary parts
w=w, +iw, and taking real parts in above equation
j:O,l, ........ ‘eOCTvl = eTA V1 = eOCTW1Vt =jT

Now pick any integer g =1 then
(ZCI -1 ho) v, = ] o e]TA V1+W
Where w =- ¥, ¢9T  belong to the sub spacejR_,

Applying First corollary (i) and lemma (A)
We conclude
PV, € RI(0) +]R <R, (0)

- o j -1, _
Where P=31_ e®/" > 317 /1=

SRR
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Here is precisely where we used that o= 0
ThereforedPV,=PV; € R,(0)
On the other hand & P>1 means that

V1:$8pvl+ (1-%)0
Is a convex combination

Since 3PV, and 0 both belong to R(0) we conclude by convexity of the
latter that indeed V; eR ,(0)

Corollary (ii)

Assume that (A, B) is controllable and U —cR™ is a convex and bounded
neighborhood of 0

There exists a set B such that

R,(0)=B+L and B is bounded convex and open relative to m
Proof

We claim that R,(0) = (R,(O)nm) + L

Oninclusion is clear form

(Ry(0)nm) + Lc Ry(0) + L= Ry(0)

Applying lemma (B)

Conversely any VeR ,(0) can by decomposedasV=x+yem + L
We need to showthat x e R,(0) But

x=Vv-y e R,(0) +L=R,(0)

Applying the same lemma (B) yet again this establishes the claim
We let B: =R, (0)nm

This set is convex and open in m because R (0) is open and convex
We only need to proofthat it is bounded

Let P:R™™ R™ be the projection onmalong L
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yeL observe that PA =AP because each of L <That is P(x+y) =x Iif Xxem
Ay eL imply <Axe m<«and mare A invariant (so v=x+Yy

PAV =Ax =APV).

Pickany xeR, (0)nm

Since x € R,, (0) there are some T and some w so that

X= fOT e T-DA By (D di

x=px «On the other hand since xem

Thus x= px :foT e(T-Da BW(T)dT:fOT e(T-DA  x(@)dI

Where x (I) =PW(I)em n pB(u) forall T since the restriction of A to m
has all its Eigen values negative real part

There are positive constants C, m>0 such that

lle™]|] < ce™™* ||x||Forall t= 0

That if x is also in PB (u), [|le™]| < cle ™ forall t=0

So for as above we conclude

T

1 //
. C c
x| < clje‘m(T‘DdI <—(1—-e™)<—
m m
0

4.5 Lower Bounded control lyapunov Functions

We will consider systems of the form

X()=F(x (t) +u (b))

Where the state x (t) evolves in R™ and the controls u(t) take values in a sub
setu R™ containing the origin. For simplicity we assume that v=R™

The map f.R"R™ — R" is locally lipschitzat (x,v) and f(0,0) =0

128



To stabilize this system to x =0 we will use energy Function v which can be
made to decrease a long system trajectories. A Function v.R™ - R> 0

Is positive definite if v(0) =0 v(d9 )>0for #0

And properif v (9 )— o as ||| » o for €eR"

We denote by ||9]|theEucliden norm

Fora locally Lipchitz continuous Function

V:R" -»R and P eR"™we define the Dini derivative of v in the direction of
P At to be

v( 9 +tp)-v(®¥)]
t

In what follows we will be considering closed loop systems of the form
u«(9 ))« f (9

Where the feedback controller u. is measurable and locally bounded but

D + v(9,p)=lim,_ ¢ sup[

possibly discontinuous hence the classical notion of solution need not apply
to deal with this situation we will use the generalized solution due to flipper
Set valued Function

9 N\ N} fu, (B(E {Fu.(®)=nn CO

9>0 u(N) =0

o )is aball of radius & centered at £ MWhereby (£
CODenoted the closure of the convex hull and m is used Lévesque measure
on R",AFilippov solution on an interval 1 CR

is absolution continuous on any interval 0)Is Function x:I—- R™ such that x(
,Al most everywhere on | solution x (t) to (c) )[t,,t,]l, And x(t) € F u,.(X ()
are thus state trajectories of the system under. The Feedback controller u =
u,(s) which are differentiable al mostevery where with respectto z.Since f(£
£)) is measurable and locally bounded .The set valued Function u, (£) «u, ¢

IS upper semi continuous compactand convex value and locals bounded in
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particular the differentiable inclusion satisfies ,The basic condition and thus
has oFilippov solution for each intrastate .the solution x (t) =0 of a different
inclusion x (t) = (x)) is called stable if for each € > 0 there exists § > 0 with
the following property ,Foreach x, such that ||x,||< & each solution x(t) to
X(t) to x (t) € (x(t) with intial datax(0) =x,
Exists for 0< t < oo and satisfies the inequality

|x]| < e (0 <t <o)
*asymptotically stable if x (t) =0is stable and in addition, x (t) -0 as t—0
The possibly discontinuous Feedback controller
X— u,(x) stabilize systm (A) iff x(t)=0
Is a stable solution of the corresponding differential inclusion
4.5.1 Lower bounded lyapunov pairs
Lipchitz continuous lyapunov pair (v,w) consists of a locally Lipchitz
continuous positive definite proper Function v:R™ — R and anon negative
continuous Function
W:R™ = R suchthat for £+ 0
V) will<There exists p ef(E
P)<-W(E)D +V (£
Definition 4.1
A lower bounded lyapunov pair for the system
x ()= f(x(t), u(t) is alipschitz continuous lyapunov pair (v,w) such that
V) such ¢ For £ # 0 there exists p,, p,€ f(E
00 Dp)<WE)SD+VED+V (£
**for € > 0 there exists §>0 such that for 0 <||£]|< (i) holds with

llull< euy)e
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Definition4.2
A lower bounded lyapunov (v,w) said to be regular if

1. The setvalued Function (£) is upper semi continuous, compactand
convex valued and locally bounded.

2. There is appositive definite continuous map w on R™ such that at
points £ where the Function v is not different table ( or more
generally where

p) is not linear)® - D + V (£
p) < -W(E)Vpee"W(E)D + V (£
Definition4.3
Alocally lipschtz continuous,positive definite and prper Fuction
V is called alower bounded control lyapunov Function (LB- CLF),
if these Exist apositive definite Function w such that (v,w) is regular lower
bounded lyapunov pair the pair (v,w) will be call regular lyapunov pair for

we note that if (v,w)is aregular pair forV then the dif ferentiable inclusion
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Chapter five

Reachability and controllability under sampling

5. Introduction

When studying the input to state interaction we can take two different
points of view in the former we assume that the initial state of the system,
the state of the system at t=0 is the fixed and we consider the problem of
determining the states of system that can be reached applying a certain input
in this case we study the so called Reachability property in the latter .\We
assume that the final state of the system at some time T is fixed and we aim
at determining all initial states that can be steered, by means of a certain
input signal to the selected final state. In this case we study the so called
Controllability property. In the study of reachability and controllability
whenever the input signal that drives a certain initial state to a certain final
state is not unique we could impose constraints on such an input signal. E.g.
we could consider the input signal with minimum time if minimum
amplitude, or the input signal which achieves the transfer are equivalent no
constrain is imposed all input signals a achieving the considered transfer in
minimum time. For linear systems the properties of reachability and
controllability are referred to the state x = 0, hence we say that a state is
reachable to mean that it is reachable form x = 0 and that a state is
controllable to mean that it is controllable to x = 0.Note more over that,
Because these properties are used to describe the input to state interaction
they trivially depend only upon properties of the matrices A and B
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5.1 Reachability of discrete time systems
Consider a linear, time invariant, discrete time system

Let x(0) = 0 and consider an input sequence u(0) , u(1), u(?), .. . ,ufk-1],
the state reached at t = k is given

ulk — 1]
x[k] = [B AB..... Ac"1B] ulk . 2]
u(0)

This implies that the set of states that can be reached at t= Kk is a linear space
I-e it is the subspace Ry spanned by all linear combinations of the columns
of the matrix

R, =[B AB ... Ax"1B]

The set Ry is a vector space, denoted as the reachable subspace ink steps if
Ry = x,l-e rank Ry = n then all state of the system are reachable in (at
most) k steps and the system is said to be reachable in k steps. Ask varies we
have a sequence of subspacenamely R,R,, ..., Ry . this sequence of

subspaces is such that the following properties hold.

Proposition(5.1)

The sequence of subspace (A) is suchthat R,c R,c ...c Ryc ...

Moreover if for some k, R = R, then for all k > k, R, = Ry finally
RicRc ..cR, =Ry

Proof
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To prove the first claim note that if a state x is reached from zero in Kk steps,

using

The input sequence u(0) , u(1) , ...., u[k-1] then the same state is also
reached from zero in k+1 steps, using the input sequence 0, u(0),u(l),
....,u(k-1),hence forall k> 1

Ry € Rgiq

To prove the second claim it is enough to show, Or equivalently that if then
any, Belongs also to .Forlet bean element of this mean that there is an
input sequence which steers the state of the system from x = 0to x in k+z
step consider now the state reached after k+1 steps using the same input
sequence which we denote with X .By assumption hence there is an input

sequence which steers the state of the system from x(0) = 0 to & in k steps

However by definition of X it is possible to steer X to x in one step, hence
there is an input sequence which steers x(0) = 0 to & in k+1 steps which
prove claim to prove the third claim note that if forsomek <n, Ry = Ry
then the claim follows from equation. Suppose now that for all k the
dimension of Ry, is strictly larger that the dimension of Ry this implies
that the sequences dim Ry.ls strictly increasing at each step however this
sequence

is bounded (from above) by n and this proving claim?
Definition5.1

Consider the discrete time system (A) the subspace R =R, is reachability
subspace ofthe system, the matrix R= R, is reachability matrix of the
system
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The system is said to be reachable if R = x = R™ remark by definition

R = ImR, Hence the discrete time system

cx=Ax+Bu, y=cx+Du

With xex=R , u(t) e R™ , y(t) e RP and A,B,C and D matrices of
appropriate dimensions and with constant entries. The discrete time system
Is said to be reachable if and only if .Rank R =n. Equation is known as
Kaman reachability rank condition

Remark(5.1)

From the above discussionit is obvious that in an. Dimensional linear
discrete time system if a state x is reachable, Them it is reachable in at most
n steps this does not mean that n steps are necessarily required i-e ,The state
x could be reached in less than n steps.In a reachable system. The smallest
integer k* such that rank ki~ =n.Is called the reachability index of the

system Note that for single input reachable systems necessarily k*=n
Example 5.1

Consider a discrete time system with xe %/

0 0 @ 0

A=10 0 O B=|1

0 0 1 1
0 1
Then R, =spanB R, =R;=Rspan |1 0
1 1

Hence the systemis not reachable and its reachable subspace has dimension
two
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Example5.2

Consider a discrete time system with x € R>

0 1 0 d
A=10 0 1 B=|B
0O 0 O y
Then
a B vy a B
Ry;=span|Bf y O|,R,=span|B vy| ,R;=spanB
y 0 O y O

As a result the system is reachable if and only if y # 0 moreoverif y =
0 and

B # 0 The system is not reachable and the reachable subspace has

dimension two. Finally f y=8=0 and a # 0

The system is not reachable and the reachable subspace has dimension one
the reachability subspace R has the following important property

The proof of which is a simple consequence of the definition of the subspace
Proposition (5.2)
The reachability sub space contains the subspacespanB i-e

SpanBc R

And it is A invariant i.e. ARc R we conclude this case noting that

algebraically equivalent system, with state x and X respectively
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Let be the coordinates transformation matrix, as a given in equation below
consider a continuous time Finite dimensional linear system described by the
equations

X =Al)x+B{tlu , y=C()x+D(tu
y(t) €|RP and the change of coordinates « u(t) e R™  With xeX =R"
x(t) = L(t)x(1)

With I(t) invertible forall t, the state space representation in the new
coordinates is given by

% =[I'(t) (A)x+B(t)(u) + 1) x], = [(OZ= (OO + I OO+ T
L(H)B(t)u

And y(t) = CL(t) X + D(t)u

Similarly for a discrete time finite dimensional linear system described by
the state «the equations change of coordinates, With u(t) invertible for all t
space representation in the new coordinates is given by and R, and R, the
reachability subspacesand R and R the reachability matrixes respectively
then

Hence .And one of the two systems is reachable if and only if the other is

5.2 Controllability of discrete time system
The result established for the reachability the controllability property

In fact for a linear time invariant, discrete time system .A state x* is

controllability (to zero) in k steps if there exists an input sequence u(0) , u(1)
e ,u(k-1) that drives the state from. This last equation implies that
Is controllable if the state, is reachable in K steps, Hence if; It is easy to see
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that the set of all such that equation. Hold is a vector space denotes by
and called controllability subspacein k steps, A linear discrete time system
is controllable in k steps if Im

Example5.3

Consider the system in Example the systemis controllable in two steps in
fact

A? = AeR, =
Example5.4

Consider the system in Example the systemis controllable in three steps no
matrix the values of «, and y ,Note in fact that A3> = 0 .The system is
controllable in two steps.Ify =0and oo # 0 or 3 # 0 finally it is
controllable in one stepif y =0 and o B+ 0, Similarly to the reachability
subspaces ask varies we have a sequence of controllability subspace namely

This sequence of subspace is such that following properties hold.

Proposition (5.3)

The sequence of subspaces is such that, More over if for some the for all
Proof

The proof of this statement is similar to the one of proposition 7-1 we simply
remark that if a state is controllable in K steps using the input sequence u(0)
,u(l), ...,u(k-1) then the same state is also controllable in k+1 steps using

Input sequence, u (0),u(1), ...,uk-1),
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Definition 5.2

Consider the discrete time system

ox =Ax+Bu ,y =cx+ Du

WithxeX = R" ,u()eR™, y(t)e % and A,B,C and D matrices
The subspace C = c,, is the controllability subspace of the system

The system is said to be controllable if C =x = R", the discrete time system
above is controllable if and only if Im A™ < R.In particular if A is nilpotent
l.e. A? =0 Forsome q< n then for any B(even B=0)

The system is controllable
Note:

That reachable system is controllable but the converse statement does
not hold in particular

RcCX = R"
5.3 Construction of input signals

The study of the properties of reachability and controllability leads to
the following equation .Is it possible to explicitly constructan input
sequence which steers the state of the system from an initial condition?

x(0) = x, to afinal condition x, in k —stepsi.e x(k) = x; «, .i.e

To answer this equation consider the problem of determining an input
sequence u(0) , u(1) ,....,u(k-1) such that

Xf - Akxo - RkUk—l

139



Where

u(k — 1)
u(k —2)

u(l)
u(0) |

k
eR<™

Consider now an input signal defined as U,,_; =Rlv

Where V has to be determined using 1 his definition and setting k = n

equation
xf - AkxO = RkUk—l
Becomes x; — A™x, = R Ryv

Where the matrix R,RL is square and invertible Hence a control sequence
solving the considered problem in n steps is given by

Un-1 = Ra(RuRp) ™" (xy — A*xo)

It is possible to show that among all input sequence steering the state of the

system from x, to x, in n steps the one constructed has minimal norm

(energy).

5.4 Reachability and Controllability of Continuous Time
System:

The properties of reachability and controllability for linear, time invariant
continuous time systems can be assessed using the same ideas exploited in
the case of discrete time systems however the tools are more involved as the
input state relation is expressed by means of an integral
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T
x(t) = eftx, + j e DBu(T)dT
0

Consider the reachability problem i.e. the initial state of the system is
x(0)=0

And we want to characterize all states x that can be reached in some interval
of time ti.e. all states such that for some input function u(t)

T
X = j e DBu(T)dT
0

Note:

Now that by Clayey —Hamilton theorem
et = 5,() [+ 5, (DA + -+ 5,_, ()A™ !
For some scalar function ¢;(t) Hence

This implies that a state x is reachable only if
¥elm[B:AB: ... :A"'B] =ImR

We now prove the converse fact i-e that is in the image of R it is reachable
to this end define the controllability Gramian

w, = [} eAt"T) BBeAt=DgT
With t > 0 and note that ImR =ImWt
Selecting U (T) =B’ e4¢t-D g

Where 8 is a constant vector yield x = w,
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Hence to assess reach ability of the state X € ImR it is sufficient to show that

equation X = w, 8 has (at least) one solution g
However this fact holds trivially by condition ImR = Imw,
Remark (5.2)

Unlike the case of discrete time systems where the set of reachable states
depends upon the length of the input sequence for continuous time systems
if a state is reachable them it is reachable in any (possibly small) interval of
time.

Definition of continuous time system 5.3

ox =Ax+ Bu, y = Cx+ Du ThesubspaceR is the reach ability sub
space of the system the matrix R is the reach ability matrix of the system the

system is said to be reach able if R = X = ™ we summarize the above
discussionwith a formal statement.

Proposition (5.4)

Consider the continuous time system ox = Ax + Bu, y = Cx + Duthe

following statements are equivalent

* The system is reach able

*rank R=n

*** Forall t> 0 the controllability Gramian w; is positive definite
Remark (5.3)

If a system is reachable then it is possible to explicitly determine one input

signal which steers the state of the system from x(0) =0 to any X is a give
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time t> 0 in fact determine one such input signal it is sufficient to solve the
equation X = w, B which if the system is reach able has the unique solution

B =w;'x le. the input signal
U(T)= B'e?Dw'x
Steers the state of the system from x(0) = 0 to x(t) = x

Similarly to what discussed in construction of input signals it is possible

steering the state from 0 to X in time t the input signal u(T) =B’ eA¢-Dw,1x

Similar consideration can be done to determine an input signal steering anon
Zero initial state to a given final state to discuss the property of
controllability note that a state x is controllable (to Zero) in time t >0 if

there exists an input signal such that
0= e*% + [ e Bu(T)dT
This however implies that e“‘x e hence xee ‘R

This implies that the set of controllable states in time t >0 is the set C,=

e AtR

Which has the same dimension as R by invariability of e~4¢ forall t and it
is contained in R by the fact R is A invariant hence it is trivially

e~ At Invariant.

As a consequencefor all t >0 C,= R which shows that set C of controllable
states does not depend upon t > 0 and that continuous time system is
controllable if and only if it is reach able C unlike what happens for discrete
time system, for which reachability implies but it is not implied by

controllability .
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Example5.4

Consider the linear electric network in Figure H. Assume R, > 0,

R, >0,

L >0and C >0 the input u is the driving voltage v is current supplied.
Let x, be the current through L and x, the voltage a cross C

By Kirchhoff, laws we have

“Ry 1 1
There A=| % L B:lzl
el 0 0
Cc
1Ry
The reachability matrix is R=[t ¥
O -

LC

Hence the system is reach ability and controllable for any L and C

Example5.5

Consider the linear electric network in Figure G Assume R; >0, R, > 0

and

C > 0the input u is the deriving voltage and the output y is the current
supplied

Let x, be the voltage across C and x, current through L

By Kirchhoff’s laws we have
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X1=

Y
[SAR SN
a
=]
e
o
o~
o~

Andy:;?—1x1+x2 +Riu
1 1

The reach ability net work

1 -1

R = [R:€ R,%C?
1 -R,
L L2

And det (R)=—— (= — =)

R{CL \R;C L
Hence the system is reachable and controllable provided R, R,C # L

5:5 Canonical form for reachable systems

we focus on single input systems and we show that the property of
reachability allows to write the system in a special from known as
reachability canonical from consider the system 6x = Ax+Bu y =Cx +
Du

Withx e X=R™ ,u(t) e R™,y(t) e RF and A,B,C and D matrixes of
appropriate dimensions and with constant entries with m=1 and suppose the
system is reachable i.e the rank of the reachability matrix is equal to n

By reachability there is (row) vector L such that LB=0, LAB =0, LA™ B=0
LA™1 B=1

In fact conditions above formula can be rewritten as

IR=[00...01]

Hence L=[0 0....0 1]R™?
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Is well defined

The vector L has the following important property
Lemma (5.1)

Let L beasin equation LR=[00..01]R

Then the square matrix

L
AL
T= ' IS invertible
LA;L—l
LA™
Proof

Consider the matrix

L
AL
Te=| [B: AB: ....... A"1B : AP2B]
LA;I_l
A1

[LB LAB ..LA" 2B LA"'B]
|LAB LA?B - LAP'B LA“BI

{LA“‘ZB .G DO J

LA 1B

And note that by condition 1B=0 LAB=0 LA"?B LA"?B=1
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0 0 ..0 17
0 O ..1 LA"B
-1 LA"B........

Which shows that |det(Tg)| = 1
Hence T is invertible
The matrix T can be used to define a new set of coordinate X = T,

To derive the state space representation of the system in the X coordinates

we could use the general discussions however it is easier to proceed in an
alternative way.

For consider the auxiliary signal x; =L x
And notethat 6 X, =LA X=X,
for i=1,.....,n-1 and 6% =LAXx=%,,
6%, =LAXx+u=LT x*+u

As a result in the new coordinates X one has

Where
O 1 0 ...... 0 [0]
0 0 1 . . 0 0]
A, = B =1|:l
0 0 0 e lOJ
—Xp =Xy =y LXKy g 1




Note that for any o; the system 6X = A.X +B.X s reachable hence

X
a system described by equation t 6X = A, X +B.X
Is said to be in reachability canonical form

The matrix A, is in comanion from it is worth boting that its characteristic

polynomial is

P(S)=s™+ g s™ 7t + 0,5 SMT2 4 4oy s 4
l.e. it depends only upon the elements of the last row.
Example6.5

Consider the system is reachable and controllable
Forany L system C

To write the system in reachability canonical from we have to find a(row)
vector L such that conditions LB=0, LAB =0 LA" 2B =0

LA™ 1B =1

Hold namely
1 _R

LlZ] =0 L| M| =1 vielding L=[0 LC]
0 [

Finally T = [LLA] K LOC]

And the system in the transformed coordinates in described by

0 1
S ENA P

l.e. it is reachability canonical from
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Description of non-reachable system:

We study systems which are not 7-6 reachable i.e. systems described by the

equation 6x = Ax + Bu,y = Cx + Du and suchthat rank =p <n
Under this assumption consider a set of coordinates X such that x = L'

And the matrix L is constructed as follows .The First P columns of L are P
linearly independent columns of the matrix R and the last n-p columns are
selected in such a way that the matrix L is invertible the system is the

X coordinates which is algebraically equivalent to the system in the the x
coordinates, i.e. described by the equations

6% = AXx + Bu = L7'ALX + L 'Au

We now show that because of the way in which n L has been constructed the

matrices A and B have a special structure to this end note that
LA=AL LB=B
And partition the matrices L,A, A ,B and B as

P,And have xP, have dimensions n-PxWhere and have dimensions P

an mxdimension p
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Chapter siX: Results and Conclusions

Model (1) an inverted pendulum mounted

An inverted pendulum mounted on a motor-driven cart is shown in figure
6.1 this is a model, of the attitude control of a space booster on takeoff. The
objective of the attitude control problem is to keep the space boosterin a
vertical position.) The inverted pendulum is unstable in that, it may fall over

any time in any direction unless a suitable control force is applied. Here we

consider
LY
Q -
Z Q Q
SIS A 7
Fiaure(6.1)

To derive the equations of motion for the system, consider the free-body
diagram shown in Figure 6.1 the rotational motion of the pendulum rod
about its center of gravity can be described by

10" =vlsinf — Hlcos 0 (6.1)
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Where | is the moment of inertia of the rod about its center of gravity the

horizontal motion of center of gravity of pendulum rod is given by

2

d (x +Isin@)=H (6.2)
mdtzx Sin = .

The vertical motion of center of gravity of pendulum rod is
2

mw(lcos 0)=v—mg (6.3)
The horizontal motion of cart is described by
d?x
mﬁ =u—H (64)

Since we must keep the inverted pendulum vertical, we can assume that
0(t)and 6°(t) are, small quantities such that

sinf = 6,cosf = 1,and 88° = 0.

And Then equations (6.1) through (6.3) can be linearized the linearized

equations are

10" =vl6 — HI (6.5)
m(x"+16")
=H (6.6)
0
=v-—mg (6.7)
From Equations (6.4) and (6.6), we obtain
M+m)x" =u (6.8)

From Equations (6.5), (6.6), and (6.7), we have
10 = mglo — HI
= mglf — I(mx + mlb)
Or
(I + ml?)0" + milx" = mglo (6.10)

151



Equations (6.9) and (6.10) describe the motion of the inverted-pendulum-on-
the-cart system they constitute a mathematical model of the systems the
inverted pendulum is unstable in that, it may fall over any time in any
direction unless a suitable control force is applied. Here we consider

Model (2) dashpot system mounted on a massless cart

m

M =

' O O

N
\_
N

Figure (6.2)

Consider the spring — mass —

dashpot system mounted on a massless cart as shown in figure(6.2)
Let us obtain mathematical models of this system by assuming that the cart
is standing still for t < Oand, the spring-mass-dashpot system on the cart is
also standing still for ¢t < 0ln this system, u(t) is the. Displacement of the
cart and is the input to the system. At t=0, the cart is moved at a constant
speed, or u° = constant. The displacement y (t) of the mass is the output the
displacement is relative to .The ground.) In this system, m denotes the mass,
b denotes the viscous-friction coefficient, and k denotes, the spring constant.
We assume that the friction force of the dashpotis proportionalto y" —u’
and that the spring is a linear spring; that is, the spring force is proportional

to y— u .Fortranslational systems, Newton’s second law states that

ma=).F
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where m is amass, a is the acceleration of the mass, and ) F is the sum of
the forces acting on the, mass in the direction of the acceleration a. Applying

Newton’s second law to the present system, and noting that the cart is

massless, we obtain,

d?y dy du
i IR
Or
d?y dy du
mdtz +bE+ ky—bE+ku

This equation represents a mathematical model of the system considered.
Taking The Laplace, transform of this last equation, assuming zero initial
condition, gives. (ms?+ bs + k)Y(s) = (bs + k)U(s)

Taking the ratio of Y(s) to U(s), we find the transfer function of the system

Y(s) _ bs+k

to be transfer function = G(s) = UG meibeik

Such a transfer-function representation of a mathematical model is used very
frequently in control engineering. Next we shall obtain a state-space model
of this system. We shall first compare the differential, equation for this
system

"+b '+k _ b '+k
Y T Tt T

y'+a,y +a,y=byu’ +bu +b,u

And identify a, a, by b, and b, as follows
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b
al,__ ,Cl k ,b0’=0,b1 == ,b2 ==
“m
Where
.30=b0=0
b
ﬁ1=b1 —a1Bo E
p i aubo =~ (2)
_p —a —a =——|—
2=b, 1P1 2Po = m
And
X1 =y—Bou=y
Xy =X; —fiu=x; ——Uu
Also
X, =x,+pfu=x,+—u
_ k b
xZ =—a2x1—a1x1+ﬁ2u=—ax1—a x2+ - =
And the output equation becomes
Or
0 1 2
=% Bl ok
L e - O
m m
— xl_
Andy =[1 O][xz_
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Test controllability

Since

(
= (=) )~ G )G G )0

The system is fully controllable
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Results
It has been shown that properties of zero mean error and bounded variance
expansion that were seen for single input-single output (SISO) case a
design execution is presented to achieved this ideal result  However, the
SISO control case inherent in practical makings application the knowledge
of these effects presented here as undesirable transmission zero and slower
than desired settling times is critical in designing a universal any control
system or a dynamic system is Time invariant system is shifting the input
on the time axis leads to on equivalent shifting of the output along the time
axis with no other changes in other words the condition for complete state
controllability can be stated in terms of transfer Functions or transfer
matrices if M matrix is square determinant not equal zero and M matrix not
square we can find sub square matrix determinant not equal zero and
Conditions for Complete Observability M, is full rank .A continuous or

discrete time system is stable if every bounded input produces a bounded

output (BIBO) and the closed loop transfer function left hand side (BIBO)
the Routh criterion of any system is stable all the roots of the characteristic if
the elements of the first column of the Routh table have the same sign
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Conclusions

A first solution follows from a general result on the global stabilization of
null controllable linear system with delay in the input by bounded control
laws with a distributed term. Next, it is shown through alaypunov analysis
that the stabilization can be achieved as well neglecting the distributed
terms. The multiple input-multiple output control system .It more sensitive
to modeling errors, which are in bereft in practical process applications. Any
system not we cannot representations square matrix controllability test
taking sub square matrix detriment not equal zero or full rank, any system is

called stable all roots of characteristic equation left hand side
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