

Sudan University of Science and Technology

College of Engineering

Electrical Engineering

Proportional-Integral-Derivative Line Tracker

Using Raspberry Pi

التكاملي بإستخدام -التفاضلي-تناسبيال متتبع الخط

 الراسبيري باي

A Project Submitted in Partial Fulfillment for the Requirement

of the Honor Degree of B.Sc in Control Electrical Engineering

Prepared By:

1. Ahmed Al-Gasim Mohammed Ibrahim

2. Ahmed Mohammed Osman Elmubarak

3. Abdulaziz Abdulkhalig Awad Mohammed-Noor

4. Abdulla Bushra Abdulla Ali

Supervised By:

Dr. AwadAllah Taifour Ali

October 2018

i

:قال تعالى

 ﴾تدَرَجَا ذِينَ أُوتوُا الْعِلْمَ الذِينَ آمَنُوا مِنكُمْ وَال يرَْفَعِ اللَّ ﴿

(11)المجادلة:

 صدق الله العظيم

ii

Dedication

For my beloved mother, my dear father, my dear brothers

and sisters, my friends who always supported me and stood

by my side, my teachers and mentors, my respectful

partners.

iii

Acknowledgement

First and always, we thank Allah for his
guidance and blessings, the reason behind our

success.
We are grateful for our families, friends, colleges

and teachers for their never ending support.

We thank Dr. AwadAllah Taifour Ali for his
guidance and supervision.

In the memory of our beloved teacher and mentor:

Dr. Aamir Ahmed Dawood

God rest his soul

iv

ABSTRACT

Controlling devices and systems are essential in modern times, especially when

robots do important and dangerous jobs accurately. The main goal of this project

is to make an economic control system, with high measures of safety, can be

used by a normal person without any complications. Line Follower Robots are

self-instructing robots, their main purpose is to follow a certain line and never

go out of track. Usually, this line is a black colored line. The principle of those

robots depends on the reflection of light for the two different surfaces. The

reflection is measured through an infrared sensor. Then a controller processes

this data to guide the robot on the right track. This robot solves a lot of problems

like unnecessary-time wasting labor work in assembly lines, factories and mass

storage facilities. The problem with this robot is it takes a long time to do it’s

required job, due to its uneven movement and tracking. And it goes out of

bounds a lot, also it can’t turn on tough corners. Solution to this problem is to

enhance its input data, response, processing and structure. This concept was

tested in various conditions and proved to be successful with satisfying results.

v

 المستخلص

التحكم في الروبوتات حيث انها , خصوصا هتمام مؤخرا إصبح مجال و الأتظمة أن التحكم بالاجهزة إ

وع هو عمل نظام تحكم باقل ن الهدف الاساسي لهذا المشر. إوالمهمة والدقيقة بالاعمال الخطرة تقوم

ت. روبوتات تتبع ويضيف قدر عالي من الأمان ويمكن المستخدم العادي من استعماله بدون تعقيدا تكلفة

ية تتبع الخط و عدم الخروج من المسار. عادةً ما يكون الخط هي روبوتات ذاتية الحركة، مهمتها الرئيس

لون الخط أسود. مبدأ عمل هذه الروبوتات يعتمد على انعكاس الضوء بين سطحين مختلفي اللون. و يتم

استشعار الإنعكاس في الضوء عن طريق أجهزة الإستشعار)متحسس ضوئي(. و من ثم يتم معالجة قوة

م لتوجيه الروبوت و بقائه في المسار الصحيح دون الخروج عن الخط. يقوم الإشارة و المقارنة بين القي

هذا الروبوت بحل مشاكل الأيدي العاملة و زمن الإنتاج في خطوط المصانع والمخازن و خطوط

التجميع. مشكلة هذا الربوت أنه يتأخر في القيام بالوظيفة المطلوبة، يستخدم طاقة اكبر نتيجة حركته

ية، و في بعض الاحيان يقوم بالخروج عن الخط المحدد، و لا يستطيع الإلتفاف بزوايا الغير إنسياب

كبيرة. حل هذه المشكلة يكون بتحسين استجابة الروبوت عن طريق تحسين معطيات الدخل و طريقة

الأهداف مرضية محققةً النتائج ذا النظام في حالات مختلفة وكانتتم اختبار هالمعالجة و بنية الروبوت.

النظام. المرجوة من

vi

TABLE OF CONTENT

Title Page No.

 i الآية

DEDICATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

 v مستخلص

TABLE OF CONTENTS vi

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER ONE

INTRODUCTION

1

1.1 Overview 1

1.2 Problem Statement 2

1.3 Objectives 3

1.4 Methodology and Proposed Solution 3

1.5 Project layout 4

CHAPTER TWO

THEORETICAL BACKGROUND AND LITERATURE

REVIEW

5

2.2 Microcontrollers 5

2.2.1 Raspberry Pi 6

2.2.2 Arduino 8

2.2.3 Raspberry Pi vs Arduino 8

2.3 Motor Driver 10

2.4 IR Sensors 10

2.5 Concept of the Normal Line Follower 13

vii

2.6 PID Controller 18

2.6.1 P- Controller 19

P-Controller Response 20

2.6.2 I-Controller 20

2.6.3 D-Controller 22

2.7 Tuning methods of PID Controller 23

2.7.1 Manual Tuning 23

2.7.2 Trial and Error Method 24

2.7.3 Process Reaction Curve Technique 24

2.7.4 Zeigler-Nichols Method 25

2.8 Pulse Width Modulation 26

2.9 All-Wheel Drive 28

2.10 Line Follower Without Using Microcontrollers 29

2.11 Line Follower Using Microcontrollers 30

2.12 Two Wheels PID line Follower using Arduino 31

2.13 The Necessity of Further Development 32

2.14 PID Modified Line Tracker 33

CHAPTER THREE

 SOFTWARE AND HARDWARE COMPONENTS AND

SPECIFICATIONS

34

3.1 Linux 34

3.2 Raspbian 35

3.3 Python 3 36

3.4 Raspberry PI Generations and Models 39

3.5 Raspberry PI 3 Model B Specifications, Features and Pins

layout

40

3.6 L298N Motor Driver 44

3.7 Vehicle Model

45

viii

CHAPTER FOUR

IMPLEMENTATION AND TESTING

47

4.1 Installing the Raspbian Using NOOBS on the Raspberry PI 3

Model B

47

4.2 Implementing the Normal Line Follower 48

4.3 Implementing PID Line Tracker and Placing the Sensors 50

4.4 Setting the L298N Motor Driver: Connecting the Motors and

Setting the PWM Pulse Input

51

4.5 Calculations 54

4.6 Python 3 55

4.7 Sensors’ Truth Table 56

4.8 Implementing the AWD 57

4.9 Model Testing 58

4.10 Results 60

CHAPTER 5

CONCLUSION AND RECOMNDATIONS

62

5.1 Conclusion 62

5.2 Recommendations 62

REFRENCES 63

APPENDIX A 64

APPENDIX B 65

APPENDIX C 67

APPENDIX D 72

ix

LIST OF FIGURES

Figure No. Title Page No.

2.1 Raspberry Pi 3 model B 7

2.2 IR sensor 10

2.3 IR sensor pins 11

2.4 IR reflection principle 12

2.5 IR light reflection white 13

2.6 IR light reflection Black 14

2.7 Normal line follower block diagram 14

2.8 Line follower moving forward 15

2.9 Line follower turning left 16

2.10 Line follower turning right 16

2.11 Line follower stopping 17

2.12 PID controller 19

2.13 P controller 20

2.14 P controller response 20

2.15 PI controller 21

2.16 PI Controller Response 21

2.17 PID controller 22

2.18 PID Controller Response 22

2.19 Process reaction curve 25

2.20 Pulse width modulation 27

2.21

Power delivery in AWD system 28

2.22 Block diagram of the Line Follower without using

microcontrollers

29

2.23 Line Follower using Microcontrollers circuit

diagram

30

x

2.24 Two wheeled PID line follower using Arduino. 32

2.25 PID Line Tracker block diagram 33

3.1 Raspberry Pi 3 model B 42

3.2 Raspberry Pi 3 Model B Components and Pinout 43

3.3 L298N Motor Driver 44

3.4 vehicle model (top view) 45

3.5 vehicle model (side view) 46

3.6 DC motors 46

4.1 Normal line follower circuit diagram 48

4.2 Raspberry PI pin layout 49

4.3 Sensors recognition 50

4.4 L298N PWM pins 51

4.5 L298N double motor connection 52

4.6 L298N voltage settings 53

4.7 L298N logic circuit 53

4.8 AWD motors placement 57

4.9 Track testing 58

4.10 Sensors placement 59

4.11 Components’ side view 59

4.12 Testing track 61

xi

LIST OF TABLES

Table No. Title Page No.

2.1 Arduino and Raspberry Pi comparison 9

2.2 Manual Tuning 24

2.3 Zeigler-Nichols table 25

3.1 Raspberry Pi different generations and models 39

3.2 Raspberry PI 3 Model B specifications and features 40

4.1 Sensors’ truth table 56

4.2 Motors output 60

4.3 Result timings 61

xii

LIST OF ABBREVIATIONS

PID Proportional Integral Derivative

P Proportional

PI Proportional Integral

PD Proportional Derivative

AWD All Wheel Drive

PWM Pulse Width Modulation

I/O Input Output

MCU Micro-Controller Unit

RAM Random Access Memory

EPROM Erasable Programmable Read-Only Memory

EEPROM Electrically Erasable Programmable Read-Only Memory

IoT Internet of Things

ATM Automated Teller Machine

UK United Kingdom

BBC British Broadcasting Corporation

SBC Single Board Computer

HDMI High Definition Multimedia Interface

OS Operating System

CPU Central Processing Unit

IDE Integrated Development Environment

SoC System-on-a-Chip

Wi-Fi Wireless Fidelity

HAT Hardware Attached on Top

RBG Red Blue Green

USB Universal Serial Bus

LED Light Emitting Diode

IR Infra-Red

xiii

mm Millimeter

nm Nanometer

K Constant

PIXEL Pi Improved Xwindows Environment Lightweight

LXDE Pi Improved Xwindows Desktop Lightweight

SD Storage Device

DC Direct Current

1

CHAPTER ONE

INTRODUCTION

1.1 Overview

A robot is a machine that is capable of carrying out a complex series of

actions and automatically executing tasks, especially one programmable by a

computer. Robots can be utilized for a wide range of applications, and they offer

many advantages like: task repetition, fast execution, precision, time and energy

saving, immunity to hazards and intense labor.

A mobile robot is a robot capable of locomotion. It can move around in its

environment or terrain and navigate its surroundings, it is not fixed to one

physical location. Mobile robots are generally controlled by software, they use

sensors and other gear to identify their surroundings and safely maneuver their

obstacles. Mobile robots are a subfield of robotics that combine the progress in

artificial intelligence with physical robotics.

A line tracker (or a line follower) is an autonomous mobile robot which

have the capability to navigate an uncontrolled environment. It is designed to

follows a certain line with a distinctive color different from the background.

It is composed by two sensors identifying the line and a microcontroller loaded

with a code or a program to run the motors according to the input of the sensors

which will result in the tracing movement.

The term ‘line follower’ might sound plain and undeveloped, but line tracking is

one of the most useful and popular behavior of mobile robots that has been

acquiring increasing importance in the recent times. Line tracking has become

the most convenient and reliable navigation technique by which autonomous

mobile robots navigate in a controlled usually indoor environment. Line

followers are needed in a wide selection of applications like: industries,

2

factories, corps management, assembly lines, surveillance, massive storage

facilities and public transport.

Moreover, the same principles and theories are used in modern vehicles’ cruise

control and auto-parking systems.

1.2 Problem Statement

As much as normal line followers are useful and simple, they come with

great disadvantages: The robot must not exceed a certain speed or it will steer

out of track due to its limited response and feedback. The thickness of the line

drawn has to be in a certain diameter. The robot will run in a sluggish, jerky,

irregular pattern of movement which will result in instability and loss in overall

traction. The robot will certainly run out of tracks on hard corners and 90 degrees

or more turns. The track has to be made in a complicated and more costing way

to compensate the lack of cornering power. The robot will mathematically and

physically cross a longer distance due to its uneven tracking and linear sideways

movement. More distance to cross consumes more energy which is an

undesirable drawback. All the previous disadvantages will result in an overall

less practical line follower due to the lack of calibration.

3

1.3 Objectives

 Designing a controller that enhances the robot performance and

reliability by reducing and nullifying irregular and uneven pattern of

movements.

 To design a system increasing the speed limit of the robot and

decreasing the power consumption, saving more energy.

 Modeling the system by acquiring smoother steering around the

corners.

 To design a model increasing the stability and reducing stress on the

robot’s body and cargo. And improving the vehicle’s traction making

it safer for itself and its environment.

 Implementing a system that reduces the time required for the robot

to run its course and do its task.

1.4 Methodology and Proposed Solution

Increasing the number of sensors, and using Raspberry PI as a

microcontroller. And using a PID controller embedded inside the system’s

software (script), and using the manual tuning method to find the constants’

values till we get an optimal system that will make the robot able to predict

corners, measure their angle and level of difficulty. All-Wheel-Drive system

will resolve the instability and increase traction. Using valued logic to

describe the motors’ speed, name the sensors, describe the corners’ angle

and difficulty. While valued logic will pave the way for the possibility of

coding the program’s script by accurately describing the PWM value. And

the PWM will make the motors run in various speed values depending on

the required turn angle.

4

1.5 Project Layout

This project contains five chapters: Chapter One is about the

introduction; it presents an overview of the project, the problem statement,

objectives, methodology and proposed solution. Chapter Two presents the

literature review, theoretical background and previous models. Chapter

Three describes the chosen software, hardware and their specifications.

Chapter Four demonstrates implementation, assembly, execution, testing

and results. Chapter Five includes the conclusion and further

recommendations.

5

CHAPTER TWO

THEORETICAL BACKGROUND AND

LITERATURE REVIEW

2.1 Introduction

A microcontroller is a compact integrated circuit designed to govern a

specific operation in an embedded system. A typical microcontroller includes a

processor, memory and input/output (I/O) peripherals on a single chip.

Sometimes referred to as an embedded controller or microcontroller unit

(MCU), microcontrollers are found in vehicles, robots, office machines, medical

devices, mobile radio transceivers, vending machines and home appliances

among other devices.

2.2 Microcontrollers

A microcontroller's processor will vary by application. Options range

from the simple 4-bit, 8-bit or 16-bit processors to more complex 32-bit or 64-

bit processors. In terms of memory, microcontrollers can use random access

memory (RAM), flash memory, EPROM or EEPROM. Generally,

microcontrollers are designed to be readily usable without additional computing

components because they are designed with sufficient onboard memory as well

as offering pins for general I/O operations, so they can directly interface with

sensors and other components. Microcontroller architecture can be based on the

Harvard architecture or von Neumann architecture, both offering different

methods of exchanging data between the processor and memory. With a Harvard

architecture, the data bus and instruction are separate, allowing for simultaneous

transfers. With a Von Neumann architecture, one bus is used for both data and

instructions.

When they first became available, microcontrollers solely used assembly

language. Today, programming languages are a popular option.

6

Microcontrollers are used in multiple industries and applications, including in

home and enterprise, building automation, manufacturing, robotics, automotive,

lighting, smart energy, industrial automation, communications and internet of

things (IoT) deployments. The simplest microcontrollers facilitate the operation

of electromechanical systems found in everyday convenience items, such as

ovens, refrigerators, toasters, mobile devices, key fobs, video games, televisions

and lawn-watering systems. They are also common in office machines such as

photocopiers, scanners, fax machines and printers, as well as smart meters,

ATMs and security systems. More sophisticated microcontrollers perform

critical functions in aircraft, spacecraft, ocean-going vessels, vehicles, medical

and life-support systems, and robots. In medical scenarios, microcontrollers can

regulate the operations of an artificial heart, kidney or other organ. They can also

be instrumental in the functioning of prosthetic devices.

2.2.1 Raspberry Pi

Used as a microcontroller, the Raspberry Pi is a series of small single-

board computers developed in the United Kingdom by the Raspberry Pi

Foundation to promote the teaching of basic computer science. It’s a credit card-

sized computer originally designed for education, inspired by the 1981 BBC

Micro. Creator Eben Upton's goal was to create a low-cost device that would

improve programming skills and hardware. But thanks to its small size and

accessible price, it was quickly adopted by tinkerers, makers, and electronics

enthusiasts for projects that require more than a basic microcontroller (such as

Arduino devices).

The Raspberry Pi 3 is a Single Board Computer (SBC). This means that the

board is a fully functional computer with its own dedicated processor, memory,

and can run an operating system (runs on Linux). The Raspberry Pi 3 includes

its own USB ports, audio output, and has a graphic driver for HDMI output,

showing how it can run multiple programs. You can even install other operating

systems that include Android, Windows 10, or Firefox OS. The Raspberry Pi is

7

slower than a modern laptop or desktop but is still a complete Linux computer

and can provide all the expected abilities that implies, at a low-power

consumption level. The Raspberry Pi Foundation is a registered educational

charity (registration number 1129409) based in the UK [4].

The Raspberry Pi is an overclock-able piece of hardware; it’s CPU can be

overclocked in the range of 20% extra performance, however no over-clocking

was done in this project. Also, heatsinks can be used but no heatsink was needed,

as the chip used in the Raspberry Pi is equivalent to one used in a mobile phone,

and should not become hot enough to require any special cooling. However,

depending on the case and the overclocking settings, a heatsink might be found

to be advantageous.

The Raspberry Pi Foundation provides Raspbian as the default operating system,

which is a Debian-based Linux distribution for download. Figure 2.1 shows

Raspberry Pi 3 model B.

Figure 2.1: Raspberry Pi 3 model B

8

2.2.2 Arduino

Arduino is also a microcontroller, it’s an open-source platform used for

building electronics projects. Arduino consists of both a physical programmable

circuit board (often referred to as a microcontroller) and a piece of software, or

IDE (Integrated Development Environment) that runs on your computer, used to

write and upload computer code to the physical board. Arduino does not need a

separate piece of hardware (called a programmer) in order to load new code onto

the board – you can simply use a USB cable. Additionally, the Arduino IDE uses

a simplified version of C++ (programing language), making it easier to learn to

program. Arduino, was born in Italy. It was named after the bar where inventor

Massimo Banzi and his cofounders first forged the idea. Banzi, a teacher at the

Interaction Design Institute Ivrea, wanted a simple hardware prototyping tool

for his design students.

2.2.3 Raspberry Pi vs Arduino

Arduino and Raspberry Pi are quite different. For starters, Raspberry Pi is

a fully functional computer, while Arduino is a microcontroller, which is just a

single component of a computer. Raspberry Pi 3 is a mini-computer, it can

multitask several programs with its Broadcom BCM2837 SoC, meaning that

building a complex project that needs multiple actions at a time are easily

handled. The Raspberry Pi 3 can connect to Bluetooth devices and the Internet

right out of the box using Ethernet or by connecting to Wi-Fi. The Arduino Uno

cannot do that without a Shield that adds Internet or Bluetooth connectivity.

HATS and Shields help with this. HATs (Hardware Attached on Top) and

Shields have essentially the same goal, adding an extra, or simplifying

functionality. The HATs can be used on the Raspberry Pi 3, where some HATs

include the Pi to control an RBG Matrix, add a touchscreen, or even create an

arcade system. The Shields that can be used on the Arduino Uno include a Relay

Shield, a Touchscreen Shield, or a Bluetooth Shield. There are hundreds of

Shields and HATs that provide the functionality that you regularly use. The

9

Raspberry Pi 3 also has an HDMI port, audio port, 4 USB ports, camera port,

and LCD port, making it ideal for media applications. The Arduino Uno does

not have any of these ports in the board (though some of can be added through

Shields.

The price and size of the two devices are comparable; we already knew

Raspberry Pi and Arduino were tiny and cheap. It’s the stuff inside that sets them

apart. The Raspberry Pi is 40 times faster than an Arduino when it comes to

clock speed. Even more seemingly damning for Arduino, Pi has 128,000 times

more RAM. The Raspberry Pi is an independent computer that can run an actual

operating system in Linux. It can multitask, support two USB ports, and connect

wirelessly to the Internet.

In short, it’s powerful enough to function as a personal computer. Table 2.1

shows a comparison between the two microprocessors:

Table 2.1: Arduino and Raspberry Pi comparison:

10

2.3 Motor Driver

Motor drives are circuits used to run a motor. In other words, they are

commonly used for motor interfacing. These drive circuits can be easily

interfaced with the motor and their selection depends upon the type of motor

being used and their ratings (current, voltage).

2.4 IR Sensors

An Infrared light emitting diode (IR LED) is a special purpose LED

emitting infrared rays ranging 700 nm to 1 mm wavelength. Different IR LEDs

may produce infrared light of differing wavelengths, just like different LEDs

produce light of different colors. IR LEDs are usually made of gallium arsenide

or aluminum gallium arsenide. In complement with IR receivers, these are

commonly used as sensors in figure 2.2:

Figure 2.2: IR sensor

An IR LED is a type of diode or simple semiconductor. Electric current is

allowed to flow in only one direction in diodes. As the current flows, electrons

fall from one part of the diode into holes on another part. In order to fall into

11

these holes, the electrons must shed energy in the form of photons, which

produce light.

The appearance of IR LED is same as a common LED. Since the human eye

cannot see the infrared radiations, it is not possible for a person to identify if an

IR LED is working. A camera on a cell phone camera solves this problem. The

IR rays from the IR LED in the circuit are shown in the camera. An IR sensor

consists of an IR Receiver and an IR Emitter. IR emitter is an IR LED that

continuously emits infrared radiations while power is supplied to it. IR receiver

can be thought of as a transistor with its base current determined by the intensity

of IR light received. Lower intensity of IR light causes higher resistance between

collector-emitter terminals of transistors and limits current from collector to

emitter. This change of resistance will further change the voltage at the output

of voltage divider. In others words, the greater the intensity of IR light hitting

IR receiver, the lower the resistance of IR receiver. Hence the output voltage of

voltage divider will decrease as shown in Figure 2.3 below.

Figure 2.3: IR sensor pins

An IR sensor consists of two parts, the emitter circuit and the receiver circuit.

This is collectively known as a photo-coupler or an optocoupler.

12

The emitter is an IR LED and the detector is an IR photodiode. The IR

phototdiode is sensitive to the IR light emitted by an IR LED. The photo-diode’s

resistance and output voltage change in proportion to the IR light received. This

is the underlying working principle of the IR sensor.

The type of incidence can be direct incidence or indirect incidence. In direct

incidence, the IR LED is placed in front of a photodiode with no obstacle in

between. In indirect incidence, both the diodes are placed side by side with an

opaque object in front of the sensor. The light from the IR LED hits the opaque

surface and reflects back to the photodiode as in Figure 2.4:

Figure 2.4: IR reflection principle

In line following robots, IR sensors detect the color of the surface underneath it

and send a signal to the microcontroller or the main circuit which then takes

decisions according to the algorithm set by the creator of the bot. Line followers

employ reflective or non-reflective indirect incidence. The IR is reflected back

to the module from the white surface around the black line. But IR radiation is

absorbed completely by black color. There is no reflection of the IR radiation

going back to the sensor module in black color.

13

2.5 Concept of the Normal Line Follower

Line Follower Robot is able to track a line with the help of an IR sensor.

This sensor has a IR Transmitter and IR receiver. The IR transmitter (IR LED)

transmits the light and the Receiver (Photodiode) waits for the transmitted light

to return back. An IR light will return back only if it is reflected by a surface.

Whereas, all surfaces do not reflect an IR light, only white the color surface can

completely reflect them and black color surface will completely observe them

as shown in Figures 2.5, 2.6 [2].

Figure 2.5: IR light reflection white

14

Figure 2.6: IR light reflection Black

The two IR sensors to check if the robot is in track with the line and two motors

to correct the robot if its moves out of the track. These motors require high

current and should be bi-directional; hence a motor driver is required. a

computational device like Raspberry Pi is needed to instruct the motors based

on the values from the IR sensor. A simplified block diagram of the same is

shown in Figure 2.7

Figure 2.7 Normal line follower block diagram

15

These two IR sensors will be placed one on either side of the line. If none of the

sensors are detecting a black line them they PI instructs the motors to move

forward as shown in figure 2.8:

Figure 2.8: Line follower moving forward

16

If left sensor comes on the black line, then the PI instructs the robot to turn left

by rotating the right wheel alone as shown in figure 2.9:

Figure 2.9: Line follower turning left

If right sensor comes on black line, then the PI instructs the robot to turn right

by rotating the left wheel alone as shown in figure 2.10:

Figure 2.10: Line follower turning right

17

If both sensors come on black line, the robot stops as shown in figure 2.11:

Figure 2.11: Line follower stopping

This way the Robot will be able to follow the line without getting outside the

track

18

2.6 PID Controller

A proportional–integral–derivative controller (PID) is a control loop

feedback mechanism widely used in industrial control systems and a variety of

other applications requiring continuously modulated control. Approximately

95% of the closed loop operations of industrial automation sector use PID

controllers. A PID controller continuously calculates an error value e(t) as the

difference between a desired setpoint and a measured process variable and

applies a correction based on proportional, integral, and derivative terms

(denoted P, I, and D respectively), hence the name as shown in Figure 2.12. In

practical terms it automatically applies accurate and responsive correction to a

control function. An everyday example is the cruise control on a car; where

external influences such as hills (gradients) would decrease speed. The PID

algorithm restores from current speed to the desired speed in an optimal way,

without delay or overshoot, by controlling the power output of the vehicle's

engine. The first theoretical analysis and practical application was in the field of

automatic steering systems for ships, developed from the early 1920s onwards.

It was then used for automatic process control in manufacturing industry, where

it was widely implemented in pneumatic, and then electronic, controllers. Today

there is universal use of the PID concept in applications requiring accurate and

optimized automatic control [3,5] as shown in figure 2.12:

19

Figure 2.12: PID controller

 (2.1)

where Kp, Ti and Td, are all non-negative, denote the coefficients for the

proportional, integral, and derivative terms respectively (sometimes denoted P,

I, and D).

As a feedback controller, it delivers the control output at desired levels. Before

microprocessors were invented, PID control was implemented by the analog

electronic components. But today all PID controllers are processed by the

microprocessors. Programmable logic controllers also have the inbuilt PID

controller instructions. Due to the flexibility and reliability of the PID

controllers, these are traditionally used in process control applications [3,5].

2.6.1 P- Controller:

Proportional or P controller gives output which is proportional to current

error e(t). It compares desired or set point with actual value or feedback process

20

value. The resulting error is multiplied with proportional constant to get the

output. If the error value is zero, then this controller output is zero as shown in

figure 2.13:

Figure 2.13: P controller

P-Controller Response:

This controller requires biasing or manual reset when used alone. This is

because it never reaches the steady state condition. It provides stable operation

but always maintains the steady state error. Speed of the response is increased

when the proportional constant Kc increases as shown in figure 2.14:

Figure 2.14: P controller response

2.6.2 I-Controller:

Due to limitation of p-controller where there always exists an offset

between the process variable and set point, I-controller is needed, which

21

provides necessary action to eliminate the steady state error. It integrates the

error over a period of time until error value reaches to zero. It holds the value to

final control device at which error becomes zero as shown in figure 2.15:

Figure 2.15: PI controller

Integral control decreases its output when negative error takes place. It limits the

speed of response and affects stability of the system. Speed of the response is

increased by decreasing integral gain Ki as shown in figure 2.16:

Figure 2.16: PI Controller Response

In above figure, as the gain of the I-controller decreases, steady state error also

goes on decreasing. For most of the cases, PI controller is used particularly

where high speed response is not required.

While using the PI controller, I-controller output is limited to somewhat range

to overcome the integral wind up conditions where integral output goes on

increasing even at zero error state, due to nonlinearities in the plant.

https://en.wikipedia.org/wiki/Integral_windup
https://www.elprocus.com/wp-content/uploads/2013/12/PI-controller.jpg
https://www.elprocus.com/wp-content/uploads/2013/12/PI-controller-response.jpg

22

2.6.3 D-Controller:

I-controller doesn’t have the capability to predict the future behavior of

error. So it reacts normally once the set point is changed. D-controller overcomes

this problem by anticipating future behavior of the error. Its output depends on

rate of change of error with respect to time, multiplied by derivative constant. It

gives the kick start for the output thereby increasing system response as shown

in figure 2.17, 2.18:

Figure 2.17: PID controller

Figure 2.18: PID Controller Response

In the above figure response of D controller is more, compared to PI controller

and also settling time of output is decreased. It improves the stability of system

by compensating phase lag caused by I-controller. Increasing the derivative gain

increases speed of response.

https://www.elprocus.com/wp-content/uploads/2013/12/PID-controller.jpg
https://www.elprocus.com/wp-content/uploads/2013/12/PID-controller-response.jpg

23

So finally it’s observed that by combining these three controllers, the desired

response for the system is approachable. Different manufactures design different

PID algorithms [3,5].

2.7 Tuning Methods of PID Controller

Before the working of PID controller takes place, it must be tuned to suit

with dynamics of the process to be controlled. Designers give the default values

for P, I and D terms and these values couldn’t give the desired performance and

sometimes leads to instability and slow control performances. Different types of

tuning methods are developed to tune the PID controllers and require much

attention from the operator to select best values of proportional, integral and

derivative gains.

2.7.1 Manual Tuning:

If the system must remain online, one tuning method is to first set Ki and

Kd values to zero. Increase the Kp until the output of the loop oscillates, then

the Kp should be set to approximately half of that value for a "quarter amplitude

decay" type response. Then increase Ki until any offset is corrected in sufficient

time for the process. However, too Ki will cause instability. Finally, increase

Kd, if required, until the loop is acceptably quick to reach its reference after a

load disturbance. However, too much Kd will cause excessive response and

overshoot. A fast PID loop tuning usually overshoots slightly to reach the

setpoint more quickly; however, some systems cannot accept overshoot, in

which case an overdamped closed-loop system is required, which will require a

Kp setting significantly less than half that of the Kp setting that was causing

oscillation.

24

 Table 2.2: Manual Tuning

Parameter Rise time Overshoot Settling time Steady-state error Stability

Kp Decrease Increase Small change Decrease Degrade

Ki Decrease Increase Increase Eliminate Degrade

Kd Minor change Decrease Decrease No effect in theory

Improve if Kd

 small

2.7.2 Trial and Error Method:

 It is a simple method of PID controller tuning. While system or controller

is working, we can tune the controller. In this method, first we have to set Ki and

Kd values to zero and increase proportional term (Kp) until system reaches to

oscillating behavior. Once it is oscillating, adjust Ki (Integral term) so that

oscillations stops and finally adjust D to get fast response.

2.7.3 Process Reaction Curve Technique:

 It is an open loop tuning technique. It produces response when a step

input is applied to the system. Initially, we have to apply some control output to

the system manually and have to record response curve.After that we need to

calculate slope, dead time, rise time of the curve and finally substitute these

values in P, I and D equations to get the gain values of PID terms.

25

Figure 2.19: Process reaction curve

2.7.4 Zeigler-Nichols Method:

 Zeigler-Nichols proposed closed loop methods for tuning the PID

controller. Those are continuous cycling method and damped oscillation

method. Procedures for both methods are same but oscillation behavior is

different. In this, first we have to set the p-controller constant, Kp to a particular

value while Ki and Kd values are zero. Proportional gain is increased till system

oscillates at constant amplitude.Gain at which system produces constant

oscillations is called ultimate gain (Ku) and period of oscillations is called

ultimate period (Pc). Once it is reached, we can enter the values of P, I and D in

PID controller by Zeigler-Nichols table depends on the controller used like P, PI

or PID, as shown below:

Table 2.3: Zeigler-Nichols table

 Kc Ti Td

P Ko/2

PI Ko/2.2 Po/1.2

PID Ko/1.7 Po/2 Po/S

https://www.elprocus.com/wp-content/uploads/2013/12/Process-Reaction-Curve.jpg

26

2.8 Pulse Width Modulation (PWM)

Pulse Width Modulation (PWM), is a way of describing a digital

(binary/discrete) signal that was created through a modulation technique, which

involves encoding a message into a pulsing signal. Although this modulation

technique can be used to encode information for transmission, its main use is to

allow the control of the power supplied to electrical devices, especially to inertial

loads such as motors. The average value of voltage (and current) fed to the load

is controlled by turning the switch between supply and load on and off at a fast

rate. The longer the switch is on compared to the off periods, the higher the total

power supplied to the load. The PWM switching frequency has to be much

higher than what would affect the load (the device that uses the power), which

is to say that the resultant waveform perceived by the load must be as smooth as

possible. The rate (or frequency) at which the power supply must switch can

vary greatly depending on load and application, for example Switching has to be

done several times a minute in an electric stove; between a few kilohertz (kHz)

and tens of kHz for a motor drive; and well into the tens or hundreds of kHz in

audio amplifiers and computer power supplies.

The term duty cycle describes the proportion of 'on' time to the regular interval

or 'period' of time; a low duty cycle corresponds to low power, because the

power is off for most of the time. Duty cycle is expressed in percent, 100% being

fully on. When a digital signal is on half of the time and off the other half of the

time, the digital signal has a duty cycle of 50% and resembles a "square" wave.

When a digital signal spends more time in the on state than the off state, it has a

duty cycle of >50%. When a digital signal spends more time in the off state than

the on state, it has a duty cycle of <50%. figure 2.20 shows a pictorial that

illustrates these three scenarios:

27

Figure 2.20: Pulse width modulation

28

2.9 All-Wheel Drive (AWD)

 An All-Wheel Drive vehicle (AWD vehicle) is one with a

powertrain capable of providing power to all its wheels, whether full-time or on-

demand. All-wheel drive is a much more recent innovation to simplify, it’s

actually very similar to the concept of part-time four-wheel drive. Think of all-

wheel drive as similar to the part-time four-wheel drive system, where the main

distinction with four-wheel drive is that the system tries to send as much power

to all four wheels as equally as possible for utmost traction, all-wheel drive is all

about varying the amount of power to each wheel, either by physically with

differentials or transfer cases or electronically by brake vectoring (where the

brakes are used to slow-down a specific wheel due to traction loss). adjust power

delivery according to which wheel loses or maintains traction. All-Wheel Drive

does have some clear advantages. These days, computers are involved in most

AWD systems. Sensors on each wheel monitor traction, wheel speed, and

several other data points hundreds of times per second. A control unit analyzes

traction conditions and decides which wheel receives power. This type of

system, usually called torque vectoring, appears on everything from the modern

cars to space mobile robots. Each axle gets its own electric motor so the four

wheels are always powered but there’s no mechanical connection between the

front and the back of the vehicle. This improves traction and performance.

Figure 2.21 Power delivery in AWD system

29

2.10 Line Follower Without Using Microcontrollers

It consists of an IR-LED and Photodiode arrangement for each motor

which is controlled by the switching on and off of the transistor.

The IR LED on getting proper biasing emits Infra-red light. This IR light is

reflected in case of a white surface and the reflected IR light is incident on the

photodiode. The resistance of the photodiode decreases, which leads to an

increase in current through it and thus the voltage drop across it. The photodiode

is connected to the base of the transistor and as a result of increased voltage

across the photodiode, the transistor starts conducting and thus the motor

connected to the collector of the transistor gets enough supply to start rotating.

In case of a black color on the path encountered by one of the sensor

arrangement, the IR light is not reflected and the photodiode offers more

resistance, causing the transistor to stop conduction and eventually the motor

stops rotating.

Thus the whole system can be controlled using a simple LED-Photodiode-

Transistor arrangement [1,2]. Figure 2.22 shows the block diagram of the Line

Follower without using microcontrollers.

Figure 2.22: Block diagram of the Line Follower without using microcontrollers.

30

2.11 Line Follower Using Microcontrollers

The line is indicated by white line on a block surface or block line on a

white surface. This system must be sense by the line. This application depends

upon the sensors. Here we are using two sensors for path detection purpose. That

is proximity sensor and IR sensor. The proximity sensor used for path detection

and IR sensor used for obstacle detection. These sensors mounted at front end

of the robot. The microcontroller is an intelligent device the whole circuit is

controlled by the microcontroller [1,2]. Figure 2.23 shows a Line Follower using

Microcontrollers circuit diagram.

Figure 2.23: Line Follower using Microcontrollers circuit diagram.

31

2.12 Two Wheels PID line Follower Using Arduino

The test robot is a two-wheeled mobile robot with differential drive. A

ball castor provides third point contact to ensure stability. The robot is driven by

two high speed miniature permanent magnet gear motors coupled to wheels. The

robot is battery powered, with the motors supplied with regulated power supply

to ensure consistent motor power at all operating scenarios shown in Figure 2.24.

To move the robot forward, both motors are rotated in the forward direction. To

make the robot turn to the left or to the right, the speed of one motor is reduced.

The amount of turn increases as the speed difference increases. Maximum

amount of turn is achieved when one motor is turned in a backward direction at

maximum speed. This results in maximum speed difference and the robot just

spins in place. The brain of the robot is an R8C25 16-bit microcontroller from

Renesas. Bidirectional motor speed control is achieved by using an H-Bridge

motor driver circuit. The power applied to the motor is varied by using PWM

generated by the microcontroller.

The mentioned model works suitably well for straight lines, curves and moderate

turns. However, for sharp acute angled turns, the performance is not acceptable

and the robot misses the turn or has excessive overshoot issues. This is due to

the fact that, when the path has an abrupt turn, the robot goes entirely off the line

causing the sensor error parameter to saturate to values of either 4500 or -4500

depending on the direction of the turn. In this condition, the control effort

produced by the modified PID controller will be unable to turn the robot fast

enough.

In conclusion, the robot requires an implementation of a lot of systems and a

very long code to be viable [1,2].

32

Figure 2.24: Two wheeled PID line follower using Arduino.

2.13 The Necessity of Further Development

The Arduino chosen as a microprocessor in the previous mentioned

models, is popular affordable viable microcontroller. However, it has a limited

processing speed; it’s designed for single tasking, which will result for models

to be solely designed to follow lines and nothing else, no additional tasks can be

added. Also it limits the number of input/output methods, thus the control

methods and applications.

Arduino forces the user to code using C++, a language developed by Bjarne

Stroustrup in 1979, much complicated and limited language compared to recent

ones, which will result in a code with hundreds of lines to be written, and that is

a lot of coding and an impossible task for a normal designer since the code won’t

compile if it contained a single error.

Two wheeled models proved speed in tracking, that might be useful for “Line

Follower Robot Collage Competitions”, but physically speaking ... no high

speed object with high momentum can make a sharp turn in a sudden, which

makes them not practical for production or manufacturing applications.

33

2.14 PID Modified Line Tracker

For the PID line tracker, two additional sensors were added to the

line tracker, the additional sensors are peripheral. They are added on the sides of

the front bumper of the robot for the purpose of determining the value of Kd,

which is the “Derivative value”, this value will be one responsible for

anticipating line turn angle and responding to it.

Now, the robot will no longer follow the line using only the “proportional value”

of the two main sensors. Instead, the robot will calculate the error value using

the two additional sensors as the displacement away from the line, that’s why

the name has been changed to “Line Tracker”. Because Practically the robot isn’t

following the line. But instead, the robot is anticipating the upcoming turns,

calculating the error and then adjusting the motors speed according to the turns

and error values.

It's noticed that no one developed a script or a code for a PID modified line

tracker in python for the Raspberry Pi before. Thus, it’s needed to start the

coding manually from the beginning.

And for the Ki “Integral value”, it will be last calculated error converted to a

boost of speed when exiting a turn or corner into a straight line. Figure 2.25

shows PID Line Tracker block diagram.

Figure 2.25: PID Line Tracker block diagram.

34

CHAPTER THREE

SOFTWARE AND HARDWARE COMPONENTS

AND SPECIFICATIONS

3.1 Linux

Linux is the best-known and most-used open source operating system. As

an operating system, Linux is software that sits underneath all of the other

software on a computer, receiving requests from those programs and relaying

these requests to the computer’s hardware. The term “Linux” to refer to the

Linux kernel, but also the set of programs, tools, and services that are typically

bundled together with the Linux kernel to provide all of the necessary

components of a fully functional operating system. Linux was created in 1991

by Linus Torvalds, a then-student at the University of Helsinki. Torvalds built

Linux as a free and open source alternative to Minix, another Unix clone that

was predominantly used in academic settings.

In many ways, Linux is similar to other operating such as Windows, OS X, or

iOS. Like other operating systems, Linux has a graphical interface, and types of

software you are accustomed to using on other operating systems, such as word

processing applications, have Linux equivalents. In many cases, the software’s

creator may have made a Linux version of the same program you use on other

systems. If an individual can use a computer or other electronic device, Linux

can be used. But Linux also is different from other operating systems in many

important ways. First, and perhaps most importantly, Linux is open source

software. The code used to create Linux is free and available to the public to

view, edit, and—for users with the appropriate skills—to contribute to. Linux is

also different in that, Linux is incredibly customizable, because not just

applications, such as word processors and web browsers, can be swapped out.

35

Linux users also can choose core components, such as which system displays

graphics, and other user-interface components.

The Linux kernel is a widely ported operating system kernel, available for

devices ranging from mobile phones to supercomputers; it runs on a highly

diverse range of computer architectures, including the hand-held ARM-based

iPAQ and the IBM mainframes System z9 or System z10. Specialized

distributions and kernel forks exist for less mainstream architectures; for

example, the ELKS kernel fork can run on Intel 8086 or Intel 80286 16-bit

microprocessors, while the µClinux kernel fork may run on systems without a

memory management unit. The kernel also runs on architectures that were only

ever intended to use a manufacturer-created operating system, such as

Macintosh computers (with both PowerPC and Intel processors), PDAs, video

game consoles, portable music players, and mobile phones.

3.2 Raspbian

Raspbian is a free operating system based on Debian optimized for the

Raspberry Pi hardware. An operating system is the set of basic programs and

utilities that make your Raspberry Pi run. However, Raspbian provides more

than a pure OS; it comes with over 35,000 packages, pre-compiled software

bundled in a nice format for easy installation on your Raspberry Pi. Raspbian

packages were optimized for best performance on the Raspberry Pi and were

completed in June of 2012. However, Raspbian is still under active development

with an emphasis on improving the stability and performance of as many Debian

packages as possible. Raspbian is a fantastic Raspberry Pi Linux OS. It can

picked from several versions of Raspbian including Raspbian Stretch with

Desktop and Raspbian Stretch Lite, a minimal Debian Stretch-based Raspbian

image.

Since 2015 it has been officially provided by the Raspberry Pi Foundation as the

primary operating system for the family of Raspberry Pi single-board computers.

36

Raspbian was created by Mike Thompson and Peter Green as an independent

project. The operating system is still under active development. Raspbian is

highly optimized for the Raspberry Pi line's low-performance ARM CPUs. The

Raspberry Pi Foundation also maintains its own recommended version of

Raspbian which you can install using the Foundation's NOOBS installer.

Raspbian uses PIXEL, Pi Improved Xwindows Environment, Lightweight as its

main desktop environment as of the latest update. It is composed of a modified

LXDE desktop environment and the Openbox stacking window manager with a

new theme and few other changes. The distribution is shipped with a copy of

computer algebra program Mathematica and a version of Minecraft called

Minecraft Pi as well as a lightweight version of Chromium as of the latest

version. [4]

3.3 Python 3

Python is an interpreted, object-oriented, high-level programming

language with dynamic semantics. Its high-level built in data structures,

combined with dynamic typing and dynamic binding, make it very attractive for

Rapid Application Development, as well as for use as a scripting or glue

language to connect existing components together. Python's simple, easy to learn

syntax emphasizes readability and therefore reduces the cost of program

maintenance. Python supports modules and packages, which encourages

program modularity and code reuse. The Python interpreter and the extensive

standard library are available in source or binary form without charge for all

major platforms, and can be freely distributed.

Often, programmers prefer Python because of the increased productivity it

provides. Since there is no compilation step, the edit-test-debug cycle is

incredibly fast. Debugging Python programs is easy: a bug or bad input will

never cause a segmentation fault. Instead, when the interpreter discovers an

error, it raises an exception. When the program doesn't catch the exception, the

interpreter prints a stack trace. A source level debugger allows inspection of

37

local and global variables, evaluation of arbitrary expressions, setting

breakpoints, stepping through the code a line at a time, and so on. The debugger

is written in Python itself, testifying to Python's introspective power. On the

other hand, often the quickest way to debug a program is to add a few print

statements to the source: the fast edit-test-debug cycle makes this simple

approach very effective [4].

A list of 8 World-Class Software Companies That Use Python:

1. Industrial Light and Magic

2. Google

3. Facebook

4. Instagram

5. Spotify

6. Quora

7. Netflix

8. Dropbox

9. Reddit

"Python has been an important part of Google since the beginning, and remains

so as the system grows and evolved. Today dozens of Google engineers use

Python, and we're looking for more people with skills in this language" -- Peter

Norvig, Director of Search Quality at Google.

Python 3.0 (also called "Python 3000" or "Py3K") was released on December

3rd, 2008. It was designed to rectify fundamental design flaws in the language.

The changes required could not be implemented while retaining full backwards

compatibility with the 2.x series, which necessitated a new major version

number. The guiding principle of Python 3 was: "reduce feature duplication by

removing old ways of doing things".

Python 3.0 was developed with the same philosophy as in prior versions.

However, as Python had accumulated new and redundant ways to program the

38

same task, Python 3.0 had an emphasis on removing duplicative constructs and

modules, in keeping with "There should be one— and preferably only one —

obvious way to do it".

Nonetheless, Python 3.0 remained a multi-paradigm language. Coders still had

options among object-orientation, structured programming, functional

programming and other paradigms, but within such broad choices, the details

were intended to be more obvious in Python 3.0 than they were in Python 2.x.

3.4 Raspberry PI Generations and Models

Table 3.1: Raspberry Pi different generations and models [4].

Product SoC Speed RAM USB

Ports

Ethernet Wireless/Bluetooth

Raspberry

Pi Model A+

BCM2835 700MHz 512MB 1 No No

Raspberry

Pi Model B+

BCM2835 700MHz 512MB 4 Yes No

Raspberry

Pi 2 Model B

BCM2836/7 900MHz 1GB 4 Yes No

Raspberry

Pi 3 Model B

BCM2837 1200MHz 1GB 4 Yes Yes

Raspberry

Pi 3 Model

B+

BCM2837 1400MHz 1GB 4 Yes Yes

Raspberry

Pi Zero

BCM2835 1000MHz 512MB 1 No No

Raspberry

Pi Zero W

BCM2835 1000MHz 512MB 1 No Yes

Raspberry

Pi Zero WH

BCM2835 1000MHz 512MB 1 No Yes

Raspberry Pi 3 Model B:

As the second latest Pi to be released (Previous to model B+), Raspberry

Pi 3 Model B was launched in February 2016, the model is recommended for

use in schools, due to its flexibility for the learner. The Raspberry Pi 3 Model B

39

contains a wide range of improvements and features that will benefit the

designers, developers, and even engineers who are looking to integrate Pi

systems into their products [4].

3.5 Raspberry PI 3 Model B Specifications, Features and

Pins layout

Table 3.2: Raspberry PI 3 Model B specifications and features.

Chip  Broadcom BCM2837

 64bit

 ARMv8

 Quad Core Cortex A53

 1.2 GHz

Storage microSD Card

Memory 1 GB

Graphics  400 MHz Dual Core VideoCore IV GPU

 OpenGL ES 2.0

 Hardware-Accelerated OpenVG

 1080p30 H.264 high-profile decode

Weight 42g

Audio  HDMI port supports multichannel audio output

 Audio line out/3.5-mm headphone jack (analog)

Connections and

Expansions

USB 2.0 ports10/100BASE-T Ethernet portsComposite Video and Audio jackCSI

Camera portHDMI portMicroUSB Power InputDSI Display port40-pin GPIO

 Four USB 2.0 ports (up to 480 megabits per second)

 HDMI port

 3.5mm 4-pole Composite Video and Audio jack

 MicroUSB Power Input

40

 DSI Display Port

 CSI Camera Port

 MicroSD card Sold

 40-pin GPIO (Male headers)

Communications Wi-Fi

802.11n WiFi wireless Networking;IEEE 802.11a/g/b/n compatible

Bluetooth

Bluetooth 4.1 wireless technology

Ethernet

10/100BASE-T Ethernet (RJ-45 connector)

Electrical and

Operating

Requirements

Input voltage: 5V DC

Current Requirement: 2.5 Amps

Operating

System

Raspberry Pi Foundation's Offical supported Operating Systems

 NOOBS

 Raspbian

Third Party Operating Systems

 Libreelec

 Open Elec

 OSMC

 Pinet

 RISC OS

 Snappy Ubuntu Core

 Ubuntu Mate

 Weather Station

 Windows IOT Core

 XBian

41

The Raspberry Pi Model B versions measure 85.60mm x 56mm x 21mm (or

roughly 3.37″ x 2.21″ x 0.83″), with a little overlap for the SD card and

connectors which project over the edges. They weigh 45g. The Pi Zero and Pi

Zero W measure 65mm x 30mm x 5.4mm (or roughly 2.56″ x 1.18″ x 0.20″) and

weigh 9g [4].

Figure 3.1: Raspberry Pi 3 model B

42

Figure 3.2: Raspberry Pi 3 Model B Components and Pinout

Additional Requirements (Not Included):

 Micro SD card with NOOBS.

 Micro USB power supply (2.1 A).

And to use it as a desktop computer:

 TV or monitor and HDMI cable.

 Keyboard and mouse.

43

3.6 L298N Motor Driver

The L298N is a dual H-Bridge motor driver which allows speed and

direction control of two DC motors at the same time. The module can drive DC

motors that have voltages between 5 and 35V, with a peak current up to 2A. The

L298N is an integrated monolithic circuit in a 15-lead Multiwatt and

PowerSO20 packages. It is a high voltage, high current dual full-bridge driver

designed to accept standard TTL logic levels and drive inductive loads such as

relays, solenoids, DC and stepping motors. Two enable inputs are provided to

enable or disable the device independently of the input signals. The emitters of

the lower transistors of each bridge are connected together and the

corresponding external terminal can be used for the connection of an external

sensing resistor. An additional supply input is provided so that the logic works

at a lower voltage.

Figure 3.3: L298N Motor Driver

44

3.7 Vehicle Model

The chosen model is a 4-wheel, 4-motor vehicle model. It’s light

weighted, transparent, adjustable with rubber coating removable wheels,

allowing maximum grip and minimum slide across the track.

The used motors are a set of four DC motors. A DC motor is a class of rotary

electrical machines that converts direct current electrical energy into mechanical

energy. The most common types rely on the forces produced by magnetic fields.

Nearly all types of DC motors have some internal mechanism, either

electromechanical or electronic, to periodically change the direction of current

flow in part of the motor as will be shown in figures (3.7, 3.8, 3.9). DC motors

are speed variant; their speed is adjustable by current control through PWM.

Figure 3.7: Vehicle model (top view)

45

Figure3.8: Vehicle model (side view)

Figure 3.9: DC motors

46

CHAPTER FOUR

IMPLEMENTATION AND TESTING

4.1 Installing the Raspbian Using NOOBS on the

Raspberry PI 3 Model B

To get started with Raspberry Pi, an operating system is needed. NOOBS

(New Out of Box Software) is an easy operating system install manager for the

Raspberry Pi. NOOBs is not an OS. It is an OS installer. Raspbian installed by

the NOOBs method is the same as Raspbian installed by the direct install method

using Etcher. SD cards with NOOBS preinstalled are available from many of

distributors and independent retailers, such as Pimoroni, Adafruit and The Pi

Hut. For Pi 3. A micro SD card is needed. The SD card minimum capacity is

8GB. Using a computer with an SD card reader, NOOBS was downloaded from

the official webpage as a zip file. SD card was formatted before copying the

NOOBS files onto it. SD card was inserted into the laptop’s SD card reader. In

SD Formatter, the drive letter for your SD card was selected and formatted. Once

the SD card has been formatted, all the extracted NOOBS files were written on

the SD card drive. When this process was finished, the SD card was safely

removed and inserted into the Raspberry Pi.

First Boot:

The keyboard, mouse, and monitor cables were plugged in. Then the USB

power cable was plugged into the Pi. The Raspberry Pi booted, and a window

appeared with a list of different operating systems that can be installed. Raspbian

will then run through its installation process. Note that this took a while. When

the install process was completed, the Raspberry Pi configuration menu (raspi-

47

config) was loaded. The default login for Raspbian is username pi with the

password raspberry. Note that no writing will appear when the password is

typed. This is a security feature in Linux. To load the graphical user interface,

startx has to be typed and then Enter.

4.2 Implementing the Normal Line Follower

The complete circuit diagram for this Raspberry Pi Line Follower Robot is

shown below in figure 4.1:

Figure 4.1: Normal line follower circuit diagram

As can be observed the circuit involves two IR sensor and a pair of motors

connected to the Raspberry pi. The complete circuit is powered by a Mobile

Power bank (represented by AAA battery in the circuit above).

48

Since the pins details are not mentioned on the Raspberry Pi, it is needed to

verify the pins using the below figure:

Figure 4.2: Raspberry PI pin layout

As shown in figure 4.2, pin of the PI is the +5V pin, the +5V pin to power the

IR sensors as shown in the circuit diagram (red wired). Then the ground pins are

connected to the ground of the IR sensor and motor driver module using black

wire. The yellow wire is used to connect the output pin of the sensor 1 and 2 to

the GPIO pins and 3 respectively.

To drive the Motors, four pins (A,B,A,B) are needed. Those four pins are

connected from GPIO14,4,17 and 18 respectively. The orange and white wire

together forms the connection for one motor. So it’s two such pairs for two

motors.

The motors are connected to the L298N Motor Driver module it’s powered by

a power bank. The ground of the power bank has to be connected to the ground

of the Raspberry Pi, only then your connection will work.

49

4.3 Implementing PID Line Tracker and Placing the

Sensors

Since an array of four IR sensors were used, they were identified as follows:

Figure 4.3: Sensors recognition

And the input of two sensors together is also considered as a distinct value,

increasing the number of rules.

Both Python 3 and L298N Motor Driver can handle valued logic through

PWM.

50

4.4 Setting the L298N Motor Driver: Connecting the

Motors and Setting the PWM Pulse Input

The output of the Raspberry Pi IO pins for the PWM should be

connected in the following L298N pins in figure 4.4:

Figure 4.4: L298N PWM pins

Noting that while using the PWM mode in the L298N Motor Driver, the Enable

Signal IO in the motor driver must get a startup pulse input or the whole program

loop won’t execute due to lack of initiation to the motor driver.

The module has two screw terminal blocks for the motor A and B, and another

screw terminal block for the Ground pin, the VCC for motor and a 5V pin which

can either be an input or output. As shown in figure 4.5:

51

Figure 4.5: L298N double motor connection

This depends on the voltage used at the motors VCC. The module has an onboard

5V regulator which is either enabled or disabled using a jumper. If the motor

supply voltage is up to 12V we can enable the 5V regulator and the 5V pin can

be used as output, for example for powering our Arduino board. But if the motor

voltage is greater than 12V we must disconnect the jumper because those

voltages will cause damage to the onboard 5V regulator. In this case the 5V pin

will be used as input as we need connect it to a 5V power supply in order the IC

to work properly.

It's noted here that this IC makes a voltage drop of about 2V. So for example, if

we use a 12V power supply, the voltage at motors terminals will be about 10V,

which means that we won’t be able to get the maximum speed out of our 12V

DC motor as in figure 4.6.

52

Figure 4.6: L298N voltage settings

Next are the logic control inputs. The Enable A and Enable B pins are used for

enabling and controlling the speed of the motor. If a jumper is present on this

pin, the motor will be enabled and work at maximum speed, and if we remove

the jumper we can connect a PWM input to this pin and in that way control the

speed of the motor. If we connect this pin to a Ground the motor will be disabled

as in figure 4.7 below.

Figure 4.7: L298N logic circuit

https://howtomechatronics.com/wp-content/uploads/2017/08/L298N-Block-Diagram-Current-Flow-How-It-Works.png?x57244

53

Next, the Input 1 and Input 2 pins are used for controlling the rotation direction

of the motor A, and the inputs 3 and 4 for the motor B. Using these pins we

actually control the switches of the H-Bridge inside the L298N IC. If input 1 is

LOW and input 2 is HIGH the motor will move forward, and vice versa, if input

1 is HIGH and input 2 is LOW the motor will move backward. In case both

inputs are same, either LOW or HIGH the motor will stop. The same applies for

the inputs 3 and 4 and the motor B.

4.5 Calculations

The mathematical calculation for the error value in the program will be as

follows:

Error= 100*Kp*(1 + (1/Ki) + Kd)

Last error = error

Motor speed= (100 - Error) (4.1)

And the script will contain the following conditions to calculate the constants

as follows:

For the Kp value

If sensor (L) = 0;

Kp =0

If sensor (L) = 1;

Kp =0.3

If sensor (R) = 0;

Kp= 0

If sensor(R) = 1;

Kp=0.3

For the Kd value

54

If sensor (LL) = 0;

Kd =0

If sensor (LL) = 1;

Kd =1.1

If sensor (RR) = 0;

Kd= 0

If sensor(RR) = 1;

Kd=1.1

For the Ki value

Ki=Last error*0.1

4.6 Python 3 PMW Command

The command for PWM control in Python 3 is as follows:

p = GPIO.PWM(channel, frequency)

To start PWM:

p.start(dc)

To change the frequency:

p.ChangeFrequency(freq)

To change the duty cycle:

p.ChangeDutyCycle(dc)

55

4.7 Sensors’ Truth Table

For that algorithm, it’s needed to make a truth table containing all the

possibilities for the four sensors (The Logic Number of sensors) which is 24 =16.

Table 4.1: Sensors’ truth table

 Sensor

NO

LL L R RR

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

56

4.8 Implementing the All-Wheel-Drive

The All-Wheel-Drive system structure is very simple, instead of two motors

spinning the two front wheels, four motors were used to spin all of the model’s

four wheels. With each side’s motors spinning simultaneously. And Despite its

easiness and simplicity, it was the most effective enhancement among all of the

previous enhancements. Massively increasing the traction, and having an

enormous effect on the overall stability. Without the AWD, the robot would be

struggling to start moving. Before the AWD, the robot wheels used to spin in

place due to lack of grip and uneven floor.

However, this is not a mechanical system, divining power upon two wheels

won’t divide torque, but instead in DC motors, the speed is half the original

speed due to the current dividing on two motors, which means this made the

model slower. For further speed results, a power source with a higher current

output is required. For this project 2.1A current was fed to the motors through

the motor driver.

Figure 4.8: AWD motors placement

57

4.9 Model Testing

The robot is tested in the primary testing track to apply the

theory, check abnormalities or shenanigans and measure the robot speed as

shown in figures (4.9, 4.10, 4.11), and also to double check if the robot will go

out of track.

Figure 4.9: Track testing

58

Figure 4.10: Sensors placement

Figure 4.11: Components’ side view

59

4.10 Results

Table 4.2 will show the sensors conditions and the following motors speed.

Figure 4.12 shows the testing track after being divided into sectors and table

4.3 shows each sector’s robot timing.

Table 4.2: Motors output

Sensor

LL

Input

Sensor

L

Input

Sensor

R

Input

Sensor

RR

Input

Right

Motor

Speed

Left

Motor

Speed

False False False False 100 100

False False False True 0 100

False False True False 35 100

False False True True 0 100

False True False False 100 35

False True False True 65 35

False True True False 35 65

False True True True 65 100

True False False False 100 65

True False False True 65 35

True False True False 65 65

True False True True 35 35

True True False False 100 0

True True False True 35 35

True True True False 100 0

True True True True 0 0

60

Figure 4.12: Testing track

Table 4.3: Result timings

 Sections

 Systems

Section 1

(seconds)

Section 2

(seconds)

Section3

(seconds)

Normal Line

Follower

15.2 18.6 NA

PID Line Tracker 11.5 13.9 6.4

PID Line Tracker

(with Adjusted

Kp,Ki,Kd values)

8.9 12.3 5.6

61

CHAPTER FIVE

CONCLUSION AND RECOMNDATIONS

5.1 Conclusion

In this study, the optimized PID control scheme, which was implemented

in the robot proved successful and allowed the robot to negotiate a non-trivial

track with the highest speed possible. The robot moves with a maximum speed

of about 20cm per second. The control algorithm gives optimal performance and

its suitable implementation in a scaled up robotic system for various real world

applications.

5.2 Recommendations

 The Raspberry PI gets newer versions released each period of time, it’s

recommended to keep up with the latest versions (while we were working

on this model, a newer version “the model B+” got released).

 And Implementing additional peripheral hardware and deploying the

model in other more complicated applications due to high processing

speed of the Raspberry PI.

 Increasing the number of sensors by using an array of sensors for better

variety of speed, and using a better power supply for higher current

values resulting in higher speeds.

62

REFRENCES

 [1] Omer Gumusa, Murat Topaloglub and Dogan Ozcelikbcomputer, “The Use

of Computer Controlled Line Follower Robots in Public

Transport”, 12th International Conference on Application of Fuzzy Systems and

Soft Computing, ICAFS 2016, 29-30 August 2016, Vienna, Austria.

[2] Tarun Agarwal,” Line Follower Robots – Controlling, Working Principle and

Applications”, El-Pro-Cus: Electronics-Projects-Focus, The Budding Electronic

Engineers’ Knowledge Space.

[3] Vikram Balajia, M.Balajib, M.Chandrasekaranc, M.K.A.Ahamed khand,

Irraivan Elamvazuthie, “Optimization of PID Control for High Speed Line

Tracking Robots”, 2015 IEEE International Symposium on Robotics and

Intelligent Sensors (IRIS 2015).

[4] Raspberry PI official webpage, "Raspberry Pi 3 specs", Retrieved on 12

October 2018.

 [5] Araki, M, Hills, Richard L, "PID Control: Power From the Wind”,

Cambridge University, (1996).

63

APPENDIX A

Sensors Testing Script

#import GPIO library

import RPi.GPIO as GPIO

#set GPIO numbering mode and define input pin

GPIO.setmode(GPIO.BOARD)

GPIO.setup(12,GPIO.IN)

try:

 while True:

 if GPIO.input(12):

 print "White"

 else:

 print "Black"

finally:

 #cleanup the GPIO pins before ending

 GPIO.cleanup()

64

APPENDIX B

Normal Line Follower Script

import RPi.GPIO as IO

import time

IO.setwarnings(False)

IO.setmode(IO.BCM)

IO.setup(2,IO.IN) #GPIO 2 -> Left IR out

IO.setup(3,IO.IN) #GPIO 3 -> Right IR out

IO.setup(4,IO.OUT) #GPIO 4 -> Motor 1 terminal A

IO.setup(14,IO.OUT) #GPIO 14 -> Motor 1 terminal B

IO.setup(17,IO.OUT) #GPIO 17 -> Motor Left terminal A

IO.setup(18,IO.OUT) #GPIO 18 -> Motor Left terminal B

while 1:

 if(IO.input(2)==True and IO.input(3)==True): #both

while move forward

 IO.output(4,True) #1A+

 IO.output(14,False) #1B-

 IO.output(17,True) #2A+

 IO.output(18,False) #2B-

 elif(IO.input(2)==False and IO.input(3)==True): #turn

right

 IO.output(4,True) #1A+

 IO.output(14,True) #1B-

65

 IO.output(17,True) #2A+

 IO.output(18,False) #2B-

 elif(IO.input(2)==True and IO.input(3)==False): #turn

left

 IO.output(4,True) #1A+

 IO.output(14,False) #1B-

 IO.output(17,True) #2A+

 IO.output(18,True) #2B-

else: #stay still

 IO.output(4,True) #1A+

 IO.output(14,True) #1B-

 IO.output(17,True) #2A+

 IO.output(18,True) #2B-

66

APPENDIX C

PID Line Tracker Script (Stable)

import RPi.GPIO as IO

import time

from time import sleep

IO.setwarnings(False)

IO.setmode(IO.BCM)

IO.setup(17,IO.IN) #GPIO 17 (pin11) -> Left IR in

IO.setup(27,IO.IN) #GPIO 27 (pin13) -> Right IR in

IO.setup(23,IO.IN) #GPIO 23 (pin16) -> Left Left IR in

IO.setup(24,IO.IN) #GPIO 24 (pin18) -> Right Right IR in

IO.setup(5,IO.OUT) #GPIO 05 (pin 29)-> Motor 1 terminal A

IO.setup(6,IO.OUT) #GPIO 06 (pin 31)-> Motor 1 terminal B

IO.setup(13,IO.OUT) #GPIO 13 (pin 33)->Motor 2 terminal A

IO.setup(19,IO.OUT) #GPIO 19 (pin 35)->Motor 2 terminal B

IO.setup(20,IO.OUT) #GPIO 20 (pin 38)-> Motor PWM R

IO.setup(21,IO.OUT) #GPIO 21 (pin 40)-> Motor PWM L

IO.output(5,True) #1A+

IO.output(6,False) #1B-

IO.output(13,True) #2A+

IO.output(19,False) #2B-

67

speedR=IO.PWM(20, 100)

speedR.start(100)

speedL=IO.PWM(21, 100)

speedL.start(100)

while 1:

 if(IO.input(23)==True and IO.input(17)==False and

IO.input(27)==False and IO.input(24)==False): #straight

forward

 speedR.ChangeDutyCycle(100)

 speedL.ChangeDutyCycle(100)

 elif(IO.input(23)==True and IO.input(17)==False and

IO.input(27)==False and IO.input(24)==True): #low right

 speedR.ChangeDutyCycle(0)

 speedL.ChangeDutyCycle(100)

 elif(IO.input(23)==True and IO.input(17)==False and

IO.input(27)==True and IO.input(24)==False): #Hard right

 speedR.ChangeDutyCycle(35)

 speedL.ChangeDutyCycle(100)

68

 elif(IO.input(23)==True and IO.input(17)==False and

IO.input(27)==True and IO.input(24)==True): #low Left

 speedR.ChangeDutyCycle(0)

 speedL.ChangeDutyCycle(100)

 elif(IO.input(23)==True and IO.input(17)==True and

IO.input(27)==False and IO.input(24)==False): #Hard Left

 speedR.ChangeDutyCycle(100)

 speedL.ChangeDutyCycle(35)

 elif(IO.input(23)==True and IO.input(17)==True and

IO.input(27)==True and IO.input(24)==False): #low right

 speedR.ChangeDutyCycle(35)

 speedL.ChangeDutyCycle(35)

 elif(IO.input(23)==True and IO.input(17)==False and

IO.input(27)==True and IO.input(24)==True): #Hard right

 speedR.ChangeDutyCycle(0)

 speedL.ChangeDutyCycle(100)

 elif(IO.input(23)==True and IO.input(17)==True and

IO.input(27)==True and IO.input(24)==True): #medium Left

 speedR.ChangeDutyCycle(0)

 speedL.ChangeDutyCycle(100)

69

 elif(IO.input(23)==False and IO.input(17)==False and

IO.input(27)==False and IO.input(24)==False): #medium

right

 speedR.ChangeDutyCycle(100)

 speedL.ChangeDutyCycle(0)

 elif(IO.input(23)==False and IO.input(17)==True and

IO.input(27)==False and IO.input(24)==False): #low Left

 speedR.ChangeDutyCycle(100)

 speedL.ChangeDutyCycle(0)

 elif(IO.input(23)==False and IO.input(17)==True and

IO.input(27)==True and IO.input(24)==False): #Hard Left

 speedR.ChangeDutyCycle(100)

 speedL.ChangeDutyCycle(0)

 elif(IO.input(23)==False and IO.input(17)==True and

IO.input(27)==True and IO.input(24)==True):

#abnormalities

 speedR.ChangeDutyCycle(0)

 speedL.ChangeDutyCycle(0)

 else:#shenanigans

70

 speedR.ChangeDutyCycle(35)

 speedL.ChangeDutyCycle(35)

IO.cleanup()

71

APPENDIX D

PID Line Tracker Script (Embedded)

import RPi.GPIO as IO

import time

from time import sleep

IO.setwarnings(False)

IO.setmode(IO.BCM)

IO.setup(17,IO.IN) #GPIO 17 (pin11) -> Left IR in

IO.setup(27,IO.IN) #GPIO 27 (pin13) -> Right IR in

IO.setup(23,IO.IN) #GPIO 23 (pin16) -> Left Left IR in

IO.setup(24,IO.IN) #GPIO 24 (pin18) -> Right Right IR in

IO.setup(5,IO.OUT) #GPIO 05 (pin 29)-> Motor 1 terminal A

IO.setup(6,IO.OUT) #GPIO 06 (pin 31)-> Motor 1 terminal B

IO.setup(13,IO.OUT) #GPIO 13 (pin 33)->Motor 2 terminal A

IO.setup(19,IO.OUT) #GPIO 19 (pin 35)->Motor 2 terminal B

IO.setup(20,IO.OUT) #GPIO 20 (pin 38)-> Motor PWM R

IO.setup(21,IO.OUT) #GPIO 21 (pin 40)-> Motor PWM L

IO.output(5,True) #1A+

IO.output(6,False) #1B-

IO.output(13,True) #2A+

IO.output(19,False) #2B-

72

speedR=IO.PWM(20, 100)

speedR.start(100)

speedL=IO.PWM(21, 100)

speedL.start(100)

while 1:

 if(IO.input(23)==True and IO.input(17)==False and

IO.input(27)==False and IO.input(24)==False): #straight

forward

 Kp=0; Kd =0; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

 elif(IO.input(23)==True and IO.input(17)==False and

IO.input(27)==False and IO.input(24)==True): #low right

 Kp=0; Kd =0; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

73

 elif(IO.input(23)==True and IO.input(17)==False and

IO.input(27)==True and IO.input(24)==False): #Hard right

 Kp=0; Kd =1.1; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

 elif(IO.input(23)==True and IO.input(17)==False and

IO.input(27)==True and IO.input(24)==True): #low Left

 Kp=0.3; Kd =0; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

 elif(IO.input(23)==True and IO.input(17)==True and

IO.input(27)==False and IO.input(24)==False): #Hard Left

 Kp=0.3; Kd =0; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

74

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

 elif(IO.input(23)==True and IO.input(17)==True and

IO.input(27)==True and IO.input(24)==False): #low right

 Kp=0.3; Kd =0; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

 elif(IO.input(23)==True and IO.input(17)==False and

IO.input(27)==True and IO.input(24)==True): #Hard right

 Kp=0.3; Kd =1.1; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

 elif(IO.input(23)==True and IO.input(17)==True and

IO.input(27)==True and IO.input(24)==True): #medium Left

75

 Kp=0.3; Kd =1.1; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

 elif(IO.input(23)==False and IO.input(17)==False and

IO.input(27)==False and IO.input(24)==False): #medium

right

 Kp=0.3; Kd =1.1; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

 elif(IO.input(23)==False and IO.input(17)==True and

IO.input(27)==False and IO.input(24)==False): #low Left

 Kp=0; Kd =1.1; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

76

 elif(IO.input(23)==False and IO.input(17)==True and

IO.input(27)==True and IO.input(24)==False): #Hard Left

 Kp=0; Kd =1.1; Ki=last_error*0.1

 error=100*Kp*(1+(1/Ki)+Kd)

 last_error = error

 motorspeed=(100-error)

 speedR.ChangeDutyCycle(motorspeed)

 speedL.ChangeDutyCycle(motorspeed)

 elif(IO.input(23)==False and IO.input(17)==True and

IO.input(27)==True and IO.input(24)==True):

#abnormalities

 speedR.ChangeDutyCycle(0)

 speedL.ChangeDutyCycle(0)

 else:#shenanigans

 speedR.ChangeDutyCycle(35)

 speedL.ChangeDutyCycle(35)

IO.cleanup()

	Front Page-3.pdf (p.1)
	Pre Chapters.pdf (p.2-14)
	Chapters 1-5 and Appendicies.pdf (p.15-90)

