Sudan University of Science and
Technology
College of Engineering
Electrical Engineering

43 dye aladialy 4] g,

A Project Submitted in Partial Fulfillment for the Requirements of the

Degree of B.Sc. (Honor) In Electrical Engineering (control)

Prepared by:

1. Abdalla Osama Abdalla Ouda.

2. ABBAS HAG ADAM BABIKER HAG ADAM.

3. Mojahid Noureldeen Hussein Hassan.

4, MUSTAFA ALA ELDIN ABD ALSALAM ELTAHIR.

Supervised by:

U. Hanaa gaafer

October 2018

oL
‘_él

P LY Jé

¥ L5 L gle 5 il L T ek s V) Ui B a3)

(PRI PR PY: \40 \".03 ° osy,uzzﬁug/ °.i o/iii % i\i’.o'\.\;ﬂ
e adlaa IS 1 Ha) lile Jaad Vg)" Ulaal 51 L) Baa %S

oot (- 15 seo y_da R EET AT (o file - b AFL 138 Tyapex o 4 <%

(Gl 58 e ERERPPRC R TR

(286) 4Y 5l 5) g

DEDICATION

To those who give us love and tenderness...to
the symbols of love and healing balm...to the
pure white hearts...to the grace of god in the
earth our mothers to the lights that illuminate
our life paths to those who taught us to endure
no matter how the circumstances change our
dear fathers to each one whose mind s light
illuminate the minds of others or given the
correct answer to the confusion of his clients
and he showed with his grace the humility of
the scholars to friend who stands with us till
end Ali Mohammed and Mustafa Mohammed

to our university and teachers lastly.

to all of you

ACKNOWLEDGMENT

Our skies are always shining stars, this light
does not fade from us for one moment, we look
forward to it and we delight in its brightness
in our skies every hour and it is fitting that it
should be lifted up in our eyes with all love and
fulfillment and the thinnest words of thanks
and praise. It is the hearts filled with
brotherhood. words of praise for your right

thank you for your offers.

ABSTRACT

The linchpin examines the typical structure of designing and
programming a robot, which consist of an arm, car, and a

process links it with a phone to control its motion.

The arm has been designed according to three degrees of
freedom, the care to ease the movement and locomotion, and
all requirements to fulfill the small missions in a precise way.
For example, the swift material of the arm is provided by
“servo engine” which links the arms, additionally the
performance of the arm movements, also the care-made of
aluminum pointed as countrified mildness that reduces the
countrified- has been provided by continues motor stream to

give the wanted motion.

The controller that drives all motors has ability to refit the
situation where interpreting process is on ‘“Raspberry Pi1”
controller where “Python” is what has been programed by, and

the robot is controlled by “Android” device.

In the world of today, the machinery arm fetches the republic
use, besides robots. This kind of robots is designed by the

available applications in different fields.

UM‘

A Sl Calgl Sleas sl o dass

ghAl lgie piad Al dasesll salall JUaS, A2 5)gum) Spaiall algall 2l Silislladl)
ghll A el I ALY, ghal) ehal s dasy (3" s liaas 53530 AN
sl iy Lae 43)p Aty e A agnisalV) Bale (e degiaal djell araad Jg

Z\.A;Jﬁ\ C'_ﬂ:ﬁ.os ?:\3 Qe;@a;j\ C\)...a\ uﬁs gdﬁ\ Al QKJMM e RYY-X Lfi\ e&:\.d\
dg , dunay LS "Gl aladiuy ALaYL , "l Kxie e il

gy Hlga aladiul gl LSsal)

P ligrg I quilas alall alasinl) adliall Alls V) DA A o) i, asall alle i

TABLE OF CONTENTS

Content Page
Y |

DEDICATION li
ACKNOWLEDGMENT lii
ABSTRACT Iv
JURECIA Vv
TABLE OF CONTENTS Vi
LIST OF FIGURES Xi
LIST OF ABBREVIATIONS Xiii

CHAPTER ONE

INTRODUCTION
1.1 General concepts 1
1.2 Problem statement 1
1.3 Objectives 1
1.4 Methodology 2
1.4.1 Robotic arm case 2

Vi

1.4.2 Building a robotic car with camera 2
1.4.3 Programming and assembling the subsystems 2
1.5 Project layout 3
CHAPTER TWO
LITERATURE REVIEW
2.1 Introduction 4
2.2 Advantage and disadvantage of robotic arm 4
2.2.1 The advantage 4
2.2.2 The disadvantage 5
2.2.3 Knowledgebase for robotics 5
2.3 Internet of things(1OT) 6
6
2.3.1 History OF IOT
2.3.2 Work of IOT 8
2.3.3 Benefitof IOT 8
2.4 Raspberry pi controller 9
2.5 L293D Driver 10
2.6 Theory of DC Servo Motor 11

Vii

2.7 Power supply 14

2.8 Compass Sensor 15
2.9 RPI camera 16
CHAPTER THREE
RASPBERRY PISUBSYSTEM AND INTERFACE
3.1. System interface 18
3.2. Raspberry pi controller 18
3.2.1 Technical Specification 19
3.2.2 Feature of Raspberry Pi 19
3.2.3 The GPIO 22
3.3 Port subsystems 22
3.3.1 L293D Driver 23
3.3.2 Compass Sensor 25
3.3.3 Servo motor 26
3.4 Smart phone application 27
3.5 Raspberry pi operating system 28
3.5.1 Linux 28

CHAPTER FOUR

viii

MAIN CIRCUIT DESIGN AND PROGRAMMING

4.1 System structure 30
4.2 Block Diagram 31
4.2.1 Raspberry pi 32
4.2.2 Motors 32
4.2.3 The Camera 32
4.2.4 Compass Sensor 32
4.2.5 Power supply 32
4.3 Wiring diagram 32
4.4 Design 33
4.4.1The arm design 33
4.4.2 Control unit 36
4.4.3The car design 37
4.5 Robot Workspace 38
4.6 Python 41
4.6.1 Software quality 42
4.6.2 Developer productivity 42
4.6.3 Program portability 42

4.6.4 Support libraries 43
4.6.5 Component integration 43
4.7 Procedure 44
CHAPTER FIVE
CONCLUSION AND RECOMMENDATIONS
5.1Conclusion 45
5.2Recommendations 45
5.3References 46
5.4 Appendix A 47
5.5Appendix B 55
5.6 Appendix C 57

LIST OF FIGURES

Figure NO Title Page NO
2.1 Internet of things 6
2.2 Raspberry pi controller 10
2.3 L293D driver pin diagram 11
2.4 Servo motor and wire color 14

diagram
2.5 Compass Sensor (HMC5883L) 15
3.1 Raspberry pi controller 18
3.2 Broadcom BCM2835 SOC 20
3.3 HDMI 20
3.4 RCA 20
3.5 Jack 20
3.6 USB 21
3.7 SD card 21
3.8 Ethernet 21

xi

3.9 RPI Pins 21
3.10 GPIO 22
3.11 Driver L293D 23
3.12 Compass Sensor (HMC5883L) 25
3.13 Servo motor and wire color 27

diagram
3.14 Application in the smart phone 31

4.1 System block diagram 33

4.2 Wiring diagram 29

4.3 Show free body diagram of the 35

robot arm

4.4 Show the arm parts 35

4.5 show the arm design 36

4.6 Show the control unit 37

4.7 the car design 38

4.8 Work region of the robotic arm 39

4.9 Force diagram of robot arm 39

xii

LIST OF ABBREVIATIONS

10T internet of things
UIDS unique identifiers
RFID radio frequency ID
MEMS microelectromechanical systems
IT information technology
oT operational technology
M2M machine-to-machine
DC Direct Current
IC integrated circuit
ATX Advanced Technology extended
GND ground
USB Universal Serial Bus
DOF Degree of freedom
PWM Pulse Width Modulation
OOP Object Oriented Programming

Xiii

CHAPTER ONE
INTRODUCTION

1.1 General Concepts

Robotic arm can be used for various tasks such as welding, drilling,
spraying and many more. A robotic arm car is fabricated by using components
like controller, sensors and actuators. This increases the speed of operation,
easy to control and reduces complexity. It also increases productivity. The
main part of the design is Raspberry pi controller which coordinates and
controls the product’s position. This specific controller is used in various

types of embedded applications.

1.2 Problem Statement

Implementing of manipulating robotic arm with smart car using
smartphone orientation sensor over internet to web server offer the
opportunity to facilitate controlling of arm with less effort and equipment and
also helpful in tasks that are considered too dangerous to be performed by

humans.

1.3 Objectives

e To design a robotic arm with a smart cart.
e To implement the robot.

e To build a connection between robot and android smartphone.

1.4 Methodology

The project is practical application of easy control, over internet and
smartphone angles, the design steps are:
1.4.1 Robotic arm case:
e Studying the mechanism of smartphone angles.
e Studying the mechanical movements of robotic-arm.
e Studying the mechanism of compass sensor.
e [Implementing between android smartphone and compass sensor to
give the right angles of the arm robot.
1.4.2 Building a robotic car with camera:
e Design a smart car to carry the weight of the robotic arm and the
component of application.
e Studying the mechanism of controlling smart car over the internet
using android.
e Connect the camera to give to easy the control.

1.4.3 Programming and assembling the subsystems:

e Programming each of the subsystems in Python.
e Assembling the subsystem into a Python package.
e Building a controller program for the manipulating robotic arm and

Smart car.

1.5 Project Layout

This project consists of five chapters: Chapter One gives an
introduction to the project. Chapter Two discusses the theoretical background
of robot’s internet of things, motors, raspberry pi controller and electrical
sensors. Chapter Three describes the system fabrication, control circuit,
software and hardware. Chapter Four handles the system implementation and
the experimental results. Finally, Chapter Five provides the conclusions,

recommendations.

CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

A Robot is a virtually intelligent agent capable of carrying out tasks
robotically with the help of some supervision. Practically, a robot is basically
an electro-mechanical machine that is guided by means of computer and
electronic programming. Robots can be classified as autonomous,
semiautonomous and remotely controlled. Robots are widely used for variety
of tasks such as service stations, cleaning drains, and in tasks that are
considered too dangerous to be performed by humans. A robotic arm is a
robotic manipulator, usually programmable, with similar functions to a human
arm. The robots interact with their environment, which is an important
objective in the development of robots. This interaction is commonly
established by means of some sort of arm and gripping device or end effectors.
In the robotic arm, the arm has a few joints, similar to a human arm, in addition

to shoulder, elbow, and wrist, coupled with the finger.

2.2 Advantage and disadvantage on robotic arm

2.2.1 The advantage
e Increase productivity.
e Use equipment effectively.
e Reduce working costs.

e Flexibility at work.

Get the job done in the shortest time.
Provide good returns on investment, Better accuracy in performance.

Ability to work in risky ways and make it more safe. [5]

2.2.2 The disadvantage

Cause unemployment for manual workers.

High initial cost.

designed Arm to perform specific tasks and not comparable to the
human hand.

Difficulty programmed to perform Accurate tasks.

Needed a large number of sensors and high accuracy to perform the
Complex tasks.

And other technical problems, “especially in the fields of artificial
intelligence and Machine vision™.

When the Robotic arm break down the production line will go off in
the factories. [5]

2.2.3 Knowledgebase for robotics

Typical knowledgebase for the design and operation of robotics systems
are [2]:

Dynamic system modeling and analysis.
Feedback control.

Sensors and signal conditioning.

Actuators (muscles) and power electronics.
Hardware/computer interfacing.

Computer programming.

2.3 Internet OF Things (10T)

The internet of things, or(IOT), is a system of interrelated computing
devices, mechanical and digital machines, objects, animals or people that are
provided with unique identifiers (UIDs) and the ability to transfer data over a
network without requiring human-to-human or human-to-computer

interaction.

Figure 2.1: Internet of things

2.3.3 History OF 10T

Kevin Ashton, co-founder of the Auto-ID Center at MIT, first
mentioned the internet of things in a presentation he made to Procter &
Gamble (P&G) in 1999. Wanting to bring radio frequency ID (RFID) to the
attention of P&G's senior management, Ashton called his presentation
"Internet of Things" to incorporate the cool new trend of 1999: the internet.
MIT professor Neil Gershenfeld's book, When Things Start to think, also
appearing in 1999, didn't use the exact term but provided a clear vision of

where IOT was headed. IOT has evolved from the convergence of wireless

6

https://internetofthingsagenda.techtarget.com/definition/unique-identifier-UID

technologies, microelectromechanical systems (MEMS), micro services and
the internet. The convergence has helped tear down the silos between
operational technology (OT) and information technology (IT), enabling
unstructured machine-generated data to be analyzed for insights to drive
improvements. Although Ashton's was the first mention of the internet of
things, the idea of connected devices has been around since the 1970s, under
the monikers embedded internet and pervasive computing. The first internet
appliance, for example, was a Coke machine at Carnegie Mellon University
in the early 1980s. Using the web, programmers could check the status of the
machine and determine whether there would be a cold drink awaiting them,
should they decide to make the trip to the machine. 10T evolved from
machine-to-machine (M2M) communication, i.e., machines connecting to
each other via a network without human interaction. M2M refers to
connecting a device to the cloud, managing it and collecting data. Taking
M2M to the next level, 10T is a sensor network of billions of smart devices
that connect people, systems and other applications to collect and share data.
As its foundation, M2M offers the connectivity that enables IOT. The internet
of things is also a natural extension of SCADA (supervisory control and data
acquisition), a category of software application program for process control,
the gathering of data in real time from remote locations to control equipment
and conditions. SCADA systems include hardware and software components.
The hardware gathers and feeds data into a computer that has SCADA
software installed, where it is then processed and presented it in a timely
manner. The evolution of SCADA is such that late-generation SCADA
systems developed into first-generation 10T systems. The concept of the IOT

ecosystem, however, didn't really come into its own until the middle of 2010

https://internetofthingsagenda.techtarget.com/definition/micro-electromechanical-systems-MEMS
https://searchmicroservices.techtarget.com/definition/microservices
https://internetofthingsagenda.techtarget.com/definition/pervasive-computing-ubiquitous-computing
https://internetofthingsagenda.techtarget.com/definition/machine-to-machine-M2M
https://whatis.techtarget.com/definition/SCADA-supervisory-control-and-data-acquisition

when, in part, the government of China said it would make IOT a strategic

priority in its five-year plan.

2.3.2 Work of IOT

An IOT ecosystem consists of web-enabled smart devices that use
embedded processors, sensors and communication hardware to collect, send
and act on data they acquire from their environments. IOT devices share the
sensor data they collect by connecting to an IOT gateway or other edge device
where data is either sent to the cloud to be analyzed or analyzed locally.
Sometimes, these devices communicate with other related devices and act on
the information they get from one another. The devices do most of the work
without human intervention, although people can interact with the devices --
for instance, to set them up, give them instructions or access the data. The
connectivity, networking and communication protocols used with these web-

enabled devices largely depend on the specific IOT applications deployed.

2.3.3 Benefit of IOT

The internet of things offers a number of benefits to organizations,
enabling them to:

. monitor their overall business processes.

. Improve the customer experience.

lii. save time and money.

iv. enhance employee productivity.

V. integrate and adapt business models.

vi. make better business decisions.

vil. Generate more revenue.

https://internetofthingsagenda.techtarget.com/definition/IoT-device

2.4 Raspberry pi controller

The Raspberry Pi is a series of small single-board computers developed in
the United Kingdom by the Raspberry Pi Foundation to promote the teaching
of basic computer science in schools and in developing countries. The
original model became far more popular than anticipated, selling outside
its target market for uses such as robotics. It does not include peripherals
(such as keyboards and mice) and cases. However, some accessories have
been included in several official and unofficial bundles. Raspberry pi
controller represents a complement computer made of single electronic chip
consist of traditional computer component which it’s data processor or
omnidirectional central processing unit with 700 MH speed, binuclear
Graphical user interface with 250 MH speed fit to play HD movies and 3D
games with Random Access Memory till 512 Mbyte. Additionally, digital
output control have an ability to control on electrical and electronic pieces like
Microcontrollers all that known as system on chip this tiny computer works
with Linux open source systems. raspberry pi have 40 pin extended General
Purpose Input Output, 4 x USB 2 ports, 4 pole Stereo output and Composite
video port, Full size HDMI, CSI camera port for connecting the Raspberry Pi
camera, display port for connecting the Raspberry Pi touch screen display and
Micro SD port for loading your operating system and storing data.

I. Application of raspberry pi

Raspberry pi used as any traditional computer to check out the internet,
sending e-mails and even edit liber office bundles also used to convert any TV
you have to an entertainment home system connected to internet and also you
can make fascinating electronic control project and use raspberry as a very

developed alternative instead of microcontroller.

https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/Raspberry_Pi_Foundation
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Developing_countries
https://en.wikipedia.org/wiki/Target_market
https://en.wikipedia.org/wiki/Robotics
https://en.wikipedia.org/wiki/Keyboard_(computing)
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Computer_case

e Smart Home Automation.

e Making Robots, ROV and UAV.
e Remote Monitor.

e Smart streamers.

e Smart TV.

e Supercomputers.

o Balloon Satellites (weather balloon).

aSaill Aslio JLAET gaks
GPIO HEADERS RCA VIDEO OUT
JFae HEADERS AUDIO OUT

DSI DISPLAY
CTOR

SD CARD SILOT
(BACK OF BOARD)

15Uy
TS A3

MICRO USB POWI

BROADCOM CSI CONNECTOR JH e
(5v 1A DC) BCM2835 CAMERA

15 JSase ARM11 700MHZ
ETHERNET
oa WH?{\AICO,UJ, Lobs Jsuas

Figure 2.2: Raspberry pi controller

2.5 L.293D Driver
L293D is a dual H-bridge motor driver integrated circuit (1C). Motor

drivers act as current amplifiers since they take a low-current control signal
and provide a higher-current signal. This higher current signal is used to drive
the motors.

L293D contains two inbuilt H-bridge driver circuits. In its common
mode of operation, two DC motors can be driven simultaneously, both in
forward and reverse direction. The motor operations of two motors can be

controlled by input logic at pins 2 & 7 and 10 & 15. Input logic 00 or 11 will

10

http://www.engineersgarage.com/electronic-circuits/h-bridge-motor-control

stop the corresponding motor. Logic 01 and 10 will rotate it in clockwise and
anticlockwise directions, respectively.

Enable pins 1 and 9 (corresponding to the two motors) must be high for
motors to start operating. When an enable input is high, the associated driver
gets enabled. As a result, the outputs become active and work in phase with
their inputs. Similarly, when the enable input is low, that driver is disabled,
and their outputs are off and in the high-impedance state. The figure shows

pin diagram.

Figure 2.3: L293D driver pin diagram

2.6 Theory of DC Servo Motor

As we know that any electrical motor can be utilized as servo motor if it is
controlled by servomechanism. Likewise, if we control a DC motor by means
of servomechanism, it would be referred as DC servo motor.
So we can define a servo motor as a type of motor who's the output shaft can
be moved to specific angular position by sending coded signal. The servo
mechanism that use position feedback to control of motion and final position.

The measured position of output by sensor is compared to the command signal

11

and be input to the controller. If the output position differs from required, an
error signal is generated which then causes the motor rotate to bring the output
shaft to appropriate position. The servo motor which is DC or AC motor
depends on the power supplied to it. The DC servo motor consists of
separately excited DC motor or permanent magnet DC motor and the armature
Is designed to have large resistance so that torque-speed characteristics are
linear and have a large negative slope. The motors which are utilized as DC
servo motors, generally have separate DC source for field winding and
armature winding. The control can be archived either by controlling the field
current or armature current. Field control has some specific advantages over
armature control and on the other hand armature control has also some specific
advantages over field control. Which type of control should be applied to the

DC servo motor, is being decided depending upon its specific applications.
. Field Controlled DC Servo Motor

The direction of rotation can be changed by changing polarity of the
field. The direction of rotation can also be altered by using split field DC
motor, where the field winding is divided into two parts, one half of the
winding is wound in clockwise direction and other half in wound in
anticlockwise direction. The amplified error signal is fed to the junction point
of these two halves of the field as shown below. The magnetic field of both
halves of the field winding opposes each other. During operation of the motor,
magnetic field strength of one half dominates other depending upon the value
of amplified error signal fed between these halves. Due to this, the DC servo
motor rotates in a particular direction according to the amplified error signal

voltage.

12

I. Servo motor operation

A servo consists of a motor (DC or AC), a potentiometer, gear
assembly and a controlling circuit. First of all, we use gear assembly to
reduce RPM and to increase torque of motor. Say at initial position of servo
motor shaft, the position of the potentiometer knob is such that there is no
electrical signal generated at the output port of the potentiometer. Now an
electrical signal is given to another input terminal of the error detector
amplifier. Now difference between these two signals, one comes from
potentiometer and another comes from other source, will be processed in
feedback mechanism and output will be provided in term of error signal.
This error signal acts as the input for motor and motor starts rotating. Now
motor shaft is connected with potentiometer and as motor rotates so the
potentiometer and it will generate a signal. So as the potentiometer’s angular
position changes, its output feedback signal changes. After sometime the
position of potentiometer reaches at a position that the output of
potentiometer is same as external signal provided. At this condition, there
will be no output signal from the amplifier to the motor input as there is no
difference between external applied signal and the signal generated at

potentiometer, and in this situation motor stop rotating.

ii. DC servo motor (MG 996R)

Direct Current servo motor (MG 996R) as shown in Figure 2.4, is a
heavy-duty metal gear, digital servo with 180°wide angle, high torque
power, improved stability and durability. The servo is able to work with
6V and deliver a strong torque power of over 9.4Kg. This (MG 996R)

servo demonstrates a maximum torque of 11Kg without much vibration or

13

T Vcc=Red (+) :
: : Ground=Brown (=) —

Duty Cycle

e ‘ s 48Vto72V i
oo Power |

and Signal ™

20 ms (50 Hz)
PWM Period

Figure 2.4: Servo motor and wire color diagram

2.7 Power supply

A power supply is an electronic device that supplies electric energy to
an electrical load. The primary function of a power supply is to convert one
form of electrical energy to another and, as a result, power supplies are
sometimes referred to as electric power converters. Some power supplies are
discrete, stand-alone devices, whereas others are built into larger devices
along with their loads. All power supplies have a power input, which receives
energy from the energy source, and a power output that delivers energy to the
load. shows some information about Advanced Technology extended ATX
computer power supply which used as power supply for feeding the circuit.
The ATX is the most common supply out there and is in use in most desktop

computers today.

14

2.8 Compass Sensor

The Compass Module is designed for low-field magnetic sensing with a
digital interface and perfect to give precise heading information. This

compact sensor fits into small projects such as UAVs and robot navigation

Figure 2.5: Compass Sensor (HMC5883L)

systems. The sensor converts any magnetic field to a differential voltage

output on 3 axes. This voltage shift is the raw digital output value, which can
then be used to calculate headings or sense magnetic fields coming from
different directions.
I. Specifications

« Power 3V-5V DC.

Chipset HMC5883L.

« Communication via 12C protocol.

« Measuring range: £ 1.3-8 Gauss.

« Dimensions 14.8 x 13.5 x 3.5mm.

15

il. Pin Configuration
e VCC: 3V-5V DC.
e GND: ground.
o SCL: analog input (A5).
o SDA: analog input (A4).
o DRDY: not connected.

2.8.3 RPI camera

The Raspberry Pi Camera Board plugs directly into the CSI connector on
the Raspberry Pi. It's able to deliver a crystal clear 5SMP resolution image, or
1080p HD video recording at 30fps! Latest Version 1.3! Custom designed and
manufactured by the Raspberry Pi Foundation in the UK, the Raspberry Pi
Camera Board features a 5SMP (259271944 pixels) Omni vision 5647 sensor
in a fixed focus module. The module attaches to Raspberry Pi, by way of a 15
Pin Ribbon Cable, to the dedicated 15-pin MIPI Camera Serial Interface
(CSI), which was designed especially for interfacing to cameras. The CSI bus
is capable of extremely high data rates, and it exclusively carries pixel data to
the BCM2835 processor. The board itself is tiny, at around 25mm x 20mm x
9mm, and weighs just over 3g, making it perfect for mobile or other
applications where size and weight are important. The sensor itself has a
native resolution of 5 megapixels, and has a fixed focus lens onboard. In terms
of still images, the camera is capable of 2592 x 1944-pixel static images, and
also supports 1080p @ 30fps, 720p @ 60fps and 640x480p 60/90 video

16

recording. The camera is supported in the latest version of Raspbian, the
Raspberry Pi's preferred operating system. The Raspberry Pi Camera Board
Features:
e Fully Compatible with Both the Model A and Model B Raspberry Pi
5MP Omnivision 5647 Camera Module
o Still Picture Resolution: 2592 x 1944
e Video: Supports 1080p @ 30fps, 720p @ 60fps and 640x480p 60/90
Recording
e 15-pin MIPI Camera Serial Interface - Plugs Directly into the
Raspberry Pi Board
e Size: 20 x 25 x 9mm
e Weight 3g

o Fully Compatible with many Raspberry Pi cases

17

CHAPTER THREE
RASPBERRY Pl SUBSYSYEM AND
INTERFACE

3.1. System interface

In this chapter the study was tackled the system communication of each
component with the raspberry pi, discus about port subsystems according to
the given specification of each component. motors, drivers, sensors, power
supply and also the controller itself in case of detail.

3.2. Raspberry pi controller

The Raspberry pi is a series of small single-board computers used to

control the dc motors in the car, and the servo motors in the arm according to

the signals received from the mobile and also the readings of compass sensor

signals

Figure3.1: Raspberry pi controller

18

https://en.wikipedia.org/wiki/Single-board_computer

3.2.1.Technical Specification

Broadcom BCM2837 64bit ARMv7 Quad Core Processor powered
Single Board Computer running at 1.2 GHz.

1GB RAM.

BCM43143 Wi-Fi on board.

Bluetooth Low Energy (BLE) on board.

40pin extended GPIO.

4 x USB 2 ports.

4 pole Stereo output and Composite video port.

Full size HDMI.

CSI camera port for connecting the Raspberry Pi camera.

DSI display port for connecting the Raspberry Pi touch screen display.
Micro SD port for loading your operating system and storing data.
Upgraded switched Micro USB power source (now supports up to 2.4
Amps).

Expected to have the same form factor has the Pi 2 Model B, however

the LEDs will change position.

3.2.2. Feature of Raspberry Pi

Broadcom BCM2835 SOC

Multimedia processor which it contain CPU (central processing unit)

acts as a brain of the raspberry pi controller and give the whole actions and

operation to the other devices that connected to, the CPU specifications are
ARM 1176JZF-S (armv6k) 700MHz, RISC Architecture and low power draw
and Not compatible with traditional PC software.

19

The graphical user interface GPU which it’s specification are broad com
Video IV and specialized graphical instruction sets. The Broadcom BCM2835
SOC also contain random access memory RAM 512MB (Model B rev.2) 256
MB (Model A, Model B rev.1)

Figure 3.2: Broadcom BCM2835 SOC

il. Connecting a Display and Audio

1. HDMI
— Digital signal

—Video and audio signal

— DVI cannot carry audio signal

— Up to 1920x1200 resolution

2. Composite RCA

— Analog signal
— 480i, 576i resolution

3. Audio jack

3.5mm

e The Audio Jack is a 3.5 mm standard

Figure 3.5: Jack

20

ili. Universal Serial Bus
* Two USB 2.0 ports in RPI.
* Buy a powered USB hub

Iv. Storage: Secure Digital (SD)

* Form factor
— SD, Mini SD, Micro SD
* Types of Card
— SDSC (SD): 1MB to 2GB
— SDHC: 4GB to 32 GB
—SDXD upto 2TB

V. Networking — wireless

1. Protocols
- 802.11 b, up to 11Mbps
- 802.11 g, up to 54Mbps
- 802.11 n, up to 300Mbps
- 802.11 ac (draft), up to 1Gbps
2. Frequency band
- 2.4GHz, 5GHz.
iv. Low Speed Peripherals
Which content 40 Pins.
*General Purpose Input/output (GPIO)

Figure 3.7: SD card

Figure 3.9: RPI Pins

21

[
8 3
& 3
[

w 0

Figure 3.10: GPIO

3.2.3 The GPIO

Pins can be configured to be input/output, Reading from various

environmental sensors Writing output to dc motors, LEDs for status.

« 3.3V Pins (1,17)

* 5V Pins (2,4).

« GND Pins (6,9,14,20,30,39).

» Sending 5V to a pin may Kill the Pi.

« Maximum permitted current draw from a 3.3V Pin is 50mA.

3.3 Port subsystems

In port subsystem we define the branch of devices connected to the

raspberry pi processor which are:

22

3.3.1 L293D Driver

There are sixteen pins in Driver L293D. Pin (1, 8, 16 and 9) represent
the Enablel, VCCI1, VCC2 and Enable2 of the driver and it’s connected to the
power supply (High voltage) (5 volt) , pin(4, 5, 12 and 13) represent the
ground of the driver it’s connected to the power supply ground pin (Low
voltage) (0 volt) ,pin(3, 6, 11 and 14) represent the output of the driver and
the input of motors at same time, pin (3 and 6) connected to first motor and
pin (11 and 14)) connected to second motor, pin(2, 7, 10 and 15) represent
the input of the driver and connected to the output of raspberry pi, pin (2 and
7)) connected to pin(11 and 13) in Raspberry Pi and Pin (10 and 15) connected
to pin(16 and 18) in Raspberry Pi to give the specification of control on the

motors and reverse it’s movement of it.

Enable 1,2 Vee |
[nput 1 Input 4
Output 1 Output 4
GND GND
GND GND
Output 2 Output 3
[nput 2 Input 3

Vee 2 Enable 3.4

Figure 3.11: Driver L293D

23

Pin Description

Pin
No Function Name

1 Enable pin for Motor 1; active high Enable 1,2
2 Input 1 for Motor 1 Input 1
3 Output 1 for Motor 1 Output 1
4 Ground (0V) Ground
5 Ground (0V) Ground
6 Output 2 for Motor 1 Output 2
7 Input 2 for Motor 1 Input 2
8 Supply voltage for Motors; 9-12V (up to 36V) VCC,
9 Enable pin for Motor 2; active high Enable 3,4
10 Input 1 for Motor 1 Input 3
11 Output 1 for Motor 1 Output 3
12 Ground (0V) Ground
13 Ground (0V) Ground
14 Output 2 for Motor 1 Output 4
15 Input2 for Motor 1 Input 4
16 Supply voltage; 5V (up to 36V) VCC,

Table 3.1: Pin Description of Driver L293D

24

3.3.2 Compass Sensor

The compass sensor Module shown in figure is designed for low-field
magnetic sensing with a digital interface and perfect to give precise heading
information. This compact sensor fits into small projects such as UAVs and
robot navigation systems. The sensor converts any magnetic field to a
differential voltage output on 3 axes (X, y and z). This voltage shift is the raw
digital output value, which can then be used to calculate headings or sense
magnetic fields coming from different directions. Compass sensor contain
five pins which are (VCC, GND, SCL, SDA and DRDY). The VCC pin
connected to pin (1) in Raspberry Pi which represent the 3.3 volt . The GND
pin connected to pin (6 or 9 or 14 or 20 or 39) in Raspberry Pi. The SCL
connected to pin (5) in Raspberry Pi. The SDA connected to pin (3) in
Raspberry Pi, and the DRDY is not connected.
The compass pin description are power 3V-5V DC, Chipset HMC5883L
Communication via 12C protocol, Measuring range: * 1.3-8 Gauss.
Dimensions 14.8 x 13.5 x 3.5mm. and the Pin Configuration of compass
sensor are VCC: 3V-5V DC GND: ground SCL: analog input (A5) SDA:
analog input (A4) DRDY:: not connected

Figure 3.12: Compass Sensor (HMC5883L)

25

3.3.3 Servo motor

The Servo Robotic Arm has three servo motors. The first one used for
a roller movement of the arm which is connected to Pin (12) in Raspberry Pi,
the ground and to power supply. The second servo motor used for horizontal
movement of the arm, which is connected to ground and power supply but the
signal terminal connected to Pin (22) in Raspberry Pi. The third servo motor
used for gripper (to collect things) which is connected to ground and power

supply but the signal terminal connected to Pin (7) in Raspberry Pi.

Vce = Red (+) :
Ground=Brown (—) —

Duty Cycle

4a8Vto72Vvi
Power

and Signal

20 ms (50 Hz)
PWM Period

Figure 3.13: Servo motor and wire color diagram

I. Specifications

e Weight:55¢
e Dimension: 40.7 x 19.7 x 42.9 mm approx.
o Stall torque: 9.4 kgf.cm (4.8 V), 11 kgf.cm (6 V)

26

e Operating speed: 0.17 s/60° (4.8 V), 0.14 s/60° (6 V)
e Operating voltage: 4.8V a7.2V

e Running Current 500 mA — 900 mA (6V)

o Stall Current 2.5 A (6V)

e Dead band width: 5 s

e Stable and shock proof double ball bearing design

e Temperature range: 0 °C — 55 °C

3.4 Smart phone application

The smart phone application designed with special programming
language like java script, PHP and web design language which are HTML and
CSS to give the desired buttons and phone sensors reading to be able to send
over the web to the raspberry pi controller to recognize and then gives the
order to the devices connected to it to give us the motion and control over

robot with easy way.

Figure 3.14: Application in the smart phone

27

3.5 Raspberry pi operating system

3.5.2 Linux

GNU-Linux is a modular Unix-like operating system, deriving much of

its basic design from principles established in Unix during the 1970’s and

1980’s It is a well-known and tested free and open source operating system.

Many of today OS’s such as Ubuntu, Fedora, Android - are derived from

GNU-Linux, which are called (Distributions). There are several Operating

Systems developed specifically for the Raspberry Pi Computer such as:

I. Raspbian OS

Raspbian is the official OS for the Raspberry Pi, it is derived from
Linux Debian.

It is supported by the Raspberry Pi Foundation and its online
community.

Its backed with a large collection of programs available at

raspbian.org

Openelec
Is a special OS for media and home entertainment.
It is based on the XBMC media manager.

And it facilitates hacking the Raspberry Pi into a media center.

Adafruit

A special OS for controlling advanced control applications

28

iv. Kali Linux

e Kali-linux is the strongest OS used for Network security and
hacking.

e |t provides tools to hack computer networks and websites as well as
wireless networks.

V. ROC

* Robotics Operating System is used especially for robotics applications.
« |t contains collections of programs preinstalled on ubuntu and Debian
OS’s
vi. Arch Linux
e Arch Linux is a fast OS specialized for Linux experts who are
welling to control every little and great in their Linux
distributions.
e [tis also one of the smallest Linux Distributions.

vii. NOOBS

e NOOBS is a collection of 6 raspberry pi operating systems
contained in a single image, it is made to help beginners to easily
install a Raspberry Pi OS.

viii. RISC OS

e RISC OS is not a Linux Distribution, and it is designed to be
lightweight to run on ARM architecture.

29

CHAPTER FOUR
MAIN CIRCUIT DESIGN AND
PROGRAMMING

4.1 System structure

The first step of designing a robotic arm with a car is to detect the
dimension and workspace configuration according to the requirements. The
next step is to decide the specification of each actuator [4]. The robot arm was
designed with three degrees of freedom and talented to accomplish accurately
simple tasks, such a slight material handling.

The structure of the robotic arm and the car is built with aluminum in order
to decrease the overall weight of the robot. The arm is attached to the base of
the car. All parts of the robot and the car including the parts for shoulder,
gripper and etc., were cut accurately. Some processes where applied to the
aluminum to make the necessary holes and cuts to connect the parts to each
other and to keep the actuators tightly. Physical movement of the robot is done
by using servo motors and DC motors for the car. All the parts were cut and
drilled properly according to the design template.

It is important to mention that the base ought to have considerably heavy
weight in order to maintain the general balance of the robotic arm in case of

grabbing an object.

30

4.2 Block Diagram
Figure 4.1 show the block diagram of the project.

N e

»r
[

power supply Lyp4

Driver 203D |4 == R@ssPPerTy

A

pi

“_A

Figure 4.1: System block diagram

-The different components involved in our project are:

31

4.2.1 Raspberry pi

Is used to control the DC motors in the car, and the servo motors in
the arm according to the signals received from the mobile and also reads
compass sensor signals
4.2.2 Motors

The DC motors used to move the car forward and backward and to
change the direction to the left or the right, and the servo motors used in the
arm for the movement up and down and left or right allowing the arm to move
toward the object, and one for the gripper to pick and drop the object.
4.2.3 The Camera

It is used to observe the object which the arm is going to pick, and to
supervise the road for the car as well.
4.2.4 Compass Sensor

It is chipset HMC5883L it designed for low-field magnetic sensing with
a digital interface; it is used as a compass to determine the car direction
4.2.5. Power supply

A regulated power supply is an electronic circuit, it is function to supply
a stable voltage to the system components. This is used to supply the power

to the microcontroller and the motors.

4.3 Wiring diagram
The wiring diagram below in figure 4.2 describes how the wires

connected between the raspberry and the other components:

32

fritzin

Figure 4.2: Wiring diagram

4.4 Design

The design of the model consists of three parts, the robotic arm,
Controlling unit, and the car. The design of each of the arm, the control unit
and the car will be specified as follow:
4.4.1The arm design

The mechanical design of the robot arm is based on a robot manipulator
with similar functions to a human arm.

It consists of:
1. Three servo motors.
2. Aluminum links.

3. End effectors (Gripper).

33

In constructing the arm, we made use of three servo motors (including the
gripper).there is a servo motor at the base , which allows for angular
movement of the whole structure ; and the second to allow the upward and
downward movement of the arm ,while the last one for gripping the object.

a motor is toggled in the aluminum links as the body of the arm; the reason of
choosing the aluminum because of it's lightweight and it is also strong enough
to keep and hold the whole parts tightly together, the lighter the body is the
more less load the motors will bear. The degree of freedom, or DOF, is a very
important term to understand. Each degree of freedom is a joint on the arm, a
place where it can bend or rotate or translate. You can typically identify the
number of degree of by the number of actuators on the robot arm. Now this is
very important- when building a robotic arm you need as few degrees of
freedom allowed for the application; because each degree of freedom requires
a motor, and that exponentially the cost. In this model there are three degrees
of freedom, and three actuators (servo motors). These three degrees of
freedom make controlling the arm more accurate, but it make the movement
of the arm in the arm workspace freer than the two degree of freedom. The
workspace or sometimes known as reachable space is all places that the end
effector (gripper) can reach. The workspace is dependent on the DOF
angle/translation limitations, the arm link strength, the angle oat which
something must be picked up at, etc. The workspace is highly dependent on
the arm configuration. The end effector in this project is a gripper, this gripper
acts like the fingers of a human hand. The actuator of the gripper is a servo
motor linked with a rope that causes the movement of the gripper. The rope
transfer the rotation of the motor to linear movement, when the motor rotate

in the clockwise the two parts of the gripper close, and when it rotate anti

34

clockwise the two parts open. So controlling the gripper is by controlling the

angle of the servo motor using the microcontroller.

o el

Shoulder

V

End effector

4— Base

Figure 4.3: Show free body diagram of the robot arm

Figure 4.4: Show the arm parts

35

Figure 4.5: Show the arm design

4.4.2 Control unit

The control unit is the board that control the robotic arm, and it
consist of the microcontroller. The microcontroller used in this project is
raspberry pi which controls the motors in the arm and the motor that controls
the car using the mobile phone. The servo motor has three pins, the red and
the black pins are for the power and the yellow one is for the signal, this
signal pin is connected directly to one of PWM (pulse width modulation)
pins as an output from the microcontroller.
The controlling of each motor in the arm is achieved by a program stored in
the memory of the microcontroller. This program sets the angle of the servo
motor to move the arm to the desired point in the work space.

The figure 4.6 below shows the control unit.

36

Tices F
Raspberry P73 Model BJVY.
(® Raspberry Pi 2015

gyt | [kare
g ca16 " c2id caz2
= Ri2
FCC ID: 2ABCB-RPI32
IC: 20953-RP132

heacene
1A I

ERA

Figure 4.6: Show the control unit
4.4.3 The car design

In constructing the car, we made use of two DC motors. There isa DC
motor in the back of the car for the movement forward and backward, and the
other one placed in the front and it is used for the direction either left or right
. The body of the car is made of aluminum because of it is light weight and
strength, there are two pieces one over the other and there is a gap between
them where we put the controller (the raspberry), and the bread board which
consist the driver for the DC motors and the wires for connection. On the top

of the car we have the compass sensor and the robotic arm.

37

Figure 4.7: The car design

4.5 Robot Workspace

The workspace of a robotic manipulator is the total volume swept out
by the end effector as the manipulator executes all possible motions. The
workspace is determined by the geometry of the manipulator and the limits of
the joint motions. It is more specific to define the reachable workspace as the
total locus of points at which the end effector can be placed and the dexterous
workspace. [8]

It should be noted that it does not include the DOF which controls the wrist
orientation as the workspace is independent of orientation variable.

The shoulders rotate a maximum of 90 degrees. To determine the workspace,
trace all locations that the end effector (gripper) can reach as in the image
below. Now rotating that by the base joints another 180 degrees. This creates
a workspace of a shelled quarter sphere as shown below.

If you change the link lengths you can get very different sizes of workspaces,

but this would be the general shape. Any location outside of this space is a

38

location the arm can’t reach. If there are objects in the way of the arm, the

workspace can get even more complicated.

Figure 4.8: Work region of the robotic arm

The arm is a three degree of freedom system. Two DOF control the position
of the arm in the Cartesian space, and the third servo for actuating gripper.
The robot features in the control GUI or teach pendant are base rotation,
shoulder, and a functional gripper. The base of the robotic arm and the links
are made up of Aluminum.

Servo motors serve as the actuators at various joint. These motors feature 180
degree rotation in clockwise direction. The motors are controlled by raspberry

pi board upon receiving commands from a host mobile via internet.

@ ("

Figure 4.9: Force diagram of robot arm

39

The values used for the torque calculations:
WC =0.020 kg (weight of link CD)

WB = 0.020 kg (weight of link BC)

WA =0 .020kg (weight of link AB)

WL =0.25 kg (load)

Dm = 0.055 kg (weight of motor)

LAB = 0.1 m (length of link AB)

LBC = 0.1 m (length of link BC)

LCD = 0.1 m (length of link CD)

Performing the sum of forces in the Y axis, using the loads as shown in Figure,
and solving for CY and CB, see Equations (1). (4). Similarly, performing the
sum of moments around point C, Equation (5), and point B, Equation (6), to
obtain the torque e in C and B, Equations (7) and (8), respectively

> Fy= (WL+WC+DM)*g - Cy=0 (1)

CY=(0.325 kg) 9.8m/s"2=3.185 N (2)

> Fy=(WL+ WC+DM+WB+WA)*g - BY=0 (3)

BY=(0.365 kg) 9.8m/s"2=3.577 N (4)

YMc = -WC (LCD/2)-WL (LCD) +MC=0 (5)
YMA=-WL (LAB+LBC+LCD)-WC(LAB+LBC+LCD/2)
WA (LAB/2)-DM (LAB+LBC)-WB (LAB+LBC/2) =0 (6)

40

MC= 0.026 Nm

MA= 0.095Nm

The servo motor that was selected, based on the calculations, is the
TOWARDPRO MG996R, which has a torque of 2Nm this motor was
recommended because it is much cheaper than any other motor with

same specifications.[4]

4.6 Python

Python is a general-purpose programming language that is often
applied in scripting roles. It is commonly defined as an object-oriented
scripting language a definition that blends support for OOP with an overall
orientation toward scripting roles. If pressed for a one-liner, I’d say that
Python is probably better known as a general purpose programming language
that blends procedural, functional, and object oriented paradigms a statement
that captures the richness and scope of today’s Python.

Python comes with standard Internet modules that allow Python programs to
perform a wide variety of networking tasks, in client and server modes. Scripts
can communicate over sockets; extract form information sent to server-side
CGI scripts; transfer files by FTP; parse and generate XML and JSON
documents; send, receive, compose, and parse email; fetch web pages by
URLSs; parse the HTML of fetched web pages; communicate over XML-RPC,
SOAP, and Telnet; and more. Python’s libraries make these tasks remarkably
simple and because our systems use IOT python was the perfect programming

language beside these features: [3]

41

4.6.1 Software quality

For many, Python’s focus on readability, coherence, and software
quality in general sets it apart from other tools in the scripting world. Python
code is designed to be readable, and hence reusable and maintainable much
more so than traditional scripting languages. The uniformity of Python code
makes it easy to understand, even if you did not write it. In addition, Python
has deep support for more advanced software reuse mechanisms, such as

object-oriented (OO) and function programming. [3]

4.5.2 Developer productivity

Python boosts developer productivity many times beyond compiled or
statically typed languages such as C, C++, and Java. Python code is typically
one-third to one-fifth the size of equivalent C++ or Java code. That means
there is less to type, less to debug, and less to maintain after the fact. Python
programs also run immediately, without the lengthy compile and link steps
required by some other tools, further boosting programmer speed.
4.5.3 Program portability

Most Python programs run unchanged on all major computer platforms.
Porting Python code between Linux and Windows, for example, is usually
just a matter of copying a script’s code between machines. Moreover, Python
offers multiple options for coding portable graphical user interfaces, database
access programs, web based systems, and more. Even operating system
interfaces, including program launches and directory processing, are as

portable in Python as they can possibly be. [3]

42

4.6.4 Support libraries

Python comes with a large collection of prebuilt and portable
functionality, known as the standard library. This library supports an array of
application-level programming tasks, from text pattern matching to network
scripting. In addition, Python can be extended with both homegrown libraries
and a vast collection of third-party application support software. Python’s
third-party domain offers tools.
For website construction, numeric programming, serial port access, game
development, and much more (see ahead for a sampling). The NumPy
extension, for instance, has been described as a free and more powerful
equivalent to the Mat lab numeric programming system. [3]
4.6.5 Component integration

Python scripts can easily communicate with other parts of an
application, using a variety of integration mechanisms. Such integrations
allow Python to be used as a product customization and extension tool. Today,
Python code can invoke C and C++ libraries, can be called from C and C++
programs, can integrate with Java and NET components, can communicate
over frameworks such as COM and Silverlight, can interface with devices
over serial ports, and can interact over networks with interfaces like SOAP,
XML-RPC, and CORBA. It is not a standalone tool. [3]

43

4.7 Procedure

When connecting the power supply to the raspberry, servo motors in
the arm, and the dc motors in the car starting the application on the mobile
phone, the camera will work and he view in front of the car will appears on
the mobile screen, then the system will be ready to pick up any object.

The control operation is as follows the car move forward, backward, left, or
right according to the button pushed on the mobile screen when pushing any
button, a signal will be send to the raspberry and the dc motor in the car will
work and this will move the car to the object location, once the object is in the
workspace of the arm the button should be released and the car will stop. Then
we can start controlling the arm throw moving the mobile , and it is different
from the car control because here we use the mobile angles instead of buttons
so when we left the mobile up the raspberry read the angels of the phone and
the arm goes up with the same amount and if we move the mobile to the right
the arm moves right and so on , once the arm in the right position to pick the
object there is a button on the screen for the gripper which allows us to pick
the object , after that we move the car to the desired position and there is

another button to release the object on the desired place.

44

CHAPTER FIVE
CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The main aims of the project is to design and implement the robot and
build the connection between the robot and the android smart phone The focus
of this work was to design and programming robotic arm. the robot arm was
designed with three degrees of freedom and talented to accomplish accurately
simple tasks, such as light material handling. The robot arm is equipped with
several servo motors which do links between arms and perform arm
movements. The controller drives the servo motors and the car with the
capability of modifying position. The programming is done on Raspberry pi
controller using python programming language. The compass sensor is also
used to detect the angles of rotation and compare the signals between the
phone and the car to modulate the right position and show the video on the

screen.

5.2 Recommendations

e Use artificial neural network to train and program this project instead
of giving the orders by your self’s.
e Using smart phone screen to view video’s of raspberry pi camera

instead of showing it on personal computer screen.

45

5.3 References

[1] H. Bunke, “FUNDAMENTALS OF ROBOTICS”, Bern, Switzerland,
2003.
[2] Fareed Shakhatreh, “THE BASICS OF ROBOTICS”, Syksy, 2011.

[3] Mark Lutz, “Learning Python”, O’Reilly Media, Inc., 1005 Graven stein
Highway North, Sebastopol, CA 95472, United States of America.

[4] Park, I. D., Park, C., Do, H., Choi, T., Kyung, J., "Design And Analysis of
Dual Arm Robot Using Dynamic Simulation™ IEEE 10th International
Conference on Ubiquitous

[5]Robots and Ambient Intelligence (URAI), pp. 681-682, 2013

[6]John J. Craig “ Introduction to Robotics”, Third Edition © 2005 Pearson
Education, Inc. United States of America.

[7]Abdallah Ali Abdallah “Simply raspberry pi” © 2010.

[8] Bruno Siciliano, Oussama Khatib (Eds.),”Springer Handbook of
Robotics”, Springer-Verlag Berlin Heidelberg,2008

46

5.4 Appendix A

Raspberry pi motors code

from flask import Flask, abort, request
import json

import ast

from subprocess import call

import time

from threading import *

import smbus

import math

SL=1
speed=100
app = Flask(__name_)

def forward(forward_hold):
call (["echo P1-11={}% > /dev/servoblaster".format(speed)], shell=True)
call (["echo P1-13=0% > /dev/servoblaster"], shell=True)

47

if not(forward_hold):
time.sleep(SL)
call (["echo P1-11=0% > /dev/servoblaster"], shell=True)
call (["echo P1-13=0% > /dev/servoblaster"], shell=True)

def backward(forward_hold):

call (["echo P1-13={}% > /dev/servoblaster”.format(speed)], shell=True)
call (["echo P1-11=0% > /dev/servoblaster"], shell=True)

if not(forward_hold):
time.sleep(SL)
call (["echo P1-13=0% > /dev/servoblaster"], shell=True)
call (["echo P1-11=0% > /dev/servoblaster"], shell=True)

def right():

call (["echo P1-16=80% > /dev/servoblaster], shell=True)
call (["echo P1-18=0% > /dev/servoblaster"], shell=True)
time.sleep(0.15)

call (["echo P1-16=0% > /dev/servoblaster"], shell=True)

48

call (["echo P1-18=0% > /dev/servoblaster"], shell=True)

def left():

call (["echo P1-18=80% > /dev/servoblaster"], shell=True)
call (["echo P1-16=0% > /dev/servoblaster"], shell=True)
time.sleep(0.15)

call (["echo P1-18=0% > /dev/servoblaster"], shell=True)
call (["echo P1-16=0% > /dev/servoblaster"], shell=True)

def applyAngle(angle,pin):
if angle>180:
angle=180
if angle<0:
angle=0
us=500+(2100-500)/180*angle

call(echo P1-{}={}us > /dev/servablaster".format(pin,us) , shell=1)

@app.after_request

def after_request(response):
response.headers.add('Access-Control-Allow-Origin’, *")
response.headers.add(‘Access-Control-Allow-Headers', ‘Content-

Type,Authorization’)

49

response.headers.add('Access-Control-Allow-Methods',
'GET,PUT,POST,DELETE")

return response

@app.route('/foo’, methods=['POST"])
def foo():
if 'yaw' in request.json:

global imu_event

Imu_event.wait()

global c

r=request.json['yaw']

p=request.json['pitch’]

If c<=90 and (r>=270 and r<=360):
servolAngle=90-(180-(r-270)-(90-c))
applyAngle(servolAngle,12)

elif r<=90 and (c>=270 and c<=360):
servolAngle=90-(180-(c-270)-(90-r))
applyAngle(180-servolAngle,12)

else:
servolAngle=r-c+90
applyAngle(180-servolAngle,12)

applyAngle(-1*(p+5),22)
if 'X" in request.json and request.json['x']=="h":
global isClosed

if isClosed:
applyAngle(180,7)

50

else:
applyAngle(0,7)

iIsClosed=not isClosed

if (request.json['yaw']<120)and(request.json['yaw']>40):

us=(120-float(request.json['yaw']))*1000/80+700

print us

call (["echo 4="+str(us)+"us > /dev/servoblaster"], shell=True)
else:

donothing=4
if (request.json['pitch']>-90)and(request.json['pitch']<10):

us1=2000+(float(request.json['pitch'])-10)*1000/100

print usl

call (["echo 3="+str(us1)+"us > /dev/servoblaster"], shell=True)
else:

donothing=4

return json.dumps({"hi":5})

def imu(imu_event):
global c
bus = smbus.SMBus(1)
address = 0x0d

print "working"

51

while 1:
def read_byte(adr): #communicate with compass

return bus.read _byte data(address, adr)

def read_word(adr):
low = bus.read_byte data(address, adr)
high = bus.read_byte data(address, adr+1)
val = (high<< 8) + low

return val

def read_word_2c(adr):
val = read_word(adr)
if (val>= 0x8000):
return -((65535 - val)+1)
else:

return val

def write_byte(adr,value):
bus.write_byte data(address, adr, value)
write_byte(11, 0b00000001)
write_byte(10, 0b00100000)
write_byte(9, 0b00000000|0b00000000|0b00001100|0b00000001)
scale =0.92
x_offset =-10
y_offset =10

52

x_out = (read_word 2c(0)- x offset+2) * scale #calculating X,y,z
coordinates
y_out = (read_word_2c(2)- y_offset+2)* scale
z out=read_word_2c(4) * scale
bearing = math.atan2(y_out, x_out)+.48 #0.48 is correction value
if(bearing < 0):
bearing += 2* math.pi
c=math.degrees(bearing)-15
if c<0:
c+=360
c=c+90
if c>360:
c=c-360
print ¢
imu_event.set()
imu_event.clear()
print "Bearing:", ¢
print"x: ", x_out
print"y: ",y out
print"z: ", z _out

time.sleep(0.2)

global isClosed
iIsClosed=True
global imu_event

imu_event=Event()

53

th=Thread(target=imu,kwargs={'imu_event".imu_event})

th.start()
applyAngle(110,15)
applyAngle(0,7)

print "hi"

if _name__ ==' main__ "

app.run(host='0.0.0.0", port=5000, debug=False)

call (['sudo ~/PiBits/ServoBlaster/user/./servod --min=0% --max=100%"],
shell=True)

54

5.5 Appendix B

Stream client raspberry pi code
Reference:
PiCamera documentation

https://picamera.readthedocs.org/en/release-1.10/recipes2.html

import io
import socket
import struct
import time

import picamera

create socket and bind host
client_socket = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
client_socket.connect(('192.168.1.100', 8000))

connection = client_socket.makefile(‘'wb")

try:
with picamera.PiCamera() as camera:
camera.resolution = (320, 240) # pi camera resolution
camera.framerate = 10 # 10 frames/sec

55

time.sleep(2) # give 2 secs for camera to initilize
start = time.time()
stream = i0.ByteslO()

send jpeg format video stream
for foo in camera.capture_continuous(stream, 'jpeg’, use_video port =
True):
connection.write(struct.pack('<L’, stream.tell()))
connection.flush()
stream.seek(0)
connection.write(stream.read())
if time.time() - start > 600:
break
stream.seek(0)
stream.truncate()
connection.write(struct.pack('<L', 0))
finally:
connection.close()

client_socket.close()

56

5.6 Appendix C

Stream server test pc code

__author__ ='zhengwang'

import numpy as np
import cv2

import socket

class VideoStreamingTest(object):
def __init__ (self):

self.server_socket = socket.socket()
self.server_socket.bind(('192.168.1.100', 8000))
self.server_socket.listen(0)

self.connection, self.client_address = self.server_socket.accept()
self.connection = self.connection.makefile('rb")

self.streaming()

def streaming(self):

try:
print "Connection from: ", self.client_address
print "Streaming..."

print "Press 'g' to exit"

57

stream_bytes ="'
while True:
stream_bytes += self.connection.read(1024)
first = stream_bytes.find("\xff\xd8")
last = stream_bytes.find("\xff\xd9")
if first I= -1 and last 1= -1:
jpg = stream_bytes[first:last + 2]
stream_bytes = stream_bytes[last + 2:]
#image = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8),
cv2.CV_LOAD_IMAGE_GRAYSCALE)
image = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8),
cv2.CV_LOAD_IMAGE_UNCHANGED)

cv2.imshow(‘image’, image)

if cv2.waitKey(1) & OxFF == ord('q’):
break
finally:
self.connection.close()
self.server_socket.close()
if _name ==' main_ "

VideoStreamingTest()

58

	Sudan University of Science and uefu
	face on
	Final

