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Abstract 

We study the operator commuting and essential commutant of analytic 

Toeplitz operators module the compact operators and Toeplitz operators in 

several complex variables and on the Bergman space of the until ball. We show 

the ordered groups and some exact sequences and the commutator ideal of the 

Toeplitz algebras of spherical isometries and on the Bergman spaces of the unit 

ball in the unitary space. We give the lower bounds in the matrix, new estimate 

for the vector-valued and matrix-valued 𝐻𝑝, Corona problems in the disk and 

polydisk and the codimension one conjecture. We also give the Toeplitz Corona 

theorems for the polydisk, the unit ball and the Douglas property for free 

functions. We discuss the characterizations of Toeplitz and Hankel operators with 

Toeplitz projections and Dixmier traces on the unit ball of the unitary space. We 

determine the locatization, compactness and Toeplitz algebra on the Bergman and 

Fock spaces. 
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 الخلاصة
لية المؤثر والمبدل الأساسي لمؤثرات تبوليتز التحليلية بمقياس مؤثرات درسنا تبدي

التراص ومؤثرات تبوليتز في المتغيرات المركبة المتعددة وعلى فضاء بيرجمان لكرة الوحدة. 
أوضحنا الزمر المرتبة وبعض المتتاليات التامة والمثالي المبدل لجبريات تبوليتز لتساوي 

فضاءات بيرجمان لكرة الوحدة في الفضاء الواحدي. أعطينا الحديات المسافات الكروية وعلى 
المتجه ومسائل كورونا -السفلى في المصفوفة والتقدير الجديد لأجل مسائل كورونا قيمة 𝐻𝑝 

المصفوفة في القرص المتعدد وتخمين البعد المصاحب الأوحد. ايضاً أعطينا مبرهنات -قيمة
كورونا تبوليتز لأجل القرص المتعدد وكرة الوحدة وخاصية دوقلاس لأجل الدوال الحرة. ناقشنا 
التشخيصات لمؤثرات تبوليتز وهانكل مع مساقط تبوليتز وآثار ديقسمير على كرة الوحدة 

واحدى. حددنا الموضعية والتراص وجبر تبوليتز على فضاءات بيرجمان وفوك.للفضاء ال  
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Introduction 
We show that an operator on 𝐻2 of the disc commutes module the 

compacts with all analytic Toeplitz operators if and only if it is a compact 

perturbation of a Torplitz operator with symbol in 𝐻∞ + 𝐶. Consequently, the 

essential commutant of the whole Toeplitz algebra is the algebra of Toeplitz 

operators with symbol in 𝑄𝐶. Let 𝑆 be the unit sphere in ℂ𝑛. We investigate the 

properties of Toeplitz operators on 𝑆, i.e., operators of the form 𝑇𝜙𝑓 = 𝑃(𝜙𝑓) 

where 𝜙 ∈ 𝐿∞(𝑆) and 𝑃 denotes the projection of 𝐿2(𝑆) onto 𝐻2(𝑆). We 

determine how far the extensive one-variable theory remains valid in higher 

dimensions. We establish the spectral inclusion theorem, that the spectrum of 𝑇𝜙 

contains the essential range of 4, and obtain a characterization of the Toeplitz 

operators among operators on 𝐻2(𝑆) by an operator equation. A new extension 

is given principally with the objective of presenting a certain new class of 𝐶∗-
algebras which have very interesting properties. 

We give a lower boundfor the solution of the Matrix Corona Problem, 

which is pretty close to the best known upper bound 𝐶 ⋅ 𝛿−𝑛−1 log 𝛿−2𝑛 obtained 

recently by T. Trent. In particular, both estimates grow exponentially in n; the 

(only) previously known lower bound 𝐶𝛿−2  log(𝛿2𝑛 + 1)  grew logarithmically 

in 𝑛. Also, the lower boundis obtainedfor (𝑛 +  1)  ×  𝑛 matrices, thus giving the 

negative answer to the so-called“co dimension one conjecture.” Another 

important result is connecting left invertiblity in 𝐻∞ and co-analytic orthogonal 

complements. We consider the matrix-valued 𝐻𝑝 corona problem in the disk and 

polydisk. The result for the disk is rather well-known, and is usually obtained 

from the classical Carleson Corona Theorem by linear algebra. We provide a 

streamlined way of obtaining this result and allows one to get a better estimate on 

the norm of the solution. In particular, we were able to improve the estimate found 

in the recent work of Trent. Note that, the solution of the 𝐻∞ matrix corona 

problem in the disk can be easily obtained from the 𝐻2 corona problem either by 

factorization, or by the Commutant Lifting Theorem. The 𝐻𝑝 corona problem in 

the polydisk was originally solved by Lin. The solution used Koszul complexes 

and was rather complicated because one had to consider higher order. �̅�-

equations. Our proof is more transparent and it improves upon Lin’s result in 

several ways. First, we deal with the more general matrix corona problem. 

Second, we were able to show that the norm of the solution is independent of the 

number of generators.  

We show that if an operator A is a finite sum of finite products of Toeplitz 

operators on the Bergman space of the unit ball 𝐵𝑛, then A is compact if and only 

if its Berezin transform vanishes at the boundary. Let 𝐿𝑎
2  be the Bergman space 

of the unit disk and 𝔗(𝐿𝑎
2 ) be the Banach algebra generated by Toeplitz operators 

𝑇𝑓, with 𝑓 ∈ 𝐿∞. We compute the Dixmier trace of pseudo-Toeplitz operators on 

the Fock space. We find a formula for the Dixmier trace of the product of 
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commutators of Toeplitz operators on the Hardy and weighted Bergman spaces 

on the unit ball of ℂ𝑑.  

A family {𝑇𝑗}𝑗∈𝐽 of commuting Hilbert space operators is said to be a 

spherical isometry if ∑  𝑗∈𝐽 𝑇𝑗
∗𝑇𝑗  =  1 in the weak operator topology. We show 

that every commuting family ℱ of spherical isometries has a commuting normal 

extension ℱ̂. Moreover, if ℱ̂ is minimal, then there exists a natural short exact 

sequence 0 → 𝐶 → 𝐶∗(ℱ) → 𝐶∗(ℱ̂) →  0 with a completely isometric cross-

section, where 𝐶 is the commutator ideal in 𝐶∗(ℱ).  We construct a Toeplitz 

projection for every regular A-isom-etry 𝑇 ∈ 𝐵(ℋ)𝑛 on a complex Hilbert space 

Hand use it to determine the essential commutant of the set of all analytic Toeplitz 

operators formed with respect to an essentially normal regular 𝐴-isometry. We 

show that the Toeplitz projection annihilates the compact operators if and only if 

Tpossesses no joint eigenvalues.  

Trent and Wick establish a strong relation between the corona problem and 

the Toeplitz corona problem for a family of spaces over the ball and the polydisk. 

Their work is based on earlier work of Amar. Several of their lemmas are 

reinterpreted in the language of Hilbert modules, revealing some interesting facts 

and raising some questions about quasi-free Hilbert modules. A modest 

generalization of their result is obtained. The well known Douglas Lemma says 

that for operators 𝐴, 𝐵 on Hilbert space that 𝐴𝐴∗  −  𝐵𝐵∗ ≿  0 implies 𝐵 =  𝐴𝐶 

for some contraction operator 𝐶. The result carries over directly to classical 

operator-valued Toeplitz operators by simply replacing operator by Toeplitz 

operator. Free functions generalize the notion of free polynomials and formal 

power series and trace back to the work of J. Taylor in the 1970s. They are of 

current interest, in part because of their connections with free probability and 

engineering systems theory. 

Let 𝐿𝑎
2 denote the Bergman space of the open unit ball 𝐵𝑛 in ℂ𝑛, for 𝑛 >

 1. The Toeplitz algebra 𝔗 is the 𝐶∗-algebra generated by all Toeplitz operators 

𝑇𝑓 with 𝑓 ∈ 𝐿∞. It was proved by D. Suárez that for 𝑛 =  1, the closed bilateral 

commutator ideal generated by operators of the form 𝑇𝑓  𝑇𝑔 − 𝑇𝑔𝑇𝑓 , where 𝑓 , 𝑔 ∈

 𝐿∞, coincides with 𝔗.  We study compactness of operators on the Bergman space 

of the unit ball and the Bargmann-Fock space in ℂ𝑛 in terms of the behavior of 

their Berezin transforms. We show how a vanishing Berezin transform combined 

with certain (integral) growth conditions on an operator 𝑇 are sufficient to imply 

that the operator is compact on the space in question. Let 𝑇𝑓 denote the Toeplitz 

operator with symbol function f on the Bergman space 𝐿𝑎
2 (𝐵;  𝑑𝑣) of the unit ball 

in ℂ𝑛. It is a natural problem in the theory of Toeplitz operators to determine the 

norm closure of the set {𝑇𝑓 ∶  𝑓 ∈  𝐿
1(𝐵;  𝑑𝑣)} in 𝐵(𝐿𝑎

2 (𝐵;  𝑑𝑣)). 
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Chapter 1 

Operators Commuting and Toeplitz Algebras 

 

We show the image in the Calkin algebra of the Toeplitz operutors with symbol in 

𝐻∞ + 𝐶 is a maximal abelian algebra. These results lead to a characterization of 

automorphisms of the algebra of compact perturbations of the analytic Toeplitz operators. 

Particular attention is paid to the case where 𝜙 ∈ 𝐻∞(𝑆) + 𝐶(𝑆) where 𝐶(𝑆) denotes the 

algebra of continuous functions on 𝑆. Finally we describe a class of Toeplitz operators useful 

for providing counterexamples-in particular, Widom’s theorem on the connectedness of the 

spectrum fails when 𝑛 >  1. 

Section (1.1): Toeplitz Operators Modulo the Compact Operators 

We show that an operator on 𝐻2 of the disc commutes module the compacts with all 

analytic Toeplitz operators if and only if it is a compact perturbation of a Toeplitz operator 

with symbol in 𝐻∞ + 𝐶. Consequently, the essential commutant of the whole Toeplitz 

algebra is the algebra of Toeplitz operators with symbol in 𝒬𝐶. The image in the Calkin 

algebra of the Toeplitz operutors with symbol in 𝐻∞ + 𝐶 is a maximal abelian algebra. 

These results lead to a characterization of automorphisms of the algebra of compact 

perturbations of the analytic Toeplitz operators. 

Johnson and Parrot [8] showed that if 𝑀 is an abelian von Neumann algebra on a 

Hilbert space 𝐻,𝑀′ is its commutant, and ℓ𝒷(𝐻) is the ideal of compact operators on 𝐻, 

then the essential commutant of 𝑀is 𝑀′ + ℓ𝒷(𝐻). Sarason [9] showed that a Toeplitz 

operator 𝑇𝑔 on 𝐻2of the unit circle commutes modulo the compacts with all analytic Toeplitz 

operators if and only if 𝑔 is in 𝐻∞ + 𝐶. Here 𝐶 denotes the space of continuous functions 

on the unit circle. From this, Douglas [7] showed that the essential center of the Toeplitz 

algebra is the algebra of Toeplitz operators with symbol in 𝒬𝐶 = 𝐻∞ + 𝐶 ∩ 𝐻∞ + 𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Douglas [5] raised the natural question of which operators in ℓ(𝐻2) essentially commute 

with all Toeplitz operators. 

We prove the following Theorem, which gives a complete answer to this question. 

From this we get two immediate corollaries. 

Corollary (1.1.1)[1]: The essential commutant of the Toeplitz algebra ℱ(𝐿∞) is ℱ(𝒬𝐶). 
Corollary (1.1.2)[1]: The image ℱ(𝐻∞ + 𝐶)in the Calkin algebra is a maximal abelian 

algebra. 

Corollary (1.1.1) gives the first concrete example of a maximal abelian algebra in the 

Calkin algebra which is not an image of a maximal abelian von Neumann algebra. (That the 

latter is an example is a consequence of [8].) 

Let 𝔇 be the unit disc, and let 𝜕𝔇 be its boundary. Let 𝐻2 be the subspace of 𝐿2.  

𝐿2(𝜕𝔇)of those functions with all negative Fourier coefficients equal to zero. Let 𝑀𝑓 denote 

the operator 𝐿2 of multiplication by the 𝐿∞function 𝑓. The Toeplitz operator 𝑇𝑓 with symbol 

𝑓 is the compression of 𝑀𝑓to 𝐻2. If 𝐴is a subset of 𝐿∞, let ℱ(𝐴) be the norm closed algebra 

generated by {𝑇𝑓: 𝑓 ∈ 𝐴}. Let ℒ(𝐻2) be the bounded operators on 𝐻2, and let ℓ𝒷(𝐻2) be 

its ideal of compact operators. Let 𝜋 = ℒ(𝐻2) → ℒ(𝐻2)/ℓ𝒷(𝐻2) be the canonical 

homomorphism onto the Calkin algebra. If 𝑆 is an operator, let 𝐷(𝑋) = 𝑋𝑆 − 𝑆𝑋 be the 

derivation on ℒ(𝐻2) induced by 𝑆. 

We show the following theorem, which is somewhat stronger than Theorem (1.1.7). 



2 

 

The proof will follow from a series of lemmas, but first we will outline the main ideas. 

If 𝑇𝑧𝑆 − 𝑆𝑇𝑧 is not compact, we can take ℎ = 𝑧. So for the remainder of the proof, We will 

assume that 𝑆 essentially commutes with 𝑇𝑧. 
It follows that 𝑆 commutes modulo compacts with every Toeplitz operator with 

continuous symbol. We show that there is a subsequence 𝐴 of the positive integers and a 

function 𝑓 in 𝐿∞, such that in the 𝑤∗ topology on ℒ(𝐻2), 
𝑇𝑓 = lim

𝑛∈𝐴
𝑇�̅�𝑛𝑆𝑇𝑧𝑛 . 

We find a countable collection of disjoint closed intervals {𝜒𝑛} of the unit circle such that 

‖𝑇𝜒𝑛𝑆 − 𝑇𝜒𝑛𝑓‖ > 𝛿 > 0. Combining the two preceding results, we obtain functions 𝑃𝑛 in 

𝐻∞ such that ‖𝐷(𝑇𝑃𝑛)‖ > 𝛿 and so that the partial sums of the series ∑𝑃𝑛are uniformly 

bounded. It follows that 𝑇𝑃𝑛and 𝐷(𝑇𝑃𝑛)converge strongly to zero, so we are able to extract 

a subsequence 𝛤such that ℎ = ∑ 𝑃𝑛𝑛∈𝛤 is in 𝐻∞with the operators 𝐷(𝑇𝑃𝑛)almost mutually 

orthogonal. This will allow us to conclude that 𝐷(𝑇ℎ)is not compact. By choosing the 

functions 𝑃𝑛 so that their closed supports cluster at only one point, we ensure that ℎ has only 

one discontinuity. 

Let Σ be the net of inner functions ordered by divisibility. If 𝜔 is an inner function, 

let 𝜎𝜔 = 𝑆 − 𝑇�̅�𝑆𝑇𝜔. Let 𝜎𝑛 = 𝜎𝑧𝑛, Consider the sequence {𝜎𝑛} and the net {𝜎𝜔}. Both are 

norm bounded, and hence lie in a 𝑤∗ compact set. 

Consequently, they have 𝑤∗ limit points. 

Lemma (1.1.3)[1]: Let 𝑆 be in ℒ(𝐻2) with 𝑇𝑧𝑆 − 𝑆𝑇𝑧 compact, and let 𝑆 ′ be a 𝑤∗limit point 

of the sequence {𝜎𝑛}. Then, 

(i) 𝑇𝑔𝑆 − 𝑆𝑇𝑔is compact for all continuous functions 𝑔. 

(ii) 𝑆 ′ = 𝑤∗ lim
𝑛∈𝐴

𝜎𝑛 for a subsequence 𝐴 of ℕ. 

(iii) 𝑆 − 𝑆 ′ = 𝑇𝑓 for some 𝑓 in 𝐿∞. 

(iv) 𝑆 ′ − 𝑇𝑏𝑆
′𝑇𝑏 = 𝜎𝑏 fo r all continuous inner functions 𝑏. 

(v) 𝑤∗ lim
𝑛∈𝐴

𝑇�̅�𝑛𝑇𝑔𝑆𝑇𝑧𝑛 = 𝑇𝑔𝑓 for all continuous functions 𝑔. 

The operator 𝑆 ′ is compact if and only if 𝑆 is a compact perturbation of a Toeplitz operator. 

In this case, in the norm topology, 

lim
𝑛→∞

𝜎𝑛 = 𝑆
′ and lim

𝑛→∞
𝑇�̅�𝑛𝑇𝑔𝑆̅𝑇𝑧𝑛 = 0. 

Let 𝑆 − 𝑇�̅�𝑆𝑇𝜔be compact for all inner functions 𝜔 ∈ 𝛴, and let 𝑆 ′ = 𝑤∗ lim
𝜔∈𝐴

𝜎𝜔 for 

a subnet 𝐴 of 𝛴. Then, 

(iv’) 𝑆 ′ − 𝑇�̅�𝑆𝑇𝜔 = 𝜎𝜔 for all inner functions 𝜔. 

(v’) 𝑤∗ lim
𝑛∈𝐴

𝑇�̅�𝑇ℎ𝑆𝑇𝜔 = 𝑇ℎ𝑓 for all ℎ in 𝐿∞. 

If 𝑆 =  𝑇𝑓 + 𝑋 is in the Toeplitz algebra, where 𝑋 belongs to the commutator ideal of 

ℱ(𝐿∞), then 

lim
 𝜔∈𝛴

𝜎𝜔 = 𝑋 in norm. 

Proof. The set of operators {𝜎𝑛} lies in the ball of radius 2‖𝑆‖, which is 𝑤∗compact and 

metrizable. Hence the 𝑤∗ limit point 𝑆 ′ can be taken to be the limit of a subsequence 𝐴 of 

ℕ. Since 𝜋(𝑆) and 𝜋(𝑇𝑧) commute in the Calkin algebra, 𝜋(𝑆)commutes with 𝜋(𝑇�̅�) =
𝜋(𝑇𝑧)

−1. Hence 𝑆 commutes modulo compacts with 𝑇�̅� and, therefore, also with ℱ(𝐶), the 

𝐶∗ algebra generated by 𝑇𝑧. 
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If 𝐾 is compact, lim
𝑛→∞

𝑇�̅�𝑛𝐾𝑇𝑧𝑛 = 0 in norm since 𝑇𝑧𝑛 → 0 in the weak operator 

topology. Let 𝑏 be a continuous inner function. Then, 

𝑆′ − 𝑇�̅�𝑆
′𝑇𝑏 = 𝑤

∗ lim
𝑛∈𝐴
(𝑆 − 𝑇�̅�𝑛𝑆𝑇𝑧𝑛) − 𝑇𝑏(𝑆 − 𝑇�̅�𝑛𝑆𝑇𝑧𝑛)𝑇𝑏

= 𝑤∗ lim
𝑛∈𝐴
(𝑆 − 𝑇�̅�𝑆

′𝑇𝑏) − 𝑇�̅�𝑛(𝑆 − 𝑇�̅�𝑆𝑇𝑏)𝑇𝑧𝑛 . 

But, 𝑆 − 𝑇�̅�𝑆𝑇𝑏 = 𝑇�̅�(𝑇𝑏𝑆 − 𝑆𝑇𝑏) is compact, so the second term tends to zero in norm. So, 

𝑆′ − 𝑇�̅�𝑆
′𝑇𝑏 = 𝑆 − 𝑇�̅�𝑆

′𝑇𝑏 = 𝜎𝑏 . In particular, for 𝑏 = 𝑧, 𝑆 − 𝑆′ = 𝑇�̅�(𝑆 − 𝑆
′)𝑇𝑧. This is 

the functional equation determining the Toeplitz operators [2]. So there is a function 𝑓 in 

𝐿∞ such that 𝑆 = 𝑇𝑓 + 𝑆
′. 

Now it follows that 𝑇𝑓 = 𝑤
∗ lim
𝑛∈𝐴

𝑇�̅�𝑛𝑆𝑇𝑧𝑛. Let ℎ1, ℎ2 be functions in 𝐻∞ ∩ 𝐶. Then. 

𝑤∗ lim
𝑛∈𝐴

𝑇�̅�𝑛𝑇ℎ̅1ℎ2𝑆𝑇𝑧𝑛 = 𝑤
∗ lim
𝑛∈𝐴

𝑇�̅�𝑛𝑇ℎ̅1[𝑆𝑇ℎ2 + 𝐷(𝑇ℎ2)] 𝑇𝑧𝑛

= 𝑤∗ lim
𝑛∈𝐴
[𝑇ℎ̅1𝑇�̅�𝑛𝑆𝑇𝑧𝑛𝑇ℎ2 + 𝑇�̅�𝑛𝑇ℎ̅1𝐷(𝑇ℎ2)𝑇𝑧𝑛] = 𝑇ℎ̅1𝑇𝑓𝑇ℎ2

= 𝑇ℎ̅1ℎ2𝑓 ,   since 𝐷(𝑇ℎ2) is compact.  

Since {ℎ̅1ℎ2: ℎ1, ℎ2 ∈ 𝐻
∞ ∩ 𝐶} is dense in 𝐶, it follows that 

𝑤∗ lim
𝑛∈𝐴

𝑇�̅�𝑛𝑇𝑔𝑆𝑇𝑧𝑛 = 𝑇𝑔𝑓 . 

for all continuous functions 𝑔. 

If 𝑆′ is compact, then 𝑆 = 𝑇𝑓 + 𝑆
′ and 𝜎𝑛 = 𝑆

′ − 𝑇�̅�𝑛𝑆
′𝑇𝑧𝑛. Hence by the above 

remarks, we have lim
𝑛→∞

𝜎𝑛 = 𝑆
′ in norm. 

The proofs of (iv’) and (v’) are identical to the calculations for (iv) and (v). 

In (v’) we note that {ℎ̅1ℎ2: ℎ1, ℎ2 ∈ 𝐻
∞}is dense in 𝐿∞. If 𝑆 = 𝑇𝑓 + 𝑋 with 𝑋 in the 

commutator ideal of ℒ(𝐿∞), then 𝜎𝜔 = 𝑋 − 𝑇�̅�𝑋𝑇𝜔. By Douglas [5], for any 𝜖 > 0, there is 

an inner function 𝜔 such that ‖𝑋𝑇𝜔‖ < 𝜖. Hence lim
 𝜔∈𝛴

𝜎𝜔 = 𝑋. 

Let 𝓅𝒷 be the space of piecewise continuous functions in 𝐿∞. Consider the function 

𝐹:𝓅𝒷 → ℒ(𝐻∞) defined by 𝐹(𝜒) = 𝑇𝜒𝑆 − 𝑇𝜒𝑓, where 𝑓 is defined in terms of 𝑆 as in 

Lemma (1.1.3). It is clear that if 𝑔𝑛 are in 𝓅𝒷, uniformly bounded in the sup norm, such 

that 𝑔𝑛 → 𝑔0 go pointwise, then 𝐹(𝑔𝑛) → 𝐹(𝑔0) in the strong operator topology.  

We have 𝐹(1) = 𝑆 − 𝑇𝑓 = 𝑆
′, which is not compact unless 𝑆 is a compact perturbation of a 

Toeplitz operator. Keep this function in mind to motivate the following lemma. 

Lemma (1.1.4)[1]: Suppose 𝐹:𝓅𝒷 → ℒ(𝐻∞) is a linear map such that: 

(Pl) If 𝑔𝑛 are in 𝓅𝒷 with ‖𝑔𝑛‖∞ ≤ 𝑀 and 𝑔𝑛 → 𝑔0 pointwise, then 𝑤 =
 lim𝐹(𝑔𝑛) = 𝐹(𝑔0) in the weak operator topology; 

(P2) 𝐹(1) is not compact, say ‖𝜋𝐹(1)‖ > 𝛼 > 0; 

(P3) if 𝑓, 𝑔 are in 𝓅𝒷 and have disjoint closed supports, then 𝐹(𝑓) 𝐹(𝑔) and 

𝐹(𝑓) 𝐹(𝑔)∗are compact. 

Then, there exist characteristic functions {𝜒𝑛: 𝑛 ≥ 1} in 𝓅𝒷 of disjoint closed support 

such that ‖𝐹(𝜒𝑛)‖ > 𝛼/4. These sets can be chosen to cluster at only one point. 

Consequently, there exist trigonometric polynomials ℎ𝑛such that ‖ℎ𝑛‖ ≤ 2, ‖ℎ𝑛(1 −
𝜒𝑛)‖ ≤ 2

−𝑛, and ‖𝐹(ℎ𝑛)‖ > 𝛼/4. 

Since 𝜒𝑛 is in 𝓅𝒷 it is the finite union of closed intervals. We can suppose, in fact, 

that 𝜒𝑛 is a closed interval if we change the constant to 𝛼/8 . 
Let 𝓈 be the collection of all characteristic functions 𝜒 of closed intervals such that 

‖𝐹(𝜒)‖ > 𝛼/4. Let 
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𝐸 = ⋂(⋃{𝜒 ∈ 𝓈: |𝜒| ≤ 1/𝑛})
𝑐𝑙

𝑛≥1

 

Here |𝜒| is the linear measure of 𝜒 as a subset of the circle. We claim that 𝐸 is nonempty. 

For if 𝐸 is empty, then, since it is the intersection of nested closed sets, one of these sets is 

empty. That is, there exists an integer 𝑛 such that 𝜒| ≤ 1/𝑛 implies that ‖𝐹(𝜒)‖ ≤ 𝛼/4. 

Divide 𝜕ℒ into an even number of closed intervals 𝜒𝑖 , 𝑖 = 1,… , 2𝑘, which are disjoint 

except for their endpoints, so that 𝜕ℒ =  ⋃𝜒𝑖. Each of the two collections 

{𝜒𝑖: 𝑖 𝑖𝑠 𝑜𝑑𝑑}, {𝜒𝑖: 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛} consist of mutually disjoint closed intervals. We have 

𝛼 < ‖𝜋𝐹(1)‖ ≤
1

2
‖𝜋𝐹(1) + 𝐹(1)∗‖ +

1

2
‖𝜋𝐹(1) − 𝐹(1)∗‖. 

Therefore, for 𝜖 = 1 or −1, we have ‖𝜋𝐹(1) + 𝜖𝐹(1)∗‖ > 𝛼. Let 𝐴 = 𝜋(𝐹(1) +
𝜖𝐹(1)∗). Let 𝐴𝑖 = 𝜋(𝐹(𝜒𝑖) + 𝜖𝐹(𝜒𝑖)

∗). By (P3), if 𝜒𝑖 , 𝜒𝑗 are disjoint, then 𝐴𝑖 , 𝐴𝑗 = 0. 

Hence {𝐴𝑗: 𝑖 𝑜𝑑𝑑} (respectively, even) is a finite collection of normal, commuting, mutally 

annihilating operators. Therefore, by a simple estimate on the spectral radius, we get 

‖∑ 𝐴𝑖
𝑖 𝑜𝑑𝑑

‖ =  max
𝑖
𝐴𝑖 ≤ 2max‖𝐹(𝜒𝑖)‖ ≤ 𝛼/2. 

The analogous inequality holds for 𝑖 even. Now by the linearity of 𝐹, ∑ 𝐴𝑖 = 𝐴
2𝑘
𝑖−1 . 

So we have 

𝛼 < ‖𝐴‖ = ‖∑𝐴𝑖‖ ≤ ‖∑𝐴𝑖
𝑜𝑑𝑑

‖ + ‖∑ 𝐴𝑖
𝑒𝑣𝑒𝑛

‖ ≤ 𝛼. 

This contradiction shows that 𝐸 is nonempty. 

Let 𝑥0 ∈ 𝐸. We proceed by induction. Suppose we have chosen disjoint characteristic 

functions 𝜒𝑖 ∈ 𝓈, 𝐼 , . . . , 𝑛, with 𝛼𝑛 = 𝑑(𝑥0, ⋃ 𝜒𝑖) >> 0. Since 𝑥0 ∈ 𝐸, we have 

𝑥0 ∈ (⋃{𝜒 ∈ 𝓈: |𝜒| ≤ 𝛼𝑛/3})
𝑐𝑙

. 

Hence, there exists 𝜇 in 𝓈, |𝜇| ≤ 𝛼𝑛/3 such that 𝑑(𝑥0, 𝜇) < 𝛼𝑛/3. So, 𝑑(𝜇, ⋃𝜒𝑖) ≥ 𝛼𝑛/3. 

If 𝑥0 does not belong to 𝜇, let 𝜒𝑛+1 = 𝜇. Otherwise, set 𝜇𝑡 =  𝜇 ∩ {𝑥: 𝑑(𝑥, 𝑥0) ≥ 𝑡}. Then 

𝜇𝑡 → 𝜇 pointwise, so, by (PI), 𝐹(𝜇𝑡) → 𝐹(𝜇)in the weak operator topology. Since the norm 

is lower semicontinuous in the weak operator topology, and ‖𝐹(𝜇)‖ > 𝛼/4, we see that 

there exists a 𝑡 > 0 such that ‖𝐹(𝜇𝑡)‖ > 𝛼/4. Let 𝜒𝑛+1 = 𝜇𝑡, Then 𝛼𝑛+1 =

𝑑(𝑥0, ⋃ 𝜒𝑖
𝑛+1
𝑖=1 ) ≥ 𝑡 > 0. It is clear that the sets {𝜒𝑛} cluster only at 𝑥0 We remark that the 

sets 𝜇𝑡 may be the union of two intervals, say 𝜇+ and 𝜇 Then since 𝐹(𝜇𝑡) = 𝐹(𝜇
+) + 𝐹(𝜇−), 

we can chose one of these with norm greater than 𝛼/8. 

Fix 𝜒 = 𝜒𝑛, and choose continuous function 𝑔𝑖 such that 0 ≤ 𝑔𝑖 ≤ 𝜒 and 𝑔𝑖 → 𝜒 pointwise. 

We argue as above to find an integer 𝑖 such that ‖𝐹(𝑔𝑖)‖ > 𝛼/4. Let 𝑘𝑗 be the 𝑗th Fejer 

mean of 𝑔𝑖. Then ‖𝑘𝑗 − 𝑔𝑖‖𝑥 tends to zero as 𝑗 tends to infinity, so again by the above 

argument we choose an integer 𝑗 such that ‖𝐹(𝑘𝑗)‖ > 𝛼/4 and also ‖𝑘𝑗 − 𝑔𝑖‖ < 2
−𝑛. For 

𝜒 = 𝜒𝑛, let ℎ𝑛 = 𝑘𝑗. We compute  

‖ℎ𝑛‖ ≤ ‖𝑔𝑖‖ + 2
−𝑛 ≤ 2, 

‖ℎ𝑛(1 − 𝜒𝑛)‖ ≤ ‖𝑔𝑖(1 − 𝜒𝑛)‖ + 2
−𝑛 = 2−𝑛. 

Hence we see that the functions ℎ𝑛 satisfy the requirements of the lemma. 
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Lemma (1.1.5)[1]: Let 𝔘 be a weakly closed subalgebra of ℒ(𝐻2). Let 𝑆 be an operator on 

𝐻2 and 𝐷:𝔘 → ℒ(𝐻2) be the derivation 𝐷(𝑎): 𝑎𝑆 − 𝑆𝑎. Suppose there exist 𝛿 > 0,𝑀 > 0, 

and elements 𝑎𝑛 in 𝔘 such that ‖𝐷(𝑎𝑛)‖ > 𝛿 > 0 and ‖∑ 𝑎𝑛𝑛∈𝐽 ‖ ≤ 𝑀 for all finite subsets 

𝐽 of ℕ. Then, there exists an element 𝑏 in 𝔘 such that 𝐷(𝑏) is not compact. 

Proof. We can assume that 𝐷(𝑎𝑛) is compact for all 𝑛. We claim that 𝑎𝑛 → 0 in the strong 

operator topology. If not, there is a unit vector ℎ in 𝐻2 such that 𝑘𝑛 = 𝑎𝑛ℎ has ‖𝑘𝑛‖ ≥ 𝛿, 

for all 𝑛 in an infinite set 𝐽. It is an elementary exercise, to show that we can find a finite 

subset 𝐽′ of 𝐽 so that ‖∑ 𝑘𝑛𝑛∈𝐽 ‖ > 𝑀. This contradicts ‖∑ 𝑎𝑛𝑛∈𝐽′ ‖ ≤ 𝑀. 

Let {𝓏𝑛: 𝑛 ≥ 0} be an orthonormal basis for 𝐻2. Let 𝑅𝑛 be the orthogonal projection 

onto the span of {𝓏0, … , 𝓏𝑛}. Now since 𝑎𝑛 → 0 strongly, we also have 𝐷(𝑎𝑛) → 0 strongly. 

Using this fact and the compactness of 𝐷(𝑎𝑛), we can inductively choose a subsequence 𝛤 

of ℕ and corresponding projections 𝑄𝑘which are finite dimensional and mutually 

orthogonal. These will be chosen so that for 𝑛𝑘 in 𝛤, we have 

(i) ‖𝑄𝑘  𝐷(𝑎𝑛𝑘)𝑄𝑘‖ > 𝛿, 

(ii) ‖𝐷(𝑎𝑛𝑘)(𝐼 − 𝑄𝑘)‖ < 3
−𝑘𝛿, 

(iii) ‖𝑅𝑘𝑎𝑛𝑘𝑅𝑘‖ < 2
−𝑘 . 

If we have chosen 𝑛1, … , 𝑛𝑘 and 𝑄1, … , 𝑄𝑘, Let 𝑄 = ∑𝑄1. Since 𝑄 is finite dimensional and 

𝐷(𝑎𝑛) → 0 strongly, we can find an 𝑎𝑛 such that ‖𝑅𝑘+1𝑎𝑛𝑅𝑘+1‖ < 2
−𝑘+1 and 

‖𝐷(𝑎𝑛)𝑄‖ < 3
𝑘−2𝛿. Then since 𝐷(𝑎𝑛) is compact, we can choose 𝑄𝑘+1 orthogonal to 𝑄, 

finite dimensional, so that (i) and (ii) are satisfied. Set 𝑎𝑛𝑘+1 = 𝑎𝑛. 

For convenience, we relabel so that 𝑎𝑘 = 𝑎𝑛𝑘. Let 𝑏𝑘 = ∑ 𝑎𝑛
𝑘
𝑛=1 , If ℎ1, ℎ2are in 𝑅𝑛 𝐻 

and 𝑘 ≥ 𝑙 ≥ 𝑛, then 

|((𝑏𝑘 − 𝑏𝑙)ℎ1, ℎ2)| ≤∑|(𝑎𝑖ℎ1, ℎ2)|

𝑘

𝑙+1

≤ ‖𝑅𝑛𝑎𝑖𝑅𝑛‖‖ℎ1‖‖ℎ2‖ ≤∑2−𝑙
𝑘

𝑙+1

‖ℎ1‖‖ℎ2‖

< 2−𝑙‖ℎ1‖‖ℎ2‖. 

Since ⋃ 𝑅𝑛𝐻
2

𝑛  is dense in 𝐻2, and ‖𝑏𝑘‖ ≤ 𝑀 for every 𝑘, we conclude that the sequence 

{𝑏𝑘} converges weakly to an element 𝑏 in 𝔘. Hence 𝐷(𝑏𝑘) converges weakly to 𝐷(𝑏). 
Therefore, since the 𝑄𝑛are finite dimensional, we have 

lim
𝑘→∞

𝑄𝑛𝐷(𝑏𝑘)𝑄𝑛 = 𝑄𝑛𝐷(𝑏)𝑄𝑛    in norm. 

Hence, 

‖𝑄𝑛𝐷(𝑏)𝑄𝑛‖ = lim
𝑘→∞

‖𝑄𝑛∑𝐷(𝑎𝑖)𝑄𝑛

𝑘

1

‖ ≥ lim
𝑘→∞

‖𝑄𝑛𝐷(𝑎𝑛)𝑄𝑛‖ −∑‖𝑄𝑛𝐷(𝑎𝑖)𝑄𝑛‖

𝑖≠𝑛

. 

But if 𝑖 ≠ 𝑛, 

‖𝑄𝑛𝐷(𝑎𝑖)𝑄𝑛‖ = ‖𝑄𝑛[𝐷(𝑎𝑖)(𝐼 − 𝑄𝑖)]𝑄𝑛‖ < 3
−𝑖𝛿. 

So, 

‖𝑄𝑛𝐷(𝑏)𝑄𝑛‖ ≥ lim
𝑘→∞

𝛿 −∑3−𝑖𝛿 < 𝛿/2. 

This is true for all 𝑛, and the projections {𝑄𝑛} are nonzero and mutually orthogonal. It 

follows that 𝐷(𝑏) is not compact. 

Theorem (1.1.6)[1]: if an operator 𝑆 in ℒ(𝐻2) is not the sum of a Toeplitz operator and a 

compact operator, then there is a function ℎ ∈ 𝐻∞ such that 𝑇ℎ𝑆 − 𝑆𝑇ℎ is not compact. The 

function h may taken to have at most one discontinuity. 
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Proof. We are now ready to complete the proof of our main theorem. Suppose 𝑆 in ℒ(𝐻2) 
is not the sum of a Toeplitz operator and a compact operator. We suppose that 𝑇𝑧𝑆 − 𝑆𝑇𝑧 is 

compact, for otherwise we can take ℎ = 𝓏. By Lemma (1.1.3), we choose a subsequence 𝛬 

of ℕ, and a function 𝑓 in 𝐿∞ such that 

𝑆′ = 𝑆 − 𝑇𝑓 = 𝑤
∗ lim
𝑛∈𝛬

𝑆 − 𝑇�̅�𝑛𝑆𝑇𝑧𝑛 . 

The operator 𝑆′ is not compact, say ‖𝜋(𝑆′)‖ > 𝛼 > 0. 

We apply Lemma (1.1.4). to the map 𝐹(𝑔) =  𝑇𝑔𝑆 − 𝑇𝑔𝑓. Because of the remarks 

preceding Lemma (1.1.4), we need only show that 𝐹 satisfies P3. Let 𝑓1, 𝑓2 be piecewise 

continuous with disjoint closed supports. Let 𝑔1, 𝑔2 be functions in 𝐶 such that 𝑔𝑖 ≡ 1 on 

the support of 𝑓𝑖, and 𝑔1𝑔2 = 0. By Lemma (1.1.3), 𝜋𝑇𝑔𝑖 commutes with 𝜋𝑆, and by [5], we 

have for every ℎ in 𝐿∞, 

𝜋(𝑇𝑔𝑖)𝜋(𝑇ℎ) =  𝜋(𝑇𝑔𝑖ℎ) =  𝜋(𝑇ℎ)𝜋(𝑇𝑔𝑖). 

It follows that 

𝜋(𝑇𝑔𝑖)𝜋(𝐹(𝑓𝑖)) =  𝜋𝐹(𝑓𝑖) =  𝜋(𝐹(𝑓𝑖))𝜋(𝑇𝑔𝑖), 

and the analogous relation holds for 𝜋𝐹(𝑓𝑖)
∗. Thus we have 

𝜋𝐹(𝑓𝑖) ∙ 𝜋𝐹(𝑓2) = 𝜋𝐹(𝑓1) ∙  𝜋𝑇𝑔1 ∙ 𝜋𝑇𝑔2 ∙  𝜋𝐹(𝑓2) = 𝜋𝐹(𝑓𝑖) ∙ 𝜋𝑇𝑔1𝑔2 ∙ 𝜋𝐹(𝑓2) = 0. 

Hence 𝐹(𝑓1) 𝐹(𝑓2) is compact, and similarly 𝐹(𝑓1) 𝐹(𝑓2)
∗ is compact. So, from Lemma 

(1.1.4), there exist trigonometric polynomials ℎ𝑛 and characteristic functions 𝜒𝑛 of disjoint 

closed sets such that ‖ℎ𝑛‖ ≤ 2, ‖ℎ2(1 − 𝜒𝑛)‖ ≤ 2
−𝑛, and ‖𝐹(ℎ𝑛)‖ > 𝛿/4. 

We compute for ℎ, ℎ𝑛 

𝑇�̅�𝑘𝑇ℎ𝐷(𝑇𝑧𝑘) =  𝑇�̅�𝑘𝑇ℎ(𝑇𝑧𝑘𝑆 − 𝑆𝑇𝑧𝑘) = 𝑇ℎ𝑆 − 𝑇�̅�𝑘𝑇ℎ𝑆𝑇𝑧𝑘 . 
From the derivation identity, we have 

𝐷(𝑇𝑧𝑘ℎ) = 𝐷(𝑇ℎ𝑇𝑧𝑘) = 𝑇ℎ𝐷(𝑇𝑧𝑘) + 𝐷(𝑇ℎ)𝑇𝑧𝑘 .  
We get 

𝑤∗ lim
𝑘∈𝛬
𝑇�̅�𝑘𝐷(𝑇𝑧𝑘ℎ) = 𝑤

∗ lim
𝑛∈𝛬
(𝑇ℎ𝑆 − 𝑇�̅�𝑘𝑇ℎ𝑆𝑇𝑧𝑘) + 𝑇�̅�𝑘𝐷(𝑇ℎ)𝑇𝑧𝑘

= 𝑇ℎ𝑆 − 𝑇ℎ𝑓 by lemma (1.1.3).  

By lower semicontinuity of the norm, and the inequality ‖𝑇ℎ𝑛𝑆 − 𝑇𝑘𝑛𝑓‖ = ‖𝐹(ℎ𝑛)‖ > 𝛿/4, 

we can choose an integer 𝑘 in 𝛬 such that ‖𝑇�̅�𝑘𝐷(𝑇𝑧𝑘ℎ𝑛)‖ > 𝛿/4 and 𝑃𝑛 = 𝑧
𝑘ℎ𝑛 belongs 

to 𝐻∞. We then have ‖𝐷(𝑇𝑃𝑛)‖ ≥ ‖𝑇�̅�𝑘𝐷(𝑇𝑃𝑛)‖ > 𝛿/4 and 

‖𝑃𝑛‖ = ‖𝑧
𝑘ℎ𝑛‖ ≤ 2, 𝑎𝑛𝑑‖𝑃𝑛(1 − 𝜒𝑛)‖ = ‖𝑧

𝑘ℎ𝑛(1 − 𝜒𝑛)‖ ≤ 2
−𝑛. 

Now, if 𝐽 is a finite subset of ℕ, Iet 𝑃𝐽 = ∑ 𝑃𝑛𝑛∈𝐽 . Then 

‖𝑃𝐽𝜒𝑚‖∞ ≤∑‖𝑃𝐽𝜒𝑚‖

𝑛∈𝐽

≤ ‖𝑃𝑚‖ + ∑‖𝑃𝑛(1 − 𝜒𝑛)‖

𝑛≠𝑚

≤ 2 +∑2−𝑛

𝑛

= 3. 

If 𝜇 = ∑ 𝜒𝑚𝑚 , then ‖𝑃𝐽 𝜇‖ ≤ ∑‖𝑃𝑛 𝜇‖ ≤ ∑2
−𝑛 = 1. Hence ‖𝑃𝐽‖ ≤ 3 for all finite subsets 

𝐽. 
Therefore we can apply Lemma (1.1.3), with 𝑎𝑛 = 𝑇𝑃𝑛and 𝔘 ℱ(𝐻∞). This gives us a 

function ℎ in 𝐻∞ such that 𝐷(𝑇ℎ) is not compact. 

We have 𝑇ℎ = 𝑤 − lim𝑇𝑏𝑘, where 𝑏𝑘 = ∑ 𝑃𝑛𝑖
𝑘
𝑖=1 . The set {𝑥: |𝑃𝑛(𝑥)| ≥ 2

−𝑛} is 

contained in 𝜒𝑛, and the sets {𝜒𝑛} cluster only at the point 𝑥0. So the sequence {𝑏𝑘} 
converges uniformly on sets bounded away from 𝑥0 to a function which is continuous except 

at 𝑥0. Hence ℎ is continuous except at 𝑥0. This concludes the proof. 
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Theorem (1.1.7)[1]: An operator 𝑆 on 𝐻2 commutes module compacts with all analytic 

Toeplitz operators if and only if 𝑆 = 𝑇𝑔 + 𝑘, where 𝑔 is in 𝐻∞ + 𝐶 and 𝐾 is compact. 

Proof. We will now prove the results stated in the first section. If 𝑆 commutes modulo the 

compacts with all analytic Toeplitz operators, it follows from Theorem (1.1.6). that 𝑆 has 

the form 𝑆 = 𝑇𝑓 + 𝐾, where 𝐾 is compact. Therefore, we see from Sarason [9] that 𝑓 is in 

𝐻∞ + 𝐶. 

If 𝑆 is in the Toeplitz algebra, this result follows in a more elementary way. For then 

𝑆 = 𝑇𝑓 + 𝑋, where 𝑋 is in the commutator ideal of ℱ(𝐿∞). We have that 𝜎𝜔 =

 𝑇�̅�(𝑇𝜔𝑆 − 𝑆𝑇𝜔) is compact for every inner function 𝜔. So be Lemma (1.1.3),𝑋 =  lim
𝜔∈Σ

𝜎𝜔 

in norm, and hence 𝑋 is compact. We now apply Sarason’s result as above. 

To prove Corollary (1.1.1), we note that ℱ(𝐿∞) is generated by ℱ(𝐻∞) and ℱ(𝐻∞̅̅ ̅̅̅).  
Hence 

ℱ(𝐿∞)𝑒𝑐 = ℱ(𝐻∞)𝑒𝑐 ∩ ℱ(𝐻∞̅̅ ̅̅̅)𝑒𝑐 = ℱ(𝐻∞ + 𝐶) ∩ ℱ(𝐻∞̅̅ ̅̅̅ + 𝐶) = ℱ(𝑄𝐶) . 

Corollary (1.1.2). is immediate from Theorem (1.1.7). and the fact that 𝜋ℱ(𝐻∞ + 𝐶) is 

abelian. 

Corollary (1.1.8)[1]: If an operator 𝑆 is not in ℱ(𝐻∞ + 𝐶) , then there is an inner function 

𝜔 such that 𝑆𝑇𝜔 − 𝑇𝜔𝑆 is not compact. 

Proof. By Theorem (1.1.7), there is an analytic function ℎ such that 𝑆𝑇ℎ − 𝑇ℎ𝑆 is not 

compact. A theorem of Marshall [11] shows that the linear span of the inner functions is 

norm dense in 𝐻∞. The set of noncompact operators is open, so we can approximate ℎ by a 

finite linear combination of inner functions ∑𝛼,𝜔, so that ∑𝛼𝑖(𝑆𝑇𝜔𝑖 − 𝑇𝜔𝑖𝑆) is not 

compact. 

If we take ℎ to be continuous except at 𝑥0, we can approximate ℎ in norm by Blaschke 

products which are continuous except at 𝑥0. So if 𝑆 is not a Toeplitz operator plus a compact, 

we can find a Blaschke product 𝑏 with zeros accumulating only at 𝑥0 for which 𝑆𝑇𝑏 − 𝑇𝑏𝑆 

is not compact. 

Definition (1.1.9)[1]: A derivation 𝐷 of an algebra 𝔘 into itself is inner if 𝐷(𝑋) = 𝑋𝑆 − 𝑆𝑋 

for some 𝑆 in 𝔘. 

Corollary (1.1.10)[1]: Every derivation 𝐷 of ℱ(𝐻∞ + 𝐶)  into ℓ𝒷(𝐻2) is inner. 

Proof. The operator 𝐷 restricted to ℓ𝒷(𝐻2)is a derivation of the compacts into themselves. 

It is well known [3] that every derivation on the compacts has the form 𝐷(𝑋) = 𝑋𝑆 − 𝑆𝑋 

for some 𝑆 in ℓ(𝐻2). If 𝐴 is in ℱ(𝐻∞ − 𝐶)  and 𝐾 is compact, then 

𝐷(𝐴𝐾) = 𝐴𝐾𝑆 − 𝑆𝐴𝐾 = (𝐴𝐾𝑆 − 𝐴𝑆𝐾) + (𝐴𝑆 − 𝑆𝐴)𝐾 = 𝐴𝐷(𝐾) + 𝐷(𝐴)𝐾
= 𝐴𝐾𝑆 − 𝐴𝑆𝐾 +  𝐷(𝐴)𝐾. 

Therefore 𝐷(𝐴)𝐾 = (𝐴𝑆 − 𝑆𝐴)𝐾 f or every compact operator 𝐾. Hence 𝐷(𝐴) = 𝐴𝑆 − 𝑆𝐴. 

Since 𝑆 commutes with all 𝐴 in ℱ(𝐻∞ + 𝐶)  modulo the compacts, we have that 𝑆 is in 

ℱ(𝐻∞ + 𝐶)  by ‘Theorem (1.1.7). 

An immediate consequence of this is the following. 

Corollary (1.1.11)[1]: Every derivation of ℱ(𝐿∞) into the compact operators is of the form 

𝐷(𝑋) = 𝑋𝑆 − 𝑆𝑋 with 𝑆 in ℱ(𝑄𝐶) . 

We consider the matrix-valued case. The operator algebra ℱ(𝐿∞) ⊗𝑀𝑛 acts 𝐻2⊗
ℂ𝑛, 𝑀𝑛 is the 𝑛 × 𝑛 matrix algebra over ℂ. See Douglas [6]. 
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Corollary (1.1.12)[1]: An operator 𝑆 in ℒ(𝐻2⊗ℂ𝑛) commutes module the compacts with 

all operators in ℱ(𝐻∞) ⊗𝑀𝑛, if and only if 𝑆 = 𝑇𝑓⊗ 𝐼𝑛 + 𝐾, where 𝑓 is in 𝐻∞ + 𝐶 and 

𝐾 is compact. 

Proof. Let 𝛿𝑖𝑗 be the 𝑛 × 𝑛 matrix zero everywhere except for a 1 in the (𝑖, 𝑗) entry. A 

simple computation of 𝐷(𝑇ℎ⊗𝛿𝑖𝑗) for ℎ in 𝐻∞shows that 𝑆 has the desired form. 

Corollary (1.1.13)[1]: An operator 𝑆 in (𝐻2⊗ℂ𝑛) is in the essential commutant of 

ℱ(𝐿∞) ⊗𝑀𝑛, if and only if 𝑆 = 𝑇𝑓⊗ 𝐼𝑛 + 𝐾, where 𝑓 is in 𝑄𝐶 and 𝐾 is compact. 

Theorem (1.1.14)[1]: Let 𝛼 be an automorphism of ℱ(𝐻∞) + ℓ𝒷(𝐻2). Then 𝛼 is spatial, 

and has the factorization 𝛼 = 𝛼1𝛼2, where 

(i) 𝛼1(𝑇ℎ) = 𝑇ℎ∘𝑏 or a Blaschke factor 𝑏 = 𝜆(𝑧 − 𝑎) (1 − �̅�𝑧)⁄ , |𝑎| < 1, and |𝜆| =

1. Moregenerally, 𝛼1(𝐴) = 𝑈1 ∗ 𝐴𝑈1 for all 𝐴 in ℱ(𝐻∞) + ℓ𝒷(𝐻2), where 𝑈1 ∗
𝑓 = 𝑒(𝑓 ∘ 𝑏)for 𝑓in 𝐻2 and 𝑒 a unit vector in 𝐻2⊝𝑏𝐻2. 

(ii) 𝛼2(𝐴) = 𝑈2
∗𝐴𝑈2, for a unitary 𝑈2 in ℱ(𝑄𝐶). So 𝑈 = 𝑇𝑔 + 𝐾, where 𝑔 is 

unimodular in 𝑄𝐶 and 𝐾 is compact. 

Proof. Since ℓ𝒷(𝐻2) is the unique minimal closed two-sided ideal in ℱ(𝐻∞) + ℓ𝒷(𝐻2), 

we must have 𝛼(ℓ𝒷(𝐻2) = ℓ𝒷(𝐻2)). So, by a well known theorem [4], there is a unitary- 

operator 𝑊 such that 𝛼(𝐾) = 𝑊 ∗ 𝐾𝑊 for all 𝐾 in ℓ𝒷(𝐻2). If 𝐴 is in ℱ(𝐻∞) + ℓ𝒷(𝐻2),, 
then (𝑊 ∗ 𝐴𝑊)(𝑊 ∗ 𝐾𝑊)𝑊 ∗ 𝐴𝐾𝑊 =  𝛼(𝐴𝐾) = 𝛼(𝐴)𝛼(𝐾) = 𝛼(𝐴)(𝐴)𝑊 ∗ 𝐾𝑊 for all 

compact operators 𝐾. 

Hence 𝛼(𝐴) = 𝑊 ∗ 𝐴𝑊. 

There is a natural map from the automorphisms of ℱ(𝐻∞) + ℓ𝒷(𝐻2) onto the 

automorphisms of 𝐻∞ by projecting into the Calkin algebra. The algebras 𝐻∞, ℱ(𝐻∞) and 

𝜋ℱ(𝐻∞) are isometrically isomorphic as Banach algebras, so we can identify them here. 

The automorphisms of 𝐻∞ are known [10] to be of the form 𝛼(ℎ) = ℎ ∘ 𝑏, where 𝑏 is a 

conformal map of the disc onto itself. 

The kernel of this map is the set of automorphisms 𝛼 such that 𝛼(𝑇ℎ) = 𝑇ℎ + 𝑘, with 

𝑘 compact. Since 𝛼 is spatial, it is induced by a unitary operator 𝑈. So 𝑈 and 𝑈∗ essentially 

commute with ℱ(𝐻∞) . Hence 𝑈 belongs to ℱ(𝑄𝐶) . 

We now show that automorphisms of ℱ(𝐻∞)  are spatial. Let 𝑏 be a conformal 

automorphism of the disc. Let 𝑒 be a unit vector in 𝐻2⊝𝑏𝐻2. Define an operator on 𝐻2 by 

𝑈1 ∗ 𝑓 =  𝑒(𝑓 ∘ 𝑏) for 𝑓 in 𝐻2 Since 𝑒 is in 𝐻2, it follows that 𝑒(𝑓 ∘ 𝑏) is in 𝐻2. A 

computation shows that |𝑑𝑏/𝑑𝑧| = |𝑒|2 . So ‖𝑈1 ∗ 𝑓‖
2 = ∫|𝑒(𝑓 ∘ 𝑏)|2 𝑑𝑧 = ∫|𝑓|2 =

𝑏 |
𝑑𝑏

𝑑𝑧
| 𝑑𝑧 = ∫|𝑓|2𝑑𝑧 = ‖𝑓‖2

2. The operator 𝑈1 ∗ is clearly invertible, hence it is unitary on 

𝐻2. If ℎ is in 𝐻∞,  

𝑈1 ∗ 𝑇ℎ𝑈1𝑒(𝑓 ∘ 𝑏) = 𝑈1 ∗ 𝑇ℎ𝑓 = 𝑒(𝑓ℎ ∘ 𝑏) = (ℎ ∘ 𝑏)𝑒(𝑓 ∘ 𝑏) = 𝑇ℎ∘𝑏𝑒(𝑓 ∘ 𝑏). 
Hence, 𝑈1 ∗ 𝑇ℎ𝑈1 = 𝑇ℎ∘𝑏. 

Let 𝛼 be an automorphism of ℱ(𝐻∞) + ℓ𝒷(𝐻2). Then 𝜋𝛼 is an automorphism of 

𝐻∞. This lifts to a spatial automorphism of ℱ(𝐻∞) , 𝛼1(𝐴) = 𝑈1 ∗ 𝐴𝑈1. Let 𝛼2 =
𝛼1
−1𝛼.Since 𝜋𝛼2is the identity, we have 𝛼2(𝐴) = 𝑈2 ∗ 𝐴𝑈2, for some unitary 𝑈2 in ℱ(𝑄𝐶). 

Note added in proof. Theorem (1.1.14) is also valid for the automorphisms of 

ℱ(𝐻∞) + 𝐶. 
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Section (1.2): Several Complex Variables 

For 𝑆 be the unit sphere in 𝑪𝑛. We investigate the properties of Toeplitz operators on 

𝑆, i.e., operators of the form 𝑇𝜙𝑓 = 𝑃(𝜙𝑓) where 𝜙 ∈ 𝐿∞(𝑆) and 𝑃 denotes the projection 

of 𝐿2(𝑆) onto 𝐻2(𝑆). We aim to determine how far the extensive one-variable theory 

remains valid in higher dimensions. We establish the spectral inclusion theorem, that the 

spectrum of 𝑇𝜙 contains the essential range of 𝜙, and obtain a characterization of the 

Toeplitz operators among operators on 𝐻2(𝑆) by an operator equation. Particular attention 

is paid to the case where 𝜙 ∈ 𝐻∞(𝑆) +  𝐶(𝑆) where 𝐶(𝑆) denotes the algebra of continuous 

functions on 𝑆. Finally we describe a class of Toeplitz operators useful for providing 

counterexamples-in particular, Widom’s theorem on the connectedness of the spectrum fails 

when 𝑛 > 1. 

The Toeplitz operators on the classical Hardy space 𝐻2 on the unit circle have been 

the object of much study. They are operators of the form 𝑇𝜙𝑓 = 𝑃(𝜙𝑓) where 𝜙 ∈ 𝐿∞ and 

𝑃 denotes the projection of 𝐿2 onto 𝐻2. An account of this theory, which is concerned mainly 

with describing the spectra of these operators, and with operator algebras generated by them, 

can be found in Douglas [5]. Recently there have been several important developments in 

function theory on the unit circle which are relevant to Toeplitz operators. For a survey see 

Sarason [22]; for more recent results, describing subalgebras of 𝐿∞ containing 𝐻∞, see 

Marshall [19] and Chang [15], [16]. 

We to study Toeplitz operators on the unit sphere in 𝑪𝑛, in particular to determine 

how far the one-variable theory remains valid. In this context Toeplitz operators with 

continuous symbol have been studied by Coburn [l] and some related operators by Coifman, 

Rochberg, and Weiss [14]. 

We establish the spectral inclusion theorem, that the spectrum of 𝑇𝜙 contains the 

essential range of 𝜙, answering a question of Coburn [13]. We also show that Toeplitz 

operators can be characterized among operators on 𝐻2by an operator equation, we also study 

Toeplitz operators with symbol in 𝐻∞ + 𝐶 and we consider a class of Toeplitz operators 

useful for providing counterexamples-in particular, Widom’s theorem on the connectedness 

of the spectrum fails when 𝑛 > 1. A large number of questions are left open. 

We denote by 𝐵 the open unit ball and by 𝑆 the unit sphere in the 𝑛-dimensional 

complex Euclidean space, 𝑪𝒏, of all ordered 𝑛-tuples 𝑧 = (𝑧1 , . . . , 𝑧𝑛) of complex numbers 

𝑧𝑖, with the usual inner product 〈𝑧, 𝑤〉 = 𝑧1�̅�1 +⋯+ 𝑧𝑛�̅�𝑛, and the corresponding norm 

‖𝑧‖ = 〈𝑧, 𝑧〉1/2. We assume 𝑛 > 1 unless otherwise stated. 𝜎 denotes surface area measure 

on 𝑆. We write 𝐿∞ for 𝐿∞(𝜎), 𝐿2for 𝐿2(𝜎). 𝐻2 denotes the closure in 𝐿2 of the polynomials 

in the coordinate functions 𝑧1 , . . . , 𝑧𝑛. We write 𝐶 for 𝐶(𝑆), the algebra of all continuous 

functions on 𝑆. 

If 𝑓 ∈ 𝐿∞, ℛ(𝑓) denotes the essential range of 𝑓, i.e., the spectrum of 𝑓 in 𝐿∞. 

If 𝑓 ∈ 𝐿∞ then the Poisson integral of 𝑓 gives a bounded harmonic function 𝐹 on 𝐵, 

and 𝐹 has radial boundary limits equal to f almost everywhere. This correspondence gives 

an isometry between 𝐿∞ and the space of bounded harmonic functions on 𝐵 with the 

supremum norm. Under this correspondence, the algebra of bounded analytic functions on 

𝐵 corresponds to a closed subalgebra 𝐻∞ of 𝐿∞. 
If 𝜙 ∈ 𝐿∞ we denote by 𝑇𝜙 the operator on the Hilbert space 𝐻2 defined by 𝑇𝜙𝑓 =

𝑃(𝜙𝑓) where 𝑃 denotes the orthogonal projection of 𝐿2 on 𝐻2. 𝑇𝜙 is called the Toeplitz 

operator with symbol 𝜙. If 𝑇 is any operator on 𝐻2, 𝜎(𝑇)denotes the spectrum of 𝑇 and 
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𝜎𝑒(𝑇) denotes the essential spectrum of 𝑇, i.e., the set of 𝝀 ∈ 𝑪such that 𝑇 − 𝝀 is not 

Fredholm [5]. 𝐵𝐿(𝐻2) denotes the algebra of all bounded linear operators on 𝐻2. 

We note two easily verified identities: (𝑇𝜙)
∗
= 𝑇 - and 𝑇𝜙𝑇𝜓 = 𝑇𝜙𝜓for 𝜙 ∈ 𝐿∞, 𝜓 ∈

𝐻∞. 

We answer a question of Coburn [13] by showing that for 𝜙 in 𝐿∞ we have ‖𝑇𝜙‖ =
‖𝜙‖∞. We obtain this result as a corollary of Theorem (1.2.1) which shows that the 

invertibility of a function, 𝜙 in 𝐿∞ follows from the invertibility of 𝑇𝜙 in 𝐵𝐿(𝐻2). These 

results are known for 𝑛 = 1 [5]. 

Before stating the result we make the remark that if 𝜓 is a nonnegative measurable 

function on 𝑪, if 𝑧 ∈ 𝑆, and if 𝐹(𝜁) = 𝜓〈𝑧, 𝜁〉(𝜁 ∈ 𝑪𝑛), then ∫ 𝐹𝑑𝜎
𝑆

 is independent of 𝑧. 

This follows since 𝑑𝜎 is a rotation-invariant measure. 

Theorem (1.2.1)[12]: If 𝜙 is a function in 𝐿∞ such that 𝑇𝜙 is invertible then 𝜙 is invertible 

in 𝐿∞. 

Proof. Suppose that 𝑇𝜙 is invertible. Then there exists an 𝜖 > 0 such that ‖𝑇𝜙𝑓‖2
≥ 𝜖‖𝑓‖2 

for all 𝑓 in 𝐻2. Then 

‖𝜙𝑓‖2 ≥ 𝜖‖𝑓‖2for all 𝑓 in 𝐻
2                     (1) 

Now, by the remark above, 𝑐𝑘 = ∫ |1 + 〈𝑧, 𝜁〉|2𝑘
𝑆

𝑑𝜎(𝜁) is independent of 𝑧 in 𝑆. So, for 

any neighborhood 𝑈 of 𝑧 in 𝑆 we have 

𝑐𝑘
−1∫ |1 + 〈𝑧, 𝜁〉|2𝑘

𝑆\𝑈

𝑑𝜎(𝜁) → 0          as 𝑘 → ∞. 

So, for any 𝑔 ∈  𝐶, it follows that 

𝑐𝑘
−1∫ 𝑔(𝜁)|1 + 〈𝑧, 𝜁〉|2𝑘

𝑆

𝑑𝜎(𝜁) → 𝑔(𝑧)  𝑎𝑠 𝑘 → ∞(𝑧 ∈ 𝑆).        (2) 

Now, consider (1) for the particular case 𝑓(𝑧) = (1 + 〈𝑧, 𝜁〉)where 𝜁 ∈ 𝑆. We have 

∫ |𝜙𝑧|2|1 + 〈𝑧, 𝜁〉|2𝑘𝑑𝜎(𝑧) ≥ 𝜖2𝑐𝑘𝑆
. So, for 𝑔 ∈ 𝐶, 𝑔 ≥ 0 we conclude that 

𝑐𝑘
−1∫ ∫ |𝜙𝑧|2𝑔(𝜁)|1 + 〈𝑧, 𝜁〉|2𝑘𝑑𝜎(𝑧)𝑑𝜎(𝜁) ≥ 𝜖2∫ 𝑔(𝜁)𝑑𝜎(𝜁)

𝑆𝑆𝑆

.  

So  

∫ |𝜙𝑧|2𝑔(𝑧)𝑑𝜎(𝑧) ≥ 𝜖2∫ 𝑔(𝜁)𝑑𝜎(𝜁)
𝑆𝑆

 

Using Fubini’s theorem and (2). Since this is true for all positive 𝑔 in 𝐶 it follows that 

|𝜙𝑧| ≥ 𝜖 a.e., and so 𝜙 is invertible in 𝐿∞. 

As a corollary we obtain the spectral inclusion theorem: 

Corollary (1.2.2)[12]: If 𝜙 is in 𝐿∞, then ℛ(𝜙) =  𝜎(𝑀𝜎) ⊆ 𝜎(𝑇𝜙). 

(𝑀𝜎 denotes the operator of multiplication by 𝜙 on 𝐿∞). 

Corollary (1.2.3)[12]: If 𝜙 is in 𝐿∞, then ‖𝑇𝜙‖ = ‖𝜙‖∞. 

We now use similar methods to examine the mapping 𝜂 from 𝐿∞ to 𝐵𝐿(𝐻2) defined 

by 𝜂(𝜙) = 𝑇𝜙. Let 𝐴 be the closed algebra of 𝐵𝐿(𝐻2) generated by all the Toeplitz 

operators, 𝑇𝜙, with 𝜙 ∈ 𝐿∞. Let 𝐼 be the closed ideal of 𝐴 generated by operators of the form 

𝑇𝜙𝜓 − 𝑇𝜙𝑇𝜓where 𝜙𝜓 are in 𝐿∞. 
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Theorem (1.2.4)[12]: The mapping 𝜂𝐼 induced from 𝐿∞ to 𝐴/𝐼 by 𝜂 is an isometric ∗-
isomorphism. 

Proof. The mapping 𝜂𝐼 is clearly linear and contractive. The definition of 𝐼 shows that it is 

multiplicative. To complete the proof we show that ‖𝑇𝜙 + 𝐼‖ ≥ ‖𝜙‖∞for 𝜙 in 𝐿∞ from 

which it follows that 𝜂𝐼is an isometry. To do this, it suffices to show that if 𝑝 is a 

noncommuting polynomial in 𝑘 variables and 𝜙1, … , 𝜙𝑘 ∈ 𝐿
∞ then  

‖𝑃(𝑇𝜙1 , … , 𝑇𝜙𝑘)‖ ≥ ‖𝑃(𝜙1, … , 𝜙𝑘)‖∞ 

Assume ‖𝑃(𝜙1, … , 𝜙𝑘)‖∞ = 1. Then there exists 𝜆1, … , 𝜆𝑘 in the joint spectrum Of 

(𝜙1, … , 𝜙𝑘) such that |𝑃(𝜆1, … , 𝜆𝑘)| = 1. Let 𝜀 > 0. Then since ∑ |𝜙𝑗 − 𝜆𝑖|
2𝑘

𝑗=1 is not 

bounded below, the argument used in the proof of Theorem (1.2.1) shows that there exists 

𝑓 ∈ ℎ2 such that ‖𝑓‖2 = 1 and ∫ ∑ |𝜙𝑗 − 𝜆𝑖|
2𝑘

𝑗=1𝑆
|𝑓|2𝑑𝜎 < 𝜖2.  

So for each 𝑗, ‖(𝜙𝑗 − 𝜆𝑖) 𝑓‖2 < 𝜖 so ‖𝑇𝜙𝑖𝑓 − 𝜆𝑖𝑓‖2
< 𝜖.  

Then ‖𝑃(𝑇𝜙1 , … , 𝑇𝜙𝑘)𝑓 − 𝑃(𝜆1, … , 𝜆𝑘)𝑓‖ can be made arbitrarily small by choosing 𝜖 

small enough, whence ‖𝑃(𝑇𝜙1 , … , 𝑇𝜙𝑘)‖ ≥ 1. 

When 𝑛 = 1, 𝐼 coincides with the commutator ideal of 𝐴[5]. It is not clear whether 

this holds in general, though 𝐼 clearly contains the commutator ideal. 

As a corollary to the theorem we obtain the following sharpening of the spectral 

inclusion theorem. 

Corollary (1.2.5)[12]: If 𝜙 ∈ 𝐿∞then ℛ(𝜙) =  𝜎(𝑀𝜎) ⊆ 𝜎𝑒(𝑇𝜙). 

Proof. By a result of Coburn [13], 𝐼 contains the ideal 𝒦 of all compact operators. Now 

𝜎𝑒(𝑇𝜙) is the spectrum of the coset of 𝑇𝜙 in 𝐴/𝒦 (since 𝐴 is a 𝐶∗-algebra) and so contains 

the spectrum of 𝑇𝜙 in 𝐴/𝐼, and hence by the theorem contains ℛ(𝜙). 

We remark that for any 𝜙 ∈ 𝐿∞, 𝜎(𝜙)is contained in the convex hull of ℛ(𝜙). In 

particular, if 𝜙 is real valued then 𝜎(𝑇𝜙) is contained in the interval [ess inf 𝜙, ess sup 𝜙]. 

We conjecture that in fact 𝜎(𝑇𝜙) is equal to this interval; this is true when 𝑛 = 1[5]. 

Finally we identify the spectra when 𝜙 ∈ 𝐻∞. 

Proposition (1.2.6)[12]: If 𝜙 ∈ 𝐻∞ then 𝜎𝑒(𝑇𝜙) (and so also 𝜎(𝑇𝜙)) coincides with the 

spectrum of 𝜙 in 𝐻∞. 

Proof. We have to show that if 𝑇𝜙 is Fredholm then 𝜙 is invertible in 𝐻∞. The corollary to 

Theorem (1.2.4) shows that 𝜙 is invertible in 𝐿∞. Then 𝑇𝜙−1𝑇𝜙 = 1 so the operator 

𝐻𝜙−1: 𝐻
2 → 𝐿2defined by 𝐻𝜙−1𝑓 = 𝜙

−1𝑓 − 𝑇𝜙−1𝑓 has finite rank. Hence there is an 

integer 𝑚 and complex numbers 𝑎1, . . . , 𝑎𝑚,not all zero, with 𝐻𝜙−1𝑓 = 0 where 𝑓(𝑧) =

∑ 𝑎𝑘𝑧1
𝑘𝑚

𝑘=0 . So 𝜙−1𝑓 ∈ 𝐻2. That 𝜙−1 ∈ 𝐻∞ is a consequence of the following fact: 

If 𝑔 ∈ 𝐿∞ and 𝑔(𝑧)(𝑧1 − 𝜆)is in 𝐻∞ for some 𝜆 ∈ 𝑪 then 𝑔 ∈ 𝐻∞. 

We remark that Proposition (1.2.6) is false if 𝑛 = 1 − 𝜎𝑒(𝑇𝑧) is the unit circle. 

It may be conjectured that the spectrum of 𝜙 in 𝐻∞ coincides with ℛ(𝜙) −or 

equivalently, that if 𝜙 ∈ 𝐻2 and 𝜙 is invertible in 𝐿∞ then 𝜙−1 ∈ 𝐻∞. (This is of course 

false when 𝑛 = 1.) This would imply that any inner function is constant (𝜙 ∈ 𝐻2 is inner if 
|𝜙| = 1 a.e. on 𝑆). For a discussion of questions of this type see [20]. We merely remark 

here that the question of the existence of inner functions can be expressed in operator-

theoretic form. For if 𝜙 ∈ 𝐻2then 𝜙 is inner if and only if 𝑇𝜙 is an isometry (if 𝑇𝜙 is an 

isometry then 𝑇𝜙 ∗ 𝑇𝜙 = 1 so 𝑇(1−|𝜙|2) = 0 so (1 − |𝜙|2) = 0). From this we can get a 
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condition for 𝜙 to be inner in terms of its power series coefficients. Considering the case 

𝑛 = 2 for simplicity, suppose 𝜙(𝑧1, 𝑧2) = ∑ 𝑎𝑘𝑙𝑧1
𝑘𝑧2

𝑙∞
𝑘,𝑙=0 . Using the fact that 

{
1

𝜋21 2⁄
(
(𝑘 + 𝑙 + 1)!

𝑘! 𝑙!
)

1 2⁄

𝑧1
𝑘𝑧2

𝑙} 

forms an orthonormal basis for 𝐻2, we find that 𝜙 is inner if and only if, for all 𝑚,𝑛, 𝑟 ∈ ℤ 

with 𝑟 ≥ 0, 

∑ 𝑎𝑘𝑙�̅�𝑘+𝑚,𝑙+𝑛
(𝑘 + 𝑟)! 𝑙!

(𝑘 + 𝑟 + 𝑙 + 1)!

∞

𝑘,𝑙=0

= {
(𝑟 + 1)−1if 𝑚 = 𝑛 = 0
0                  otherwise,

 

where 𝑎𝑟𝑠 is interpretated as 0 if 𝑟 < 0 or 𝑠 < 0. An equivalent condition is: for all 𝑚, 𝑛 ∈
ℤ and almost all 𝜌 ∈  [0, 𝐼], 

∑ 𝑎𝑘𝑙�̅�𝑘+𝑚,𝑙+𝑛𝜌
𝑘(1 − 𝜌)𝑙

∞

𝑘,𝑙=0

= {
1         if 𝑚 = 𝑛 = 0
0            otherwise.

 

So the inner function problem is equivalent to the problem of finding {𝑎𝑘𝑙} to satisfy these 

conditions (apart from the trivial solution where 𝑎00 is the only nonzero term). 

We end by showing that the Toeplitz operators are characterized among all operators 

on 𝐻2 by the equation 

∑𝑇�̅�𝑘𝑇𝑇𝑧𝑘 = 𝑇.

∞

𝑘=1

 

We first obtain a characterization of multiplication operators on 𝐿2 in a more general setting. 

Proposition (1.2.7)[12]: Let 𝑀1, … ,𝑀𝑛 be commuting normal operators on a Hilbert space 

𝐻 with ∑ 𝑀𝑟 ∗ 𝑀𝑟
𝑛
𝑟=1 = 1. Let 𝑇 ∈ 𝐵𝐿(𝐻) satisfy ∑ 𝑀𝑟 ∗ 𝑇𝑀𝑟

𝑛
𝑟=1 = 𝑇. Then 𝑇 commutes 

with 𝑀𝑟 ,𝑀𝑟 ∗ (𝑟 = 1,… , 𝑛). 
Proof. For any positive integer m and 𝑓, 𝑔 ∈  𝐻 we have 

〈𝑇𝑓, 𝑔 〉 = ∑
𝑚!

𝑘1! … 𝑘𝑛!
〈𝑇𝑀1

𝑘1 …𝑀𝑛
𝑘𝑛𝑓,𝑀1

𝑘1 …𝑀𝑛
𝑘𝑛𝑔〉

𝑘1+⋯+𝑘𝑛=𝑚

. 

So  
〈(𝑇𝑀1 −𝑀1𝑇)𝑓, 𝑔〉

= ∑
𝑚!

𝑘1! … 𝑘𝑛!
〈𝑇𝑀1

𝑘1+1…𝑀𝑛
𝑘𝑛𝑓,𝑀1

𝑘1 … 𝑀𝑛
𝑘𝑛𝑔〉

𝑘1+⋯+𝑘𝑛=𝑚

− ∑
(𝑚 + 1)!

(𝑘1 + 1)! 𝑘2! … 𝑘𝑛!
〈𝑇𝑀1

𝑘1+1… 𝑀𝑛
𝑘𝑛𝑓, 𝑀1 ∗ 𝑀1

𝑘1+1 …𝑀𝑛
𝑘𝑛𝑔〉

𝑘1+⋯+𝑘𝑛=𝑚

− ∑
(𝑚 + 1)!

𝑘2! … 𝑘𝑛!
〈𝑇𝑀2

𝑘2 … 𝑀𝑛
𝑘𝑛𝑓, 𝑀1 ∗ 𝑀2

𝑘2 … 𝑀𝑛
𝑘𝑛𝑔〉

𝑘2+⋯+𝑘𝑛=𝑚+1

= ∑
𝑚!

𝑘1! … 𝑘𝑛!
〈𝑇𝑀1

𝑘1+1…𝑀𝑛
𝑘𝑛𝑓, (1 −

𝑚 + 1

𝑘1 + 1
𝑀1 ∗ 𝑀1)𝑀1

𝑘1 …𝑀𝑛
𝑘𝑛𝑔〉

𝑘2+⋯+𝑘𝑛=𝑚

− ∑
(𝑚 + 1)!

𝑘2! … 𝑘𝑛!
〈𝑇𝑀2

𝑘2 …𝑀𝑛
𝑘𝑛𝑓,𝑀1 ∗ 𝑀2

𝑘2 …𝑀𝑛
𝑘𝑛𝑔〉

𝑘2+⋯+𝑘𝑛=𝑚+1

. 
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So 

‖𝑇‖−1|〈(𝑇𝑀1 −𝑀1𝑇)𝑓, 𝑔〉|

≤ ∑
𝑚!

𝑘1! … 𝑘𝑛!
‖𝑀1

𝑘1+1…𝑀𝑛
𝑘𝑛𝑓‖

𝑘1+⋯+𝑘𝑛=𝑚

‖(1 −
𝑚 + 1

𝑘1 + 1
𝑀1

∗ 𝑀1)𝑀1
𝑘1 …𝑀𝑛

𝑛𝑛𝑔‖

+ ∑
(𝑚 + 1)!

𝑘2! … 𝑘𝑛!
‖𝑀2

𝑘2…𝑀𝑛
𝑘𝑛𝑓‖

𝑘2+⋯+𝑘𝑛=𝑚+1

‖𝑀1 ∗ 𝑀2
𝑘2 …𝑀𝑛

𝑘𝑛𝑔‖

≤ [ ∑
(𝑚 + 1)!

(𝑘1 + 1)!… 𝑘𝑛!
‖𝑀1

𝑘1+1…𝑀𝑛
𝑘𝑛𝑓‖

2

𝑘1+⋯+𝑘𝑛=𝑚

+ ∑
(𝑚 + 1)!

𝑘2! … 𝑘𝑛!
‖𝑀2

𝑘2…𝑀𝑛
𝑘𝑛𝑓‖

2

𝑘2+⋯+𝑘𝑛=𝑚+1

]

1 2⁄

× [ ∑
𝑚!

𝑘1! … 𝑘𝑛!

𝑘1 + 1

(𝑚 + 1)
‖(1 −

𝑚 + 1

𝑘1 + 1
𝑀1 ∗ 𝑀1)𝑀1

𝑘1 …𝑀𝑛
𝑘𝑛𝑔‖

2

𝑘1+⋯+𝑘𝑛=𝑚

+ ∑
(𝑚 + 1)!

𝑘2! … 𝑘𝑛!
‖𝑀1 ∗ 𝑀2

𝑘2…𝑀𝑛
𝑘𝑛𝑔‖

2

𝑘2+⋯+𝑘𝑛=𝑚+1

]

1 2⁄

. 

The expression in the first square brackets is equal to 

〈 ∑
(𝑚 + 1)!

𝑝1! … 𝑝𝑛!
(𝑀1 ∗ 𝑀1)

𝑝1 … (𝑀𝑛 ∗ 𝑀𝑛)
𝑝𝑛𝑓, 𝑓

𝑝1+⋯+𝑝𝑛=𝑚+1

〉

=  〈(𝑀1 ∗ 𝑀1 +⋯+𝑀𝑛 ∗ 𝑀𝑛)
𝑚+1 𝑓, 𝑓〉 = ‖𝑓‖2, 

and the expression in the second square bracket can be similarly reduced to 

[1 (𝑚 + 1)⁄ ](‖𝑔‖2 − ‖𝑀1𝑔‖
2). 

So |〈(𝑇𝑀1 −𝑀1𝑇)𝑓, 𝑔〉| ≤ [1 (𝑚 + 1)
1 2⁄⁄ ]‖𝑓‖‖𝑔‖‖𝑇‖. and since 𝑚 is arbitrary, 𝑇𝑀1 −

𝑀1𝑇 = 0. Similarly, 𝑇 commutes with 𝑀2, … ,𝑀𝑛 and with 𝑀1 ∗,… ,𝑀2 ∗. 
We are indebted to S. C. Power for the following lemma: 

Lemma (1.2.8)[12]: Let 𝑇 ∈ 𝐵𝐿(𝐻2) satisfy ∑ 𝑇�̅�𝑘𝑇𝑇𝑧𝑘
𝑛
𝑘=1 = 𝑇. Then there is 𝑆 ∈ 𝐵𝐿(𝐿2) 

with‖𝑆‖ = ‖𝑇‖, ∑ 𝑀�̅�𝑘𝑆𝑀𝑧𝑘
𝑛
𝑘=1 = 𝑆, and such that 𝑇 is the compression of 𝑆 to 𝐻2. 

Proof. Define 𝜓:𝐵𝐿(𝐿2) →∈ 𝐵𝐿(𝐿2) by 𝜓(𝑅) = ∑ 𝑇�̅�𝑘𝑅𝑇𝑧𝑘
𝑛
𝑘=1 . Then ‖𝜓(𝑅)‖ ≤ ‖𝑅‖. Let 

�̃� be any operator on 𝐿2 whose compression is 𝑇, with ‖�̃�‖ = ‖𝑇‖. Let 𝑆𝑚 =

(1 𝑚⁄ )∑ 𝜓𝑟(�̃�)𝑚
𝑟=1  and let 𝑆 be a weak operator topology limit point of {𝑆𝑚}. Then 𝑆 has 

the required properties (easy to check). 

Theorem (1.2.9)[12]: Let 𝑇 ∈ 𝐵𝐿(𝐻2). Then 𝑇 is 𝑇𝜙 for some 𝜙 ∈ 𝐿2 if and only if 

∑ 𝑇�̅�𝑘𝑇𝑇𝑧𝑘
𝑛
𝑘=1 = 𝑇. 

Proof. That 𝑇𝜙 satisfies the equation is easy. Conversely if 𝑇 satisfies the equation, and 𝑆 is 

the operator given by Lemma (1.2.8), then Proposition (1.2.7) shows that 𝑆 commutes with 

𝑀𝑧𝑘 and 𝑀�̅�𝑘(𝑘 = 1,… , 𝑛). So 𝑆 = 𝑀𝜙 for some 𝜙 ∈ 𝐿∞and 𝑇 = 𝑇𝜙. 
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Note that: (i) Proposition (1.2.7) and Lemma (1.2.8) together  with the easily verified 

fact that 𝑇𝜓 = 0 ⟹ 𝜓 = 0 provide an alternative proof of the fact that ‖𝑇𝜙‖ = ‖𝜙‖∞ or 

every Toeplitz operator, 𝑇𝜙. 

(ii) One can define Toeplitz operators with 𝜎 replaced by any positive Bore1 measure 

on 𝑆; then Theorems (1.2.1), (1.2.4), (1.2.9) still hold, with essentially the same proofs. 

We denote by 𝐻∞ + 𝐶 the set of all functions 𝑓 ∈ 𝐿∞ which can be expressed in the 

form 𝑓 = 𝑢 + 𝑣 where 𝑢 ∈ 𝐻∞ and 𝑣 ∈ 𝐶. Rudin [21] showed that 𝐻∞ + 𝐶 is a closed 

subalgebra of 𝐿∞. We consider Toeplitz operators with symbol belonging to this algebra; 

these are somewhat more tractable than general Toeplitz operators. 

Coburn [13] studied Toeplitz operators with symbol in 𝐶. He showed that the 

commutator ideal of the closed algebra generated by {𝑇𝜙: 𝜙 ∈ 𝐶} is precisely the algebra of 

all compact operators on 𝐻∞, and coincides with the closed ideal generated by 

{𝑇𝜙𝜓 − 𝑇𝜙𝑇𝜓: 𝜙, 𝜓 ∈ 𝐶}. His arguments are easily modified to show that if 𝜙 ∈ 𝐶 then the 

operator 𝐻𝜙: 𝐻
2 → 𝐿2 given by 𝐻𝜙𝑓 = 𝜙𝑓 − 𝑇𝜙𝑓 is compact. This implies that 𝑇𝜙 

commutes modulo the compact operators with any Toeplitz operator, so the second sentence 

of this paragraph is true with 𝐶 replaced by 𝐻∞ + 𝐶. It then follows from Theorem (1.2.4) 

that the closed algebra generated by {𝑇𝜙: 𝜙 ∈ 𝐻
∞ + 𝐶} is precisely the set of operators of 

the form 𝑇𝜙 + 𝐾 where 𝜙 ∈ 𝐻∞ + 𝐶 and 𝐾 is a compact operator on 𝐻2. This extends [5]. 

We consider spectra. Let 𝜙 ∈ 𝐻∞ + 𝐶, and let 𝜎(𝜙) denote its spectrum as an element 

of 𝐻∞ + 𝐶. Then using the result of the above paragraph we have 

ℛ(𝜙) ⊆ 𝜎𝑒(𝑇𝜙) ⊆ 𝜎(𝜙). 

It seems likely that 𝜎𝑒(𝑇𝜙) = 𝜎(𝜙). We make the stronger conjecture that in fact ℛ(𝜙) =

𝜎(𝜙). This conjecture is equivalent to the assertion that if 𝜙 ∈ 𝐻∞ + 𝐶 and 𝜙 is invertible 

in 𝐿∞ then 𝜙−1 ∈ 𝐻∞ + 𝐶. It is easy to see that if 𝜙 ∈ 𝐻∞ and 𝜙 is invertible in 𝐻∞ + 𝐶 

then 𝜙−1 ∈ 𝐻∞. So the above conjecture would imply the conjecture discussed after 

Proposition (1.2.6). 

Another problem concerns connectedness of the spectra. For 𝑛 = 1, 𝜎(𝑇𝜙) and 

𝜎𝑒(𝑇𝜙) are always connected, for any 𝜙 ∈ 𝐿∞[5]. For 𝑛 > 1, if 𝜙 ∈ 𝐶 then 𝜎𝑒(𝑇𝜙) 

coincides with the range of 𝜙 and so is connected. If 𝜙 ∈ 𝐻∞ then both 𝜎(𝑇𝜙) and 𝜎𝑒(𝑇𝜙) 

coincide with the spectrum of 𝜙 in 𝐻∞, which is connected (because 𝐻∞ contains no 

nontrivial idempotents). However, we show that there exists 𝜙 ∈ 𝐿∞ with 𝜎𝑒(𝑇𝜙) 

disconnected, and 𝜙 ∈ 𝐶with 𝜎(𝑇𝜙) disconnected. We conjecture that if 𝜙 ∈ 𝐻∞ + 𝐶then 

𝜎𝑒(𝑇𝜙)is connected. If it were true that 𝜎𝑒(𝑇𝜙) = 𝜎(𝜙) then this would follow since 𝜎(𝜙) 

is connected (because 𝐻∞ + 𝐶 has no nontrivial idempotents-for if 𝑓 ∈ 𝐻∞ + 𝐶 satisfies 

𝑓2 = 𝑓 then its Poisson integral 𝐹 on 𝐵 satisfies 𝐹(𝑧)2 − 𝐹(𝑧) → 0 as 𝑑(𝑧, 𝑆) → 0, so either 

𝐹(𝑧) → 0 or 𝐹(𝑧) → 1 as 𝑑(𝑧, 𝑆) → 0, so either 𝑓 = 0 or 𝑓 = 1). 

We conjecture also that the set 𝜎(𝑇𝜙)\𝜎𝑒(𝑇𝜙) is discrete whenever 𝜙 ∈ 𝐻∞ + 𝐶 (it 

may even be true for all 𝜙 in 𝐿∞). This would contrast with the case 𝑛 = 1 where 𝜎(𝑇𝜙) is 

obtained from 𝜎𝑒(𝑇𝜙) by filling in holes. A class of functions for which this is true is 

described. We have not been able to prove it even for 𝜙 ∈ 𝐶, but we can prove the following 

weaker assertion for 𝜙 ∈ 𝐻∞ + 𝐶. 

First we need the solution of the �̅�-problem with bounds [18]: 
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Suppose 𝑢1, … , 𝑢𝑛 are smooth bounded functions on 𝐵 satisfying 𝜕𝑢𝑖/𝜕𝑧�̅� =

𝜕𝑢𝑗/𝜕𝑧�̅�for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Then there exists 𝑓, smooth and uniformly continuous on 𝐵, with 

𝑢𝑖 = 𝜕𝑓/𝜕𝑧�̅� on 𝐵(1 ≤ 𝑖 ≤ 𝑛). 
Using this fact and the proof of [17] we obtain the following version of the solution 

of the second Cousin problem. If 𝑊 is open, 𝐴(𝑊)denotes the algebra of all continuous 

functions on �̅� which are analytic on 𝑊. 

 Suppose 𝑈1, … , 𝑈𝑚 is an open cover of �̅�. Suppose that for each 𝑖 and 𝑗 with 𝑈𝑖 ∩

𝑈𝑗 ∩ 𝐵 ≠ ∅ we are given 𝜙𝑖𝑗 ∈ 𝐴(𝑈𝑖 ∩ 𝑈𝑗 ∩ 𝐵) such that 𝜙𝑖𝑗𝜙𝑗𝑖 = 1 and 𝜙𝑖𝑗𝜙𝑗𝑘𝜙𝑘𝑖 = 1 

on 𝑈𝑖 ∩ 𝑈𝑗 ∩ 𝑈𝑘 ∩ 𝐵. Then there exists, for 𝑖 = 1, . . . , 𝑛, an invertible element 𝜙𝑖 of 

𝐴(𝑈𝑖 ∩ 𝐵) such that 𝜙𝑖𝑗 = 𝜙𝑖
−1𝜙𝑗 . 

For the proof of Theorem (1.2.12) it will be convenient to use a somewhat different 

version of 𝐻∞ + 𝐶, defined on 𝐵 rather than 𝑆. We denote by 𝐻 the set of all functions 𝑓 on 

𝐵 which can be expressed as 𝑓 = 𝑢 + 𝑣 where 𝑢 ∈ 𝐻∞ and 𝑣 is uniformly continuous. 𝐻 

can also be described as the set of functions 𝑓 of the form 𝑔 + ℎ where 𝑔 is the Poisson 

integral of a function in 𝐻∞ + 𝐶 and ℎ is continuous on �̅�, vanishing on 𝑆. It is clear from 

this that 𝐻 is a (uniformly) closed algebra of functions on 𝐵, and the mapping 𝑔 + ℎ → 𝑔 is 

an algebra homo-morphism of 𝐻 onto 𝐻∞ + 𝐶. 

Lemma (1.2.10)[12]: Let 𝑥 ∈ 𝑆, let 𝑈 be an open set containing 𝑥, and let 𝑓 be a bounded 

analytic function on 𝑈 ∩ 𝐵. Then there exists 𝑔 ∈ 𝐻 and an open set 𝑉 containing 𝑥, with 

𝑔 = 𝑓 on 𝑉 ∩ 𝐵. 

Proof. Let 𝑉 be any open set with 𝑥 ∈ 𝑉 and �̅� ⊆ 𝑈. Let ℎ be smooth with support in 𝑈 and 

ℎ = 1 on 𝑉. Define 𝑢𝑖 on 𝑈 by 𝑢𝑖 = 𝜕(𝑓ℎ)/𝜕𝑧�̅� = 𝑓(𝜕ℎ/𝜕𝑧�̅�) (𝑖 = 1,… , 𝑛) and extend to 

𝐵 by 𝑢𝑖 = 0 on 𝐵\𝑈. Then 𝑢𝑖 are smooth on 𝐵, and bounded, and 𝜕𝑢𝑖/𝜕𝑧�̅� = 𝜕𝑢𝑖/𝜕𝑧�̅� so 

𝑢𝑖 = 𝜕𝜙/𝜕𝑧�̅� where 𝜙 is smooth and uniformly continuous on 𝐵. Then (𝜕/𝜕𝑧�̅�)(𝜙 − 𝑓ℎ)  =
0 so 𝜙 − 𝑓ℎ ∈ 𝐻∞, so 𝑓ℎ = 𝜙 − (𝜙 − 𝑓ℎ) ∈ 𝐻. 

Since 𝑓ℎ = 𝑓 on 𝑉, this proves the lemma. 

Lemma (1.2.11)[12]: Let 𝑓 be an invertible element of 𝐻∞ + 𝐶. Then there exist invertible 

elements 𝑢 of 𝐻∞ and 𝑣 of 𝐶 with 𝑓 = 𝑢𝑣. 

Proof. Denote the Poisson integral of 𝑓 also by 𝑓. Then 𝑓 is an invertible element of 𝐻. It 

is clearly enough to find 𝑢 invertible in 𝐻∞ and 𝑣, uniformly continuous on 𝐵 with 𝑓 = 𝑢𝑣 

on 𝐵. 

Let 𝑥 ∈ 𝑆. We claim that there is an open set 𝑉 with 𝑥 ∈ 𝑉 such that 𝑓 = 𝑝𝑞 on 𝑉 ∩
𝐵 where 𝑝 is bounded analytic on 𝑉 ∩ 𝐵 and 𝑞 continuous on 𝑉 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅̅ . 

To prove this, write 𝑓 = 𝜙 + 𝜓, 𝑓−1 = 𝜙1 + 𝜓1 where 𝜙, 𝜙1 ∈ 𝐻
∞ and 𝜓,𝜓1 ∈ 𝐶(�̅�)with 

𝜓(𝑥) = 0,𝜓1(𝑥) = 0. Since (𝜙 + 𝜓)(𝜙1 + 𝜓1) = 1 there is an open neighborhood 𝑈 of 𝑥 

with |𝜙𝜙1 − 1| <
1

2
 on 𝑈 ∩ 𝐵. So 𝜙−1 is bounded on 𝑈 ∩ 𝐵, and by Lemma (1.2.10) we 

can find an open neighborhood 𝑉 of 𝑥 and 𝑔 ∈ 𝐻 with ‖𝑔‖ <
1

2
 and 𝑔 = 𝜙−1𝜓 on 𝑉 ∩ 𝐵. 

Then log(1 + 𝑔) ∈ 𝐻 so 1 + 𝑔 = 𝑒𝜎+𝑟on 𝐵 where 𝜎 ∈ 𝐻∞, 𝜏 ∈ 𝐶(�̅�). Then on 𝑉 ∩ 𝐵 we 

have 

𝑓 = 𝜙(1 + 𝜙−1) = 𝜙(1 + 𝑔) = (𝜙𝑒𝜎)𝑒𝜏, 
which proves the claim. 

Thus we can cover �̅� by open sets 𝑉1, … , 𝑉𝑚 such that on 𝑉𝑘 ∩ 𝐵 we have 𝑓 = 𝑝𝑘 +
𝑞𝑘 where 𝑝𝑘 ∈ 𝐻

∞(𝑉𝑘 ∩ 𝐵) and 𝑞𝑘 ∈ 𝐶(𝑉 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅̅ ). On 𝑉𝑖 ∩ 𝑉𝑗 ∩ 𝐵 define 𝜙𝑖𝑗 = 𝑝𝑖𝑝𝑗
−1 =
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𝑞𝑖
−1𝑞𝑖 ∈ 𝐴(𝑉𝑖 ∩ 𝑉𝑗 ∩ 𝐵). Then the second Cousin problem yields 𝜙𝑖 invertible in 𝐴(𝑉𝑖 ∩ 𝐵) 

with 𝜙𝑖𝑗 = 𝜙𝑖𝜙𝑗
−1

. 

Then on 𝑉𝑖 ∩ 𝐵, 𝑓 = 𝑢𝑖𝑣𝑖 where 𝑢𝑖 = 𝜙𝑗
−1𝑝𝑖 ∈ 𝐻

∞(𝑉𝑖 ∩ 𝐵), 𝑣𝑖 = 𝜙𝑖𝑞𝑖 ∈

𝐶(𝑉𝑖 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅̅ )on𝑉𝑖 ∩ 𝑉𝑗 ∩ 𝐵, 𝑢𝑖𝑢𝑗
−1 = 𝑝𝑖𝑝𝑗

−1𝜙𝑖
−1𝜙𝑖 = 𝜙𝑖𝑗𝜙𝑖𝑗

−1 = 1, so 𝑢𝑖 = 𝑢𝑗, and 

similarly 𝑣𝑖 = 𝑣𝑗. Thus we can define 𝑢 ∈ 𝐻∞ and 𝑣 ∈ 𝐶(�̅�) by 𝑢 = 𝑢𝑖 and 𝑣 = 𝑣𝑖 on 𝑉𝑖 ∩

𝐵, and then 𝑓 = 𝑢𝑣 as required. 

Theorem (1.2.12)[12]: Suppose 𝜙 ∈ 𝐻∞ + 𝐶and 𝜆 ∉ 𝜎(𝜙). Then the Fredholm operator 

𝑇𝜙 − 𝜆 has index zero. 

Proof. We may assume 𝜆 = 0; then 𝑓 is invertible in 𝐻∞ + 𝐶. 

By Lemma (1.2.11), 𝑓 = 𝑢𝑣 with 𝑢 invertible in 𝐻∞ and 𝑣 invertible in 𝐶. Then 𝑇𝑓 = 𝑇𝑣𝑇𝑢 

. 𝑇𝑢 is invertible and 𝑇𝑣 has index zero [13]. So 𝑇𝑓 has index zero. 

We conclude with another problem. As mentioned above, the methods of Coburn [13] 

show that if 𝜙 ∈ 𝐶 then 𝐻𝜙, defined by 𝐻𝜙𝑓 = 𝑓 − 𝑇𝜙𝑓, is a compact operator from 𝐻2 to 

𝐿2. One may ask: for what 𝜙 ∈ 𝐿∞ is 𝐻𝜙 compact? It is clear that the set 𝐴 of such 𝜙 is a 

closed subalgebra of 𝐿∞, containing 𝐻∞ + 𝐶. In the case = 1, 𝐴 = 𝐻∞ + 𝐶 . In general, the 

largest 𝐶∗-algebra contained in 𝐴 is the algebra 𝑄𝐶 = 𝐿∞ ∩ 𝑉𝑀𝑂 (this follows from [14], 

which is applicable to the ball as the authors of [14] point out 𝑉𝑀𝑂 is the space of functions 

of vanishing mean oscillation). We show that, when 𝑛 > 1, 𝑄𝐶 is not contained in 𝐻∞ + 𝐶, 

so that 𝐴 ≠ 𝐻∞ + 𝐶. It is natural to ask whether 𝐴 = 𝐻∞ + 𝑄𝐶, especially since a recent 

theorem of Chang [16] asserts that, when 𝑛 = 1, any closed subalgebra of 𝐿∞ containing 

𝐻∞ is of the form 𝐻∞ + some 𝐶∗-algebra. However, we have not been able to show that 

𝐻∞ + 𝑄𝐶 is closed, nor that its closure is an algebra, nor that the closed algebra it generates 

is 𝐴. A related problem is to describe the largest 𝐶∗-algebra contained in 𝐻∞ + 𝐶. When 

𝑛 = 1 it is 𝑄𝐶[22], but since 𝑄𝐶 ⊈ 𝐻∞ + 𝐶 this is false for 𝑛 > 1. Note that 𝐻∞ + 𝐶 is not 

the smallest closed algebra containing 𝐻∞ properly, in contrast to the case 𝑛 = 1. 

For the sake of simplicity we assume that 𝑛 = 1. It is clear that the ideas and results 

can be extended to the general case of 𝑛 > 1 with minor alternations in the proofs. 

We make use of the following parametrization of the unit sphere: 

𝑧 = (𝑧1, 𝑧2) = (𝜌
1 2⁄ 𝑒𝑖𝜃 , (1 − 𝜌)1 2⁄ 𝑒𝑖𝜓)(0 ≤ 𝜌 ≤ 1, 0 ≤ 𝜃,𝜓 < 2𝜋). 

For this set of coordinates the measure becomes: 

𝑑𝜎 =
1

2
𝑑𝜌 𝑑𝜃 𝑑𝜓. 

The standard basis for 𝐻2 is then given by: 

𝑒𝑛𝑚 =
1

𝜋21 2⁄
[
(𝑛 + 𝑚 + 1)!

𝑛!𝑚!
]

1 2⁄

𝜌𝑛 2⁄ (1 − 𝜌)𝑚 2⁄ 𝑒𝑖𝑛𝜃𝑒𝑖𝑚𝜓(𝑛,𝑚 ≥ 0). 

We consider Toeplitz operators, 𝑇𝜙, where the symbol 𝜙 depends on only the 

coordinate 𝜌, i.e., 

𝜙(𝑧1, 𝑧2) = 𝜙(𝜌
1 2⁄ , 𝑒𝑖𝜃 , (1 − 𝜌)1 2⁄ 𝑒𝑖𝜓) = 𝑔(𝜌)  𝑤ℎ𝑒𝑟𝑒 𝑔 ∈ 𝐿∞[0, 1]. 

It is obvious that this type of symbol cannot occur when 𝑛 = 1 and it is amongst Toeplitz 

operators of this class that we discover some differences between properties in the cases 

𝑛 = 1 and 𝑛 > 1. We examine particularly the properties of the spectra of such Toeplitz 

operators and this sheds a little light on questions raised above. 

First we note when a symbol of this form will be in 𝐻∞ + 𝐶. 
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Proposition (1.2.13)[12]: Let 𝜙be a symbol of the above form. Then 𝜙 ∈ 𝐻∞ + 𝐶 if and 

only if 𝑔 continuous on [0, 1]. 
Proof. One implication is clear. Conversely if 𝜙 ∈ 𝐻∞ + 𝐶, write 𝜙 = 𝑢 + 𝑣 with 𝑢 in 𝐻∞, 

𝑣 in 𝐶. Let 𝑝(𝑧1, 𝑧2) = 𝑞(|𝑧1|
2)be orthogonal to 𝐻∞(𝑞 ∈ 𝐿∞[0, 1]), i.e., ∫ 𝑞(𝜌)𝑑𝜌

1

0
= 0. 

Then ∫ 𝑢𝑝𝑑𝜎
𝑆

= 0, i.e., ∫ (𝜙 − 𝑣)𝑞𝑑𝜌 𝑑𝜃 𝑑𝜓
𝑆

= 0. Let �̃�𝜌 =

∫ ∫ 𝑣(𝜌, 𝜃, 𝜓) 𝑑𝜃 𝑑𝜓
2𝜋

0
, 0 ≤ 𝜌 ≤ 1

2𝜋

0
. Then 

∫ [𝑔(𝜌) − �̃�𝜌]
1

0

𝑞(𝜌)𝑑𝜌 = 0. 

This is true for all such 𝑞. Hence 𝑔(𝜌) − �̃�𝜌 is constant. But �̃� is continuous and so 𝑔 is 

continuous. 

The proposition justifies the remark that 𝑄𝐶(= 𝐿∞ ∩ 𝑉𝑀𝑂) is not contained in 𝐻∞ +
𝐶. For it is not hard to see that if 𝑔 is in 𝑉𝑀𝑂 on [0, 1] then 𝜙 is in 𝑉𝑀𝑂. Then we have 𝜙 

in 𝑄𝐶, but not necessarily in 𝐻∞ + 𝐶. 

Proposition (1.2.14)[12]: Let 𝜙 be a symbol of the above form. Then 𝑇𝜙 is a diagonal 

operator. 

Proof. We have 

𝑇𝜙𝑒𝑛𝑚 = 𝑃 {
1

𝜋21 2⁄
[
(𝑛 + 𝑚 + 1)!

𝑛!𝑚!
]

1 2⁄

𝜌𝑛 2⁄ (1 − 𝜌)𝑚 2⁄ 𝑒𝑖𝑛𝜃𝑒𝑖𝑚𝜓 𝑔(𝜌)}

= [
(𝑛 +𝑚 + 1)!

𝑛!𝑚!
∫ 𝜌𝑛(1 − 𝜌)𝑚 𝑔(𝜌)𝑑𝜌
1

0

] 𝑒𝑛𝑚      = 𝜆𝑛𝑚𝑒𝑛𝑚 

where 

𝜆𝑛𝑚 =
(𝑛 +𝑚 + 1)!

𝑛!𝑚!
∫ 𝜌𝑛(1 − 𝜌)𝑚 𝑔(𝜌)𝑑𝜌
1

0

. 

So 𝑇𝜙 has a countable set of eigenvalues which are essentially convex combinations 

of values in the range of 𝑔. Note that if 𝑔 is continuous then the set of limit points of 

{𝜆𝑛𝑚: 𝑛,𝑚 ≥ 0} is easily seen to be the range of 𝑔, which shows that the essential spectrum 

of 𝑇𝜙 is connected. However, the following theorem shows that this need not always be the 

case. 

Theorem (1.2.15)[12]: There exists 

(i) a symbol 𝜙 ∈ 𝐶 for which 𝜎(𝑇𝜙) is disconnected, and 

(ii) a symbol 𝜓 ∈ 𝐿∞ for which 𝜎𝑒(𝑇𝜓) is disconnected. 

Proof. Let 𝜙 be a symbol of the above form where 𝑔 is continuous and as a suitable 

“nonconvex” range, e.g., let 𝑔(𝜌) = 𝑒2𝜋𝑖𝜌. As noted above it is clear that the set of limit 

points of {𝜆𝑛𝑚: 𝑛,𝑚 ≥ 0} is just the unit circle. Since 𝜆00 = 0 it follows that 𝜎(𝑇𝜙) is 

disconnected, which gives (i). 

For (ii), let 𝑔(𝜌) = 𝜌𝑖 = 𝑒𝑖 log𝜌. We have 𝜓(𝑧1, 𝑧2) = 𝑔(|𝑧1|
2) = 𝑔(𝜌). In this case, 

𝜆𝑛𝑚 =
(𝑛 +𝑚 + 1)!

𝑛!𝑚!
∫ 𝜌𝑛+𝑖(1 − 𝜌)𝑚 𝑑𝜌
1

0

= 
𝛤(𝑛 + 𝑖 + 1)

𝑛!

(𝑛 + 𝑚 + 1)!

𝛤(𝑛 +𝑚 + 𝑖 + 2)
 , 

where the gamma function is given by 𝛤(𝑧) = ∫ 𝑒−𝑡𝑡𝑧−1𝑑𝑡 (𝑧 ∈ 𝐶, 𝑅𝑒 𝑧 > 0)
∞

0
. Now, by 

Stirling’s formula, for large 𝑛 
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𝛤(𝑛 + 𝑖 + 1)

𝑛!
 ~
(2𝜋)1 2⁄ (𝑛 + 𝑖)𝑛+𝑖+(1 2⁄ )𝑒−𝑛−𝑖

(2𝜋)1 2⁄ 𝑛𝑛+(1 2⁄ )𝑒−𝑛
               = 𝑛𝑖 (1 +

𝑖

𝑛
)
𝑛+𝑖+(1 2⁄ )

𝑒−𝑖   ~𝑛𝑖

= 𝑒𝑖 log𝑛. 
So the set of limit points of 𝛤(𝑛 + 𝑖 + 1)/𝑛! is the unit circle. If 𝑛 is fixed then as 𝑚 → ∞ 

the set of limit points of (𝑛 +𝑚 + 1)!/𝛤(𝑛 + 𝑚 + 𝑖 + 2) is the unit circle and so the set of 

limit points of {𝜆𝑛𝑚: 𝑛, 𝑚 ≥ 0} (for this fixed 𝑛) is the circle of radius |𝛤(𝑛 + 𝑖 + 1)|/
𝑛! and center 0. Also, as 𝑛 → ∞, |𝜆𝑛𝑚| → 1 uniformly in 𝑚. 

Hence the set of limit points of {𝜆𝑛𝑚: 𝑛,𝑚 ≥ 0} is the union of circles of radius 
|𝛤(𝑛 + 𝑖 + 1)|/𝑛! (𝑛 = 0, 1,… ), center 0, together with their limiting circle, the unit circle. 

This is 𝜎𝑒(𝑇𝜓) which is thus disconnected 

(
|𝛤(𝑛 + 𝑖 + 1)|

𝑛
= ∏

𝑘

(𝑘2 + 1)1/2

∞

𝑘=𝑛+1

). 

Note that:(i) As noted in above, 𝜙(𝑇𝜙) and 𝜎𝑒(𝑇𝜙) are both connected for any symbol 

𝜙 in 𝐿∞ when 𝑛 = 1. 

(ii) Although we do not have 𝜎𝑒(𝑇𝜙) connected for all 𝜙 it is not hard to show that 

𝜎𝑒(𝑇𝜙) is always contained in the convex hull of a connected subset of itself for any symbol 

𝜙 of the above form. Moreover, if 𝑔 is continuous at 0 and 1, 𝜎𝑒(𝑇𝜙) is connected. 

The remark made after the proof of Theorem (1.2.12) is sufficient to give that the operator 

𝐻𝜙𝑓 = 𝜙𝑓 − 𝑇𝜙𝑓 from 𝐻2 to 𝐿2 is compact when 𝜙 is in 𝑉𝑀𝑂. In the case of these special 

symbols it is easy to see directly that 𝐻𝜙 is compact if and only if 𝑔 ∈ 𝑉𝑀𝑂 on [0, 1]. 

A possible generalization of the described class of symbols are those of the form: 

𝜙(𝑧1, 𝑧2) = 𝜙(𝜌
1 2⁄ , 𝑒𝑖𝜃 , (1 − 𝜌)1 2⁄ 𝑒𝑖𝜓) = 𝑔(𝜌, 𝑒𝑖(𝜃−𝜓)) 

where 𝑔 is in 𝐿∞on [0, 1] × 𝕋 (where 𝕋 is the unit circle). Then 𝑇𝜙 need no longer be 

diagonal but has the weaker property that 𝑇𝜙 is reduced by the (𝑚 + 1)-dimensional 

subspace of 𝐻2 spanned by 𝑧1
𝑚, 𝑧1

𝑚−1𝑧2, … , 𝑧2
𝑚for each 𝑚 ≥ 0. From this it follows that 

𝜎(𝑇𝜙)\𝜎𝑒(𝑇𝜙)is discrete. This class of symbols has the advantage of being invariant under 

rotation (which the first type does not). An alternative characterization is 

𝜙(𝑧1, 𝑧2) = 𝜙(𝑒
𝑖𝜃𝑧1, 𝑒

𝑖𝜃𝑧2)for all 𝜃, 
and this easily generalizes to 𝐶𝑛 for 𝑛 > 2. 

Section (1.3): Ordered Groups 

The classical of Toeplitz operators and their associated 𝑪∗-algebras is an elegant and 

important area of modern mathematics. For this reason many (e.g. Douglas, Singer, Howe, 

Devintaz) have sought to extend this theory to a more general setting. A new extension is 

given principally with the objective of presenting a certain new class of 𝐶∗-algebras which 

have very interesting properties- to each partially ordered group 𝐺 we associate a 𝐶∗-algebra 

ℱ(𝐺), its Toeplitz algebra ℱ(𝐺) has a certain universal property which may be useful in 

general 𝐶∗-algebra theory, particularly 𝐾-theory. Often ℱ(𝐺) contains a simple 𝐶∗-algebra 

as a closed ideal and this is analyzable in terms of 𝐺. 

The classical Toeplitz algebra ℱ(𝑍) associated to the ordered group of integers 𝑍 

appears in two guises in the literature: 
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(i) ℱ(𝑍) is the 𝑪∗-algebra generated by the Toeplitz operators with continuous 

symbol. 

(ii) ℱ(𝑍) is the 𝑪∗-algebra (unique to ∗isomorphism) generated by a non-unitary 

isometry (Coburn [26]). 

It is principally in its second guise that we are interested in generalization ℱ(𝑍). 
However in analyzing the Toeplitz algebra of a general partially ordered group we need to 

extend many results of the classical Toeplitz operator theory. 

We construct ℱ(𝐺) and show that the functor 𝐺 → ℱ(𝐺) is “continuous”, a result 

very important for the sequel, we also specialize to the case where the ordering on 𝐺 is total. 

In this situation ℱ(𝐺) is representable as a hereditary 𝐶∗- subalgebra of a certain crossed 

product 𝐶∗-algebra got by an action 𝛼 of 𝐺 on an abelian 𝐶∗-algebra 𝒥1(𝐺). By showing 

that 𝒥1(𝐺) is 𝐺-prime and calculating Connes’ spectrum 𝛤(𝛼) in the case that 𝐺 is finitely 

generated, and then extending by “continuity” to the general case, we show that ℱ(𝐺) is 

prime, and is isomorphic to any 𝐶∗-algebra generated by a non-unitary semigroup of 

isometries over 𝐺. We then identify a certain simple ideal in ℱ(𝐺) (“usually” not type I) 

which plays a somewhat similar role in the general theory to that played by the ideal of 

compact operators in the classical case. A number of the results here generalize some results 

of Douglas [27]. However Douglas confines himself to ordered subgroups of 𝑹, and our 

methods are completely different from his. Then, we return to general partially ordered 

groups. Here we extend many results of the classical theory, for example we show that 

generalized analytic Toeplitz operators have connected spectra. For each partially ordered 

group 𝐺 we exhibit a very explicit and useful irreducible representation of ℱ(𝐺) (faithful if 

𝐺 is totally ordered). Finally we show that a number of our results are best possible, and that 

for a totally ordered group 𝐺,ℱ(𝐺) has simple commutator ideal iff 𝐺 is (isomorphic to) an 

ordered subgroup of 𝑹 (sufficiency is due to Doglas [27]). 

For 𝐺 be a discrete abelian group and ≤ a partial ordering on 𝐺. For 𝑆 ⊆ 𝐺 we write 

𝑆+ for the set of all 𝑥 in 𝑆 such that 0 ≤ 𝑥. We call (𝐺,≤) a partially ordered group if 𝐺 =
𝐺+ − 𝐺+ and 𝑥 ≤ 𝑦 implies that 𝑥 + 𝑧 ≤ 𝑦 + 2 (𝑥, 𝑦 ∈ 𝐺). If 𝐼 is a subgroup of 𝐺 such that 

𝐼 =  𝐼+ − 𝐼+ we call 𝐼 a partially ordered subgroup of 𝐺. Then of course (𝐼, ≤) is itself a 

partially ordered group. If ≤ is a total ordering on 𝐺 (i.e. for all 𝑥, 𝑦 ∈ 𝐺 we have 𝑥 ≤ 𝑦 or 

𝑦 ≤ 𝑥) then we refer to (𝐺,≤) simply as an ordered group. In this case any subgroup 𝐼 of 𝐺 

is a (partially) ordered subgroup, since 𝐺 = 𝐺+ ∪ (−𝐺+) implies that 𝐼 =  𝐼+ ∪ (−𝐼+) =
𝐼+ − 𝐼+. Thus (𝐼, ≤) is an ordered group. 

Suppose now only that 𝐺 is a discrete abelian group and 𝑀 is a subset of 𝐺 such that 

0 ∈ 𝑀,𝑀 +𝑀 ⊆ 𝑀,𝑀 ∩ (−𝑀) = 0  𝑎𝑛𝑑 𝐺 = 𝑀 −𝑀. 

In this case we call 𝑀 a cone in 𝐺 and we define 𝑥 ≤𝑀 𝑦 to mean that 𝑦 − 𝑥 ∈ 𝑀 for 𝑥, 𝑦 in 

𝐺. It is easily checked that (𝐺,≤𝑀) is a partially ordered group with 𝐺+ = 𝑀. We shall often 

use (𝐺,𝑀) to refer to (𝐺,≤𝑀). If (𝐺,≤) is a partially ordered group then 𝐺+ is a cone and 

(𝐺,≤𝐺) = (𝐺, ≤). Moreover (𝐺,≤) is an ordered group iff 𝐺 = 𝐺+ ∪ (−𝐺+). 

If 𝐻 is a closed subspace of a Hilbert space 𝐾 we shall let 𝑆𝐻 denote the compression 

to 𝐻 of the bounded linear operator 𝑆 on 𝐾. 
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If 𝐺 is a partially ordered group and 𝐵 a unital 𝐶∗-algebra, a semigroup of isometries 

in 𝐵 (relative to 𝐺) is a map 𝛽: 𝐺+ → 𝐵 such that each 𝛽(𝑥) is an isometry, i.e. 𝛽(𝑥)∗𝛽(𝑥) =
1 for all 𝑥 ∈ 𝐺+, and 𝛽(𝑥 + 𝑦) = 𝛽(𝑥)𝛽(𝑦) for all 𝑥, 𝑦 ∈ 𝐺+. (This implies that 𝛽(0) =
1.) if 𝐵 = 𝐵(𝐻), 𝐶∗-algebra of all bounded linear operators on the Hilbert space 𝐻, we call 

a pair (𝐾, 𝜋)a unitary lifting of 𝛽 if 𝐾 is a Hilbert space containing 𝐻 as a closed subspace, 

𝜋: 𝐺 → 𝐵(𝐾) is a homo-morphism of 𝐺 into the group of unitaries of 𝐵(𝐾), 𝐻 is invariant 

for all 𝜋(𝑥), 𝑥 ∈ 𝐺+, and 𝛽(𝑥) = (𝜋(𝑥))
𝐻

 for such 𝑥. The following is the basic result 

concerning unitary liftings and will be used a number of times below. 

Theorem (1.3.1)[23]: (Ito). Let 𝐺 be a partially ordered group and 𝛽: 𝐺+ → 𝐵(𝐻) a 

semigroup of isometries on the Hilbert space 𝐻. Then 𝛽 admits a unitary lifting (𝐾, 𝜋). 

 For a proof, see Suciu [37]. (Note that there it is only shown that 𝛽(𝑥) is a 

compression of 𝜋(𝑥)- i.e. invariance of 𝐻 is not stated. However an elementary 2×2 operator 

matrix argument shows that if an ismoetry is the compression of a unitary it is in fact a 

restriction of the unitary. Hence we can conclude that 𝐻 above is invariant for all 𝜋(𝑥), 𝑥 ∈
𝐺+. 

Here is another result that we will be using a number of times. It is well known and 

follows easily from the von Neumann inequality, see e.g. Suciu [37]. 

(For 𝐺 a discrete abelian group, 𝐺∧ will denote the dual group of 𝐺 considered as a 

compact abelian group. If 𝑇 denotes the circle group and 𝑥 ∈ 𝐺, we let 𝜀𝑥 or 𝜀(𝑥) denote 

the evaluation homomorphism from 𝐺∧ to 𝑇 defined by 𝜀𝑥(𝑦) = 𝑦(𝑥), 𝑦 ∈ 𝐺
∧ .)  

Lemma (1.3.2)[23]: if 𝜋: 𝐺 → 𝐵 is a homomorphism from an abelian group into the group 

of unitaries of a unital 𝐶∗- algebra 𝐵 then there is a unique ∗- homomorphism 𝛽: 𝐶𝐺∧ → 𝐵 

such that 𝛽(𝜀𝑥) = 𝜋(𝑥), 𝑥 ∈ 𝐺. 

We need one more preliminary concept for the construction we are about to 

undertake: let 𝐴 be a 𝐶∗-algebra with identity element 1 and let 𝐴1, 𝐴2 be 𝐶∗-subalgebras 

such that 1 ∈ 𝐴1 ∩ 𝐴2. We say that 𝐴 is a free product of 𝐴1 and 𝐴2 and we write 𝐴 = 𝐴1 ∗
𝐴2 if for every unital 𝐶∗-algebra 𝐵 each pair of unital ∗- homomorphisms 𝛽𝑗: 𝐴𝑗 →

𝐵 (𝑗 = 1, 2) have a unique extension to a ∗- homomorphism 𝛽: 𝐴 → 𝐵. Any two unital 𝐶∗-
algebras admit a free product (Brown [24]). By the way, since any two free products of 𝐴1 

and 𝐴2 are canonically ∗-isomorphic, we can talk about the free product. 𝐴1 ∪ 𝐴2 generates 

𝐴1 ∗ 𝐴2. 

We can now define the Toeplitz algebra and show it has a certain universal property. 

Let 𝐺 be a partially ordered group. Let 𝑝 denote the projection (1, 0) in 𝐶2, and let 𝐼 
be the closed ideal in 𝐶2 ∗ 𝐶 (𝐺∧) generated by all 𝜀𝑥𝑝 − 𝑝𝜀𝑥𝑝, ∈ 𝐺

+. If 𝜋 denotes the 

quotient map from 𝐶2 ∗ 𝐶 (𝐺∧) to 𝐶2 ∗ 𝐶 (𝐺∧)/𝐼 then we set ℱ(𝐺) = 𝜋(𝑝)(𝐼𝑚(𝜋))𝜋(𝑝). 

Thus ℱ(𝐺) is a unital 𝐶∗-algebra (𝜋(𝑝) is the identity element). We call ℱ(𝐺) the Toeplitz 

algebra of 𝐺. We define he canonical semigroup of isometries 𝑉 = 𝑉𝐺: 𝐺+ → ℱ(𝐺) by 𝑉𝑥 =
 𝜋(𝜀𝑥)𝜋(𝑝). It is readily verified that 𝑉 is in fact a semigroup of isoometries generating 

ℱ(𝐺). 
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Theorem (1.3.3)[23]: Let 𝐺 be a partially ordered group and 𝛽: 𝐺+ → 𝐵 a semigroup of 

ismoetries in a unital 𝐶∗-algebra 𝐵. Then there is a unique ∗- homomorphism 𝛽∗: ℱ(𝐺) →
𝐵 such that 𝛽∗𝑉 = 𝛽. 

Proof. We may assume without loss of generality that 𝐵 is a 𝐶∗-subalgebra of 𝐵(𝐻) for 

some Hilbert space 𝐻 such that 1 = 𝑖𝑑𝐻 ∈ 𝐵. By the Theorem (1.3.1) the semigroup of 

isometries 𝛽: 𝐺+ → 𝐵(𝐻) has a unitary lifting (𝐾, 𝜋). There exists 𝑦2 a unique unital ∗- 
homomorphism from 𝐶 = 𝐶(𝐺∧) to 𝐵(𝐾) such that 𝑦2(𝜀𝑥) =  𝜋(𝑥), 𝑥 ∈ 𝐺, by Lemma 

(1.3.2). let 𝑄 ∈ 𝐵(𝐾) be the projection onto 𝐻 and 𝑦1: 𝐶
2 → 𝐵(𝐾) the unital ∗- 

homomorphism such that 𝑦1(𝑝) = 𝑄 where 𝑝 = (1, 0) ∈ 𝐶2. Let 𝑦 denote the unique ∗- 
homomorphism extending 𝑦1 and 𝑦2 to 𝐶2 ∗ 𝐶 → 𝐵(𝐾). Since 𝑦(𝑝) = 𝑄 and 𝑦(𝜀𝑥) =  𝜋(𝑥) 
we have 𝑦(𝜀𝑥𝑝 − 𝑝𝜀𝑥𝑝) =  𝜋(𝑥)𝑄 − 𝑄𝜋(𝑥)𝑄 = 0 for all 𝑥 ∈ 𝐺+ (𝐻 is invariant for 

𝜋(𝑥), 𝑥 ∈ 𝐺+. Thus 𝑦(1) = 0 where 𝐼 is the closed ideal in 𝐶2 ∗ 𝐶 generated by all 𝜀𝑥𝑝 −
𝑝𝜀𝑥𝑝, 𝑥 ∈ 𝐺

+. It now follows that the map 𝛽∗: ℱ(𝐺) → 𝐵(𝐻) defined by 𝛽∗(𝑎 + 𝐼) =
𝑦(𝑎)𝐻for 𝑎 + 𝐼 ∈ ℱ(𝐺), is a well- defined ∗- homomorphism. Also 𝛽∗(𝑉𝑥) = 𝛽

∗(𝜀𝑥𝑝 +
1) = 𝑦(𝜀𝑥𝑝)𝐻 =  𝜋(𝑥)𝐻 = 𝛽(𝑥) for all 𝑥 ∈ 𝐺+, so 𝐼𝑚(𝛽∗) ⊆ 𝐵. Thus 𝛽∗: ℱ(𝐺) → 𝐵 is a 

∗- homomorphism such that 𝛽∗𝑉 =  𝛽. 

Uniqueness of 𝛽∗ is trivial, since the 𝑉𝑥(𝑥 ∈ 𝐺
+) generate ℱ(𝐺). 

If 𝐴 is 𝐶∗-algebra we let 𝐾(𝐴) denote its commutator ideal, i.e. the closed ideal 

generated by all 𝑎𝑏 − 𝑏𝑎 (𝑎, 𝑏 ∈ 𝐴). 𝐾(𝐴) is the smallest closed ideal 𝐽in 𝐴 such that 𝐴/𝐽 

is abelian. If 𝛽: 𝐴 → 𝐵 is ∗- homo-morphism of 𝐶∗-algebras then 𝛽(𝐾(𝐴)) ⊆ 𝐾(𝐵), with 

equality if 𝛽 is surjective. 

If 𝜑: 𝐺1 → 𝐺2is a homomorphism of partially ordered groups we say that 𝜑 is positive 

if 𝜑(𝐺1
+) ⊆ 𝐺2

+ (equivalently 𝑥 ≤ 𝑦 in 𝐺1⟹𝜑(𝑥) ≤ 𝜑(𝑦) in 𝐺2). We let �̃�: 𝐺1
+ → 𝐺2

+ be 

the restriction of 𝜑. There is a unique ∗- homomorphism 𝜑∗: ℱ(𝐺1) → ℱ(𝐺2) such that 

𝜑∗𝑉𝐺1 = 𝑉𝐺2�̃� (simply take 𝜑∗ = (𝑉𝐺2�̃�)∗ - it is clear that 𝑉𝐺2�̃�: 𝐺1
+ → ℱ(𝐺2) is a 

semigroup of ismoetries). We thus get covariant functors 𝐺 → ℱ(𝐺) and 𝐺 → 𝐾(ℱ(𝐺)). 

For 𝐺 is a partially ordered group we define 𝑞𝑥 = 𝑞𝑥
𝐺 = 1 − 𝑉𝑥𝑉𝑥

∗(𝑥 ∈ 𝐺+). Since 𝑉𝑥 

is an isometry, 𝑞𝑥 is a projection (in 𝐾(ℱ(𝐺))). If 𝑥 ≤ 𝑦 then 𝑞𝑥 ≤ 𝑞𝑦 (because: 𝑦 = 𝑥 + 𝑧 

for some 𝑧 ∈ 𝐺+⟹ 𝑉𝑦 = 𝑉𝑥𝑉𝑧⟹ 𝑉𝑦𝑉𝑦
∗ = 𝑉𝑥𝑉𝑧𝑉𝑧

∗𝑉𝑥
∗ since 𝑉𝑧𝑉𝑧

∗ ≤ 1. Hence 𝑞𝑦 = 1 −

𝑉𝑦𝑉𝑦
∗ ≥ 1 − 𝑉𝑥𝑉𝑥

∗ = 𝑞𝑥). We are now going to show that 𝑞𝑥 ≤ 𝑞𝑦 ⟹ 𝑥 ≤ 𝑦. To do this we 

consider a certain representation of ℱ(𝐺) that will be very important later. Before doing 

this, a useful remark: if 𝜑:𝐺1 → 𝐺2 is a positive homomorphism of partially ordered groups 

then 𝜑∗(𝑞𝑥) = 𝑞𝜑(𝑥) for all 𝑥 ∈ 𝐺1
+. 

Preposition (1.3.4)[23]: If 𝐺 is a partial ordered group and 𝑥, 𝑦 ∈ 𝐺+ then 𝑥 ≤ 𝑦 if and only 

if 𝑞𝑥 ≤ 𝑞𝑦. 

Proof. Let 𝐻2 = 𝐻2(𝐺) be the closed linear span in 𝐿2(𝐺∧) for all 𝜀𝑥(𝑥 ∈ 𝐺
+). Define 𝑈𝑥 ∈

𝐵(𝐻2) by 𝑈𝑥𝑓 = 𝜀𝑥𝑓, 𝑥 ∈ 𝐺
+. The map 𝑈:𝐺+ → 𝐵(𝐻2), 𝑥 ⟼ 𝑈𝑥, is easily seen to be a 

semigroup of isometries: thus 𝑈∗ maps ℱ(𝐺) to 𝐵(𝐻2) and 𝑈∗𝑉 = 𝑈. Now the projections 

𝑄𝑥 = 1 − 𝑈𝑥𝑈𝑥
∗ on 𝐻2 satisfy the relations 𝑄𝑥(𝜀𝑦) = 0 for 𝑥 ≤ 𝑦 and 𝑄𝑥(𝜀𝑦) = 𝜀𝑦for 𝑥 ≰
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𝑦 (𝑥, 𝑦 ∈ 𝐺+). Hence 𝑥 ≤ 𝑦 iff 𝑄𝑥 ≤ 𝑄𝑦. But 𝑈∗𝑞𝑥 = 𝑄𝑥, so 𝑥 ≤ 𝑦 ⇒ 𝑞𝑥 ≤ 𝑞𝑦 ⇒ 𝑄𝑥 ≤

𝑄𝑦 ⇒ 𝑥 ≤ 𝑦. 

Note in passing that it is now easy to see that 𝑉: 𝐺+ → ℱ(𝐺) is injective 

(𝑉𝑥 = 𝑉𝑦 ⇒ 𝑞𝑥 = 𝑞𝑦 ⇒ 𝑥 = 𝑦). 

Given any partially group 𝐺 the map 𝜀: 𝐺+ → 𝐶(𝐺∧), 𝑥 ⟼ 𝜀𝑥, is a semigroup of 

isometries (actually of course the 𝜀𝑥 are unitaries) so we have the induced map 𝜀∗: ℱ(𝐺) →
𝐶(𝐺∧). Since 𝜀𝑥(𝑥, ∈ 𝐺

+) generate 𝐶(𝐺∧) (by the Stone- Weierstrass theorem), 𝜀∗ is 

surjective. 

Theorem (1.3.5)[23]: If 𝐺 is a partially ordered group then ker(𝜀∗) = 𝐾(ℱ(𝐺)) and the 

map ℱ(𝐺)/𝐾(ℱ(𝐺)) → 𝐶(𝐺∧), 𝑎 + 𝐾(ℱ(𝐺)) ⟼ 𝜀∗(𝑎), is ∗-isomorphism. 

Proof. All we have to show is that 𝐾(ℱ(𝐺)) = ker(𝜀∗).  

Since ℱ(𝐺)/ker(𝜀∗)is abelian. Ker(𝜀∗) ⊇ 𝐾(ℱ(𝐺)). The map 𝜋: 𝐺 →
ℱ(𝐺)

𝐾(ℱ(𝐺))
, 𝑥 − 𝑦 ⟼

𝑉𝑦 ∗ 𝑉𝑥 + 𝐾(ℱ(𝐺)), (for 𝑥, 𝑦 ∈ 𝐺+) is a well- defined homomorphism into the unitaries of 

ℱ(𝐺)/𝐾(ℱ(𝐺)), so be Lemma (1.3.2) there exists a unique *-homomorphism 𝛾: 𝐶(𝐺∧) →
ℱ(𝐺)

𝐾(ℱ(𝐺))
 such that 𝛾(𝜀𝑥−𝑦) = 𝜋(𝑥 − 𝑦) = 𝑉𝑦 ∗ 𝑉𝑥 + 𝐾(ℱ(𝐺))(𝑥, 𝑦 ∈ 𝐺

+). If 𝛿 is the∗-

homomorphism 
ℱ(𝐺)

𝐾(ℱ(𝐺))
→ 𝐶(𝐺∧), 𝑎 + 𝐾(ℱ(𝐺)) ⟼ 𝜀∗(𝑎) then, 𝛾𝛿 (𝑉𝑥 + 𝐾(ℱ(𝐺))) =

𝛾𝜀∗(𝑉𝑥) = 𝛾(𝜀𝑥) = 𝜋(𝑥) =  𝑉𝑥 + 𝐾(ℱ(𝐺))(𝑥 ∈ 𝐺
+) ⇒ 𝛾𝛿 = id(since 𝑉𝑥 +

𝐾(ℱ(𝐺))generate ℱ(𝐺)/𝐾(ℱ(𝐺))). Hence 𝑎 ∈ ker(𝜀∗) ⇒ 𝛿 (𝑎 + 𝐾(ℱ(𝐺))) = 𝜀∗(𝑎) =

0 ⇒ 𝑎 + 𝐾(ℱ(𝐺)) = 𝛾𝛿 (𝑎 +  𝐾(ℱ(𝐺))) = 0 ⇒ 𝑎 ∈ 𝐾(ℱ(𝐺)). Thus 𝐾(ℱ(𝐺)) = ker(𝜀∗). 

Our next result, showing that the functor 𝐺 → ℱ(𝐺) is “continuous”, i.e. preserves 

direct limits, is interesting in its own right and plays a crucial role in the development of the 

theory. First we need to make a somewhat technical remark about direct limits in the 

category of partially ordered groups. Let (𝜑𝑖𝑗: 𝐺𝑖 → 𝐺𝑗)𝑖≤𝑗 be a direct system of partially 

ordered groups (indexed by 𝐼) with direct limit 𝐺 and natural maps (𝜑𝑖: 𝐺𝑖 → 𝐺)𝑖 . if 𝑥 ∈

𝐺𝑖 , 𝑦 ∈ 𝐺𝑗 , and𝜑𝑖(𝑥) =  𝜑𝑖(𝑦) then there exists 𝑘 ∈ 𝐼, 𝑘 ≥ 𝑖, 𝑗 and 𝜑𝑖𝑘(𝑥) =  𝜑𝑗𝑘(𝑦). This 

detail is needed in the proof that follows. The way to see it is to construct one example of a 

direct limit 𝐺 and natural maps (𝜑𝑖)
𝑖
 satisfying it. Then it follows from an elementary 

diagram chase that every direct limit and system of natural maps for (𝜑𝑖𝑗: 𝐺𝑖 → 𝐺𝑗)𝑖≤𝑗 has 

the above property. Here is a sketch of how to construct the required limit: Define an 

equivalence relation ~ on the disjoint union of the sets 𝐺𝑖(𝑖 ∈ 𝐼) by setting (𝑖, 𝑥)~(𝑗, 𝑦) if 
there exists 𝑘 ∈ 𝐼, 𝑘 ≥ 𝑖, 𝑗, such that 𝜑𝑖𝑘(𝑥) = 𝜑𝑗𝑘(𝑦). Let [𝑖, 𝑥] denote the equivalence 

class of (𝑖, 𝑥) and 𝐺 be the set of all equivalence classes. Define the map 𝜑𝑖: 𝐺𝑖 → 𝐺 by 

𝜑𝑖(𝑥) = [𝑖, 𝑥]. There is a unique operation on 𝐺 making 𝐺 an abelian group and all the maps 

𝜑𝑖 homomorphisms. Define 𝐺+ to be the union of all the sets 𝜑𝑖(𝐺𝑖
+)(𝑖 ∈ 𝐼). Then 𝐺+is a 

cone in 𝐺 and it is easily checked that the partially ordered group (𝐺, 𝐺+) is a direct limit of 

the direct system (𝜑𝑖𝑗: 𝐺𝑖 → 𝐺𝑗)𝑖≤𝑗 in the category of all partially ordered group (with maps 
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𝜑𝑖 as natural maps). Clearly 𝑥 ∈ 𝐺𝑖 , 𝑦 ∈ 𝐺𝑗 ,  and 𝜑𝑖(𝑥) =  𝜑𝑗(𝑦) imply that there exists 𝑘 ∈

𝐼, 𝑘 ≥ 𝑖, 𝑗 such that 𝜑𝑖𝑘(𝑥) =  𝜑𝑗𝑘(𝑦). 

Theorem (1.3.6)[23]: Let the partially ordered group 𝐺 be the direct limit of the direct 

system of partially ordered groups (𝜑𝑖𝑗: 𝐺𝑖 → 𝐺𝑗)𝑖≤𝑗 . Then ℱ(𝐺) is the direct limit of the 

direct system of 𝐶∗-algebras ((𝜑𝑖𝑗)
∗
: ℱ(𝐺𝑖) → ℱ(𝐺𝑗))

𝑖≤𝑗
. 

More explicitly if (𝜑𝑖: 𝐺𝑖 → 𝐺)𝑖 are natural maps for 𝐺 then (𝜑𝑖)
∗
: ℱ(𝐺𝑖) → ℱ(𝐺𝑗)𝑖 

are natural maps for ℱ(𝐺).) 

Proof. Let 𝐼 be the index set for the direct system (𝜑𝑖𝑗: 𝐺𝑖 → 𝐺𝑗)𝑖≤𝑗. Given 𝐵 a 𝐶∗-algebra 

and 𝛽𝑖: ℱ(𝐺𝑖) → 𝐵 ∗-homomorphism such that 𝛽𝑗(𝜑𝑖𝑗)
∗
= 𝛽𝑖 for all 𝑖 ≤ 𝑗 in 𝐼, we must 

show that there is a unique ∗-homomorphism 𝛽:ℱ(𝐺) → 𝐵 such that 𝛽(𝜑𝑖)
∗
= 𝛽𝑖(𝑖 ∈ 𝐼). 

By replacing 𝐵 by the 𝐶∗-subalgebra 𝐶 = (⋃{𝛽𝑖(ℱ(𝐺𝑖)): 𝑖 ∈ 𝐼})
−

 if necessary, we may 

assume without loss of generality that 𝐵 is unital and that all maps 𝛽𝑖 are unital. Let 

𝑉𝑖: 𝐺𝑖
+ → ℱ(𝐺𝑖) and 𝑉: 𝐺+ → ℱ(𝐺) be the canonical maps and recall that (𝜑𝑖𝑗)

~
 and (𝜑𝑖)

~
 

are the restrictions to the positive cones of 𝜑𝑖𝑗 and 𝜑𝑖 respectively. We have 

(i) (𝜑𝑖𝑗)
∗
𝑉𝑖 = 𝑉𝑗(𝜑𝑖𝑗)

~
(𝑖 ≤ 𝑗) 

(ii) (𝜑𝑖)
∗
𝑉𝑖 = 𝑉𝑗(𝜑𝑖)

~
(𝑖 = 𝐼) 

(iii) 𝛽𝑖(𝜑𝑖𝑗)
∗
= 𝛽𝑖(𝑖 ≤ 𝑗). 

Let 𝑥 ∈ 𝐺𝑖 , 𝑦 ∈ 𝐺𝑗and suppose that 𝜑𝑖(𝑥) =  𝜑𝑗(𝑦). Then there exists 𝑘 ∈ 𝐼, 𝑘 ≥ 𝑖, 𝑗 

such that 𝜑𝑖𝑘(𝑥) =  𝜑𝑗𝑘(𝑦) implies 𝛽𝑖𝑉𝑥
𝑖 = 𝛽𝑘(𝜑𝑖𝑘)

∗𝑉𝑥
𝑖 (by (iii)) = 𝛽𝑘𝑉𝑘(𝜑𝑖𝑘(𝑥)) (by (i)) 

= 𝛽𝑘𝑉𝑘 (𝜑𝑗𝑘(𝑦)) = 𝛽
𝑘(𝜑𝑗𝑘)

∗
𝑉𝑦
𝑖 (by (i) again) = 𝛽𝑗𝑉𝑦

𝑖 (by (iii) again). Thus 𝜑𝑖(𝑥) =

 𝜑𝑗(𝑦) implies 𝛽𝑖𝑉𝑥
𝑖 = 𝛽𝑗𝑉𝑦

𝑖. 

We define the map 𝛽: 𝐺+ → 𝐵 by setting 𝛽 (𝜑𝑖(𝑥)) = 𝛽𝑖𝑉𝑥
𝑖. This is well defined 

from the above calculation and from the fact that 𝐺+ is the union of all the sets 

𝜑𝑖(𝐺𝑖
+)(𝑖 ∈ 𝐼). Now 𝛽 is clearly a semigroup of isometries, so 𝛽∗: ℱ(𝐺) → 𝐵 is a ∗-

homomorphism and 𝛽∗𝑉 = 𝛽. Also, by (ii), 𝛽∗(𝜑𝑖)
∗
𝑉𝑖 = 𝛽∗𝑉(𝜑𝑖)

~
= 𝛽(𝜑𝑖)

~
= 𝛽𝑖𝑉𝑖 (by 

the definition of 𝛽), which implies 𝛽∗(𝜑𝑖)
∗
𝑉𝑖 = 𝛽𝑖𝑉𝑖, so 𝛽∗(𝜑𝑖)

∗
= 𝛽𝑖 (since 𝑉𝑥

𝑖(𝑥 ∈ 𝐺𝑖
+) 

generate ℱ(𝐺𝑖)). 

Finally suppose that 𝑦:ℱ(𝐺) → 𝐵 were another ∗-homorphism such that 𝑦(𝜑𝑖)
∗
=

𝛽𝑖(𝑖 ∈ 𝐼). We must show that 𝑦 = 𝛽∗. But 𝑦𝑉(𝜑𝑖)
~
= 𝑦(𝜑𝑖)

∗
𝑉𝑖 (by (ii)) = 𝛽𝑖𝑉𝑖 =

𝛽(𝜑𝑖)
~

, so 𝑦𝑉 = 𝛽 (since 𝐺+ is the union of the sets (𝜑𝑖)(𝐺𝑖
+)(𝑖 ∈ 𝐼)). Thus 𝑦𝑉 = 𝛽 =

𝛽∗𝑉 ⟹ 𝑦 = 𝛽∗ (since 𝑉𝑥(𝑥 ∈ 𝐺
+) generate ℱ(𝐺). 

To prove deeper results about te Toeplitz algebra ℱ(𝐺) one needs to specialize 𝐺. 

Specifically one needs to assume that 𝐺 is totally ordered. That this assumption is not merely 

convenient, but actually necessary to get our results, is shown below. Our technique is to 
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represent ℱ(𝐺) as a hereditary 𝐶∗- algebra, and to use some powerful results of the theory 

of crossed products 𝐶∗- algebra, and to use some powerful results of the theory of crossed 

products to analyse ℱ(𝐺). 

Let 𝐺 be an ordered group. We define an action 𝛼 of 𝐺 on ℓ∞(𝐺) by setting 

(𝛼𝑥𝑓)(𝑦) = 𝑓(𝑦 − 𝑥)for all 𝑓 ∈ ℓ∞(𝐺) and all 𝑥, 𝑦 ∈ 𝐺. It is clear that 𝛼𝑥 ∈ Aut(ℓ
∞(𝐺)) 

and that the map 𝐺 → Aut(ℓ∞(𝐺)), 𝑥 ⟼ 𝛼𝑥, is a homomorphism. We define 𝑝0 to be the 

characteristic function of the set 𝐺+ as a subset of 𝐺+ and 𝑝𝑥 = 𝛼𝑥(𝑝0) for each 𝑥 ∈ 𝐺. 

Thus 𝑝𝑥 is the characteristic function of the set 𝑥 + 𝐺+.we call 𝑝𝑥 the projection determined 

by 𝑥. Clearly 𝑥 ≤ 𝑦 iff 𝑝𝑥  ≥ 𝑝𝑦. If 𝑥 ∨ 𝑦 denotes the maximum of 𝑥 and 𝑦 then 𝑝𝑥𝑝𝑦 =

𝑝𝑥∨𝑦 . It follows that the closed linear span ℐ(𝐺) of all projections 𝑝𝑥(𝑥 ∈ 𝐺) is a 𝐶∗-

subalgebra of ℓ∞(𝐺). Put ℐ1(𝐺) = ℐ(𝐺) + 𝑪𝟏 (1 ∈ ℐ(𝐺) ⇔ 𝐺 = 0) and let ℐ0(𝐺) denote 

the closed linear span of all 𝑝𝑥 − 𝑝𝑦(𝑥, 𝑦 ∈ 𝐺). ℐ0(𝐺) is clearly a closed ideal in ℐ(𝐺). Since 

each 𝛼𝑥 maps ℐ1(𝐺) into itself we get by restriction a homomorphism 𝛼: 𝐺 →

Aut(ℐ1(𝐺)), 𝑥 ⟼ 𝛼𝑥, i.e. (ℐ1(𝐺), 𝐺, 𝛼) is a 𝐶∗- dynamical system. Clearly ℐ(𝐺) and ℐ0(𝐺) 
are 𝐺- invariant ideals in ℐ1(𝐺). Recall that one can regard ℐ1(𝐺) as 𝐶∗-subalgebra of the 

crossed product 𝐶∗-algebra ℐ1(𝐺) ×𝛼 𝐺 and that ℐ1(𝐺) contains the identity element of 

ℐ1(𝐺) ×𝛼 𝐺. Also if 𝛿: 𝐺 → ℐ1(𝐺) ×𝛼 𝐺 is the canonical homomorphism into the unitaries 

then we have 𝛼𝑥(𝑓) =  𝛿𝑥𝑓𝛿𝑥
∗(𝑓 ∈ ℐ1(𝐺), 𝑥 ∈ 𝐺). ℐ1(𝐺) ×𝛼 𝐺 is generated by ℐ1(𝐺) and 

𝛿(𝐺). If 𝐽 is a closed 𝐺- invariant ideal of ℐ1(𝐺) then the 𝐶∗-subalgebra of  ℐ1(𝐺) ×𝛼 𝐺 

generated by all 𝑓𝛿𝑥(𝑓 ∈ 𝐽, 𝑥 ∈ 𝐺) is in fact a closed ideal of ℐ1(𝐺) ×𝛼 𝐺 which is ∗- 
isomorphic to the crossed product 𝐽 ×𝛼 𝐺. We can, and do, therefore regard 𝐽 ×𝛼 𝐺 as this 

ideal in ℐ1(𝐺) ×𝛼 𝐺. Note that 𝐽 ⊆ 𝐽 ×𝛼 𝐺. 

Now we define 𝒜(𝐺) = 𝑝0(ℐ1(𝐺) ×𝛼 𝐺)𝑝0. Thus 𝒜(𝐺) is a hereditary 𝐶∗-subalgebra of 

ℐ1(𝐺) ×𝛼 𝐺 with identity element 𝑝0. Define 𝑊:𝐺+ → 𝒜(𝐺) by setting 𝑊𝑥 = 𝑝0𝛿𝑥𝑝0. 𝑊 

is a semigroup of isometries. This is immediate from the fact 𝑝0𝛿𝑥𝑝0 = 𝛿𝑥𝑝0 for all 𝑥 ∈

𝐺+(𝑝0𝛿𝑥𝑝0𝛿𝑥
∗ = (𝜒𝐺+)(𝜒𝑥+𝐺+) = 𝜒𝐺+∩(𝑥+𝐺+) = 𝜒𝑥+𝐺+ = 𝛿𝑥𝑝0𝛿𝑥

∗⟹ 𝑝0𝛿𝑥𝑝0 = 𝛿𝑥𝑝0). 

Thus we have the induced ∗- homomorphism 𝑊∗: ℱ(𝐺) ⟶ 𝒜(𝐺) with 𝑊∗𝑉 = 𝑊. Since 

ℐ1(𝐺) ×𝛼 𝐺 is generated by 𝑝0 and all 𝛿𝑥(𝑥 ∈ 𝐺
+) one can easily show that 𝑊𝑥(𝑥 ∈ 𝐺

+) 
generate 𝒜(𝐺). This implies that 𝑊∗ is surjective. We are going to see in a moment that 

𝑊∗ is in fact a ∗-isomorphism, but first we need a lemma which shows that ℐ1(𝐺) has an 

interesting universal property. 

Lemma (1.3.7)[23]: Let 𝐺 be a non-zero ordered group, 𝜇: 𝐺 → 𝐵 a homomorphism into 

the unitaries of a unital 𝐶∗-algebra 𝐵, and 𝑞 a projection in 𝐵 such that 𝜇(𝑥)𝑞 = 𝑞𝜇(𝑞)𝑞 for 

all 𝑥 in 𝐺+. Then there is a unique unital ∗-homomorphism 𝑦: ℐ1(𝐺) → 𝐵 such that 𝑦(𝑝𝑥) =
𝜇(𝑥)𝑞𝜇(𝑥)∗ for all 𝑥 in 𝐺. 

Proof. Uniqueness is obvious, we show existence.Let 𝛤 denote the linear span of all 

𝑝𝑥(𝑥 ∈ 𝐺), so 𝛤 is a dense ∗-subalgebra of ℐ(𝐺). Put 𝑞𝑥 = 𝜇(𝑥)𝑞𝜇(𝑥)
∗and note that if 𝑥 ≤ 𝑦 

then 𝑞𝑥 ≥ 𝑞𝑦, since 𝑞𝑥𝑞𝑢 = 𝜇(𝑥)𝑞𝜇(𝑦 − 𝑥)𝑞𝜇(𝑦)
∗ = 𝜇(𝑥)𝜇(𝑦 − 𝑥)𝑞𝜇(𝑦)∗ (as 𝑦 − 𝑥 ∈

𝐺+) = 𝑞𝑦. Thus 𝑞𝑥𝑞𝑦 = 𝑞𝑥∨𝑦. Now let 𝑥1, … , 𝑥𝑛 ∈ 𝐺 and let 𝑝𝑖 = 𝑝𝑥𝑖(𝑖 = 1,… , 𝑛). We show 

that ‖𝜆1𝑝1 +⋯+ 𝜆𝑛𝑝𝑛‖ ≥ ‖𝜆1𝑞1 +⋯+ 𝜆𝑛𝑞𝑛‖(𝜆1, … , 𝜆𝑛 ∈ 𝑪).  

We may assume (by re-indexing if necessary) that 𝑥1, … , 𝑥𝑛, and hence that 𝑝1 ≥ ⋯ ≥
𝑝𝑛and𝑞1 ≥ ⋯ ≥ 𝑞𝑛. Therefore the projections 𝑝1 − 𝑝2, 𝑝2 − 𝑝3, … , 𝑝𝑛−1 − 𝑝𝑛, 𝑝𝑛 are pairwise 
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orthogonal, as are the projections 𝑞1 − 𝑞2, 𝑞2 − 𝑞3, … , 𝑞𝑛−1 − 𝑞𝑛, 𝑞𝑛. Let 𝜈𝑖 = 𝜆1 +⋯+
𝜆𝑖(𝑖 = 1,… , 𝑛). Then we have 𝜆1𝑝1 +⋯+ 𝜆𝑛𝑝𝑛 = 𝜈1(𝑝1 − 𝑝2)+ . . . +𝜈𝑛−1(𝑝𝑛−1 − 𝑝𝑛) +
𝜈𝑛𝑝𝑛and correspondingly 𝜆1𝑞1 +⋯+ 𝜆𝑛𝑞𝑛 = 𝜈1(𝑞1 − 𝑞2)+ . . . +𝜈𝑛−1(𝑞𝑛−1 − 𝑞𝑛) + 𝜈𝑛𝑞𝑛. 

Since 𝑝𝑥 = 𝑝𝑦 implies 𝑥 = 𝑦 and so 𝑞𝑥 = 𝑞𝑦, we now deduce that 

‖𝜆1𝑝1 +⋯+ 𝜆𝑛𝑝𝑛‖ = max{|𝜈𝑖|: 𝑝𝑖 − 𝑝𝑖+1 ≠ 0 (𝑖 = 1,… , 𝑛 − 1)𝑜𝑟 𝑝𝑛 ≠ 0}
≥ max{|𝜈𝑖|: 𝑞𝑖 − 𝑞𝑖+1 ≠ 0 (𝑖 = 1,… , 𝑛 − 1)𝑜𝑟 𝑞𝑛 ≠ 0}
= ‖𝜆1𝑞1 +⋯+ 𝜆𝑛𝑞𝑛‖. 

It is now routine algebra to check that the map 𝛾: 𝛤 → 𝐵 defined by setting 

𝛾(𝜆1𝑝1 +⋯+ 𝜆𝑛𝑝𝑛) = 𝜆1𝑞1 +⋯+ 𝜆𝑛𝑞𝑛 is a (norm- decreasing) ∗-homomorphism, and 

so extends to a ∗-homomorphism 𝛾: 𝒥(𝐺) → 𝐵. Finally we extend 𝛾 to initial ∗- 
homomorphism 𝛾: 𝒥1(𝐺) → 𝐵by setting 𝛾(1) = 1. 

Theorem (1.3.8)[23]: If 𝐺 is an ordered group then the canonical map 𝑊∗: ℱ(𝐺) ⟶ 𝒜(𝐺) 
is a ∗- isomorphism. 

Proof. We already know that 𝑊∗ is a surjective, so we just have to show injectivity. 

Now we can regard ℱ(𝐺) as a 𝐶∗- subalgebra of 𝐵(𝐻) for some Hilbert space 𝐻 and 

with 𝑖𝑑𝐻 = 1 ∈ ℱ(𝐺). Also we may assume 𝐺 ≠ 0. By Theorem (1.3.1) the semigroup of 

isometries 𝑉: 𝐺+ → 𝐵(𝐻), 𝑥 ⟼ 𝑉𝑥, admits a unitary lifting (𝐾, 𝜋). Thus 𝜋 is a 

homomorphism from 𝐺 into the unitary operators on the Hilbert space 𝐾, and if 𝑄denotes 

the projection of 𝐾 onto its subspace 𝐻 we have 𝜋(𝑥)𝑄 = 𝑄𝜋(𝑥)𝑄 for all 𝑥 ∈ 𝐺+, since 𝐻 

is invariant for such 𝜋(𝑥). Also 𝑉𝑥 = 𝜋(𝑥)𝐻(𝑥 ∈ 𝐺
+). By Lemma (1.3.7) there exists a 

unique unital ∗- homomorphism 𝑦: ℐ1(𝐺) → 𝐵(𝐾) such that 𝑦(𝑝𝑥) = 𝜋(𝑥)𝑄𝜋(𝑥)
∗(𝑥 ∈ 𝐺). 

We now claim that 𝑦, 𝜋, 𝐾 is a covariant representation of the 𝐶∗-dynamical system 

(ℐ1(𝐺), 𝐺, 𝛼). All we need to do to see this is to show that 𝑦(𝛼𝑥(𝑓)) = 𝜋(𝑥)𝑦(𝑓) 𝜋(𝑥)
∗ for 

all 𝑓 ∈ ℐ1(𝐺) and all 𝑥 ∈ 𝐺. By using the fact that 1 and all the projections 𝑝𝑥(𝑥 ∈ 𝐺) have 

closed linear span ℐ1(𝐺), it clearly suffices to show the above equation for 𝑓 of the form 

𝑓 = 𝑝𝑦.  But 

𝛾 (𝛼𝑥 (𝑝𝑦)) = 𝛾(𝑝𝑥+𝑦) = 𝜋(𝑥 + 𝑦) 𝑄𝜋(𝑥 + 𝑦)
∗ = 𝜋(𝑥) 𝜋(𝑦) 𝑄𝜋 (𝑦)∗ 𝜋 (𝑥)∗

= 𝜋(𝑥)𝛾(𝑝𝑦) 𝜋 (𝑥)
∗. 

Thus since (𝛾, 𝜋, 𝐾) is a covariant representation it induces a unique ∗-
homomorphism 𝑦~: ℐ1(𝐺) ×𝛼 𝐺 → 𝐵(𝐾) extending 𝛾 such that 𝛾~(𝛿𝑥) = 𝜋(𝑥)(𝑥 ∈ 𝐺). It 
is now easily verified that the map 𝜇:𝒜(𝐺) → 𝐵(𝐻), 𝑎 → 𝛾~(𝑎)𝐻, is a ∗-homomorphism. 

However 𝜇(𝑊𝑥) = 𝜇(𝛿𝑥𝑝0) = (𝛾
~(𝛿𝑥)𝛾(𝑝0))𝐻 =

(𝜋(𝑥)𝑄)𝐻 = 𝑉𝑥 ∈ ℐ(𝐺)(𝑥 ∈ 𝐺
+)so Im(𝜇) ⊆

ℐ(𝐺). Thus we can regard 𝜇 as a ∗-homomorphism from 𝒜(𝐺) to ℐ(𝐺). Again since 

𝜇(𝑊𝑥) = 𝑉𝑥 we have 𝜇𝑊∗(𝑉𝑥) = 𝑉𝑥(𝑥 ∈ 𝐺
+), so 𝜇𝑊∗ = idℐ(𝐺) , thus 𝑊∗ is injective. 

We state now a result of Power [35] that we will need for the next theorem Power 

defines a 𝐶∗-algebra 𝐶 of operators on the Hilbert space 𝐾 to be inner with respect to a close 

subspace 𝐻 of 𝐾 if id𝐾 ∈ 𝐶 and 𝐶 is generated by its elements 𝑇 such that 𝑇(𝐻) ⊆ 𝐻. If this 

is the case and 𝐶 is commutative, and 𝐵 is the 𝐶∗-subalgebra of 𝐵(𝐻) generated by all 
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𝑇𝐻(𝑇 ∈ 𝐶) then 𝑇 ∈ 𝐾 (𝐶∗(𝐶 ∪ {𝑄})) (𝑄 is the projection of 𝐾 on 𝐻) implies 𝑇𝐻 ∈ 𝐾(𝐵) 
(see [35]). 

Theorem (1.3.9)[23]: If 𝐺 is an ordered group then 𝐾(𝒜(𝐺)) = 𝑝0(𝐾(ℐ1(𝐺) ×𝛼 𝐺))𝑝0is 

a full hereditary 𝐶∗-subalgebra of 𝐾(ℐ1(𝐺) ×𝛼 𝐺). 

Proof. Let 𝑍 = ℐ1(𝐺) ×𝛼 𝐺. Since 𝒜(𝐺) is a 𝐶∗-subalgebra of 𝑍, 𝐾(𝒜(𝐺)) ⊆ 𝐾(𝑍), and 

since 𝒜(𝐺) = 𝑝0𝑍𝑝0, 𝐾(𝒜(𝐺)) ⊆ 𝑝0𝐾(𝑍)𝑝0. 

Now regard 𝑍 as a 𝐶∗-subalgebra of 𝐵(𝐾) for some Hilbert space 𝐾 with id𝐾 = 1 ∈
𝑍, and let 𝐻 = 𝑝0(𝐾). Since 𝛿𝑥𝑝0 = 𝑝0𝛿𝑥𝑝0(𝑥 ∈ 𝐺

+), 𝐻 is an invariant subspace for these 

𝛿𝑥, so the commutative 𝐶∗-subalgebra 𝐶 of 𝐵(𝐾) generated by all 𝛿𝑥(𝑥 ∈ 𝐺
+) is inner with 

respect to 𝐻. Let 𝐵 be the 𝐶∗-subalgebra of 𝐵(𝐻) generated by all 𝑇𝐻(𝑇 ∈ 𝐶). By Power’s 

result mentioned above 𝑇 ∈ 𝐾(𝑍) implies 𝑇𝐻 ∈ 𝐾(𝐵) (since 𝑍 = 𝐶∗(𝐶 ∪ {𝑝0})). Now the 

map :𝒜(𝐺) → 𝐵, 𝑇 ⟼ 𝑇𝐻 , is easily seen to be a ∗-isomorphism. Thus 𝑇 ∈ 𝑝0𝐾(𝑍)𝑝0 

implies 𝑇 ∈ 𝐾(𝑍), and 𝑇 ∈ 𝒜(𝐺) implies 𝑇𝐻 ∈ 𝐾(𝐵), which implies 𝛽−1(𝑇𝐻) ∈ 𝐾(𝒜(𝐺)). 

We have therefore 𝑝0𝐾(𝑍)𝑝0 = 𝐾(𝒜(𝐺)), so 𝐾(𝒜(𝐺)) is hereditary 𝐶∗-subalgebra of 

𝐾(𝑍). 

Finally we show 𝐾(𝒜(𝐺)) is full in 𝐾(𝑍), i.e. the closed ideal 𝐽 in 𝐾(𝑍) generated 

by 𝐾(𝒜(𝐺)) is 𝐾(𝑍) itself.  

This is because 𝐽 contains 𝑝0 − 𝑝𝑥 = 𝑝0 −𝑊𝑥𝑊𝑥
∗(𝑥 ∈ 𝐺+), and therefore 𝑝0𝛿𝑥 − 𝛿𝑥𝑝0 =

(𝑝0 − 𝛿𝑥𝑝0𝛿𝑥
∗)𝛿𝑥 = (𝑝0 − 𝑝𝑦)𝛿𝑥 ∈ 𝐽. Hence 𝑍/𝐽is abelian (it is generated by commutating 

normal elements), so 𝐽 ⊇ 𝐾(𝑍) ⟹ 𝐽 = 𝐾(𝑍). 

As a consequence of a theorem of Brown [25] and Theorem (1.3.9) above it follows 

that if 𝐾(ℐ1(𝐺) ×𝛼 𝐺)is seperable (e.g. if 𝐺 is countable) then 𝐾(𝒜(𝐺)) and 

𝐾(ℐ1(𝐺) ×𝛼 𝐺) are stably isomorphic. 

Although we shall not be using it, we record here the interesting fact that for 𝐺 an 

ordered group 𝐾(ℐ1(𝐺) ×𝛼 𝐺) = ℐ0(𝐺) ×𝛼 𝐺. (Proof. Let 𝑍 = ℐ1(𝐺) ×𝛼 𝐺 and 𝐽 =
ℐ0(𝐺) ×𝛼 𝐺. 𝐽 is a closed ideal of 𝑍 generated as a 𝐶∗-algebra by all 𝑓𝛿𝑥(𝑓 ∈ ℐ0(𝐺), 𝑥 ∈ 𝐺). 

Now (𝑝0 − 𝑝𝑥)𝛿𝑥 = (𝑝0 − 𝛿𝑥𝑝0𝛿𝑥
∗)𝛿𝑥 = 𝑝0𝛿𝑥 − 𝛿𝑥𝑝0 ∈ 𝐾(𝑍), so (𝑝𝑥 − 𝑝𝑦)𝛿𝑧 = (𝑝0 −

𝑝𝑦)𝛿𝑧 − (𝑝0 − 𝑝𝑥)𝛿𝑧 ∈ 𝐾(𝑍), thus 𝑓𝛿𝑥 ∈ 𝐾(𝑍) for all 𝑓 ∈ ℐ0(𝐺), and all 𝑧 ∈ 𝐺. Hence 𝐽 ⊆

𝐾(𝑍). Also 𝑝0𝛿𝑥 − 𝛿𝑥𝑝0 = (𝑝0 − 𝑝𝑥)𝛿𝑥 ∈ 𝐽 implies 𝑍/𝐽 is abelian, so 𝐽 ⊇ 𝐾(𝑍 ). 

Recall that a subgroup 𝐼 of a partially ordered group 𝐺 is an ideal of 𝐺 if 𝐼 = 𝐼+ − 𝐼− 

and 0 ≤ 𝑥 ≤ 𝑦 ∈ 𝐼 implies 𝑥 ∈ 𝐼 (𝑥 ∈ 𝐺). 𝐺 is said to be simple if 0 and 𝐺 are its only 

ideals. All ordered subgroups of 𝐑 with the usual order relation are simple. For 𝑛 = 2, 3,… 

the group 𝐙𝑛 with the lexicographic order ((𝑎1, … , 𝑎𝑛) < (𝑏1, … , 𝑏𝑛)if 𝑎1 < 𝑏1 or 𝑎1 =
𝑏1, … , 𝑎𝑖 = 𝑏𝑖 , and 𝑎𝑖+1 < 𝑏𝑖+1) is a non-simple ordered group. 

If 𝐼 is an ideal in a partially ordered group 𝐺, and 𝜑 is the quotient map from 𝐺 to 𝐺/𝐼 
then 𝜑(𝐺+) is a cone in the quotient group 𝐺/𝐼. We call the partially ordered group 

(𝐺/𝐼, 𝜑(𝐺+)) the quotient partially ordered group of 𝐺 by 𝐼. Of course 𝜑 is a positive 

homomorphism from 𝐺 to 𝐺/𝐼. If 𝐺 is totally ordered, so are 𝐼 and 𝐺/𝐼. 
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Lemma (1.3.10)[23]: If 𝐺 s a finitely generated non- zero ordered group then 𝐺 contains a 

non- zero simple ideal 𝐼. 

Proof. Let 𝐾 be the rank of 𝐺. Note that an ordered group is necessary torsion- free. Thus 

if 𝐼1 is a proper ideal in 𝐺, then 𝐺/𝐼1 is non- zero and so has positive rank. This implies 

rank (𝐼1) =  rank(𝐺) − rank (
𝐺

𝐼1
) < 𝑟𝑎𝑛𝑘(𝐾) = 𝑘. 

We show the result by induction on 𝑘. Suppose it is true for all ranks < 𝑘. If 𝐺 has 

no proper ideals then there is nothing to prove (take 𝐼 = 𝐺). Otherwise 𝐺 contains a non- 

zero ideal 𝐼1 with rank (𝐼1 < 𝑘). By the induction hypothesis 𝐼1 contains a non- zero simple 

ideal 𝐼. 𝐼 is then an ideal in 𝐺, thus completing the induction. 

If 𝐺 is any ordered group let |𝑥| = 𝑥 if 𝑥 ≥ 0 and |𝑥| = −𝑥 if 𝑥 < 0 (𝑥 ∈ 𝐺). Let  

𝐹(𝐺) = {𝑥 ∈ 𝐺: for all 𝑦 ∈ 𝐺, 𝑦 > 0, there exists 𝑛 ∈ 𝐍, |𝑥| ≤ 𝑛𝑦}. 

Using the triangle inequality |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| one easily sees that 𝐹(𝐺) is a simple ideal 

in 𝐺. Hence if 𝐼 is any non- zero ideal of 𝐺, 𝐹(𝐺) ⊆ 𝐼 (since if 𝐹(𝐺) is non- zero then there 

exists 𝑥 ∈ 𝐹(𝐺), 𝑥 > 0, and there exists 𝑦 ∈ 𝐼, 𝑦 > 0, so that if 𝑧 is their minimum, then 

0 < 𝑧 ∈ 𝐼 ∩ 𝐹(𝐺) implies 𝐼 ∩ 𝐹(𝐺) is a non- zero ideal of 𝐹(𝐺), so 𝐼 ∩ 𝐹(𝐺) = 𝐹(𝐺), thus 

𝐹(𝐺) ⊆ 𝐼). Of course 𝐹(𝐺) might be just the zero ideal. In fact it is for 𝐺 = 𝐙∞, the direct 

sum of countably infinitely many copies of 𝐙with the lexicographic order: (𝑎1, 𝑎2, … ) <
(𝑏1, 𝑏2, … )if 𝑎1 < 𝑏1 or if 𝑎1 = 𝑏1, … , 𝑎𝑖 = 𝑏𝑖 , and 𝑎𝑖+1 < 𝑏𝑖+1 for some integer 𝑖. 

The point of Lemma (1.3.10) can be rephrased as follows: if𝐺 is a non- zero finitely 

generated group, then 𝐹(𝐺)is non- zero. (Proof: By Lemma (1.3.10), 𝐺 contains a non- zero 

simple ideal 𝐼. Let 𝑥 ∈ 𝐺, 𝑥 > 0, and let 𝐼𝑥 be the set of 𝑦 in 𝐺 such that for some positive 

integer 𝑛, |𝑦| ≤ 𝑛𝑥. Then 𝐼𝑥 is a non- zero ideal in 𝐺(𝐼𝑥 ≠ 0 𝑎𝑠 𝑥 ∈ 𝐼𝑥). Now 𝐼 ∩ 𝐼𝑥 is a 

non- zero ideal in 𝐼, so 𝐼 ∩ 𝐼𝑥 = 𝐼, thus 𝐼 ⊆ 𝐼𝑥 . hence 𝑦 ∈ 𝐼 implies |𝑦| ≤ 𝑛𝑥 for some 𝑛 ∈
𝐍. Thus we have shown𝐼 ⊆ 𝐹(𝐺), and since 𝐹(𝐺) ⊆ 𝐼 by our earlier remarks, 𝐹(𝐺) = 𝐼 ≠
0. ) 

If 𝐺 is a non-zero finitely generated ordered group we let 𝐹ℐ(𝐺) denote the closed 

linear span of all 𝑝𝑥 − 𝑝𝑦(𝑥, 𝑦 ∈ 𝐺, 𝑥 − 𝑦 ∈ 𝐹(𝐺)). 

Lemma (1.3.11)[23]: If 𝐺 is a non-zero finitely generated ordered group then 𝐹ℐ(𝐺) is the 

smallest non- zero 𝐺-invariant closed ideal ℐ1(𝐺). 

Proof. If 𝑥, 𝑦, 𝑧 ∈ 𝐺 with 𝑥 − 𝑦 ∈ 𝐹(𝐺) then 𝑧 ∨ 𝑥 − 𝑧 ∨ 𝑦 ∈ 𝐹(𝐺). Hence 𝑝𝑧(𝑝𝑥 − 𝑝𝑦) =

𝑝𝑧∨𝑥 − 𝑝𝑦+𝑧 ∈ 𝐹ℐ(𝐺), so it is clear that 𝐹ℐ(𝐺) is an ideal in ℐ1(𝐺). Since 𝛼𝑧(𝑝𝑥 − 𝑝𝑦) =

𝑝𝑥+𝑧 − 𝑝𝑦+𝑧 , it is trivial that 𝐹ℐ(𝐺) is 𝐺-invariant. As 𝐹(𝐺) is non- zero, 𝑝0 − 𝑝𝑥 ≠ 0 for 

some 𝑥 ∈ 𝐹(𝐺), so 𝐹ℐ(𝐺) is non- zero.  

Now let 𝐽 be a non- zero 𝐺- invariant closed ideal in ℐ1(𝐺). We have to show that 

𝐹ℐ(𝐺) ⊆ 𝐽. By replacing 𝐽 by 𝐽 ∩ ℐ0(𝐺) if necessary, we may assume that 𝐽 ⊆ ℐ0(𝐺) (the 

reason that 𝐽 ∩ ℐ0(𝐺) is non- zero is the easily checked fact that ℐ0(𝐺) is an essential closed 

ideal in ℐ1(𝐺)). 



28 

 

Put 𝐼 = {𝑥 ∈ 𝐺: 𝑝0 − 𝑝𝑥 ∈ 𝐽}. If 𝑥, 𝑦 ∈ 𝐼 then 𝑝0 − 𝑝𝑥 and 𝛼𝑧(𝑝0 − 𝑝𝑦 ∈ 𝐽) implies 

𝑝0 − 𝑝𝑥 + 𝑝𝑥 − 𝑝𝑥+𝑦 = 𝑝0 − 𝑝𝑥+𝑦 ∈ 𝐽 , so 𝑥 + 𝑦 ∈ 𝐼. Also 𝑥, 𝑦 ∈ 𝐺 and 0 ≤ 𝑥 ≤ 𝑦 ∈ 𝐼 

implies 0 ≤ 𝑝0 − 𝑝𝑥 ≤ 𝑝0 − 𝑝𝑦 ∈ 𝐽 , so 𝑝0 − 𝑝𝑥 ∈ 𝐽 , thus 𝑥 ∈ 𝐼. Thus 𝐼 is an ideal of 𝐺. 

We define 𝛤 to be the linear span of 1 and all 𝑝𝑥(𝑥 ∈ 𝐺). In the terminology of 

Goodearl [29], 𝛤 is a dense ultramatricial ∗-subalgebra of the AF-algebra ℐ1(𝐺). Hence 

(𝐽 ∩ 𝛤)− = 𝐽 and 𝐽 ∩ 𝛤 is the linear span of its projections (see [29]). since 𝐽 is a non- zero, 

there is a non- zero projection 𝑝 in 𝐽 ∩ 𝛤. Hence there exists 𝑥1, … , 𝑥𝑛 ∈ 𝐺 determining 

projections 𝑝1, … , 𝑝𝑛 in ℐ1(𝐺) such that 𝑝 = 𝜆1𝑝1 +⋯+ 𝜆𝑛𝑝𝑛 for some 𝜆1, … , 𝜆𝑛 ∈ 𝐂. 

Recalling a detail from the proof of Lemma (1.3.7) we may assume that 𝑥1 ≤ ⋯ ≤ 𝑥𝑛 (by 

re-indexing if necessary) and then we have 𝑝 = 𝑣1(𝑝1 − 𝑝2)+. . . +𝑣𝑛−1(𝑝𝑛−1 − 𝑝𝑛) +
𝑣𝑛𝑝𝑛 for some 𝑣𝑖 ∈ 𝐂. Of course the projections 𝑝1 − 𝑝2, … , 𝑝𝑛−1 − 𝑝𝑛, 𝑝𝑛 are pairwise 

orthogonal. Now if 𝑣𝒏is non- zero then 𝑝𝑛 ∈ ℐ0(𝐺) (since , 𝑝1 − 𝑝2, … , 𝑝𝑛−1 − 𝑝𝑛 ∈ ℐ0(𝐺) 
) and this is easily seen to be impossible. Thus we have 𝑣𝑛 = 0 and of course each 𝑣𝑖 = 0 

or 1. In short 𝑝 is a sum of 𝑘 pairwise orthogonal projections 𝑝𝑢𝑗 − 𝑝𝑣𝑗 with 𝑢𝑗 ≤ 𝑣𝑗 in 𝐺. 

Thus 𝑝 ≥ 𝑝𝑢𝑗 − 𝑝𝑣𝑗 ≥ 0 and 𝑝 ∈ 𝐽 implies 𝑝𝑢𝑗 − 𝑝𝑣𝑗 ∈ 𝐽, so 𝛼(−𝑢𝑗)(𝑝𝑢𝑗 − 𝑝𝑣𝑗) = 𝑝0 −

𝑝𝑣𝑗−𝑢𝑗 ∈ 𝐽, so 𝑣𝑖 − 𝑢𝑗 ∈ 𝐼. Since 𝑝 ≠ 0, 𝑣𝑗 ≠ 𝑢𝑗 for some 𝑗, we have 𝐼 ≠ 0. Hence 𝐹(𝐺) ⊆
𝐼, so if 𝑥 ∈ 𝐹(𝐺) then 𝑝0 − 𝑝𝑥 ∈ 𝐽 as 𝑥 ∈ 𝐼. More generally if 𝑥, 𝑦 ∈ 𝐺 and 𝑥 − 𝑦 ∈ 𝐹(𝐺) 

then 𝑝0 − 𝑝𝑥−𝑦 ∈ 𝐽 implies 𝛼𝑦(𝑝0 − 𝑝𝑥−𝑦) = 𝑝𝑦 − 𝑝𝑥 ∈ 𝐽. Hence 𝐹ℐ(𝐺) ⊆ 𝐽. 

We do not state the strongest possible forms of these results, just versions sufficient 

for our purposes. 

Let (𝐴, 𝐺, 𝛼) be a 𝐶∗-dynamical systems with 𝐴 a separable abelian 𝐶∗-algebra and 𝐺 

a countable discrete abelian group. 𝐴 is 𝐺-prime if every two non- zero 𝐺- invariant closed 

ideals of 𝐴 have non- zero intersection. 𝐴 is 𝐺-simple if 0 and 𝐴 are its only 𝐺-invariant 

closed ideals. The Arveson spectrumsp(𝛼) of (𝐴, 𝐺, 𝛼) is the set of all 𝜌 ∈ 𝐺∧ for which 

there exists a sequence of unit vectors 𝑓𝑛 in 𝐴 such that ‖𝛼𝑥(𝑓𝑛) − 𝜌(𝑥)𝑓𝑛‖ converges to 0 

as 𝑛 → ∞(𝑥 ∈ 𝐺). A useful fact: the annihilator sp(𝛼)⊥ = {𝑥 ∈ 𝐺: 𝛼𝑥 = id𝐴}. The connes 

spectrum 𝛤(𝛼) of (𝐴, 𝐺, 𝛼) is the intersection of all sp(𝛼|𝐽) where 𝐽 runs over all non- zero 

𝐺-invariant closed ideals of 𝐴, and sp(𝛼|𝐽) is the Arveson spectrum of the 𝐶∗-dynamical 

system (𝐽, 𝐺, 𝛼)got by restriction of 𝛼𝑥 to 𝐽(𝑥 ∈ 𝐺). 𝛤(𝛼) is a closed subgroup of 𝐺∧ , so 

𝛤(𝛼)⊥ = 0 then 𝛤(𝛼) = 𝐺∧ . 

The following two important results will be needed: 

Result 1. If 𝐴 is 𝐺-prime and 𝛤(𝛼) = 𝐺∧  then 𝐴 ×𝛼 𝐺 is primitive. 

Result 2. If 𝐴 is 𝐺-simple and 𝛤(𝛼) = 𝐺∧  then 𝐴 ×𝛼 𝐺 is simple. 

See Pedersen [33] and [34]. 

Lemma (1.3.12)[23]: Let 𝐺 be a finitely generated ordered group. Then ℐ1(𝐺) ×𝛼 𝐺 is 

primitive and 𝐹ℐ(𝐺) ×𝛼 𝐺 is simple. 

Proof. If 𝐺 = 0 then ℐ1(𝐺) ×𝛼 𝐺 = 𝐂 and 𝐹ℐ(𝐺) ×𝛼 𝐺 = 0, so there is nothing to prove. So 

we may suppose that 𝐺 is non- zero, and hence 𝐹(𝐺) is non- zero. If 𝐽1 and 𝐽2 are non- zero 

𝐺-invariant closed ideals of ℐ1(𝐺), then by Lemma (1.3.11) 𝐹ℐ(𝐺) ⊆ 𝐽1 ∩ 𝐽2 and 𝐹ℐ(𝐺) is 
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a non- zero 𝐺-invariant closed ideal in ℐ1(𝐺). Thus ℐ1(𝐺) is 𝐺-prime, and since 𝐽1 ⊆ 𝐽2 

implies sp(𝛼|𝐽1) ⊆ sp(𝛼|𝐽2) we have 𝛤(𝛼) = sp(𝛼|𝐹ℐ(𝐺)). 

Hence 𝛤(𝛼)⊥ = sp(𝛼|𝐹ℐ(𝐺))
⊥
= {𝑥 ∈ 𝐺: 𝛼𝑥 = id}. Let 𝑥 ∈ 𝛤(𝛼)⊥ and 𝑦 ∈ 𝐹(𝐺) , 𝑦 > 0. 

Then 𝛼𝑥(𝑝0 − 𝑝𝑦) = 𝑝𝑥 − 𝑝𝑥+𝑦 = 𝑝0 − 𝑝𝑦 (since 𝑝0 − 𝑝𝑦 ∈ 𝐹ℐ(𝐺)). Now if 𝑧 < 𝑡 in 𝐺 

and [𝑧, 𝑡) = {𝑢 ∈ 𝐺: 𝑧 ≤ 𝑢 < 𝑡} then 𝑝𝑧 − 𝑝𝑡 = 𝜒[𝑧,𝑡) . Thus 𝜒(𝑥,𝑥+𝑦) = 𝜒(0,𝑦) , so 𝑥 = 0, 

and therefore 𝛤(𝛼)⊥ = 0, implying that 𝛤(𝛼) = 𝐺∧. By result 1 above, ℐ1(𝐺) ×𝛼 𝐺 is 

primitive. Of course from that we have just shown, it is clear that (𝐹ℐ(𝐺), 𝐺, 𝛼) is 𝐺-simple 

(since any 𝐺-invariant closed ideal of 𝐹ℐ(𝐺) is one of ℐ1(𝐺) also) and the Connes spectrum 

𝛤(𝛼) = 𝐺∧ for (𝐹ℐ(𝐺), 𝐺, 𝛼) also. Hence by result 2 above 𝐹ℐ(𝐺) ×𝛼 𝐺 is simple. (Note 

that 𝐹ℐ(𝐺) ×𝛼 𝐺 is non- zero since it contains 𝐹ℐ(𝐺), and this is opn- zero). 

If 𝐺 is an ordered group we let ℱℐ(𝐺) denote the closed ideal in ℐ(𝐺) generated by 

all 𝑞𝑥 = 1 − 𝑉0𝑉𝑥
∗(𝑥 ∈ 𝐹(𝐺)+). Clearly ℱℐ(𝐺) ⊆ 𝐾(ℐ(𝐺)), and ℱℐ(𝐺) = 𝐾(ℐ(𝐺)) if 

𝐹(𝐺) = 𝐺. 

Lemma (1.3.13)[23]: If 𝐺 is a finitely generated ordered group then ℐ(𝐺) is primitive and 

ℱℐ(𝐺) is simple. 

Proof.𝒜(𝐺) is a hereditary 𝐶∗-subalgebra of ℐ1(𝐺) ×𝛼 𝐺, so 𝒜(𝐺) is primitive as 

ℐ1(𝐺) ×𝛼 𝐺 is. Let 𝐽 = 𝑝0(𝐹ℐ(𝐺) ×𝛼 𝐺)𝑝0. Then 𝐽 is a closed ideal in 𝒜(𝐺) =
𝑝0(ℐ1(𝐺) ×𝛼 𝐺)𝑝0 (since 𝐹ℐ(𝐺) ×𝛼 𝐺 is a closed ideal ℐ1(𝐺) ×𝛼 𝐺), and 𝐽 is a hereditary 

𝐶∗-subalgebra of the simple 𝐶∗-algebra 𝐹ℐ(𝐺) ×𝛼 𝐺, so 𝐽 is simple. 

Now let 𝑊∗: ℱℐ(𝐺) → 𝒜(𝐺) be the conical ∗-iomorphism. Since 𝒜(𝐺) is primitive, 

so is ℐ(𝐺). Also 𝑊∗(ℱℐ(𝐺)) = 𝐽, so ℱℐ(𝐺) is simple. (To see that 𝑊∗(ℱℐ(𝐺)) = 𝐽, note 

𝑊∗(𝑞𝑥) = 𝑊
∗(1 − 𝑉∗𝑉𝑥

∗) = 𝑝0 −𝑊∗𝑊𝑥
∗ = 𝑝0 − 𝛿𝑥𝑝0𝛿𝑥

∗ = 𝑝0 − 𝑝𝑥. Thus 𝑥 ∈ (𝐺)+ 

implies 𝑊∗(𝑞𝑥) ∈ 𝑝0ℱℐ(𝐺)𝑝0 ⊆ 𝐽 which implies 𝑊∗(ℱℐ(𝐺)) ⊆ 𝐽. If 𝐺 = 0 then ℱℐ(𝐺) =

0, so 𝐽 = 0, thus 𝑊∗(ℱℐ(𝐺)) = 𝐽. If 𝐺 is non- zero, then 𝐹(𝐺) has a positive element 𝑥, so 

𝑞𝑥 ≠ 0, so 𝑊∗(𝑞𝑥) ≠ 0, so 𝑊∗(ℱℐ(𝐺)) = 𝐽 by simplicity of 𝐽.) 

Recall that 𝐶∗-algebra 𝐴 is prime if every two non- zero closed ideals of 𝐴 have non- 

zero intersection. Every primitive 𝐶∗-algebra is prime (we are about to use this fact in a 

moment) and the converse holds for separable 𝐶∗-algebra. (The non- separable case is an 

open question, see Pedersen [33].) 

Let 𝛽: 𝐺+ → 𝐵 be a semigroup off isometries in the unital 𝐶∗-algebra 𝐵, over the 

partially ordered group 𝐺. We say that 𝛽 is nonunitary if 𝛽(𝑥) is non- unitary for all 𝑥 >
0, 𝑥 ∈ 𝐺. The following lemma will be generalized immediately in Theorem (1.3.15) below. 

Lemma (1.3.14)[23]: Let 𝐺 be a finitely generated ordered group and 𝛽: 𝐺+ → 𝐵 a 

nonunitary semigroup of isometries in a unital 𝐶∗-algebra 𝐵. Then the unique ∗-
homomorphism 𝛽∗: ℐ(𝐺) → 𝐵 such that 𝛽∗𝑉 = 𝛽 is injective. 

Proof. Let 𝐽 = ker(𝛽∗). If  𝐽 is non- zero then 𝐺 is non- zero (𝐺 = 0 implies ℐ(𝐺) = 0, so 

𝐽 = 0), so 𝐹(𝐺) is non- zero, thus ℱℐ(𝐺) is non- zero. Hence 𝐽 ∩ ℱℐ(𝐺) is non- zero (as 

ℐ(𝐺) is primitive and therefore prime). As ℱℐ(𝐺) is simple, 𝐽 ∩ ℱℐ(𝐺) = ℱℐ(𝐺), so 

ℱℐ(𝐺) ⊆ 𝐽. Now there exists 𝑥 ∈ 𝐹(𝐺), 𝑥 > 0, so we have 𝑞𝑥 ∈ 𝐽, thus 0 = 𝛽∗(𝑞𝑥) =
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𝛽∗(1 − 𝑉𝑥𝑉𝑥
∗) = 1 − 𝛽(𝑥)𝛽(𝑥)∗, which implies that 𝛽(𝑥) is unitary. Since 𝛽 is nonunitary 

this is impossible, so 𝐽 cannot be non- zero. Thus 𝛽∗ is injective. 

Theorem (1.3.15)[23]: Let 𝐺 be an ordered group and 𝛽: 𝐺+ → 𝐵 a nonunitary semigroup 

of isometries in a unital 𝐶∗-algebra 𝐵. Then 𝛽∗: ℐ(𝐺) → 𝐵 is injective. 

Proof. Let 𝐼 be the set of finite non-empty subsets of 𝐺, ordered by set inclusion (i.e. 𝑖 ≤
𝑗 𝑖𝑓𝑓 𝑖 ⊆ 𝑗). Thus 𝐼 is a direct set. For 𝑖 ∈ 𝐼 let 𝐺𝑖 be the subgroup of 𝐺 generated by 𝑖, and 

let 𝜑𝑖: 𝐺𝑖 → 𝐺 be the inclusion homomorphism. Likewise for 𝑖 ≤ 𝑗 in 𝐼 let 𝜑𝑖𝑗: 𝐺𝑖 → 𝐺𝑗 be 

the inclusion homomorphism. Of course all the 𝐺𝑖 are ordered groups and the maps 𝜑𝑖 and 

𝜑𝑖𝑗 are positive. Since 𝐺 is the union of all 𝐺𝑖(𝑖 ∈ 𝐼) it is easily checked that 𝐺 is the direct 

limit (in the category of all partially ordered groups) of the direct system (𝜑𝑖𝑗: 𝐺𝑖 → 𝐺𝑗)𝑖≤𝑗 

with the maps 𝜑𝑖 as natural maps. By Theorem (1.3.6) ℐ(𝐺) is the direct limit (in the 

category of 𝐶∗-algebras) of the direct system ((𝜑𝑖𝑗)
∗
: ℐ(𝐺𝑖) → ℐ(𝐺𝑗))

𝑖≤𝑗
 with the maps 

(𝜑𝑖)
∗
: ℐ(𝐺𝑖) → ℐ(𝐺𝑗) as natural maps. Let 𝐴𝑖 = (𝜑

𝑖)
∗
(ℐ(𝐺𝑖))(𝑖 ∈ 𝐼). Then ℐ(𝐺) =

(⋃{𝐴𝑖: 𝑖 ∈ 𝐼})
− , since ℐ(𝐺) is the direct limit. 

Let 𝜓𝑖: 𝐺𝑖
+ → 𝐺+ be the restriction of 𝜑𝑖. Now 𝛽𝜓𝑖: 𝐺𝑖 → 𝐵 is a semigroup of 

isometries over 𝐺𝑖 and 𝛽𝜓𝑖 is a nonunitary, since 𝛽𝜓𝑖(𝑥) were a unitary then 𝜓𝑖(𝑥) = 0 

implies 𝑥 = 0 (𝜓𝑖(𝑥) = 𝑥). Hence by Lemma (1.3.14), (𝛽𝜓𝑖)
∗
 is injective. Let 𝑉𝑖: 𝐺𝑖

+ →

ℐ(𝐺𝑖) and 𝑉: 𝐺+ → ℐ(𝐺) be the canonical maps. The 𝛽∗(𝜑𝑖)
∗
𝑉𝑖 = 𝛽∗𝑉𝜓𝑖 = 𝛽𝜓𝑖, so 

𝛽∗(𝜑𝑖)
∗
= (𝛽𝜓𝑖)

∗
. Thus 𝛽 is an isometry on each 𝐴𝑖: 𝑖 ∈ 𝐼, implying that 𝛽∗ is an isometry 

on ℐ(𝐺) = (⋃{𝐴𝑖: 𝑖 ∈ 𝐼})
−. 

Theorem (1.3.16)[23]: Let 𝐺 be an ordered group. Then ℐ(𝐺) is prime. 

Proof. We retain the notation of the proof of Theorem (1.3.15). Let 𝐽 be a non- zero closed 

ideal of ℐ(𝐺). Then 𝐽 ∩ 𝐴𝑖 is non- zero for some 𝑖 ∈ 𝐼. (For otherwise letting 𝜋 be the 

quotient map from ℐ(𝐺) to ℐ(𝐺)/𝐽, 𝜋 is isometric on each 𝐶∗-algebra 𝐴𝑖, so 𝜋 is isometric 

on ℐ(𝐺) = (⋃{𝐴𝑖: 𝑖 ∈ 𝐼})
−, thus 𝐽 = ker(𝜋) = 0.) Thus if 𝐽1 and 𝐽2 are non- zero closed 

ideals of ℐ(𝐺) then (since 𝐼 is directed) 𝐽1 ∩ 𝐴𝑖 and 𝐽2 ∩ 𝐴𝑖 are non- zero closed ideals in 

some 𝐴𝑖. Now (𝜑𝑖)
∗
: ℐ(𝐺𝑖) → ℐ(𝐺𝑗) is injective since (𝜑𝑖)

∗
= (𝑉𝜓𝑖)

∗
 and 𝑉𝜓𝑖: 𝐺+ →

ℐ(𝐺) is a nonunitary semigroup of isometries (which implies (𝑉𝜓𝑖)
∗
is injective by Theorem 

(1.3.15)). Hence 𝐴𝑖 = (𝜑
𝑖)
∗
(ℐ(𝐺𝑖)) is ∗-isomorphic to ℐ(𝐺𝑖), so 𝐴𝑖 is primitive (by Lemma 

(1.3.13)), and therefore prime. It follows that  (𝐽1 ∩ 𝐴𝑖) ∩ (𝐽2 ∩ 𝐴𝑖) is non- zero, so  𝐽1 ∩ 𝐽2  
is non- zero. Thus ℐ(𝐺) is prime. 

We included Theorem (1.3.16) here since one can derive it so easily given one has set 

up the machinery to prove Theorem (1.3.15). Actually however we will show that ℐ(𝐺) is 

primitive (for 𝐺 an ordered group) by exhibiting explicitly a faithful irreducible 

representation of ℐ(𝐺). 

Theorem (1.3.17)[23]: If 𝐺 is an ordered group then ℱℐ(𝐺) is simple. 

Proof. Let 𝐽 be a non- zero closed ideal of ℱℐ(𝐺) and let 𝜋 be the quotient map from ℐ(𝐺) 
to ℐ(𝐺)/𝐽. Let the map 𝛽: 𝐺+ → ℐ(𝐺)/𝐽 be defined by setting 𝛽(𝑥) =  𝜋(𝑉𝑥) (i.e. 𝛽 = 𝜋𝑉). 
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𝛽 is clearly a semigroup of isometries and 𝛽∗ = 𝜋. Suppose 𝛽 were nonunitary. Then 𝜋 =
𝛽∗ is injective, so 𝐽 = 0. Thus 𝛽 is not nonunitary, and so there is an element 𝑥 ∈ 𝐺, 𝑥 > 0, 

such that 𝛽(𝑥) is a unitary. If 𝑦 ∈ 𝐹(𝐺)∗ then 𝑦 ≤ 𝑛𝑥 for some 𝑛 ∈ 𝐍, so 𝑛𝑥 = 𝑦 + 𝑧 for 

some 𝑧 ∈ 𝐺+. Hence 𝛽(𝑥)𝑛 = 𝛽(𝑦)𝛽(𝑧) = 𝛽(𝑧)𝛽(𝑦), so 𝛽(𝑦) is invertible as 𝛽(𝑥)𝑛 is. 

Thus 𝜋(𝑞𝑦) = 𝜋(1 − 𝑉𝑦𝑉𝑦
∗) = 1 − 𝛽(𝑦)𝛽(𝑦)∗ = 0, so ℱℐ(𝐺) ⊆ ker(𝜋) thus ℱℐ(𝐺) = 𝐽. 

Of course ℱℐ(𝐺) is non- zero iff 𝐹(𝐺) is non- zero. 

Corollary (1.3.18)[23]: (Douglas, [27]). If 𝐺 is an ordered subgroup of 𝐑 (usual order) then 

𝐾(ℐ(𝐺)) is simple. 

Proof. In this case 𝐹(𝐺) = 𝐺. Hence ℐ(𝐺)/ℱℐ(𝐺) is abelian (as 1 − 𝑉𝑥𝑉𝑥
∗ ∈ ℱℐ(𝐺) for all 

𝑥 ∈ 𝐺+), so ℱℐ(𝐺) ⊇ 𝐾(ℐ(𝐺)) and we know already that ℱℐ(𝐺) ⊆ 𝐾(ℐ(𝐺)), so ℱℐ(𝐺) =

𝐾(ℐ(𝐺)). 

This result is attributed to Douglas because for 𝐺 an order subgroup of 𝐑, 𝑉: 𝐺+ →
ℐ(𝐺) is a nonunitary one- parameter semigroup of isometries in his terminology, and the 

corollary follow from [27]. The techniques used by Douglas to prove this result are 

completely different from ours. 

We return to partially ordered groups. We exhibit an irreducible representation of the 

Toeplitz algebra as a 𝐶∗-algebra of generalized “Toeplitz” operators (this representation is 

faithful for ordered groups). This involves our deriving a theory of such operators. The 

results and many of the proofs are closely analogous to the classical special case 𝐺 = 𝐙, 

although there are some interesting differences. Perhaps the most remarkable fact here is 

that so much of the classical theory extends in such generality. 

Let 𝐺 be a partially ordered group, 𝑇 the circle group, and recall that 𝜀(𝑥): 𝐺∧ ↔ 𝑇is 

the evaluation homomorphism 𝜀(𝑥)(𝑦) = 𝑦(𝑥)(𝑥 ∈ 𝐺, 𝑦 ∈  𝐺∧)as is well known 

(𝜀(𝑥))
𝑥∈𝐺

 forms an orthonormal basis for the Hilbert space 𝐿2 = 𝐿2(𝐺∧), and letting 𝑃𝐺 

denote their linear span, it follows from the Stone- Weierstrass theorem that this ∗-
subalgebra of 𝐶(𝐺∧) is dense in 𝐶(𝐺∧) in the sup-norm topology. The elements of 𝑃𝐺 are 

called the trigonometric polynomials (relative to 𝐺). Denote by 𝐻2 = 𝐻2(𝐺) the closed 

subspace of 𝐿2 having orthonormal basis (𝜀(𝑥))
𝑥∈𝐺+

 , and let 𝑃 ∈ 𝐵(𝐿2) be the projection 

onto 𝐻2. If 𝜑 ∈ 𝐿∞ = 𝐿∞(𝐺∧) we define 𝑇𝜑 ∈ 𝐵(𝐻
2) by setting 𝑇𝜑(𝑓) =  𝑃(𝜑𝑓). 𝑇𝜑 is the 

Toeplitz operator with symbol 𝜑 (relative to 𝐺). The map 𝐿∞ → 𝐵(𝐻∞), 𝜑 ⟼ 𝑇𝜑 , is easily 

seen to be linear and norm- decreasing. Also 𝑇𝜑∗ = 𝑇𝜑−. 

If 𝐺 = 𝐙  (with the usual ordering) then of course 𝐻2 is the usual Hardy space and we 

get the classical Toeplitz operators. 

If 𝐺 is a partially ordered group and 𝐹 is finite non- empty subset of 𝐺, then there 

exists 𝑥 ∈ 𝐺+such that 𝑥 ≥ 𝑦(𝑦 ∈ 𝐹). (Proof: if 𝐹 = {𝑥1, … , 𝑥𝑛} then each 𝑥𝑖 = 𝑦𝑖 − 𝑧𝑖 
with 𝑦𝑖 , 𝑧𝑖 ∈ 𝐺+. Take 𝑥 = 𝑦1 +⋯+ 𝑦𝑛.) This is used in the next easy but useful lemma. 

(Both this result and the next lemma will be often used tacitly.) 

Lemma (1.3.19)[23]: If 𝐺 is a partially ordered group and 𝜑 ∈ 𝑃𝐺 then 𝜀(𝑥)𝜑 ∈ 𝐻2(𝐺) for 

some 𝑥 in 𝐺+. 
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Proof.𝜑 = 𝜆1𝜀(𝑦
1) + ⋯+ 𝜆𝑛𝜀(𝑦

𝑛) for some 𝑦1, … , 𝑦𝑛 ∈ 𝐺, and some 𝜆1, … , 𝜆𝑛 ∈ 𝐂. 

Choose 𝑥 ∈ 𝐺+ such that 𝑥 ≥ −𝑦1, … ,−𝑦𝑛. Then 𝜆1𝜀(𝑥 + 𝑦
1) + ⋯+ 𝜆𝑛𝜀(𝑥 + 𝑦

𝑛) ∈ 𝐻2. 

As in the proof above shall often drop explicit reference to 𝐺 when referring to the 

spaces 𝐿2(𝐺∧), 𝐻2(𝐺) and 𝐿∞(𝐺∧). 

If 𝐸 is a subset of 𝐂 then hull(𝐸) denotes its closed convex hull. 

Theorem (1.3.20)[23]: Let 𝐺 be a partially ordered group. If 𝜑 ∈ 𝐿∞(𝐺∧) then ‖𝑇𝜑‖ =

‖𝜑‖∞  and Sp(𝜑) ⊆ Sp(𝑇𝜑) ⊆ hull(Sp(𝜑)). (Sp(𝜑) is the essential range of 𝜑.) 

Proof. Let 𝑀𝜑 ∈ 𝐵(𝐿
2) be the multiplication defined by 𝑀𝜑(𝑓) = 𝜑𝑓. Now the map 𝐿∞ →

𝐵(𝐿2), 𝜑 ↦ 𝑀𝜑, is an isometric ∗-homo-morphism, so Sp(𝑀𝜑) = Sp(𝜑). Let 𝑆 = {𝜀(𝑥)̅̅ ̅̅ ̅̅ 𝑓: 𝑥 ∈

𝐺+, 𝑓 ∈ 𝐻2}. Then 𝑆− = 𝐿2, since (𝑃𝐺) 
− = 𝐿2and𝐿2 ⊆ 𝑆. Suppose that 𝑇𝜑 is bounded below, 

so for some 𝜇 > 0, ‖𝑇𝜑‖ ≥ 𝜇‖𝑓‖(𝑓 ∈ 𝐻
2). Then ‖𝑀𝜑𝑓𝜀(𝑥)

−‖ = ‖𝜑𝑓‖ ≥ ‖𝑃(𝜑𝑓)‖ =

‖𝑇𝜑(𝑓)‖ ≥ 𝜇‖𝑓‖ = 𝜇‖𝜀(𝑥)𝑓̅̅ ̅̅ ̅̅ ̅̅ ‖. Hence ‖𝑀𝜑(𝑔)‖ ≥ 𝜇‖𝑔‖(𝑔 ∈ 𝐿
2). As 𝑆− = 𝐿2. Thus for any 

𝜑 ∈ 𝐿2, Sp(𝜑) = Sp(𝑀𝜑) ⊆ Sp(𝑇𝜑). Hence ‖𝑇𝜑‖ ≥ 𝑟(𝑇𝜑) ≥ 𝑟(𝑀𝜑) = ‖𝜑‖∞ , so ‖𝑇𝜑‖ =
‖𝜑‖∞. But an isometric ∗-linear map 𝜌: 𝐴 → 𝐵 from an abelian 𝐶∗-algebra 𝐴 to another 𝐶∗-

algebra 𝐵 has the property that Sp(𝜌(𝑎)) ⊆ Hull(Sp(𝑎)) for all 𝑎 ∈ 𝐴(Douglas [5]). Hence 

(𝐴 = 𝐿∞, 𝐵 = 𝐵(𝐻2), 𝜌(𝜑) = 𝑇𝜑)Sp(𝑇𝜑) ⊆ Hull(Sp(𝜑))(𝜑 ∈ 𝐿
∞).  

For 𝐺 a partially ordered group let 𝐻 ∞ = 𝐻∞(𝐺)be the set of all 𝜑 ∈ 𝐿∞ such that 

𝜑 ∈ 𝐻2. Then 𝐻∞ is a closed subalgebra of the Banach algebra 𝐿∞ (since for 𝜑 ∈ 𝐿∞ we 

have 𝜑 ∈ 𝐻∞iff 𝜑𝐻2 ⊆ 𝐻2). 

Preposition (1.3.21)[23]: Let 𝐺 be a partially ordered group and 𝜑,𝜓 ∈ 𝐿∞(𝐺∧). If 𝜑− or 

𝜓 ∈ 𝐻∞(𝐺) then 𝑇𝜑𝜓 = 𝑇𝜑𝑇𝜓. 

Proof. If 𝜓 ∈ 𝐻∞then 𝜓𝐻 2 ⊆ 𝐻2implies 𝑇𝜑𝑇𝜓(𝑓) = 𝑇𝜑𝑃(𝜓𝑓) = 𝑇𝜑(𝜓𝑓) = 𝑃(𝜑𝜓𝑓) =

𝑇𝜑𝜓(𝑓)(𝑓 ∈ 𝐻
2), so 𝑇𝜑𝜓 = 𝑇𝜑𝑇𝜓. If on the other hand 𝜑− ∈ 𝐻∞ then (𝑇𝜑𝜓)

∗
= 𝑇𝜓−𝜑− =

𝑇𝜓−𝑇𝜑− (by what we just shown) = 𝑇𝜑∗𝑇𝜓∗ , thus 𝑇𝜑𝜓 = 𝑇𝜑𝑇𝜓. 

If 𝐺 is a partially ordered group then we denote by ℐ𝑟(𝐺) the 𝐶∗-subalgebra of 𝐵(𝐻2) 

generated by all 𝑇𝜑(𝜑 ∈ 𝐶(𝐺
∧)). We call ℐ𝑟(𝐺) the reduced Toeplitz algebra of 𝐺. For 𝑥 ∈

𝐺+, let 𝑈𝑥 be the isometry 𝑇𝜀(𝑥) and 𝑄𝑥 be the projection 1 − 𝑈𝑥𝑈𝑥
∗, and let 𝑈 denote the 

map 𝐺+ → ℐ𝑟(𝐺), 𝑥 ↦ 𝑈𝑥. 𝑈 is a semigroup of isometries and 𝑥 ≤ 𝑦 in 𝐺+ is equivalent 

to 𝑄𝑥 ≤ 𝑄𝑦 in 𝐾(ℐ𝑟(𝐺)) (as we saw already in the proof of Preposition (1.3.4)). these 

projections 𝑄𝑥 commute. Finally since (𝑃𝐺)
− = 𝐶(𝐺∧) it is easily checked (using (Lemma 

(1.3.19)) that 𝑈𝑥(𝑥 ∈ 𝐺
+) generated ℐ𝑟(𝐺). 

Lemma (1.3.22)[23]: Let 𝐺 be a partially ordered group and let 𝐽 be the linear span in ℐ𝑟(𝐺) 
of all 𝑇𝜑1𝑇𝜑2…𝑇𝜑𝑛 − 𝑇𝜑1 − 𝜑𝑛(𝜑1, … , 𝜑𝑛 ∈ 𝑃𝐺). Then 𝑆 ∈ 𝐽 implies that 𝑆 = 𝑆𝑄𝑥 for 

some 𝑥 ∈ 𝐺+. 

Proof. If 𝑆1 and 𝑆2 are in 𝐽 and 𝑆𝑗 = 𝑆𝑗𝑄𝑥𝑗; then (𝑆1 + 𝜆𝑆2)𝑄𝑥1+𝑥2 = 𝑆1𝑄𝑥1𝑄𝑥1+𝑥2 +

𝜆𝑆2𝑄𝑥2𝑄𝑥1+𝑥2 = 𝑆1𝑄𝑥1 + 𝜆𝑆2𝑄𝑥2 = 𝑆1 + 𝜆𝑆2(𝜆 ∈ 𝐂). This calculation shows that is 

suffices to prove the theorem for 𝑆 of the form 𝑆 = 𝑇𝜑𝑛𝑇𝜑𝑛−1 …𝑇𝜑1 − 𝑇𝜑𝑛…𝜑1(𝜑1, … , 𝜑𝑛 ∈
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𝑃𝐺). However since 𝑃𝐺 is the linear span of all 𝜀(𝑥)(𝑥 ∈ 𝐺) it follows that we may, again 

without loss of generality, assume each 𝜑𝑖 = 𝜀(𝑦
𝑖) for some 𝑦𝑖 in 𝐺. In this case choose 

𝑥 ∈ 𝐺+ such that 𝑥 ≥ all the elements −𝑦𝑖 , −(𝑦1 + 𝑦2), … ,−(𝑦1 +⋯+ 𝑦𝑛). Then  

𝑆𝑈𝑥 = 𝑇𝜀(𝑦𝑛)𝑇𝜀(𝑦𝑛−1)…𝑇𝜀(𝑦1)𝜀(𝑥) − 𝑇𝜀(𝑦𝑛)… 𝜀(𝑦1)𝜀(𝑥)
= 𝑇𝜀(𝑦𝑛)𝑇𝜀(𝑦𝑛−1)…𝑇𝜀(𝑦2)𝜀(𝑦1)𝜀(𝑥) − 𝑇𝜀(𝑦𝑛)… 𝜀(𝑦1)𝜀(𝑥) = ⋯

= 𝑇𝜀(𝑦𝑛)… 𝜀(𝑦1)𝜀(𝑥) − 𝑇𝜀(𝑦𝑛)… 𝜀(𝑦1)𝜀(𝑥) = 0 

(true by Preposition (1.3.21) and since 𝜀(𝑦𝑖)…  𝜀(𝑦1)𝜀(𝑥) ∈ 𝐻∞, 𝑖 = 1,… , 𝑛). Thus 𝑆𝑈𝑥 =

0, so 𝑆𝑈𝑥𝑈𝑥
∗ = 𝑆(1 − 𝑄𝑥) = 0, implying 𝑆 = 𝑆𝑄𝑥. 

Theorem (1.3.23)[23]: If 𝐺 is a partially ordered group then 

(i) (𝑄𝑥)𝑥∈𝐺+ is an approximate unit for 𝐾(ℐ𝑟(𝐺)). 

(ii) if ∈ 𝐿∞(𝐺∧) , then 𝑇𝜑 ∈ 𝐾(ℐ
𝑟(𝐺)) if and only if 𝜑 = 0.  

Proof. (i). (𝐺+, ≤) is a direct set, so (𝑄𝑥)𝑥∈𝐺+ is a net. Let 𝐽 be defined as in Lemma (1.3.22). 

If 𝜑, 𝜑1, … , 𝜑𝑛 ∈ 𝑃𝐺 then 𝑇𝜑(𝑇𝜑1𝑇𝜑2…𝑇𝜑𝑛 − 𝑇𝜑1…𝜑𝑛) = 𝑇𝜑𝑇𝜑1…𝑇𝜑𝑛 − 𝑇𝜑𝜑1…𝜑𝑛 +

𝑇𝜑𝜑1…𝜑𝑛 − 𝑇𝜑𝑇𝜑1…𝜑𝑛 is in 𝐽. Hence 𝐽− is a closed ideal in ℐ𝑟(𝐺). By Lemma (1.3.22), 𝑆 ∈ 𝐽 

implies 𝑆 = 𝑆𝑄𝑥 for some ∈ 𝐺+ , so we have lim
𝑦
𝑇𝑄𝑦 = 𝑇(𝑇 ∈ 𝐽

−). Thus (𝑄𝑥)𝑥∈𝐺+ is an 

approximate unit for 𝐽−. Since all 𝑄𝑥 ∈ 𝐾(ℐ
𝑟(𝐺)), 𝐽− ⊆ 𝐾(ℐ𝑟(𝐺)) , and since all 𝑄𝑥 ∈

𝐽−, 𝐾(ℐ𝑟(𝐺))/𝐽− is abelian, implying that 𝐽− ⊇ 𝐾(ℐ𝑟(𝐺)). Thus 𝐽− = 𝐾(ℐ𝑟(𝐺)) and 

(𝑄𝑥)𝑥∈𝐺+ is an approximate unit for 𝐾(ℐ𝑟(𝐺)). 

(ii). Let 𝜑 ∈ 𝐿∞ and 𝑇𝜑 ∈ 𝐾(ℐ
𝑟(𝐺)). Then 𝑇𝜑 = lim

𝑥
𝑇𝜑𝑄𝑥, so 0 = lim

𝑥
𝑇𝜑𝑈𝑥𝑈𝑥

∗, thus 0 =

lim
𝑥
‖𝑇𝜑𝑈𝑥‖ = lim

𝑥
‖𝑇𝜑𝜀(𝑥)‖ = lim

𝑥
‖𝜑𝜀(𝑥)‖∞ = ‖𝜑‖∞ , so 0 = 𝜑. 

Part (ii) of the above theorem generalizes the classical result that 0 is the only compact 

Toeplitz operator (relative to 𝐺 = 𝐙) . 𝐾(ℐ𝑟(𝐺)) is 𝐾(𝐻2(𝐙))., the ideal of all compact 

operations on 𝐻2(𝐙). 

Corollary (1.3.24)[23]: If 𝜙,𝜓 ∈ 𝐶(𝐺∧) then 𝑇𝜙𝑇𝜓 − 𝑇𝜙𝜓 ∈ 𝐾(ℐ
𝑟(𝐺)). 

Proof. Since (𝑃𝐺)
− = 𝐶(𝐺∧) it suffices to show the result for 𝜙,𝜓 ∈ 𝑃𝐺. But this case is 

obvious from the proof of Theorem (1.3.23). 

Theorem (1.3.25)[23]: Let 𝐺 be a partially ordered group. 

(i) The map 

𝐶(𝐺∧) → ℐ𝑟(𝐺)/ℐ𝑟(𝐺) 𝜙 ↦ 𝑇𝜙 + 𝐾(ℐ
𝑟(𝐺)) 

is a ∗- isomorphism. 

(ii) If 𝑆 ∈ ℐ𝑟(𝐺) then there exists unique 𝜙 ∈ 𝐶(𝐺∧) and unique 𝐾 ∈ 𝐾(ℐ𝑟(𝐺)) 

such that 𝑆 = 𝑇𝜙 + 𝐾. 
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Proof. Let 𝜌 denote the map in (i). Then 𝜌 is clearly ∗-linear and by Corollary (1.3.24)𝜌 is 

multiplicative. 𝜌 is injective by Theorem (1.3.23) and surjective since 𝑇𝜙(𝜑 ∈ 𝐶(𝐺
∧)) 

generate ℐ𝑟(𝐺). This proves (i), (ii) follows immediately from (i). 

Lemma (1.3.26)[23]: Let 𝐻0 be a dense linear submanifold of a Hilbert space 𝐻, and 

(𝑆𝜆)𝜆∈𝛬 a net in 𝐵(𝐻) such that lim
𝜆
(𝑆𝜆, 𝑓, 𝑔) exists for all 𝑓, 𝑔 ∈ 𝐻0 and that there is a 

positive number 𝜇 such that |(𝑆𝜆, 𝑓, 𝑔)| ≤ 𝜇‖𝑓‖‖𝑔‖(𝜆 ∈ 𝛬, 𝑓, 𝑔 ∈ 𝐻). Then there exists 

𝑆 ∈ 𝐵(𝐻) such that 𝑆 ∈ 𝐵(𝐻) such that 𝑆 = lim
𝜆
𝑆𝜆in the weak operator topology on 𝐵(𝐻). 

For a proof, see Halmos [30]. 

Lemma (1.3.27)[23]: Let 𝐺 be a discrete abelian group and suppose that the matrix 

(𝑎𝑥,𝑦)𝑥,𝑦∈𝐺of  𝑆 ∈ 𝐵(𝐿2(𝐺∧)) with respect to the orthonormal basis (𝜀(𝑥)𝑥∈𝐺)  is a Laurent 

matrix (i.e. 𝑎𝑥+𝑧,𝑦+𝑧 = 𝑎𝑥,𝑦(𝑥, 𝑦, 𝑧 ∈ 𝐺)). Then 𝑆 is a multiplication, 𝑆 = 𝑀𝜑 for some 𝜑 ∈

𝐿∞(𝐺∧). 

(Explicitly: 𝑎𝑥,𝑦 = (𝑆(𝜀(𝑦)), 𝜀(𝑥)) . ) 

For a proof, see Murphy [32]. 

Theorem (1.3.28)[23]: Let 𝐺 be a partially ordered group, and let 𝑆 ∈ 𝐵(𝐻2(𝐺)). Then 𝑆 

is a Toeplitz operator (relative to 𝐺) if and only if 𝑈𝑥
∗𝑆𝑈𝑥 = 𝑆(𝑥 ∈ 𝐺

+). 

Proof. If 𝑆 = 𝑇𝜑 for some 𝜑 ∈ 𝐿∞ then 𝑈𝑥
∗𝑆𝑈𝑥 = 𝑇𝜀(𝑥)̅̅ ̅̅ ̅̅ 𝑇𝜑𝑇𝜀(𝑥) = 𝑇𝜀(𝑥)̅̅ ̅̅ ̅̅ 𝜑𝜀(𝑥) = 𝑇𝜑 = 𝑆 (as 

𝜀(𝑥) ∈ 𝐻∞). Conversely suppose that 𝑈𝑥
∗𝑆𝑈𝑥 = 𝑆(𝑥 ∈ 𝐺

+). Define 𝑆𝑥 ∈ 𝐵(𝐿
2) be setting 

𝑆𝑥(𝑓) = 𝜀(𝑥)̅̅ ̅̅ ̅̅  𝑆𝑃𝜀(𝑥)𝑓, for 𝑥 ∈ 𝐺+, and note that ‖𝑆𝑥‖ ≤ ‖𝑆‖. Also for 𝑓, 𝑔 ∈

𝐻2,(𝑆𝑥 𝑓, 𝑔) = (𝜀(𝑥)̅̅ ̅̅ ̅̅  𝑆𝑃𝜀(𝑥)𝑓, 𝑔) = (𝑈𝑥
∗𝑆𝑈𝑥𝑓, 𝑔) = (𝑆𝑓, 𝑔). 

Now let 𝜑1, 𝜑2, ∈ 𝑃𝐺 and put 𝜇𝑥 = (𝑆𝑥𝜑1, 𝜑2). We show that the net 

(𝜇𝑥)𝑥∈𝐺+converges by showing that there exists 𝑥0 ∈ 𝐺
+such that 𝜇𝑥 = 𝜇𝑥0 for 𝑥 ≥ 𝑥0. 

Certainly there exists 𝑥0 ∈ 𝐺
+ such that 𝜑1, 𝜑2, ∈ 𝜀(𝑥0)̅̅ ̅̅ ̅̅ ̅𝐻2. Let 𝜓𝑗 = 𝜀(𝑥0)𝜑𝑗, so 𝜓𝑗 ∈ 𝐻

∞. 

Now if 𝑥 ≥ 𝑥0 then𝜇𝑥 = (𝑆𝑥𝜀(𝑥0)̅̅ ̅̅ ̅̅ ̅𝜓1, 𝜀(𝑥0)̅̅ ̅̅ ̅̅ ̅𝜓2) = (𝑆𝜀(𝑥 − 𝑥0)𝜓1, 𝜀(𝑥 − 𝑥0)𝜓2) =

(𝑆𝑥−𝑥0𝜓1, 𝜓2) = (𝑆𝜓1, 𝜓2)(as 𝜓1𝜓2 ∈ 𝐻
2 = 𝜇𝑥0 . Since (𝑃𝐺)

− = 𝐿2 it follows from Lemma 

(1.3.26) that there exists 𝑇 ∈ 𝐵(𝐿2) such that 𝑇 = lim
𝑥
𝑆𝑥 in the weak operator toplogy. Let 

(𝑎𝑥,𝑦)𝑥,𝑦∈𝐺 be the matrix of 𝑇 relative to the basis (𝜀(𝑥))
𝑥∈𝐺

 of 𝐿2. If 𝑦, 𝑧 ∈ 𝐺 and 𝑥 ∈ 𝐺+, 

then  

𝑎𝑦+𝑥,𝑧+𝑥 = (𝑇𝜀(𝑧)𝜀(𝑥), 𝜀(𝑦)𝜀(𝑥)) = lim
𝑡
(𝑆𝑡𝜀(𝑥)𝜀(𝑧), 𝜀(𝑥)𝜀(𝑦)) = lim

𝑡
(𝑆𝑡+𝑥𝜀(𝑧), 𝜀(𝑦))

= lim
𝑡
(𝑆𝑡𝜀(𝑧), 𝜀(𝑦)) 

(since lim
𝑡
𝛼𝑡+𝑥 = lim

𝑡
𝛼𝑡). Thus 𝑎𝑦+𝑥,𝑧+𝑥 = 𝑎𝑦,𝑧, and one can now immediately extend this 

eqation to arbitrary 𝑥 ∈ 𝐺 since 𝐺 = 𝐺+ − 𝐺+. Hence by Lemma (1.3.26), 𝑇 = 𝑀𝜑 for some 

𝜑 ∈ 𝐿∞. clearly for 𝑓, 𝑔 ∈ 𝐻2, (𝑇𝜑𝑓, 𝑔) = (𝜑𝑓, 𝑔) = (𝑇𝑓, 𝑔) = lim
𝑥
(𝑆𝑥𝑓, 𝑔) = (𝑆𝑓, 𝑔)as  

(𝑆𝑥𝑓, 𝑔) = (𝑆𝑓, 𝑔).Thus 𝑆 = 𝑇𝜑. 
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The next preposition is important- it shows that 𝐻∞(𝐺) displays “analytic behaviour”. 

Preposition (1.3.29)[23]: Let 𝐺 be a partially ordered group. If 𝜑 and �̅� ∈ 𝐻∞(𝐺) then 𝜑 ∈
𝐂1. 

Proof. If 𝑥 ∈ 𝐺+ and 𝜀(𝑥)̅̅ ̅̅ ̅̅ ∈ 𝐻2 then - 𝑥 ∈ 𝐺+, so 𝑥 = 0. Now 𝜑, �̅� ∈ 𝐻∞and 𝑥 ∈ 𝐺+, 𝑥 > 0 

implies 0 = (�̅�, 𝜀(𝑥)̅̅ ̅̅ ̅̅ ) = ∫ �̅�𝜀(𝑥)  𝑎𝑠 𝜀(𝑥)̅̅ ̅̅ ̅̅ ∈ (𝐻2)⊥. Hence ∫ �̅�𝜀(𝑥) = 0, i.e. (𝜑, 𝜀(𝑥)) = 0 . 

But (𝜑, 𝜀(𝑥)) = 0 𝑓𝑜𝑟 𝑥 ∈ 𝐺\𝐺+ also, since 𝜑 ∈ 𝐻∞. Thus 𝜑 ∈ 𝐂𝜀(0) =  𝐂1. 

If 𝐺 is a partially ordered group and 𝜑 ∈ 𝐻∞(𝐺) we say that 𝑇𝜑 is an analytic Toeplitz 

operator (relative to 𝐺). Of course 𝑇𝜑 is subnormal (it is restriction of 𝑀𝜑). All analytic 

Toeplitz operators commute. The map 𝐻∞ → 𝐵(𝐻2) , 𝜑 ↦ 𝑇𝜑 , is an isometric algebra 

isomorphism onto the closed subalgebra of all analytic Toeplitz operators. 

Theorem (1.3.30)[23]: Let  𝐺 be a partially ordered group. 

(i) If 𝑆 ∈ 𝐵(𝐻2(𝐺)) then 𝑆 is an analytic Toeplitz operator (relative to 𝐺) if and only 

if 𝑈𝑥𝑆 = 𝑆𝑈𝑥(𝑥 ∈ 𝐺
+). 

(ii) The analytic Toeplitz operators relative to 𝐺 form a maximal commutative 

subalgebra of 𝐵(𝐻2(𝐺)). 

(iii) If 𝜑 ∈ 𝐻∞ then Sp(𝑇𝜑) = Sp𝐻∞(φ). 

(iv) Every analytic Toeplitz operator has connected spectrum. 

Proof.  

(i) if 𝑆 is an analytic Toeplitz operator then 𝑆𝑈𝑥 = 𝑈𝑥𝑆 since 𝑈𝑥 are analytic Toeplitz operators. 

Conversely if 𝑆𝑈𝑥 = 𝑈𝑥(𝑥 ∈ 𝐺
+) then 𝑈𝑥

∗𝑆𝑈𝑥 = 𝑆, so 𝑆 = 𝑇𝜑 for some 𝜑 ∈ 𝐿∞by Theorem 

(1.3.28).  

Now for 𝑥, 𝑦 ∈ 𝐺+, (𝜑, 𝜀(𝑥 − 𝑦)) = (𝜑𝜀(𝑦), 𝜀(𝑥)) = (𝑇𝜑𝑈𝑦𝜀(0), 𝜀(𝑥)) = (𝑈𝑦𝑇𝜑𝜀(0), 𝜀(𝑥)) =

(𝑇𝜑𝜀(0), 𝜀(𝑥 − 𝑦)). Thus if 𝑥 − 𝑦 ∉ 𝐺+, then (𝜑, 𝜀(𝑥 − 𝑦)) = 0. So 𝜑 ∈ 𝐻∞. This proves (i), and 

(ii) follows immediately from this. 

(iii) Let 𝐴 be the maximal commutative subalgebra of B(𝐻2) of all analytic Toeplitz 

operators. Then Sp𝐴(𝑇𝜑) = Sp(𝑇𝜑) for 𝜑 ∈ 𝐻∞. But Sp𝐴(𝑇𝜑) = Sp𝐻∞(𝜑) since the map 

𝐻∞ → 𝐴 , 𝜑 ↦ 𝑇𝜑, is an isomorphism. This proves (iii). 

(iv) Let 𝑋 be the character space of 𝐻∞. If 𝜑 ∈ 𝐻∞ is an idempotent then 𝜑 = 𝜑2, 
thus = �̅� ∈ 𝐻∞ , so 𝜑 ∈ 𝐂1 by Proposition (1.3.29). Thus 𝜑 = 0 or 1. Since 𝐻∞ thus has 

no non- trivial idempotents it follows from the Shilov Idempotent Theorem that 𝑋 is 

connected. Now if 𝜑 ∈ 𝐻∞ and 𝜑∧ denotes its Gelfand transform then Sp𝐻∞(𝜑) = 𝜑
∧(𝜒) 

is connected . i.e. S𝑝(𝑇𝜑) is connected. 

Theorem (1.3.31)[23]: If 𝐺 is a partially ordered group then ℐ𝑟(𝐺) and 𝐾(ℐ𝑟(𝐺)) are 

irreducible algebras on 𝐻2(𝐺). Moreover if 𝐺 ≠ 0 then lim
𝑥
𝑄𝑥 = 1 in the strong operator 

topology on 𝐵(𝐻2(𝐺)). 
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Proof. ℐ𝑟(𝐺) is irreducible iff its commutant 𝐵 = 𝐂1 iff 0, 1 are the only projections in 𝐵 

(since 𝐵 is a von Newmann algebra). Now for ∈ 𝐵,𝑄𝑈𝑥 = 𝑈𝑥𝑄(𝑥 ∈ 𝐺
+) , so 𝑄 is an 

analytic Toeplitz operator, thus Sp(𝑄) is connected. Thus if 𝑄 is a projection, then Sp(𝑄) =
{0} or {1}, so 𝑄 = 0 or 1. Hence 𝐵 = 𝐂1 and ℐ𝑟(𝐺) is irreducible on 𝐻2. 

If 𝐺 = 0 then dim(𝐻2) = 1 so 𝐾(ℐ𝑟(𝐺)) is irreducible on 𝐻2. So we suppose that 𝐺 

is non-zero. Let 𝑀 = (𝐾(ℐ𝑟(𝐺))𝐻2)
−

. If  𝑀 = 0 then (ℐ𝑟(𝐺)) = 0 , so 𝑄𝑥 = 0(𝑥 ∈ 𝐺
+), 

thus 𝐺+ = 0 which implies 𝐺 = 0. Thus 𝑀 ≠ 0. Since 𝑀  reduces ℐ𝑟(𝐺),𝑀 = 𝐻2. If 𝑓 ∈

𝐾(ℐ𝑟(𝐺))𝐻2 then 𝑓 = 𝑇1𝑓1 +⋯+ 𝑇𝑛𝑓𝑛 for some 𝑇1, … , 𝑇𝑛 ∈ 𝐾(ℐ
𝑟(𝐺)) and some 𝑓1, … , 𝑓2 

in 𝐻2.  

Thus lim
𝑥
𝑄𝑥𝑓 = lim

𝑥
𝑄𝑥𝑇1𝑓1 +⋯+ lim

𝑥
𝑄𝑛𝑇𝑛𝑓𝑛 = 𝑇1𝑓1 +⋯+ 𝑇𝑛𝑓𝑛 = 𝑓, because 𝑇𝑗 =

lim
𝑥
𝑄𝑥𝑇𝑗 (𝑗 = 1,…𝑛). Hence 𝑓 = lim

𝑥
𝑄𝑥𝑓 (𝑓 ∈ 𝐻

2) as 𝐾(ℐ𝑟(𝐺))𝐻2 is dense in 𝐻2 , so 

lim
𝑥
𝑄𝑥 = 1 in the strong operator topology on 𝐵(𝐻2). 

Now suppose that 𝑁 is an invariant closed subspace of 𝐻2 for 𝐾(ℐ𝑟(𝐺)), and 𝑓 ∈

𝑁, 𝑇 ∈ ℐ𝑟(𝐺). Then 𝑇𝑓 = lim
𝑥
𝑇𝑄𝑥𝑓  𝑖𝑠 𝑖𝑛 N, since 𝑇𝑄𝑥𝑓 ∈ 𝑁(𝑥 ∈ 𝐺

+). Thus 𝑁 is an 

invariant subspace for ℐ𝑟(𝐺), so 𝑁 = 0 or 𝐻2. We have thus shown 𝐾(ℐ𝑟(𝐺)) is irreducible 

on 𝐻2. 

Recall that if 𝐺 is a partially ordered group then the map 𝑈:𝐺+ → ℐ𝑟(𝐺) is a 

semigroup of isometries, so it induces unique ∗- homo-morphism 𝑈∗: ℐ(𝐺) → ℐ𝑟(𝐺). Since 

𝑈𝑥(𝑥 ∈ 𝐺
+) generate ℐ𝑟(𝐺), 𝑈∗ is onto. We can thus regard 𝑈∗ as an irreducible 

representation of ℐ(𝐺) on 𝐻2(𝐺). This representation is not always faithful as the next 

example shows: 

For Example, 𝑀 = 𝑁\{1}  is a cone on 𝐙. Thus (𝐙,𝑀) is a partially ordered group. 

Note that 2 and 3 are not comparable for the partial order ≤𝑀. Let 𝐺1 = (𝐙,𝑀) and 𝐺2 =
(𝐙,𝑁). The identity map 𝜑: 𝐺1 → 𝐺2 is a positive homomorphism, so it induces a ∗-
homomorphism 𝜑∗: ℐ(𝐺1) → ℐ(𝐺2) and this is surjective since 𝜑 is surjective. Hence the 

restriction 𝜑∗: 𝐾(ℐ(𝐺1)) → 𝐾(ℐ(𝐺2)) is surjective, and thus non- zero. If 𝐾(ℐ(𝐺1)) were 

simple then this restriction map 𝜑∗ would be a ∗-isomorphism, so 2 ≤𝑁 3 implies 𝑞2 ≤ 𝑞3 

in (ℐ(𝐺2)) , so 𝜑∗(𝑞2) ≤ 𝜑
∗(𝑞3), implying 𝑞2 ≤ 𝑞3 in 𝐾(ℐ(𝐺1)), so 2 ≤𝑀 3, which is false. 

Thus 𝐾(ℐ(𝐺1)) is not simple. However it is easily seen that all 𝑄𝑥
1 are of finite rank (𝑥 ∈ 𝑀), 

so 𝐾(ℐ𝑟(𝐺1)) ⊆ 𝐾(ℐ
𝑟(𝐺2)) as (𝑄𝑥

1)𝑥∈𝑀 are an approximate unit for 𝐾(ℐ𝑟(𝐺1)) and since 

𝐾(ℐ(𝐺1)) is irreducible on 𝐻2(𝐺1) we therefore deduce that 𝐾(ℐ𝑟(𝐺1)) = 𝐾(𝐻
2(𝐺1)). In 

particular 𝐾(ℐ𝑟(𝐺1)) is simple. Since 𝐾(ℐ(𝐺1)) is not simple, the map 𝑈∗: ℐ(𝐺1) → 𝑇
𝑟(𝐺1) 

is not injective. 

Theorem (1.3.32)[23]:If 𝐺 is an ordered group then the canonical map 𝑈∗: ℐ(𝐺) → ℐ𝑟(𝐺) 
is a faithful irreducible representation of ℐ(𝐺) on 𝐻2(𝐺). 

Proof. The map 𝑈:𝐺+ → ℐ𝑟(𝐺) is a nonunitary semigroup of isometries, so by Theorem 

(1.3.15) 𝑈∗ is injective. 
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The idea is to show that a number of the stronger results we proved earlier are in fact 

“best possible”. For example if 𝐺 is torsion- free partially ordered group for which 𝐾(ℐ(𝐺)) 
is simple we show 𝐺 is isomorphic to an ordered subgroup of 𝐑 (cf. Corollary (1.3.18)) one 

can interpret Theorem (1.3.15) as saying there is essentially only on candidate for the title 

“Toeplitz algebra” if 𝐺 is an ordered group. More specifically it implies that if 𝐵 is any 𝐶∗-
algebra generated by a nonunitary semigroup of isometries 𝛽 over 𝐺 then 𝛽∗: ℐ(𝐺) → 𝐵 is 

a ∗-isomorphism. We show that this result characterizes the ordered groups amongst the 

torsion- free partially ordered groups. 

If 𝐺 is an abelian group we call a cone 𝑀 in 𝐺 maximal if 𝑀 is not contained in any 

other cone of 𝐺. A simple application of Zorn’s Lemma implies that every cone of 𝐺 is 

contained in a maximal cone of 𝐺. The following elementary result is probably known, but 

we include a proof for the sake of completeness.  

Lemma (1.3.33)[23]: If 𝐺 is a torsion- free abelian group and 𝑀 a cone of 𝐺 then 𝑀 is a 

maximal cone of 𝐺 if and only if (𝐺,≤𝑀) is an ordered group (i.e. ≤𝑀 is a total ordering). 

Proof. It is trivial that if (𝐺,≤𝑀) is totally ordered, then 𝑀 is maximal (this does not require 

𝐺 to be torsion- free). Suppose conversely that 𝑀 is maximal. First, let 𝑥 ∈ 𝐺{0}  such that 

𝑛𝑥 ∈ 𝑀 for some positive integer 𝑛. We show that 𝑥 ∈ 𝑀: define 𝑁 = {𝑦 +𝑚𝑥: 𝑦 ∈
𝑀,𝑚 ∈ 𝑁}. Clearly 0 ∈ 𝑁,𝑁 + 𝑁 ⊆ 𝑁 and 𝐺 = 𝑁 − 𝑁. Suppose that 𝑧 ∈ 𝑁 ∩ (−𝑁), so 

that 𝑧 = 𝑦1 +𝑚1𝑥 = −𝑦2 −𝑚2𝑥 for some 𝑦1, 𝑦2 ∈ 𝑀 , and some 𝑚1, 𝑚2 ∈ 𝐍. Thus 

0 ≤𝑀 𝑛(𝑦1 + 𝑦2) = (𝑚1 +𝑚2)𝑛𝑥 ≤𝑀 0, so 𝑛(𝑦1 + 𝑦2) = 0 = −(𝑚1 +𝑚2)𝑛𝑥 implying 

that 𝑦1 + 𝑦2 = 0 = (𝑚1 +𝑚2)𝑥 (since 𝐺 is torsion- free), thus 𝑦1 = 𝑦2 = 0 (since 

𝑦1, 𝑦2 ≥𝑀 0), and 𝑚1 +𝑚2 = 0 implies 𝑚1, 𝑚2 = 0. Hence 𝑧 = 0, implying that 𝑁 ∩
(−𝑁) = 0. Thus 𝑁 is a cone, and 𝑁 ⊇ 𝑀 implies 𝑁 = 𝑀, so 𝑥 ∈ 𝑀. 

Now suppose only that 𝑥 ∈ 𝐺\(−𝑀). Again let 𝑁 = {𝑦 +𝑚𝑥: 𝑦 ∈ 𝑀,𝑚 ∈ 𝐍}and 

again we have 0 ∈ 𝑁,𝑁 + 𝑁 ⊆ 𝑁 and 𝐺 = 𝑁 − 𝑁. If 𝑧 ∈ 𝑁 ∩ (−𝑁) then 𝑧 = 𝑦1 +𝑚1𝑥 =
−𝑦2 −𝑚2𝑥 for some 𝑦1, 𝑦2 ∈ 𝑀, and some 𝑚1, 𝑚2 ∈ 𝐍. So 𝑦1 + 𝑦2 = −(𝑚1 +𝑚2)𝑥 thus 

𝑛(−𝑥) ∈ 𝑀 where 𝑛 = 𝑚1 +𝑚2. If 𝑛 > 0 then by the earlier part of this proof, −𝑥 ∈ 𝑀, 

so 𝑥 ∈ −𝑀, which is false. Thus 𝑛 = 0 implies 𝑚1 = 𝑚2 = 0, so 𝑦1 + 𝑦2 = 0, which 

implies 𝑦1, 𝑦2 = 0 (since 0 ≤𝑀 𝑦1, 𝑦2), so 𝑧 = 0. We therefore have  𝑁 ∩ (−𝑁) = 0, thus 

𝑁 is a cone, and since 𝑀 ⊆ 𝑁,𝑀 = 𝑁. Thus 𝑥 ∈ 𝑀. We have shown that 𝐺 = 𝑀 ∪ (−𝑀) 
i.e. (𝐺,≤𝑀) is totally ordered. 

The hypothesis that 𝐺 is torsion- free is necessary in Lemma (1.3.33), since ordered 

groups are torsion- free. 

Theorem (1.3.34)[23]: Let (𝐺, ≤) be a torsion- free partially ordered group such that for 

every unital 𝐶∗-algebra 𝐵 and every nonunitary semigroup of isometrics 𝛽: 𝐺+ → 𝐵, 𝛽∗ is 

injective. Then (𝐺,≤) is an ordered group.  

Proof.𝐺+ is contained in a maximal cone 𝑀, so if 𝜑 denotes id𝐺 then 𝜑 is a positive 

homomorphism from 𝐺1 = (𝐺, 𝐺
+) to 𝐺2 = (𝐺,𝑀), and so induces a ∗-homomorphism 𝜑∗ 

from ℐ(𝐺1)to ℐ(𝐺2). Since 𝜑 is surjective, so is 𝜑∗. The semigroup of isometries 𝛽: 𝐺1
+ →

𝑇(𝐺2), 𝑥 → 𝜑
∗(𝑉𝑥), is nonunitary (for if 𝛽(𝑥) is unitary then 𝜑∗(𝑉𝑥) = 𝑉𝜑(𝑥) is unitary, so 

𝜑(𝑥) = 0, i.e. 𝑥 = 0). Hence 𝛽∗ = 𝜑∗ is injective. Thus if 𝑥, 𝑦 ∈ 𝐺+ then we may suppose 
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𝑥 ≤𝑀 𝑦 (since (𝐺,𝑀) is totally ordered). Hence 𝑞𝑥 ≤ 𝑞𝑦 in 𝐾(ℐ(𝐺2)), so 𝜑∗(𝑞𝑥) ≤

𝜑∗(𝑞𝑦), implying that 𝑞𝑥 ≤ 𝑞𝑦 in 𝐾(ℐ(𝐺2)), so 𝑥 ≤ 𝑦. More generally if 𝑥, 𝑦 ∈ 𝐺 then there 

exists 𝑧 ∈ 𝐺+ such that 𝑥, 𝑦 ∈ 𝑧 imply 𝑧 − 𝑦, 𝑧 − 𝑥 ∈ 𝐺+, so 𝑧 − 𝑦, 𝑧 − 𝑥 are comparable 

in (𝐺,≤), thus 𝑥, 𝑦 are comparable in (𝐺, ≤). Thus (𝐺, ≤) is totally ordered. 

Theorem (1.3.35)[23]: If 𝐺 is a torsion- free partially ordered group for which 𝐾(ℐ(𝐺)) is 

simple then 𝐺 is order isomorphic to an ordered subgroup of 𝐑. 

Proof. (Two partially ordered groups 𝐺1, 𝐺2 are order isomorphic if there exists a bijective 

map 𝜓:𝐺1 → 𝐺2 such that 𝜓 and 𝜓−1 are positive homeomorphisms.)  

First we show that 𝐺 is simple: Let 𝐼 be an ideal of 𝐺, and let 𝑖: 𝐼 → 𝐺 and 𝜑: 𝐺 →
𝐺/𝐼 be the inclusion and quotient homeomorphisms respectively. Since 𝜑 is surjective, so 

is 𝜑∗: ℐ(𝐺) → ℐ(𝐺/𝐼), and hence also the restriction map 𝜑∗: 𝐾(ℐ(𝐺)) → 𝐾(ℐ(𝐺/𝐼)). As 

𝐾(ℐ(𝐺)) is simple this restriction map 𝜑∗ is zero or injective. In the first case we have 

𝐾(ℐ(𝐺/𝐼)) = 0, so 𝐺/𝐼 = 0, so 𝐺 = 𝐼. In the second case for 𝑥 ∈ 𝐼+, 𝜑∗(𝑞𝑥) = 𝑞𝜑(𝑥) =

𝑞0 = 0, so 𝑞𝑥 = 0, so 𝑥 = 0. Thus 𝐼+ = 0 implying that 𝐼 = 0. This shows 𝐺 is simple. 

 Now we show 𝐺 is totally ordered: Using the same trick as in the proof of Theorem 

(1.3.34), there is a maximal cone 𝑀 containg 𝐺+. Let 𝜓 = idG, 𝐺1 = (𝐺, 𝐺
+), and 𝐺2 =

(𝐺,𝑀). Thus 𝜓 is a positive homomorphism from 𝐺1to 𝐺2. As 𝜓 is surjective, so is 

𝜓∗: ℐ(𝐺1) → ℐ(𝐺2), implying that the restriction map 𝜓∗: 𝐾(ℐ(𝐺1)) → 𝐾(ℐ(𝐺2)) is zero or 

injective (again we are using the simplicity of 𝐾(ℐ(𝐺1))). In the first case 𝐾(ℐ(𝐺2)) = 0 

which implies 𝐺 = 0, so 𝐺  is order isomorphic to the ordered subgroup 0 of 𝐑. In the second 

case if 𝑥, 𝑦 ∈ 𝐺+ we may suppose that 𝑥 ≤𝑀 𝑦, so𝑞𝑥 ≤ 𝑞𝑦 in 𝐾(ℐ(𝐺2)), i.e. 𝜑∗(𝑞𝑥) ≤

𝜑∗(𝑞𝑦), so 𝑞𝑥 ≤ 𝑞𝑦 in 𝐾(ℐ(𝐺1)), thus 𝑥 ≤ 𝑦. This implies that (𝐺,≤)is totally ordered. 

Thus 𝐺 is a simple ordered group, so 𝐺 = 𝐹(𝐺) = {𝑥 ∈ 𝐺: for all 𝑦 > 0, |𝑥| ≤
𝑛𝑦 for some 𝑛 ∈ 𝐍}.(for if 𝑥 ∈ 𝐺 and 𝑥 > 0 then 𝐼𝑥 = {𝑧 ∈ 𝐺: |𝑧| ≤ 𝑛𝑥 for some 𝑛 ∈ 𝐍} 
is a non- zero ideal of 𝐺, so 𝐼𝑥 = 𝐺. ) Thus 𝐺 is an Archimedean group in the terminology 

of Rudin [36], and by a well know result 𝐺 is order group isomorphic to an ordered subgroup 

of 𝐑 ([36]).  

One can thus summarize Theorem (1.3.35) and Douglas’ result (Corollary (1.3.18)) 

as follows: for 𝐺 a torsion- free partially ordered group 𝐾(ℐ(𝐺)) is simple iff 𝐺 is a simple 

ordered group iff 𝐺 is order isomorphic to an ordered subgroup of 𝐑. 

Recall that a 𝐶∗-algebra 𝐴 is elementary if there is a Hilbert space 𝐻 such that 𝐴 is ∗-
isomorphic to 𝐾(𝐻). 

Theorem (1.3.36)[23]: Let 𝐺 be a torsion- free partially order group. Then 𝐾(ℐ(𝐺)) is 

elementary if and only if 𝐺 is order isomorphic to 0 or 𝐙. 

Proof. If 𝐺 = 0 then ℐ(𝐺) = 𝐂, so 𝐾(ℐ(𝐺)) = 0 = 𝐾(𝐻) for 𝐻 = 0. If 𝐺 = 𝐙then by 

Theorem (1.3.32), 𝐾(ℐ(𝐺)) is ∗-isomorphic to 𝐾(ℐ𝑟(𝐺)). but 𝐾(ℐ𝑟(𝐺)) = 𝐾(𝐻2(𝐺)) since 

all 𝑄𝑥(𝑥 ∈ 𝐺
+)are finite rank, and 𝐾(ℐ𝑟(𝐺1)) is irreducible on 𝐻2(𝐺). 
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Conversely, suppose that 𝐾(ℐ(𝐺)) is elementary and that 𝛽: 𝐾(ℐ(𝐺)) → 𝐾(𝐻) is a 

∗-isomprphism for some Hilbert space 𝐻. Then in particular 𝐾(ℐ(𝐺)) is simple, so we may 

assume that 𝐺 is an ordered subgroup of 𝐑, and without loss of generally suppose also 𝐺 ≠
0. Since all 𝛽(𝑞𝑥)(𝑥 ∈ 𝐺

+) have finite rank in 𝐾(𝐻) we may choose 𝑥 ∈ 𝐺, 𝑥 > 0, such 

that the rank of 𝛽(𝑞𝑥) is minimal. Then 𝑥 is a smallest positive element of 𝐺. Hence 𝐺 =
𝐙𝑥, so 𝐺 is order isomorphic to 𝐙.  
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Chapter 2 

Lower Bounds with New Estimate and Matrix Valued  

 

We show the following theorem: given 𝛿, 0 <  𝛿 <  1/3 and 𝑛 ∈ ℕ there exists an 

(𝑛 + 1) × 𝑛 inner matrix function 𝐹 ∈  𝐻(𝑛+1)×𝑛
∞  such that 𝐼 ≥  𝐹∗(𝑧)𝐹(𝑧) ≥ 𝛿2𝐼  ∀𝑧 ∈

𝐷, but the norm of any left inverse for F is at least [
𝛿

1 − 𝛿
]
−𝑛
 ≥ (

3

2
𝛿)
−𝑛

. We improve an 

estimate of Fuhrmann and Vasyunin in the vector valued corona theorem. We illustrate that 

the norm of the solution of the 𝐻2 corona problem in the polydisk 𝔻𝑛 grows at most 

proportionally to √𝑛. Our approach is based on one that was originated by Andersson. In 

the disk it essentially depends on Green’s Theorem and duality to obtain the estimate. In the 

polydisk we use Riesz projections to reduce the problem to the disk case. 

Section (2.1): The Matrix Corona Theorem and the Codimension One Conjecture 

The Operator Corona Problem is the problem of finding a necessary and sufficient 

condition for a bounded operator-valued function 𝐹 ∈ 𝐻𝐸∗→𝐸
∞  to have a left inverse in 𝐻∞, 

i.e. a function 𝐺 ∈ 𝐻𝐸∗→𝐸
∞  𝑠uch that 

(B)                                        𝐺(𝑧)𝐹(𝑧) ≡ 𝐼 ∀𝑧 ∈ 𝔻. 

If dim𝐸 < ∞we call it the Matrix Corona Problem. 

The equations of type (B) are sometimes called in the literature the Bezout equations, 

and “B” here is for Bezout. The simplest necessary condition for (B) is 

(𝐶)𝐹∗(𝑧)𝐹(𝑧) ≥ 𝛿2𝐼 , ∀𝑧 ∈ 𝔻        (𝛿 > 0) 
(the tag “C” is for Carleson). 

If the condition (C) implies (B), we say that the Operator (Matrix) 

Corona Theorem holds. 

The Operator Corona Theorem plays an important role in different areas of analysis, 

in particular in Operator Theory (angles between invariant subspaces, unconditionally 

convergent spectral decompositions, see [44], [45], [52], [53]), as well as in Control Theory 

and other applications. 

Let us discuss the cases when the Operator Corona Theorem holds. 

The first case is dim𝐸 = 1, dim𝐸∗ = 𝑛 < ∞. In this case 𝐹 = [𝑓1, 𝑓2, … , 𝑓𝑛]
𝑇 , 𝐺 =

[𝑔1, 𝑔2, … , 𝑔𝑛]and it is simply the famous Carleson Corona Theorem [40], see also [42], 

[45]. 

Later, using the ideas from the T. Wolff’s proof of the Carleson Corona Theorem, M. 

Rosenblum [47], V. Tolokonnikov [50] and Uchiyama [55] independently proved that the 

Operator Corona Theorem holds if dim𝐸 = 1, dim𝐸∗ = ∞. 

Then, using simple linear algebra argument, P. Fuhrman [41] and V. Vasyunin [50] 

independently proved that the Operator Corona Theorem holds if dim𝐸 < ∞, dim𝐸∗ ≤ ∞. 

This theorem is now commonly referred to as the Matrix Corona Theorem. 

A trivial observation: if 𝐹(𝑧)𝐸 = 𝐸∗∀𝑧 ∈ 𝔻, then the left invertibility (C) implies the 

invertibility of 𝐹(𝑧), and so we can simply put 𝐺 = 𝐹−1. So in this case the Operator Corona 

Theorem holds as well. 

As for the general Operator Corona Theorem, it was shown by the author ([51], see 

also [52]) that it fails in the general case dim𝐸 = +∞. 
Let us discuss the codimension one conjecture first. As we just mentioned above, the 

Operator Corona Theorem fails if dim𝐸 = ∞, but it holds if   𝐹(𝑧)𝐸 = 𝐸∗∀𝑧 ∈ 𝔻. So, what 

happens if the operators 𝐹(𝑧) are “almost” onto, namely if codim(𝐹(𝑧)𝐸 = 1∀𝑧 ∈ 𝔻? It 
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was conjectured by N. Nikolski and the author that in this case the Operator Corona Theorem 

holds. It was also conjectured that the Matrix Corona Theorem holds for all (𝑛 + 1) × 𝑛 

matrix-valued functions in 𝐻(𝑛+1)×𝑛
∞  with uniform (independent on 𝑛) estimates. The 

Operator Corona Theorem holds in the matrix case by Fuhrmann–Vasyunin, the question is 

only in uniform estimates. 

Besides the naïve reason that the codimension one case is very close to the case of 

invertible operator-function, there were some more deep facts that lead to the codimension 

one conjecture. Namely, see Lemma (2.1.4) and Theorem (2.1.9) below, with each 
(𝑛 + 1) × 𝑛 matrix function in 𝐻∞one can canonically associate an (𝑛 + 1) × 𝑛 matrix 

(vector) with the same best norm of a left inverse. 

Since in 𝑛 + 1 case it is possible to obtain the estimate in the Corona Theorem 

independent of 𝑛, it seemed reasonable to propose the codimension one conjecture, at least 

in its matrix version. 

It is interesting that the above canonically associated vector (the so called co-analytic 

complement) plays an important role in the construction. 

Other important results in are Theorem (2.1.9) and Corollary (2.1.6) which clarify the 

role of co-analytic orthogonal complements in the Operator Corona Problem. 

The second problem we are dealing with is the problem of estimates in the matrix 

case. It was shown by V. Vasyunin [50] (see also [54]) that if dim𝐸 = 𝑛 < ∞ and we 

normalize the function 𝐹 ∈ 𝐻𝐸→𝐸∗
∞  as 

𝐼 ≥ 𝐹∗(𝑧)𝐹(𝑧) ≥ 𝛿2𝐼 , ∀𝑧 ∈ 𝔻,  
then one can always find a left inverse 𝐺 ∈ 𝐻𝐸→𝐸∗

∞ , 𝐺𝐹 ≡ 𝐼, such that ‖𝐺‖∞ ≤ 𝐶(𝑛, 𝛿), 

where 

𝐶(𝑛, 𝛿) = 𝐶√𝑛 ∙ 𝛿−2𝑛 log 𝛿2𝑛. 
Recently, T. Trent [54] was able to improve this estimate with 

𝐶(𝑛, 𝛿) = 𝐶 ∙ 𝛿−𝑛−1 log 𝛿−2𝑛, 
but in both cases 𝐶(𝑛, 𝛿) grows exponentially in 𝑛. 

On the other hand, it had been shown in [51], see also [52] that 𝐶(𝑛, 𝛿) cannot be 

uniformly (in 𝑛) bounded, namely that for any sufficiently small 𝛿 > 0 one can find 𝐹 ∈
𝐻𝐸→𝐸∗
∞ , dim𝐸 = 𝑛, satisfying 𝐼 ≥ 𝐹∗(𝑧)𝐹(𝑧) ≥ 𝛿2𝐼 , ∀𝑧 ∈ 𝔻, and such that any left inverse 

𝐺 ∈ 𝐻𝐸→𝐸∗
∞  satisfies the inequality 

‖𝐺‖∞ ≥ 𝑐(𝑛, 𝛿) = 𝐶𝛿
−2 log(𝛿2𝑛 + 1) 

so 𝑐(𝑛, 𝛿) grows logarithmically in 𝑛. From this estimates it is easy to get 

that the operator Corona Theorem fails in the general case dim𝐸 = ∞. 

We prove the lower bound [𝛿/(1 − 𝛿) ]−𝑛 which is quite close to Trent’s estimate. 

so his estimate is probably very close to a sharp one. This estimate is obtained for (𝑛 + 1) ×
𝑛matrices, so it disproves the codimension one conjecture (its matrix version). 

Theorem (2.1.1)[38]: Given𝛿, 0 < 𝛿 < 1/3 and 𝑛 ∈ ℕ there exists an(𝑛 + 1) × 𝑛 inner 

matrix function𝐹 ∈ 𝐻(𝑛+1)×𝑛
∞ such that 

𝐼 ≥ 𝐹∗(𝑧)𝐹(𝑧) ≥ 𝛿2𝐼 , ∀𝑧 ∈ 𝔻, 

but the norm of any left inverse for𝐹is at least[𝛿/(1 − 𝛿) ]−𝑛 ≥ (
3

2
𝛿)−𝑛. 

Recall that a function 𝐹 ∈ 𝐻𝐸→𝐸∗
∞ is called inner if operators 𝐹(𝑧) are isometries a.e. 

on 𝕋, and an outer if 𝐹𝐻𝐸
2 is dense in 𝐻𝐸∗

2 . We will call 𝐹 co-inner (resp. co-outer) if 𝐹𝑇 is 

inner (resp. outer). 

Let us recall that any 𝐹 ∈ 𝐻𝐸→𝐸∗
∞ admits an inner-outer factorization 
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𝐹 = 𝐹𝑖𝐹0, where 𝐹𝑖 ∈ 𝐻𝐸1→𝐸∗
∞  is inner and 𝐹0 ∈ 𝐻𝐸→𝐸1

∞ is outer. Let us recall also that the 

inner part 𝐹𝑖 (resp. the outer part 𝐹0) is unique up to a constant unitary factor on the right 

(resp. on the left). 

Let us also recall that any 𝑧-invariant subspace 𝑀(𝑧𝑀 ⊂ 𝑀) of 𝐻𝐸
2 can be represented 

as Θ𝐻𝐸1
2 , where 𝐸1 is an auxiliary Hilbert space and Θ ∈ 𝐻𝐸1→𝐸

∞  is an inner function. 

Definition (2.1.2)[38]: We say that an operator valued function 𝑣 ∈ 𝐻𝐸→𝐸∗
∞  has a bounded 

co-analytic (orthogonal) complement if there exists a function 𝑣 ∈ 𝐻𝐸1→𝐸∗
∞ such that 

ker 𝑣𝑇(𝑧) = 𝑉(𝑧)𝐸1 a.e. on 𝕋. The function �̅� is called a co-analytic (orthogonal) 

complement of 𝑣. 

We will usually skip the word orthogonal, and simply say co-analytic complement. 

The reason for the word co-analytic complement is the that the equality ker 𝑣𝑇(𝑧) =
𝑉(𝑧)𝐸1 can be rewritten as 

�̅�(𝑧)𝐸1 = (𝑣(𝑧)𝐸)
⊥ a.e.on 𝕋. 

 (Take the inner part of 𝑉) we can always assume that the function 𝑉is inner. 

Moreover, by taking the outer part of 𝑉𝑇 we can always assume that 𝑉 is also co-outer. So, 

when we say the co-analytic complement we usually mean �̅�, where 𝑉is an inner and co-

outer function. Lemma (2.1.3) below states that such inner and co-outer function is unique 

up to a constant unitary factor on the right. 

That if the function 𝑣 is inner (i.e. operators 𝑣(𝑧) are isometries a.e. on 𝕋), then the 

operators 𝑊(𝑧), where 𝑊 = [𝑣�̅�] ∈ 𝐻𝐸⊕𝐸1→𝐸∗
∞  defined by 

𝑊(𝑧)(𝑒 ⊕ 𝑒1) = 𝑣(𝑧)𝑒 + �̅�(𝑧)𝑒1    , 𝑒 ∈ 𝐸 , 𝑒1 ∈ 𝐸1 

are unitary a.e. on 𝕋. 

Lemma (2.1.3)[38]: Let 𝑣 ∈ 𝐻𝐸→𝐸∗
∞ have a bounded co-analytic complement �̅�,  where 𝑉 ∈

𝐻𝐸1→𝐸∗
∞  is an inner and co- outer function such that 

ker 𝑣𝑇(𝑧) = 𝑉(𝑧)𝐸1    a.e. on 𝕋. 

Then  

{𝑓 ∈ 𝐻𝐸∗
2 : 𝑣𝑇𝑓 ≡ 0                        a. e. on 𝕋} = 𝑉𝐻𝐸1

2 . 

Moreover, any other such inner and co-outer function 𝑉2 ∈ 𝐻𝐸2→𝐸∗
∞  satisfies 𝑉2 = 𝑉 𝑈, where 

𝑈:𝐸2 → 𝐸1 is a constant unitary operator. 

Proof. Denote 

𝑀 ∶= {𝑓 ∈ 𝐻𝐸∗
2 : 𝑣𝑇𝑓 ≡ 0     a. e. on 𝕋}.. 

Clearly, 𝑉𝐻𝐸1
2 ⊂ 𝑀. Since 𝑧𝑀 ⊂ 𝑀, 

𝑀 = �̃�𝐻�̃�
2 , 

where �̃� ∈ 𝐻�̃�→𝐸∗
∞ is an inner function. 

Since 𝐻𝐸1
2 ⊂ 𝑀 = �̃�𝐻�̃�

2 , the preimage �̃�−1(𝑉𝐻𝐸1
2 ) is a 𝑧-invariant subspace of 𝐻�̃�

2. 

So it can be represented as �̃�−1(𝑉𝐻𝐸1
2 ) = 𝑈𝐻𝐸𝑈

2 ,  where 𝑈 ∈ 𝐻𝐸𝑈→�̃�
∞  is an inner function and 

𝐸𝑈is an auxiliary Hilbert space. Therefore 𝑉𝐻𝐸1
2 = �̃�𝑈𝐻𝐸𝑈

2 , so the space 𝐸𝑈can be identified 

with 𝐸1 and the function 𝑉can be factorized as 𝑉 = �̃� 𝑈. Therefore 𝑉(𝑧)𝐸1 ⊂ �̃�(𝑧)𝐸2 a.e. 

on 𝕋, and so 

ker 𝑣(𝑧)𝑇 = 𝑉(𝑧)𝐸1 ⊂ �̃�(𝑧)�̃� ⊂ ker 𝑣(𝑧)
𝑇a.e.on 𝕋. 

This implies that 𝑉(𝑧)𝐸1 = �̃�(𝑧)�̃�and hence 𝑈(𝑧)𝐸1 = �̃�a.e. on 𝕋. This means that 

the function 𝑈 takes unitary values a.e. on 𝕋, so 𝑈𝑇 is also an inner function. Since 𝑉 is a 

co-outer function, 𝑈must be a constant (unitary operator). 
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The following well-known lemma asserts that a matrix valued function always has a 

bounded co-analytic complement. 

Let 𝐹 ∈ 𝐻𝑚×𝑛
∞ be a matrix valued function. Since any minor of 𝐹belongs to 𝐻∞, if it 

is non-zero on a set of positive measure in 𝕋, then it is non-zero a.e. on 𝕋. Recalling that the 

rank of a matrix 𝐴is a maximal 𝑘such that there exists a non-zero minor of order 𝑘, we can 

conclude rank 𝐹(𝑧) ≡ 𝐶𝑜𝑛𝑠𝑡 a.e. on 𝕋. We will call this constant the rank of 𝐹(and denote 

rank 𝐹). 

Lemma (2.1.4)[38]: Let 𝑣 be an 𝑛 ×𝑚(𝑚 < 𝑛)matrix-value d function in 𝐻∞ = 𝐻𝑚×𝑛
∞ , 

and let rank 𝑣 = 𝑛 − 𝑟 a.e. on 𝕋. 

Then 𝑣has a bounded co-analytic complement �̅�, where 𝑉 ∈ 𝐻𝑚×𝑟
∞  is an inner and co-

outer function. 

Proof. Consider the equation 𝑣𝑡𝑓 ≡ 0. Standard linear algebra argument implies that there 

exist vector functions 𝑓1, 𝑓2, … , 𝑓𝑟with entries in the meromorphic Nevanlina class 𝒩 ∶=
{𝑓/𝑔 ∶ 𝑓, 𝑔 ∈ 𝐻∞}such that for almost all 𝑧 ∈ 𝕋 

ker 𝑣𝑇(𝑧) =  ℒ{𝑓1(𝑧), 𝑓2(𝑧),… , 𝑓𝑟(𝑧)} . 
Multiplying all entries by the product ofall denominators, we obtain that all vector functions 

𝑓1, 𝑓2, … , 𝑓𝑟can be chosen to have entries in 𝐻∞. 

Consider subspace 𝑀 ⊂ 𝐻𝑛
2consisting of all vectors 𝑓 ∈ 𝐻𝑛

2 satisfying 𝑣𝑇𝑓 ≡ 0. 

Clearly 𝑧𝑀 ⊂ 𝑀, so 𝑀can be represented as 𝑀 = 𝑉𝐻𝑟′
2  ,  where 𝑉is an 𝑛 × 𝑟′inner function. 

Clearly, 𝑟′ ≤ 𝑟and 𝑉(𝑧)ℂ𝑟′ ⊂ ker 𝑣(𝑧)𝑇a.e. on 𝕋. 
Since 𝑓1, 𝑓2, … , 𝑓𝑟 ∈ 𝑀 = 𝑉𝐻𝑟

2,  we have the opposite inclusion 

ker 𝑣𝑇(𝑧) ⊂ 𝑉(𝑧)ℂ𝑟′                               a.e. on 𝕋. 
Both inclusions together imply that 𝑟′ = 𝑟 and 

ker 𝑣𝑇(𝑧) = 𝑉(𝑧)ℂ𝑟                               a.e. on 𝕋. 
The rest follows from Lemma (2.1.3). 

The theorem below shows relation between co-analytic complements and Corona 

Problem. Let us mention, that to prove Theorems (2.1.1) and (2.1.10) one can use a weaker 

version of it, namely the fact that the best possible norms of the left inverses of 𝐹and 

𝑉coincide (provided that a co-analytic complement exists). Note, that such simple version 

was first proved by 𝑉. Peller and [46]. However, it is always nice to have a complete 

understanding, so we present the theorem in full generality. 

Remark (2.1.5)[38]: Note, that in the matrix case (dim𝐸 , dim𝐸∗ < ∞) a simple 

dimension/rank counting shows that the equality 

𝑉(𝑧)𝐸1 = ker 𝐹
𝑇 (𝑧)∀𝑧 ∈ 𝔻, 

and the same equality a.e. on 𝕋 are equivalent. 

In the general operator valued case it is not known whether one implies the other. 

Numerous counterexamples in the theory of analytic range functions, see [43] lead one to 

suspect that none of the implications holds. 

The following corollary gives necessary and sufficient condition for the Operator 

Corona Theorem to be true in the case of finite codimension. 

Corollary (2.1.6)[38]: Let 𝐹 ∈ 𝐻𝐸→𝐸∗
∞ be an operator-valued function satisfying 

𝐹(𝑧)∗𝐹(𝑧) ≥ 𝛿2𝐼          ∀𝑧 ∈ 𝔻, 
for some 𝛿 > 0. Assume that at a point 𝑧 ∈ 𝔻 (or on a set of positive measure in 𝕋) 

codim(𝐹(𝑧)𝐸 ) = 𝑛 < ∞, 𝑛 ≠ 0. Then the following statements are equivalent: 

(i) 𝐹 is left invertible in 𝐻∞, i.e. there exists 𝐺 ∈ 𝐻𝐸∗→𝐸
∞ such that 𝐺𝐹 ≡ 𝐼; 
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(ii)  There exists function 𝑉 ∈ 𝐻ℂ𝑛→𝐸∗
∞ satisfying 𝑉(𝑧)∗𝑉(𝑧) ≥ 𝛿2𝐼, ∀𝑧 ∈ 𝔻, 𝛿 > 0, such 

that 

𝑉(𝑧)ℂ𝑛 = ker 𝐹𝑇(𝑧)                     ∀𝑧 ∈ 𝔻 (and a. e. on 𝕋) 
Moreover, the function 𝑉 always can be chosen to be inner, and if both 𝐹 

and 𝑉 are inner, the best norms of the left inverses for 𝐹 and 𝑉coincide. 

Proof. Consider the inner-outer factorizeation of  𝐹, 𝐹 = 𝐹𝑖𝐹0. Note, that 

𝐹𝑖
∗(𝑧)𝐹𝑖(𝑧) ≥ 𝛿

2𝐼 ,                            ∀𝑧 ∈ 𝔻, 

where 𝛿 = 𝛿/‖𝐹‖∞. The condition about the codimension of 𝐹(𝑧)𝐸 implies that 𝐹(and 

therefore 𝐹𝑖) is not invertible in 𝐻∞. Therefore, by Theorem (2.1.9) we have (i) ⇒ (ii). 
Since the Operator Corona theorem holds for functions in 𝐻ℂ𝑛→𝐸∗

∞ , 

Condition 𝑉(𝑧)∗𝑉(𝑧) ≥ 𝛿2𝐼 implies that 𝑉is left invertible. Since �̅�𝑖 is a 

co-analytic complement of 𝑉, Theorem (2.1.9) implies that (ii) ⇒ (i). 
To prove Theorem (2.1.9) we will need the following two well known results. 

Recall, that given Φ ∈ 𝐿𝐸→𝐸∗
∞ , Hankel and Toeplitz operators 𝐻Φ and 𝑇Φwith symbol Φ are 

defined as 

𝐻Φ: 𝐻𝐸
2 → (𝐻𝐸∗

2 )
⊥
𝐻Φ𝑓 ≔ 𝑃−(Φ𝑓)

′ 

𝐻Φ: 𝐻𝐸
2 → 𝐻𝐸∗

2 𝐻Φ𝑓 ≔ 𝑃+(Φ𝑓), 

where 𝑃+and 𝑃−are orthogonal projections onto 𝐻2and (𝐻2)⊥ respectively. 

Theorem (2.1.7)[38]: (Arveson [39], Sz.-Nagy–Foias [49]). Let F ∈ 𝐻𝐸→𝐸∗
∞ . The following 

two statements are equivalent: 

(i) The function 𝐹is left invertible in 𝐻∞, i.e. there exists 𝐺 ∈ 𝐻𝐸∗→𝐸
∞ such that 𝐺𝐹 ≡ 𝐼; 

(ii) The Toeplitz operator 𝑇�̅� is left invertible, that is 

inf
𝑓∈𝐻𝐸

2,‖𝑓‖=1
‖𝑇�̅�𝑓‖ ≔  𝛿 > 0. 

Moreover, the best possible norm of a left inverse 𝐺 is exactly 1/𝛿. 

This theorem also can be found in the Monograph [44]. 

[44] states that 𝐹 is right invertible in 𝐻∞ if and only if 𝑇𝐹∗ is left invertible: applying 

it to 𝐹𝑇 we get the statement of Theorem (2.1.7). Similarly, the theorem in [49] states that 

𝐹 is left invertible in 𝐻∞ if and only if 𝑇𝐹# is left invertible, where 𝐹#(𝑧) ∶= 𝐹(�̃�). Again, 

applying this theorem to 𝐹(�̃�)̅̅ ̅̅ ̅̅  we get Theorem (2.1.7). 

Lemma (2.1.8)[38]: Let 𝐹 ∈ 𝐻𝐸→𝐸∗
∞ , and let 𝐹(𝜉) be an isometry a.e. on 𝕋. Then Toeplitz 

operator 𝑇𝐹 is left invertible if and only if ‖𝐻𝐹‖ < 1 (𝐻𝐹 is the Hankel operator). Moreover, 

‖𝐻𝐹‖
2 = 1 − 𝛿2, where 

𝛿 ∶= inf
𝑓∈𝐻𝐸

2,‖𝑓‖=1
‖𝑇𝐹𝑓‖ 

Proof. Clearly 𝐹𝑓 = 𝑇𝐹𝑓 + 𝐻𝐹𝑓 for 𝑓 ∈ 𝐻𝐸
2, so 

‖𝑓‖2 = ‖𝐹𝑓‖2 = ‖𝑇𝐹𝑓‖
2 + ‖𝐻𝐹𝑓‖

2, 
and the lemma follows immediately. 

Theorem (2.1.9)[38]: Let 𝐹 ∈ 𝐻𝐸→𝐸∗
∞  be an inner function. Assume that 𝐹 is left invertible, 

but not right invertible in 𝐻∞. Then 𝐹has an co-analytic complement �̅�, where 𝑉 ∈ 𝐻𝐸1→𝐸∗
∞ is 

an inner and co-outer function. Moreover 

𝑉(𝑧)𝐸1 = ker 𝐹
𝑇 (𝑧)∀𝑧 ∈ 𝔻, 

the function 𝑉 is also left invertible, and the best possible norms of left inverses for 𝐹and 

𝑉coincide. 
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Proof. Let 𝐺 ∈ 𝐻𝐸∗→𝐸
∞  be a left inverse of 𝐹, that is 𝐺𝐹 ≡ 𝐼. Then 𝐹𝑇𝐺𝑇 ≡ 𝐼, and for 𝒫 ∈

𝐻𝐸∗→𝐸∗
∞ , 𝒫 ∶= 𝐺𝑇𝐹𝑇 we have 

𝒫2: = 𝐺𝑇(𝐹𝑇𝐺𝑇)𝐹𝑇 = 𝐺𝑇𝐹𝑇 = 𝒫, 
so 𝒫(𝑧) is a projection a.e. on 𝕋 (and ∀𝑧 ∈ 𝔻). Since  

𝒫(𝑧)𝐺𝑇(𝑧)ℯ = 𝐺(𝑧)𝑇𝐹(𝑧)𝑇𝐺(𝑧)𝑇ℯ = 𝐺(𝑧)𝑇ℯ     ∀ℯ ∈ 𝐸∗ ,  
we can conclude that 𝒫(𝑧)𝐸∗ = 𝐺(𝑧)

𝑇𝐸a.e. on 𝕋, as well as ∀𝑧 ∈ 𝔻. Since 𝐺𝑇 is left 

invertible, ker𝒫(𝑧) = ker 𝐹(𝑧)𝑇a.e. on 𝕋 (and ∀𝑧 ∈ 𝔻). So, for the complementary 

projection 𝒬(𝑧), 𝒬 ≔ 𝐼 − 𝒫 we have 

𝒬(𝑧)𝐸∗ = ker 𝐹(𝑧)
𝑇                        a. e. on 𝕋(and ∀𝑧 ∈ 𝔻). 

Note, that 𝒬(𝑧) ≢ 0 because 𝐹 is not right invertible in 𝐻∞. Taking 𝑉 to be the inner part 

of 𝒬 we see that 𝐹 has a co-analytic complement. 

Now let us prove the rest of the theorem. Since 𝐹 is left invertible, 

Theorem (2.1.7) implies that 

inf
𝑓∈𝐻𝐸

2,‖𝑓‖=1
‖𝑇�̅�𝑓‖ =: 𝛿 > 0. 

By Lemma (2.1.8) ‖𝐻�̅�‖
2 = 1 − 𝛿2 (recall that 𝐹(𝜉) is an isometry a.e. on 𝕋).  

Consider the operator valued function 𝑊 = [�̅�, 𝑉] ∈ 𝐻𝐸⨁𝐸1→𝐸∗
∞ , 

𝑊(𝑧)(ℯ ⊕ ℯ1) = �̅�(𝑧)ℯ + 𝑉(𝑧)ℯ1,      ℯ ∈ 𝐸, ℯ1 ∈ 𝐸1, 𝑧 ∈ 𝕋, 
where 𝑉 ∈ 𝐻𝐸1→𝐸∗

∞  is the inner and co-outer function from the definition of the co-analytic 

complement. Recallthat the function 𝑊takes unitary values a.e. on 𝕋. 

Consider Hankel operator 𝐻𝑊. Its symbol is obtained from �̅� by adding an analytic 

block, so 𝐻𝑊 differs from 𝐻�̅� by a zero block. Hence 

‖𝐻𝑊‖
2 = ‖𝐻�̅�‖

2 = 1 − 𝛿2 
and the Toeplitz operator 𝑇𝑊 is left invertible. 

Let us show that the adjoint operator 𝑇𝑊
∗ = 𝑇𝑊∗has trivial kernel. 

Indeed, let 𝑇𝑊∗𝑓 = 0, 𝑓 ∈ 𝐻𝐸∗
2 . Then 

𝑊∗𝑓 = [
𝐹𝑇𝑓
𝑉∗𝑓

] ∈ (𝐻𝐸⨁𝐸1
2 )

⊥
. 

Since 𝐹 ∈ 𝐻𝐸→𝐸∗
∞ , this implies 𝐹𝑇𝑓 ≡ 0. By Lemma (2.1.3) 𝑓 = 𝑉𝑔, 𝑔 ∈ 𝐻𝐸

2, thus 𝑔 ≡ 0 and 

therefore 𝑓 ≡ 0. So ker 𝑇𝑊∗ = {0}. 
The operator 𝑇𝑊is left invertible and ker 𝑇𝑊

∗ = {0}, that means 𝑇𝑊is invertible. By Lemma 

(2.1.8)‖𝑇𝑊∗‖2 = 1 − 𝛿2. Since 𝑊∗differs from 𝑉∗ by an analytic block, Hankel operators 

𝐻𝑉∗ and 𝐻𝑊∗differ by a zero block, thus 

‖𝐻𝑉∗‖
2 = ‖𝐻𝑊∗‖2 = ‖𝐻𝑊∗‖2 = 1 − 𝛿2. 

By the Nehari theorem ‖𝐻𝑉∗‖ = dist𝐿∞(𝑉
∗, 𝐻∞), and since the transposition does not 

change the norm in an operator valued 𝐿∞and �̅� = (𝑉∗)𝑇, 

‖𝐻�̅�‖ = dist𝐿∞(�̅�, 𝐻
∞) = dist𝐿∞(𝑉

∗, 𝐻∞) = ‖𝐻𝑉∗‖ = √1 − 𝛿
2. 

Therefore, by Theorem (2.1.7) the Toeplitz operator 𝑇𝑉 is left invertible, and thus 𝑉is left 

invertible in 𝐻∞. 

Main construction and the proof of Theorem (2.1.1). 

For 𝛿 < 1/3 let 𝛼 > 0 be a small number such that 
𝛿

1 − 𝛼
=: 𝛿′ <

1

3
. 

Define 𝑎 ∶= 𝛿/(1 − 𝛿′), so 𝑎/(1 + 𝑎)  = 𝛿′ . Note, that 𝑎 < 1/2. 

Consider (𝑛 + 1) × 𝑛matrix 𝐹 ∈ 𝐻∞, 
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𝐹 =

(

 
 
 
 

𝜑1(𝑧) 0 0

−𝑎   𝜑2(𝑧) 0
0
0

⋯
⋯

0    −𝑎 𝜑3(𝑧)
0
⋮
0
0

0
⋮
0
0

−𝑎
⋮
0
0

0
𝜑4(𝑧)
⋱
0
0

⋯
⋯
⋱
⋱
⋯

0
0
0
0
⋮

𝜑𝑛(𝑧)
−𝑎 )

 
 
 
 

, 

where 𝜑𝑘are some inner functions to be chosen later. Another way to describe 𝐹is to say 

that its columns 𝐹𝐾 can be represented as 

𝐹𝑘 = 𝜑𝑘(𝑧)ℯ𝑘 − 𝑎ℯ𝑘+1, 
where ℯ𝑘 , 𝑘 = 1, 2, . . . , 𝑛 + 1 is the standard basis in ℂ𝑛+1. 

It is easy to check that the 𝑛 + 1 dimensional vector-function (column) 

𝑉 = (
1 − 𝑎2

1 − 𝑎2𝑛+2
)

1/2

(

 
 
 

𝑎𝑛

𝑎𝑛−1𝜑1
𝑎𝑛−2𝜑1𝜑2

…
𝑎𝜑1𝜑2…𝜑𝑛−1
𝜑1𝜑2…𝜑𝑛 )

 
 
 

 

is inner and co-outer, and that �̅�is orthogonal to the columns of 𝐹. Let us now assume that 

𝜑𝑛has zero, for example that 𝜑𝑛(0) = 0. Then ‖𝑉(0)‖ = 𝑎𝑛√(1 − 𝑎2)/(1 − 𝑎2𝑛+2) <

𝑎𝑛√1 + 𝑎2, so the norm of a left inverse to the column 𝑉 is at least √1 + 𝑎2/𝑎𝑛. 

It is easy to see that ‖𝐹‖∞ ≤ 1 + 𝑎(1 comes from the main diagonal, 𝑎 from the one 

below). 

Suppose, that we can pick the inner functions 𝜑𝑘 such that 

‖𝐹(𝑧)ℯ‖ ≥ (1 − 𝛼)𝑎‖ℯ‖ ,              ∀𝑧 ∈ 𝔻, ∀ℯ ∈ ℂ𝑛, 
where 𝛼 > 0 is from above. 

Then for the inner part 𝐹𝑖 of 𝐹 

‖ℯ‖ ≥ ‖𝐹𝑖(𝑧)ℯ‖ ≥
(1 − 𝛼)𝑎

1 + 𝑎
‖ℯ‖ = 𝛿‖ℯ‖ , ∀𝑧 ∈ 𝔻, ∀ℯ ∈ ℂ𝑛. 

Theorem (2.1.7) implies that the norm of an analytic left inverse to 𝐹𝑖 is at least 

√1 + 𝑎2/𝑎𝑛 . Since  

𝛿′ =
𝛿

1 − 𝛼
→ 𝛿 , 𝑎 =

𝛿′

1 − 𝛿′
→

𝛿

1 + 𝛿
        𝑎𝑠 𝛼 → 0 , 

and 𝛼can be chosen arbitrarily small, we can construct a function 𝐹𝑖 such that the norm of 

any 𝐻∞left inverse is at least [𝛿/(1 − 𝛿)]−𝑛and the theorem is proved. 

To construct functions 𝜑𝑘, pick an integer 𝑁such that (2𝑎)𝑁 < 𝛼𝑎. Put 𝜑1(𝑧) =

 𝑧 , 𝜑2(𝑧) =  𝑧
𝑁 , 𝜑3(𝑧) =  𝑧

𝑁2 , … , 𝜑𝑛(𝑧) =  𝑧
𝑁𝑛−1. In other words, 𝜑1(𝑧) ≡  𝑧 , 𝜑𝑛+1𝜑𝑛

𝑁 . 
Then for any fixed 𝑧the inequality 

𝛼𝑎 ≤ 𝜑𝑘(𝑧) ≤ 2𝑎 
holds for at most one 𝑘 = 𝑘(𝑧) (it may happen that for a some 𝑧it does not hold for any 𝑘). 

Fix 𝑧 ∈ 𝔻, and let 𝑘 = 𝑘(𝑧) be such number. Then in the matrix 𝐹(𝑧) below 
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𝐹(𝑧) =

(

 
 
 
 
 

𝜑1    

−𝑎 𝜑2   
 
 

−𝑎
 

⋱
⋱

 
𝜑𝑘−1

0
0  0  … −𝑎 𝜑𝑘     0 …   0

0
−𝑎 𝜑𝑘+1   

 −𝑎 ⋱      𝜑𝑛
 
 

 
 

⋱
 
−𝑎)

 
 
 
 
 

 

 

in both, upper left and lower right blocks, the main diagonal dominates the other non-trivial 

one. Therefore, both the upper left and the lower right blocks are invertible with the 

estimates of the norm of the inverse 1/𝑎and 𝑎−1(1 − 𝛼)−1 respectively. So, if we delete the 

𝑘th row, we get a (block diagonal) invertible operator with the norm of the inverse at most 

𝑎−1(1 − 𝛼)−1. 

Since adding an extra row does not spoil left invertibility, we conclude that 𝐹(𝑧) is 

left invertible and 

‖𝐹(𝑧)ℯ‖ ≥ (1 − 𝛼)𝑎‖ℯ‖ ,              ∀ℯ ∈ ℂ𝑛 
Theorem (2.1.10)[38]: Given 𝛿, 0 < 𝛿 < 1/3 there exists an inner operator valued function 

𝐹 ∈ 𝐻𝐸→𝐸∗
∞ (dim𝐸 = ∞) such that 

𝐼 ≥ 𝐹∗(𝑧)𝐹(𝑧) ≥ 𝛿2𝐼                         ∀𝑧 ∈ 𝔻, 
the codimension of 𝐹(𝑧)𝐸 is 𝐸∗ is one ∀𝑧 ∈ 𝔻, but 𝐹 does not have a left inverse in 𝐻∞. 

Moreover, the function 𝐹can be chosen such that codim(𝐹(𝑧)𝐸) = 1 a.e. on 𝕋, or such that 

𝐹(𝑧) is onto a.e. on 𝕋. 

Proof. 

Consider an operator-valued function 𝐹, 

𝐹 =

(

 
 
 
 
 

𝜑1(𝑧)
−𝑎
0
0
⋮
0
0
⋮

0
𝜑2(𝑧)
−𝑎
0
⋮
0
0
⋮

0
0

𝜑3(𝑧)
−𝑎
⋮
0
0
⋮

0
0
0

𝜑4(𝑧)
⋱
0
0
⋮

 

⋯
⋯
⋯
⋯
⋱
⋱
⋯

 

0
0
0
0
⋮

𝜑𝑛(𝑧)
−𝑎
⋮

 

⋯
⋯
⋯
⋯

⋯
⋯
⋱)

 
 
 
 
 

, 

which is an infinite dimensional analogue of the function 𝐹 constructed previously. Here 

𝑎, 𝜑1, … , 𝜑𝑛, … are exactly the same as above. We can show that 

(1 + 𝑎)2𝐼 ≥  𝐹∗(𝑧)𝐹(𝑧)  ≥ (1 − 𝛼)2𝑎2𝐼 ≥ 𝛿2𝐼. 
Note, that for 𝑧 ∈ 𝔻 operator 𝐹(𝑧) is not onto: subspace (𝐹(𝑧)𝐸)⊥ is spanned by the vector 

�̅�: =

(

 
 
 
 

1
�̅�1/�̅�

�̅�1�̅�2/�̅�
2

⋮
�̅�1�̅�2…�̅�𝑛/�̅�

𝑛

⋮
)
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On the other hand, it is easy to see that the operators 𝐹(𝑧) are invertible a.e. on 𝕋 (the 

main diagonal dominates), so according to Corollary (2.1.6), 𝐹 does not have a left inverse. 

To get the statement about inner function, it is sufficient to take the inner part of 𝐹. 

To prove that it is possible to pick 𝐹such that 𝐹(𝑧)𝐸has codimension 1 a.e. on 𝕋, let 

us first notice that for the vector 𝑉above 

lim
|𝑧|→1−

‖𝑉(𝑧)‖ = ∞. 

Therefore it is possible to find a simply connected domain 𝐷 ⊂ 𝔻 with 𝐶∞-smooth 

boundary, which touches 𝕋 exactly at one point, such that 

∫ log‖𝑉(𝑧)‖ ⋅ |𝑑𝑧|

𝜕𝐷

= +∞. 

Since for such domains the harmonic measure is equivalent to the arclength |𝑑𝑧|, we can 

replace |𝑑𝑧|by the harmonic measure, and still get +∞ in the integral. Note also, that 

everywhere on 𝜕𝐷except the point 𝜕𝐷 ∩ 𝕋, the codimension of 𝐹(𝑧)𝐸is 1. 

So, if 𝜔:𝔻 → 𝐷 is a conformal mapping, then for 𝐹1 ∶= 𝐹 ∘ 𝜔, 𝑉1 ≔ 𝑉 ∘ 𝜔 we have 

that for all 𝑧 ∈ clos𝔻 except one point on 𝕋 

(𝐹1(𝑧)𝐸)
⊥ = span�̅�1(𝑧). 

Notice, that also 

lim
𝑟→1−

∫ log‖𝑉1(𝑧)‖ ⋅ |𝑑𝑧|

𝑟𝕋

= ∫ log‖𝑉1(𝑧)‖ ⋅ |𝑑𝑧|

𝕋

= +∞. 

But it is easy to see that 𝐹1 is not left invertible in 𝐻∞. Indeed, if 𝐹 is left invertible in 𝐻∞, 

Corollary (2.1.6) asserts that there exist a vector function 𝑣 ∈ 𝐻𝐸∗
∞ = 𝐻ℂ→𝐸∗

∞ such that 

(𝐹(𝑧)𝐸)⊥ = span�̅�(𝑧) 
for all 𝑧 ∈ 𝔻 and a.e. on 𝕋. Any such function must be represented as 𝑣(𝑧) = 𝑢(𝑧)𝑉1(𝑧) 
where 𝑢is a scalar function. Since ‖𝑉1(𝑧)‖ ≥ 1 the function 𝑢 must be bounded, and since 

both 𝑣 and 𝑉1 are holomorphic in 𝔻, the function 𝑢also must be holomorphic. Therefore 

𝑢 ∈ 𝐻∞. 

We discuss some open problem concerning the Operator Corona Problem. The 

ultimate problem is to find a local necessary and sufficient condition for left invertibility of 

𝐹 ∈ 𝐻𝐸→𝐸∗
∞ . But this is probably hopeless, so there are several problems that seem to be more 

tractable. 

Does there exist 𝛿 > 0 (close to 1) such that for any 𝐹 ∈ 𝐻𝐸→𝐸∗
∞ the inequality  

𝐼 ≥ 𝐹(𝑧)∗𝐹(𝑧) ≥ 𝛿2𝐼 
implies that there exists 𝐺 ∈ 𝐻𝐸→𝐸∗

∞ such that 𝐺𝐹 ≡ 𝐼? 

The counterexample constructed works only for 𝛿 <
1

3
, the method from [51] gives 

counterexample for 𝛿 < 1/√2. 
As Theorem (2.1.10) asserts, if 𝐹 ∈ 𝐻𝐸→𝐸∗

∞ is invertible, there exists a left invertible 

𝐺 ∈ 𝐻𝐸1→𝐸∗
∞ such that ker 𝐹(𝑧)𝑇 = 𝑉(𝑧)𝐸1 a.e. on 𝕋. 

Suppose 𝐹 ∈ 𝐻𝐸→𝐸∗
∞ satisfies 

𝐹(𝑧)∗𝐹(𝑧) ≥ 𝛿2𝐼      ∀𝑧 ∈ 𝔻, 
and suppose we know that there exists 𝑉𝐻𝐸1→𝐸∗

∞ such that ker𝐹(𝑧)𝑇 = 𝑉(𝑧)𝐸1 a.e. on 𝕋 also 

satisfying the Corona Condition 

𝑉(𝑧)∗𝑉(𝑧) ≥ 𝜀2𝐼 .      
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Does this imply that 𝐹 is left invertible in 𝐻∞? 

 

Section (2.2): Vector Valued Corona Problem 

We give an improved estimate in the vector valued corona theorem for the unit disk. 

Our proof will be split into two parts: first, we will resurrect the operator corona theorem 

from the 1970s, and then we will use a Hilbert space argument, based on a version of Wolff’s 

ideas. Since we use Hilbert space methods, the Riesz representation theorem replaces the 

usual �̅�-techniques. 

In 1962 Carleson determined when a finitely generated ideal in 𝐻∞(𝐷) is actually all 

of 𝐻∞(𝐷), by giving a function theory condition on the generators. Namely, ℐ(𝑓1, … , 𝑓𝑚) =
𝐻∞(𝐷) if and only if there exists an 𝜀 > 0, so that ∑ |𝑓𝑖(𝑧)|

2 ≥ 𝜀2𝑚
𝑖=1  for all 𝑧 ∈ 𝐷. Actually, 

more was shown, as a bound for the size of solutions was given. If {𝑓𝑖}𝑖=1
𝑚 ⊂ 𝐻∞(𝐷) such 

that 1 ≥ ∑ |𝑓𝑖(𝑧)|
2 ≥ 𝜀2𝑚

𝑖=1  for all 𝑧 ∈ 𝐷,then there exists a 𝐵(𝜀,𝑚) < ∞ and there exist 

{𝑔𝑖}𝑖=1
𝑚 ⊂ 𝐻∞(𝐷) with ∑ 𝑓𝑖𝑔𝑖

𝑚
𝑖=1 = 1 and ∑ |𝑔𝑖(𝑧)|

2 ≤ 𝐵(𝜀,𝑚)𝑚
1  for all 𝑧 ∈ 𝐷. 

Spawned numerous investigations in many directions, but we will mention only those 

most closely related to our work  [40]. For the scalar case above, Hormander introduced �̅�-

methods, culminating in Wolff’s surprising proof of the corona theorem. (See [42].) 

Rosenblum [47] and, independently, Tolokonnikov [66] removed the dependency on 𝑚. 

This was fine-tuned by Uchiyama [55] to yield the estimate (for 𝜀 small) 

𝐵(𝜀) ≤
𝐶

𝜀2
ln

1

𝜀2
 ,              C a universal constant. 

For the operator version of the corona problem on the unit disk, Fuhrmann and later 

Vasyunin (see [41], [45]) considered 𝐹 ∈ 𝐵(𝐻2(𝐷)(∞), 𝐻2(𝐷)(𝑛)), with 𝑆(𝑛)𝐹 = 𝐹𝑆(∞). 
Here 𝑆 denotes the unilateral shift and 𝑛 is finite. So 𝐹 can be viewed as an 𝑛 ×∞. matrix 

with analytic Toeplitz operators for entries. Vasyunin showed that the hypothesis 𝐼 ≥
𝐹(𝑧)𝐹(𝑧)∗ ≥ 𝜀2𝐼 for all 𝑧 ∈ 𝐷 and 𝜀 > 0, enables one to get an estimate for the solution to 

𝐹(𝑧)𝐺(𝑧) = 𝐼 of the form 

𝐺(𝑧)𝐺(𝑧)∗ ≤ 𝐶(𝑛, 𝜀)2𝐼                    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝐷, 

where 𝐶(𝑛, 𝜀) ≤ 𝐶√𝑛(1/𝜀2𝑛) ln(1/𝜀2𝑛) and 𝐶 is a universal constant. If the best theoretical 

bound for 𝑛 = 1, 𝐶(1, 𝜀) = 𝐵(𝜀) ≈ 1/𝜀2, is proven, the estimate of Vasyunin would be 

𝐶(𝑛, 𝜀) ≤ 𝐶√𝑛(1/𝜀2𝑛) (for small 𝜀). Later an important result of Treil [67] showed that 

𝐶(𝑛, 𝜀) ↗ ∞as 𝑛 ↗ ∞. Thus the existence of a lower bound for 𝐹(𝑧)𝐹(𝑧)∗does not guarantee 

the existence of a 𝐺(𝑧) with 𝐹(𝑧) 𝐺(𝑧) = 𝐼, when 𝑛 = ∞. See Nikolskii [45]and the article 

by Sz.-Nagy, [69]. Our estimate will remove the ‘‘√𝑛’’ and, also, replace 𝜀2𝑛 by 𝜀𝑛+1 and 

thus give an improvement of Vasyunin’s estimate. However, for the case 𝑛 = 1, it just 

reproduces the estimate of Uchiyama. 

We will consider operators in 𝐵(𝐻2(𝐷)(𝑚), 𝐻2(𝐷)(𝑛)), where 𝑚 and 𝑛 are finite and 

𝑛 < 𝑚. Since our estimates will be independent of 𝑚, the case 𝑚 = ∞will follow from a 

routine argument (see Nikolskii [45]). In part of our argument, we will be factoring certain 

projections. This is where the finiteness of 𝑚 is used. 

𝐹 will stand for the multiplication operator acting from 𝐿2(𝜕𝐷)(𝑚) into 𝐿2(𝜕𝐷)(𝑛) by 

(𝐹𝑢)(𝑒𝑖𝑡) = [𝑓𝑖𝑗(𝑒
𝑖𝑡)]

𝑖,𝑗=1

𝑛,𝑚
𝑢(𝑒𝑖𝑡) 𝑎. 𝑒. 𝑡 ∈ [−𝜋, 𝜋], where 𝑓𝑖𝑗 ∈ 𝐻

∞(𝐷) for all 𝑖 =

1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚. For 𝑧 ∈ 𝐷, 𝐹(𝑧) will denote the 𝑛 × 𝑚 matrix [𝑓𝑖𝑗(𝑧)]𝑖,𝑗=1
𝑛,𝑚

, giving 
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a linear transformation in 𝐵(ℂ𝑚, ℂ𝑛). 𝑇𝐹 will denote the analytic Toeplitz operator matrix, 

gotten by restricting 𝐹 to 𝐻2(𝐷)𝑚. 

Our estimates are based on the following two theorems. Let {𝑓𝑖𝑗(𝑒
𝑖𝑡)}

𝑖,𝑗=1

𝑛,𝑚
⊂ 𝐻∞(𝐷) 

and let 𝐹 = [𝑀𝑓𝑖𝑗] ∈ 𝐵(𝐿
2(𝜕𝐷)(𝑚), 𝐿2(𝜕𝐷)(𝑛)). 

Theorem (2.2.1)[54]: If 

𝐼 ≥ 𝐹(𝑧)𝐹(𝑧)∗ ≥ 𝛿2𝐼                𝑓𝑜𝑟 𝑧 ∈ 𝐷, 
Then 

𝑇𝐹𝑇
∗
𝐹 (2𝐶 [

1

𝜀𝑛+1
ln
1

𝜀2𝑛
])
−2

𝐼. 

[Here 𝐶 = 2√𝑒 + 2√2𝑒 and 0 < 𝜀2 <
1

𝑒
. ] 

Theorem (2.2.2)[54]: If 

𝑇𝐹𝑇
∗
𝐹 ≥ 𝛿

2𝐼 , 
then there exists 

{𝑔𝑖𝑗}𝑖,𝑗=1
𝑚,𝑛

⊂ 𝐻∞(𝐷), 

so that 

𝑇𝐹𝑇𝐺 = 𝐼                       𝑎𝑛𝑑  ‖𝑇𝐺‖ ≤
1

𝛿
 . 

Note that 

‖𝑇𝐺‖ = sup
𝑧∈𝐷
‖𝐺(𝑧)‖𝐵(ℂ𝑚,ℂ𝑛) ,  

so Theorems (2.2.1) and (2.2.2) together constitute the vector valued corona theorem with 

the improved bound. The conclusion of Theorem (2.2.2) is the desired ‘‘corona theorem’’ 

conclusion, but the hypothesis for Theorem (2.2.2) is an operator theory one, as contrasted 

with the pointwise function theoretic assumption in Theorem (2.2.1). For this reason, 

Theorem (2.2.2) is referred to as an ‘‘operator corona’’ theorem. Various versions of 

operator corona theorems were proved in the 1970s. See Arveson [39], Sz.-Nagy and Foias 

[65], and Schubert [64]. More recent versions include Katsoulis et al. [63], Helton [60], Ball 

and Trent [58], and Agler and McCarthy [56]. An expository account of the control theory 

approach is given in Trent [68]. Thus we will not include a proof of Theorem (2.2.2). 

However, we will make two comments. First, the exact constant occurs in Theorem (2.2.2), 

so finding the optimal estimates in the corona theorem resides in the proof of Theorem 

(2.2.1). Second, if the scalar corona problem is similarly posed over, say the bidisk, then for 

a finite set {𝑓𝑖}𝑗=1
𝑚  of bounded analytic functions on 𝐷 × 𝐷, Theorem (2.2.1) holds for a 

constant depending on 𝑚 and 𝜀. See Lin [62] and Li [61]. Therefore the corona problem for 

the bidisk reduces to the question of whether Theorem (2.2.2), an operator corona theorem, 

holds for 𝐻2(𝐷 × 𝐷). For further comments on this see Trent [68] and Ball et al. [57]. 

Our proof of Theorem (2.2.1) will require the standard Littlewood–Paley type lemma. 

Lemma (2.2.3)[54]: Let 𝜙 be 𝐶(2) in a neighborhood of 𝐷.  Then 

𝜙(0) =  ∫𝜙(𝑒𝑖𝑡)𝑑𝜎 −
1

4𝜋

𝜋

−𝜋

∫ Δ𝜙(𝑧) ln
1

|𝑧|2
 𝑑𝑚 (𝑧)

𝐷

. 

The proof of Lemma (2.2.3) follows from Green’s theorem. See, for example, Garnett 

[42]. Note the special case that 𝜙(𝑧) =  𝑝0(𝑧)𝑞(𝑧), where 𝑝0 and 𝑞 are analytic polynomials 

and 𝑝0(0) = 0. Then the above equality says that 
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〈𝑝0, 𝑞〉𝜕𝐷 = ∫ 𝑝0
′ (𝑧)𝑞′(𝑧) ln

1

|𝑧|2
𝑑𝑚(𝑧)

𝜋
𝐷

 . 

To just check the Littlewood–Paley inner product result, consider terms of the form 

𝑧𝑛𝑧
𝑚
, 𝑛 and m nonnegative integers, and 𝑛 +𝑚 ≥ 1. If 𝑛 ≠ 𝑚 we clearly get 0 on both 

sides. If 𝑛 +𝑚 ≥ 1 we need only check that 

1 = ∫ 𝑛2|𝑧|2𝑛−2 ln
1

|𝑧|2
𝑑𝑚(𝑧)

𝜋
𝐷

 . 

This is easily verified, using polar coordinates. 

We require Lemma (2.2.3), which replaces the Hardy space inner product on 𝜕𝐷 with 

an essentially equivalent inner product on 𝐷, to utilize the necessary condition that 𝜀2𝐼 ≤
𝐹(𝑧)𝐹(𝑧)∗ for all 𝑧 ∈ 𝐷. 

Also, we use the standard observation that if Theorem (2.2.1) is proven for {𝑓𝑖𝑗}𝑖,𝑗=1
𝑛,𝑚

 

analytic on 𝐷 and across 𝜕𝐷 and satisfying the hypothesis, then a compactness argument 

gives the general case. Again details of this (but with a Mordell type compactness argument) 

may be found in Nikolskii [45]. 

To derive a conclusion like 𝐴𝐴∗ ≥ 𝛿2𝐼, where 𝐴 ∈ 𝐵(𝒦,ℋ), we need the following 

well-known lemma. 

Lemma (2.2.4)[54]: Let 𝐴 ∈ 𝐵(𝒦,ℋ), where 𝒦 and ℋ are Hilbert spaces. Suppose that 

for all ℎ in a dense subset of ℋ, there exists a 𝑢ℎ ∈ 𝒦 with 𝐴𝑢ℎ = ℎ and ‖𝑢ℎ‖𝒦 ≤
1

𝛿
‖ℎ‖ℋ. 

Then  

𝐴𝐴∗ ≥ 𝛿2𝐼ℋ  . 
 (The converse holds, but we do not use it.) 

Proof. By completeness of 𝒦 and ℋ, we may assume that for every ℎ ∈ ℋ , there exists a 

𝑢ℎ ∈ 𝒦 with 𝐴𝑢ℎ = ℎ and ‖𝑢ℎ‖𝒦 ≤
1

𝛿
‖ℎ‖ℋ. Thus the range of 𝐴 is closed, so the range of 

𝐴∗ is closed and ker 𝐴∗ = {0}. Since the smallest solution to 𝐴𝑥 = ℎ, 𝑣ℎ, belongs to 

(ker𝐴)⊥ = ran𝐴∗ = ran𝐴∗, we have 𝑣ℎ = 𝐴
∗𝑞 for some 𝑞 in ℋ and ‖𝐴∗𝑞‖𝒦 = ‖𝑢ℎ‖𝒦 ≤

‖𝑢ℎ‖𝒦 ≤
1

𝛿
‖ℎ‖ℋ. Now since 𝐴𝐴∗ is one-to-one and onto, thus invertible, we have 𝐴𝐴∗𝑞 =

ℎ and 𝑞 = (𝐴𝐴∗)−1ℎ.  

Thus ‖𝐴∗(𝐴𝐴∗)−1ℎ‖𝒦 ≤
1

𝛿
‖ℎ‖ℋso 〈(𝐴𝐴∗)−1ℎ, ℎ〉ℋ ≤ (1/𝛿

2)〈ℎ, ℎ〉or (𝐴𝐴∗)−1 ≤ (1/

𝛿2)𝐼. Thus 

𝐼ℋ = (𝐴𝐴
∗)
1
2(𝐴𝐴∗)−1(𝐴𝐴∗)

1
2 ≤

1

𝛿2
𝐴𝐴∗ 

and we’re done. 

Notice that if 𝐴 ∈ 𝐵(𝐻) and 𝐴𝐴∗ ≥ 𝛿2𝐼 with 𝛿 > 0, then 𝑃ran𝐴∗ = 𝐴
∗(𝐴𝐴∗)−1𝐴and 

𝑃ker𝐴 = 𝐼𝐻 − 𝐴
∗(𝐴𝐴∗)−1𝐴. Here 𝑃𝑁 denotes the orthogonal projection onto 𝑁, where 𝑁 is 

a closed subspace of 𝐻. 

The proof of Theorem (2.2.1) proceeds as follows: 

Assume that {𝑓𝑖𝑗}𝑖,𝑗=1
𝑛,𝑚

are analytic functions in a neighborhood of 𝐷and that 𝐹(𝑧) =

[𝑓𝑖𝑗(𝑧)] satisfies 𝐼 ≥ 𝐹(𝑧)𝐹(𝑧)∗ ≥ 𝜀2𝐼 for all 𝑧 ∈ 𝐷. To reach our conclusion we use 

Lemma (2.2.4). Let ℎ ∈ 𝐻2(𝜕𝐷)(𝑚) be an 𝑚-vector of analytic polynomials. We must find 
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a 𝑢ℎ ∈ 𝐻
2(𝜕𝐷)(𝑛) with 𝐹𝑢ℎ = ℎand ‖𝑢ℎ‖ ≤ (𝐶/𝜀

𝑛+1) ln(1/𝜀2𝑛), with 𝐶 = 2[2√𝑒 +

2√2𝑒]. 

Now all solutions of 𝐹𝑥 = ℎ in 𝐿2(𝜕𝐷)(𝑚)have the form 

𝑥 = 𝐹∗(𝐹𝐹∗)−1ℎ − 𝑃ker𝐹𝑘       𝑓𝑜𝑟 𝑘 ∈ 𝐿
2(𝜕𝐷)(𝑚) .  

To get 𝑢ℎ ∈ 𝐻
2(𝜕𝐷)(𝑛), we must find 𝑘 ∈ 𝐿2(𝜕𝐷)(𝑚) so that 

〈𝐹∗(𝐹𝐹∗)−1ℎ − 𝑃ker𝐹𝑘 , �̅�0〉 = 0       𝑓𝑜𝑟 𝑝0 ∈ 𝐻0
2(𝐷)(𝑛) 

Or 

〈𝐹∗(𝐹𝐹∗)−1ℎ , �̅�0〉 = 〈𝑘 , 𝑃ker𝐹�̅�0〉        𝑓𝑜𝑟 𝑝0 ∈ 𝐻0
2(𝐷)(𝑛)   (1) 

Obviously, 

‖𝑥‖ ≤
1

𝛿
‖ℎ‖ + ‖𝑘‖. 

For the existence and norm estimate of a 𝑘 ∈ 𝐿2(𝜕𝐷)(𝑚) satisfying (1), we apply the 

Riesz representation theorem. By considering the linear functional which sends 𝑃ker𝐹𝑝0 ↦

〈�̅�0, 𝐹
∗(𝐹𝐹∗)−1ℎ〉, we require that 

|〈𝐹∗(𝐹𝐹∗)−1ℎ− , �̅�0〉| ≤
𝐶

𝜀𝑛+1
ln
1

𝜀2𝑛
‖ℎ‖‖𝑃ker𝐹𝑝0‖              (2) 

for all 𝑝0 ∈ 𝐻0
2(𝐷)(𝑛) and 𝐶 = 2√𝑒 + 2√2𝑒. The remainder of the proof consists in 

establishing (2). 

We will need three lemmas. 

Lemma (2.2.5)[54]: For 𝑧 ∈ 𝐷, 𝑃ker𝐹(𝑧) =
𝒬(𝑧)𝒬(𝑧)∗

det(𝐹(𝑧)𝐹(𝑧)∗)
, where 𝒬(𝑧) ∈ 𝐵 (ℂ

(
𝑚
𝑛+1

)
, ℂ𝑚) 

and the entries of 𝒬(𝑧) are analytic functions in 𝐷. 

Proof. Fix any 𝑧 ∈ 𝐷,. Let 𝑓𝑖 + (𝑓𝑖,1(𝑧),… , 𝑓𝑖,𝑚(𝑧)) for 𝑖 = 1,… , 𝑛. Let {𝑒𝑗}𝑗=1
𝑚

denote the 

standard orthonormal basis for ℂ𝑚, so 𝑓𝑖 = ∑ 𝑓𝑖,𝑗
𝑚
𝑗=1 (𝑧)𝑒𝑗. Also {𝑢𝑗}𝑗=1

𝑚−𝑛
 will denote any 

orthonormal basis for ℂ𝑚⊝ 𝑠𝑝𝑎𝑛 {𝑓
𝑖
}
𝑖=1

𝑛
. Note that our hypothesis that 𝐹(𝑧)𝐹(𝑧)∗ ≥ 𝜀2𝐼 

and 𝑚\𝑛 shows that then {𝑓
𝑖
}
𝑖=1

𝑛
 are linearly independent. 

We will be using elementary computations with forms. See [59]. For 1 ≤ 𝑘 ≤ 𝑚,𝛱𝑘 

will denote the set of increasing k-tuples of {1, 2, . . . , 𝑚}. Then for 𝜆 ∈ 𝛱𝑘 with 𝜆 =
(𝜆1, … , 𝜆𝑘), 𝜆1 < 𝜆2 < ⋯ < 𝜆𝑘, and 𝜆𝑗 ∈ {1, 2,… ,𝑚}, 

𝑒𝜆 = 𝑒𝜆1 ∧ 𝑒𝜆2 ∧ . . . 𝑒𝜆𝑘 . 

It is not hard to see that {𝑒𝜆}𝜆∈𝛱𝑘
 can be identified with the standard orthonormal basis for 

ℂ
(
𝑚
𝑛
)
 in a natural way. 

Define 𝒬(𝑧)∗ ∈ 𝐵 (ℂ𝑛, ℂ
(
𝑚
𝑛+1

)
), formally by 

(𝒬(𝑧))
∗
(𝑤) = 𝑤 ∧ 𝑓

1
∧ …∧ 𝑓

𝑛
. 

By our hypothesis 𝑚 ≥ 𝑛. If 𝑚 = 𝑛, then 𝒬(𝑧)∗ = 0. Of course, in this case ker 𝐹(𝑧) =
{0}. Clearly, as a function of 𝑧 ∈ 𝐷, 𝒬(𝑧)∗ is conjugate analytic. 

Denote the form 𝑓
1
∧ …∧ 𝑓

𝑛
by ℱ and denote 𝒬(𝑧) by 𝒬. 
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Now for 𝑤 ∈ ℂ
(
𝑚
𝑛+1

)
 , 

𝒬(𝑤) = ∑〈𝒬(𝑤), 𝑢𝑗〉

𝑚−𝑛

𝑗=1

𝑢𝑗 = ∑〈𝑤,𝒬∗(𝑢𝑗)〉

𝑚−𝑛

𝑗=1

𝑢𝑗 = ∑〈𝑤, 𝑢𝑗 ∧ ℱ〉

𝑚−𝑛

𝑗=1

𝑢𝑗 . 

Also, 𝒬∗ (𝑓
𝑗
) = 𝑓

𝑗
∧ 𝑓

1
…∧ 𝑓

𝑛
= 0  for 𝑗 = 1, . . . , 𝑛(see [59]), so 

𝒬∗𝐹(𝑧)∗ = 0 and 𝐹(𝑧)𝒬 = 0. Thus 𝑟𝑎𝑛𝒬 ⊂ ker 𝐹(𝑧). 
We claim that 𝑟𝑎𝑛𝒬 = ker𝐹(𝑧). Let 𝑦 ∈ ker 𝐹(𝑧)⊝ 𝑟𝑎𝑛𝒬.  

Then 𝑦 ∈ (𝑟𝑎𝑛 𝒬)⊥ = ker𝒬∗, so 0 = 𝒬∗𝑦 = 𝑦 ∧ 𝑓
1
∧ …∧ 𝑓

𝑛
and thus 𝑦 ∈

𝑠𝑝 {𝑓
1
, … , 𝑓

𝑛
}. See [59]. Hence 𝑦 = ∑ 𝛼𝑗

𝑛
𝑗=1 𝑓

𝑗
and 𝑦 ∈ ker 𝐹(𝑧). So, if 𝛼 =

(𝛼1, … , 𝛼𝑛), then 0 = 𝐹(𝑧)𝑦 = 𝐹(𝑧)𝐹(𝑧)∗𝛼. But 𝐹(𝑧)𝐹(𝑧)∗ is invertible, so 𝛼 = 0 and 𝑦 =

0. 
We must show that 

𝒬𝒬∗

det(𝐹(𝑧)𝐹(𝑧)∗)
=  𝑃ker𝐹(𝑧). 

Since 𝑟𝑎𝑛 𝒬 = ker 𝐹(𝑧), we need only show that 𝒬/√det(𝐹(𝑧)𝐹(𝑧)∗) is a partial isometry. 

That is 𝒬∗𝒬𝒬∗ = det(𝐹(𝑧)𝐹(𝑧)∗)𝒬∗. 
For 𝑤 ∈ ℂ𝑛 , 

𝒬∗𝒬𝒬∗(𝑤) = 𝒬∗𝒬(𝑤 ∧ ℱ) = 𝒬(𝑤 ∧ ℱ) ∧ ℱ = [∑ 〈𝑤 ∧ ℱ, 𝑢𝑝 ∧ ℱ〉𝑢𝑝
𝑝

] ∧ ℱ. 

Recall that {𝑢𝑝}𝑝=1
𝑚−𝑛

 is an orthonormal basis for ℂ𝑚⊝𝑟𝑎𝑛 𝐹(𝑧)∗. 

Let 𝑤 = 𝑢𝑗 , then since 〈𝑢𝑗 ∧ ℱ, 𝑢𝑝 ∧ ℱ〉 = 𝛿𝑗𝑝 det(𝐹(𝑧)𝐹(𝑧)
∗) we’re done.  This last 

observation follows, since if 𝐴 is an 𝑚× 𝑛 matrix with 𝑚 ≥ 𝑛 and 𝑎1, … , 𝑎𝑛are the columns 

of 𝐴, then 𝑎1 ∧ …∧ 𝑎𝑛 = ∑ det(𝐸𝒦𝐴)𝒦∈𝜋𝑛
𝑎𝒦 .  Here 𝐸𝒦𝐴 is 𝑛 × 𝑛 and 𝐸𝒦 is the identity 

on {𝑒𝑗}𝑗∈𝒦 . 

Thus 

〈𝑎1 ∧ …∧ 𝑎𝑛, 𝑏1 ∧ …∧ 𝑏𝑛〉 =∑ det(𝐸𝒦𝐴)
𝒦∈𝜋𝑛

det(𝐸𝒦𝐵)              

= ∑ det(𝐸𝒦𝐴)
𝒦∈𝜋𝑛

det(𝐵∗𝐸𝒦) =∑ det(𝐵∗𝐸𝒦𝐴)
𝒦∈𝜋𝑛

= det(𝐵∗𝐴) . 

Again, details can be found in [59]. 

We will need two additional lemmas. The first of these can be viewed as an extension 

of the Littlewood–Paley lemma, Lemma (2.2.3), and seems to be due to Uchiyama. See 

Nikolskii [45]. We include the proof for convenience. 

Lemma (2.2.6)[54]: Assume 𝑎 ∈ 𝐶2(𝐷), 𝑎 ≥ 0 and ∆𝑎 ≥ 0. Then for 𝑝 an analytic 

polynomial, we have 

∫ Δ𝑎|𝑝|2 ln
1

|𝑧|2
 ≤ 𝑒‖𝑎‖∞

𝐷

∫|𝑝|2𝑑𝜎

𝜕𝐷

. 

Proof. A computation gives us that for 𝑡 > 0 

∆(𝑒𝑡𝑎|𝑝|2) = 𝑡𝑒𝑡𝑎∆𝑎|𝑝|2 + 4𝑒𝑡𝑎|𝑡𝑎𝑧𝑝 + 𝑝
′|2 ≥ 𝑡∆𝑎|𝑝|2. 
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Thus by Lemma (2.2.3), 

∫ Δ𝑎|𝑝|2 ln
1

|𝑧|2
≤
1

𝑡
𝐷

∫ ∆(𝑒𝑡𝑎|𝑝|2) ln
1

|𝑧|2
𝑑𝑚

4
(𝑧)

𝐷

                         =
𝜋

𝑡
∫ 𝑒𝑡𝑎|𝑝|2𝑑𝜎

𝜕𝐷

≤
𝜋

𝑡
𝑒𝑡‖𝑎‖∞ ∫|𝑝|2𝑑𝜎

𝜕𝐷

. 

Letting 𝑡 = 1/‖𝑎‖∞. completes the proof.  

We will apply the previous lemma to suitable choices for 𝑎(𝑧). Recall that 

𝐼 ≥ 𝐹(𝑧)𝐹(𝑧)∗ ≥ 𝜀2𝐼                𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝐷, 
Lemma (2.2.7)[54]: 

(i) ∆[𝑡𝑟(𝐹(𝑧)𝐹(𝑧)∗)−1]       = 4 𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗ ×
(𝐹(𝑧)𝐹(𝑧)∗)−1 × 𝐹′(𝑧)𝐹(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1] −
4 𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝑃ker(𝐹(𝑧) × 𝐹

′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1] 

(ii) ∆ [ln
det(𝐹(𝑧)𝐹(𝑧)∗)

𝜀2𝑛
] = 4 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝑃ker𝐹(𝑧)𝐹

′(𝑧)∗] 

(iii) ∆[det(𝐹(𝑧)𝐹(𝑧)∗)−1] = 4 [(det(𝐹(𝑧)𝐹(𝑧)∗))−1 ×
|𝑡𝑟 (𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹∗(𝑧)∗|2] − 4[det(𝐹(𝑧)𝐹(𝑧)∗)−1 ×

 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝑃ker𝐹(𝑧)𝐹
′(𝑧)∗]]. 

Proof. Using the resolvent identity, it is easy to see that for 𝑧 ∈ 𝐷, 

𝜕𝑧[(𝐹(𝑧)𝐹(𝑧)
∗)−1] = (𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1 

and similarly for 𝜕𝑧 . Now let 𝛺 be a simply connected region containing [𝜀2, 1] and with 

𝜕𝛺 a simple smooth Jordan curve traced counter-clockwise. Let 𝑔 be analytic in a 

neighborhood of 𝛺. By the Riesz functional calculus and the above derivative equation, we 

get that 

𝜕𝑧𝑡𝑟[𝑔(𝐹(𝑧)𝐹(𝑧)
∗)] = 𝑡𝑟[𝑔′(𝐹(𝑧)𝐹(𝑧)∗)𝐹′(𝑧)𝐹(𝑧)∗]. 

Applying this to 𝑔(𝑧) = log 𝑧 , −𝜋 < Arg 𝑧 < 𝜋, we get 

𝜕𝑧𝑡𝑟[ln(𝐹(𝑧)𝐹(𝑧)
∗)] = 𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹(𝑧)∗]. 

Using the product rule (which is easily established for our case) yields 

∆ 𝑡𝑟[ln(𝐹(𝑧)𝐹(𝑧)∗)]       
= 4 𝑡𝑟[−(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹(𝑧)∗]
+ 4 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹′(𝑧)∗]
= 4 𝑡𝑟[−(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗]
+ 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹′(𝑧)∗]
= 4 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)[1 − 𝐹(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)]𝐹′(𝑧)∗]

= 4 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝑃ker(𝐹(𝑧)𝐹
′(𝑧)∗]. 

Now since 

ln [
det(𝐹(𝑧)𝐹(𝑧)∗)

𝜀2𝑛
] = ln [det [

(𝐹(𝑧)𝐹(𝑧)∗)

𝜀2
]] = 𝑡𝑟 [ln [

(𝐹(𝑧)𝐹(𝑧)∗)

𝜀2
]] , 

(ii) follows. 

From above 

𝜕𝑧 ln [det (
𝐹(𝑧)𝐹(𝑧)∗

𝜀2
)] = 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗]. 

But 
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𝜕𝑧 ln [
det(𝐹(𝑧)𝐹(𝑧)∗)

𝜀2𝑛
] =

𝜕𝑧 det(𝐹(𝑧)𝐹(𝑧)
∗)

det(𝐹(𝑧)𝐹(𝑧)∗)
 . 

Thus 

𝜕𝑧 det(𝐹(𝑧)𝐹(𝑧)
∗) = det(𝐹(𝑧)𝐹(𝑧)∗)  𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗]. 

So 

∆[(det(𝐹(𝑧)𝐹(𝑧)∗)−1)]       
= 4 𝜕𝑧[− (det(𝐹(𝑧)𝐹(𝑧)

∗))−2 det(𝐹(𝑧)𝐹(𝑧)∗)

× 𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗]]

= 4𝜕𝑧[− (det(𝐹(𝑧)𝐹(𝑧)
∗))−1 × 𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗]]

= 4 [det(𝐹(𝑧)𝐹(𝑧)∗)−2 det(𝐹(𝑧)𝐹(𝑧)∗)
× 𝑡𝑟|[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗]|2]

− 4 [det(𝐹(𝑧)𝐹(𝑧)∗)−1 × 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝑃ker(𝐹(𝑧))𝐹
′(𝑧)∗]]. 

and (iii) holds. 

For (i), 

∆ 𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1]       = 4 𝜕𝑧[𝑡𝑟[−(𝐹(𝑧)𝐹(𝑧)
∗)−1𝐹(𝑧)𝐹′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1]]

= 4 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1

× 𝐹(𝑧)𝐹′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1]
+ 4 𝑡𝑟[−(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1]
+ 4 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1

× 𝐹′(𝑧)𝐹(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1]

= −4 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝑃ker(𝐹(𝑧)𝐹
′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1]

+ 4 𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)(𝐹(𝑧)𝐹(𝑧)∗)−1

× 𝐹′(𝑧)𝐹(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1]. 
This completes the proof.  

The remainder of our argument for Theorem (2.2.1) consists of establishing (2). That 

is, for ℎ ∈ 𝐻2(𝜕𝐷)(𝑚) with analytic polynomial entries and for any 𝑝0 ∈ 𝐻0
2(𝜕𝐷)(𝑛) with 

analytic polynomial entries that vanish at 0, we claim that for 𝐶 = (2√𝑒 + 2√2𝑒) 

|〈𝐹∗(𝐹𝐹∗)−1ℎ, 𝑝
0
〉| ≤

𝐶

𝜀𝑛+1
ln (

1

𝜀2𝑛
) ‖ℎ‖‖𝑃ker𝐹𝑝

0
‖ .                 (2) 

By Lemma (2.2.5), 

‖𝑃ker𝐹𝑝
0
‖
2
= 〈𝑃ker𝐹𝑝

0
, 𝑝
0
〉 = ∫ 〈

𝒬(𝑒𝑖𝑡)𝒬(𝑒𝑖𝑡)
∗

det(𝐹(𝑒𝑖𝑡)𝐹(𝑒𝑖𝑡)∗)
𝑝0(𝑒

𝑖𝑡), 𝑝0(𝑒
𝑖𝑡) 〉ℂ𝑛

𝜕𝐷

 𝑑𝜎(𝑡)

≥ ∫ ‖𝒬∗(𝑒𝑖𝑡)𝑝0(𝑒
𝑖𝑡)‖

2

𝜕𝐷

𝑑𝜎(𝑡). 

Denote 𝒬∗(𝑧)𝑝0(𝑒
𝑖𝑡) by 𝑘0(𝑧). Note that 𝑘0 has entries that vanish at 0 and are co-

analytic in a neighborhood of 𝐷. Thus it suffices to show that 

|〈𝐹∗(𝐹𝐹∗)−1ℎ, 𝑝
0
〉| ≤

𝐶

𝜀𝑛+1
ln (

1

𝜀2𝑛
) ‖ℎ‖‖𝑘0‖ .                         (3) 

By Lemma (2.2.3), the left hand side of (3) becomes 
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〈𝐹∗(𝐹𝐹∗)−1ℎ, 𝑝
0
〉 =

1

4𝜋
∫ ∆ [〈𝐹(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1ℎ(𝑧), 𝑝0(𝑧)〉]
𝐷

× ln
1

|𝑧|2
 𝑑𝑚(𝑧)

=
1

𝜋
∫ 𝜕𝑧 [〈(𝐼 − 𝐹(𝑧)

∗(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧))𝐹′(𝑧)∗

𝐷

× (𝐹(𝑧)𝐹(𝑧)∗)−1ℎ(𝑧), 𝑝0(𝑧)〉] ln
1

|𝑧|2
 𝑑𝑚(𝑧)

=
1

𝜋
∫ 𝜕𝑧 〈𝑃ker𝐹(𝑧)𝐹

′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1ℎ(𝑧), 𝑝0(𝑧)〉
𝐷

× ln
1

|𝑧|2
 𝑑𝑚(𝑧). 

Let 𝑑𝐴 denote 
𝑑𝑚

𝜋
. This last term becomes, by Lemma (2.2.5), 

∫ 𝜕𝑧 〈𝒬
∗(𝑧)𝐹′(𝑧)∗

(𝐹(𝑧)𝐹(𝑧)∗)−1

det(𝐹(𝑧)𝐹(𝑧)∗)
ℎ(𝑧), 𝑘0(𝑧)〉

𝐷

ln
1

|𝑧|2
 𝑑𝐴(𝑧).            (4) 

Computing the 𝜕𝑧-derivative, we get that (4) is equal to the sum of the following four terms: 

(i)  =      ∫ 〈𝒬∗(𝑧)𝐹′(𝑧)∗
(𝐹(𝑧)𝐹(𝑧)∗)−1

det(𝐹(𝑧)𝐹(𝑧)∗)
ℎ(𝑧), 𝑘0

′ (𝑧)〉
𝐷

ln
1

|𝑧|2
 𝑑𝐴(𝑧),  

(ii) = ∫ 〈𝒬∗(𝑧)𝐹′(𝑧)∗
(𝐹(𝑧)𝐹(𝑧)∗)−1

det(𝐹(𝑧)𝐹(𝑧)∗)
ℎ′(𝑧), 𝑘0(𝑧)〉

𝐷

ln
1

|𝑧|2
 𝑑𝐴(𝑧), 

(iii) = −∫ 〈𝒬∗(𝑧)𝐹′(𝑧)∗
(
(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹(𝑧)∗

× (𝐹(𝑧)𝐹(𝑧)∗)−1
)

det(𝐹(𝑧)𝐹(𝑧)∗)
ℎ(𝑧), 𝑘0(𝑧)〉

𝐷

× ln
1

|𝑧|2
 𝑑𝐴(𝑧),  

and, suppressing the 𝑧 in the inner product, 

(iv) = −∫ 〈𝒬∗𝐹′∗(𝐹𝐹∗)−1 [
det(𝐹𝐹∗)

(det(𝐹𝐹∗))2
𝑡𝑟[(𝐹𝐹∗)−1𝐹′𝐹∗]] ℎ(𝑧), 𝑘0〉

𝐷

× ln
1

|𝑧|2
 𝑑𝐴(𝑧). 

Note that the calculation of 𝜕𝑧(det(𝐹(𝑧)𝐹(𝑧)
∗)) is done in the proof of Lemma 

(2.2.7). We will be using the fact that for 𝐴 ∈ 𝐵(𝐻) and  𝑥 ∈ 𝐻, then 

‖𝐴𝑥‖
2
≤ ‖𝐴‖2‖𝑥‖

2
= ‖𝐴∗𝐴‖‖𝑥‖

2
≤ 𝑡𝑟 (𝐴∗𝐴)‖𝑥‖

2
. 

In addition, we use the fact that if 𝐴 ≥ 0 and if 0 ≤ 𝑃 ≤ 𝑐𝐼, then 𝑡𝑟(𝑃𝐴𝑃) = 𝑡𝑟𝐴
1

2𝑃2𝐴
1

2 ≤
𝑡𝑟𝑐2𝐴 = 𝑐2𝑡𝑟𝐴. 

By Cauchy–Schwartz in both the inner product and the measure and then by Lemma 

(2.2.3), we get, suppressing the 𝑧 in a portion of the next line, 

(i)

≤ [∫ 𝑡𝑟 [(𝐹𝐹∗)−1𝐹′
𝒬𝒬∗

(det(𝐹𝐹∗))2
𝐹′∗(𝐹𝐹∗)−1] × ‖ℎ(𝑧)‖

2
ln
1

|𝑧|2
 𝑑𝐴(𝑧)

𝐷

]

1
2

‖𝑘0‖

≤ [∫ 𝑡𝑟 [(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)
𝑃ker𝐹(𝑧)

(det(𝐹(𝑧)𝐹(𝑧)∗))
𝐹′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1]

𝐷

× ‖ℎ(𝑧)‖
2
ln
1

|𝑧|2
 𝑑𝐴(𝑧)]

1
2

‖𝑘0‖. 

So 
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(𝑖) ≤ [
1

𝜀2𝑛
1

𝜀2
∫ 𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝑃ker𝐹(𝑧)𝐹

′(𝑧)∗]
𝐷

× ‖ℎ(𝑧)‖
2
ln
1

|𝑧|2
 𝑑𝐴(𝑧)]

1
2

‖𝑘0‖. 

Appealing to Lemmas (2.2.6) and (2.2.7) with 𝑎(𝑧) = ln (det
(𝐹(𝑧)𝐹(𝑧)∗)

𝜀2𝑛
), we get 

(𝑖) ≤ [
𝑒

𝜀𝑛+1
ln (

1

𝜀2𝑛
)]

1
2
‖ℎ‖‖𝑘0‖ ≤ √𝑒

1

𝜀𝑛+1
ln (

1

𝜀2𝑛
) ‖ℎ‖‖𝑘0‖.  

An entirely analogous argument applies to (ii). 

For (iii), we use two Cauchy–Schwartz estimates and Lemmas (2.2.4) and (2.2.7) with 

𝑎(𝑧)as before and with 𝑏(𝑧) = 𝑡𝑟((𝐹(𝑧)𝐹(𝑧)∗)−1) + (
1

𝜀2
) 𝑎(𝑧). Then ‖𝑎‖∞ ≤

ln(
1

𝜀2𝑛
)and‖𝑏‖∞ ≤

𝑛

𝜀2
+ (

1

𝜀2
) ln (

1

𝜀2𝑛
). We have 

1

4
∆𝑎 = 𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝑃ker𝐹(𝑧)𝐹

′(𝑧)∗] 

And 

1

4
∆𝑏 ≥

(𝑡𝑟 [
(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1

× 𝐹′(𝑧)𝐹(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1
])

det((𝐹(𝑧)𝐹(𝑧)∗))
 𝑖𝑛 𝐷. 

So 

(iii) ≤

[
 
 
 

∫
‖𝒬∗(𝑧)𝐹′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−

1
2‖
2

𝑑𝑒𝑡(𝐹(𝑧)𝐹(𝑧)∗)
‖ℎ(𝑧)‖

2
𝑙𝑛

1

|𝑧|2
 𝑑𝐴(𝑧)

𝐷

]
 
 
 

1
2

×

[
 
 
 

∫
‖(𝐹(𝑧)𝐹(𝑧)∗)−

1
2𝐹′(𝑧)𝐹(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1‖

2

𝑑𝑒𝑡(𝐹(𝑧)𝐹(𝑧)∗)
× ‖𝑘0(𝑧)‖

2
𝑙𝑛

1

|𝑧|2
 𝑑𝐴(𝑧)

𝐷

]
 
 
 

1
2

≤ [∫ 𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝑃𝑘𝑒𝑟 𝐹(𝑧)𝐹
′(𝑧)∗]‖ℎ(𝑧)‖

2
𝑙𝑛

1

|𝑧|2
 𝑑𝐴(𝑧)

𝐷

]

1
2

×

[
 
 
 

∫

(𝑡𝑟 [
(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹(𝑧)𝐹′(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1

× 𝐹′(𝑧)𝐹(𝑧)∗(𝐹(𝑧)𝐹(𝑧)∗)−1
])

𝑑𝑒𝑡((𝐹(𝑧)𝐹(𝑧)∗))
× ‖𝑘0(𝑧)‖

2
𝑙𝑛

1

|𝑧|2
 𝑑𝐴(𝑧)

𝐷

]
 
 
 

1
2

≤ [𝑒 (𝑙𝑛
1

𝜀2𝑛
)]

1
2
[
𝑒

𝜀2
(
𝑛

𝜀2
+
1

𝜀2𝑛
𝑙𝑛
1

𝜀2𝑛
)]

1
2
. 

If 0 < 𝜀2 <
1

𝑒
, then ln(1/𝜀2) > 1. So 

𝑛

𝜀2
≤ (1/𝜀2𝑛) ln(1/𝜀2𝑛). 

Then 

(iii) ≤ 𝑒√2
1

𝜀𝑛+1
ln (

1

𝜀2𝑛
) . 

To handle (iv), we again begin with two applications of Cauchy– 

Schwartz. Use Lemmas (2.2.6) and (2.2.7) with 𝑎(𝑧) as before and with 𝑐(𝑧) =
(det(𝐹(𝑧)𝐹(𝑧)∗))−1 + (1/𝜀2𝑛) ln[det((𝐹(𝑧)𝐹(𝑧)∗)/𝜀2𝑛]. 
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Then 

‖𝑐‖∞ ≤
1

𝜀2𝑛
+
1

𝜀2𝑛
𝑙𝑛 (

1

𝜀2𝑛
) ≤

2

𝜀2𝑛
ln (

1

𝜀2𝑛
) 

And 

1

4
∆𝑐 ≥

|𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹(𝑧)∗]|2

det(𝐹(𝑧)𝐹(𝑧)∗)
 𝑜𝑛 𝐷. 

We compute that 

(iv)  ≤

[
 
 
 

∫
‖(𝐹(𝑧)𝐹(𝑧)∗)−

1
2𝐹′(𝑧)𝒬(𝑧)‖

2

𝑑𝑒𝑡(𝐹(𝑧)𝐹(𝑧)∗)
‖𝑘0(𝑧)‖

2
𝑙𝑛

1

|𝑧|2
 𝑑𝐴(𝑧)

𝐷

]
 
 
 

1
2

× [∫ ‖(𝐹(𝑧)𝐹(𝑧)∗)−
1
2‖
2 |𝑡𝑟[(𝐹(𝑧)𝐹(𝑧)∗)−1𝐹′(𝑧)𝐹(𝑧)∗]|2

𝑑𝑒𝑡(𝐹(𝑧)𝐹(𝑧)∗)𝐷

× ‖ℎ(𝑧)‖
2
𝑙𝑛

1

|𝑧|2
 𝑑𝐴(𝑧)]

1
2

≤ [𝑒 (𝑙𝑛
1

𝜀2𝑛
)]

1
2
[
1

𝜀2
𝑒
2

𝜀2𝑛
𝑙𝑛 (

1

𝜀2𝑛
)]

1
2
‖ℎ‖‖𝑘0‖

≤ 𝑒√2
1

𝜀𝑛+1
ln (

1

𝜀2𝑛
) ‖ℎ‖‖𝑘0‖. 

Finally, combining the four estimates, we deduce that whenever 0 < 𝜀2 <
1

𝑒
 and 

𝜀2𝐼 ≤ 𝐹(𝑧)𝐹(𝑧)∗ ≤ 𝐼 for all 𝑧 ∈ 𝐷, then 

|〈𝐹∗(𝐹𝐹∗)−1ℎ, 𝑝
0
〉| ≤ (2√𝑒 + 2√2𝑒)

1

𝜀𝑛+1
ln (

1

𝜀2𝑛
) ‖ℎ‖‖𝑘0‖. 

Therefore 

𝑇𝐹𝑇𝐹∗ ≥ (2[2√𝑒 + 2√2𝑒]
1

𝜀𝑛+1
ln (

1

𝜀2𝑛
))
−2

𝐼. 

We have completed the proof of Theorem (2.2.1).  

Combining Theorems (2.2.1) and (2.2.2), under the above hypothesis on 𝐹(𝑧) we get 

estimates for analytic solutions, 𝐺(𝑧), of 𝐹(𝑧)𝐺(𝑧) = 𝐼 for all 𝑧 ∈ 𝐷 of the form 

sup
𝑧∈𝐷
‖𝐺(𝑧)‖𝐵(ℂ𝑚,ℂ𝑛) ≤ 2[2√𝑒 + 2√2𝑒]

1

𝜀𝑛+1
ln (

1

𝜀2𝑛
) . 

We end with two remarks: 

(i) We apply similar techniques to obtain an improvement in the current bounds in 

Theorem (2.2.1) for the polydisk and remove the dependency on 𝑚. 

(ii) If we were just interested in a proof of the vector-valued corona theorem without 

worrying about best bounds, the computational Lemmas (2.2.6) and (2.2.7) could be 

omitted. Then we would get a direct Hilbert space proof of the vector-valued corona 

theorem. 

Also, we note that if 𝐹 is 1 ×𝑚, then Lemma (2.2.5) has a simple direct proof. 

Section (2.3): Corona Problem in the Disk and Polydisk 

The classical Carleson Corona Theorem, see [40], states that if functions 𝑓𝑗 ∈

𝐻2(𝔻)are such that ∑ |𝑓𝑗|
2
≥ 𝛿2 > 0∞

𝑗=1  then there exist functions 𝑔𝑗 ∈ 𝐻
2(𝔻) such that 

∑ 𝑔𝑗𝑓𝑗
∞
𝑗=1 = 1. This is equivalent to the fact that the unit disk 𝔻 is dense in the maximal 
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ideal space of the algebra 𝐻∞, but the importance of the Corona Theorem goes much beyond 

the theory of maximal ideals of 𝐻∞. 
The Corona Theorem, and especially its generalization, the so called Matrix 

(Operator) Corona Theorem play an important role in operator theory (such as the angles 

between invariant subspaces, unconditionally convergent spectral decompositions, 

computation of spectrum, etc.). The Matrix Corona Theorem says that if  𝐹 ∈
𝐻∞(𝔻;𝐸∗ → 𝐸) is a bounded analytic function whose values are operators from a Hilbert 

space 𝐸∗, dim𝐸∗ < +∞, to another Hilbert space 𝐸 such that 

𝐹∗(𝑧)𝐹(𝑧) ≥ 𝛿2𝐼 > 0,          ∀𝑧 ∈ 𝔻,                  (𝐶) 
then 𝐹 has a bounded analytic left inverse 𝐺 ∈ 𝐻∞(𝔻;𝐸∗ → 𝐸), 𝐺𝐹 ≡ 𝐼. We should 

emphasize that the requirement dim𝐸∗ +∞is essential here. It was shown in [51], see also 

[52] or [38], that the Operator Corona Theorem fails if dim𝐸∗ = +∞. Note also that the 

above condition (C) is necessary for the existence of a bounded left inverse. 

The classical Carleson Corona Theorem is a particular case of the matrix one: one 

just needs to consider 𝐹 being the column 𝐹 = (𝑓1, 𝑓2, … , 𝑓𝑛)
𝑇. It also worth noticing that 

the Matrix Corona Theorem follows from the classical one. Using a simple linear algebra 

argument Fuhrmann, see [41], was able to get the matrix version (dim𝐸∗ , dim𝐸 < +∞) of 

the theorem from the classical result of Carleson. Later, using ideas from Wolff’s proof of 

the Corona Theorem, M. Rosenblum, V. Tolokonnikov and A. Uchiyama, see [47], [50], 

[55], independently extended the Corona Theorem to infinitely many functions 𝑓𝑘. Using 

their result, V. Vasyunin was able to get the Operator Corona Theorem in the case dim𝐸∗ <
+∞, dim𝐸 = +∞. 

Since the Corona Theorem turns out to be very important in operator theory, there 

were some attempts to prove it using operator methods. While these attempts were not 

completely successful, some interesting relations were discovered. In particular, it was 

shown that a function 𝐹 ∈ 𝐻∞ = 𝐻∞(𝔻; 𝐸∗ → 𝐸) is left invertible in 𝐻∞if and only if the 

Toeplitz operator 𝑇𝐹 is left invertible; here 𝐹 denotes the complex conjugate of the matrix 

𝐹. 

Let us recall that given an operator function  Φ ∈ 𝐿∞(𝕋; 𝐸∗ → 𝐸), the Toeplitz 

operator 𝑇Φ: 𝐻
2(𝐸∗) → 𝐻

2(𝐸) with symbol Φ is defined by 

𝑇Φ𝑓 ∶= 𝑃+(Φ𝑓), 
where 𝑃+ is the Riesz Projection (orthogonal projection onto 𝐻2). 

Considering the adjoint operator (𝑇𝐹)
∗
= 𝑇

𝐹
∗ = 𝑇𝐹𝑇one can conclude from here that 

𝐹 is left invertible in 𝐻∞if and only if the Toeplitz operator 𝑇𝐹𝑇: 𝐻
2(𝐸) → 𝐻2(𝐸∗) is right 

invertible. Since 𝐹𝑇 is an analytic function 

𝑇𝐹𝑇𝑓 = 𝐹
𝑇𝑓,               ∀𝑓 ∈ 𝐻2(𝐸). 

and 𝐹 is left invertible in 𝐻∞if and only if for any 𝑔 ∈ 𝐻2(𝐸∗) the equation 

𝐹𝑇𝑓 = 𝑔                                                            (5) 
has a solution 𝑔 ∈ 𝐻2(𝐸) satisfying the uniform estimate ‖𝑓‖2 ≤ 𝐶‖𝑔‖2. 

The result that condition (C) implies (if dim𝐸∗ < +∞) left invertibility of the 

Toeplitz operator 𝑇𝐹, or equivalently the solvability of Eq. (5), is called the Toeplitz Corona 

Theorem. In the case of the unit disk 𝔻 one can easily deduce the Matrix Corona Theorem 

from the Toeplitz Corona Theorem by using the Commutant Lifting Theorem. 

The main result is the Toeplitz Corona Theorem for the polydisk, see Theorem (2.3.2) 

below. To simplify the notation we used 𝐹 instead of 𝐹𝑇, so the condition (C) is replaced by 
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the condition 𝐹𝐹∗ ≥ 𝛿2𝐼. While in the polydisk it is not known how to get the Corona 

Theorem from the Toeplitz Corona Theorem (the Commutant Lifting Theorem for the 

polydisk is currently not known) the result seems to be of independent interest. In a 

particular case when 𝐹 from Theorem (2.3.2) is a row vector (a 1 × 𝑛 matrix) this theorem 

was proved by Lin, see [62] or [74]. His approach involved using the Koszul complex to 

write down the 𝜕-equations. Unfortunately, in several variables, unlike the one-dimensional 

case, higher order equations appear in addition to the ∂-equation so the computation become 

quite messy. It is not clear how to use his technique to get the result in the matrix case we 

are treating here since the Fuhrmann–Vasyunin trick of getting the matrix result from the 

result for a column (row) vector does not work to solve the Toeplitz Corona Theorem. 

We use tools from complex differential geometry to solve 𝜕-equations on 

holomorphic vector bundles. In doing this we are following the ideas of Andersson, see [71] 

or [72], which in turn go back to Berndtsson. 

To solve the 𝜕-equation he uses a Hörmander type approach with weights and a 

modification of a Bochner–Kodaira–Nakano–Hörmander identity from complex geometry. 

While our approach is more along the lines of 𝑇. Wolff’s proof and does not require anything 

more advanced than Green’s formula. 

We first use our technique to get an estimate in the Toeplitz Corona Theorem in the 

disk: 

Theorem (2.3.1)[70]: Let 𝐹 ∈ 𝐻∞(𝔻;𝐸 → 𝐸∗), dim𝐸∗ = 𝑟 < +∞, such that 𝛿2𝐼 ≤ 𝐹𝐹∗ ≤

𝐼for some 0 < 𝛿2 ≤
1

𝑒
.  For 1 ≤ 𝑝 ≤ ∞if𝑔 ∈ 𝐻𝑝(𝔻;𝐸∗) then the equation 

𝐹𝑓 =  𝑔 
has an analytic solution 𝑓 ∈ 𝐻𝑝(𝔻;𝐸) with the estimate 

‖𝑓‖𝑝 ≤ (
𝐶

𝛿𝑟+1
log

1

𝛿2𝑟
+
1

𝛿
)‖𝑔‖𝑝                        (6) 

with 𝐶 = √1 + 𝑒2 + √𝑒 + √2𝑒 ≈ 8.38934. 
For the 𝑝 = 2 case the above result with a different constant 𝐶 was obtained recently 

using a different method by Trent [54]. The constant he obtained was 𝐶 = 2√𝑒 + 2√2𝑒 ≈
10.9859.. 

The result for all p can be obtained from the case 𝑝 = 2 via the Commutant Lifting 

Theorem, but we present here a simple direct proof. 

Note, that we do not assume dim𝐸 < +∞here. 

Using a simple modification of our proof in one dimension we are also able to get the 

following result in the polydisk: 

Theorem (2.3.2)[70]: Let 𝐹 ∈ 𝐻∞(𝔻𝑛; 𝐸 → 𝐸∗), dim𝐸∗ = 𝑟 < +∞, such that 𝛿2𝐼 ≤

𝐹𝐹∗ ≤ 𝐼 for some 0 < 𝛿2 ≤
1

𝑒
.  For 1 < 𝑝 < ∞ if 𝑔 ∈ 𝐻𝑝(𝔻𝑛; 𝐸∗) then the equation 

𝐹𝑓 =  𝑔 
has an analytic solution 𝑓 ∈ 𝐻𝑝(𝔻𝑛; 𝐸) with the estimate 

‖𝑓‖𝑝 ≤ (
𝑛𝐶𝐶(𝑝)𝑛

𝛿𝑟+1
log

1

𝛿2𝑟
+
1

𝛿
)‖𝑔‖𝑝              (7) 

where 𝐶 = √1 + 𝑒2 + √𝑒 + √2𝑒 ≈ 8.38934, and 𝐶(𝑝) =
1

sin(
𝜋

𝑝
)
 the norm of the (scalar) 

Riesz projection from 𝐿𝑝(𝕋) onto 𝐻𝑝(𝔻). For 𝑝 = 2 the estimate can be improved to 
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‖𝑓‖2 ≤ (
√𝑛𝐶

𝛿𝑟+1
log

1

𝛿2𝑟
+
1

𝛿
)‖𝑔‖2                         (8) 

With 𝐶 = √1 + 𝑒2 + √𝑒 + √2𝑒 ≈ 8.38934 

We will start with proving Theorem (2.3.1) for 𝑝 = 2, we set up the main estimate 

needed to prove the theorem, we discuss a version of the Carleson Embedding Theorem and 

its analogue for functions defined on holomorphic vector bundles, which will be later used 

to prove the main estimates, we perform computation of some derivatives and Laplacians 

that will be used in the estimates. We also construct there subharmonic functions to be used 

in the embedding theorems. Then we deal with the main estimate for 𝑝 = 2; and explain 

how to use the construction for other 𝑝 and we treat the case of the polydisk for 𝑝 = 2 and 

finally we treat the case of general 𝑝. 

To prove Theorem (2.3.1) for 𝑝 = 2, for a given 𝑔 ∈ 𝐻2 ≔ 𝐻2(𝐸∗) with ‖𝑔‖2 = 1, 

we need to solve the equation 

𝐹𝑓 = 𝑔, 𝑓 ∈  𝐻2(𝐸)                                  (9) 
with the estimate ‖𝑓‖2 ≤ 𝐶 = 𝐶(𝛿, 𝑟). By a normal families argument it is enough to 

suppose that 𝐹 and 𝑔 are analytic in a neighborhood of 𝔻. Any estimate obtained in this 

case can be used to find an estimate when 𝐹 is only analytic on 𝔻. Since 𝛿2𝐼 ≤ 𝐹𝐹∗ ≤ 𝐼, it 
is easy to find a non-analytic solution 𝑓0 of (9), 

𝑓0: = Φ𝑔 ∶= 𝐹
∗(𝐹𝐹∗)−1𝑔. 

To make 𝑓0 into an analytic solution, we need to find 𝑣 ∈ 𝐿2(𝐸) such that 𝑓 ≔ 𝑓0 −
𝑣 ∈ 𝐻2 and 𝑣(𝑧) ∈ ker 𝐹(𝑧) a.e. on 𝕋. Then  

𝐹𝑓 = 𝐹(𝑓0 − 𝑣) = 𝐹𝑓0 − 𝐹𝑣 = 𝑔, 

and we are done. The standard way to find such v is to solve a 𝜕-equation with the condition 

𝑣(𝑧) ∈ ker𝐹(𝑧) insured by a clever algebraic trick. This trick also admits a “scientific” 

explanation, for one can get the desired formulas by writing a Koszul complex. What we do 

essentially amounts to solving the 𝜕-equation 𝜕𝑣 = 𝜕𝑓0 on the holomorphic vector bundle 

ker 𝐹(𝑧). We mostly follow the ideas of Andersson found in [71]. He used ideas from 

complex differential geometry to solve the corona problem by finding solutions to the 𝜕-

equation on holomorphic vector bundles. 

Since our target audience consists of analysts, all differential geometry will be well 

hidden. Our main technical tool will be Green’s formula 

∫ 𝑢 𝑑𝑚 − 𝑢(0)
𝕋

=
1

2𝜋
∫ ∆𝑢
𝔻

log
1

|𝑧|
𝑑𝑥 𝑑𝑦                              (10) 

Instead of the usual Laplacian ∆=
𝜕2

𝜕𝑥2
+ 

𝜕2

𝜕𝑦2
 it more convenient for us to use the 

“normalized” one ∆̃≔
1

4
∆�̅�𝜕 = 𝜕�̅�. If we denote by 𝜇 the measure defined by 

𝑑𝜇 =
2

𝜋
log

1

|𝑧|
 𝑑𝑥 𝑑𝑦, 

then Green’s formula can be rewritten as 

∫ 𝑢 𝑑𝑚 
𝕋

− 𝑢(0) = ∫ ∆̃𝑢
𝔻

𝑑𝜇.                                           (11) 

To find the function 𝑣 we will use duality. We want 𝑓0 − 𝑣 ∈ 𝐻
2(𝐸), therefore the 

equality 
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∫ 〈𝑓0, ℎ〉𝑑𝑚
𝕋

= ∫ 〈𝑣, ℎ〉
𝕋

𝑑𝑚 

must hold for all ℎ ∈ (𝐻2)⊥. Using Green’s formula we get 

∫ 〈𝑓0, ℎ〉𝑑𝑚
𝕋

= ∫ 〈Φ𝑔, ℎ〉
𝕋

𝑑𝑚 = ∫ 𝜕�̅�[〈Φ𝑔, ℎ〉]
𝔻

𝑑𝜇 = ∫ 𝜕[〈�̅�Φ𝑔, ℎ〉]
𝔻

𝑑𝜇 

Here we used the harmonic extension of ℎ, so ℎ is anti-analytic and ℎ(0) = 0. The functions 

Φ ≔ 𝐹∗(𝐹𝐹∗)−1 and 𝑔 are already defined in the unit disk 𝔻. 

Now the critical moment: let Π(𝑧) ≔ 𝑃ker𝐹(𝑧) be the orthogonal projection onto 

ker 𝐹(𝑧) , Π = 𝐼 − 𝐹∗(𝐹𝐹∗)−1𝐹.Direct computation shows that �̃�Φ = Π(∂Φ)∗(𝐹𝐹∗)−1, so 

Π�̅�Φ = �̅�Φ. Therefore, if we define a vector-valued function 𝜉 on 𝔻 by 𝜉(𝑧) ≔ Π(𝑧)ℎ(𝑧), 
then 

∫ 𝜕[〈�̅�Φ𝑔, ℎ〉]
𝔻

𝑑𝜇 = ∫ 𝜕[〈�̅�Φ𝑔, Π ℎ〉]
𝔻

𝑑𝜇 = ∫ 𝜕[〈�̅�Φ𝑔, 𝜉〉]
𝔻

𝑑𝜇 =: 𝐿(𝜉)

= 𝐿𝑔(𝜉).                                                           (12) 

Note, that 𝐿 = 𝐿𝑔 is a conjugate linear functional, i.e. �̅� (defined by �̅�(𝜉) ≔ 𝐿(𝜉)̅̅ ̅̅ ̅̅ ) is a linear 

functional. Suppose we are able to prove the estimate 

|𝐿(𝜉)| ≤ 𝐶(𝑟, 𝛿)‖𝜉‖2 ,        ∀𝜉 = Πℎ, ℎ ∈ 𝐻
2(𝐸)⊥.                      (13) 

Then (by a Hilbert space version of the Hahn–Banach Theorem, which is trivial) 𝐿 can be 

extended to a bounded linear functional on 𝐿2(𝐸), so there exists a function 𝑣 ∈
𝐿2(𝐸), ‖𝑣‖2 ≤ 𝐶,  such that 

𝐿(𝜉) = ∫ 〈𝑣, 𝜉〉𝑑𝑚
𝕋

 ,     ∀𝜉 = Πℎ, ℎ ∈ 𝐻2(𝐸)⊥.  

Replacing 𝑣 by Π𝑣 we can always assume without loss of generality that 𝑣(𝑧) ∈ ker 𝐹(𝑧) 
a.e. on 𝕋, so 𝐹𝑣 =  0. By the construction 

∫ 〈𝑣, ℎ〉𝑑𝑚
𝕋

= ∫ 〈𝑣, Πℎ〉𝑑𝑚
𝕋

= 𝐿(Πℎ) = ∫ 〈Φ𝑔, ℎ〉𝑑𝑚
𝕋

 ,    ∀ ℎ ∈ 𝐻2(𝐸)⊥, 

so 𝑓: 𝑓0 − 𝑣 ≔ Φ𝑔 − 𝑣 ∈ 𝐻2(𝐸) is the analytic solution we want to find. It satisfies the 

estimate 

‖𝑓‖2 ≤ ‖𝑓0‖2 + ‖𝑣‖2 ≤
1

𝛿
‖𝑔‖2 + 𝐶(𝑟, 𝛿)‖𝑔‖2. 

Therefore, Theorem (2.3.1) would follow from the following proposition 

Proposition (2.3.3)[70]: Under the assumptions of Theorem (2.3.1) the linear functional 𝐿 

defined by (12) satisfies the estimate 

|𝐿(𝜉)| ≤ 𝐶(𝑟, 𝛿)‖𝜉‖2 ,        ∀𝜉 = Πℎ, ℎ ∈ 𝐻
2(𝐸)⊥ 

With 

𝐶(𝑟, 𝛿) =
𝐶

𝛿𝑟+1
log

1

𝛿2𝑟
 , 

where 𝐶 = √1 + 𝑒2 + √𝑒 + √2𝑒. 
In what follows we will need the following simple technical lemma that is proved by 

direct computation. 

Lemma (2.3.4)[70]: For Π and Φ defined above we have 

𝜕Π = −𝐹∗(𝐹𝐹∗)−1𝐹′Π, 
�̅�Φ = Π(𝐹′)∗(𝐹𝐹∗)−1, 

and  
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𝜕�̅�Φ = 𝜕Π(𝐹′)∗(𝐹𝐹∗)−1 − (�̅�Φ)𝐹′Φ = 𝜕Π�̅�Φ + (𝜕Π)∗Φ𝐹′Φ. 
Corollary (2.3.5)[70]: For the projection Π defined above we have 

Π𝜕Π = 0 , (𝜕Π)Π = 𝜕Π , (�̅�Π)Π = 0 , Π�̅�Π = �̅�Π. 
The above identities are well-known in complex differential geometry, but we can 

easily get them from Lemma (2.3.4). Namely, since Π is the orthogonal projection onto 

ker 𝐹 we have 𝐹Π = 0. Taking the adjoint we get Π𝐹∗ = 0 which implies Π𝜕Π = 0. The 

second identity is trivial, and the last two are obtained from the first two by taking adjoints. 

As is well known, Carleson measures play a prominent role in the proof of the Corona 

theorem, both in Carleson’s original proof and in 𝑇. Wolff’s proof and subsequent 

modifications. It is also known to the specialists, that essentially all Carleson measures can 

be obtained from the Laplacian of a bounded subharmonic function. We will need the 

following well-known theorem, see [45], which was probably first proved by Uchiyama. 

Theorem (2.3.6)[70]: (Carleson Embedding Theorem). Let 𝜑 be a non-negative, bounded, 

subharmonic function. Then for any 𝑓 ∈ 𝐻2(𝐸) 

∫ ∆̃𝜑(𝑧)‖𝑓(𝑧)‖2𝑑𝜇 ≤ 𝑒‖𝜑‖∞‖𝑓‖2
2

𝔻

. 

Here 𝑑𝜇 =
2

𝜋
log

1

|𝑧|
 𝑑𝑥 𝑑𝑦 , 𝑎𝑛𝑑 ∆̃=

1

4
∆= 𝜕�̅�. 

Proof. Because of homogeneity, we can assume without loss of generality that ‖𝜑‖∞ = 1. 

Direct computation shows that 

∆̃(𝑒𝜑(𝑧)‖𝑓(𝑧)‖2) = 𝑒𝜑∆̃𝜑‖𝑓‖2 + 𝑒𝜑‖𝜕𝜑𝑓 + 𝜕𝑓‖2 ≥ ∆̃𝜑‖𝑓‖2. 
Then Green’s formula implies 

∫ ∆̃𝜑‖𝑓‖2

𝔻

𝑑𝜇 ≤ ∫ ∆̃(𝑒𝜑‖𝑓‖2)
𝔻

𝑑𝜇 = ∫ 𝑒𝜑‖𝑓‖2

 𝕋

𝑑𝑚 − 𝑒𝜑(0)‖𝑓(0)‖2

≤ 𝑒∫ ‖𝑓‖2

 𝕋

𝑑𝑚 = 𝑒‖𝑓‖2
2. 

Remark (2.3.7)[70]: It is easy to see, that the above Lemma implies the embedding 

∫ ‖𝑓‖2
𝔻

𝑑𝜇 ≤ 𝐶 ∫ ‖𝑓‖2
 𝕋

𝑑𝑚 (with 𝐶 = 𝑒) for all analytic functions 𝑓 . Using the function 

4/(2 − 𝜑) ) instead of 𝑒𝜑 it is possible to get the embedding for harmonic functions with 

the constant 𝐶 = 4. We suspect the constants 𝑒 and 4 are the best possible for the analytic 

and harmonic embedding respectively. We cannot prove that, but it is known that 4 is the 

best constant in the dyadic (martingale) Carleson Embedding Theorem. 

We will need a similar embedding theorem for functions of form 𝜉 = Πℎ, ℎ ∈
𝐻2(𝐸)⊥. Such functions are not analytic or harmonic, so the classical Carleson Embedding 

Theorem does not apply. As a result, the proof is more complicated, and the constant is 

significantly worse. 

Recall that Π(𝑧) = 𝑃ker𝐹(𝑧) is the orthogonal projection onto ker 𝐹(𝑧), Π −

𝐹∗(𝐹𝐹∗)−1𝐹, and that 𝑑𝜇 =
2

𝜋
log

1

|𝑧|
 𝑑𝑥 𝑑𝑦. 

Lemma (2.3.8)[70]: Let 𝜑 be a non-negative, bounded, subharmonic function in 𝔻 

satisfying 

∆̃𝜑(𝑧) ≥ ‖𝜕Π(𝑧)‖2 ,               ∀𝑧 ∈ 𝔻, 
and let 𝐾 = ‖𝜑‖∞. Then for all 𝜉 of the form 𝜉 = Πℎ, ℎ ∈ 𝐻2(𝐸)⊥ 

∫ ∆̃𝜑(𝑧)‖𝜉(𝑧)‖2

𝔻

𝑑𝜇 (𝑧) ≤ 𝑒𝐾𝑒𝐾‖𝜉‖2
2 
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and 

∫ ‖�̅�𝜉‖
2

𝔻

𝑑𝜇 ≤ (1 + 𝑒𝐾𝑒𝐾)‖𝜉‖2
2 . 

Proof. Let us take an arbitrary non-negative bounded subharmonic function 𝜑 and compute 

∆̃(𝑒𝜑‖𝜉‖2). Corollary (2.3.5) implies that Π𝜕Π = 0 and 𝜕ΠΠ = 𝜕Π. Therefore, using 𝜕ℎ =
0 we get 𝜕𝜉 = 𝜕(Πℎ) = 𝜕Πℎ + Π𝜕ℎ =  𝜕Πℎ = 𝜕Π𝜉, and so 

〈𝜕𝜉, 𝜉〉 = 〈 𝜕𝜉, Π𝜉〉 = 〈 𝜕Πℎ, Π𝜉〉 = 0. 
Therefore 

𝜕(𝑒𝜑‖𝜉‖2) = 𝑒𝜑𝜕𝜑‖𝜉‖2 + 𝑒𝜑〈𝜕𝜉, 𝜉〉 + 𝑒𝜑〈 𝜉, �̅�𝜉〉 = 𝑒𝜑𝜕‖𝜉‖2 + 𝑒𝜑〈 𝜉, �̅�𝜉〉. 
Taking �̅� of this equality (and again using 〈 𝜉, �̅�𝜉〉 = 0) we get 

∆̃(𝑒𝜑‖𝜉‖2) = 𝑒𝜑 (∆̃𝜑‖𝜉‖2 + ‖�̅�𝜑𝜉 + �̅�ξ‖
2
+ 〈𝜉, ∆̃𝜉〉). 

To handle 〈𝜉, ∆̃𝜉〉we take the 𝜕 derivative of the equation 〈 𝜉, 𝜕𝜉〉 = 0 to get 

〈𝜕𝜉, 𝜕𝜉〉 + 〈𝜉, �̅�𝜕𝜉〉 = 0, 
and therefore 〈𝜉, ∆̃𝜉〉 = −‖𝜕𝜉‖2 = −‖(𝜕Π)𝜉‖2. Since 𝜑 ≥ 0 

∫ (∆̃𝜑‖𝜉‖2 − ‖(𝜕Π)𝜉‖2)
𝔻

𝑑𝜇

≤ ∫ (∆̃𝜑‖𝜉‖2 − ‖(𝜕Π)𝜉‖2 + ‖�̅�𝜑𝜉 + �̅�ξ‖
2
) 𝑒𝜑

𝔻

𝑑𝜇

= ∫ 𝑒𝜑‖𝜉‖2

𝕋

𝑑𝑚;                                                                                    (14) 

the equality is just Green’s formula (recall that 𝜉(0) = 0). In the last inequality replacing 𝜑 

by 𝑡𝜑, 𝑡 > 1 we get 

∫ (𝑡∆̃𝜑‖𝜉‖2) − ‖(𝜕Π)𝜉‖2

𝔻

𝑑𝜇 ≤ ∫ 𝑒𝑡𝜑‖𝜉‖2

𝕋

𝑑𝑚 ≤ 𝑒𝑡𝐾‖𝜉‖2
2. 

Now we use the inequality∆̃𝜑 ≥ ‖(𝜕Π)‖2. It implies ∆̃𝜑‖𝜉‖2 − ‖𝜕Π𝜉‖2 ≥ 0, and therefore 

(𝑡 − 1)∫ ∆̃𝜑‖𝜉‖2

𝔻

𝑑𝜇 ≤ 𝑒𝑡𝐾‖𝜉‖2
2. 

Hence 

∫ ∆̃𝜑‖𝜉‖2

𝔻

𝑑𝜇 ≤ min
𝑡>1

𝑒𝑡𝐾

𝑡 − 1
‖𝜉‖2

2 = 𝑒𝐾𝑒𝑡𝐾‖𝜉‖2
2 

(minimum is attained at 𝑡 = 1 + 1/𝐾), and thus the first statement of the lemma is proved. 

To prove the second statement, put 𝜑 ≡ 0 in (14) (we do not use any properties of 𝜑 

except that 𝜑 ≥ 0 in (14)) to get 

∫ (‖�̅�𝜉‖
2
− ‖(𝜕Π)𝜉‖2)

𝔻

𝑑𝜇 = ∫ ‖𝜉‖2

𝕋

𝑑𝑚 = ‖𝜉‖2
2 . 

But the second term can be estimated as 

∫ ‖(𝜕Π)𝜉‖2

𝔻

𝑑𝜇 ≤ ∫ ∆̃𝜑‖𝜉‖2

𝔻

𝑑𝜇 ≤ 𝑒𝐾𝑒𝐾‖𝜉‖2
2 , 

and therefore 

∫ ‖�̅�𝜉‖
2

𝔻

𝑑𝜇 ≤ (1 + 𝑒𝐾𝑒𝐾)‖𝜉‖2
2 . 



65 

 

There will be points in the proof where we would like to invoke Carleson’s 

Embedding Theorem. To do so we will need a non-negative, bounded, subharmonic 

function. We construct the necessary subharmonic functions so they will be available when 

we finally estimate the integral in question. We define the two functions used and collect 

their relevant properties. First, we recall a basic fact that will aid in showing that the 

functions we construct are subharmonic. 

Lemma (2.3.9)[70]: Let 𝐴(𝑡) be a differentiable 𝑛 × 𝑛 matrix-valued function. Define the 

function 𝑓(𝑡) = det(𝐴(𝑡)). Then 

𝑓′(𝑡) = det(𝐴(𝑡)) 𝑡𝑟 (𝐴−1(𝑡)𝐴′(𝑡)). 
Proof. Fix a point 𝑡 and for brevity of notation let us use 𝐴 instead of 𝐴(𝑡). Since 𝐴(·) is 

differentiable 

det(𝐴(𝑡 + ℎ)) = det(𝐴 + 𝐴′ℎ + 𝑜(ℎ)) = det 𝐴 det(𝐼 + 𝐴−1𝐴′ℎ + 𝑜(ℎ))

= det 𝐴∏(1 + ℎ𝜇𝑘 + 𝑜(ℎ)), 

where 𝜇𝑘 are the eigenvalues of 𝐴−1(𝑡)𝐴′(𝑡). Expanding this product we have 

∏(1+ ℎ𝜇𝑘 + 𝑜(ℎ)) = 1 + ℎ∑𝜇𝑘 + 𝑜(ℎ) = 1 + ℎ𝑡𝑟(𝐴
−1𝐴′) + 𝑜(ℎ). 

 

Then 

det(𝐴(𝑡 + ℎ)) = det(𝐴) + ℎ det(𝐴) 𝑡𝑟 (𝐴−1𝐴′) + 𝑜(ℎ), 
which implies the desired formula for the derivative.  

Define the function 𝜑 = 𝑡𝑟 (log(𝛿−2𝐹𝐹∗)) = log(𝛿−2𝑛 det(𝐹𝐹∗)) 
 Then a straight forward application of the above lemma gives 

∆̃𝜑 = 𝜕�̅�𝜑 = 𝜕[𝑡𝑟((𝐹𝐹∗)−1𝐹(𝐹′)∗)] = 𝑡𝑟 [((𝐹𝐹∗)−1𝐹′Π(𝐹′)∗)] 
with the last line following by substitution of Π. For another approach to this computation 

see [54]. Using the identities Π2 = Π, 𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴), and recalling that 

𝜕Π = −𝐹∗(𝐹𝐹∗)−1𝐹′Π 
we get 

∆̃𝜑 = 𝑡𝑟[(𝐹𝐹∗)−1𝐹′Π(𝐹′)∗] = 𝑡𝑟[𝐹∗(𝐹𝐹∗)−1𝐹′ΠΠ(𝐹′)∗(𝐹𝐹∗)−1𝐹] = 𝑡𝑟[𝜕Π(𝜕Π)∗]
≥ ‖𝜕Π‖2 

with the last inequality following since 𝑡𝑟 [𝐴𝐴∗] ≥ ‖𝐴‖2. This function will play a 

prominent role in the estimation of certain integrals. We should also note that 

0 ≤ 𝜑 ≤ 𝐾 ≔ log
1

𝛿2𝑛
. 

We will also need another function to help in the estimation of the linear 

functional 𝐿 in question. Let 𝜆 = 𝑡𝑟[(𝐹𝐹∗)−1]. A simple computation gives, 

∆̃𝜆 = 𝑡𝑟[Φ∗(𝐹′)∗(𝐹𝐹∗)−1𝐹′Φ] − 𝑡𝑟[(𝐹𝐹∗)−1𝐹′Π(𝐹′)∗(𝐹𝐹∗)−1]
≥ 𝑡𝑟[Φ∗(𝐹′)∗(𝐹𝐹∗)−1𝐹′Φ∗] − 𝛿2𝑡𝑟[𝜕Π(𝜕Π)∗]. 

Now we define the function 𝜓 = 𝜆 + 𝛿2𝜑. Then, recalling that Φ = (𝐹)∗(𝐹𝐹∗)−1 we get 

∆̃𝜓 ≥ 𝑡𝑟[Φ∗(𝐹′)∗(𝐹𝐹∗)−1𝐹′Φ] = 𝑡𝑟[Φ𝐹′Φ(Φ(𝐹′)Φ) ∗] ≥ [Φ𝐹′Φ]2. 

So 𝜓 is subharmonic and 0 ≤ 𝜓 ≤
𝑛

𝛿2
+

1

𝛿2
log

1

𝛿2𝑛
. We should note that the assumption 0 <

𝛿2 ≤
1

𝑒
 implies log 𝛿−2 ≥ 1. This gives 

0 ≤ 𝜓 ≤ 𝐿 ≔
2

𝛿2
log

1

𝛿2𝑛
 . 

Now we need to estimate 𝐿(𝜉). Computing 𝜕 of the inner product we get 
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𝐿(𝜉) = ∫ 𝜕[〈�̅�Φ𝑔, 𝜉〉]
𝔻

𝑑𝜇 = ∫ 〈𝜕�̅�Φ𝑔, 𝜉〉
𝔻

𝑑𝜇 +∫ 〈�̅�Φ𝑔′, 𝜉〉
𝔻

𝑑𝜇 +∫ 〈�̅�Φ𝑔, �̅�𝜉〉
𝔻

𝑑𝜇

= I + II + III. 
We need to estimate each of the above integrals as closely as possible. Each integral has a 

term involving derivatives of Π, 𝑔 and 𝜉. The idea is to separate the integralsusing Cauchy–

Schwarz, giving one derivative to each term. 

We now estimate the first integral. Recalling that 𝜕�̅�Φ = 𝜕Π�̅�Φ + (𝜕Π)∗Φ𝐹′Φ we 

get 

𝐼 = ∫ 〈𝜕�̅�Φ𝑔, 𝜉〉
𝔻

𝑑𝜇 = ∫ {〈𝜕Π�̅�Φ𝑔, 𝜉〉 + 〈(𝜕Π)∗Φ𝐹′Φ𝑔, 𝜉〉}
𝔻

𝑑𝜇. 

Since (𝜕Π)∗Π = 0 we have (𝜕Π)∗𝜉 = 0, and so 〈𝜕Π�̅�Φ𝑔, 𝜉〉 = 0. Therefore 

𝐼 = ∫ 〈(𝜕Π)∗Φ𝐹′Φ𝑔, 𝜉〉
𝔻

𝑑𝜇 = ∫ 〈Φ𝐹′Φ𝑔, (𝜕Π)𝜉〉
𝔻

 𝑑𝜇, 

and the Cauchy–Schwarz inequality implies 

|I| ≤ (∫ ‖Φ𝐹′Φ𝑔‖2

𝔻

𝑑𝜇)

1
2

(∫ ‖(𝜕Π)𝜉‖2

𝔻

𝑑𝜇)

1/2

. 

To estimate the second factor we use Lemma (2.3.9). Recall that the function 

𝜑 = log(𝛿−2𝑛 det(𝐹𝐹∗)), 
constructed above satisfies the inequalities 

∆̃𝜑 ≥ ‖𝜕Π‖2 , 𝑎𝑛𝑑 0 ≤ 𝜑 ≤ 𝐾 ≔ log 𝛿−2𝑛                                   (15) 
Therefore, Lemma (2.3.9) implies 

∫ ‖(𝜕Π)𝜉‖2

𝔻

𝑑𝜇 ≤ 𝑒𝐾𝑒𝐾‖𝜉‖2
2 = 𝑒𝛿−2𝑛 log 𝛿−2𝑛 ‖𝜉‖2

2 . 

To estimate the first factor, notice that the function 𝜓 constructed satisfies 

∆̃𝜓 ≥ ‖Φ𝐹′Φ‖2 ,    𝑎𝑛𝑑 0 ≤ 𝜓 ≤ 𝐿 ≔ 2𝛿−2 log 𝛿−2𝑛 . 
Then the Carleson Embedding Theorem (Theorem (2.3.6)) implies 

∫ ‖Φ𝐹′Φ𝑔‖2

𝔻

𝑑𝜇 ≤ 𝑒𝐿‖𝑔‖2
2 = 2𝑒𝛿−2 log 𝛿−2𝑛 ‖𝑔‖2

2 , 

and thus 

|I| ≤ √𝐾𝐿‖𝜉‖2‖𝑔‖2 =
√2𝑒

𝛿𝑛+1
log 𝛿−2𝑛 ‖𝜉‖2‖𝑔‖2 . 

Now we estimate II. By the Cauchy–Schwarz inequality, we have 

|II| ≤ ∫ |〈�̅�Φ𝑔′, 𝜉〉|
𝔻

𝑑𝜇 ≤ (∫ ‖�̅�Φ‖
2
‖𝜉‖2

𝔻

𝑑𝜇)

1/2

(∫ ‖𝑔′‖2

𝔻

𝑑𝜇)

1/2

. 

Observe that ∆̃‖𝑔‖2 = ‖𝑔′‖2 since 𝑔 is holomorphic. So, applying Green’s Theorem to the 

second factor we get 

∫ ‖𝑔′‖2

𝔻

𝑑𝜇 = ∫ ‖𝑔‖2𝑑𝑚 − ‖𝑔(0)‖2 ≤ ‖𝑔‖2
2

𝕋

 . 

To estimate the first integral, notice, that 

‖Φ‖2 = ‖Φ∗Φ‖ = ‖(𝐹𝐹∗)−1‖ ≤ 𝛿−2 

(recall that Φ = 𝐹∗(𝐹𝐹∗)−1). Since �̅�Φ = −(𝜕Π)∗Φ, we can estimate 

‖�̅�Φ‖
2
= ‖(�̅�Φ)

∗
�̅�Φ‖ = ‖Φ∗𝜕Π(𝜕Π)∗Φ‖ ≤ ‖𝜕Π(𝜕Π)∗‖ ⋅ ‖Φ‖2 ≤ 𝛿−2‖𝜕Π‖2. 
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Therefore (see (15)), ‖�̅�Φ‖
2
≤ 𝛿−2∆̃𝜑, where 𝜑 = log(𝛿−2𝑛 det(𝐹𝐹∗)) is the subharmonic 

function constructed before. Applying Lemma (2.3.9) we get 

∫ ‖�̅�Φ‖
2
‖𝜉‖2

𝔻

𝑑𝜇 ≤ 𝛿−2∫ ∆̃𝜑‖𝜉‖2

𝔻

𝑑𝜇 ≤ 𝛿−2𝑒𝐾𝑒𝐾‖𝜉‖2
2 , 

where 𝐾 = log 𝛿−2𝑛, see (15). Joining the estimates together, we get 

|II| ≤ 𝛿−1√𝑒𝐾𝑒𝐾/2‖𝑔‖2‖𝜉‖2 ≤ 𝛿
−1√𝑒𝐾𝑒𝐾/2‖𝑔‖2‖𝜉‖2 =

√2

𝛿𝑛+1
log 𝛿−2𝑛 ‖𝑔‖2‖𝜉‖2 

(since 𝛿2 ≤
1

𝑒
, the value of 𝐾 satisfies 𝐾1/2 ≤ 𝐾). 

Finally moving on to integral III. Using Cauchy–Schwarz, we have 

|III| ≤ ∫ |�̅�Φ𝑔, �̅�𝜉|
𝔻

𝑑𝜇 ≤ (∫ ‖�̅�Φ‖
2
‖𝑔‖2

𝔻

𝑑𝜇)

1
2

(∫ ‖�̅�𝜉‖
2

𝔻

𝑑𝜇)

1/2

. 

As we already have shown above, ‖�̅�Φ‖
2
≤ 𝛿−2∆̃𝜑. The Carleson Embedding Theorem 

(Theorem (2.3.6)) implies 

∫ ‖�̅�Φ‖
2
‖𝑔‖2

𝔻

𝑑𝜇 ≤ 𝛿−2∫ ∆̃𝜑‖𝑔‖2

𝔻

𝑑𝜇 ≤ 𝛿−2𝑒𝐾‖𝑔‖2
2 . 

Using Lemma (2.3.9) we can estimate 

∫ ‖�̅�𝜉‖
2

𝔻

𝑑𝜇 ≤ (1 + 𝑒𝐾𝑒𝐾)‖𝜉‖2
2 ≤ (𝑒−1 + 𝑒)𝐾𝑒𝐾‖𝜉‖2

2 . 

Here we are using the fact that 𝐾 ≥ 1 for 𝛿2 ≤ 1/𝑒. Combining the estimates, we get 

|III| ≤ √1 + 𝑒2𝐾𝑒𝐾/2‖𝑔‖2‖𝜉‖2 =
√1 + 𝑒2

𝛿𝑛+1
log 𝛿−2𝑛 ‖𝑔‖2‖𝜉‖2 . 

Joining the estimates for I, II, III we get 

Proposition (2.3.10)[70]: Under the assumptions of Theorem (2.3.1) the linear functional 

𝐿 defined by (12) satisfies the estimate 

|𝐿(𝜉)| ≤ 𝐶(𝑟, 𝛿)‖𝜉‖2 ,         ∀𝜉 = Πℎ, ℎ ∈ 𝐻
2(𝐸)⊥ , 

With 

𝐶(𝑟, 𝛿) =
𝐶

𝛿𝑟+1
log

1

𝛿2𝑟
 , 

where 𝐶 = √1 + 𝑒2 + √𝑒 + √2𝑒. 
Proposition (2.3.10) is just a restatement of Proposition (2.3.3), and this then proves 

Theorem (2.3.1) for the case of 𝑝 = 2.  

Note, that the constant 𝐶 is a bit better than the constant 
2√2𝑒

2√2𝑒
+ 2√𝑒 ≈ 10.9859 obtained 

by Trent in [54]. 

Now we indicate how we can use the 𝐻2 result to figure out the 𝐻𝑝 result. We can 

use much of the same approach as in the 𝐻2(𝐸) case. Our goal is to solve the equation 

𝐹𝑓 = 𝑔, 𝑓 ∈ 𝐻𝑝(𝐸) 
for the given 𝑔 ∈ 𝐻𝑝(𝐸∗), with ‖𝑔‖𝑝 = 1, and furthermore we want the estimate ‖𝑓‖𝑝 ≤

𝐶. Again we will have the obvious non-analytic solution to the problem 

𝑓0 ≔ Φ𝑔 ≔ 𝐹∗(𝐹𝐹∗)−1𝑔. 
To make this into an analytic solution we will need to find a function 𝑣 ∈ 𝐿𝑝(𝐸) such that 

𝑓0 − 𝑣 ∈ 𝐻
𝑝 and 𝑣(𝑧) ∈ ker 𝐹(𝑧). This will be accomplished by duality. As in the 𝐻2(𝐸) 

case we need 
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∫ 〈𝑓0, ℎ〉
𝕋

𝑑𝑚 = ∫ 〈𝑣, ℎ〉
𝕋

𝑑𝑚 

to hold for all ℎ ∈ 𝐻𝑝(𝐸)⊥ = 𝐻0
𝑞
(𝐸) (this uses the standard duality of 𝐻𝑝 spaces see [42] 

or [45]). Again we can ensure that 𝑣 ∈ ker𝐹(𝑧) since �̅�Φ = Π�̅�Φ. So we need to get an 

estimate on the linear functional 

𝐿(𝜉) = 𝐿𝑔(𝜉) = ∫ 𝜕[�̅�Φ𝑔, 𝜉]
𝔻

𝑑𝜇 

with 𝜉 = Πℎ and ℎ ∈ 𝐻𝑝(𝐸)⊥. If we can then prove that 

|𝐿(𝜉)| ≤ 𝐶‖𝜉‖𝑞 

then by the Hahn–Banach Theorem and duality in 𝐿𝑝 spaces with values in a Hilbert space 

we would have the existence of a function 𝑣 ∈ 𝐿𝑝(𝐸) with ‖𝑣‖𝑝 ≤ 𝐶, such that 

𝐿(𝜉) = ∫ 〈𝑣, 𝜉〉
𝕋

𝑑𝑚 ,           ∀𝜉 = Πℎ, ℎ ∈ 𝐻𝑝(𝐸)⊥ . 

Then replacing 𝑣 by Π𝑣 we can assume without loss of generality that 𝑣(𝑧) ∈ ker𝐹(𝑧)a.e. 

on 𝕋. But then the construction would give, 

∫ 〈𝑣, ℎ〉
𝕋

𝑑𝑚 = ∫ 〈𝑣, Πℎ〉
𝕋

𝑑𝑚 = 𝐿(Πℎ) = ∫ 〈Φ𝑔, ℎ〉
𝕋

 𝑑𝑚,       ∀ℎ

∈ 𝐻𝑝(𝐸)⊥, 
so 𝑣 − 𝑓0 ∈ 𝐻

𝑝(𝐸). So we only need to show how to prove the estimate 

|𝐿(𝜉)| ≤ 𝐶‖𝜉‖𝑞 . 

The main idea is to use the 𝐿2 result we just proved. Namely, if we replace 𝑔 by �̃� =
𝜑−1𝑔and 𝜉 by𝜉 = �̅�𝜉, where 𝜑is an appropriate (scalar) outer function, then 

𝐿𝑔(𝜉) = 𝐿�̃�(𝜉). 

Suppose we are able to find the outer function 𝜑such that ‖�̃�‖2‖𝜉‖2 ≤
‖𝑔‖𝑝‖𝜉‖𝑞. 

Then, since 𝜑 is analytic, �̃� ∈ 𝐻2(𝐸) and 

𝜉 ∈ 𝐾 ≔ clos
𝐿2
{Πℎ: ℎ ∈ 𝐻2(𝐸)⊥} . 

Therefore we can apply the 𝐿2 result we have proved before to get 

|𝐿𝑔(𝜉)| = |𝐿�̃�(𝜉)| ≤
𝐶

𝛿𝑛+1
log 𝛿−2𝑛 ‖�̃�‖2‖𝜉‖2

≤
𝐶

𝛿𝑛+1
log 𝛿−2𝑛 ‖𝑔‖𝑝‖𝜉‖𝑞 .                                                          (16) 

To find the function 𝜑 we need to consider the cases 𝑝 < 2 and 𝑝 > 2 separately. 

First look at the case 𝑝 < 2. Consider the outer part of 𝑔, i.e. a scalar-valued outer 

function 𝑔out such that 

|𝑔out(𝑧)| = ‖𝑔(𝑧)‖              𝑎. 𝑒. 𝑜𝑛 𝕋. 
Define 

�̃�(𝑧) = (𝑔out)
𝑝/2−1(𝑧)𝑔(𝑧)          𝑎𝑛𝑑 

𝜉(𝑧) = (�̃�out)
1−𝑝/2(𝑧)𝜉(𝑧).                 

Then ‖�̃�‖2 = ‖𝑔‖𝑝
𝑝/2

, and computation using Hölder’s Inequality gives and‖𝜉‖
𝑞
≤

‖𝜉‖𝑞‖𝑔‖𝑝
1−𝑝/2

,where 
1

𝑝
+
1

𝑞
= 1. Therefore ‖�̃�‖2‖𝜉‖2 ≤

‖𝑔‖𝑝‖𝜉‖𝑞 and the main inequality 

(16) is proved. 
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The case when 𝑝 > 2 is analogous, except in this case we need to construct a scalar 

outer function 𝜉out such that 

|𝜉out(𝑧)| = ‖𝜉(𝑧)‖ a. e. on 𝕋. 
Note, that here we cannot say that 𝜉out is the outer part of 𝜉, because 𝜉 is neither holomorphic 

nor antiholomorphic. So, a little more explanation is needed. 

First of all recall that we assumed (without loss of generality) that 𝐹 is an analytic 

function in a slightly bigger disk than 𝔻, so the projection Π = 𝐼 − 𝐹∗(𝐹𝐹∗)−1𝐹 is real 

analytic on the unit circle 𝕋. Second, we only need to estimate the functional 𝐿 on a dense 

set, so we can assume that the test function ℎ is a trigonometric polynomial in 

(𝐻2)⊥. Therefore the function 𝜉 = Πℎ is real analytic on 𝕋, and so ∫ log‖𝜉(𝑧)‖
𝕋

𝑑𝑚(𝑧) >

−∞ which guarantees existence of the outer function 𝜉out. 
Similarly to the above reasoning for the case 𝑝 < 2 define for our case 𝑝 > 2 (𝑞 < 2), 

𝜉:= (𝜉o̅ut)
𝑞/2−1

𝜉          𝑎𝑛𝑑 

�̃�: = (𝜉out)
1−𝑞/2𝑔,                  

where 1/𝑝 + 1/𝑞 = 1.Then ‖𝜉‖
2
= ‖𝜉‖𝑞

𝑞/2
,and applying Hölder inequality to �̃�we get 

‖�̃�‖2 ≤ ‖𝑔‖𝑝‖𝜉‖𝑞
1−𝑞/2

(note, that the computations are the same as in the case 1 < 𝑝 < 2 if 

we interchange 𝑝 with 𝑞 and 𝑔 with 𝜉). Then again ‖�̃�‖2‖𝜉‖2 ≤
‖𝑔‖𝑝‖𝜉‖𝑞, so (16) holds. 

The main estimate (16) implies (via duality) the solution of the 𝐻𝑝 corona problem 

for 1 < 𝑝 ≤ ∞. 

The case 𝑝 = 1 requires just a little more work since 𝐿1 is not the dual of 𝐿∞, and a 

bounded linear functional on 𝐿∞is generally a measure. Namely, the main estimate (16) 

implies that 𝐿 is a bounded conjugate-linear functional, and by Hahn–Banach Theorem it 

can be extended to a bounded conjugate-linear functional on 𝐿∞(𝐸). Since any bounded 

linear functional on 𝐿∞is a bounded linear functional on the space of continuous functions 

on the unit circle, there exists a vector-valued measure 𝜈 such that 

𝐿(𝜉) = ∫ 〈𝑑𝜈, 𝜉〉
𝕋

. 

Without loss of generality one can replace 𝜈 with Π𝜈, then 

∫ 〈𝑑𝜈, ℎ〉
𝕋

= ∫ 〈𝑑𝜈, 𝜉〉
𝕋

= 𝐿(Πℎ) = ∫ 〈𝑓0, ℎ〉
𝕋

𝑑𝑚. 

Then rewriting this, and treating 𝑓0 dm as a vector-valued measure we have 

∫ 〈(𝑓0𝑑𝑚 − 𝑑𝜈), ℎ〉
𝕋

= 0 

for any anti-analytic polynomial ℎ. Then applying the F. & M. Riesz Theorem, see [45], we 

can conclude that the measure 𝑓0𝑑𝑚 − 𝑑𝜈 is absolutely continuous with respect to Lebesgue 

measure, and moreover it is an analytic measure meaning 𝑓0𝑑𝑚 − 𝑑𝜈 = (𝑓0 − 𝑣)𝑑𝑚 with 

𝑓0 − 𝑣 ∈ 𝐻
1(𝐸) (The F. & M. Riesz Theorem is usually stated for scalar measures, but 

applying it to the “coordinate” of the measure with respect to some orthonormal basis, one 

can easily see that it holds for measures with values in a separable Hilbert space as well). 

We will be considering operator- and vector-valued functions on the polydisk 𝔻𝑛. 

We begin with the 𝐻2(𝐸) case. The general goal from previous has not changed. We want, 

for a given 𝐹 ∈ 𝐻∞(𝔻𝑛; 𝐸 → 𝐸∗) and 𝑔 ∈ 𝐻2 ≔ 𝐻2(𝔻𝑛; 𝐸∗) with ‖𝑔‖2 = 1, to solve the 

equation 
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𝐹𝑓 = 𝑔,              𝑓 ∈ 𝐻2(𝔻𝑛; 𝐸)                             (17) 
with the estimate ‖𝑓‖2 ≤ 𝐶. Again by a normal families argument it is enough to suppose 

that 𝐹 and 𝑔 are analytic in a neighborhood of 𝔻𝑛 because any estimate obtained can be 

used to get an estimate when 𝐹 is only analytic in 𝔻𝑛. It is still easy to find a non-analytic 

solution 𝑓0 of (17), 

𝑓0 ≔ Φ𝑔 ≔ 𝐹∗(𝐹𝐹∗)−1𝑔. 
because we have 𝛿2𝐼 ≤ 𝐹𝐹∗ ≤ 𝐼. We will again need to find a 𝑣 ∈ 𝐿2(𝕋𝑛; 𝐸) such that 𝑓 ≔
𝑓0 − 𝑣 ∈ 𝐻

2(𝔻𝑛; 𝐸) with 𝑣(𝑧) ∈ ker𝐹(𝑧) a.e. on 𝕋𝑛. Our approach is straightforward 

reduction to the one variable case, unfortunately this approach will not yield a proof of the 

𝐻∞Corona problem on the polydisk since the projections are not bounded when 𝑝 = ∞. 

We will denote a point in 𝔻𝑛 or 𝕋𝑛 by 𝒛 = (𝑧1, 𝑧2, … , 𝑧𝑛). We will use the symbol 𝒛𝑗 

for 𝒛without the coordinate 𝑧𝑗 and, slightly abusing notation, we can then write 𝒛 =

(𝒛𝑗 , 𝑧𝑗) = (𝑧𝑗 , 𝒛𝑗). 

Let 𝐻𝑗
𝑝
= 𝐻𝑗

𝑝(𝔻𝑛; 𝐸) be a subspace of 𝐿𝑝(𝕋𝑛; 𝐸) consisting of all functions analytic 

in 𝑧𝑗, i.e. 

𝐻𝑗
𝑝(𝔻𝑛; 𝐸) ≔ {𝑓 ∈ 𝐿𝑝(𝕋𝑛; 𝐸): 𝑓(𝒛𝑗 ,∙) ∈ 𝐻

𝑝(𝔻; 𝐸)for almost all 𝒛𝑗 ∈ 𝕋
𝑛−1}.             (18) 

Lemma (2.3.11)[70]: Any ℎ ∈ 𝐻2(𝔻𝑛; 𝐸)⊥can be written as ℎ = ∑ ℎ𝑗
𝑛
𝑗=1  withℎ𝑗 ∈

𝐻𝑗
2(𝔻𝑛; 𝐸)⊥. 

Proof. Let 𝑃𝑗 ≔ 𝑃𝐻𝑗
2 be the orthogonal projection onto 𝐻𝑗

2 ≔ 𝐻𝑗
2(𝔻𝑛; 𝐸). We can 

decompose h in the following way: 

ℎ = 𝑃1ℎ + (𝐼 − 𝑃1)ℎ = ℎ
1 + ℎ1ℎ1 ∈ 𝐻1

2(𝔻𝑛; 𝐸)⊥, ℎ1 = 𝑃1ℎ. 
Similarly, 

ℎ1 = 𝑃2ℎ
1 + (𝐼 − 𝑃2)ℎ

1 = ℎ2 + ℎ2ℎ2 ∈ 𝐻2
2(𝔻𝑛; 𝐸)⊥, ℎ2 = 𝑃2𝑃1ℎ. 

Continuing the procedure we get 

ℎ𝑘−1 = 𝑃𝑘ℎ
𝑘−1 + (𝐼 − 𝑃𝑘)ℎ

𝑘−1 = ℎ𝑘 + ℎ𝑘ℎ𝑘 ∈ 𝐻𝑘
2(𝔻𝑛; 𝐸)⊥, ℎ𝑘 = 𝑃𝑘 …𝑃2𝑃1ℎ. 

Combining everything we get 

ℎ = ℎ1 + ℎ2 +⋯ℎ𝑛 + ℎ
𝑛, ℎ𝑛 = 𝑃𝑛𝑃𝑛−1…𝑃1ℎ 

which proves the lemma, because the assumption ℎ ∈ 𝐻2(𝔻𝑛; 𝐸)⊥implies that ℎ𝑛 =
𝑃𝑛…𝑃2𝑃1ℎ = 0. 

We also are going to need an analogue of Lemma (2.3.11) dealing with the 

decomposition of functions on the holomorphic vector bundle Π𝐻2, i.e. for the functions of 

the form 𝜉 = Πℎ, ℎ ∈ 𝐻2(𝔻𝑛; 𝐸)⊥. To state this lemma we need some auxiliary definitions. 

Let 

𝐾(𝔻𝑛; 𝐸) ≔ clos(Π(𝐻2(𝔻𝑛)⊥)).                            (19) 
and 

𝐾𝑗(𝔻
𝑛; 𝐸) ≔ clos (Π(𝐻𝑗

2(𝔻𝑛)⊥)),                 ∀𝑗 = 1, , , , 𝑛,          (20) 

Lemma (2.3.12)[70]: Let 𝑋 be a subspace of a Hilbert space 𝐻, and let Π be some 

orthogonal projection in 𝐻. Then RanΠ = Π𝐻 is decomposed into the orthogonal sum 

Π𝐻 = clos(Π𝑋)⨁(𝑋⊥ ∩ Π𝐻). 
Proof. The proof is a simple exercise in functional analysis. 

Define the subspaces 

𝒬(𝔻𝑛; 𝐸) ≔ 𝐻2 ∩ Π𝐿2  , 𝒬𝑗(𝔻
𝑛; 𝐸) ≔ 𝐻𝑗

2 ∩ Π𝐿2.                    (21) 
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Applying the above lemma to 𝐻 = 𝐿2 and 𝑋 = (𝐻2)⊥ or 𝑋 = (𝐻𝑗
2)
⊥

we get the following 

result. 

Corollary (2.3.13)[70]: The subspace Π𝐿2 = Π𝐿2(𝔻𝑛; 𝐸), 𝑛 = 1, 2, 3, …  admits the 

orthogonal decompositions 

Π𝐿2 = 𝐾⨁𝒬  , Π𝐿2 = 𝐾𝑗⨁𝒬𝑗 

with the subspaces 𝐾 ≔ 𝐾(𝔻𝑛; 𝐸), 𝐾𝑗: = 𝐾𝑗(𝔻
𝑛; 𝐸), 𝒬 ≔ 𝒬(𝔻𝑛; 𝐸) and 𝒬𝑗 ≔

𝒬𝑗(𝔻
𝑛; 𝐸)defined by (2.3.12), (2.3.13) and (2.3.14), respectively. 

Remark (2.3.14)[70]: Note, that the orthogonal projections 𝑃𝐾𝑗 and 𝑃𝒬𝑗 are essentially 

“onevariable” operators. Namely, to perform the projection 𝑃𝒬𝑗 on the function 𝜉 ∈ Π𝐿2we 

simply need to perform for each 𝒛𝑗 ∈ 𝕋
𝑛−1 (recall that 𝒛 = (𝑧𝑗  , 𝒛𝑗)) the “one-variable” 

projection 𝑃𝒬(𝒛𝑗)
 onto the subspace 

𝒬(𝒛𝑗) ≔ 𝐻2(𝔻;𝐸) ∩ Π(∙, 𝒛𝑗)𝐿
2(𝔻;𝐸) ⊂ 𝐻2 = 𝐻2(𝔻;𝐸), 

and similarly for the projection 𝑃𝐾𝑗. 

Indeed, if 

𝜉1(∙, 𝒛𝑗) ≔ 𝑃𝒬(𝒛𝑗)
𝜉(∙, 𝒛𝑗) for almost all 𝒛𝑗 ∈ 𝕋

𝑛−1,  

then clearly 

𝜉1(∙, 𝒛𝑗) ∈ 𝐻
2(𝔻;𝐸) ∩ Π(∙, 𝒛𝑗)𝐿

2(𝕋) for almost all𝒛𝑗 ∈ 𝕋
𝑛−1, 

so 𝜉1 ∈ 𝐻2(𝔻𝑛; 𝐸) ∩ Π𝐿2(𝔻𝑛; 𝐸). Moreover, for 𝜉1: = 𝜉 − 𝜉
1 and any 𝜂 ∈ 𝐻2(𝔻𝑛; 𝐸) ∩

Π𝐿2 

∫ 〈𝜉1(𝑧𝑗 , 𝒛𝑗), 𝜂(𝑧𝑗, 𝒛𝑗)〉
𝕋

 𝑑𝑚 (𝑧𝑗) = 0  for almost all𝒛𝑗 ∈ 𝕋
𝑛−1 , 

and integrating over other variables 𝒛𝒌 we get that 𝜉1 ⊥ 𝜂. 

The following two lemmas says that in many respects the projection 𝑃𝒬𝒋 behaves like 

the projection 1 − 𝑃𝑗 from Lemma (2.3.11). 

Lemma (2.3.15)[70]: Let 𝐻2 = 𝐻2(𝔻2; 𝐸) and let 𝒬 and 𝒬𝒋, 𝑗 = 1,2, be the subspaces as 

defined above in (21). Then for the orthogonal projections 𝑃𝒬𝒋 onto the subspaces 𝒬𝒋 we 

have 

𝑃𝒬𝟏𝑃𝒬𝟐 = 𝑃𝒬𝟐𝑃𝒬𝟏 = 𝑃𝒬 . 

Proof. It follows from the definition of 𝒬 and 𝒬𝒋 and from the inclusion 𝐻2 ⊂ 𝐻𝑗
2 that 

𝒬 = Π𝐿2 ∩ 𝐻2 ⊂ Π𝐿2 ∩ 𝐻𝑗
2 = 𝒬𝒋 

we can conclude that for 𝜉 ∈ 𝒬 we have 𝑃𝒬𝒋𝜉 =  𝜉, 𝑗 =  1, 2. 

Since by Corollary (2.3.13) we have the orthogonal decomposition  

Π𝐿2 = 𝐾⨁𝒬 , to prove the lemma we need to show that the equalities 𝑃𝒬𝟐𝑃𝒬𝟏𝜉 =

0, 𝑃𝒬𝟏𝑃𝒬𝟐𝜉 = 0 hold for all 𝜉 ∈ 𝐾. Clearly, it is sufficient to prove only one, say the first as 

the second can be obtained by interchanging indices. 

Consider the orthogonal decomposition of 𝜉 ∈ 𝐾, 

𝜉 = 𝑃𝐾1𝜉 + 𝑃𝒬𝟏𝜉 =: 𝜉1 + 𝜉
1. 

To prove that 𝑃𝒬𝟐𝑃𝒬𝟏𝜉 = 0 we need to show that 𝜉1 ∈ 𝐾2. 

By definition 𝜉1 ⊥ 𝐾1: = clos(Π((𝐻1
2)⊥)),  and since Π((𝐻1

2)⊥) ⊃ (𝐻1
2)⊥ ∩ Π𝐿2, we 

can conclude that 

𝜉1 ⊥ (𝐻1
2)⊥ ∩ Π𝐿2. 
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We know that 𝜉, 𝜉1 ∈ 𝐾 (𝜉1 ∈ 𝐾 because 𝐾1 ⊂ 𝐾), so 𝜉1 ∈ 𝐾. By Corollary (2.3.13), 

𝜉1 ⊥ 𝒬 ≔ 𝐻2 ∩ Π𝐿2. 
Combining the above two orthogonality relations we get 

𝜉1 ⊥ ((𝐻1
2)⊥ +𝐻2) ∩ Π𝐿2, 

and since in the bidisk 𝐻2
2 ⊂ (𝐻1

2)⊥ +𝐻2, we get that 

𝜉1 ⊥ Π𝐿2 ∩ 𝐻2
2 =:𝒬2 

i.e. that 𝜉1 ∈ 𝐾2.  
We get the following lemma. 

Lemma (2.3.16)[70]: On Π𝐿2 ≔ Π𝐿2(𝕋𝑛; 𝐸) we have 

𝑃𝒬𝑘𝑃𝒬𝑗 = 𝑃𝒬𝑗𝑃𝒬𝑘 = 𝑃𝒬𝑘∩𝒬𝑗 = 𝑃𝐻𝑗𝑘
2 ∩Π𝐿2       ∀1 ≤ 𝑘, 𝑗 ≤ 𝑛, 

where 𝐻𝑗𝑘
2 (𝔻𝑛) ≔ 𝐻𝑗

2(𝔻𝑛) ∩ 𝐻𝑘
2(𝔻𝑛). Furthermore, this implies 

𝑃𝒬1 …𝑃𝒬𝑛 = 𝑃𝒬𝑛 …𝑃𝒬1 = 𝑃𝐻2∩Π𝐿2 . 

One can think of the space 𝐻𝑗𝑘
2 (𝔻𝑛) as the space of functions in 𝐿2(𝕋𝑛) which are, 

upon fixing the other variables, holomorphic in both the 𝑗th and 𝑘th variable. 

Proof. The first part of the lemma follows immediately from Lemma (2.3.15), because we 

can just “freeze” all variables except 𝑧𝑗 and 𝑧𝑘. Namely, to perform the projection 𝑃𝒬𝑗on the 

function 𝜉 ∈ Π𝐿2 we simply need to perform for each 𝒛𝑗 ∈ 𝕋
𝑛−1 (recall that 𝒛 = (𝑧𝑗 , 𝒛𝑗)) 

the “one variable” projection 𝑃𝒬(𝒛𝑗) onto the subspace 

𝒬(𝒛𝑗) ≔ 𝐻2(𝔻;𝐸) ∩ Π(∙, 𝒛𝑗)𝐿
2(𝔻;𝐸) ⊂ 𝐻2 = 𝐻2(𝔻;𝐸), 

see Remark (2.3.14). 

To prove the second statement of the lemma let us notice that a product of commuting 

orthogonal projections is an orthogonal projection. Therefore 𝑃 = 𝑃𝒬1𝑃𝒬2 …𝑃𝒬𝑛 is an 

orthogonal projection. 

Since for 𝜉 ∈ 𝐻2(𝔻𝑛; 𝐸) ∩ Π𝐿2 = 𝒬 ⊂ 𝒬𝑗 

𝑃𝒬𝑗𝜉 = 𝜉                 ∀𝑗 = 1, 2,… , 𝑛, 

we can conclude that 

𝒬 = 𝐻2(𝔻𝑛; 𝐸) ∩ Π𝐿2 ⊂ Ran 𝑃. 
On the other hand, since the projections 𝑃𝒬𝑗commute and Ran𝑃𝒬𝑗 = 𝐻𝑗

2 ∩ Π𝐿2 

Ran𝑃 ⊂ 𝐻𝑗
2 ∩ Π𝐿2 = 𝒬𝑗∀𝑗 = 1, 2,… , 𝑛, 

So 

Ran𝑃 ⊂⋂𝒬𝑗

𝑛

𝑗=1

=⋂𝐻𝑗
2 ∩ Π𝐿2

𝑛

𝑗=1

= 𝐻2 ∩ Π𝐿2 = 𝒬. 

Therefore,Ran 𝑃 = 𝒬, i.e. 𝑃 is the orthogonal projection onto 𝒬.  

We can now move onto proving Lemma (2.3.17). 

Lemma (2.3.17)[70]: Let 𝜉 ∈ 𝐾, then 𝜉 = ∑ 𝜉𝑗
𝑛
𝑗=1  with 𝜉𝑗 ∈ 𝐾𝑗 for 𝑗 = 1,… , 𝑛 and 

‖𝜉‖2
2 =∑‖𝜉𝑗‖2

2
𝑛

𝑗=1

. 

To prove Lemma (2.3.17) we will need a few other lemmas. The first one is a simple 

fact about the geometry of a Hilbert space. 

Proof. We will follow the argument in Lemma (2.3.11). For 𝜉 ∈ 𝐾 consider the orthogonal 

decomposition 
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𝜉 = 𝑃𝐾1𝜉 + 𝑃𝒬𝟏𝜉 =: 𝜉1 + 𝜉
1,              𝜉1 ∈ 𝐾1(𝔻

𝑛; 𝐸). 

Since 𝜉1 ⊥ 𝜉
1, 

‖𝜉‖2
2 = ‖𝜉1‖2

2 + ‖𝜉1‖2
2. 

Decomposing 𝜉1 as 

𝜉1 = 𝑃𝐾2𝜉
1 + 𝑃𝒬𝟐𝜉

1 =: 𝜉2 + 𝜉
2,     ‖𝜉1‖2

2 = ‖𝜉2‖2
2 + ‖𝜉2‖2

2 

we get the decomposition of 𝜉  

𝜉 = 𝜉1 + 𝜉2 + 𝜉
2 , 𝜉𝑗 ∈ 𝐾𝑗  , 𝜉

2 = 𝑃𝒬𝟐𝑃𝒬𝟐𝜉, 

and 

‖𝜉‖2
2 = ‖𝜉1‖2

2 + ‖𝜉2‖2
2 + ‖𝜉2‖2

2. 
Repeating the procedure of decomposing on each step 𝜉𝑘 using 𝑃𝐾𝑘+1we finally obtain 

𝜉 = 𝜉1 + 𝜉2 +⋯+ 𝜉𝑛 + 𝜉
𝑛 , 𝜉𝑗 ∈ 𝐾𝑗 , 𝑗 = 1,2,… , 𝑛, 𝜉

𝑛 = 𝑃𝒬𝑛 …𝑃𝒬2𝑃𝒬1𝜉, 

and 

‖𝜉‖2
2 = ‖𝜉1‖2

2 + ‖𝜉2‖2
2 +⋯+ ‖𝜉𝑛‖2

2 + ‖𝜉𝑛‖2
2. 

But according Lemma (2.3.16)𝜉𝑛 = 0, so the lemma is proved.  

The idea of the proof of the 𝐻2 corona for the polydiskis quite simple, we want to 

reduce everything to one-variable estimates. In the one-variable case we defined the 

functional 𝐿 on functions of the form Πℎ where ℎ ∈ (𝐻2(𝔻))
⊥

by 

𝐿(𝜉) = ∫ 𝜕[〈�̅�Φ𝑔, 𝜉〉]
𝔻

 𝑑𝜇, 

where 𝑑𝜇 =
2

𝜋
log

1

|𝑧|
 𝑑𝑥𝑑𝑦, see (12). We have also proved (see Proposition (2.3.3)) that the 

functional 𝐿 is bounded in the 𝐿2 norm on clos {Πℎ ∶ ℎ ∈ (𝐻2(𝔻))
⊥
} (this is the one-

variable analogue of the space 𝐾 defined for the polydisk). 

For the polydisk, define (conjugate linear) functionals 𝐿𝑗 on 𝐾𝑗 by 

𝐿𝑗(𝜉) = ∫ 𝐿𝑔(∙,𝒛𝑗) (𝜉(∙, 𝒛𝑗))
𝕋𝑛−1

 𝑑𝑚𝑛−1(𝒛𝑗). 

Since 𝜉(∙, 𝒛𝑗) ∈ 𝐾 for almost all 𝒛𝑗 ∈ 𝕋
𝑛−1 if 𝜉 ∈ 𝐾𝑗 (see Remark (2.3.7)) the functional 𝐿𝑗 

are well defined and bounded, ‖𝐿𝑗‖ = ‖𝐿‖. Note also, that on a dense set of 𝜉 of the form 

𝜉 = Πℎ, ℎ ∈ (𝐻𝑗
2)
⊥

we can represent 

𝐿𝑗(𝜉) = ∫ ∫ 𝜕𝑗[〈�̅�𝑗Φ𝑔, 𝜉〉]
𝔻

 𝑑𝜇(𝑧𝑗)
𝕋𝑛−1

 𝑑𝑚𝑛−1(𝒛𝑗). 

Define a conjugate linear functional L on 𝐾 by decomposing 𝜉 ∈ 𝐾 as 

𝜉 = 𝜉1 + 𝜉2 +⋯+ 𝜉𝑛 , 𝜉𝑗 ∈ 𝐾 , 𝑗 = 1, 2,… , 𝑛                (22) 

and putting 

𝐋(𝜉) ≔∑𝐿𝑗(𝜉𝑗)

𝑛

𝑗=1

. 

We will show later that the functional L is well defined, i.e. that it does not depend 

on the choice of decomposition of 𝜉(note that by Lemma (2.3.17) one can always find at 

least one such decomposition). 

Assuming for now that L is well defined, let us prove Theorem (2.3.2) for 𝑝 = 2. 

First of all, by Lemma (2.3.17) any function 𝜉 ∈ 𝐾 can be decomposed as 
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𝜉 =∑𝜉𝑗

𝑛

𝑗=1

,      where𝜉𝑗 ∈ 𝐾,     and∑‖𝜉𝑗‖
2

𝑛

𝑗=1

= ‖𝜉‖2. 

Therefore, using the fact that ‖𝐿𝑗‖ = ‖𝐿‖we get for 𝜉 ∈ 𝐾 

‖𝐋(𝜉)‖ ≤∑‖𝐿𝑗‖ ∙ ‖𝜉𝑗‖

𝑛

𝑗=1

= ‖𝐿‖∑‖𝜉𝑗‖

𝑛

𝑗=1

≤ ‖𝐿‖√𝑛(∑‖𝜉𝑗‖
2

𝑛

𝑘=1

)

1/2

= √𝑛‖𝐿‖ ∙ ‖𝜉‖ , 

So 

‖𝐋‖ ≤ √𝑛‖𝐿‖  ≤
√𝑛𝐶

𝛿𝑟+1
log

1

𝛿2𝑟
, 

where 𝐶 = √1 + 𝑒2 + √𝑒 + √2𝑒 ≈ 8.38934is the constant from Theorem (2.3.2). 

Take ℎ ∈ (𝐻𝑗
2)
⊥

, and decompose it according to Lemma (2.3.11) as 

ℎ =∑ℎ𝑗

𝑛

𝑗=1

 , ℎ𝑗 ∈ (𝐻𝑗
2)
⊥
. 

Denote 

𝜉 ≔ Πℎ , 𝜉𝑗 = Πℎ𝑗 . 

Repeating the reasoning with the Green’s Formula from the one-variable case we can easily 

show that 

∫ 〈Φ𝑔, ℎ𝑗〉
𝕋𝑛

 𝑑𝑚𝑛(𝒛) = ∫ ∫ 𝜕𝑗[〈�̅�𝑗Φ𝑔, 𝜉𝑗〉]
𝔻

 𝑑𝜇(𝑧𝑗)
𝕋𝑛−1

 𝑑𝑚𝑛−1(𝒛𝑗) = 𝐿𝑗(𝜉𝑗), 

so 

∫ 〈Φ𝑔, ℎ〉
𝕋𝑛

 𝑑𝑚𝑛(𝒛) = 𝐋(Πℎ) = 𝐋(𝜉). 

By the Hilbert space version of the Hahn–Banach Theorem the linear functional �̅� 

can be extended to a bounded functional on all of 𝐿2, i.e., we can find 𝑣 ∈ 𝐿2 = 𝐿2(𝕋𝑛; 𝐸) 
such that 

𝐋(𝜉) = ∫ 〈𝑣, 𝜉〉
𝕋𝑛

 𝑑𝑚𝑛(𝒛) =             ∀𝜉 ∈ 𝐾. 

Replacing 𝑣 by Π𝑣 if necessary, one can assume without loss of generality that 𝑣(𝒛) ∈
Ran Π(𝒛) = ker 𝐹(𝒛) a.e. on 𝕋𝑛, so 𝐹𝑣 ≡ 0 on 𝕋𝑛. Since by the construction 

∫ 〈𝑣, ℎ〉
𝕋𝑛

 𝑑𝑚𝑛(𝒛) = ∫ 〈𝑣, Πℎ〉
𝕋𝑛

 𝑑𝑚𝑛(𝒛) = 𝐋(Πℎ) = ∫ 〈Φ𝑔, ℎ〉
𝕋𝑛

 𝑑𝑚𝑛(𝒛)∀ℎ

∈ 𝐻2(𝔻𝑛; 𝐸)⊥, 
the function 𝑓 ≔ 𝑓0 − 𝑣 ≔ Φ𝑔 − 𝑣 is analytic. Since 𝐹𝑣 = 0, it satisfies 𝐹𝑓 = 𝐹𝑓0 = 𝑔, so 

𝑓 is the analytic solution we want to find.  

Let us consider first the case of the bidisk 𝔻2. To show that L is well defined in this 

case, it is sufficient to show that if 

0 = 𝜉1 + 𝜉2 , 𝜉𝑗 ∈ 𝐾𝑗 

then 𝐿1(𝜉1) + 𝐿2(𝜉2) = 0 (simply take the difference of two representations of the same 

function in 𝐾). This holds if and only if 

𝐿1(𝜉) = 𝐿2(𝜉)∀𝜉 ∈ 𝐾1 ∩ 𝐾2. 
Thus, the following lemma shows that L is well defined in the case of bidisk 𝔻2. 

Lemma (2.3.18)[70]: Let 𝜉 ∈ 𝐾1 ∩ 𝐾2 ⊂ Π𝐿
2(𝕋2; 𝐸). Then 
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𝐿1(𝜉) = 𝐿2(𝜉) 
Proof. The proof of this lemma is really nothing more than repeated applications of Green’s 

Formula, and using that 𝐾1 ∩ 𝐾2 = clos(Π𝐻
2̅̅ ̅̅ ) where 𝐻2 are the functions which are anti-

holomorphic in both variables. 

To see that 𝐾1 ∩ 𝐾2 = clos(Π𝐻
2̅̅ ̅̅ ) we use Lemma (2.3.12). Since (𝐾1 ∩ 𝐾2)

⊥ = 𝒬1 + 𝒬2 =

𝐾1
⊥ + 𝐾2

⊥ = (𝐻1
2 +𝐻2

2) ∩ Π𝐿2, then by Lemma (2.3.12) we have the result. 

By density we can work with 𝜉 of the form 𝜉 = Πℎ with ℎ anti-holomorphic in both 

variables. So applying Green’s Formula twice gives 

𝐿1(𝜉) = ∫ ∫ 𝜕1[〈�̅�1Φ𝑔, 𝜉〉]
𝔻

 𝑑𝜇(𝑧1)
𝕋

 𝑑𝑚(𝑧2) = ∫ ∫ 〈Φ𝑔, 𝜉〉
𝕋

 𝑑𝑚(𝑧1)
𝕋

 𝑑𝑚(𝑧2)

= ∫ ∫ 𝜕2[〈�̅�2Φ𝑔, 𝜉〉]
𝔻

 𝑑𝜇(𝑧2)
𝕋

 𝑑𝑚(𝑧1) = 𝐿2(𝜉). 

Since this result holds on a dense set of 𝜉, and the functionals 𝐿1 and 𝐿2 are continuous we 

have the result for all 𝜉 ∈ 𝐾1 ∩ 𝐾2.  
For the polydisk the lemma has the following important corollary 

Corollary (2.3.19)[70]: Let 𝜉 ∈ 𝐾𝑗 ∩ 𝐾𝑘 ⊂ 𝐿
2(𝕋𝑛; 𝐸). Then 

𝐿𝑗(𝜉) = 𝐿𝑘(𝜉). 

Proof. To prove the corollary one needs to apply Lemma (2.3.18) to the bidisk in variables 

𝑧𝑗 and 𝑧𝑘 and then integrate the obtained equality over 𝕋𝑛−2 (with respect to Lebesgue 

measure in all other variables).  

Now we are ready to prove that L is well defined. To prove this it is sufficient to show 

for any representation of  

0 =∑𝜉𝑗

𝑛

𝑗=1

, 𝜉𝑗 ∈ 𝐾𝑗                                (23) 

the equality 

∑𝐿𝑗(𝜉𝑗)

𝑛

𝑗=1

= 0 

holds. 

We will use induction in 𝑛. The case 𝑛 = 2 is already settled, so let us assume the 

functional L is well defined for the polydisk 𝔻𝑛−1. It follows from (23) that 

𝜉𝑛 ∈ 𝐾𝑛 ∩ (𝐾1 + 𝐾2 +⋯+𝐾𝑛−1) = (𝐾1 ∩ 𝐾𝑛) + (𝐾2 ∩ 𝐾𝑛) + ⋯+ (𝐾𝑛−1 ∩ 𝐾𝑛), 
so 𝜉𝑛 can be represented as 

𝜉𝑛 = ∑𝜂𝑗

𝑛−1

𝑗=1

 , 𝜂𝑗 ∈ 𝐾𝑗 ∩ 𝐾𝑛 , 𝑗 = 1, 2,…𝑛 − 1. 

On the other hand we know that 𝜉𝑛 = ∑ 𝜉𝑗
𝑛−1
𝑗=1 . Using the induction hypothesis and 

integrating it over 𝕋 with respect to 𝑑𝑚 (𝑧𝑛) we obtain that 

∑𝐿𝑗(𝜂𝑗)

𝑛−1

𝑗=1

= −∑𝐿𝑗(𝜉𝑗)

𝑛−1

𝑗=1

. 

Since 𝜂𝑗 ∈ 𝐾𝑗 ∩ 𝐾𝑛, Corollary (2.3.19) implies that 𝐿𝑗(𝜂𝑗) = 𝐿𝑛(𝜂𝑗). Therefore 
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𝐿𝑛(𝜉𝑗) = ∑𝐿𝑛(𝜂𝑗)

𝑛−1

𝑗=1

=∑𝐿𝑗(𝜂𝑗)

𝑛

𝑗=1

= −∑𝐿𝑗(𝜉𝑗)

𝑛−1

𝑗=1

, 

and so = −∑ 𝐿𝑗(𝜉𝑗)
𝑛
𝑗=1 = 0. 

A simple idea of proving the 𝐻𝑝 corona problem in the polydisk is to try to mimic the 

proof of the 𝐻2 case. However, there is a much easier way: just use objects which are already 

defined, and modify the crucial estimates. 

First of all notice, that replacing the Corona data 𝐹 and 𝑔 by 𝐹(𝑟𝒛) and 𝑔(𝑟𝒛), 𝑟 < 1 

and using the standard normal families argument one can assume without loss of generality 

(as long as we are getting the same uniform estimates on the norm of the solution) that both 

𝐹 and 𝐺 are holomorphic in a slightly bigger polydisk. So we can always assume that, for 

example, the right hand side 𝑔 is not only in 𝐻𝑝, but is also bounded, smooth, etc. 

As in the 𝐻2 case we first construct a smooth solution 𝑓0 ≔ Φ𝑔, where Φ ≔
𝐹∗(𝐹𝐹∗)−1, of the equation 𝐹𝑓 = 𝑔 and then correct it to be analytic. To do that it is 

sufficient to show that the conjugate linear functional L introduced in the previous is 𝐿𝑞 

bounded, 
1

𝑝
+
1

𝑞
= 1, i.e. that 

|𝐋(𝜉)| ≤ 𝐶‖𝜉‖𝑞 

for all 𝜉 of form 𝜉 = Πℎ, where ℎ is a trigonometric polynomial in 𝐻2(𝔻𝑛; 𝐸)⊥. 
If this estimate is proved, the linear functional �̅�can be extended by the Hahn– Banach 

Theorem to a linear functional on 𝐿𝑞 , so there will exist a function 𝑣 ∈ 𝐿𝑝(𝕋𝑛; 𝐸), ‖𝑣‖𝑝 =
‖𝐋‖𝑝 such that 

𝐋(𝜉) = ∫ 〈𝑣, 𝜉〉
𝕋𝑛

𝑑𝑚𝑛(𝒛)                     ∀𝜉 = Πℎ, ℎ ∈ 𝐻
2(𝔻𝑛; 𝐸)⊥ ∩ Pol. 

Again, replacing 𝑣 by Π𝑣 we can always assume without loss of generality that 𝑣(𝒛) ∈
RanΠ(𝑧) = ker 𝐹(𝑧) a.e. on 𝕋𝑛. As in the previous, decomposing ℎ as 

ℎ =∑𝜉𝑗

𝑛

𝑗=1

 , 𝜉𝑗 ∈ 𝐻𝑗
2 

(ℎ is a trigonometric polynomial, so we can use Lemma (2.3.11) here), we can show that 

∫ 〈Φ𝑔, ℎ〉
𝕋𝑛

𝑑𝑚𝑛(𝒛) = 𝐋(Πℎ) = 𝐋(𝜉) 

so 

∫ 〈𝑣, ℎ〉
𝕋𝑛

𝑑𝑚𝑛(𝒛) = ∫ 〈𝑣, Πℎ〉
𝕋𝑛

𝑑𝑚𝑛(𝒛) = 𝐋(Πℎ) = ∫ 〈Φ𝑔, ℎ〉
𝕋𝑛

𝑑𝑚𝑛(𝒛), 

for all ℎ ∈ 𝐻2(𝔻𝑛; 𝐸)⊥ ∩ Pol. Therefore, the function 𝑓 = 𝑓0 − 𝑣 = Φ𝑔 − 𝑣 is analytic, 

and it clearly solves the equation 𝐹𝑓 = 𝑔 (on 𝕋𝑛, and therefore on 𝔻𝑛). 

Let us introduce some notation. Denote 

𝐾𝑞 ≔ clos(Π((𝐻𝑝)⊥))  ⊂ Π𝐿𝑞 , 𝒬𝑞 ≔ 𝐻𝑞 ∩ 𝐿𝑞 ,  
so for 𝐾 and 𝒬 introduced in the previous 𝐾 = 𝐾2 and 𝒬 = 𝒬2. Let also 

𝐻𝑗
𝑞
= 𝐻𝑗

𝑞(𝔻𝑛; 𝐸) ≔ {𝑓 ∈ 𝐿𝑞(𝕋𝑛; 𝐸): 𝑓(∙, 𝒛𝑗) ∈ 𝐻𝑞(𝔻; 𝐸)} 

be the spaces of functions analytic in variable 𝑧𝑗, and let 

𝐾𝑗
𝑞
≔ clos(Π(𝐻𝑗

𝑞(𝔻𝑛; 𝐸)⊥))  ⊂ Π𝐿𝑞(𝕋𝑛; 𝐸), 𝒬𝑗
𝑞
: = 𝐻𝑗

𝑞(𝔻𝑛; 𝐸) ∩ Π𝐿𝑞(𝕋𝑛; 𝐸). 

To estimate the functional L we need the following analogue of Lemma (2.3.17) 
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Let us show how this lemma implies the estimate for L. We have proved the 𝐿𝑝 bound 

for the functional 𝐿 (in the one-variable case), 

|𝐿(𝜉)| ≤ 𝐶(𝑟, 𝛿)‖𝜉‖𝑞  , 𝐶(𝑟, 𝛿) =
1

𝛿𝑟+1
log

1

𝛿2𝑟
 , 

where 𝐶 = √1 + 𝑒2 + √𝑒 + √2𝑒. That would imply the same estimates for the functionals 

𝐿𝑗 on 𝐿𝑞(𝕋𝑛; 𝐸), so applying Lemma (2.3.22) we get 

|𝐿(𝜉)| ≤ 𝐶(𝑟, 𝛿)∑‖𝜉𝑗‖𝑞

𝑛

𝑗=1

≤ 𝐶(𝑟, 𝛿)‖𝜉‖𝑞∑𝐶(𝑞)𝑗
𝑛

𝑗=1

≤ 𝐶(𝑟, 𝛿)𝑛𝐶(𝑞)𝑛‖𝜉‖𝑞 . 

Recalling that 𝐶(𝑝) = 𝐶(𝑞) we get the desired estimate of the solution. 

There is a little detail here as the functional L was defined initially only on 𝐾2. So 

formally, if 𝑞 < 2 (i.e. if 𝑝 > 2) the functional is not defined on 𝐾𝑞. However this is not a 

big problem and the simplest way of dealing with it is to use the standard approximation 

arguments. Since the polynomials in (𝐻𝑗
2)
⊥
∩  Pol are dense in (𝐻𝑗

𝑝
)
⊥
,the functions of form 

Πℎ, ℎ ∈ 𝐻𝑗
2 ∩ Pol are dense in 𝐾𝑗

𝑞
. So, approximating functions 𝜉𝑗 from Lemma (2.3.22) by 

functions of this form, we will get the desired estimate. Note, that we are estimating 𝐋(𝜉) 
on a dense set of functions 𝜉 = Πℎ, ℎ ∈ (𝐻2)⊥ ∩ Pol, so we do not need it be formally 

defined on 𝐾𝑞. 

The main step in proving Lemma (2.3.22) is the following result that states that in the 

one-variable case the norm of the orthogonal projections 𝑃𝐾 and 𝑃𝒬 in 𝐿𝑞 is the same as the 

norm of the Riesz projection 𝑃+in 𝐿𝑞. See [73] for the norms of 𝑃+in 𝐿𝑝. 

Lemma (2.3.20)[70]: Let 𝐻2 = 𝐻2(𝔻;𝐸) and let 𝐾, 𝒬 ⊂ 𝐻2 be the subspaces defined 

above in (19) and (21). Then for 1 < 𝑞 < ∞ 

‖𝑃𝐾𝜉‖𝑞 ≤ 𝐶(𝑞)‖𝜉‖𝑞  , ‖𝑃𝒬𝜉‖𝑞 ≤ 𝐶
(𝑞)‖𝜉‖𝑞     ∀𝜉 ∈ Π𝐿

2 ∩ Π𝐿𝑞 , 

where 𝐶(𝑞) = 1/ sin(𝜋/𝑞) is the norm of the Riesz Projection 𝑃+ in 𝐿𝑞 (or in 𝐿𝑝, 1/𝑝 +
1/𝑞 = 1). 

Note that since Π𝐿2 ∩ Π𝐿𝑞 is dense in Π𝐿𝑞, the projections 𝑃𝐾 and 𝑃𝒬 extend to 

bounded operators on Π𝐿𝑞. 

Proof. Take 𝜉 ∈ Π𝐿2 ∩ Π𝐿𝑞 and decompose it as 

𝜉 = 𝑃𝐾𝜉 + 𝑃𝒬𝜉 =: 𝜉𝐾 + 𝜉𝒬 . 

Since 𝒬 is a z-invariant subspace of 𝐻2(𝔻;𝐸), by the Beurling–Lax theorem, see [44], it 

can be represented as 𝒬 = Θ𝐻2(𝔻;𝐸∗), where Θ ∈ 𝐻∞(𝐸∗ → 𝐸) is an inner function (i.e. 

Θ(𝑧) is an isometry a.e. on 𝕋) and 𝐸∗ is an auxiliary Hilbert space. So 𝜉𝒬 can be represented 

as 

𝜉𝒬 = Θ𝜂 , 𝜂 ∈ 𝐻
2(𝐸∗) ∩ 𝐻

𝑞(𝐸∗). 
By duality 

‖𝜉𝒬‖𝑞 =
‖𝜂‖𝑞 = sup

ℎ∈𝐿𝑝∩𝐿2:
‖ℎ‖𝑞=1

|∫ 〈𝜂, ℎ〉
𝕋

𝑑𝑚|. 

Let ℎ+ = 𝑃+ℎ. Since 𝜂 ∈ 𝐻2 
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∫ 〈𝜂, ℎ〉
𝕋

𝑑𝑚 = ∫ 〈𝜂, ℎ+〉
𝕋

𝑑𝑚 = ∫ 〈Θ𝜂, Θℎ+〉
𝕋

𝑑𝑚 = ∫ 〈𝜉𝒬 , Θℎ+〉
𝕋

𝑑𝑚

= ∫ 〈𝜉, Θℎ+〉
𝕋

𝑑𝑚; 

the second equality holds because Θ is an isometry a.e. on 𝕋, and the last one holds because 

𝜉𝐾 ∈ 𝐾 ⊥ Θℎ+.Therefore, since ‖ℎ+‖𝑝 ≤ 𝐶(𝑝)‖ℎ‖𝑝we can conclude 

|∫ 〈𝜂, ℎ〉
𝕋

𝑑𝑚| ≤ |∫ 〈𝜉, Θℎ+〉
𝕋

𝑑𝑚| ≤ ‖𝜉‖𝑞‖ℎ+‖𝑝 ≤ 𝐶(𝑝)‖𝜉‖𝑞‖ℎ‖𝑝 

so ‖𝜉𝒬‖𝑞 ≤ 𝐶
(𝑝)‖𝜉‖𝑞. Thus we get the desired estimate for the norm of 𝑃𝒬. 

Since 𝑃𝐾 + 𝑃𝒬 = 𝐼 we can estimate the norm of 𝑃𝐾 by 𝐶(𝑝) + 1 for free. Note, that 

unlike the case of Hilbert spaces, complementary projections in Banach spaces do not 

necessarily have equal norms. So, to get rid of the 1 some extra work is needed. 

 

 

It is easy to see that ⋃ 𝑧̅𝐾𝑛>0 = {0}, so the decomposition Π𝐿2 = 𝐾⊕𝒬 implies that 

the set 

⋃𝑧̅𝑛𝒬

𝑛>0

=⋃𝑧̅𝑛Θ

𝑛>0

𝐻2(𝐸∗) 

 

is dense in Π𝐿2. Thus Π𝐿2 = Θ𝐿2, and since Θ is an isometry a.e. on 𝕋 we can conclude that 

𝐾 = Θ(𝐻2(𝐸)⊥). Therefore we can represent 𝜉𝐾 as 

𝜉𝐾 = Θ𝜂, 𝑛 ∈ 𝐻
2(𝐸∗)

⊥ ∩ 𝐿𝑞(𝐸∗). 
Performing the same calculations as in the case of 𝜉𝒬, only using ℎ− = 𝑃−ℎ, 𝑃− = 𝐼 −

𝑃+instead of ℎ+we get the estimate ‖𝑃𝐾‖𝐿𝑞 ≤ ‖𝑃−‖𝐿𝑞. But the isometry 𝜏, 
𝜏(𝑧)𝑘 = 𝑧−𝑘−1 , 𝑘 ∈ ℤ 

interchanges 𝐻2 and (𝐻2)⊥, and since𝜏 is an isometry in all 𝐿𝑝, we conclude the ‖𝑃−‖𝐿𝑞 ≤
‖𝑃+‖𝐿𝑞 . 
Corollary (2.3.21)[70]: Let 𝐻2 = 𝐻2(𝔻𝑛; 𝐸) and let 𝐾𝑗 , 𝒬𝑗 ⊂ 𝐻

2 be the subspaces defined 

in (20) and (21). Then for 1 < 𝑞 < ∞and 1 ≤ 𝑗 ≤ 𝑛 we have 

‖𝑃𝐾𝑗𝜉‖𝑞
≤ 𝐶(𝑞)‖𝜉‖𝑞 , ‖𝑃𝒬𝑗𝜉‖𝑞

≤ 𝐶(𝑞)‖𝜉‖𝑞         ∀𝜉 ∈ Π𝐿
2 ∩ Π𝐿𝑞 ,  

where 𝐶(𝑞) = 1/ sin (
𝜋

𝑞
) is the norm of the (one- dimensional) Riesz Projection 𝑃+in 𝐿𝑞 (or 

in 𝐿𝑝, 1/𝑝 + 1/𝑞 = 1). 

Proof. This corollary follows directly from Lemma (2.3.20). Since by Remark (2.3.14) we 

can view 𝑃𝐾𝑗 and 𝑃𝒬𝑗 as “one-variable” operators. Then we “freeze” all variables except the 

𝑧𝑗 variable and apply Lemma (2.3.20) and then integrate in the “frozen” variables.  

It only remains to prove Lemma (2.3.22). 

Lemma (2.3.22)[70]: Any function 𝜉 ∈ 𝐾𝑞 can be decomposed as 

𝜉 =∑𝜉𝑗

𝑛

𝑗=1

 , 𝜉𝑗 ∈ 𝐾𝑗
𝑞
 , ‖𝜉𝑗‖𝑞 ≤ 𝐶

(𝑞)𝑗‖𝜉‖𝑞 , 
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where 𝐶(𝑞) = 1/ sin(𝜋, 𝑞) is the norm of the scalar Riesz Projection 𝑃+from 

𝐿𝑞(𝕋)onto 𝐻𝑞(𝔻) (note that 𝐶(𝑝) = 𝐶(𝑞) for 1/𝑝 + 1/𝑞 = 1). 

Proof. The proof is almost the same as the proof of Lemma (2.3.17), only here we cannot 

use the fact that the 𝑃𝐾𝑗are orthogonal projections. However, according to Corollary (2.3.21) 

the projections 𝑃𝐾𝑗 are bounded, and this allows the proof to go through. 

Take 𝜉 ∈ 𝐾𝑞. Repeating the proof of Lemma (2.3.17) we can write  

𝜉 = 𝑃𝐾1𝜉 + 𝑃𝒬1𝜉 =: 𝜉1 + 𝜉
2. 

By Corollary (2.3.21) we have that 𝜉1 ∈ 𝐾1
𝑞
 with ‖𝜉1‖𝑞 ≤ 𝐶(𝑞)‖𝜉‖𝑞 and ‖𝜉1‖𝑞 ≤

𝐶(𝑞)‖𝜉‖𝑞. 

Decomposing 𝜉1 in the same manner we have 

𝜉1 = 𝑃𝐾2𝜉
1 + 𝑃𝒬2𝜉

1 =: 𝜉2 + 𝜉
2, 

So 

𝜉 = 𝜉1 + 𝜉2 + 𝜉
2 ,        𝜉𝑗 ∈ 𝐾𝑗

𝑞
,     𝜉2 = 𝑃𝒬2𝑃𝒬1𝜉. 

 

Corollary (2.3.21) applied twice gives ‖𝜉2‖𝑞 ≤ 𝐶(𝑞)‖𝜉
1‖𝑞 ≤ 𝐶(𝑞)

2‖𝜉‖𝑞, and thus 

‖𝜉𝑗‖𝑞 ≤ 𝐶
(𝑞)𝑗‖𝜉‖𝑞. Continuing this decompo-sition at each step we find 

𝜉 = 𝜉1 + 𝜉2 +⋯+ 𝜉𝑛 + 𝜉
𝑛 ,        𝜉𝑗 ∈ 𝐾𝑗

𝑞
,     𝜉𝑛 = 𝑃𝒬𝑛 …𝑃𝒬2𝑃𝒬1𝜉. 

and ‖𝜉𝑗‖𝑞 ≤ 𝐶
(𝑞)𝑗‖𝜉‖𝑞 by applying Corollary (2.3.21) 𝑗 times. Finally, by Lemma (2.3.16) 

𝑃𝒬𝑛 … 𝑃𝒬1 = 0 on the dense set 𝐾𝑞 ∩ 𝐾2.  
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Chapter 3 

Toeplitz and Hankel Operators with Toeplitz Algebras 

 

We show that the closed bilateral ideal of 𝔗(𝐿𝑎
2 ) generated by operators of the form 

𝑇𝑓𝑇𝑔  −  𝑇𝑔𝑇𝑓 coincides with 𝔗(𝐿𝑎
2 ). We generalize an earlier work of Helton-Howe for the 

usual trace of the anti-symmetrization of Toeplitz operators. 

Section (3.1): Bergman Space of the Unit Ball 

We show that if an operator 𝐴 is a finite sum of finite products of Toeplitz operators 

on the Bergman space of the unit ball 𝐵𝑛, then 𝐴 is compact if and only if its Berezin 

transform vanishes at the boundary. For 𝑛 = 1 the result was obtained by Axler and Zheng 

in 1997. 

Let 𝐵𝑛 be the open unit ball in 𝐂𝑛. We write 𝐿2(𝐵𝑛) for the Hilbert space of the square 

integrable functions defined on 𝐵𝑛. The inner product is defined in the standard way; this 

means that for any 𝑓, 𝑔 ∈ 𝐿2(𝐵𝑛) we define 〈𝑓, 𝑔〉 = ∫ 𝑓(𝑧)𝑔(𝑧)̅̅ ̅̅ ̅̅ 𝑑𝜈 (𝑧),
𝐵𝑛

where 𝑑𝜐(𝑧) is the 

normalised volume measure on the unit ball 𝐵𝑛. 

The Hilbert space 𝐿2(𝐵𝑛) contains, as a closed submanifold, the space of square 

integrable holomorphic functions. This space, called the Bergman space, will be denoted 

with the symbol 𝐻2(𝐵𝑛). By a standard theorem we have that the orthogonal projection 𝑃, 

from 𝐿2(𝐵𝑛) to 𝐻2(𝐵𝑛), is a bounded linear operator. It is well known that there exists a 

function 𝐾:𝐵𝑛 × 𝐵𝑛 → 𝐂, analytic with respect to the first entry and conjugate analytic with 

respect to the second entry, such that, for every 𝑓 ∈ 𝐿2(𝐵𝑛) and every 𝑤 ∈ 𝐵𝑛, we have 

𝑃𝑓(𝑤) =  ∫ 𝑓(𝑧)𝐾(𝑧, 𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜈 (𝑧)
𝐵𝑛

. 

The function 𝐾, called the Bergman Reproducing Kernel, can be written explicitly: 

𝐾(𝑧,𝑤) =
1

(1 − 〈𝑧,𝑤〉)𝑛+1
, 

where 〈𝑧, 𝑤〉 = ∑ 𝑧𝑗𝑤𝑗̅̅ ̅
𝑛
𝑗=1 . If 𝜑 ∈ 𝐿∞(𝐵𝑛) we can construct the so called Toeplitz operator 

𝑇𝜑 where, by definition, 𝑇𝜑 = 𝑃𝑀𝜑. The symbol 𝑀𝜑 stands for the standard multiplication 

operator. Therefore we can write 

(𝑇𝜑𝑔)𝑤 = ∫ 𝜑(𝑧)𝑔(𝑧)𝐾𝑤(𝑧)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜈 (𝑧)
𝐵𝑛

. 

We shall show that if an operator 𝑆 ∈ 𝐵(𝐻2(𝐵𝑛)) can be written as 𝑆 =

∑ ∏ 𝑇𝑢𝑗,𝑘
𝑚𝑗
𝑘=1

𝑚
𝑗=1 , where 𝑢𝑗,𝑘 ∈ 𝐿

∞(𝐵𝑛) then 𝑆 is compact if and only if lim
|𝑎|→1

�̃�(𝑎) = 0, 

where, by definition, we have  �̃�(𝑎) = 〈𝑆𝑘𝑎, 𝑘𝑎〉. We study a family of operators which 

plays a central role in our proof and we set up the basic construction, we prove an important 

inequality which is a generalization of an inequality proven by S. Axler in the case of one 

complex variable. Then we complete the proof of the main theorem. In the last we show that 

many well-known results of this type are consequences of our result. 

We need to point out some special features of 𝐵𝑛. Let Aut(𝐵𝑛) be the group of all 

biholomorphic maps of 𝐵𝑛 of into 𝐵𝑛. It is well-known that Aut(𝐵𝑛) is generated by the 

unitary operators on 𝐂𝑛 and the involutions of the form 

𝜓𝑎(𝑧) =
𝑎 − 𝑃𝑎𝑧 − (1 − |𝑎|

2)1/2𝒬𝑎𝑧

1 − 〈𝑧, 𝑎〉
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where 𝑎 ∈ 𝐵𝑛, 𝑃𝑎, is the orthogonal projection into subspace generated by 𝑎, and 𝒬𝑎 is the 

projection into the orthogonal complement, that is, 𝒬𝑎 = 1 − 𝑃𝑎. We remind the reader that 

we have the following equation 

𝐾(𝜙(𝑧), 𝜙(𝑤))(𝐽𝐂𝜙)𝑧(𝐽𝐂𝜙)𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐾(𝑧, 𝑤) 
where 𝜙: 𝐵𝑛 → 𝐵𝑛 is a biholomorphism and 𝐾, as usual, is the reproducing kernel and the 

symbol 𝐽𝐂𝜙 denotes the complex Jacobian of the transformation. In the following we shall 

indicate with the symbol 𝑘𝑤 the normalised reproducing kernel, that is 𝑘𝑤(𝑧) =
|𝑘𝑤|2

−1𝑘𝑤(𝑧) = ‖𝑘𝑤‖2
−1𝐾(𝑧, 𝑤). A direct calculation shows that the identity |𝐽𝐂𝜓𝑎(𝑧)|

2 =
|𝑘𝑎(𝑧)|

2 holds for any 𝑧, 𝑎 ∈ 𝐵𝑛. 

Proposition (3.1.1)[75]: On 𝐵𝑛, 𝑘𝑎(𝜓𝑎(𝑧))𝑘𝑎(𝑧) ≡ 1. 

With the family of automorphisms above defined we construct a family of operators 

in 𝐵(𝐿2(𝐵𝑛)) which will play an important role in our proof. For any 𝑎 ∈ 𝐵𝑛 we define the 

operator 𝑈𝑎: 𝐻
2(𝐵𝑛) → 𝐻

2(𝐵𝑛) as (𝑈𝑎𝑓) = 𝑓 ∘ 𝜓𝑎 ∙ 𝑘𝑎, that is, for any 𝜁 ∈ 𝐵(𝑛)we have 

(𝑈𝑎𝑓)𝜁 = 𝑓(𝜓𝑎(𝜁)) ∙ 𝑘𝑎(𝜁). In the following Propositions we state and prove the main 

properties of the 𝑈𝑎's. 

Lemma (3.1.2)[75]: For any 𝑎 ∈ 𝐵𝑛 the operator 𝑈𝑎 is a self-adjoint, idempotent isometry. 

Proof. We start proving that 𝑈𝑎 is idempotent. Let 𝑓 ∈ 𝐻2 then 𝑈𝑎
2𝑓 = 𝑈𝑎(𝑈𝑎𝑓)and this 

implies that 𝑈𝑎𝑓 = 𝑈𝑎(𝑓 ∘ 𝜓𝑎 ∙ 𝑘𝑎) = (𝑓 ∘ 𝜓𝑎 ∘ 𝜓𝑎) ∙ (𝑘𝑎 ∘ 𝜓𝑎) ∙ 𝑘𝑎. Then we have 𝑈𝑎𝑓 =
𝑓 ∙ (𝑘𝑎 ∘ 𝜓𝑎) ∙ 𝑘𝑎, therefore 𝑈𝑎

2𝑓 = 𝑓. Now we prove that 𝑈𝑎 is an isometry. In fact, if 𝑓 is 

an element of 𝐻2(𝐵𝑛) then 

〈𝑈𝑎𝑓, 𝑈𝑎𝑓〉 = ∫ |𝑓 ∘ 𝜓𝑎(𝑤)|
2|𝑘𝑎(𝑤)|

2𝑑𝜐(𝑤)
𝐵𝑛

= ∫ |𝑓 ∘ 𝜓𝑎 ∘ 𝜓𝑎(𝑧)|
2|𝑘𝑎(𝜓𝑎(𝑧))|

2
|𝐽𝑅𝜓𝑎(𝑧)| 𝑑𝜐(𝑧)

𝐵𝑛

= ∫ |𝑓 ∘ 𝜓𝑎 ∘ 𝜓𝑎(𝑧)|
2|𝑘𝑎(𝜓𝑎(𝑧))|

2
|𝐽𝐶𝜓𝑎(𝑧)|

2𝑑𝜐(𝑧)
𝐵𝑛

= ∫ |𝑓 ∘ 𝜓𝑎 ∘ 𝜓𝑎(𝑧)|
2|𝑘𝑎(𝜓𝑎(𝑧))|

2
|𝑘𝑎(𝑧)|

2𝑑𝜐(𝑧)
𝐵𝑛

= ∫ |𝑓 ∘ 𝜓𝑎 ∘ 𝜓𝑎(𝑧)|
2|𝑘𝑎(𝜓𝑎(𝑧)) ∙ 𝑘𝑎(𝑧)|

2
𝑑𝜐(𝑧)

𝐵𝑛

= ∫ |𝑓(𝑧)|2𝑑𝜐(𝑧)
𝐵𝑛

= 〈𝑓, 𝑓〉 
As before we have used the fact that 𝑘𝑎 ∘ 𝜓𝑎 ∙ 𝑘𝑎 ≡ 1 on 𝐵𝑛. Finally, we prove that 𝑈𝑎 is a 

self-adjoint operator. Let 𝑓 and 𝑔 be elements of 𝐻2(𝐵𝑛), then 
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〈𝑈𝑎𝑓, 𝑔〉 = ∫ (𝑈𝑎𝑓)(𝑤)𝑔(𝑤)̅̅ ̅̅ ̅̅ ̅
𝐵𝑛

𝑑𝜐(𝑧) = ∫ (𝑓 ∘ 𝜓𝑎)(𝑤) ∙ 𝑘𝑎(𝑤)𝑔(𝑤)̅̅ ̅̅ ̅̅ ̅
𝐵𝑛

𝑑𝜐(𝑧)

= ∫ (𝑓 ∘ 𝜓𝑎 ∘ 𝜓𝑎)(𝑧) ∙ (𝑘𝑎 ∘ 𝜓𝑎)(𝑧)𝑔(𝜓𝑎(𝑧))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝐽𝑅𝜓𝑎(𝑧)|

𝐵𝑛

𝑑𝜐(𝑧)

= ∫ 𝑓(𝑧)(𝑘𝑎 ∘ 𝜓𝑎)(𝑧)𝑔(𝜓𝑎(𝑧))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝐽𝑅𝜓𝑎(𝑧)|

2

𝐵𝑛

𝑑𝜐(𝑧)

= ∫ 𝑓(𝑧)(𝑘𝑎 ∘ 𝜓𝑎)(𝑧)𝑔(𝜓𝑎(𝑧))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝑘𝑎(𝑧)|

2

𝐵𝑛

𝑑𝜐(𝑧)

= ∫ 𝑓(𝑧)(𝑘𝑎 ∘ 𝜓𝑎 ∙ 𝑘𝑎)(𝑧)𝑔(𝜓𝑎(𝑧))𝑘𝑎(𝑧)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐵𝑛

𝑑𝜐(𝑧) = ∫ 𝑓(𝑧)𝑈𝑎𝑔(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐵𝑛

𝑑𝜐(𝑧)

= 〈𝑓, 𝑈𝑎𝑔〉. 

For any 𝐴 in 𝐵(𝐻2(𝐵𝑛)) we define the operator 𝐴𝑧 as 𝐴𝑧 = 𝐴𝑧𝐴𝑈𝑧, and we denote 

with the symbol �̃� the Berezin Transform of the operator 𝐴. This function is defined by 

�̃�(𝑧) = 〈𝐴𝑘𝑧, 𝑘𝑧〉. Now we can state the following. 

Theorem (3.1.3)[75]: Let 𝐴 be an operator in 𝐵(𝐻2(𝐵𝑛)) which can be written as 𝐴 =

∑ ∏ 𝑇𝑢𝑗,𝑘
𝑚𝑗
𝑘=1

𝑚
𝑗=1  where 𝑢𝑗,𝑘 ∈ 𝐿

2(𝐵𝑛). Then the following are equivalent: 

(i) 𝐴 is compact; 

(ii) �̃�(𝑧) → 0 as 𝑧 → 𝜕𝐵𝑛; 

(iii) 𝐴𝑧1 → 0 weakly as 𝑧 → 𝜕𝐵𝑛; 

(iv) ‖Az1‖p → 0 as z → ∂Bn for any 𝑝 > 1. 

The proof of the stated theorem involves some technicalities. In order to make our 

work clearer we prove some basic lemmas and we shall prove the theorem later. 

We start with a simple Lemma which clarifies the relationship between the Berezin 

Transform and the maps {𝜓𝑧}. 
Lemma (3.1.4)[75]: If 𝐶 is a bounded operator on 𝐿2(𝐵𝑛) and 𝑧 ∈ 𝐂𝑛, then �̃� ∘ 𝜓𝑧 = 𝐶�̃�. 

Proof. Suppose that 𝐶 ∈ 𝐵(𝐿2(𝐵𝑛)) and 𝑧, 𝑤 ∈ 𝐂𝑛. If 𝑓 is in 𝐿2(𝐵𝑛) then we have 

〈𝑓, 𝑈𝑧𝐾𝑤〉 = 〈𝑈𝑧𝑓, 𝐾𝑤〉 = (𝑈𝑧𝑓)𝑤 = (𝑓 ∘ 𝜓𝑧)(𝑤)𝑘𝑧(𝑤) = 〈𝑓, 𝑘𝑧(𝑤)̅̅ ̅̅ ̅̅ ̅̅ 𝐾𝜓(𝑤)〉. 

Since this equality holds for any 𝑓 in 𝐿2(𝐵𝑛), thus we have 𝑈𝑧𝐾𝑤 = 𝑘𝑧(𝑤)̅̅ ̅̅ ̅̅ ̅̅ 𝐾𝜓(𝑤). If we 

rewrite the last equation as 

‖𝐾𝑤‖(𝑈𝑧‖𝐾𝑤‖
−1𝐾𝑤) = ‖𝐾𝜓(𝑤)‖𝐾𝑧(𝑤)̅̅ ̅̅ ̅̅ ̅̅ (‖𝐾𝜓(𝑤)‖

−1
𝐾𝜓(𝑤)), 

it follows that 𝑈𝑧𝑘𝑤 = (‖𝐾𝑤‖
−1‖𝐾𝜓(𝑤)‖𝐾𝜓(𝑤)). Since the operator 𝑈𝑧 is unitary we can 

assert that ‖𝐾𝑤‖2
−1‖𝐾𝜓(𝑤)‖2

|𝐾𝑧(𝑤)̅̅ ̅̅ ̅̅ ̅̅ | = 1. 

We can write 

(i) �̃� ∘ 𝜓𝑧(𝑤) = �̃�(𝜓𝑧(𝑤)) 

(ii)                     = 〈𝐶𝑘𝜓𝑧(𝑤), 𝑘𝜓𝑧(𝑤)〉 

(iii)         = 〈𝐶𝑈𝑧𝑘𝑤, 𝑈𝑧𝑘𝑤〉 
(iv)        = 〈𝑈𝑧𝐶𝑈𝑧𝑘𝑤, 𝑘𝑤〉 
(v)                     = 〈𝐶𝑧𝑘𝑤, 𝑘𝑤〉 
(vi)           = 𝐶�̃�(𝑤). 

We observe that in (ii) we only use the definition of the Berezin transform and in (iii) we 

use the fact that 𝑈𝑧𝑘𝑤 = 𝑎𝑘𝜓𝑧(𝑤) where 𝑎 is a complex number of modulus 1. 
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Finally, we observe that the above calculations imply that �̃� ∘ 𝜓𝑧 = �̃�𝑧, and we are 

done. 

Lemma (3.1.5)[75]: For every 𝑢 ∈ 𝐿∞(𝐵𝑛) and for every 𝑧 ∈ 𝐵𝑛we have 𝑈𝑧𝑇𝑢𝑈𝑧 = 𝑇𝑢∘𝜓𝑧. 

Proof. Since 𝑈𝑧 is an idempotent operator it is enough to prove that 𝑈𝑧𝑇𝑢 = 𝑇𝑢∘𝜓𝑧𝑈𝑧. We 

start computing 𝑇𝑢𝑈𝑧. Let 𝑓 be an element of 𝐻2(𝐵), then we have 

〈𝑇𝑢𝑈𝑧𝑓, 𝑘𝑤〉 = 〈𝑇𝑢((𝑓 ∘ 𝜓𝑧)𝑘𝑧), 𝑘𝑤〉 = 〈𝑃𝑀𝑢((𝑓 ∘ 𝜓𝑧)𝑘𝑧), 𝑘𝑤〉 = 〈(𝑢((𝑓 ∘ 𝜓𝑧)𝑘𝑧), 𝑘𝑤)〉

= ∫ 𝑢(𝜂)(𝑓 ∘ 𝜓𝑧)(𝜂)𝑘𝑧(𝜂)𝑘𝑤(𝜂)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜐(𝜂)
𝐵𝑛

. 

Now we calculate 𝑈𝑧𝑇𝑢∘𝜓𝑧. Let 𝑓 be an element of 𝐻2(𝐵), then we have 

〈𝑈𝑧𝑇𝑢∘𝜓𝑧𝑓, 𝑘𝑤〉 = 〈𝑇𝑢∘𝜓𝑧𝑓, 𝑈𝑧𝑘𝑤〉 = 〈𝑃𝑀𝑢∘𝜓𝑧𝑓, 𝑈𝑧𝑘𝑤〉 = 〈(𝑢 ∘ 𝜓𝑧)𝑓, (𝑘𝑤 ∘ 𝜓𝑧)𝑘𝑧〉

= ∫ 𝑓(𝜂)(𝑢 ∘ 𝜓𝑧)(𝜂)(𝑘𝑤 ∘ 𝜓𝑧)(𝜂)𝑘𝑧(𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜐(𝜂)
𝐵𝑛

. 

To show the equality we use the substitution 𝜂 = 𝜓𝑧(𝛽). If we call the last integral we have 

written in the above list of equalities 𝒜, then we have 

𝒜 = ∫ (𝑓 ∘ 𝜓𝑧)(𝛽)𝑢(𝛽)𝑘𝑤(𝛽)(𝑘𝑧 ∘ 𝜓𝑧)(𝛽)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |(𝐽𝑅𝜓𝑧)𝛽|𝑑𝜐(𝛽)
𝐵𝑛

= ∫ (𝑓 ∘ 𝜓𝑧)(𝛽)𝑢(𝛽)𝑘𝑤(𝛽)(𝑘𝑧 ∘ 𝜓𝑧)(𝛽)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝑘𝑧(𝛽)|
2𝑑𝜐(𝛽)

𝐵(𝑛)

= ∫ (𝑓 ∘ 𝜓𝑧)(𝛽)𝑢(𝛽)𝑘𝑤(𝛽)(𝑘𝑧 ∘ 𝜓𝑧)(𝛽)𝑘𝑧(𝛽)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑘𝑧(𝛽)𝑑𝜐(𝛽)
𝐵𝑛

= ∫ (𝑓 ∘ 𝜓𝑧)(𝛽)𝑢(𝛽)𝑘𝑤(𝛽)̅̅ ̅̅ ̅̅ ̅̅ 𝑘𝑧(𝛽)𝑑𝜐(𝛽)
𝐵𝑛

= ∫ (𝑓 ∘ 𝜓𝑧)(𝛽)𝑢(𝛽)𝑘𝑧(𝛽)𝑘𝑤(𝛽)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜐(𝛽)
𝐵𝑛

. 

Then it is clear that the claimed identity holds.  

Before we state the next result we need to introduce a new operator. For any 𝑓 ∈
𝐻2(𝐵𝑛) we define 𝑈ℛ𝑓 ∈ 𝐻

2(𝐵𝑛) by (𝑈ℛ𝑓)𝑤 = 𝑓(−𝑤). 
If we denote with the symbol 𝒥𝑐,𝑡: 𝐵 → [0,∞) the function that acts in the following 

way: 

𝒥𝑐,𝑡(𝑧) = ∫
(1 − |𝑤|)𝑡𝑑𝜐(𝑤)

(1 − 〈𝑧,𝑤〉)𝑛+1+𝑡+𝑐
,

𝐵𝑛

 

it is possible to prove (see [79]) that for 𝑐 < 0 and 𝑡 > −1 the function 𝒥𝑐,𝑡 is bounded on 

𝐵𝑛. 

The following proposition is necessary because we are going to apply Schur's Test 

(see [77]), when we give a complete proof of the main Theorem. 

Lemma (3.1.6)[75]: Given 𝑝 ∈ ℛ, with 0 < 𝑝 − 1 < (𝑛 + 1)−1, and 𝐴 ∈ 𝐵(𝐻2(𝐵𝑛)) then 

∫ |𝑈ℛ𝐴𝑈ℛ𝐾𝑧(𝑤)|‖𝐾𝑤‖2
𝜀𝑑𝜐(𝑤)

𝐵𝑛

≤ 𝐾(𝑧, 𝑧)𝜀/2 (sup
𝑧∈𝐵
‖𝐴−𝑧1‖𝑞) (sup

𝑧∈𝐵
|𝒥𝑎,𝑏(𝑧)|

1/𝑝
) 

and 

∫ |𝑈ℛ𝐴𝑈ℛ𝐾𝑧(𝑤)|‖𝐾𝑧‖2
𝜀𝑑𝜐(𝑤)

𝐵𝑛

≤ 𝐾(𝑤,𝑤)𝜀/2 (sup
𝑤∈𝐵
‖𝐴−𝑤

∗ 1‖𝑞) (sup
𝑤∈𝐵
|𝒥𝑎,𝑏(𝑤)|

1/𝑝
) 
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Where:2(𝑝 − 1) 𝑝⁄ < 𝜀 < 2 (𝑛 + 1)𝑝⁄ , 𝑎 = (𝑝 − 1)(𝑛 + 1) − (𝑛 + 1)𝜀𝑝/ 2 and 𝑏 =
−(𝑛 + 1)𝜀𝑝/2 and 𝑝−1 + 𝑞−1 = 1. Moreover, with such a choice the quantity 

sup
𝑧∈𝐵
|𝒥𝑎,𝑏(𝑧)|

1/𝑝
= sup

𝑧∈𝐵
|𝒥(𝑝−1)(𝑛+1)−(𝑛+1)𝜀𝑝/ 2 ,−(𝑛+1)𝜀𝑝/2(𝑧)|

1/𝑝
 

is finite. 

Proof. We prove the first inequality and we shall show that the second one is an easy 

consequence of the first. We observe that 

𝑈ℛ𝐴𝑈ℛ𝐾𝑧 = ‖𝐾𝑧‖2𝑈ℛ𝐴𝑈ℛ𝑘𝑧 = ‖𝐾𝑧‖2𝑈ℛ𝐴𝑈−𝑧1 = ‖𝐾𝑧‖2𝑈ℛ𝑈−𝑧𝐴−𝑧1
= ‖𝐾𝑧‖2𝑈ℛ((𝐴−𝑧1) ∘ 𝜓−𝑧 ⋅ 𝑘−𝑧) = ‖𝐾𝑧‖2((𝐴−𝑧1) ∘ 𝜓−𝑧 ∘ ℛ) ⋅ 𝑘𝑧
= ((𝐴−𝑧1) ∘ 𝜓−𝑧 ∘ ℛ) ⋅ 𝐾𝑧. 

Then we can write the left term of the first inequality as 

‖𝐾𝑧‖2∫ |((𝐴−𝑧1) ∘ 𝜓−𝑧(−𝑤))||𝑘𝑧(−𝑤)|‖𝐾𝑤‖2
𝜀𝑑𝜐(𝑤)

𝐵𝑛

. 

and, of course, this is the same as 

‖𝐾𝑧‖2 ∫ |((𝐴−𝑧1) ∘ 𝜓−𝑧(−𝑤))|𝐵𝑛
|𝑘𝑧(−𝑤)|‖𝐾𝑤‖2

𝜀𝑑𝜐(𝑤). 

 In the last evaluation we used the fact that ‖𝑘𝑤‖2 = ‖𝑘−𝑤‖2. Now we use the substitution 

𝑤 = 𝜓−𝑧(𝜆) and we obtain 

‖𝐾𝑧‖2∫ |(𝐴−𝑧1)(𝜆)||𝑘−𝑧(𝜓−𝑧(𝜆))|‖𝐾𝜓−𝑧(𝜆)‖2
𝜀
|(𝐽ℛ𝜓−𝑧)𝜆|𝑑𝜐(𝜆)

𝐵𝑛

. 

Since we have the identity |(𝐽ℛ𝜓−𝑧)𝜆| = |𝑘−𝑧(𝜆)|
2. then we can write the last integral as 

‖𝐾𝑧‖2∫ |(𝐴−𝑧1)(𝜆)||𝑘−𝑧(𝜓−𝑧(𝜆))|‖𝐾𝜓−𝑧(𝜆)‖2
𝜀
|𝑘−𝑧(𝜆)|

2𝑑𝜐(𝜆)
𝐵𝑛

. 

If we write ‖𝐾𝜓−𝑧(𝜆)‖2
𝜀
as ‖𝐾𝜓−𝑧(𝜆)‖2

𝜀−1
, we observe that 

𝐾(−𝜓𝑧(𝜆), −𝜓𝑧(𝜆)) = 𝐾(𝜓𝑧(𝜆),𝜓𝑧(𝜆)) = 𝐾(𝜆, 𝜆)|(𝐽𝐶𝜓−𝑧)𝜆|
−2 = 𝐾(𝜆, 𝜆)|𝑘−𝑧(𝜆)|

−2 

and if we take the square root of both sides, then we have 

‖𝐾𝜓−𝑧(𝜆)‖2|
𝑘−𝑧(𝜓−𝑧(𝜆))||𝑘−𝑧(𝜆)|

2 = ‖𝐾𝜆‖2|𝑘−𝑧(𝜆)|
−1|𝑘−𝑧(𝜓−𝑧(𝜆))||𝑘−𝑧(𝜆)|

2

= ‖𝐾𝜆‖2|𝑘−𝑧(𝜓−𝑧(𝜆))𝑘−𝑧(𝜆)| = ‖𝐾𝜆‖2 

This implies that the last integral is equal to  

‖𝐾𝑧‖2∫ |(𝐴−𝑧1)(𝜆)|‖𝐾𝜆‖2
𝜀 |𝑘−𝑧(𝜆)|

1−𝜀𝑑𝜐(𝜆)
𝐵

 

and, if we use the non-normalised reproducing kernel, we obtain 

‖𝐾𝑧‖2∫ |(𝐴−𝑧1)(𝜆)|‖𝐾𝜆‖2
𝜀‖𝐾𝑧‖2

𝜀−1|𝐾−𝑧(𝜆)|
1−𝜀𝑑𝜐(𝜆)

𝐵𝑛

 

In other words, we have obtained 

‖𝐾𝑧‖2
𝜀 ∫ |(𝐴−𝑧1)(𝜆)|‖𝐾𝜆‖2

𝜀 |𝐾−𝑧(𝜆)|
1−𝜀𝑑𝜐(𝜆)

𝐵𝑛

. 

If we apply Holder's Inequality with 𝑞−1 + 𝑝−1 = 1 and we call the last integral ℐ = ℐ(𝑧), 
we have 

ℐ(𝑧) ≤ ‖𝐾𝑧‖2
𝜀‖𝐴−𝑧1‖𝑞 (∫ ‖𝐾𝜆‖2

𝑝𝜀|𝐾−𝑧(𝜆)|
𝑝(1−𝜀)𝑑𝜐(𝜆)

𝐵𝑛

)

1/𝑝

. 
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In order to complete the proof we need to study the integral in the right hand side. Using the 

fact that we know explicitly the kernel, we have 

∫ ‖𝑘𝜆‖2
𝑝𝜀|𝐾−𝑧(𝜆)|

𝑝(1−𝜀)𝑑𝜐(𝜆)
𝐵𝑛

= ∫
𝑑𝜐(𝜆)

(1 − |𝜆|2)(𝑛+1)𝑝𝜀/2|1 − 〈−𝑧, 𝜆〉|(𝑛+1)𝑝(1−𝜀)
.

𝐵𝑛

 

In order to apply the theorem we define 𝑡 = −(𝑛 + 1)𝑝𝜀/2. Because we need 𝑡 > −1, then 

we conclude that 2/(𝑛 + 1)𝑝 > 𝜀. We also want to write (𝑛 + 1)𝑝(1 − 𝜀) as 𝑛 + 1 + 𝑡 +
𝑐 and this gives us 𝑐 = (𝑛 + 1)(𝑝 − 1) − 𝑝𝜀 (𝑛 + 1)/2. We also want that 𝑐 < 0 so we 

conclude that 2(𝑝 − 1)/𝑝 < 𝜀. We can summarise our condition on 𝜀 in the double 

inequality 2(𝑝 − 1)/𝑝 < 𝜀 < 2(𝑛 + 1)/𝑝. It is clear that we can find such an 𝜀 if and only 

if (𝑝 − 1) < (𝑛 + 1)−1 and this is possible because the only condition on p is that 2 > 𝑝 >
1. 

So far we have proved the first inequality. To prove the second inequality it is enough 

to proceed as before, starting with 𝐴∗ and using the fact that (𝐴∗𝐾𝑤)(𝑧) = (𝐴𝐾𝑧)𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 
We remark that the last lemma implies the following 

Corollary (3.1.7)[75]: If 𝐷 denotes the unit disk in 𝐶 and d𝐴 the Lebesgue area measure 

and 𝑆 is a bounded operator on 𝐻2(𝐷) then, for any 𝛼 ∈ (1, 3/2) and 𝛽 ∈
(2(𝛼 − 1)𝛼−1, 2𝛼−1), there exists a constant 𝑐𝛼,𝛽 < ∞ such that, if 𝛼∗−1 + 𝛼−1 = 1, we 

have 

∫
|𝑆𝐾𝑧(𝑤)|

(1 − |𝑤|2)𝛽/2𝐷

 𝑑𝐴(𝑤) ≤
𝑐𝛼,𝛽‖𝑆𝑧1‖𝛼∗

(1 − |𝑤|2)𝛽
 

for all 𝑧 ∈ 𝐷 and 

∫
|𝑆𝐾𝑧(𝑤)|

(1 − |𝑤|2)𝛽/2𝐷

 𝑑𝐴(𝑤) ≤
𝑐𝛼,𝛽‖𝑆𝑤

∗ 1‖𝛼∗

(1 − |𝑤|2)𝛽
 

for all 𝑤 ∈ 𝐷. 

This proposition has been proved, in the special case where 𝛼 = 6/5  and 𝛽 = 1/2, 

in [76]. Finally, we prove the following 

Proposition (3.1.8)[75]: Let 𝐴 be an operator in 𝐵(𝐻2(𝐵𝑛)) which can be written as 𝐴 =

∑ ∏ 𝑇𝑢𝑗,𝑘
𝑚𝑗
𝑘=1

𝑚
𝑗=1 , where 𝑢𝑗 , 𝑘 ∈ 𝐿

∞(𝐵𝑛). Then, for every 𝑞 ∈ (1,∞), sup
𝑧∈𝐵
‖𝐴𝑧1‖𝑞 < ∞. 

Proof. We can assume that 𝐴 = ∏ 𝑇𝑢𝑗
𝑚
𝑘=1 . Using Lemma (3.1.5) we have that 𝐴𝑧 =

∏ 𝑇𝑢𝑗∘𝜓𝑧
𝑚
𝑘=1 . Since 𝑃𝑞: 𝐿

𝑞(𝐵) → 𝐻𝑞(𝐵)is a bounded operator, then there exists a constant 

𝑐𝑞 > 0 such that, for every 𝑓 ∈ 𝐿𝑞(𝐵), ‖𝑃𝑞𝑓‖𝑞 ≤ 𝑐𝑞
‖𝑓‖𝑞. This implies that, for any 𝑓 ∈

𝐿𝑞(𝐵), ‖𝑇𝑢𝑓‖𝑞 = ‖𝑃𝑞𝑀𝑢𝑓‖𝑞 ≤ 𝑐𝑞
‖𝑀𝑢𝑓‖𝑞 ≤ 𝑐𝑞‖𝑢‖∞‖𝑓‖𝑞 . Since ‖𝑢 ∘ 𝜓𝑧‖∞ = ‖𝑢‖∞, we 

obtain ‖𝑇𝑢∘𝜓𝑧𝑓‖∞
≤ 𝑐𝑞‖𝑢‖∞‖𝑓‖𝑞. Then we can conclude that ‖𝐴𝑧1‖𝑞 ≤

∏ ‖𝑇𝑢𝑘∘𝜓𝑧‖𝑞
≤ 𝑐𝑞

𝑚∏ ‖𝑢𝑘‖∞
𝑚
𝑘=1

𝑚
𝑘=1 . Therefore we are done because our estimate is 

independent of 𝑧 ∈ 𝐵𝑛. 
We give the complete proof of the main theorem, and we remind that the main result 

can be stated as follows: 

Theorem (3.1.9)[75]: Let 𝐴 be an operator in 𝐵(𝐻2(𝐵𝑛)) which can be written as 𝐴 =

∑ ∏ 𝑇𝑢𝑗,𝑘
𝑚𝑗
𝑘=1

𝑚
𝑗=1 , where 𝑢𝑗,𝑘 ∈ 𝐿

∞(𝐵𝑛). Then the following are equivalent: 

(i) 𝐴 is compact; 

(ii) �̃�(𝑧) → 0 as 𝑧 → 𝜕𝐵𝑛; 
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(iii) 𝐴𝑧1 → 0 weakly as 𝑧 → 𝜕𝐵𝑛; 

(iv) ‖𝐴𝑧1‖𝑝 → 0 as 𝑧 → 𝜕𝐵𝑛 for any 𝑝 > 1. 

Proofs.i ⟹ ii. Because 𝐴 is compact and 𝑘𝑧 → 0 weakly in 𝐻2(𝐵) as 𝑧 → 𝜕𝐵 then a 

standard theorem about compact operators implies that ‖𝐴𝑘𝑧‖2 → 0 as 𝑧 → 𝜕𝐵𝑛and the 

Cauchy-Schwarz inequality implies that |�̃�(𝑧)| = |〈𝐴𝑘𝑧, 𝑘𝑧〉| ≤ ‖𝐴𝑘𝑧‖2. Therefore we see 

that �̃�(𝑧) → 0 as 𝑧 → 𝜕𝐵𝑛. 

(ii) ⟹ (iii). We suppose that (ii) holds and we want to show that 𝐴𝑧1 → 0 weakly in 

𝐿2(𝐵) as 𝑧 → 𝜕𝐵. We know that we can construct an orthonormal basis for 𝐻2(𝐵𝑛)using 

just polynomials in n variables, so it is enough to show that (𝐴𝑧1𝜔
𝛼∗) → 0 as 𝑧 → 𝜕𝐵𝑛, 

where 𝛼∗is a multindex and 𝜔 = 𝜔1
𝛼1
∗

…𝜔𝑛
𝛼𝑛
∗

.  

We start by observing that since �̃�(𝜓𝑧(𝜔)) = 𝐴�̃�(𝜔) = 〈𝐴𝑧𝑘𝜔, 𝑘𝜔〉 and 𝑘𝜔(𝑤) =

(1 − |𝜔|2)(𝑛+1)/2∑ (𝜔𝛼̅̅ ̅̅ ⋅ 𝑤𝛼)/𝛾𝛼𝛼∈𝑁𝑛 , we obtain 

�̃�(𝜓𝑧(𝜔)) = (1 − |𝜔|
2)𝑛+1 ∑

〈𝐴𝑧𝑤
𝛼 , 𝑤𝛽〉

𝛾𝛼𝛾𝛽
𝜔𝛼̅̅ ̅̅ 𝑤𝛽

𝛼,𝛽∈𝑁𝑛

 . 

If we multiply both sides by 𝜔𝛼
∗̅̅ ̅̅ ̅/(1 − |𝜔|2)𝑛+1 we obtain that 

∫
�̃�(𝜓𝑧(𝜔))𝜔

𝛼∗̅̅ ̅̅ ̅

(1 − |𝜔|2)𝑛+1𝑟𝐵𝑛

 𝑑𝜈(𝜔) = ∑
〈𝐴𝑧𝑤

𝛼 , 𝑤𝛽〉

𝛾𝛼𝛾𝛽
∫ 𝜔𝛼

∗+𝛼𝜔𝛽̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑟𝐵𝑛

 𝑑𝜈(𝜔)

𝛼,𝛽∈𝑁𝑛

. 

This implies that 

∫
�̃�(𝜓𝑧(𝜔))𝜔

𝛼∗̅̅ ̅̅ ̅

(1 − |𝜔|2)𝑛+1𝑟𝐵𝑛

 𝑑𝜈(𝜔) = 𝑟2|𝛼
∗|+2𝑛 ∑

〈𝐴𝑧𝑤
𝛼 , 𝑤𝛼

∗+𝛼〉

𝛾𝛼
𝑟2|𝛼|

𝛼∈𝑁𝑛

. 

Observe that the left hand side goes to zero as |𝑧| → 1 because the domain of integration is 

bounded and the function goes to zero since (ii) holds. Therefore for any fixed 𝑟 ∈ (0,1) the 

left side of the equality has limit zero as |𝑧| → 1. Now we divide the left and right hand 

sides by 𝑟2𝑛+2. Then, on the right hand side, we obtain 

〈𝐴𝑧1,𝑤
𝛼∗〉

𝛾0
+ ∑

〈𝐴𝑧𝑤
𝛼 , 𝑤𝛼

∗+𝛼〉

𝛾𝛼
𝑟2|𝛼|

𝛼∈𝑁𝑛\0

 

and we can conclude that, for any fixed 𝑟 ∈ (0,1), 

〈𝐴𝑧1,𝑤
𝛼∗〉

𝛾0
+ ∑

〈𝐴𝑧𝑤
𝛼 , 𝑤𝛼

∗+𝛼〉

𝛾𝛼
𝑟2|𝛼|

𝛼∈𝑁𝑛\0

→ 0 

as 𝑧 → 𝜕𝐵𝑛. We also observe that 

| ∑
〈𝐴𝑧𝑤

𝛼 , 𝑤𝛼
∗+𝛼〉

𝛾𝛼
𝑟2|𝛼|

𝛼∈𝑁𝑛\0

| ≤ ‖𝐴‖(∑ 𝑟2|𝛼|
𝑛

|𝛼|=1

+ ∑ 𝑟2|𝛼|
∞

|𝛼|>𝑛

). 

To complete the proof we need to analyse ∑ 𝑟2|𝛼|∞
|𝛼|>𝑛 . To study this function we define 

𝑃ℓ(𝑛) = {𝑧1
𝛼1 …𝑧𝑛

𝛼𝑛: 𝛼1…𝛼𝑛 = ℓ} and we denote with the symbol 𝑎ℓ(𝑛) the cardinality 

of 𝑃ℓ(𝑛). We have ‖𝐴‖(∑ 𝑟2|𝛼|𝑛
|𝛼|=1 + ∑ 𝑟2|𝛼|∞

|𝛼|>𝑛 ) = ‖𝐴‖(∑ 𝑟2|𝛼|𝑛
|𝛼|=1 +

∑ 𝑎ℓ(𝑛)𝑟
2𝑘∞

𝑘>𝑛 ). 
Claim (3.1.10)[75]: If 𝑃ℓ(𝑛) and 𝑎ℓ(𝑛) are defined as above then 
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∗                                               lim sup
ℓ→∞

𝑎ℓ+1(𝑛)

𝑎ℓ(𝑛)
< ∞. 

Proof. We use induction and we observe that if 𝑛 = 1 then 𝑎ℓ(𝑛) for all ℓ ≥ 1 so, for 𝑛 =

𝑙, the claim is true. Since, from 𝑚 > 0, 𝑃𝑚(𝑛 + 1) = ⋃ 𝑃𝑗(𝑛)𝑧𝑛+1
𝑚−𝑗𝑚

𝑗=0  then it follows that 

𝑎𝑚+1(𝑛 + 1) = 𝑎𝑚+1(𝑛) + 𝑎𝑚(𝑛 + 1) and this implies that 
𝑎ℓ+1(𝑛 + 1)

𝑎ℓ(𝑛 + 1)
≤
𝑎ℓ+1(𝑛)

𝑎ℓ(𝑛)
+ 1. 

Therefore, using induction, we can conclude that (*) is true. Now we observe that the Claim, 

together with the Ratio test, implies that there exists an 𝑅 > 0 such that ∑ 𝑎ℓ(𝑛)𝑟
2𝑘

𝑘>𝑛 <
∞ if 𝑟 ∈ [0, 𝑅). This implies that if 𝑟 is small enough, then, for all 𝑧 ∈ 𝐵𝑛, the series is less 

than 𝜀 > 0, where e is arbitrary. Therefore we have 

lim
𝑧→𝜕𝐵𝑛

|〈𝐴𝑧1,𝑤
𝛼∗〉| < 𝜀. 

Since 𝜀 is an arbitrary positive number, the inequality implies that |〈𝐴𝑧1,𝑤
𝛼∗〉| → 0 as 𝑧 →

𝜕𝐵𝑛 and this proves our claim. 

iii ⟹ iv. We want to prove that 𝐴𝑧 → 0 weakly in 𝐻2(𝐵𝑛) as 𝑧 → 𝜕𝐵𝑛 implies that 
‖𝐴𝑧1‖2 → 0 as 𝑧 → 𝜕𝐵𝑛. If 𝑟 ∈ (0,1), we can write 

‖𝐴𝑧1‖2 = ∫ |𝐴𝑧1(𝑤)|
2𝑑𝜈(𝑤)

𝐵𝑛

= ∫ |𝐴𝑧1(𝑤)|
2𝑑𝜈(𝑤)

𝐵𝑛\𝑟𝐵𝑛

+∫ |𝐴𝑧1(𝑤)|
2𝑑𝜈(𝑤)

𝑟𝐵𝑛

≤ 𝜈(𝐵𝑛\𝑟𝐵𝑛)
1/2‖𝐴𝑧1‖4

2 +∫ |𝐴𝑧1(𝑤)|
2𝑑𝜈(𝑤)

𝑟𝐵𝑛

 

It is clear that we can choose 𝑟 close enough to 1 in order to make the first term on 

the right smaller than 𝛿. In fact we have shown that ‖𝐴𝑧1‖ is bounded independent of 𝑧. We 

observe that a sequence of holomorphic functions which goes weakly to zero is going to 

zero in norm on compacta and this shows that the second term on the right hand side goes 

to zero as z goes to the boundary and this completes our proof. Now we assume that 𝑝 ∈
(2,∞). Then we have 

‖𝐴𝑧1‖𝑝 ≤ ‖𝐴𝑧1‖2
1/𝑝‖𝐴𝑧1‖2𝑝−𝑝

(𝑝−1)/𝑝
. 

By our hypothesis the first term on the right hand side has limit zero as 𝑧 → 𝜕𝐵𝑛 and the 

second is bounded independent of 𝑧. Therefore, by Proposition (3.1.8), we conclude that 

‖𝐴𝑧1‖𝑝 → 0 as 𝑧 → 𝜕𝐵𝑛. For 1 < 𝑝 < 2 we observe that ‖𝐴𝑧1‖𝑝 ≤ ‖𝐴𝑧1‖2 and we are 

done. 

iv ⇒ i. We suppose that ‖𝐴𝑧1‖𝑝 → 0 as 𝑧 → 𝜕𝐵𝑛, for every 𝑞 ∈ (1,∞)and we want 

to conclude that the operator is compact. Since the operator 𝑈ℛ is invertible, 𝐴 is compact 

if and only if 𝑈ℛ𝐴𝑈ℛ = 𝐴ℛ is compact. We are going to show that 𝑈ℛ𝐴𝑈ℛ is compact. We 

observe that for any 𝑓 ∈ 𝐻2(𝐵𝑛) and for any 𝑤 ∈ 𝐵𝑛 we have 

(𝑈ℛ𝐴𝑈ℛ𝑓)𝑤 = 〈𝑈ℛ𝐴𝑈ℛ𝑓, 𝐾𝑤〉 = 〈𝑓, 𝑈ℛ𝐴
∗𝑈ℛ𝐾𝑤〉 = ∫ 𝑓(𝑧)(𝑈ℛ𝐴

∗𝑈ℛ𝐾𝑤)(𝑧)𝑑𝜈(𝑧)
𝐵𝑛

= ∫ 𝑓(𝑧)(𝑈ℛ𝐴𝑈ℛ𝐾𝑧)(𝑤)𝑑𝜈(𝑧)
𝐵𝑛

. 

Observe that equation (iv) is a consequence of 
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(𝑈ℛ𝐴
∗𝑈ℛ𝐾𝑤)(𝑧) = 〈𝑈ℛ𝐴

∗𝑈ℛ𝐾𝑤, 𝐾𝑧〉 = 〈𝐾𝑤, 𝑈ℛ𝐴𝑈ℛ𝐾𝑧〉 = (𝑈ℛ𝐴𝑈ℛ𝐾𝑧, 𝐾𝑤)

= (𝑈ℛ𝐴𝑈ℛ𝐾𝑧)(𝑤). 
For any 𝑡 ∈ (0,1) we define the operator 𝐴[𝑡]on 𝐻2(𝐵𝑛) by 

((𝐴𝑅)[𝑡]𝑓)𝑤 = ∫ 𝑓(𝑧)(𝐴𝑅𝐾𝑧)(𝑤)𝑑𝜈(𝑤)
𝑡𝐵𝑛

, 

in other words, this integral operator has kernel 

𝒦[𝑡](𝑧, 𝑤) = 𝒳𝑡𝐵𝑛(𝑧)(𝐴𝑅𝐾𝑧)(𝑤), 

where the symbol 𝒳𝑡𝐵𝑛  stands for the characteristic function of the set 𝑡𝐵𝑛 =

{𝜁 ∈ C𝑛: |𝜁| < 𝑡}. We observe that the operator 𝐴[𝑡] is Hilbert-Schimdt for any 𝑡 ∈ [0,1), in 

fact 

∫ ∫ |(𝐴𝑅𝐾𝑧)(𝑤)𝒳𝑡𝐵(𝑛)(𝑧)|
2

𝐵𝑛𝐵𝑛

𝑑𝜈(𝑧)𝑑𝜈(𝑤) ≤ ‖𝐴𝑅‖∫ ‖𝐾𝑧‖2
2

𝑡𝐵𝑛

𝑑𝜈(𝑧)

= ‖𝐴𝑅‖∫
𝑑𝜈(𝑧)

(1 − |𝑧|2)𝑛+1/2𝑡𝐵𝑛

< ∞.  

To show that 𝐴𝑅 is compact, it is enough to prove that 

lim
𝑡→1−

‖𝐴𝑅 − (𝐴𝑅)[𝑡]‖ = 0. 

We observe that the operator 𝐴𝑅 − (𝐴𝑅)[𝑡], is an integral operator whose kernel is given by 

the function𝒦[1−𝑡](𝑧, 𝑤) = 𝒳(𝐵\𝑡𝐵)(𝑧)(𝐴𝑅𝐾𝑧)(𝑤). To estimate the norm of this operator 

we use the Schur Test. We choose, as test function, the function 𝐾(𝑧, 𝑧)𝜀/2. If we choose p 

such that 0 < (𝑝 − 1) < (𝑛 + 1)−1, and 𝑞 such that 𝑝−1 + 𝑞−1 = 1, and 𝜀 ∈ (2(𝑝 −
1)𝑝−1, 2(𝑛 + 1)−1𝑝−1) then we can apply Lemma (3.1.6), and if we denote the function 

𝒳𝐵𝑛\𝑡𝐵𝑛 by the symbol G(𝑡,∙) we see that 

∫ |𝐺(𝑡, 𝑧)𝐴𝑅𝐾𝑧(𝑤)|‖𝐾𝑤‖2
𝜀𝑑𝜈(𝑤)

𝐵𝑛

≤ ‖𝐾𝑧‖2
𝜀 sup
𝑧∈𝐵𝑛\𝑡𝐵𝑛

‖𝐴−𝑧1‖𝑞 sup
𝑤∈𝐵𝑛

|𝒥𝑎,𝑏(𝑧)|
1/𝑝

 

and 

∫ |𝐺(𝑡, 𝑧)𝐴𝑅𝐾𝑧(𝑤)|‖𝐾𝑧‖2
𝜀𝑑𝜈(𝑤)

𝐵𝑛

≤ ‖𝐾𝑤‖2
𝜀 sup
𝑤∈𝐵𝑛\𝑡𝐵𝑛

‖𝐴−𝑤
∗ 1‖𝑞 sup

𝑤∈𝐵𝑛

|𝒥𝑎,𝑏(𝑤)|
1/𝑝
. 

If we choose 𝑎 and 𝑏 as in Lemma (3.1.6) then we obtain sup
𝑤∈𝐵𝑛

|𝒥𝑎,𝑏(𝑤)|
1/𝑝
< ∞ and our 

hypothesis on the behaviour of ‖𝐴−𝑤
∗ 1‖𝑞 as w goes to 𝜕𝐵𝑛 implies that |𝐴𝑅 − (𝐴𝑅)[𝑡]| → 0 

as 𝑡 → 1−. Therefore we have proved that 𝑈ℛ𝐴𝑈ℛ = 𝐴𝑅 is compact and this implies 

that 𝐴 is compact.  

Observe that in the case when there is only a single operator, the main result can be 

stated in a very simple form, in fact. 

Corollary (3.1.11)[75]: Let 𝑓 ∈ 𝐿∞(𝐵𝑛). Then 𝑇𝑓 is compact if and only if 𝑓(𝑧) → 0 as 𝑧 →

𝜕𝐵𝑛. 

We remind that for any 𝑓 ∈ 𝐿∞(𝐵𝑛), the Hankel operator 𝐻𝑓: 𝐻
2(𝐵𝑛) → 𝐻

2(𝐵𝑛)
⊥is 

defined by 𝐻𝑓𝑔 = (𝐼 − 𝑃)(𝑓𝑔), for any 𝑔 ∈ 𝐿2(𝐵𝑛). The next result has been proved, in the 

case where the symbol is holomorphic, by Stroethoff. 

Corollary (3.1.12)[75]: Let 𝑓 ∈ 𝐿∞(𝐵𝑛). Then the following are equivalent: 

(i) 𝐻𝑓 is compact; 
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(ii) ‖𝐻𝑓𝐾𝑧‖2
→ 0 as 𝑧 → 𝜕𝐵𝑛; 

(iii) ‖𝑓 ∘ 𝜓𝑧 − 𝑃(𝑓 ∘ 𝜓𝑧)‖2 → 0 as 𝑧 → 𝜕𝐵𝑛. 
The proof is the same as in the case of the disk and we refer the reader to [l] for details. 

Using this result it is also possible to recover the main Theorem in [78]. 
 

Section (3.2): Bergman Space Coincides with Its Commutator Ideal 

If 0 < 𝑝 ≤ ∞ let 𝐿𝑝 = 𝐿𝑝(𝔻, d𝐴), where 𝔻 is the open unit disk and d𝐴(𝑧) =
(1/𝜋)𝑑𝑥𝑑𝑦, with 𝑧 = 𝑥 + i𝑦, is the normalized area measure on 𝔻. The Bergman space 𝐿𝑎

𝑝
 

is formed by the analytic functions in 𝐿𝑝. If 1 < 𝑝 < ∞ then 

(𝑃𝑓)(𝑧) = ∫
𝑓(𝜔)

(1 − �̅�𝑧)2
d𝐴(𝜔)

𝔻

 

is a bounded projection from 𝐿𝑝 onto 𝐿𝑎
𝑝
.. This is the usual Bergman projection. For 𝑎 ∈ 𝐿∞ 

let 𝑀𝑎: 𝐿
𝑝 → 𝐿𝑝 be the operator of multiplication by 𝑎 and 𝑃𝑎 = 𝑃𝑀𝑎. Then ‖𝑃𝑎‖ ≤

𝐶𝑝‖𝑎‖∞, where 𝐶𝑝 is the norm of 𝑃 acting on 𝐿𝑝. The Toeplitz operator 𝑇𝑎: 𝐿𝑎
𝑝
→ 𝐿𝑎

𝑝
 is the 

restriction of 𝑃𝑎 to the space 𝐿𝑎
𝑝

. If 𝐵 is a Banach space, we will write 𝔏(𝐵) for the algebra 

of all bounded operators on 𝐵 and 𝔗(𝐿𝑎
𝑝
) for the closed subalgebra of 𝔏(𝐿𝑎

𝑝
) generated by 

{𝑇𝑎: 𝑎 ∈ 𝐿
∞}. 

If 𝐴 is a Banach algebra, its commutator ideal ℭ𝐴 is the closed bilateral ideal 

generated by elements of the form [𝑥, 𝑦] ≝= 𝑥𝑦 − 𝑦𝑥, with 𝑥, 𝑦 ∈ 𝐴. It is clear that ℭ𝐴 is 

the smallest closed ideal of 𝐴 such that 𝐴/ℭ𝐴 is a commutative Banach algebra. There is an 

extensive literature on commutator ideals and abelianizations of Toeplitz algebras acting on 

the Hardy space 𝐻2. See ([45]). We only have a handful of results for Toeplitz algebras of 

operators on 𝐿𝑎
2 . Probably the most relevant on the subject are [13], [84] and [82]. 

If 𝐻 is a Hilbert space of dimension greater than one then ℭ𝔏(𝐻) = 𝔏(𝐻). Although 

this situation is very unusual for Toeplitz algebras, the purpose is to prove the following 

Theorem (3.2.1)[81]: The Toeplitz algebra on 𝐿𝑎
2 coincides with its commutator  ideal. 

In [83] it is shown that if 𝜙(𝑧) = exp(𝑖 log|𝑧|−2) then the semicommutator 𝑇𝜙𝜙 −

𝑇𝜙𝑇𝜙 is a nontrivial scalar multiple of the identity. Analogously, it could happen that there 

are two simple functions 𝑎, 𝑏 ∈ 𝐿∞ such that 𝑇𝑎𝑇𝑏 − 𝑇𝑏𝑇𝑎is easily seen to be invertible. This 

would immediately prove Theorem (3.2.1). Since I was unable to find such functions or 

even prove their existence, the proof here is considerably more complicated. 

For 𝑧 ∈ 𝔻 let 𝜑𝑧(𝜔) =
(𝑧−𝜔)

(1−𝑧𝜔)
, the special automorphism of 𝔻 that interchanges 0 and 

𝑧. The pseudo-hyperbolic metric is defined by 𝜌(𝑧, 𝜔) = |𝜑𝑧(𝜔)|for 𝑧, 𝜑 ∈ 𝔻. It is well 

known that 𝜌 is invariant under the action of Aut(𝔻). We will also use that  

𝜌(𝑧, 𝜔) ≥
𝜌(𝑧, 𝑢) − 𝜌(𝑢, 𝑤)

1 − (𝑧, 𝑢)(𝑢, 𝑤)
for all 𝑧, 𝜔, 𝑢 ∈ 𝔻. 

If 0 < 𝑟 < 1 write 𝐾(𝑧, 𝑟) ≝ [𝜔 ∈ 𝔻: 𝜌(𝜔, 𝑧) ≤ 𝑟] for the closed ball of center 𝑧 and radius 

𝑟 with respect to 𝜌. A sequence 𝑆 = {𝑧𝑛} in 𝔻 will be called separated if inf
𝑖≠𝑗
𝜌(𝑧𝑖 , 𝑧𝑗) > 0. 

Although I have not found the next result in its present form, it is a well known feature of 

separated sequences. We sketch here a proof. 



90 

 

Lemma (3.2.2)[81]: Let 𝑆 be a separated sequence and 0 < 𝜎 < 1. Then there is a finite 

decomposition 𝑆 = 𝑆1 ∪ …∪ 𝑆𝑁 such that for every 1 ≤ 𝑖 ≤ 𝑁: 𝜌(𝑧, 𝜔) > 𝜎for all 𝑧 ≠ 𝜔 in 

𝑆𝑖. 
Proof. Since 𝑆 is separated, there is some positive integer 𝑁 depending only on 𝜎 and the 

degree of separation of 𝑆, such that 𝐾(𝑧, 𝜎) ∩ 𝑆 has no more than 𝑁 points for every 𝑧 ∈ 𝔻. 

Let 𝑆𝑖 ⊂ 𝑆 be a maximal sequence such that 𝜌(𝑧, 𝜔) > 𝜎 for every 𝑧, 𝜔 ∈ 𝑆1 with 𝑧 ≠ 𝜔. 

The maximality implies that 𝑆 ⊂ ⋃ 𝐾(𝑧, 𝜎)𝑧∈𝑆1
. 

If 𝑆 = 𝑆1 we are done. Otherwise suppose that 𝑛 ≥ 2, 𝑆1, … , 𝑆𝑛−1 are chosen and 

𝑆\(𝑆1 ∪ …∪ 𝑆𝑛−1) ≠ 0 . Let 𝑆𝑛 ⊂ 𝑆\(𝑆1 ∪ …∪ 𝑆𝑛−1) be a maximal sequence such that 

𝜌(𝑧, 𝜔) > 𝜎 for every 𝑧, 𝜔 ∈ 𝑆𝑛 with 𝑧 ≠ 𝜔. By the maximality at the previous steps, if 𝑧 ∈
𝑆𝑛 there is some 𝑧𝑖 ∈ 𝑆𝑖 such that 𝑧 ∈ 𝐾(𝑧𝑖 , 𝜎) for every 1 ≤ 𝑖 ≤ 𝑛 − 1.  

Therefore {𝑧, 𝑧1, … , 𝑧𝑛−1} ⊂ 𝐾(𝑧, 𝜎) ∩ 𝑆, and consequently 𝑛 ≤ 𝑁. 

Lemma (3.2.3)[81]: For 1 ≤ 𝑘 ≤ 𝑚 let {𝑎𝑗
𝑘}
𝑗≥1

 be sequences in the unit ball of 𝐿∞such that 

supp 𝑎𝑗
𝑘 ⊂ (𝛼𝑗 , 𝑟), where 𝐾(𝛼𝑗 , 𝑟) ∩ 𝐾(𝛼𝑗 , 𝑟) = ∅ if 𝑖 ≠ 𝑗. Suppose that 1 < 𝑝 < ∞ and 

{𝑅𝑗}𝑗≥1 is a bounded sequence in 𝔏(𝐿𝑝). If 𝑓 ∈ 𝐿𝑝 is such that ∑ 𝑀𝑎𝑗
𝑚𝑅𝑗𝑓 ∈ 𝐿

𝑝
𝑗≥1  then 

‖∑𝑃𝑎𝑗
1…𝑃𝑎𝑗

𝑚𝑅𝑗𝑓

𝑗≥1

‖

𝑝

≤ 𝐶𝑝
𝑚 ‖∑𝑀𝑎𝑗

𝑚𝑅𝑗𝑓

𝑗≥1

‖

𝑝

, 

where 𝐶𝑝 is the norm of the projection 𝑃 acting on 𝐿𝑝. 

Proof. Write 𝑄𝑗 = 𝑃𝑎𝑗
2…𝑃𝑎𝑗

𝑚−1𝑃for all 𝑗 ≥ 1 and 𝑆 = ∑ 𝑀𝑎𝑗
1𝑄𝑗𝑀𝑎𝑗

𝑚𝑅𝑗𝑗≥1 . 

Then ‖𝑄𝑗‖ ≤ 𝐶𝑝
𝑚−1 and for 𝑓 ∈ 𝐿𝑝 we have 

‖𝑆𝑓‖𝑝
𝑝
= ‖∑𝑀𝑎𝑗

1𝑄𝑗𝑀𝑎𝑗
𝑚|𝑅𝑗𝑓

𝑗≥1

‖

𝑝

𝑝

=∑‖𝑀𝑎𝑗
1𝑄𝑗𝑀𝑎𝑗

𝑚𝑅𝑗𝑓‖
𝑝

𝑝

𝑗≥1

≤ 𝐶𝑝
(𝑚−1)𝑝∑‖𝑀𝑎𝑗

𝑚𝑅𝑗𝑓‖
𝑝

𝑝

𝑗≥1

= 𝐶𝑝
(𝑚−1)𝑝 ‖∑(𝑀𝑎𝑗

𝑚𝑅𝑗) 𝑓

𝑗≥1

‖

𝑝

𝑝

.                                                                                    (1) 

If the last quantity is finite then 𝑆𝑓 ∈ 𝐿𝑝 and the sums 𝑆𝑛𝑓 = ∑ 𝑀𝑎𝑗
1𝑄𝑗𝑀𝑎𝑗

𝑚𝑅𝑗𝑓
𝑛
𝑗=1 converge 

to 𝑆𝑓 in 𝐿𝑝-norm when 𝑛 → ∞. Therefore 

‖∑𝑃𝑎𝑗
1 …𝑃𝑎𝑗

𝑚|𝑅𝑗𝑓

𝑗≥1

‖

𝑝

𝑝

= lim
𝑛
‖∑𝑃𝑎𝑗

1 …𝑃𝑎𝑗
𝑚𝑅𝑗𝑓

𝑗≥1

‖

𝑝

𝑝

= lim
𝑛
‖𝑃𝑆𝑛𝑓‖𝑝

𝑝
≤ 𝐶𝑝‖𝑆𝑓‖𝑝

𝑝
. 

The lemma follows combining this inequality with (1). 

Corollary (3.2.4)[81]: Taking 𝑅𝑗 = 1 for every 𝑗 in Lemma (3.2.3) we obtain 

‖∑𝑃𝑎𝑗
1 …𝑃𝑎𝑗

𝑚

𝑗≥1

‖

𝔏(𝐿𝑝)

≤ 𝐶𝑝
𝑚. 

Proof. By the lemma, 

‖∑𝑃𝑎𝑗
1 …𝑃𝑎𝑗

𝑚

𝑗≥1

𝑓‖

𝑝

≤ 𝐶𝑝
𝑚 ‖∑𝑀𝑎𝑗

𝑚

𝑗≥1

‖

𝑝

≤ 𝐶𝑝
𝑚 ‖𝑀

(∑ 𝑎𝑗
𝑚

𝑗≥1 )
𝑓‖

𝑝

≤ 𝐶𝑝
𝑚‖𝑓‖𝑝 
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for every 𝑓 ∈ 𝐿𝑝. 

The next result is a particular case of Lemma 4.2.2 in [85]. 

Lemma (3.2.5)[81]: If 𝑡 > −1, 𝑐 is real and 

𝐹𝑐,𝑡(𝑧) = ∫
(1 − |𝜔|2)𝑡

|1 − 𝑧𝜔|2+𝑡+𝑐𝔻

d𝐴(𝜔)                𝑧 ∈ 𝔻, 

then 𝐹𝑐,𝑡 is bounded when 𝑐 < 0 and |𝐹𝑐,𝑡(𝑧)| ≤ 𝐶(1 − |𝑧|
2)−𝑐 when 𝑐 > 0. 

Lemma (3.2.6)[81]: Let 0 < 𝑟 < 1 and {𝛼𝑗}𝑗≥1 ⊂ 𝔻 such that 𝐾(𝛼𝑗 , 𝑟) ∩ 𝐾(𝛼𝑗 , 𝑟) = ∅ if 

𝑖 ≠ 𝑗. If 𝑟 < 𝑅 < 1 and 0 < 𝛽 < 1 then 

∫ ∑[𝜒𝐾(𝛼𝑗,𝑟)(𝑧)𝜒𝐷\𝐾(𝛼𝑗,ℛ)(𝜔)]

𝑗

(1 − |𝜔|2)−𝛽

|1 − 𝑧𝜔|2𝔻

d𝐴(𝜔)

≤ 𝑐𝛽(ℛ)(1 − |𝑧|
2)−𝛽 ,                                                                       (2) 

where 𝑐𝛽(𝑅) → 0 when 𝑅 → 1. 

Proof. If 𝑧 ∈ 𝐾(𝛼𝑗 , 𝑟) and 𝜔 ∈ 𝔻\𝐾(𝛼𝑗 , 𝑅) then 

𝜌(𝜔, 𝑧) ≥
𝜌(𝜔, 𝛼𝑗) − 𝜌(𝛼𝑗 , 𝑧)

1 − 𝜌(𝛼𝑗 , 𝑧)𝜌(𝜔, 𝛼𝑗)
>
𝑅 − 𝑟

1 − 𝑅𝑟
= 𝛿, 

where 𝛿 = 𝛿(𝑅) → 1 when 𝑅 → 1. Therefore 𝔻\𝐾(𝛼𝑗 , 𝑅) ⊂ 𝔻\𝐾(𝑧, 𝛿) and 

∑𝜒𝐾(𝛼𝑗,𝑟)(𝑧)

𝑗

𝜒𝐷\𝐾(𝛼𝑗,ℛ)(𝜔) ≤∑𝜒𝐾(𝛼𝑗,𝑟)(𝑧)

𝑗

𝜒𝐷\𝐾(𝑧,𝛿)(𝜔). 

Hence, the integral in (2) is bounded by 

∑𝜒𝐾(𝛼𝑗,𝑟)(𝑧)

𝑗

∫ 𝜒𝐷\𝐾(𝑧,𝛿)(𝜔)
(1 − |𝜔|2)−𝛽

|1 − 𝑧𝜔|2𝔻

d𝐴(𝜔)

=∑𝜒𝐾(𝛼𝑗,𝑟)(𝑧)

𝑗

∫
(1 − |𝜑𝑧(𝑣)|

2)−𝛽

|1 − 𝑧𝑣|2|𝑣|>𝛿

d𝐴(𝑣)

≤ ∫
(1 − |𝑣|2)−𝛽

|1 − 𝑧𝑣|2−2𝛽
(1 − |𝑧|2)−𝛽

|𝑣|>𝛿

d𝐴(𝑣),                                          (3) 

where the equality comes from the change of variables 𝑣 = 𝜑𝑧(𝜔) and the inequality 

because 𝐾(𝛼𝑗 , 𝑟) are pairwise disjoint. Pick some 𝑝 = 𝑝(𝛽) > 1 satisfying simultaneously 

the conditions 𝑝𝛽 < 1 and 𝑝(2 − 𝛽) < 2. If 𝑝−1 + 𝑞−1 = 1, Holder’s inequality gives 

∫
(1 − |𝑣|2)−𝛽

|1 − 𝑧𝑣|2−2𝛽|𝑣|>𝛿

d𝐴(𝑣) ≤ (∫
(1 − |𝑣|2)−𝑝𝛽

|1 − 𝑧𝑣|2𝑝(1−𝛽)𝔻

d𝐴(𝑣))

1/𝑝

(1 − 𝛿2)1/𝑞 . 

Since 2𝑝(1 − 𝛽) = 2 − 𝑝𝛽 + [𝑝(2 − 𝛽) − 2] < 2 − 𝑝𝛽,then Lemma (3.2.5) says that the 

last expression is bounded by 𝐶𝛽(1 − 𝛿
2)1/𝑞, where 𝐶𝛽 depends only on 𝛽. Going back to 

(3) we see that the integral in (2) is bounded by 

𝐶𝛽(1 − 𝛿(ℛ)
2)1/𝑞(𝛽)(1 − |𝑧|2)−𝛽 , 

proving the lemma. 

Lemma (3.2.7)[81]: Let 0 < 𝑟 < 1 and 𝛼𝑗 ∈ 𝔻, 𝑗 ≥ 1, such that 𝐾(𝛼𝑗 , 𝑟) are pairwise 

disjoint. Suppose that ℛ ∈ (𝑟, 1) and 𝑎𝑗 , 𝐴𝑗 ∈ 𝐿
∞ are functions of norm ≤ 1 such that 
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supp𝑎𝑗 ⊂ 𝐾(𝛼𝑗 , 𝑟) and supp 𝐴𝑗 ⊂ 𝐷\𝐾(𝛼𝑗 , ℛ). 

Then ∑ 𝑀𝑎𝑗𝑃𝑀𝐴𝑗𝑗≥1  is bounded on 𝐿𝑝 for every 1 < 𝑝 < ∞, with norm bounded by some 

constant 𝑘𝑝(ℛ) → 0 when ℛ → 1. 

Proof. Write 

Φ(𝑧,𝜔) =∑𝜒𝐾(𝛼𝑗,𝑟)(𝑧)

𝑗≥1

𝜒𝐷\𝐾(𝛼𝑗,ℛ)(𝜔)
1

|1 − 𝜔𝑧|2
 . 

Let 𝑓 ∈ 𝐿𝑝. Since ‖𝑎𝑗‖∞, ‖𝐴𝑗‖∞ ≤ 1  for all 𝑗, then 

|(∑𝑀𝑎𝑗𝑃𝑀𝐴𝑗
𝑗≥1

𝑓) (𝑧)| = |∑𝑎𝑗(𝜔)

𝑗≥1

∫ 𝐴𝑗(𝜔)𝑓(𝜔)
d𝐴(𝜔)

(1 − 𝜔𝑧)2
𝔻

|

≤ ∫ Φ(𝑧,𝜔)|𝑓(𝜔)|d𝐴(𝜔)
𝔻

. 

Taking ℎ(𝑧) = |1 − |𝑧|2|−1/𝑝𝑞, where 𝑝− + 𝑞−1 = 1, Lemma (3.2.6) asserts that 

∫ Φ(𝑧,𝜔)ℎ(𝜔)𝑞d𝐴(𝜔)
𝔻

≤ 𝐶𝑝−1(ℛ)ℎ(𝑧)
𝑞 

and Lemma (3.2.5) implies that there is some 𝐶 > 0 such that 

∫ Φ(𝑧,𝜔)ℎ(𝑧)𝑝d𝐴(𝜔)
𝔻

≤ 𝐶ℎ(𝜔)𝑝. 

By Schur’s theorem ([85], p. 42) the integral operator with kernel Φ(𝑧,𝜔) is bounded on 𝐿𝑝 

and its norm is bounded by (𝐶𝑝−1(ℛ))
1/𝑞
𝐶1/𝑝 → 0 as ℛ → 1. 

Let 𝑎𝑗
𝑖 , 𝑏𝑗 ∈ 𝐿

∞, 𝑗 ≥ 1 and 1 ≤ 𝑖 ≤ 𝑚, be functions of norm at most 1 supported on 

𝐾(𝛼𝑗 , 𝑟), where the pseudo-hyperbolic disks are pairwise disjoint. 

By Lemma (3.2.2) for any 𝜎 ∈ (𝑟, 1) there is some 𝑛 = 𝑛(𝜎) ≥ 1 and a partition of the 

positive integers ℕ = 𝑁1 ∪ …∪ 𝑁𝑛 such that 

𝜌(𝛼𝑖 , 𝛼𝑗) > 𝜎        for 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑁𝑘, 1 ≤ 𝑘 ≤ 𝑛. 

Lemma (3.2.8)[81]: If 1 < 𝑝 < ∞ then 

∑ [(∑ 𝑃𝑎𝑗
1 …𝑃𝑎𝑗

𝑚

𝑗∈𝑁𝑘

)𝑃
(∑ 𝑏𝑖𝑖∈𝑁𝑘

)
]

1≤𝑘≤𝑛

→∑𝑃𝑎𝑗
1…𝑃𝑎𝑗

𝑚𝑃𝑏𝑗
𝑗≥1

                (4) 

in operator norm when 𝜎 → 1. 

Proof. Write 𝐵𝑗 = ∑ 𝑏𝑖𝑖∈𝑁𝑘
𝑖≠𝑗

 when 𝑗 ∈ 𝑁𝑘 for some 1 ≤ 𝑘 ≤ 𝑛. Since 𝑃
(∑ 𝑏𝑖𝑖∈𝑁𝑘

)
= 𝑃𝑏𝑗 +

𝑃𝐵𝑗, the first term in (4) can be decomposed as 

∑[∑ 𝑃𝑎𝑗
1 …𝑃𝑎𝑗

𝑚𝑃𝑏𝑗 +

𝑗∈𝑁𝑘

∑ 𝑃𝑎𝑗
1…𝑃𝑎𝑗

𝑚𝑃𝐵𝑗
𝑗∈𝑁𝑘

]

𝑛

𝑘=1

= 𝑆1 + 𝑆2 , 

 where 

𝑆1 =∑ ∑ 𝑃𝑎𝑗
1 …𝑃𝑎𝑗

𝑚𝑃𝑏𝑗 =

𝑗∈𝑁𝑘

∑𝑃𝑎𝑗
1 …𝑃𝑎𝑗

𝑚𝑃𝑏𝑗
𝑗≥1

𝑛

𝑘=1
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and 

𝑆2 =∑ ∑ 𝑃𝑎𝑗
1 …𝑃𝑎𝑗

𝑚𝑃𝐵𝑗 =

𝑗∈𝑁𝑘

∑𝑃𝑎𝑗
1 …𝑃𝑎𝑗

𝑚𝑃𝐵𝑗
𝑗≥1

𝑛

𝑘=1

. 

Let 𝑓 ∈ 𝐿𝑝. By Lemmas (3.2.3) and (3.2.7) 

‖𝑆2𝑓‖𝑝 ≤ 𝐶𝑝
𝑚∑‖𝑀𝑎𝑗

𝑚𝑃𝐵𝑗𝑓‖
𝑝

𝑗≥1

.                              (5) 

If 𝜔 ∈ supp𝐵𝑗 for 𝑗 ∈ 𝑁𝑘 with 1 ≤ 𝑘 ≤ 𝑛, then there is 𝑖 ≠ 𝑗 in 𝑁𝑘 such that 𝜔 ∈ 𝐾(𝛼𝑗 , 𝑟). 

Then 

𝜌(𝜔, 𝛼𝑗) ≥
𝜌(𝛼𝑗 , 𝛼𝑖) − 𝜌(𝜔, 𝛼𝑖)

1 − 𝜌(𝛼𝑗 , 𝛼𝑎)𝜌(𝜔, 𝛼𝑖)
>
𝜎 − 𝑟

1 − 𝜎𝑟
= ℛ(𝜎), 

meaning that supp𝐵𝑗 ⊂ 𝔻\𝐾 (𝛼𝑗 , ℛ(𝜎)). Since ℛ(𝜎) → 1 when 𝜎 → 1, (5) and Lemma 

(3.2.7) prove (4). 

Corollary (3.2.9)[81]: Under the conditions of Lemma (3.2.8), 

∑ [(∑ 𝑇𝑎𝑗
1 …𝑇𝑎𝑗

𝑚

𝑗∈𝑁𝑘

)𝑇
(∑ 𝑏𝑖𝑖∈𝑁𝑘

)
]

1≤𝑘≤𝑛

→∑𝑇𝑎𝑗
1 …𝑇𝑎𝑗

𝑚𝑇𝑏𝑗
𝑗≥1

                (6) 

and  

∑ [𝑇
(∑ 𝑏𝑖𝑖∈𝑁𝑘

)
(∑ 𝑇𝑎𝑗

1 …𝑇𝑎𝑗
𝑚

𝑗∈𝑁𝑘

)]

1≤𝑘≤𝑛

→∑𝑇𝑏𝑗𝑇𝑎𝑗
1 …𝑇𝑎𝑗

𝑚

𝑗≥1

                (7) 

in operator norm when 𝜎 → 1. 

Proof. We obtain (6) by restricting the operators of (4) to 𝐿𝑎
𝑝

. To prove (7) use (6) with 

∑ [(∑ 𝑇𝑎𝑗
𝑚 …𝑇

𝑎𝑗
1

𝑗∈𝑁𝑘

)𝑇
(∑ 𝑏𝑖𝑖∈𝑁𝑘

)
]

1≤𝑘≤𝑛

 

acting on 𝐿𝑎
𝑞

 and then take adjoints. 

Proposition (3.2.10)[81]: Let 1 < 𝑝 < ∞ and 𝑐𝑗
1, … , 𝑐𝑗

𝑖 , 𝑎𝑗 , 𝑏𝑗 , 𝑑𝑗
1, … , 𝑑𝑗

𝑚 ∈ 𝐿∞ be functions 

of norm ≤ 1 supported on 𝐾(𝛼𝑗 , 𝑟) for 𝑗 ≥ 1, where 𝐾(𝛼𝑗 , 𝑟) ∩ 𝐾(𝛼𝑖 , 𝑟) = ∅  if 𝑖 ≠ 𝑗. Then 

∑𝑇𝑐𝑗
1 …𝑇𝑐𝑗

𝑙 (𝑇𝑎𝑗𝑇𝑏𝑗 − 𝑇𝑏𝑗𝑇𝑎𝑗)𝑇𝑑𝑗
1 …𝑇𝑑𝑗

𝑚

𝑗≥1

∈ ℭ𝔗(𝐿𝑎
𝑝
). 

Proof. For 𝑟 < 𝜎 < 1 decompose ℕ = 𝑁1 ∪ …∪ 𝑁𝑛as in the paragraph that precedes 

Lemma (3.2.8). By Corollary (3.2.9), 

∑ [𝑇
(∑ 𝑎𝑗𝑗∈𝑁𝑘

)
𝑇
(∑ 𝑏𝑖𝑖∈𝑁𝑘

)
− 𝑇

(∑ 𝑏𝑖𝑖∈𝑁𝑘
)
𝑇
(∑ 𝑎𝑗𝑗∈𝑁𝑘

)
]

1≤𝑘≤𝑛

→∑(𝑇𝑎𝑗𝑇𝑏𝑗 − 𝑇𝑏𝑗𝑇𝑎𝑗)

𝑗≥1

 

in operator norm when 𝜎 → 1. Since the first operators belong to the commutator ideal, so 

does their limit. Thus, 

∑(𝑇𝑎𝑗𝑇𝑏𝑗 − 𝑇𝑏𝑗𝑇𝑎𝑗)

𝑗∈𝐹

∈ ℭ𝔗(𝐿𝑎
𝑝
) 
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for any subset 𝐹 ⊂ ℕ. In particular, this hold for 𝐹 = 𝑁𝑘, 1 ≤ 𝑘 ≤ 𝑛. Then 

∑ [(∑ (𝑇𝑎𝑗𝑇𝑏𝑗 − 𝑇𝑏𝑗𝑇𝑎𝑗)𝑇(∑ 𝑑𝑖
1

𝑖∈𝑁𝑘
)

𝑗∈𝑁𝑘

)]

1≤𝑘≤𝑛

∈ ℭ𝔗(𝐿𝑎
𝑝
), 

and since (6) says that the above operators converge to 

∑(𝑇𝑎𝑗𝑇𝑏𝑗 − 𝑇𝑏𝑗𝑇𝑎𝑗)𝑇𝑑𝑗
1

𝑗≥1

 

when 𝜎 → 1, this operator is also in ℭ𝔗(𝐿𝑎
𝑝
). Clearly, the same holds if the sum is over any 

set 𝐹 ⊂ ℕ. We can repeat this process 𝑚 − 1 more times using (6) and then 𝑙 times using 

(7) to obtain the desired result. 

Let 𝑎 ∈ 𝐿∞ be a real-valued function such that 𝑎(𝜔) ≥ 𝛿 > 0 for every 𝜔 ∈ 𝔻. Then 

𝑇𝑎 is self-adjoint and 

〈𝑇𝑎𝑓, 𝑓〉 = ∫ 𝑎|𝑓|2d𝐴
𝔻

≥ 𝛿∫ |𝑓|2d𝐴
𝔻

= 𝛿‖𝑓‖2
2 

for every 𝑓 ∈ 𝐿𝑎
2 . Therefore 𝑇𝑎 is invertible. Theorem (3.2.1) will be proved by constructing 

a function a as above such that 𝑇𝑎 ∈ ℭ𝔗(𝐿𝑎
2 ). 

We need to summarize several basic features of Toeplitz operators. If 𝑎, 𝑏 ∈ 𝐿∞ then 

𝑇𝑎𝑇𝑏 = 𝑇𝑎𝑏 when 𝑎 ∈ 𝐻∞ or 𝑏 ∈ 𝐻∞. If 𝑧 ∈ 𝔻 then 𝑈𝑧𝑓 = (𝑓 ∘ 𝜑𝑧)𝜑𝑧
′defines a unitary 

self-adjoint operator on 𝐿𝑎
2 .Therefore, if 𝑎 ∈ 𝐿∞ and 𝑓, 𝑔 ∈ 𝐿𝑎

2 , 

〈𝑈𝑧𝑇𝑎𝑈𝑧𝑓, 𝑔〉 = 〈𝑇𝑎𝑈𝑧𝑓, 𝑈𝑧𝑔〉 = 〈𝑎(𝑓 ∘ 𝜑𝑧)𝜑𝑧
′ , (𝑔 ∘ 𝜑𝑧)𝜑𝑧

′〉 = 〈(𝑎 ∘ 𝜑𝑧)𝑓, 𝑔〉, 
where the last equality comes from changing variables inside the integral. Thus 

𝑈𝑧𝑇𝑎1…𝑇𝑎𝑛𝑈𝑧 = 𝑈𝑧𝑇𝑎1𝑈𝑧…𝑈𝑧𝑇𝑎1𝑈𝑧 = 𝑇𝑎1∘𝜑𝑧 …𝑇𝑎𝑛∘𝜑𝑧                 (8) 

for 𝑎𝑗 ∈ 𝐿
∞, 1 ≤ 𝑗 ≤ 𝑛. By diagonal operator we always mean diagonal with respect to the 

orthonormal basis {√𝑛 + 1𝑧𝑛}
𝑛≥0
. 

A straightforward calculation with polar coordinates shows that if 𝑎 ∈ 𝐿∞is a radial 

function (i.e. 𝑎(𝑧) = 𝑎(|𝑧|)), then 𝑇𝑎 is diagonal with 𝑛-entry 

𝜆𝑛(𝑎) = ∫𝑎 (𝑡
1
2) (𝑛 + 1)𝑡𝑛d𝑡.

1

0

                                   (9) 

If 𝜒𝑟denotes the characteristic function of the ball {|𝜔| ≤ 𝑟}, where 0 < 𝑟 < 1, then (9) 

yields 𝑇𝜒𝑟𝜔
𝑛 = 𝑟2(𝑛+1)𝜔𝑛. 

Lemma (3.2.11)[81]: Let 𝑎 ∈ 𝐿∞ be a radial function and 0 < 𝑟 < 1. Then 

𝑇𝜒𝑟𝑇𝑎 = 𝑇𝜒𝑟(𝜔)𝑎(𝜔/𝑟). 

Proof. The operator 𝑇𝜒𝑟(𝜔)𝑎(𝜔/𝑟) is diagonal, and its 𝑛-entry is 

∫𝜒[0,𝑟](𝑡
1/2)𝑎 (

𝑡1/2

𝑟
) (𝑛 + 1)𝑡𝑛d𝑡.

1

0

= ∫ 𝑎 (
𝑡1/2

𝑟
) (𝑛 + 1)𝑡𝑛d𝑡

𝑟2

0

= 𝑟2𝑛+2∫𝑎(𝑢1/2)(𝑛 + 1)𝑢𝑛d𝑡

1

0

, 

where the last equality comes from the change of variables 𝑢 = 𝑡/𝑟2. By (9) 𝑇𝜒𝑟𝑇𝑎 is also 

diagonal and has the same entries. 
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A simple calculation shows that if 𝑛 ≥ 1 then 〈𝑇𝜔𝜔
𝑛, 𝜔𝑘〉 = 〈𝜔𝑛, 𝜔𝑘+1〉 =

〈(𝑛/𝑛 + 1)𝜔𝑛−1, 𝜔𝑘〉. A recursive argument then gives that for every nonnegative integer 

𝑘, 

𝑇
𝜔
𝑘𝜔𝑛 =

(𝑛 + 1 − 𝑘)

𝑛 + 1
𝜔𝑛−𝑘          𝑖𝑓 𝑛 ≥ 𝑘 

and 𝑇
𝜔
𝑘𝜔𝑛 = 0 if 𝑛 < 𝑘. Thus 

𝑇
𝜔
𝑘𝑇𝜒𝑟𝜔

𝑛 = 𝑟2(𝑛+1) (
𝑛 + 1 − 𝑘

𝑛 + 1
)𝜔𝑛−𝑘         𝑖𝑓 𝑛 ≥ 𝑘, 

and since 𝑇𝜒𝑟𝑇𝜔𝑘𝜔
𝑛 = 𝑟2(𝑛+𝑘+1)𝜔𝑛+𝑘 then 

(𝑇
𝜔
𝑘𝑇𝜒𝑟)(𝑇𝜒𝑟𝑇𝜔𝑘)𝜔

𝑛 = 𝑟4(𝑛+𝑘+1) (
𝑛 + 1

𝑛 + 𝑘 + 1
)𝜔𝑛

= 𝑟4𝑘𝑇𝜒
𝑟2
𝑇
𝜔
𝑘𝑇𝜔𝑘𝜔

𝑛,                                                                     (10) 

where the second equality comes from the limit case 𝑟 = 1 in the first equality and from 

𝑇𝜒
𝑟2
𝜔𝑛 = 𝑟4(𝑛+1)𝜔𝑛. Since 𝑇𝜒𝑟 and 𝑇𝜔𝑘𝑇𝜔𝑘 are diagonal, they commute, and since 𝑇𝜒𝑟

2 =

𝑇𝜒
𝑟2

 then 

𝑇𝜒𝑟𝑇𝜔𝑘𝑇𝜔𝑘𝑇𝜒𝑟 = 𝑇𝜒𝑟
2 𝑇𝜔𝑘𝑇𝜔𝑘 = 𝑇𝜒𝑟2𝑇𝜔𝑘𝑇𝜔𝑘 .                                     

(11) 

By (10), (11) and Lemma (3.2.11), 

𝑆𝑘 ≝ [𝑇𝜔𝑘𝜒𝑟  , 𝑇𝜔𝑘𝜒𝑟
] = 𝑇𝜒

𝑟2
(𝑇𝜔𝑘𝑇𝜔𝑘 − 𝑟

4𝑘𝑇
𝜔
𝑘𝑇𝜔𝑘)

= 𝑇𝜒
𝑟2
𝑇𝜔𝑘𝑇𝜔𝑘 − 𝑇𝜒𝑟2|𝜔|

2𝑘 .                                                            (12) 

Let 𝑃0 ∈ 𝔏(𝐿𝑎
2 ) be the operator 𝑃0𝑓 = 𝑓(0). Straightforward evaluations on the basis 

{𝑧𝑛}𝑛≥0 give the following identities 

𝑇𝜔𝑇𝜔 = 𝑇1+log|𝜔|2  , 𝑇𝜔2𝑇𝜔2 = 𝑇1+2 log|𝜔|2 + 𝑃0   and  𝑇𝜒𝑟2𝑃0 = 𝑟
4𝑃0.   (13) 

Then 

2𝑆1 − 𝑆2𝑏𝑦 (3.5)𝑇𝜒
𝑟2
(2𝑇𝜔𝑇𝜔 − 𝑇𝜔2𝑇𝜔2) + 𝑇𝜒

𝑟2(|𝜔|
4−2|𝜔|2)

𝑏𝑦 (3.6)𝑇𝜒
𝑟2(1+|𝜔|

4−2|𝜔|2)

− 𝑟4𝑃0 = 𝑇𝜒
𝑟2(1−|𝜔|

2)
2
− 𝑟4𝑃0.                                                                  (14) 

Since 2𝑆1 − 𝑆2, 𝑇𝜒𝑟and 𝑃0are diagonal operators, they commute. Consequently 

𝑃0𝑇𝜒𝑟𝑇𝜔 = 𝑇𝜒𝑟𝑃0𝑇𝜔 = 0, 

which together with Lemma (3.2.11) and (14) gives 

𝑇𝜒
𝑟𝜔
(2𝑆1 − 𝑆2)𝑇𝜒𝑟𝜔 = 𝑇𝜔𝑇𝜒𝑟(2𝑆1 − 𝑆2)𝑇𝜒𝑟𝑇𝜔 = 𝑇

𝜒𝑟4(1−
|𝜔|2

𝑟4
)
2

|𝜔|2
. (15) 

If 𝛼 ∈ 𝔻 then (8), (12) and (15) yield 

𝑇(𝜒𝑟∘𝜑𝛼)𝜑𝛼 (2 [𝑇(𝜒𝑟∘𝜑𝛼)𝜑𝛼 , 𝑇(𝜒𝑟∘𝜑𝛼)𝜑𝛼] − [𝑇(𝜒𝑟∘𝜑𝛼)𝜑𝛼2 , 𝑇(𝜒𝑟∘𝜑𝛼)𝜑𝛼
2 ]) 𝑇(𝜒𝑟∘𝜑𝛼)𝜑𝛼

= 𝑈𝛼𝑇𝜒
𝑟𝜔
(2𝑆1 − 𝑆2)𝑇𝜒𝑟𝜔𝑈𝛼 = 𝑇(𝜒𝑟4∘𝜑𝛼)(1−|𝜑𝛼|

2/𝑟4)2|𝜑𝛼|
2 .                           (16) 

Suppose that 0 < 𝑟 < 1 and {𝛼𝑗} ⊂ 𝔻 is a sequence such that 𝐾(𝛼𝑖 , 𝑟) ∩ 𝐾(𝛼𝑗 , 𝑟) =

∅ for 𝑖 ≠ 𝑗. Since (𝜒𝑟4 ∘ 𝜑𝛼)(𝜔) = 𝜒𝐾(𝛼,𝑟4)(𝜔), the characteristic function of  

𝐾(𝛼, 𝑟4), then 

𝐴(𝜔) ≝∑𝜒𝑟4 (𝜑𝛼𝑗(𝜔))(1 −
|𝜑𝛼𝑗(𝜔)|

2

𝑟4
)

2

|𝜑𝛼𝑗(𝜔)|
2

𝑗≥1

 

is in 𝐿∞ with ‖𝐴‖∞ ≤ 1. In conjunction with (16), Proposition (3.2.10) tells us that 
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𝑇𝐴 =∑𝑇
(𝜒𝑟4∘𝜑𝛼𝑗)(1−|𝜑𝛼𝑗

(𝜔)|
2
/𝑟4)

2

|𝜑𝛼𝑗
(𝜔)|

2 ∈

𝑗≥1

ℭ𝔗(𝐿𝑎
2 ).                    (17) 

When 𝜔 ∈ 𝔻 satisfies 𝑟4/4 < 𝜌(𝜔, 𝛼𝑗) ≤ (3/4)𝑟
4 for some 𝛼𝑗 we have 

(1 −
|𝜑𝛼𝑗(𝜔)|

2

𝑟4
)

2

|𝜑𝛼𝑗(𝜔)|
2
≥ (1 − 

32𝑟8

42𝑟4
)

2
𝑟8

42
≥
𝑟8

28
 , 

meaning that 

𝐴(𝜔) ≥ (
𝑟

2
)
8

 when 𝜔 ∈ 𝐾 (𝛼𝑗 , (
3

4
) 𝑟4) \𝐾 (𝛼𝑗 ,

𝑟4

4
) for some𝛼𝑗  . (18) 

Lemma (3.2.12)[81]: Given 0 < 𝜎 < 1 there is a separated sequence {𝛼𝑗} in 𝔻 such that 

every 𝑧 ∈ 𝔻 is in 𝐾(𝛼𝑗 , 3𝜎/4)\𝐾(𝛼𝑗 , 𝜎/4) for some 𝛼𝑗. 

Proof. Take a sequence {𝛼𝑗}  ⊂  𝔻 such that 𝜌(𝛼𝑖 , 𝛼𝑗) > 𝜎/100 if 𝑖 ≠ 𝑗 and 

 𝜌 ({𝛼𝑗}𝑗≥1, 𝜔) ≤
𝜎

8
for every 𝜔 ∈ 𝔻.          (19) 

For an arbitrary 𝑧 ∈ 𝔻 write 𝛽𝑗 = 𝜑𝑧(𝛼𝑗). The conformal invariance of 𝜌 implies that 

{𝛽𝑗}𝑗≥1 satisfies (19). We claim that there is some 𝛽𝑗 such that
𝜎

4
< |𝛽𝑗| ≤ (3/4)𝜎. 

Otherwise 

𝜌 (
𝜎

2
, {𝛽𝑗}𝑗≥1) ≥ 𝜌 (

𝜎

2
,𝔻\ {

𝜎

4
< |𝜔| ≤

3

4
𝜎}) = 𝜌 (

𝜎

2
, {
𝜎

4
,
3𝜎

4
}) ≥

𝜎
4

1 −
𝜎
4
.
𝜎
2

>
𝜎

4
 . 

This contradicts (19) with respect to {𝛽𝑗}𝑗≥1 for 𝜔 = 𝜎/2. If 
𝜎

4
< {𝛽𝑗0} ≤ (3/4)𝜎 then 

𝜌(𝛼𝑗0 , 𝑧) = 𝜌 (𝜑𝑧(𝛼𝑗0), 𝜑𝑧(𝑧)) = 𝜌(𝛽𝑗0 , 0) = |𝛽𝑗0| ∈ (
𝜎

4
,
3𝜎

4
], 

and since 𝑧 ∈ 𝔻 is arbitrary, the lemma follows. 

Returning to our construction, fix 0 < 𝑟 < 1 and suppose that 𝑆 = {𝛼𝑗}𝑗≥1 is a 

sequence satisfying Lemma (3.2.12) for 𝜎 = 𝑟4. Since 𝑆 is separated, by Lemma (3.2.2) we 

can decompose 𝑆 = 𝑆1 ∪ …∪ 𝑆𝑁, where for each 1 ≤ 𝑘 ≤ 𝑁,𝐾(𝛼𝑖 , 𝑟) ∩ 𝐾(𝛼𝑗 , 𝑟) = ∅ if 

𝛼𝑖 , 𝛼𝑗 ∈ 𝑆𝑘 with 𝑖 ≠ 𝑗. For 1 ≤ 𝑘 ≤ 𝑁 write 

𝐴𝑘(𝜔) = ∑ 𝜒𝑟4 (𝜑𝛼𝑗(𝜔))(1 −
|𝜑𝛼𝑗(𝜔)|

2

𝑟4
)

2

𝛼𝑗∈𝑆𝑘

|𝜑𝛼𝑗(𝜔)|
2
. 

Then ‖𝐴𝑘‖∞ ≤ 1 and (17) says that 𝑇𝐴𝑘 ∈ ℭ𝔗(𝐿𝑎
2 ).  Consequently 

∑𝑇𝐴𝑘 = 𝑇(∑ 𝐴𝑘
𝑁
𝑘=1 )

𝑁

𝑘=1

∈ ℭ𝔗(𝐿𝑎
2 ). 

In addition, (18) says that for every 1 ≤ 𝑘 ≤ 𝑁, 

𝐴𝑘(𝜔) ≥ (
𝑟

2
)
8

when 𝜔 ∈ 𝐾 (𝛼𝑗 , (
3

4
) 𝑟4) \𝐾 (𝛼𝑗 ,

𝑟4

4
) for some𝛼𝑗 ∈ 𝑆𝑘, 

and since Lemma (3.2.12) asserts that 
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𝔻 = ⋃ ⋃ 𝐾(𝛼𝑗 , (
3

4
) 𝑟4) \𝐾 (𝛼𝑗 ,

𝑟4

4
)

𝛼𝑗∈𝑆𝑘1≤𝑘≤𝑁

 

Then∑ 𝐴𝑘(𝜔)
𝑁
𝑘=1 ≥ (

𝑟

2
)
8
for every 𝜔 ∈ 𝔻. This completes the construction and 

proves Theorem (3.2.1). 

 

Section (3.3): Dixmier Traces on the Unit Ball of ℂ𝐧 

We study the Dixmier trace of a class of Toeplitz and Hankel operators on the Hardy 

and weighted Bergman spaces on the unit ball of ℂ𝑑. We give a brief account of the problem 

and explain some motivations. Consider the Bergman space 𝐿𝑎
2 (𝐷)of holomorphic functions 

on the unit disk 𝐷 in the complex plane. For a bounded function 𝑓 let 𝑇𝑓 be the Toeplitz 

operator on 𝐿𝑎
2 (𝐷). It is a well-known that for a holomorphic function 𝑓 the commutator 

[𝑇𝑓
∗, 𝑇𝑓] is of trace class and the trace is given by the square of the Dirichlet norm of 𝑓, 

tr[𝑇𝑓
∗, 𝑇𝑓] = ∫ |𝑓′(𝑧)|2𝑑𝑚(𝑧)

𝐷

, 

which is one of the best known M¨obius invariant integrals. This formula actually holds for 

Toeplitz operators on any Bergman space on a bounded domain with the area measure 

replaced any reasonable measure [88]. There is a significant difference between Toeplitz 

operators on the unit disk and on the unit ball 𝐵 = 𝐵𝑑 in ℂ𝑑 , 𝑑 > 1. Let ℒ𝑝 be the Schatten 

- von Neumann class of 𝑝-summable operators. The commutator [𝑇𝑓
∗, 𝑇𝑓]on the weighted 

Bergman space, say for holomorphic functions 𝑓 in a neighborhood of the closed the unit 

disk, is in the Schatten - von Neumann class ℒ𝑝, for 𝑝 >
1

2
and is zero if it is in ℒ𝑝, for 𝑝 ≤

1

2
,
1

2
 being called the cut-off; on the Hardy space [𝑇𝑓

∗, 𝑇𝑓]can be in any Schatten - von 

Neumann class ℒ𝑝, for 𝑝 > 0; see [98] and [99] for the case of Hardy space and [87] for the 

case of weighted Bergman space. However for 𝑑 > 1, it is in ℒ𝑝, for 𝑝 > 𝑑, with 𝑝 = 𝑑 

being the cut off, both on the weighted Bergman spaces and on the Hardy space. Thus no 

trace formula was expected for the commutators. Nevertheless Helton and Howe [96] were 

able to find an analogue of the previous formula. They showed, for smooth functions 

𝑓1, … , 𝑓2𝑑 on the closed unit ball, that the anti-symmetrization [𝑇𝑓1 , 𝑇𝑓2 , … 𝑇𝑓2𝑑] of the 2𝑑 

operators 𝑇𝑓1 , 𝑇𝑓2 , … 𝑇𝑓2𝑑is of trace class and found that 

tr[𝑇𝑓1 , 𝑇𝑓2 , … 𝑇𝑓2𝑑] = ∫ 𝑑𝑓1 ∧ 𝑑𝑓2…∧ 𝑑𝑓2𝑑
𝐵

. 

On the other hand, we observe that [𝑇𝑓 , 𝑇𝑔] is, for smooth functions 𝑓 and 𝑔, in the 

Macaev class ℒ𝑑,∞ (which is an analogue of the Lorentz space ℒ𝑑,∞), thus the product of 𝑑 

such commutators [𝑇𝑓1 , 𝑇𝑔1] [𝑇𝑓2 , 𝑇𝑔2]… [𝑇𝑓𝑑 , 𝑇𝑔𝑑] is in ℒ1,∞ and hence has a Dixmier trace. 

One of our goals is to prove the following formula for the Dixmier trace of this product of 

commutators: 

trω[𝑇𝑓1 , 𝑇𝑔1]… [𝑇𝑓𝑑 , 𝑇𝑔𝑑] = ∫ {𝑓1, 𝑔1}… {𝑓𝑑 , 𝑔𝑑}
𝑆

. 

Here {𝑓, 𝑔} is the Poisson bracket of 𝑓 and 𝑔; its restriction to the boundary 𝑆 of 𝐵 depends 

only on the boundary values of 𝑓 and 𝑔 and can be expressed in terms of the boundary 𝐶𝑅 
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operators. This can be viewed as a generalization of the Helton-Howe theorem. We apply 

our result also to Hankel operators and obtain a formula for the Dixmier trace of the 𝑑-th 

power of the square modulus of the Hankel operators 𝐻
𝑓
∗𝐻𝑓for holomorphic functions 𝑓. 

This provides a boundary ℒ𝑑,∞ result for the Schattenvon Neumann ℒ𝑝(𝑝 > 𝑑) properties 

of the square modulus of the Hankel operators (see [89], [91] and [101]). 

There has been an intensive study of Dixmier trace and residue trace of pseudo-

differential operators, mostly on compact manifolds where the analysis is relatively easier, 

see e.g. [90] and [93], thus the Toeplitz operators on Hardy spaces on the boundary of a 

bounded strictly pseudo-convex domains can be treated using the techniques developed 

there. The Hankel and Toeplitz operators on Bergman spaces, generally speaking, behaves 

rather differently from those on Hardy space, and the result of Howe [97] roughly speaking 

proves that Toeplitz operators of certain class can be treated similarly as in Hardy space case 

(also called the de Monvel - Howe compactification [92]). Our result can thus be viewed a 

generalization of the compactification to weighted Bergman spaces and an application of 

the [94] ideas of computing Dixmier traces. In particular our Theorem (3.3.5) are closely 

related to the results in [90] where the residue trace of pseudo-differential operators of 

certain class is computed; here we use the Weyl transforms and they differ from pseudo-

differential operators of lower order, so that Theorem (3.3.5) can also be obtained from [90] 

provided one proves the the lower order terms are of trace class. 

We will study the Dixmier trace for Toeplitz operators on a general strongly pseudo-

convex domain [95]. 

Let 𝑑𝑚(𝑧) be the Lebesgue measure on ℂ𝑑 and consider the weighted measure 

𝑑𝜇𝜐 = 𝐶𝑣(1 − |𝑧|
2)𝜐−𝑑−1𝑑𝑚(𝑧), 

where 𝐶𝑣 is the normalizing constant to make 𝑑𝜇𝜐 a probability measure and 𝜐 > 𝑑. We let 

ℋ𝜐 be the corresponding Bergman space of holomorphic functions on 𝐵. We will also 

consider the Hardy space of square integrable functions on 𝑆 which are holomorphic on 𝐵. 

This can be viewed as the analytic continuation of ℋ𝜐 at 𝜐 = 𝑑. Thus we assume that 𝜐 ≥
𝑑. 

Let 𝑓 be a bounded smooth function on 𝐵, the closure of 𝐵. The Toeplitz operator 𝑇𝑓 

on ℋ𝜐 with symbol 𝑓 is defined by 

𝑇𝑓𝑔 = 𝑃(𝑓𝑔) 

where 𝑃 is the Bergman or the Hardy projection for 𝜐 > 𝑑 and 𝜐 = 𝑑, respectively. 

As was shown by Howe [97] there is a more flexible and effective way of studying 

the spectral properties of Toeplitz operators with smooth symbol, by using the theories of 

representations of the Heisenberg group and of pseudo-differential operators. We will adopt 

that approach. See [97] and [100]. So let 𝐻𝑛 = ℂ
𝑑 × 𝑇 be the Heisenberg group as in loc. 

cit.. The Heisenberg group has an irreducible representation, 𝜌, on the Fock space ℱ 

consisting of entire functions 𝑓 on ℂ𝑑 such that 

∫ |𝑓(𝑧)|2𝑒−𝜋|𝑧|
2

ℂ𝑑
𝑑𝑚(𝑧) < ∞. 

The action of the Heisenberg group is explicitly given as follows. For 𝑤 ∈ ℂ𝑑 viewed as an 

element in 𝐻𝑑, 

𝜌(𝑤)𝑓(𝑤′) = 𝑒
−

𝜋
2|𝑤|2

+𝜋𝑤′.𝑤
𝑓(𝑤′ −𝑤), 

where 𝑤′. 𝑤 is the Hermitian inner product on ℂ𝑑. The action of 𝑇 is given by the change 

of variables. 
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Identifying the Lie algebra 𝔥 of the Heisenberg group with ℝ2𝑛⊕ℝ and thus ℝ2𝑛 

with a subspace of the Lie algebra we get an action of ℝ2𝑛 as holomorphic differential 

operators on ℱ, which extends from 𝔥 to the whole enveloping algebra 𝔘(𝔥) and which will 

also be denoted by 𝜌. In particular, taking the basis elements 𝜕𝑗 = 𝜕/𝜕𝑤𝑗 and 𝜕𝑗 = 𝜕/𝜕𝑤𝑗 

of ℝ2𝑛 we have 

 𝜌(𝜕𝑗)𝑓(𝑤) = −𝜕𝑗𝑓(𝑤),    𝜌(𝜕𝑗)𝑓(𝑤) = 𝜋𝑤𝑗𝑓(𝑤).        (20) 

Let, following the notation in [97], ∆∈ 𝔘(𝔥) be the element 

∆=
1

2
(𝜕𝑗 ⋅ 𝜕𝑗 + 𝜕𝑗 ⋅ 𝜕𝑗). 

Then 𝜌(∆) acts on ℱ as a diagonal self-adjoint operator [97], under the orthogonal basis 

{𝑤𝛼 , 𝛼 = (𝛼1, … , 𝛼𝑑)}, viz 

𝜌(∆)𝑤𝛼 = −𝜋 (|𝛼| +
𝑑

2
)𝑤𝛼 .              (21) 

Let 𝐹(𝑧)be a function on ℂ𝑑 (viewed as a function on the Heisenberg group). The 

Weyl transform 𝜌(𝐹) of 𝐹 is defined by 

𝜌(𝐹) = ∫ 𝐹(𝑤)𝜌(𝑤)𝑑𝑚(𝑤)
ℂ𝑑

. 

To understand the operator theoretic properties of 𝜌(𝐹) we will need the Fourier 

transform of 𝐹. Let �̂� be the (symplectic-) Fourier transform of 𝐹 

�̂�(𝑤′) = 2−𝑑∫ 𝐹(𝑤)𝑒𝜋𝑖 Im𝑤
′.𝑤𝑑𝑚(𝑤)

ℂ𝑑
, 

and 𝐹 ∗ 𝐺 the twisted symplectic convolution 

𝐹 ∗ 𝐺(𝑤) = ∫ 𝐹(𝑧)𝐺(𝑤 − 𝑧)𝑒𝜋𝑖 Im 𝑤.𝑧𝑑𝑚(𝑧)
ℂ𝑑

. 

We recall that 

𝐹 ∗ �̂� = 𝐹 ∗ �̂� 
and 

𝜌(𝐹)𝜌(𝐺) = 𝜌(𝐹 ∗ 𝐺) 
for appropriate class of functions. A well-known theorem of Calderón-Vaillancourt states 

that if �̂� and all its derivatives are bounded then 𝜌(𝐹) can be defined as a bounded operator 

on ℱ. 

We will need a finer class of symbols introduced by Howe. Let 

𝒫𝒯(𝑚, 𝜇) = {𝐹 ∈ 𝑆∗(ℂ𝑑): |𝜕𝛼�̅�𝛽�̂�| ≤ 𝐶𝛼𝛽(1 + |𝑤|)
𝑚−𝜇(|𝛼|+|𝛽|)} 

and 

𝒫𝒯rad(𝑚, 𝜇) = {𝐹 ∈ 𝒫𝒯(𝑚, 𝜇): �̂� = (1 − 𝑔(|𝑤|))𝜓 (
𝑤

|𝑤|
) |𝑤|𝑚 + 𝐷1, 𝐷1

∈ 𝒫𝒯(𝑚 − 𝜇, 𝜇)}. 

Here 𝑔 is a smooth function on ℝ such that 0 ≤ 𝑔(𝑡) ≤ 1 on ℝ, , 𝑔(𝑡) = 0 for |𝑡| ≥ 2 and 

𝑔(𝑡) = 1 for 0 ≤ 𝑡 ≤ 1. 

For 𝐹 ∈ 𝒫𝒯rad(𝑚, 𝜇) we will call 

𝜎𝑚(𝐹) ≔ 𝜓(
𝑤

|𝑤|
) |𝑤|𝑚                      (22) 

its principal symbol. It can be obtained, up to the factor |𝑤|𝑚, by 
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𝜓(𝑤) = lim
𝑡→∞

𝑡−𝑚�̂�(𝑡𝑤) ,   𝑤 ∈ 𝑆. 

Following Howe [97], we will call 𝜌(𝐹), 𝐹 ∈ 𝒫𝒯(𝑚, 𝜇), a pseudo-Toeplitz operator of order 

𝑚 and smoothness 𝜇. One has [97] 

 𝐹 ∈ 𝒫𝒯(𝑚1, 𝜇), 𝐺 ∈ 𝒫𝒯(𝑚2, 𝜇) ⟹ 𝐹 ∗ 𝐺 ∈ 𝒫𝒯(𝑚1 +𝑚2, 𝜇). (23) 
We will realize the Toeplitz operators 𝑇𝑓 on ℋ𝜐 for 𝑓 on 𝐵 (or on 𝑆 for the Hardy 

space) as Weyl transforms 𝜌(𝐹) of certain symbols 𝐹 on ℂ𝑑. First we notice that 

𝑒𝛽 ≔ (
(𝜐)|𝛽|

𝛽!
)

1
2

𝑧𝛽 

form an orthonormal basis of ℋ𝜐, and so do 

𝐸𝛽 ≔ (
1

𝜋|𝛽|𝛽!
)

1
2

𝑤𝛽  

for ℱ. (Here (𝜐)𝑗 ≔ 𝜐(𝜐 + 1)… (𝜐 + 𝑗 − 1) is the usual Pochhammer symbol.) Thus the 

map 

 𝑈: 𝑒𝛽 → 𝐸𝛽                                          (24) 

is an unitary operator. First we will find the action of the elementary Toeplitz operators 𝑇𝑧𝛼 

under the intertwining map 𝑈. 

Lemma (3.3.1)[86]: The operator 𝑈𝑇𝑧𝛼𝑈
∗ on ℱ is given by 

  𝑈𝑇𝑧𝛼𝑈
∗ = 𝜌(𝑧)𝛼𝜌(𝜋|𝛼| (𝜈 −

𝑑

2
−
1

𝜋
∆)
|𝛼|
)

−1/2

     (25) 

This can be proved by direct computation. Indeed we have 

𝑇𝑧𝛼𝑒𝛽 = (
(𝛽)𝛼

(𝜐 + |𝛽𝜃|)|𝛼|
)

1
2

𝑒𝛽+𝛼 , 

and the right hand side (25) can be easily computed by (20) and (21). 

By using the previous Lemma we have then the following result which was proved 

by Howe [97] in the case when 𝜐 = 𝑑 + 1; the general case of 𝜐 ≥ 𝑑 is essentially the same. 

Proposition (3.3.2)[86]: Let 𝑓 ∈ 𝐶∞(𝑆) and let 𝑓 be a 𝐶∞ extension to 𝐵 and 𝑇𝑓 the 

Toeplitz operator on ℋ𝜐. Then under the unitary equivalence of ℋ𝜐 and the Fock space ℱ 

on ℂ𝑑, the Toeplitz operators are pseudo-Toeplitz operators with radial asymptotic limits 

𝒫𝒯rad(0,1). More precisely, there exists 𝐹 ∈ 𝒫𝒯rad(0,1) such that 𝑈𝑇𝑓𝑈
∗ = 𝜌(𝐹), and 

𝑓(𝜁) = lim
𝑡→∞

�̃�(𝑡𝜁) for each 𝜁 ∈  𝑆. 

Recall that the Schatten-von Neumann class ℒ𝑝, 𝑝 ≥ 1, consists of compact operators 

𝑇 such that the eigenvalues {𝜇𝑛} of |𝑇| = (𝑇∗𝑇)
1

2 are 𝑝-summable, ∑𝜇𝑛
𝑝
< ∞. In particular 

ℒ2 is the Hilbert-Schmidt class, ℒ1 the trace class and ℒ∞ are the compact operators. For 

1 < 𝑝 < ∞, 1 ≤ 𝑞 ≤ ∞, the Macaev class ℒ𝑝,𝑞 is obtained by the real interpolation between 

ℒ1 and ℒ∞. However, we will need the Macaev class ℒ1,∞, which consists of all compact 

operators such that, if 𝜇1 ≥ 𝜇2 ≥ . .. , 

∑𝜇𝑛

𝑁

𝑛=1

= 𝛰(log𝑁). 

There exists a linear functional on the space ℒ1,∞ that resembles the usual trace, called 

the Dixmier trace. Its definition is rather involved and we refer to [95] for details. Let 
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𝐶𝑏(ℝ+) be the space of bounded continuous functions on ℝ+ and 𝐶0(ℝ+) the subspace of 

functions vanishing at ∞. Let 𝜔 be a positive linear functional on the quotient space 

𝐶𝑏(ℝ+)/𝐶0(ℝ+) such that 𝜔(1) = 1. For a positive compact operator 𝑇 ∈ ℒ1,∞ with 

eigenvalues {𝜇𝑛}, extend 𝜇𝑛 to a step function on ℝ+ and let 𝑀𝑇(𝜆) be its Cesaro mean, 

which is a bounded continuous function on ℝ+. The Dixmier trace of 𝑇 is then defined by 

trω 𝑇 = 𝜔(𝑀𝑇). 
It is then extended to all of ℒ1,∞ be linearity. In particular it is bounded and vanishes on 

trace class operators. The fact that we will need is that 

trω 𝑇 = lim
𝑁→∞

1

log𝑁
∑𝜇𝑛

𝑁

𝑛=1

(𝑇) 

if 𝑇 is a positive operator and if the right hand side exists. 

Lemma (3.3.3)[86]: For any 𝑐 ≥ 0the operator (𝑐 − 𝜌(∆))
−𝑑
= 𝜌(𝑐𝛿0 − ∆)

−𝑑 is in the 

Macaev class ℒ1,∞. 

Proof. It follows from (21) that the eigenvalues of (𝑐 − 𝜌(∆))
𝑑

 are (𝑐 + 𝜋 (𝑚 +
𝑑

2
))
𝑑

, 𝑚 =

0, 1,…,each of multiplicity 

𝑑𝑚 ≔ dim{𝑤𝛼 , |𝛼| = 𝑚} = (
𝑑 +𝑚 − 1
𝑑 − 1

) ≈ 𝑚𝑑−1. 

The partial sums thus satisfy 

∑ (𝑐 + 𝜋 (𝑚 +
𝑑

2
))

−𝑑

𝑑𝑚
𝑚≤𝑁

≈ ∑ (𝑐 + 𝜋 (𝑚 +
𝑑

2
))

−𝑑

𝑚𝑑−1

𝑚≤𝑁

≈ log𝑁 , 

completing the proof.  

Proposition (3.3.4)[86]: Let 𝐹 ∈ 𝒫𝒯(−2𝑑, 1). Then the Weyl transform 𝜌(𝐹) is in the 

Macaev class ℒ1,∞. 

Proof. By (3.5.6) in [97], 

∆̂=
𝜋2

4
|𝑤|2,                                                    (26) 

so −∆∈ 𝒫𝒯(2,1), whence by (23) (−∆)∗𝑑 ∈ 𝒫𝒯(2,1) and (−∆)∗𝑑 ∗ 𝐹 ∈ 𝒫𝒯(0,1). By the 

Calderón-Vaillancourt theorem [97], the corresponding Weyl transform, 𝜌(−∆)𝑑𝜌(𝐹), is 

bounded. Hence by the previous lemma 𝜌(𝐹) ∈ ℒ1,∞, since the Macaev class ℒ1,∞ is an 

ideal.  

Theorem (3.3.5)[86]: Let 𝐹 ∈ 𝒫𝒯rad(−2𝑑, 1) with the principal symbol 𝜎−2𝑑(�̂�) as 

defined in (22). Then the Dixmier trace trω 𝜌(𝐹) is independent of 𝜔 and is given by 

trω 𝜌(𝐹) =
𝜋𝑑

4𝑑
∫ �̂�−2𝑑(𝐹)(𝑤)
𝑆

 

where ∫
𝑆

 is the normalized integral over the unit sphere. 

Proof. The proof is quite similar to that of Connes [94] for pseudo-differential operators on 

compact manifolds. Namely, by [97] and the definition of 𝒫𝒯rad, the Dixmier trace trω 𝜌(𝐹) 

depends only on the leading symbol of 𝜎−2𝑑(�̂�) and defines a positive measure on the unit 

sphere 𝑆 in ℂ𝑑. By the unitary invariance of 𝜌(𝐹) the measure has to be a constant multiple 

of the area measure. To find the constant we 

note that the symbol of 𝑐𝛿0 − ∆, 𝑐 > 0, is absolutely elliptic in the sense of (4.2.20) in [97], 

and thus by pp. 246–247 in [97] we can construct 𝐹0 ∈ 𝒫𝒯rad(−2𝑑, 1) such that 𝜌(𝐹0) =
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(𝑐 − 𝜌(∆))
−𝑑

. The eigenvalue of 𝜌(𝐹0) on the space of all 𝑚-homogeneous polynomials is, 

by the proof of Lemma (3.3.3), 
1

(𝑐 + 𝜋 (𝑚 +
𝑑
2))

𝑑  . 

Its Dixmier trace exists and is 

trω 𝜌(𝐹0) = (
1

𝜋𝐷
) . 

On the other hand the principal symbol 𝜎−2𝑑(𝐹0) is the constant function (4/𝜋2)𝑑|𝑤|−2𝑑 

by the definition (cf. (26)), whose integration over the sphere is (4/𝜋2)𝑑. This completes 

the proof.  

To apply our result to Toeplitz operators we need to introduce some more notation. 

We let 

𝜕𝑗
𝑏 = 𝜕𝑗 − 𝑧�̅�𝑅,   �̅�𝑗

𝑏 = �̅�𝑗 − 𝑧𝑗�̅�  , 

be the boundary Cauchy-Riemann operators [79], where 𝑅 = ∑ 𝑧𝑗𝜕𝑗
𝑑
𝑗=1  is the holomorphic 

radial derivative. As vector fields they are linearly dependent, to wit, 

∑𝑧𝑗𝜕𝑗
𝑏

𝑑

𝑗=1

= 0 ,     ∑𝑧�̅��̅�𝑗
𝑏

𝑑

𝑗=1

= 0.               (27) 

Definition (3.3.6)[86]: We define a bracket {𝑓, 𝑔}𝑏 for smooth functions 𝑓 and 𝑔 on 𝑆 by 

{𝑓, 𝑔}𝑏 ≔∑(𝜕𝑗
𝑏𝑓�̅�𝑗

𝑏𝑔 − �̅�𝑗
𝑏𝑓𝜕𝑗

𝑏𝑔)

𝑑

𝑗=1

 

and call it the boundary Poisson bracket. 

Lemma (3.3.7)[86]: Let 𝐹 and 𝐺 be two functions in 𝒫𝒯rad(0, 𝜇) with principal symbols 

𝜎0(𝐹)(𝑧) = 𝑓 (
𝑧

|𝑧|
)  , 𝜎0(𝐺)(𝑧) = 𝑔 (

𝑧

|𝑧|
) 

for 𝑓 and 𝑔 in 𝐶∞(𝑆). Then the principal symbol of 𝐹 ∗ 𝐺 − 𝐺 ∗ 𝐹 is given by 

𝜎−2(𝐹 ∗ 𝐺 − 𝐺 ∗ 𝐹)(𝑧) =
4

𝜋
{𝑓, 𝑔}𝑏 (

𝑧

|𝑧|
) |𝑧|−2. 

Proof. By the general result for the symbol calculus for pseudo-Toeplitz operators, cf. 

(2.2.5) in [97], we have 𝐹 ∗ 𝐺 − 𝐺 ∗ 𝐹 ∈ 𝒫𝒯rad(−2𝜇, 𝜇) with the principal symbol 

𝜎−2(𝐹 ∗ 𝐺 − 𝐺 ∗ 𝐹)(𝑧) =
4

𝜋
{𝜎0(𝐹), 𝜎0(𝐺)}(𝑧), 

where {·,·} is the ordinary Poisson bracket in complex coordinates 

{Ψ,Φ} ≔∑(𝜕𝑗Ψ�̅�𝑗Φ− 𝜕𝑗Φ�̅�𝑗Ψ)

𝑑

𝑗=1

. 

The function 𝜎−2(𝐹 ∗ 𝐺 − 𝐺 ∗ 𝐹)(𝑧) is positive homogeneous degree of −2. We need only 

to compute it for 𝑧 ∈ 𝑆. We write the radial derivative as 

𝑅 = −𝐸 +
𝑁

2
     , 𝐸 ≔

1

2
(�̅� − 𝑅)  ,    𝑁 ≔ �̅� + 𝑅, 
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𝐸 being the Reeb vector field, which is well-defined on 𝑆, and 𝑁 being the outward unit 

normal vector field on 𝑆. The vector field 𝜕𝑗
𝑏 − 𝑧�̅�𝐸 is thus a well-defined vector field on 𝑆, 

and for any function Φ(𝑧) = 𝜙 (
𝑧

|𝑧|
) we have 

𝜕𝑗Φ(𝑧) = (𝜕𝑗
𝑏 + 𝑧�̅�𝑅)Φ(𝑧) = (𝜕𝑗

𝑏 − 𝑧�̅�𝐸 +
𝑧�̅�
2
𝑁)Φ(𝑧) = (𝜕𝑗

𝑏 − 𝑧�̅�𝐸)𝜙(𝑧), 

since 𝑁Φ(𝑧) = 0 by homogeneity. Similarly �̅�𝑗
𝑏Φ = (𝜕𝑗

𝑏 + 𝑧𝑗𝐸)𝜙on S. From this it follows 

that for 𝑧 ∈ 𝑆 

{𝜎0(𝐹), 𝜎0(𝐺)}(𝑧)

=∑((𝜕𝑗
𝑏𝑓(𝑧) − 𝑧�̅�𝐸𝑓(𝑧)) (�̅�𝑗

𝑏𝑔(𝑧) + 𝑧𝑗𝐸𝑔(𝑧))

𝑑

𝑗=1

− (�̅�𝑗
𝑏𝑓(𝑧) − 𝑧�̅�𝐸𝑓(𝑧)) (𝜕𝑗

𝑏𝑔(𝑧) + 𝑧𝑗𝐸𝑔(𝑧))) = {𝑓, 𝑔}𝑏 , 

by using (27).  

Theorem (3.3.8)[86]: Let 𝑓1, 𝑔1, … , 𝑓𝑑 , 𝑔𝑑 be smooth functions on 𝑆, 𝑓1, �̃�1, … , 𝑓𝑑 , �̃�𝑑 their 

smooth extensions to 𝐵 and 𝑇𝑓1 , 𝑇�̃�1 , … , 𝑇𝑓𝑑 , 𝑇�̃�𝑑the associated Toeplitz operators on ℋ𝜐 for 

𝜐 ≥ 𝑑. Then the product ∏ [𝑇𝑓𝑗 , 𝑇�̃�𝑗]
𝑑
𝑗=1  is in the Macaev class and its Dixmier trace is given 

by 

tr𝜔∏[𝑇𝑓𝑗 , 𝑇�̃�𝑗]

𝑑

𝑗=1

= ∫ ∏{𝑓𝑗 , 𝑔𝑗}𝑏

𝑑

𝑗=1S

. 

Proof. The proof is straightforward from the preceding lemma, formula (2.2.5) in [97] and 

Theorem (3.3.5). 

We apply our result to Hankel operators with anti-holomorphic symbols. Let 𝑓 be a 

holomorphic function in a neighborhood of 𝐵 and 𝐻𝑓̅𝑔 = (𝐼 − 𝑃)𝑓�̅�,    𝑔 ∈ ℋ𝜐the Hankel 

operator. Then 

[𝑇𝑓̅, 𝑇𝑓] = [𝑇𝑓
∗, 𝑇𝑓] = |𝐻𝑓̅|

2𝑑
= 𝐻𝑓̅

∗𝐻𝑓̅. 

Corollary (3.3.9)[86]: Let 𝑓 be as above. Then the Hankel operator is in ℒ2𝑑,∞, equivalently 

the commutator [𝑇𝑓̅, 𝑇𝑓] is in ℒ𝑑,∞ and we have 

tr𝜔|𝐻𝑓̅|
2𝑑
= tr𝜔 (|𝑇𝑓̅, 𝑇𝑓|

𝑑
) = ∫ (|𝛻𝑓|2 − |𝑅𝑓|2)𝑑

𝑆

. 

Notice that 𝐻𝑓̅ is in the Schatten class ℒ𝑝 for 𝑝 > 2𝑑 and that its Schatten norm is 

‖𝐻𝑓̅‖𝑝
𝑝
≈ ∫ (1 − |𝑧|2)𝑝(|𝛻𝑓|2 − |𝑅𝑓|2)

𝑝
2𝑑𝑚(𝑧);

𝐵

 

see [89] and [101] for the Bergman space case (𝜐 = 𝑑 + 1) and Hardy space (𝜐 = 𝑑). 
Our result formula provides thus a limiting result of the above estimates, and it is interesting 

to note that estimate has an equality as its limit for 𝑝 → 2𝑛.  
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Chapter 4 

Essential Commutants and Exact Sequences 

 

We show that the space of Toeplitz operators associated to ℱ is completely isometric 

to the commutant of the minimal normal extension ℱ̂. Applications of these results are given 

for Toeplitz operators on strictly pseudoconvex or bounded symmetric domains. We deduce 

an essential version of the classical Hartman–Wintner spectral inclusion theorem, give a 

new proof of Johnson and Parrot’s theorem on the essential commutant of abelian von 

Neumann algebras for separable Hilbert spaces and construct short exact sequences of 

Toeplitz algebras. 

Section (4.1): Analytic Toeplitz Operators 

For 𝐵𝑛, be the unit ball of 𝐶𝑛. The 𝑛-dimensional vector space over the complex field 

𝐶, 𝑆𝑛 = 𝜕𝐵𝑛, is the boundary of 𝐵𝑛. We use 𝜎 to denote the unique rotation-invariant 

probability measure on 𝑆𝑛. The Lebesgue spaces 𝐿2(𝑆𝑛, 𝑑𝜎)have their customary meaning. 

𝐻2(𝑆𝑛) denotes the Hardy space which is the subspace of 𝐿2(𝑆𝑛, 𝑑𝜎). For 𝜑 ∈
𝐿∞(𝑆𝑛), 𝑇𝜑and 𝐻𝜑, denotes the Toeplitz operator and the Hankel operator respectively. If 

𝑁 ⊂ 𝐿∞(𝑆𝑛), ℱ(𝑁) be the norm closed algebra generated by |𝑇𝑓: 𝑓 ∈ 𝑁|. ℒ(𝐻
2(𝑆𝑛)) 

denotes all linearly bounded operators on 𝐻2(𝑆𝑛), and let 𝒦 be its ideal of compact 

operators. For 𝐴, 𝐵 ∈ ℒ(𝐻2(𝑆𝑛)), if [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 ∈ 𝒦, then we say that 𝐴 essentially 

commutes with 𝐵 . The set of operators which essentially commutes with any operator in 

𝒯(𝑁) is defined as the essential cornmutant of 𝒯(𝑁), marked by 𝐸𝑐𝒯(𝑁). Let  

𝒜𝑐 = |𝑓 ∈ 𝐿
∞(𝑆𝑛): 𝑇𝑓 ∈ 𝐸𝑐𝒯(𝐻

∞(𝑆𝑛))|,𝒜 = |𝑓 ∈ 𝐿∞(𝑆𝑛):𝐻𝑓is compact|.  

When 𝑛 = 1, Davidsson[1] showed 𝐸𝑐𝒯(𝐻
∞) = 𝒯𝒜𝑐 = 𝒯𝒜 = 𝒯(𝐻∞ + 𝐶),𝒜𝑐 =

𝒜 = 𝐻∞ + 𝐶 in 1977. When 𝑛 > 1, 𝒜𝑐 ⊃ 𝒜 ⊋ 𝐻∞(𝑆𝑛) = +𝐶(𝑆𝑛)[12]. 

 Recently, Guo Kunyu has obtained 𝐸𝑐𝒯(𝐻
∞(𝑆𝑛)) = 𝒯𝒜𝑐, and naturally put 

forward the conjecture: 𝒜𝑐 = 𝒜! 
We will show that the conjecture is true. 

For convenience, 𝐿2(𝑆𝑛, 𝑑𝜎),𝐻
2(𝑆𝑛) ... will be simply written as 𝐿2, 𝐻2… . 

We take an inner function 𝜂, 𝜂(0) = 0; then 𝜂𝑘(𝑘 = 0,±1,±2… ) are orthogonal to 

each other in 𝐿2. So we have lim
𝑘→∞

∫𝑓𝜂𝑘𝑑𝜎 = 0, for ∀𝑓 ∈ 𝐿[103]. 

Fix 𝑆 ∈ 𝐸𝑐𝒯(𝐻
∞), and put 𝜎𝑘 = 𝑆 − 𝑇𝜂

−𝑘𝑆𝑇𝜂
𝑘. Then there exists a subsequence which 

is 𝑤∗-converges. We still write it as |𝜎𝑘|, and mark 𝑆′ = 𝑤∗ − lim
𝑘
𝜎𝑘. 

Lemma (4.1.1)[102]: For 𝑆, 𝑆′ and 𝜂, the following are true : 

(i) 𝑆 − 𝑆′ = 𝑇𝑓 for some 𝑓 ∈ 𝐿∞; 

(ii) 𝑤∗ − lim
𝑘
𝑇𝜂
−𝑘𝑇ℎ𝑆𝑇𝜂

𝑘 = 𝑇ℎ𝑓 for any ℎ ∈ 𝐶(𝑆); 

(iii) [𝑇ℎ , 𝑆] is compact for any ℎ ∈ 𝐶(𝑆); 
(iv) there is a nautural number subsequence {𝑚𝑘} such that 𝑤∗ −

lim
𝑘
𝑇𝜇
−𝑘𝑇𝜂

𝑚𝑇ℎ𝑆𝑇𝜂
𝑚. 𝑇𝜇

𝑘 = 𝑇ℎ𝑓 for any inner function 𝜇 and any ℎ ∈ 𝐶(𝑆). 

Lemma (4.1.2)[102]: Define a linear map 𝐹: 𝐿∞ → ℐ(𝐻2) by 𝐹(ℎ) = 𝑇ℎ𝑆 − 𝑇𝑓ℎ. For ℎ ∈

𝐿∞ 

(i) If ‖ℎ𝑚‖∞, are uniformly bounded and ℎ𝑚 → ℎ, a . e. 𝑑𝜎, then 𝑤∗ −
lim
𝑚→∞

𝐹(ℎ𝑚) = 𝐹(ℎ) 
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(ii) If ℎ1, ℎ2 are measuruble characteristic functions and the distance between their 

supports is greater than zero, then 𝐹(ℎ1)𝐹(ℎ2), 𝐹(ℎ1)𝐹
∗(ℎ2) and 𝐹∗(ℎ2)𝐹(ℎ1) 

are compact. 

Argument of Lemma (4.1.1) and Lemma (4.1.2) are respectively similar to 

Davedson's Lemma (4.1.1) and Lemma (4.1.2), so the proof is omitted here. 

The following lemma is similar to Lemma (4.1.2) of [104] . 

Lemma (4.1.3)[102]: There are natural numbers 𝐾𝑛 (only depending on 𝑛) . If 𝑀 > 0, then 

the sphere 𝑆𝑛 has a division {𝑉𝑙}, satisfying 

(i) {𝑉𝑙} is a finite class ; every 𝑉𝑙 is a closed set, 𝑆𝑛 = ⋃ 𝑉𝑙𝑙 ; 

(ii) |𝑉𝑙| ≤ 𝑀, in which |𝑉𝑙| demotes the diameter of 𝑉; 

(iii) 𝑉𝑙 ∩ 𝑉𝑙′ ⊂ 𝜕𝑉𝑙 ∩ 𝜕𝑉𝑙′ , 𝑙 ≠ 𝑙
′, 𝜕𝑉 denotes the boundary of 𝑉; 

(iv) {𝑉𝑙} can be divided into 𝐾𝑛 subclasses such that each subclass consists of mutually 

disjoint sets 𝑉1. 

Let 𝑔 be a bounded measurable characteristic function on 𝑆𝑛, the support of 𝑔 is still 

marked by 𝑔. We use 𝜒 to denote the characteristic function with a closed support on 𝑆. In 

the following, 𝜒𝑔 denotes the characteristic function as well as the support of 𝜒𝑔.Letℰ𝑚 =

{𝜒𝑔: |𝜒| ≤
1

𝑚
} , 𝐶𝑛 = sup

𝜒≤
1

𝑚

‖𝐹(𝜒𝑔)‖. Obviously. 𝐶𝑚 ≥ 𝐶𝑚+1. 

Let 𝜋: ℐ(𝐻2) → ℐ(𝐻2)/𝒦 be the canonical homomorphism onto the Calkin algebra. It is 

easy to see that if ‖𝜋(𝐹(𝑔))‖ > 𝛼 > 0, then lim
𝑚→∞

𝐶𝑚 = 𝐶(𝛼) > 0. 

Lemma (4.1.4)[102]: If ‖𝜋(𝐹(𝑔))‖ > 𝛼 > 0, then there exists a characteristic function 

sequence {𝜒𝑚} with mutually disjoint closed support such that ‖𝐹(𝜒𝑚𝑔)‖ >
𝐶(𝛼)

2
. So there 

are continuous function sequences {ℎ𝑚} such that ‖ℎ𝑚‖∞ ≤ 1 +
1

2𝑚
 , ‖ℎ𝑚(1 − 𝜒𝑚𝑔)‖∞ ≤

1

2𝑚
 and ‖𝐹(ℎ𝑚)‖ >

𝐶(𝛼)

2
. 

Proof. Similar to Davidson's[1], we can find a characteristic function sequence {𝜒𝑚}with a 

mutually disjoint closed support such that ‖𝐹(𝜒𝑚𝑔)‖ >
𝐶(𝛼)

2
. Fix 𝑚 such that 𝜒𝑚𝑔 is a 

measurable set in 𝑆𝑛. For every natural number 𝑘 , there exists a closed set 𝐹𝑘 ⊂

𝜒𝑚𝑔, 𝜎(𝜒𝑚𝑔 − 𝐹𝑘) <
1

2𝑘
. Let 𝑔𝑘 be the characteristic function of 𝐹𝑘. Then there exists a 

continuous functions sequence {ℎ𝑖
′} such that 0 ≤ ℎ𝑖

′ ≤ 𝑔𝑘 +
1

2𝑚
 and ℎ𝑖

′ → 𝑔𝑘, a.e. 𝑑𝜎. By 

Egoroff 's theorem, there exists a 𝜎-measurable set 𝐸𝑘 ⊂ 𝑆𝑛, such that 𝜎(𝑆𝑛 − 𝐸𝑘) <
1

2𝑘
 and 

{ℎ𝑖
′} → 𝑔𝑘uniformly on 𝐸𝑘. Hence there is ℎ𝑘

′ ∈ {ℎ𝑖
′} such that |ℎ𝑘

′ − 𝑔𝑘| <
1

𝑘
 , ∀𝑧 ∈ 𝐸𝑘, and 

𝜎 (|ℎ𝑘
′ − 𝜒𝑚𝑔| ≥

1

𝑘
) ≤ 𝜎(𝜒𝑚𝑔 − 𝐹𝑘) + 𝜎(𝑆𝑛 − 𝐸𝑘) <

1

𝑘
. So ℎ𝑘

′ → 𝜒𝑚𝑔have according to 

the a measure. Thus there exists a subsequence {ℎ𝑘𝑗
′ } such that ℎ𝑘𝑗

′ → 𝜒𝑚𝑔 a.e. 𝑑𝜎, 0 ≤

ℎ𝑘𝑗
′ ≤ 𝑔𝑘𝑗 +

1

2𝑚
≤ 𝜒𝑚𝑔 +

1

2𝑚
, and ‖ℎ𝑘𝑗

′ (1 − 𝜒𝑚𝑔)‖
∞
≤ ‖ℎ𝑘𝑗

′ (1 − 𝑔𝑘𝑗)‖∞
≤

1

2𝑚
. 

According to quality (i) of function 𝐹 in Lemma (4.1.2), there must 𝑘𝑗(𝑚) such that 

‖𝐹 (ℎ𝑘𝑗(𝑚)
′ )‖ >

𝐶(𝛼)

2
. Put ℎ𝑚 = ℎ𝑘𝑗(𝑚)

′ , that is our request. The proof is finished. 

Lemma (4.1.5)[102]: Let ℎ ∈ 𝐶(𝑆𝑛), 𝜀 > 0 . Then there are inner functions 𝜇 and 𝐺 ∈ 𝐻∞ 

such that |𝜇(𝜁)ℎ(𝜁) − 𝐺(𝜁)| ≤ 𝜀 a.e. 𝑑𝜎 (c.f. Theorem 5.2 of [103] ) . 
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Lemma (4.1.6)[102]: Let 𝑇 ∈ ℐ(𝐻2), 𝒰 a weakly closed subalgebra of ℐ(𝐻2), {𝐴𝑚} ⊂ 𝒰. 

Suppose that there exist 𝛿 > 0,𝑀 > 0 such that ‖[𝐴𝑚, 𝑇]‖ > 𝛿 and ‖∑ 𝐴𝑚𝑚∈𝑗 ‖ ≤ 𝑀 for 

all finite subsets 𝐽 of number set 𝑁. Then there exists an element 𝑏 in 𝒰 such that [𝑏, 𝑇] is 

not compact (see Lemma 3 of [1] ) . 

Theorem (4.1.7)[102]: Let 𝑔 be a a-measurable characteristic function, 𝐹(𝑔) = 𝑇𝑔𝑆 −

𝑇𝑔𝑓 , 𝑆 ∈ 𝐸𝑐𝒯(𝐻
∞), where 𝑓 is as in Lemma (4.1.1) . Then 𝐹(𝑔) is compact. 

Proof. Suppose that 𝐹(𝑔) is not a compact. Then ‖𝜋(𝐹(𝑔))‖ > 𝛼 > 0. By Lemma (4.1.4), 

there exists a continuous functions sequence {ℎ𝑚} such that ‖ℎ𝑚‖∞ ≤ 1 +
1

2𝑚
 , ‖ℎ𝑚(1 −

𝜒𝑚𝑔‖∞ ≤
1

2𝑚
 , and ‖𝐹(ℎ𝑚)‖ >

𝐶(𝛼)

2
, where {𝜒𝑚} are characteristic functions with mutually 

disjoint closed supports. By Lemma (4.1.5), for each ℎ𝑚, 𝜀𝑚 =
1

2𝑚
, there exists an inner 

function 𝜇𝑚 and 𝑓𝑚 ∈ 𝐻
∞ such that |𝜇𝑚(𝜁)ℎ𝑚(𝜁) − 𝑓𝑚(𝜁)| ≤ 𝜀𝑚 , a.e. 𝑑𝜎. By Lemma 

(4.1.1), (iv), for 𝜇𝑚 there exists a number sub-sequence {𝑙𝑘}, 𝑙𝑘+1 > 𝑙𝑘 such that 𝑤∗ −
lim
𝑘
𝑇𝜇𝑚
−𝑘𝑇𝜂

−𝑙 . 𝑇ℎ𝑚𝑆𝑇𝑛
𝑙 . 𝑇𝜇𝑚

𝑘 = 𝑇ℎ𝑚𝑓 . Hence 

𝑤∗ − lim
𝑘
𝑇
𝜇𝑚𝜂

−𝑙
−𝑘 [𝑇

𝜇𝑚𝜂
𝑙ℎ𝑚

𝑘 , 𝑆] = 𝑇ℎ𝑚𝑆 − 𝑇ℎ𝑚𝑓 +𝑤
∗ − lim

𝑘
𝑇
𝜇𝑚𝜂

−𝑙
−𝑘 [𝑇ℎ𝑚 , 𝑆]. 

𝑇𝜇𝑚
−𝑘(since [𝑇ℎ𝑚 , 𝑆] is compact, the latter limit is zero) =𝑇ℎ𝑚𝑆 − 𝑇ℎ𝑚𝑓 = 𝐹(ℎ𝑚) . It follows 

that the norm is lower semicontinuous on 𝑤∗-topology so that there exists 𝑘(𝑚) such that 

‖[𝑇
𝜇𝑚𝜂

𝑙𝑘𝑚

𝑘(𝑚)
, 𝑆]‖ >

𝐶(𝛼)

2
. 

But ‖𝜇𝑚 
𝑘(𝑚)

𝜂𝑙𝑘𝑚ℎ𝑚 − 𝜇𝑚 
𝑘(𝑚)−1

𝜂𝑙𝑘𝑚𝑓𝑚‖
∞
≤ 𝜀𝑚; 

Hence ‖[𝑇𝜇𝑚
𝑘(𝑚)−1

𝜂𝑙𝑘𝑚𝑓𝑚 , 𝑆]‖ >
𝐶(𝛼)

2
− 2‖𝑆‖𝜀𝑚.  

Put 𝜑𝑚 = 𝜇𝑚 
𝑘(𝑚)−1

𝜂𝑙𝑘𝑚𝑓𝑚. Then 𝜑𝑚 ∈ 𝐻
∞, ‖𝜑𝑚‖∞ ≤ 1 + 2𝜀𝑚and ‖𝜑𝑚(1 − 𝜒𝑚𝑔)‖∞ ≤

‖𝜑𝑚 − 𝜇𝑚 
𝑘(𝑚)

𝜂𝑙𝑘(𝑚)ℎ𝑚‖
∞
+ ‖ℎ𝑚(1 − 𝜒𝑚𝑔)‖∞ ≤ 2𝜀𝑚 . 

For any finite subsets 𝐽 of 𝑍+. put 𝜑𝑗 = ∑ 𝜑𝑚𝑚∈𝑗 . Then ‖𝜑𝑗𝜒𝑚𝑔‖∞ ≤
‖𝜑𝑚‖∞ +

∑ ‖𝜑𝑙(1 − 𝜒𝑙𝑔)‖∞𝑙≠𝑚 ≤ 1 + 2𝜀𝑚 + 2∑ 𝜀1 ≤ 3𝑙≠𝑚 , ‖𝜑𝑗(1 − ∑ 𝜒𝑚𝑔𝑚 )‖
∞
≤

∑ ‖𝜑𝑚(1 − 𝜒𝑚𝑔)‖∞𝑚 ≤ 2∑𝜀𝑚 ≤ 2. Thus 

|𝜑𝑗(𝑧)| ≤

{
 
 

 
 
   2,   𝑧 ∈ 1 −∑𝜒𝑚𝑔

𝑚

 ,

3,   𝑧 ∈  ∑𝜒𝑚𝑔

𝑚

 .  

 

So we have ‖𝜑𝑗‖∞ ≤ 3. 

Put 𝒰 = 𝒯(𝐻∞), 𝐴𝑚 = 𝑇𝜑𝑚 . By Lemma (4.1.6), there exists 𝜑 ∈ 𝐻∞ such that 

[𝑇𝜑 , 𝑆] is not compact. But 𝑆 ∈ 𝐸𝑐𝒯(𝐻
∞); a contradiction. Hence 𝐹(𝑔) is compact. The 

proof is completed. 

Corollary (4.1.8)[102]: For ℎ ∈ 𝐿∞, 𝐹(ℎ) = 𝑇ℎ𝑆 − 𝑇ℎ𝑓 is compact . 

Proof. Because ℎ can be approximated uniformly by finite linear combinations of 

characteristic functions, 𝐹(ℎ) can be approximated by compact operators in operator norm. 

Therefore 𝐹(ℎ) is compact. The proof is thus completed. 
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Theorem (4.1.9)[102]: Let 𝑆 ∈ 𝒥(𝐻2). Then 𝑆 essentially commutes with all analytic 

Tieplitz operators if and only if 𝑆 = 𝑇𝑓 + 𝐾, where 𝑓 ∈ 𝐿∞ such that Hankel operator 𝐻𝑓 is 

compact, and 𝐾 ∈ 𝒦. 

Proof. The "if" part is obvious. Only the "only if" part needs to be proved. 

First take ℎ = 1. Then 𝐹(1) = 𝑆 − 𝑇𝑓 = 𝐾 iscompact. Hence 𝑆 = 𝑇𝑓 + 𝐾, and 𝐾 ∈

𝒦.And then take ℎ = 𝑓̅ ∈ 𝐿∞, 𝐹(ℎ) = 𝑇𝑓̅𝑆 − 𝑇|𝑓|2 = 𝑇𝑓̅𝑇𝑓 − 𝑇|𝑓|2 + 𝑇𝑓̅𝐾 = −𝐻𝑓
∗𝐻𝑓 +

𝑇𝑓̅𝐾 is compact. So 𝐻𝑓
∗𝐻𝑓𝐾 is compact. It follows that 𝐻𝑓 is compact. The proof is thus 

completed. 

According to Theorem (4.1.9), we obtain the result that 𝐸𝑐𝒯(𝐻
∞), 𝒯(𝒜𝑐) =

𝒯(𝒜), and 𝒜𝑐 = 𝒜. 
Since 𝐻∞ ⊂ 𝐻∞ + 𝐶 ⊂ 𝒜 , we have the following corollaries. 

Corollary (4.1.10)[102]: 𝐸𝑐𝒯(𝐻
∞) = 𝐸𝑐𝒯(𝐻

∞ + 𝐶) = 𝐸𝑐𝒯(𝒜). 

Corollary (4.1.11)[102]: Sequence (0) → 𝒦 → 𝒯(𝒜)
𝜏
→𝒜 → (0) is short exact, where 

𝜏: 𝐸𝑐𝒯(𝐻
∞) → 𝐿∞, 𝑓𝑜𝑟 𝑆 ∈ 𝐸𝑐𝒯(𝐻

∞), 𝑆 = 𝑇𝑓 + 𝑘, 𝑓 ∈ 𝐿
∞, 𝑘 ∈ 𝒦, sutisfying 𝜏(𝑆) = 𝑓. 

Section (4.2): Toeplitz Algebras of Spherical Isometries 

A spherical isometry on a Hilbert space ℋ is a commuting family 𝑆 = {𝑇𝑗}𝑗∈𝐽of 

bounded operators on ℋ such that ∑ 𝑇𝑗
∗𝑇𝑗𝑗∈𝐽 = 1, To each spherical isometry one can 

associate its set of Toeplitz-type operators consisting of all solutions of the operator equation  

∑𝑇𝑗
∗𝑋𝑇𝑗

𝑗∈𝐽

= 𝑋. 

One defines in a similar way Toeplitz operators associated to arbitrary commuting families 

of spherical isometries. 

We apply some operator space techniques in order to construct exact sequences for 

𝐶∗−algebras generated by spherical isometries or by their associated Toeplitz-type 

operators. We make use of the more or less known fact that the set 𝒯(ℱ) of all Toeplitz 

operators associated to an arbitrary family ℱ of commuting spherical isometries is an 

injective operator system, which means that it is the range of a completely positive unital 

mapping Φ:ℬ(ℋ) → ℬ(ℋ)with Φ ∘ Φ = Φ. This fact, when combined with a certain basic 

property of such projections proved in [115] , enables us to show (see Theorem (4.2.10)) 

that ℱ admits a commuting normal extension ℱ̂ on some Hilbert space ℋ̂ containing ℋ and 

that if ℱ̂ is minimal then there exists a ∗-representation 𝜋 from the 𝐶∗-algebra generated by 

𝒯(ℱ) onto the commutant of ℱ̂ in 𝐵(ℋ̂) for which the compression map 𝜌(𝑋) = 𝑃ℋ𝑋|ℋ 

is a complete isometric cross whose range coincides with𝒯(ℱ). When we restrict 𝜋 to the 

𝐶∗-algebra 𝐶∗(ℱ) generated by ℱ in ℬ(ℋ) we obtain a ∗-representation of 𝐶∗(ℱ) onto 

𝐶∗(ℱ̂) whose kernel coincides with the commutator ideal of 𝐶∗(ℱ). We also show that any 

operator in the commutant of ℱ has a unique norm-preserving extension to an operator in 

the commutant of ℱ̂. 

It turns out that several classes of Toeplitz operators on various Hardy spaces can be 

realized as common fixed points of some commuting families of completely positive 

mappings induced by spherical isometries. In this sense, apart from the well-known Brown-

Halmos characterization of Toeplitz operators on the unit circle (see [2] ) there is a similar 

result due to A.M. Davie and N. Jewell [12]  for the case of Toeplitz operators on the unit 

sphere in ℂ𝑛 where the unilateral shift is replaced by the Szego 𝑛−tuple. Similar 
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characterizations also hold for Toeplitz operators on Hardy spaces on ordered groups [23] . 

The method we shall develop here allows us to enlarge considerably the class of Toeplitz 

operators that admit such characterization. We show that if Ω ⊂ ℂ𝑛 is either a bounded 

strictly pseudoconvex domain or a bounded symmetric domain and 𝑚 is any Borel 

probability measure on the Shilov boundary of Ω then the Toeplitz operators on the 

corresponding Hardy space 𝐻2(𝑚) are indeed the fixed points of a certain spherical 

isometry. 

As a consequence we obtain exact sequences and spectral inclusion theorems for operators 

of the type mentioned above. 

We recall for later use the following by-product of the proof of Theorem 3.1 in [115] 

, which is also stated as Lemma 6.1.2 in [118] . 

Theorem (4.2.1)[105]: Let Φ:ℬ(ℋ) → ℬ(ℋ) be a completely positive and completely 

contractive mapping such that Φ2 = Φ. Then for all 𝑋, 𝑌 ∈ ℬ(ℋ) we have 

Φ(Φ(𝑋)𝑌) = Φ(𝑋Φ(𝑌)) = Φ(Φ(𝑋)Φ(𝑌)). 
In [115]  and [118]  this result is used to show that the range of Φ is completely 

isometric to a 𝐶∗-algebra , where the multiplication is defined by the rule 

Φ(𝑋) ∘ Φ(𝑌) = Φ(Φ(𝑋)Φ(𝑌)) 
for every 𝑋, 𝑌 ∈ ℬ(ℋ). We shall recover the latter result as a consequence of Theorem 

(4.2.2) below. Let Φ:ℬ(ℋ) → ℬ(ℋ)be a completely positive and completely contractive 

mapping such that Φ2 = Φ and let 𝜀 = Ran Φ denote its range. We denote by 𝐶∗(ℰ) the 

unital 𝐶∗-algebra generated by 𝜀 in ℬ(ℋ). Let 

Φ0: 𝐶
∗(ℰ) → ℬ(ℋ) 

denote the restriction of Φ to 𝐶∗(ℰ). Then, according to the Stinespring dilation theorem 

(see Theorem 5.2.1 in [118] ), there exist a Hilbert space 𝒦, a bounded operator 𝑉:ℋ → 𝒦 

and a unital ∗-representation 

𝜋: 𝐶∗(ℰ) → ℬ(𝒦) 
such that Φ0(𝑋) = 𝑉

∗𝜋(𝑋)𝑉 for all 𝑋 ∈ 𝐶∗(ℰ). Thus the diagram 

𝐶∗(ℰ)
  𝜋  
→ ℬ(𝒦)

Φ0 ↓ ↓ 𝜌

𝜀
  𝜄  
→ ℬ(ℋ)

 

is commutative, where 𝜌(𝑋) = 𝑉∗𝑋𝑉 whenever 𝑋 ∈ ℬ(ℋ), and 𝜄 is the inclusion map. We 

shall assume that 𝜋 is minimal in the sense that 𝒦 is the smallest invariant subspace for 𝜋 

containing the range of 𝑉. Now, under these conditions, we can state the following theorem 

which will be very useful for our study of Toeplitz algebras. 

Theorem (4.2.2)[105]: Let Φ,Φ0, ℰ, 𝐶
∗(ℰ),𝒦, 𝑉 and 𝜋 be as above. Then KerΦ0 =

Ker𝜋and the mapping 

𝜌: 𝜋(𝐶∗(ℰ ) → ℬ(ℋ) 

defined by 𝜌(𝜋(𝑋)) = 𝑉∗𝜋(𝑋)𝑉 𝑓𝑜𝑟 𝑋 ∈ 𝐶∗(ℰ) is a complete isometry whose range equals 

𝜀 = Ran Φ. Moreover, if Ran Φ is 𝜎-weakly closed, then 𝜋(𝐶∗(ℰ)) is also 𝜎-weakly closed, 

hence a von Neumann subalgebra of ℬ(𝒦) and the map ρ defined above is a 𝜎-weak 

homeomorphism. 

Proof. First of all, one can easily see that KerΦ0 is an ideal in 𝐶∗(ℰ). Indeed, Theorem 

(4.2.1) implies that KerΦ0 is invariant under multiplication by elements in ℰ and then use 

the fact that, since E is selfadjoint, the 𝐶∗-algebra 𝐶∗(ℰ) is the closed linear span of all finite 

products of elements from ℰ and the identity. Now, in order to prove the equality of the two 
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kernels, we fix 𝑇 ∈ 𝐶∗(ℰ) such that Φ0(𝑡) = and let 𝑋, 𝑌 ∈ 𝐶∗(ℰ) and 𝜉, 𝜂 ∈ ℋ be arbitrary. 

Then 

(𝜋(𝑇)𝜋(𝑋)𝑉𝜉, 𝜋(𝑌)𝑉𝜂) = (𝑉∗𝜋(𝑌∗𝑇𝑋)𝑉𝜉, 𝜂) = (Φ0(𝑌
∗𝑇𝑋)𝜉, 𝜂) = 0 

because KerΦ0 is an ideal. Since 𝜋 is minimal, this shows that 𝜋(𝑇) = 0. Since the other 

inclusion is trivial, the equality of the two kernels is proved. 

We now show that the mapping 𝜌 is a complete isometry. First, we see that, since 

Φ0 = 𝜌 ∘ 𝜋 and 𝐾𝑒𝑟 𝜋 = 𝐾𝑒𝑟Φ0 it follows that 𝜌 is one-to-one. Moreover, since Φ0
2 = Φ0, 

we have that 𝜌 ∘ 𝜋 ∘ 𝜌 ∘ 𝜋 = 𝜌 ∘ 𝜋 hence 𝜋 ∘ 𝜌 is the identity on 𝜋(𝐶∗(ℰ)). It then follows, 

since both 𝜋 and 𝜌 are completely contractive, that 𝜌 is actually completely isometric. The 

last assertion of the theorem follows easily from the previous one and the separate weak∗-
continuity of the multiplication on a von Neumann algebra. The proof of the theorem is 

completed.  

As we have mentioned above, this result offers an alternate proof of Theorem 3.1 in 

[115] . 

Theorem (4.2.3)[105]: Let Φ: ℬ(ℋ) → ℬ(ℋ) be a completely positive and completely 

contractive mapping such that Φ2 = Φ. Then RanΦ is completely isometric with a unital 

𝐶∗-algebra where the product is defined by the rule 

Φ(𝑋) ∘ Φ(𝑌) = Φ(Φ(𝑋)Φ(𝑌)) 
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋, 𝑌 ∈ ℬ(ℋ). 
Proof. Using the notation in Theorem (4.2.2), we see that the above defined product is 

precisely the one induced from 𝜋(𝐶∗(ℰ)) via the complete isometry 𝜌.  

Remark (4.2.4)[105]: It is a well-known fact that if 𝐴 is a unital 𝐶∗-algebra and 𝜃: 𝐴 →
ℬ(ℋ) is a unital completely isometric mapping, then there exists a ∗-homomorphism 

𝜋 ∶ 𝐶∗(𝜃(𝐴)) → 𝐴 
such that 𝜋 ∘ 𝜃 = 𝑖𝑑𝐴, (see Theorem 4.1 in [114] ). Therefore, in the case when the mapping 

Φ in Theorem (4.2.2) is unital and assuming Theorem (4.2.3) one can immediately see that 

the mapping Φ0 appearing in Theorem (4.2.2) becomes a ∗-homomorphism when its range 

is endowed with the multiplication defined in Theorem (4.2.3). This offers a shorter proof 

of Theorem (4.2.2); however the line we took in that theorem gives simultaneously the 

isomorphism in Theorem (4.2.3) and a spatial representation for that algebraic structure.  

We shall apply Theorem (4.2.2) to the study of the 𝐶∗- algebra generated by a 

commuting family of spherical isometries. 

Definition (4.2.5)[105]: A commuting family 𝑆 = {𝑇𝑗}𝑗∈𝐽 of bounded operators on a Hilbert 

space ℋ is said to be a spherical isometry if 

∑𝑇𝑗
∗𝑇𝑗

𝑗∈𝐽

= 1 

in the weak operator topology.  

For instance, if 𝑚 is any probability Borel measure on the unit sphere 𝑆2𝑛−1 in ℂ𝑛, 

and ℋ ⊂ 𝐿2(𝑚) is a jointly invariant subspace for the multiplication operators 

{𝑀𝑧1 , … ,𝑀𝑧𝑛} on 𝐿2(𝑚), then their restrictions {𝑇𝑧1 , … , 𝑇𝑧𝑛} to ℋ form a spherical isometry. 

Of particular interest is the case when m is the normalized area measure and ℋ is the 𝐿2(𝑚)-

closure of all analytic polynomials (the Hardy space 𝐻2(𝑆2𝑛−1)) in which case {𝑇𝑧1 , … , 𝑇𝑧𝑛} 

is called the Szego n-tuple on 𝐻2(𝑆2𝑛−1). 
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If {𝑇𝑗}𝑗∈𝐽 is an arbitrary family of operators on ℋ satisfying the above equation in 

particular a spherical isometry then a completely positive unital, hence completely 

contractive mapping 𝜙: ℬ(ℋ) → ℬ(ℋ) can be defined by the formula 

𝜙(𝑋) =∑𝑇𝑗
∗𝑋𝑇𝑗

𝑗∈𝐽

 

and is also obvious that 𝜙 is 𝜎-weakly continuous. 

The object of study in what follows is a commuting family of spherical isometries 

ℱ = {𝑆𝛼}𝛼∈Γ on some Hilbert space ℋ. This means that if 𝛼 ∈ Γ then 𝑆𝛼 = {𝑇𝑗,𝛼}𝑗∈𝐽𝛼
is a 

spherical isometry and the union ⋃ 𝑆𝛼𝛼∈Γ  is a commutative set of operators. 

Definition (4.2.6)[105]: Given a commuting family ℱ = {𝑆𝛼}𝛼∈Γ of spherical isometries on 

ℋ we define, using the notations above, the space 𝒯(ℱ) of all ℱ-Toeplitz operators to be 

the set of all operators 𝑋 ∈ ℬ(ℋ) such that 

∑𝑇𝑗,𝛼
∗ 𝑋𝑇𝑗,𝛼

𝑗∈𝐽𝛼

= 𝑋 

for all 𝛼 ∈ Γ. 

In other words, 𝒯(ℱ) is the set of all common fixed points of the completely positive 

mappings associated to each spherical isometry from ℱ. It is obvious that 𝒯(ℱ) contains the 

commutant of ℱ in particular it contains all the sets 𝑆𝛼 for 𝛼 ∈ Γ. We shall construct a 

completely positive projection Φ on this space which will play a crucial role for our study 

of Toeplitz algebras associated to spherical isometries. We need the following lemma which 

is a particular case of a more general result proved in [110] . However for completeness we 

shall give below a direct proof. 

Lemma (4.2.8)[105]: Let {𝜙𝛼}𝛼∈Γ be a set of commuting completely positive unital and 𝜎-

weak continuous mappings acting on ℬ(ℋ) for some Hilbert space ℋ. Then there exists a 

completely positive mapping Φ:ℬ(ℋ) → ℬ(ℋ) whose range is precisely the set 

{𝑋 ∈ ℬ(ℋ):𝜙𝛼(𝑋) = 𝑋, 𝛼 ∈ Γ} 
and such that Φ2 = Φ. 

Proof. Let 𝑆 denote the semigroup of all finite products of elements from the set {𝜙𝛼}𝛼∈Γ. 

Each element 𝑠 ∈ 𝑆 corresponds to a completely positive unital and 𝜎−weak continuous 

mapping 𝜓𝑆: ℬ(ℋ) → ℬ(ℋ) which is a finite product of 𝜙𝛼’s. 

It is obvious that the fixed point set of {𝛼𝛼}𝛼∈Γ is the same as that of {𝜓𝑠}𝑠∈𝑆. 
We thus obtain an action 

𝛾: 𝑆 × ℬ(ℋ) → ℬ(ℋ) 
defined by 

𝛾(𝑠, 𝑋) = 𝜓𝑠(𝑋) 
for all 𝑠 ∈ 𝑆 and 𝑋 ∈ ℬ(ℋ). Since 𝑆 is commutative, a well-known result of Dixmier [116]  

shows that 𝑆 is amenable, which means that there exists a state 𝜇 on the 𝐶∗-algebra ℓ∞(𝑆) 
of all bounded complex functions on 𝑆 which is invariant under all translations with 

elements from 𝑆. More precisely, if 𝑡 ∈ 𝑆 and 𝐿𝑡: ℓ
∞(𝑆) → ℓ∞(𝑆)is defined by 𝐿𝑡(𝑓)(𝑠) =

𝑓(𝑡𝑠) for 𝑠 ∈ 𝑆 then 𝜇(𝐿𝑡𝑓) = 𝜇(𝑓) for all 𝑓 ∈ ℓ∞(𝑆). 
Now, given 𝑇 ∈ ℬ(ℋ), for each pair of vectors 𝜉, 𝜂 ∈ ℋ define [𝜉, 𝜂]𝑇 =

𝜇(𝛾(∙, 𝑇)𝜉, 𝜂) and observe that this is a bounded sesquilinear map therefore there exists an 

operator that we shall denote by Φ(𝑇) in 𝐵(ℋ) such that 
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(Φ(𝑇)𝜉, 𝜂) = [𝜉, 𝜂]𝑇  
for all 𝜉, 𝜂 ∈  ℋ. It is now a matter of routine to verify that the mapping 𝑇 ⟼ Φ(𝑇)is 

completely positive. It is straightforward to see that if 𝑇 ∈ ℬ(ℋ) is such that 𝜓𝑠(𝑇) = 𝑇 for 

all 𝑠 ∈ 𝑆 then Φ(𝑇) = 𝑇 as well. 

We will show now that 𝜓𝑠(Φ(𝑇)) = Φ(𝑇) for all 𝑇 ∈ 𝐵(ℋ). In order to see that, 

recall that all the mappings 𝜓𝑠 are 𝜎-weakly continuous, which means that for any 𝑠 ∈ 𝑆 

there exists a norm continuous mapping 𝜓𝑠
∗on the space 𝒢1(ℋ) of trace-class operators on 

ℋ such that tr(𝜓𝑠(𝑇)𝐿) = tr(𝑇𝜓𝑠
∗(𝐿)) for all 𝑇 ∈ 𝐵(ℋ)and 𝐿 ∈ 𝒢1(ℋ). Moreover one can 

see that the mapping Φ satisfies the identity tr(Φ(𝑇)𝐿) = 𝜇(tr(𝛾(∙, 𝑇)𝐿) for all 𝑇 ∈
𝐵(ℋ)and 𝐿 ∈ 𝒢1(ℋ). It then follows that for any 𝑡 ∈ 𝑆 we have 

tr(𝜓𝑡(Φ(𝑇)𝐿)) = tr(Φ(𝑇)𝜓𝑠
∗(𝐿)) = 𝜇(tr(𝛾(∙, 𝑇)𝜓𝑡

∗(𝐿)) = 𝜇(tr(𝛾(𝑡 ∙, 𝑇)(𝐿)) 

and because 𝜇 is an invariant mean, this last term equals 𝜇(tr(𝛾(∙, 𝑇)(𝐿)) which is equal to 

tr(Φ(𝑇)(𝐿)) for all 𝑇 ∈ 𝐵(ℋ)and 𝐿 ∈ 𝒢1(ℋ). This shows that indeed tr𝜓𝑡(𝑇) = Φ(𝑇) for 

all 𝑇 ∈ 𝐵(ℋ), hence Φ2 = Φ as well. The proof of this lemma is completed. 

We also need the following lemma. 

Lemma (4.2.9)[105]: Suppose ℳ ⊂ ℬ(ℋ) is a von Neumann algebra and ℳ′ denotes its 

commutant. Let ℛ = {𝑇𝑗}𝑗∈𝐽 be a family of operators in ℳ such that for all 𝑋 ∈ ℳ 

∑𝑇𝑗
∗𝑋𝑇𝑗

𝑗∈𝐽

= 𝑋 

in the 𝜎−weak topology. Then ℛ ⊂ ℳ ∩ℳ′. 

We have the following result. 

Theorem (4.2.10)[105]: Let ℱ = {𝑆𝛼}𝛼∈Γ be a commuting family of spherical isometries 

on some Hilbert space ℋ with 𝑆𝛼 = {𝑇𝑗,𝛼}𝑗∈𝐽𝛼
 for each 𝛼 ∈ Γ and let 𝒯(ℱ) be the space of 

all ℱ-Toeplitz operators (see Definition (4.2.6) above). Let also 𝐶∗(𝒯(ℱ))denote the 𝐶∗-
subalgebra of ℬ(ℋ) generated by 𝒯(ℱ). Then we have: 

(i)  There exists a completely positive unital mapping Φ: ℬ(ℋ) → ℬ(ℋ) such that Φ2 =
Φ and whose range coincides with 𝒯(ℱ). 

(ii)  There exist a Hilbert space ℋ̂ containing ℋ and a commuting family ℱ̂ = {�̂�𝛼}𝛼∈Γof 

normal spherical isometries on ℋ̂ with �̂�𝛼 = {�̂�𝑗,𝛼}𝑗∈𝐽𝛼
 which leaves ℋ invariant and 

whose restriction to ℋ coincides with ℱ in other words the family ℱ is subnormal. 

(iii)  Suppose that the normal extension ℱ̂ is minimal, i.e. ℱ̂ is the smallest reducing 

subspace for ℱ̂ containing ℋ. Then there exists a unital ∗-representation 

𝜋: 𝐶∗(𝒯(ℱ)) → ℬ(ℋ̂) 
such that: 

(3a) 𝜋(𝑇𝑗,𝛼) = �̂�𝑗,𝛼 for all 𝛼 ∈ Γ and 𝑗 ∈ 𝐽𝛼. 

(3b) If 𝒫ℋ is the orthogonal projection of ℋ̂ onto ℋ then 

Φ(𝑋) = 𝒫ℋ𝜋(𝑋)|ℋ 

for every 𝑋 ∈ 𝐶∗(𝒯(ℱ)). 

(3c) The image 𝜋 (𝐶∗(𝒯(ℱ))) of 𝜋 coincides with the commutant 

in ℬ(ℋ̂) of the 𝐶∗-algebra 𝐶∗(ℱ̂) generated by ℱ̂ in ℬ(ℋ̂). 
(3d) The mapping  
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𝜌: 𝜋 (𝐶∗(𝒯(ℱ))) → ℬ(ℋ) 

defined by 𝜌(𝜋(𝑋)) = 𝒫ℋ𝜋(𝑋)|ℋ 𝑓𝑜𝑟 𝑋 ∈ 𝐶
∗(𝒯(ℱ)) is a complete isometry onto the 

space 𝒯(ℱ) of all ℱ -Toeplitz operators such that 𝜋 ∘ 𝜌 is the identity on 𝜋 (𝐶∗(𝒯(ℱ))). 

Therefore the short exact sequence 

0 → Ker𝜋 ↪ 𝐶∗(𝒯(ℱ))
𝜋
→𝜋 (𝐶∗(𝒯(ℱ))) → 0 

has a completely isometric cross. Moreover, Ker𝜋 coincides with the closed two-sided ideal 

of 𝐶∗(𝒯(ℱ)) generated by all operators of the form 𝑋𝑌 −Φ(𝑋𝑌) 𝑤𝑖𝑡ℎ 𝑋, 𝑌 ∈ 𝒯(ℱ). 
(3e) If 𝐶∗(ℱ) denotes the unital 𝐶∗-algebra generated by ℱ in ℬ(ℋ)then 

Φ(𝐶∗(ℱ)) = 𝐶∗(ℱ) ∩ 𝒯(ℱ). Moreover the kernel of the restriction of 𝜋 to 𝐶∗(ℱ) 
coincides with the closed ideal of 𝐶∗(ℱ) generated by all the commutators 𝑋𝑌 − 𝑌𝑋 

with 𝑋, 𝑌 ∈ 𝒯(ℱ) ∩ 𝐶∗(ℱ) hence it coincides with the commutator ideal 𝒞 of 𝐶∗(ℱ). 
Therefore we have a short exact sequence 

0 → 𝒞 ↪ 𝐶∗(ℱ)
𝜋
→𝐶∗(ℱ̂) → 0 

for which the restriction of 𝜌 to 𝐶∗(ℱ̂) is a completely isometric cross. 

(3f) An operator 𝑋 ∈ ℬ(ℋ) belongs to the commutant of ℱ if and only if both 𝑋 and 

𝑋 ∗ 𝑋 belong to the space 𝒯(ℱ) of ℱ -Toeplitz operators. In this case there exists a 

unique operator �̂� in the commutant of ℱ̂ which leaves ℋ invariant and whose 

restriction to ℋ coincides with 𝑋. Moreover the map 𝑋 ↦ �̂� is norm preserving. 

Proof. For each 𝛼 ∈ Γ let 𝜙𝛼: ℬ(ℋ) → ℬ(ℋ) be the completely positive 𝜎-weakly 

continuous mapping associated to the spherical isometry 𝑆𝛼, so for all 𝑋 ∈ ℬ(ℋ)we have 

𝜙𝛼(𝑋) = ∑ 𝑇𝑗,𝛼
∗ 𝑋𝑇𝑗,𝛼𝑗∈𝐽𝛼

. It follows that 𝒯(ℱ) is precisely the set of common fixed points 

of the commuting family of mappings {𝜙𝛼}𝛼∈Γ. Therefore we can apply Lemma (4.2.8) to 

infer the existence of an idempotent completely positive mapping Φ:ℬ(ℋ) → ℬ(ℋ) whose 

range is precisely 𝒯(ℱ). This proves item (i). 

Let Φ as in item (i) and let Φ0 denote its restriction to 𝐶∗(𝒯(ℱ)). Denote by 

𝜋: 𝐶∗(𝒯(ℱ)) → ℬ(ℋ̂) the minimal Stinespring dilation of Φ0. Therefore there exists an 

isometry 𝑉:ℋ → ℋ̂ such that 

Φ0(𝑋) = 𝑉
∗𝜋(𝑋)𝑉 

for all 𝑋 ∈ 𝐶∗(𝒯(ℱ)). We see that we are precisely in the situation of Theorem (4.2.2) 

above, and moreover the range of Φ is also 𝜎-weakly closed because it is the set of all 

common fixed points of a family of 𝜎-weakly continuous mappings. The conclusion that 

follows from Theorem (4.2.2) is that the mapping 

𝜌: 𝜋: (𝐶∗(𝒯(ℱ))) → ℬ(ℋ) 

defined by 𝜌(𝜋(𝑋)) = 𝑉∗𝜋(𝑋)𝑉 𝑓𝑜𝑟 𝑋 ∈ 𝐶∗(𝒯(ℱ)) is a complete isometry onto the space 

of all ℱ -Toeplitz operators and that the image of 𝜋 is a von Neumann subalgebra of ℬ(ℋ̂). 
Let 

�̂�𝑗,𝛼 =  𝜋(𝑇𝑗,𝛼) 

for all 𝛼 ∈ Γ and 𝑗 ∈ 𝐽𝛼 and let also denote �̂�𝛼 = {�̂�𝑗,𝛼}𝑗∈𝐽𝛼
 and let ℱ̂ = {�̂�𝛼}𝛼∈Γ. Our next 

aim is to show that each family �̂�𝛼 is a spherical isometry and that 
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∑ �̂�𝑗,𝛼
∗ 𝜋(𝑋)�̂�𝑗,𝛼

𝑗∈𝐽𝛼

= 𝜋(𝑋) 

for all 𝑋 ∈ 𝐶∗(𝒯(ℱ)). For this purpose, fix 𝛼 ∈ Γ and observe that ∑ �̂�𝑗,𝛼
∗ �̂�𝑗,𝛼𝑗∈𝐹 ≤ 1 for 

each finite subset 𝐹 ⊂ 𝐽𝛼. Therefore 

∑ �̂�𝑗,𝛼
∗ �̂�𝑗,𝛼

𝑗∈𝐽𝛼

≤ 1.  

Now, let 𝑋 ∈ 𝐶∗(𝒯(ℱ)) and let 𝐹 ⊂ 𝐽𝛼 be a finite set. Then we see that 

𝜌(∑�̂�𝑗,𝛼
∗ 𝜋(𝑋)�̂�𝑗,𝛼

𝑗∈𝐹

) =∑�̂�𝑗,𝛼
∗ Φ(𝑋)𝑇𝑗,𝛼

𝑗∈𝐹

.  

Taking weak∗-limits in both sides, using the fact that 𝜌 is a weak∗-homeomorphism and 

using that 𝜌 is isometric we infer that 

∑ �̂�𝑗,𝛼
∗ 𝜋(𝑋)�̂�𝑗,𝛼

𝑗∈𝐽𝛼

= 𝜋(𝑋) 

for all 𝑋 ∈ 𝐶∗(𝒯(ℱ)). In particular it follows that �̂�𝛼 is indeed a spherical 

isometry. Moreover, using Lemma (4.2.9) we infer that all �̂�𝑗,𝛼 belong to the center of 

𝜋 (𝐶∗(𝒯(ℱ))), in particular they are commuting normal operators. Since 𝑇𝑗,𝛼 = 𝑉
∗�̂�𝑗,𝛼𝑉 

and both 𝑆𝛼 and �̂�𝛼 are spherical isometries it is easy to see that �̂�𝑗,𝛼𝑉 ℋ ⊂ 𝑉ℋ for all 𝛼 ∈

Γ and 𝑗 ∈ 𝐽𝛼. This shows that the family ℱ is subnormal, which proves item (ii). 

We will show now that ℱ̂ is the minimal normal extension of ℱ. For this purpose let 

𝒦 be the smallest reducing subspace for 𝜋(𝐶∗(ℱ)) containing 𝑉ℋ. Let 𝜋𝒦: 𝐶
∗(ℱ) → ℬ(𝒦) 

the ∗-representation defined by 𝜋𝒦(𝑋) = 𝒫𝒦𝜋(𝑋)|𝒦 where 𝒫𝒦denotes the orthogonal 

projection of ℋ̂ onto 𝒦. We will show that the map defined by 𝜌𝒦(𝜋(𝑋)) = 𝒫𝒦𝜋(𝑋)|𝒦 is 

a ∗-isomorphism of 𝜋 (𝐶∗(𝒯(ℱ))) onto the commutan 𝜋𝒦(𝐶
∗(ℱ))

′
 of 𝜋𝒦(𝐶

∗(ℱ)). 

It is clear that 𝜌𝒦is a completely positive and completely contractive mapping. It takes 

values in 𝜋𝒦(𝐶
∗(ℱ))

′
 because each �̂�𝑗,𝛼 is in the center of 𝜋 (𝐶∗(𝒯(ℱ))) and because the 

space 𝒦 is reducing for all �̂�𝑗,𝛼. Let 𝜌ℋ: 𝜋𝒦(𝐶
∗(ℱ))

′
→ ℬ(ℋ) be defined by 𝜌ℋ(𝑉) =

𝑉∗𝑌𝑉 for 𝑌 ∈ 𝜋𝒦(𝐶
∗(ℱ))

′
. Then it is obvious that its image is included in 𝒯(ℱ) and 

moreover 𝜌 = 𝜌ℋ𝜌𝒦  where 𝜌: 𝜋 (𝐶∗(𝒯(ℱ))) → ℬ(ℋ) was defined above as 𝜌(𝑌) =

𝑉∗𝑌 𝑉 for 𝑌 ∈ 𝜋 (𝐶∗(𝒯(ℱ))). Recall now that we already proved that 𝜌 is completely 

isometric which implies that the mapping 𝜌𝒦  is completely isometric. Therefore in order to 

show that 𝜌𝒦is onto, it suffices to show that the mapping 𝜌ℋ is one-to-one. Suppose 

therefore that 𝑌 ∈ 𝜋𝒦(𝐶
∗(ℱ))

′
 is such that 𝜌ℋ(𝑌) = 𝑉

∗𝑌𝑉 = 0. In order to show that 𝑌 =

0 it suffices, because 𝜋𝒦is a minimal dilation of Φ restricted to 𝐶∗(ℱ) and 𝜋𝒦(𝐶
∗(ℱ))

′
 is 

abelian and 𝑌 is in its commutant, to show that for any two finite families 

{𝑇𝑗1,𝛼1 , … , 𝑇𝑗𝑚,𝛼𝑚}and {𝑇𝑖1,𝛽1 , … , 𝑇𝑖𝑛,𝛽𝑛} we have 𝑉∗�̂�𝑗1,𝛼1
∗ … �̂�𝑗𝑚,𝛼𝑚

∗ 𝑌�̂�𝑖1,𝛽1
∗ … �̂�𝑖𝑛,𝛽𝑛

∗ 𝑉 = 0 and 

the latter equality follows immediately from the fact that 𝑉ℋ is invariant for all ℱ̂. This 
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shows that 𝜌ℋ is indeed one-to-one hence 𝜌𝒦  is onto. Since, by a well known result of 

Kadison [122], any completely isometric surjective unital mapping between two 

𝐶∗−algebras is multiplicative it follows that 𝜌𝒦  is indeed a ∗-isomorphism of 𝜋 (𝐶∗(𝒯(ℱ))) 

onto 𝜋𝒦(𝐶
∗(ℱ))

′
 in particular the space 𝒦 is invariant under 𝜋 (𝐶∗(𝒯(ℱ))). Since 𝜋 is 

minimal, this shows that in fact we have that 𝒦 = ℋ̂. In particular this shows that 𝜋𝒦(𝑋) =
𝜋(𝑋) for all 𝑋 ∈ 𝐶∗(ℱ). Moreover, the fact that Ker𝜋 is the ideal generated by all operators 

of the form 𝑋𝑌 −Φ(𝑋𝑌) with 𝑋, 𝑌 ∈ 𝒯(ℱ) follows by an easy induction argument on the 

length of an arbitrary product of elements from 𝒯(ℱ) using the fact that Ker 𝜋 = KerΦ0 

which equals {𝑋 − Φ(𝑋): 𝑋 ∈ 𝐶∗(𝒯(ℱ))} together with Theorem (4.2.1). This completes 

the proof of (3a), (3b), (3c) and (3d). 

In order to prove (3e) we show first that Φ(𝐶∗(ℱ))  = 𝐶∗(ℱ) ∩ 𝒯(ℱ). Since Φ2 =

Φ it is enough to show that Φ(𝐶∗(ℱ)) ⊂ 𝐶∗(ℱ). This inclusion follows easily from the fact 

that since 𝜋𝒦(𝐶
∗(ℱ)) is abelian, Φ takes any finite product of 𝑇𝑗,𝛼’s and 𝑇𝑗,𝛼

∗ ’s into a 

permutation of the same product having all the 𝑇𝑗,𝛼
∗ ’s at the left and all the 𝑇𝑗,𝛼’s at the right. 

Now we can easily prove that the kernel of 𝜋𝒦  coincides with the ideal of 

𝐶∗(ℱ)generated by all commutators 𝑋𝑌 − 𝑌𝑋 with 𝑋, 𝑌 ∈ 𝐶∗(ℱ) ∩ 𝒯(ℱ). First, since 

𝜋𝒦(𝐶
∗(ℱ)) is commutative, we have that any such commutator is in Ker𝜋𝒦 . Let us denote 

by Φ00 the restriction of Φ to 𝐶∗(ℱ).We see from the proof of Theorem (4.2.2) that 

KerΦ0 = Ker𝜋 therefore Ker𝜋𝒦 = KerΦ00 as well. On the other hand, since Φ00
2 = Φ00 

we see that KerΦ00 = Ran(𝐼 − Φ00). Now, if 𝑋 ∈ 𝐶∗(ℱ) is a finite product of 𝑇𝑗,𝛼’s and 

𝑇𝑗,𝛼
∗ ’s it becomes obvious from the above description of Φ00(𝑋) that 𝑋 −Φ00(𝑋)belongs to 

the ideal generated by all commutators 𝑋𝑌 − 𝑌𝑋 with 𝑋, 𝑌 ∈ 𝐶∗(ℱ) ∩ 𝒯(ℱ). This 

completes the proof of (3e). 

An alternate proof of the fact that Ker 𝜋𝒦 coincides with the commutator ideal in 

𝐶∗(ℱ) can be based on Bunce’ characterization of multiplicative functional on 𝐶∗-algebras 

generated by commuting hyponormal operators in terms of their joint approximate point 

spectrum (see [113] ). Indeed, in our case, it can be easily shown that for any {𝑇1, . . . , 𝑇𝑚} ⊂

ℱ, we have that 𝜎𝑎𝑝(𝑇1, . . . , 𝑇𝑚)equals 𝜎𝑎𝑝(𝜋(𝑇1, … , 𝜋(𝑇𝑚)) where 𝜎𝑎𝑝 stands for the joint 

approximate spectrum. 

We now prove (3f). If 𝑋 ∈ ℬ(ℋ) is such that 𝑋 commutes with all operators from ℱ 

then obviously 𝑋 and 𝑋 ∗ 𝑋 belong to 𝒯(ℱ). Suppose now that 𝑋 ∈ ℬ(ℋ)is such that both 

𝑋 and 𝑋 ∗ 𝑋 belong to 𝒯(ℱ). If �̂� = 𝜋(𝑋) then �̂� commutes with all the normal extensions 

from ℱ̂ and 𝑉∗�̂�𝑉 = 𝑋. Moreover ‖�̂�‖ = ‖𝑋‖ so all we need to show is that �̂�𝑉ℋ ⊂ 𝑉ℋ. 

For this purpose, we observe that since 𝑋∗𝑋 ∈ 𝒯(ℱ) then 

𝑋∗𝑋 = 𝑉∗𝜋(𝑋∗𝑋)𝑉 = 𝑉∗�̂�∗�̂�𝑉. 
Therefore if 𝜉 ∈ ℋ then 

‖𝑉∗�̂�𝑉𝜉‖ = ‖𝑋𝜉‖ = ‖�̂�𝑉𝜉‖ 

which implies that indeed �̂�𝑉ℋ ⊂ 𝑉ℋ. This finishes the proof of (3f) and the proof of the 

theorem as well.  

Let us note that both in the case of the unilateral shift 𝑆 on 𝐻2(𝕋), and in the more 

general case of the Szego n-tuple all the assertions from (ii) and (iii) are well known. We 

should refer here to the pioneering work of L.A. Coburn on the 𝐶∗-algebra generated by a 

single isometry; see [26] and [26]. In particular, in the first case (3d) and (3e) are classical 
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results due to L. Coburn and R.G. Douglas, and moreover, the kernel of 𝜋 at (3d) is the 

corresponding commutator ideal; see Chapter VII in [5]. In the case of the Szegó 𝑛-tuple on 

the unit sphere in ℂ𝑛 (3e) is proved in [13] , and (3d) appears in [12] . We mention also that 

in both these cases the commutator ideal appearing in (3e) was shown to coincide with the 

ideal of all compact operators on the corresponding Hardy space. 

For the case of a commuting family of isometries, the existence of a commuting 

unitary extension was proved in [121] . In this case, the commutant lifting at (3f) is quite 

straightforward once we assume Ito’s result. These results hold true even on Banach spaces, 

see [117] . Exact sequences similar to that in (3e) for finite families of commuting isometries 

have been studied in [112] . 

𝐶∗-algebras generated by isometric representations of commuting semigroups have 

been studied mainly for semigroups of positive elements in ordered abelian groups, see for 

example [111] , [27] ,[23] and [107]  for a study based on crossed products by 

endomorphism's. 

For the case of a single finite spherical isometry the existence of a normal extension 

along with a commutant lifting theorem were proved in [108] ; see also [109]  for alternate 

proofs. 

The following general framework is frequently used when dealing with Toeplitz 

operators on Hardy spaces. Let 𝐾 be a compact Hausdorff space and let 𝐶(𝐾)denote the 

Banach algebra of all complex-valued continuous functions on 𝐾. Let 𝐴 ⊂ 𝐶(𝐾) be a norm-

closed subalgebra containing the constants and separating the points of 𝐾. Such algebras are 

called function algebras or uniform algebras (see [119]). Let us consider a Borel probability 

measure 𝑚 on 𝐾 and let 𝑠𝑢𝑝𝑝(𝑚) be its closed support. The generalized Hardy space 

𝐻2(𝑚)associated to 𝐴 is the 𝐿2(𝑚) closure of 𝐴. For any function 𝜑 ∈ 𝐿∞(𝑚) the Toeplitz 

operator 𝑇𝜙: 𝐵(𝐻
2(𝑚)) → 𝐵(𝐻2(𝑚)) is defined by 𝑇𝜙ℎ = 𝑃𝐻2(𝑚)(𝜑ℎ) for ℎ ∈ 𝐻2(𝑚) 

where 𝑃𝐻2(𝑚) is the orthogonal projection of 𝐿2(𝑚)onto 𝐻2(𝑚). We shall also consider the 

usual multiplication operators 𝑀𝜙 defined on 𝐿2(𝑚) by 𝑀𝜙𝑓 = 𝜙𝑓 for all 𝑓 ∈ 𝐿2(𝑚). Let 

𝐻∞(𝑚) denote the intersection 𝐻2(𝑚) ∩ 𝐿∞(𝑚) which is 

a weak∗-closed subalgebra of 𝐿∞(𝑚). If 𝐵 ⊂ 𝐿∞(𝑚) is any unital subalgebra, we shall 

denote by 𝒯(ℬ) the 𝐶∗−subalgebra of 𝐵(𝐻2(𝑚)) generated by all Toeplitz operators 𝑇𝜙 

with 𝜙 ∈ ℬ and by 𝒞(ℬ) the closed ideal in 𝒯(ℬ) generated by all operators of the form 

𝑇𝜙𝑇𝜓 = 𝑇𝜙𝜓 for arbitrary 𝜙,𝜓 ∈ ℬ. 

For our purposes we need to introduce the following definition. We shall say that a 

finite family of functions 𝐹 = {𝜙1, . . . , 𝜙𝑛} ⊂ 𝐶(𝐾) is a spherical multifunction if 

∑|𝜙𝑗(𝑥)|
2

𝑛

𝑗=1

= 1 

for every 𝑥 ∈ 𝐾. 

We are now able to state our main result. 

Theorem (4.2.11)[105]: Let 𝐾 be a compact Hausdorff space and let 𝐴 ⊂ 𝐶(𝐾) be a unital 

norm-closed subalgebra. Suppose there exists a family {𝐹𝛼}𝛼∈Γ of spherical multifunctions 

in 𝐶(𝐾) where each 𝐹𝛼 is of the form 𝐹𝛼 = {𝜙𝑗,𝛼}𝑗∈𝐽𝛼
 with each 𝜙𝑗,𝛼 ∈ 𝐴 and such that for 

each pair of distinct points 𝑥, 𝑦 ∈ 𝐾 there exist an index 𝛼 ∈ Γ and an index 𝑗 ∈ 𝐽𝛼 such that 

𝜙𝑗,𝛼(𝑥) ≠ 𝜙𝑗,𝛼(𝑦). Then for any Borel probability measure 𝑚 on 𝐾 the following assertions 

hold true. 
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(i) A bounded operator 𝑋 ∈ 𝐵(𝐻2(𝑚)) is a Toeplitz operator if and only if it satisfies 

the following equations: 

∑𝑇𝜙𝑗,𝛼
∗ 𝑋𝑇𝜙𝑗,𝛼

𝑗∈𝐽𝛼

= 𝑋 

for all 𝛼 ∈ Γ (in the case when 𝐴 is the disc algebra and m is the Lebesgue measure on the 

unit circle we then retrieve the classical result of Brown-Halmos by taking as spherical 

multifunction 𝜙(𝑧) = 𝑧). 

(ii) A bounded operator 𝑋 ∈ 𝐵(𝐻2(𝑚)) is of the form 𝑋 = 𝑇𝜓 for some 𝜓 ∈

𝐻∞(𝑚)if and only if it commutes with 𝑇𝜙𝑗,𝛼 for all 𝛼 ∈ Γ and all 𝑗 ∈ 𝐽𝛼, if and only if it 

commutes with all 𝑇𝜙 with 𝜙 ∈ 𝐴. The map 𝜓 ⟼ 𝑇𝜓 is a Banach algebra isometric 

isomorphism between 𝐻∞(𝑚) and the commutant of the family {𝑇𝜙: 𝜙 ∈ 𝐴}. Moreover this 

commutant is a maximal abelian subalgebra of 𝐵(𝐻2(𝑚)) and hence, for every 𝜙 ∈

𝐵(𝐻2(𝑚)) we have that 𝜎(𝑇𝜙) = 𝜎𝐻2(𝑚)(𝜙). 

(iii) There exists a short exact sequence of 𝐶∗−algebras 

0 → 𝒞(𝐿∞(𝑚)) ↪ 𝒯(𝐿∞(𝑚))
𝜋
→ 𝐿∞(𝑚) → 0 

such that 𝜋(𝑇𝜙) = 𝜙 for all 𝜙 ∈ 𝐿∞(𝑚). In particular the spectral inclusion essran(𝜙) ⊂

𝜎(𝑇𝜙) holds true (in the case of the unit circle this is the classical theorem of Hartman and 

Wintner [120] ) and we also have that 

𝜎(𝑇𝜙) ⊂  conv(essran(𝜙)) 

where conv denotes the convex hull. 

(iv) There exists a short exact sequence 

0 → 𝒞(𝐶(𝐾)) ↪ 𝒯(𝐶(𝐾))
𝜋
→ 𝐶(𝑠𝑢𝑝𝑝 (𝑚)) → 0 

such that 𝜋(𝑇𝜙) = 𝜙 on 𝑠𝑢𝑝𝑝(𝑚). Moreover, in this case 𝒞(𝐶(𝐾)) coincides always with 

the closed ideal in 𝒯(𝐶(𝐾)) generated by all commutators 𝑇𝜙𝑇𝜓 − 𝑇𝜓𝑇𝜙 with 𝜙,𝜓 ∈ 𝐶(𝐾). 

Proof. Let us denote, for each 𝛼 ∈ Γ and each 𝑗 ∈ 𝐽𝛼 by 𝑇𝑗,𝛼 the Toeplitz operator with 

symbol 𝜙𝑗,𝛼. Since each tuple {𝜙𝑗,𝛼}𝑗∈𝐽𝛼
 is a spherical multifunction it follows easily that 

in this case 𝑆𝛼 = {𝑇𝑗,𝛼}𝛼∈Γ is a spherical isometry and that ℱ = {𝑆𝛼}𝛼∈Γ is a commuting 

family of spherical isometries in 𝐵(𝐻2(𝑚)). The separation property imposed on these 

spherical multifunctions implies via the Stone- Weierstrass theorem that the 𝐶∗−algebra 

generated in 𝐶(𝐾) by the union of all families 𝐹𝛼 with 𝛼 ∈ Γ equals 𝐶(𝐾) itself. In turn this 

implies that the set ℱ̂of all the corresponding multiplication operators 𝑀𝜙𝑗,𝛼 on 𝐿2(𝑚) is the 

minimal normal extension of ℱ. Therefore, using Theorem (4.2.10) we infer that every 

operator 𝑋 ∈ 𝐵(𝐻2(𝑚)) satisfying equations (i) is the compression of a bounded operator 

𝑌 in the commutant of all operators 𝑀𝜙𝑗,𝛼 therefore 𝑌 commutes with all multiplication 

operators 𝑀𝜙  with 𝜙 ∈ 𝐶(𝐾) which implies that 𝑌 itself is a multiplication operator with 

some function 𝜓 ∈ 𝐿∞(𝑚) which shows that 𝑋 is a Toeplitz operator i.e. 𝑋 = 𝑇𝜓. 

Conversely, any Toeplitz operator obviously satisfies these equations because 𝐻2(𝑚) is 

invariant for all operators 𝑀𝜙𝑗,𝛼 . This completes the proof of (i). Now, the proofs of (ii), (iii) 

and (iv) follow easily from the previous remarks combined with Theorem (4.2.10) (the last 

assertion at (iii) follows from the well-known fact that for any bounded operator 𝑇 we have 
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that 𝑐𝑜𝑛𝑣(𝜎(𝑇)) ⊂ 𝑊(𝑇) with equality for normal operators, where 𝑊(𝑇) stands for the 

numerical range of 𝑇; the case of the unit circle is due to A. Brown and P.R. Halmos [2] ). 

As a remark, it can be shown, on the same lines of the proof of Theorem (4.2.10), or using 

the results from [113] , that if the 𝐶∗-algebra generated by 𝐻∞(𝑚) in 𝐿∞(𝑚) coincides with 

𝐿∞(𝑚) (equivalently if 𝐻∞(𝑚) separates the points in the maximal ideal space of 𝐿∞(𝑚)) 

then 𝒞(𝐿∞(𝑚)) coincides with the closed ideal of 𝒯(𝐿∞(𝑚)) generated by all commutators 

𝑇𝜙𝑇𝜓 − 𝑇𝜓𝑇𝜙 with 𝜙,𝜓 ∈ 𝐿∞(𝑚) (for instance this is the case when 𝐾 is the unit circle, 𝐴 

is the disc algebra and 𝑚 is the Lebesgue measure on 𝐾; see [5] ). 

We also remark that a description of the character space of the quotient 

𝒯(𝐿∞(𝑚))/𝒞(𝐿∞(𝑚)) 
valid for Hardy spaces over any function algebra was given in [125] . 

Here follow two general examples of function algebras satisfying the hypotheses of 

Theorem (4.2.11). We emphasize that this result holds for every Borel probability measure 

on the corresponding Shilov boundaries. Toeplitz operators on such domains have been 

studied see [126]  and [127] . 

Example (4.2.12)[105]: Let Ω ⊂ ℂ𝑛 be a bounded strictly pseudoconvex domain and let 

𝐴(Ω) be the algebra of all continuous functions on its closure and holomorphic on Ω. 

Let 𝐾 = 𝜕Ω be the topological boundary of Ω which coincides in this case with the Shilov 

boundary of 𝐴(Ω) and let 𝐴 be the set of all restrictions to 𝜕Ω of all functions from 𝐴(Ω). It 
follows from an embedding theorem for such domains (see Theorem 3 in [124] ) that there 

exist a natural number 𝑁 > 1 and functions 𝑓1, … , 𝑓𝑁 in 𝐴(Ω) such that the function 𝐹: 𝜕Ω →

ℂ𝑁 defined by 𝐹(𝑥) = (𝑓1(𝑥), . . . , 𝑓𝑁(𝑥))is one-to-one and takes 𝜕Ω into the unit sphere in 

ℂ𝑁. This shows that it is a separating spherical multifunction for 𝐴 and hence Theorem 

(4.2.11) applies in this case. In particular this applies to any bounded domain with 𝐶2 

boundary in the complex plane. For the case of finitely connected domains in ℂ with analytic 

boundary, exact sequences of the form (iii) and (iv) were constructed in [106] . 

Example (4.2.13)[105]: Let Ω ⊂ ℂ𝑛 be a bounded symmetric domain containing the origin 

and such that 𝑒𝑖𝜃𝜁 ∈ Ω whenever 𝜁 ∈ Ω and 𝜃 ∈ ℝ. Let 𝐴(Ω) be as in the previous example. 

Let 𝐾 ⊂ 𝜕Ω be the Shilov boundary of 𝐴(Ω) and let 𝛾 = max{|𝜁|: 𝜁 ∈ Ω̅}. It is then known 

that 𝐾 = {𝑧 ∈ 𝜕Ω: |𝑧| = 𝛾} (see Theorem 6.5 in [123]). Therefore the function 𝐹(𝑧) = 𝑧/𝛾 

is an imbedding of 𝐾 into the unit sphere in ℂ𝑛 hence Theorem (4.2.11) applies in this case 

as well, taking 𝐴 to be the algebra of all restrictions to 𝐾 of functions from 𝐴(Ω). In 

particular we obtain that, given any Borel probability measure 𝑚 on 𝐾, an operator 𝑋 ∈

𝐵(𝐻2(𝑚)) is a Toeplitz operator if and only if 

∑𝑇𝑧𝑗
∗𝑋𝑇𝑧𝑗

𝑛

𝑗=1

= 𝛾2𝑋. 

Section (4.3): Toeplitz Projections 

A result of K. Davidson [1]  from 1977, answering a question of R. Douglas, shows 

that the essential commutant 𝒯𝑎
𝑒𝑐of the set 𝒯𝑎 = {𝑇𝑓; 𝑓 ∈ 𝐻

∞(𝕋)} ⊂ 𝐵(𝐻2(𝕋)) of all 

analytic Toeplitz operators on the Hardy space 𝐻2(𝕋) of the unit circle is given by 

𝒯𝑎
𝑒𝑐 = {𝑇𝑓 + 𝐾; 𝑓 ∈ 𝐻

∞(𝕋) + 𝐶(𝕋) 𝑎𝑛𝑑 𝐾 ∈  𝒦(𝐻∞(𝕋))}, 

where 𝒦(ℋ) denotes the set of all compact operators on a given Hilbert space ℋ. Itwas 

observed by 𝑋. Ding and S. Sun [135]  that the result of Davidson remains true on the Hardy 

space 𝐻2(𝕊) of the unit sphere 𝕊 = 𝜕𝔹𝑛 in dimension 𝑛 > 1 when the symbol algebra 
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𝐻∞(𝕋) + 𝐶(𝕋) is replaced by the closed subalgebra 𝒮 = {𝑓 ∈ 𝐿∞(𝕊);𝐻𝑓  𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡} ⊂

𝐿∞(𝕊), that is, 

𝒯𝑎
𝑒𝑐 = {𝑇𝑓 + 𝐾; 𝑓 ∈ 𝒮 𝑎𝑛𝑑 𝐾 ∈  𝒦(𝐻

2(𝕊))}. 

It is well known that 𝐻2(𝕊) + 𝐶(𝕊) ⊊ 𝒮 is a proper subalgebra in every dimension 

𝑛 > 1(see [12] ) and that therefore the higher dimensional version of Davidson’s result fails 

if the algebra 𝑆 is replaced by the smaller algebra 𝐻2(𝕊) + 𝐶(𝕊). 
In [134]  the above results were extended to Toeplitz operators formed with respect 

to a quite general class of subnormal tuples on arbitrary Hilbert spaces containing, as a very 

particular case, Toeplitz operators on strictly pseudoconvex domains in ℂ𝑛. 

Let 𝐴 ⊂ 𝐶(𝐾) be a closed subalgebra of the Banach algebra of all ℂ-valued 

continuous functions on a compact subset 𝐾 ⊂ ℂ𝑛such that 𝐴contains at least the 

polynomials. A subnormal tuple 𝑇 ∈ ℬ(ℋ)𝑛 is called an 𝐴-isometry [136] if the spectrum 

of the minimal normal extension 𝑈 ∈ ℬ(ℋ̂)
𝑛

of 𝑇 is contained in the Shilov boundary 𝜕𝐴of 

𝐴 and if 𝐴 is contained in the restriction algebra ℛ𝑇of 𝑇. In this setting concrete 𝑇-Toeplitz 

operators are defined as compressions 𝑇𝑓 = 𝒫ℋΨ𝑈(𝑓)|ℋ, where Ψ𝑈: 𝐿
∞(𝜇) → ℬ(ℋ̂) is the 

𝐿∞-functional calculus of 𝑈and 𝑓 ∈ 𝐿∞(𝜇), while abstract 𝑇-Toeplitz operators are defined 

as those operators 𝑋 ∈ ℬ(ℋ) which satisfy the Brown–Halmos condition 

𝑇𝜃
∗𝑋𝑇𝜃 = 𝑋 

for all 𝜇-inner functions 𝜃. 

By results of A .Athavale [108]  and T. Ito [121]  the 𝐴(𝔹𝑛)-isometries on a given 

Hilbert space hare precisely the spherical isometries on ℋ, that is, the commuting tuples 

𝑇 ∈ ℬ(ℋ)𝑛satisfying the identity ∑ 𝑇𝑖
∗𝑇𝑖1≤𝑖≤𝑛 = 1ℋ and the class of 𝐴(𝔻𝑛)-isometries on 

ℋis given by the commuting tuples of isometries on ℋ. For any strictly pseudoconvex or 

symmetric domain 𝐷 ⊂ ℂ𝑛, the tuple 𝑇𝑧 = (𝑇𝑧1 , … , 𝑇𝑧𝑛) ∈ ℬ(𝐻
2(σ))

𝑛
on the Hardy space 

𝐻2(σ)formed with respect to the canonical probability measure 𝜎on the Shilov boundary of 

the domain algebra 𝐴(𝐷) = {𝑓 ∈ 𝐶(�̅�); 𝑓|𝐷 ∈ 𝒪(𝐷)} is an example of an 𝐴(𝐷)-isometry. 

Finally, every commuting tuple 𝑁 ∈ ℬ(ℋ)𝑛of normal operators on a Hilbert space ℋis a 

𝐶(𝜎(𝑁))-isometry. 

Under a suitable regularity condition on 𝑇, which is satisfied in all the above examples 

and which is needed to apply results of Aleksandrov [129]  on the existence of sufficiently 

many 𝜇-inner functions, it follows that the set 𝒯(𝑇) of abstract 𝑇-Toeplitz operators is given 

by the compressions 

𝒯(𝑇) = 𝒫ℋ(𝑈)
′|ℋ 

of the operators in the commutant (𝑈)′ = 𝑊∗(𝑈)′of the von Neumann algebra generated 

by 𝑈, while by the very definition, the concrete 𝑇-Toeplitz operators are given by the 

compressions of all operators in 𝑊∗(𝑈). 
It follows from results of B.Prunaru [105]  on families of spherical isometries that 

there is a completely positive unital projection Φ𝑇: ℬ(ℋ) → ℬ(ℋ) onto the set 𝒯(𝑇) of all 

abstract 𝑇-Toeplitz operators [134] .We give a much more direct and straightforward 

construction of Toeplitz projections Φ𝑇. We use the properties of these projections to 

improve the main result of [134]  on the essential commutant of analytic Toeplitz operators 

and to extend a number of classical results on Toeplitz operators to our general setting. 

After constructing Toeplitz projections, we show that every operator 𝑆in the essential 

commutant of the analytic Toeplitz operators associated with an essentially normal regular 

𝐴-isometry 𝑇 ∈ ℬ(ℋ)𝑛 is a compact perturbation of the Toeplitz operator Φ𝑇(𝑆). Thus we 
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improve a corresponding result obtained in [134] under the additional condition that 

𝑇possesses no joint eigenvalues. We obtain complete characterizations of the essential 

commutant of essentially normal regular 𝐴-isometries and give, as a direct application, a 

new proof of a classical theorem of Johnson and Parrot [8]  on the essential commutant of 

abelian von Neumann algebras in the case of separable Hilbert spaces. We show that the 

Toeplitz projection associated with an arbitrary regular 𝐴-isometry annihilates the compact 

operators if and only if 𝑇possesses no joint eigenvalues. We conclude that the Toeplitz 

calculus associated with a regular 𝐴-isometry 𝑇 with empty point spectrum satisfies the 

essential version of the Hartman–Wintner spectral inclusion theorem and that the semi-

commutator ideal of Toeplitz algebras 𝒯ℬgenerated by arbitrary symbol algebras 

ℬnecessarily contains every compact operator in 𝒯ℬ. 

Let 𝑇 ∈ ℬ(ℋ)𝑛be a subnormal tuple on a complex Hilbert space ℋ, that is, 

acommuting tuple that can be extended to a commuting tuple of normal operators on a larger 

Hilbert space. We denote by 𝑈 ∈ ℬ(ℋ̂)
𝑛

 the minimal normal extension of 𝑇which is unique 

up to unitary equivalence [131] , and fix a scalar spectral measure 𝜇for 𝑈. The measure 𝜇is 

a positive regular Borel measure on the normal spectrum 𝜎𝑛(𝑇) = 𝜎(𝑈)of 𝑇. By the spectral 

theorem for normal tuples there is an isomorphism of von Neumann algebras ΨU: 𝐿
∞(𝜇) →

𝑊∗(𝑈) ⊂ ℬ(ℋ̂) extending the polynomial calculus of 𝑈. The restriction algebra 

ℛ𝑇 = {𝑓 ∈ 𝐿
∞(𝜇);ΨU(𝑓)ℋ ⊂ ℋ} ⊂ 𝐿∞(𝜇) 

is a weak* closed subalgebra. For 𝑓 ∈ 𝐿∞(𝜇), we define the 𝑇-Toeplitz operator with symbol 

𝑓as the compression 

𝑇𝑓 = 𝒫ℋΨU(𝑓)|ℋ . 

Toeplitz operators of this form will be called concrete 𝑇-Toeplitz operators in the sequel. 

Let 𝐴 ⊂ 𝐶(𝐾) be a unital closed subalgebra of the Banach algebra of all ℂ-valued 

continuous functions on a compact subset 𝐾 ⊂ ℂ𝑛 such that 𝐴 contains at least the co-

ordinate functions. Then a subnormal tuple 𝑇 ∈ ℬ(ℋ)𝑛 as above is called an 𝐴-isometry if 

𝜎𝑛(𝑇) is contained in the Shilov boundary 𝜕𝐴of 𝐴and 𝐴|𝜕𝐴 ⊂ ℛ𝑇. Here the Shilov boundary 

𝜕𝐴 ⊂ 𝐾is the smallest closed set such that ‖𝑓‖∞,𝐾 = ‖𝑓‖∞,𝜕𝐴for every 𝑓 ∈ 𝐴and we regard 

the scalar spectral measure 𝜇of 𝑈as a positive measure on 𝜕𝐴via trivial extension. Since 

ℛ𝑇 ⊂ 𝐿
∞(𝜇) is weak*closed and contains 𝐴, it also contains the dual algebra 

𝐻𝐴
∞(𝜇) = �̅�𝑤

∗
⊂ 𝐿∞(𝜇). 

The unimodular elements in 𝐻𝐴
∞(𝜇), that is, the elements of the set 

𝐼𝜇 = {𝜃 ∈ 𝐻𝐴
∞(𝜇); |𝜃| = 1 𝜇 − almost everywhere on 𝜕𝐴} 

will be called 𝜇-inner functions. In [129]  Aleksandrov gives a sufficient condition for 

𝐻𝐴
∞(𝜇) to contain a rich supply of 𝜇-inner functions. The triple (𝐴, 𝐾, 𝜇) is called regular in 

the sense of Aleksandrov if, for every function 𝜙 ∈ 𝐶(𝐾) with 𝜙 > 0 on 𝐾, there is a 

sequence (𝜙𝑘) of functions in 𝐴with |𝜙𝑘| < 𝜙on 𝐾and lim
𝑘→∞

|𝜙𝑘| = 𝜙𝜇-almost everywhere 

on 𝐾. It follows from the results of Aleksandrov that the regularity of the triple (𝐴, 𝐾, 𝜇) 
implies that the set 𝐼𝜇 ⊂ 𝐻𝐴

∞(𝜇) of 𝜇-inner functions generates 𝐿∞(𝜇) as a von Neumann 

algebra, that is, 𝐿∞(𝜇) = 𝑊∗(𝐼𝜇)(Corollary 2.5 in [133]). We call 𝑇 ∈ ℬ(ℋ)𝑛 a regular 𝐴-

isometry if 𝑇is an 𝐴-isometry and the triple (𝐴, 𝐾, 𝜇) is regular in the sense of Aleksandrov. 

It was observed by Aleksandrov [129] that, for every regular positive measure 𝜇 on the 

Shilov boundary of the domain algebra 𝐴(𝐷) of a strictly pseudoconvex or symmetric 

domain 𝐷 ⊂ ℂ𝑛, the triple (𝐴(𝐷), �̅�, 𝜇) is regular. 
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Let 𝑇 ∈ ℬ(ℋ)𝑛be a regular A-isometry with minimal normal extension 𝑈 ∈

ℬ(ℋ̂)
𝑛

and scalar spectral measure 𝜇 ∈ 𝑀+(𝜕𝐴). Since 𝐿1(𝜇) is separable, its dual unit ball 

𝐵𝐿∞(𝜇) = {𝑓 ∈ 𝐿
∞(𝜇); ‖𝑓‖𝐿∞(𝜇) ≤ 1} equipped with the relative weak*topology of 

𝐿∞(𝜇) = 𝐿1(𝜇)′ is a compact metrizable space. Hence 𝐵𝐿∞(𝜇)and its subset 𝐼𝜇consisting of 

all 𝜇-inner functions are separable metrizable spaces in the relative weak*topology. For any 

countable weak∗dense subset 𝐼 ⊂ 𝐼𝜇, the von Neumann algebra generated by 𝐼in 𝐿∞(𝜇) 

satisfies 

𝑊∗(𝐼) = 𝑊∗(𝐼𝜇) = 𝐿
∞(𝜇). 

Let us fix any sequence (𝜃𝑘)𝑘≥1 in 𝐼𝜇with the property that 

𝑊∗({𝜃𝑘: 𝑘 ≥ 1}) = 𝐿
∞(𝜇). 

For 𝑟 ≥ 0, the norm-closed ball ℬ𝑟 = {𝑋 ∈ ℬ(ℋ̂); ‖𝑋‖ ≤ 𝑟}equipped with the relative 

topology of the weak∗topology of ℬ(ℋ̂) is a compact Hausdorff space. For 𝑋 ∈ ℬ(ℋ̂), the 

averages 

Φ𝑈,𝑘(𝑋) =
1

𝑘𝑘
∑ Ψ𝑈(𝜃𝑘

𝑖𝑘 ∙ … ∙ 𝜃𝑘
𝑖1)

∗
𝑋Ψ𝑈(𝜃𝑘

𝑖1 ∙ … ∙ 𝜃𝑘
𝑖𝑘) ∈ ℬ(ℋ̂)

1≤𝑖1,...,𝑖𝑘≤𝑘

 

form a sequence (Φ𝑈,𝑘(𝑋))
𝑘
in ℬ‖𝑋‖. Since by Tychonoff’s theorem the topological product 

∏ ℬ‖𝑋‖𝑋∈ℬ(ℋ̂) is compact and since convergence in the product topology is equivalent to 

componentwise convergence, there is a subnet (Φ𝑈,𝑘α)α
of the sequence (Φ𝑈,𝑘)𝑘such that 

the weak*limits 

Φ𝑈(𝑋) = 𝑤
∗ − lim

α
Φ𝑈,𝑘α(𝑋) ∈ ℬ(ℋ̂) 

exist simultaneously for every 𝑋 ∈ ℬ(ℋ̂). Each choice of such a subnet yields a well-

defined map Φ𝑈: ℬ(ℋ̂) → ℬ(ℋ̂) with the properties that will be deduced. 

Theorem (4.3.1)[128]: The mapping 

Φ𝑈: ℬ(ℋ̂) → ℬ(ℋ̂), 𝑋 ↦ Φ𝑈 

constructed above is a completely positive unital projection with 

ran(Φ𝑈) = (𝑈)
′. 

Proof. Obviously, the mappings 

Φ𝑈,𝑘: ℬ(ℋ̂) → ℬ(ℋ̂), 𝑋 ↦ Φ𝑈,𝑘(𝑋) 
are completely positive and unital. Since, for each 𝑁 ∈ ℕ, weak*convergence for a net in 

ℬ(ℋ̂𝑁) identified with the space 𝑀(𝑁, ℬ(ℋ̂))of all 𝑁 ×𝑁matrices over ℬ(ℋ̂) is 

equivalent to coefficient wise weak*convergence in ℬ(ℋ̂) and since the set of all positive 

operators on a Hilbert space is weak∗closed, it follows that 

Φ𝑈: ℬ(ℋ̂) → ℬ(ℋ̂), 𝑋 ↦ 𝑤∗ − lim
α
Φ𝑈,𝑘α(𝑋) 

is completely positive and unital. By construction the mappings Φ𝑈,𝑘, and hence also Φ𝑈, 

act as the identity operator on the commutant (𝑈)′ = 𝑊∗(𝑈)′. To complete the proof, it 

suffices to show that ran(Φ𝑈) ⊂ (𝑈)
′. 

For 1 ≤ 𝑗 ≤ 𝑘and 𝑖 = (𝑖1, . . . , 𝑖𝑗−1, 𝑖𝑗+1, . . . , 𝑖𝑘) ∈ {1, . . . , 𝑘}
𝑘−1, we use the abbreviation 
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ℛ𝑖𝑗 = Ψ𝑈(∏𝜃𝑣
𝑖𝑣

𝑘

𝑣=1
𝑣≠𝑗

) . 

Note that, for 𝑋 ∈ ℬ(ℋ̂), 𝑘 ≥ 1and 1 ≤ 𝑗 ≤ 𝑘, the estimates 

‖Ψ𝑈(𝜃�̅�)Φ𝑈,𝑘(𝑋)Ψ𝑈(𝜃𝑗) − Φ𝑈,𝑘(𝑋)‖

≤
1

𝑘𝑘
‖∑ℛ𝑖𝑗

∗

𝑖

(∑Ψ𝑈(�̅�𝑗
𝜇+1
)𝑋Ψ𝑈(𝜃𝑗

𝜇+1
) − Ψ𝑈(�̅�𝑗

𝜇
)𝑋Ψ𝑈(𝜃𝑗

𝜇
)

𝑘

𝜇=1

)ℛ𝑖𝑗‖

≤
𝑘𝑘−1

𝑘𝑘
 2‖𝑋‖ =

2‖𝑋‖

𝑘
 

hold. Hence for 𝑗 ≥ 1 and 𝑋 ∈ ℬ(ℋ̂), we obtain 

Ψ𝑈(𝜃�̅�)Φ𝑈(𝑋)Ψ𝑈(𝜃𝑗) = 𝑤
∗ − lim

α
Ψ𝑈(𝜃�̅�)Φ𝑈,𝑘α(𝑋)Ψ𝑈(𝜃𝑗) = Φ𝑈(𝑋), 

or equivalently, Φ𝑈(𝑋)Ψ𝑈(𝜃𝑗) = Ψ𝑈(𝜃𝑗)Φ𝑈(𝑋). It follows that 

Φ𝑈(𝑋) ∈ 𝑊
∗({Ψ𝑈(𝜃𝑗); 𝑗 ≥  1})

′
= 𝑊∗(𝑈)′ = (𝑈)′ 

for all 𝑋 ∈ ℬ(ℋ̂). This observation completes the proof. 

A projection onto the space of all Toeplitz operators on the Hardy space of the unit 

circle was constructed by Arveson in [39] using a generalized limit argument. In [105] 

Prunaru used invariant means to construct a completely positive unital projection onto the 

set of Toeplitz operators associated with a commuting family of spherical isometries. In our 

setting, a projection onto the set of all abstract 𝑇-Toeplitz operators is obtained by 

compressing Φ𝑈to ℋ. 

For 𝑋 ∈ ℬ(ℋ), we denote by �̃� = 𝑋 ⊕ 0 ∈ ℬ(ℋ̂)its trivial extension to ℋ̂. Then for 

𝑘 ≥ 1 and 𝑋 ∈ ℬ(ℋ), the operators 

Φ𝑇,𝑘(𝑋) =
1

𝑘𝑘
∑ 𝑇

𝜃𝑘
𝑖𝑘∙…∙𝜃1

𝑖1

∗ 𝑋𝑇
𝜃1
𝑖1∙…∙𝜃𝑘

𝑖𝑘

1≤𝑖1,…,𝑖𝑘≤𝑘

∈ ℬ(ℋ) 

are the compressions of the corresponding operators Φ𝑈,𝑘(�̃�), that is, 

Φ𝑇,𝑘(𝑋) = 𝒫ℋΦ𝑈,𝑘(�̃�)|ℋ((𝑘 ≥ 1, 𝑋 ∈ ℬ
(ℋ)). 

As before we denote by 𝐼𝜇 the set of all 𝜇-inner functions 𝜃in 𝐻∞𝐴(𝜇) and write 

𝒯(𝑇) = {𝑋 ∈ ℬ(ℋ); 𝑇𝜃
∗𝑋𝑇𝜃 = 𝑋 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 ∈ 𝐼μ} 

for the set of all abstract 𝑇 stract 𝑇-Toeplitz operators on ℋ. 

Corollary (4.3.2)[128]: The mapping 

Φ𝑇: ℬ(ℋ) → ℬ(ℋ), 𝑋 ↦ Φ𝑇(𝑋) = 𝑤
∗ − lim

α
Φ𝑇,𝑘α(𝑋) = 𝒫ℋΦ𝑈(�̃�)|ℋ 

is a well-defined completely positive unital projection with 

ran(ΦT) = 𝒯(𝑇). 

Proof. Since the compression mapping ℬ(ℋ̂) → ℬ(ℋ),𝑋 ↦ 𝒫ℋ𝑋|ℋ, is weak∗continuous, 

completely positive and unital, it follows that 

𝑤∗ − lim
α
Φ𝑇,𝑘α(𝑋) = 𝒫ℋΦ𝑈(�̃�)|ℋ 

for 𝑋 ∈ ℬ(ℋ) and that the map Φ𝑇: ℬ(ℋ) → ℬ(ℋ), 𝑋 ↦ 𝒫ℋΦ𝑈(�̃�)|ℋ, is completely 

positive and unital. Since Φ𝑇,𝑘(𝑋) = 𝑋for each abstract 𝑇-Toeplitz operator 𝑋 ∈ 𝒯(𝑇) and 
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every 𝑘 ≥ 1, it follows that Φ𝑇(𝑋) = 𝑋 for 𝑋 ∈ 𝒯(𝑇). Using Theorem (4.3.1), we obtain 

that 

𝑇𝜃
∗Φ𝑇(𝑋)𝑇𝜃 = 𝒫ℋΨ𝑈(𝜃)

∗𝒫ℋΦ𝑈(�̅�)Ψ𝑈(𝜃)|ℋ = 𝒫ℋΨ𝑈(𝜃)
∗Φ𝑈(�̅�)Ψ𝑈(𝜃)|ℋ

= 𝒫ℋΦ𝑈(�̅�)|ℋ = Φ𝑇(𝑋) 
for every operator 𝑋 ∈ ℬ(ℋ) and each 𝜇-inner function 𝜃 ∈ 𝐼𝜇. Hence ran(Φ𝑇) = 𝒯(𝑇), 

and the proof is complete. 

As a direct application of Theorem (4.3.1) and Corollary (4.3.2) we obtain a natural 

description of the abstract 𝑇-Toeplitz operators. 

Corollary (4.3.3)[128]: Let 𝑇 ∈ ℬ(ℋ)𝑛be a regular 𝐴-isometry with minimal normal 

extension 𝑈 ∈ ℬ(ℋ̂)
𝑛

. Then we have 

𝒯(𝑇) = 𝒫ℋ(𝑈)
′|ℋ . 

Proof. By Corollary (4.3.2) and Theorem (4.3.1)we have 𝒯(𝑇) ⊂ 𝒫ℋ(𝑈)
′|ℋ. Conversely, 

if 𝑋 ∈ (𝑈)′and 𝜃 ∈ 𝐼𝜇is a 𝜇-inner function, then 

𝑇𝜃
∗(𝒫ℋ𝑋|ℋ)𝑇𝜃 = 𝒫ℋΨ𝑈(𝜃)

∗𝒫ℋ𝑋Ψ𝑈(𝜃)|ℋ = 𝒫ℋΨ𝑈(𝜃)
∗𝑋Ψ𝑈(𝜃)|ℋ = 𝒫ℋ𝑋|ℋ . 

Hence also the reverse inclusion 𝒫ℋ(𝑈)
′|ℋ ⊂ 𝒯(𝑇) holds. 

Let Φ𝑈and Φ𝑇be defined as above. Then 

�̂�: ℬ(ℋ) → ℬ(ℋ̂), 𝑋 ↦ Φ𝑈(�̅�) 
defines a completely positive linear mapping with Φ𝑇(X) = 𝒫ℋ�̂�(𝑋)|ℋ for all 𝑋 ∈ ℬ(ℋ) 
and ran(�̂�) ⊂ (𝑈)′. To see that equality holds here, we need some more preparations. Note 

that 

ℐ𝑈 = Ψ𝑈(𝐼𝜇) ⊂ 𝑊
∗(𝑈) 

defines an abelian semigroup of unitary operators with 𝑊∗(ℐ𝑈) = 𝑊
∗(𝑈). The minimality 

of 𝑈as a normal extension of 𝑇implies that 

ℋ̂ =⋁𝑉∗ℋ;𝑉 ∈ ℐU . 

To see this it suffices to observe that the space on the right-hand side is invariant under 

𝑊∗(ℐ𝑈) = 𝑊
∗(𝑈). 

Corollary (4.3.4)[128]: The compression mapping 

𝜚: (𝑈)′ → 𝒯(𝑇), 𝑋 ⟼ 𝒫ℋ𝑋|ℋ 

defines a completely isometric linear isomorphism with inverse given by 

𝒯(𝑇) → (𝑈)′ , 𝑋 ⟼ �̂�(𝑋). 
Proof. We know from Corollary (4.3.3) that 𝜚is well-defined and surjective. As a 

compression mapping 𝜚is completely contractive. Since 

〈𝑋𝑉∗ℎ,𝑊∗𝑘〉 = 〈𝜚(𝑋)𝑊ℎ, 𝑉𝑘〉 
for all 𝑋 ∈ (𝑈)′, 𝑉,𝑊 ∈ ℐ𝑈 and ℎ, 𝑘 ∈ ℋ, the remarks preceding the corollary imply that𝜚is 

injective. The observation that 

𝜚(�̂�(𝑋)) = Φ𝑇(𝑋) = 𝑋 

for all 𝑋 ∈ 𝒯(𝑇) shows that 𝒯(𝑇) → (𝑈)′, 𝑋 ⟼ �̂�(𝑋), defines the inverse of the bijection 

𝜚: (𝑈)′ → 𝒯(𝑇). Since also �̂� is completely contractive as a composition of completely 

contractive mappings, it follows that 𝜚 is completely isometric. 

The restriction of �̂�: ℬ(ℋ) → ℬ(ℋ̂)to the 𝐶∗-algebra 𝐶∗(𝒯(𝑇)) generated by all 

abstract 𝑇-Toeplitz operators is even a 𝐶∗-algebra homomorphism. 

Theorem (4.3.5)[128]: The restriction 

𝜋 = �̂�|𝐶∗(𝒯(𝑇))𝐶
∗(𝒯(𝑇)) → ℬ(ℋ̂) 

is the minimal Stinespring dilation of the completely positive unital projection 
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𝐶∗(𝒯(𝑇)) → 𝐶∗(𝒯(𝑇)), 𝑋 ⟼ Φ𝑇(𝑋). 

For 𝑋 ∈ ℬ(ℋ) and 𝑌 ∈ 𝐶∗(𝒯(𝑇)), we have 

�̂�(𝑋𝑌) = �̂�(𝑋)�̂�(𝑌). 

Proof. We know that �̂�: ℬ(ℋ) → ℬ(ℋ̂), and hence also its restriction 𝜋, are completely 

positive maps. To prove that 𝜋 is a homomorphism of 𝐶∗-algebras, it suffices to check its 

multiplicativity. Fix operators 𝑋 ∈ ℬ(ℋ) and 𝑌 ∈ 𝒯(𝑇). Since ran(�̂�) ⊂ 𝑊∗(𝑈)′, it 

follows that 

〈�̂�(𝑋𝑌)𝑉∗ℎ, 𝑘〉 = lim
α
〈𝑉∗Φ𝑈,𝑘α(𝑋�̃�)ℎ, 𝑘〉 

for 𝑉 ∈ ℐ𝑈 and ℎ ∈ ℋ, 𝑘 ∈ ℋ̂. Applying Corollary (4.3.4) to the operator 𝑌 ∈ 𝒯(𝑇), we 

obtain the identity 

Ψ𝑈(𝜃)
∗𝑋�̃�Ψ𝑈(𝜃)ℎ = Ψ𝑈(𝜃)

∗𝑋𝒫ℋΨ𝑈(𝜃)�̂�(𝑌)ℎ 
for 𝜃 ∈ 𝐼𝜇and ℎ ∈ ℋ. Using the definition of �̂�(𝑋) = Φ𝑈(�̅�), we find that 

〈�̂�(𝑋𝑌)𝑉∗ℎ, 𝑘〉 = 〈𝑉∗�̂�(𝑋)�̂�(𝑌)ℎ, 𝑘〉 = 〈�̂�(𝑋)�̂�(𝑌)𝑉∗ℎ, 𝑘〉 
for 𝜃 ∈ 𝐼𝜇and ℎ ∈ ℋ, 𝑘 ∈ ℋ̂. By the remarks preceding Corollary (4.3.4) it follows that 

�̂�(𝑋𝑌) = �̂�(𝑋)�̂�(𝑌). 
Inductively one obtains that 

�̂�(𝑋1 ∙ … ∙ 𝑋𝑟) = �̂�(𝑋1) ∙ … ∙ �̂�(𝑋𝑟) 

holds for any finite number of operators 𝑋1 ∙ … ∙ 𝑋𝑟 ∈ 𝒯(𝑇). Since 𝐶∗(𝒯(𝑇)) is the norm-

closed linear span of products of this type and since �̂� is norm-continuous, the 

multiplicativity of 𝜋 = �̂�|𝐶∗(𝒯(𝑇)) follows. 

Using the definition of 𝜋(1ℋ) = Φ𝑈(1ℋ⊕0ℋ⊥), one easily finds that 𝜋(1ℋ) acts 

as the identity operator on ℋ. Since 

𝜋(1ℋ)𝑉
∗ℎ = 𝑉∗𝜋(1ℋ)ℎ = 𝑉

∗ℎ 

for all 𝜃 ∈ ℐ𝑈 and ℎ ∈ ℋ, it follows that 𝜋(1ℋ) = 1ℋ̂. As an application of Corollary (4.3.4) 

one obtains that 𝜋(𝑇𝑓) = Ψ𝑈(𝑓) for all 𝑓 ∈ 𝐿∞(𝜇). Hence the minimality of  𝑈implies that 

𝜋is the minimal Stinespring dilation of Φ𝑇|𝐶∗(𝒯(𝑇)). To see that �̂�possesses the additional 

multiplicativity property claimed in the theorem, it suffices to observe that 

�̂�(𝑋𝑌1 ∙ … ∙ 𝑌𝑟) = �̂�(𝑋)�̂�(𝑌1) ∙ … ∙ �̂�(𝑋𝑟) = �̂�(𝑋)�̂�(𝑌1…𝑌𝑟) 
for 𝑋 ∈ ℬ(ℋ), 𝑌1, . . . , 𝑌𝑟 ∈ 𝒯(𝑇), and to use the norm-continuity of �̂�. 

For 𝑌 ∈ (𝑈)′, we define the Toeplitz operator 𝑇𝑌 ∈ 𝒯(𝑇) with symbol 𝑌as the 

compression 𝑇𝑌 = 𝒫ℋ𝑌|ℋ. In the particular case that 𝑌 = Ψ𝑈(𝑓) with 𝑓 ∈ 𝐿∞(𝜇) we obtain 

that 𝑇𝑌 = 𝑇𝑓is the Toeplitz operator with symbol 𝑓. 

Corollary (4.3.6)[128]: Let 𝑇 ∈ ℬ(ℋ)𝑛 be a regular 𝐴-isometry with minimal normal 

extension 𝑈 ∈ ℬ(ℋ̂)
𝑛

and scalar spectral measure 𝜇 ∈ 𝑀+(𝜕𝐴). Let Φ𝑇: ℬ(ℋ) → ℬ(ℋ) 

and 𝜋: 𝐶∗(𝒯(𝑇)) → ℬ(ℋ̂) be defined as before. 

(i) For 𝑋 ∈ 𝒯(𝑇), the operator 𝜋(𝑋) is the unique element in (𝑈)′ with 𝑋 =
𝑇𝜋(𝑋). For 𝑌 ∈ (𝑈)′, we have 𝜋(𝑇𝑌) = 𝑌. 

(ii) For 𝑌 ∈ (𝑈)′ and 𝑓 ∈ 𝐿∞(𝜇), we have 

‖𝑇𝑌‖ = ‖𝑌‖        𝑎𝑛𝑑 ‖𝑇𝑓‖ = ‖𝑓‖𝐿∞(𝜇); 

(iii) For 𝑌𝑖𝑗 ∈ (𝑈)
′, 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑠, we have 

Φ𝑇 (∑∏𝑇𝑌𝑖𝑗

𝑆

𝑗=1

𝑟

𝑖=1

) = 𝑇∑ ∏ 𝑌𝑖𝑗
𝑆
𝑗=1

𝑟
𝑖=1

. 
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Proof. Part (i) and part (ii) follow immediately from Corollary (4.3.4). Since by Theorem 

(4.3.5) the restriction 𝜋 = �̂�|𝐶∗(𝒯(𝑇))is a 𝐶∗-algebra homomorphism, we obtain that 

Φ𝑇 (∑∏𝑇𝑌𝑖𝑗

𝑆

𝑗=1

𝑟

𝑖=1

) = 𝒫ℋ (∑∏𝜋(𝑇𝑌𝑖𝑗)

𝑆

𝑗=1

𝑟

𝑖=1

)|

ℋ

= 𝑇∑ ∏ 𝑌𝑖𝑗
𝑆
𝑗=1

𝑟
𝑖=1

 

for 𝑌𝑖𝑗 ∈ (𝑈)
′as in part (iii). 

Since the 𝐶∗-algebra 𝐶∗(𝒯(𝑇)) is the norm-closure of the set of all finite sums of 

finite products of Toeplitz operators of the form 𝑇𝑌 with 𝑌 ∈ (𝑈)′, part(iii) of Corollary 

(4.3.6) shows in particular that the action of any Toeplitz projection Φ𝑇: ℬ(ℋ) → ℬ(ℋ) 

defined as above is uniquely determined by 𝑇 on the Toeplitz 𝐶∗-algebra 𝐶∗(𝒯(𝑇)). 
If 𝑊∗(𝑈) is a maximal abelian 𝑊∗-algebra, or equivalently, 𝑊∗(𝑈) = 𝑊∗(𝑈)′, then 

the abstract and concrete Toeplitz operators coincide, that is, 

𝒯(𝑇) = {𝑇𝑓;  𝑓 ∈ 𝐿
∞(𝜇)}. 

This can be seen as a generalization of the classical Brown–Halmos characterization [2] of 

the Toeplitz operators on 𝐻2(𝕋). 
Let 𝑇 ∈ ℬ(ℋ)𝑛be a regular 𝐴-isometry with minimal normal extension 𝑈 ∈

ℬ(ℋ̂)
𝑛

and scalar spectral measure 𝜇 ∈ 𝑀+(𝜕𝐴).We denote by Φ𝑇: ℬ(ℋ) → ℬ(ℋ) a 

Toeplitz projection defined as above. Recall that Φ𝑇 is the compression 

Φ𝑇(𝑈) = 𝒫ℋΦ𝑈(�̅�)|ℋ(𝑋 ∈ ℬ(ℋ)) 
of a projection Φ𝑈: ℬ(ℋ̂) → ℬ(ℋ̂) with ran(Φ𝑈) = (𝑈)

′ and that 

𝜋: 𝐶∗(𝒯(𝑇)):→ ℬ(ℋ̂), 𝑋 ↦ Φ𝑈(𝑋) 
is the minimal Stinespring dilation of the completely positive and unital mapping 

Φ𝑇|𝐶∗(𝒯(𝑇)). We denote by 

𝒯𝑎(𝑇) = {𝑇𝑓;  𝑓 ∈ 𝐻𝐴
∞(𝜇)} ⊂ ℬ(ℋ) 

the weak*closed subalgebra consisting of all analytic Toeplitz operators. Our next aim is to 

calculate the essential commutant 𝒯𝑎(𝑇)
𝑒𝑐of the set of all analytic Toeplitz operators. 

Lemma (4.3.7)[128]: Suppose that 𝑀 ⊂ ℋis a closed reducing subspace for 𝒯(𝑇). Then 

Φ𝑇(X) = Φ𝑇((𝑃𝑀𝑋|𝑀) ⊕ (𝑃𝑀⊥𝑋|𝑀⊥)) 
for every operator 𝑋 ∈ ℬ(ℋ). 
Proof. We denote by ℳthe set of all operators 𝑋 ∈ ℬ(ℋ) with the property that 𝑋𝑀 ⊂
𝑀⊥and 𝑋𝑀⊥ ⊂ 𝑀. Fix an operator 𝑋 ∈ ℳ. Then 𝑇𝜃

∗𝑋𝑇𝜃 ∈ ℳfor all 𝜇-inner functions 𝜃 ∈
𝐼𝜇and hence also Φ𝑇(X) ∈ ℳ (see Corollary (4.3.2)). On the other hand, the space 𝑀is 

reducing for the operator Φ𝑇(X) ∈ 𝒯(𝑇). Therefore Φ𝑇(X) = 0 and the assertion follows. 

Let 𝑆 ∈ 𝒯𝑎(𝑇)
𝑒𝑐be arbitrary. It follows from Corollary (4.3.4) that 𝑌𝑆 = �̂�(𝑆) is the 

unique operator in (𝑈)′with Φ𝑇(𝑆) = 𝒫ℋ𝑌𝑆|ℋ. Our aim is to show that, under suitable 

conditions on 𝑇, the operator 𝑆 is a compact perturbation of an abstract 𝑇-Toeplitz operator. 

Since Φ𝑇(S) ∈ 𝒯(𝑇), it suffices to show that 

𝑆 − Φ𝑇(S) ∈ 𝒦(ℋ). 
To prove this, we shall use the map 

𝐹: 𝐿∞(𝜇) → ℬ(ℋ) , 𝑓 ↦ 𝑇𝑓𝑆 − 𝒫ℋ(𝑌𝑆Ψ𝑈(𝑓))|ℋ . 

Note first that 𝑆 − Φ𝑇(S) = 𝐹(1)and that 

𝐹(𝑓) = 𝑇𝑓𝑆 − Φ𝑇(S)𝑇𝑓 
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for every function 𝑓 ∈ 𝐻𝐴
∞(𝜇). It clearly suffices to find conditions which ensure that the 

whole image of 𝐹consists of compact operators. Since 𝐹 is continuous linear, we only need 

to show that 𝐹maps the characteristic function 𝜒𝜔 of each Borel set 𝜔 ⊂ 𝜕𝐴 into 𝒦(ℋ). We 

begin with a very modest first step. 

Lemma (4.3.8)[128]: For every point 𝑧 ∈ 𝜕𝐴, the operator 𝐹(𝜒{𝑧})is compact. 

Proof. We may suppose that 𝜇({𝑧}) > 0, since otherwise 𝐹(𝜒{𝑧}) = 0. As shown in [133] 

the regularity of 𝑇implies that 𝜒{𝑧} ∈ 𝐻𝐴
∞(𝜇). Exactly as in [133]), it follows that the 

eigenspace 𝐻𝑧of 𝑇associated with the joint eigenvalue 𝑧coincides with the eigenspace of 

𝑈associated with 𝑧, that is, 

⋂Ker(𝑧𝑖 − 𝑇𝑖)

𝑛

𝑖=1

=⋂Ker(𝑧𝑖 − 𝑈𝑖)

𝑛

𝑖=1

 

and that 𝑃𝑧 = Φ𝑈(𝜒{𝑧})|ℋ ∈ ℬ
(ℋ) is the orthogonal projection onto 𝐻𝑧. The space 𝐻𝑧 =

𝑃𝑧ℋis reducing for 𝒯(𝑇), since 

(𝒫ℋ𝑋|ℋ)𝑃𝑧 = 𝒫ℋΨ𝑈(𝜒{𝑧})𝒫ℋ𝑋|ℋ = 𝑃𝑧
(𝒫ℋ𝑋|ℋ) 

for all 𝑋 ∈ (𝑈)′. Let 𝑆 = (𝑆𝑖𝑗)𝑖𝑗=1,2 be the matrix representation of 𝑆 with respect to the 

decomposition ℋ = (ℋ⊝𝐻𝑧) ⊕ 𝐻𝑧. Since 𝑃𝑧 = 𝑇𝜒{𝑧} ∈ 𝒯𝑎(𝑇), it follows that 𝑆𝑃𝑧 −

𝑃𝑧𝑆 ∈ 𝒦(ℋ), or equivalently, that 𝑆12and 𝑆21are compact. Using Lemma (4.3.7) and 

passing to the equivalence classes in the Calkin algebra, we find that 

[𝐹(𝜒{𝑧})]  = [𝑃𝑧(𝑆11⊕𝑆22) − Φ𝑇(𝑆)𝑃𝑧]  = [𝑃𝑧(0⊕ 𝑆22) − Φ𝑇(𝑆11⊕𝑆22)𝑃𝑧]. 

For each 𝜇-inner function 𝜃 ∈ 𝐼𝜇, we have 

(𝑇𝜃
∗(𝑆11⊕𝑆22)𝑇𝜃|𝐻𝑧 = (𝑇𝜃

∗𝑆22𝑇𝜃)|𝐻𝑧 = 𝑆22. 

Hence the definition of Φ𝑇 implies that Φ𝑇(𝑆11⊕𝑆22)|𝐻𝑧 = 𝑆22. But then 𝑃𝑧(0⊕ 𝑆22) −

Φ𝑇(𝑆11⊕𝑆22)𝑃𝑧 = 0and therefore 𝐹(𝜒{𝑧})is compact. 

Let us suppose in addition that 𝑇is essentially normal. Then it follows from Lemma 

3.9 (c) in [134] that all operators in the image of the map 

𝐹: 𝐿∞(𝜇) → ℬ(ℋ) , 𝑓 ↦ 𝑇𝑓𝑆 − 𝒫ℋ(𝑌𝑆Ψ𝑈(𝑓))|ℋ  

belong to the essential commutant (𝑇)𝑒𝑐of 𝑇. Hence we can apply the following 

consequence of the Allan-Douglas localization principle to every operator inran (𝐹). 
Proposition (4.3.9)[128]: Suppose that the regular 𝐴-isometry 𝑇 ∈ ℬ(ℋ)𝑛is essentially 

normal. Then for every operator 𝑋 ∈ (𝑇)𝑒𝑐, we have 

‖𝑋‖𝑒 = sup
𝑧∈𝜕𝐴

inf {‖𝑇𝑓𝑋‖𝑒
; 𝑓 ∈ 𝐶(𝜕𝐴)   𝑤𝑖𝑡ℎ 𝑓(𝑧) = 1} . 

Proof. By Lemma3.9 (c) and Lemma 4.1 in [134], the essential normality of 𝑇 yields that 

𝒟 = (𝑇)𝑒𝑐is a 𝐶∗-algebra containing 𝒯(𝑇) ∪𝒦(𝐻), that the 𝐶∗-algebra 

𝒜 = (𝐶∗({𝑇𝑓: 𝑓 ∈ 𝐶(𝜕𝐴)})) +𝒦(𝐻)/𝒦(𝐻) 

is contained in the center of the 𝐶∗-algebra 𝒯 = 𝒟/𝒦(𝐻) and that the mapping𝜏: 𝐶(𝜕𝐴) →

𝒜, 𝑓 ↦ [𝑇𝑓] ,is a surjective 𝐶∗-algebra homo-morphism. Hence, for each functional 𝜆 ∈

𝛥𝒜in the character space of 𝒜, there is a unique point 𝑧(𝜆) ∈ 𝜕𝐴with 

𝜆([𝑇𝑓]) = 𝑓(𝑧(𝜆))(𝑓 ∈ 𝐶(𝜕𝐴)). 

For 𝜆 ∈ 𝛥𝒜 and 𝑧 ∈ 𝜕𝐴, let 𝐼𝜆 ⊂ 𝒯be the closed ideal generated by all elements [𝑇𝑓] where 

𝑓 ∈ 𝐶(𝜕𝐴) and 𝜆([𝑇𝑓]) = 0, and let 𝐼𝜆 ⊂ 𝒯be the closed ideal generated by all elements [𝑇𝑓] 
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such that 𝑓 ∈ 𝐶(𝜕𝐴) satisfies 𝑓(𝑧) = 0. Then 𝐼𝜆 = 𝐼𝑧(𝜆)for all 𝜆 ∈ 𝛥𝒜 , and the Allan-

Douglas localization principle (Theorem 7.47 in [5] ) implies that 

‖𝑋‖𝑒 = sup
𝜆∈𝛥𝒜

‖[𝑋] + 𝐼𝜆‖𝒯/𝐼𝜆 ≤ sup
𝑧∈𝜕𝐴

‖[𝑋] + 𝐼𝑧‖𝒯/𝐼𝑧  

for every 𝑋 ∈ (𝑇)𝑒𝑐. But for 𝑋 ∈ (𝑇)𝑒𝑐and 𝑓 ∈ 𝐶(𝜕𝐴) with 𝑓(𝑧) = 1, the estimate 

‖[𝑋] + 𝐼𝑧‖𝒯/𝐼𝑧 = ‖[𝑇𝑓𝑋] + 𝐼𝑧‖𝒯/𝐼𝑧
≤ ‖𝑇𝑓𝑋‖e

 

holds. This observation completes the proof. 

An application of the dominated convergence theorem (Lemma 3.4 in [134] ) shows 

that the mapping 

𝐹: 𝐿∞(𝜇) → ℬ(ℋ) , 𝑓 ↦ 𝑇𝑓𝑆 − 𝒫ℋ(𝑌𝑆Ψ𝑈(𝑓))|ℋ  

is pointwise boundedly SOT-continuous, that is, for every bounded sequence (𝑓𝑘)𝑘in 𝐿∞(𝜇) 
converging pointwise 𝜇-almost everywhere to some function 𝑓 ∈ 𝐿∞(𝜇), it follows that 

𝐹(𝑓) = lim
𝑘→∞

𝐹(𝑓𝑘) in the strong operator topology. 

Corollary (4.3.10)[128]: Suppose that the regular 𝐴-isometry 𝑇 ∈ ℬ(ℋ)𝑛is essentially 

normal. For a given operator 𝑆 ∈ 𝒯𝑎(𝑇)
𝑒𝑐, let 𝐹: 𝐿∞(𝜇) → ℬ(ℋ) be defined as above. If 

𝐹(𝐿∞(𝜇)) ⊊ 𝒦(ℋ), then there is a sequence (𝑓𝑘)𝑘of continuous functions 𝑓𝑘 ∈
𝐶(𝜕𝐴, [0, 1])with pairwise disjoint supports such that 

inf
𝑘≥1
‖𝐹(𝑓𝑘)‖ > 0. 

Proof. Suppose that 𝐹(𝐿∞(𝜇)) ⊈ 𝒦(ℋ). Since every bounded measurable function can be 

approximated uniformly by linear combinations of characteristic functions of Borel sets, we 

can choose a characteristic function 𝜒of some Borel set in 𝜕𝐴 such that 𝜚 =
‖𝐹(𝜒)‖𝑒

2
> 0. By 

Proposition (4.3.9) there is a point 𝑧 ∈ 𝜕𝐴with 

‖𝐹(𝑓𝜒)‖𝑒 = ‖𝑇𝑓𝐹(𝜒)‖𝑒
> 𝜚 

for all 𝑓 ∈ 𝐶(𝜕𝐴) with 𝑓(𝑧) = 1. Here the first equality follows from Lemma 3.9 (c) in 

[134]. Let 𝑘 ≥ 0 be an integer. Suppose that 𝑔1, . . . , 𝑔𝑘 ∈ 𝐶(𝜕𝐴, [0, 1])are functions with 

pairwise disjoint supports such that ‖𝐹(𝑔𝑖𝜒)‖𝑒 > 𝜚 and 𝑧 ∉ supp(𝑔𝑖) for 𝑗 = 0, . . . , 𝑘. 

Choose a function 𝑓 ∈ 𝐶(𝜕𝐴, [0, 1])with 𝑓(𝑧) = 1 and supp(𝑓) ∩ supp(𝑔𝑖) = ∅ for all 𝑗 =

0, . . . , 𝑘. Let (𝜃𝑗)𝑗be a sequence of functions in 𝐶(𝜕𝐴, [0, 1]) with 𝑧 ∉ supp(𝜃𝑗)for all 𝑗such 

that 𝜃𝑗(𝑤) → 1 as 𝑗 → ∞for every point 𝑤 ∈ 𝜕𝐴\{𝑧}. Since 𝐹is pointwise boundedly SOT-

continuous, it follows that 

𝐹(𝜒{𝑧}𝑐𝑓𝜒) = SOT − lim
𝑗→∞

𝐹(𝜃𝑗𝑓𝜒) . 

As an application of Lemma (4.3.8), we obtain that 

‖𝐹(𝜒{𝑧}𝑐𝑓𝜒)‖  ≥ ‖𝐹(𝑓𝜒)‖𝑒 > 𝜚. 

Hence there is an integer 𝑗 ≥ 1such that ‖𝐹(𝜃𝑗𝑓𝜒)‖ > 𝜚. 

Inductively one obtains a sequence of functions 𝑔𝑘 ∈ 𝐶(𝜕𝐴, [0, 1]) with pairwise 

disjoint supports and ‖𝐹(𝑔𝑘𝜒)‖ > 𝜚 for all 𝑗. In the inductive step, one can define 𝑔𝑘+1 =
𝜃𝑗𝑓 with 𝑓and 𝜃𝑗as above. A standard application of Lusin’s theorem (Theorem 7.4.3 and 

Proposition 3.1.2 in [130]) shows that there is a sequence (ℎ𝑗)𝑗 in 𝐶(𝜕𝐴, [0, 1]) such that 

ℎ𝑗 → 𝜒 for 𝑗 → ∞ 𝜇-almost everywhere. Since 

𝐹(𝑔𝑘𝜒) = SOT − lim
𝑗→∞

𝐹(𝑔𝑘ℎ𝑗) (𝑘 ≥ 1), 
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for each 𝑘 ≥ 1, there is an index 𝑗𝑘 ≥ 1 with ‖𝐹(𝑔𝑘ℎ𝑗𝑘)‖ > 𝜚. But then the resulting 

functions 𝑓𝑘 = 𝑔𝑘ℎ𝑗𝑘have all the required properties. 

We are able to show the main result. 

Theorem (4.3.11)[128]: Let 𝑇 ∈ ℬ(ℋ)𝑛be an essentially normal regular 𝐴-isometry. Then 

for every operator 𝑆 ∈ 𝒯𝑎(𝑇)
𝑒𝑐, we have 

𝑆 − Φ𝑇(𝑆) ∈ 𝒦(ℋ). 
Proof. Let 𝐹: 𝐿∞(𝜇) → ℬ(ℋ) , 𝑓 ↦ 𝑇𝑓𝑆 − 𝒫ℋ(𝑌𝑆Ψ𝑈(𝑓))|ℋ, be the map considered above. 

Since 𝑆 − ΦT(𝑆) = 𝐹(1), it suffices to show that 𝐹(𝐿∞(𝜇)) ⊂ 𝒦(ℋ). Let us assume that 

this inclusion does not hold. Then by Corollary (4.3.10) there are a positive real number 𝜚 >
0 and a sequence of functions 𝑓𝑘 ∈ 𝐶(𝜕𝐴, [0, 1]) with pairwise disjoint supports 𝐴𝑘 =
𝑠𝑢𝑝𝑝(𝑓𝑘) such that ‖𝐹(𝑓𝑘)‖ > 𝜚  for all 𝑘 ≥ 1. 

Exactly as in [134] , one can use the regularity of 𝑇to replace (𝑓𝑘)𝑘 by a sequence 

(𝑔𝑘)𝑘of functions in 𝐴 such that 

‖𝑔𝑘‖∞,𝜕𝐴 ≤  2 , ‖𝑔𝑘‖∞,𝜕𝐴\𝐴𝑘 < 2
−𝑘‖𝐹(𝑔𝑘)‖ >

𝜚

4
 

for all 𝑘 ≥ 1. Recall that 𝐹(𝑔𝑗) = 𝑇𝑔𝑗𝑆 − Φ𝑇(𝑆)𝑇𝑔𝑗is the weak*limit of a net consisting of 

operators of the form 

𝑇𝑔𝑗𝑆 −
1

𝑘𝑘
∑ 𝑇𝜃(𝑖)

∗ 𝑆𝑇𝜃(𝑖)𝑇𝑔𝑗
𝑖∈{1,...,𝑘}𝑘

=
1

𝑘𝑘
∑ 𝑇𝜃(𝑖)

∗ (𝑇𝑔𝑗𝜃(𝑖)𝑆 − 𝑆𝑇𝑔𝑗𝜃(𝑖))

𝑖∈{1,...,𝑘}𝑘

 

with suitable 𝜇-inner functions 𝜃(𝑖) ∈ 𝐼𝜇. Hence, for each 𝑗 ≥ 1, there is a function 𝜃𝑗: 𝜕𝐴 →

ℂ with |𝜃𝑗| = 1 on 𝜕𝐴such that 𝜃𝑗 ∈ 𝐼𝜇and such that the function ℎ𝑗 = 𝑔𝑗𝜃𝑗 ∈ 𝐻𝐴
∞(𝜇) 

satisfies 

‖ℎ𝑗‖∞,𝜕𝐴
≤  2, ‖ℎ𝑗‖∞,𝜕𝐴\𝐴𝑗

< 2−𝐽, ‖𝑇ℎ𝑗𝑆 − 𝑆𝑇ℎ𝑗‖ >
𝜚

4
. 

By hypothesis the commutators 𝐾𝑗 = [𝑇ℎ𝑗 , 𝑆] are compact. By passing to a subsequence, 

one can achieve that the limit 

𝒸 = lim
𝑗→∞

‖𝐾𝑗‖ ∈ [
𝜚

4
,∞] 

exists. Since the sequence (ℎ𝑗)𝑗is uniformly bounded on 𝜕𝐴and converges to zero point-

wise on 𝜕𝐴, it follows that the sequences (𝐾𝑗)𝑗and (𝐾𝑗
∗)
𝑗
converge to zero strongly. Aresult 

due to Muhly and Xia (Lemma 2.1 in [137]) shows that, by passing to a subsequence again, 

one can achieve that the series 

𝐾 =∑𝐾𝑗

∞

𝑗=1

 

converges in the strong operator topology and satisfies ‖𝐾‖𝑒 = 𝑐 > 0. Since each point of 

𝜕𝐴belongs to at most one of the sets 𝐴𝑗, the partial sums of the series ∑ ℎ𝑗
∞
𝑗=1 are uniformly 

bounded on 𝜕𝐴and converge pointwise to a function ℎ: 𝜕𝐴 → ℂ. By the dominated 

convergence theorem it follows that ℎ ∈ 𝐻𝐴
∞𝐴(𝜇). Again using Lemma 3.4 from [134] , one 

obtains that 

𝑇ℎ =  SOT −∑𝑇ℎ𝑗

∞

𝑗=1

 , [𝑇ℎ𝑆] = SOT −∑[𝑇ℎ𝑗 , 𝑆]

∞

𝑗=1

= 𝐾. 
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But then 𝑇ℎ ∈ 𝒯𝑎(𝑇) would be an operator with non-compact commutator [𝑇ℎ , 𝑆] = 𝐾. This 

contradiction completes the proof. 

Let 𝑇 ∈ ℬ(ℋ)𝑛be a regular 𝐴-isometry with minimal normal extension 𝑈 ∈

ℬ(ℋ)𝑛and scalar spectral measure 𝜇 ∈ 𝑀+(𝜕𝐴). Suppose that 𝑊∗(𝑈) ⊂ ℬ(ℋ̂) is a 

maximal abelian von Neumann algebra, that is, 𝑊∗(𝑈) = (𝑈)′.  

Then Corollary (4.3.3) implies that 𝒯(𝑇) = {𝑇𝑓; 𝑓 ∈ 𝐿
∞(𝜇)}. As a consequence, we obtain 

a complete characterization of the essential commutant 𝒯𝑎(𝑇)
𝑒𝑐of the analytic Toeplitz 

operators in this case. 

Corollary (4.3.12)[128]: Let 𝑇 ∈ ℬ(ℋ)𝑛 be an essentially normal regular 𝐴-isometry with 

minimal normal extension 𝑈 ∈ ℬ(ℋ)𝑛and scalar spectral measure 𝜇 ∈ 𝑀+(𝜕𝐴). If 

𝑊∗(𝑈) ⊂ ℬ(ℋ̂) is a maximal abelian von Neumann algebra and 𝑆 ∈ ℬ(ℋ), then 

equivalent are: 

(i) 𝑆 ∈ 𝒯𝑎(𝑇)
𝑒𝑐. 

(ii) 𝑆 = 𝑇𝑓 + 𝐾with a compact operator 𝐾 ∈ 𝒦(ℋ)and a symbol 𝑓 ∈ 𝐿∞(𝜇)with the 

property that the associated Hankel operator 𝐻𝑓 is compact. 

Proof. First, suppose that 𝑆 ∈ 𝒯𝑎(𝑇)
𝑒𝑐. Then Φ𝑇(𝑆) = 𝑇𝑓with a suitable function 𝑓 ∈

𝐿∞(𝜇). The proof of Theorem (4.3.11) shows that the image of the bounded linear map 

𝐹: 𝐿∞(𝜇) → ℬ(ℋ) , 𝑔 ↦ 𝑇𝑔𝑆 − 𝒫ℋ(Ψ𝑈(𝑔𝑓))|ℋ 

is contained in 𝒦(ℋ). It follows that 𝐾 = 𝐹(1) = 𝑆 − 𝑇𝑓is compact and the identity 

𝐹(𝑓)̅ = 𝑇𝑓̅𝑆 − 𝑇|𝑓|2 = 𝑇𝑓̅𝑇𝑓 − 𝑇|𝑓|2 + 𝑇𝑓̅𝐾

= 𝒫ℋΨ𝑈(𝑓)̅𝒫ℋΨ𝑈(𝑓)|ℋ −𝒫ℋΨ𝑈(𝑓)̅Ψ𝑈
(𝑓)|

ℋ
+ 𝑇𝑓̅𝐾

= −𝒫ℋΨ𝑈(𝑓)̅𝒫ℋ⊥Ψ𝑈(𝑓)|ℋ + 𝑇𝑓̅𝐾 = −𝐻𝑓
∗𝐻𝑓 ++𝑇𝑓̅𝐾 

shows that also the operator 𝐻𝑓is compact. 

In order to prove the remaining implication, it suffices to verify that all Toeplitz 

operators 𝑇𝑓 such that the corresponding Hankel operators 𝐻𝑓 are compact essentially 

commute with 𝒯𝑎(𝑇). But this follows from the formula 

𝑇𝑓𝑇𝑔 − 𝑇𝑔𝑇𝑓 = 𝑇𝑔𝑓 − 𝑇𝑔𝑇𝑓 = 𝒫ℋΨ𝑈(𝑔)𝐻𝑓 

which holds for all 𝑓 ∈ 𝐿∞(𝜇) and 𝑔 ∈ 𝐻𝐴
∞(𝜇). 

By considering Hankel operators 𝐻𝑌 = (1 − 𝒫ℋ)𝑌|ℋ ∈ 𝐵(ℋ,ℋ
⊥) with symbol 𝑌 ∈

(𝑈)′, we obtain a similar characterization of the essential commutant of the analytic Toeplitz 

operators in the general case. 

Corollary (4.3.13)[128]: If 𝑇 ∈ 𝐵(ℋ)𝑛 is an essentially normal regular 𝐴-isometry with 

minimal normal extension 𝑈 ∈ 𝐵(ℋ̂)
𝑛

 and scalar spectral measure 𝜇 ∈ 𝑀+(𝜕𝐴), then the 

following statements are equivalent: 

(i) 𝑆 ∈ 𝒯𝑎(𝑇)
𝑒𝑐. 

(ii) 𝑆 = 𝑇𝑌 + 𝐾 with a compact operator 𝐾 ∈ 𝒦(ℋ) and a symbol 𝑌 ∈ (𝑈)′such that 

the associated Hankel operator 𝐻𝑌has the property that 𝐻𝑓̅
∗𝐻𝑌is compact for every 

𝑓 ∈ 𝐿∞(𝜇). 
(iii) 𝑆 = 𝑇𝑌 + 𝐾with a compact operator 𝐾 ∈ 𝒦(ℋ)and a symbol 𝑌 ∈ (𝑈)′ such that 

the associated Hankel operator 𝐻𝑌has the property that 𝐻𝑓̅
∗𝐻𝑌 is compact for every 

𝑓 ∈ 𝐻𝐴
∞(𝜇). 

Proof. For arbitrary symbols 𝑓 ∈ 𝐿∞(𝜇) and 𝑌 ∈ (𝑈)′, an elementary calculation shows that 

−𝐻𝑓̅
∗𝐻𝑌 = 𝑇𝑓𝑇𝑌 −𝒫ℋΨ𝑈(𝑓)|ℋ . 
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Suppose that 𝑆 ∈ 𝒯𝑎(𝑇)
𝑒𝑐. Then Theorem (4.3.11) implies that 𝑆 = 𝑇𝑌 + 𝐾 is a sum of the 

Toeplitz operator 𝑇𝑌 = Φ𝑇(𝑆) ∈ ℬ(ℋ)with symbol 𝑌 ∈ (𝑈)′ and the compact operator 

𝐾 = 𝑆 −Φ𝑇(𝑆) ∈ 𝒦(ℋ). By the proof of Theorem (4.3.11) the range of the mapping 

𝐹: 𝐿∞(𝜇) → ℬ(ℋ) , 𝑓 ↦ 𝑇𝑓𝑆 − 𝒫ℋΨ𝑈(𝑓)𝑌|ℋ 

is contained in 𝒦(ℋ). Consequently, 𝐻𝑓̅
∗𝐻𝑌 = 𝑇𝑓𝐾 − 𝐹(𝑓) is compact for every symbol 

𝑓 ∈ 𝐿∞(𝜇). To complete the proof note that the identity 

𝐻𝑓̅
∗𝐻𝑌 = 𝒫ℋΨ𝑈(𝑓)𝑌|ℋ − 𝑇𝑓𝑇𝑌 = 𝑇𝑌𝑇𝑓 − 𝑇𝑓𝑇𝑌 

holds for 𝑓 ∈ 𝐻𝐴
∞(𝜇) and 𝑌 ∈ (𝑈)′. 

Johnson and Parrott characterized the essential commutant 𝔘𝑒𝑐of an abelian von 

Neumann algebra 𝔘 ⊂ ℬ(ℋ) as the sum 𝔘′ +𝒦(ℋ) of its commutant and the compact 

operators [8]. This result has been generalized in [138] to the non-abelian case. We present 

an alternative proof of Johnson and Parrott’s result for finitely generated abelian von 

Neumann algebras. To this end, let us observe that, for every compact subset 𝐾 ⊂ ℂ𝑛, the 

Shilov boundary of 𝐶(𝐾) is equal to 𝐾itself and the triple (𝐶(𝐾),𝐾, 𝜇) is regular [129] for 

every choice of 𝜇 ∈ 𝑀+(𝐾). Consequently, every commuting tuple 𝑁 = (𝑁1, … , 𝑁𝑛) ∈

ℬ(ℋ)𝑛of normal operators is a regular 𝐶(𝜎(𝑁))-isometry. 

Corollary (4.3.14)[128]: (Johnson–Parrott). The essential commutant of a finitely 

generated abelian von Neumann algebra 𝔘 ⊂ ℬ(ℋ)is given by 

𝔘𝑒𝑐 = 𝔘′ +𝒦(ℋ). 
Proof. Since 𝔘is abelian, its generators 𝑁1, … , 𝑁𝑛 ∈ ℬ(ℋ)

𝑛 form a commuting tuple of 

normal operators and hence a normal regular 𝐶(𝜎(𝑁))-isometry 𝑁 ∈ ℬ(ℋ)𝑛. By Theorem 

(4.3.11), the inclusion 𝒯𝑎(𝑁)
𝑒𝑐 ⊂ 𝒯(𝑁) +𝒦(ℋ) holds. Hence it suffices to check that the 

analytic Toeplitz operators associated with 𝑁coincide with 𝔘 = 𝑊∗(𝑁) and that the abstract 

𝑁-Toeplitz operators are precisely those operators that commute with 𝔘. Let 𝜇 ∈ 𝑀+(𝜎(𝑁)) 

denote the scalar spectral measure associated with 𝑁. Then 𝐶(𝜎(𝑁)) is weak∗-dense in 

𝐿∞(𝜇), which implies that 𝐻𝐶(𝜎(𝑁))
∞ (𝜇) = 𝐿∞(𝜇) and hence 

𝑊∗(𝑁) = Ψ𝑁(𝐿
∞(𝜇)) = Ψ𝑁 (𝐻𝐶(𝜎(𝑁))

∞ (𝜇)) = 𝒯𝑎(𝑁). 

To conclude the proof, we combine the fact that (𝑁)′ = 𝑊∗(𝑁)′ = 𝔘′with Corollary (4.3.4) 

to obtain the remaining identity 𝒯(𝑁) = 𝔘′. 
By [132], the preceding result applies in particular to every abelian von Neumann 

algebra on a separable Hilbert space. 

As another application of Theorem (4.3.11) we characterize those regular 𝐴-

isometries for which the associated Toeplitz projection Φ𝑇vanishes on the compact 

operators. By following the lines of the proof of [133] and adapting it to the setting of regular 

𝐴-isometries, we observe that a regular 𝐴-isometry 𝑇 ∈ ℬ(ℋ)𝑛has empty point spectrum if 

and only if 

𝒯(𝑇) ∩𝒦(ℋ) = {0}. 
Corollary (4.3.15)[128]: The Toeplitz projection Φ𝑇 associated with a regular 𝐴-isometry 

𝑇 ∈ ℬ(ℋ)𝑛 vanishes on 𝒦(ℋ) if and only if 𝜎𝑝(𝑇) = ∅. 

Proof. Recall that the Toeplitz projection acts as the identity on the Toeplitz operators. Thus, 

if 𝑇 has an eigenvalue, we can choose a compact Toeplitz operator 𝑋 ≠ 0 satisfying 

Φ𝑇(𝑋) = 𝑋 ≠ 0. On the other hand, the minimal normal extension 𝑈 ∈ ℬ(ℋ̂)
𝑛

 of 𝑇 is a 

normal regular 𝐴-isometry. Moreover, the mapping Φ𝑈is the corresponding Toeplitz 

projection. A look at Theorem (4.3.11) reveals that 
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𝑆 − Φ𝑈(𝑆) ∈ 𝒦(ℋ̂) 
for every element 𝑆 ∈ 𝒯𝑎(𝑈)

𝑒𝑐. Now assume that 𝐾 ∈ 𝒦(ℋ) is a compact operator. Then 

�̂� = 𝐾 ⊕ 0 ∈ 𝒦(ℋ̂) is compact and thus belongs to 𝒯𝑎(𝑈)
𝑒𝑐. Hence the above calculation 

implies that Φ𝑈(�̂�) ∈ 𝒦(ℋ̂) ∩ 𝒯(𝑈) is a compact 𝑈-Toeplitz operator. Assuming that 

𝜎𝑝(𝑇) = ∅, we infer that Φ𝑇(𝐾) = 𝒫ℋΦ𝑈(�̂�)|ℋ = 0. 

Using Corollary (4.3.15) we prove an essential spectral inclusion theorem for Toeplitz 

operators. 

Theorem (4.3.16)[128]: Let 𝑇 ∈ ℬ(ℋ)𝑛be a regular 𝐴-isometry with minimal normal 

extension 𝑈 ∈ ℬ(ℋ̂)
𝑛
. Then 𝑇has empty point spectrum if and only if the spectral inclusion 

𝜎(𝑌) ⊂ 𝜎𝑒(𝑇𝑌)holds for every operator 𝑌 ∈ (𝑈)′. 
 

 

Proof. Suppose that 𝜎𝑝(𝑇) = ∅ and fix an operator 𝑌 ∈ (𝑈)′. We first show that the left 

spectrum of 𝑌is contained in the left essential spectrum of 𝑇𝑌. To prove this inclusion it 

suffices to verify that 𝑌is left invertible in ℬ(ℋ̂) whenever 𝑇𝑌is left invertible in the Calkin 

algebra 𝒞(ℋ) = ℬ(ℋ)/𝒦(ℋ). Let us suppose that 𝑋 ∈ ℬ(ℋ) is an operator with 𝑋𝑇𝑌 −
1ℋ ∈ 𝒦(ℋ). Using Corollary (4.3.4) and the proof of Theorem (4.3.5), we find that 

�̂�(𝑋𝑌) = �̂�(𝑋)�̂�(𝑇𝑌) = �̂�(𝑋𝑇𝑌) = 1ℋ̂ + �̂�(𝑋𝑇𝑌 − 1ℋ). 
Since 𝜎𝑝(𝑈) = 𝜎𝑝(𝑇) = ∅, it follows from Corollary (4.3.15) applied to 𝑈 that Φ𝑈 

annihilates the compact operators. But then, using the definition of �̂�, we find that 

�̂�(𝑋)𝑌 = 1ℋ +Φ𝑈((𝑋𝑇𝑌 − 1ℋ) ⊕ 0) = 1ℋ . 
Thus we have shown that the left spectrum of 𝑌is contained in the left essential spectrum of 

𝑇𝑌. Applying the same argument to 𝑌∗ ∈ (𝑈)′, we obtain that the left spectrum of  𝑌∗ is 

contained in the left essential spectrum of 𝑇𝑌
∗ = 𝑇𝑌∗. By standard duality results this means 

precisely that the right spectrum of 𝑌 is contained in the right essential spectrum of 𝑇𝑌. In 

total we have shown that 𝜎(𝑌) ⊂ 𝜎𝑒(𝑇𝑌)for every operator 𝑌 ∈ (𝑈)′under the hypothesis 

that the point spectrum of 𝑇is empty. If 𝑥is a joint eigenvector for 𝑇, then the orthogonal 

projection 𝑌of ℋ̂ onto the one-dimensional subspace spanned by 𝑥belongs to the 

commutant (𝑈)′ and 𝑇𝑌is the corresponding rank-one projection on ℋ. Then 1 ∈ 𝜎(𝑌) 
while 𝜎𝑒(𝑇𝑌) ⊂ {0}. Hence the essential spectral inclusion result does not hold. 

For regular 𝐴-isometries with empty point spectrum, we even proved spectral 

inclusion theorems for the left (essential) spectra and right (essential) spectra separately. If 

𝜎𝑝(𝑇) = ∅and 𝜇denotes the scalar spectral measure of the minimal normal extension 𝑈 ∈

ℬ(ℋ̂)
𝑛

, then we obtain in particular that 

essran(𝑓) = 𝜎𝐿∞(𝜇)(𝑓) = 𝜎(Ψ𝑈(𝑓)) ⊂ 𝜎𝑒(𝑇𝑓) 

for every function 𝑓 ∈ 𝐿∞(𝜇). For the particular case of Toeplitz operators on the Hardy 

space of the unit disc or the unit ball, this result is contained in [5] and [12] . 

For a given subalgebra 𝐵 ⊂ (𝑈)′, we denote by 

𝒯ℬ = alg̅̅ ̅̅ ({𝑇𝑋;  𝑋 ∈ ℬ}) ⊂ ℬ(ℋ) 
the smallest norm-closed subalgebra containing all operators 𝑇𝑋with 𝑋 ∈ ℬ. The semi-

commutator ideal 𝒮𝒞(𝒯ℬ) of 𝒯ℬ is defined as the norm-closed ideal in 𝒯ℬgenerated by all 

operators 𝑇𝑋𝑇𝑌 − 𝑇𝑋𝑌 with 𝑋, 𝑌 ∈ ℬ. Since 𝒯ℬis the norm-closure of the set of all finite sums 

of finite products of operators of the form 𝑇𝑋with 𝑋 ∈ 𝐵, a straightforward argument using 
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part (iii) of Corollary (4.3.6) shows that 𝒯ℬis invariant under the Toeplitz projection Φ𝑇and 

that 

𝒮𝒞(𝒯ℬ) = ker(Φ𝑇|𝒯ℬ) = ker(𝜋|𝒯ℬ). 

The last equality follows from Theorem (4.3.5) together with Corollary (4.3.4). 

Corollary (4.3.17)[128]: Let 𝑇 ∈ ℬ(ℋ)𝑛be a regular 𝐴-isometry with minimal normal 

extension 𝑈 ∈ ℬ(ℋ)𝑛. For each subalgebra ℬ ⊂ (𝑈)′, there is a short exact sequence 

0 → 𝒮𝒞(𝒯ℬ) ↪ 𝒯ℬ
π
→ℬ ⟶ 0 

Of  Banach algebras with 𝜋(𝑇𝑋) = 𝑋 for all 𝑋 ∈ ℬ. If 𝜎𝑝(𝑇) = ∅, then 

𝒯ℬ ∩𝒦(ℋ) ⊂ 𝒮𝒞(𝒯ℬ). 
Proof. The existence of the short exact sequence follows from the remarks preceding the 

corollary. The last assertion is a consequence of Corollary (4.3.15). 

 

Using part (ii) and part(iii) of Corollary (4.3.6) one obtains that, for every regular 𝐴-

isometry 𝑇 ∈ ℬ(ℋ)𝑛and each subalgebra ℬ ⊂ (𝑈)′, the direct sum decomposition 

𝒯ℬ = 𝒮𝒞(𝒯ℬ) ⊕ {𝑇𝑋;  𝑋 ∈ ℬ̅} 

holds with 𝒮𝒞(𝒯ℬ) = ker(Φ𝑇|𝒯ℬ) and {𝑇𝑋;  𝑋 ∈ ℬ̅} = Φ𝑇(𝒯ℬ). If in addition the subalgebra 

ℬ ⊂ (𝑈)′is self-adjoint in the sense that 𝑋∗ ∈ 𝐵whenever 𝑋 ∈ 𝐵, then the sequence 

described in Corollary (4.3.17) is a short exact sequence of 𝐶∗-algebras.  
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Chapter 5 

Toeplitz Corona Theorems 

 

We extend and refine some work of Agler-McCarthy and Amar concerning the 

Corona problem for the polydisk and the unit ball in ℂ𝑛. For free functions a and b on a free 

domain 𝒦 defined free polynomial inequalities, a sufficient condition on the difference 

𝑎𝑎∗  −  𝑏𝑏∗ to imply the existence a free function c taking contractive values on 𝒦 such that 

𝑎 =  𝑏𝑐 is established. The connection to recent work of Agler and McCarthy and their free 

Toeplitz Corona Theorem is exposited. 

Section (5.1): The Polydisk and the Unit Ball 

Theorem (5.1.1)[139]: (Corona) Let {𝑓𝑗}𝑗=1
𝑚

⊆ 𝐻∞(𝐷). Assume that 

0 < 𝜖2 ≤∑|𝑓𝑗(𝑧)|
2

𝑚

𝑗=1

≤ 1    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝐷. 

There exists a constant 𝐶(𝜖,𝑚) < ∞ and {𝑔𝑗}𝑗=1
𝑚

⊆ 𝐻∞(𝐷). so that 

𝑠𝑢𝑝
𝑧∈𝐷

∑|𝑔𝑗(𝑧)|
2

𝑚

𝑗=1

≤𝐶(𝜖,𝑚)2  𝑎𝑛𝑑 ∑𝑓𝑗(𝑧)𝑔𝑗(𝑧)

𝑚

𝑗=1

= 1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝐷. 

Theorem (5.1.1) and especially the techniques utilized in its proof have been very 

influential. See, for example, Garnett [42]. Among many questions raised by this theorem, 

we wish to consider the analogous Corona problem for the polydisk and the unit ball in ℂ𝑛. 

For the case of the bidisk, 𝐷2, Agler and McCarthy proved the following: 

Theorem (5.1.2)[139]: (Agler and McCarthy) Let {𝑓𝑗}𝑗=1
𝑚

⊆ 𝐻∞(𝐷). Then there exist 

{𝑔𝑗}𝑗=1
𝑚

⊆ 𝐻∞(𝐷2). with 

∑𝑓𝑗𝑔𝑗

𝑚

𝑗=1

≡ 1  𝑎𝑛𝑑 𝑠𝑢𝑝
𝑧∈𝐷2

∑|𝑔𝑗(𝑧)|
2

𝑚

𝑗=1

≤
1

𝛿2
  

if and only if 

𝑇𝐹
𝜇
(𝑇𝐹
𝜇
)
∗
≥ 𝛿2𝐼𝜇 

for all probability measures 𝜇 on 𝑇2. 
Although the Theorem (5.1.2) and its proof seemed to be restricted to 𝑛 = 2 by the 

classical and beautiful counterexample of Parrot [143], Amar managed to extend it to 𝐷𝑛 

(and to 𝐵𝑛). 

Theorem (5.1.3)[139]:(Amar) Let {𝑓𝑗}𝑗=1
𝑚

⊆ 𝐻∞(Ω). Then there exist {𝑔𝑗}𝑗=1
𝑚

⊆ 𝐻∞(Ω) 

with 

∑𝑓𝑗𝑔𝑗

𝑚

𝑗=1

≡ 1  𝑎𝑛𝑑 𝑠𝑢𝑝
𝑧∈Ω

∑|𝑔𝑗(𝑧)|
2

𝑚

𝑗=1

≤
1

𝛿2
  

if and only if 

𝑇𝐹
𝜇
(𝑇𝐹
𝜇
)
∗
≥ 𝛿2𝐼𝜇 

for all probability measures 𝜇 on 𝜕Ω. 

In other words, Amar shows that for {𝑓𝑗}𝑗=1
𝑚

⊆ 𝐻∞(Ω) and 𝛿 > 0 

the following are equivalent: 
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(i) There exist {𝑔𝑗}𝑗=1
𝑚

⊆ 𝐻∞(Ω) with 

∑𝑓𝑗𝑔𝑗

𝑚

𝑗=1

= 1   𝑜𝑛 Ω 𝑎𝑛𝑑 𝑠𝑢𝑝
𝑧∈Ω

∑|𝑔𝑗(𝑧)|
2

𝑚

𝑗=1

≤
1

𝛿2
 . 

(ii) For all probability measures 𝜇 on 𝜕Ω and all ℎ ∈ 𝑃2(𝜇) there exists {𝑘𝑗}𝑗=1
𝑚

⊆

𝐻∞(Ω)  

∑𝑓𝑗𝑘𝑗

𝑚

𝑗=1

= ℎ    𝑎𝑛𝑑 ∑‖𝑘𝑗‖𝜇
2

𝑚

𝑗=1

≤
1

𝛿2
‖ℎ‖𝜇

2  

By results of Andersson-Carlsson [141] for the unit ball and Varopoulos [148], Li 

[61], Lin [74], Trent [147], and Treil-Wick [70] for the polydisk case, we know that if the 

input functions are bounded away from 0 on Ω, we have an 𝐻𝑝(Ω) Theorem (5.1.1) for 1 ≤
𝑝 < ∞. That is, if 

{𝑓𝑗}𝑗=1
𝑚

⊆ 𝐻∞(Ω)  and 0 < 𝜖2 ≤ inf
𝑧∈Ω
∑‖𝑓𝑗(𝑧)‖

2
𝑚

𝑗=1

≤ 1, 

then for 1 ≤ 𝑝 < ∞ there exists a 𝛿𝑝 > 0 so that 

𝑇𝐹𝑇𝐹
∗ ≥ 𝛿𝑝

2𝐼𝐻𝑝(Ω), 

where 𝐹 = (𝑓1, 𝑓2, . . . ). Unfortunately, the best of these estimateshave 𝛿𝑝 ↓ 0 as 𝑝 ↑ ∞. 

Thus Theorem (5.1.3) tells us that a solution to the Corona problem 

for 𝐻𝑝(Ω) follows from the following statement: 

𝑇𝐹𝑇𝐹
∗ ≥ 𝛿𝑝

2𝐼 , 𝛿 > 0
?
⇒ ∃𝜖 > 0        such that  𝑇𝑝

𝜇
(𝑇𝑝
𝜇
)
∗
≥ 𝜖2𝐼𝜇  

for all probability measures 𝜇 on 𝜕Ω. 

Necessity in Theorem (5.1.3) is trivial; so we will concentrate on weakening the 

sufficient conditions to get the same Corona output. 

We will extend Theorem (5.1.3) to an infinite number of input functions and refine 

his theorem, so that we need only consider probability measures, 𝜇, of the form |𝐻|2𝑑𝜎, 

where 𝐻 ∈ ℋ. In addition, we weaken the hypotheses to just have our operators dominate a 

certain rank one operator. We begin with a series of lemmas. 

Lemma (5.1.4)[139]: Let ℱ(𝑧) = [𝑓𝑖𝑗(𝑧)]𝑖,𝑗=1
∞

 , 𝑓𝑖𝑗 ∈ 𝐻
∞(Ω). Then 

‖𝑇ℱ‖
𝐵(
∞
⊕
1
𝐻2(Ω))

= sup
𝑧∈Ω
‖ℱ(𝑧)‖𝐵(𝑙2) . 

Proof. Let ℎ ∈
∞
⊕
1
𝐻2(Ω). Then 

‖𝑇ℱℎ‖∞
⊕
1
𝐻2(Ω)

2
= sup
0≤𝑟<1

( ∫‖ℱ(𝑟𝑒𝑖𝑡)ℎ(𝑟𝑒𝑖𝑡)‖
𝑙2

2

𝛿Ω

𝑑𝜎)

≤ sup
𝑧∈Ω

∫‖ℱ(𝑧)‖𝐵(𝑙2)
2

𝛿Ω

sup
0≤𝑟<1

( ∫‖ℎ(𝑟𝑒𝑖𝑡)‖
𝑙2

2

𝛿Ω

𝑑𝜎) ≤ sup
𝑧∈Ω

‖ℱ(𝑧)‖𝐵(𝑙2)
2 ‖ℎ‖∞

⊕
1
𝐻2(Ω)

2
. 

For 𝑥 ∈ Ball1(𝑙
2) and 𝑧 ∈ Ω 
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‖𝑇ℱ
∗ (𝑥

𝑘𝑧
‖𝑘𝑧‖𝐻2(Ω)

)‖∞
⊕
1
𝐻2(Ω)

2

= ‖ℱ(𝑧)∗𝑥
𝑘𝑧

‖𝑘𝑧‖𝐻2(Ω)
‖∞
⊕
1
𝐻2(Ω)

2

= ‖ℱ(𝑧)∗𝑥‖
𝑙2
2
. 

Thus, 

‖𝑇ℱ‖ = ‖ℱ‖ ≥ sup
𝑧∈Ω

sup
𝑥∈Ball1(𝑙

2)
‖ℱ(𝑧)∗𝑥‖

𝑙2
2
≥ sup
𝑧∈Ω
‖ℱ(𝑧)∗‖𝐵(𝑙2) = sup

𝑧∈Ω
‖ℱ(𝑧)‖. 

For a Hilbert space, 𝐾, and vectors 𝑥, 𝑦, ℎ ∈ 𝐾, we let 𝑥 ⊗ 𝑦denote the rank one operator 

defined on 𝐾by 

(𝑥 ⊗ 𝑦)(ℎ) = 〈ℎ, 𝑦〉𝑥. 
The next lemma will be used repeatedly with 𝐴 = 𝑇𝐹

𝐻 and 𝑘 = 𝐻, for 𝐻 ∈ ℋ. 

Lemma (5.1.5)[139]: Assume that for 𝐴 ∈ 𝐵(𝐾) and 𝑘 ∈ 𝐾with ‖𝑘‖𝐾 = 1, 𝐴𝐴
∗ ≥ 𝛿2𝑘 ⊗

𝑘. Then there exists 𝑢𝑘 ∈ (Ker𝐴)
⊥, so that 𝐴𝑢𝑘 = 𝑘 and ‖𝑢𝑘‖𝐾 ≤

1

𝛿
. 

Proof. By the Douglas Range Inclusion Theorem, see [142], there exists a 𝐶 ∈

𝐵(𝐻, Ker𝐴⊥) such that 𝐴𝐶 = 𝑘 ⊗ 𝑘and ‖𝐶‖ ≤
1

𝛿
. Let 𝑢𝑘 = 𝐶𝑘. 

Lemma (5.1.6)[139]: For f a positive, bounded, lower semi-continuous function on 𝜕Ω, 

there exists a nonvanishing 𝐻 ∈ 𝐻∞(Ω), so that 

𝑓 = |𝐻|2𝜎 − 𝑎. 𝑒. 𝑜𝑛 𝜕Ω. 
Proof. For Ω = 𝐷𝑛 and 𝜕Ω = 𝑇𝑛, this is a result of Rudin [145]. For Ω = 𝐵𝑛 and 𝜕Ω =
𝜕𝐵𝑛, this is a theorem of Alexandrov (see Rudin[146], p. 32).  

Recall that  

ℋ ≜ {𝐻 ∈ 𝐻∞(Ω):𝐻nonvanishing in Ω,
1

𝐻
∈ 𝐿∞(𝛿Ω, 𝑑𝜎), and ‖𝐻‖2 = 1}. 

For {𝑎𝑗}𝑗=1
∞

a fixed countable dense set in Ω with 𝑎1 = 0, define for each 𝑁 = 1, 2, . . . 

𝒞𝑁 ≜ 𝑐𝑜{
|𝑘𝑎𝑗|

2

|𝑘𝑎𝑗|2

2 : 𝑗 = 1,… ,𝑁} 

Here 𝑘𝑎(⋅) is the reproducing kernel for 𝐻2(Ω). It is clear that 𝒞𝑁 is compact and convex in 

𝐿1(𝛿Ω, 𝑑𝜎). 
Calculating, we see that for Ω = 𝐷𝑛 and 𝑔 ∈ 𝒞𝑁, we have 

0 < (
1 − ‖𝑎‖

1 + ‖𝑎‖
)

𝑛

≤ 𝑔(𝑧) ≤ (
1 + ‖𝑎‖

1 − ‖𝑎‖
)

𝑛

< ∞  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ Ω, 

where ‖𝑎‖ = max{‖𝑎𝑗‖: 𝑗 = 1,… , 𝑁}. 

For Ω = 𝐵𝑛 and 𝑔 ∈ 𝒞𝑁, we have 

0 < (
1 − ‖𝑎‖

1 + ‖𝑎‖
)

𝑛

≤ 𝑔(𝑧) ≤ (
1 + ‖𝑎‖

1 − ‖𝑎‖
)

𝑛

< ∞  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ Ω, 

where ‖𝑎‖ = (∑ ‖𝑎𝑗‖2
2𝑁

𝑗=1 )

1

2
. 

Note that for 𝑔 ∈ 𝒞𝑁, the above calculation shows that, as sets, 𝑃2(𝑔 𝑑𝜎)equals 𝐻2(Ω). 

Assume that 𝑇𝐹𝑇𝐹
∗ ≥ 𝛿21⨂1 and choose 𝑥 ∈

∞
⊕
1
𝐻2(Ω)so that 𝑇𝐹𝑥 = 1 and ‖𝑥‖

2
≤

1

𝛿
. 
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For 𝑁 = 1, 2, . ..define 

ℱ𝑁: 𝒞𝑁 ×
∞
⊕
1
𝐻2(Ω) → [0,∞) 

By 

ℱ𝑁(𝑔, 𝑎) ≜ ∫‖𝑥 − 𝑃Ker(𝑇𝐹)𝑎‖𝑙2
2

𝛿Ω

𝑔𝑑𝜎,  

for 𝑔 ∈ 𝒞𝑁 and 𝑎 ∈
∞
⊕
1
𝐻2(Ω). 

Since 𝑔 ∈ 𝒞𝑁, 

𝑥 − 𝑃Ker(𝑇𝐹)𝑎 ∈
∞
⊕
1
𝐻2(Ω) 

and ℱ𝑁(𝑔, 𝑎) is finite and positive. 

For fixed 𝑎 ∈
∞
⊕
1
𝐿2(𝑑𝜎), 𝑔 ⟼ ℱ𝑁(𝑔, 𝑎) is linear and thus concave on the compact convex 

set 𝒞𝑁. For fixed 𝑔 ∈ 𝒞𝑁, 𝑎 ⟼ ℱ𝑁(𝑔, 𝑎) is convex and continuous on 

∞
⊕
1
𝐻2(Ω). 

Lemma (5.1.7)[139]: Assume that 𝑇𝐹𝑇𝐹
∗ ≥ 𝛿21⨂1. For each 𝑁 = 1, 2, . . ., 

inf

𝑎∈
∞
⊕
1
𝐻2(Ω)

sup
𝑔∈𝒞𝑁

ℱ𝑁(𝑔, 𝑎) = sup
𝑔∈𝒞𝑁

inf

𝑎∈
∞
⊕
1
𝐻2(Ω)

ℱ𝑁(𝑔, 𝑎) . 

Proof. By our remarks above, we may apply von Neumann’s minimax theorem. See, for 

example, Gamelin [119]. 

We are now ready to present our extension of  Theorem (5.1.3). 

Theorem (5.1.8)[139]: Assume that for some 𝛿 > 0, 𝑇𝐹𝑇𝐹
∗ ≥ 𝛿2𝐻⨂𝐻for 

all 𝐻 ∈ ℋ. Then there exists a 𝐺 ∈
∞
⊕
1
𝐻2(Ω) with 

𝐹𝐺 ≡ 1 in Ω and sup
𝑧∈Ω
‖𝐺(𝑧)‖𝑙2 ≤

1

𝛿
. 

That is, 

𝑇𝐹𝑇𝐺𝑇 ≡  𝐼 𝑖𝑛 𝐻
2(Ω). 

Proof. Since 𝑇𝐹𝑇𝐹
∗ ≥ 𝛿21⨂1, we may choose 𝑥 ∈

∞
⊕
1
𝐻2(Ω)so that 𝑇𝐹𝑥 = 1 and ‖𝑥0‖2 ≤

1

𝛿
. 

Fix any positive integer, 𝑁, and any 𝑔 ∈ 𝒞𝑁. By Lemma (5.1.6), we may find an 𝐻 ∈
ℋ, so that |𝐻|2 = 𝑔 𝜎-a.e. on 𝜕Ω. 

By our assumption 

𝑇𝐹
𝐻(𝑇𝐹

𝐻)∗ ≥ 𝛿2𝐻⊗𝐻, 

so there exists an 𝑥𝐻 ∈
∞
⊕
1
𝐻2(Ω)with 
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𝑇𝐹
𝐻(𝑥𝐻) = 1   𝑎𝑛𝑑 ‖𝑥𝐻‖2,𝑔 𝑑𝜎 ≤

1

𝛿
.                (1) 

Since 𝑥 − 𝑥𝐻 ∈ Ker(𝑇𝐹), we have 𝑥𝐻 − 𝑥 = 𝑃Ker(𝑇𝐹)𝛼for 𝛼 = 𝑥 − 𝑥𝐻. 

Thus (1) says that 

∫ ‖𝑥 − 𝑃Ker(𝑇𝐹)𝛼‖
2
𝑔 𝑑𝜎 = ℱ𝑁(𝑔, 𝛼)

𝜕Ω

≤
1

𝛿2
. 

Since this is true for every 𝑔 ∈ 𝒞𝑁, we may apply the minimax theorem, 

Lemma (5.1.7), and deduce that 

inf

𝛼∈
∞
⊕
1
𝐻2(Ω)

sup
𝑔∈𝒞𝑁

ℱ𝑁(𝑔, 𝛼) ≤
1

𝛿2
.                  (2) 

Then using (2), choose 𝛼 ∈
∞
⊕
1
𝐻2(Ω) so that 

∫ ‖𝑥 − 𝑃Ker(𝑇𝐹)𝛼‖𝑙2
2
𝑔 𝑑𝜎

𝜕Ω

≤ (
1

𝛿2
+
1

𝑁
)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝒞𝑁 . (3) 

Since 

|𝑘𝑎𝑗|
2

‖𝑘𝑎𝑗‖2

2 ∈ 𝒞𝑁   𝑓𝑜𝑟 𝑗 = 1, 2,… ,𝑁,  

we see that if 

𝐺𝑁 ≜ 𝑥 − 𝑃Ker(𝑇𝐹)𝛼, 

Then 

(i) ‖𝐺(𝑁)(𝑎𝑗)‖𝑙2
2
≤ ∫ ‖𝐺(𝑁)‖

𝑙2

2

𝜕Ω

|𝑘𝑎𝑗|
2

‖𝑘𝑎𝑗‖2

2 𝑑𝜎 ≤
1

𝛿2
+
1

𝑁
, 

for 𝑗 = 1, 2,… ,𝑁 

(ii) ‖𝐺(𝑁)‖
2

2
≤

1

𝛿2
+
1

𝑁
, and 

(iii) 𝐹𝐺(𝑁) ≡ 1 𝑖𝑛 Ω. 
Repeating this argument for each 𝑁 = 1, 2, . . ., we get a sequence of elements, 𝐺(𝑁) ∈
∞
⊕
1
𝐻2(Ω), satisfying (i), (ii), and (iii). 

By relabeling the sequence of elements, {𝐺(𝑁)}, if necessary, let 𝐺 

be a weak limit of {𝐺(𝑁)}
𝑁=1

∞
 in 

∞
⊕
1
𝐻2(Ω). Fix any 𝑎𝑝 ∈ {𝑎𝑗}𝑗=1

∞
. Then 

‖𝐺(𝑎𝑝)‖𝑙2 = lim
𝑁→∞

‖𝐺(𝑁)(𝑎𝑗)‖𝑙2 ≤
1

𝛿
 𝑏𝑦(b). 

Since 𝐺is continuous in Ω and {𝑎𝑗}𝑗=1
∞

 is dense in Ω, we have shown that 

sup
𝑧∈Ω
‖𝐺(𝑧)‖𝑙2 ≤

1

𝛿
. 

By (iii), 

𝐼 = weak lim
𝑁→∞

𝑇𝐹(𝐺
(𝑁)) = 𝑇𝐹(𝐺). 
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Thus, by Lemma (5.1.4), 𝑇𝐹𝑇𝐺 = 1. This completes the proof of Theorem 

(5.1.8).  

We need the fact that Ker𝑇𝐹 = Ran𝑇ℱ, for an appropriate analytic ℱ. For Ω = 𝐵𝑛, 

the unit ball in ℂ𝑛, the fact that Ker𝑇𝐹 = Ran𝑇ℱfollows from results of Andersson and 

Carlsson [141]. For Ω = 𝐷2, Ker𝑇𝐹 = Ran𝑇ℱfollows from Taylor spectrum results of 

Putinar [144]. That Ker𝑇𝐹 = Ran𝑇ℱin the general case, Ω = 𝐷𝑛, follows from an extension 

of the techniques of Trent [147] and will appear in a forthcoming concerning the Taylor 

spectrum of 𝑇𝐹. 

The following shows that the Theorem (5.1.1) for the polydisk or 

unit ball, reduces to an estimation of a lower bound for 𝑇𝐹
𝐻(𝑇𝐹

𝐻)∗ where 𝐻 ∈ ℋ, but 𝐻is not 

cyclic for 𝐻2(Ω). (Note that we always have 
1

𝐻
∈ 𝐿∞(𝜕Ω, 𝑑𝜎).) 

Theorem (5.1.9)[139]: For 𝐻 ∈ ℋ and 𝐻cyclic in 𝐻2(Ω), then 

𝑇𝐹𝑇𝐹
∗(𝑇𝐹

𝐻)∗ ≥ 𝛿21⊗ 1⟹ 𝑇𝐹
𝐻(𝑇𝐹

𝐻)∗ ≥ 𝛿2𝐻⊗𝐻. 
Proof. To show that, when 𝐻is cyclic, 𝑇𝐹

𝐻(𝑇𝐹
𝐻)∗ ≥ 𝛿2𝐻⊗𝐻, it suffices to find 𝑢𝐻 ∈

∞
⊕
1
𝐻2(Ω), satisfying 

𝐹𝑢𝐻 = 1 (𝑠𝑜 𝐹(𝐻𝑢𝐻) = 𝐻)and‖𝐻𝑢𝐻‖∞
⊕
1
𝐻2(Ω)

≤
1

𝛿
‖𝐻‖𝐻2(Ω) =

1

𝛿
. (4) 

Let 𝑥 = 𝑇𝐹(𝑇𝐹𝑇𝐹
∗)−11. Then such a 𝑢𝐻 must have the form 𝑢𝐻 = 𝑥 − 𝑃Ker(𝑇𝐹)𝛼for some 

𝛼 ∈
∞
⊕
1
𝐻2(Ω). To see that such an 𝛼 exists, satisfying (4), we compute 

inf
𝛼∈
∞
⊕
1
𝐻2(Ω)

∫ ‖𝑥 − 𝑃Ker(𝑇𝐹)𝛼‖𝑙2
2
|𝐻|2 𝑑𝜎

𝜕Ω

= inf
𝛼∈
∞
⊕
1
𝐻2(Ω)

∫ ‖𝑥𝐻 − 𝑇ℱ(𝐻𝛼)‖𝑙2
2
 𝑑𝜎

𝜕Ω

(since Ker(𝑇𝐹) = Ran(𝑇ℱ))

= inf

𝛽∈
∞
⊕
1
𝐻2(Ω)

∫ ‖𝑥𝐻 − 𝑇ℱ (𝛽)‖
𝑙2

2

 𝑑𝜎
𝜕Ω

(since 𝐻 is cyclic) = ‖𝑃ran(𝑇ℱ)
⊥ (𝑥𝐻)‖∞

⊕
1
𝐻2(Ω)

2

= ‖𝑃Ker(𝑇𝐹)
⊥ (𝑥𝐻)‖∞

⊕
1
𝐻2(Ω)

2
(since Ran(𝑇ℱ) = Ker(𝑇𝐹)) = ‖𝑃ran(𝑇𝐹∗)(𝐻𝑥)‖

∞
⊕
1
𝐻2(Ω)

2

= ‖𝑇𝐹
∗(𝑇𝐹𝑇𝐹

∗)−1𝑇𝐹𝐻𝑇𝐹
∗(𝑇𝐹𝑇𝐹

∗)−11‖∞
⊕
1
𝐻2(Ω)

2
= ‖𝑇𝐹

∗(𝑇𝐹𝑇𝐹
∗)−1𝐻‖∞

⊕
1
𝐻2(Ω)

2

≤
1

𝛿2
‖𝐻‖𝐻2(Ω)

2 =
1

𝛿2
. 

In the case that 𝑛 = 1, we may choose 𝐻 in Lemma (5.1.6) to be outer and thus cyclic for 

𝐻2(D). So Carleson’s Theorem (5.1.1) for 𝐻∞(D) follows from Theorems (5.1.8) and 

(5.1.9). 

A very natural and interesting question arises from our work. Thanks to Treil’s 

remarkable example [67], we know that for an analytic 

ℱ = [𝑓𝑖𝑗]𝑖𝑗=1
∞

 with 
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𝜖2𝐼𝑙2 ≤ ℱ(𝑧)ℱ(𝑧)
∗ ≤ 𝐼𝑙2   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ Ω, 

there does not necessarily exist an analytic 𝒢 = [𝑔𝑖𝑗]𝑖𝑗=1
∞

 

with ℱ(𝑧)𝒢(𝑧) =  𝐼𝑙2   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ Ω 

𝑎𝑛𝑑 sup
𝑧∈Ω
‖𝒢(𝑧)‖𝐵(𝑙2) < ∞. 

How do we know when such a 𝒢must exist? For the case of the unit disk, 𝐷, it is 

necessary and sufficient that there exist a 𝛿 > 0 with 

𝛿2𝐼 ≤ 𝑇ℱ𝑇ℱ
∗. 

For the polydisk and ball in ℂ𝑛, a natural question is: Does 𝑇ℱ
𝐻𝑇ℱ

𝐻∗ ≥ 𝛿2𝐼𝐻 for some 

𝛿 > 0 and for all 𝐻 ∈ ℋ imply the existence of a bounded analytic Toeplitz operator 𝑇𝒢with 

𝑇ℱ𝑇𝒢 = 𝐼𝑙2? 

For 𝒯(𝑧), a𝑞 ×∞matrix with 𝑞 < ∞, a modification of our techniques works, but we 

only get an estimate 

‖𝑇𝒢‖ ≤
𝑞

𝛿
. 

Section (5.2): Toeplitz Corona Problem 

While isomorphic Banach algebras of continuous complex-valued functions with the 

supremum norm can be defined on distinct topological spaces, the results of Gelfand (cf. 

[5]) showed that for an algebra 𝐴 ⊆ 𝐶(𝑋), there is a canonical choice of domain, the 

maximal space of the algebra. If the algebra 𝐴contains the function 1, then its maximal ideal 

space, 𝑀𝐴, is compact. Determining 𝑀𝐴for a concrete algebra is not always straightforward. 

New points can appear, even when the original space 𝑋is compact, as the disk algebra, 

defined on the unit circle 𝑇, demonstrates. If 𝐴separates the points of 𝑋, then one can identify 

𝑋as a subset of 𝑀𝐴with a point 𝑥0in 𝑋corresponding to the maximal ideal of all functions in 

𝐴vanishing at 𝑥0. When 𝑋is not compact, new points must be present but there is still the 

question of whether the closure of 𝑋in 𝑀𝐴is all of 𝑀𝐴or does there exist a “corona” 𝑀𝐴\𝑋 ≠
∅. 

The celebrated theorem of Carleson states that the algebra 𝐻∞(𝔻) of bounded 

holomorphic functions on the unit disk 𝔻has no corona. There is a corona problem for 

𝐻∞(Ω) for every domain Ω in ℂ𝑚but a positive solution exists only for the case 𝑚 = 1 with 

Ω a finitely connected domain in ℂ. 

One can show with little difficulty that the absence of a corona for an algebra A means 

that for {𝜑𝑖}𝑖=1
𝑛 in 𝐴, the statement that 

∑|𝜑𝑖(𝑥)|
2 ≥ 𝜀2 > 0

𝑛

𝑖=1

 for all 𝑥 in 𝑋          (5) 

is equivalent to the existence of functions{𝜑𝑖}𝑖=1
𝑛 in𝐴 such that 

∑𝜑𝑖(𝑥)𝜓𝑖(𝑥) = 1

𝑛

𝑖=1

 for all 𝑥 in 𝑋            (6) 

The original proof of Carleson [40] for 𝐻∞(𝔻) has been simplified over the years but 

the original ideas remain vital and important. One attempt at an alternate approach, 

pioneered by Arveson [39] and Schubert [159], and extended by Agler –McCarthy [56], 

Amar [140], and finally Trent – Wick [139] for the ball and polydisk, involves an analogous 

question about Toeplitz operators.  
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In particular, for {𝜑𝑖}𝑖=1
𝑛  in 𝐻∞(Ω) for Ω = 𝔹𝑚or 𝔻𝑚, one considers the Toeplitz operator 

𝑇Φ: 𝐻
2(Ω)2 → 𝐻2(Ω) defined 𝑇Φ𝒇 = ∑ 𝜑𝑖𝑓𝑖

𝑛
𝑖=1  for 𝒇 in 𝐻2(Ω), where 𝒇 = 𝑓1⊕…⊕𝑓𝑛 

and 𝒳𝑛 = 𝒳⊕…⊕𝒳 for any space 𝒳. One considers the relation between the operator 

inequality 

𝑇Φ𝑇Φ
∗ ≥ 𝜀2𝐼        for some 𝜀 > 0                      (7) 

and statement (5). One can readily show that (7) implies that one can solve (6) where the 

functions {𝜓𝑖}𝑖=1
𝑛 are in 𝐻2(Ω). We will call the existence of such functions, statement (8). 

The original hope was that one would be able to modify the method or the functions obtained 

to achieve {𝜓𝑖}𝑖=1
𝑛 in 𝐻∞(Ω). That (5) implies (7) follows from earlier work of Andersson – 

Carlsson [141] for the unit ball and of Varopoulos [148], Li [158], Lin [74], Trent [147] and 

Treil –Wick [70] for the polydisk. 

In the Trent –Wick [139] this goal was at least partially accomplished with the use of 

(7) to obtain a solution to (8) for the case 𝑚 = 1 and for the case 𝑚 > 1 if one assumes (7) 

for a family of weighted Hardy spaces. Their method was based on that of Amar [140]. 

We provide a modest generalization of the result of Trent – Wick in which weighted 

Hardy spaces are replaced by cyclic submodules or cyclic invariant subspaces of the Hardy 

space and reinterpretations are given in the language of Hilbert modules for some of their 

other results. It is believed that this reformulation clarifies the situation and raises several 

interesting questions about the corona problem and Hilbert modules. Moreover, it shows 

various ways the Corona Theorem could be established for the ball and polydisk algebras. 

However, most of our effort is directed at analyzing the proof in [139] and identifying key 

hypotheses. 

A Hilbert module over the algebra 𝐴(Ω), for Ω a bounded domain in ℂ𝑚, is a Hilbert 

space ℋwhich is a unital module over 𝐴(Ω) for which there exists 𝐶 ≥ 1 so that ‖𝜑 ∙ 𝑓‖ℋ ≤
 𝐶‖𝜑‖𝐴(Ω)‖𝑓‖ℋfor 𝜑in 𝐴(Ω) and 𝑓in ℋ. Here 𝐴(Ω) is the closure in the supremum norm 

over Ω of all functions holomorphic in a neighborhood of the closure of Ω. 

We consider Hilbert modules with more structure which better imitate the classical 

examples of the Hardy and Bergman spaces. 

The Hilbert module ℛover 𝐴(Ω) is said to be quasi-free of multiplicity one if it has a 

canonical identification as a Hilbert space closure of 𝐴(Ω) such that: 

(i)  Evaluation at a point 𝑧in Ω has a continuous extension to ℛfor which the norm is 

locally uniformly bounded. 

(ii) Multiplication by a 𝜑in 𝐴(Ω) extends to a bounded operator 𝑇𝜑in ℒ(ℛ). 

(iii) For a sequence {𝜑𝑘} in 𝐴(Ω) which is Cauchy in ℛ,𝜑𝑘(𝑧) → 0 for all 𝑧in Ω if 

and only if ‖𝜑𝑘‖ℛ →  0. 

We normalize the norm on ℛ so that ‖1‖ℛ = 1. 

We are interested in establishing a connection between the corona problem for ℳ(ℛ) 
and the Toeplitz corona problem on ℛ. Here ℳ(ℛ) denotes the multiplier algebra for ℛ; 

that is, ℳ (=ℳ(ℛ)) consists of the functions 𝜓 on Ω for which 𝜓ℛ ⊂ ℛ. Since 1 is in ℛ, 

we see that ℳ is a subspace of ℛ and hence consists of holomorphic functions on Ω. 

Moreover, a standard argument shows that 𝜓is bounded (cf. [154]) and hence ℳ ⊂ 𝐻∞(Ω ). 
In general, ℳ ≠ 𝐻∞(Ω). 

For 𝜓in ℳwe let 𝑇𝜓denote the analytic Toeplitz operator in ℒ(ℛ) defined by module 

multiplication by 𝜓. Given functions {𝜑𝑖}𝑖=1
𝑛 in ℳ, the set is said to  

(i) satisfy the corona condition if ∑ |𝜑𝑖(𝑧)|
2𝑛

𝑖=1 ≥ 𝜀2for some 𝜀 > 0 and all 𝑧 in Ω; 
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(ii) have a corona solution if there exist {𝜓𝑖}𝑖=1
𝑛  in ℳsuch that ∑ 𝜑𝑖(𝑧)𝜓𝑖(𝑧)

𝑛
𝑖=1 = 1 

for 𝑧in Ω; 

(iii) satisfy the Toeplitz corona condition if∑ 𝑇𝜑𝑖𝑇𝜑𝑖
∗𝑛

𝑖=1 ≥ 𝜀2𝐼ℛfor some 𝜀 > 0; 

and 

(iv) satisfy the ℛ-corona problem if there exist {𝑓𝑖}𝑖=1
𝑛 in ℛsuch that ∑ 𝑇𝜑𝑖𝑓𝑖

𝑛
𝑖=1 = 1 or 

∑ 𝜑𝑖(𝑧)𝑓(𝑧𝑖)
𝑛
𝑖=1 = 1for 𝑧in Ω with ∑ ‖𝑓𝑖‖

2𝑛
𝑖=1 ≤  1/𝜀2. 

It is easy to show that (ii) ⇒ (i), (iv) ⇒ (iii) and (ii) ⇒ (iv). As mentioned in the 

introduction, it has been shown that (i) ⇒ (iii) in case Ω is the unit ball 𝔹𝑚or the polydisk 

𝔻𝑚and (i) ⇒ (iii) for Ω = 𝔻is Carleson’s Theorem. For a class of reproducing kernel 

Hilbert spaces with complete Nevanlinna –Pick kernels one knows that (ii) and (iii) are 

equivalent [152] (cf. [151], [157]). These results are closely related to generalizations of the 

commutant lifting Theorem [48]. Finally, (iii) ⇒ (iv) results from the range inclusion 

theorem see (cf. [142]). 

Lemma (5.2.1)[149]: If {𝜑𝑖}𝑖=1
𝑛  in ℳsatisfy ∑ 𝑇𝜑𝑖𝑇𝜑𝑖

∗𝑛
𝑖=1 ≥ 𝜀2𝐼ℛfor some 𝜀 > 0, then there 

exist {𝑓𝑖}𝑖=1
𝑛  in ℛsuch that ∑ 𝜑𝑖(𝑧)𝑓𝑖(𝑧)

𝑛
𝑖=1 = 1for 𝑧in Ωand ∑ ‖𝑓𝑖‖ℛ

2𝑛
𝑖=1 ≤  1/𝜀2. 

Proof. The assumption that ∑ 𝑇𝜑𝑖𝑇𝜑𝑖
∗𝑛

𝑖=1 ≥ 𝜀2𝐼 implies that the operator 𝑋:ℛ𝑛 → ℛdefined 

by 𝑋𝒇 = ∑ 𝑇𝜑𝑖𝑓𝑖
𝑛
𝑖=1 satisfies 𝑋𝑋∗ = ∑ 𝑇𝜑𝑖𝑇𝜑𝑖

∗𝑛
𝑖=1 ≥ 𝜀2𝐼ℛ and hence by [142] there exists 

𝑌:ℛ → ℛ𝑛 such that 𝑋𝑌 = 𝐼ℛ  with ‖𝑌‖ ≤
1

𝜀
. Therefore, with 𝑌1 = 𝑓1⊕…⊕ 𝑓𝑛, we have 

∑ 𝜑𝑖(𝑧)𝑓𝑖(𝑧)
𝑛
𝑖=1 = ∑ 𝑇𝜑𝑖𝑓𝑖

𝑛
𝑖=1 = 𝑋𝑌1 = 1and ∑ ‖𝑓𝑖‖ℛ

2𝑛
𝑖=1 = ‖𝑌‖2‖1‖ℛ

2 ≤ 1/𝜀2. Thus the 

result is proved.  

To compare our results to those in [139], we need the following observations. 

Lemma (5.2.2)[149]: Let ℛbe the Hilbert module 𝐿𝑎
2 (𝜇) over 𝐴(Ω) defined to be the closure 

of 𝐴(Ω) in 𝐿2(𝜇) for some probability measure 𝜇on clos Ω. For f in 𝐿𝑎
2 (𝜇), the Hilbert 

modules 𝐿𝑎
2 (|𝑓|2𝑑𝜇) and [𝑓], the cyclic submodule of ℛgenerated by 𝑓, are isomorphic such 

that 1 → 𝑓. 

Proof. Note that ‖𝜑 ∙ 1‖𝐿2(|𝑓|2𝑑𝜇) = ‖𝜑𝑓‖𝐿2(𝜇)for 𝜑in 𝐴(Ω) and the closure of this map sets 

up the desired isomorphism.  

Lemma (5.2.3)[149]: If {𝑓𝑖}𝑖=1
𝑛  are functions in 𝐿𝑎

2 (𝜇)and 𝑔(𝑧) = ∑ ‖𝑓𝑖(𝑧)‖
2𝑛

𝑖=1 , then 

𝐿𝑎
2 (𝑔 𝑑𝜇) is isomorphic to the cyclic submodule [𝑓1⊕…⊕𝑓𝑛] of 𝐿𝑎

2 (𝜇)𝑛with 1 → 𝑓1⊕
…⊕𝑓𝑛. 

In [139], Trent –Wick prove this result and use it to replace the 𝐿𝑎
2 spaces used by 

Amar [140] by weighted Hardy spaces. However, before proceeding we want to explore the 

meaning of this result from the Hilbert module point of view. 

Lemma (5.2.4)[149]: For ℛ = 𝐻2(𝔹𝑚) (or 𝐻2(𝔻𝑚)) the cyclic submodule of ℛ𝑛generated 

by 𝜑1⊕…⊕𝜑𝑛with {𝜑𝑖}𝑖=1
𝑛  in 𝐴(𝔹𝑚) (or 𝐴(𝔻𝑚)) is isomorphic to a cyclic submodule 

of 𝐻2(𝔹𝑚) (or 𝐻2(𝔻𝑚)). 
Proof. Combining Lemma 3 in [139] with the observations made in Lemmas (5.2.2) and 

(5.2.3) above yields the result.  

There are several remarks and questions that arise at this point. First, does this result 

hold for arbitrary cyclic submodules in 𝐻2(𝔹𝑚)𝑛or 𝐻2(𝔻𝑚)𝑛, which would require an 

extension of Lemma 3 in [139] to arbitrary 𝒇 in 𝐻2(𝔹𝑚)𝑛or 𝐻2(𝔻𝑚)𝑛? (This equivalence 

follows from the fact that a converse to Lemma (5.2.2) is valid.) It is easy to see that the 

lemma can be extended to an 𝑛-tuple of the form 𝑓1ℎ ⊕…⊕ 𝑓𝑛ℎ, where the {𝑓𝑖}𝑖=1
𝑛 are in 
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𝐴(Ω) and ℎis in ℛ. Thus one need only assume that the quotients {𝑓𝑖/𝑓𝑗}𝑖,𝑗=1
𝑛

are in 𝐴(Ω ) or 

even only equal a.e. to some continuous functions on 𝜕Ω. 

Second, the argument works for cyclic submodules in 𝐻2(𝔹𝑚) ⊗ 𝑙2 or 𝐻2(𝔻𝑚) ⊗
𝑙2as long as the generating vectors are in 𝐴(Ω ) since Lemma 3 in [139] holds in this case 

also. 

Since every cyclic submodule of 𝐻2(𝔻𝑚) ⊗ 𝑙2is isomorphic to 𝐻2(𝔻𝑚), the 

classical Hardy space has the property that all cyclic submodules for the case of infinite 

multiplicity already occur, up to isomorphism, in the multiplicity one case. Although less 

trivial to verify, the same is true for the bundle shift Hardy spaces of multiplicity one over 

a finitely connected domain in ℂ[150]. 
Third, one can ask if there are other Hilbert modules ℛthat possess the property that 

every cyclic submodule of ℛ⊗ℂ𝑛or ℛ⊗ 𝑙2is isomorphic to a submodule of ℛ? The 

Bergman module 𝐿𝑎
2 (𝔻) does not have this property since the cyclic submodule of 𝐿𝑎

2 (𝔻)⊕
𝐿𝑎
2 (𝔻) generated by 1⊕ 𝑧 is not isomorphic to a submodule of 𝐿𝑎

2 (𝔻). If it were, we could 

write the function 1 + |𝑧|2 = |𝑓(𝑧)|2 for some 𝑓in 𝐿𝑎
2 (𝔻) which a simple calculation using 

a Fourier expansion in terms of {𝑧𝑛𝑧
𝑚
} shows is not possible. 

We now abstract some other properties of the Hardy modules over the ball and 

polydisk. 

We say that the Hilbert module ℛover 𝐴(Ω) has the modulus approximation property 

(MAP) if for vectors {𝑓𝑖}𝑖=1
𝑁 in ℳ ⊆ ℛ, there is a vector 𝑘in ℛsuch that ‖𝜃𝑘‖ℛ

2 =
∑ ‖𝜃𝑓𝑖‖

2𝑁
𝑗=1 for 𝜃in ℳ. The map 𝜃𝑘 → 𝜃𝑓𝑖⊕…⊕𝜃𝑓𝑁thus extends to a module 

isomorphism of [𝑘] ⊂ ℛand [𝑓𝑖⊕…⊕𝑓𝑁] ⊂ ℛ
𝑁. 

For 𝑧0in Ω, let 𝐼𝑧0denote the maximal ideal in 𝐴(Ω) of all functions that vanish at 𝑧0. 

The quasi-free Hilbert module ℛover 𝐴(Ω) of multiplicity one is said to satisfy the weak 

modulus approximation property (WMAP) if 

(i)  A nonzero vector 𝑘𝑧0in ℛ⊝ 𝐼𝑧0 . ℛ can be written in the form 𝑘𝑧0 ∙ 1, where 𝑘𝑧0is in 

ℳ, and 𝑇𝑘𝑧0has closed range acting on ℛ. In this case ℛ is said to have a good kernel 

function. 

(ii) Property MAP holds for 𝑓𝑖 = 𝜆𝑖𝑘𝑧𝑖 , 𝑖 = 1,… , 𝑁with 0 ≤ 𝜆𝑖 ≤ 1 and ∑ 𝜆𝑖
2𝑁

𝑖=1 = 1. 

Our main result relating properties (ii) and (iii) is the following one which generalizes 

Theorem 1 of [139]. 

Theorem (5.2.5)[149]: Let ℛbe a WMAP quasi-free Hilbert module over 𝐴(Ω)of 

multiplicity one and {𝜑𝑖}𝑖=1
𝑛  be functions in ℳ. Then the following are equivalent: 

(i) There exist functions {𝜓𝑖}𝑖=1
𝑛  in 𝐻∞(Ω)such that ∑ 𝜑𝑖(𝑧)𝜓𝑖(𝑧)

𝑛
𝑖=1 = 1 and 

∑|𝜓𝑖(𝑧)| ≤ 1/𝜀
2 for some 𝜀 > 0 and all 𝑧 in Ω, and 

(ii) there exists 𝜀 > 0such that for every cyclic submodule 𝒮of ℛ, ∑ 𝑇𝜑𝑖
𝒮 𝑇𝜑𝑖

𝒮∗𝑛
𝑖=1 ≥

𝜀2𝐼𝒮, where 𝑇𝜑
𝒮 = 𝑇𝜑|𝒮

for 𝜑in ℳ. 

Proof.We follow the proof in [139] making a few changes. Fix a dense set {𝑧𝑖}𝑖=2
∞  of Ω. 

First, we define for each positive integer 𝑁, the set 𝒞𝑁to be the functions  {
|𝑘𝑧𝑖|

2

‖𝑘𝑧𝑖‖
2}

𝑖=1

2

, 

and the function 1 for 𝑖 = 1 with abuse of notation. Since ℛ being WMAP implies that it 

has a good kernel function, 𝒞𝑁consists of nonnegative continuous functions on Ω. For a 
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function g in the convex hull of the set {
|𝑘𝑧𝑖|

2

‖𝑘𝑧𝑖‖
2}

𝑖=1

𝑁

, the vector 
𝜆1𝑘𝑧1

‖𝑘𝑧1‖
2⊕…⊕

𝜆𝑁𝑘𝑧𝑁

‖𝑘𝑧𝑁‖
2 is in ℛ𝑁. 

By definition there exists 𝐺in ℛ such that [𝐺] ≅ [
𝜆1𝑘𝑧1

‖𝑘𝑧1‖
⊕…⊕

𝜆𝑁𝑘𝑧𝑁

‖𝑘𝑧𝑁‖
]by extending the map 

𝜃𝐺 →
𝜆1𝜃𝑘𝑧1

‖𝑘𝑧1‖
⊕…⊕

𝜆𝑁𝜃𝑘𝑧𝑁

‖𝑘𝑧𝑁‖
for 𝜃in ℳ. 

Second, let {𝜑1, … , 𝜑𝑛}be in ℳand let 𝑇Φdenote the column operator defined from 

ℛ𝑛to ℛby 𝑇Φ(𝑓1⊕…⊕𝑓𝑛) = ∑ 𝑇𝜑𝑖𝑓𝑖
𝑛
𝑖=1 for 𝒇 =  (𝑓1⊕…⊕𝑓𝑛) in ℛ𝑛and set 𝒦 =

ker 𝑇Φ ⊂ ℛ
𝑛. Fix 𝒇in ℛ𝑛. Define the function 

ℱ𝑁: 𝒞𝑁 ×𝒦 → [0,∞) 
by 

ℱ𝑁(𝑔, 𝒉) =∑λ𝑖
2 ‖

𝑘𝑧𝑖
‖𝑘𝑧𝑖‖

(𝒇 − 𝒉)‖

2𝑁

𝑖=1

for𝒉 = ℎ1⊕…⊕ℎ𝑛 𝑖𝑛 ℛ
𝑛, 

where 𝑔 = ∑ λ𝑖
2|𝑘𝑧𝑖|

2
/‖𝑘𝑧𝑖‖

2
𝑛
𝑖=1 and ∑ λ𝑖

2𝑛
𝑖=1 = 1. We are using the fact that the 𝑘𝑧𝑖are in 

ℳto realize 𝑘𝑧𝑖(𝒇 − 𝒉) in ℛ𝑛. 

Except for the fact we are restricting the domain of ℱ𝑁to 𝒞𝑁 ×𝒦instead of 𝒞𝑁 × ℛ
𝑛, 

this definition agrees with that of [139]. Again, as in [139], this function is linear in 𝑔for 

fixed 𝒉and convex in 𝒉for fixed 𝑔. (Here one uses the triangular inequality and the fact that 

the square function is convex.) 

Third, we want to identify ℱ𝑁(𝑔, 𝒉 ) in terms of the product of Toeplitz operators 

(𝑇Φ
𝒮𝑔
) (𝑇Φ

𝒮𝑔
)
∗

, where 𝒮𝑔is the cyclic submodule of ℛgenerated by a vector 𝑃in ℛas given 

in Lemma (5.2.3) such that the map 𝑃 → (
𝜆1𝑘𝑧1

‖𝑘𝑧1‖
⊕…⊕

𝜆𝑁𝑘𝑧𝑁

‖𝑘𝑧𝑁‖
) extends to a module 

isomorphism with 𝑔 = ∑
𝜆𝑖
2|𝑘𝑧𝑖|

2

‖𝑘𝑧𝑖‖
2

𝑁
𝑖=1 , 0 ≤ 𝜆𝑗

2 ≤1, and ∑ 𝜆𝑗
2𝑁

𝑖=1 = 1. 

Note for 𝒇 in ℛ𝑛, inf
𝒉∈𝒦

ℱ𝑁 (𝑔, 𝒉) ≤ 1/𝜀
2‖𝑇Φ𝒇‖

2if 𝑇
Φ

𝒮𝑔
(𝑇Φ

𝒮𝑔
)
∗

≥ 𝜀2𝐼𝒮𝑔. Thus, if 

𝑇Φ
𝒮(𝑇Φ

𝒮)
∗
≥ 𝜀2𝐼𝒮𝑔for every cyclic submodule of ℛ, we have inf

𝒉∈𝒦
ℱ𝑁 (𝑔, 𝒉) ≤ 1/𝜀

2‖𝑇Φ𝒇‖
2. 

Thus from the von Neumann min-max theorem we obtain 

inf
𝒉∈𝒦

sup
𝑔∈𝒞𝑁

ℱ𝑁 (𝑔, 𝒉) = sup
𝑔∈𝒞𝑁

inf
𝒉∈𝒦

ℱ𝑁(𝑔, 𝒉) ≤ 1/𝜀
2‖𝑇Φ𝒇‖

2. 

From the inequality 𝑇Φ𝑇Φ
∗ ≥ 𝜀2𝐼ℛ, we know that there exists 𝑓0in ℛ𝑛such that ‖𝑓0‖ ≤

1/𝜀‖1‖ = 1/𝜀 and 𝑇Φ𝑓0 = 1. Moreover, we can find 𝒉𝑁in 𝒦such that ℱ𝑁(𝑔, 𝒉𝑁) ≤

(1/𝜀2 + 1/𝑁)‖𝑇Φ𝑓0‖
2 = 1/𝜀2 + 1/𝑁 for all 𝑔in 𝒞𝑁. In particular, for 𝑔𝑖 =

|𝑘𝑧𝑖|
2

‖𝑘𝑧𝑖‖
2, we have 

𝑇
Φ

𝒮𝑔𝑖 (𝑇Φ
𝒮𝑔𝑖)

∗

≥ 𝜀2𝐼𝒮𝑔𝑖
, where ‖𝑘𝑧𝑖/‖𝑘𝑧𝑖‖(𝑓0 − 𝒉𝑁)‖

2
<

1

𝜀2
+ 1/𝑁. 

There is one subtle point here in that 1 may not be in the range of 𝑇Φ
𝒮

. However, if 

𝑃is a vector generating the cyclic module 𝒮𝑔, then 𝑃is in ℳand 𝑇𝑃has closed range. To see 

this recall that the map 

𝜃𝑃 → 𝜆1
𝜃𝑘𝑧𝑖
‖𝑘𝑧𝑖‖

⊕…⊕ 𝜆𝑁
𝜃𝑘𝑧𝑁
‖𝑘𝑧𝑁‖
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for 𝜃 in ℳ is an isometry. Since the functions {𝑘𝑧𝑖/‖𝑘𝑧𝑖‖}𝑖=1
𝑁

 are in ℳ by assumption, it 

follows that the operator ℳ𝑃is bounded on ℳ ⊆ ℛ and has closed range on ℛ since the 

operators 𝑀
𝑘𝑧𝑖/‖𝑘𝑧𝑖‖

 have closed range, again by assumption. Therefore, find a vector 𝒇 in 

𝒮𝑔
𝑛so that 𝑇Φ𝒇 = 𝑃. But if 𝒇 = 𝑓1⊕…⊕𝑓𝑛, then 𝑓𝑖 is in [𝑃] and hence has the form 𝑓𝑖 =

𝑃𝑓𝑖 for 𝑓𝑖 in ℛ. Therefore, 𝑇Φ𝑇𝑃�̃� = 𝑃or 𝑇Φ�̃� = 1 which is what is needed since in the proof 

𝑓0 − �̃� is in 𝒦. 

To continue the proof we need the following lemma. 

Lemma (5.2.6)[149]: If 𝑧0 is a point in Ωand 𝒉 is a vector in ℛ𝑛, then ‖𝒉(𝑧0)‖ℂ𝑛
2 ≤

‖𝑘𝑧0/‖𝑘𝑧0‖𝒉‖
2
. 

Proof. Suppose 𝒉 = ℎ1⊕…⊕ℎ𝑛with {ℎ𝑖}𝑖=1
𝑛 in 𝐴(Ω). Then 𝑇ℎ𝑖

∗ 𝑘𝑧0 = ℎ𝑖(𝑧0)
̅̅ ̅̅ ̅̅ ̅̅ 𝑘𝑧0and hence 

ℎ𝑖(𝑧0)̅̅ ̅̅ ̅̅ ̅̅ ‖𝑘𝑧0‖
2
= 〈𝑇ℎ𝑖

∗ 𝑘𝑧0 , 𝑘𝑧0〉 = 〈𝑘𝑧0 , 𝑇ℎ𝑖𝑘𝑧0〉 

since 𝑇𝑘𝑧0ℎ𝑖 = 𝑇ℎ𝑖𝑘𝑧0.(We are using the fact the 𝑘𝑧0ℎ𝑖 = 𝑘𝑧0ℎ𝑖 ∙ 1 = ℎ𝑖𝑘𝑧0 = ℎ𝑖𝑘𝑧0 ∙) 

Therefore, 

ℎ𝑖(𝑧0)̅̅ ̅̅ ̅̅ ̅̅ ‖𝑘𝑧0‖
2
= |〈𝑘𝑧0 , 𝑇𝑘𝑧0ℎ𝑖

〉| ≤ ‖𝑘𝑧0‖
2
‖𝑇𝑘𝑧0/‖𝑘𝑧0‖

ℎ𝑖‖, 

or, 

ℎ𝑖(𝑧0)̅̅ ̅̅ ̅̅ ̅̅ ≤ ‖𝑇𝑘𝑧0/‖𝑘𝑧0‖
ℎ𝑖‖. 

Finally, 

‖𝒉(𝑧0)‖ℂ𝑛
2 =∑|ℎ𝑖(𝑧0)|

2

𝑛

𝑖=1

≤ ‖𝑇𝑘𝑧0/‖𝑘𝑧0‖
𝒉‖

2
, 

and since both terms of this inequality are continuous in the ℛ-norm, we can eliminate the 

assumption that 𝒉 is in 𝐴(Ω)𝑛.  

Returning to the proof of the theorem, we can apply the lemma to conclude that 

‖(𝒇0 − 𝒉0)(𝑧)‖ℂ𝑛
2 ≤ ‖𝑘𝑧𝑖/‖𝑘𝑧𝑖‖(𝒇0 − 𝒉0)‖

2
≤ 1/𝜀2 + 1/𝑁. Therefore, we see that the 

vector 𝒇𝑁 = 𝒇0 − 𝒉𝑁 in ℛ𝑛satisfies 

(i) 𝑇Φ(𝒇𝑁 − 𝒉𝑁) = 1, 
(ii) ‖𝒇𝑁 − 𝒉𝑁‖ℛ

2 ≤ 1/𝜀2 + 1/𝑁 𝑎𝑛𝑑 

(iii) ‖(𝒇𝑁 − 𝒉𝑁)(𝑧𝑖)‖ℂ𝑛
2 ≤ 1/𝜀2 + 1/𝑁  𝑓𝑜𝑟 𝑖 = 1,… , 𝑁. 

Since the sequence {𝒇𝑁}𝑁=1
∞  in ℛ𝑛 is uniformly bounded in norm, there exists a subsequence 

converging in the weak∗-topology to a vector 𝜓in ℛ𝑛. Since weak∗-convergence implies 

pointwise convergence, we see that ∑ 𝜑𝑗𝜓𝑗
𝑛
𝑗=1 = 1 and ‖𝜓𝑗(𝑧𝑖)‖ℂ𝑛

2
≤

1

𝜀2
for all𝑧𝑖 . Since 𝜓is 

continuous on Ω and the set {𝑧𝑖} is dense in Ω, it follows that 𝜓 is in 𝐻ℂ𝑛
∞ (Ω) and ‖𝜓‖ ≤

1/𝜀2 which concludes the proof.  

Note that we conclude that 𝜓 is in 𝐻∞(Ω) and not in ℳwhich would be the hoped 

for result. 

One can note that the argument involving the min-max theorem enables one to show 

that there are vectors 𝒉in 𝒦which satisfy 

‖𝑘𝑧𝑖(𝒇 − 𝒉)‖
2
≤
1

𝜀2
+
1

𝑁
.   

Moreover, this shows that there are vectors �̃� so that 𝑇Φ�̃� = 1, ‖�̃�‖
2
≤ 1/𝜀2 + 1/𝑁, and 

‖�̃�(𝑧𝑖)‖
2
≤ 1/𝜀2 + 1/𝑁for 𝑖 = 1,… , 𝑁. An easy compactness argument completes the 
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proof since the sets of vectors for each 𝑁are convex, compact and nested and hence have a 

point in common.  

With the definitions given, the question arises of which Hilbert modules are (MAP) 

or which quasi-free ones are WMAP. Lemma (5.2.4) combined with observations in [139] 

show that both 𝐻2(𝔹𝑚) and 𝐻2(𝔻𝑚) are WMAP. Indeed any 𝐿𝑎
2  space for a measure 

supported on 𝜕𝔹𝑚or the distinguished boundary of 𝔻𝑚 has these properties. One could also 

ask for which quasi-free Hilbert modules ℛthe kernel functions {𝑘𝑧}𝑧∈Ωare in ℳand 

whether the Toeplitz operators 𝑇𝑘𝑧 are invertible operators as they are in the cases of 

𝐻2(𝔹𝑚) and 𝐻2(𝔻𝑚). It seems possible that the kernel functions for all quasi-free Hilbert 

modules might have these properties when Ω is strongly pseudo-convex, with smooth 

boundary. In many concrete cases, the 𝑘𝑧0are actually holomorphic on a neighborhood of 

the closure of Ω for 𝑧0in Ω, where the neighborhood, of course, depends on 𝑧0. 

Note that the formulation of the criteria in terms of a cyclic submodule 𝒮 of the quasi-

free Hilbert modules makes it obvious that the condition 

𝑇Φ
𝒮(𝑇Φ

𝒮)
∗
≥ 𝜀2𝐼𝒮 

is equivalent to 

𝑇Φ𝑇Φ
∗ ≥ 𝜀2𝐼ℛ 

if the generating vector for 𝒮is a cyclic vector. This is Theorem 2 of [139]. Also it is easy to 

see that the assumption on the Toeplitz operators for all cyclic submodules is equivalent to 

assuming it for all submodules. That is because 

‖(𝑃𝒮⊗ 𝐼ℂ𝑛)𝑇Φ
∗𝑓‖ ≥ ‖(𝑃|𝒇|⊗ 𝐼ℂ𝑛)𝑇Φ

∗𝑓‖ 

for 𝒇in the submodule 𝒮. 

If for the ball or polydisk we knew that the function “representing” the modulus of a 

vector-valued function could be taken to be continuous on clos(Ω) or cyclic, the corona 

problem would be solved for those cases. No such result is known, however and it seems 

likely that such a result is false. 

Finally, one would also like to reach the conclusion that the function 𝜓is in the 

multiplier algebra even if it is smaller than 𝐻∞(Ω). In [153] Costea, Sawyer and Wick this 

goal is achieved for a family of spaces which includes the Drury –Arveson space. It seems 

possible that one might be able to modify the line of proof discussed here to involve 

derivatives of the {𝜑𝑖}𝑖=1
𝑛  to accomplish this goal in this case, but that would clearly be more 

difficult. 

Section (5.3): Douglas Property for Free Functions 

Free functions can be traced back to the work of Taylor [177], [178] and generalize 

formal power series which appear in the study of finite automata [176]. They have been of 

interest for their connections with free probablity and engineering systems theory, [181], 

[180], [179], [BGT], [169], [170], [161], [171], [172], [173], [174], [175], [162], [163], 

[164], [165]. 

We provide a conceptually different proof of a result in [162] of a sufficient condition 

for the existence of a factorization 𝑏 = 𝑎𝑐, for free functions 𝑎, 𝑏and a free contractive-

valued function 𝑐on a free domin determined by free polynomials. As a consquence, the 

Toeplitz Corona Theorem of [162] is obtained. For more on the Corona and the Toeplitz-

Corona problems, see [162], [40], [153], [158], [74], [159], [70], [139], [149]. 
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All Hilbert spaces considered here are Complex and separable. Let 𝕄(ℂ𝑑) denote 

graded set (𝕄𝑛(ℂ
𝑑))

𝑛
, where 𝕄𝑛(ℂ

𝑑) is the set of 𝑑-tuples 𝑋 = (𝑋1, … , 𝑋𝑑) of 𝑛 × 𝑛 

matrices. Observe that the graded set 𝕄𝑛(ℂ
𝑑) is closed with respect to direct sums and 

unitary conjugations. More generally, 

A non-commutative set ℒ = (ℒ(𝑛))
𝑛

is a graded set where ℒ(𝑛) ⊂ 𝕄𝑛(ℂ
𝑑) such that 

for 𝑋 ∈ ℒ(𝑚), 𝑌 ∈ ℒ(𝑛) and a unitary matrix 𝑈 ∈ 𝑀𝑚(ℂ), 
(i) 𝑋⊕ 𝑌 = (𝑋1⊕𝑌1, … , 𝑋𝑑⊕𝑌𝑑) ∈ 𝒦(𝑚 + 𝑛);  𝑎𝑛𝑑 

(ii) 𝑈∗𝑋𝑈 = (𝑈∗𝑋𝑈1, … , 𝑈
∗𝑋𝑑𝑈) ∈ 𝒦(𝑚). 

A𝐵(ℋ, ℰ)-valued non-commutative function defined on the non- commutative set ℒis a 

function such that for 𝑋 ∈ ℒ(𝑚), 𝑌 ∈ ℒ(𝑛), 
(i) 𝑓(𝑋) ∈ 𝐵(ℋ⊗ ℂ𝑚, ℰ ⊗ ℂ𝑚). 
(ii) 𝑓(𝑋 ⊕ 𝑌) = 𝑓(𝑋)⊕ 𝑓(𝑌) 
(iii) 𝑓(𝑆−1𝑋𝑆) = (𝐼ℰ⊗𝑆−1)𝑓(𝑋)(𝐼ℋ⊗𝑆) whenever𝑆 ∈ 𝑀𝑚(ℂ)is invertible and 

𝑆−1𝑋𝑆 ∈ ℒ(𝑚). 
We will say that such a function is bounded if sup

𝑛∈ℕ
𝐸𝑛 < ∞, where 𝐸𝑛 = sup

𝑥∈ℒ(𝑛)
‖𝑓(𝑋)‖. 

Henceforth we will use the abbreviation ”nc” for ”non-commutative”. 

A typical example of an nc function is a free polynomial in the 𝑑non- commuting 

variables 𝑥1, … , 𝑥𝑑, which is defined as follows. 

Let ℱ𝑑be the semigroup of words formed using the 𝑑-symbols 𝑥1, … , 𝑥𝑑and the empty 

word ∅ denote the identity element of ℱ𝑑. A 𝐵(ℂ𝑘)-valued free polynomial in the non-

commuting variables 𝑥1, … , 𝑥𝑑 is a finite formal sum of the form ∑ 𝑝𝓌𝓌𝓌∈ℱ𝑑
, where 𝑝𝓌 ∈

𝐵(ℂ𝑘). For 𝓌 = 𝑥𝑗1𝑥𝑗2…𝑥𝑗𝑚, the evaluation of 𝑝at 𝑋 ∈ 𝕄𝑛(ℂ
𝑑), is given by 𝑝(𝑋) =

∑ 𝑝𝓌⊗𝑋𝓌𝓌∈ℱ𝑑
∈ 𝐵(𝐶𝑘⊗ℂ𝑛), where 𝑋𝓌 = 𝑋𝑗1𝑋𝑗2 …𝑋𝑗𝑚. For 0 ∈ 𝕄𝑛(ℂ

𝑑), 𝑝(0):=

𝑝∅⊗ 𝐼𝑛. It is easy to see that 𝑝is a 𝐵(ℂ𝑘)-valued nc function defined on the nc set 𝕄(ℂ𝑑). 
Let 𝜖 and 𝛿 be 𝐵(ℂ𝑘)-valued free polynomials in 𝑥1, … , 𝑥𝑑and let 𝒦 denote the 

graded set (𝒦(𝑛))
𝑛

, where 

𝒦(𝑛) = {𝑋 ∈ 𝕄𝑛(ℂ
𝑑): ∃ 𝑐 > 0 such that𝜖(𝑋)𝜖(𝑋)∗ − 𝛿(𝑋)𝛿(𝑋)∗ ≻ 𝑐(𝐼𝑘⊗ 𝐼𝑛)}.   (8) 

Observe that the graded set 𝒦 = (𝒦(𝑛))
𝑛

is an nc set. We will consider this nc set with the 

additional assumption that0 ∈ 𝒦(1). Our main result is the following. 

A key ingredient in the proof is the existence of a left-invariant Haar probablity 

measure on the compact group of unitary matrices in 𝑀𝑛(ℂ). 
Observe that if 𝜖 = 𝐼𝑘∅, where ∅ ∈ ℱ𝑑is the empty word, then 𝒦 is the domain 𝐺𝛿 =

(𝐺𝛿(𝑛)) considered in [162], where 

𝐺𝛿(𝑛) = {𝑋 = (𝑋1, … , 𝑋𝑑): ‖𝛿(𝑋)‖ < 1} ⊂ 𝕄𝑛(ℂ
𝑑),                     (9) 

with the additional assumption that 0 ∈ 𝐺𝛿(1). The following theorem for the domain 𝐺𝛿has 

been proved in [162]. 

Lemma (5.3.1)[160]: Let 𝑋, 𝑌be separable Hilbert spaces and 𝑊 ∈ 𝐵(𝒳 ⊗ ℂ𝑛, 𝑌 ⊗ ℂ𝑛). 
If 𝑊 = (𝐼𝑌⊗𝑉)𝑊(𝐼𝒳⊗𝑉∗)for all unitaries 𝑉 ∈ 𝑀𝑛(ℂ), then there exists an operator 

𝒲 ∈ 𝐵(𝒳, 𝑌) such that 𝑊 =𝒲⊗ 𝐼𝑛In. 

Proof. The result is an embodiment of the fact that the only 𝑛 × 𝑛matrices which commute 

with all 𝑛 × 𝑛matrices are multiples of the identity. Since (𝐼𝑌⊗𝑉)𝑊 = 𝑊(𝐼𝒳⊗𝑉) for 

every unitary 𝑉 ∈ 𝑀𝑛(ℂ), it follows that 

(𝐼𝑌⊗𝑋)𝑊 = 𝑊(𝐼𝒳⊗𝑋)                                       (10) 
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for every 𝑋 ∈ 𝑀𝑛(ℂ). Let {𝑒1, … , 𝑒𝑛} denote an orthonormal basis for ℂ𝑛and let 𝐸𝑗,𝑘 =

𝑒𝑗𝑒𝑘
∗denote the resulting matrix units. Write 𝑊 = ∑𝑊𝑗,𝑘⊗𝐸𝑗,𝑘 for operators 𝑊𝑗,𝑘: 𝒳 → 𝑌. 

Choosing, for 1 ≤ 𝛼, 𝛽 ≤ 𝑛, the matrix 𝑋 = 𝑒𝛼𝑒𝛽
∗ , from equation (10) it follows that 

∑𝑊𝛽,𝑘⊗𝑒𝛼𝑒𝑘
∗

𝑘

=∑𝑊𝑗,𝛼⊗𝑒𝛼𝑒𝛽
∗

𝑗

. 

Hence, 𝑊𝛽,𝑘 = 0 for 𝑘 ≠ 𝛽, 𝑊𝑗,𝛼 = 0 for 𝑗 ≠ 𝛼and 𝑊𝛼𝛼 = 𝑊𝛽,𝛽and the result follows by 

taking 𝒲 =𝑊𝛼𝛼 . 
Lemma (5.3.2)[160]: Let ℋbe a Hilbert space and suppose 𝐴, 𝐵 ∈ 𝐵(ℋ). If 𝐴𝐴∗ − 𝐵𝐵∗ ≻
𝑐𝐼for some 𝑐 > 0, then there exists a unique 𝐸 ∈ 𝐵(ℋ)such that 𝐵∗ = 𝐸∗𝐴∗and ‖𝐸∗‖ ≤  1. 

Moreover, if ℋis finite dimensional, then 𝐸 is unique and ‖𝐸∗‖ < 1. 

Proof. The Douglas lemma ([142]) implies the existence of a contraction 𝐸 such that 𝐵 =
𝐴𝐸assuming only that 𝐴𝐴∗ − 𝐵𝐵∗ ≽ 0. Since the hypotheses imply that 𝐴𝐴∗ ≽ 𝑐𝐼is 

invertible, in the case that ℋis finite dimensional, it follows that 𝐴is invertible and 𝐸 =
𝐴−1𝐵is uniquely determined. Moreover, since 𝐴(𝐼 − 𝐸𝐸∗)𝐴∗ ≽ 𝑐𝐼 and 𝐴 is invertible, 𝐸 is 

a strict contraction.  

Let 𝐺(𝑛) = {𝑈 ∈ 𝑀𝑛(ℂ):𝑈
∗𝑈 = 𝐼}. It is well known that 𝐺(𝑛) is a compact group 

with respect to multiplication. Hence there exists a unique left-invariant Haar measure 

ℎ(𝑛)on 𝐺(𝑛)such that ℎ(𝑛)(𝐺) = 1 and 

∫ 𝑓(𝑈)𝑑ℎ(𝑛)(𝑈)

𝐺(𝑛)

= ∫ 𝑓(𝑉𝑈)𝑑ℎ(𝑛)(𝑈)

𝐺(𝑛)

,                           (11) 

for all 𝑓 ∈ 𝐶(𝐺(𝑛)), 𝑈, 𝑉 ∈ 𝐺(𝑛). For more details see [40]. 

Recall the nc set 𝒦defined in (8) and the assumption that 0 ∈ 𝒦(1). 
Proposition (5.3.3)[160]: Let ℰ1, ℰ2, ℰ3 be Hilbert spaces and suppose that 𝑎and 𝑏are 

bounded 𝐵(ℰ2, ℰ3)and 𝐵(ℰ1, ℰ3)valued nc-functions on 𝒦. There exists a 𝐵(ℰ1, ℰ2)valued 

nc-function 𝑓such that, for all 𝑛and 𝑋 ∈ 𝒦(𝑛), 
(i) ‖𝑓(𝑋)‖ ≤ 1;  𝑎𝑛𝑑 

(ii) 𝑎(𝑋) 𝑓(𝑋) = 𝑏(𝑋), 
if there exists a 𝐵(ℓ2⊗ℂ𝑘, ℰ3)-valued nc function ℎdefined on 𝒦such that 

𝑎(𝑇)𝑎(ℛ)∗ − 𝑏(𝑇)𝑏(ℛ)∗ = ℎ(𝑇)[𝐼ℓ2⊗ (𝜖(𝑇)𝜖(ℛ)∗ − 𝛿(𝑇)𝛿(ℛ)∗)]ℎ(ℛ)∗ 
for all 𝑛 ∈ ℕ 𝑎𝑛𝑑 ℛ, 𝑇 ∈ 𝒦(𝑛).                                  (12) 

Proof. Fix 𝑛 ∈ ℕ. For all 𝑅, 𝑇 ∈  𝒦(𝑛), rearranging (12) yields, 

𝑎(𝑇)𝑎(ℛ)∗ + ℎ(𝑇)[𝐼ℓ2⊗𝛿(𝑇)𝛿(ℛ)∗]ℎ(ℛ)∗

= ℎ(𝑇)[𝐼ℓ2⊗𝜖(𝑇)𝜖(ℛ)∗]ℎ(ℛ)∗ + 𝑏(𝑇)𝑏(ℛ)∗.                      (13) 
Consider the closed subspaces: 

𝒟(𝑛) = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅ {[
(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗

𝑎(ℛ)∗
] 𝑥: 𝑥 ∈ ℰ3⊗ℂ𝑛, ℛ ∈ 𝒦(𝑛)} , 

ℛ(𝑛) = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅ {[
(𝐼ℓ2⊗𝜖(ℛ)∗)ℎ(ℛ)∗

𝑏(ℛ)∗
] 𝑥: 𝑥 ∈ ℰ3⊗ℂ𝑛, ℛ ∈ 𝒦(𝑛)} , 

of (ℓ2⊗ℂ𝑘⊗ℂ𝑛) ⊕ (ℰ2⊗ℂ𝑛) and (ℓ2⊗ℂ𝑘⊗ℂ𝑛) ⊕ (ℰ1⊗ℂ𝑛) respectively. 

Let 𝑊(𝑛): 𝒟(𝑛) → ℛ(𝑛)be the linear map obtained by extending the map 

[
(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗

𝑎(ℛ)∗
] 𝑥 → [

(𝐼ℓ2⊗𝜖(ℛ)∗)ℎ(ℛ)∗

𝑏(ℛ)∗
] 𝑥 
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linearly to all of 𝒟(𝑛). It follows from equation (13) that 𝑊𝑛: 𝒟
(𝑛) → ℛ(𝑛) is an isometry 

(and hence the map is indeed well defined). Since the codimensions of 𝒟(𝑛)and ℛ(𝑛)agree, 

it follows that 𝑊𝑛: 𝒟(𝑛) → ℛ(𝑛)can be extended to a unitary 𝑉(𝑛). Thus 

𝑉(𝑛): = (𝐴
(𝑛) 𝐵(𝑛)

𝐶(𝑛) 𝐷(𝑛)
) : (ℓ2⊗ℂ𝑘⊗ℂ𝑛) ⊕ (ℰ2⊗ℂ𝑛) → (ℓ2⊗ℂ𝑘⊗ℂ𝑛) ⊕ (ℰ1⊗ℂ𝑛) 

and satisfies 

(𝐴
(𝑛) 𝐵(𝑛)

𝐶(𝑛) 𝐷(𝑛)
) (
(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗

𝑎(ℛ)∗
) = (

(𝐼ℓ2⊗𝜖(ℛ)∗)ℎ(ℛ)∗

𝑏(ℛ)∗
) 

i.e. 

∑𝐴(𝑛)(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗ + 𝐵(𝑛)𝑎(ℛ)∗
𝑘

ℓ=1

= (𝐼ℓ2⊗ 𝜖(ℛ)∗)ℎ(ℛ)∗, (14) 

𝐶(𝑛)(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗ + 𝐷(𝑛)𝑎(ℛ)∗ + 𝑏(ℛ)∗.          (15) 

Let 𝑈 ∈ 𝐺(𝑛). Observe that 𝑈∗𝑅𝑈 ∈ 𝒦(𝑛). Replacing ℛin equations (14) 

and (15) by 𝑈∗𝑅𝑈yields, 

𝐴(𝑛)(𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)(𝐼ℓ2⊗𝛿(ℛ)∗)(𝐼ℰ3⊗𝑈) + 𝐵(𝑛)(𝐼ℰ2⊗𝑈∗)𝑎(ℛ)∗(𝐼ℰ3⊗𝑈)

= (𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)(𝐼ℓ2⊗𝜖(ℛ)∗)ℎ(ℛ)∗(𝐼ℰ3⊗𝑈),      (16) 

and 

𝐶(𝑛)(𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗(𝐼ℰ3⊗𝑈)

+ 𝐷(𝑛)(𝐼ℰ3⊗𝑈∗)𝑎(ℛ)∗(𝐼ℰ3⊗𝑈)

= (𝐼ℰ1⊗𝑈∗)𝑏(ℛ)∗(𝐼ℰ3⊗𝑈).                                                         (17) 

Multiplying equation (16) on the left by (𝐼ℓ2⊗ 𝐼𝑘⊗𝑈) and on the right by (𝐼ℰ3⊗𝑈∗) and 

equation (17) on the left by (𝐼ℰ1⊗𝑈) and on the left by (𝐼ℰ3⊗𝑈∗) yields, 

(𝐼ℓ2⊗ 𝐼𝑘⊗𝑈)𝐴(𝑛)(𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗

+ (𝐼ℓ2 × 𝐼𝑘⊗𝑈)𝐵(𝑛)(𝐼ℰ3⊗𝑈∗)𝑎(ℛ)∗

= (𝐼ℓ2⊗𝜖(ℛ)∗)ℎ(ℛ)∗,                                                                 (18) 
and 

(𝐼ℰ1⊗𝑈)𝐶(𝑛)(𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗

+ (𝐼ℰ1⊗𝑈)𝐷(𝑛)(𝐼ℰ2⊗𝑈∗)𝑎(ℛ)∗ = 𝑏(ℛ)∗.                           (19) 

Let �̃�(𝑛), �̃�(𝑛), �̃�(𝑛)and �̃�(𝑛)denote the bounded (in fact, contractive) operators that 

satisfy 
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〈�̃�(𝑛)𝑥, 𝑦〉 = ∫〈𝐴(𝑛)(𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)𝑥, (𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)𝑦〉𝑑ℎ(𝑛)(𝑈)

𝐺(𝑛)

〈�̃�(𝑛)𝑎, 𝑏〉 = ∫〈𝐵(𝑛)(𝐼ℰ2⊗𝑈∗)𝑎, (𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)𝑏〉𝑑ℎ(𝑛)(𝑈)

𝐺(𝑛)

〈�̃�(𝑛)𝑧, 𝑤〉 = ∫〈𝐶(𝑛)(𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)𝑧, (𝐼ℰ1⊗𝑈∗)𝑤〉𝑑ℎ(𝑛)(𝑈)

𝐺(𝑛)

〈�̃�(𝑛)𝑔, ℎ〉 = ∫〈𝐷(𝑛)(𝐼ℰ2⊗𝑈∗)𝑔, (𝐼ℰ1⊗𝑈∗)ℎ〉𝑑ℎ(𝑛)(𝑈)

𝐺(𝑛)

      (20) 

for all 𝑥, 𝑦, 𝑏, 𝑧 ∈ ℓ2⊗ℂ𝑘⊗ℂ𝑛;  𝑎, 𝑔 ∈ ℰ2⊗ℂ𝑛;  𝑤, ℎ ∈ ℰ1⊗ℂ𝑛. Moreover, For 𝑥 ∈
ℰ3⊗ℂ𝑛and 𝑦 ∈ ℓ2⊗ℂ𝑘⊗ℂ𝑛, 𝑢 ∈ ℰ3⊗ℂ𝑛and 𝑣 ∈ ℰ1⊗ℂ𝑛, it follows from equations 

(20), (18) and (19) that (21) 

〈[�̃�(𝑛)(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗ + �̃�(𝑛)𝑎(ℛ)∗]𝑥, 𝑦〉

= ∫〈[(𝐼ℓ2⊗ 𝐼𝑘⊗𝑈)𝐴(𝑛)(𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)((𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗)

𝐺(𝑛)

+ (𝐼ℓ2⊗ 𝐼𝑘⊗𝑈)𝐵(𝑛)(𝐼ℰ2⊗𝑈∗)𝑎(ℛ)∗]𝑥, 𝑦〉𝑑ℎ(𝑛)(𝑈) 

 

= ∫〈(𝐼ℓ2⊗ 𝜀(ℛ)∗)ℎ(ℛ)∗𝑥, 𝑦〉𝑑ℎ(𝑛)(𝑈)

𝐺(𝑛)

= 〈(𝐼ℓ2⊗ 𝜀(ℛ)∗)ℎ(ℛ)∗𝑥, 𝑦〉                                                                              (21) 
as well as 

〈[�̃�(𝑛)(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗ + �̃�(𝑛)𝑎(ℛ)∗]𝑢, 𝑣〉

= ∫〈[(𝐼ℰ1⊗𝑈)𝐶(𝑛)(𝐼ℓ2⊗ 𝐼𝑘⊗𝑈∗)((𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗)

𝐺(𝑛)

+ (𝐼ℰ1⊗𝑈)𝐷(𝑛)(𝐼ℰ2⊗𝑈∗)𝑎(ℛ)∗]𝑢, 𝑣〉𝑑ℎ(𝑛)(𝑈)

= ∫〈𝑏(ℛ)∗𝑢, 𝑣〉𝑑ℎ(𝑛)(𝑈)

𝐺(𝑛)

= 〈𝑏(ℛ)∗𝑢, 𝑣〉                               (22) 

Equations (21) and (22) together imply that 

(�̃�
(𝑛) �̃�(𝑛)

�̃�(𝑛) �̃�(𝑛)
) (
(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗

𝑎(ℛ)∗
) = (

(𝐼ℓ2⊗𝜖(ℛ)∗)ℎ(ℛ)∗

𝑏(ℛ)∗
) 

Also, observe that (�̃�
(𝑛) �̃�(𝑛)

�̃�(𝑛) �̃�(𝑛)
)is a contraction. Lastly, for 𝑉 ∈ 𝐺(𝑛), the left invariance 

property of the Haar measure h implies that �̃�(𝑛), �̃�(𝑛), �̃�(𝑛) and�̃�(𝑛)are invariant under 

conjugation by 𝐼 ⊗ 𝑉and hence 

�̃�(𝑛) = (𝐼ℓ2⊗ 𝐼𝑘⊗𝑉)�̃�(𝑛)(𝐼ℓ2⊗ 𝐼𝑘⊗𝑉∗) 
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�̃�(𝑛) = (𝐼ℓ2⊗ 𝐼𝑘⊗𝑉)�̃�(𝑛)(𝐼ℰ3⊗𝑉∗) 

�̃�(𝑛) = (𝐼ℰ1⊗𝑉)�̃�(𝑛)(𝐼ℓ2⊗ 𝐼𝑘⊗𝑉∗) 

�̃�(𝑛) = (𝐼ℰ1⊗𝑉)�̃�(𝑛)(𝐼ℰ3⊗𝑉∗). 
It follows from Lemma (5.3.1) that there exists bounded operators 

𝒜(𝑛), ℬ(𝑛), 𝒞(𝑛), and𝒟(𝑛)such that �̃�(𝑛) = 𝒜(𝑛)⊗ 𝐼𝑛, �̃�
(𝑛) = ℬ(𝑛)⊗ 𝐼𝑛 , �̃�

(𝑛) = 𝒞(𝑛)⊗ 𝐼𝑛and 

�̃�(𝑛) = 𝒟(𝑛)⊗ 𝐼𝑛, where 𝒜(𝑛) ∈ 𝐵(ℓ2⊗ℂ𝑘), ℬ(𝑛) ∈ 𝐵(ℰ2, ℓ
2⊗ℂ𝑘), 𝒞(𝑛) ∈ 𝐵(ℓ2⊗

ℂ𝑘 , ℰ1) and 𝒟(𝑛) ∈ 𝐵(ℰ2, ℰ1). Moreover, 

(𝒜
(𝑛) ℬ(𝑛)

𝒞(𝑛) 𝒟(𝑛)
) : (ℓ2⊗ℂ𝑘) ⊗ ℰ2 → (ℓ

2⊗ℂ𝑘) ⊗ ℰ1 

is a contraction. 

Let ℋ = (ℓ2⊗ℂ𝑘) ⊗ ℰ2and ℰ = (ℓ2⊗ℂ𝑘) ⊗ ℰ1. Observe that ℋ⊕ℰis 

separable. At this point, it has been proved that there exists an operator 𝒱 ∈ 𝐵(ℋ, ℰ) such 

that ‖𝒱‖ ≤ 1 and 

𝒱⊗ 𝐼𝑛 (
(𝐼 ⊗ 𝛿(ℛ)∗)ℎ(ℛ)∗

𝑎(ℛ)∗
) = (

(𝐼 ⊗ 𝜖(ℛ)∗)ℎ(ℛ)∗

𝑏(ℛ)∗
)                                      (23) 

Let 

𝐿𝑛 = {(
0 0
𝒱 0

) : ‖𝒱‖ ≤ 1 and(𝒱 ⊗ 𝐼𝑛)solves(16)} ⊂ 𝐵(ℋ⊕ ℰ). 

The argument above implies that 𝐿𝑛 ≠ ∅for each 𝑛 ∈ ℕ. It is also the case that 𝐿𝑛is a WOT-

closed subset of the WOT-compact unit ball of 𝐵(ℋ⊕ ℰ). Thus 𝐿𝑛is WOT-compact for 

each 𝑛 ∈ ℕ. Moreover since 0 ∈ 𝒦(1), it follows that 𝐿𝑛 ⊃ 𝐿𝑛+1. By the nested intersection 

property of compact sets, ⋂ 𝐿𝑛𝑛∈ℕ  is non-empty. Say (
0 0
𝒱 0

) ∈ ⋂ 𝐿𝑛𝑛∈ℕ , where 𝑉 =

(
𝐴 𝐵
𝐶 𝐷

)with 𝐴 ∈ 𝐵 (ℓ2⊗ℂ𝑘), 𝐵 ∈ 𝐵 (ℰ2, ℓ
2⊗ℂ𝑘), 𝐶 ∈ 𝐵 (ℓ2⊗ℂ𝑘, ℰ1) and 𝐷 ∈

𝐵(ℰ2, ℰ1).  
For all 𝑛 ∈ ℕand 𝑅 ∈ 𝒦(𝑛), we have, 

(𝐴⊗ 𝐼𝑛)(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗ + (𝐵⊗ 𝐼𝑛)𝑎(ℛ)
∗

= (𝐼ℓ2⊗𝜖(ℛ)∗)ℎ(ℛ)∗                                                     (24) 
(𝐶 ⊗ 𝐼𝑛)(𝐼ℓ2⊗𝛿(ℛ)∗)ℎ(ℛ)∗ + (𝐷 ⊗ 𝐼𝑛)𝑎(ℛ)

∗ = 𝑏(ℛ)∗                               (25) 
By Lemma (5.3.2), for each 𝑛 ∈ ℕand 𝑅 ∈ 𝒦(𝑛) there exists a uniquely determined strict 

contraction 𝛾(𝑅) ∈ 𝐵(ℂ𝑘⊗ℂ𝑛) such that 

𝛿(𝑅)∗ = 𝛾(𝑅)∗𝜖(ℛ)∗.                                                (26) 
Since ‖𝐴⊗ 𝐼𝑛‖ ≤ 1 and ‖𝛾(ℛ)∗‖ < 1, rearranging equation (24) and using (26) 

yields, 

(𝐼ℓ2⊗𝜖(ℛ)∗)ℎ(ℛ)∗

= {𝐼ℓ2⊗ 𝐼𝑘⊗ 𝐼𝑛 − (𝐴⊗ 𝐼𝑛)(𝐼ℓ2⊗𝛾(𝑅)∗)}−1(𝐵
⊗ 𝐼𝑛)𝑎(𝑅)

∗.                                                                                                              (27) 
Using (27) and (26) in (25) yields, 

[(𝐶 ⊗ 𝐼𝑛)(𝐼ℓ2⊗𝛾(𝑅)∗){𝐼ℓ2⊗ 𝐼𝑘⊗ 𝐼𝑛 − (𝐴⊗ 𝐼𝑛)(𝐼ℓ2⊗𝛾(𝑅)∗)}−1(𝐵 ⊗ 𝐼𝑛)
+ (𝐷 ⊗ 𝐼𝑛)]𝑎(𝑅)

∗ = 𝑏(𝑅)∗.                                                                                (28) 
For 𝑛 ∈ ℕ, 𝑅 ∈ 𝒦(𝑛), define the function 𝑓on 𝒦by 

𝑓(𝑅) = [(𝐶 ⊗ 𝐼𝑛)(𝐼ℓ2⊗𝛾(𝑅)∗){𝐼ℓ2⊗ 𝐼𝑘⊗ 𝐼𝑛 − (𝐴⊗ 𝐼𝑛)(𝐼ℓ2⊗𝛾(𝑅)∗)}−1(𝐵 ⊗ 𝐼𝑛)
+ (𝐷 ⊗ 𝐼𝑛)]

∗                                                                                                            (29) 
Thus 𝑓is a 𝐵(ℰ1, ℰ2)-valued graded function which satisfies 𝑎(𝑅)𝑓(𝑅) = 𝑏(𝑅). It is 

also easy to see that 𝑓preserves direct sums. 
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Finally, to show that 𝑓is an nc function, suppose 𝑅 ∈ 𝒦(𝑛) and 𝑆is an invertible 𝑛 ×

𝑛matrix such that 𝑆−1𝑅𝑆 ∈ 𝒦(𝑛). We need to show that 𝑓(𝑆−1𝑅𝑆) = (𝐼ℰ2⊗

𝑆−1)𝑓(𝑅)(𝐼ℰ1⊗𝑆). Observe that 𝛾(𝑅)∗is uniquely determined by (26), since 𝜖(ℛ)∗is 

invertible. From the form of 𝑓, it is enough to show 𝛾(𝑆−1𝑅𝑆) = (𝐼𝑘⊗𝑆−1)𝛾(𝑅)(𝐼𝑘⊗𝑆). 
To this end, observe that, 

(𝐼𝑘⊗𝑆∗)𝛿(𝑅)∗(𝐼𝑘⊗ (𝑆∗)−1) = 𝛿(𝑆−1𝑅𝑆)∗ = 𝛾(𝑆−1𝑅𝑆)∗𝜖(𝑆−1𝑅𝑆)∗

= 𝛾(𝑆−1𝑅𝑆)∗(𝐼𝑘⊗𝑆∗)𝜖(𝑅)∗(𝐼𝑘⊗ (𝑆∗)−1).                                       (30) 
Thus 

(𝐼𝑘⊗𝑆∗)𝛾(𝑅)∗𝜖(𝑅)∗(𝐼𝑘⊗ (𝑆∗)−1) = 𝛾(𝑆−1𝑅𝑆)∗(𝐼𝑘⊗𝑆∗)𝜖(𝑅)∗(𝐼𝑘⊗ (𝑆∗)−1). 
Since 𝜖(𝑅)∗(𝐼𝑘⊗ (𝑆∗)−1) is invertible, taking adjoints, it follows that 

(𝐼𝑘⊗𝑆−1)𝛾(𝑅)(𝐼𝑘⊗𝑆) = 𝛾(𝑆−1𝑅𝑆). 
The proof is complete if we show that ‖𝑓(𝑅)‖ ≤ 1 for every 𝑛 ∈ ℕand 𝑅 ∈ 𝐾(𝑛).  

Recall that for all 𝑛 ∈ ℕ,   𝑉 ⊗ 𝐼𝑛 = (
𝒜 ℬ
𝒞 𝒟

)  = (
𝐴⊗ 𝐼𝑛 𝐵⊗ 𝐼𝑛
𝐶 ⊗ 𝐼𝑛 𝐷 ⊗ 𝐼𝑛

)is a contraction. Thus 

there exists bounded operators 𝒫and 𝒬such that 

(
𝒫∗𝒫 𝒫∗𝒬
𝒬∗𝒫 𝒬∗𝒬

) = (
𝐼ℓ2⊗ℂ𝑘⊗ℂ𝑛 0

0 𝐼ℰ2⊗ℂ𝑛
) − (

𝒜∗ ℬ∗

𝒞∗ 𝒟∗
) (
𝒜 ℬ
𝒞 𝒟

) ≽ 0. 

For notational convenience, let Γ(𝑅):= (𝐼ℓ2⊗𝛾(𝑅)∗), Δ(𝑅):=  (𝐼ℓ2⊗ 𝐼𝑘⊗ 𝐼𝑛 −

𝐴Γ(𝑅)) and Φ(𝑅):= Δ(𝑅)−1. We have 𝑓(𝑅)∗ = 𝒟 + 𝒞Γ(𝑅)∗(𝑅)ℬ. 

Using equation (9), for 𝑛 ∈ ℕ and 𝑋 ∈ 𝒦(𝑛), we have 

(𝐼ℰ2⊗ 𝐼𝑛) − 𝑓(𝑅)𝑓(𝑅)
∗

= (𝐼ℰ2⊗ 𝐼𝑛) − 𝒟
∗𝒟 − ℬ∗Φ(𝑅)∗Γ(𝑅)∗𝒞∗𝒟 −𝒟∗𝒞Γ(𝑅)Φ(𝑅)ℬ

− ℬ∗Φ(𝑅)∗Γ(𝑅)∗𝒞∗𝒞Γ(𝑅)Φ(𝑅)ℬ
= 𝒬∗𝒬 + ℬ∗ℬ + ℬ∗Φ(𝑅)∗Γ(𝑅)∗(𝒜∗ℬ + 𝒫∗𝒬) + (ℬ∗𝒜 +𝒬∗𝒫)Γ(𝑅)Φ(𝑅)ℬ
− ℬ∗Φ(𝑅)∗Γ(𝑅)∗(𝐼 −𝒜∗𝒜 +𝒫∗𝒫)Γ(𝑅)Φ(𝑅)ℬ
= ℬ∗Φ(𝑅)∗[∆(𝑅)∗∆(𝑅) + Γ(𝑅)∗𝒜∗∆(𝑅) + ∆(𝑅)∗𝒜Γ(𝑅)
− Γ(𝑅)∗(𝐼 −𝒜∗𝒜)Γ(𝑅)]Φ(𝑅)ℬ + 𝒬∗𝒬 + ℬ∗Φ(𝑅)∗Γ(𝑅)∗𝒫∗𝒬
+ 𝒬∗𝒫Γ(𝑅)Φ(𝑅)ℬ + ℬ∗Φ(𝑅)∗Γ(𝑅)∗𝒫∗𝒫Γ(𝑅)Φ(𝑅)ℬ
= ℬ∗Φ(𝑅)∗[𝐼 − Γ(𝑅)∗Γ(𝑅)]Φ(𝑅)ℬ
+ (𝒬 + 𝒫Γ(𝑅)Φ(𝑅)ℬ)∗(𝒬 + 𝒫Γ(𝑅)Φ(𝑅)ℬ) ≽ 0. 

Theorem (5.3.4)[160]: Let ℰ1, ℰ2, ℰ3 be finite-dimensional Hilbert spaces and suppose that 

a and b are bounded 𝐵(ℰ2, ℰ3)and 𝐵(ℰ1, ℰ3)valued nc-functions on 𝒦 = 𝐺𝛿. The following 

are equivalent. 

(i) There exists a 𝐵(ℓ2⊗ℂ𝑘, ℰ3) valued nc-function ℎdefined on 𝒦 such that 

𝑎(𝑇)𝑎(ℛ)∗ − 𝑏(𝑇)𝑏(ℛ)∗ = ℎ(𝑇)[𝐼ℓ2⊗ (𝐼𝑘⊗ 𝐼𝑛) − 𝛿(𝑇)𝛿(ℛ)
∗]ℎ(ℛ)∗for all𝑛

∈ ℕ 𝑎𝑛𝑑 ℛ, 𝑇 ∈ 𝒦(𝑛). 
(ii) There exists a bounded 𝐵(ℰ1, ℰ2) valued nc-function 𝑓such that ‖𝑓(𝑋)‖ ≤ 1and 

𝑎(𝑋)𝑓(𝑋) = 𝑏(𝑋), for all 𝑛 ∈ ℕand 𝑋 ∈ 𝒦(𝑛). 
(iii) 𝑎(𝑋)𝑎(𝑋)∗ − 𝑏(𝑋)𝑏(𝑋)∗ ≽ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ 𝑎𝑛𝑑 𝑋 ∈ 𝒦(𝑛). 

It is immediate that a proof of the implication (i) ⇒ (ii) of Theorem (5.3.4), follows from 

Proposition (5.3.3) by taking 𝜖 = 𝐼𝑘∅. Thus the proof given here of Proposition (5.3.3), 

exploiting the Haar measure, provides an alternate and conceptually different proof of (i) ⇒
(ii) than the one given in [162]. 

Proof. (i) implies (ii): Follows from Proposition (5.3.3), by letting 𝜖 = 𝐼𝑘∅. 

(ii) implies (iii): Observe that for each 𝑛 ∈ ℕand 𝑋 ∈ 𝒦(𝑛), 
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𝑎(𝑋)𝑎(𝑋)∗ − 𝑏(𝑋)𝑏(𝑋)∗ = 𝑎(𝑋)𝑎(𝑋)∗ − 𝑎(𝑋)𝑓(𝑋)𝑓(𝑋)∗𝑎(𝑋)∗

= 𝑎(𝑋)(𝐼ℰ2⊗ 𝐼𝑛 − 𝑓(𝑋)𝑓(𝑋)
∗)𝑎(𝑋)∗ ≽ 0.                             (31) 

(iii) implies (i): This is the content of Theorem 7.10 in [162]. 

Recall the non-commutative set 𝐺𝛿 = (𝐺𝛿(𝑛))𝑛from (9). The following is the 

Toeplitz-Corona theorem of [162] for the non-commutative domain 𝐺𝛿 = (𝐺𝛿(𝑛)) with the 

assumption that 0 ∈ 𝐺𝛿(1). Observe that certain well-known non-commutative domains, for 

example, the non-commutative polydisc, can be realized as such 𝐺𝛿, for suitable 𝛿. 

Theorem (5.3.5)[160]: Let 𝑎1, … , 𝑎ℓ be bounded ℂ-valued nc–functions defined on 𝐺𝛿 and 

𝜇 > 0. If for all 𝑛 ∈ ℕand 𝑅 ∈ 𝐺𝛿(𝑛), ∑ 𝑎𝑖(𝑅)𝑎𝑖(𝑅)
∗ℓ

𝑖=1 ≽ 𝜇2𝐼𝑛, then there exists ℂ-valued 

nc functions 𝑔1, … , 𝑔ℓ defined on 𝐺𝛿 such that ∑ 𝑎𝑖(𝑅)𝑔𝑖(𝑅)
ℓ
𝑖=1 = 𝐼𝑛 for each 𝑛 ∈ ℕand 

𝑅 ∈ 𝐺𝛿(𝑛). Moreover the 𝐵(ℂ, ℂℓ)valued nc function 𝑔satisfies ‖𝑔(𝑅)‖ ≤
1

𝜇
 for all 𝑛 ∈

ℕ and 𝑅 ∈ 𝐺𝛿(𝑛), where 𝑔(𝑅) = 𝑒1⊗𝑔1(𝑅) +⋯𝑒ℓ⊗𝑔𝑗(𝑅) and 𝑒1, 𝑒2, … , 𝑒ℓare the 

standard unit (column) vectors in ℂℓ. 
Proof. Letting ℰ1 = ℰ3 = ℂand ℰ2 = ℂ

ℓ, 𝑎(𝑅) =  𝑒1
∗⊗𝑎1(𝑅) +⋯+ 𝑒ℓ

∗⊗𝑎ℓ(𝑅) and 

𝑏(𝑅) = 𝜇𝐼𝑛for 𝑅 ∈ 𝐺𝛿(𝑛) in Theorem (5.3.4), the hypothesis becomes 𝑎(𝑅)𝑎(𝑅)∗ −

𝑏(𝑅)𝑏(𝑅)∗ ≽ 0. Theorem (5.3.4) now implies that there exists a 𝐵(ℂ, ℂℓ) valued nc 

function f such that ‖𝑓(𝑅)‖ ≤ 1 and 

[𝑒1
∗⊗𝑎1(𝑅) +⋯+ 𝑒ℓ

∗⊗𝑎𝑗(𝑅)]𝑓(𝑅) = 𝜇𝐼𝑛.          (32) 

Choose ℂ -valued nc functions 𝑓1, … , 𝑓ℓsuch that 𝑓(𝑅) = 𝑒1⊗𝑓1(𝑅) +⋯ 𝑒ℓ⊗𝑓ℓ(𝑅). 
Using this in equation (32) yields, 

∑𝑎𝑖(𝑅)𝑓𝑖(𝑅)

ℓ

𝑖=1

= 𝜇𝐼𝑛. 

Taking 𝑔𝑖 =
1

𝜇
𝑓𝑖; 𝑖 = 1, 2,… , ℓ , completes the proof.  

Let Λ denote a linear 𝑟 × 𝑟 matrix-valued nc polynomial,  

Λ(𝑥) =∑𝐴𝑗𝑥𝑗 ,

𝑔

𝑗=1

 

where the 𝐴𝑗are 𝑟 × 𝑟matrices. The corresponding linear pencil is the expression 

𝐿(𝑥) = 𝐼 − Λ(𝑥) − Λ∗(𝑥), 
where Λ∗is the formal adjoint of Λ determined by, 

Λ∗(𝑋) = Λ(𝑋)∗ 
for tuples 𝑋 = (𝑋1, … , 𝑋𝑑) of 𝑛 × 𝑛matrices. In this case the graded set 𝒦 = (𝒦(𝑛))

𝑛
is 

known as a free (non-commutative) spectrahedron (See [168]). A bit of algebra shows 

𝐿(𝑥) = (𝐼 − Λ)(𝑥)(𝐼 − Λ)(𝑥)∗ − Λ(𝑥)Λ(𝑥)∗. 
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Chapter 6 

Toeplitz Algebra on the Bergman Space of the Unit Ball in ℂ𝒏  and Localization 

the Commutator Ideal 
 

We can show that for 𝑛 >  1, the closed bilateral ideal generated by operators of the 

above form, where 𝑓 , 𝑔 can be required to be continuous on the open unit ball or supported 

in a nowhere dense set, is also all of 𝔗. The main results extend results of Xia and Zheng to 

the case of the Bergman space. In the case of the Bargmann-Fock space, our results provide 

new, more general conditions, that imply the work of Xia and Zheng via a more familiar 

approach. We show that the norm closure of {𝑇𝑓 ∶  𝑓 ∈ 𝐿
1(𝐵;  𝑑𝑣)} actually coincides with 

the Toeplitz algebra 𝔗, i.e., the 𝐶∗-algebra generated by {𝑇𝑓 ∶  𝑓 ∈ 𝐿
1(𝐵;  𝑑𝑣)}. A key 

ingredient in the proof is the class of weakly localized operators recently introduced by 

Isralowitz, Mitkovski and Wick. The approach simultaneously gives us the somewhat 

surprising result that 𝔗 also coincides with the 𝐶∗-algebra generated by the class of weakly 

localized operators. 

Section (6.1): Unit Ball in ℂ𝒏 

For 𝑛 > 1, let ℂ𝑛 denote the cartesian product of 𝑛 copies of ℂ. For any two points 

𝑧 = (𝑧1, … , 𝑧𝑛) and 𝑤 = (𝑤1, … , 𝑤𝑛) in ℂ𝑛, we use the notations 〈𝑧, 𝑤〉 = 𝑧1�̅�1 +⋯+

𝑧𝑛�̅�𝑛 and |𝑧| = √|𝑧1|
2 +⋯+ |𝑧𝑛|

2 for the inner product and the associated Euclidean 

norm. Let 𝐵𝑛 denote the open unit ball which consists of points 𝑧 ∈ ℂ𝑛 with |𝑧| < 1. Let 

𝑑𝜐denote the Lebesgue measure on 𝐵𝑛 so normalized that 𝜐(𝐵𝑛) = 1. Let 𝑑𝜇(𝑧) =
(1 − |𝑧|2)−𝑛−1𝑑𝜐(𝑧). Then 𝑑𝜇 is invariant under the action of the group of automorphisms 

Aut(𝐵𝑛) of 𝐵𝑛. Even though 𝑑𝜇 is an infinite measure on 𝐵𝑛, it will be very useful for us 

later. 

Let 𝐿2 = 𝐿2(𝐵𝑛, 𝑑𝜐) and 𝐿∞ = 𝐿∞(𝐵𝑛, 𝑑𝜐). The Bergman space 𝐿𝑎
2  is the subspace of 

𝐿2 which consists of all holomorphic functions. The orthogonal projection from 𝐿2 onto 𝐿𝑎
2  

is given by 

𝑃𝑓(𝑧) = ∫
𝑓(𝑤)

(1 − 〈𝑧, 𝑤〉)𝑛+1
𝐵𝑛

𝑑𝜐 (𝑤)  , 𝑓 ∈ 𝐿2 , 𝑧 ∈ 𝐵𝑛. 

The normalized reproducing kernels for 𝐿𝑎
2  are of the form 

𝑘𝑧(𝑤) = (1 − |𝑧|
2)(𝑛+1)/2(1 − 〈𝑤, 𝑧〉)−𝑛−1, |𝑧|, |𝑤| < 1. 

    We have ‖𝑘𝑧‖ = 1 and 〈𝑔, 𝑘𝑧〉 = (1 − |𝑧|
2)(𝑛+1)/2𝑔(𝑧) for all 𝑔 ∈ 𝐿𝑎

2 . 

Let 𝔅(𝐿𝑎
2 ) be the 𝐶∗-algebra of all bounded linear operators on 𝐿𝑎

2 . Let 𝒦 denote the 

ideal of compact operators on 𝐿𝑎
2 . 

For any 𝜂 ∈ 𝐿∞ let 𝑀𝜂: 𝐿
2 → 𝐿2 be the operator of multiplication by 𝜂 and 𝑃𝜂 = 𝑃𝑀𝜂. 

Then ‖𝑃𝜂‖ ≤ ‖𝜂‖∞. The Toeplitz operator 𝑇𝜂: 𝐿𝑎
2  → 𝐿𝑎

2  is the restriction of 𝑃𝜂to 𝐿𝑎
2 . For any 

subset 𝐺 of 𝐿∞, let 𝔗(𝐺) denote the 𝐶∗-subalgebra of 𝔅(𝐿𝑎
2 )generated by {𝑇𝜂: 𝜂 ∈ 𝐺}. The 

commutator ideal of this algebra is denoted by ℭ𝔗(𝐺). It is well-know that ℭ𝔗(𝐶(�̅�𝑛)) is 

the same as 𝒦, see [13]. 

The algebra 𝔗(𝐿∞) which is generated by all Toeplitz operators with bounded symbols is 

called the full Toeplitz algebra. Its commutator ideal is ℭ𝔗(𝐿∞). 
There have been many results on commutator ideals and abelianizations of Toeplitz 

algebras acting on Hardy spaces. In contrast with this, there are only few results for Toeplitz 
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algebras on Bergman spaces. Suárez showed in [81] that the Toeplitz algebra 𝔗(𝐿∞) on the 

Bergman space of the unit disk coincides with its commutator ideal ℭ𝔗(𝐿∞). Suárez used 

some explicit computations and identities which are readily available on the unit disk to 

construct a function 𝜂 ∈ 𝐿∞ with the property that 𝜂 > 𝑐 > 0 on the disk and 𝑇𝜂 is in the 

commutator ideal ℭ𝔗(𝐿∞). In higher dimensions, the computations become more 

complicated and some of the identities which were used by Suárez are not available. We 

could not find a way to get around these difficulties to construct a function similar to that of 

Suárez so we tried a different approach. It turns out that our new approach gives more 

general results about commutator ideals of the Toeplitz algebras. Indeed, we do not need 𝐺 

to be all the functions in 𝐿∞ to get ℭ𝔗(𝐺) = 𝔗(𝐺). We can take 𝐺 to be 𝐿∞ ∩ 𝐶(𝐵𝑛), the 

set of all bounded continuous functions on the open unit ball, or we can take 𝐺 to be all the 

functions in 𝐿∞ which are supported in a set 𝐸 where 𝐸 can be a nowhere dense set with 

𝜈(𝐸) as small as we please. 

We next describe a metric on the unit ball which we will mainly use here. For any 

𝑧 ∈ 𝐵𝑛, let 𝜑𝑧 denote the Mobius automorphism of 𝐵𝑛 that interchanges 0 and 𝑧. For any 

𝑧, 𝑤 ∈ 𝐵𝑛, let 𝜌(𝑧,𝑤) = |𝜑𝑧(𝑤)|. Then 𝜌 is a metric which is invariant under the action of 

the group of automorphisms Aut(𝐵𝑛) of 𝐵𝑛. These properties of 𝜌can be proved by using 

identities in [79]. Further discussion of this metric will appear later. 

A collection 𝒲 = {𝑤𝑗: 𝑗 ∈ 𝐽} of points in 𝐵𝑛 is said to be separated if 𝑟 =

inf{𝜌(𝑤𝑗 , 𝑤𝑘): 𝑗 ≠ 𝑘} > 0. It is a consequence of Lemma (6.1.2) that in this case the index 

set 𝐽 is necessarily at most countable. The number 𝑟 is called the degree of separation of 𝒲. 

For 𝑧 ∈ 𝐵𝑛 and 0 < 𝑟 < 1, let 

𝐸(𝑧, 𝑟) = {𝑤 ∈ 𝐵𝑛: 𝜌(𝑤, 𝑧) ≤ 𝑟} 
denote the closed 𝑟-ball centered at 𝑧 in the 𝜌metric. 

Theorem (6.1.1)[182]: Let {𝑤𝑗: 𝑗 ∈ ℕ} be a separated sequence of points in 𝐵𝑛 so that 𝐵𝑛 =

⋃ 𝐸(𝑤𝑗 , 𝑅)𝑗∈ℕ  for some 0 < 𝑅 < 1. Let 𝜂 be a measurable function defined on [0,∞) with 

𝜂 ≥ 0, 𝜂(𝑡) = 0 if 𝑡 ≤ 1 and ‖𝜂‖∞ = 1. For each 0 < 𝜀 < 1 put 𝜂𝜀(𝑧) = 𝑧1𝜂(|𝑧|/𝜀). Let 

𝐺𝜀 be the set of all functions of the form ∑ 𝜂𝜀°𝜑𝑤𝑗𝑗∈𝐹  or ∑ �̅�𝜀°𝜑𝑤𝑗𝑗∈𝐹  where 𝐹 is a subset of 

ℕ. Then the operator 

𝐴𝜀 =∑[𝑇𝜂𝜀°𝜑𝑤𝑗
, 𝑇�̅�𝜀°𝜑𝑤𝑗

]
2

𝑗∈ℕ

 

belongs to the commutator ideal ℭ𝔗(𝐺𝜀). Furthermore, for all but countably many 𝜀, the 

operator 𝐴𝜀is invertible. 

Put 𝐸𝜀 = ⋃ 𝜑𝑤𝑗(supp(𝜂𝜀))𝑗∈ℕ . Then 𝐺𝜀is contained in the sub-space {𝜁 ∈

𝐿∞: 𝜁 is supported on𝐸𝜀}. If 𝜂is supported in a nowhere dense subset of [0, 1]then 𝜂𝜀is 

supported in a nowhere dense subset of 𝐵𝑛, hence 𝐸𝜀, being the union of a locally finite 

collection of nowhere dense sets, is a nowhere dense subset of 𝐵𝑛, too. Furthermore, we will 

show that for 𝜀 > 0, the Lebesgue measure of 𝐸𝜀 is 𝑂(𝜀2𝑛). We will also show that if 𝜂 is a 

continuous function then 𝐺𝜀is a subspace of 𝐶(𝐵𝑛) for all 0 < 𝜀 < 1. 

The fact that 𝐴𝜀 belongs to the ideal ℭ𝔗(𝐺𝜀) is proved exactly as in Suárez’s. The 

reason is that all the properties of the metric 𝜌 and the kernel functions which were crucial 

for Suárez’s proof hold true in higher dimensions. 
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The invertibility of 𝐴𝜀 follows from a general fact about operators which are 

diagonalizable with respect to the standard orthonormal basis of 𝐿𝑎
2 . In fact, sums of a “large 

enough” number of operators which are unitarily equivalent to operators of the above type 

are invertible. This is the content of Theorem (6.1.10) which follows. 

For any 𝑧 ∈ 𝐵𝑛, the formula 

𝒰𝑧(𝑓) = (𝑓 ∘ 𝜑𝑧)𝑘𝑧,         𝑓 ∈ 𝐿
2 

defines a bounded operator on 𝐿2. It is well-known that 𝒰𝑧 is a unitary self-adjoint operator 

and 𝒰𝑧𝑇𝜂𝒰𝑧
∗ = 𝑇𝜂∘𝜑𝑧  for all 𝑧 ∈ 𝐵𝑛 and all 𝜂 ∈ 𝐿∞, see, for example, Lemma 7 and 8 in 

[183]. 

Also a simple computation reveals that for all 𝑧, 𝑤 ∈ 𝐵𝑛, 

𝒰𝑧(𝑘𝑤) = (
|1 − 〈𝑧, 𝑤〉|

1 − 〈𝑧, 𝑤〉
)

𝑛+1

𝑘𝜑𝑧(𝑤). 

This implies 

𝒰𝑧(𝑘𝑤⊗𝑘𝑤)𝒰𝑧
∗ = 𝑘𝜑𝑧(𝑤)⊗𝑘𝜑𝑧(𝑤). 

Now for any multi-index 𝛼 = (𝛼1, 𝛼2… , 𝛼𝑛), let |𝛼| = 𝛼1 +⋯+ 𝛼𝑛, 𝛼! =

𝛼1!, … , 𝛼𝑛! and 𝑧𝛼 = 𝑧1
𝛼1 …𝑧𝑛

𝛼𝑛 . Put 

𝑒𝛼 = (
(𝑛 + |𝛼|)!

𝑛! 𝛼!
)

1/2

𝑧𝛼 . 

Then {𝑒𝛼: 𝛼 ∈ ℕ
𝑛}is the standard orthonormal basis for 𝐿𝑎

2 , see Proposition 1.4.9 in 

[79]. 

Recall that for any two nonzero elements 𝑓 and g in 𝐿𝑎
2 , 𝑓 ⊗ 𝑔 denotes the rank one 

operator (𝑓 ⊗ 𝑔)𝑢 = 〈𝑢, 𝑔〉𝑓 , for all 𝑢 ∈ 𝐿𝑎
2 . 

The following inequalities illustrate the fact that the metric 𝜌 in higher dimensions 

also possesses all the properties used in Suárez’s. These results are well-known but since 

we are not aware of an appropriate reference, we sketch here a proof. 

Lemma (6.1.2)[182]: For any 𝑧, 𝑤 in 𝐵𝑛, the followings hold: 

|
|𝑧| − |𝑤|

1 − |𝑧||𝑤|
| ≤ 𝜌(𝑧, 𝑤) ≤

|𝑧 − 𝑤|

1 − 〈𝑧,𝑤〉
. 

Proof. Using |〈𝑧, 𝑤〉| ≤ |𝑧||𝑤|, we get the inequalities 

1 −
|𝑧 − 𝑤|2

|1 − 〈𝑧, 𝑤〉|2
≤
(1 − |𝑧|2)(1 − |𝑤|2)

|1 − 〈𝑧, 𝑤〉|2
≤
(1 − |𝑧|2)(1 − |𝑤|2)

(1 − |𝑧||𝑤|)2
. 

Combining the above inequalities with the identity 

1 − |𝜑𝑧(𝑤)|
2 =

(1 − |𝑧|2)(1 − |𝑤|2)

|1 − 〈𝑧, 𝑤〉|2
(see Theorem 2.2.2 in [79]) 

we obtain 

1 −
|𝑧 − 𝑤|2

|1 − 〈𝑧, 𝑤〉|2
≤ 1 − |𝜑𝑧(𝑤)|

2 ≤ 1 −
(|𝑧| − |𝑤|)2

(1 − |𝑧||𝑤|)2
 , 

from which the stated inequalities follow. 

From Lemma (6.1.2) and the invariance of 𝜌 under the action of Aut(𝐵n), we have 

for any 𝑧, 𝑤, 𝑢 ∈ 𝐵𝑛, 
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 𝜌(𝑧, 𝑤) = 𝜌(𝜑𝑢(𝑧), 𝜑𝑢(𝑤)) > |
|𝜑𝑢(𝑧)| − |𝜑𝑢(𝑤)|

1 − |𝜑𝑢(𝑧)||𝜑𝑢(𝑤)|
|

=
|𝜌(𝑧, 𝑢) − 𝜌(𝑢,𝑤)|

1 − 𝜌(𝑧, 𝑢)𝜌(𝑢, 𝑤)
.                                     (1) 

From the second inequality in Lemma (6.1.2), we see that if |𝑧|, |𝑤| ≤ 𝑅 < 1 then 

 𝜌(𝑧, 𝑤) ≤
|𝑧 − 𝑤|

|1 − 〈𝑧, 𝑤〉|
≤
|𝑧 − 𝑤|

1 − 𝑅2
 .                  (2) 

For all 0 < 𝑟 < 1 and all 0 < 𝑅 < 1, from the compactness of 𝐸(0, 𝑅) in the 

Euclidean metric, there is an 𝑀 which depends only on 𝑛, 𝑟 and 𝑅 so that if {𝑤1, … , 𝑤𝑚} is 

a subset of 𝐸(0, 𝑅) and |𝑤𝑗 −𝑤𝑘| ≥ (1 − 𝑅
2)𝑟 for all 𝑗 ≠ 𝑘 then 𝑚 ≤ 𝑀. Then (2) implies 

that if {𝑤1, … , 𝑤𝑚} is a subset of 𝐸(0, 𝑅) so that 𝜌(𝑤𝑗 , 𝑤𝑘) ≥ 𝑟 for all 𝑗 ≠ 𝑘 then 𝑚 ≤ 𝑀. 

The above properties of 𝜌allow us to prove the following characteristic of a separated 

collection of points in 𝐵𝑛. 

Lemma (6.1.3)[182]: Let {𝑤𝑗: 𝑗 ∈ 𝐽} be a collection of points in 𝐵𝑛 so that 𝜌(𝑤𝑗 , 𝑤𝑘) > 𝑟 

for all 𝑗 ≠ 𝑘, where 0 < 𝑟 < 1. Let 0 < 𝑅1, 𝑅2 < 1 be given. Then there is an 𝑁 depending 

only on 𝑛, 𝑟, 𝑅1 and 𝑅2 so that for any 𝑢 ∈ 𝐵𝑛 the set {𝑗 ∈ 𝐽: 𝐸(𝑢, 𝑅1) ∩ 𝐸(𝑤𝑗 , 𝑅2) ≠ ∅} has 

at most 𝑁 elements. 

Proof. By applying the Möbius automorphism that interchanges 0 and 𝑢 if necessary, we 

can assume without loss of generality that 𝑢 = 0. Let �̃� = (𝑅1 + 𝑅2)/(1 + 𝑅1𝑅2). Suppose 

𝑧, 𝑤 ∈ 𝐵𝑛 with |𝑤| ≤ 𝑅1 and |𝑧| > �̃�. Then from Lemma (6.1.2), 

𝜌(𝑧,𝑤) ≥
|𝑧| − |𝑤|

1 − |𝑤||𝑧|
>
�̃� − 𝑅1

1 − �̃�𝑅1
= 𝑅2 . 

So 𝐸(0, 𝑅1) ∩ 𝐸(𝑧, 𝑅2) ≠ ∅ implies that |𝑧| ≤ �̃�. Hence, {𝑗 ∈ 𝐽: 𝐸(0, 𝑅1) ∩

𝐸(𝑧𝑗 , 𝑅2) ≠ ∅} is a subset of the set {𝑗 ∈ 𝐽: |𝑤𝑗| ≤ �̃�}. From the remark preceding the 

lemma, the second set has at most 𝑁 elements, where 𝑁 depends only on 𝑛, 𝑟, 𝑅1 and 𝑅2. 
The conclusion of the lemma follows from here. 

The following lemma is similar to [81] but somewhat stronger even though the proof 

is almost identical. We state here the lemma and give the proof, too. 

Lemma (6.1.4)[182]: Let 𝒲 = {𝑤𝑗: 𝑗 ∈ 𝐽} be a separated collection of points in 𝐵𝑛 and 0 <

𝜎 < 1. Then there is a finite decomposition 𝒲 =𝒲1 ∪ …∪𝒲𝑁 such that for every 1 ≤
𝑖 ≤ 𝑁, 𝐸(𝑧, 𝜎) ∩ 𝐸(𝑤, 𝜎) = ∅ for all 𝑧 ≠ 𝑤 in 𝒲𝑖. 

Proof. Let 𝒲1 ⊂ 𝒲be a maximal subset so that 𝐸(𝑧, 𝜎) ∩ 𝐸(𝑤, 𝜎) = ∅ for all 𝑧 ≠ 𝑤 in 

𝒲𝑖. If 𝒲1 = 𝒲 we are done. Otherwise suppose that 𝑚 ≥ 2 and 𝒲1, … ,𝒲𝑚−1 are chosen 

so that 𝐸(𝑧, 𝜎) ∩ 𝐸(𝑤, 𝜎) = ∅ for all 𝑧 ≠ 𝑤 in 𝒲𝑖, all 1 ≤ 𝑖 ≤ 𝑚 − 1 and 𝒲\(𝒲1 ∪ …∪
𝒲𝑚−1) ≠ ∅ . Let 𝒲𝑚 ⊂ 𝒲\(𝒲1 ∪ …∪𝒲𝑚−1) be a maximal subset so that 𝐸(𝑧, 𝜎) ∩
𝐸(𝑤, 𝜎) = ∅ for all 𝑧 ≠ 𝑤 in 𝒲𝑚. By the maximality at each of the previous steps, if 𝑢 ∈
𝒲𝑚 then for every 1 ≤ 𝑖 ≤ 𝑚 − 1, there is a 𝑢𝑖 ∈ 𝒲𝑖 so that 𝐸(𝑢𝑖 , 𝜎) ∩ 𝐸(𝑢, 𝜎) ≠ ∅. 

Therefore {𝑢, 𝑢1, … , 𝑢𝑚−1} ⊂ {𝑗 ∈ 𝐽: 𝐸(𝑢, 𝜎) ∩ 𝐸(𝑤𝑗 , 𝜎) ≠ ∅}. From Lemma (6.1.2), there 

is an 𝑁 depending on 𝑛, 𝜎and the degree of separation of 𝒲 so that 𝑚 ≤ 𝑁. 

From now, fix an 𝑟 ∈ (0, 1) and a sequence of points 𝒲 = {𝑤𝑗: 𝑗 ∈ ℕ} in 𝐵𝑛 so that 

𝐸(𝑤𝑗 , 𝑟) ∩ 𝐸(𝑤𝑘 , 𝑟) = ∅ for all 𝑗 ≠ 𝑘 in ℕ. 
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Now we state some lemmas which are in Suárez’s for the case 𝑛 = 1 and for 𝐿𝑎
𝑝

 with 

1 < 𝑝 < ∞, see [81]. Here we are interested in the case 𝑛 ≥ 2 and 𝑝 = 2. The conclusions 

of those lemmas in our case still hold true with no major changes in the proofs. 

Lemma (6.1.5)[182]: Let 0 < 𝛽 < 1 and 𝑟 < 𝑅 < 1 and let 

Φ(𝑧,𝑤) =∑𝜒𝐸(𝑤𝑗,𝑟)(𝑧)𝜒𝐵𝑛\𝐸(𝑤𝑗,𝑅)(𝑊)|1 − 〈𝑧, 𝑤〉|
𝑛−1

𝑗∈ℕ

. 

Then we have the following, where 𝑐1(𝛽) > 0: 

∫ Φ(𝑧,𝑤)(1 − |𝑧|2)−𝛽𝑑𝜐(𝑧) ≤ 𝑐1(𝛽)(1 − |𝑤|
2)−𝛽

𝐵𝑛

. 

Lemma (6.1.6)[182]: Let 0 < 𝛽 < 1 and 𝑟 < 𝑅 < 1 and Φ(𝑧, 𝑤) as in Lemma (6.1.5). 

Then 

∫ Φ(𝑧,𝑤)(1 − |𝑤|2)−𝛽𝑑𝜐(𝑤) ≤ 𝑐2(𝛽, 𝑅)(1 − |𝑧|
2)−𝛽

𝐵𝑛

, 

where 𝑐2(𝛽, 𝑅) → 0 when 𝑅 → 1. 

Lemma (6.1.7)[182]: Suppose that 𝑅 ∈ (𝑟, 1) and 𝑎𝑗 , 𝐴𝑗 ∈ 𝐿
∞ are functions of norm ≤

1 such that 

supp 𝑎𝑗 ⊂ 𝐸(𝑤𝑗 , 𝑟)      and  supp𝐴𝑗 ⊂ 𝐵𝑛\𝐸(𝑤𝑗 , 𝑅). 

Then the operator ∑ 𝑀𝑎𝑗𝑃𝑀𝐴𝑗𝑗∈ℕ  is bounded on 𝐿2, with norm bounded by some 

constant 𝑘(𝑅) → 0 when 𝑅 → 1. 

The following proposition is the case 𝑛 ≥ 1 and 𝑝 = 2 of [81]. Since we have all the 

needed properties of the metric 𝜌 and all the necessary lemmas, the proof is identical to that 

of Suárez. 

Proposition (6.1.8)[182]: For each 𝑗 ∈ ℕ, let 𝑐𝑗
1, … , 𝑐𝑗

𝑙 , 𝑎𝑗 , 𝑏𝑗 , 𝑑𝑗
1, … , 𝑑𝑗

𝑚 ∈ 𝐿∞ be functions 

of norm ≤ 1 supported on 𝐸(𝑤𝑗 , 𝑟). Then the following belongs to the commutator ideal 

ℭ𝔗(𝐿∞) of the full Toeplitz algebra: 

∑𝑇𝑐𝑗
1 …𝑇𝑐𝑗

1 (𝑇𝑎𝑗𝑇𝑏𝑗 − 𝑇𝑏𝑗𝑇𝑎𝑗)

𝑗∈ℕ

𝑇𝑑𝑗
1 …𝑇𝑑𝑗

𝑚 . 

In the proof of Proposition (6.1.8), we are dealing only with Toeplitz operators with 

symbols in the subset 𝐺 of 𝐿∞ which consists of functions of the form ∑ 𝑓𝑖𝑗∈𝐹 , where 𝐹 is a 

subset of ℕ and 𝑓 is one of the symbols 𝑐1, … , 𝑐𝑙 , 𝑎, 𝑏, 𝑑1, … , 𝑑𝑚. So in the above conclusion, 

we can replace ℭ𝔗(𝐿∞) by the smaller ideal ℭ𝔗(𝐺). 
Fix a bounded set {𝑆𝛼: 𝛼 ∈ ℕ

𝑛} of strictly positive real numbers. 

Lemma (6.1.9)[182]: Fix 0 < 𝑅 < 1 and 𝜀 > 0 so that (1 + 𝜀)𝑅 < 1. Let 𝛿 > 0 be given. 

Then there is a constant 𝐶(𝛿) > 0 so that for all |𝑧| ≤ 𝑅, 

𝑘𝑧⊗𝑘𝑧𝐶(𝛿) ∑ 𝑆𝛼𝑒𝛼⊗𝑒𝛼 + 𝛿

𝛼∈ℕ𝑛

∫ 𝑘𝑤⊗𝑘𝑤
|𝑤|<(1+𝜀)𝑅

   𝑑𝜇(𝑤).                          (3) 

Proof. Let 𝑓 be in 𝐿𝑎
2 and |𝑧| ≤ 𝑅. Let 𝐽 be a finite subset of ℕ𝑛. Put 
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𝑔𝐽 =∑〈𝑓, 𝑒𝛼〉𝑒𝛼
𝛼∈𝐽

  and ℎ𝐽 = ∑ 〈𝑓, 𝑒𝛼〉𝑒𝛼
𝛼∈ℕ𝑛\𝐽

. 

Then 

〈(𝑘𝑧⊗𝑘𝑧)𝑓, 𝑓〉 = |〈𝑓, 𝑘𝑧〉|
2 = |〈𝑔𝐽, 𝑘𝑧〉 + 〈ℎ𝐽, 𝑘𝑧〉|

2

≤ 2(|〈𝑔𝐽, 𝑘𝑧〉|
2
+ |〈ℎ𝐽, 𝑘𝑧〉|

2
).                                            (4) 

Now, 

|〈ℎ𝐽, 𝑘𝑧〉|
2
= | ∑ 〈𝑓, 𝑒𝛼〉〈𝑒𝛼, 𝑘𝑧〉

𝛼∈ℕ𝑛\𝐽

|

2

= (1 − |𝑧|2)𝑛+1 | ∑ 〈𝑓, 𝑒𝛼〉𝑒𝛼(𝑧)

𝛼∈ℕ𝑛\𝐽

|

2

≤ | ∑ 〈𝑓, 𝑒𝛼〉𝑒𝛼(𝑧)

𝛼∈ℕ𝑛\𝐽

|

2

≤ ( ∑ |〈𝑓, 𝑒𝛼〉|

𝛼∈ℕ𝑛\𝐽

|(
(𝑛 + |𝛼|!)

𝑛! 𝛼!
)

1
2

|𝑧𝛼||)

2

≤ ( ∑ |〈𝑓, 𝑒𝛼〉|
2

𝛼∈ℕ𝑛\𝐽

((1 + 𝜀)𝑅)
2|𝛼|
)

× ( ∑
(𝑛 + |𝛼|!)

𝑛! 𝛼!
|𝑧𝛼|2

𝛼∈ℕ𝑛\𝐽

((1 + 𝜀)𝑅)
−2|𝛼|

).                                                   (5) 

On the other hand, the homogeneity of the 𝑒𝛼’s shows that 

𝑓((1 + 𝜀)𝑅𝜁) = ∑ 〈𝑓, 𝑒𝛼〉

𝛼∈ℕ𝑛

((1 + 𝜀)𝑅)
|𝛼|
𝑒𝛼(𝜁) 

so that the change-of-variable 𝑤 = (1 + 𝜀)𝑅𝜁 gives 

∫ 〈(𝑘𝑤⊗𝑘𝑤)𝑓, 𝑓〉𝑑𝜇(𝑤)

|𝑤|<(1+𝜀)𝑅

= ∫ |𝑓(𝑤)|2𝑑𝜐(𝑤)

|𝑤|<(1+𝜀)𝑅

= ((1 + 𝜀)𝑅)
2𝑛
∫|𝑓(1 + 𝜀)𝑅𝜁|2𝑑𝜐(𝜁)

𝐵𝑛

= ((1 + 𝜀)𝑅)
2𝑛
∑ |〈𝑓, 𝑒𝛼〉|

2

𝛼∈ℕ𝑛

((1 + 𝜀)𝑅)
2|𝛼|

≥ ((1 + 𝜀)𝑅)
2𝑛

∑ |〈𝑓, 𝑒𝛼〉|
2

𝛼∈ℕ𝑛\𝐽

((1 + 𝜀)𝑅)
2|𝛼|
.                                               (6) 

This implies 
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∑ |〈𝑓, 𝑒𝛼〉|
2

𝛼∈ℕ𝑛\𝐽

((1 + 𝜀)𝑅)
2|𝛼|

≤ ((1 + 𝜀)𝑅)
−2𝑛

∫ 〈(𝑘𝑤⊗𝑘𝑤)𝑓, 𝑓〉𝑑𝜇(𝑤)

|𝑤|<(1+𝜀)𝑅

.                           (7) 

Inequalities (5) and (7) imply 

|〈ℎ𝐽, 𝑘𝑧〉|
2
≤ ( ∑

(𝑛 + |𝛼|!)

𝑛! 𝛼!
|𝑧𝛼|2

𝛼∈ℕ𝑛\𝐽

((1 + 𝜀)𝑅)
−2|𝛼|

)((1 + 𝜀)𝑅)
−2𝑛

× ∫ 〈(𝑘𝑤⊗𝑘𝑤)𝑓, 𝑓〉𝑑𝜇(𝑤)

|𝑧|<(1+𝜀)𝑅

. 

Now from the identity 

𝐾𝑤(𝜁) = ∑ 𝑒𝛼(𝑤)̅̅ ̅̅ ̅̅ ̅̅ 𝑒𝛼(𝜁)

𝛼∈ℕ𝑛

, 

for 𝑤, 𝑧 ∈ 𝐵𝑛, where 𝐾𝑤(𝜁) is the Bergman reproducing kernel, we have 

∑ |𝑒𝛼(𝑤)|
2

𝛼∈ℕ𝑛

= 𝐾𝑤(𝑤) =
1

(1 − |𝑤|2)𝑛+1
. 

If we take 𝑤 = 𝑧/(1 + 𝜀)𝑅, where |𝑧| ≤ 𝑅, we obtain 

∑
(𝑛 + |𝛼|!)

𝑛! 𝛼!
|𝑧𝛼|2

𝛼∈ℕ𝑛

((1 + 𝜀)𝑅)
−2|𝛼|

= ∑ |𝑒𝛼 (
𝑧

(1 + 𝜀)𝑅
)|
2

𝛼∈ℕ𝑛

≤
1

(1 −
1

(1 + 𝜀)2
)
𝑛+1 .                                                                                  (8) 

So there is a finite subset 𝐽 of ℕ𝑛 which is independent of 𝑧 so that 

∑
(𝑛 + |𝛼|!)

𝑛! 𝛼!
|𝑧𝛼|2

𝛼∈ℕ𝑛\𝐽

((1 + 𝜀)𝑅)
−2|𝛼|

≤
𝛿

2
((1 + 𝜀)𝑅)

2𝑛
. 

Hence for this 𝐽, 

|〈ℎ𝐽, 𝑘𝑧〉|
2
≤
𝛿

2
∫ 〈(𝑘𝑤⊗𝑘𝑤)𝑓, 𝑓〉𝑑𝜇(𝑤)

|𝑤|<(1+𝜀)𝑅

.                  (9) 

Also, 

|〈𝑔𝐽, 𝑘𝑧〉|
2
≤∑|〈𝑓, 𝑒𝛼〉|

2

𝛼∈𝐽

.                                              (10) 

From inequalities (4), (9) and (10), we conclude that 

〈(𝑘𝑧⊗𝑘𝑧)𝑓, 𝑓〉 ≤ 2∑〈(𝑒𝛼⊗𝑒𝛼)𝑓, 𝑓〉 + 𝛿

𝛼∈𝐽

∫ 〈(𝑘𝑤⊗𝑘𝑤)𝑓, 𝑓〉𝑑𝜇(𝑤)

|𝑤|<(1+𝜀)𝑅

. 
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Since 𝑆𝛼 > 0 for all 𝛼 ∈ 𝐽 and 𝐽 is finite, there is a constant 𝐶(𝛿) > 0 so that 

𝐶(𝛿)𝑆𝛼 ≥ 2 for all 𝛼 ∈ 𝐽. Then for any 𝑓 ∈ 𝐿𝑎
2 , and any |𝑧| ≤ 𝑅, 

〈(𝑘𝑧⊗𝑘𝑧)𝑓, 𝑓〉 ≤ 𝐶(𝛿)∑𝑆𝛼〈(𝑒𝛼⊗𝑒𝛼)𝑓, 𝑓〉 + 𝛿

𝛼∈𝐽

∫ 〈(𝑘𝑤⊗𝑘𝑤)𝑓, 𝑓〉𝑑𝜇(𝑤)

|𝑤|<(1+𝜀)𝑅

≤ 𝐶(𝛿) ∑ 𝑆𝛼〈(𝑒𝛼⊗𝑒𝛼)𝑓, 𝑓〉 + 𝛿

𝛼∈ℕ𝑛

∫ 〈(𝑘𝑤⊗𝑘𝑤)𝑓, 𝑓〉𝑑𝜇(𝑤)

|𝑤|<(1+𝜀)𝑅

. 

In other words, for any |𝑧| ≤ 𝑅, 

𝑘𝑧⊗𝑘𝑧 ≤ 𝐶(𝛿) ∑ 𝑆𝛼𝑒𝛼⊗𝑒𝛼 + 𝛿

𝛼∈ℕ𝑛

∫ 𝑘𝑤⊗𝑘𝑤𝑑𝜇(𝑤)

|𝑤|<(1+𝜀)𝑅

. 

Theorem (6.1.10)[182]: Let {𝑒𝛼: 𝛼 ∈ ℕ
𝑛}be a bounded set of strictly positive real numbers. 

Let 

𝑆 = ∑ 𝑆𝛼𝑒𝛼⊗𝑒𝛼
𝛼∈ℕ𝑛

. 

Let {𝑤𝑗: 𝑗 ∈ ℕ} be a separated sequence of points in 𝐵𝑛 so that 𝐵𝑛 = ⋃ 𝐸(𝑤𝑗 , 𝑅)𝑗∈ℕ  

for some 0 < 𝑅 < 1. Then there is a positive constant 𝑐 so that 

∑ 𝒰𝑤𝑗𝑆𝒰𝑤𝑗
∗ ≥ 𝑐 ≥ 0.

𝑗∈ℕ𝑛

 

Proof. Let 𝑆 = ∑ 𝑆𝛼𝑒𝛼⊗𝑒𝛼𝛼∈ℕ𝑛  and 𝒲 = {𝑤𝑗: 𝑗 ∈ ℕ} be as in the hypothesis of Theorem 

(6.1.10). Choose an 𝜀 > 0 so that (1 + 𝜀)𝑅 < 1. 

For each 𝑎 ∈ 𝐵𝑛, apply 𝒰𝑎 to the left and 𝒰𝑎
∗  to the right of both sides of inequality 

(3) in Lemma (6.1.9), we get, for |𝑧| ≤ 𝑅: 

𝒰𝑎(𝑘𝑧⊗𝑘𝑧)𝒰𝑎
∗ ≤ 𝐶(𝛿)𝒰𝑎𝑆𝒰𝑎

∗ + 𝛿 ∫ 𝒰𝑎(𝑘𝑤⊗𝑘𝑤)𝒰𝑎
∗𝑑𝜇(𝑤)

|𝑤|<(1+𝜀)𝑅

= 𝐶(𝛿)𝒰𝑎𝑆𝒰𝑎
∗ + 𝛿 ∫ 𝑘𝜑𝑎⊗𝑘𝜑𝑎  𝑑𝜇(𝑤)

|𝑤|<(1+𝜀)𝑅

= 𝐶(𝛿)𝒰𝑎𝑆𝒰𝑎
∗

+ 𝛿 ∫ 𝑘𝜁⊗𝑘𝜁  𝑑𝜇(𝜁)

|𝜑𝑎(𝜁)|<(1+𝜀)𝑅

(by the change − of − variable 𝑤

=  𝜑𝑎(𝜁)) = 𝐶(𝛿)𝒰𝑎𝑆𝒰𝑎
∗ + 𝛿 ∫ 𝑘𝜁⊗𝑘𝜁  𝑑𝜇(𝜁)

𝐸(𝑎,(1+𝜀)𝑅)

. 

Since 𝒰𝑎(𝑘𝑧⊗𝑘𝑧)𝒰𝑎
∗ = 𝑘𝜑𝑎(𝑧)⊗𝑘𝜑𝑎(𝑧), the above implies 

𝑘𝜑𝑎(𝑧)⊗𝑘𝜑𝑎(𝑧) ≤ 𝐶(𝛿)𝒰𝑎𝑆𝒰𝑎
∗ + 𝛿 ∫ 𝑘𝜁⊗𝑘𝜁  𝑑𝜇(𝜁)

𝐸(𝑎,(1+𝜀)𝑅)

.              (11) 
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For each |𝑧| ≤ 𝑅, let 

𝑇(𝑧) =∑𝑘𝜑𝑤𝑗(𝑧)
⊗𝑘𝜑𝑤𝑗(𝑧)

𝑗∈ℕ

. 

Then (11) gives, for |𝑧| ≤ 𝑅: 

𝑇(𝑧) ≤ 𝐶(𝛿)∑𝒰𝑤𝑗𝑆𝒰𝑤𝑗
∗ + 𝛿

𝑗∈ℕ

∑ ∫ 𝑘𝜁⊗𝑘𝜁  𝑑𝜇(𝜁)

𝐸(𝑤𝑗,(1+𝜀)𝑅)
𝑗∈ℕ

.             (12) 

Decompose 𝒲 =𝒲1 ∪ …∪𝒲𝑁 as in Lemma (6.1.4), where 𝑁 depends only on 

𝑛, (1 + 𝜀)𝑅 and the degree of separation of 𝒲. Then 

∑ ∫ 𝑘𝜁⊗𝑘𝜁  𝑑𝜇(𝜁)

𝐸(𝑤𝑗,(1+𝜀)𝑅)
𝑗∈ℕ

≤∑ ∑ ∫ 𝑘𝜁⊗𝑘𝜁  𝑑𝜇(𝜁)

𝐸(𝑤,(1+𝜀)𝑅)𝑤∈𝒲𝑖

𝑁

𝑖=1

≤∑ ∫ 𝑘𝜁⊗𝑘𝜁  𝑑𝜇(𝜁)

𝐵𝑛

𝑁

𝑖=1

= 𝑁. 

Hence, for |𝑧| ≤ 𝑅, 

  𝑇(𝑧) ≤ 𝐶(𝛿)∑𝒰𝑤𝑗𝑆𝒰𝑤𝑗
∗ + 𝛿

𝑗∈ℕ

𝑁.                                (13) 

By integrating 𝑇(𝑧)with respect to 𝑑𝜐(𝑧)over the ball |𝑧| < 𝑅, we get 

∫ 𝑇(𝑧)𝑑𝜐(𝑧)

|𝑧|<𝑅

≥ (1 − 𝑅2)𝑛+1 ∫ 𝑇(𝑧)(1 − |𝑧|2)−(𝑛+1)𝑑𝜐(𝑧)

|𝑧|<𝑅

= (1 − 𝑅2)𝑛+1 ∫ 𝑇(𝑧)𝑑𝜇(𝑧)

|𝑧|<𝑅

= (1 − 𝑅2)𝑛+1∑ ∫ 𝑘𝜑𝑤𝑗(𝑧)
⊗𝑘𝜑𝑤𝑗(𝑧)

 𝑑𝜇(𝑧)

|𝑧|<𝑅𝑗∈ℕ

= (1 − 𝑅2)𝑛+1∑ ∫ 𝑘𝜁⊗𝑘𝜁  𝑑𝜇(𝜁)

𝐸(𝑤𝑗,𝑅)
𝑗∈ℕ

≥ (1 − 𝑅2)𝑛+1 ∫ 𝑘𝜁⊗𝑘𝜁  𝑑𝜇(𝜁)

𝐵𝑛

(since𝐵𝑛 =⋃𝐸(𝑤𝑗 , 𝑅)

𝑗∈ℕ

)

= (1 − 𝑅2)𝑛+1.                                                                                                        (14) 
Inequalities (13) and (14) together imply 

𝐶(𝛿)∑𝒰𝑤𝑗𝑆𝒰𝑤𝑗
∗

𝑗∈ℕ

+ 𝛿𝑁 ≥ (1 − 𝑅2)𝑛+1𝑅−2𝑛. 

Now choose 𝛿 so small that 

𝛿𝑁 ≤ 2−1(1 − 𝑅2)𝑛+1𝑅−2𝑛. 
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Then we have 

  𝐶(𝛿)∑𝒰𝑤𝑗𝑆𝒰𝑤𝑗
∗

𝑗∈ℕ

≥ 2−1(1 − 𝑅2)𝑛+1𝑅−2𝑛 > 0.                     (15) 

Suppose 𝜂𝜀(𝑧) = 𝑧1𝜂(|𝑧|/𝜀) for all 𝑧 = (𝑧1, … , 𝑧𝑛) ∈ 𝐵𝑛 as in the hypothesis of 

Theorem (6.1.1). We will compute directly [𝑇𝜂𝜀 , 𝑇�̅�𝜀] to see that it is a diagonal operator with 

respect to the standard orthonormal basis. 

For any multi-indices 𝛼 and 𝛽 in ℕ𝑛, we have 

〈𝑇𝜂𝜀𝑒𝛼 , 𝑒𝛽〉 = ∫ 𝜂𝜀(𝑧)𝑒𝛼(𝑧)�̅�𝛽(𝑧)

𝐵𝑛

 𝑑𝜐(𝑧) = ∫ 𝜂(|𝑧|/𝜀)𝑧1𝑒𝛼(𝑧)�̅�𝛽(𝑧)

|𝑧|<𝜀

  𝑑𝜐(𝑧). 

Now, 

𝑧1𝑒𝛼(𝑧) = (
(𝑛 + |𝛼|!)

𝑛! 𝛼!
)

1/2

𝑧1𝑧
𝛼 = (

(𝑛 + |𝛼|)!

𝑛! 𝛼!

𝑛! (𝛼 + (1, 0,… ,0))!

(𝑛 + |𝛼| + 1)!
)

1/2

𝑒𝛼+(1,0,…,0)(𝑧)

= (
𝛼1 + 1

𝑛 + |𝛼| + 1
)
1/2

𝑒𝛼+(1,0,…,0)(𝑧). 

So 

〈𝑇𝜂𝜀𝑒𝛼, 𝑒𝛽〉 = (
𝛼1 + 1

𝑛 + |𝛼| + 1
)
1/2

∫ 𝜂(|𝑧|/𝜀)𝑒𝛼+(1,0,…,0)(𝑧)�̅�𝛽(𝑧)

|𝑧|<𝜀

  𝑑𝜐(𝑧)

= (
𝛼1 + 1

𝑛 + |𝛼| + 1
)
1/2

∫(2𝑛)𝑟2𝑛−1𝜂 (
𝑟

𝜀
)

𝜀

0

∫ 𝑒𝛼+(1,0,…,0)(𝑟𝜁)�̅�𝛽(𝑟𝜁)

𝑆𝑛

  𝑑𝜎(𝜁) 𝑑𝑟

= (
𝛼1 + 1

𝑛 + |𝛼| + 1
)
1/2

× {

0 𝑖𝑓 𝛽 ≠ 𝛼 + (1,0,… ,0),

∫(2𝑛)𝑟2𝑛−1𝜂 (
𝑟

𝜀
)

𝜀

0

(
𝑛 + |𝛼| + 1

𝑛
) 𝑟2|𝛼|+2𝑑𝑟 𝑖𝑓 𝛽 = 𝛼 + (1,0,… ,0),

} 

(see [79]). 

We have 

∫(2𝑛)𝑟2𝑛−1𝜂 (
𝑟

𝜀
)

𝜀

0

(
𝑛 + |𝛼| + 1

𝑛
) 𝑟2|𝛼|+2𝑑𝑟 = ∫2(𝑛 + |𝛼| + 1)𝑟2𝑛+2|𝛼|+1𝜂 (

𝑟

𝜀
)

𝜀

0

𝑑𝑟

= 𝜀2𝑛+2|𝛼|+2∫(𝑛 + |𝛼| + 1)𝑡𝑛+|𝛼|𝜂 (𝑡
1
2)

1

0

𝑑𝑡   

(by the change − of − variable 𝑟 =  𝜀𝑡
1
2) . 

For 𝑚 ≥ 0, put 𝛾𝑚 = ∫ (𝑚 + 1)𝑡
𝑚𝜂(𝑡1/2)

1

0
  𝑑𝑡 > 0. Note that 𝛾𝑚 depends only on 

𝑚 and the function 𝜂. We then have 

𝑇𝜂𝜀𝑒𝛼 = (
𝛼1 + 1

𝑛 + |𝛼| + 1
)
1/2

𝜀2𝑛+2|𝛼|𝛾𝑛+|𝛼|𝑒𝛼+(1,0,…,0) 

From this we see that for any multi-index 𝛼, 
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𝑇�̅�𝜀𝑒𝛼 = (
𝛼1

𝑛 + |𝛼|
)
1/2

𝜀2𝑛+2|𝛼|𝛾𝑛+|𝛼|−1𝑒𝛼−(1,0,…,0) 

if 𝛼1 ≥ 1 and 𝑇�̅�𝜀𝑒𝛼 = 0 if 𝛼1 = 1. 

Now for multi-indices 𝛼 with 𝛼1 ≥ 1, 

𝑇𝜂𝜀𝑇�̅�𝜀𝑒𝛼 = 𝑇𝜂𝜀 ((
𝛼1

𝑛 + |𝛼|
)
1/2

𝜀2𝑛+2|𝛼|𝛾𝑛+|𝛼|−1𝑒𝛼−(1,0,…,0))

= (
𝛼1

𝑛 + |𝛼|
)
1/2

𝜀2𝑛+2|𝛼|𝛾𝑛+|𝛼|−1 (
𝛼1

𝑛 + |𝛼|
)
1/2

𝜀2𝑛+2|𝛼|𝛾𝑛+|𝛼|−1𝑒𝛼

=
𝛼1

𝑛 + |𝛼|
𝜀4(𝑛+|𝛼|)𝛾𝑛+|𝛼|−1

2 𝑒𝛼 , 

and 

𝑇�̅�𝜀𝑇𝜂𝜀𝑒𝛼 = 𝑇�̅�𝜀 ((
𝛼1 + 1

𝑛 + |𝛼| + 1
)
1/2

𝜀2𝑛+2|𝛼|+2𝛾𝑛+|𝛼|𝑒𝛼+(1,0,…,0))

= (
𝛼1 + 1

𝑛 + |𝛼| + 1
)
1/2

𝜀2𝑛+2|𝛼|+2 (
𝛼1 + 1

𝑛 + |𝛼| + 1
)
1/2

𝜀2𝑛+2|𝛼|+2𝛾𝑛+|𝛼|𝑒𝛼

=
𝛼1 + 1

𝑛 + |𝛼| + 1
𝜀4(𝑛+|𝛼|+1)𝛾𝑛+|𝛼|

2 𝑒𝛼 . 

Therefore, 

[𝑇𝜂𝜀𝑇�̅�𝜀]𝑒𝛼 = (
𝛼1

𝑛 + |𝛼|
𝜀4(𝑛+|𝛼|)𝛾𝑛+|𝛼|−1

2 −
𝛼1 + 1

𝑛 + |𝛼| + 1
𝜀4(𝑛+|𝛼|+1)𝛾𝑛+|𝛼|

2 ) 𝑒𝛼

= (
𝛼1

𝛼1 + 1

𝑛 + |𝛼| + 1

𝑛 + |𝛼|

𝛾𝑛+|𝛼|−1
2

𝛾𝑛+|𝛼|
2 − 𝜀4) ×

𝛼1 + 1

𝑛 + |𝛼| + 1
𝜀4(𝑛+|𝛼|)𝛾𝑛+|𝛼|

2 𝑒𝛼 . 

This formula also holds for multi-indices 𝛼 with 𝛼1 = 0. 

For all 0 < 𝜀 < 1 so that 

𝜀4 ∉ {
𝛼1

𝛼1 + 1

𝑛 + |𝛼| + 1

𝑛 + |𝛼|

𝛾𝑛+|𝛼|−1
2

𝛾𝑛+|𝛼|
2 : 𝛼 = (𝛼1, … , 𝛼𝑛) ∈ ℕ

𝑛} , 

the operator 𝑇 = [𝑇𝜂𝜀𝑇�̅�𝜀]
2
 can be written as 

𝑇 = ∑ 𝑠𝛼𝑒𝛼⊗𝑒𝛼
𝛼∈ℕ𝑛

, 

where 𝑠𝛼 > 0 for all 𝛼. 

Since {𝑤𝑗: 𝑗 ∈ ℕ} is separated and 𝐵𝑛 = ⋃ 𝐸(𝑤𝑗 , 𝑅)𝑗∈ℕ  for some 0 < 𝑅 < 1, 

Theorem (6.1.10) implies that there is a positive number 𝑐 so  

𝐴𝜀 =∑𝒰𝑤𝑗𝑇𝒰𝑤𝑗
∗

𝑗∈ℕ

=∑𝒰𝑤𝑗[𝑇𝜂𝜀𝑇�̅�𝜀]
2
𝒰𝑤𝑗
∗

𝑗∈ℕ

≥ 𝑐 ≥ 0. 

Now for each 𝑗 ∈ ℕ, 

𝒰𝑤𝑗[𝑇𝜂𝜀 , 𝑇�̅�𝜀]𝒰𝑤𝑗
∗ = 𝒰𝑤𝑗[𝑇𝜂𝜀𝑇�̅�𝜀 − 𝑇�̅�𝜀𝑇𝜂𝜀]𝒰𝑤𝑗

∗ = 𝒰𝑤𝑗𝑇𝜂𝜀𝑇�̅�𝜀𝒰𝑤𝑗
∗ −𝒰𝑤𝑗𝑇�̅�𝜀𝑇𝜂𝜀𝒰𝑤𝑗

∗

= (𝒰𝑤𝑗𝑇𝜂𝜀𝒰𝑤𝑗
∗ ) (𝒰𝑤𝑗𝑇�̅�𝜀𝒰𝑤𝑗

∗ ) − (𝒰𝑤𝑗𝑇�̅�𝜀𝒰𝑤𝑗
∗ ) (𝒰𝑤𝑗𝑇𝜂𝜀𝒰𝑤𝑗

∗ )

= 𝑇𝜂𝜀∘ 𝜑𝑤𝑗
𝑇�̅�𝜀∘ 𝜑𝑤𝑗

− 𝑇�̅�𝜀∘ 𝜑𝑤𝑗
𝑇𝜂𝜀∘ 𝜑𝑤𝑗

= [𝑇𝜂𝜀∘ 𝜑𝑤𝑗
, 𝑇�̅�𝜀∘ 𝜑𝑤𝑗

]. 

Hence 𝐴𝜀 = ∑ [𝑇𝜂𝜀∘ 𝜑𝑤𝑗
, 𝑇�̅�𝜀∘ 𝜑𝑤𝑗

]
2

𝑗∈ℕ . 
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Note that for each 𝑗, the function 𝜂𝜀 ∘  𝜑𝑤𝑗 is supported in the set 

{𝑧 ∈ 𝐵𝑛: |𝜑𝑤𝑗(𝑧)| ≤ 𝜀} = {𝑧 ∈ 𝐵𝑛: 𝜌(𝑧, 𝑤𝑗) ≤ 𝜀} = 𝐸(𝑤𝑗 , 𝜀). 

We now decompose 𝒲 =𝒲1 ∪ …∪𝒲𝑁 such that 𝐸(𝑧, 𝜀) ∩ 𝐸(𝑤, 𝜀) = ∅  for all 𝑧 ≠
𝑤 in 𝒲𝑗, for all 1 ≤ 𝑗 ≤ 𝑁 as in Lemma (6.1.4). Hence 

𝐴𝜀 =∑ ∑ [𝑇𝜂𝜀∘ 𝜑𝑤 , 𝑇�̅�𝜀∘ 𝜑𝑤]
2

𝑤∈𝒲𝑖

𝑁

𝑖=1

, 

where, by Proposition (6.1.8) and the remark following it, each of the summands is in 

ℭ𝔗(𝐺𝜀). Here we remind that 𝐺𝜀 is the subset of 𝐿∞ consisting of all functions of the form 

∑ 𝜂𝜀 ∘  𝜑𝑤𝑗𝑗∈𝐹  or ∑ �̅�𝜀 ∘  𝜑𝑤𝑗𝑗∈𝐹 , where 𝐹 is a subset of ℕ. 

It then follows that 𝐴𝜀 itself belongs to ℭ𝔗(𝐺𝜀). 
We are discussing some remarks about Theorem (6.1.1). Our first remark is the 

existence of a separated sequence as in the hypothesis of Theorem (6.1.1). This is actually 

a consequence of Zorn’s lemma. In fact, let 0 < 𝑟 < 1 and Ω𝑟 be the collection of all sets 

of points {𝑤𝑗: 𝑗 ∈ 𝐽}in 𝐵𝑛 so that 𝜌(𝑤𝑗 , 𝑤𝑘) > 𝑟 for all 𝑗 ≠ 𝑘. The sets in Ω𝑟 are ordered by 

inclusion. Apply Zorn’s lemma, we get a maximal set in Ω𝑟. Denote this set by {𝑤𝑗: 𝑗 ∈ 𝐽}. 

Since 𝐽 must be infinite and countable, we can assume that 𝐽 is ℕ. Then for any 𝑧 ∈ 𝐵𝑛, by 

maximality there is a 𝑗 ∈ ℕ so that 𝜌(𝑧, 𝑤𝑗) ≤ 𝑟. Hence 𝐵𝑛 = ⋃ 𝐸(𝑤𝑗 , 𝑟)𝑗∈ℕ . 

Note that all functions in 𝐺𝜀 vanish on 𝐵𝑛\𝐸𝜀, where 𝐸𝜀 is a subset of 𝑉𝜀 =

⋃ 𝐸(𝑤𝑗 , 𝜀)𝑗∈ℕ . The following lemma gives an upper estimate for the Lebesgue measure of 

𝑉𝜀 for small 𝜀 > 0. 

Lemma (6.1.11)[182]: Suppose 0 < 𝜀0 < 1 so that 𝐸(𝑤𝑗 , 𝜀0) ∩ 𝐸(𝑤𝑙 , 𝜀0) = ∅ for all 𝑗 ≠ 𝑙. 

Then for any 𝜀 < 𝜀0, 

𝜐(𝑉𝜀) ≤ (
𝜀

𝜀0
)
2𝑛

𝜐(𝑉𝜀0). 

Proof. For any 0 < 𝛿 < 1 and 𝑧 ∈ 𝐵𝑛, we have 

𝜐(𝐸(𝑧, 𝛿)) = ∫ 𝑑𝜈 (𝑤)

𝐸(𝑧,𝛿)

= ∫
(1 − |𝑧|2)𝑛+1

|1 − 〈𝜁, 𝑧〉|2(𝑛+1)
𝐸(0,𝛿)

𝑑𝜈 (𝜁)(by the change − of − variable 𝑤 = 𝜑𝑧(𝜁))

= (1 − |𝑧|2)𝑛+1 ∫
𝛿2𝑛 𝑑𝜈(𝜁)

|1 − 〈𝜁, 𝑧〉|2(𝑛+1)
𝐸(0,1)

= (1 − |𝑧|2)𝑛+1𝛿2𝑛 ∫ (1 − 𝛿|𝑧|2)−𝑛−1‖𝑘𝛿𝑧(𝜁)‖
2

𝐸(0,1)

𝑑𝜈(𝜁)

= (1 − |𝑧|2)𝑛+1𝛿2𝑛(1 − 𝛿|𝑧|2)−𝑛−1‖𝑘𝛿𝑧(𝜁)‖
2

= (1 − |𝑧|2)𝑛+1𝛿2𝑛(1 − 𝛿|𝑧|2)−𝑛−1. 
Now for 0 < 𝜀 < 𝜀0 < 1 as in the hypothesis, 
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𝜐(𝑉𝜀) =∑𝜐 (𝐸(𝑤𝑗 , 𝜀))

𝑗∈ℕ

=∑(1 − |𝑤𝑗|
2
)
𝑛+1

𝜀2𝑛 (1 − |𝑤𝑗|
2
)
−𝑛−1

𝑗∈ℕ

=∑(1 − |𝑤𝑗|
2
)
𝑛+1

𝜀0
2𝑛 × (1 − (𝜀0|𝑤𝑗|)

2
)
−𝑛−1

(
𝜀

𝜀0
)
2𝑛

(
1 − (𝜀0|𝑤𝑗|)

2

1 − (𝜀|𝑤𝑗|)
2 )

𝑛+1

𝑗∈ℕ

≤ (
𝜀

𝜀0
)
2𝑛

∑𝜐(𝐸(𝑤𝑗 , 𝜀0))

𝑗∈ℕ

(because 
1 − (𝜀0|𝑤𝑗|)

2

1 − (𝜀|𝑤𝑗|)
2 ≤ 1 𝑓𝑜𝑟 𝜀 < 𝜀0)

= (
𝜀

𝜀0
)
2𝑛

𝜐(𝑉𝜀0). 

This lemma implies that if the separated set is fixed then the Lebesgue measure 𝜐(𝑉𝜀) 
can be made as small as we please provided that 𝜀 is small. 

We will show that if 𝜂is a continuous function on [0, 1] then 𝐺𝜀 is contained in 𝐶(𝐵𝑛), 
the space of continuous functions on the open unit ball 𝐵𝑛. This remark together with 

Theorem (6.1.1) implies that ℭ𝔗(𝐶(𝐵𝑛) ∩ 𝐿
∞) coincides with the full Toeplitz algebra 

𝔗(𝐿∞). The reader should compare this with the fact that ℭ𝔗(𝐶(�̅�𝑛)) is the same as the 

ideal 𝒦 of compact operators. 

Suppose 𝜂is continuous on [0, 1], then for each 𝑗 ∈ ℕ the function 𝜂𝜀 ∘  𝜑𝑤𝑗 is 

continuous and supported in the ball 𝐸(𝑤𝑗 , 𝜀). Suppose 𝐹 is a subset of ℕ. Let 𝑓 =

∑ 𝜂𝜀 ∘  𝜑𝑤𝑗𝑗∈𝐹 .  Let 0 < 𝑅 < 1 be given. By Lemma (6.1.3), all but a finite number of 

functions in the series vanish on 𝐸(0, 𝑅). Thus 𝑓, being a finite sum of continuous functions 

on 𝐸(0, 𝑅), is continuous on 𝐸(0, 𝑅)for all 0 < 𝑅 < 1. So 𝑓 is continuous on the open unit 

ball 𝐵𝑛. Similarly, functions of the form ∑ �̅�𝜀 ∘  𝜑𝑤𝑗𝑗∈𝐹  are also continuous on 𝐵𝑛. 

Section (6.2): Compactness in Bergman and Fock Spaces 

The Bargmann-Fock space ℱ2 ≔ ℱ2(ℂ𝑛) is the collection of entire functions on ℂ𝑛 

such that  

∫|𝑓(𝑧)|2𝑒−|𝑧|
2

ℂ𝑛

 𝑑𝜐(𝑧) < ∞. 

It is well known that ℱ2 is a reproducing kernel Hilbert space with reproducing kernel given 

by 𝐾𝑧(𝑤) = 𝑒
�̅�𝑤. As usual, we denote by 𝑘𝑧 the normalized reproducing kernel at 𝑧. For a 

bounded operator 𝑇on ℱ2, the Berezin transform of 𝑇is the function defined by  

�̃�(𝑧) = 〈𝑇𝑘𝑧, 𝑘𝑧〉ℱ2 . 
It was proved recently by Bauer and Isralowitz that the vanishing Berezin transform is 

sufficient for compactness whenever the operator is in the Toeplitz algebra [185]. However, 

it is generally very difficult to check when a given operator 𝑇 belongs in the Toeplitz 

algebra, unless 𝑇 is itself a Toeplitz operator or a combination of a few Toeplitz operators, 

and as such one would like a “simpler” sufficient condition to guarantee this. 

In [190] Xia and Zheng introduced a class of “sufficiently localized” operators on the 

Fock space which include the algebraic closure of the Toeplitz operators. These are the 

operators 𝑇 acting on the Fock space such that there exist constants 2𝑛 < 𝛽 < ∞ and 0 <
𝐶 < ∞ with 
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|〈𝑇𝑘𝑧, 𝑘𝑤〉ℱ2|  ≤
𝐶

(1 + |𝑧 − 𝑤|)𝛽
                           (16) 

It was proved by Xia and Zheng that every bounded operator 𝑇 from the 𝐶∗algebra generated 

by the sufficiently localized operators whose Berezin transform vanishes at infinity, i.e., 

lim
|𝑧|→∞

〈𝑇𝑘𝑧, 𝑘𝑧〉ℱ2 = 0                                 (17) 

is compact on ℱ2. One of their main innovations is providing an easily checkable condition 

(16) which is general enough to imply compactness from the seemingly much weaker 

condition (17). 

We wish to extend the Xia-Zheng notion of sufficiently localized to a larger class of 

operators. Note that (16) easily implies 

sup
𝑧∈ℂ𝑛

∫|〈𝑇𝑘𝑧, 𝑘𝑤〉ℱ2|

ℂ𝑛

𝑑𝜐(𝑤) < ∞; 

and consequently one should look at generalizations of sufficiently localized that allow for 

weaker integral conditions. Next, we want to provide a simpler, more direct, proof of the 

main result in [190] which follows a more traditional route and can be extended to other 

spaces. Finally, we show that an analog of our more general theorem, remains true in the 

case of the Bergman space. 

We provide the following extension of the main result from [190]. For operators 𝑇 

acting on the Fock space we impose the following conditions. We first assume that  

sup
𝑧∈ℂ𝑛

∫|〈𝑇𝑘𝑧 , 𝑘𝑤〉ℱ2|

ℂ𝑛

𝑑𝜐(𝑤) < ∞ , sup
𝑧∈ℂ𝑛

∫|〈𝑇∗𝑘𝑧, 𝑘𝑤〉ℱ2|

ℂ𝑛

𝑑𝜐(𝑤) < ∞                 (18) 

which is enough to conclude that the operator 𝑇 initially defined on the linear span of the 

reproducing kernels extends to a bounded operator on ℱ2. To show that the operator is 

compact, we impose the following additional assumptions on 𝑇: 

lim
𝑟→∞

sup
𝑧∈ℂ𝑛

∫ |〈𝑇𝑘𝑧, 𝑘𝑤〉ℱ2|

𝐷(𝑧,𝑟)𝑐

𝑑𝜐(𝑤) = 0 , lim
𝑟→∞

sup
𝑧∈ℂ𝑛

∫ |〈𝑇∗𝑘𝑧, 𝑘𝑤〉ℱ2|

𝐷(𝑧,𝑟)𝑐

𝑑𝜐(𝑤) = 0.  (19) 

Definition (6.2.1)[184]: We will say that a linear operator 𝑇 on ℱ2 is weakly localized if it 

satisfies the conditions (18) and (19). 

Notice that every sufficiently localized operator in the sense of Xia and Zheng obviously 

satisfies (18) and (19) and is weakly localized in our sense too. We prove the following 

result. 

Theorem (6.2.2)[184]: Let 𝑇 be an operator on ℱ2 which belongs to the 𝐶∗algebra 

generated by weakly localized operators satisfying Definition (6.2.1). If 

lim
|𝑧|→∞

〈𝑇𝑘𝑧, 𝑘𝑧〉ℱ2 = 0, 

then 𝑇 is compact. 

We can easily extend the result to the weighted Fock space ℱ𝛼
2. 

Let 𝔹𝑛 denote the unit ball in ℂ𝑛 and let the space 𝐴2 ≔ 𝐴2(𝔹𝑛) denote the classical 

Bergman space, i.e., the collection of all holomorphic functions on 𝔹𝑛 such that 

‖𝑓‖𝐴2
2 ≔ ∫|𝑓(𝑧)|2

𝔹𝑛

𝑑𝜐(𝑧) < ∞.   
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The function 𝐾𝑧(𝑤) ≔ (1 − 𝑧̅𝑤)−(𝑛+1) is the reproducing kernel for 𝐴2 and 

𝐾𝑧(𝑤) ≔
(1 − |𝑧|2)

𝑛+1
2

(1 − 𝑧̅𝑤)(𝑛+1)
 

is the normalized reproducing kernel at the point 𝑧. We also will let 𝑑𝜆 denote the invariant 

measure on 𝔹𝑛, i.e., 

𝑑𝜆(𝑧) =
𝑑𝜐(𝑧)

(1 − |𝑧|2)𝑛+1
. 

We are interested in operators 𝑇 acting on the Bergman space that satisfy the 

following conditions. First, we assume that there exists 
𝑛−1

𝑛+1
< 𝑎 <

𝑛

𝑛+1
 such that 

sup
𝑧∈𝔹𝑛

∫|〈𝑇𝑘𝑧, 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎

𝔹𝑛

𝑑𝜆(𝑤) < ∞ , 

sup
𝑧∈𝔹𝑛

∫|〈𝑇∗𝑘𝑧, 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎

𝔹𝑛

𝑑𝜆(𝑤) < ∞                                          (20) 

These are enough to conclude that the operator 𝑇initially defined on the linear span of the 

reproducing kernels extends to a bounded operator on 𝐴2. To treat compactness we make 

the following additional assumptions on 𝑇: There exists 
𝑛−1

𝑛+1
< 𝑎 <

𝑛

𝑛+1
 such that 

lim
𝑟→∞

sup
𝑧∈𝔹𝑛

∫ |〈𝑇𝑘𝑧, 𝑘𝑤〉𝐴2|

𝐷(𝑧,𝑟)𝑐

‖𝐾𝑧‖𝐴2
𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

= 0 , lim
𝑟→∞

sup
𝑧∈𝔹𝑛

∫ |〈𝑇∗𝑘𝑧, 𝑘𝑤〉|

𝐷(𝑧,𝑟)𝑐

‖𝐾𝑧‖𝐴2
𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤) = 0.           (21) 

Definition (6.2.3)[184]: We say that a linear operator 𝑇 on 𝐴2 is weakly localized if it 

satisfies the conditions (20) and (21). 

We prove the following result. 

Theorem (6.2.4)[184]: Let 𝑇 be an operator on 𝐴2 which belongs to the 𝐶∗algebra generated 

by weakly localized operators satisfying Definition (6.2.3). If 

lim
|𝑧|→1

‖𝑇𝑘𝑧‖𝐴2 = 0, 

then 𝑇 is compact. 

For weakly localized operators we can deduce compactness under even weaker 

assumption. We currently cannot prove this result for the 𝐶∗algebra of weakly localized 

operators on the Bergman space. 

Theorem (6.2.5)[184]: Let 𝑇 be a weakly localized operator on 𝐴2. If 

lim
|𝑧|→1

〈𝑇𝑘𝑧, 𝑘𝑧〉𝐴2 = 0, 

then 𝑇 is compact. 

It will be clear that the method of proof also will work in the weighted Bergman space 𝐴𝛼
2 . 

We wish to emphasize that when the operator 𝑇 belongs to the Toeplitz algebra 

generated by 𝐿∞symbols, this result is known through deep work of Suarez, [189] in the 

case of 𝐴2. See also [188] for the case of weighted Bergman spaces. We will prove below 
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that the Toeplitz algebra generated by 𝐿∞symbols is a subalgebra of the 𝐶∗algebra generated 

by the weakly localized operators. 

Let 𝜑𝑧 be the Möbius map of 𝔹𝑛 that interchanges 0 and 𝑧. Then, we have the 

following well known fact that 

1 − |𝜑𝑧(𝑤)|
2 =

(1 − |z|2)(1 − |w|2)

|1 − z̅w|2
 . 

As a consequence, 

|〈𝑘𝑧, 𝑘𝑤〉𝐴2| =
1

‖𝑘𝜑𝑧(𝑤)‖𝐴2
.                          (22) 

Using the automorphism 𝜑𝑧, the pseudohyperbolic and hyperbolic metrics on 𝔹𝑛 are 

defined by 

𝜌(𝑧,𝑤): = |𝜑𝑧(𝑤)| and 𝛽(𝑧, 𝑤):=
1

2
log
1 + 𝜌(𝑧, 𝑤)

1 − 𝜌(𝑧, 𝑤)
. 

Recall that these metrics are connected by 𝜌 =
𝑒2𝛽−1

𝑒2𝛽+1
= tanh𝛽 and it is well-known that 

these metrics are invariant under the automorphism group of 𝔹𝑛. We let 

𝐷(𝑧, 𝑟):= {𝑤 ∈ 𝔹𝑛: 𝛽(𝑧, 𝑤) ≤ 𝑟} = {𝑤 ∈ 𝔹𝑛: 𝜌(𝑧, 𝑤) ≤ 𝑠 = tanh 𝑟}, 
denote the hyperbolic disc centered at 𝑧of radius 𝑟. For 𝑧 ∈ 𝔹𝑛, define 

𝑈𝑧𝑓(𝑤):= 𝑓(𝜑𝑧(𝑤))𝑘𝑧(𝑤), 

which via a simple change of variables argument is clearly a unitary operator on 𝐴2. Then 

for an operator 𝑇on the Bergman space 𝐴2, for 𝑧 ∈ 𝔹𝑛 we set 

𝑇𝑧: = 𝑈𝑧𝑇𝑈𝑧
∗. 

Recall also that the orthogonal (Bergman) projection of 𝐿2(𝔹𝑛, 𝑑𝜐) onto 𝐴2 is given by the 

integral operator 

𝑃(𝑓)(𝑧):= ∫〈𝐾𝑤, 𝐾𝑧〉𝐴2

𝔹𝑛

𝑓(𝑤)𝑑𝜐(𝑤). 

Therefore, for all 𝑓 ∈ 𝐴2 we have 𝑓(𝑧) = ∫ 〈𝑓, 𝑘𝑤〉𝐴2𝑘𝑤(𝑧)𝑑𝜆(𝑤)𝔹𝑛
. Moreover, 

‖𝑓‖𝐴2
2 = ∫|〈𝑓, 𝑘𝑤〉𝐴2|

2

𝔹𝑛

𝑑𝜆(𝑤). 

As usual an important ingredient in our treatment will be the Rudin-Forelli estimates, 

see [191] or [187]. Recall the standard Rudin-Forelli estimates: 

∫
|〈𝐾𝑤, 𝐾𝑧〉𝐴2|

𝑟+𝑠
2

‖𝐾𝑧‖𝐴2
𝑠 ‖𝐾𝑤‖𝐴2

𝑟

𝔹𝑛

𝑑𝜆(𝑤) ≤ 𝐶 = 𝐶(𝑟, 𝑠) < ∞,     ∀𝑧 ∈ 𝔹𝑛(23) 

for all 𝑟 > 𝜅 > 𝑠 > 0, where 𝜅 = 𝜅𝑛: =
2𝑛

𝑛+1
. We will use these in the following form: There 

exists 
𝑛−1

𝑛+1
< 𝑎 <

𝑛

𝑛+1
 such that 

∫〈𝑘𝑧, 𝑘𝑤〉𝐴2
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎

𝔹𝑛

𝑑𝜆(𝑤) ≤ 𝐶 = 𝐶(𝑎) < ∞,     ∀𝑧 ∈ 𝔹𝑛(24) 
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To see that this is true in the classical Bergman space setting, for a given 
𝑛−1

𝑛+1
< 𝑎 <

𝑛

𝑛+1
 set 

𝑟 = 1 + 𝑎 and 𝑠 = 1 − 𝑎. Then 𝑟 + 𝑠 = 2, and since 𝑎 >
𝑛−1

𝑛+1
 we have that 𝑟 = 1 + 𝑎 >

2𝑛

𝑛+1
 (equivalently, 𝑎 >

2𝑛

𝑛+1
− 1 =

𝑛−1

𝑛+1
). Similarly, we have that 𝑠 = 1 − 𝑎 < 𝜅 if and only 

if 𝑎 > −
𝑛−1

𝑛+1
. By plugging these in (23) we obtain (24). 

We will also need the following uniform version of the Rudin-Forelli estimates. 

Lemma (6.2.6)[184]: Let 
𝑛−1

𝑛+1
< 𝑎 <

𝑛

𝑛+1
. Then 

lim
𝑅→∞

sup
𝑧∈𝔹𝑛

∫ |〈𝑘𝑧, 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎

𝐷(𝑧,𝑅)𝑐

𝑑𝜆(𝑤) = 0.                  (25) 

Proof. Notice first that 

∫ |〈𝑘𝑧, 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎

𝐷(𝑧,𝑅)𝑐

𝑑𝜆(𝑤) = ∫ |〈𝑘𝑧, 𝑘𝜑𝑧(𝑤)〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝜑𝑧(𝑤)‖𝐴2
𝑎

𝐷(0,𝑅)𝑐

𝑑𝜆(𝑤)

= ∫ |〈𝑘𝑧, 𝑘𝑤〉𝐴2|
𝑎
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2𝐷(0,𝑅)𝑐

𝑑𝜆(𝑤) = ∫
|〈𝑘𝑧 , 𝑘𝑤〉𝐴2|

𝑎

‖𝐾𝑤‖𝐴2
1+𝑎

𝐷(0,𝑅)𝑐

𝑑𝜆(𝑤)

= ∫
𝑑𝜐(𝑤)

|1 − �̅�𝑧|(𝑛+1)𝑎(1 − |𝑤|2)
𝑛+1
2
(1−𝑎)

𝐷(0,𝑅)𝑐

= ∫ ∫
𝑟2𝑛−1𝑑𝜁𝑑𝑟

|1 − 𝑧𝑟𝜁|̅(𝑛+1)𝑎(1 − 𝑟2)
𝑛+1
2
(1−𝑎)

𝕊𝑛

1

𝑅′

. 

In the last integral 𝑅:= log
1+𝑅′

1−𝑅′
. Notice that 𝑅′ → 1 when 𝑅 → ∞. Now the last integral can 

be written as  

∫𝐼(𝑛+1)𝑎−𝑛(𝑟𝑧)
𝑟2𝑛−1𝑑𝑟

(1 − 𝑟2)
𝑛+1
2
(1−𝑎)

1

𝑅′

, 

where 

𝐼𝑐(𝑧):= ∫
𝑑𝜁

|1 − 𝑧𝑟𝜁|̅𝑐+𝑛
𝕊𝑛

. 

It is well known, and very simple to check in the n-dimensional case, see [191], that 

𝐼(𝑛+1)𝑎−𝑛(𝑟𝑧) = ∑ |
Γ (𝑘 +

𝑛 + 1
2

𝑎)

𝑘! Γ (
𝑛 + 1
2

𝑎)
|

2

|𝑟𝑧|2𝑘
∞

𝑘=0

≃∑
1

𝑘(𝑛+1)(1−𝑎)
|𝑟𝑧|2𝑘

∞

𝑘=0

. 

The last relation follows from the Stirling formula. Thus, 
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∫𝐼(𝑛+1)𝑎−𝑛(𝑟𝑧)
𝑟2𝑛−1𝑑𝑟

(1 − 𝑟2)
𝑛+1
2
(1−𝑎)

1

𝑅′

≃ ∫∑
1

𝑘(𝑛+1)(1−𝑎)
|𝑟𝑧|2𝑘

𝑟2𝑛−1𝑑𝑟

(1 − 𝑟2)
𝑛+1
2
(1−𝑎)

∞

𝑘=0

1

𝑅′

≤ ∫∑
1

𝑘(𝑛+1)(1−𝑎)
𝑟2𝑛−1𝑑𝑟

(1 − 𝑟2)
𝑛+1
2
(1−𝑎)

∞

𝑘=0

1

𝑅′

=∑
1

𝑘(𝑛+1)(1−𝑎)

∞

𝑘=0

∫
𝑟2𝑛−1𝑑𝑟

(1 − 𝑟2)
𝑛+1
2
(1−𝑎)

1

𝑅′

= ∫
(1 − 𝑥)𝑛−1

𝑥
𝑛+1
2
(1−𝑎)

1−𝑅′
2

0

𝑑𝑥∑
1

𝑘(𝑛+1)(1−𝑎)

∞

𝑘=0

≤ ∫
1

𝑥
𝑛+1
2
(1−𝑎)

1−𝑅′
2

0

𝑑𝑥∑
1

𝑘(𝑛+1)(1−𝑎)

∞

𝑘=0

. 

Our condition 
𝑛−1

𝑛+1
< 𝑎 <

𝑛

𝑛+1
 implies that the series above is convergent (here we simply 

need that 𝑎 <
𝑛

𝑛+1
. It also implies that 𝑥

𝑛+1

2
(1−𝑎)

 is integrable on (0, 1) (here we require that 

𝑎 >
𝑛−1

𝑛+1
. Thus, we have that 

∫𝐼(𝑛+1)𝑎−𝑛(𝑟𝑧)
𝑟2𝑛−1𝑑𝑟

(1 − 𝑟2)
𝑛+1
2
(1−𝑎)

1

𝑅′

≲ (1 − (𝑅′)2)1−
𝑛+1
2
(1−𝑎). 

Therefore, taking the limit as 𝑅 → ∞ (which is the same as 𝑅′ → 1) we obtain the desired 

conclusion.  

First, we want to make sure that the class of weakly localized operators is large 

enough to contain some interesting operators. This is indeed true since every Toeplitz 

operator with a bounded symbol belongs to this class. 

Proposition (6.2.7)[184]: Each Toeplitz operator 𝑇𝑢 on 𝐴2 with a bounded symbol 𝑢(𝑧) is 

weakly localized. 

Proof. By definition 

𝑇𝑢𝑘𝑧(𝑤) = 𝑃(𝑢𝑘𝑧)(𝑤) = ∫〈𝐾𝑧, 𝐾𝑥〉𝐴2𝑢(𝑥)𝑘𝑧(𝑥)

𝔹𝑛

 𝑑𝜐(𝑥). 

Therefore, 

|〈𝑇𝑢𝑘𝑧, 𝑘𝑤〉𝐴2| ≤ ∫|〈𝐾𝑧, 𝐾𝑥〉𝐴2||𝑢(𝑥)||〈𝑘𝑧, 𝑘𝑥〉𝐴2|

𝔹𝑛

𝑑𝜆(𝑥)

≤ ‖𝑢‖∞ ∫〈𝑘𝑤, 𝑘𝑥〉𝐴2|〈𝑘𝑥, 𝑘𝑧〉𝐴2|

𝔹𝑛

𝑑𝜆(𝑥). 

To check (21) we proceed as follows. For 𝑧, 𝑥 ∈ 𝔹𝑛, set 

𝐼𝑧(𝑥): = ∫ 〈𝑘𝑤, 𝑘𝑥〉𝐴2
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)|〈𝑘𝑥, 𝑘𝑧〉𝐴2|

𝐷(𝑧,𝑅)𝑐

 

First note that 
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∫ 〈𝑇𝑢𝑘𝑧, 𝑘𝑤〉𝐴2
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

𝐷(𝑧,𝑅)𝑐

≤ ‖𝑢‖∞ ∫ ∫〈𝑘𝑤, 𝑘𝑥〉𝐴2|〈𝑘𝑥, 𝑘𝑧〉𝐴2|

𝔹𝑛

𝑑𝜆(𝑥)

𝐷(𝑧,𝑅)𝑐

‖𝐾𝑧‖𝐴2
𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

= ‖𝑢‖∞ ∫ 𝐼𝑧(𝑥)

𝔹𝑛

𝑑𝜆(𝑥) = ‖𝑢‖∞

(

 ∫ + ∫

𝐷(𝑧,
𝑟
2
)
𝑐

𝐷(𝑧,
𝑟
2
) )

 𝐼𝑧(𝑥)𝑑𝜆(𝑥). 

To estimate the first integral notice that for 𝑥 ∈ 𝐷 (𝑧,
𝑟

2
) we have 𝐷(𝑧, 𝑟)𝑐 ⊂ 𝐷 (𝑥,

𝑟

2
)
𝑐
. 

Therefore, the first integral is no greater than 

∫ ∫ 〈𝑘𝑤, 𝑘𝑥〉𝐴2
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)|〈𝑘𝑥, 𝑘𝑧〉𝐴2|

𝐷(𝑧,
𝑟
2
)
𝑐

𝐷(𝑧,
𝑟
2
)

𝑑𝜆(𝑥). 

It is easy to see that the last expression is no greater than 𝐶(𝑎)‖𝑢‖∞𝐴 (
𝑟

2
), where 

𝐴(𝑟) = sup
𝑧∈𝔹𝑛

∫ 〈𝑘𝑧, 𝑘𝑤〉𝐴2
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

𝐷(𝑧,𝑟)𝑐

, 

and 𝐶(𝑎) is just the bound from the standard Rudin-Forelli estimates (24). 

Estimating the second integral is simpler. The second integral is clearly no greater 

than 

∫ ∫〈𝑘𝑤, 𝑘𝑥〉𝐴2
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)|〈𝑘𝑥, 𝑘𝑧〉𝐴2|

𝔹𝑛𝐷(𝑧,
𝑟
2
)

𝑑𝜆(𝑥). 

By the standard Rudin-Forelli estimates (24) the inner integral is no greater than 

𝐶(𝑎)
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 , 

where the constant 𝐶(𝑎) is independent of 𝑧and 𝑥. So, the whole integral is bounded by 

𝐶(𝑎)𝐴 (
𝑟

2
). Therefore 

sup
𝑧∈𝔹𝑛

∫ 〈𝑇𝑢𝑘𝑧 , 𝑘𝑤〉𝐴2
‖𝐾𝑧‖

𝑎

‖𝐾𝑤‖
𝑎
𝑑𝜆(𝑤) ≤ ‖𝑢‖∞

𝐷(𝑧,𝑟)𝑐

(𝐶(𝑎)𝐴 (
𝑟

2
) + 𝐶(𝑎)𝐴 (

𝑟

2
)). 

Applying the uniform Rudin-Forelli estimates (25) in Lemma (6.2.6) we prove the 

Proposition since 2𝐶(𝑎)‖𝑢‖∞𝐴(
𝑟

2
) → 0 as 𝑟 → ∞. 

We next show that the class of weakly localized operators forms a ∗-algebra. 

Proposition (6.2.8)[184]: The collection of all weakly localized operators on 𝐴2 forms a ∗-
algebra.  

Proof. It is trivial that 𝑇 ∈ 𝒜 implies 𝑇∗ ∈ 𝒜. It is also easy to see that any linear 

combination of two operators in 𝒜 must be also in 𝒜. It remains to prove that if 𝑇, 𝑆 ∈
𝒜, then 𝑇𝑆 ∈ 𝒜. 
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∫ 〈𝑇𝑆𝑘𝑧, 𝑘𝑤〉𝐴2
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

𝐷(𝑧,𝑟)𝑐

= ∫ 〈𝑆𝑘𝑧, 𝑇
∗𝑘𝑤〉𝐴2

‖𝐾𝑧‖𝐴2
𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

𝐷(𝑧,𝑟)𝑐

= ∫ | ∫〈𝑆𝑘𝑧, 𝑘𝑥〉𝐴2〈𝑘𝑥, 𝑇
∗𝑘𝑤〉𝐴2𝑑𝜆(𝑥)

𝔹𝑛

|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

𝐷(𝑧,𝑟)𝑐

≤ ∫ ∫ |〈𝑘𝑥, 𝑇
∗𝑘𝑤〉𝐴2|

𝑑𝜆(𝑤)

‖𝐾𝑤‖𝐴2
𝑎 |〈𝑆𝑘𝑧, 𝑘𝑤〉𝐴2|‖𝐾𝑧‖𝐴2

𝑎

𝐷(𝑧,𝑟)𝑐

𝑑𝜆(𝑥)

𝔹𝑛

. 

Proceeding exactly as in the proof of the previous Proposition and using the conditions 

following from 𝑇, 𝑆 ∈ 𝒜 in the place of the local Rudin-Forelli estimates (25) we obtain 

that 

lim
𝑟→∞

sup
𝑧∈𝔹𝑛

∫ 〈𝑇𝑆𝑘𝑧, 𝑘𝑤〉𝐴2
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

𝐷(𝑧,𝑟)𝑐

= 0. 

The corresponding version for (𝑇𝑆)∗ is proved in exactly the same way.  

We next show that every weakly localized operator can be approximated by infinite 

sums of well localized pieces. To state this property we need to recall the following 

proposition proved in [187]. 

Proposition (6.2.9)[184]: There exists an integer 𝑁 > 0 such that for any 𝑟 > 0 there is a 

covering ℱ𝑟 = {𝑓𝑖} of 𝔹𝑛 by disjoint Borel sets satisfying 

(i) every point of 𝔹𝑛 belongs to at most 𝑁of the sets 𝐺𝑗: = {𝑧 ∈ Ω: 𝑑(𝑧, 𝐹𝑗) ≤ 𝑟}, 

(ii) diamd𝐹𝑗 ≤ 2𝑟 for every 𝑗. 

We use this to prove the following proposition, which is similar to what appears in 

[187], but exploits condition (21). 

Proposition (6.2.10)[184]: Let 𝑇: 𝐴2 → 𝐴2 be a weakly localized operator. Then for every 

𝜖 > 0 there exists 𝑟 > 0 such that for the covering ℱ𝑟 = {𝑓𝑗} (associated to 𝑟) from 

Proposition (6.2.9) 

‖𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

‖

𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)

< 𝜖. 

Proof. Define 

𝑆 = 𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

 

It suffices to show that given 𝜖 > 0 we can find an 𝑟 > 0 so that 

‖𝑆𝑓‖𝐴2 ≾ 𝜖‖𝑓‖𝐴2 . 
Given 𝜖 choose 𝑟 large enough so that 

sup
𝑧∈𝔹𝑛

∫ 〈𝑇𝑘𝑧, 𝑘𝑤〉𝐴2
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤) < 𝜖

 

𝐷(𝑧,𝑟)𝑐

  

and sup
𝑧∈𝔹𝑛

∫ 〈𝑇∗𝑘𝑧, 𝑘𝑤〉𝐴2
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

 

𝐷(𝑧,𝑟)𝑐

< 𝜖 

Note that for any 𝑧 ∈ 𝔹𝑛 we have that 
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|𝑆𝑓(𝑧)| ≤ ∫∑1𝐹𝑗(𝑧)1𝐺𝑗
𝑐(𝑤)〈𝑇∗𝐾𝑧, 𝐾𝑤〉𝐴2|𝑓(𝑤)|𝑑𝜐(𝑤)

 

𝑗

 

𝔹𝑛

= ∫|〈𝑇∗𝐾𝑧, 𝐾𝑤〉𝐴2||𝑓(𝑤)|𝑑𝜐(𝑤)

 

𝐺𝑗
𝑐

≤ ∫ |〈𝑇∗𝐾𝑧, 𝐾𝑤〉𝐴2||𝑓(𝑤)|𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐

. 

Now 

‖𝑆𝑓‖𝐴2
2 = ∫|𝑆𝑓(𝑧)|2𝑑𝜐(𝑤)

 

𝔹𝑛

≤ ∫( ∫ |〈𝑇∗𝐾𝑧 , 𝐾𝑤〉𝐴2||𝑓(𝑤)|𝑑𝜎(𝑤)

 

𝐷(𝑧,𝑟)𝑐

)

2

𝑑𝜐(𝑤)

 

𝔹𝑛

≤ ∫( ∫ |〈𝑇∗𝐾𝑧 , 𝐾𝑤〉𝐴2|‖𝐾𝑤‖𝐴2
𝑎 |𝑓(𝑤)|2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐

)

 

𝔹𝑛

 ( ∫
|〈𝑇∗𝐾𝑧 , 𝐾𝑤〉𝐴2|

‖𝐾𝑤‖𝐴2
𝑎   𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐

)𝑑𝜐(𝑧)

= ∫( ∫ |〈𝑇∗𝐾𝑧 , 𝐾𝑤〉𝐴2|‖𝐾𝑤‖𝐴2
𝑎 |〈𝑓, 𝑘𝑤〉𝐴2|

2𝑑𝜆(𝑤)

 

𝐷(𝑧,𝑟)𝑐

)

 

𝔹𝑛

× ( ∫
|〈𝑇∗𝑘𝑧, 𝑘𝑤〉𝐴2|

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

 

𝐷(𝑧,𝑟)𝑐

)𝑑𝜆(𝑧)

≤ 𝜖 ∫( ∫ |〈𝑇∗𝑘𝑧, 𝑘𝑤〉𝐴2|‖𝐾𝑤‖𝐴2
𝑎 |〈𝑓, 𝑘𝑤〉𝐴2|

2𝑑𝜆(𝑤)

 

𝐷(𝑧,𝑟)𝑐

)

 

𝔹𝑛

1

‖𝐾𝑧‖𝐴2
𝑎 𝑑𝜆(𝑧)

= 𝜖 ∫|〈𝑓, 𝑘𝑤〉𝐴2|
2( ∫ |〈𝑘𝑧 , 𝑇𝑘𝑤〉𝐴2|

‖𝐾𝑤‖𝐴2
𝑎

‖𝐾𝑧‖𝐴2
𝑎 𝑑𝜆(𝑧)

 

𝐷(𝑤,𝑟)𝑐

)

 

𝔹𝑛

𝑑𝜆(𝑤) ≤ 𝜖 ∫|〈𝑓, 𝑘𝑤〉𝐴2|
2

 

𝔹𝑛

𝑑𝜆(𝑤)

= 𝜖2‖𝑓‖𝐴2
2 . 

We can now prove one of our main results. The proof is very similar to [187]. 

For completeness we give the details. 

Theorem (6.2.11)[184]: Let 𝑇: 𝐴2 → 𝐴2 be a linear operator in the 𝐶∗-algebra generated by 

the weakly localized operators on 𝐴2. If lim
|𝑧|→1

‖𝑇𝑘𝑧‖𝐴2 = 0, then 𝑇 must be compact. 

Proof. Let 𝜖 > 0. By Proposition 6.2.10 there exists 𝑟 > 0 such that for the covering ℱ𝑟 =
{𝐹𝑗}  associated to r (from Proposition (6.2.18)) 

‖𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

‖

𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)

< 𝜖. 

Since ∑ 𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 
𝑗≤𝑚 is compact for every 𝑚 ∈ ℕ we have that the essential norm 

of 𝑇𝑃 as an operator from 𝐿2(𝔹𝑛 𝑑𝜐) to 𝐴2 can be estimated in the following way. 

‖𝑇𝑃‖𝑒 ≤ ‖𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗≤𝑚

‖

𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)

≤ ‖𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

‖

𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)

+ ‖𝑇𝑚‖ ≲ 𝜖, 

where 

𝑇𝑚 = ∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗≤𝑚

. 
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If we can show that 

lim sup
𝑚→∞

‖𝑇𝑚‖𝐴2→𝐿2(𝔹𝑛 𝑑𝜐) ≲ 𝜖, 

then since 𝜖 > 0 is arbitrary we will have that 𝑇𝑃 is compact and hence 𝑇 is compact on 𝐴2. 

Let 𝑓 ∈ 𝐴2 be arbitrary of norm no greater than 1. Then, 

‖𝑇𝑚𝑓‖𝐴2
2 = ∑‖𝑀1𝐹𝑗

𝑇𝑃𝑀1𝐺𝑗
𝑓‖

𝐴2

2
 

𝑗≥𝑚

= ∑

‖𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

𝑓‖
𝐴2

2

‖𝑀1𝐺𝑗
𝑓‖

𝐴2

2 ‖𝑀1𝐺𝑗
𝑓‖

𝐴2

2
 

𝑗≥𝑚

≤ 𝑁 sup
𝑗≥𝑚

‖𝑀1𝐹𝑗
𝑇𝑙𝑗‖

𝐴2

2
≲ sup
𝑗≥𝑚
‖𝑇𝑙𝑗‖𝐴2

2
, 

where 

𝑙𝑗 ≔ 𝑃
𝑀1𝐺𝑗

𝑓

‖𝑀1𝐺𝑗
‖
𝐴2

. 

We now have 

‖𝑇𝑚‖𝐴2→𝐿2(𝔹𝑛 𝑑𝜐) ≲ sup
𝑗≥𝑚

sup
‖𝑓‖≤1

{‖𝑇𝑙𝑗‖𝐴2: 𝑙𝑗 =
𝑃𝑀1𝐺𝑗

𝑓

‖𝑀1𝐺𝑗
‖
𝐴2

} 

and hence 

lim sup
𝑚→∞

‖𝑇𝑚‖𝐴2→𝐿2(𝔹𝑛 𝑑𝜐) ≲ lim sup
𝑗→∞

sup
‖𝑓‖𝐴2≤1

{‖𝑇𝑙𝑗‖𝐴2: 𝑙𝑗 =
𝑃𝑀1𝐺𝑗

𝑓

‖𝑀1𝐺𝑗
‖
𝐴2

} 

There exists a sequence {𝑓𝑗} in 𝐴2 with ‖𝑓𝑗‖𝐴2 ≤ 1 such that 

lim sup
𝑗→∞

sup
‖𝑓‖≤1

{‖𝑇𝑔‖𝐴2
: 𝑔 =

𝑃𝑀1𝐺𝑗
𝑓

‖𝑀1𝐺𝑗
‖
𝐴2

} − 𝜖 ≤ lim sup
𝑗→∞

‖𝑇𝑔𝑖‖𝐴2 , 

where 

𝑔𝑗 ≔ 𝑃
𝑀1𝐺𝑗

𝑓𝑖

‖𝑀1𝐺𝑗
‖
𝐴2

=
∫ 〈𝑓𝑖 , 𝑘𝑤〉𝐴2𝑘𝑤𝑑𝜆(𝑤)
 

𝐺𝑗

(∫ |〈𝑓𝑖 , 𝑘𝑤〉𝐴2|
2𝑘𝑤𝑑𝜆(𝑤)

 

𝐺𝑗
)

1
2

 . 

For each 𝑗 ≥ 𝑚 pick 𝑧𝑗 ∈ 𝐺𝑗. There exists 𝜌 > 0 such that 𝐺𝑗 ⊂ 𝐷(𝑧𝑗 , 𝜌). Doing a simple 

change of variables we obtain 

𝑔𝑗 = ∫ 𝑎𝑗 (𝜑𝑧𝑗(𝑤))𝑈𝑧𝑗
∗ 𝑘𝑤𝑑𝜆 (𝜑𝑧𝑗(𝑤))

 

𝜑𝑧𝑗(𝐺𝑗)

, 

where 𝑎𝑗(𝑤) is defined to be 

〈𝑓𝑖 , 𝑘𝑤〉𝐴2

(∫ |〈𝑓𝑖 , 𝑘𝑤〉𝐴2|
2𝑑𝜆(𝑤)

 

𝐺𝑗
)

1
2

 

on 𝐺𝑗, and zero otherwise. 

We claim that 𝑔𝑗 = 𝑈𝑧𝑗
∗ ℎ𝑗, where 
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ℎ𝑗(𝑧):= ∫ 𝑎𝑗 (𝜑𝑧𝑗(𝑤)) 𝑘𝑤(𝑧)𝑑𝜆 (𝜑𝑧𝑗(𝑤))

 

𝜑𝑧𝑗(𝐺𝑗)

. 

First, using the generalized Minkowski Inequality it is easy to see that ℎ𝑗 ∈ 𝐿
2(𝔹𝑛; 𝑑𝜐) and 

consequently in 𝐴2. To prove that the claim is correct we only need to show that for each 𝑔 ∈
𝐿2(𝔹𝑛;  𝑑𝜐) we have that 〈𝑔𝑗 , 𝑔〉 = 〈ℎ𝑗 , 𝑈𝑧𝑗𝑔〉. This can be readily done using Fubini’s 

Theorem. The total variation of each member of the sequence of measures 

𝑎𝑗 (𝜑𝑧𝑗(𝑤))𝑑𝜆 (𝜑𝑧𝑗(𝑤)) (as measures on the compact set 𝐷(0, 𝜌)̅̅ ̅̅ ̅̅ ̅̅ ̅) satisfies 

‖𝑎𝑗 (𝜑𝑧𝑗(𝑤))𝑑𝜆 (𝜑𝑧𝑗(𝑤))‖
𝐴2
≲ 𝜆 (𝜑𝑧𝑗(𝐺𝑗)) ≤ 𝜆(𝐷(0, 𝜌)).  

Therefore, there exists a weak-∗ convergent subsequence which approaches some measure 𝜈. 

Abusing notation slightly we keep indexing this subsequence by 𝑗. Let 

ℎ(𝑧):= ∫ 𝑘𝑤(𝑧)𝑑

 

𝐷(0,𝜌)

𝜈(𝑤). 

The mentioned weak-∗ convergence implies that ℎ𝑗 converges to ℎ pointwise. Using 

the Lebesgue Dominated Convergence Theorem we obtain that ℎ𝑗 → ℎ in 𝐿2(𝔹𝑛;  𝑑𝜐). This 

implies that ℎ ∈ 𝐴2. In addition, 1 ≥ ‖𝑔𝑗‖𝐴2 = ‖𝑈𝑧𝑗
∗ ℎ𝑗‖

𝐴2
= ‖ℎ𝑗‖𝐴2.Thus, ‖ℎ‖𝐴2 ≲ 1. So, 

we finally have 

lim sup
𝑚→∞

‖𝑇𝑚‖𝐴2→𝐿2(𝔹𝑛,𝑑𝜐) ≲ lim sup
𝑗→∞

‖𝑇𝑔𝑗‖𝐴2 + 𝜖 = lim sup𝑗→∞
‖𝑇𝑈𝑧𝑗

∗ ℎ‖
𝐴2
+ 𝜖

≲ lim sup
𝑗→∞

‖𝑇𝑈𝑧𝑗
∗ ℎ‖

𝐴2
+ 𝜖. 

Choose ℎ′ in the linear span of normalized reproducing kernels such that ‖ℎ − ℎ′‖𝐴2 <

𝜖/‖𝑇‖. The assumption ‖𝑇𝑘𝑧‖𝐴2 → 0 as |𝑧| → 1 implies that ‖𝑇𝑈𝑧𝑗
∗ ℎ′‖

𝐴2
→ 0 as 𝑗 → ∞. 

Therefore we finally obtain 

lim sup
𝑚→∞

‖𝑇𝑚‖𝐴2→𝐿2(𝔹𝑛,𝑑𝜐) ≲ lim sup
𝑗→∞

‖𝑇𝑈𝑧𝑗
∗ ℎ‖

𝐴2
≤ lim sup

𝑗→∞
‖𝑇𝑈𝑧𝑗

∗ ℎ′‖
𝐴2
+ 𝜖 = 𝜖. 

Our next goal is to weaken the assumption ‖𝑇𝑘𝑧‖𝐴2 → 0 to 〈𝑇𝑘𝑧, 𝑘𝑧〉𝐴2 → 0 as |𝑧| →
1. 

We can do this only for weaklylocalized operators and not for the entire 𝐶∗algebra. 

We will make use of the following result due to Axler and Zheng in the case of the disc, and 

Raimondo (with the same proof) in the case of the unit ball. See also the work of Engliŝ for 

the case of bounded symmetric domains [186]. In all cases the proof appearing in [76], 

[186], [75] applies to all bounded linear operators. 

Theorem (6.2.12)[184]: (Axler and Zheng, [76]; Raimondo [75]). For any bounded operator 

𝑇 on the Bergman space 𝐴2 if  

lim
|z|→1

〈𝑇𝑘𝑧, 𝑘𝑧〉𝐴2 = 0, 

then 𝑇𝑧𝑘0 → 0 weakly. Consequently, in this case 𝑇𝑧𝑘0 converges to 0 uniformly on 

compact subsets of the ball 𝔹𝑛. 

We can show the following Lemma. 

Lemma (6.2.13)[184]: If 𝑇 is weakly localized operator on 𝐴2, then 
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lim
|z|→1

∫|〈𝑇𝑘𝑧, 𝑘𝑧〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎

 

𝔹𝑛

dλ(w) = 0. 

Proof. First, observe that: 

∫|〈𝑇𝑘𝑧, 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎

 

𝔹𝑛

d𝜆(𝑤) = ( ∫ + ∫  

 

𝐷(𝑧,𝑟)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

𝐷(𝑧,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

) |〈𝑇𝑘𝑧, 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤). 

Let 𝜖 > 0. Our assumption on 𝑇 implies that we can choose 𝑟 > 0 large enough so that the 

second integral is less than 𝜖. We need to show that the first integral can be made smaller 

than (a constant times) 𝜖. Fix this 𝑟 > 0 and then consider the first integral, 

∫ |〈𝑇𝑘𝑧, 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖

𝑎

‖𝐾𝑤‖
𝑎
𝑑𝜆(𝑤)

 

𝐷(𝑧,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫ |〈𝑇𝑧𝑘0, 𝑘𝜑𝑧(𝑤)〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

 

𝐷(𝑧,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑐

= ∫ |〈𝑇𝑧𝑘0, 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝜑𝑧(𝑤)‖𝐴2
𝑎 𝑑𝜆(𝑤)

 

𝐷(0,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫ |𝑇𝑧𝑘0(𝑤)|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝜑𝑧(𝑤)‖𝐴2
𝑎

𝑑𝜆(𝑤)

‖𝐾𝑤‖𝐴2
.

 

𝐷(0,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

 

We can choose 𝑧 with |𝑧| large enough so that |𝑇𝑧𝑘0(𝑤)| < 𝜖 for all 𝑤 ∈ 𝐷(0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅ (we have 

uniform convergence to 0 on the compact set 𝐷(0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅) . Therefore the second integral is no 

greater than 

𝜖 ∫
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝜑𝑧(𝑤)‖𝐴2
𝑎

𝑑𝜆(𝑤)

‖𝐾𝑤‖𝐴2

 

𝐷(0,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

= 𝜖 ∫ |〈𝑘𝑧, 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝜑𝑧(𝑤)‖𝐴2
𝑎 𝑑𝜆(𝑤)

 

𝐷(0,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

≤ 𝐶(𝑎)𝜖. 

Here we have used (22). Since 𝜖 > 0 was arbitrary we are done with the proof.  

We can now show the following result. 

Theorem (6.2.14)[184]: Let 𝑇 be a weakly localized operator on 𝐴2. If 

lim
|𝑧|→1

〈𝑇𝑘𝑧, 𝑘𝑧〉𝐴2 = 0, 

then 𝑇 is compact. 

Proof. Notice first that 

〈𝑇𝑓, 𝑘𝑤〉𝐴2 = 〈𝑓, 𝑇
∗𝑘𝑤〉𝐴2 = ∫〈𝑓, 𝑘𝑧〉𝐴2〈𝑘𝑧, 𝑇

∗𝑘𝑤〉𝐴2

 

𝔹𝑛

𝑑𝜆(𝑧)

= ∫〈𝑇𝑘𝑧, 𝑘𝑤〉𝐴2〈𝑓, 𝑘𝑧〉𝐴2

 

𝔹𝑛

𝑑𝜆(𝑧). 

For each 𝑟 > 0 define an operator 𝑇𝑟 by 

〈𝑇𝑟𝑓, 𝑘𝑤〉𝐴2 ≔ ∫ 〈𝑇𝑘𝑧 , 𝑘𝑤〉𝐴2〈𝑓, 𝑘𝑧〉𝐴2𝑑𝜆(𝑧)

 

𝐷(0,𝑟)

. 

These are basically the operators 𝑆[𝑟] that Axler and Zheng use in [76]. It is easy to see that 

these are all Hilbert-Schmidt operators by testing the square integrability of the kernel. 

Therefore, it suffices to show that 𝑇𝑟 → 𝑇 in the operator norm. 

Let 𝜖 > 0 and let 𝑓 ∈ 𝐴2 be an arbitrary element of norm 1. We have 
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‖(𝑇 − 𝑇𝑟)𝑓‖𝐴2
2 = ∫|〈(𝑇 − 𝑇𝑟)𝑓, 𝑘𝑤〉𝐴2|

2

 

𝔹𝑛

𝑑𝜆(𝑤). 

We first examine the integrand. 

|〈(𝑇 − 𝑇𝑟)𝑓, 𝑘𝑤〉𝐴2| ≤ ∫ |〈𝑇𝑘𝑧 , 𝑘𝑤〉𝐴2〈𝑓, 𝑘𝑧〉𝐴2|𝑑𝜆(𝑧)

 

𝐷(0,𝑟)𝑐

= ∫ |〈𝑇𝑘𝑧 , 𝑘𝑤〉𝐴2|
1/2
‖𝐾𝑤‖𝐴2

𝑎/2

‖𝐾𝑧‖𝐴2
𝑎/2
|〈𝑇𝑘𝑧 , 𝑘𝑤〉𝐴2|

1/2|〈𝑓, 𝑘𝑧〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎/2

‖𝐾𝑤‖𝐴2
𝑎/2
𝑑𝜆(𝑧)

 

𝐷(0,𝑟)

≤ ( ∫ |〈𝑇𝑘𝑧 , 𝑘𝑤〉𝐴2|
‖𝐾𝑤‖𝐴2

𝑎

‖𝐾𝑧‖𝐴2
𝑎 𝑑𝜆(𝑧)

 

𝐷(0,𝑟)𝑐

)

1
2

× ( ∫ |〈𝑇𝑘𝑧 , 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 |〈𝑓, 𝑘𝑧〉𝐴2|

2𝑑𝜆(𝑧)

 

𝐷(0,𝑟)𝑐

)

1
2

≲ ( ∫ |〈𝑇𝑘𝑧 , 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 |〈𝑓, 𝑘𝑧〉𝐴2|

2𝑑𝜆(𝑧)

 

𝐷(0,𝑟)𝑐

)

1
2

. 

Here, the implied constant depends on (20). Thus, after an application of Fubini, we obtain 

‖(𝑇 − 𝑇𝑟)𝑓‖𝐴2
2 ≲ ∫ ( ∫|〈𝑇𝑘𝑧, 𝑘𝑤〉𝐴2|

‖𝐾𝑧‖𝐴2
𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

 

𝔹𝑛

) |〈𝑓, 𝑘𝑧〉𝐴2|
2𝑑𝜆(𝑧)

 

𝐷(0,𝑟)𝑐

. 

Notice that the variable 𝑧 in the inner integral is from 𝐷(0, 𝑟)𝑐. Therefore, by Lemma 

(6.2.13), we can choose 𝑟 > 0 large enough so that for 𝑧 ∈ 𝔹𝑛 with |𝑧| sufficiently close to 

1 

∫|〈𝑇𝑘𝑧, 𝑘𝑤〉𝐴2|
‖𝐾𝑧‖𝐴2

𝑎

‖𝐾𝑤‖𝐴2
𝑎 𝑑𝜆(𝑤)

 

𝔹𝑛

< 𝜖. 

Therefore, for such large 𝑟 we have 

‖(𝑇 − 𝑇𝑟)𝑓‖𝐴2
2 ≲ ∫ 𝜖|〈𝑓, 𝑘𝑧〉𝐴2|

2𝑑𝜆(𝑧)

 

𝐷(0,𝑟)𝑐

≲ 𝜖‖𝑓‖𝐴2
2 = 𝜖. 

This proves that 𝑇𝑟 → 𝑇 in the operator norm, and so we are done.  

In Bargmann-Fock space case, we prove somewhat more general statement. Some 

parts of the proof are essentially identical to the case of the Bergman space. We only outline 

the necessary modifications.  

Let 

𝐷(𝑧, 𝑟):= {𝑤 ∈ ℂ𝑛: |𝑤 − 𝑧| < 𝑟} 
denote the standard Euclidean disc centered at the point z of radius 𝑟 > 0. For 𝑧 ∈ ℂ𝑛, we 

define 

𝑈𝑧𝑓(𝑤):= 𝑓(𝑧 − 𝑤)𝑘𝑧(𝑤), 
which via a simple change of variables argument is clearly a unitary operator on ℱ2. Then 

for an operator 𝑇 on the Bargmann-Fock space ℱ2, for 𝑧 ∈ ℂ𝑛 we set 

𝑇𝑧 ≔ 𝑈𝑧𝑇𝑈𝑧
∗. 
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We denote 

𝑑𝜎(𝑧):= 𝑒−|𝑧|
2
𝑑𝜐(𝑧) =

𝑑𝜐(𝑧)

‖𝐾𝑧‖ℱ2
2 . 

Recall also that the orthogonal projection of 𝐿2(ℂ𝑛, 𝑑𝜎(𝑧)) onto ℱ2 is given by the integral 

operator 

𝑃(𝑓)(𝑧):= ∫〈𝐾𝑤, 𝐾𝑧〉ℱ2𝑓(𝑤)𝑑𝜎(𝑤)

 

ℂ𝑛

. 

Therefore, for all 𝑓 ∈ ℱ2 we have 𝑓(𝑧) = ∫ 〈𝑓, 𝑘𝑤〉ℱ2𝑑𝜐(𝑤)
 

ℂ𝑛
. Moreover, 

‖𝑓‖ℱ2
2 = ∫|〈𝑓, 𝑘𝑤〉ℱ2|

2𝑑𝜐(𝑤)

 

ℂ𝑛

. 

The following analog of Lemma (6.2.6) is simpler to prove in this case. 

Lemma (6.2.15)[184]: 

lim
𝑅→∞

sup
𝑧∈ℂ𝑛

∫ 〈𝑘𝑧, 𝑘𝑤〉ℱ2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑅)𝑐

= 0. 

The proof of this is immediate since 

∫ 〈𝑘𝑧, 𝑘𝑤〉ℱ2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑅)𝑐

= ∫ 𝑒−|𝑤|
2
𝑑𝜐(𝑤)

 

𝐷(0,𝑅)𝑐

 

which clearly goes to zero as 𝑅 → ∞. 

As in the Bergman case the class of weakly localized operators contains all Toeplitz 

operators with bounded symbols. In addition this class forms a ∗-algebra. The proof of these 

two facts is basically the same as in the Bergman space details. 

Proposition (6.2.16)[184]: Each Toeplitz operator 𝑇𝑢 on 𝐴2 with a bounded symbol 𝑢(𝑧) 
is weakly localized. 

Note that 𝑇𝑢 is sufficiently localized even in the sense of Xia and Zheng by [190]. 

Proposition (6.2.17)[184]: The collection of all weakly localized operators on ℱ2 forms a 

∗-algebra. 

We next prove that operators from the ∗-algebra of weakly localized operators can 

also be approximated by infinite sums of well localized pieces. To state this property we 

need to recall the following proposition proved in [187]. 

Proposition (6.2.18)[184]: There exists an integer 𝑁 > 0 such that for any 𝑟 > 0 there is a 

covering ℱ𝑟 = {𝐹𝑗} of ℂ𝑛 by disjoint Borel sets satisfying 

(i) every point of ℂ𝑛 belongs to at most 𝑁 of the sets 𝐺𝑗: = {𝑧 ∈ Ω: 𝑑(𝑧, 𝐹𝑗) ≤ 𝑟}, 

(ii) diam𝑑  𝐹𝑗 ≤ 2𝑟 for every 𝑗. 

We use this to prove the following proposition, which is similar to what appears in [187], 

but exploits condition (21). 

Proposition (6.2.19)[184]: Let 𝑇:ℱ2 → ℱ2 be a linear operator satisfying (21). Then for 

every 𝜖 > 0 there exists 𝑟 > 0 such that for the covering ℱ𝑟 = {𝐹𝑗} (associated to 𝑟) from 

Proposition (6.2.18). 

‖𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

‖

ℱ2→𝐿2(ℂ𝑛; 𝑒−|𝑧|
2
 𝑑𝜐(𝑧))

< 𝜖. 
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Proof. Define 

𝑆 = 𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

 

It suffices to show that given 𝜖 > 0 we can find an 𝑟 > 0 so that 

‖𝑆𝑓‖ℱ2 ≲ ϵ‖𝑓‖ℱ2 . 
Given 𝜖 choose 𝑟 large enough so that 

sup
𝑧∈ℂ𝑛

∫ |〈𝑇∗𝑘𝑧, 𝑘𝑤〉ℱ2|𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐

< 𝜖       and  sup
𝑧∈ℂ𝑛

∫ |〈𝑇𝑘𝑧, 𝑘𝑤〉ℱ2|𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐

< 𝜖. 

Note that for any 𝑧 ∈ ℂ𝑛 we have that 

|𝑆𝑓(𝑧)| ≤ ∫∑1𝐹𝑗(𝑧)1𝐺𝑗
𝑐(𝑤)|〈𝑇∗𝑘𝑧, 𝑘𝑤〉ℱ2||𝑓(𝑤)|𝑑𝜎(𝑤)

 

𝑗

 

ℂ𝑛

= ∫|〈𝑇∗𝐾𝑧, 𝐾𝑤〉ℱ2||𝑓(𝑤)|𝑑𝜎(𝑤)

 

𝐺𝑗
𝑐

. 

Now 

‖𝑆𝑓‖ℱ2
2 = ∫|𝑆𝑓(𝑧)|2𝑑𝜎(𝑧)

 

ℂ𝑛

≤ ∫( ∫ |〈𝑇∗𝐾𝑧, 𝐾𝑤〉ℱ2||𝑓(𝑤)|𝑑𝜎(𝑤)

 

𝐷(𝑧,𝑟)2

)

2

𝑑𝜎(𝑧)

 

ℂ𝑛

≤ ∫( ∫ |〈𝑇∗𝐾𝑧, 𝐾𝑤〉ℱ2||𝑓(𝑤)|
2𝑑𝜎(𝑤)

 

𝐷(𝑧,𝑟)2

)( ∫ |〈𝑇∗𝐾𝑧, 𝐾𝑤〉ℱ2|𝑑𝜎(𝑤)

 

𝐷(𝑧,𝑟)2

)𝑑𝜎(𝑧)

 

ℂ𝑛

= ∫( ∫ |〈𝑇∗𝑘𝑧, 𝑘𝑤〉ℱ2||〈𝑓, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)2

)( ∫ |〈𝑇∗𝑘𝑧, 𝑘𝑤〉ℱ2|𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)2

)𝑑𝜐(𝑧)

 

ℂ𝑛

 

≤ 𝜖 ∫( ∫ |〈𝑇∗𝑘𝑧, 𝑘𝑤〉ℱ2||〈𝑓, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)2

)𝑑𝜐(𝑧)

 

ℂ𝑛

= 𝜖 ∫|〈𝑓, 𝑘𝑤〉ℱ2|
2 ( ∫ |〈𝑇∗𝑘𝑧, 𝑘𝑤〉ℱ2|𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)2

)𝑑𝜐(𝑤)

 

ℂ𝑛

≤ 𝜖2 ∫|〈𝑓, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

ℂ𝑛

= 𝜖2‖𝑓‖ℱ2
2 . 

The proof of the next result is basically the same as the proof of Theorem (6.2.10) and 

therefore we skip it. 

Theorem (6.2.20)[184]: Let 𝑇: ℱ2 → ℱ2 be a bounded linear operator in the 𝐶∗ algebra 

generated by weakly localized operators. If 

lim
|𝑧|→∞

‖𝑇𝑘𝑧‖ℱ2 = 0, 

then 𝑇 is compact. 

By combining this result with the following Proposition we obtain the desired proof 

of Theorem (6.2.2). 
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Proposition (6.2.21)[184]: Let 𝑇:ℱ2 → ℱ2 be a bounded linear operator in the 𝐶∗ algebra 

generated by weakly localized operators satisfying (19). If 

lim
|𝑧|→∞

〈𝑇𝑘𝑧, 𝑘𝑧〉ℱ2 = 0, 

then 

lim
|𝑧|→∞

‖𝑇𝑘𝑧‖ℱ2 = 0. 

Proof. Let 𝜖 > 0 be given. Note that we have 

‖𝑇𝑘𝑧‖ℱ2
2 = ∫|〈𝑇𝑘𝑧, 𝑘𝑧〉ℱ2|

2𝑑𝜐(𝑤)

 

ℂ𝑛

= ( ∫ + ∫  

 

𝐷(𝑧,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

 

𝐷(𝑧,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

) |〈𝑇𝑘𝑧, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤) = 𝐼 + 𝐼𝐼. 

For term 𝐼𝐼 we use a standard approximation result. Since 𝑇 is in the 𝐶∗ algebra generated 

by (19), given 𝜖 > 0 we can find 𝑇′ that is weakly localized so that 

‖𝑇 − 𝑇′‖ℱ2→ℱ2 < 𝜖. 
Now choose 𝑟 sufficiently large so that 

sup
𝑧∈ℂ𝑛

∫ |〈𝑇′𝑘𝑧, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅

< 𝜖 

which is possible since 𝑇′ satisfies (19). We use this to estimate 𝐼𝐼. 

𝐼𝐼 = ∫ |〈𝑇𝑘𝑧, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅

≲ ∫ |〈𝑇′𝑘𝑧, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ ∫ |〈(𝑇 − 𝑇′)𝑘𝑧 , 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅

. 

The first term is controlled by the choice of 𝑟 above. We also have that for this choice of 

𝑟 (actually all 𝑟) that 

sup
𝑧∈ℂ𝑛

∫ |〈(𝑇 − 𝑇′)𝑘𝑧, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅

≤ sup
𝑧∈ℂ𝑛

∫|〈(𝑇 − 𝑇′)𝑘𝑧 , 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

ℂ𝑛

= sup
𝑧∈ℂ𝑛

‖(𝑇 − 𝑇′)𝑘𝑧‖ℱ2
2 ≤ ‖(𝑇 − 𝑇′)𝑘𝑧‖ℱ2→ℱ2 < 𝜖. 

Then then yields that 

sup
𝑧∈ℂ𝑛

∫ |〈𝑇𝑘𝑧, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅

≲ 𝜖 

Now for term 𝐼, note that we have 

∫ |〈𝑇𝑘𝑧, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫ |〈𝑇𝑧𝑘0, 𝑘𝜑𝑧(𝑤)〉ℱ2|
2
𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫ |〈𝑇𝑧𝑘0, 𝑘𝜑𝑧(𝑤)〉ℱ2|
2
𝑑𝜐(𝑤)

 

𝐷(0,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫ |𝑇𝑧𝑘0(𝑤)|
2
𝑑𝜐(𝑤)

‖𝐾𝑤‖ℱ2
2

 

𝐷(0,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫ |𝑇𝑧𝑘0(𝑤)|
2𝑑𝜎(𝑤).

 

𝐷(0,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅
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By Englis [186] we can choose 𝑧 with |𝑧| large enough so that |𝑇𝑧𝑘0(𝑤)| < 𝜖 for all 𝑤 ∈

𝐷(0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅ (we have uniform convergence to 0 on the compact set 𝐷(0, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅). Furthermore, we 

have that 𝜎(𝐷(0, 𝑟)) ≤ 𝜎(ℂ𝑛) < ∞, and so 

∫ |〈𝑇𝑘𝑧, 𝑘𝑤〉ℱ2|
2𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫ |〈𝑇𝑧𝑘0, 𝑘𝜑𝑧(𝑤)〉ℱ2|
2
𝑑𝜐(𝑤)

 

𝐷(𝑧,𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅

< 𝜖. 

Thus, we have 

lim
|𝑧|→∞

‖𝑇𝑘𝑧‖ℱ2
2 = 0. 

Corollary (6.2.22)[200]: Let 
2𝑛

𝑛+1
< 𝑎2 <

2𝑛+1

𝑛+1
. Then 

lim
𝑅→∞

sup
(𝑧2−1)∈𝔹𝑛

∫ |〈𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

 

𝐷(𝑧2−1,𝑅)𝑐

𝑑𝜆(𝑤2 − 1) = 0.     (26) 

Proof. Notice first that 

∫ |〈𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

 

𝐷(𝑧2−1,𝑅)𝑐

𝑑𝜆(𝑤2 − 1)

= ∫ |〈𝑘𝑧2−1, 𝑘𝜑
𝑧2−1

(𝑤2−1)〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

 

𝐷(𝑧2−1,𝑅)𝑐

𝑑𝜆(𝑤2 − 1)

= ∫ |〈𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
𝑎2−1

‖𝐾𝑧2−1‖𝐴2
𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

 

𝐷(0,𝑅)𝑐

𝑑𝜆(𝑤2 − 1)

= ∫
|〈𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|

2

‖𝐾𝑤2−1‖𝐴2
𝑎2

 

𝐷(0,𝑅)𝑐

𝑑𝜆(𝑤2 − 1) 

= ∫
𝑑𝜐(𝑤2 − 1)

|1 − (𝑤2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑧2 − 1)|
(𝑎2−1)(𝑛+1)

(1 − |𝑤2 − 1|2)
−𝑎2(

𝑛+1
2
)

 

𝐷(0,𝑅)𝑐

= ∫ ∫
(1 + 3𝜖)2𝑛−1𝑑𝜁𝑑(1 + 3𝜖)

|1 − (𝑧2 − 1)(1 + 3𝜖)𝜁|̅(𝑛+1)(𝑎
2−1)(3𝜖(2 + 3𝜖))

−𝑎2(
𝑛+1
2 )

 

𝕊𝑛

1

𝑅′

. 

In the last integral 𝑅:= log
1+𝑅′

1−𝑅′
. Notice that 𝑅′ → 1 when 𝑅 → ∞. Now the last integral can 

be written as  

∫𝐼(𝑛+1)𝑎2−1−𝑛((1 + 3𝜖)(𝑧
2 − 1))

(1 + 3𝜖)2𝑛−1𝑑(1 + 3𝜖)

(3𝜖(2 + 3𝜖))
−𝑎2(

𝑛+1
2 )

1

𝑅′

, 

where 

𝐼𝑐(𝑧
2 − 1):= ∫

𝑑𝜁

|1 − (𝑧2 − 1)(1 + 3𝜖)𝜁|̅𝑐+𝑛

 

𝕊𝑛

. 

It is well known, and very simple to check in the n-dimensional case, see [191], that 
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𝐼(𝑎2−1)(𝑛+1)−𝑛((1 + 3𝜖)(𝑧
2 − 1))∑ |

Γ(𝑘 +
𝑛 + 1
2

(𝑎2 − 1))

𝑘! Γ (
𝑛 + 1
2

(𝑎2 − 1))
|

2

|(1 + 3𝜖)(𝑧2 − 1)|2𝑘
∞

𝑘=0

≃∑
1

𝑘−𝑎
2(𝑛+1)

|(1 + 3𝜖)(𝑧2 − 1)|2𝑘
∞

𝑘=0

. 

The last relation follows from the Stirling formula. Thus, 

∫𝐼(𝑎2−1)(𝑛+1)−𝑛((1 + 3𝜖)(𝑧
2 − 1))

(1 + 3𝜖)2𝑛−1𝑑(1 + 3𝜖)

(3𝜖(2 + 3𝜖))
−𝑎2(

𝑛+1
2 )

1

𝑅′

≃ ∫∑
1

𝑘−𝑎
2(𝑛+1)

|(1 + 3𝜖)(𝑧2 − 1)|2𝑘
(1 + 3𝜖)2𝑛−1𝑑(1 + 3𝜖)

(3𝜖(2 + 3𝜖))
−𝑎2(

𝑛+1
2 )

∞

𝑘=0

1

𝑅′

≤ ∫∑
1

𝑘−𝑎
2(𝑛+1)

(1 + 3𝜖)2𝑛−1𝑑(1 + 3𝜖)

(3𝜖(2 + 3𝜖))
−𝑎2(

𝑛+1
2 )

∞

𝑘=0

1

𝑅′

=∑
1

𝑘−𝑎
2(𝑛+1)

∞

𝑘=0

∫
(1 + 3𝜖)2𝑛−1𝑑(1 + 3𝜖)

(3𝜖(2 + 3𝜖))
−𝑎2(

𝑛+1
2 )

1

𝑅′

= ∫
(1 − 𝑥)𝑛−1

𝑥
−𝑎2(

𝑛+1
2
)

1−𝑅′
2

0

𝑑𝑥∑
1

𝑘−𝑎
2(𝑛+1)

∞

𝑘=0

≤ ∫
1

𝑥
−𝑎2(

𝑛+1
2
)

1−𝑅′
2

0

𝑑𝑥∑
1

𝑘−𝑎
2(𝑛+1)

∞

𝑘=0

. 

Our condition 
2𝑛

𝑛+1
< 𝑎2 <

2𝑛+1

𝑛+1
 implies that the series above is convergent (here we simply 

need that 𝑎2 <
2𝑛+1

𝑛+1
. It also implies that 𝑥

−𝑎2(
𝑛+1

2
)
 is integrable on (0, 1) (here we require 

that 𝑎2 ≲
2𝑛

𝑛+1
. Thus, we have that 

∫𝐼(𝑛+1)(𝑎2−1)−𝑛((1 + 3𝜖)(𝑧
2 − 1))

(1 + 3𝜖)2𝑛−1𝑑(1 + 3𝜖)

(3𝜖(2 + 3𝜖))
−𝑎2(

𝑛+1
2 )

1

𝑅′

≃ (1 − (𝑅′)2)
1+𝑎2(

𝑛+1
2
)
. 

Therefore, taking the limit as 𝑅 → ∞ (which is the same as 𝑅′ → 1) we obtain the desired 

conclusion. 

Corollary (6.2.23)[200]: Each Toeplitz operator 𝑇𝑢 on 𝐴2 with a bounded symbol 

𝑢(𝑧2 − 1) is weakly localized. 

Proof. By definition 

𝑇𝑢𝑘𝑧2−1(𝑤
2 − 1) = 𝑃(𝑢𝑘𝑧2−1)(𝑤

2 − 1)

= ∫〈𝐾𝑧2−1, 𝐾𝑥2−1〉𝐴2𝑢(𝑥
2 − 1)𝑘𝑧2−1(𝑥

2 − 1)

 

𝔹𝑛

     𝑑𝜐(𝑥2 − 1). 

Therefore, 
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|〈𝑇𝑢𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2| ≤ ∫|〈𝐾𝑧2−1, 𝐾𝑥2−1〉𝐴2||𝑢(𝑥
2 − 1)||〈𝑘𝑧2−1, 𝑘𝑥2−1〉𝐴2|

 

𝔹𝑛

𝑑𝜆(𝑥2 − 1)

≤ ‖𝑢‖∞ ∫〈𝑘𝑤2−1, 𝑘𝑥2−1〉𝐴2|〈𝑘𝑥2−1, 𝑘𝑧2−1〉𝐴2|

 

𝔹𝑛

𝑑𝜆(𝑥2 − 1). 

To check (21) we proceed as follows. For (𝑧2 − 1), (𝑥2 − 1) ∈ 𝔹𝑛, set 

𝐼(𝑧2−1)(𝑥2−1): = ∫ 〈𝑘𝑤2−1, 𝑘𝑥2−1〉𝐴2
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)|〈𝑘𝑤2−1, 𝑘𝑥2−1〉𝐴2|

 

𝐷(𝑧2−1,𝑅)𝑐

 

First note that 

∫ 〈𝑇𝑢𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝐷(𝑧2−1,𝑅)𝑐

≤ ‖𝑢‖∞ ∫ ∫〈𝑘𝑤2−1, 𝑘𝑥2−1〉𝐴2|〈𝑘𝑥2−1, 𝑘𝑧2−1〉𝐴2|

 

𝔹𝑛

𝑑𝜆(𝑥2
 

𝐷(𝑧2−1,𝑅)𝑐

− 1)
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1) = ‖𝑢‖∞ ∫𝐼𝑧2−1(𝑥
2 − 1)

 

𝔹𝑛

𝑑𝜆(𝑥2 − 1)

= ‖𝑢‖∞

(

 
 

∫ + ∫  

 

𝐷(𝑧2−1,
1+3𝜖
2
)
𝑐

 

𝐷(𝑧2−1,
1+3𝜖
2
)

)

 
 
𝐼𝑧2−1(𝑥

2 − 1)𝑑𝜆(𝑥2 − 1). 

To estimate the first integral notice that for (𝑥2 − 1) ∈ 𝐷 (𝑧2 − 1,
1+3𝜖

2
) we have 

𝐷(𝑧2 − 1, 1 + 3𝜖)𝑐 ⊂ 𝐷 (𝑥2 − 1,
1+3𝜖

2
)
𝑐
. 

Therefore, the first integral is no greater than 

∫ ∫ 〈𝑘𝑤2−1, 𝑘𝑥2−1〉𝐴2
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2
 

𝐷(𝑧2−1,
1+3𝜖
2
)
𝑐

 

𝐷(𝑧2−1,
1+3𝜖
2
)

− 1)|〈𝑘𝑥2−1, 𝑘𝑧2−1〉𝐴2| 𝑑𝜆(𝑥
2 − 1). 

It is easy to see that the last expression is no greater than 𝐶(𝑎2 − 1)‖𝑢‖∞𝐴 (
1+3𝜖

2
), where 

𝐴(1 + 3𝜖) = sup
(𝑧2−1)∈𝔹𝑛

∫ 〈𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝐷(𝑧2−1,1+3𝜖)𝑐

, 

and 𝐶(𝑎2 − 1) is just the bound from the standard Rudin-Forelli estimates (24). 

Estimating the second integral is simpler. The second integral is clearly no greater 

than 

∫ ∫〈𝑘𝑤2−1, 𝑘𝑥2−1〉𝐴2
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)|〈𝑘𝑥2−1, 𝑘𝑧2−1〉𝐴2|

 

𝔹𝑛

 

𝐷(𝑧2−1,
1+3𝜖
2
)

𝑑𝜆(𝑥2 − 1). 

By the standard Rudin-Forelli estimates (24) the inner integral is no greater than 
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𝐶(𝑎2 − 1)
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

, 

where the constant 𝐶(𝑎2 − 1) is independent of (𝑧2 − 1) and (𝑥2 − 1). So, the whole 

integral is bounded by 𝐶(𝑎2 − 1)𝐴 (
1+3𝜖

2
). Therefore 

sup
(𝑧2−1)∈𝔹𝑛

∫ 〈𝑇𝑢𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2
‖𝐾𝑧2−1‖

𝑎2−1

‖𝐾𝑤2−1‖
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝐷(𝑧2−1,1+3𝜖)𝑐

≤ 2‖𝑢‖∞ (𝐶(𝑎
2 − 1)𝐴 (

1 + 3𝜖

2
)). 

Applying the uniform Rudin-Forelli estimates (26) in Corollary (6.2.22) we prove the 

Proposition since 2𝐶(𝑎2 − 1)‖𝑢‖∞𝐴(
1+3𝜖

2
) → 0 as 𝜖 → ∞. 

Corollary (6.2.24)[200]: The collection of all weakly localized operators on 𝐴2 forms a ∗-
algebra.  

Proof. It is trivial that 𝑇 ∈ 𝒜 implies 𝑇∗ ∈ 𝒜. It is also easy to see that any linear 

combination of two operators in 𝒜 must be also in 𝒜. It remains to prove that if 𝑇, (𝑇 +
𝜖) ∈ 𝒜, then 𝑇(𝑇 + 𝜖) ∈ 𝒜. 

∫ 〈𝑇(𝑇 + 𝜖)𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝐷(𝑧2−1,1+3𝜖)𝑐

= ∫ 〈(𝑇 + 𝜖)𝑘𝑧2−1, 𝑇
∗𝑘𝑤2−1〉𝐴2

‖𝐾𝑧2−1‖𝐴2
𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝐷(𝑧2−1,1+3𝜖)𝑐

= ∫ | ∫〈(𝑇 + 𝜖)𝑘𝑧2−1, 𝑘𝑥2−1〉𝐴2〈𝑘𝑥2−1, 𝑇
∗𝑘𝑤2−1〉𝐴2𝑑𝜆(𝑥

2 − 1)

𝔹𝑛

|

𝐷(𝑧2−1,1+3𝜖)𝑐

×
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)

≤ ∫ ∫ |〈𝑘𝑥2−1, 𝑇
∗𝑘𝑤2−1〉𝐴2|

𝑑𝜆(𝑤2 − 1)

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝐷(𝑧2−1,1+3𝜖)𝑐𝔹𝑛

× |〈(𝑇 + 𝜖)𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|‖𝐾𝑧2−1‖𝐴2
𝑎2−1 𝑑𝜆(𝑥2 − 1). 

Proceeding exactly as in the proof of the previous Proposition and using the conditions 

following from 𝑇, (𝑇 + 𝜖) ∈ 𝒜 in the place of the local Rudin-Forelli estimates (25) we 

obtain that 

lim
𝜖→∞

sup
(𝑧2−1)∈𝔹𝑛

∫ 〈𝑇(𝑇 + 𝜖)𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝐷(𝑧2−1,1+3𝜖)𝑐

= 0. 

The corresponding version for (𝑇(𝑇 + 𝜖))∗ is proved in exactly the same way.  

Corollary (6.2.25)[200]: Let 𝑇: 𝐴2 → 𝐴2 be a weakly localized operator. Then there exists 

𝜖 ≥ 0 such that for the covering ℱ1+𝜖 = {𝑓𝑗} (associated to (1 + 𝜖)) from Proposition 

(6.2.9) 
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‖𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

‖

𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)

< 𝜖. 

Proof. Define 

𝑇 + 𝜖 = 𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

 

It suffices to show that given 𝜖 > 0, so that 

‖(𝑇 + 𝜖)𝑓‖𝐴2 ≾ 𝜖‖𝑓‖𝐴2 . 
Given 𝜖 choose (1 + 𝜖) large enough so that 

sup
(𝑧2−1)∈𝔹𝑛

∫ 〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1) < 𝜖

 

𝐷(𝑧2−1,1+𝜖)𝑐

 

    and sup
(𝑧2−1)∈𝔹𝑛

∫ 〈𝑇∗𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐

< 𝜖 

Note that for any (𝑧2 − 1) ∈ 𝔹𝑛 we have that 

|(𝑇 + 𝜖)𝑓(𝑧2 − 1)|

≤ ∫∑1𝐹𝑗(𝑧2−1)1𝐺𝑗
𝑐(𝑤2 − 1)〈𝑇∗𝐾𝑧2−1, 𝐾𝑤2−1〉𝐴2|𝑓(𝑤

2 − 1)|𝑑𝜐(𝑤2 − 1)

 

𝑗

 

𝔹𝑛

= ∫|〈𝑇∗𝐾𝑧2−1, 𝐾𝑤2−1〉𝐴2||𝑓(𝑤
2 − 1)|𝑑𝜐(𝑤2 − 1)

 

𝐺𝑗
𝑐

≤ ∫ |〈𝑇∗𝐾𝑧2−1, 𝐾𝑤2−1〉𝐴2||𝑓(𝑤
2 − 1)|𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐

. 

Now 

‖(𝑇 + 𝜖)𝑓‖𝐴2
2 = ∫|(𝑇 + 𝜖)𝑓(𝑧2 − 1)|2𝑑𝜐(𝑤2 − 1)

 

𝔹𝑛

≤ ∫( ∫ |〈𝑇∗𝐾𝑧2−1, 𝐾𝑤2−1〉𝐴2||𝑓(𝑤
2 − 1)|𝑑𝜎(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐

)

2

𝑑𝜐(𝑤2
 

𝔹𝑛

− 1) 
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× ( ∫
|〈𝑇∗𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐

)𝑑𝜆(𝑧2 − 1)

≤ 𝜖 ∫( ∫ |〈𝑇∗𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|‖𝐾𝑤2−1‖𝐴2
𝑎2−1|〈𝑓, 𝑘𝑤2−1〉𝐴2|

2𝑑𝜆(𝑤2
 

𝐷(𝑧2−1,1+𝜖)𝑐

 

𝔹𝑛

− 1)) ×
1

‖𝐾𝑧2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑧2 − 1)

= 𝜖 ∫|〈𝑓, 𝑘𝑤2−1〉𝐴2|
2 ( ∫ |〈𝑘𝑧2−1, 𝑇𝑘𝑤2−1〉𝐴2|

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

‖𝐾𝑧2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑧2
 

𝐷(𝑤2−1,1+𝜖)𝑐

 

𝔹𝑛

− 1))𝑑𝜆(𝑤2 − 1) ≤ 𝜖2 ∫|〈𝑓, 𝑘𝑤2−1〉𝐴2|
2

 

𝔹𝑛

𝑑𝜆(𝑤2 − 1) = 𝜖2‖𝑓‖𝐴2
2 . 

Corollary (6.2.26)[200]: Let 𝑇: 𝐴2 → 𝐴2 be a linear operator in the 𝐶∗-algebra generated 

by the weakly localized operators on 𝐴2. If lim
|𝑧2−1|→1

‖𝑇𝑘𝑧2−1‖𝐴2 = 0, then 𝑇 must be 

compact. 

Proof. Let by Corollary (6.2.25) there exists 𝜖 ≥ 0 such that for the covering ℱ1+𝜖 =
{𝐹𝑗} associated to (1 + 𝜖) (from Proposition (6.2.18)) 

‖𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

‖

𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)

< 𝜖. 

Since ∑ 𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 
𝑗+𝜖 is compact for every (𝑗 + 𝜖) ∈ ℕ we have that the essential 

norm of 𝑇𝑃 as an operator from 𝐿2(𝔹𝑛 𝑑𝜐) to 𝐴2 can be estimated in the following way. 

‖𝑇𝑃‖𝑒 ≤ ‖𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗−𝜖

‖

𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)

≤ ‖𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

‖

𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)

+ ‖𝑇𝑗−𝜖‖ ≲ 𝜖, 

Where (𝜖 ≥ 0) 

𝑇𝑗−𝜖 =∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗−𝜖

. 

If we can show that 

lim sup
𝑗−𝜖→∞

‖𝑇𝑗−𝜖‖𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)
≲ 𝜖, 

then since 𝜖 > 0 is arbitrary we will have that 𝑇𝑃 is compact and hence 𝑇 is compact on 𝐴2. 

Let 𝑓 ∈ 𝐴2 be arbitrary of norm no greater than 1. Then, 
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‖𝑇𝑗−𝜖𝑓‖𝐴2
2
=∑‖𝑀1𝐹𝑗

𝑇𝑃𝑀1𝐺𝑗
𝑓‖

𝐴2

2
 

𝑗−𝜖

=∑

‖𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

𝑓‖
𝐴2

2

‖𝑀1𝐺𝑗
𝑓‖

𝐴2

2 ‖𝑀1𝐺𝑗
𝑓‖

𝐴2

2
 

𝑗−𝜖

≤ 𝑁 sup
𝑗−𝜖

‖𝑀1𝐹𝑗
𝑇𝑙𝑗‖

𝐴2

2
≲ sup

𝑗−𝜖
‖𝑇𝑙𝑗‖𝐴2

2
, 

where 

𝑙𝑗 ≔ 𝑃
𝑀1𝐺𝑗

𝑓

‖𝑀1𝐺𝑗
‖
𝐴2

. 

We now have 

‖𝑇𝑗−𝜖‖𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)
≲ sup

𝑗−𝜖
sup
‖𝑓‖≤1

{‖𝑇𝑙𝑗‖𝐴2: 𝑙𝑗 =
𝑃𝑀1𝐺𝑗

𝑓

‖𝑀1𝐺𝑗
‖
𝐴2

} 

and hence 

lim sup
𝑗−𝜖→∞

‖𝑇𝑗−𝜖‖𝐴2→𝐿2(𝔹𝑛 𝑑𝜐)
≲ lim sup

𝑗→∞
sup

‖𝑓‖𝐴2≤1
{‖𝑇𝑙𝑗‖𝐴2: 𝑙𝑗 =

𝑃𝑀1𝐺𝑗
𝑓

‖𝑀1𝐺𝑗
‖
𝐴2

} 

There exists a sequence {𝑓𝑗} in 𝐴2 with ‖𝑓𝑗‖𝐴2 ≤ 1 such that 

lim sup
𝑗→∞

sup
‖𝑓‖≤1

{‖𝑇𝑔‖𝐴2
: 𝑔 =

𝑃𝑀1𝐺𝑗
𝑓

‖𝑀1𝐺𝑗
‖
𝐴2

}− 𝜖 ≤ lim sup
𝑗→∞

‖𝑇𝑔𝑗‖𝐴2 , 

where 

𝑔𝑗 ≔ 𝑃
𝑀1𝐺𝑗

𝑓𝑗

‖𝑀1𝐺𝑗
‖
𝐴2

=
∫ 〈𝑓𝑗 , 𝑘𝑤2−1〉𝐴2𝑘𝑤2−1𝑑𝜆(𝑤

2 − 1)
 

𝐺𝑗

(∫ |〈𝑓𝑗 , 𝑘𝑤2−1〉𝐴2|
2
𝑘𝑤2−1𝑑𝜆(𝑤

2 − 1)
 

𝐺𝑗
)

1
2

 . 

For each 𝜖 ≥ 0 pick (𝑧2 − 1)𝑗 ∈ 𝐺𝑗. There exists 𝜖 ≥ 0 such that 𝐺𝑗 ⊂ 𝐷((𝑧
2 − 1)𝑗 , 1 + 𝜖). 

Doing a simple change of variables we obtain 

𝑔𝑗 = ∫ (𝑎2 − 1)𝑗 (𝜑(𝑧2−1)𝑗(𝑤
2 − 1))𝑈(𝑧2−1)𝑗

∗ 𝑘𝑤2−1𝑑𝜆 (𝜑(𝑧2−1)𝑗(𝑤
2 − 1))

 

𝜑(𝑧2−1)𝑗
(𝐺𝑗)

, 

where (𝑎2 − 1)𝑗(𝑤
2 − 1) is defined to be 

〈𝑓𝑗 , 𝑘𝑤2−1〉𝐴2

(∫ |〈𝑓𝑗 , 𝑘𝑤2−1〉𝐴2|
2
𝑑𝜆(𝑤2 − 1)

 

𝐺𝑗
)

1
2

 

on 𝐺𝑗, and zero otherwise. 

We claim that 𝑔𝑗 = 𝑈(𝑧2−1)𝑗
∗ ℎ𝑗, where 
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ℎ𝑗(𝑧
2 − 1):= ∫ (𝑎2 − 1)𝑗 (𝜑(𝑧2−1)𝑗(𝑤

2 − 1))𝑘𝑤2−1((𝑧
2

 

𝜑(𝑧2−1)𝑗
(𝐺𝑗)

− 1))𝑑𝜆 (𝜑(𝑧2−1)𝑗(𝑤
2 − 1)) . 

First, using the generalized Minkowski Inequality it is easy to see that ℎ𝑗 ∈

𝐿2(𝔹𝑛; 𝑑𝜐) and consequently in 𝐴2. To prove that the claim is correct we only need to show 

that for each 𝑔 ∈ 𝐿2(𝔹𝑛;  𝑑𝜐) we have that 〈𝑔𝑗 , 𝑔〉 = 〈ℎ𝑗 , 𝑈(𝑧2−1)𝑗𝑔〉. This can be readily 

done using Fubini’s Theorem. The total variation of each member of the sequence of 

measures (𝑎2 − 1)𝑗 (𝜑(𝑧2−1)𝑗(𝑤
2 − 1))𝑑𝜆 (𝜑(𝑧2−1)𝑗(𝑤

2 − 1)) (as measures on the 

compact set 𝐷(0, 1 + 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) satisfies ‖(𝑎2 − 1)𝑗 (𝜑(𝑧2−1)𝑗(𝑤
2 − 1))𝑑𝜆 (𝜑(𝑧2−1)𝑗(𝑤

2 −

1))‖
𝐴2
≲ 𝜆 (𝜑(𝑧2−1)𝑗(𝐺𝑗)) ≤ 𝜆(𝐷(0, 1 + 𝜖)). 

Therefore, there exists a weak-∗ convergent subsequence which approaches some 

measure 𝜈. Abusing notation slightly we keep indexing this subsequence by 𝑗. Let 

ℎ(𝑧2 − 1):= ∫ 𝑘𝑤2−1(𝑧
2 − 1)𝑑

 

𝐷(0,1+𝜖)

𝜈(𝑤2 − 1). 

The mentioned weak-∗ convergence implies that ℎ𝑗 converges to ℎ pointwise. Using the 

Lebesgue Dominated Convergence Theorem we obtain that ℎ𝑗 → ℎ in 𝐿2(𝔹𝑛;  𝑑𝜐). This 

implies that ℎ ∈ 𝐴2. In addition, 1 ≥ ‖𝑔𝑗‖𝐴2 = ‖𝑈(𝑧2−1)𝑗
∗ ℎ𝑗‖

𝐴2
= ‖ℎ𝑗‖𝐴2.Thus, ‖ℎ‖𝐴2 ≲

1. So, we finally have 

lim sup
𝑗−𝜖→∞

‖𝑇𝑗−𝜖‖𝐴2→𝐿2(𝔹𝑛,𝑑𝜐)
≲ lim sup

𝑗→∞
‖𝑇𝑔𝑗‖𝐴2 + 𝜖 = lim sup𝑗→∞

‖𝑇𝑈(𝑧2−1)𝑗
∗ ℎ‖

𝐴2
+ 𝜖

≲ lim sup
𝑗→∞

‖𝑇𝑈(𝑧2−1)𝑗
∗ ℎ‖

𝐴2
+ 𝜖. 

Choose ℎ′ in the linear span of normalized reproducing kernels such that ‖ℎ − ℎ′‖𝐴2 <

𝜖/‖𝑇‖. The assumption ‖𝑇𝑘𝑧2−1‖𝐴2 → 0 as |𝑧2 − 1| → 1 implies that ‖𝑇𝑈(𝑧2−1)𝑗
∗ ℎ′‖

𝐴2
→

0 as 𝑗 → ∞. Therefore we finally obtain 

lim sup
𝑗−𝜖→∞

‖𝑇𝑗−𝜖‖𝐴2→𝐿2(𝔹𝑛,𝑑𝜐)
≲ lim sup

𝑗→∞
‖𝑇𝑈(𝑧2−1)𝑗

∗ ℎ‖
𝐴2
≤ lim sup

𝑗→∞
‖𝑇𝑈(𝑧2−1)𝑗

∗ ℎ′‖
𝐴2
+ 𝜖

= 𝜖. 
Corollary (6.2.27)[200]: If 𝑇 is weakly localized operator on 𝐴2, then 

lim
|𝑧2−1|→1

∫|〈𝑇𝑘𝑧2−1, 𝑘𝑧2−1〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

 

𝔹𝑛

d𝜆(𝑤2 − 1) = 0. 

Proof. First, observe that: 
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∫|〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

 

𝔹𝑛

d𝜆(𝑤2 − 1)

= ( ∫ + ∫  

 

𝐷(𝑧2−1,1+𝜖)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

𝐷(𝑧2−1,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

) |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2

− 1). 
Let 𝜖 > 0. Our assumption on 𝑇 implies that we can choose 𝜖 ≥ 0 large enough so that the 

second integral is less than 𝜖. We need to show that the first integral can be made smaller 

than (a constant times) 𝜖. Fix this 𝜖 ≥ 0 and then consider the first integral, 

∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑧2−1‖

𝑎2−1

‖𝐾𝑤2−1‖
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= ∫ |〈𝑇𝑧2−1𝑘0, 𝑘𝜑
(𝑧2−1)

(𝑤2−1)〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑐

= ∫ |〈𝑇𝑧2−1𝑘0, 𝑘𝜑
(𝑧2−1)

(𝑤2−1)〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝜑(𝑧2−1)(𝑤2−1)‖𝐴2

𝑎2−1
𝑑𝜆(𝑤2 − 1)

 

𝐷(0,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫ |𝑇𝑧2−1𝑘0(𝑤
2 − 1)|

‖𝐾𝑧2−1‖𝐴2
𝑎2−1

‖𝐾𝜑(𝑧2−1)(𝑤2−1)‖𝐴2

𝑎2−1
.

 

𝐷(0,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

We can choose (𝑧2 − 1) with |𝑧2 − 1| large enough so that |𝑇𝑧2−1𝑘0(𝑤
2 − 1)| < 𝜖 

for all (𝑤2 − 1) ∈ 𝐷(0, 1 + 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (we have uniform convergence to 0 on the compact set 

𝐷(0, 1 + 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) . Therefore the second integral is no greater than 

𝜖 ∫
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝜑(𝑧2−1)(𝑤2−1)‖𝐴2

𝑎2−1

𝑑𝜆(𝑤2 − 1)

‖𝐾𝑤2−1‖𝐴2

 

𝐷(0,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= 𝜖 ∫ |〈𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝜑(𝑧2−1)(𝑤2−1)‖𝐴2

𝑎2−1

𝑑𝜆(𝑤2 − 1)

‖𝐾(𝑤2−1)‖𝐴2

 

𝐷(0,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

≤ 𝐶(𝑎2 − 1)𝜖. 
Here we have used (22). Since 𝜖 > 0 was arbitrary we are done with the proof.  

Corollary (6.2.28)[200]: Let 𝑇 be a weakly localized operator on 𝐴2. If 

lim
|𝑧2−1|→1

〈𝑇𝑘𝑧2−1, 𝑘𝑧2−1〉𝐴2 = 0, 

then 𝑇 is compact. 

Proof. Notice first that 

〈𝑇𝑓, 𝑘𝑤2−1〉𝐴2 = 〈𝑓, 𝑇
∗𝑘𝑤2−1〉𝐴2 = ∫〈𝑓, 𝑘𝑧2−1〉𝐴2〈𝑘𝑧2−1, 𝑇

∗𝑘𝑤2−1〉𝐴2

 

𝔹𝑛

𝑑𝜆(𝑧2 − 1)

= ∫〈𝑇𝑘𝑧2−1, 𝑘𝑧2−1〉𝐴2〈𝑓, 𝑘𝑧2−1〉𝐴2

 

𝔹𝑛

𝑑𝜆(𝑧2 − 1). 

For each 𝜖 ≥ 0 define an operator 𝑇1+𝜖 by 



189 

 

〈𝑇1+𝜖𝑓, 𝑘𝑤2−1〉𝐴2 ≔ ∫ 〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2〈𝑓, 𝑘𝑧2−1〉𝐴2𝑑𝜆(𝑧
2 − 1)

 

𝐷(0,1+𝜖)

. 

These are basically the operators (𝑇 + 𝜖)[1+𝜖] that Axler and Zheng use in [76]. It is easy to 

see that these are all Hilbert-Schmidt operators by testing the square integrability of the 

kernel. Therefore, it suffices to show that 𝑇1+𝜖 → 𝑇 in the operator norm. 

Let 𝜖 > 0 and let 𝑓 ∈ 𝐴2 be an arbitrary element of norm 1. We have 

‖(𝑇 − 𝑇1+𝜖)𝑓‖𝐴2
2 = ∫|〈(𝑇 − 𝑇1+𝜖)𝑓, 𝑘𝑤2−1〉𝐴2|

2

 

𝔹𝑛

𝑑𝜆(𝑤2 − 1). 

We first examine the integrand. 

|〈(𝑇 − 𝑇1+𝜖)𝑓, 𝑘𝑤2−1〉𝐴2| ≤ ∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2〈𝑓, 𝑘𝑧2−1〉𝐴2|𝑑𝜆(𝑧
2 − 1)

 

𝐷(0,1+𝜖)𝑐

= ∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
1/2
‖𝐾𝑤2−1‖𝐴2

𝑎2−1
2

‖𝐾𝑧2−1‖𝐴2

𝑎2−1
2

|〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
1/2|〈𝑓, 𝑘𝑧2−1〉𝐴2|

 

𝐷(0,1+𝜖)

×
‖𝐾𝑧2−1‖𝐴2

𝑎2−1
2

‖𝐾𝑤2−1‖𝐴2

𝑎2−1
2

𝑑𝜆(𝑧2 − 1)

≤ ( ∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑤2−1‖𝐴2

𝑎2−1

‖𝐾𝑧2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑧2 − 1)

 

𝐷(0,1+𝜖)𝑐

)

1
2

× ( ∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

|〈𝑓, 𝑘𝑧2−1〉𝐴2|
2𝑑𝜆(𝑧2 − 1)

 

𝐷(0,1+𝜖)𝑐

)

1
2

≲ ( ∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

|〈𝑓, 𝑘𝑧2−1〉𝐴2|
2𝑑𝜆(𝑧2 − 1)

 

𝐷(0,1+𝜖)𝑐

)

1
2

. 

Here, the implied constant depends on (1.5). Thus, after an application of Fubini, we obtain 

‖(𝑇 − 𝑇1+𝜖)𝑓‖𝐴2
2

≲ ∫ ( ∫|〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2
 

𝔹𝑛

 

𝐷(0,1+𝜖)𝑐

− 1)) |〈𝑓, 𝑘𝑧2−1〉𝐴2|
2𝑑𝜆(𝑧2 − 1) . 

Notice that the variable (𝑧2 − 1) in the inner integral is from 𝐷(0, 1 + 𝜖)𝑐. Therefore, by 

Corollary (6.2.27), we can choose 𝜖 ≥ 0 large enough so that for (𝑧2 − 1) ∈ 𝔹𝑛 with 

|𝑧2 − 1| sufficiently close to 1 
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∫|〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉𝐴2|
‖𝐾𝑧2−1‖𝐴2

𝑎2−1

‖𝐾𝑤2−1‖𝐴2
𝑎2−1

𝑑𝜆(𝑤2 − 1)

 

𝔹𝑛

< 𝜖. 

Therefore, for such large (1 + 𝜖) we have 

‖(𝑇 − 𝑇1+𝜖)𝑓‖𝐴2
2 ≲ ∫ 𝜖|〈𝑓, 𝑘𝑧2−1〉𝐴2|

2𝑑𝜆(𝑧2 − 1)

 

𝐷(0,1+𝜖)𝑐

≲ 𝜖‖𝑓‖𝐴2
2 = 𝜖. 

This proves that 𝑇1+𝜖 → 𝑇 in the operator norm, and so we are done.  

Corollary (6.2.29)[200]: Let 𝑇:ℱ2 → ℱ2 be a linear operator satisfying (21). Then there 

exists 𝜖 ≥ 0 such that for the covering ℱ1+𝜖 = {𝐹𝑗} (associated to (1 + 𝜖)) from Proposition 

(6.2.18). 

‖𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

‖

ℱ2→𝐿2(ℂ𝑛; 𝑒−|𝑧
2−1|

2
 𝑑𝜐(𝑧2−1))

< 𝜖. 

Proof. Define 

𝑇 + 𝜖 = 𝑇𝑃 −∑𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

𝑗

 

It suffices to show that we can find an 𝜖 ≥ 0 so that 

‖(𝑇 + 𝜖)𝑓‖ℱ2 ≲ ϵ‖𝑓‖ℱ2 . 
Given 𝜖 choose (1 + 𝜖) large enough so that 

sup
(𝑧2−1)∈ℂ𝑛

∫ |〈𝑇∗𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|𝑑𝜐(𝑤
2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐

< 𝜖 

and 

sup
(𝑧2−1)∈ℂ𝑛

∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|𝑑𝜐(𝑤
2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐

< 𝜖. 

Note that for any (𝑧2 − 1) ∈ ℂ𝑛 we have that 

|(𝑇 + 𝜖)𝑓(𝑧2 − 1)|

≤ ∫∑1𝐹𝑗(𝑧2−1)1𝐺𝑗
𝑐(𝑤2 − 1)|〈𝑇∗𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2||𝑓(𝑤

2 − 1)|𝑑𝜎(𝑤2 − 1)

 

𝑗

 

ℂ𝑛

= ∫|〈𝑇∗𝐾𝑧2−1, 𝐾𝑤2−1〉ℱ2||𝑓(𝑤
2 − 1)|𝑑𝜎(𝑤2 − 1)

 

𝐺𝑗
𝑐

. 

Now 
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‖(𝑇 + 𝜖)𝑓‖ℱ2
2 = ∫|(𝑇 + 𝜖)𝑓(𝑧2 − 1)|2𝑑𝜎(𝑧2 − 1)

 

ℂ𝑛

≤ ∫( ∫ |〈𝑇∗𝐾𝑧2−1, 𝐾𝑤2−1〉ℱ2||𝑓(𝑤
2 − 1)|𝑑𝜎(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)2

)

2

𝑑𝜎(𝑧2 − 1)

 

ℂ𝑛

≤ ∫( ∫ |〈𝑇∗𝐾𝑧2−1, 𝐾𝑤2−1〉ℱ2||𝑓(𝑤
2 − 1)|2𝑑𝜎(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)2

)

 

ℂ𝑛

× ( ∫ |〈𝑇∗𝐾𝑧2−1, 𝐾𝑤2−1〉ℱ2|𝑑𝜎(𝑤
2 − 1)

 

𝐷(𝑧2−1,1+𝜖)2

)𝑑𝜎(𝑧2 − 1)

= ∫( ∫ |〈𝑇∗𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2||〈𝑓, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)2

)

 

ℂ𝑛

× ( ∫ |〈𝑇∗𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|𝑑𝜐(𝑤
2 − 1)

 

𝐷(𝑧2−1,1+𝜖)2

)𝑑𝜐(𝑧2 − 1) 

≤ 𝜖 ∫( ∫ |〈𝑇∗𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2||〈𝑓, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)2

)𝑑𝜐(𝑧2 − 1)

 

ℂ𝑛

= 𝜖 ∫|〈𝑓, 𝑘𝑤2−1〉ℱ2|
2 ( ∫ |〈𝑇∗𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|𝑑𝜐(𝑤

2 − 1)

 

𝐷(𝑧2−1,1+𝜖)2

)𝑑𝜐(𝑤2 − 1)

 

ℂ𝑛

≤ 𝜖 ∫|〈𝑓, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

ℂ𝑛

= 𝜖2‖𝑓‖ℱ2
2 . 

Corollary (6.2.30)[200]: Let 𝑇:ℱ2 → ℱ2 be a bounded linear operator in the 𝐶∗-algebra 

generated by weakly localized operators satisfying (19). If 

lim
|𝑧2−1|→∞

〈𝑇𝑘𝑧2−1, 𝑘𝑧2−1〉ℱ2 = 0, 

then 

lim
|𝑧2−1|→∞

‖𝑇𝑘𝑧2−1‖ℱ2 = 0. 

Proof. Let 𝜖 > 0 be given. Note that we have 

‖𝑇𝑘𝑧2−1‖ℱ2
2 = ∫|〈𝑇𝑘𝑧2−1, 𝑘𝑧2−1〉ℱ2|

2𝑑𝜐(𝑤2 − 1)

 

ℂ𝑛

= ( ∫ + ∫  

 

𝐷(𝑧2−1,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

𝐷(𝑧2−1,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

) |〈𝑇𝑘𝑧2−1, 𝑘𝑧2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1) = 𝐼 + 𝐼𝐼. 

For term 𝐼𝐼 we use a standard approximation result. Since 𝑇 is in the 𝐶∗-algebra generated 

by (1.6), given 𝜖 > 0 we can find 𝑇′ that is weakly localized so that 

‖𝑇 − 𝑇′‖ℱ2→ℱ2 < 𝜖. 
Now choose (1 + 𝜖) sufficiently large so that 

sup
(𝑧2−1)∈ℂ𝑛

∫ |〈𝑇′𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

< 𝜖 
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which is possible since 𝑇′ satisfies (26). We use this to estimate 𝐼𝐼. 

𝐼𝐼 = ∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

≲ ∫ |〈𝑇′𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ ∫ |〈(𝑇 − 𝑇′)𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

. 

The first term is controlled by the choice of (1 + 𝜖) above. We also have that for this choice 

of (1 + 𝜖) (actually all (1 + 𝜖)) that 

sup
(𝑧2−1)∈ℂ𝑛

∫ |〈(𝑇 − 𝑇′)𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

≤ sup
(𝑧2−1)∈ℂ𝑛

∫|〈(𝑇 − 𝑇′)𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

ℂ𝑛

 

= sup
(𝑧2−1)∈ℂ𝑛

‖(𝑇 − 𝑇′)𝑘𝑧2−1‖ℱ2
2 ≤ ‖(𝑇 − 𝑇′)𝑘𝑧2−1‖ℱ2→ℱ2 < 𝜖. 

Then then yields that 

sup
(𝑧2−1)∈ℂ𝑛

∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

≲ 𝜖 

Now for term 𝐼, note that we have 

∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= ∫ |〈𝑇𝑧2−1𝑘0, 𝑘𝜑
(𝑧2−1)

(𝑤2−1)〉ℱ2|
2
𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= ∫ |〈𝑇𝑧2−1𝑘0, 𝑘𝜑
(𝑧2−1)

(𝑤2−1)〉ℱ2|
2
𝑑𝜐(𝑤2 − 1)

 

𝐷(0,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫ |𝑇𝑧2−1𝑘0(𝑤
2 − 1)|2

𝑑𝜐(𝑤2 − 1)

‖𝐾𝑤2−1‖ℱ2
2

 

𝐷(0,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫ |𝑇𝑧2−1𝑘0(𝑤
2 − 1)|2𝑑𝜎(𝑤2 − 1).

 

𝐷(0,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

We can choose (𝑧2 − 1) with |𝑧2 − 1| large enough so that |𝑇𝑧2−1𝑘0(𝑤
2 − 1)| < 𝜖 for all 

(𝑤2 − 1) ∈ 𝐷(0, 1 + 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (we have uniform convergence to 0 on the compact set 

𝐷(0, 1 + 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). Furthermore, we have that 𝜎(𝐷(0, 1 + 𝜖)) ≤ 𝜎(ℂ𝑛) < ∞, and so 
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∫ |〈𝑇𝑘𝑧2−1, 𝑘𝑤2−1〉ℱ2|
2𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= ∫ |〈𝑇𝑧2−1𝑘0, 𝑘𝜑
(𝑧2−1)

(𝑤2−1)〉ℱ2|
2
𝑑𝜐(𝑤2 − 1)

 

𝐷(𝑧2−1,1+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

< 𝜖. 

 

Thus, we have 

lim
|𝑧2−1|→∞

‖𝑇𝑘𝑧2−1‖ℱ2
2 = 0. 

Section (6.3): Toeplitz Algebra on the Bergman Space 

We begin with a discussion of localized operators. Let 𝐁 denote the open unit ball 

{𝑧 ∈ ℂ𝑛: |𝑧| < 1} in 𝐂𝑛. The Bergman metric on 𝐁 is given by the formula 

𝛽(𝑧, 𝑤) =
1

2
log
1 + |𝜑𝑧(𝑤)|

1 − |𝜑𝑧(𝑤)|
 , 𝑧, 𝑤 ∈ 𝐁, 

where 𝜑𝑧 is the Möbius transform of the ball given in [79]. For each 𝑧 ∈ 𝐁 and each 𝑟 > 0, 

the corresponding 𝛽-ball will be denoted by 𝐷(𝑧, 𝑟). That is, 

𝐷(𝑧, 𝑟) = {𝑤 ∈ 𝐁: 𝛽(𝑧, 𝑤) < 𝑟} 
Let 𝑑𝑣 be the volume measure on 𝐁 with the normalization 𝑣(𝐁) = 1. Then the formula 

𝑑𝜆(𝑧) =
𝑑𝑣(𝑧)

(1 − |𝑧|2)𝑛+1
 

gives us the standard Möbius-invariant measure on 𝐁. 

Recall that the Bergman space 𝐿𝑎
2 (𝑩, 𝑑𝜐) is the subspace 

{ℎ ∈ 𝐿2(𝑩, 𝑑𝜐): ℎ is analytic on 𝐁} 
of 𝐿2(𝑩, 𝑑𝜐). It is well known that the normalized reproducing kernel for the Bergman space 

is given by the formula 

𝑘𝑧(𝜁) =
(1 − |𝑧|2)(𝑛+1)/2

(1 − 〈𝜁, 𝑧〉)𝑛+1
 , 𝑧, 𝜁 ∈ 𝐁.                          (27) 

It was first discovered in [190] that localization is a powerful tool for analyzing operators 

on reproducing-kernel Hilbert spaces. This idea was further explored in [184]. More 

specially, in [184] Isralowitz, Mitkovski and Wick introduced the notion of weakly localized 

operators on the Bergman space. Below we give a slightly more refined version of their 

definition. Our refinement lies in the realization that we can define a class of localized 

operators for each given localization parameter 𝑠. 
Definition (6.3.1)[192]: Let a positive number (𝑛 − 1)/(𝑛 + 1)  < 𝑠 < 1 be given. 

(a) A bounded operator 𝐵 on the Bergman space 𝐿𝑎
2 (𝑩, 𝑑𝜐) is said to be 𝑠-weakly localized 

if it satisfies the conditions 

sup
𝑧∈𝐁

∫|〈𝐵𝑘𝑧, 𝑘𝑤〉|  (
(1 − |𝑤|2)

(1 − |𝑧|)2
)

𝑠(𝑛+1)/2

𝑑𝜆(𝑤) < ∞,

sup
𝑧∈𝐁

∫|〈𝐵∗𝑘𝑧, 𝑘𝑤〉|  (
(1 − |𝑤|2)

(1 − |𝑧|)2
)

𝑠(𝑛+1)/2

𝑑𝜆(𝑤) < ∞,

lim
𝑟→∞

sup
𝑧∈𝐁

∫ |〈𝐵𝑘𝑧, 𝑘𝑤〉|  (
(1 − |𝑤|2)

(1 − |𝑧|)2
)

𝑠(𝑛+1)/2

𝑑𝜆(𝑤)

 

𝐁\𝐷(𝑧,𝑟)

= 0 
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and 

lim
𝑟→∞

sup
𝑧∈𝐁

∫ |〈𝐵∗𝑘𝑧, 𝑘𝑤〉|  (
(1 − |𝑤|2)

(1 − |𝑧|)2
)

𝑠(𝑛+1)/2

𝑑𝜆(𝑤)

 

𝐁\𝐷(𝑧,𝑟)

= 0. 

(b) Let 𝒜𝑆 denote the collection of s-weakly localized operators defined as above. 

(c) Let 𝐶∗(𝒜𝑆) denote the 𝐶∗-algebra generated by 𝒜𝑆. 
For each (𝑛 − 1)/(𝑛 + 1) < 𝑠 < 1, the simplest examples of 𝑠-weakly localized 

operators are the Toeplitz operators, which, as we recall, are defined as follows. Let 

𝑃: 𝐿2(𝑩, 𝑑𝜐) → 𝐿𝑎
2 (𝑩, 𝑑𝜐) be the orthogonal projection. Then for 𝑓 ∈ 𝐿∞(𝑩, 𝑑𝜐), the 

formula 

𝑇𝑓ℎ = 𝑃(𝑓ℎ),       ℎ ∈ 𝐿𝑎
2 (𝑩, 𝑑𝜐), 

defines the Toeplitz operator 𝑇𝑓. Also recall that the Toeplitz algebra 𝒯 on 𝐿𝑎
2 (𝑩, 𝑑𝜐) is the 

𝐶∗-algebra generated by the collection of Toeplitz operators 

{𝑇𝑓: 𝑓 ∈ 𝐿
∞(𝑩, 𝑑𝜐)}. 

It was shown in [184] that 𝒜𝑠 ⊃ {𝑇𝑓: 𝑓 ∈ 𝐿
∞(𝑩, 𝑑𝜐)}, hence 𝐶∗(𝒜𝑠) ⊃ 𝒯. 

In [189], Suárez showed that for 𝐴 ∈ 𝒯, the condition 

 lim
|𝑧|↑1

〈𝐴𝑘𝑧 , 𝑘𝑧〉 = 0                                                       (28) 

implies that 𝐴 is compact. In [184], Isralowitz, Mitkovski and Wick showed that for 𝐴 ∈
𝐶∗(𝒜𝑠), condition (28) also implies that 𝐴 is compact. The introduction of the notion of 

weakly localized operators in [184] has the added virtue that it significantly simplifies the 

work necessary to obtain the above result. Indeed the approach in [184] explains why such 

results should hold true. 

The results in [184], [189] certainly inspire further examinations of the inclusion 

relation 

𝒯 ⊂ 𝐶∗(𝒜𝑠).                                                        (29) 
Given what we know about Toeplitz operators (see, e.g., [193]-

[86],[196],[197],[198],[199]), the 𝐶∗-algebra 𝒯 is certainly much better understood than 

𝐶∗(𝒜𝑠). It is known, for example, that 𝒯 coincides with its commutator ideal [81], [182]. 

Thus an obvious question is, is the 𝐶∗-algebra 𝐶∗(𝒜𝑠) structurally different from 𝒯? 

Question (6.3.2)[192]: Is the inclusion in (29) proper for any (𝑛 − 1)/(𝑛 + 1) < 𝑠 < 1? Is 

there any difference between 𝐶∗(𝒜𝑠) and 𝐶∗(𝒜𝑡) for 𝑠 ≠ 𝑡 in the interval ((𝑛 − 1)/(𝑛 +
1), 1)?  

The answer, as it turns out, is somewhat surprising: 

Theorem (6.3.3)[192]: For every (𝑛 − 1)/(𝑛 + 1) < 𝑠 < 1 we have 𝐶∗(𝒜𝑠) = 𝒯 . 
An immediate consequence of Theorem (6.3.3) is, of course, that 𝐶∗(𝒜𝑠) = 𝐶

∗(𝒜𝑡) 
for all 𝑠, 𝑡 ∈ ((𝑛 − 1)/(𝑛 + 1), 1). We emphasize that this equality at the level of 𝐶∗-
algebras is obtained without knowing whether there is any kind of inclusion relation between 

the classes 𝒜𝑠 and 𝒜𝑡 in the case 𝑠 ≠ 𝑡. 
Although Question (6.3.2) was the original motivation, our approach to this problem 

naturally leads us to a stronger result, a result that simultaneously settles a much older 

question. Let us introduce 

Definition (6.3.4)[192]: Let 𝒯1 denote the closure of {𝑇𝑓: 𝑓 ∈ 𝐿
∞(𝑩, 𝑑𝜐)} with respect to 

the operator norm. 

Below is our main result, which not only answers Question (6.3.2), but also tells us 

something significant about the Toeplitz algebra 𝒯 itself. 



195 

 

The documented history of interest in 𝒯(1) can be traced at least back to [83], [195], 

where Engliš showed that it contains all the compact operators on 𝐿𝑎
2 (𝑩, 𝑑𝜐). 

Later in [198], Suárez took another look at 𝒯(1). There he introduced a sequence of 

higher Berezin transforms 𝐵1, … , 𝐵𝑘, …,, which are generalizations of the original Berezin 

transform 𝐵0. Suárez expressed his belief that every operator 𝑆 in 𝒯 is the limit in operator 

norm of the sequence of Toeplitz operators {𝑇𝐵𝑘(𝑆)}. If this is true, then it certainly implies 

that 𝒯(1) = 𝒯. One can only speculate that, perhaps, the equality 𝒯(1) = 𝒯 was what Suárez 

had in mind all along, and the higher Berezin transforms were his tools to try to prove it. 

While we still do not know if it is true that  

lim
𝑘→∞

‖𝑇𝐵𝑘(𝑆) − 𝑆‖ = 0 

for every 𝑆 ∈ 𝒯, the equality 𝒯(1) = 𝒯 is now proven using completely different ideas. 

From the proof of Theorem (6.3.13), we see that the approximation of a general 𝑆 ∈ 𝒯 by 

Toeplitz operators is quite complicated: it takes several stages. 

Let us give an outline for the proof of Theorem (6.3.13). Since each 𝒜𝑠 is known to 

be a *-algebra that contains {𝑇𝑓: 𝑓 ∈ 𝐿
∞(𝑩, 𝑑𝜐)} [184], it suffices to show that 𝒜𝑠 ⊂ 𝒯

(1). 

An elementary 𝐶∗-algebraic argument further reduces this to the proof of the inclusion  

𝑇Φ𝒜𝑠𝑇Φ ⊂ 𝒯
(1) 

for a suitably chosen Toeplitz operator 𝑇Φ that is both positive and invertible. We can pick 

the function Φ in such a way that for every 𝐵 ∈ 𝒜𝑠, the operator 𝑇Φ𝐵𝑇Φ is “resolved” in 

the form 

𝑇Φ𝐵𝑇Φ = ∫ ∫ 𝐸𝑤𝐵𝐸𝑧𝑑𝜆(𝑤)𝑑𝜆(𝑧)

 

𝐷(0,2)×𝐷(0,2)

, 

where each 𝐸𝑧 is a sum of rank-one operators over a lattice: 

𝐸𝑧 =∑𝑘𝜑𝑢(𝑧)⊗𝑘𝜑𝑢(𝑧)

 

𝑢∈ℒ

. 

A crucial ingredient in the proof is the norm estimate in Lemma (6.3.10) below. This 

estimate has a number of implications, and one of the implications is that the map (𝑤, 𝑧) ⟼
𝐸𝑤𝐵𝐸𝑧 is continuous with respect to the operator norm. This norm continuity immediately 

implies that 𝑇Φ𝐵𝑇Φ is contained in the norm closure of the linear span of  

{𝐸𝑤𝐵𝐸𝑧: 𝑤, 𝑧 ∈ 𝐁}. 

Thus we can complete the proof by showing that 𝐸𝑤𝐵𝐸𝑧 ∈ 𝒯
(1) for all 𝑧, 𝑤 ∈ 𝐁. One can 

think of 𝐸𝑤𝐵𝐸𝑧 as an infinite matrix. The localization condition for 𝐵 ensures that the terms 

in 𝐸𝑤𝐵𝐸𝑧 that are “far from the diagonal” form an operator of small norm. The rest of the 

terms in 𝐸𝑤𝐵𝐸𝑧 are a linear combination of operators in a special class 𝒟0 (see Definition 

(6.3.14)). In other words, 𝐸𝑤𝐵𝐸𝑧 can be approximated in norm by operators in the linear 

span of 𝒟0. Then, with several applications of the estimate in Lemma (6.3.10), we are able 

to show that 𝒟0 ⊂ 𝒯
(1), accomplishing our goal. 

We discuss the analogue of Theorem (6.3.13) on the Fock space. 

Definition (6.3.5)[192]: A subset Γ of 𝐁 is said to be separated if there is a 𝛿 = 𝛿(Γ) > 0 

such that the inequality 𝛽(𝑢, 𝑣) ≥ 𝛿 holds for all 𝑢 ≠ 𝑣 in Γ. 

Recall that for each 𝑧 ∈ 𝐁\{0} , the Möbius transform 𝜑𝑧 is given by the formula 

𝜑𝑧(𝜁) =
1

1 − 〈𝜁, 𝑧〉
{𝑧 −

〈𝜁, 𝑧〉

|𝑧|2
𝑧 − (1 − |𝑧|2)1/2 (𝜁 −

〈𝜁, 𝑧〉

|𝑧|2
𝑧)} 
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Also, we define 𝜑0(𝜁) = −𝜁. Recall that each 𝜑𝑧 is an involution, i.e., 𝜑𝑧 ∘ 𝜑𝑧 = id [79]. 

Let us list some of the elementary properties of separated sets that will be used repeatedly 

in the sequel. 

Lemma (6.3.6)[192]: Let Γ be a separated set in 𝐁. 

(a) For each 0 < 𝑅 < ∞, there is a natural number 𝑁 = 𝑁(Γ;𝑅) such that 

card {𝑣 ∈ Γ: 𝛽(𝑢, 𝑣) ≤ 𝑅} ≤ 𝑁 for every 𝑢 ∈ Γ. 

(b)  For every pair of 𝑧 ∈ 𝐁 and 𝜌 > 0, there is a finite partition Γ = Γ1 ∪ …∪ Γ𝑚 such 

that for every 𝑖 ∈ {1,… ,𝑚}, the conditions 𝑢, 𝑣 ∈ Γ𝑖 and 𝑢 ≠ 𝑣 imply 

𝛽(𝜑𝑢(𝑧), 𝜑𝑣(𝑧)) > 𝜌. 
Proof. By definition, there is a 𝛿 > 0 such that 𝛽(𝑢, 𝑣) ≥ 𝛿 for all 𝑢 ≠ 𝑣 in Γ. Thus 

𝐷(𝑢, 𝛿/2) ∩ 𝐷(𝑣, 𝛿/2) = ∅     for all   𝑢 ≠ 𝑣    in Γ. 
Let 𝑅 > 0 be given. Then for every pair of 𝑢, 𝑣 ∈ Γ, the condition 𝛽(𝑢, 𝑣) ≤ 𝑅 implies 

𝐷(𝑣, 𝛿/2) ⊂ 𝐷(𝑢, 𝑅 + (𝛿/2)). By the Möbius invariance of the Bergman metric 𝛽 and the 

measure 𝑑𝜆, we have 

𝜆(𝐷(𝛿/2)) = 𝜆(𝜑𝑣(𝐷(0, 𝛿/2)) = 𝜆(𝐷(0, 𝛿/2)). 
Therefore if we write 𝑁(𝑢) for the cardinality of the set {𝑣 ∈ Γ: 𝛽(𝑢, 𝑣) ≤ 𝑅}, then 

𝑁(𝑢)𝜆(𝐷(0, 𝛿/2))

= ∑ 𝜆(𝐷(𝑣, 𝛿/2)) ≤ 𝜆(𝐷(𝑢, 𝑅 + (𝛿/2)) = 𝜆 (𝐷(0, 𝑅 + (𝛿/2))) .

 

𝑣∈Γ
𝛽(𝑢,𝑣)≤𝑅

 

That is, 𝑁(𝑢) ≤ 𝜆(𝐷(0, 𝑅 + (𝛿/2))/𝜆(𝐷(0, 𝛿/2)), which proves (i). 

To prove (ii), let 𝑧 ∈ 𝐁 and 𝜌 > 0 be given, and set 𝑟 = 𝜌 + 2𝛽(𝑧, 0 ). By (i), there 

is an 𝑚 ∈ 𝑁 such that card {𝑣 ∈ Γ: 𝛽(𝑢, 𝑣) ≤ 𝑟} ≤ 𝑚 for every 𝑢 ∈ Γ. By a standard 

maximality argument, there is a partition Γ = Γ1 ∪ …∪ Γ𝑚 such that for every 𝑖 ∈ {1,… ,𝑚}, 
the conditions 𝑢, 𝑣 ∈ Γ𝑖 and 𝑢 ≠ 𝑣 imply 𝛽(𝑢, 𝑣) > 𝑟. But if 𝑢, 𝑣 satisfy the condition 

𝛽(𝑢, 𝑣) > 𝑟, then by the Möbius invariance of 𝛽 we have 

𝛽(𝜑𝑢(𝑧), 𝜑𝑣(𝑧)) ≥ 𝛽(𝑢, 𝑣) − 𝛽(𝜑𝑢(𝑧), 𝑢) − 𝛽(𝑣, 𝜑𝑣(𝑧))

= 𝛽(𝑢, 𝑣) − 𝛽(𝜑𝑢(𝑧), 𝜑𝑢(0)) − 𝛽(𝜑𝑣(0), 𝜑𝑣(𝑧))

= 𝛽(𝑢, 𝑣) − 𝛽(𝑧, 0) − 𝛽(0, 𝑧) > 𝑟 − 2𝛽(𝑧, 0) = 𝜌. 
This completes the proof.  

Lemma (6.3.7)[192]: For all 𝑢, 𝑣, 𝑥, 𝑦 ∈ 𝐁 we have 

(1 − |𝜑𝑢(𝑥)|
2)1/2(1 − |𝜑𝑣(𝑦)|

2)1/2

|1 − 〈𝜑𝑢(𝑥), 𝜑𝑣(𝑦)〉|
≤ 2𝑒𝛽(𝑥,0)+𝛽(𝑦,0)

(1 − |𝑢|2)1/2(1 − |𝑣|2)1/2

|1 − 〈𝑢, 𝑣〉|
. 

Proof. For 𝑎, 𝑏 ∈ 𝐁, we have 1 − |𝜑𝑎(𝑏)|
2 = (1 − |𝑎|2)(1 − |𝑏|2)/|1 − 〈𝑎, 𝑏〉2| [79]. 

Thus if we write 

𝛼 =
(1 − |𝑎|2)(1 − |𝑏|2)1/2

|1 − 〈𝑎, 𝑏〉2|
, 

then 

log
1

𝛼
≤
1

2
log
1 + |𝜑𝑎(𝑏)|

1 − |𝜑𝑎(𝑏)|
≤ log

2

𝛼
. 

Consequently 

      𝑒−𝛽(𝑎,𝑏) ≤
(1 − |𝑎|2)

1
2(1 − |𝑏|2)

1
2

|1 − 〈𝑎, 𝑏〉|
≤ 2𝑒−𝛽(𝑎,𝑏).                           (30) 
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For 𝑢, 𝑣, 𝑥, 𝑦 ∈ 𝐁, by the Möbius invariance of the Bergman metric, we have 

𝛽(𝜑𝑢(𝑧), 𝜑𝑣(𝑦)) ≥ 𝛽(𝑢, 𝑣) − 𝛽(𝜑𝑢(𝑥), 𝑢) − 𝛽(𝜑𝑣(𝑦), 𝑣) = 𝛽(𝑢, 𝑣) − 𝛽(𝑥, 0) − 𝛽(𝑦, 𝑧). 
Combining (30) with this inequality, we find that 

(1 − |𝜑𝑢(𝑥)|
2)1/2(1 − |𝜑𝑣(𝑦)|

2)1/2

|1 − 〈𝜑𝑢(𝑥), 𝜑𝑣(𝑦)〉|
≤ 2𝑒−𝛽(𝜑𝑢(𝑥),𝜑𝑣(𝑦)) ≤ 2𝑒𝛽(𝑥,0)+𝛽(𝑦,0)𝑒−𝛽(𝑢,𝑣)

≤ 2𝑒𝛽(𝑥,0)+𝛽(𝑦,0)
(1 − |𝑢|2)1/2(1 − |𝑣|2)1/2

|1 − 〈𝑢, 𝑣〉|
. 

This proves the lemma.  

Lemma (6.3.8)[192]: Let Γ be a separated set in 𝐁. Then there is a 0 < 𝐶(Γ) < ∞ such that 

∑(
(1 − |𝜉|2)1/2(1 − |𝑣|2)1/2

|1 − 〈𝜉, 𝑣〉|
)

𝑛+1 

𝑣∈Γ

(1 − |𝑣|2)(4𝑛+1)/8 ≤ 𝐶(Γ)(1 − |𝜉|2)(4𝑛+1)/8 

for every 𝜉 ∈ 𝐁. 

Proof. If Γ is a separated set in 𝐁, then there is a 𝛿 > 0 such that 𝛽(𝑢, 𝑣) ≥ 𝛿 for all 𝑢 ≠ 𝑣 

in Γ. Thus 𝐷(𝑢, 𝛿/2) ∩ 𝐷(𝑣, 𝛿/2) = ∅ for all 𝑢 ≠ 𝑣 in Γ. If 𝑤 ∈ 𝐷(𝑣, 𝛿/2), then 𝑣 ∈

𝐷(𝑤, 𝛿/2) = 𝜑𝑤(𝐷(0, 𝛿/2)). Thus If 𝑤 ∈ 𝐷(𝑣, 𝛿/2), then there is a 𝑣′ ∈ 𝐷(𝑣, 𝛿/2) such 

that 𝑣 = 𝜑𝑤(𝑣
′). Let 𝜉 ∈ 𝐁. Since 𝜉 = 𝜑𝜉(0), we can apply Lemma (6.3.8) to obtain 

 
(1 − |𝜉|2)1/2(1 − |𝑣|2)1/2

|1 − 〈𝜉, 𝑣〉|
≤ 2𝑒

𝛿
2
(1 − |𝜉|2)

1
2(1 − |𝑤|2)

1
2

|1 − 〈𝜉, 𝑤〉|
                (31) 

for every 𝑤 ∈ 𝐷(𝑣, 𝛿/2). Also, since 𝑣 = 𝜑𝑤(𝑣
′) and 𝑣′ ∈ 𝐷(0, 𝛿/2), we have 

1 − |𝑣|2 = 1 − |𝜑𝑤(𝑣
′)|2 =

(1 − |𝑣′|2)(1 − |𝑤|2)

|1 − 〈𝑣′, 𝑤〉|2
≤

4

1 − |𝑣′|2
(1 − |𝑤|2)

≤ 4𝑒2𝛽(𝑣
′,0)(1 − |𝑤|2) ≤ 4𝑒𝛿(1 − |𝑤|2).                                                       (32) 

Set 𝐶1 = (2𝑒
𝛿/2)

𝑛+1
(4𝑒𝛿)

(4𝑛+1)/8
. Then it follows from (30) and (31) that 

(
(1 − |𝜉|2)1/2(1 − |𝑣|2)1/2

|1 − 〈𝜉, 𝑣〉|
)

𝑛+1

(1 − |𝑣|2)(4𝑛+1)/8

≤ 𝐶1 (
(1 − |𝜉|2)1/2(1 − |𝑤|2)1/2

|1 − 〈𝜉, 𝑤〉|
)

𝑛+1

(1 − |𝑤|2)(4𝑛+1)/8 

for every 𝑤 ∈ 𝐷(𝑣, 𝛿/2). Hence for each 𝜁 ∈ 𝐁 we have 

∑(
(1 − |𝜉|2)1/2(1 − |𝑣|2)1/2

|1 − 〈𝜉, 𝑣〉|
)

𝑛+1

(1 − |𝑣|2)(4𝑛+1)/8
 

𝑣∈Γ

≤∑
𝐶1

𝜆 (𝐷 (𝑣,
𝛿
2)
)

 

𝑣∈Γ

∫ (
(1 − |𝜉|2)

1
2(1 − |𝑤|2)

1
2

|1 − 〈𝜉, 𝑤〉|
)

𝑛+1

(1 − |𝑤|2)
4𝑛+1
8 𝑑𝜆(𝑤)

𝐷(𝑣,
𝛿
2
)

≤
𝐶1

𝜆 (𝐷 (𝑣,
𝛿
2)
)

∫(
(1 − |𝜉|2)

1
2(1 − |𝑤|2)

1
2

|1 − 〈𝜉, 𝑤〉|
)

𝑛+1

(1 − |𝑤|2)
4𝑛+1
8 𝑑𝜆(𝑤).      (33) 

To estimate the last integral, note that 
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(1 − |𝜉|2)
1
2(1 − |𝑤|2)

1
2

|1 − 〈𝜉, 𝜑𝜉(𝜁)〉|
= (1 − |𝜁|2)1/2. 

Thus, making the substitution 𝑤 = 𝜑𝜉(𝜁) and using the Möbius invariance of 𝑑𝜆, we have 

∫(
(1 − |𝜉|2)

1
2(1 − |𝑤|2)

1
2

|1 − 〈𝜉, 𝑤〉|
)

𝑛+1

(1 − |𝑤|2)
4𝑛+1
8 𝑑𝜆(𝑤)

= ∫(1 − |𝜁|2)
(𝑛+1)
2 (1 − |𝜑𝜉(𝜁)|

2
)

(4𝑛+1)
8

𝑑𝜆(𝜁)

= ∫(1 − |𝜁|2)
(𝑛+1)
2 (

(1 − |𝜉|2)(1 − |𝜁|2)

(1 − 〈𝜉, 𝜁〉2)
)

(4𝑛+1)
8

𝑑𝜆(𝜁)

= (1 − |𝜉|2)(4𝑛+1)/8∫
𝑑𝑣(𝜁)

|1 − 〈𝜉, 𝜁〉|
𝑛+(

1
4
)(1 − |𝜁|2)3/8

= (∗). 

To further estimate (∗), let 𝑑𝜎 be the standard spherical measure on the unit sphere 

{𝑥 ∈ 𝐂𝑛: |𝑥| = 1}. There is a constant 𝐶2 such that 

∫
𝑑𝜎(𝑥)

|1 − 〈𝑧, 𝑥〉|
𝑛+(

1
4
)
≤

𝐶2
(1 − |𝑧|2)1/4

 

for every 𝑧 ∈ 𝐁 [79]. Combining this with the radial-spherical decomposition 𝑑𝑣 =
2𝑛𝑟2𝑛−1𝑑𝑟𝑑𝜎 of the volume measure, we have 

∫
𝑑𝑣(𝜁)

|1 − 〈𝜉, 𝜁〉|
𝑛+(

1
4
)(1 − |𝜁|2)3/8

≤ ∫
𝐶22𝑛𝑟

2𝑛−1𝑑𝑟

(1 − 𝑟2)(1/4)+(3/8)

1

0

≤ 𝑛𝐶2∫
𝑑𝑡

(1 − 𝑡)5/8

1

0

=
8

3
𝑛𝐶2. 

Therefore 

(∗) ≤ 3𝑛𝐶2(1 − |𝜉|
2)(4𝑛+1)/8. 

Substituting this in (33), we conclude that the desired inequality holds for the constant 

𝐶(Γ) =
3𝑛𝐶1𝐶2

𝜆(𝐷(0, 𝛿/2))
. 

This completes the proof.  

Recall that each Toeplitz operator has an “integral representation” in terms of the 

normalized reproducing kernel {𝑘𝑤: 𝑤 ∈ 𝐁}. Indeed for each 𝑓 ∈ 𝐿∞(𝐁, 𝑑𝑣), we have 

 𝑇𝑓 = ∫𝑓(𝑤)𝑘𝑤⊗𝑘𝑤𝑑𝜆(𝑤).                                     (34) 

This formula is obtained through direct verification. 

Let ℒ be a subset of 𝐁 which is maximal with respect to the property that 

 𝐷(𝑢, 1) ∩  𝐷(𝑣, 1) = ∅            for all  𝑢 ≠ 𝑣  in   ℒ.                   (35) 
This ℒ will be fixed for the rest. The maximality of ℒ implies that  

  ⋃𝐷(𝑢, 2)

 

𝑢∈ℒ

= 𝐁.                                                (36) 

Now, for each 𝑧 ∈ 𝐁, define 

    𝐸𝑧 =∑𝑘𝜑𝑢(𝑢)⊗𝑘𝜑𝑢(𝑢)

 

𝑢∈ℒ

.                                          (37) 

Define the function 
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  Φ = ∑𝜒𝐷(𝑢,2)

 

𝑢∈ℒ

                                                    (38) 

on 𝐁. By (35) and Lemma (6.3.6) (i), there is a natural number 𝒩 ∈ 𝑁 such that 

card {𝑣 ∈ ℒ: 𝐷(𝑢, 2) ∩ 𝐷(𝑣, 2) ≠ ∅} ≤ 𝒩 
for every 𝑢 ∈ ℒ. This and (35) together tell us that the inequality 

  1 ≤ Φ ≤ 𝒩                                                                   (39) 
holds on the unit ball 𝐁. By (34) and the Möbius invariance of 𝛽 and 𝑑𝜆, we have 

𝑇Φ = ∫Φ(𝑤)𝑘𝑤⊗𝑘𝑤𝑑𝜆(𝑤) = ∑ ∫ 𝑘𝑤⊗𝑘𝑤𝑑𝜆(𝑤)

 

𝐷(𝑢,2)

 

𝑢∈ℒ

=∑ ∫ 𝑘𝜑𝑢(𝑢)⊗𝑘𝜑𝑢(𝑢)𝑑𝜆(𝑧)

 

𝐷(0,2)

 

𝑢∈ℒ

. 

That is, we have 

   𝑇Φ = ∫ 𝐸𝑧𝑑𝜆(𝑧)

 

𝐷(0,2)

.                                 (40) 

Lemma (6.3.9)[192]: There is a constant 0 < 𝐶2.5 < 1 such that ‖𝐸𝑧‖ ≤ 𝐶2.5 for every 𝑧 ∈
𝐷(0,2). 
Proof. By Lemma (6.3.7), for 𝑢, 𝑣, 𝑧 ∈ 𝐁 we have 

  |〈𝑘𝜑𝑣(𝑧), 𝑘𝜑𝑢(𝑧)〉| = (
(1 − |𝜑𝑣(𝑧)|

2)1/2(1 − |𝜑𝑢(𝑧)|
2)1/2

|1 − 〈𝜑𝑢(𝑧), 𝜑𝑣(𝑧)〉|
)

𝑛+1

≤ (2𝑒2𝛽(𝑧,0))
𝑛+1

(
(1 − |𝑢|2)

1
2(1 − |𝑣|2)

1
2

|1 − 〈𝑢, 𝑣〉|
)

𝑛+1

.                    (41) 

Let {𝜖𝑢: 𝑢 ∈ ℒ} be an orthonormal set. For each 𝑧 ∈ 𝐁, define the operator 

  𝐹𝑧 =∑𝜖𝑢⊗𝑘𝜑𝑢(𝑧)

 

𝑢∈ℒ

.                                                        (42) 

Since 𝐸𝑧 = 𝐹𝑧
∗𝐹𝑧 and ‖𝐹𝑧

∗𝐹𝑧‖ = ‖𝐹𝑧𝐹𝑧
∗‖, it suffices to estimate the later. We have 

𝐹𝑧𝐹𝑧
∗ = ∑ 〈𝑘𝜑𝑣(𝑧), 𝑘𝜑𝑢(𝑧)〉𝜖𝑢⊗𝜖𝑣

 

𝑢,𝑣∈ℒ

. 

Now suppose that 𝑧 ∈ 𝐷(0,2) and write 𝐶1 = (2𝑒
4)𝑛+1. By (41), for every vector 𝑥 =

∑ 𝑥𝑢𝜖𝑢
 
𝑢,∈ℒ   we have 

〈𝐹𝑧𝐹𝑧
∗𝑥, 𝑥〉 ≤ ∑ |〈𝑘𝜑𝑣(𝑧), 𝑘𝜑𝑢(𝑧)〉||𝑥𝑢||𝑥𝑣|

 

𝑢,𝑣∈ℒ

≤ 𝐶1 ∑ (
(1 − |𝑢|2)1/2(1 − |𝑣|2)1/2

|1 − 〈𝑢, 𝑣〉|
)

𝑛+1 

𝑢,𝑣∈ℒ

|𝑥𝑢||𝑥𝑣| = 𝐶1∑|𝑥𝑢|𝑦𝑢

 

𝑢∈ℒ

,           (43) 

where 

𝑦𝑢 =∑(
(1 − |𝑢|2)1/2(1 − |𝑣|2)1/2

|1 − 〈𝑢, 𝑣〉|
)

𝑛+1 

𝑣∈ℒ

|𝑥𝑣| 

for each 𝑢 ∈ ℒ. Next we apply the Schur test. Indeed by the Cauchy-Schwarz inequality and 

Lemma (6.3.8), we have 
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𝑦𝑢
2 ≤ 𝐶(ℒ)(1 − |𝑢|2)

4𝑛+1
8 ×∑(

(1 − |𝑢|2)1/2(1 − |𝑣|2)1/2

|1 − 〈𝑢, 𝑣〉|
)

𝑛+1 

𝑣∈ℒ

|𝑥𝑣|
2

(1 − |𝑣|2)
4𝑛+1
8

. 

Applying Lemma (6.3.8) again, we have 

∑𝑦𝑢
2

 

𝑢∈ℒ

≤ 𝐶(ℒ)∑
|𝑥𝑣|

2

(1 − |𝑣|2)
4𝑛+1
8

 

𝑣∈ℒ

∑(1− |𝑢|2)
4𝑛+1
8 × (

(1 − |𝑢|2)1/2(1 − |𝑣|2)1/2

|1 − 〈𝑢, 𝑣〉|
)

𝑛+1 

𝑢∈ℒ

≤ 𝐶2(ℒ)∑
|𝑥𝑣|

2

(1 − |𝑣|2)
4𝑛+1
8

(1 − |𝑣|2)
4𝑛+1
8

 

𝑣∈ℒ

= 𝐶2(ℒ)∑|𝑥𝑣|
2

 

𝑣∈ℒ

. 

Combining this with (43), we find that 

〈𝐹𝑧𝐹𝑧
∗𝑥, 𝑥〉 ≤ 𝐶1𝐶(ℒ)∑|𝑥𝑣|

2

 

𝑢∈ℒ

= 𝐶1𝐶(ℒ)‖𝑥‖
2. 

Since the vector 𝑥 is arbitrary, we conclude that ‖𝐸𝑧‖ = ‖𝐹𝑧𝐹𝑧
∗‖ ≤ 𝐶1𝐶(ℒ) for every 𝑧 ∈

𝐷(0,2). This completes the proof.  

Recall that for each 𝑧 ∈ 𝐁, the formula 

 (𝑈𝑍ℎ)(𝜁) = 𝑘𝑧(𝜁)ℎ(𝜑𝑧(𝜁)),      𝜁 ∈ 𝐁    and   ℎ ∈ 𝐿𝑎
2 (𝐁, 𝑑𝑣),       (44) 

defines a unitary operator. These unitary operators will play an essential role. 

As usual, we write 𝐻∞(𝐁) for the collection of bounded analytic functions on 𝐁. Also, 

we write ‖ℎ‖∞ = sup
𝜁∈𝐁
|ℎ𝜁| for ℎ ∈ 𝐻∞(𝐁). Naturally, we consider 𝐻∞(𝐁) as a subset of the 

Bergman space 𝐿𝑎
2 (𝐁, 𝑑𝑣). 

Lemma (6.3.10)[192]: Given any separated set Γ in 𝐁, there exists a constant 0 < 𝐵(Γ) <
∞ such that the following estimate holds: Let {ℎ𝑢: 𝑢 ∈ Γ} be functions in 𝐻∞(𝐁) such that 

sup
𝑢∈Γ
‖ℎ𝑢‖∞ < ∞, and let {𝑒𝑢: 𝑢 ∈ Γ} be any orthonormal set. Then 

‖∑(𝑈𝑢ℎ𝑢) ⊗

 

𝑢∈Γ

𝑒𝑢‖ ≤ 𝐵(Γ) sup
𝑢∈Γ
‖ℎ𝑢‖∞. 

Proof. Given Γ, {ℎ𝑢: 𝑢 ∈ Γ} and {𝑒𝑢: 𝑢 ∈ Γ} as in the statement, let us write 

𝐴 =∑(𝑈𝑢ℎ𝑢)⊗

 

𝑢∈Γ

𝑒𝑢 

for convenience. By (39), the self-adjoint Toeplitz operator 𝑇Φ is invertible with ‖𝑇Φ
−1‖ <

1. Therefore ‖𝐴‖ = ‖𝑇Φ
−1𝑇Φ𝐴‖ ≤ ‖𝑇Φ𝐴‖. Combining this with (40), we see that 

      ‖𝐴‖ ≤ 𝜆(𝐷(0,2))    sup
𝑧∈𝐷(0,2)

‖𝐸𝑧𝐴‖.             (45) 

Thus it suffices to estimate ‖𝐸𝑧𝐴‖ for 𝑧 ∈ 𝐷(0,2). Let 𝐹𝑧 be the operator defined by (42). 

Then Lemma (6.3.9) implies that ‖𝐹𝑧
∗‖ ≤ 𝐶2.5

1/2
 for 𝑧 ∈ 𝐷(0,2). Hence 

       ‖𝐸𝑧𝐴‖ ≤ 𝐶2.5

1
2 ‖𝐹𝑧𝐴‖          𝑧 ∈ 𝐷(0,2).          (46) 

Consequently, we only need to estimate ‖𝐹𝑧𝐴‖. 

To estimate ‖𝐹𝑧𝐴‖, let us denote 

𝐻 = sup
𝑢∈Γ
‖ℎ𝑢‖∞ . 

Let 𝑧 ∈ 𝐷(0,2). Then note that 
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  𝐹𝑧𝐴 =∑∑〈𝑈𝑣ℎ𝑣, 𝑘𝜑𝑢(𝑧)〉𝜖𝑢⊗

 

𝑢∈Γ

𝑒𝑣

 

𝑢∈ℒ

.                   (47) 

Since 𝑈𝑣ℎ𝑣 = 𝑘𝑣 ⋅ ℎ𝑣 ∘ 𝜑𝑣, the reproducing property of 𝑘𝜑𝑢(𝑧) gives us 

〈𝑈𝑣ℎ𝑣, 𝑘𝜑𝑢(𝑧)〉 = ℎ𝑣 (𝜑𝑣(𝜑𝑢(𝑧))) 〈𝑘𝑣, 𝑘𝜑𝑢(𝑧)〉, 

which is one of the key facts on which depends. Thus 

|〈𝑈𝑣ℎ𝑣, 𝑘𝜑𝑢(𝑧)〉| ≤ 𝐻|〈𝑘𝑣, 𝑘𝜑𝑢(𝑧)〉| = 𝐻 (
(1 − |𝑣|2)1/2(1 − |𝜑𝑢(𝑧)|

2)1/2

|1 − 〈𝜑𝑢(𝑧), 𝑣〉|
)

𝑛+1

. 

Since 𝑣 = 𝜑𝑣(0) and 𝑧 ∈ 𝐷(0,2), an application of Lemma (6.3.7) gives us 

    |〈𝑈𝑣ℎ𝑣, 𝑘𝜑𝑢(𝑧)〉| ≤ 𝐶1𝐻(
(1 − |𝑣|2)

1
2(1 − |𝑢|2)

1
2

|1 − 〈𝑢, 𝑣〉|
)

𝑛+1

,                           (48) 

where 𝐶1 = (2𝑒
2)𝑛+1. Now consider vectors 

𝑥 =∑𝑥𝑣𝑒𝑣

 

𝑢∈Γ

       and        𝑦 = ∑𝑦𝑒𝜖𝑢

 

𝑢∈ℒ

. 

It follows from (47) and (48) that 

|〈𝐹𝑧𝐴𝑥, 𝑦〉| ≤ 𝐶1𝐻∑∑(
(1 − |𝑣|2)

1
2(1 − |𝑢|2)

1
2

|1 − 〈𝑢, 𝑣〉|
)

𝑛+1

|𝑥𝑣||𝑦𝑢|

 

𝑢∈Γ

 

𝑢∈ℒ

= 𝐶1𝐻∑𝑏𝑢|𝑦𝑢|

 

𝑢∈ℒ

,                                                                                           (49) 

where 

𝑏𝑢 =∑(
(1 − |𝑣|2)1/2(1 − |𝑢|2)1/2

|1 − 〈𝑢, 𝑣〉|
)

𝑛+1

|𝑥𝑣|

 

𝑢∈Γ

, 

𝑢 ∈ ℒ. We apply the Schur test as we did in the proof of Lemma (6.3.9). By the Cauchy- 

Schwarz inequality and the bound given in Lemma (6.3.8), we have 

𝑏𝑢
2 ≤ 𝐶(Γ)(1 − |𝑢|)

4𝑛+1
8 ×∑(

(1 − |𝑣|2)1/2(1 − |𝑢|2)1/2

|1 − 〈𝑢, 𝑣〉|
)

𝑛+1
|𝑥𝑣|

2

(1 − |𝑣|2)
4𝑛+1
8

 

𝑣∈Γ

, 

𝑢 ∈ ℒ. Applying Lemma (6.3.8) again, we obtain 

∑𝑏𝑢
2

 

𝑢∈ℒ

≤ 𝐶(Γ)∑∑(1 − |𝑢|)
4𝑛+1
8 × (

(1 − |𝑣|2)1/2(1 − |𝑢|2)1/2

|1 − 〈𝑢, 𝑣〉|
)

𝑛+1
|𝑥𝑣|

2

(1 − |𝑣|2)
4𝑛+1
8

 

𝑢∈ℒ

 

𝑣∈Γ

= 𝐶(Γ)𝐶(ℒ)∑(1 − |𝑣|2)
4𝑛+1
8

|𝑥𝑣|
2

(1 − |𝑣|2)
4𝑛+1
8

 

𝑣∈Γ

= 𝐶(Γ)𝐶(ℒ)‖𝑥‖2. 

Combining this with (49), we obtain 

|〈𝐹𝑧𝐴𝑥, 𝑦〉| ≤ 𝐶1{𝐶(Γ)𝐶(ℒ)}
1/2𝐻‖𝑥‖‖𝑦‖. 

Since the vectors 𝑥 and 𝑦 are arbitrary, this means 

‖𝐹𝑧𝐴‖ ≤ 𝐶1{𝐶(Γ)𝐶(ℒ)}
1/2𝐻 

for 𝑧 ∈ 𝐷(0,2). Recalling (45) and (46), we see that the lemma holds for the constant 

𝐵(Γ) = 𝜆(𝐷(0,2))𝐶2.5
1/2
𝐶1{𝐶(Γ)𝐶(ℒ)}

1/2. 
This completes the proof.  
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Proposition (6.3.11)[192]: Suppose that Γ is a separated set in 𝐁. Furthermore, suppose that 

{𝑐𝑢: 𝑢 ∈ Γ} are complex numbers satisfying the condition 

     sup
𝑢∈Γ
|𝑐𝑢| < ∞.                                        (50) 

Then for each 𝑧 ∈ 𝐁, the operator 

  𝑌𝑧 =∑𝑐𝑢𝑘𝜑𝑢(𝑧)⊗𝑘𝜑𝑢(𝑢)

 

𝑢∈Γ

                                       (51) 

is bounded on the Bergman space. Moreover, the map 𝑧 ⟼ 𝑌𝑧 from 𝐁 into ℬ(𝐿𝑎
2 (𝐁, 𝑑𝑣)) is 

continuous with respect to the operator norm. 

Proof. For 𝑢, 𝑧 ∈ 𝐁, simple computation shows that 

  𝑈𝑢𝑘𝑧 = (
|1 − 〈𝑢, 𝑣〉|

1 − 〈𝑢, 𝑣〉
)

𝑛+1

𝑘𝜑𝑢(𝑧).                    (52) 

Therefore 

𝑘𝜑𝑢(𝑢)⊗𝑘𝜑𝑢(𝑢) = (𝑈𝑢𝑘𝑧)⊗ (𝑈𝑢𝑘𝑧). 

Let {𝑒𝑢: 𝑢 ∈ Γ} be an orthonormal set. Then for every 𝑧 ∈ 𝐁 we have the factorization 

𝑌𝑧 = 𝐴𝑧𝐵𝑧
∗, 

where 

𝐴𝑧 =∑𝑐𝑢(𝑈𝑢𝑘𝑧)⊗ 𝑒𝑢

 

𝑢∈Γ

       and           𝐵𝑧 =∑(𝑈𝑢𝑘𝑧)⊗ 𝑒𝑢

 

𝑢∈Γ

. 

Applying Lemma (6.3.10) to the case ℎ𝑢 = 𝑐𝑢𝑘𝑧, 𝑢 ∈ Γ, we see that each 𝐴𝑧 is a bounded 

operator. Similarly, each 𝐵𝑧 is also bounded. Hence 𝑌𝑧 = 𝐴𝑧𝐵𝑧
∗ is bounded. 

To show that the map 𝑧 ⟼ 𝑌𝑧 is continuous with respect to the operator norm, it 

suffices to show that the maps 𝑧 ⟼ 𝐴𝑧 and 𝑧 ⟼ 𝐵𝑧 are continuous with respect to the 

operator norm. Since 𝐵𝑧 is just a special case of 𝐴𝑧, it suffices to consider the map 𝑧 ⟼ 𝐴𝑧. 
For any 𝑧, 𝑤 ∈ 𝐁, we have 

𝐴𝑧 − 𝐴𝑤 =∑𝑐𝑢(𝑈𝑢(𝑘𝑧 − 𝑘𝑤))⊗ 𝑒𝑢

 

𝑢∈Γ

. 

Applying Lemma (6.3.10) to the case where ℎ𝑢 = 𝑐𝑢(𝑘𝑧 − 𝑘𝑤), 𝑢 ∈ Γ, we find that 

‖𝐴𝑧 − 𝐴𝑤‖ ≤ 𝐵(Γ)𝐶‖𝑘𝑧 − 𝑘𝑤‖∞ , 
where 𝐶 = sup

𝑢∈Γ
|𝑐𝑢|. For each 𝑧 ∈ 𝐁, it is elementary that 

lim
𝑤→𝑧

‖𝑘𝑧 − 𝑘𝑤‖∞ = 0. 

Hence the map 𝑧 ⟼ 𝐴𝑧 is continuous with respect to operator norm. This completes the 

proof.  

Let us recall two known facts about 𝒜𝑆. First, for each given (𝑛 − 1)/(𝑛 + 1) < 𝑠 <

1, we have 𝒜𝑠 ⊃ {𝑇𝑓: 𝑓 ∈ 𝐿
∞(𝑩, 𝑑𝜐)} [184]. Indeed by (34), this is a consequence of the 

fact 

lim
𝑟→∞

sup
𝑧∈𝐁

∫ |〈𝑘𝑧, 𝑘𝑤〉||〈𝑘𝑥, 𝑘𝑤〉| 𝑑𝜆(𝑥) (
(1 − |𝑤|2)

(1 − |𝑧|)2
)

𝑠(𝑛+1)/2

𝑑𝜆(𝑤)

 

𝐁\𝐷(𝑧,𝑟)

= 0. 

To prove this limit, the idea in [184] is to split the inner x-integral above as the sum of the 

part on 𝐷(𝑧, 𝑟/2) and the part on 𝐁\𝐷(𝑧, 𝑟/2). With such split, this limit follows from the 

Rudin-Forelli estimate [184]. 

Second, each 𝒜𝑠 is a ∗-algebra [184]. In this case, the gist of the matter is the limit 
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lim
𝑟→∞

sup
𝑧∈𝐁

∫ ∫|〈𝑇𝑘𝑧 , 𝑘𝑥〉||〈𝑘𝑥, 𝑆
∗𝑘𝑤〉| 𝑑𝜆(𝑥) × (

(1 − |𝑤|2)

(1 − |𝑧|)2
)

𝑠(𝑛+1)/2

𝑑𝜆(𝑤)

 

𝐁\𝐷(𝑧,𝑟)

= 0  (53) 

for 𝑆, 𝑇 ∈ 𝒜𝑠. To prove this, [184] splits the inner 𝑥-integral in the same way as above. 

Then it is easy to see that (53) follows from the localization condition for 𝑆 and 𝑇. 

Next comes the most crucial step in the proof of Theorem (6.3.13): 

Proposition (6.3.12)[192]: Let (𝑛 − 1)/(𝑛 + 1) < 𝑠 < 1. If 𝐵 ∈ 𝒜𝑠, then 𝐸𝑤𝐵𝐸𝑧 ∈ 𝒯
(1) 

for all 𝑧, 𝑤 ∈ 𝐁. 

Assuming Proposition (6.3.12), we have 

Theorem (6.3.13)[192]: For every (𝑛 − 1)/(𝑛 + 1) < 𝑠 < 1 we have 𝒯(1) = 𝐶∗(𝒜𝑠). 

Consequently,  𝒯(1) = 𝒯 = 𝐶∗(𝒜𝑠). 
Proof. Let (𝑛 − 1)/(𝑛 + 1) < 𝑠 < 1 be given. By the fact that 𝒜𝑠 is a ∗-algebra mentioned 

above, 𝐶∗(𝒜𝑠) is just the norm closure of 𝒜𝑠. Since we also know that 𝒜𝑠 ⊃

{𝑇𝑓: 𝑓 ∈ 𝐿
∞(𝑩, 𝑑𝜐)}, Theorem (6.3.13) will follow if we can show that 𝒜𝑠 ⊂ 𝒯

(1). We 

prove this inclusion into two steps. 

  (i) Let 𝐵 ∈ 𝒜𝑠 be given. As the first step, let us show that 𝑇Φ𝐵𝑇Φ ∈ 𝒯
(1). Indeed it 

follows from (40) that 

 𝑇Φ𝐵𝑇Φ = ∫ ∫ 𝐸𝑤𝐵𝐸𝑧𝑑𝜆(𝑤)𝑑𝜆(𝑧)

 

𝐷(0,2)×𝐷(0,2)

.                         (54) 

Consider the map 

         (𝑤, 𝑧) ↦ 𝐸𝑤𝐵𝐸𝑧                                (55) 
from 𝐁 × 𝐁 into ℬ(𝐿𝑎

2 (𝐁, 𝑑𝑣)). Proposition (6.3.12) tells us that the range of map (55) is 

contained in 𝒯(1). Hence every Riemann sum corresponding to the integral in (54) belongs 

to 𝒯(1). On the other hand, by Proposition (6.3.11), the map 𝑧 ↦ 𝐸𝑧 is continuous with 

respect to the operator norm. Hence map (55) is also continuous with respect to the operator 

norm. Since the closure of 𝐷(0,2) × 𝐷(0,2) is a compact subset of 𝐁 × 𝐁, the norm 

continuity of (55) means that the integral in (54) is the limit with respect to the operator 

norm of a sequence of Riemann sums 𝑠1, 𝑠2, … , 𝑠𝑘 , …. Since each 𝑠𝑘 belongs to 𝒯(1), so does 

𝑇Φ𝐵𝑇Φ. 

(ii) Given 𝐵 ∈ 𝒜𝑠, we will now show that 𝐵 ∈ 𝒯(1). Since 𝑇Φ ∈ 𝒜𝑠 and since 𝒜𝑠 is 

an algebra, we have 𝑇Φ
𝑗
𝐵𝑇Φ

𝑘 ∈ 𝒜𝑠 for all 𝑗, 𝑘 ∈ 𝐙+. Thus it follows from (i) that 

 𝑇Φ
𝑗+1
𝐵𝑇Φ

𝑘+1 ∈ 𝒯(1)          for all integers 𝑗 ≥ 0   and 𝑘 ≥ 0.                  (56) 
Let 𝐶∗(𝑇Φ) be the unital 𝐶∗-algebra generated by 𝑇Φ. Since 𝑇Φ is self-adjoint, (56) implies 

that 

𝑇Φ𝑋𝐵𝑇Φ𝑋 ∈ 𝒯
(1)               for every 𝑋 ∈ 𝐶∗(𝑇Φ). 

We again use the invertibility of 𝑇Φ, which is guaranteed by (39). It is elementary that the 

inverse 𝑇Φ
−1, once it exists, must belong to the 𝐶∗-algebra 𝐶∗(𝑇Φ). Thus, letting 𝑋 = 𝑇Φ

−1  

in the above, we obtain 𝐵 ∈ 𝒯(1). This completes the proof of Theorem (6.3.13). 

Our goal is to prove Proposition (6.3.12). 

Definition (6.3.14)[192]: (a) Let 𝒟0 denote the collection of operators of the form 

∑𝑐𝑢𝑘𝑢⊗𝑘𝛾(𝑢)

 

𝑢∈Γ

, 
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where Γ is any separated set in 𝐁, {𝑐𝑢: 𝑢 ∈ Γ} is any bounded set of complex coefficients, 

and 𝛾: Γ → 𝐁 is any map for which there is a 0 < 𝐶 < ∞ such that 

    𝛽(𝑢, 𝛾(𝑢)) ≤ 𝐶                                                     (57) 
for every 𝑢 ∈ Γ. 

 (b) Let 𝒟 denote the operator-norm closure of the linear span of 𝒟0. 

With 𝒟0 and 𝒟 we can divide the proof of Proposition (6.3.12) into two independent 

parts: 

We will see that the proofs of these two propositions are based on different ideas. 

More specifically, the proof of Proposition (6.3.20) relies on the estimate provided by 

Lemma (6.3.10), whereas the proof of Proposition (6.3.16) takes advantage of the 

localization condition of the operators in As. The proof of Proposition (6.3.10) begins with 

Lemma (6.3.15)[192]: Let (𝑛 − 1)/(𝑛 + 1) < 𝑠 < 1 be given. If 𝐵 ∈ 𝒜𝑠, then for every 

separated set Γ in 𝐁 and every pair of 𝑧, 𝑤 ∈ 𝐁 we have 

 lim
𝑅→∞

sup
𝑢∈Γ

∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤) 〉|

 

𝑢∈Γ
𝛽(𝑢,𝑣)>𝑅

(
1 − |𝑣|2

1 − |𝑢|2
)

𝑠(𝑛+1)/2

= 0          (57) 

and 

 lim
𝑅→∞

sup
𝑢∈Γ

∑ |〈𝑘𝜑𝑢(𝑧), 𝐵𝑘𝜑𝑣(𝑤) 〉|

 

𝑢∈Γ
𝛽(𝑢,𝑣)>𝑅

(
1 − |𝑣|2

1 − |𝑢|2
)

𝑠(𝑛+1)/2

= 0.         (59) 

Proof. Given such 𝑠 and 𝐵 ∈ 𝒜𝑠, by Definition (6.3.1) we have 

  lim
𝑟→∞

sup
𝑥∈𝐁

∫ |〈𝐵𝑘𝑥, 𝑘𝜁〉|  (
(1 − |𝜁|2)

(1 − |𝑥|)2
)

𝑠(𝑛+1)/2

𝑑𝜆(𝜁)

 

𝐁\𝐷(𝑥,𝑟)

= 0        (60) 

and 

  lim
𝑟→∞

sup
𝑥∈𝐁

∫ |〈𝐵∗𝑘𝑥, 𝑘𝜁〉|  (
(1 − |𝜁|2)

(1 − |𝑥|)2
)

𝑠(𝑛+1)/2

𝑑𝜆(𝜁)

 

𝐁\𝐷(𝑥,𝑟)

= 0.       (61) 

Let Γ, 𝑧 and 𝑤 also be given as in the lemma. Denote 𝐺 = 𝐷(0,1) and 𝐺𝑤 = 𝜑𝑤(𝐺). Then 

it is easy to see that 𝐺𝑤 ⊂ 𝐷(0,1 + 𝛽(𝑤, 0)). For ℎ ∈ 𝐿𝑎
2 (𝐁, 𝑑𝑣) and 𝑣 ∈ Γ, we have 

ℎ(𝜑𝑤(𝑤)) = (ℎ ∘ 𝜑𝑣 ∘ 𝜑𝑤)(0) =
1

𝜆(𝐺)
∫ℎ ∘ 𝜑𝑣 ∘ 𝜑𝑤𝑑𝜆

 

𝐺

=
1

𝜆(𝐺)
∫ ℎ𝑑𝜆

 

(𝜑𝑣∘𝜑𝑤)(𝐺)

=
1

𝜆(𝐺)
∫ ℎ𝑑𝜆

 

𝜑𝑣(𝐺𝑤)

=
1

𝜆(𝐺)
∫

〈ℎ, 𝑘𝜁〉

(1 − |𝜁|2)(𝑛+1)/2
𝑑𝜆(𝜁)

 

𝜑𝑣(𝐺𝑤)

. 

Thus 

〈ℎ, 𝑘𝜑𝑣(𝑤)〉 =
1

𝜆(𝐺)
∫ 〈ℎ, 𝑘𝜁〉 (

1 − |𝜑𝑣(𝑤)|
2

1 − |𝜁|2
)

(𝑛+1)/2

𝑑𝜆(𝜁)

𝜑𝑣(𝐺𝑤)

. 

If 𝜁 ∈ 𝜑𝑣(𝐺𝑤), then 𝜁 = 𝜑𝑣(𝜉) for some 𝜉 ∈ 𝐺𝑤 ⊂ 𝐷(0,1 + 𝛽(𝑤, 0)), which means 

1 − |𝜁|2 = 1 − |𝜑𝑣(𝜉)|
2 =

(1 − |𝑣|2)(1 − |𝜁|2)

|1 − 〈𝜉, 𝑣〉|2
≥
1

4
(1 − |𝜁|2)(1 − |𝑣|2). 

On the other hand, 
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1 − |𝜑𝑣(𝑤)|
2 =

(1 − |𝑣|2)(1 − |𝑤|2)

|1 − 〈𝑤, 𝑣〉|2
≤

2

1 − |𝑤|
(1 − |𝑣|2). 

Hence there is a 0 < 𝐶1 < ∞ which depends only on 𝑛 and 𝑤 such that 

|〈ℎ, 𝑘𝜑𝑣(𝑤)〉|(1 − |𝑣|
2)𝑠(𝑛+1)/2 ≤

𝐶1
𝜆(𝐺)

∫ 〈ℎ, 𝑘𝜁〉(1 − |𝜁|
2)𝑠(𝑛+1)/2𝑑𝜆(𝜁)

 

𝑘𝜑𝑣(𝐺𝑤)

 

for all ℎ ∈ 𝐿𝑎
2 (𝐁, 𝑑𝑣) and 𝑣 ∈ Γ. Applying this inequality to the case where ℎ =

𝐵𝑘𝜑𝑢(𝑧), 𝑢 ∈ Γ, we have 

|〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉|  (
1 − |𝑣|2

1 − |𝑢|2
)

𝑠(𝑛+1)/2

≤
𝐶1
𝜆(𝐺)

∫ 〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜁〉 (
1 − |𝜁|2

1 − |𝑢|2
)

𝑠(𝑛+1)/2

𝑑𝜆(𝜁)

 

𝜑𝑣(𝐺𝑤)

, 

𝑣 ∈ Γ. Since 

1 − |𝜑𝑢(𝑧)|
2 =

(1 − |𝑢|2)(1 − |𝑧|2)

|1 − 〈𝑧, 𝑢〉|2
≤

2

1 − |𝑧|
(1 − |𝑢|2), 

there is a 0 < 𝐶2 < ∞ which depends only on 𝑛 and 𝑧 such that 

|〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉|  (
1 − |𝑣|2

1 − |𝑢|2
)

𝑠(𝑛+1)/2

≤
𝐶1𝐶2
𝜆(𝐺)

∫ 〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜁〉 (
1 − |𝜁|2

1 − |𝜑𝑢(𝑧)|
2
)

𝑠(𝑛+1)
2

𝑑𝜆(𝜁)

 

𝜑𝑣(𝐺𝑤)

,                     (62) 

𝑢, 𝑣 ∈ Γ. Set 𝐿 = 1 + 𝛽(𝑤, 0) + 𝛽(𝑧, 0) and consider any 𝑅 > 𝐿. If u, 𝑣 ∈ Γ are such that 

𝛽(𝑢, 𝑣) > 𝑅, then for every 𝜁 ∈ 𝜑𝑣(𝐺𝑤) ⊂ 𝜑𝑣 (𝐷(0,1 + 𝛽(𝑤, 0))) we have 

 𝛽(𝜑𝑢(𝑧), 𝜁) ≥ 𝛽(𝑢, 𝑣) − 𝛽(𝑢, 𝜑𝑢(𝑧)) > 𝑅 − 1 − 𝛽(𝑤, 0) − 𝛽(𝑧, 0) = 𝑅 − 𝐿.   (63) 
Thus the combination of (62) and (63) gives us 

∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝐵𝑘𝜑𝑣(𝑤) 〉|

 

𝑣∈Γ
𝛽(𝑢,𝑣)>𝑅

(
1 − |𝑣|2

1 − |𝑢|2
)

𝑠(𝑛+1)/2

≤
𝐶1𝐶2
𝜆(𝐺)

∫ ∑𝜒𝜑𝑣(𝐺𝑤)(𝜁)|〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜁〉|

 

𝑣∈Γ

 

𝛽(𝜑𝑢(𝑧),𝜁)>𝑅−𝐿

× (
1 − |𝜁|2

1 − |𝜑𝑢(𝑧)|
2
)

𝑠(𝑛+1)
2

𝑑𝜆(𝜁),                                                (64) 

𝑢 ∈ Γ. By the Möbius invariance of 𝛽 and the fact that 𝐺𝑤 ⊂ 𝐷(0,1 + 𝛽(𝑤, 0)), we have 

𝜑𝑣(𝐺𝑤) ⊂ 𝐷(𝑣, 1 + 𝛽(𝑤, 0)). Since Γ is separated, it follows from Lemma (6.3.6) (i) that 

there is an 𝑁 ∈ 𝐍 which depends only on Γ and 𝑤 such that the inequality 

∑𝜒𝜑𝑣(𝐺𝑤)

 

𝑣∈Γ

≤ 𝑁 

holds on B. Substituting this in (64), we conclude that 
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∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤) 〉|

 

𝑣∈Γ
𝛽(𝑢,𝑣)>𝑅

(
1 − |𝑣|2

1 − |𝑢|2
)

𝑠(𝑛+1)/2

≤
𝐶1𝐶2𝑁

𝜆(𝐺)
∫ 〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜁〉 (

1 − |𝜁|2

1 − |𝜑𝑢(𝑧)|
2
)

𝑠(𝑛+1)/2

𝑑𝜆(𝜁)

 

𝛽(𝜑𝑢(𝑧),𝜁)>𝑅−𝐿

 

for every 𝑢 ∈ Γ. By this inequality, (57) follows from (59). Since 

〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤) 〉 = 〈𝐵
∗𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤) 〉, 

(58) follows from (60) by the same argument. This completes the proof.  

Proposition (6.3.16)[192]: Let (𝑛 − 1)/(𝑛 + 1) < 𝑠 < 1. If 𝐵 ∈ 𝒜𝑠, then for every pair of 

𝑧, 𝑤 ∈ 𝐁 we have 𝐸𝑤𝐵𝐸𝑧 ∈ 𝒟. 

Proof. Let (𝑛 − 1)/(𝑛 + 1) < 𝑠 < 1. For 𝐵 ∈ 𝒜𝑠 and 𝑧, 𝑤 ∈ 𝐁, we have 

𝐸𝑤𝐵𝐸𝑧 = ∑ 𝑘𝜑𝑣(𝑤)⊗𝑘𝜑𝑣(𝑤) ⋅ 𝐵 ⋅ 𝑘𝜑𝑢(𝑧)⊗𝑘𝜑𝑢(𝑧)

 

𝑢,𝑣∈ℒ

= ∑ 〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉𝑘𝜑𝑣(𝑤)⊗𝑘𝜑𝑢(𝑧)

 

𝑢,𝑣∈ℒ

. 

Thus for any 𝑅 > 0, we can write 𝐸𝑤𝐵𝐸𝑧 = 𝑉𝑅 +𝑊𝑅, where 

𝑉𝑅 = ∑ 〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉𝑘𝜑𝑣(𝑤)⊗𝑘𝜑𝑢(𝑧)

 

𝑢,𝑣∈ℒ
𝛽(𝑢,𝑣)≤𝑅

 

and 

𝑊𝑅 = ∑ 〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉𝑘𝜑𝑣(𝑤)⊗𝑘𝜑𝑢(𝑧)

 

𝑢,𝑣∈ℒ
𝛽(𝑢,𝑣)>𝑅

. 

Obviously, the proposition will follow if we can prove the following two statements: 

(i) lim
𝑅→∞

‖𝑊𝑅‖ = 0. 

(ii) 𝑉𝑅 ∈ span (𝒟0) for every 𝑅 > 0. 

To prove (i), note that by (52) and Lemma (6.3.10), there are constants 𝐶1, 𝐶2 such 

that 

∑|〈ℎ, 𝑘𝜑𝑢(𝑧)〉|
2

 

𝑢∈ℒ

≤ 𝐶1‖ℎ‖
2    and     ∑|〈ℎ, 𝑘𝜑𝑣(𝑤)〉|

2
 

𝑣∈ℒ

≤ 𝐶2‖ℎ‖
2          (65) 

for every ℎ ∈ 𝐿𝑎
2 (𝐁, 𝑑𝑣). Given ℎ, 𝑔 ∈ 𝐿𝑎

2 (𝐁, 𝑑𝑣), we have 

 |〈𝑊𝑅ℎ, 𝑔〉| ≤ ∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉|𝓈𝑢𝓉𝑣

 

𝑢,𝑣∈ℒ
𝛽(𝑢,𝑣)>𝑅

,                         (66) 

where 

𝓈𝑢 = |〈ℎ, 𝑘𝜑𝑢(𝑧)〉|             and         𝓉𝑣 = |〈𝑘𝜑𝑣(𝑤), 𝑔〉|. 

We apply the Schur test one more time. Indeed for each 𝑢 ∈ ℒ, let us write 

      𝓎𝑢 = ∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉|𝓉𝑣

 

𝑣∈ℒ
𝛽(𝑢,𝑣)>𝑅

                         (67) 

Then for each 𝑢 ∈ ℒ, the Cauchy-Schwarz inequality gives us 
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𝓎𝑢
2 ≤ ∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉|(1

 

𝑣∈ℒ
𝛽(𝑢,𝑣)>𝑅

− |𝑣|2)
𝑠(𝑛+1)
2 ∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉|

𝓉𝑣
2

(1 − |𝑣|2)
𝑠(𝑛+1)
2

 

𝑣∈ℒ
𝛽(𝑢,𝑣)>𝑅

≤ 𝐻(𝑅) ∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉| (
1 − |𝑢|2

1 − |𝑣|2
)

𝑠(𝑛+1)
2

 

𝑣∈ℒ
𝛽(𝑢,𝑣)>𝑅

𝓉𝑣
2, 

where 

𝐻(𝑅) = sup
𝜉∈ℒ

∑ |〈𝐵𝑘𝜑𝜉(𝑧), 𝑘𝜑𝑣(𝑤)〉| (
1 − |𝑢|2

1 − |𝜉|2
)

𝑠(𝑛+1)
2

 

𝑣∈ℒ
𝛽(𝜉,𝑣)>𝑅

. 

Therefore 

∑𝓎𝑢
2

 

𝑢∈ℒ

≤ 𝐻(𝑅)∑ ∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉| (
1 − |𝑢|2

1 − |𝑣|2
)

𝑠(𝑛+1)
2

 

𝑣∈ℒ
𝛽(𝑢,𝑣)>𝑅

𝓉𝑣
2

 

𝑢∈ℒ

= 𝐻(𝑅)∑𝓉𝑣
2

 

𝑣∈ℒ

∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉| (
1 − |𝑢|2

1 − |𝑣|2
)

𝑠(𝑛+1)
2

 

𝑢∈ℒ
𝛽(𝑢,𝑣)>𝑅

≤ 𝐻(𝑅)𝐺(𝑅)∑𝓉𝑣
2

 

𝑣∈ℒ

, 

where 

𝐺(𝑅) = sup
𝜉∈ℒ

∑ |〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝜑𝜉(𝑤)
〉| (
1 − |𝑢|2

1 − |𝜉|2
)

𝑠(𝑛+1)
2

 

𝑢∈ℒ
𝛽(𝑢,𝜉)>𝑅

. 

By (66) and (67), we now have 

 |〈𝑊𝑅ℎ, 𝑔〉| ≤ ∑𝓈𝑢𝓎𝑢

 

𝑢∈ℒ

≤ (∑𝓈𝑢
2

 

𝑢∈ℒ

)

1/2

(∑𝓎𝑢
2

 

𝑢∈ℒ

)

1/2

≤ {𝐻(𝑅)𝐺(𝑅)}1/2 (∑𝓈𝑢
2

 

𝑢∈ℒ

)

1/2

(∑𝓉𝑢
2

 

𝑢∈ℒ

)

1/2

. 

Combining this with (66), we find that 

|〈𝑊𝑅ℎ, 𝑔〉| ≤ {𝐶1𝐶2𝐻(𝑅)𝐺(𝑅)}
1/2‖ℎ‖‖𝑔‖. 

Since ℎ, 𝑔 ∈ 𝐿𝑎
2 (𝐁, 𝑑𝑣) are arbitrary, this means 

𝑊𝑅 ≤ {𝐶1𝐶2𝐻(𝑅)𝐺(𝑅)}
1/2. 

Applying Lemma (6.3.15), we have lim
𝑅→∞

𝐻(𝑅) = 0 and lim
𝑅→∞

𝐺(𝑅) = 0. Therefore 

lim
𝑅→∞

‖𝑊𝑅‖ = 0 as promised. 

We now turn to the proof of (ii). First of all, given an 𝑅 > 0, for each 𝑣 ∈ ℒ we define 
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𝐹𝑣 = {𝑢 ∈ ℒ: 𝛽(𝑢, 𝑣) ≤ 𝑅}. 
By Lemma (6.3.6) (i), there is an 𝑁 ∈ 𝐍 such that 

card (𝐹𝑣) ≤  𝑁 
for every 𝑣 ∈ ℒ. Also, by Lemma (6.3.6) (ii), for the given 𝑤 ∈ 𝐁, there is a partition 

ℒ = 𝐿1 ∪ …∪ 𝐿𝑚 

such that for each 𝑖 ∈ {1,… ,𝑚}, if 𝑣, 𝑣′ ∈ 𝐿𝑖  and 𝑣 ≠ 𝑣′, then 𝛽(𝜑𝑣(𝑤), 𝜑𝑣′(𝑤)) ≥ 1. That 

is, for each 𝑖 ∈ {1, … ,𝑚}, the set 

𝐾𝑖 = {𝜑𝑣(𝑤): 𝑣 ∈ 𝐿𝑖} 
is separated. We have 𝑉𝑅 = 𝑋1 +⋯+ 𝑋𝑚, where 

𝑋𝑖 = ∑ ∑〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉𝑘𝜑𝑣(𝑤)⊗𝑘𝜑𝑢(𝑧)

 

𝑢∈𝐹𝑣

 

𝜑𝑣(𝑤)∈𝐾𝑖

, 

𝑖 ∈ {1,… ,𝑚}. To prove (ii), it suffices to show that 𝑋𝑖 ∈ span(𝒟0) of every 𝑖 ∈ {1,… ,𝑚}. 
For this purpose we further decompose each 𝐾𝑖. Indeed for each pair of 𝑖 ∈ {1,… ,𝑚} and 

𝑗 ∈ {1, … ,𝑁}, we define 

𝐿𝑖,𝑗 = {𝑣 ∈ 𝐿𝑖: card (𝐹𝑣) = 𝑗}      𝑎𝑛𝑑        𝐾𝑖,𝑗 = {𝜑𝑣(𝑤): 𝑣 ∈ 𝐿𝑖,𝑗}. 

Then 𝑋𝑖 = 𝑋𝑖,1 +⋯+ 𝑋𝑖,𝑁, where 

𝑋𝑖,𝑗 = ∑ ∑〈𝐵𝑘𝜑𝑢(𝑧), 𝑘𝜑𝑣(𝑤)〉𝑘𝜑𝑣(𝑤)⊗𝑘𝜑𝑢(𝑧)

 

𝑢∈𝐹𝑣

 

𝜑𝑣(𝑤)∈𝐾𝑖,𝑗

, 

𝑖 ∈ {1,… ,𝑚}  and 𝑗 ∈ {1,… ,𝑁}. Thus it suffices to show that 𝑋𝑖,𝑗 ∈ span(𝒟0) for every 

such pair of 𝑖, 𝑗. But it is obvious that given a pair of such 𝑖, 𝑗, we can define maps 

𝛾𝑖,𝑗
(1)
, … , 𝛾𝑖,𝑗

(𝑗)
: 𝐾𝑖,𝑗 → 𝐁 

such that 

{𝜑𝑢(𝑧): 𝑢 ∈ 𝐹𝑣} = {𝛾𝑖,𝑗
(1)
(𝜑𝑣(𝑤)),… , 𝛾𝑖,𝑗

(𝑗)
(𝜑𝑣(𝑤))} 

for every 𝑣 ∈ 𝐿𝑖,𝑗. Thus 𝑋𝑖,𝑗 = 𝑋𝑖,𝑗
(1) +⋯+ 𝑋𝑖,𝑗

(𝑗)
, where for each 𝜐 ∈ {1,… , 𝑗} we have 

𝑋𝑖,𝑗
(𝑣)
= ∑ 〈𝐵𝑘

𝛾𝑖,𝑗
(𝑣)(𝜉)

, 𝑘𝜉〉 𝑘𝜉⊗𝑘
𝛾𝑖,𝑗
(𝑣)(𝜉)

 

𝑢∈𝐹𝑣

. 

Hence the proof will be complete if we can show that 𝛾𝑖,𝑗
(𝑣)
∈ (𝒟0) for every triple of indices 

𝑖 ∈ {1,… ,𝑚}, 𝑗 ∈ {1,… ,𝑁} and 𝜐 ∈ {1,… , 𝑗} . 
By the above definitions, for every such triple of 𝑖, 𝑗, 𝜐, if 𝜁 ∈ 𝐾𝑖,𝑗, then there exist 

𝑣 ∈ 𝐿𝑖,𝑗 and 𝑢 ∈ 𝐹𝑣 such that 𝜉 = 𝜑𝑣(𝑤) and 𝛾𝑖,𝑗
(𝑣)(𝜉) = 𝜑𝑢(𝑧). Therefore 

𝛽 (𝜉, 𝛾𝑖,𝑗
(𝑣)(𝜉)) = 𝛽(𝜑𝑣(𝑤), 𝜑𝑢(𝑧)) ≤ 𝛽(𝜑𝑣(𝑤), 𝑣) + 𝛽(𝑣, 𝑢) + 𝛽(𝑢, 𝜑𝑢(𝑧))

≤ 𝛽(𝑤, 0) + 𝑅 + 𝛽(0, 𝑧). 

This shows that the map 𝛾𝑖,𝑗
(𝑣)
: 𝐾𝑖,𝑗 → 𝐁 satisfies condition (57). By Definition (6.3.14) (a), 

we have 𝑋𝑖,𝑗
(𝜐)
∈ (𝒟0). This completes the proof of Proposition (6.3.16). 

Next we turn to the proof of Proposition (6.3.20), which involves a few steps. 

Proposition (6.3.17)[192]: Suppose that Γ is a separated set in 𝐁. Furthermore, suppose that 
{𝑐𝑢: 𝑢 ∈ Γ} are complex numbers for which (50) holds. Then for each 𝑧 ∈ 𝐁, the operator 

𝑌𝑧 defined by (51) belongs to 𝒯(1). 
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Proof. (i) Let us first show that 𝑌0 ∈ 𝒯
(1). Since Γ is separated, there is 𝛿 > 0 such that 

𝛽(𝑢, 𝑣) ≥ 𝛿 for all 𝑢 ≠ 𝑣 in Γ. That is, if 𝑢, 𝑣 ∈ Γ and 𝑢 ≠ 𝑣, then 𝐷(𝑢, 𝛿/2) ∩
𝐷(𝑢, 𝛿/2) = ∅. For each 0 < 𝜖 < 𝛿/2, define the operator 

𝐴𝜖 =
1

𝜆(𝐷(0, 𝜖))
∫ 𝑌𝑧𝑑𝜆(𝑧)

 

𝐷(0,𝜖)

. 

By the norm continuity of the map 𝑧 ⟼ 𝑌𝑧 provided by Proposition (6.3.11), we have 

lim
𝜖↓0
‖𝑌0 − 𝑌𝜖‖ = 0. 

Thus to prove the membership 𝑌0 ∈ 𝒯
(1), it suffices to show that each 𝐴𝜖 is a Toeplitz 

operator with a bounded symbol. Indeed by the Möbius invariance of 𝛽 and 𝑑𝜆, we have 

𝐴𝜖 =
1

𝜆(𝐷(0, 𝜖))
∑𝑐𝑢 ∫ 𝑘𝜑𝑢(𝑧)⊗𝑘𝜑𝑢(𝑧)𝑑𝜆(𝑧)

 

𝐷(0,𝜖)

 

𝑢∈Γ

=
1

𝜆(𝐷(0, 𝜖))
∑𝑐𝑢 ∫ 𝑘𝑤⊗𝑘𝑤𝑑𝜆(𝑤)

 

𝐷(𝑢,𝜖)

 

𝑢∈Γ

= ∫𝑓𝜖(𝑤)𝑘𝑤⊗𝑘𝑤𝑑𝜆(𝑤) , 

where 

𝑓𝜖 =
1

𝜆(𝐷(0, 𝜖))
∑𝑐𝑢𝜒𝐷(𝑢,𝜖)

 

𝑢∈Γ

. 

Since, 0 < 𝜖 < 𝛿/2, we have 𝐷(𝑢, 𝜖) ∩ 𝐷(𝑣, 𝜖) = ∅ for 𝑢 ≠ 𝑣 in Γ. Hence 𝑓𝜖 ∈ 𝐿
∞(𝐁, 𝑑𝑣). 

By (34), we have 𝐴𝜖 = 𝑇𝑓𝜖. This proves the membership 𝑌0 ∈ 𝒯
(1). 

(ii) Now consider an arbitrary 𝑧 ∈ 𝐁. By Lemma (6.3.6) (ii), there is a partition Γ =
Γ1 ∪ …∪ Γm such that for every 𝑖 ∈ {1,… ,𝑚}, the conditions 𝑢, 𝑣 ∈ Γ𝑖 and 𝑢 ≠ 𝑣 imply 

𝛽(𝜑𝑢(𝑧), 𝜑𝑣(𝑧)) ≥ 1. That is, for each 𝑖 ∈ {1,… ,𝑚}, the set 

𝐺𝑖 = {𝜑𝑢(𝑧): 𝑢 ∈ Γ𝑖} 
is separated. Obviusly, 𝑌𝑧 = 𝑌𝑧,1 +⋯+ 𝑌𝑧,𝑚, where 

𝑌𝑧,𝑖 = ∑ 𝑐𝑢𝑘𝜑𝑢(𝑧)⊗𝑘𝜑𝑢(𝑧)

 

𝜑𝑢(𝑧)∈𝐺𝑖

, 

𝑖 = 1,… ,𝑚. By (1) we have 𝑌𝑧,𝑖 ∈ 𝒯
(1) for every 𝑖 ∈ {1,… ,𝑚}. Hence 𝑌𝑧 ∈ 𝒯

(1). 

In addition to the normalized reproducing kernel 𝑘𝑧 given by (27), it will be 

convenient for our next step to use the unnormalized reproducing kernel 

𝐾𝑧(𝜁) =
1

(1 − 〈𝜁, 𝑧〉)𝑛+1
 , 𝑧, 𝜁 ∈ 𝐁 , 

and other kernel-like functions. This involves monomials in the complex variables 

𝜁1, … , 𝜁𝑛 and the standard multi-index convention (see [79]). For each pair of 𝛼 ∈ 𝐙+
𝑛 and 

𝑧 ∈ 𝐁, we define 

 𝐾𝑧;𝛼(𝜁) =
𝜁𝛼

(1 − 〈𝜁, 𝑧〉)𝑛+1+|𝛼|
 ,                   (68) 

𝜁 ∈ 𝐁. Note that 𝐾𝑧 = 𝐾𝑧;0 for every 𝑧 ∈ 𝐁. 

Proposition (6.3.18)[192]: Let Γ be a separated set in 𝐁 and suppose that {𝑐𝑢: 𝑢 ∈ Γ} is a 

bounded set of complex coefficients. Then for every pair of 𝛼 ∈ 𝐙+
𝑛 and 𝑧 ∈ 𝐁, we have 

∑𝑐𝑢(𝑈𝑢𝐾𝑧) ⊗ (𝑈𝑢𝐾𝑧;𝛼)

 

𝑢∈Γ

∈ 𝒯(1). 

Proof. We prove the proposition by an induction on |𝛼|. If |𝛼| = 0, i.e. 𝛼 = 0, then 
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(𝑈𝑢𝐾𝑧)⊗ (𝑈𝑢𝐾𝑧;0) = (𝑈𝑢𝐾𝑧)⊗ (𝑈𝑢𝐾𝑧) =
1

(1 − |𝑍|2)𝑛+1
 𝑘𝜑𝑢(𝑧)⊗𝑘𝜑𝑢(𝑧). 

Hence the case where |𝛼| = 0 follows from Proposition (6.3.17). Suppose that 𝑘 ∈ 𝐙+ and 

that the proposition holds true for every 𝛼 ∈ 𝐙+
𝑛   satisfying the condition |𝛼| ≤ 𝑘. Now 

consider the case where 𝛼 ∈ 𝐙+
𝑛 is such that |𝛼| = 𝑘 + 1. Then we can decompose 𝛼 in the 

form 

𝛼 = 𝑎 + 𝑏 , 
where |𝑎| = 𝑘 and |𝑏| = 1. That is, there is some 𝜐 ∈ {1,… , 𝑛} such that the 𝜐 –th 

component of 𝑏 is 1 and the other components of 𝑏 are all 0. We will also consider 𝑏 as a 

vector in 𝐂𝑛. By the induction hypothesis, we have 

 ∑𝑐𝑢(𝑈𝑢𝐾𝑧) ⊗ (𝑈𝑢𝐾𝑧;𝛼)

 

𝑢∈Γ

∈ 𝒯(1)          for every     𝑧 ∈ 𝐁.               (69) 

Let 𝑧 ∈ 𝐁 be given. Then there is an 𝜖 = 𝜖(𝑧) > 0 such that 𝑧 + 𝑐 ∈ 𝐁 for every 𝑐 ∈
𝐂𝑛 satisfying the condition |𝑐| ≤ 𝜖. For each 𝑡 ∈ [0, 𝜖], define the operators 

𝐴𝑡 =∑𝑐𝑢(𝑈𝑢𝐾𝑧+𝑡𝑏) ⊗ (𝑈𝑢𝐾𝑧+𝑡𝑏;𝑎)

 

𝑢∈Γ

     and        𝐵𝑡

=∑𝑐𝑢(𝑈𝑢𝐾𝑧+𝑖𝑡𝑏) ⊗ (𝑈𝑢𝐾𝑧+𝑖𝑡𝑏;𝑎)

 

𝑢∈Γ

. 

Also, we define 

𝑋 =∑𝑐𝑢{(𝑛 + 1 + 𝑘)(𝑈𝑢𝐾𝑧)⊗ (𝑈𝑢𝐾𝑧;𝛼) + (𝑛 + 1)(𝑈𝑢𝐾𝑧;𝑏) ⊗ (𝑈𝑢𝐾𝑧;𝑎)}

 

𝑢∈Γ

 

and 

𝑌 =∑𝑐𝑢{(𝑛 + 1 + 𝑘)(𝑈𝑢𝐾𝑧)⊗ (𝑈𝑢𝐾𝑧;𝛼) − (𝑛 + 1)(𝑈𝑢𝐾𝑧;𝑏) ⊗ (𝑈𝑢𝐾𝑧;𝑎)}

 

𝑢∈Γ

. 

We will show that 

        lim
𝑡↓0
‖
1

𝑡
(𝐴𝑡 − 𝐴0) − 𝑋‖ = 0                                                 (70) 

and 

     lim
𝑡↓0
‖
1

𝑖𝑡
(𝐵𝑡 − 𝐵0) − 𝑌‖ = 0.                                               (71) 

Before getting to their proofs, let us first see the consequence of these limits. By (69) we 

have 𝐴𝑡 ∈ 𝒯
(1)   and 𝐵𝑡 ∈ 𝒯

(1)   for all 𝑡 ∈ [0, 𝜖]. Hence it follows from (70) and (71) that 

𝑋, 𝑌 ∈ 𝒯(1)  . Thus 

∑𝑐𝑢(𝑈𝑢𝐾𝑧)⊗ (𝑈𝑢𝐾𝑧;𝛼)

 

𝑢∈Γ

=
1

2(𝑛 + 1 + 𝑘)
(𝑋 + 𝑌) ∈ 𝒯(1)  , 

completing the induction on |𝛼|. 
Let us now turn to the proof of (70). Note that 𝑡−1(𝐴𝑡 − 𝐴0) = 𝐺𝑡 +𝐻𝑡, where 

𝐻𝑡 =
1

𝑡
∑𝑐𝑢(𝑈𝑢𝐾𝑧+𝑡𝑏) ⊗ {𝑈𝑢(𝐾𝑧+𝑡𝑏;𝑎 − 𝐾𝑧;𝑎)}

 

𝑢∈Γ

 

and 

𝐺𝑡 =
1

𝑡
∑𝑐𝑢{𝑈𝑢(𝐾𝑧+𝑡𝑏 − 𝐾𝑧)} ⊗ (𝑈𝑢𝐾𝑧;𝑎)

 

𝑢∈Γ

.                        
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Similarly, we write 𝑋 =  𝑉 + 𝑊, where 

𝑉 =∑𝑐𝑢(𝑛 + 1 + 𝑘)(𝑈𝑢𝐾𝑧) ⊗ (𝑈𝑢𝑈𝑧;𝛼)

 

𝑢∈Γ

 

and 

𝑊 =∑𝑐𝑢(𝑛 + 1)(𝑈𝑢𝐾𝑧;𝑏) ⊗ (𝑈𝑢𝑈𝑧;𝑎)

 

𝑢∈Γ

.                  

Since ‖𝑡−1(𝐴𝑡 − 𝐴0) − 𝑋‖ ≤ ‖𝐻𝑡 − 𝑉‖ + ‖𝐺𝑡 −𝑊‖, (70) will follow if we can show 

  lim
𝑡↓0
‖𝐻𝑡 − 𝑉‖ = 0                                                       (72) 

and 

         lim
𝑡↓0
‖𝐺𝑡 −𝑊‖ = 0.                                                       (73) 

To prove (72), for 0 < 𝑡 ≤ 𝜖 we write 𝐻𝑡 − 𝑉 = 𝑆𝑡 + 𝑇𝑡, where 

𝑆𝑡 =∑𝑐𝑢(𝑈𝑢𝐾𝑧+𝑡𝑏) ⊗ {𝑈𝑢(𝑡
−1(𝐾𝑧+𝑡𝑏;𝑎 − 𝐾𝑧;𝑎) − (𝑛 + 1 + 𝑘)𝑘𝑧;𝛼)}

 

𝑢∈Γ

 

and 

𝑇𝑡 = (𝑛 + 1 + 𝑘)∑𝑐𝑢{𝑈𝑢(𝐾𝑧+𝑡𝑏 − 𝐾𝑧)} ⊗ (𝑈𝑢𝐾𝑧;𝛼)

 

𝑢∈Γ

.                                

Thus the proof of (72) is reduced to the proof of the fact that ‖𝑆𝑡‖ → 0 and ‖𝑇𝑡 → 0‖ as 𝑡 
descends to 0. To prove this, we pick an orthonormal set {𝑒𝑢: 𝑢 ∈ Γ} and factor 𝑆𝑡 in the 

form 𝑆𝑡 = 𝑆𝑡
(1)
𝑆𝑡
(2)∗

, where 

𝑆𝑡
(1)
=∑𝑐𝑢(𝑈𝑢𝐾𝑧+𝑡𝑏) ⊗ 𝑒𝑢

 

𝑢∈Γ

 

and 

𝑆𝑡
(2)
=∑{𝑈𝑢(𝑡

−1(𝐾𝑧+𝑡𝑏;𝑎 − 𝐾𝑧;𝑎) − (𝑛 + 1 + 𝑘)𝑘𝑧;𝛼)}

 

𝑢∈Γ

⊗𝑒𝑢. 

Set 𝐶 = sup
𝑢∈Γ
|𝑐𝑢|. Then it follows from Lemma (6.3.10) that 

‖𝑆𝑡
(1)
‖ ≤ 𝐶𝐵(Γ)‖𝐾𝑧+𝑡𝑏‖∞ 

and 

‖𝑆𝑡
(2)
‖ ≤ 𝐵(Γ)‖𝑡−1(𝐾𝑧+𝑡𝑏;𝑎 − 𝐾𝑧;𝑎) − (𝑛 + 1 + 𝑘)𝑘𝑧;𝛼‖∞. 

Since 𝑎 + 𝑏 = 𝛼 and 𝑘 = |𝑎|, by (68) and elementary algebra, we have 

lim
𝑡↓0
‖𝑡−1(𝐾𝑧+𝑡𝑏;𝑎 − 𝐾𝑧;𝑎) − (𝑛 + 1 + 𝑘)𝑘𝑧;𝛼‖∞ = 0. 

Also, it is trivial that ‖𝑘𝑧+𝑡𝑏‖∞ remains bounded as 𝑡 descends to 0. Hence 

‖𝑆𝑡‖ ≤ ‖𝑆𝑡
(1)
‖‖𝑆𝑡

(2)
‖ ≤ 𝐶(𝐵(Γ))

2
‖𝑘𝑧+𝑡𝑏‖∞‖𝑡

−1(𝐾𝑧+𝑡𝑏;𝑎 − 𝐾𝑧;𝑎) − (𝑛 + 1 + 𝑘)𝑘𝑧;𝛼‖∞
→ 0 

as 𝑡 descends to 0. For 𝑇𝑡, we have the factorization 𝑇𝑡 = 𝑇𝑡
(1)
𝑇
(2)∗

, where 

𝑇𝑡
(1)
= (𝑛 + 1 + 𝑘)∑𝑐𝑢{𝑈𝑢(𝐾𝑧+𝑡𝑏 − 𝐾𝑧)} ⊗ 𝑒𝑢

 

𝑢∈Γ

   

 and                          
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𝑇(2) =∑(𝑈𝑢𝐾𝑧;𝛼)

 

𝑢∈Γ

⊗𝑒𝑢. 

By Lemma (6.3.10), ‖𝑇𝑡
(1)
‖ ≤ (𝑛 + 1 + 𝑘)𝐶𝐵(Γ)‖𝑘𝑧+𝑡𝑏 − 𝐾𝑧‖∞, and 𝑇(2) is a bounded 

operator. It is obvious that 

lim
𝑡↓0
‖𝑘𝑧+𝑡𝑏 − 𝐾𝑧‖∞ = 0. 

Hence ‖𝑇𝑡‖ ≤ ‖𝑇𝑡
(1)
‖‖𝑇(2)‖ → 0 as 𝑡 descends to 0. This completes the proof of (72). 

To prove (73), note that 

𝐺𝑡 −𝑊 =∑𝑐𝑢{𝑈𝑢(𝑡
−1(𝐾𝑧+𝑡𝑏 − 𝐾𝑧) − (𝑛 + 1)𝑘𝑧;𝑏)}⊗ (𝑈𝑢𝐾𝑧;𝑎)

 

𝑢∈Γ

= 𝑍𝑡𝑇
(2)∗, 

where 

𝑍𝑡 =∑𝑐𝑢{𝑈𝑢(𝑡
−1(𝐾𝑧+𝑡𝑏 − 𝐾𝑧) − (𝑛 + 1)𝑘𝑧;𝑏)}⊗ 𝑒𝑢

 

𝑢∈Γ

. 

Applying Lemma (6.3.10) again, we have 

‖𝑍𝑡‖ ≤ 𝐶𝐵(Γ)‖𝑡
−1(𝐾𝑧+𝑡𝑏 − 𝐾𝑧) − (𝑛 + 1)𝑘𝑧;𝑏‖∞. 

Another easy exercise shows that 

lim
𝑡↓0
‖𝑡−1(𝐾𝑧+𝑡𝑏 − 𝐾𝑧) − (𝑛 + 1)𝑘𝑧;𝑏‖∞ = 0. 

Hence ‖𝐺𝑡 −𝑊‖ ≤ ‖𝑍𝑡‖‖𝑇
(2)‖ → 0 as 𝑡 descends to 0, proving (73). Thus we have 

completed the proof of (70). 

The proof of (71) uses essentially the same argument as above, and the only additional 

care that needs to be taken is the following: The rank-one operator 𝑓 ⊗ 𝑔 is linear with 

respect to 𝑓 and conjugate linear with respect to 𝑔. Moreover, the inner product 〈𝜁, 𝑧〉 on 𝐂𝑛 

is conjugate linear with respect to 𝑧. These are the properties that determine the + and − 

signs in each term 𝑐𝑢{… } in the sum that defines the operator 𝑌. This completes the proof 

of the proposition.  

Proposition (6.3.19)[192]: Let Γ be a separated set in 𝐁 and let {𝑐𝑢: 𝑢 ∈ Γ} be a bounded 

set of complex coefficients. Then for every 𝑤 ∈ 𝐁 we have 

   ∑𝑐𝑢𝑘𝑢⊗𝑘𝜑𝑢(𝑤) ∈ 𝒯
(1)

 

𝑢∈Γ

.                                              (74) 

Proof. For each 𝛼 ∈ 𝐙+
𝑛, define the monomial function 

𝑝𝛼(𝜁) = 𝜁
𝛼 

on 𝐁. Given a 𝑤 ∈ 𝐁, let us define 

𝑑𝑢(𝑤) = 𝑐𝑢 (
1 − 〈𝑤, 𝑢〉

|1 − 〈𝑤, 𝑢〉|
)

𝑛+1

, 

𝑢 ∈ Γ. Note that 𝐾0;𝛼 = 𝑝𝛼 for every 𝛼 ∈ 𝐙+
𝑛. Also, 𝑈𝑢𝐾0 = 𝑈1 = 𝑘𝑢 for every 𝑢 ∈ Γ. Thus, 

applying Proposition (6.3.18) to the case where 𝑧 = 0, we have 

     ∑𝑑𝑢(𝑤)𝑘𝑢⊗ (𝑈𝑢𝑝𝛼) ∈ 𝒯
(1)

 

𝑢∈Γ

                                  (75) 

for every 𝛼 ∈ 𝐙+
𝑛. Define the function 

𝑔𝑤(𝜁) = 〈𝜁, 𝑤〉 , 𝜁 ∈ 𝐁. 
For each 𝑗 ∈ 𝐙+, define the operator 



213 

 

𝐴𝑗 =∑𝑑𝑢(𝑤)𝑘𝑢⊗ (𝑈𝑢𝑔𝑤
𝑗
)

 

𝑢∈Γ

. 

Since each 𝑔𝑤
𝑗

 is in the linear span of {𝑝𝛼: 𝛼 ∈ 𝐙+
𝑛}, (75) implies that 𝐴𝑗 ∈ 𝒯

(1) for every 

𝑗 ∈ 𝐙+. Let {𝑒𝑢: 𝑢 ∈ Γ} be an orthonormal set. Then we have the factorization 𝐴𝑗 = 𝑇𝐵𝑗
∗ for 

each 𝑗 ∈ 𝐙+, where 

𝑇 =∑𝑑𝑢(𝑤)𝑘𝑢⊗𝑒𝑢

 

𝑢∈Γ

            and          𝐵𝑗 =∑(𝑈𝑢𝑔𝑤
𝑗
)⊗ 𝑒𝑢

 

𝑢∈Γ

. 

Lemma (6.3.10) tells us that 𝑇 is a bounded operator. Define 

𝐺 =∑(𝑈𝑢𝐾𝑤)⊗ 𝑒𝑢

 

𝑢∈Γ

. 

It also follows from Lemma (6.3.10) that 

 ‖𝐺 −∑
(𝑛 + 𝑗)!

𝑛! 𝑗!
𝐵𝑗

𝑘

𝑗=0

‖ ≤ 𝐵(Γ)‖𝐾𝑤 −∑
(𝑛 + 𝑗)!

𝑛! 𝑗!
𝑔𝑤
𝑗

𝑘

𝑗=0

‖

∞

                  (76) 

for every 𝑘 ∈ 𝐙+. By the expansion formula 

1

(1 − 𝑐)𝑛+1
=∑

(𝑛 + 𝑗)!

𝑛! 𝑗!
𝑐𝑗

∞

𝑗=0

, |𝑐| < 1, 

and the fact that |𝑤| < 1, we have 

lim
𝑘→∞

‖𝐾𝑤 −∑
(𝑛 + 𝑗)!

𝑛! 𝑗!
𝑔𝑤
𝑗

𝑘

𝑗=0

‖

∞

= 0. 

Combining this with (76), we obtain 

lim
𝑘→∞

‖𝑇𝐺∗ −∑
(𝑛 + 𝑗)!

𝑛! 𝑗!
𝐴𝑗

𝑘

𝑗=0

‖ = lim
𝑘→∞

‖𝑇𝐺∗ − 𝑇∑
(𝑛 + 𝑗)!

𝑛! 𝑗!
𝐵𝑗
∗

𝑘

𝑗=0

‖ = 0. 

Since each 𝐴𝑗 belongs to 𝒯(1), we conclude that 

∑𝑑𝑢(𝑤)𝑘𝑢⊗ (𝑈𝑢𝐾𝑤)

 

𝑢∈Γ

= 𝑇𝐺∗ ∈ 𝒯(1). 

Since 𝑘𝑤 = (1 − |𝑤|
2)(𝑛+1)/2𝐾𝑤, this implies 

  ∑𝑑𝑢(𝑤)𝑘𝑢⊗ (𝑈𝑢𝐾𝑤)

 

𝑢∈Γ

∈ 𝒯(1).                 (77) 

Recalling the definition of 𝑑𝑢(𝑤) and (52), we see that (77) implies (74).  

Proposition (6.3.20)[192]: We have 𝒟0 ⊂ 𝒯
(1). 

Since 𝒯(1) is a norm closed linear subspace of ℬ(𝐿𝑎
2 (𝐁, 𝑑𝑣)), Proposition (6.3.12) 

follows immediately from Propositions (6.3.16) and (6.3.20). 

Proof. Let Γ be a separated set in 𝐁, let {𝑐𝑢: 𝑢 ∈ Γ} be a bounded set of coefficients, and let 

𝛾: Γ → 𝐁 be a map satisfying (58). Let 𝐾 = {𝑤 ∈ 𝐁: 𝛽(0,𝑤) ≤ 𝐶}, where 𝐶 is the constant 

that appears in (58). We want to show that the operator 

𝑇 =∑𝑐𝑢𝑘𝑢⊗𝑘𝛾(𝑢)

 

𝑢∈Γ
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belongs to 𝒯(1). For this purpose, define 

𝜓(𝑢) = 𝜑𝑢(𝛾(𝑢)) , 𝑢 ∈ Γ. 

Since 𝛽(𝑢, 𝛾(𝑢)) ≤ 𝐶, by the Möbius invariance of 𝛽 and the fact 𝜑𝑢(𝑢) = 0, we have 

𝛽(0, 𝜓(𝑢)) = 𝛽(𝑢, 𝛾(𝑢)) ≤ 𝐶 for every 𝑢 ∈ Γ. That is, 𝜓(𝑢) ∈ 𝐾 for every 𝑢 ∈ Γ. Since 

𝜑𝑢(𝜓(𝑢)) = 𝛾(𝑢), 𝑢 ∈ Γ, by (52) we have 

𝑇 =∑𝑑𝑢𝑘𝑢⊗ (𝑈𝑢𝑘𝜓(𝑢))

 

𝑢∈Γ

, 

where |𝑑𝑢| = |𝑐𝑢| for every 𝑢 ∈ Γ. Let {𝑒𝑢: 𝑢 ∈ Γ} be an orthonormal set. Then we have the 

factorization 𝑇 = 𝐴𝐵∗, where 

𝐴 =∑𝑑𝑢𝑘𝑢⊗𝑒𝑢

 

𝑢∈Γ

            and           𝐵 =∑(𝑈𝑢𝑘𝜓(𝑢)) ⊗ 𝑒𝑢

 

𝑢∈Γ

. 

We again use the fact that the map 𝑧 ⟼ 𝑘𝑧 is ‖⋅‖∞-continuous. That is, 

lim
𝑤→𝑧

‖𝑘𝑧 − 𝑘𝑤‖∞ = 0         for every           𝑧 ∈ 𝐁. 

Let 𝜖 > 0 be given. Since 𝐾 is compact, there are non-empty open sets Ω1, … , Ω𝑚 in 𝐁 and 

𝑧𝑖 ∈ Ω𝑖 , 𝑖 = 1,… ,𝑚, such that 

   Ω1 ∪ …∪ Ω𝑚 ⊃ 𝐾                                         (78) 
and 

‖𝑘𝑧𝑖 − 𝑘𝑤‖∞
< 𝜖               wherever     𝑤 ∈ Ω𝑖 , 

𝑖 = 1,… ,𝑚. From the open cover (78) we obtain a partition 

𝐾 = 𝐸1 ∪ …∪ 𝐸𝑚 
such that 𝐸𝑖 ⊂ Ω𝑖 for every 𝑖 ∈ {1,… ,𝑚}. We now define 

Γ𝑖 = {𝑢 ∈ Γ:𝜓(𝑢) ∈ 𝐸𝑖}, 

𝑖 = 1,… ,𝑚. Then ‖𝑘𝑧𝑖 − 𝑘𝜓(𝑢)‖∞
< 𝜖 if 𝑢 ∈ Γ𝑖. For every 𝑖 ∈ {1,… ,𝑚}, we also define 

𝐵𝑖 = ∑(𝑈𝑢𝑘𝑧𝑖) ⊗ 𝑒𝑢

 

𝑢∈Γ𝑖

. 

For each 𝑖 ∈ {1,… ,𝑚} we have 

𝐴𝐵𝑖
∗ = ∑ 𝑑𝑢𝑘𝑢⊗ (𝑈𝑢𝑘𝑧𝑖)

 

𝑢∈Γ𝑖

= ∑ 𝑑𝑢,𝑖𝑘𝑢⊗𝑘𝜑𝑢(𝑧𝑖)

 

𝑢∈Γ𝑖

, 

where |𝑑𝑢,𝑖| = |𝑑𝑢| for 𝑢 ∈ Γ𝑖. Thus it follows from Proposition (6.3.19) that 

  {𝐴𝐵1
∗, … , 𝐴𝐵𝑚

∗ } ⊂ 𝒯(1).                                                  (79) 
On the other hand, we have 

𝐵 − (𝐵1 +⋯+ 𝐵𝑚) =∑∑{𝑈𝑢(𝑘𝜓(𝑢) − 𝑘𝑧𝑖)} ⊗ 𝑒𝑢

 

𝑢∈Γ𝑖

𝑚

𝑖=1

. 

Since the sets Γ1, … , Γ𝑚 form a partition of Γ, i.e., Γ𝑖 ∩ Γ𝑗 = ∅ whenever 𝑖 ≠ 𝑗, Lemma 

(6.3.10) tells us that 

‖𝐵 − (𝐵1 +⋯+ 𝐵𝑚)‖ ≤ 𝐵(Γ) max
1≤𝑖≤𝑚

sup
𝑢∈Γ𝑖

‖𝑘𝜓(𝑢) − 𝑘𝑧𝑖‖∞
≤ 𝐵(Γ)𝜖. 

Lemma (6.3.10) also tells us that 𝐴 is a bounded operator. Hence 

‖𝑇 − (𝐴𝐵1
∗ +⋯+ 𝐴𝐵𝑚

∗ )‖ = ‖𝐴𝐵∗ − (𝐴𝐵1
∗ +⋯+ 𝐴𝐵𝑚

∗ )‖ ≤ ‖𝐴‖‖𝐵∗ − (𝐵1
∗ +⋯+ 𝐵𝑚

∗ )‖
= ‖𝐴‖‖𝐵 − (𝐵1 +⋯+ 𝐵𝑚)‖ ≤ ‖𝐴‖𝐵(Γ)𝜖. 

Since 𝜖 > 0 is arbitrary, combining this inequality with (79), we conclude that 𝑇 ∈ 𝒯(1). 
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This completes the proof of Proposition (6.3.20).  

The analogue of Theorem (6.3.13) also holds in the setting of the Fock space. To 

discuss the details, let us first recall the necessary definitions. 

Let 𝑑𝜇 be the Gaussian measure on 𝐂𝑛. It is well known that, in terms of the standard 

volume measure 𝑑𝑉 on 𝐂𝑛, we have 

𝑑𝜇(𝑧) = 𝜋−𝑛𝑒−|𝑧|
2
𝑑𝑉(𝑧). 

Recall that the Fock space 𝐻2(𝐂𝑛, 𝑑𝜇) is defined to be the subspace ℎ ∈
𝐿2(𝐂𝑛, 𝑑𝜇): ℎ is analytic on 𝐂𝑛} of 𝐿2(𝐂𝑛, 𝑑𝜇). The symbol 𝑘𝑧 will denote the normalized 

reproducing kernel for 𝐻2(𝐂𝑛, 𝑑𝜇). That is, 

𝑘𝑧(𝜁) = 𝑒
〈𝜁,𝑧〉𝑒−|𝑧|

2/2, 𝑧, 𝜁 ∈ 𝐂𝑛 
In [190], the notion of sufficiently localized operators was introduced: 

Definition (6.3.21)[192]: A bounded operator 𝐵 on 𝐻2(𝐂𝑛, 𝑑𝜇) is said to be sufficiently 

localized if there exist constants 2𝑛 < 𝛽 < ∞ and 0 < 𝐶 < ∞ such that 

|〈𝐵𝑘𝑧, 𝑘𝑤〉| ≤
𝐶

(1 + |𝑧 − 𝑤|)𝛽
 

for all 𝑧, 𝑤 ∈ 𝐂𝑛. 

Let 𝐶∗(𝒮ℒ) be the 𝐶∗-algebra generated by the collection of sufficiently localized 

operators on 𝐻2(𝐂𝑛, 𝑑𝜇). Combining localization properties with a new approach, it was 

shown in [190] that for 𝐴 ∈ 𝐶∗(𝒮ℒ), 
 the condition lim

|𝑧|→∞
〈𝐴𝑘𝑧, 𝑘𝑧〉 = 0 implies that 𝐴 is compact:          (80) 

This was the result that motivated Isralowitz, Mitkovski and Wick to introduce the notion 

of weakly localized operators in [184]. On the Fock space, weakly localized operators are 

defined as follows. 

Definition (6.3.22)[192]: [184] A bounded operator 𝑇 on 𝐻2(𝐂𝑛, 𝑑𝜇) is said to be weakly 

localized if it satisfies the conditions 

sup
𝑧∈𝐂𝑛

∫|〈𝑇𝑘𝑧 , 𝑘𝑤〉| 𝑑𝑉(𝑤) < ∞ ,   sup
𝑧∈𝐂𝑛

∫|〈𝑇∗𝑘𝑧, 𝑘𝑤〉| 𝑑𝑉(𝑤) < ∞ , 

and 

lim
𝑟→∞

sup
𝑧∈𝐂𝑛

∫ |〈𝑇𝑘𝑧 , 𝑘𝑤〉|𝑑𝑉(𝑤)

 

|𝑧−𝑤|≥𝑟

= 0, lim
𝑟→∞

sup
𝑧∈𝐂𝑛

∫ |〈𝑇∗𝑘𝑧, 𝑘𝑤〉|𝑑𝑉(𝑤)

 

|𝑧−𝑤|≥𝑟

= 0.  

It is easy to see that any sufficiently localized operator is weakly localized. Moreover, 

it was shown in [184] that (80) also holds true if 𝐴 is in the 𝐶∗-algebra generated by the 

weakly localized operators on 𝐻2(𝐂𝑛, 𝑑𝜇). 
Replacing the class 𝒜𝑠 by the class of operators defined in Definition (6.3.22), one 

can prove the analogue of Theorem (6.3.13) on the Fock space 𝐻2(𝐂𝑛, 𝑑𝜇). The proof is in 

fact easier in the Fock space case. This is because, compared with the Bergman space, the 

structure of the Fock space is much simpler, and one generally gets much better “decaying 

rate” in estimates. 

For example, instead of general separated sets, in the Fock space setting we only need 

to be concerned with the standard lattice 

𝐙2𝑛 = {(𝑗1 + 𝑖𝑘1, … , 𝑗𝑛 + 𝑖𝑘𝑛): 𝑗1, … , 𝑗𝑛, 𝑘1, … , 𝑘𝑛 ∈ 𝐙} 
and its subsets. What replaces 𝐷(0,2) is the fundamental cube 

𝑆 = {(𝑥1 + 𝑖𝑦1, … , 𝑥𝑛 + 𝑖𝑦𝑛): 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 ∈ {0,1)} 
in 𝐂𝑛. With 𝐙2𝑛 and 𝑆 we have 
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⋃ {𝑢 − 𝑆}

 

𝑢∈𝐙2𝑛

= 𝐂𝑛 ,                                                    (81) 

which is a tiling of the space, meaning that there is no overlap between 𝑢 − 𝑆 and 𝑣 − 𝑆 for 

𝑢 ≠ 𝑣 in 𝐙2𝑛. Compared with the covering scheme (33), the tiling scheme (81) offers 

considerable advantages. For example, the Toeplitz operator 𝑇Φ used in the proof of 

Theorem (6.3.13) can simply be replaced by the identity operator 1 in the case of Fock space. 

There is, however, one technical issue in the Fock space case that warrants 

mentioning. This stems from the fact that there are no bounded analytic functions on 𝐂𝑛 

other than constants. Thus the straightforward analogue of Lemma (6.3.10) on 𝐻2(𝐂𝑛, 𝑑𝜇), 
while true, is not very useful. In the Fock-space setting, the supremum norm ‖⋅‖∞ must be 

replaced by something else. 

Definition (6.3.23)[192]: For an analytic function ℎ on 𝐂𝑛, we write 

‖ℎ‖∗ = (∫|ℎ(𝜁)|
2𝑒−(1/2)|𝜁|

2
𝑑𝑉(𝜁))

1/2

. 

Let ℋ∗ be the collection of analytic functions ℎ on 𝐂𝑛 satisfying the condition ‖ℎ‖∗ < ∞. 

For each 𝑧 ∈ 𝐂𝑛, let 𝑈𝑧 be the unitary operator defined by the formula 

       (𝑈𝑧𝑓)(𝜁) = 𝑓(𝑧 − 𝜁)𝑘𝑧(𝜁)  ,         𝜁 ∈ 𝐂
𝑛,                                (82) 

𝑓 ∈ 𝐻2(𝐂𝑛, 𝑑𝜇). The following is what replaces Lemma (6.3.10) in the Fock-space setting: 

Lemma (6.3.24)[192]: There is a constant 0 < 𝐶4.4 < ∞ such that the following estimate 

holds: Let 𝑒𝑢: 𝑢 ∈ 𝐙
2𝑛 be any orthonormal set and let ℎ𝑢 ∈ ℋ∗ , 𝑢 ∈ 𝐙

2𝑛, be functions 

satisfying the condition sup
𝑢∈𝐙2𝑛

‖ℎ‖∗ < ∞. Then 

‖ ∑ (𝑈𝑢ℎ𝑢)  ⊗ 𝑒𝑢

 

𝑢∈𝐙2𝑛

‖ ≤ 𝐶4.4 sup
𝑢∈𝐙2𝑛

‖ℎ‖∗ . 

Proof. Let us first estimate |〈𝑈𝑢ℎ𝑢, 𝑈𝑣ℎ𝑣〉|. By (82), for 𝑢 ∈ 𝐙2𝑛 we have 

|〈𝑈𝑢ℎ𝑢, 𝑈𝑣ℎ𝑣〉| = ∫ℎ𝑢(𝑢 − 𝜁)ℎ𝑣(𝑣 − 𝜁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑘𝑢(𝜁)𝑘𝑣(𝜁)̅̅ ̅̅ ̅̅ ̅𝑒−|𝜁|
2
𝑑𝑉(𝜁).              (83) 

Moreover, 

    |𝑘𝑢(𝜁)𝑘𝑣(𝜁)̅̅ ̅̅ ̅̅ ̅|𝑒−|𝜁|
2
= 𝑒−(1/2 ) (|𝑢−𝜁|

2+|𝑣−𝜁|2) ,                        (84) 

𝜁 ∈ 𝐂𝑛. Observe that 

(|𝑢 − 𝜁|2 + |𝑣 − 𝜁|2 ≥
1

2
(|𝑢 − 𝜁|2 + |𝑣 − 𝜁|2 ≥

1

2
|𝑢 − 𝑣|2. 

Thus, splitting the 1/2 in (84) as (1/4) + (1/4), we find that 

|𝑘𝑢(𝜁)𝑘𝑣(𝜁)̅̅ ̅̅ ̅̅ ̅|𝑒−|𝜁|
2
≤ 𝑒−(1/8)|𝑢−𝑣|

2 𝑒−(1/4)|𝑢−𝜁|
2 𝑒−(1/4)|𝑣−𝜁|

2 . 
Combining this with (83) and applying the Cauchy-Schwarz inequality, we obtain 

 |〈𝑈𝑢ℎ𝑢, 𝑈𝑣ℎ𝑣〉| ≤ 𝑒
−(
1
8
)|𝑢−𝑣|2 ‖ℎ𝑢‖∗‖ℎ𝑣‖∗ ≤ 𝑒

−(
1
8
)|𝑢−𝑣|2 

𝐻∗
2,              (85) 

where 

𝐻∗ = sup
𝑢∈𝐙2𝑛

‖ℎ𝑢‖∗ . 

Write 

𝐴 = ∑ (𝑈𝑢ℎ𝑢) ⊗ 𝑒𝑢

 

𝑢∈𝐙2𝑛

 

and consider any vector 𝑥 = ∑ 𝑥𝑢𝑒𝑢
 
𝑢∈𝐙2𝑛  . By (85), we have 
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‖𝐴𝑥‖2 ≤ ∑ |〈𝑈𝑣ℎ𝑣 , 𝑈𝑢ℎ𝑢〉||𝑥𝑢||𝑥𝑣|

 

𝑢,𝑣∈𝐙2𝑛

≤ 𝐻∗
2 ∑ 𝑒−(1/8)|𝑢−𝑣|

2 |𝑥𝑢||𝑥𝑣|

 

𝑢,𝑣∈𝐙2𝑛

. 

Applying the Schur test to the right-hand side, we find that 

‖𝐴𝑥‖2 ≤ 𝐶𝐻∗
2 ∑ |𝑥𝑢|

2

 

𝑢∈𝐙2𝑛

= 𝐶𝐻∗
2‖𝑥‖2, 

where 𝐶 = ∑ 𝑒−(1/8)|𝑣|
2  

𝑧∈𝐙2𝑛 , which is finite. Since the vector 𝑥 is arbitrary, we conclude 

that ‖𝐴‖ ≤ 𝐶1/2𝐻∗. Thus the lemma holds for the constant 𝐶4.4 = 𝐶
1/2. 

In the proof of the Fock-space analogue of Theorem (6.3.13), the ‖⋅‖∞-continuities 

of the previous are replaced by the corresponding ‖⋅‖∗-continuities. For example, for the 

normalized reproducing kernel of the Fock space one easily verifies that 

lim
𝑤→𝑧

‖𝑘𝑧 − 𝑘𝑤‖∗ = 0 

for every 𝑧 ∈ 𝐂𝑛. Thus, using Lemma (6.3.24) in place of Lemma (6.3.10), the analogue of 

Theorem (6.3.13) on the Fock space can be obtained by following the argument in the 

previously. 

Corollary (6.3.25)[200]: Let Γ be a separated set in 𝐁. 

(c) For each 0 < 𝜖 < ∞, there is a natural number 𝑁 = 𝑁(Γ; 1 + 𝜖)such that 

card{(𝑢 + 𝜖) ∈ Γ: 𝛽(𝑢, 𝑢 + 𝜖) ≤ 1 + 𝜖} ≤ 𝑁 for every 𝑢 ∈ Γ. 

(d) For every pair of (𝑧2 − 1) ∈ 𝐁 and 𝜖 > 0, there is a finite partition Γ = Γ1 ∪ …∪
Γ𝑚such that for every 𝑖 ∈ {1,… ,𝑚}, the conditions 𝑢, (𝑢 + 𝜖) ∈ Γ𝑖and 𝜖 > 0imply 

𝛽(𝜑𝑢(𝑧
2 − 1),𝜑𝑢+𝜖(𝑧

2 − 1)) > 1 + 𝜖. 
Proof. By definition, there is a 𝛿 > 0 such that 𝛽(𝑢, 𝑢 + 𝜖) ≥ 𝛿 for all 𝜖 > 0in Γ. Thus 

𝐷(𝑢, 𝛿/2) ∩ 𝐷 (𝑢 + 𝜖,
𝛿

2
) = ∅     for all𝜖 > 0   in Γ. 

Let 𝜖 > 0 be given. Then for every pair of 𝑢, (𝑢 + 𝜖) ∈ Γ, the condition 𝛽(𝑢, 𝑢 + 𝜖) ≤ 1 +

𝜖implies 𝐷(𝑢 + 𝜖, 𝛿/2) ⊂ 𝐷(𝑢, 1 + 𝜖 + (𝛿/2)). By the Möbius invariance of the Bergman 

metric 𝛽and the measure 𝑑𝜆, we have 

𝜆(𝐷(𝛿/2)) = 𝜆(𝜑𝑢+𝜖(𝐷(0, 𝛿/2)) = 𝜆(𝐷(0, 𝛿/2)). 
Therefore if we write 𝑁(𝑢) for the cardinality of the set {(𝑢 + 𝜖) ∈ Γ: 𝛽(𝑢, 𝑢 + 𝜖) ≤ 1 + 𝜖}, 
then 

𝑁(𝑢)𝜆(𝐷(0, 𝛿/2))

= ∑ 𝜆(𝐷(𝑢 + 𝜖, 𝛿/2)) ≤ 𝜆(𝐷(𝑢, 1 + 𝜖 + (𝛿/2))
(𝑢+𝜖)∈Γ

𝛽(𝑢,𝑢+𝜖)≤1+𝜖

= 𝜆 (𝐷(0,1 + 𝜖 + (𝛿/2))) . 

That is, 𝑁(𝑢) ≤ 𝜆(𝐷(0,1 + 𝜖 + (𝛿/2))/𝜆(𝐷(0, 𝛿/2)), which proves (a). 

To prove (b), let (𝑧2 − 1) ∈ 𝐁 and 𝜖 > 0 be given, and set 2𝛽(𝑧2 − 1,0) = 0. By (a), 

there is an 𝑚 ∈ 𝑁 such that card{(𝑢 + 𝜖) ∈ Γ: 𝛽(𝑢, 𝑢 + 𝜖) ≤ 1 + 𝜖} ≤ 𝑚 for every 𝑢 ∈ Γ. 

By a standard maximality argument, there is a partition Γ = Γ1 ∪ …∪ Γ𝑚such that for every 

𝑖 ∈ {1,… ,𝑚}, the conditions 𝑢, (𝑢 + 𝜖) ∈ Γ𝑖and 𝜖 > 0imply 𝛽(𝑢, 𝑢 + 𝜖) > 1 + 𝜖. But if 

𝑢, (𝑢 + 𝜖)satisfy the condition 𝛽(𝑢, 𝑢 + 𝜖) > 1 + 𝜖, then by the Möbius invariance of 𝛽we 

have 
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𝛽(𝜑𝑢(𝑧
2 − 1),𝜑𝑢+𝜖(𝑧

2 − 1))

≥ 𝛽(𝑢, 𝑢 + 𝜖) − 𝛽(𝜑𝑢(𝑧
2 − 1), 𝑢) − 𝛽(𝑢 + 𝜖, 𝜑𝑢+𝜖(𝑧

2 − 1))

= 𝛽(𝑢, 𝑢 + 𝜖) − 𝛽(𝜑𝑢(𝑧
2 − 1),𝜑𝑢(0)) − 𝛽(𝜑𝑢+𝜖(0), 𝜑𝑢+𝜖(𝑧

2 − 1))

= 𝛽(𝑢, 𝑢 + 𝜖) − 𝛽(𝑧2 − 1,0) − 𝛽(0, 𝑧2 − 1) > 1 + 𝜖 − 2𝛽(𝑧2 − 1,0)
= 1 + 𝜖. 

This completes the proof.  

Corollary (6.3.26)[200]: For all 𝑢, (𝑢 + 𝜖), 𝑥, (𝑥 + 𝜖) ∈ 𝐁 we have  

(1 − |𝜑𝑢(𝑥)|
2)1/2(1 − |𝜑𝑢+𝜖(𝑥 + 𝜖)|

2)1/2

|1 − 〈𝜑𝑢(𝑥), 𝜑𝑢+𝜖(𝑥 + 𝜖)〉|

≤ 2𝑒𝛽(𝑥,0)+𝛽(𝑥+𝜖,0)
(1 − |𝑢|2)1/2(1 − |𝑢 + 𝜖|2)1/2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
. 

Proof. For 𝑎, 𝑎 + 𝜖 ∈ 𝐁, we have 1 − |𝜑𝑎(𝑎 + 𝜖)|
2 = (1 − |𝑎|2)(1 − |𝑎 + 𝜖|2)/|1 −

〈𝑎, 𝑎 + 𝜖〉2|[79]. Thus if we write 

𝛼2 − 1 =
(1 − |𝑎|2)(1 − |𝑎 + 𝜖|2)1/2

|1 − 〈𝑎, 𝑎 + 𝜖〉2|
, 

then 

log
1

𝛼2 − 1
≤
1

2
log
1 + |𝜑𝑎(𝑎 + 𝜖)|

1 − |𝜑𝑎(𝑎 + 𝜖)|
≤ log

2

𝛼2 − 1
. 

Consequently 

𝑒−𝛽(𝑎,𝑎+𝜖) ≤
(1 − |𝑎|2)

1
2(1 − |𝑎 + 𝜖|2)

1
2

|1 − 〈𝑎, 𝑎 + 𝜖〉|
≤ 2𝑒−𝛽(𝑎,𝑎+𝜖).               (86) 

For 𝑢, (𝑢 + 𝜖), 𝑥, (𝑥 + 𝜖) ∈ 𝐁, by the Möbius invariance of the Bergman metric, we have 

𝛽(𝜑𝑢(𝑧
2 − 1),𝜑𝑢+𝜖(𝑥 + 𝜖)) ≥ 𝛽(𝑢, 𝑢 + 𝜖) − 𝛽(𝜑𝑢(𝑥), 𝑢) − 𝛽(𝜑𝑢+𝜖(𝑥 + 𝜖), 𝑢 + 𝜖)

= 𝛽(𝑢, 𝑢 + 𝜖) − 𝛽(𝑥, 0) − 𝛽(𝑥 + 𝜖, 𝑧2 − 1). 
Combining (86) with this inequality, we find that 

(1 − |𝜑𝑢(𝑥)|
2)1/2(1 − |𝜑𝑢+𝜖(𝑥 + 𝜖)|

2)1/2

|1 − 〈𝜑𝑢(𝑥), 𝜑𝑢+𝜖(𝑥 + 𝜖)〉|
≤ 2𝑒−𝛽(𝜑𝑢(𝑥),𝜑𝑢+𝜖(𝑥+𝜖))

≤ 2𝑒𝛽(𝑥,0)+𝛽(𝑥+𝜖,0)𝑒−𝛽(𝑢,𝑢+𝜖)

≤ 2𝑒𝛽(𝑥,0)+𝛽(𝑥+𝜖,0)
(1 − |𝑢|2)1/2(1 − |𝑢 + 𝜖|2)1/2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
. 

This proves the lemma.  

Corollary (6.3.27)[200]: Let Γbe a separated set in 𝐁. Then there is a 0 < 𝐶(Γ) < ∞such 

that 

∑ (
(1 − |𝜉2 − 1|2)1/2(1 − |𝑢 + 𝜖|2)1/2

|1 − 〈𝜉2 − 1, 𝑢 + 𝜖〉|
)

𝑛+1

𝑢+𝜖∈Γ

(1 − |𝑢 + 𝜖|2)(4𝑛+1)/8

≤ 𝐶(Γ)(1 − |𝜉2 − 1|2)(4𝑛+1)/8 
for every (𝜉2 − 1) ∈ 𝐁. 

Proof. If Γ is a separated set in 𝐁, then there is a 𝛿 > 0 such that 𝛽(𝑢, 𝑢 + 𝜖) ≥ 𝛿for all 𝜖 >
0in Γ. Thus 𝐷(𝑢, 𝛿/2) ∩ 𝐷(𝑢 + 𝜖, 𝛿/2) = ∅for all 𝜖 > 0in Γ. If (𝑤2 − 1) ∈ 𝐷(𝑢 +

𝜖, 𝛿/2), then (𝑢 + 𝜖) ∈ 𝐷(𝑤2 − 1, 𝛿/2) = 𝜑𝑤2−1(𝐷(0, 𝛿/2)). Thus If (𝑤2 − 1) ∈

𝐷(𝑢 + 𝜖, 𝛿/2), then there is a 𝑢′ + 𝜖 ∈ 𝐷(𝑢 + 𝜖, 𝛿/2) such that 𝑢 + 𝜖 = 𝜑𝑤2−1(𝑢
′ + 𝜖). 

Let (𝜉2 − 1) ∈ 𝐁. Since 𝜉2 − 1 = 𝜑𝜉2−1(0), we can apply Corollary (6.3.27) to obtain 
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(1 − |𝜉2 − 1|2)1/2(1 − |𝑢 + 𝜖|2)1/2

|1 − 〈𝜉2 − 1, 𝑢 + 𝜖〉|
≤ 2𝑒

𝛿
2
(1 − |𝜉2 − 1|2)

1
2(1 − |𝑤2 − 1|2)

1
2

|1 − 〈𝜉2 − 1,𝑤2 − 1〉|
     (87) 

for every (𝑤2 − 1) ∈ 𝐷(𝑢 + 𝜖, 𝛿/2). Also, since 𝑢 + 𝜖 = 𝜑𝑤2−1(𝑢
′ + 𝜖) and 𝑢′ + 𝜖 ∈

𝐷(0, 𝛿/2), we have 

1 − |𝑢 + 𝜖|2 = 1 − |𝜑𝑤2−1(𝑢
′ + 𝜖)|2

=
(1 − |𝑢′ + 𝜖|2)(1 − |𝑤2 − 1|2)

|1 − 〈𝑢′ + 𝜖,𝑤2 − 1〉|2

≤
4

1 − |𝑢′ + 𝜖|2
(1 − |𝑤2 − 1|2)

≤ 4𝑒2𝛽(𝑢
′+𝜖,0)(1 − |𝑤2 − 1|2)

≤ 4𝑒𝛿(1−|𝑤2 − 1|2).                                                        (88) 

Set 𝐶1 = (2𝑒
𝛿/2)

𝑛+1
(4𝑒𝛿)

(4𝑛+1)/8
. Then it follows from (87) and (88) that 

(
(1 − |𝜉2 − 1|2)1/2(1 − |𝑢 + 𝜖|2)1/2

|1 − 〈𝜉2 − 1, 𝑢 + 𝜖〉|
)

𝑛+1

(1 − |𝑢 + 𝜖|2)(4𝑛+1)/8

≤ 𝐶1 (
(1 − |𝜉2 − 1|2)1/2(1 − |𝑤2 − 1|2)1/2

|1 − 〈𝜉2 − 1,𝑤2 − 1〉|
)

𝑛+1

(1 − |𝑤2 − 1|2)(4𝑛+1)/8 

for every (𝑤2 − 1) ∈ 𝐷(𝑢 + 𝜖, 𝛿/2). Hence for each (𝜉2 − 1) ∈ 𝐁we have 

∑ (
(1 − |𝜉2 − 1|2)1/2(1 − |𝑢 + 𝜖|2)1/2

|1 − 〈𝜉2 − 1, 𝑢 + 𝜖〉|
)

𝑛+1

(1 − |𝑢 + 𝜖|2)(4𝑛+1)/8

(𝑢+𝜖)∈Γ

≤ ∑
𝐶1

𝜆 (𝐷 (𝑢 + 𝜖,
𝛿
2))

(𝑢+𝜖)∈Γ

∫ (
(1 − |𝜉2 − 1|2)

1
2(1 − |𝑤2 − 1|2)

1
2

|1 − 〈𝜉2 − 1,𝑤2 − 1〉|
)

𝑛+1

𝐷(𝑢+𝜖,
𝛿
2
)

× (1 − |𝑤2 − 1|2)
4𝑛+1
8 𝑑𝜆(𝑤2 − 1)

≤
𝐶1

𝜆 (𝐷 (𝑢 + 𝜖,
𝛿
2))

∫(
(1 − |𝜉2 − 1|2)

1
2(1 − |𝑤2 − 1|2)

1
2

|1 − 〈𝜉2 − 1,𝑤2 − 1〉|
)

𝑛+1

× (1 − |𝑤2 − 1|2)
4𝑛+1
8 𝑑𝜆(𝑤2 − 1).                                                                                      (89) 

To estimate the last integral, note that 

(1 − |𝜉2 − 1|2)
1
2 (1 − |𝜑𝜉2−1(𝜁

2 − 1)|
2
)

1
2

|1 − 〈𝜉2 − 1,𝜑𝜉2−1(𝜁
2 − 1)〉|

= (1 − |𝜁2 − 1|2)1/2. 

Thus, making the substitution 𝑤2 − 1 = 𝜑𝜉2−1(𝜁
2 − 1) and using the Möbius invariance of 

𝑑𝜆, we have 
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= ∫(1 − |𝜁2 − 1|2)
(𝑛+1)
2 (1 − |𝜑𝜉2−1(𝜁

2 − 1)|
2
)

(4𝑛+1)
8

𝑑𝜆(𝜁2 − 1)

= ∫(1 − |𝜁2 − 1|2)
(𝑛+1)
2 (

(1 − |𝜉2 − 1|2)(1 − |𝜁2 − 1|2)

(1 − 〈𝜉2 − 1, 𝜁2 − 1〉2)
)

(4𝑛+1)
8

𝑑𝜆(𝜁2

− 1)

= (1 − |𝜉2 − 1|2)(4𝑛+1)/8∫
𝑑(𝑢 + 𝜖)(𝜁2 − 1)

|1 − 〈𝜉2 − 1, 𝜁2 − 1〉|
𝑛+(

1
4
)(1 − |𝜁2 − 1|2)3/8

= (∗). 
To further estimate (∗), let 𝑑𝜎be the standard spherical measure on the unit sphere 

{𝑥 ∈ 𝐂𝑛: |𝑥| = 1}. There is a constant 𝐶2such that 

∫
𝑑𝜎(𝑥)

|1 − 〈𝑧2 − 1, 𝑥〉|
𝑛+(

1
4
)
≤

𝐶2
(1 − |𝑧2 − 1|2)1/4

 

for every (𝑧2 − 1) ∈ 𝐁 [79]. Combining this with the radial-spherical decomposition 𝑑(𝑢 +
𝜖) = 2𝑛(1 + 𝜖)2𝑛−1𝑑(1 + 𝜖)𝑑𝜎 of the volume measure, we have 

∫
𝑑(𝑢 + 𝜖)(𝜁2 − 1)

|1 − 〈𝜉2 − 1, 𝜁2 − 1〉|
𝑛+(

1
4
)(1 − |𝜁2 − 1|2)3/8

≤ ∫
𝐶22𝑛(1 + 𝜖)

2𝑛−1𝑑(1 + 𝜖)

(1 − (1 + 𝜖)2)(1/4)+(3/8)

1

0

≤ 𝑛𝐶2∫
𝑑(1 − 2𝜖)

(2𝜖)5/8

1

0

=
8

3
𝑛𝐶2. 

Therefore 

(∗) ≤ 3𝑛𝐶2(1 − |𝜉
2 − 1|2)(4𝑛+1)/8. 

Substituting this in (89), we conclude that the desired inequality holds for the constant 

𝐶(Γ) =
3𝑛𝐶1𝐶2

𝜆(𝐷(0, 𝛿/2))
. 

This completes the proof.  

Corollary (6.3.28)[200]: There is a constant 0 < 𝐶2.5 < 1 such that ‖𝐸𝑧2−1‖ ≤ 𝐶2.5 for 

every (𝑧2 − 1) ∈ 𝐷(0,2). 
Proof. By Corollary (6.3.26), for 𝑢, (𝑢 + 𝜖), (𝑧2 − 1) ∈ 𝐁we have 

|〈𝑘𝜑𝑢+𝜖(𝑧2−1), 𝑘𝜑𝑢(𝑧2−1)〉| = (
(1 − |𝜑𝑢+𝜖(𝑧

2 − 1)|2)1/2(1 − |𝜑𝑢(𝑧
2 − 1)|2)1/2

|1 − 〈𝜑𝑢(𝑧
2 − 1), 𝜑𝑢+𝜖(𝑧

2 − 1)〉|
)

𝑛+1

≤ (2𝑒2𝛽(𝑧
2−1,0))

𝑛+1
(
(1 − |𝑢|2)

1
2(1 − |𝑢 + 𝜖|2)

1
2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
)

𝑛+1

.                          (90) 

Let {𝜖𝑢: 𝑢 ∈ ℒ}be an orthonormal set. For each (𝑧2 − 1) ∈ 𝐁, define the operator 

𝐹𝑧2−1 =∑𝜖𝑢⊗𝑘𝜑𝑢(𝑧2−1)
𝑢∈ℒ

.                      (91) 

Since 𝐸𝑧2−1 = 𝐹𝑧2−1
∗ 𝐹𝑧2−1 and ‖𝐹𝑧2−1

∗ 𝐹𝑧2−1‖ = ‖𝐹𝑧2−1𝐹𝑧2−1
∗ ‖, it suffices to estimate the 

later. We have 
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𝐹𝑧2−1𝐹𝑧2−1
∗ = ∑ 〈𝑘𝜑𝑢+𝜖(𝑧2−1), 𝑘𝜑𝑢(𝑧2−1)〉𝜖𝑢⊗ 𝜖𝑢+𝜖

𝑢,(𝑢+𝜖)∈ℒ

. 

Now suppose that (𝑧2 − 1) ∈ 𝐷(0,2) and write 𝐶1 = (2𝑒
4)𝑛+1. By (40), for every vector 

𝑥 = ∑ 𝑥𝑢𝜖𝑢𝑢,∈ℒ we have 

〈𝐹𝑧2−1𝐹𝑧2−1
∗ 𝑥, 𝑥〉 ≤ ∑ |〈𝑘𝜑𝑢+𝜖(𝑧2−1), 𝑘𝜑𝑢(𝑧2−1)〉||𝑥𝑢||𝑥𝑢+𝜖|

𝑢,(𝑢+𝜖)∈ℒ

≤ 𝐶1 ∑ (
(1 − |𝑢|2)

1
2(1 − |𝑢 + 𝜖|2)

1
2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
)

𝑛+1

𝑢,(𝑢+𝜖)∈ℒ

|𝑥𝑢||𝑥𝑢+𝜖|

= 𝐶1∑|𝑥𝑢|(𝑥 + 𝜖)𝑢
𝑢∈ℒ

,                                                                                        (92) 

where 

(𝑥 + 𝜖)𝑢 = ∑ (
(1 − |𝑢|2)1/2(1 − |𝑢 + 𝜖|2)1/2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
)

𝑛+1

(𝑢+𝜖)∈ℒ

|𝑥𝑢+𝜖| 

for each 𝑢 ∈ ℒ. Next we apply the Schur test. Indeed by the Cauchy-Schwarz inequality and 

Corollary (6.3.27), we have 

(𝑥 + 𝜖)𝑢
2 ≤ 𝐶(ℒ)(1 − |𝑢|2)

4𝑛+1
8

× ∑ (
(1 − |𝑢|2)1/2(1 − |𝑢 + 𝜖|2)1/2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
)

𝑛+1

(𝑢+𝜖)∈ℒ

|𝑥𝑢+𝜖|
2

(1 − |𝑢 + 𝜖|2)
4𝑛+1
8

. 

Applying Corollary (6.3.27) again, we have 

∑(𝑥 + 𝜖)𝑢
2

𝑢∈ℒ

≤ 𝐶(ℒ) ∑
|𝑥𝑢+𝜖|

2

(1 − |𝑢 + 𝜖|2)
4𝑛+1
8(𝑢+𝜖)∈ℒ

∑(1− |𝑢|2)
4𝑛+1
8

𝑢∈ℒ

× (
(1 − |𝑢|2)1/2(1 − |𝑢 + 𝜖|2)1/2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
)

𝑛+1

≤ 𝐶2(ℒ) ∑
|𝑥𝑢+𝜖|

2

(1 − |𝑢 + 𝜖|2)
4𝑛+1
8

(1 − |𝑢 + 𝜖|2)
4𝑛+1
8

(𝑢+𝜖)∈ℒ

= 𝐶2(ℒ) ∑ |𝑥𝑢+𝜖|
2

(𝑢+𝜖)∈ℒ

. 

Combining this with (92), we find that 

〈𝐹𝑧2−1𝐹𝑧2−1
∗ 𝑥, 𝑥〉 ≤ 𝐶1𝐶(ℒ)∑|𝑥𝑢+𝜖|

2

𝑢∈ℒ

= 𝐶1𝐶(ℒ)‖𝑥‖
2. 

Since the vector 𝑥is arbitrary, we conclude that ‖𝐸𝑧2−1‖ = ‖𝐹𝑧2−1𝐹𝑧2−1
∗ ‖ ≤ 𝐶1𝐶(ℒ) for 

every (𝑧2 − 1) ∈ 𝐷(0,2). This completes the proof. 



222 

 

Corollary (6.3.29)[200]: Given any separated set Γ in 𝐁, there exists a constant 0 < (𝐴 +
𝜖)(Γ) < ∞ such that the following estimate holds: Let {ℎ𝑢: 𝑢 ∈ Γ}be functions in 

𝐻∞(𝐁)such that sup
𝑢∈Γ
‖ℎ𝑢‖∞ < ∞, and let {𝑒𝑢: 𝑢 ∈ Γ}be any orthonormal set. Then 

‖∑(𝑈𝑢ℎ𝑢) ⊗

𝑢∈Γ

𝑒𝑢‖ ≤ (𝐴 + 𝜖)(Γ) sup
𝑢∈Γ
‖ℎ𝑢‖∞. 

Proof. Given Γ, {ℎ𝑢: 𝑢 ∈ Γ}and {𝑒𝑢: 𝑢 ∈ Γ}as in the statement, let us write 

𝐴 =∑(𝑈𝑢ℎ𝑢)⊗

𝑢∈Γ

𝑒𝑢 

for convenience. By (38), the self-adjoint Toeplitz operator 𝑇∑
�̃�
Φ�̃�is invertible with 

‖𝑇∑
�̃�
Φ�̃�
−1 ‖ < 1. Therefore ‖𝐴‖ = ‖𝑇∑

�̃�
Φ�̃�
−1 𝑇∑

�̃�
Φ�̃�𝐴‖ ≤ ‖𝑇∑

�̃�
Φ�̃�𝐴‖. Combining this with (39), 

we see that 

‖𝐴‖ ≤ 𝜆(𝐷(0,2)) sup
(𝑧2−1)∈𝐷(0,2)

‖𝐸𝑧2−1𝐴‖.                                               (93) 

Thus it suffices to estimate ‖𝐸𝑧2−1𝐴‖for (𝑧2 − 1) ∈ 𝐷(0,2). Let 𝐹𝑧2−1be the operator 

defined by (91). Then Corollary (6.3.28) implies that ‖𝐹𝑧2−1
∗ ‖ ≤ 𝐶2.5

1/2
for (𝑧2 − 1) ∈

𝐷(0,2). Hence 

‖𝐸𝑧2−1𝐴‖ ≤ 𝐶2.5

1
2 ‖𝐹𝑧2−1𝐴‖(𝑧

2 − 1) ∈ 𝐷(0,2).                                       (94) 

Consequently, we only need to estimate ‖𝐹𝑧2−1𝐴‖. 

To estimate ‖𝐹𝑧2−1𝐴‖, let us denote 

𝐻 = sup
𝑢∈Γ
‖ℎ𝑢‖∞ . 

Let (𝑧2 − 1) ∈ 𝐷(0,2). Then note that 

𝐹𝑧2−1𝐴 =∑∑〈𝑈𝑢+𝜖ℎ𝑢+𝜖 , 𝑘𝜑𝑢(𝑧2−1)〉𝜖𝑢⊗

𝑢∈Γ

𝑒𝑢+𝜖
𝑢∈ℒ

.                   (95) 

Since 𝑈𝑢+𝜖ℎ𝑢+𝜖 = 𝑘𝑢+𝜖 ⋅ ℎ𝑢+𝜖 ∘ 𝜑𝑢+𝜖, the reproducing property of 𝑘𝜑𝑢(𝑧2−1)gives us 

〈𝑈𝑢+𝜖ℎ𝑢+𝜖 , 𝑘𝜑𝑢(𝑧2−1)〉 = ℎ𝑢+𝜖 (𝜑𝑢+𝜖(𝜑𝑢(𝑧
2 − 1))) 〈𝑘𝑢+𝜖 , 𝑘𝜑𝑢(𝑧2−1)〉, 

which is one of the key facts on which depends. Thus 

|〈𝑈𝑢+𝜖ℎ𝑢+𝜖 , 𝑘𝜑𝑢(𝑧2−1)〉| ≤ 𝐻|〈𝑘𝑢+𝜖 , 𝑘𝜑𝑢(𝑧2−1)〉|

= 𝐻 (
(1 − |𝑢 + 𝜖|2)1/2(1 − |𝜑𝑢(𝑧

2 − 1)|2)1/2

|1 − 〈𝜑𝑢(𝑧
2 − 1), 𝑢 + 𝜖〉|

)

𝑛+1

. 

Since 𝑢 + 𝜖 = 𝜑𝑢+𝜖(0) and (𝑧2 − 1) ∈ 𝐷(0,2), an application of Corollary (6.3.26) gives 

us 

|〈𝑈𝑢+𝜖ℎ𝑢+𝜖 , 𝑘𝜑𝑢(𝑧2−1)〉| ≤ 𝐶1𝐻(
(1 − |𝑢 + 𝜖|2)

1
2(1 − |𝑢|2)

1
2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
)

𝑛+1

, (96) 

where 𝐶1 = (2𝑒
2)𝑛+1. Now consider vectors 

𝑥 =∑𝑥𝑢+𝜖𝑒𝑢+𝜖
𝑢∈Γ

and𝑥 + 𝜖 =∑(𝑥 + 𝜖)𝑒𝜖𝑢
𝑢∈ℒ

. 
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It follows from (95) and (96) that 

|〈𝐹𝑧2−1𝐴𝑥, 𝑥 + 𝜖〉|

≤ 𝐶1𝐻∑∑(
(1 − |𝑢 + 𝜖|2)

1
2(1 − |𝑢|2)

1
2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
)

𝑛+1

|𝑥𝑢+𝜖||(𝑥

𝑢∈Γ𝑢∈ℒ

+ 𝜖)𝑢| = 𝐶1𝐻∑(𝑎 + 𝜖)𝑢|(𝑥 + 𝜖)𝑢|

𝑢∈ℒ

,                                       (97) 

where 

(𝑎 + 𝜖)𝑢 =∑(
(1 − |𝑢 + 𝜖|2)1/2(1 − |𝑢|2)1/2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
)

𝑛+1

|𝑥𝑢+𝜖|

𝑢∈Γ

, 

𝑢 ∈ ℒ. We apply the Schur test as we did in the proof of Corollary (6.3.28). By the Cauchy- 

Schwarz inequality and the bound given in Corollary (6.3.27), we have 

(𝑎 + 𝜖)𝑢
2 ≤ 𝐶(Γ)(1 − |𝑢|)

4𝑛+1
8

× ∑ (
(1 − |𝑢 + 𝜖|2)1/2(1 − |𝑢|2)1/2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
)

𝑛+1
|𝑥𝑢+𝜖|

2

(1 − |𝑢 + 𝜖|2)
4𝑛+1
8(𝑢+𝜖)∈Γ

, 

𝑢 ∈ ℒ. Applying Corollary (6.3.27) again, we obtain 

∑(𝑎 + 𝜖)𝑢
2

𝑢∈ℒ

≤ 𝐶(Γ) ∑ ∑(1 − |𝑢|)
4𝑛+1
8

𝑢∈ℒ(𝑢+𝜖)∈Γ

× (
(1 − |𝑢 + 𝜖|2)1/2(1 − |𝑢|2)1/2

|1 − 〈𝑢, 𝑢 + 𝜖〉|
)

𝑛+1
|𝑥𝑢+𝜖|

2

(1 − |𝑢 + 𝜖|2)
4𝑛+1
8

= 𝐶(Γ)𝐶(ℒ) ∑ (1 − |𝑢 + 𝜖|2)
4𝑛+1
8

|𝑥𝑢+𝜖|
2

(1 − |𝑢 + 𝜖|2)
4𝑛+1
8(𝑢+𝜖)∈Γ

= 𝐶(Γ)𝐶(ℒ)‖𝑥‖2. 
Combining this with (97), we obtain 

|〈𝐹𝑧2−1𝐴𝑥, 𝑥 + 𝜖〉| ≤ 𝐶1{𝐶(Γ)𝐶(ℒ)}
1/2𝐻‖𝑥‖‖𝑥 + 𝜖‖. 

Since the vectors 𝑥and (𝑥 + 𝜖)are arbitrary, this means 

‖𝐹𝑧2−1𝐴‖ ≤ 𝐶1{𝐶(Γ)𝐶(ℒ)}
1/2𝐻 

for (𝑧2 − 1) ∈ 𝐷(0,2). Recalling (93) and (94), we see that the lemma holds for the constant 

(𝐴 + 𝜖)(Γ) = 𝜆(𝐷(0,2))𝐶2.5
1/2
𝐶1{𝐶(Γ)𝐶(ℒ)}

1/2. 
This completes the proof. 

Corollary (6.3.30)[200]: Suppose that Γis a separated set in 𝐁. Furthermore, suppose that 

{𝑐𝑢: 𝑢 ∈ Γ} are complex numbers satisfying the condition 

sup
𝑢∈Γ
|𝑐𝑢| < ∞.                                        (98) 

Then for each (𝑧2 − 1) ∈ 𝐁, the operator 

𝑌𝑧2−1 =∑𝑐𝑢𝑘𝜑𝑢(𝑧2−1)⊗𝑘𝜑𝑢(𝑢)
𝑢∈Γ

                           (99) 
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is bounded on the Bergman space. Moreover, the map 𝑧2 − 1 ⟼ 𝑌𝑧2−1from 𝐁 into 

ℬ(𝐿𝑎
2 (𝐁, 𝑑(𝑢 + 𝜖)))is continuous with respect to the operator norm. 

Proof. For 𝑢, (𝑧2 − 1) ∈ 𝐁, simple computation shows that 

𝑈𝑢𝑘𝑧2−1 = (
|1 − 〈𝑢, 𝑢 + 𝜖〉|

1 − 〈𝑢, 𝑢 + 𝜖〉
)

𝑛+1

𝑘𝜑𝑢(𝑧2−1).                    (100) 

Therefore 

𝑘𝜑𝑢(𝑢)⊗𝑘𝜑𝑢(𝑢) = (𝑈𝑢𝑘𝑧2−1) ⊗ (𝑈𝑢𝑘𝑧2−1). 

Let {𝑒𝑢: 𝑢 ∈ Γ}be an orthonormal set. Then for every (𝑧2 − 1) ∈ 𝐁we have the factorization 

𝑌𝑧2−1 = 𝐴𝑧2−1(𝐴𝑧2−1
∗ + 𝜖), 

where 

𝐴𝑧2−1 =∑𝑐𝑢(𝑈𝑢𝑘𝑧2−1) ⊗ 𝑒𝑢
𝑢∈Γ

and           𝐴𝑧2−1 + 𝜖 =∑(𝑈𝑢𝑘𝑧2−1) ⊗ 𝑒𝑢
𝑢∈Γ

. 

Applying Corollary (6.3.29) to the case ℎ𝑢 = 𝑐𝑢𝑘𝑧2−1, 𝑢 ∈ Γ, we see that each 𝐴𝑧2−1is a 

bounded operator. Similarly, each (𝐴𝑧2−1 + 𝜖)is also bounded. Hence 𝑌𝑧2−1 =
𝐴𝑧2−1(𝐴𝑧2−1

∗ + 𝜖)is bounded. 

To show that the map 𝑧2 − 1 ⟼ 𝑌𝑧2−1is continuous with respect to the operator 

norm, it suffices to show that the maps 𝑧2 − 1 ⟼ 𝐴𝑧2−1and 𝑧2 − 1 ⟼ 𝐴𝑧2−1 + 𝜖are 

continuous with respect to the operator norm. Since (𝐴𝑧2−1 + 𝜖)is just a special case of 

𝐴𝑧2−1, it suffices to consider the map 𝑧2 − 1 ⟼ 𝐴𝑧2−1. 

For any (𝑧2 − 1), (𝑤2 − 1) ∈ 𝐁, we have 

𝐴𝑧2−1 − 𝐴𝑤2−1 =∑𝑐𝑢(𝑈𝑢(𝑘𝑧2−1 − 𝑘𝑤2−1)) ⊗ 𝑒𝑢
𝑢∈Γ

. 

Applying Corollary (6.3.29) to the case where ℎ𝑢 = 𝑐𝑢(𝑘𝑧2−1 − 𝑘𝑤2−1), 𝑢 ∈ Γ, we find that 

‖𝐴𝑧2−1 − 𝐴𝑤2−1‖ ≤ (𝐴 + 𝜖)(Γ)𝐶‖𝑘𝑧2−1 − 𝑘𝑤2−1‖∞ , 
where 𝐶 = sup

𝑢∈Γ
|𝑐𝑢|. For each (𝑧2 − 1) ∈ 𝐁, it is elementary that 

lim
𝑤2−1→𝑧2−1

‖𝑘𝑧2−1 − 𝑘𝑤2−1‖∞ = 0. 

Hence the map 𝑧2 − 1 ⟼ 𝐴𝑧2−1is continuous with respect to operator norm. This completes 

the proof. 

Corollary (6.3.31)[200]: For every (𝑛 − 1)/(𝑛 + 1) < 1 − 𝜖, 𝜖 < 1we have 𝒯(1) =

𝐶∗(𝒜1−𝜖). Consequently,  𝒯(1) = 𝒯 = 𝐶∗(𝒜1−𝜖). 
Proof. Let (𝑛 − 1)/(𝑛 + 1) < 1 − 𝜖, 𝜖 < 1 be given. By the fact that 𝒜1−𝜖is a ∗-algebra 

mentioned above, 𝐶∗(𝒜1−𝜖) is just the norm closure of 𝒜1−𝜖. Since we also know that 

𝒜1−𝜖 ⊃ {𝑇∑
�̃�
𝑓�̃�: ∑

�̃�
𝑓�̃� ∈ 𝐿

∞(𝑩, 𝑑(𝑢 + 𝜖))}, Corollary (6.3.31) will follow if we can show 

that 𝒜1−𝜖 ⊂ 𝒯
(1). We prove this inclusion into two steps. 

 (i) Let (𝐴 + 𝜖) ∈ 𝒜1−𝜖be given. As the first step, let us show that 𝑇∑
�̃�
Φ�̃�(𝐴 +

𝜖)𝑇∑
�̃�
Φ�̃� ∈ 𝒯

(1). Indeed it follows from (40) that 

𝑇∑
�̃�
Φ�̃�(𝐴 + 𝜖)𝑇∑

�̃�
Φ�̃� = ∫ ∫ 𝐸𝑤2−1(𝐴 + 𝜖)𝐸𝑧2−1𝑑𝜆(𝑤

2 − 1)𝑑𝜆(𝑧2 − 1)

𝐷(0,2)×𝐷(0,2)

. (101) 
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Consider the map 

(𝑤2 − 1, 𝑧2 − 1) ↦ 𝐸𝑤2−1(𝐴 + 𝜖)𝐸𝑧2−1                           (102) 
from 𝐁 × 𝐁into ℬ(𝐿𝑎

2 (𝐁, 𝑑(𝑢 + 𝜖))). Proposition (6.3.12) tells us that the range of map 

(102) is contained in 𝒯(1). Hence every Riemann sum corresponding to the integral in (101) 

belongs to 𝒯(1). On the other hand, by Proposition (102), the map 𝑧2 − 1 ↦ 𝐸𝑧2−1is 

continuous with respect to the operator norm. Hence map (54) is also continuous with 

respect to the operator norm. Since the closure of 𝐷(0,2) × 𝐷(0,2) is a compact subset of 

𝐁 × 𝐁,the norm continuity of (54) means that the integral in (101) is the limit with respect 

to the operator norm of a sequence of Riemann sums 1 − 𝜖1, 1 − 𝜖2, … ,1 − 𝜖𝑘 , …. Since 

each (1 − 𝜖𝑘) belongs to 𝒯(1), so does 𝑇∑
�̃�
Φ�̃�(𝐴 + 𝜖)𝑇∑

�̃�
Φ�̃�. 

(ii) Given (𝐴 + 𝜖) ∈ 𝒜1−𝜖, we will now show that (𝐴 + 𝜖) ∈ 𝒯(1). Since 𝑇∑
�̃�
Φ�̃� ∈

𝒜1−𝜖and since 𝒜1−𝜖is an algebra, we have 𝑇∑
�̃�
Φ�̃�

𝑗
(𝐴 + 𝜖)𝑇∑

�̃�
Φ�̃�
𝑘 ∈ 𝒜1−𝜖for all 𝑗, 𝑘 ∈ 𝐙+. 

Thus it follows from (i) that 

𝑇∑
�̃�
Φ�̃�

𝑗+1
(𝐴 + 𝜖)𝑇∑

�̃�
Φ�̃�

𝑘+1 ∈ 𝒯(1)for all integers 𝑗 ≥ 0   and 𝑘 ≥ 0.         (103) 

Let 𝐶∗ (𝑇∑
�̃�
Φ�̃�) be the unital 𝐶∗-algebra generated by 𝑇∑

�̃�
Φ�̃�. Since 𝑇∑

�̃�
Φ�̃�is self-adjoint, 

(103) implies that 

𝑇∑
�̃�
Φ�̃�𝑋(𝐴 + 𝜖)𝑇∑

�̃�
Φ�̃�𝑋 ∈ 𝒯

(1)for every 𝑋 ∈ 𝐶∗ (𝑇∑
�̃�
Φ�̃�). 

We again use the invertibility of 𝑇∑
�̃�
Φ�̃�, which is guaranteed by (39). It is elementary that 

the inverse 𝑇∑
�̃�
Φ�̃�
−1 , once it exists, must belong to the 𝐶∗-algebra 𝐶∗ (𝑇∑

�̃�
Φ�̃�). Thus, letting 

𝑋 = 𝑇∑
�̃�
Φ�̃�
−1 in the above, we obtain (𝐴 + 𝜖) ∈ 𝒯(1). This completes the proof of Corollary 

(6.3.31). 

Corollary (6.3.32)[200]: Let (𝑛 − 1)/(𝑛 + 1) < 1 − 𝜖, 𝜖 < 1 be given. If (𝐴 + 𝜖) ∈
𝒜1−𝜖, then for every separated set Γin 𝐁 and every pair of (𝑧2 − 1), (𝑤2 − 1) ∈ 𝐁 we have 

lim
𝜖→∞

sup
𝑢∈Γ

∑ |〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉|
𝑢∈Γ

𝛽(𝑢,𝑢+𝜖)>1+𝜖

(
1 − |𝑢 + 𝜖|2

1 − |𝑢|2
)

(1−𝜖)(𝑛+1)
2

= 0                                                                                                                           (104) 
and 

lim
𝜖→∞

sup
𝑢∈Γ

∑ |〈𝑘𝜑𝑢(𝑧2−1), (𝐴 + 𝜖)𝑘𝜑𝑢+𝜖(𝑤2−1)〉|
𝑢∈Γ

𝛽(𝑢,𝑢+𝜖)>1+𝜖

(
1 − |𝑢 + 𝜖|2

1 − |𝑢|2
)

(1−𝜖)(𝑛+1)
2

= 0.                                                                                                                          (105) 
Proof. Given such (1 − 𝜖)and (𝐴 + 𝜖) ∈ 𝒜1−𝜖, by Definition (1.1) we have 

lim
𝜖→∞

sup
𝑥∈𝐁

∫ |〈(𝐴 + 𝜖)𝑘𝑥, 𝑘𝜁2−1〉| (
(1 − |𝜁2 − 1|2)

(1 − |𝑥|)2
)

(1−𝜖)(𝑛+1)
2

𝑑𝜆(𝜁2 − 1)

𝐁\𝐷(𝑥,1+𝜖)

= 0                                                                                                                          (106) 
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and 

lim
𝜖→∞

sup
𝑥∈𝐁

∫ |〈(𝐴∗ + 𝜖)𝑘𝑥, 𝑘𝜁2−1〉| (
(1 − |𝜁2 − 1|2)

(1 − |𝑥|)2
)

(1−𝜖)(𝑛+1)
2

𝑑𝜆(𝜁2 − 1)

𝐁\𝐷(𝑥,1+𝜖)

= 0.                                                                                                                          (107) 
Let Γ, (𝑧2 − 1)and (𝑤2 − 1)also be given as in the lemma. Denote 𝐺 = 𝐷(0,1) and 

𝐺𝑤2−1 = 𝜑𝑤2−1(𝐺). Then it is easy to see that 𝐺𝑤2−1 ⊂ 𝐷(0,1 + 𝛽(𝑤
2 − 1,0)). For ℎ ∈

𝐿𝑎
2 (𝐁, 𝑑(𝑢 + 𝜖))and (𝑢 + 𝜖) ∈ Γ, we have 

ℎ(𝜑𝑤2−1(𝑤
2 − 1)) = (ℎ ∘ 𝜑𝑢+𝜖 ∘ 𝜑𝑤2−1)(0) =

1

𝜆(𝐺)
∫ ℎ ∘ 𝜑𝑢+𝜖 ∘ 𝜑𝑤2−1𝑑𝜆

𝐺

=
1

𝜆(𝐺)
∫ ℎ𝑑𝜆

(𝜑𝑢+𝜖∘𝜑𝑤2−1)(𝐺)

=
1

𝜆(𝐺)
∫ ℎ𝑑𝜆

𝜑𝑢+𝜖(𝐺𝑤2−1)

=
1

𝜆(𝐺)
∫

〈ℎ, 𝑘𝜁2−1〉

(1 − |𝜁|2)(𝑛+1)/2
𝑑𝜆(𝜁2 − 1)

𝜑𝑢+𝜖(𝐺𝑤2−1)

. 

Thus 

〈ℎ, 𝑘𝜑𝑢+𝜖(𝑤2−1)〉

=
1

𝜆(𝐺)
∫ 〈ℎ, 𝑘𝜁2−1〉 (

1 − |𝜑𝑢+𝜖(𝑤
2 − 1)|2

1 − |𝜁2 − 1|2
)

(𝑛+1)/2

𝑑𝜆(𝜁2 − 1)

𝜑𝑢+𝜖(𝐺𝑤2−1)

. 

If (𝜁2 − 1) ∈ 𝜑𝑢+𝜖(𝐺𝑤2−1), then 𝜁2 − 1 = 𝜑𝑢+𝜖(𝜉
2 − 1) for some (𝜉2 − 1) ∈ 𝐺𝑤2−1 ⊂

𝐷(0,1 + 𝛽(𝑤2 − 1,0)), which means 

1 − |𝜁2 − 1|2 = 1 − |𝜑𝑢+𝜖(𝜉
2 − 1)|2 =

(1 − |𝑢 + 𝜖|2)(1 − |𝜁2 − 1|2)

|1 − 〈𝜉2 − 1, 𝑢 + 𝜖〉|2

≥
1

4
(1 − |𝜁2 − 1|2)(1 − |𝑢 + 𝜖|2). 

On the other hand, 

1 − |𝜑𝑢+𝜖(𝑤
2 − 1)|2 =

(1 − |𝑢 + 𝜖|2)(1 − |𝑤2 − 1|2)

|1 − 〈𝑤2 − 1, 𝑢 + 𝜖〉|2
≤

2

1 − |𝑤2 − 1|
(1 − |𝑢 + 𝜖|2). 

Hence there is a 0 ≤ 𝜖1 < ∞which depends only on 𝑛and (𝑤2 − 1)such that 

|〈ℎ, 𝑘𝜑𝑢+𝜖(𝑤2−1)〉|(1 − |𝑢 + 𝜖|
2)
(1−𝜖)(𝑛+1)

2

≤
1 + 𝜖1
𝜆(𝐺)

∫ 〈ℎ, 𝑘𝜁2−1〉(1 − |𝜁
2 − 1|2)

(1−𝜖)(𝑛+1)
2 𝑑𝜆(𝜁2 − 1)

𝑘
𝜑𝑢+𝜖(𝐺𝑤2−1

)

 

for all ℎ ∈ 𝐿𝑎
2 (𝐁, 𝑑(𝑢 + 𝜖))and (𝑢 + 𝜖) ∈ Γ. Applying this inequality to the case where ℎ =

(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑢 ∈ Γ, we have 
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|〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉| (
1 − |𝑢 + 𝜖|2

1 − |𝑢|2
)

(1−𝜖)(𝑛+1)
2

≤
1 + 𝜖1
𝜆(𝐺)

∫ 〈(𝐴

𝜑𝑢+𝜖(𝐺𝑤2−1)

+ 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜁2−1〉 (
1 − |𝜁2 − 1|2

1 − |𝑢|2
)

(1−𝜖)(𝑛+1)
2

𝑑𝜆(𝜁2 − 1) , 

(𝑢 + 𝜖) ∈ Γ. Since 

1 − |𝜑𝑢(𝑧
2 − 1)|2 =

(1 − |𝑢|2)(1 − |𝑧2 − 1|2)

|1 − 〈𝑧2 − 1, 𝑢〉|2
≤

2

1 − |𝑧2 − 1|
(1 − |𝑢|2), 

there is a 0 ≤ 𝜖2 < ∞which depends only on 𝑛and 𝑧2 − 1such that 

|〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉| (
1 − |𝑢 + 𝜖|2

1 − |𝑢|2
)

(1−𝜖)(𝑛+1)
2

≤
(1 + 𝜖1)(1 + 𝜖2)

𝜆(𝐺)
∫ 〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜁2−1〉

𝜑𝑢+𝜖(𝐺𝑤2−1)

× (
1 − |𝜁2 − 1|2

1 − |𝜑𝑢(𝑧
2 − 1)|2

)

(1−𝜖)(𝑛+1)
2

𝑑𝜆(𝜁2 − 1),                      (108) 

𝑢, (𝑢 + 𝜖) ∈ Γ. Set 𝐿 = 1 + 𝛽(𝑤2 − 1,0) + 𝛽(𝑧2 − 1,0) and consider any 𝜖 > 0. If 𝑢, (𝑢 +
𝜖) ∈ Γ are such that 𝛽(𝑢, 𝑢 + 𝜖) > 𝐿 + 𝜖, then for every (𝜁2 − 1) ∈ 𝜑𝑢+𝜖(𝐺𝑤) ⊂

𝜑𝑢+𝜖 (𝐷(0,1 + 𝛽(𝑤
2 − 1,0))) we have 

 𝛽(𝜑𝑢(𝑧
2 − 1), 𝜁2 − 1) ≥ 𝛽(𝑢, 𝑢 + 𝜖) − 𝛽(𝑢, 𝜑𝑢(𝑧

2 − 1))

> 𝐿 + 𝜖 − 1 − 𝛽(𝑤2 − 1,0) − 𝛽(𝑧2 − 1,0) = 𝜖.                  (109) 
Thus the combination of (108) and (109) gives us 

∑ |〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), (𝐴 + 𝜖)𝑘𝜑𝑢+𝜖(𝑤2−1)〉|
(𝑢+𝜖)∈Γ

𝛽(𝑢,𝑢+𝜖)>𝐿+𝜖

(
1 − |𝑢 + 𝜖|2

1 − |𝑢|2
)

(1−𝜖)(𝑛+1)
2

≤
(1 + 𝜖1)(1 + 𝜖2)

𝜆(𝐺)
∫ ∑ 𝜒𝜑𝑢+𝜖(𝐺𝑤2−1)

(𝜁2 − 1)

(𝑢+𝜖)∈Γ𝛽(𝜑𝑢(𝑧
2−1),𝜁2−1)>𝜖

× |〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜁2−1〉|

× (
1 − |𝜁2 − 1|2

1 − |𝜑𝑢(𝑧
2 − 1)|2

)

(1−𝜖)(𝑛+1)
2

𝑑𝜆(𝜁2 − 1),                                             (110) 

𝑢 ∈ Γ. By the Möbius invariance of 𝛽and the fact that 𝐺𝑤2−1 ⊂ 𝐷(0,1 + 𝛽(𝑤
2 − 1,0)), we 

have 𝜑𝑢+𝜖(𝐺𝑤2−1) ⊂ 𝐷(𝑢 + 𝜖, 1 + 𝛽(𝑤
2 − 1,0)). Since Γ is separated, it follows from 

Corollary (6.3.25) (a) that there is an 𝑁 ∈ 𝐍which depends only on Γ and (𝑤2 − 1)such that 

the inequality 
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∑ 𝜒𝜑𝑢+𝜖(𝐺𝑤2−1)
(𝑢+𝜖)∈Γ

≤ 𝑁 

holds on B. Substituting this in (110), we conclude that 

∑ |〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉|
(𝑢+𝜖)∈Γ

𝛽(𝑢,𝑢+𝜖)>𝐿+𝜖

(
1 − |𝑢 + 𝜖|2

1 − |𝑢|2
)

(1−𝜖)(𝑛+1)
2

≤
(1 + 𝜖1)(1 + 𝜖2)𝑁

𝜆(𝐺)
∫ 〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜁2−1〉

𝛽(𝜑𝑢(𝑧
2−1),𝜁2−1)>𝜖

× (
1 − |𝜁2 − 1|2

1 − |𝜑𝑢(𝑧
2 − 1)|2

)

(1−𝜖)(𝑛+1)
2

𝑑𝜆(𝜁2 − 1) 

for every 𝑢 ∈ Γ. By this inequality, (104) follows from (106). Since 

〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉 = 〈(𝐴
∗ + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉, 

(105) follows from (107) by the same argument. This completes the proof. 

Corollary (6.3.33)[200]: Let (𝑛 − 1)/(𝑛 + 1) < 1 − 𝜖, 𝜖 < 1. If (𝐴 + 𝜖) ∈ 𝒜1−𝜖, then for 

every pair of (𝑧2 − 1), (𝑤2 − 1) ∈ 𝐁 we have 𝐸𝑤2−1(𝐴 + 𝜖)𝐸𝑧2−1 ∈ 𝒟. 

Proof. Let (𝑛 − 1)/(𝑛 + 1) < 1 − 𝜖, 𝜖 < 1. For (𝐴 + 𝜖) ∈ 𝒜1−𝜖and (𝑧2 − 1), (𝑤2 − 1) ∈
𝐁, we have 

𝐸𝑤2−1(𝐴 + 𝜖)𝐸𝑧2−1

= ∑ 𝑘𝜑𝑢+𝜖(𝑤2−1)⊗𝑘𝜑𝑢+𝜖(𝑤2−1) ⋅ (𝐴 + 𝜖) ⋅ 𝑘𝜑𝑢(𝑧2−1)⊗𝑘𝜑𝑢(𝑧2−1)
𝑢,(𝑢+𝜖)∈ℒ

= ∑ 〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉𝑘𝜑𝑢+𝜖(𝑤2−1)⊗𝑘𝜑𝑢(𝑧2−1)
𝑢,(𝑢+𝜖)∈ℒ

. 

Thus for any 𝜖 > 0, we can write 𝐸𝑤2−1(𝐴 + 𝜖)𝐸𝑧2−1 = 𝑉1+𝜖 +𝑊1+𝜖, where 

𝑉1+𝜖 = ∑ 〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉𝑘𝜑𝑢+𝜖(𝑤2−1)⊗𝑘𝜑𝑢(𝑧2−1)
𝑢,(𝑢+𝜖)∈ℒ

𝛽(𝑢,𝑢+𝜖)≤1+𝜖

 

and 

𝑊1+𝜖 = ∑ 〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉𝑘𝜑𝑢+𝜖(𝑤2−1)⊗𝑘𝜑𝑢(𝑧2−1)
𝑢,(𝑢+𝜖)∈ℒ

𝛽(𝑢,𝑢+𝜖)>1+𝜖

. 

Obviously, the proposition will follow if we can prove the following two statements: 

(i) lim
𝜖→∞

‖𝑊1+𝜖‖ = 0. 

(ii) 𝑉1+𝜖 ∈ span(𝒟0)for every𝜖 > 0. 

To prove (i), note that by (100) and Corollary (6.3.29), there are constants 
(1 + 𝜖1), (1 + 𝜖2)such that 
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∑|〈ℎ, 𝑘𝜑𝑢(𝑧2−1)〉|
2

𝑢∈ℒ

≤ (1 + 𝜖1)‖ℎ‖
2and ∑ |〈ℎ, 𝑘𝜑𝑢+𝜖(𝑤2−1)〉|

2

(𝑢+𝜖)∈ℒ

≤ (1 + 𝜖2)‖ℎ‖
2(111) 

for every ℎ ∈ 𝐿𝑎
2 (𝐁, 𝑑(𝑢 + 𝜖)). Given ℎ, (ℎ + 𝜖) ∈ 𝐿𝑎

2 (𝐁, 𝑑(𝑢 + 𝜖)), we have 

|〈𝑊1+𝜖ℎ, ℎ + 𝜖〉| ≤ ∑ |〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉|𝓈𝑢𝓉𝑢+𝜖
𝑢,(𝑢+𝜖)∈ℒ

𝛽(𝑢,𝑢+𝜖)>1+𝜖

,               (112) 

where 

𝓈𝑢 = |〈ℎ, 𝑘𝜑𝑢(𝑧2−1)〉|and𝓉𝑢+𝜖 = |〈𝑘𝜑𝑢+𝜖(𝑤2−1), ℎ + 𝜖〉|. 

We apply the Schur test one more time. Indeed for each 𝑢 ∈ ℒ, let us write 

𝓎𝑢 = ∑ |〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉|𝓉𝑢+𝜖
(𝑢+𝜖)∈ℒ

𝛽(𝑢,𝑢+𝜖)>1+𝜖

               (113) 

Then for each 𝑢 ∈ ℒ, the Cauchy-Schwarz inequality gives us 

𝓎𝑢
2 ≤ ∑ |〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉|(1 − |𝑢 + 𝜖|

2)
(1−𝜖)(𝑛+1)

2

(𝑢+𝜖)∈ℒ

𝛽(𝑢,𝑢+𝜖)>1+𝜖

× ∑ |〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉|
𝓉𝑢+𝜖
2

(1 − |𝑢 + 𝜖|2)
(1−𝜖)(𝑛+1)

2(𝑢+𝜖)∈ℒ

𝛽(𝑢,𝑢+𝜖)>1+𝜖

≤ 𝐻(1

+ 𝜖) ∑ |〈(𝐴
(𝑢+𝜖)∈ℒ

𝛽(𝑢,𝑢+𝜖)>1+𝜖

+ 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉| (
1 − |𝑢|2

1 − |𝑢 + 𝜖|2
)

(1−𝜖)(𝑛+1)
2

𝓉𝑢+𝜖
2 , 

where 

𝐻(1 + 𝜖) = sup
(𝜉2−1)∈ℒ

∑ |〈(𝐴
(𝑢+𝜖)∈ℒ

𝛽(𝜉2−1,𝑢+𝜖)>1+𝜖

+ 𝜖)𝑘𝜑
𝜉2−1

(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉| (
1 − |𝑢|2

1 − |𝜉2 − 1|2
)

(1−𝜖)(𝑛+1)
2

. 

Therefore 
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∑𝓎𝑢
2

𝑢∈ℒ

≤ 𝐻(1

+ 𝜖)∑ ∑ |〈(𝐴
(𝑢+𝜖)∈ℒ

𝛽(𝑢,𝑢+𝜖)>1+𝜖
𝑢∈ℒ

+ 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉| (
1 − |𝑢|2

1 − |𝑢 + 𝜖|2
)

(1−𝜖)(𝑛+1)
2

𝓉𝑢+𝜖
2

= 𝐻(1 + 𝜖) ∑ 𝓉𝑢+𝜖
2

(𝑢+𝜖)∈ℒ

∑ |〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉|
𝑢∈ℒ

𝛽(𝑢,𝑢+𝜖)>1+𝜖

× (
1 − |𝑢|2

1 − |𝑢 + 𝜖|2
)

(1−𝜖)(𝑛+1)
2

≤ 𝐻(1 + 𝜖)𝐺(1 + 𝜖) ∑ 𝓉𝑢+𝜖
2

(𝑢+𝜖)∈ℒ

, 

where 

𝐺(1 + 𝜖) = sup
(𝜉2−1)∈ℒ

∑ |〈(𝐴
𝑢∈ℒ

𝛽(𝑢,𝜉2−1)>1+𝜖

+ 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝜑
𝜉2−1

(𝑤2−1)〉| (
1 − |𝑢|2

1 − |𝜉2 − 1|2
)

(1−𝜖)(𝑛+1)
2

. 

By (112) and (113), we now have 

|〈𝑊1+𝜖ℎ, ℎ + 𝜖〉| ≤ ∑𝓈𝑢𝓎𝑢
𝑢∈ℒ

≤ (∑𝓈𝑢
2

𝑢∈ℒ

)

1/2

(∑𝓎𝑢
2

𝑢∈ℒ

)

1/2

≤ {𝐻(1 + 𝜖)𝐺(1 + 𝜖)}1/2 (∑𝓈𝑢
2

𝑢∈ℒ

)

1/2

(∑𝓉𝑢
2

𝑢∈ℒ

)

1/2

. 

Combining this with (111), we find that 

|〈𝑊1+𝜖ℎ, ℎ + 𝜖〉| ≤ {(1 + 𝜖1)(1 + 𝜖2)𝐻(1 + 𝜖)𝐺(1 + 𝜖)}
1/2‖ℎ‖‖ℎ + 𝜖‖. 

Since ℎ, (ℎ + 𝜖) ∈ 𝐿𝑎
2 (𝐁, 𝑑(𝑢 + 𝜖))are arbitrary, this means 

𝑊1+𝜖 ≤ {(1 + 𝜖1)(1 + 𝜖2)𝐻(1 + 𝜖)𝐺(1 + 𝜖)}
1/2. 

Applying Corollary (6.3.32), we have lim
𝜖→∞

𝐻(1 + 𝜖) = 0 and lim
𝜖→∞

𝐺(1 + 𝜖) = 0. 

Therefore lim
𝜖→∞

‖𝑊1+𝜖‖ = 0 as promised. 

We now turn to the proof of (ii). First of all, given an 𝜖 > 0, for each (𝑢 + 𝜖) ∈ ℒwe 

define 

𝐹𝑢+𝜖 = {𝑢 ∈ ℒ: 𝛽(𝑢, 𝑢 + 𝜖) ≤ 1 + 𝜖}. 
By Corollary (6.3.25) (a), there is an 𝑁 ∈ 𝐍such that 

card(𝐹𝑢+𝜖) ≤  𝑁 
for every (𝑢 + 𝜖) ∈ ℒ. Also, by Corollary (6.3.25) (b), for the given (𝑤2 − 1) ∈ 𝐁, there is 

a partition 
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ℒ = 𝐿1 ∪ …∪ 𝐿𝑚 

such that for each 𝑖 ∈ {1,… ,𝑚}, if 𝑢 + 𝜖, 𝑢 + 𝜖′ ∈ 𝐿𝑖and 𝑢 + 𝜖 ≠ 𝑢 + 𝜖′, then 

𝛽(𝜑𝑢+𝜖(𝑤
2 − 1), 𝜑𝑢+𝜖′(𝑤

2 − 1)) ≥ 1. That is, for each 𝑖 ∈ {1,… ,𝑚}, the set 

𝐾𝑖 = {𝜑𝑢+𝜖(𝑤
2 − 1): (𝑢 + 𝜖) ∈ 𝐿𝑖} 

is separated. We have 𝑉1+𝜖 = 𝑋1 +⋯+ 𝑋𝑚, where 

𝑋𝑖 = ∑ ∑ 〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉𝑘𝜑𝑢+𝜖(𝑤2−1)⊗𝑘𝜑𝑢(𝑧2−1)
𝑢∈𝐹𝑢+𝜖𝜑𝑢+𝜖(𝑤

2−1)∈𝐾𝑖

, 

𝑖 ∈ {1,… ,𝑚}. To prove (ii), it suffices to show that 𝑋𝑖 ∈ span(𝒟0) of every 𝑖 ∈ {1,… ,𝑚}. 
For this purpose we further decompose each 𝐾𝑖. Indeed for each pair of 𝑖 ∈ {1,… ,𝑚}and 

𝑗 ∈ {1, … ,𝑁}, we define 

𝐿𝑖,𝑗 = {(𝑢 + 𝜖) ∈ 𝐿𝑖: card(𝐹𝑢+𝜖) = 𝑗}      𝑎𝑛𝑑        𝐾𝑖,𝑗 = {𝜑𝑢+𝜖(𝑤
2 − 1): (𝑢 + 𝜖) ∈ 𝐿𝑖,𝑗}. 

Then 𝑋𝑖 = 𝑋𝑖,1 +⋯+ 𝑋𝑖,𝑁, where 

𝑋𝑖,𝑗 = ∑ ∑ 〈(𝐴 + 𝜖)𝑘𝜑𝑢(𝑧2−1), 𝑘𝜑𝑢+𝜖(𝑤2−1)〉𝑘𝜑𝑢+𝜖(𝑤2−1)⊗𝑘𝜑𝑢(𝑧2−1)
𝑢∈𝐹𝑢+𝜖𝜑𝑢+𝜖(𝑤

2−1)∈𝐾𝑖,𝑗

, 

𝑖 ∈ {1,… ,𝑚}and 𝑗 ∈ {1,… , 𝑁}. Thus it suffices to show that 𝑋𝑖,𝑗 ∈ span(𝒟0) for every such 

pair of 𝑖, 𝑗. But it is obvious that given a pair of such 𝑖, 𝑗, we can define maps 

𝛾𝑖,𝑗
(1)
, … , 𝛾𝑖,𝑗

(𝑗)
: 𝐾𝑖,𝑗 → 𝐁 

such that 

{𝜑𝑢(𝑧
2 − 1): 𝑢 ∈ 𝐹𝑢+𝜖} = {𝛾𝑖,𝑗

(1)
(𝜑𝑢+𝜖(𝑤

2 − 1)),… , 𝛾𝑖,𝑗
(𝑗)
(𝜑𝑢+𝜖(𝑤

2 − 1))} 

for every (𝑢 + 𝜖) ∈ 𝐿𝑖,𝑗. Thus 𝑋𝑖,𝑗 = 𝑋𝑖,𝑗
(1)
+⋯+ 𝑋𝑖,𝑗

(𝑗)
, where for each (𝑢 + 𝜖) ∈

{1,… , 𝑗}we have 

𝑋𝑖,𝑗
(𝑢+𝜖)

= ∑ 〈(𝐴 + 𝜖)𝑘
𝛾𝑖,𝑗
(𝑢+𝜖)(𝜉2−1)

, 𝑘𝜉2−1〉 𝑘𝜉2−1⊗𝑘
𝛾𝑖,𝑗
(𝑢+𝜖)(𝜉2−1)

𝑢∈𝐹𝑢+𝜖

. 

Hence the proof will be complete if we can show that 𝛾𝑖,𝑗
(𝑢+𝜖)

∈ (𝒟0)for every triple of 

indices 𝑖 ∈ {1,… ,𝑚}, 𝑗 ∈ {1,… ,𝑁}and (𝑢 + 𝜖) ∈ {1,… , 𝑗}. 
By the above definitions, for every such triple of 𝑖, 𝑗, 𝑢 + 𝜖, if (𝜁2 − 1) ∈ 𝐾𝑖,𝑗, then 

there exist (𝑢 + 𝜖) ∈ 𝐿𝑖,𝑗and 𝑢 ∈ 𝐹𝑢+𝜖such that 𝜉2 − 1 = 𝜑𝑢+𝜖(𝑤
2 − 1) and 𝛾𝑖,𝑗

(𝑢+𝜖)(𝜉2 −

1) = 𝜑𝑢(𝑧
2 − 1). Therefore 

𝛽 (𝜉2 − 1, 𝛾𝑖,𝑗
(𝑢+𝜖)(𝜉2 − 1)) = 𝛽(𝜑𝑢+𝜖(𝑤

2 − 1),𝜑𝑢(𝑧
2 − 1))

≤ 𝛽(𝜑𝑢+𝜖(𝑤
2 − 1), 𝑢 + 𝜖) + 𝛽(𝑢 + 𝜖, 𝑢) + 𝛽(𝑢, 𝜑𝑢(𝑧

2 − 1))

≤ 𝛽(𝑤2 − 1,0) + 1 + 𝜖 + 𝛽(0, 𝑧2 − 1). 

This shows that the map 𝛾𝑖,𝑗
(𝑢+𝜖)

: 𝐾𝑖,𝑗 → 𝐁satisfies condition (57). By Definition (6.3.14) 

(a), we have 𝑋𝑖,𝑗
(𝑢+𝜖)

∈ (𝒟0). This completes the proof of Corollary (6.3.33). 

Corollary (6.3.34)[200]: Suppose that Γis a separated set in 𝐁. Furthermore, suppose that 

{𝑐𝑢: 𝑢 ∈ Γ}are complex numbers for which (98) holds. Then for each (𝑧2 − 1) ∈ 𝐁, the 

operator 𝑌𝑧2−1defined by (99) belongs to 𝒯(1). 
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Proof. (1) Let us first show that 𝑌0 ∈ 𝒯
(1). Since Γ is separated, there is 𝛿 > 0 such that 

𝛽(𝑢, 𝑢 + 𝜖) ≥ 𝛿for all 𝜖 ≠ 0in Γ. That is, if 𝑢, (𝑢 + 𝜖) ∈ Γ and 𝜖 ≠ 0, then 𝐷(𝑢, 𝛿/2) ∩
𝐷(𝑢, 𝛿/2) = ∅. For each 0 < 𝜖 < 𝛿/2, define the operator 

𝐴𝜖 =
1

𝜆(𝐷(0, 𝜖))
∫ 𝑌𝑧2−1𝑑𝜆(𝑧

2 − 1)

𝐷(0,𝜖)

. 

By the norm continuity of the map 𝑧2 − 1 ⟼ 𝑌𝑧2−1provided by Corollary (6.3.30), we have 

lim
𝜖↓0
‖𝑌0 − 𝑌𝜖‖ = 0. 

Thus to prove the membership 𝑌0 ∈ 𝒯
(1), it suffices to show that each 𝐴𝜖is a Toeplitz 

operator with a bounded symbol. Indeed by the Möbius invariance of 𝛽and 𝑑𝜆, we have 

𝐴𝜖 =
1

𝜆(𝐷(0, 𝜖))
∑𝑐𝑢 ∫ 𝑘𝜑𝑢(𝑧2−1)⊗𝑘𝜑𝑢(𝑧2−1)𝑑𝜆(𝑧

2 − 1)

𝐷(0,𝜖)𝑢∈Γ

=
1

𝜆(𝐷(0, 𝜖))
∑𝑐𝑢 ∫ 𝑘𝑤2−1⊗𝑘𝑤2−1𝑑𝜆(𝑤

2 − 1)

𝐷(𝑢,𝜖)𝑢∈Γ

= ∫𝑓𝜖(𝑤
2 − 1)𝑘𝑤2−1⊗𝑘𝑤2−1𝑑𝜆(𝑤

2 − 1) , 

where 

𝑓𝜖 =
1

𝜆(𝐷(0, 𝜖))
∑𝑐𝑢𝜒𝐷(𝑢,𝜖)
𝑢∈Γ

. 

Since, 0 < 𝜖 < 𝛿/2, we have 𝐷(𝑢, 𝜖) ∩ 𝐷(𝑢 + 𝜖, 𝜖) = ∅for 𝜖 ≠ 0in Γ. Hence 𝑓𝜖 ∈

𝐿∞(𝐁, 𝑑(𝑢 + 𝜖)). By (34), we have 𝐴𝜖 = 𝑇𝑓𝜖. This proves the membership 𝑌0 ∈ 𝒯
(1). 

(ii) Now consider an arbitrary (𝑧2 − 1) ∈ 𝐁. By Corollary (6.3.25) (b), there is a 

partition Γ = Γ1 ∪ …∪ Γmsuch that for every 𝑖 ∈ {1,… ,𝑚}, the conditions 𝑢, (𝑢 + 𝜖) ∈

Γ𝑖and 𝜖 ≠ 0imply 𝛽(𝜑𝑢(𝑧
2 − 1), 𝜑𝑢+𝜖(𝑧

2 − 1)) ≥ 1. That is, for each 𝑖 ∈ {1,… ,𝑚}, the 

set 

𝐺𝑖 = {𝜑𝑢(𝑧
2 − 1): 𝑢 ∈ Γ𝑖} 

is separated. Obviusly, 𝑌𝑧2−1 = 𝑌(𝑧2−1),1 +⋯+ 𝑌(𝑧2−1),𝑚, where 

𝑌(𝑧2−1),𝑖 = ∑ 𝑐𝑢𝑘𝜑𝑢(𝑧2−1)⊗𝑘𝜑𝑢(𝑧2−1)
𝜑𝑢(𝑧

2−1)∈𝐺𝑖

, 

𝑖 = 1,… ,𝑚. By (1) we have 𝑌(𝑧2−1),𝑖 ∈ 𝒯
(1)for every 𝑖 ∈ {1,… ,𝑚}. Hence 𝑌𝑧2−1 ∈ 𝒯

(1). 

Corollary (6.3.35)[200]: Let Γ be a separated set in 𝐁 and suppose that {𝑐𝑢: 𝑢 ∈ Γ}is a 

bounded set of complex coefficients. Then for every pair of (𝛼2 − 1) ∈ 𝐙+
𝑛 and (𝑧2 − 1) ∈

𝐁, we have 

∑𝑐𝑢(𝑈𝑢𝐾𝑧2−1) ⊗ (𝑈𝑢𝐾𝑧2−1;𝛼2−1)

𝑢∈Γ

∈ 𝒯(1). 

Proof. We prove the proposition by an induction on |𝛼2 − 1|. If |𝛼2 − 1| = 0, i.e. 𝛼2 = 1, 

then 
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(𝑈𝑢𝐾𝑧2−1) ⊗ (𝑈𝑢𝐾𝑧2−1;0) = (𝑈𝑢𝐾𝑧2−1) ⊗ (𝑈𝑢𝐾𝑧2−1)

=
1

(1 − |𝑧2 − 1|2)𝑛+1
𝑘𝜑𝑢(𝑧2−1)⊗𝑘𝜑𝑢(𝑧2−1). 

Hence the case where |𝛼2 − 1| = 0 follows from Corollary (6.3.34). Suppose that 𝑘 ∈
𝐙+and that the proposition holds true for every (𝛼2 − 1) ∈ 𝐙+

𝑛satisfying the condition 

|𝛼2 − 1| ≤ 𝑘. Now consider the case where (𝛼2 − 1) ∈ 𝐙+
𝑛is such that |𝛼2 − 1| = 𝑘 + 1. 

Then we can decompose (𝛼2 − 1)in the form 

𝛼2 − 1 = 2𝑎 + 𝜖 , 
where |𝑎| = 𝑘and |𝑎 + 𝜖| = 1. That is, there is some (𝑢 + 𝜖) ∈ {1,… , 𝑛}such that the (𝑢 +
𝜖) –th component of (𝑎 + 𝜖)is 1 and the other components of (𝑎 + 𝜖)are all 0. We will also 

consider (𝑎 + 𝜖)as a vector in 𝐂𝑛. By the induction hypothesis, we have 

∑𝑐𝑢(𝑈𝑢𝐾𝑧2−1) ⊗ (𝑈𝑢𝐾(𝑧2−1);(𝛼2−1))

𝑢∈Γ

∈ 𝒯(1)for every     (𝑧2 − 1) ∈ 𝐁.   (114) 

Let (𝑧2 − 1) ∈ 𝐁be given. Then there is an 𝜖 = 𝜖(𝑧2 − 1) > 0 such that 𝑧2 − 1 + 𝑐 ∈ 𝐁for 

every 𝑐 ∈ 𝐂𝑛satisfying the condition |𝑐| ≤ 𝜖. For each (1 − 2𝜖) ∈ [0, 𝜖], define the 

operators 

𝐴1−2𝜖 =∑𝑐𝑢(𝑈𝑢𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖)) ⊗ (𝑈𝑢𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖);𝑎)

𝑢∈Γ

 

and 

𝐴1−2𝜖 + 𝜖 =∑𝑐𝑢(𝑈𝑢𝐾𝑧2−1+𝑖(1−2𝜖)(𝑎+𝜖)) ⊗ (𝑈𝑢𝐾𝑧2−1+𝑖(1−2𝜖)(𝑎+𝜖);𝑎)

𝑢∈Γ

. 

Also, we define 

𝑋 =∑𝑐𝑢{(𝑛 + 1 + 𝑘)(𝑈𝑢𝐾𝑧2−1) ⊗ (𝑈𝑢𝐾(𝑧2−1);(𝛼2−1)) + (𝑛 + 1)(𝑈𝑢𝐾(𝑧2−1);(𝑎+𝜖))

𝑢∈Γ

⊗ (𝑈𝑢𝐾(𝑧2−1);𝑎)} 

and 

𝑌 =∑𝑐𝑢{(𝑛 + 1 + 𝑘)(𝑈𝑢𝐾𝑧2−1) ⊗ (𝑈𝑢𝐾(𝑧2−1);(𝛼2−1)) − (𝑛 + 1)(𝑈𝑢𝐾(𝑧2−1);(𝑎+𝜖))

𝑢∈Γ

⊗ (𝑈𝑢𝐾(𝑧2−1);𝑎)} . 

We will show that 

lim
1−2𝜖↓0

‖
1

1 − 2𝜖
(𝐴1−2𝜖 − 𝐴0) − 𝑋‖ = 0                                                  (115) 

and 

lim
1−2𝜖↓0

‖
1

𝑖(1 − 2𝜖)
(𝐴1−2𝜖 − 𝐴0) − 𝑌‖ = 0.                                               (116) 

Before getting to their proofs, let us first see the consequence of these limits. By (114) we 

have 𝐴1−2𝜖 ∈ 𝒯
(1)and (𝐴1−2𝜖 + 𝜖) ∈ 𝒯

(1)for all (1 − 2𝜖) ∈ [0, 𝜖]. Hence it follows from 

(115) and (116) that 𝑋, 𝑌 ∈ 𝒯(1). Thus 
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∑𝑐𝑢(𝑈𝑢𝐾𝑧2−1) ⊗ (𝑈𝑢𝐾(𝑧2−1);(𝛼2−1))

𝑢∈Γ

=
1

2(𝑛 + 1 + 𝑘)
(𝑋 + 𝑌) ∈ 𝒯(1)  , 

completing the induction on |𝛼2 − 1|. 
Let us now turn to the proof of (69). Note that (1 − 2𝜖)−1(𝐴1−2𝜖 − 𝐴0) = 𝐺1−2𝜖 +

𝐻1−2𝜖, where 

𝐻1−2𝜖 =
1

1 − 2𝜖
∑𝑐𝑢(𝑈𝑢𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖)) ⊗ {𝑈𝑢(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖);𝑎 − 𝐾(𝑧2−1);𝑎)}

𝑢∈Γ

 

and 

𝐺1−2𝜖 =
1

1 − 2𝜖
∑𝑐𝑢{𝑈𝑢(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖) − 𝐾𝑧2−1)}⊗ (𝑈𝑢𝐾(𝑧2−1);𝑎)

𝑢∈Γ

.                        

Similarly, we write 𝑋 =  𝑉 + 𝑊, where 

𝑉 =∑𝑐𝑢(𝑛 + 1 + 𝑘)(𝑈𝑢𝐾𝑧2−1) ⊗ (𝑈𝑢𝑈(𝑧2−1);(𝛼2−1))

𝑢∈Γ

 

and 

𝑊 =∑𝑐𝑢(𝑛 + 1)(𝑈𝑢𝐾(𝑧2−1);(𝑎+𝜖)) ⊗ (𝑈𝑢𝑈(𝑧2−1);𝑎)

𝑢∈Γ

.                  

Since ‖(1 − 2𝜖)−1(𝐴1−2𝜖 − 𝐴0) − 𝑋‖ ≤ ‖𝐻1−2𝜖 − 𝑉‖ + ‖𝐺1−2𝜖 −𝑊‖, (115) will follow 

if we can show 

lim
1−2𝜖↓0

‖𝐻1−2𝜖 − 𝑉‖ = 0                                                                        (117) 

and 

lim
1−2𝜖↓0

‖𝐺1−2𝜖 −𝑊‖ = 0.                                                            (118) 

To prove (117), for 0 < 1 − 2𝜖 ≤ 𝜖 we write 𝐻1−2𝜖 − 𝑉 = 𝐴1−2𝜖 + 𝜖 + 𝑇1−2𝜖, where 

𝐴1−2𝜖 + 𝜖 =∑𝑐𝑢(𝑈𝑢𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖))

𝑢∈Γ

⊗ {𝑈𝑢((1 − 2𝜖)
−1(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖);𝑎 − 𝐾(𝑧2−1);𝑎) − (𝑛 + 1

+ 𝑘)𝑘(𝑧2−1);(𝛼2−1))} 

and 

𝑇1−2𝜖 = (𝑛 + 1 + 𝑘)∑𝑐𝑢{𝑈𝑢(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖) − 𝐾𝑧2−1)}

𝑢∈Γ

⊗ (𝑈𝑢𝐾(𝑧2−1);(𝛼2−1)).                                

Thus the proof of (117) is reduced to the proof of the fact that ‖𝐴1−2𝜖 + 𝜖‖ → 0 and 
‖𝑇1−2𝜖 → 0‖as (1 − 2𝜖)descends to 0. To prove this, we pick an orthonormal set 

{𝑒𝑢: 𝑢 ∈ Γ}and factor (𝐴1−2𝜖 + 𝜖) in the form 𝐴1−2𝜖 + 𝜖 = (𝐴1−2𝜖
(1)

+ 2𝜖)(𝐴1−2𝜖
(2)∗

+ 2𝜖), 
where 

𝐴1−2𝜖
(1)

+ 2𝜖 =∑𝑐𝑢(𝑈𝑢𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖)) ⊗ 𝑒𝑢
𝑢∈Γ

 

and 
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𝐴1−2𝜖
(2)

+ 2𝜖 =∑{𝑈𝑢((1 − 2𝜖)
−1(𝐾𝑧2−2𝜖(𝑎+𝜖);𝑎 − 𝐾(𝑧2−1);𝑎) − (𝑛 + 1

𝑢∈Γ

+ 𝑘)𝑘(𝑧2−1);(𝛼2−1))} ⊗ 𝑒𝑢. 

Set 1 + 𝜖 = sup
𝑢∈Γ
|𝑐𝑢|. Then it follows from Corollary (6.3.29) that 

‖𝐴1−2𝜖
(1)

+ 2𝜖‖ ≤ (1 + 𝜖)(𝐴 + 𝜖)(Γ)‖𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖)‖∞
 

and 

‖𝐴1−2𝜖
(2)

+ 2𝜖‖

≤ (𝐴 + 𝜖)(Γ)

× ‖(1 − 2𝜖)−1(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖);𝑎 − 𝐾(𝑧2−1);𝑎) − (𝑛 + 1

+ 𝑘)𝑘(𝑧2−1);(𝛼2−1)‖∞
. 

Since 2𝑎 + 𝜖 = 𝛼2 − 1and 𝑘 = |𝑎|, by (68) and elementary algebra, we have 

lim
1−2𝜖↓0

‖(1 − 2𝜖)−1(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖);𝑎 − 𝐾(𝑧2−1);𝑎) − (𝑛 + 1 + 𝑘)𝑘(𝑧2−1);(𝛼2−1)‖∞
= 0. 

Also, it is trivial that ‖𝑘𝑧2−1+(1−2𝜖)(𝑎+𝜖)‖∞
remains bounded as (1 − 2𝜖)descends to 0. 

Hence 

‖𝐴1−2𝜖 + 𝜖‖ ≤ ‖𝐴1−2𝜖
(1)

+ 2𝜖‖‖𝐴1−2𝜖
(2)

+ 2𝜖‖

≤ (1 + 𝜖)((𝐴 + 𝜖)(Γ))
2
‖𝑘𝑧2−1+(1−2𝜖)(𝑎+𝜖)‖∞

× ‖(1 − 2𝜖)−1(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖);𝑎 − 𝐾(𝑧2−1);𝑎) − (𝑛 + 1

+ 𝑘)𝑘(𝑧2−1);(𝛼2−1)‖∞
→ 0 

as (1 − 2𝜖)descends to 0. For 𝑇1−2𝜖, we have the factorization 𝑇1−2𝜖 = 𝑇1−2𝜖
(1)
𝑇
(2)∗

, where 

𝑇1−2𝜖
(1)

= (𝑛 + 1 + 𝑘)∑𝑐𝑢{𝑈𝑢(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖) − 𝐾𝑧2−1)}⊗ 𝑒𝑢
𝑢∈Γ

 

and 

𝑇(2) =∑(𝑈𝑢𝐾(𝑧2−1);(𝛼2−1))

𝑢∈Γ

⊗𝑒𝑢. 

By Corollary (6.3.29), ‖𝑇1−2𝜖
(1)
‖ ≤ (𝑛 + 1 + 𝑘)(1 + 𝜖)(𝐴 + 𝜖)(Γ)‖𝑘𝑧2−1+(1−2𝜖)(𝑎+𝜖) −

𝐾𝑧2−1‖∞, and 𝑇(2)is a bounded operator. It is obvious that 

lim
1−2𝜖↓0

‖𝑘𝑧2−1+(1−2𝜖)(𝑎+𝜖) − 𝐾𝑧2−1‖∞
= 0. 

Hence ‖𝑇1−2𝜖‖ ≤ ‖𝑇1−2𝜖
(1)
‖‖𝑇(2)‖ → 0 as (1 − 2𝜖)descends to 0. This completes the proof 

of (117). 

To prove (118), note that 

𝐺1−2𝜖 −𝑊 =∑𝑐𝑢{𝑈𝑢((1 − 2𝜖)
−1(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖) − 𝐾𝑧2−1) − (𝑛

𝑢∈Γ

+ 1)𝑘(𝑧2−1);(𝑎+𝜖))} ⊗ (𝑈𝑢𝐾(𝑧2−1);𝑎) = 𝑍1−2𝜖𝑇
(2)∗, 

where 
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𝑍1−2𝜖 =∑𝑐𝑢{𝑈𝑢((1 − 2𝜖)
−1(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖) − 𝐾𝑧2−1) − (𝑛 + 1)𝑘(𝑧2−1);(𝑎+𝜖))}

𝑢∈Γ

⊗𝑒𝑢 . 
Applying Corollary (6.3.29) again, we have 

‖𝑍1−2𝜖‖ ≤ (1 + 𝜖)(𝐴
+ 𝜖)(Γ)‖(1 − 2𝜖)−1(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖) − 𝐾𝑧2−1) − (𝑛 + 1)𝑘(𝑧2−1);(𝑎+𝜖)‖∞

. 

Another easy exercise shows that 

lim
1−2𝜖↓0

‖(1 − 2𝜖)−1(𝐾𝑧2−1+(1−2𝜖)(𝑎+𝜖) − 𝐾𝑧2−1) − (𝑛 + 1)𝑘(𝑧2−1);(𝑎+𝜖)‖∞
= 0. 

Hence ‖𝐺1−2𝜖 −𝑊‖ ≤ ‖𝑍1−2𝜖‖‖𝑇
(2)‖ → 0 as (1 − 2𝜖)descends to 0, proving (118). Thus 

we have completed the proof of (115). 

The proof of (116) uses essentially the same argument as above, and the only 

additional care that needs to be taken is the following: The rank-one operator ∑
�̃�
𝑓�̃�⊗ℎ +

𝜖is linear with respect to the series ∑
�̃�
𝑓�̃�and conjugate linear with respect to (ℎ + 𝜖). 

Moreover, the inner product 〈𝜁2 − 1, 𝑧2 − 1〉on 𝐂𝑛is conjugate linear with respect to (𝑧2 −
1). These are the properties that determine the + and −signs in each term 𝑐𝑢{… }in the sum 

that defines the operator 𝑌. This completes the proof of the proposition.  

Corollary (6.3.36)[200]: Let Γbe a separated set in 𝐁 and let {𝑐𝑢: 𝑢 ∈ Γ}be a bounded set 

of complex coefficients. Then for every (𝑤2 − 1) ∈ 𝐁 we have 

∑𝑐𝑢𝑘𝑢⊗𝑘𝜑𝑢(𝑤2−1) ∈ 𝒯
(1)

𝑢∈Γ

.                                                         (119) 

Proof. For each (𝛼2 − 1) ∈ 𝐙+
𝑛, define the monomial function 

𝑝𝛼2−1(𝜁
2 − 1) = (𝜁2 − 1)𝛼

2−1 
on 𝐁. Given a (𝑤2 − 1) ∈ 𝐁, let us define 

𝑑𝑢(𝑤
2 − 1) = 𝑐𝑢 (

1 − 〈𝑤2 − 1, 𝑢〉

|1 − 〈𝑤2 − 1, 𝑢〉|
)

𝑛+1

, 

𝑢 ∈ Γ. Note that 𝐾0;𝛼2−1 = 𝑝𝛼2−1for every (𝛼2 − 1) ∈ 𝐙+
𝑛. Also, 𝑈𝑢𝐾0 = 𝑈1 = 𝑘𝑢for 

every 𝑢 ∈ Γ. Thus, applying Corollary (6.3.35) to the case where 𝑧2 = 1, we have 

∑𝑑𝑢(𝑤
2 − 1)𝑘𝑢⊗ (𝑈𝑢𝑝𝛼2−1) ∈ 𝒯

(1)

𝑢∈Γ

                          (120) 

for every (𝛼2 − 1) ∈ 𝐙+
𝑛. Define the function 

(ℎ + 𝜖)𝑤2−1(𝜁
2 − 1) = 〈𝜁2 − 1,𝑤2 − 1〉 , (𝜁2 − 1) ∈ 𝐁. 

For each 𝑗 ∈ 𝐙+, define the operator 

𝐴𝑗 =∑𝑑𝑢(𝑤
2 − 1)𝑘𝑢⊗ (𝑈𝑢(ℎ + 𝜖)𝑤2−1

𝑗
)

𝑢∈Γ

. 

Since each (ℎ + 𝜖)
𝑤2−1

𝑗
is in the linear span of {𝑝𝛼2−1: (𝛼

2 − 1) ∈ 𝐙+
𝑛}, (120) implies that 

𝐴𝑗 ∈ 𝒯
(1)for every 𝑗 ∈ 𝐙+. Let {𝑒𝑢: 𝑢 ∈ Γ}be an orthonormal set. Then we have the 

factorization 𝐴𝑗 = 𝑇(𝐴𝑗
∗ + 𝜖)for each 𝑗 ∈ 𝐙+, where 
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𝑇 =∑𝑑𝑢(𝑤
2 − 1)𝑘𝑢⊗𝑒𝑢

𝑢∈Γ

and𝐴𝑗 + 𝜖 =∑(𝑈𝑢(ℎ + 𝜖)𝑤2−1
𝑗

) ⊗ 𝑒𝑢
𝑢∈Γ

. 

Corollary (6.3.29) tells us that 𝑇is a bounded operator. Define 

𝐺 =∑(𝑈𝑢𝐾𝑤2−1) ⊗ 𝑒𝑢
𝑢∈Γ

. 

It also follows from Corollary (6.3.29) that 

‖𝐺 −∑
(𝑛 + 𝑗)!

𝑛! 𝑗!
(𝐴𝑗 + 𝜖)

𝑘

𝑗=0

‖ ≤ (𝐴 + 𝜖)(Γ)‖𝐾𝑤2−1 −∑
(𝑛 + 𝑗)!

𝑛! 𝑗!
(ℎ + 𝜖)

𝑤2−1

𝑗

𝑘

𝑗=0

‖

∞

(121) 

for every 𝑘 ∈ 𝐙+. By the expansion formula 

1

(1 − 𝑐)𝑛+1
=∑

(𝑛 + 𝑗)!

𝑛! 𝑗!
𝑐𝑗

∞

𝑗=0

, |𝑐| < 1, 

and the fact that |𝑤2 − 1| < 1, we have 

lim
𝑘→∞

‖𝐾𝑤2−1 −∑
(𝑛 + 𝑗)!

𝑛! 𝑗!
(ℎ + 𝜖)

𝑤2−1

𝑗

𝑘

𝑗=0

‖

∞

= 0. 

Combining this with (121), we obtain 

lim
𝑘→∞

‖𝑇𝐺∗ −∑
(𝑛 + 𝑗)!

𝑛! 𝑗!
𝐴𝑗

𝑘

𝑗=0

‖ = lim
𝑘→∞

‖𝑇𝐺∗ − 𝑇∑
(𝑛 + 𝑗)!

𝑛! 𝑗!
(𝐴𝑗
∗ + 𝜖)

𝑘

𝑗=0

‖ = 0. 

Since each 𝐴𝑗belongs to 𝒯(1), we conclude that 

∑𝑑𝑢(𝑤
2 − 1)𝑘𝑢⊗ (𝑈𝑢𝐾𝑤2−1)

𝑢∈Γ

= 𝑇𝐺∗ ∈ 𝒯(1). 

Since 𝑘𝑤2−1 = (1 − |𝑤
2 − 1|2)(𝑛+1)/2𝐾𝑤2−1, this implies 

∑𝑑𝑢(𝑤
2 − 1)𝑘𝑢⊗ (𝑈𝑢𝐾𝑤2−1)

𝑢∈Γ

∈ 𝒯(1).                 (122) 

Recalling the definition of 𝑑𝑢(𝑤
2 − 1) and (100), we see that (122) implies (119).  

Corollary (6.3.37)[200]: We have 𝒟0 ⊂ 𝒯
(1). 

Since 𝒯(1)is a norm closed linear subspace of ℬ(𝐿𝑎
2 (𝐁, 𝑑(𝑢 + 𝜖))), Proposition (6.3.12) 

follows immediately from Propositions (6.3.16) and (6.3.20). 

Proof. Let Γ be a separated set in 𝐁, let {𝑐𝑢: 𝑢 ∈ Γ}be a bounded set of coefficients, and let 

𝛾: Γ → 𝐁 be a map satisfying (58). Let 𝐾 = {𝑤2 − 1 ∈ 𝐁: 𝛽(0,𝑤2 − 1) ≤ 1 + 𝜖}, where 

(1 + 𝜖)is the constant that appears in (58). We want to show that the operator 

𝑇 =∑𝑐𝑢𝑘𝑢⊗𝑘𝛾(𝑢)
𝑢∈Γ

 

belongs to 𝒯(1). For this purpose, define 

𝜓(𝑢) = 𝜑𝑢(𝛾(𝑢)) , 𝑢 ∈ Γ. 
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Since 𝛽(𝑢, 𝛾(𝑢)) ≤ 1 + 𝜖, by the Möbius invariance of 𝛽and the fact 𝜑𝑢(𝑢) = 0, we have 

𝛽(0, 𝜓(𝑢)) = 𝛽(𝑢, 𝛾(𝑢)) ≤ 1 + 𝜖for every 𝑢 ∈ Γ. That is, 𝜓(𝑢) ∈ 𝐾for every 𝑢 ∈ Γ. Since 

𝜑𝑢(𝜓(𝑢)) = 𝛾(𝑢), 𝑢 ∈ Γ, by (3.1) we have 

𝑇 =∑𝑑𝑢𝑘𝑢⊗ (𝑈𝑢𝑘𝜓(𝑢))

𝑢∈Γ

, 

where |𝑑𝑢| = |𝑐𝑢|for every 𝑢 ∈ Γ. Let {𝑒𝑢: 𝑢 ∈ Γ}be an orthonormal set. Then we have the 

factorization 𝑇 = 𝐴(𝐴∗ + 𝜖), where 

𝐴 =∑𝑑𝑢𝑘𝑢⊗𝑒𝑢
𝑢∈Γ

and           𝐴 + 𝜖 =∑(𝑈𝑢𝑘𝜓(𝑢)) ⊗ 𝑒𝑢
𝑢∈Γ

. 

We again use the fact that the map 𝑧2 − 1 ⟼ 𝑘𝑧2−1is ‖⋅‖∞-continuous. That is, 

lim
𝑤2−1→𝑧2−1

‖𝑘𝑧2−1 − 𝑘𝑤2−1‖∞ = 0         for every           (𝑧
2 − 1) ∈ 𝐁. 

Let 𝜖 > 0 be given. Since 𝐾is compact, there are non-empty open sets Ω1, … , Ω𝑚in 𝐁 and 

(𝑧𝑖
2 − 1) ∈ Ω𝑖 , 𝑖 = 1,… ,𝑚, such that 

Ω1 ∪ …∪ Ω𝑚 ⊃ 𝐾                                  (123) 
and 

‖𝑘𝑧𝑖
2−1 − 𝑘𝑤2−1‖

∞
< 𝜖               wherever     (𝑤2 − 1) ∈ Ω𝑖 , 

𝑖 = 1,… ,𝑚. From the open cover (123) we obtain a partition 

𝐾 = 𝐸1 ∪ …∪ 𝐸𝑚 
such that 𝐸𝑖 ⊂ Ω𝑖for every 𝑖 ∈ {1, … ,𝑚}. We now define 

Γ𝑖 = {𝑢 ∈ Γ:𝜓(𝑢) ∈ 𝐸𝑖}, 

𝑖 = 1,… ,𝑚. Then ‖𝑘𝑧𝑖
2−1 − 𝑘𝜓(𝑢)‖

∞
< 𝜖 if 𝑢 ∈ Γ𝑖. For every 𝑖 ∈ {1, … ,𝑚}, we also define 

𝐴𝑖 + 𝜖 = ∑ (𝑈𝑢𝑘𝑧𝑖
2−1)⊗ 𝑒𝑢

𝑢∈Γ𝑖

. 

For each 𝑖 ∈ {1,… ,𝑚}we have 

𝐴(𝐴𝑖
∗ + 𝜖) = ∑ 𝑑𝑢𝑘𝑢⊗(𝑈𝑢𝑘𝑧𝑖

2−1)

𝑢∈Γ𝑖

= ∑ 𝑑𝑢,𝑖𝑘𝑢⊗𝑘𝜑𝑢(𝑧𝑖
2−1)

𝑢∈Γ𝑖

, 

where |𝑑𝑢,𝑖| = |𝑑𝑢|for 𝑢 ∈ Γ𝑖. Thus it follows from Corollary (6.3.36) that 

{𝐴(𝐴1
∗ + 𝜖),… , 𝐴(𝐴𝑚

∗ + 𝜖)} ⊂ 𝒯(1).                            (124) 
On the other hand, we have 

𝐴 + 𝜖 − ((𝐴1 + 𝜖) +⋯+ (𝐴𝑚 + 𝜖)) =∑∑ {𝑈𝑢 (𝑘𝜓(𝑢) − 𝑘𝑧𝑖
2−1)}⊗ 𝑒𝑢

𝑢∈Γ𝑖

𝑚

𝑖=1

. 

Since the sets Γ1, … , Γ𝑚form a partition of Γ, i.e., Γ𝑖 ∩ Γ𝑗 = ∅whenever 𝑖 ≠ 𝑗, Corollary 

(6.3.29) tells us that 

‖𝐴 + 𝜖 − ((𝐴1 + 𝜖) +⋯+ (𝐴𝑚 + 𝜖))‖ ≤ (𝐴 + 𝜖)(Γ) max
1≤𝑖≤𝑚

sup
𝑢∈Γ𝑖

‖𝑘𝜓(𝑢) − 𝑘𝑧𝑖
2−1‖

∞

≤ (𝐴 + 𝜖)(Γ)𝜖. 
Corollary (6.3.29) also tells us that 𝐴is a bounded operator. Hence 
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‖𝑇 − (𝐴(𝐴1
∗ + 𝜖) +⋯+ 𝐴(𝐴𝑚

∗ + 𝜖))‖ = ‖𝐴(𝐴∗ + 𝜖) − (𝐴(𝐴1
∗ + 𝜖) +⋯+ 𝐴(𝐴𝑚

∗ + 𝜖))‖

≤ ‖𝐴‖‖(𝐴∗ + 𝜖) − ((𝐴1
∗ + 𝜖) +⋯+ (𝐴𝑚

∗ + 𝜖))‖

= ‖𝐴‖‖(𝐴 + 𝜖) − ((𝐴1 + 𝜖) +⋯+ (𝐴𝑚 + 𝜖))‖ ≤ ‖𝐴‖(𝐴 + 𝜖)(Γ)𝜖. 

Since 𝜖 > 0 is arbitrary, combining this inequality with (2.6), we conclude that 𝑇 ∈ 𝒯(1). 
This completes the proof of Corollary (6.3.37).  

Corollary (6.3.38)[200]: There is a constant 0 ≤ 𝜖4.4 < ∞ such that the following estimate 

holds: Let 𝑒𝑢: 𝑢 ∈ 𝐙
2𝑛be any orthonormal set and let ℎ𝑢 ∈ ℋ∗ , 𝑢 ∈ 𝐙

2𝑛, be functions 

satisfying the condition sup
𝑢∈𝐙2𝑛

‖ℎ𝑢‖∗ < ∞. Then 

‖ ∑ (𝑈𝑢ℎ𝑢)  ⊗ 𝑒𝑢
𝑢∈𝐙2𝑛

‖ ≤ (1 + 𝜖4.4) sup
𝑢∈𝐙2𝑛

‖ℎ𝑢‖∗ . 

Proof. Let us first estimate |〈𝑈𝑢ℎ𝑢, 𝑈𝑢+𝜖ℎ𝑢+𝜖〉|. By (81), for 𝑢 ∈ 𝐙2𝑛we have 

|〈𝑈𝑢ℎ𝑢, 𝑈𝑢+𝜖ℎ𝑢+𝜖〉|

= ∫ℎ𝑢(𝑢 − 𝜁
2 + 1)ℎ𝑢+𝜖(𝑢 + 𝜖 − 𝜁

2 + 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑘𝑢(𝜁
2

− 1)𝑘𝑢+𝜖(𝜁
2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑒−|𝜁

2−1|
2

𝑑𝑉(𝜁2 − 1).                                                        (125) 
Moreover, 

|𝑘𝑢(𝜁
2 − 1)𝑘𝑢+𝜖(𝜁

2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|𝑒−|𝜁
2−1|

2

= 𝑒−(1/2 ) (|𝑢−𝜁
2−1|

2
+|𝑢+𝜖−𝜁2−1|

2
) ,       (126) 

(𝜁2 − 1) ∈ 𝐂𝑛. Observe that 

(|𝑢 − 𝜁2 − 1|2 + |𝑢 + 𝜖 − 𝜁2 + 1|2 ≥
1

2
(|𝑢 − 𝜁2 − 1|2 + |𝑢 + 𝜖 − 𝜁2 + 1|2 ≥

1

2
|𝜖|2. 

Thus, splitting the 1/2 in (126) as (1/4) + (1/4), we find that 

|𝑘𝑢(𝜁
2 − 1)𝑘𝑢+𝜖(𝜁

2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|𝑒−|𝜁
2−1|

2

≤ 𝑒−(1/8)|𝜖|
2
𝑒−(1/4)|𝑢−𝜁

2−1|
2

𝑒−(1/4)|𝑢+𝜖−𝜁
2−1|

2

. 
Combining this with (125) and applying the Cauchy-Schwarz inequality, we obtain 

|〈𝑈𝑢ℎ𝑢, 𝑈𝑢+𝜖ℎ𝑢+𝜖〉| ≤ 𝑒
−(
1
8
)|𝜖|2‖ℎ𝑢‖∗‖ℎ𝑢+𝜖‖∗ ≤ 𝑒

−(
1
8
)|𝜖|2

𝐻∗
2,                        (127) 

where 

𝐻∗ = sup
𝑢∈𝐙2𝑛

‖ℎ𝑢‖∗ . 

Write 

𝐴 = ∑ (𝑈𝑢ℎ𝑢) ⊗ 𝑒𝑢
𝑢∈𝐙2𝑛

 

and consider any vector 𝑥 = ∑ 𝑥𝑢𝑒𝑢𝑢∈𝐙2𝑛  . By (127), we have 

‖𝐴𝑥‖2 ≤ ∑ |〈𝑈𝑢+𝜖ℎ𝑢+𝜖  , 𝑈𝑢ℎ𝑢〉||𝑥𝑢||𝑥𝑢+𝜖|

𝑢,(𝑢+𝜖)∈𝐙2𝑛

≤ 𝐻∗
2 ∑ 𝑒−(1/8)|𝜖|

2
|𝑥𝑢||𝑥𝑢+𝜖|

𝑢,(𝑢+𝜖)∈𝐙2𝑛

. 

Applying the Schur test to the right-hand side, we find that 

‖𝐴𝑥‖2 ≤ (1 + 𝜖)𝐻∗
2 ∑ |𝑥𝑢|

2

𝑢∈𝐙2𝑛

= (1 + 𝜖)𝐻∗
2‖𝑥‖2, 

where 1 + 𝜖 = ∑ 𝑒−(1/8)|𝑧
2−1|

2

(𝑧2−1)∈𝐙2𝑛 , which is finite. Since the vector 𝑥is arbitrary, we 

conclude that ‖𝐴‖ ≤ (1 + 𝜖)1/2𝐻∗. Thus the lemma holds for the constant 1 + 𝜖4.4 =

(1 + 𝜖)
1

2. 
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Corollary (6.3.39)[200]: Let Γ in 𝐁 ⊂ 𝒁2𝑧, 𝑒𝑢: 𝑢 ∈ 𝒁
2𝑛 be any orthonormalset and ℎ𝑢 be 

bounded function in ℋ∗ satisfying sup
𝑢∈𝒁2𝑛

‖ℎ𝑢‖∗ < ∞. Then 

(i) (𝐴 + 𝜖)(Γ) = 1 + 𝜖4.4 for a constant0 ≤ 𝜖4.4 ≤ ∞ 

(ii) ‖𝐴 + 𝜖‖ ≤ (1 + 𝜖)
1

2 for ‖𝑢‖ = 1 where 𝑢 ∈ Γ. 

Proof: (i) From the two inequalities of Lemmas (6.3.29) and (6.3.38) we have that 

(𝐴 + 𝜖)(Γ) = 1 + 𝜖4.4. 
(ii) Taking the supremum over all values of Γ s.t. ‖𝑢‖ = 1, we have, by Corollary (6.3.38), 

that ‖𝐴 + 𝜖‖ ≤ (1 + 𝜖)
1

2. 

In the proof of the Fock-space analogue of Corollary (6.3.31), the ‖⋅‖∞-continuities 

of the previous are replaced by the corresponding ‖⋅‖∗-continuities. For example, for the 

normalized reproducing kernel of the Fock space one easily verifies that 

lim
𝑤2→𝑧2

‖𝑘𝑧2−1 − 𝑘𝑤2−1‖∗ = 0 

for every (𝑧2 − 1) ∈ 𝐂𝑛. Thus, using Corollary (6.3.38) in place of Corollary (6.3.29), the 

analogue of Corollary (6.3.31) on the Fock space can be obtained by following the argument 

in the previously.  
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List of Symbols 

Symbol  Page 

𝐻∞: essential Hardy space 1 

𝐻2: Hardy space 1 

𝐿2: Hilbert space 1 

𝐿∞: essential Lebesgue space 1 

⨂: tensor product 7 

⊖: orthogonal difference 8 

𝑎. 𝑒: almost everywhere 10 

VMO: vanishing mean oscillation 17 

Aut: automorphism  24 

ker: kernel  29 

dim: Dimension 35 

⨁: Direct sum 41 

inf: Infimum 44 

dist: distance 44 

ran: range 50 

det: determinant 52 

Tr: trace 53 

Arg: Argument 53 

𝐻𝑝: Hardy space 59 

𝐿𝑝: Lebesgue space 67 

clos: closure 67 

out: outer 67 

𝐿1: Lebesgue on the real line 68 

𝐿𝑞: Dual Lebesgue space 75 

𝐻𝑞: Dual Hardy space 75 

sup: supremum 75 

supp: support 91 

ℒ𝑑,∞: Lorentz space or  Macaev class 91 

ℒ𝑝,𝑞: Macaev class 99 

rad: radial 99 

ess: essential 115 

conv: convex 115 

max: maximum 116 

SOT: strong operator topology 125 

alg: algebra 129 

𝑐𝑜: convex 133 

MAP modulus approximation property 133 

WMAP: weak modulus approximation property 139 

𝐴2: Bergman space 164 

card: cardinal 192 
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