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Abstract

We study the operator commuting and essential commutant of analytic
Toeplitz operators module the compact operators and Toeplitz operators in
several complex variables and on the Bergman space of the until ball. We show
the ordered groups and some exact sequences and the commutator ideal of the
Toeplitz algebras of spherical isometries and on the Bergman spaces of the unit
ball in the unitary space. We give the lower bounds in the matrix, new estimate
for the vector-valued and matrix-valued H?, Corona problems in the disk and
polydisk and the codimension one conjecture. We also give the Toeplitz Corona
theorems for the polydisk, the unit ball and the Douglas property for free
functions. We discuss the characterizations of Toeplitz and Hankel operators with
Toeplitz projections and Dixmier traces on the unit ball of the unitary space. We
determine the locatization, compactness and Toeplitz algebra on the Bergman and

Fock spaces.



"

Ladal)

Sise oebiay AL Fulen clisal ol Judls Fnall ddiag L
Bangll 381 Glasyy eliad ey aaxiall 4l cilpsiall & bl il fisey pal il
sl Fulss ilpal Jasall Jally Gl il sy Adyad) o)l s
laall Udae§ L ganlgl) cliadll 3 sassll 3)ST Gleayn cileLad ey Gy )SI) culilisal)
Uis s Jilse s aniall=3ad Uy Jilue Ja¥ yaall paiily 43 sheadl 3 JaullHP
Cilinyse el Loyl sV Caliad) sl ety aaiad) (il 8 4 sieaell-iad
Ll L3 yadl Jlgall Jal g0 duald g sangl) 3K aaxiall (il JaY jileii Uiy s<
sangll 5 o prandyy 0T ided Jadluae ae JSilas Jides clfisd il
cds Olaayn Sleliad Je Jdoh iy Galilly dpradagall Loas L gaalsll ¢ Liadll



Introduction

We show that an operator on H? of the disc commutes module the
compacts with all analytic Toeplitz operators if and only if it is a compact
perturbation of a Torplitz operator with symbol in H® + C. Consequently, the
essential commutant of the whole Toeplitz algebra is the algebra of Toeplitz
operators with symbol in QC. Let S be the unit sphere in C*. We investigate the
properties of Toeplitz operators on S, i.e., operators of the form Ty, f = P(¢f)
where ¢ € L*(S) and P denotes the projection of L?(S) onto H?(S). We
determine how far the extensive one-variable theory remains valid in higher
dimensions. We establish the spectral inclusion theorem, that the spectrum of T,
contains the essential range of 4, and obtain a characterization of the Toeplitz
operators among operators on H%(S) by an operator equation. A new extension
Is given principally with the objective of presenting a certain new class of C*-
algebras which have very interesting properties.

We give a lower boundfor the solution of the Matrix Corona Problem,
which is pretty close to the best known upper bound € - § ™~ log § 2" obtained
recently by T. Trent. In particular, both estimates grow exponentially in n; the
(only) previously known lower bound €672 log(62"*1) grew logarithmically
in n. Also, the lower boundis obtainedfor (n + 1) X n matrices, thus giving the
negative answer to the so-called“co dimension one conjecture.” Another
Important result is connecting left invertiblity in H* and co-analytic orthogonal
complements. We consider the matrix-valued HP corona problem in the disk and
polydisk. The result for the disk is rather well-known, and is usually obtained
from the classical Carleson Corona Theorem by linear algebra. We provide a
streamlined way of obtaining this result and allows one to get a better estimate on
the norm of the solution. In particular, we were able to improve the estimate found
in the recent work of Trent. Note that, the solution of the H* matrix corona
problem in the disk can be easily obtained from the H? corona problem either by
factorization, or by the Commutant Lifting Theorem. The HP corona problem in
the polydisk was originally solved by Lin. The solution used Koszul complexes
and was rather complicated because one had to consider higher order. 0-
equations. Our proof is more transparent and it improves upon Lin’s result in
several ways. First, we deal with the more general matrix corona problem.
Second, we were able to show that the norm of the solution is independent of the
number of generators.

We show that if an operator A is a finite sum of finite products of Toeplitz
operators on the Bergman space of the unit ball B,,, then A is compact if and only
if its Berezin transform vanishes at the boundary. Let L2 be the Bergman space
of the unit disk and T (L?) be the Banach algebra generated by Toeplitz operators
Ty, with f € L*. We compute the Dixmier trace of pseudo-Toeplitz operators on
the Fock space. We find a formula for the Dixmier trace of the product of



commutators of Toeplitz operators on the Hardy and weighted Bergman spaces
on the unit ball of C<.
A family {Tj}jej of commuting Hilbert space operators is said to be a

spherical isometry if }.;c; T;'T; = 1 in the weak operator topology. We show

that every commuting family F of spherical isometries has a commuting normal
extension F. Moreover, if F is minimal, then there exists a natural short exact
sequence 0 » C » C*(F) — C*(f") — 0 with a completely isometric cross-
section, where C is the commutator ideal in C*(F). We construct a Toeplitz
projection for every regular A-isom-etry T € B(H )™ on a complex Hilbert space
Hand use it to determine the essential commutant of the set of all analytic Toeplitz
operators formed with respect to an essentially normal regular A-isometry. We
show that the Toeplitz projection annihilates the compact operators if and only if
Tpossesses no joint eigenvalues.

Trent and Wick establish a strong relation between the corona problem and
the Toeplitz corona problem for a family of spaces over the ball and the polydisk.
Their work is based on earlier work of Amar. Several of their lemmas are
reinterpreted in the language of Hilbert modules, revealing some interesting facts
and raising some questions about quasi-free Hilbert modules. A modest
generalization of their result is obtained. The well known Douglas Lemma says
that for operators A, B on Hilbert space that AA* — BB* = 0 implies B = AC
for some contraction operator C. The result carries over directly to classical
operator-valued Toeplitz operators by simply replacing operator by Toeplitz
operator. Free functions generalize the notion of free polynomials and formal
power series and trace back to the work of J. Taylor in the 1970s. They are of
current interest, in part because of their connections with free probability and
engineering systems theory.

Let L3 denote the Bergman space of the open unit ball B,, in C*, forn >
1. The Toeplitz algebra T is the C*-algebra generated by all Toeplitz operators
Ty with f € L”. It was proved by D. Suarez that for n = 1, the closed bilateral

commutator ideal generated by operators of the form T, T, — T, Ty , where f , g €
L™, coincides with T. We study compactness of operators on the Bergman space
of the unit ball and the Bargmann-Fock space in C™ in terms of the behavior of
their Berezin transforms. We show how a vanishing Berezin transform combined
with certain (integral) growth conditions on an operator T are sufficient to imply
that the operator is compact on the space in question. Let Tr denote the Toeplitz
operator with symbol function f on the Bergman space L% (B; dv) of the unit ball
in C™. It is a natural problem in the theory of Toeplitz operators to determine the

norm closure of the set {T; : f € L'(B; dv)}in B(Ly(B; dv)).

Vi



The Contents

Subject Page
Dedication I
Acknowledgments ]
Abstract Il
Abstract (Arabic) Y
Introduction \Y/
The contents VIl

Chapter 1

Operators Commuting and Toeplitz Algebras

Section (1.1): Toeplitz Operators Modulo the Compact Operators 1
Section (1.2): Several Complex Variables 8
Section (1.3): Ordered Groups 18

Chapter 2

Lower Bounds with New Estimate and Matrix Valued

Section (2.1): The Matrix Corona Theorem and the Codimension One 40
Conjecture
Section (2.2): Vector Valued Corona Problem 49
Section (2.3): Corona Problem in the Disk and Polydisk 58

Chapter 3

Toeplitz and Hankel Operators with Toeplitz Algebras

Section (3.1): Bergman Space of the Unit Ball 80
Section (3.2): Bergman Space Coincides with Its Commutator Ideal 89
Section (3.3): Dixmier Traces on the Unit Ball of C" 97

Chapter 4

Essential Commutants and Exact Sequences
Section (4.1): Analytic Toeplitz Operators 104

Section (4.2): Toeplitz Algebras of Spherical Isometries 107
Section (4.3): Toeplitz Projections 117

Chapter 5

Toeplitz Corona Theorems

Section (5.1): The Polydisk and the Unit Ball 132
Section (5.2): Toeplitz Corona Problem 138
Section (5.3): Douglas Property for Free Functions 144

Chapter 6

Toeplitz Algebra on the Bergman Space of the Unit Ball in C* and Localization the

Commutator Ideal

Section (6.1): Unit Ball in C" 152
Section (6.2): Compactness in Bergman and Fock Spaces 164
Section (6.3): Toeplitz Algebra on the Bergman Space 191
List of Symbols 239
References 240

Vil




Chapter 1
Operators Commuting and Toeplitz Algebras

We show the image in the Calkin algebra of the Toeplitz operutors with symbol in
H* 4+ C is a maximal abelian algebra. These results lead to a characterization of
automorphisms of the algebra of compact perturbations of the analytic Toeplitz operators.
Particular attention is paid to the case where ¢ € H*(S) + C(S) where C(S) denotes the
algebra of continuous functions on S. Finally we describe a class of Toeplitz operators useful
for providing counterexamples-in particular, Widom’s theorem on the connectedness of the
spectrum fails whenn > 1.

Section (1.1): Toeplitz Operators Modulo the Compact Operators

We show that an operator on H? of the disc commutes module the compacts with all
analytic Toeplitz operators if and only if it is a compact perturbation of a Toeplitz operator
with symbol in H® + C. Consequently, the essential commutant of the whole Toeplitz
algebra is the algebra of Toeplitz operators with symbol in QC. The image in the Calkin
algebra of the Toeplitz operutors with symbol in H* + C is a maximal abelian algebra.
These results lead to a characterization of automorphisms of the algebra of compact
perturbations of the analytic Toeplitz operators.

Johnson and Parrot [8] showed that if M is an abelian von Neumann algebra on a
Hilbert space H, M’ is its commutant, and £4 (H) is the ideal of compact operators on H,
then the essential commutant of Mis M’ + £6(H). Sarason [9] showed that a Toeplitz
operator T, on H?of the unit circle commutes modulo the compacts with all analytic Toeplitz
operators if and only if g isin H® + C. Here C denotes the space of continuous functions
on the unit circle. From this, Douglas [7] showed that the essential center of the Toeplitz
algebra is the algebra of Toeplitz operators with symbol in QC = H* + CNnH* + C.
Douglas [5] raised the natural question of which operators in £(H?) essentially commute
with all Toeplitz operators.

We prove the following Theorem, which gives a complete answer to this question.

From this we get two immediate corollaries.

Corollary (1.1.1)[1]: The essential commutant of the Toeplitz algebra F(L*) is F(QC).
Corollary (1.1.2)[1]: The image F(H® + C)in the Calkin algebra is a maximal abelian
algebra.

Corollary (1.1.1) gives the first concrete example of a maximal abelian algebra in the
Calkin algebra which is not an image of a maximal abelian von Neumann algebra. (That the
latter is an example is a consequence of [8].)

Let D be the unit disc, and let 9D be its boundary. Let H? be the subspace of L?.
L*(0D)of those functions with all negative Fourier coefficients equal to zero. Let M, denote

the operator L of multiplication by the L*function f. The Toeplitz operator T with symbol
f is the compression of Msto H?. If Ais a subset of L, let F (A) be the norm closed algebra
generated by {T;: f € A}. Let L(H?) be the bounded operators on H?, and let £6(H?) be

its ideal of compact operators. Let 7w = L(H?) - L(H?)/¢&(H?) be the canonical
homomorphism onto the Calkin algebra. If S is an operator, let D(X) = XS — SX be the
derivation on £(H?) induced by S.

We show the following theorem, which is somewhat stronger than Theorem (1.1.7).
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The proof will follow from a series of lemmas, but first we will outline the main ideas.
If T,S — ST, is not compact, we can take h = z. So for the remainder of the proof, We will
assume that S essentially commutes with T,.

It follows that S commutes modulo compacts with every Toeplitz operator with
continuous symbol. We show that there is a subsequence A of the positive integers and a
function £ in L, such that in the w* topology on L(H?),

Tr = lim TynSTyn .

neaA
We find a countable collection of disjoint closed intervals {y,,} of the unit circle such that

|T,,.S — Ty,.s|| > 6 > 0. Combining the two preceding results, we obtain functions P, in
H> such that ||D(T5,)|| > 6 and so that the partial sums of the series ¥, P,are uniformly
bounded. It follows that Tp_and D(Tpn)converge strongly to zero, so we are able to extract
a subsequence I'such that h = ), B,is in H*with the operators D(Tpn)almost mutually
orthogonal. This will allow us to conclude that D(T},)is not compact. By choosing the
functions P, so that their closed supports cluster at only one point, we ensure that h has only
one discontinuity.

Let X be the net of inner functions ordered by divisibility. If w is an inner function,
let o, =S — TzST,,. Let g,, = a,n, Consider the sequence {a,,} and the net {o,,}. Both are
norm bounded, and hence lie in a w* compact set.

Consequently, they have w* limit points.
Lemma (1.1.3)[1]: Let S be in L(H?) with T, S — ST, compact, and let S be a w*limit point
of the sequence {o,,}. Then,

(i) T,S — ST,is compact for all continuous functions g.

(i)S = w* }lig‘} o, for a subsequence A of N.

(iii) S —S' = T for some f in L”.

(iv) S'—T,S'T, = oy, forall continuous inner functions b.
V)w* Ligll TnTyST,m = Ty for all continuous functions g.

The operator S’ is compact if and only if S is a compact perturbation of a Toeplitz operator.
In this case, in the norm topology,
lim g, = S and lim TynT,ST,» = 0.

n—-oo n—-oo

Let S — T ST, be compact for all inner functions w € X, and let S’ = w* lim o, for

wWEA
a subnet A of 2. Then,
(iv’) S’ = TzST,, = a,, for all inner functions w.
V)yw” lig} T3TyST,, = Ty forall hin L”.
n
If S = T + X is in the Toeplitz algebra, where X belongs to the commutator ideal of

F(L™), then

lim g, = X in norm.
WEE

Proof. The set of operators {o,,} lies in the ball of radius 2||S||, which is w*compact and
metrizable. Hence the w* limit point S" can be taken to be the limit of a subsequence A of
N. Since m(S) and m(T,) commute in the Calkin algebra, m(S)commutes with (T;) =
m(T,)~ 1. Hence S commutes modulo compacts with T, and, therefore, also with F(C), the
C* algebra generated by T,.



If K is compact, lim T;»nKT,» =0 in norm since T, — 0 in the weak operator
n—oo

topology. Let b be a continuous inner function. Then,
S'"—TS'T, =w" liég(s — TynSTyn) — Tp(S — TynSTyn)Ty,
n
=w* 11&;(5 —T5S8'T,) — Tyn(S — T3ST,) Tyn.
n
But, S — T3ST, = T(T,S — ST},) is compact, so the second term tends to zero in norm. So,
S'"—TyS'Ty =S —TzS'T, = gp. In particular, for b = z,5§ —S' =T;(S — S")T,. This is
the functional equation determining the Toeplitz operators [2]. So there is a function f in
L* suchthat S = Tf + S".
Now it follows that T, = w* liég T;nST,n. Let hy, h, be functions in H* n C. Then.
n
w* lim Tyn T, STyn = W lim Tyn T, [STy, + D(Th, )| Ty
= w* }llég[TﬁlTZ—nSTZnThz + Tyn Ty, D(Th,)Ton| = Th T T,
= Th,n,r» Since D(Ty,) is compact.
Since {hyhy: hy, hy, € H® 0 C}is dense in C, it follows that
w* lllg; TZ—nTgSTzn = Tgf'
for all continuous functions g.
If S" is compact, then S =T + S’ and g, = S" — T;»S'T,~. Hence by the above
remarks, we have lim g, = S’ in norm.

n—oo

The proofs of (iv’) and (v’) are identical to the calculations for (iv) and (v).

In (v’) we note that {f_llhz: hy, h, € H°°}is dense in L”. If § = T + X with X in the
commutator ideal of L(L*), theno, = X — Tz XT,,. By Douglas [5], for any € > 0, there is
an inner function w such that [|XT, || < €. Hence grer} o, = X.

Let p& be the space of piecewise continuous functions in L. Consider the function
F:pt — L(H?) defined by F(x) =T,S — T,s, where f is defined in terms of Sas in
Lemma (1.1.3). It is clear that if g,, are in p&, uniformly bounded in the sup norm, such
that g,, = g, go pointwise, then F(g,,) = F(g,) in the strong operator topology.

We have F(1) =S — T; = S’, which is not compact unless S is a compact perturbation of a
Toeplitz operator. Keep this function in mind to motivate the following lemma.
Lemma (1.1.4)[1]: Suppose F: p& — L(H®) is a linear map such that:
(P) If g, are in pb& with ||gylle <M and g, = g, pointwise, then w =
lim F(g,) = F(g,) in the weak operator topology;

(P2) F(1) is not compact, say ||[zF(1)|| > a > 0;

(P3) if f,g are in p& and have disjoint closed supports, then F(f) F(g) and

F(f) F(g)*are compact.

Then, there exist characteristic functions {x,,;: n = 1} in p4& of disjoint closed support
such that ||F (x,)|l > a/4. These sets can be chosen to cluster at only one point.

Consequently, there exist trigonometric polynomials h,,such that || h,,|| < 2, ||k, (1 —
xll <277 and [[F (Rl > a/4.

Since y,, is in p& it is the finite union of closed intervals. We can suppose, in fact,
that y,, is a closed interval if we change the constant to /8 .

Let s be the collection of all characteristic functions y of closed intervals such that
IFE(0)]|| > a/4. Let



E = ﬂ (U{X € 5t x| < 1/n})d

nz1
Here | x| is the linear measure of y as a subset of the circle. We claim that E is nonempty.

For if E is empty, then, since it is the intersection of nested closed sets, one of these sets is
empty. That is, there exists an integer n such that y| < 1/n implies that ||F ()| < a/4.
Divide d£ into an even number of closed intervals y;,i = 1, ..., 2k, which are disjoint
except for their endpoints, so that 0L = Uy;. Each of the two collections
{x;:iis odd},{y;:iis even} consist of mutually disjoint closed intervals. We have

@ < InF (I < 3 lIF (1) + FQ) | + 5 IleF(1) — F'IL
Therefore, for e =1 or —1, we have |[|[mF(1) + eF(1)*|| > a. Let A=n(F(1) +
eF(1)7). Let A; = m(F(x;) + €F(x;)"). By (P3), if x;, x; are disjoint, then A;, A; = 0.
Hence {A]-: [ odd} (respectively, even) is a finite collection of normal, commuting, mutally
annihilating operators. Therefore, by a simple estimate on the spectral radius, we get

z A;ll = maxA; < 2max||F(x)|| < a/2.
iodd l
The analogous inequality holds for i even. Now by the linearity of F, ¥2%, A; = A.

So we have
a < ||A|| = ZAi < ZAi + ZAi <a

odd even
This contradiction shows that E is nonempty.
Let x, € E. We proceed by induction. Suppose we have chosen disjoint characteristic
functions y; € s,1,...,n, with a,, = d(x,, U x;) >> 0. Since x, € E, we have

cl
Xo € (U{)( € & |x| < an/B}) :
Hence, there exists p in s, |u| < a,,/3 such that d(xy, u) < a,,/3. So, d(u, U x;) = a,,/3.
If x, does not belong to u, let y,,.; = u. Otherwise, set u, = u N {x:d(x,x,) = t}. Then
U; — W pointwise, so, by (PI), F(u;) — F(u)in the weak operator topology. Since the norm
is lower semicontinuous in the weak operator topology, and ||F(w)|| > a/4, we see that
there exists a t >0 such that |[F(u.)|l > a/4. Let ypi1 = Then a,q, =
d(xo, Ut )(i) >t > 0. Itis clear that the sets {yx,} cluster only at x, We remark that the
sets u, may be the union of two intervals, say u* and u Then since F(u,) = F(u™) + F(u™),
we can chose one of these with norm greater than a/8.
FiXx x = x,,, and choose continuous function g; suchthat 0 < g; < y and g; — y pointwise.
We argue as above to find an integer i such that ||F(g;)|l > a/4. Let k; be the jth Fejer

mean of g;. Then ||k; — g;|| tends to zero as j tends to infinity, so again by the above

argument we choose an integer j such that ||F(k;)|| > a/4 and also ||k; — g;|| < 27" For
X = Xn, let hy, = k;. We compute
Ihall < llgill + 27" < 2,

A (1 = Xl < llgi(1 = xdll + 277 =27
Hence we see that the functions h,, satisfy the requirements of the lemma.

4



Lemma (1.1.5)[1]: Let U be a weakly closed subalgebra of L(H?). Let S be an operator on
H? and D: U — L(H?) be the derivation D(a): aS — Sa. Suppose there exist § > 0, M > 0,
and elements a,, in U such that ||D(a,)ll > 6 > 0 and ||, an|| < M for all finite subsets
J of N.. Then, there exists an element b in U such that D (b) is not compact.

Proof. We can assume that D(a,,) is compact for all n. We claim that a,, — 0 in the strong
operator topology. If not, there is a unit vector h in H? such that k,, = a,h has ||k,|| = &,
for all n in an infinite set /. It is an elementary exercise, to show that we can find a finite
subset J' of ] so that ||X,.e; kx| > M. This contradicts ||¥,.c; ax|| < M.

Let {z,,: n = 0} be an orthonormal basis for H2. Let R,, be the orthogonal projection
onto the span of {7, ..., 3,}. Now since a,, — 0 strongly, we also have D(a,) — 0 strongly.
Using this fact and the compactness of D(a,,), we can inductively choose a subsequence I
of N and corresponding projections Q,which are finite dimensional and mutually
orthogonal. These will be chosen so that for n; in I', we have

() || @k D(an, )l > o,

(ii) [|D(an,)U = Q|| < 37%8,

(i) ||Rean, R || < 27%.
If we have chosen n,, ...,n,and Q4, ..., Q, Let Q = . Q,. Since Q is finite dimensional and
D(a,) — 0 strongly, we can find an a, such that |[Ry,1a,Ris.ll <27%*1 and
ID(a,,)Q|l < 3%~265. Then since D(a,,) is compact, we can choose Q.4 orthogonal to Q,
finite dimensional, so that (i) and (ii) are satisfied. Set a, .. = a,.

For convenience, we relabel so that a;, = a,,, . Let by = YK an Ifh;, hyareinR, H
and k = | = n, then

k k
|((by — by, hy)| < Zl(aihl,hz)l < IRpa;Ryllllha Il A2l < 2 27 lhy NI I
+1 +1
< 27|~y Il I-
Since U,, R,,H? is dense in H?, and ||b, || < M for every k, we conclude that the sequence
{b,.} converges weakly to an element b in U. Hence D(b,) converges weakly to D(b).
Therefore, since the Q,are finite dimensional, we have

Ill_)n(;lo QnD(br)Qn = QD (b)Q, innorm.

Hence,
k
”QnD(b)Qn” = ]‘1{1_1)1010 anD(ai)Qn = llgglo“QnD(an)Qn“ - Z”QnD(ai)Qn”-
1 [#n
Butifi # n, |
A 10,0 (ai)Qull = 1Qn[D(a)( — Q)]Qxll <37'6.
0,

102D B)Qll = Jim § = > 375 < 5/2.
This is true for all n, and the projections {Q,,} are nonzero and mutually orthogonal. It
follows that D (b) is not compact.
Theorem (1.1.6)[1]: if an operator S in L(H?) is not the sum of a Toeplitz operator and a
compact operator, then there is a function h € H* such that T,,S — ST}, is not compact. The
function h may taken to have at most one discontinuity.

5



Proof. We are now ready to complete the proof of our main theorem. Suppose S in L(H?)
Is not the sum of a Toeplitz operator and a compact operator. We suppose that T,,S — ST, Is
compact, for otherwise we can take h = z. By Lemma (1.1.3), we choose a subsequence A
of N, and a function f in L* such that

§'=8-Tf = W*}liér/{S — TnST,n.
The operator S’ is not compact, say ||[z(S")|| > a > 0.

We apply Lemma (1.1.4). to the map F(g) = T,S — T,;. Because of the remarks
preceding Lemma (1.1.4), we need only show that F satisfies P3. Let f;, f, be piecewise
continuous with disjoint closed supports. Let g4, g, be functions in C such that g; = 1 on
the support of f;, and g, g, = 0. By Lemma (1.1.3), 7T, commutes with 7S, and by [5], we
have for every h in L*,

T[(Tgi)n(Th) = T[(Tgih) = T[(Th)n(Tgi)'
It follows that
w(T,)n(F(D) = TP () = n(F(D)(T,),
and the analogous relation holds for nF(fl)* Thus we have
nF (f) - wF (fz) = nF (f1) - wly, - - wF (f) = nF(fy) Ty, g, - wF (f2) = 0.
Hence F(f;) F(f,) is compact, and S|m|IarIy F(f1) F(f2)* is compact. So, from Lemma
(1.1.4), there exist trigonometric polynomials h,, and characteristic functions y,, of disjoint
closed sets such that ||k, || < 2, [|h,(1 = x|l < 27", and ||F (k)| > 6/4.
We compute for h, h,,
Tk TpD(T ) = T Ty (T xS — ST ) = TpS — T 5k TST k.
From the derivation identity, we have
D(T k) = D(T,T k) = TpD(T k) + D(T)T .
We get
w* M 7D (T, ) = w* im(TyS = T TyST ) + TpeD (T)T
= TyS — Ty by lemma (1.1.3).
By lower semicontinuity of the norm, and the inequality ||T,,, S — Ty, ¢|| = IIF (Rl > 6/4,
we can choose an integer k in A such that ||T,«D (T, )| > §/4 and P, = z*h,, belongs
to H. We then have ||D(Tp,)|| = ||T,+D(T5, )|| > 6/4 and
”Pn” = ”Zkhn” <2, and”Pn(1 _Xn)” = “Zkhn(l _Xn)” <2™.
Now, if ] is a finite subset of N, let P, = an P,. Then

[Bznl < 3 15l < VBl + 3 1AL =)l < 24 327 =3

nej n+m

If £ = Xom X, then || p|| < TP, ull <X 27" = 1. Hence ||| < 3 for all finite subsets
J.

Therefore we can apply Lemma (1.1.3), with a,, = T, and U F(H*). This gives us a
function h in H® such that D(T}) is not compact.

We have T, =w —limT,,, where b, = ¥ B,.. The set {x:|P,(x)| = 27"} is
contained in y,, and the sets {y,} cluster only at the point x,. So the sequence {b,}
converges uniformly on sets bounded away from x,, to a function which is continuous except
at x,. Hence h is continuous except at x,. This concludes the proof.
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Theorem (1.1.7)[1]: An operator S on H? commutes module compacts with all analytic
Toeplitz operators if and only if S = T; + k, where g isin H® + C and K is compact.
Proof. We will now prove the results stated in the first section. If S commutes modulo the
compacts with all analytic Toeplitz operators, it follows from Theorem (1.1.6). that S has
the form S = Tr + K, where K is compact. Therefore, we see from Sarason [9] that f is in
H* +C.

If S is in the Toeplitz algebra, this result follows in a more elementary way. For then
S=Ts+X, where X is in the commutator ideal of F(L*). We have that g, =
T;(T,S — ST,) is compact for every inner function w. So be Lemma (1.1.3),X = }L}g% Oy

in norm, and hence X is compact. We now apply Sarason’s result as above.

To prove Corollary (1.1.1), we note that F(L®) is generated by F(H*) and F(H®).

Hence

F(L2) = F(H®)** NFH®)* =FH®+C) NFH®+C) =F@QC) .

Corollary (1.1.2). is immediate from Theorem (1.1.7). and the fact that xF(H® + C) is
abelian.
Corollary (1.1.8)[1]: If an operator S isnot in F(H* + C) , then there is an inner function
w such that ST, — T,,S is not compact.
Proof. By Theorem (1.1.7), there is an analytic function h such that ST;, — T}, S is not
compact. A theorem of Marshall [11] shows that the linear span of the inner functions is
norm dense in H*. The set of noncompact operators is open, so we can approximate h by a
finite linear combination of inner functions ) a,w, so that }; ai(STwi — TwiS) IS not
compact.

If we take h to be continuous except at x,, we can approximate h in norm by Blaschke
products which are continuous except at x,. So if S is not a Toeplitz operator plus a compact,
we can find a Blaschke product b with zeros accumulating only at x, for which ST, — T}, S
IS not compact.

Definition (1.1.9)[1]: A derivation D of an algebra Ul into itself is inner if D(X) = XS — S§X
for some S in 1.

Corollary (1.1.10)[1]: Every derivation D of F(H® + C) into £4(H?) is inner.

Proof. The operator D restricted to £.4 (H?)is a derivation of the compacts into themselves.
It is well known [3] that every derivation on the compacts has the form D(X) = XS — SX
for some Sin £(H?). If Aisin F(H® — C) and K is compact, then

D(AK) = AKS — SAK = (AKS — ASK) + (AS — SA)K = AD(K) + D(A)K

= AKS — ASK + D(A)K.
Therefore D(A)K = (AS — SA)K f or every compact operator K. Hence D(A) = AS — SA.
Since S commutes with all A in F(H®” + C) modulo the compacts, we have that S is in
F(H® 4+ C) by ‘Theorem (1.1.7).

An immediate consequence of this is the following.

Corollary (1.1.11)[1]: Every derivation of F(L*) into the compact operators is of the form
D(X) = XS — SX with S in F(QC) .

We consider the matrix-valued case. The operator algebra F(L*) & M,, acts H* ®

C", M,, is the n X n matrix algebra over C. See Douglas [6].



Corollary (1.1.12)[1]: An operator S in L(H? @ C™) commutes module the compacts with
all operators in F(H”) & M, ifandonlyif S =T, ® I, + K, where f is in H* + C and
K is compact.

Proof. Let &§;; be the n X n matrix zero everywhere except for a 1 in the (i,j) entry. A
simple computation of D(Th ® (Sij) for h in H*shows that S has the desired form.
Corollary (1.1.13)[1]: An operator S in (H?> @ C™) is in the essential commutant of
F(L*®) ®M,, ifandonlyifS =T ® I,, + K, where f is in QC and K is compact.
Theorem (1.1.14)[1]: Let a be an automorphism of F(H®) + £6(H?). Then a is spatial,
and has the factorization @ = a, a,, where

(i) a,(Ty,) = Ty, Or a Blaschke factor b = A(z—a)/(1 — az), |la| < 1,and |A| =

1. Moregenerally, a; (4) = U, « AU, forall Ain F(H®) + £6(H?), where U, *

f = e(f o b)for fin H? and e a unit vector in H2 © bH?.

(i) az(A) = U,"AU,, for a unitary U, in F(QC). So U =T, + K, where g is

unimodular in QC and K is compact.
Proof. Since £4 (H?) is the unique minimal closed two-sided ideal in F(H®) + £6(H?),
we must have a(€6(H?) = £6(H?)). So, by a well known theorem [4], there is a unitary-
operator W such that a(K) = W = KW forall K in 24 (H?). If Aisin F(H®) + £6(H?),
then (W « AW)(W « KW)W « AKW = a(AK) = a(A)a(K) = a(A)(A)W = KW for all
compact operators K.
Hence a(A) = W = AW.

There is a natural map from the automorphisms of F(H®) + £6(H?) onto the
automorphisms of H* by projecting into the Calkin algebra. The algebras H*, F(H*) and
nF (H™) are isometrically isomorphic as Banach algebras, so we can identify them here.
The automorphisms of H* are known [10] to be of the form a(h) = h o b, where b is a
conformal map of the disc onto itself.

The kernel of this map is the set of automorphisms a such that a(T},) = T, + k, with
k compact. Since « is spatial, it is induced by a unitary operator U. So U and U™ essentially
commute with F(H*) . Hence U belongs to F(QC) .

We now show that automorphisms of F(H*) are spatial. Let b be a conformal
automorphism of the disc. Let e be a unit vector in H?2 © bH?. Define an operator on H? by
U, f = e(fob) for f in H? Since e is in H?, it follows that e(f o b) is in H2. A
computation shows that |db/dz| =le|*. So ||Uy* fl||*> = [le(f e b)|*dz = [|f|* =
b |%| dz = [|f|?dz = ||f||5. The operator U, = is clearly invertible, hence it is unitary on
H?2. If hisin H®,

Uy * ToUre(f o b) = Uy x Typf = e(fhob) = (heb)e(f ob) = Trpe(f o b).
Hence, U; * T,U; = Thop-

Let a be an automorphism of F(H®) + £4(H?). Then ma is an automorphism of
H*. This lifts to a spatial automorphism of F(H*) , a,(A) = U, * AU;. Let a, =
ai la.Since ma,is the identity, we have a,(4) = U, * AU,, for some unitary U, in F(QC).

Note added in proof. Theorem (1.1.14) is also valid for the automorphisms of
F(H™) +C.



Section (1.2): Several Complex Variables

For S be the unit sphere in C™. We investigate the properties of Toeplitz operators on
S, i.e., operators of the form Ty, f = P(¢f) where ¢ € L(S) and P denotes the projection
of L2(S) onto H%(S). We aim to determine how far the extensive one-variable theory
remains valid in higher dimensions. We establish the spectral inclusion theorem, that the
spectrum of T, contains the essential range of ¢, and obtain a characterization of the

Toeplitz operators among operators on H2(S) by an operator equation. Particular attention
is paid to the case where ¢ € H*(S) + C(S) where C(S) denotes the algebra of continuous
functions on S. Finally we describe a class of Toeplitz operators useful for providing
counterexamples-in particular, Widom’s theorem on the connectedness of the spectrum fails
when n > 1.

The Toeplitz operators on the classical Hardy space H? on the unit circle have been
the object of much study. They are operators of the form Ty, f = P(¢f) where ¢ € L* and
P denotes the projection of L? onto H2. An account of this theory, which is concerned mainly
with describing the spectra of these operators, and with operator algebras generated by them,
can be found in Douglas [5]. Recently there have been several important developments in
function theory on the unit circle which are relevant to Toeplitz operators. For a survey see
Sarason [22]; for more recent results, describing subalgebras of L™ containing H®, see
Marshall [19] and Chang [15], [16].

We to study Toeplitz operators on the unit sphere in C™, in particular to determine
how far the one-variable theory remains valid. In this context Toeplitz operators with
continuous symbol have been studied by Coburn [I] and some related operators by Coifman,
Rochberg, and Weiss [14].

We establish the spectral inclusion theorem, that the spectrum of T, contains the
essential range of ¢, answering a question of Coburn [13]. We also show that Toeplitz
operators can be characterized among operators on H?by an operator equation, we also study
Toeplitz operators with symbol in H* 4+ C and we consider a class of Toeplitz operators
useful for providing counterexamples-in particular, Widom’s theorem on the connectedness
of the spectrum fails when n > 1. A large number of questions are left open.

We denote by B the open unit ball and by S the unit sphere in the n-dimensional
complex Euclidean space, €™, of all ordered n-tuples z = (z, ,..., z,) of complex numbers
z;, with the usual inner product (z, w) = z;w, + --- + z,W,, and the corresponding norm
lz|| = (z, z)/%. We assume n > 1 unless otherwise stated. o denotes surface area measure
on S. We write L for L* (¢), L*for L?> (o). H? denotes the closure in L? of the polynomials
in the coordinate functions z, , ..., z,,. We write C for C(S), the algebra of all continuous
functions on S.

If f € L”, R(f) denotes the essential range of f, i.e., the spectrum of f in L*.

If f € L™ then the Poisson integral of f gives a bounded harmonic function F on B,
and F has radial boundary limits equal to f almost everywhere. This correspondence gives
an isometry between L* and the space of bounded harmonic functions on B with the
supremum norm. Under this correspondence, the algebra of bounded analytic functions on
B corresponds to a closed subalgebra H* of L™.

If ¢ € L™ we denote by T,, the operator on the Hilbert space H* defined by T, f =

P(¢f) where P denotes the orthogonal projection of L> on H?. Ty is called the Toeplitz
operator with symbol ¢. If T is any operator on H?, o(T)denotes the spectrum of T and
9



o.(T) denotes the essential spectrum of T, i.e., the set of A € Csuch that T — 4 is not
Fredholm [5]. BL(H?) denotes the algebra of all bounded linear operators on H?2.

We note two easily verified identities: (Tq,,)* =T-and TyTy = Tgyfor g € L, €
H®.
We answer a question of Coburn [13] by showing that for ¢ in L® we have ||Ts|| =

lpllw. We obtain this result as a corollary of Theorem (1.2.1) which shows that the
invertibility of a function, ¢ in L* follows from the invertibility of Ty in BL(H?). These

results are known forn = 1 [5].
Before stating the result we make the remark that if ¥ is a nonnegative measurable
functionon C, if z € S, and if F({) = ¥(z,{)({ € C™), then fS Fdo is independent of z.

This follows since do is a rotation-invariant measure.
Theorem (1.2.1)[12]: If ¢ is a function in L* such that Ty is invertible then ¢ is invertible

in L.
Proof. Suppose that T, is invertible. Then there exists an € > 0 such that | T f]|, = €llf |l
for all f in H2. Then

l¢fll2 = €llfllfor all f in H? (1)
Now, by the remark above, ¢, = fS |1+ (z, {)|** do({) is independent of zin S. So, for
any neighborhood U of z in S we have

c,;lf 11 +{(z,)|**do({) - 0 as k — oo,
S\U

So, forany g € C, it follows that

& [ @I+ @O @) > g ask - w@es). @
S
Now, consider (1) for the particular case f(z) = (1+(z,{))where { € S. We have
I 19z|?11 + (z,)|**do(z) = €?cy. So, for g € C, g = 0 we conclude that

@ [ [ 162Pg@N + @O Asds@) 2 € [ g@do@)
SO S S S

f (b212g(2)do(z) > €2 j 9 do (@)
S S

Using Fubini’s theorem and (2). Since this is true for all positive g in C it follows that
|pz| = € a.e., and so ¢ is invertible in L.
As a corollary we obtain the spectral inclusion theorem:
Corollary (1.2.2)[12]: If ¢ isin L®, then R(¢) = o(M,) S o(Ty).
(M, denotes the operator of multiplication by ¢ on L*).
Corollary (1.2.3)[12]: If ¢ isin L®, then ||T|| = lI¢|lc-

We now use similar methods to examine the mapping n from L* to BL(H?) defined
by n(¢) =T,. Let A be the closed algebra of BL(H?) generated by all the Toeplitz
operators, Ty, With ¢» € L*. Let I be the closed ideal of A generated by operators of the form
Ty — Ty Tywhere ¢pip are in L.
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Theorem (1.2.4)[12]: The mapping n; induced from L* to A/I by n is an isometric *-
isomorphism.

Proof. The mapping n;, is clearly linear and contractive. The definition of I shows that it is
multiplicative. To complete the proof we show that ||Ty + I|| = [l¢|lwfor ¢ in L from

which it follows that n,is an isometry. To do this, it suffices to show that if p is a
noncommuting polynomial in k variables and ¢, ..., ¢, € L then

|P(Ty, s To )|l = IP(@1, o) D) Il oo

Assume ||P(¢1, ..., D)l = 1. Then there exists A4, ...,4; in the joint spectrum Of

(@1, -, 1) such that [P(Ay, ..., 4,)| = 1. Let &> 0. Then since X¥_,|¢; — 4;|"is not
bounded below, the argument used in the proof of Theorem (1.2.1) shows that there exists

f€Rr2suchthat lIfll, = 1and [, $¥|¢; — 4 If12do < €2,
So for each j, ||(¢; — 4;) f||2 < €50 ||Ty f — /L-f||2 <e.
Then ||P(Tp,, ... Tg,)f — P(A, ., 4)f|| can be made arbitrarily small by choosing e

small enough, whence ||P(Ty,, ..., Ty, )|| = 1.

When n = 1, I coincides with the commutator ideal of A[5]. It is not clear whether
this holds in general, though I clearly contains the commutator ideal.

As a corollary to the theorem we obtain the following sharpening of the spectral
inclusion theorem.

Corollary (1.2.5)[12]: If ¢ € L*then R(¢) = o(M,) S 0,(Ty).

Proof. By a result of Coburn [13], I contains the ideal & of all compact operators. Now
o (T¢) is the spectrum of the coset of Ty, in A/X (since A is a C*-algebra) and so contains
the spectrum of T, in A/I, and hence by the theorem contains R(¢).

We remark that for any ¢ € L™, a(¢)is contained in the convex hull of R(¢). In
particular, if ¢ is real valued then a(Tqb) Is contained in the interval [ess inf ¢, ess sup ¢].
We conjecture that in fact o(T, ) is equal to this interval; this is true when n = 1[5].

Finally we identify the spectra when ¢ € H.

Proposition (1.2.6)[12]: If ¢ € H* then 0,(T) (and so also (T,)) coincides with the
spectrum of ¢ in H™.

Proof. We have to show that if Ty is Fredholm then ¢ is invertible in H**. The corollary to
Theorem (1.2.4) shows that ¢ is invertible in L. Then T,-1T4 = 1s0 the operator
Hy-1: H* — L*defined by Hy-1f = ¢~'f —Ty-1f has finite rank. Hence there is an
integer m and complex numbers ay, ..., apy,not all zero, with Hy-1f = 0 where f(z) =
ym o agz®. S0 ¢ 1f € H2. That ¢~ € H® is a consequence of the following fact:

If g € L and g(z)(z, — A)isin H® forsome A € C theng € H™.

We remark that Proposition (1.2.6) is false if n = 1 — o, (T,) is the unit circle.

It may be conjectured that the spectrum of ¢ in H® coincides with R(¢) —or
equivalently, that if ¢ € H? and ¢ is invertible in L* then ¢p~1 € H®. (This is of course
false when n = 1.) This would imply that any inner function is constant (¢ € H? is inner if
|| = 1 a.e. on S). For a discussion of questions of this type see [20]. We merely remark
here that the question of the existence of inner functions can be expressed in operator-
theoretic form. For if ¢ € H?then ¢ is inner if and only if Ty is an isometry (if T, is an
isometry then Ty * Ty, = 1 50 T(;_ 42y = 050 (1 — |$]|*) = 0). From this we can get a
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condition for ¢ to be inner in terms of its power series coefficients. Considering the case
n = 2 for simplicity, suppose ¢(zy,2,) = Y=o @121 <2, Using the fact that

1 (k+1+DN\?
Z1 Z
w21/2 k'l 1 =2

forms an orthonormal basis for H2, we find that ¢ is inner if and only if, for all m,n,r € Z
withr = 0,

D aua (k + )l ={<r+1)—1ifm=n=0
Z RIZktmln e L+ 1+ 1)1 L0 otherwise,

where a, is interpretated as 0 if r < 0 or s < 0. An equivalent condition is: for all m,n €
Z and almost all p € [0,1],

(0]

— k _ I — 1 ifm=n=20
kZO A AgermisnP (1 — p) {O otherwise.
So the inner function problem is equivalent to the problem of finding {ay,;} to satisfy these
conditions (apart from the trivial solution where a,, is the only nonzero term).

We end by showing that the Toeplitz operators are characterized among all operators

on H? by the equation
z Ty TTy,, =T.
k=1

We first obtain a characterization of multiplication operators on L? in a more general setting.
Proposition (1.2.7)[12]: Let M4, ..., M,, be commuting normal operators on a Hilbert space
Hwith }*_, M, M, = 1. LetT € BL(H) satisfy }.}_; M, * TM,. = T. Then T commutes
with M., M. « (r =1, ...,n).
Proof. For any positive integer mand f,g € H we have
m! k k k k
(Tf,g)= Z e (TM MR f MY My g).

N k!
ky+-tky=m n

So
((TM; — M,T)f, g)

m'
_ z k—(TMfl*1 LM E MR M g)

! !
kg teoily=m L k!
(m+ 1)! _— . ) .
- G Dl TMY o My f, My MY M)
e 5 —m Lky! ... ky!
(m+ 1)! X o . .
— Z W(TMZZ Mn f, M1 *MZZ Mn g)
k!

ky+-t+kn=m+1

m! kn, m+1 kn,
_ z W(TM{“+1 M (1 — M Ml) MM M g)
| k!

(m+1)! . .
2- aen n-

ky+-t+kn=m+1
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So
ITI~*K(TMy — M, T)f, g)|

m! kitl prin m+1
Z kl!...kn!”Mll My f| ”(1_ 1

ki+-+kp=m

+ M1> M Mg

IA

(m+1)!
ED St LAy [ AR T Vi
kot +kp=m+1

(m+1)! N2
<| D wrore Ml

ki+-+kp=m

(m+1)!
LD e LA

ky+:+kp=m+1

1/2

|3
* .
k!l d (m+ 1) k1+1 1% nd

kit +kp=m

DY e LR A |
2-

kot +kp=m+1
The expression in the first square brackets is equal to

1/2

0!
(O T M (< M)

p1t-tpp=m+1
= ((Ml * My + o+ My, * Mn)m+1 frf> = ”f”z;
and the expression in the second square bracket can be similarly reduced to
[1/(m+ DIlgl? — IIM1gll?).
So {(TM, — My T)f, g) < [1/(m+ DY2]IfIllgllIT]l. and since m is arbitrary, TM, —
M,T = 0. Similarly, T commutes with M,, ..., M,, and with M, x, ..., M, *
We are indebted to S. C. Power for the following lemma:
Lemma (1.2.8)[12]: Let T € BL(H?) satisfy ¥.z_, Tz TT, = T. Then there is S € BL(L*)
with[[S]| = IT|l, Xx=1 Mz, SM,, = S, and such that T is the compression of S to H2.
Proof. Define 1: BL(L?) »€ BL(L?) by Y(R) = YX¢_, Tz RT, . Then [[Y(R)|| < |IR]|. Let
T be any operator on L? whose compression is T, with ||T|| = IIT|l. Let S,
(1/m) Y™ " (T) and let S be a weak operator topology limit point of {S,,,}. Then S has
the required properties (easy to check).
Theorem (1.2.9)[12]: Let T € BL(H?). Then T is T, for some ¢ € L? if and only if
R T TT, =T.
Proof. That T, satisfies the equation is easy. Conversely if T satisfies the equation, and S is
the operator given by Lemma (1.2.8), then Proposition (1.2.7) shows that S commutes with
M, and Mz (k =1,...,n). S0 S = My for some ¢ € L*and T = Ty,
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Note that: (i) Proposition (1.2.7) and Lemma (1.2.8) together with the easily verified
fact that T, = 0 = ¢ = 0 provide an alternative proof of the fact that ||T4|| = ll¢|l« or
every Toeplitz operator, Tg.

(if) One can define Toeplitz operators with o replaced by any positive Borel measure
on S; then Theorems (1.2.1), (1.2.4), (1.2.9) still hold, with essentially the same proofs.

We denote by H® + C the set of all functions f € L™ which can be expressed in the
form f =u 4+ v where u € H* and v € C. Rudin [21] showed that H* + C is a closed
subalgebra of L. We consider Toeplitz operators with symbol belonging to this algebra;
these are somewhat more tractable than general Toeplitz operators.

Coburn [13] studied Toeplitz operators with symbol in C. He showed that the
commutator ideal of the closed algebra generated by {Tq,,: ¢ € C} Is precisely the algebra of
all compact operators on H®, and coincides with the closed ideal generated by
{Tyy — TypTy: &, ¥ € C}. His arguments are easily modified to show that if ¢ € C then the
operator Hy:H? — L? given by Hy,f = ¢f —T,f is compact. This implies that T,
commutes modulo the compact operators with any Toeplitz operator, so the second sentence
of this paragraph is true with C replaced by H* + C. It then follows from Theorem (1.2.4)
that the closed algebra generated by {T¢: ¢ €EH” + C} Is precisely the set of operators of
the form T, + K where ¢ € H* + C and K is a compact operator on H?. This extends [5].

We consider spectra. Let ¢ € H* + C, and let a(¢) denote its spectrum as an element
of H* + C. Then using the result of the above paragraph we have

R($) € 0.(Ty) € a(@).
It seems likely that o, (Tqb) = a(¢). We make the stronger conjecture that in fact R(¢) =
a(¢). This conjecture is equivalent to the assertion that if ¢ € H* + C and ¢ is invertible
in L* then ¢~1 € H® + C. It is easy to see that if ¢ € H® and ¢ is invertible in H* + C
then ¢~ € H®. So the above conjecture would imply the conjecture discussed after
Proposition (1.2.6).

Another problem concerns connectedness of the spectra. For n = 1,0(T,) and
0.(T,) are always connected, for any ¢ € L*[5]. For n> 1, if ¢ € C then o,(T,)
coincides with the range of ¢ and so is connected. If ¢ € H* then both o(T) and 6,(Ty)
coincide with the spectrum of ¢ in H®, which is connected (because H* contains no
nontrivial idempotents). However, we show that there exists ¢ € L* with o, (T¢)
disconnected, and ¢ € Cwith (T, ) disconnected. We conjecture that if ¢ € H* + Cthen
0. (T, )is connected. If it were true that g, (T, ) = o(¢) then this would follow since o (¢)
Is connected (because H* + C has no nontrivial idempotents-for if f € H* + C satisfies
f? = f thenits Poisson integral F on B satisfies F(z)? — F(z) - 0asd(z,S) — 0, soeither
F(z) > 00rF(z) »1asd(zS) — 0,s0either f =0or f =1).

We conjecture also that the set (T )\, (T}) is discrete whenever ¢ € H* + C (it
may even be true for all ¢ in L*). This would contrast with the case n = 1 where o(T,) is
obtained from Je(Tqb) by filling in holes. A class of functions for which this is true is

described. We have not been able to prove it even for ¢ € C, but we can prove the following
weaker assertion for ¢ € H + C.
First we need the solution of the d-problem with bounds [18]:
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Suppose uy, ...,u, are smooth bounded functions on B satisfying du;/0z; =
du;/dz;for1 < i < j < n.Thenthere exists f, smooth and uniformly continuous on B, with
u; =0df/0z;onB(1 <i<n).

Using this fact and the proof of [17] we obtain the following version of the solution
of the second Cousin problem. If W is open, A(W)denotes the algebra of all continuous
functions on W which are analytic on W.

Suppose Uy, ..., U,,, is an open cover of B. Suppose that for each i and j with U; n
U] N B # @ we are given ¢U € A(Ul N U] N B) such that ¢U¢]l = 1and ¢ij¢jk¢ki =1
on U;nU;nU,NB. Then there exists, for i =1,...,n, an invertible element ¢; of
A(Ul N B) such that (l)l] = ¢i_1¢j .

For the proof of Theorem (1.2.12) it will be convenient to use a somewhat different
version of H* + C, defined on B rather than S. We denote by H the set of all functions f on
B which can be expressed as f = u + v where u € H* and v is uniformly continuous. H
can also be described as the set of functions f of the form g + h where g is the Poisson
integral of a function in H® + C and h is continuous on B, vanishing on S. It is clear from
this that H is a (uniformly) closed algebra of functions on B, and the mappingg + h = g is
an algebra homo-morphism of H onto H* + C.

Lemma (1.2.10)[12]: Let x € S, let U be an open set containing x, and let f be a bounded
analytic function on U n B. Then there exists g € H and an open set V containing x, with
g=fonVnB.

Proof. Let V be any open set with x € V and V € U. Let h be smooth with support in U and
h =1onV. Defineu; onU by u; = d(fh)/dz; = f(0h/0Z;) (i = 1, ...,n) and extend to
B by u; = 0 on B\U. Then u; are smooth on B, and bounded, and du;/dz; = du;/0z; SO
u; = d¢/dz; where ¢ is smooth and uniformly continuous on B. Then (8/0z;)(¢p — fh) =
0sop—fheH®, sofh=¢—(¢p—fh)€EH.

Since fh = f onV, this proves the lemma.

Lemma (1.2.11)[12]: Let f be an invertible element of H* 4+ C. Then there exist invertible
elements u of H* and v of C with f = uv.

Proof. Denote the Poisson integral of f also by f. Then f is an invertible element of H. It
is clearly enough to find w invertible in H* and v, uniformly continuous on B with f = uv
on B.

Let x € S. We claim that there is an open set VV with x € V such that f = pgonV n
B where p is bounded analytic on V n B and g continuous on VV N B.

To prove this, write f = ¢ + ¢, f~1 = ¢, + Y, where ¢, ¢, € H® and ,, € C(B)with
Y(x) =0,9,(x) =0.Since (¢ +¥)(¢p; + ;) = 1 there is an open neighborhood U of x
with [pp; — 1] < % on UNB. So ¢t is bounded on U N B, and by Lemma (1.2.10) we

can find an open neighborhood V of x and g € H with ||g]|| < % andg =¢ ponV NnB.

Thenlog(1+g) €EHso1+ g =e°"on B where 0 € H®,7 € C(B). Thenon V N B we
have

f=01+¢7") =91 +g) = (de)e",
which proves the claim.
Thus we can cover B by open sets V,, ..., V,, such that on V,, N B we have f = p, +

qx Where p, € H*(V, N B) and g, € C(V N B). On V; nV; N B define ¢;; = p;p;™" =
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q;"'q; € A(V; nV; n B). Then the second Cousin problem yields ¢, invertible in A(V; N B)
Wlth ¢U == ¢i¢j_1'

Then on Vi N B,f = Uu;v; where u; = ij_lpi € HOO(Vi N B), V; = ¢iqi €
C(Vl N B)OnVi N V] N B, uiuj_l = pipj_1¢i_1¢i = ¢ij¢ij_1 =1, SO u; = uj, and
similarly v; = v;. Thus we can defineu € H* and v € C(B)byu=wu;andv =v;onV; N
B, and then f = uwv as required.

Theorem (1.2.12)[12]: Suppose ¢ € H® + Cand A & o(¢). Then the Fredholm operator
Ty — A has index zero.

Proof. We may assume A = 0; then £ is invertible in H* + C.

By Lemma (1.2.11), f = uv with u invertible in H* and v invertible in C. Then T = T, T,
. T, is invertible and T, has index zero [13]. So Ty has index zero.

We conclude with another problem. As mentioned above, the methods of Coburn [13]
show that if ¢ € C then Hy, defined by Hy, f = f — Ty f, is a compact operator from H? to
L*. One may ask: for what ¢ € L” is Hy, compact? It is clear that the set A of such ¢ is a
closed subalgebra of L™, containing H* + C. Inthecase = 1,A = H* + C . In general, the
largest C*-algebra contained in A is the algebra QC = L* n VMO (this follows from [14],
which is applicable to the ball as the authors of [14] point out VMO is the space of functions
of vanishing mean oscillation). We show that, when n > 1, QC is not contained in H* + C,
so that A = H® + C. It is natural to ask whether A = H* 4+ QC, especially since a recent
theorem of Chang [16] asserts that, when n = 1, any closed subalgebra of L* containing
H® is of the form H* + some C*-algebra. However, we have not been able to show that
H* + QC is closed, nor that its closure is an algebra, nor that the closed algebra it generates
Is A. A related problem is to describe the largest C*-algebra contained in H* + C. When
n = 1itis QC[22], butsince QC € H* + C this is false for n > 1. Note that H* + C is not
the smallest closed algebra containing H* properly, in contrast to the case n = 1.

For the sake of simplicity we assume that n = 1. It is clear that the ideas and results
can be extended to the general case of n > 1 with minor alternations in the proofs.

We make use of the following parametrization of the unit sphere:

z=(z1,2,) = (p*/?e,(1 — p)/2e¥)(0< p < 1,0 < 6,9 < 27).
For this set of coordinates the measure becomes:

1
do = Edp do dy.
The standard basis for H? is then given by:

/2
1 [(n+m+D o
= /2(1 — /2 ,inf ,imyp
nm = 10172 n!m! pt (1 —p)™ e e™P(n,m = 0).

We consider Toeplitz operators, Ty, where the symbol ¢ depends on only the

coordinate p, i.e.,
¢(21,2;) = p(p'/?, e, (1 - p)/?e¥) = g(p) where g € L”[0,1].

It is obvious that this type of symbol cannot occur when n = 1 and it is amongst Toeplitz
operators of this class that we discover some differences between properties in the cases
n =1 and n > 1. We examine particularly the properties of the spectra of such Toeplitz
operators and this sheds a little light on questions raised above.

First we note when a symbol of this form will be in H* + C.
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Proposition (1.2.13)[12]: Let ¢be a symbol of the above form. Then ¢ € H* + C if and
only if g continuous on [0, 1].
Proof. One implication is clear. Conversely if ¢ € H® + C,write p = u + vwithuin H®,

v in C. Let p(zy,2,) = q(|z;|*)be orthogonal to H*(q € L*[0,1]), i.e., [, q(p)dp = 0.
Then Jg updo =0, ie., J; (@ —v)qdp dé dyp = 0. Let p =
ST [ v(p,6,1) d8 dip,0 < p < 1. Then

1
j [g(p) —Tp] q(p)dp = 0.
0

This is true for all such g. Hence g(p) — ¥p is constant. But ¥ is continuous and so g is
continuous.

The proposition justifies the remark that QC (= L* n VMO) is not contained in H* +
C. For it is not hard to see that if g isin VMO on [0, 1] then ¢ is in VMO. Then we have ¢
in QC, but not necessarily in H* + C.
Proposition (1.2.14)[12]: Let ¢ be a symbol of the above form. Then T, is a diagonal

operator.
Proof. We have
/2
1 [(n+m+1D nd i
Tyenm = P {ﬂzl/z g ] pr/2(1 — p)™/2emoetmd g(p)}
(n+m+ 1) (?
- nlm! JO p"(1—p)" g(p)dp|enm = Anménm
where
(n+m+1)! jl
Anm = p"(1—p)™ g(p)dp.
nm n!m! 0

So T, has a countable set of eigenvalues which are essentially convex combinations

of values in the range of g. Note that if g is continuous then the set of limit points of
{Am:m, m = 0} is easily seen to be the range of g, which shows that the essential spectrum
of Ty is connected. However, the following theorem shows that this need not always be the

case.
Theorem (1.2.15)[12]: There exists

(i) asymbol ¢ € C for which o(T,) is disconnected, and
(i) a symbol ¥ € L* for which o, (T;,) is disconnected.
Proof. Let ¢ be a symbol of the above form where g is continuous and as a suitable
“nonconvex” range, e.g., let g(p) = e?™. As noted above it is clear that the set of limit
points of {A,,,:n,m = 0} is just the unit circle. Since Ao = 0 it follows that o(T,) is
disconnected, which gives (i).
For (ii), let g(p) = p* = e'1°82 We have (2, 2,) = g(|z,1%) = g(p). In this case,
P (n+m+1)!J1pn+i(1_p)m dp = 'n+i+1) (n+m+'1)! |
n!'m! 0 n! rm+m+i+?2)
where the gamma function is given by I'(z) = fooo e 't?"1dt (z € C,Re z > 0). Now, by
Stirling’s formula, for large n
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et ~nt

F(n +i+ 1) (27.[)1/2 (Tl + l-)n+i+(1/2)e—n—i _ i n+i+(1/2)
~ e l [—
n! (2m)1/2pnt+(1/2)e—n " (1 * n)
— eilogn.

So the set of limit points of I'(n + i + 1) /n! is the unit circle. If n is fixed then as m — o
the set of limit points of (n + m + 1)!/I'(n + m + i + 2) is the unit circle and so the set of
limit points of {A,,,,:n,m = 0} (for this fixed n) is the circle of radius [F'(n+i+ 1)|/
n! and center 0. Also, asn — o, |1,,,| = 1 uniformly in m.

Hence the set of limit points of {4,,,:n,m = 0} is the union of circles of radius
IFm+i+1)|/n!'(n=0,1,...), center 0, together with their limiting circle, the unit circle.

This is o, (T,) which is thus disconnected

ren+i+Dl 1 k
( n - kl:L (k2 + 1)1/2'>.

Note that:(i) As noted in above, ¢(T, ) and o, (T ) are both connected for any symbol
¢ in L whenn = 1.

(if) Although we do not have o, (Tqb) connected for all ¢ it is not hard to show that
o (Tqb) Is always contained in the convex hull of a connected subset of itself for any symbol
¢ of the above form. Moreover, if g is continuous at 0 and 1, o, (T, ) is connected.
The remark made after the proof of Theorem (1.2.12) is sufficient to give that the operator
Hyf = ¢f —T,f from H? to L* is compact when ¢ is in VMO. In the case of these special
symbols it is easy to see directly that Hy, is compact if and only if g € VMO on [0, 1].

A possible generalization of the described class of symbols are those of the form:

$(z1,2,) = p(p¥2, €%, (1 — p)/2e W) = g(p, '@
where g is in L*on [0,1] X T (where T is the unit circle). Then T, need no longer be
diagonal but has the weaker property that Ty is reduced by the (m + 1)-dimensional
subspace of H? spanned by z,™,z," 1z,, ..., z,™for each m > 0. From this it follows that
o(Ty)\o. (T )is discrete. This class of symbols has the advantage of being invariant under
rotation (which the first type does not). An alternative characterization is
P (z1,2,) = p(e'92y, e 2,)forall 6,

and this easily generalizes to C" forn > 2.
Section (1.3): Ordered Groups

The classical of Toeplitz operators and their associated C*-algebras is an elegant and
Important area of modern mathematics. For this reason many (e.g. Douglas, Singer, Howe,
Devintaz) have sought to extend this theory to a more general setting. A new extension is
given principally with the objective of presenting a certain new class of C*-algebras which
have very interesting properties- to each partially ordered group G we associate a C *-algebra
F(G), its Toeplitz algebra F(G) has a certain universal property which may be useful in
general C*-algebra theory, particularly K-theory. Often F(G) contains a simple C*-algebra
as a closed ideal and this is analyzable in terms of G.

The classical Toeplitz algebra F(Z) associated to the ordered group of integers Z
appears in two guises in the literature:

18



(i) F(Z) is the C*-algebra generated by the Toeplitz operators with continuous
symbol.

(il)F(Z) is the €*-algebra (unique to xisomorphism) generated by a non-unitary
isometry (Coburn [26]).

It is principally in its second guise that we are interested in generalization F(Z).
However in analyzing the Toeplitz algebra of a general partially ordered group we need to
extend many results of the classical Toeplitz operator theory.

We construct F(G) and show that the functor ¢ — F(G) is “continuous”, a result
very important for the sequel, we also specialize to the case where the ordering on G is total.
In this situation F(G) is representable as a hereditary C*- subalgebra of a certain crossed
product C*-algebra got by an action a of G on an abelian C*-algebra J,(G). By showing
that (7, (G) is G-prime and calculating Connes’ spectrum I'(a) in the case that G is finitely
generated, and then extending by “continuity” to the general case, we show that F(G) is
prime, and is isomorphic to any C*-algebra generated by a non-unitary semigroup of
iIsometries over G. We then identify a certain simple ideal in F(G) (“usually” not type I)
which plays a somewhat similar role in the general theory to that played by the ideal of
compact operators in the classical case. A number of the results here generalize some results
of Douglas [27]. However Douglas confines himself to ordered subgroups of R, and our
methods are completely different from his. Then, we return to general partially ordered
groups. Here we extend many results of the classical theory, for example we show that
generalized analytic Toeplitz operators have connected spectra. For each partially ordered
group G we exhibit a very explicit and useful irreducible representation of F(G) (faithful if
G is totally ordered). Finally we show that a number of our results are best possible, and that
for a totally ordered group G, F(G) has simple commutator ideal iff G is (isomorphic to) an
ordered subgroup of R (sufficiency is due to Doglas [27]).

For G be a discrete abelian group and < a partial ordering on G. For S € G we write
S* for the set of all x in S such that 0 < x. We call (G, <) a partially ordered group if G =
G*—GTandx < yimpliesthatx + z < y + 2 (x,y € G). If I isasubgroup of G such that
I = I* — 1" we call I a partially ordered subgroup of G. Then of course (I, <) is itself a
partially ordered group. If < is a total ordering on G (i.e. for all x,y € G we have x < y or
y < x) then we refer to (G, <) simply as an ordered group. In this case any subgroup I of G
is a (partially) ordered subgroup, since G = G* U (—=G™) implies that I = IT U (—I*) =
IT —I*. Thus (I, <) is an ordered group.

Suppose now only that G is a discrete abelian group and M is a subset of G such that
OeEMM+McEcMMN(—M)=0and G =M — M.

In this case we call M a cone in G and we define x <,; ytomeanthaty —x € M for x, y in
G. Itis easily checked that (G, <,,) is a partially ordered group with G* = M. We shall often
use (G, M) to refer to (G, <,,). If (G, <) is a partially ordered group then G* is a cone and
(G,<;) = (G,<). Moreover (G, <) is an ordered group iff G = G* U (—=G™).

If H is a closed subspace of a Hilbert space K we shall let S;; denote the compression
to H of the bounded linear operator S on K.
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If G is a partially ordered group and B a unital C*-algebra, a semigroup of isometries
in B (relative to G) isamap B: G* — B such that each B (x) is an isometry, i.e. B (x)*B(x) =
1forallx e G, and B(x +y) = B(x)B(y) for all x,y € G*. (This implies that B(0) =
1.) if B = B(H), C*-algebra of all bounded linear operators on the Hilbert space H, we call
a pair (K, m)a unitary lifting of g8 if K is a Hilbert space containing H as a closed subspace,
m: G — B(K) is a homo-morphism of G into the group of unitaries of B(K), H is invariant
for all m(x),x € G*, and B(x) = (n(x))H for such x. The following is the basic result

concerning unitary liftings and will be used a number of times below.

Theorem (1.3.1)[23]: (Ito). Let G be a partially ordered group and B:G* — B(H) a
semigroup of isometries on the Hilbert space H. Then 8 admits a unitary lifting (K, m).

For a proof, see Suciu [37]. (Note that there it is only shown that B(x) is a
compression of (x)- i.e. invariance of H is not stated. However an elementary 2x2 operator
matrix argument shows that if an ismoetry is the compression of a unitary it is in fact a
restriction of the unitary. Hence we can conclude that H above is invariant for all ©(x), x €
G,

Here is another result that we will be using a number of times. It is well known and
follows easily from the von Neumann inequality, see e.g. Suciu [37].

(For G a discrete abelian group, G” will denote the dual group of G considered as a
compact abelian group. If T denotes the circle group and x € G, we let &, or £(x) denote
the evaluation homomorphism from G to T defined by ¢, (y) = y(x),y € G" )

Lemma (1.3.2)[23]: if m: G — B is a homomorphism from an abelian group into the group
of unitaries of a unital C*- algebra B then there is a unique *- homomorphism g: CG" - B
such that (¢e,) = m(x),x € G.

We need one more preliminary concept for the construction we are about to
undertake: let A be a C*-algebra with identity element 1 and let A,, A, be C*-subalgebras
such that 1 € A; N A,. We say that A is a free product of A; and A, and we write A = A, *
A, if for every unital C*-algebra B each pair of unital x- homomorphisms g;: 4; —
B (j = 1, 2) have a unique extension to a *- homomorphism £: A — B. Any two unital C*-
algebras admit a free product (Brown [24]). By the way, since any two free products of A,
and A, are canonically *-isomorphic, we can talk about the free product. A, U A, generates
A * A,

We can now define the Toeplitz algebra and show it has a certain universal property.

Let G be a partially ordered group. Let p denote the projection (1,0) in C?, and let I
be the closed ideal in C? * C (G") generated by all &,p — pe,p, € G*. If ™ denotes the
quotient map from €2 = € (G") to C? = C (G")/I then we set F(G) = n(p)(Im(m))r(p).
Thus F(G) is a unital C*-algebra ((p) is the identity element). We call F(G) the Toeplitz
algebra of G. We define he canonical semigroup of isometriesV = V&: Gt - F(G) by V, =
n(e,)m(p). It is readily verified that VV is in fact a semigroup of isoometries generating
F(G).
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Theorem (1.3.3)[23]: Let G be a partially ordered group and 8: G* — B a semigroup of
ismoetries in a unital C*-algebra B. Then there is a unique *- homomorphism g*: F(G) —
B such that g*V = B.

Proof. We may assume without loss of generality that B is a C*-subalgebra of B(H) for
some Hilbert space H such that 1 = idy € B. By the Theorem (1.3.1) the semigroup of
isometries B: G* — B(H) has a unitary lifting (K, m). There exists y, a unigue unital -
homomorphism from € = C(G") to B(K) such that y,(e,) = m(x),x € G, by Lemma
(1.3.2). let Q € B(K) be the projection onto H and y;:C? - B(K) the unital x-
homomorphism such that y, (p) = Q where p = (1,0) € C?. Let y denote the unique *-
homomorphism extending y; and y, to C? « C - B(K). Since y(p) = Q and y(s,) = m(x)
we have y(&,p —pe,p) = m(x)Q — Qmu(x)Q =0 for all x € G* (H is invariant for
m(x),x € G*. Thus y(1) = 0 where I is the closed ideal in C? = C generated by all &,p —
pe,p,x € GT. It now follows that the map p*: F(G) » B(H) defined by p*(a +1) =
y(a)yfor a+1 € F(G), is a well- defined *- homomorphism. Also g*(V,) = B*(e,p +
1) = y(e,p)y = t(x)y = B(x) forall x € G*, so Im(B*) € B. Thus B*:F(G) —» B isa
*- homomorphism such that 8*V = .

Uniqueness of 8* is trivial, since the V,.(x € G*) generate F(G).

If A is C*-algebra we let K(A) denote its commutator ideal, i.e. the closed ideal
generated by all ab — ba (a, b € A). K(A) is the smallest closed ideal Jin A such that A/]

is abelian. If 8: A — B is *- homo-morphism of C*-algebras then B(K(4)) < K(B), with
equality if S is surjective.

If ¢: G; = G,is ahomomorphism of partially ordered groups we say that ¢ is positive
if 9(G) € G5 (equivalently x < y in G; = ¢(x) < @(y) in G,). We let @: Gf — G be
the restriction of ¢. There is a unique *- homomorphism ¢*: F(G,) = F(G,) such that
@*Ver =V%qg (simply take ¢* = (V%2@)* - it is clear that V%2@: G - F(G,) is a
semigroup of ismoetries). We thus get covariant functors G —» F(G) and G — K(T(G)).

For G is a partially ordered group we define g, = q¢ = 1 -V, V;*(x € G*). Since V,
is an isometry, g, is a projection (in K(F(G))). If x < y then q, < q,, (because: y = x + z
for some z€ G* =V, = V,V, = VL,V =V, V; since V' <1. Hence q, =1~
WV = 1-VV = q,). We are now going to show that g, < q,, = x < y. To do this we
consider a certain representation of F(G) that will be very important later. Before doing
this, a useful remark: if ¢: G; — G, is a positive homomorphism of partially ordered groups
then ¢*(q,) = qyx) forall x € G

Preposition (1.3.4)[23]: If G is a partial ordered group and x, y € G* then x < y ifand only
if g, < qy.

Proof. Let H?2 = H?(G) be the closed linear span in L?(G") forall ¢, (x € G*). Define U,, €
B(H*) by U,f = &.f,x € G*. The map U:G* - B(H?),x — U,, is easily seen to be a
semigroup of isometries: thus U* maps F(G) to B(H?) and U*V = U. Now the projections
Q, = 1 — U, U; on H? satisfy the relations Q,(&,) = 0 forx < y and Q. (¢, ) = &,for x <
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y(x,y€G"). Hence x <y iff Q, < Q). But U"q, = Qy, SO X <y = q, < q, = Qy <
Qy=>x=<Yy.

Note in passing that it is now easy to see that V:G* — F(G) is injective
(G=V=>aq=q>x=y)

Given any partially group G the map e:G* - C(G"),x — &,, is a semigroup of
isometries (actually of course the ¢, are unitaries) so we have the induced map £*: F(G) —
C(G"). Since &,(x,€ G*) generate C(G") (by the Stone- Weierstrass theorem), &* is
surjective.

Theorem (1.3.5)[23]: If G is a partially ordered group then ker(e*) = K(F(G)) and the
map F(G)/K(F(G)) - C(GM),a + K(F(G)) — &*(a), is x-isomorphism.
Proof. All we have to show is that K(F(G)) = ker(e").

Since F(G)/ ker(&")is abelian. Ker(e*) 2 K(F(G)). The map m: G - K(%(GG))),x —y

V, * Vi + K(F(G)), (for x,y € G*) is a well- defined homomorphism into the unitaries of
F(G)/K(F(G)), so be Lemma (1.3.2) there exists a unigue *-homomorphism y: C(G") -

Kéffg)) such that y(&e_,) =n(x—y) =V, *V, + K(F(G))(x,y € G*). If & is thex-
homomorphism Kz;((ag)) - C(G"),a+K(F(G))— e*(a) then, & (Vx + K(T(G))) =

ver(V,) =y(e) =nm(x) =V, + K(T(G))(x € GT) = y§ = id(since V. +
K(F(6))generate  F(G)/K(F(G))). Hence a €ker(e") = §(a+K(F(G))) =¢"(a) =
0= a+K(F(G)) =y (a + K(T(G))) = 0= a € K(F(G)). Thus K(F(G)) = ker(e").

Our next result, showing that the functor G — F(G) is “continuous”, i.c. preserves
direct limits, is interesting in its own right and plays a crucial role in the development of the
theory. First we need to make a somewhat technical remark about direct limits in the

category of partially ordered groups. Let ((pl-j: G; - G]-)l_<]_ be a direct system of partially
ordered groups (indexed by I) with direct limit G and natural maps ((pi: G; - G)l,. if x €
G,y € Gj,andp'(x) = ¢'(y) then there exists k € I,k = i,j and ¢, (x) = @ (). This
detail is needed in the proof that follows. The way to see it is to construct one example of a
direct limit G and natural maps ((pi)l, satisfying it. Then it follows from an elementary

diagram chase that every direct limit and system of natural maps for ((pij: G; - Gj)i<j has
the above property. Here is a sketch of how to construct the required limit: Define an
equivalence relation ~ on the disjoint union of the sets G;(i € I) by setting (i, x)~(j,y) if
there exists k € I,k = i,j, such that ¢, (x) = @ (y). Let [i,x] denote the equivalence
class of (i,x) and G be the set of all equivalence classes. Define the map ¢':G; —» G by
@*(x) = [i,x]. There is a unique operation on G making G an abelian group and all the maps
@' homomorphisms. Define G* to be the union of all the sets ¢*(G;")(i € I). Then G*is a
cone in G and it is easily checked that the partially ordered group (G, G*) is a direct limit of

the direct system (¢; iG> Gj)i<j in the category of all partially ordered group (with maps
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" as natural maps). Clearly x € G,y € G;, and ¢'(x) = ¢’ (y) imply that there exists k €
I,k = 1i,jsuchthat @ (x) = @ (y).

Theorem (1.3.6)[23]: Let the partially ordered group G be the direct limit of the direct
system of partially ordered groups ((pij: G; - Gj)i<j . Then F(G) is the direct limit of the

direct system of C*-algebras (((pij)*: F(G,) - T(Gj)). .
i<j
More explicitly if (¢': G; — G), are natural maps for G then (0)):F(G) - T(Gj)i
are natural maps for F(G).)

Proof. Let I be the index set for the direct system ((pij: G; - Gj)i<j' Given B a C*-algebra

and Bi: F(G,) —» B *-homomorphism such that ﬁj(qol-j)* = Bt forall i <jin I, we must
show that there is a unique *-homomorphism B: F(G) — B such that B(¢!)" = Bi(i € I).
By replacing B by the C*-subalgebra ¢ = (U{B(F(G,)):i € I}) if necessary, we may
assume without loss of generality that B is unital and that all maps £* are unital. Let
Vi G - F(G)and V: G* > F(G) be the canonical maps and recall that (¢;;)  and (¢!)
are the restrictions to the positive cones of ¢;; and ¢' respectively. We have

(i) (‘pij)*Vi =VIi(p;) G<))

(i () Vi=Vi(e) (=D

(i) Biey) =BG <)

Let x € G;,y € G;and suppose that ¢’(x) = ¢/(y). Then there exists k € I,k > i, j
such that @, (x) = @ (y) implies BV} = B* (@) Vg (by (iii)) = B¥V*(@u (x)) (by (i)
= vk ((pjk()’)) = B*(p) Vi (by (i) again) = 7V (by (iii) again). Thus ¢'(x) =
@’ (y) implies 'V, = BV

We define the map B: Gt — B by setting S ((pi(x)) = B, This is well defined
from the above calculation and from the fact that G* is the union of all the sets
@ (GH)(i € I). Now g is clearly a semigroup of isometries, so B*: F(G) - B is a *-
homomorphismand £*V = . Also, by (ii), B*(¢!) Vi = B*V(¢")” = B(¢})” = BV (by
the definition of ), which implies 8*(¢!) Vi = BV, s0 B* (') = B! (since Vi (x € G}')
generate F(G;)).

Finally suppose that y: F(G) — B were another x-homorphism such that y(<pi)* =
Bi(i € I). We must show that y = 8*. But y"(¢)” = y(o!)' V! (by (ii)) = BV =
B(¢')", so yV = B (since G* is the union of the sets (¢!)(G)(i € 1)). Thus yV = g =
BV = y = B* (since V,(x € G*) generate F(G).

To prove deeper results about te Toeplitz algebra F(G) one needs to specialize G.

Specifically one needs to assume that G is totally ordered. That this assumption is not merely
convenient, but actually necessary to get our results, is shown below. Our technique is to
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represent F(G) as a hereditary C*- algebra, and to use some powerful results of the theory
of crossed products C*- algebra, and to use some powerful results of the theory of crossed
products to analyse F(G).

Let G be an ordered group. We define an action a of G on £*(G) by setting
(e )() = f(y —x)forall f € £°(G) and all x,y € G. It is clear that a,, € Aut(¢#*(G))
and that the map G - Aut(¢¥*(G)), x — a,, is @ homomorphism. We define p, to be the
characteristic function of the set G* as a subset of G* and p, = a,(p,) for each x € G.
Thus p, is the characteristic function of the set x + G *.we call p, the projection determined
by x. Clearly x < y iff p, =p,. If x vy denotes the maximum of x and y then p,p, =
Dxvy - It follows that the closed linear span J7(G) of all projections p,(x € ¢) is a C*-
subalgebra of £*(G). Put 3,(G) = 3(G) + €C1 (1 € 3(G) & G = 0) and let 7,(G) denote
the closed linear span of all p, — p, (x,y € G). Jo(G) is clearly a closed ideal in 7(G). Since
each a, maps 7,(G) into itself we get by restriction a homomorphism a:G —
Aut(7,(6)), x — ay, i.e. (3,(G),G,a) is a C*- dynamical system. Clearly 7(G) and 7,(G)
are G- invariant ideals in 7, (G). Recall that one can regard 7,(G) as C*-subalgebra of the
crossed product C*-algebra 7,(G) X, G and that J,(G) contains the identity element of
J,(G) X, G. Also if §: G = 7,(G) %X, G is the canonical homomorphism into the unitaries
then we have a,(f) = 8,f0,(f € 7,(G),x € G).3,(G) X, G is generated by 7,(G) and
6(G). If ] is a closed G- invariant ideal of 7,(G) then the C*-subalgebra of 7,(G) X, G
generated by all f56,(f € J,x € G) is in fact a closed ideal of 7,(G) X, G which is *-
isomorphic to the crossed product / X, G. We can, and do, therefore regard J X, G as this
ideal in 7,(G) %, G. Note that ] € ] X, G.

Now we define A(G) = py(7,(G) X, G)py. Thus A(G) is a hereditary C*-subalgebra of
7,(G) %X, G with identity element p,. Define W:G* — A(G) by setting W, = poS,p9. W
Is a semigroup of isometries. This is immediate from the fact p,8,p, = 6,p, for all x €
G*(poSxPods = (X6,) Ux+6+) = Xa*nxea*) = Xxsc*+ = SxPobx = PodxPo = xPo)-
Thus we have the induced *- homomorphism W*: F(G) — A(G) with W*V = W. Since
7,(G) %X, G is generated by p, and all 6,,(x € G*) one can easily show that W, (x € G*)
generate A(G). This implies that W* is surjective. We are going to see in a moment that
W™ is in fact a *-isomorphism, but first we need a lemma which shows that 7, (G) has an
interesting universal property.

Lemma (1.3.7)[23]: Let G be a non-zero ordered group, u: G - B a homomorphism into
the unitaries of a unital C*-algebra B, and q a projection in B such that u(x)q = qu(q)q for
all x in G*. Then there is a unique unital *-homomorphism y: 7, (G) — B such that y(p,) =
u(x)qu(x)* forall x in G.

Proof. Uniqueness is obvious, we show existence.Let I' denote the linear span of all
px(x € G), so I' is a dense *-subalgebra of 7(G). Put q,, = u(x)qu(x)*and note that if x < y
then gy =qy, since q,qy = p()quy —x)qu(y)” = plu(y —x)quy)” (@s y—x €
G*) = qy. Thus q,qy = qxvy. Now let x*, ..., x™ € G and let p; = p,.:(i = 1,...,n). We show
that ”/llpl + -+ Anpnll > ”/11611 + e+ Anqn”(/lli '-'I/1n € C)

We may assume (by re-indexing if necessary) that x?1,...,x™, and hence that p, > -+ >
ppandg, = --- = q,,. Therefore the projections p; — p,, P, — D3, ) Pn_1 — Pn, Pn, are pairwise
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orthogonal, as are the projections q; —q,,92, — 43, -, Gn-1 — Gn,qn. L€ V; = A, + -+
Al(l = 1, ,n) Then we have Alpl + e + /‘lnpn = vl(pl - pz)'l‘ faa +Vn_1(pn_1 - pn) +

Vnpnand correspondingly Al‘ll + e+ An‘ln =V (ql - QZ)+ ---+Vn—1(Qn—1 - Qn) + VnQn-
Since p, = p,, implies x = y and so q,, = q,,, we now deduce that

14101 + -+ Anpnll = max{|v;|:p; = piys # 0 (i = 1,...,n = Dor p, # 0}
> max{|v;]:q; —qi+1 #0(=1,..,n—1)or q, # 0}
= l41q1 + - + Anqanll.

It is now routine algebra to check that the map y:I' = B defined by setting
y(p1 + -+ App) = A1qy + -+ 1,9, 1S @ (norm- decreasing) *-homomorphism, and
so extends to a s-homomorphism y:J(G) —» B. Finally we extend y to initial *-
homomorphism y: J,(G) — Bby setting y(1) = 1.

Theorem (1.3.8)[23]: If G is an ordered group then the canonical map W*: F(G) — A(G)
IS a *- isomorphism.

Proof. We already know that W* is a surjective, so we just have to show injectivity.

Now we can regard F(G) as a C*- subalgebra of B(H) for some Hilbert space H and
with idy = 1 € F(G). Also we may assume G # 0. By Theorem (1.3.1) the semigroup of
isometries V:Gt* - B(H),x — V,, admits a unitary lifting (K,m). Thus m is a
homomorphism from G into the unitary operators on the Hilbert space K, and if Qdenotes
the projection of K onto its subspace H we have m(x)Q = Qm(x)Q forall x € G*, since H
is invariant for such m(x). Also V, = m(x),(x € G*). By Lemma (1.3.7) there exists a
unique unital *- homomorphism y: 7, (G) — B(K) such that y(p,) = m(x)Qm(x)*(x € G).

We now claim that y,m, K is a covariant representation of the C*-dynamical system
(9,(6), G, &). All we need to do to see this is to show that y(a,(f)) = m(x)y(f) m(x)* for
all f € 3,(G) and all x € G. By using the fact that 1 and all the projections p, (x € G) have
closed linear span 7, (G), it clearly suffices to show the above equation for f of the form

f =p,. But

¥ (x (by)) = ¥(Pesy) = mCx +3) Quix +3)" = 7(x) n(y) @ (3)" @ ()"
= (x)y(py) m (x)".

Thus since (y,m, K) is a covariant representation it induces a unique x*-
homomorphism y~:7,(G) X, G = B(K) extending y such that y~(8,) = n(x)(x € G). It
is now easily verified that the map u: A(G) - B(H),a — y~(a)y, is a *-homomorphism.
However u(W,) = u(8xpo) = (¥~ 6y (o)), = @()Q)y =V € I(G)(x € 6*)s0 Im(u) €
J(G). Thus we can regard u as a *-homomorphism from A(G) to 7(G). Again since
n(W,) =V, we have uW*(V,) = Vy(x € G*), so uW™ = idy gy , thus W* is injective.

We state now a result of Power [35] that we will need for the next theorem Power
defines a C*-algebra C of operators on the Hilbert space K to be inner with respect to a close
subspace H of K ifidgy € C and C is generated by its elements T such that T(H) < H. If this
Is the case and C is commutative, and B is the C*-subalgebra of B(H) generated by all
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Ty(T € C) then T € K (C*(C U {Q})) (Q is the projection of K on H) implies T € K(B)
(see [35]).

Theorem (1.3.9)[23]: If G is an ordered group then K(A(G)) = po(K(31(G) X4 G))pois
a full hereditary C*-subalgebra of K(7,(G) %X, G).

Proof. Let Z = 7,(G) X, G. Since A(G) is a C*-subalgebra of Z, K(A(G)) C K(Z), and
since A(G) = poZpo, K (A(G)) S poK (Z)po.

Now regard Z as a C*-subalgebra of B(K) for some Hilbert space K withidy =1 €
Z,and let H = py(K). Since 8,py = pod,po(x € GT), H is an invariant subspace for these
J,, so the commutative C*-subalgebra C of B(K) generated by all §,,(x € G*) is inner with
respect to H. Let B be the C*-subalgebra of B(H) generated by all T, (T € C). By Power’s
result mentioned above T € K(Z) implies Ty € K(B) (since Z = C*(C U {py})). Now the
map :A(G) » B,T — Ty , is easily seen to be a *-isomorphism. Thus T € p,K(Z)p,
impliesT € K(Z),and T € A(G) implies T € K(B), whichimplies ~(Ty) € K(A(G)).
We have therefore poK (Z)p, = K(A(G)), so K(A(G)) is hereditary C*-subalgebra of
K(Z).

Finally we show K (A(G)) is full in K(Z), i.e. the closed ideal J in K (Z) generated
by K(A(G)) is K(Z) itself,

This is because J contains p, — p, = o — W, W, (x € GT), and therefore p,8, — 8,pg =
(po — 6,P00x)0, = (po - py)6x € J. Hence Z/]is abelian (it is generated by commutating
normal elements),so ] 2 K(Z) = ] = K(Z).

As a consequence of a theorem of Brown [25] and Theorem (1.3.9) above it follows
that if K(7,(G) X, G)is seperable (e.g. if G is countable) then K(A(G)) and
K(3,(G) %, G) are stably isomorphic.

Although we shall not be using it, we record here the interesting fact that for G an
ordered group K(J,(G) X, G) = 3y(G) X, G. (Proof. Let Z=17,(G) X, G and | =
J0(G) %, G. ] isaclosed ideal of Z generated as a C*-algebra by all f6,.(f € 3,(G),x € G).
Now (P = Px)8x = (Po — 8xPo03)8x = PoSx — 8xPo € K(Z), s0 (px — py)8, = (po —
py)8, — (Po — Px)8; € K(Z), thus 6, € K(Z) forall f € 3,(G),and all z € G. Hence ] <
K(Z). Also py6, — 0o = (Do — Px) 6 € J implies Z /] is abelian, so ] 2 K(Z ).

Recall that a subgroup I of a partially ordered group G isanideal of G if I = It — I~
and 0 <x <yelimpliesx €l (x €G). G is said to be simple if 0 and G are its only
ideals. All ordered subgroups of R with the usual order relation are simple. Forn = 2,3, ...
the group Z™ with the lexicographic order ((a4, ..., a,) < (by, ..., b,)if a; < b; Or a; =
by, ..., a; = b; ,and a;;; < b;,1) IS anon-simple ordered group.

If I is an ideal in a partially ordered group G, and ¢ is the quotient map from G to G /1
then @(G™*) is a cone in the quotient group G/I. We call the partially ordered group
(G/I,qo(G*)) the quotient partially ordered group of G by I. Of course ¢ is a positive
homomorphism from G to G/I. If G is totally ordered, so are I and G/I.
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Lemma (1.3.10)[23]: If G s a finitely generated non- zero ordered group then G contains a
non- zero simple ideal I.

Proof. Let K be the rank of G. Note that an ordered group is necessary torsion- free. Thus
if I, is a proper ideal in G, then G/I; is non- zero and so has positive rank. This implies

rank (I;) = rank(G) — rank (12) < rank(K) = k.
1

We show the result by induction on k. Suppose it is true for all ranks < k. If G has
no proper ideals then there is nothing to prove (take I = G). Otherwise G contains a non-
zero ideal I; with rank (I; < k). By the induction hypothesis I; contains a non- zero simple
ideal 1. I is then an ideal in G, thus completing the induction.

If G is any ordered group let |[x| =xifx > 0and |x|] = —xifx <0 (x € G). Let
F(G) ={x e G:forally € G,y > 0,there existsn € N, |x| < ny}.

Using the triangle inequality |x + y| < |x| + |y| one easily sees that F(G) is a simple ideal
in G. Hence if I is any non- zero ideal of G, F(G) < I (since if F(G) is non- zero then there
exists x € F(G),x > 0, and there exists y € I,y > 0, so that if z is their minimum, then
0<zelNnF(G)impliesI N F(G) isanon-zeroideal of F(G),so I N F(G) = F(G), thus
F(G) <€ I). Of course F(G) might be just the zero ideal. In fact it is for G = Z*, the direct
sum of countably infinitely many copies of Zwith the lexicographic order: (a,, a,,...) <
(by, by, ...)ifa; < bjorifa, =b,,...,a; = b; ,and a;;; < b;,, for some integer i.

The point of Lemma (1.3.10) can be rephrased as follows: ifG is a non- zero finitely
generated group, then F(G)is non- zero. (Proof: By Lemma (1.3.10), G contains a non- zero
simple ideal I. Let x € G,x > 0, and let I,. be the set of y in G such that for some positive
integer n, |y| < nx. Then I, is a non- zero ideal in G(I, # 0 asx € I,). Now I N [, is a
non- zero ideal inI,soI NI, =1,thusI € I, . hence y € I implies |y| < nx for somen €
N. Thus we have shownl € F(G), and since F(G) < I by our earlier remarks, F(G) =1 #
0.)

If G is a non-zero finitely generated ordered group we let F7(G) denote the closed
linear span of all p, — p,(x,y € G,x —y € F(G)).

Lemma (1.3.11)[23]: If G is a non-zero finitely generated ordered group then F7(G) is the
smallest non- zero G-invariant closed ideal 7, (G).

Proof. If x,y,z € G withx —y € F(G) thenzVv x — zVy € F(G). Hence p,(px —py) =
Povx — Py+z € FI(G), so it is clear that F7(G) is an ideal in 3,(G). Since a,(p, — py) =
Dx+z — Py+z » Itis trivial that F7(G) is G-invariant. As F(G) is non- zero, po — p, # 0 for
some x € F(G), so FI(G) is non- zero.

Now let J be a non- zero G- invariant closed ideal in 7,(G). We have to show that
F3(G) < ]. By replacing J by ] n J,(G) if necessary, we may assume that /] < 7,(G) (the
reason that /] N J,(G) is non- zero is the easily checked fact that 7,(G) is an essential closed
ideal in 7, (®)).
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Putl ={x € G:py —p, €J}. If x,y €I then p, — p, and az(po—py E]) implies
Do~ Px +Dx —Pxty =Po —Prxsy €J ,SOx+y€EIL AlsSOx,y€EGand 0<x<y€l
implies 0 < py —px <Py —Dpy €EJ S0Py —Px €/ ,thus x € I. Thus I is an ideal of G.

We define I" to be the linear span of 1 and all p,(x € G). In the terminology of
Goodearl [29], I is a dense ultramatricial *-subalgebra of the AF-algebra 7,(G). Hence
(JnI)~ =Jand] n T isthe linear span of its projections (see [29]). since J is a non- zero,
there is a non- zero projection p in J N I'. Hence there exists x1, ..., x™ € G determining
projections pg, ...,p, in 7,(G) such that p = A,p; + -+ + A,,p,, for some 1,,...,1, € C.
Recalling a detail from the proof of Lemma (1.3.7) we may assume that x* < --- < x™ (by
re-indexing if necessary) and then we have p = v;(p; — p2)+... +V1(Pn-1 — Pn) +
v,pn for some v; € C. Of course the projections p; — p,, ..., Pn—1 — Pn, Pn_are pairwise
orthogonal. Now if v,is non- zero then p,, € 7,(G) (since ,p; — P2, <o, Pn—1 — Pn € Jo(G)
) and this is easily seen to be impossible. Thus we have v,, = 0 and of course each v; = 0
or 1. In short p is a sum of k pairwise orthogonal projections p,; — p,; with u/ < v/ in G.
Thus p > p,; —p,; = 0and p € ] implies p,; — p,j € J, $0 a(—w)(p — pyi) = Po —
Pyi_ €J,50v" —u/ €1.Sincep # 0, v/ # u’ for some j, we have I # 0. Hence F(G) <
I,s0if x € F(G) then py, — p, €] as x € I. More generally if x,y € G and x —y € F(G)
then py — py—y, €J implies a,(po — Px—y) = Py — Px € J. Hence FI(G) < .

We do not state the strongest possible forms of these results, just versions sufficient
for our purposes.

Let (4, G, a) be a C*-dynamical systems with A a separable abelian C*-algebra and G
a countable discrete abelian group. A is G-prime if every two non- zero G- invariant closed
ideals of A have non- zero intersection. A is G-simple if 0 and A are its only G-invariant
closed ideals. The Arveson spectrumsp(a) of (4, G, a) is the set of all p € G” for which
there exists a sequence of unit vectors f,, in A such that ||, (f,,) — p(x)f,, || convergesto 0
as n - oo(x € ). A useful fact: the annihilator sp(a)* = {x € G:a,, = id,}. The connes
spectrum I'(a) of (4, G, a) is the intersection of all sp(a|]) where J runs over all non- zero
G-invariant closed ideals of A, and sp(a|]) is the Arveson spectrum of the C*-dynamical
system (J, G, a)got by restriction of a, to J(x € ¢). I'(a) is a closed subgroup of G” , so
r@)*=0thenr(a) =G".

The following two important results will be needed:

Result 1. If A is G-prime and I' (@) = G" then A X, G is primitive.
Result 2. If A is G-simple and I'(a) = G" then A X, G is simple.
See Pedersen [33] and [34].

Lemma (1.3.12)[23]: Let G be a finitely generated ordered group. Then 7,(G) X, G is
primitive and F7(G) X, G is simple.

Proof. If G = 0thenJ,(G) X, G = Cand FI(G) %X, G = 0, so there is nothing to prove. So
we may suppose that G is non- zero, and hence F(G) is non- zero. If /; and J, are non- zero
G-invariant closed ideals of 7, (G), then by Lemma (1.3.11) F7(G) < J, n ], and FI(G) is
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a non- zero G-invariant closed ideal in 7,(G). Thus 7,(G) is G-prime, and since J; € ],
implies sp(a|/;) € sp(a|/,) we have I'(a) = sp(a|Fi7(G)).

Hence I'(a)t = sp(a|F7(G))J' ={x€G:a,=id}. Letx e '(a)tandy € F(G),y > 0.
Then ax(po — py) = Dx — Px+y = Do — Dy (Since py —p, € FI(G)). Now if z <t in G
and [z,t) ={u € G:z<u <t}thenp, — pr = X[z¢e) - TUS X(xx+y) = X(0.y) » SO X = 0,
and therefore I'(a)* = 0, implying that I'(a) = G". By result 1 above, 7,(G) X, G is
primitive. Of course from that we have just shown, it is clear that (F7(G), G, @) is G-simple
(since any G-invariant closed ideal of F7(G) is one of 7, (G) also) and the Connes spectrum
I'(a) = G" for (F1(G), G, a) also. Hence by result 2 above FI(G) X, G is simple. (Note
that F7(G) X, G is non- zero since it contains F7(G), and this is opn- zero).

If G is an ordered group we let F7(G) denote the closed ideal in 7(G) generated by
all g, =1—-VVi(x € F(G)*). Clearly FI(G) < K(J(6)), and FI(G) = K(9(G)) if
F(G) =G.

Lemma (1.3.13)[23]: If G is a finitely generated ordered group then 7(G) is primitive and
FI(G) is simple.

Proof..A(G) is a hereditary C*-subalgebra of 7,(G) X, G, so A(G) is primitive as
J,(G) X, G i1s. Let | =po(FI(G) X, G)py. Then J is a closed ideal in A(G) =
po(7,(G) X, G)p, (since FI(G) X, G is a closed ideal 7,(G) %X, G), and ] is a hereditary
C*-subalgebra of the simple C*-algebra F7(G) %, G, so ] is simple.

Now let W*: F1(G) — A(G) be the conical *-iomorphism. Since A(G) is primitive,
50 is 7(G). Also W*(F1(G)) = J, so FI(G) is simple. (To see that W*(FI(G)) = J, note
W*(gqx) = W*(1 = VW) = po — WW =po — 6xDo0x =Po —Px- Thus  x € (G)*
implies W*(q,) € poFI(G)p, S J which implies W*(FI(G)) < J. If G = 0 then FI(G) =
0,s0] = 0, thus W*(.’FJ(G)) = J. If G is non- zero, then F(G) has a positive element x, so
qx # 0,50 W*(qy) # 0,50 W*(FI(G)) = J by simplicity of J.)

Recall that C*-algebra A is prime if every two non- zero closed ideals of A have non-
zero intersection. Every primitive C*-algebra is prime (we are about to use this fact in a
moment) and the converse holds for separable C*-algebra. (The non- separable case is an
open question, see Pedersen [33].)

Let B:G* — B be a semigroup off isometries in the unital C*-algebra B, over the
partially ordered group G. We say that £ is nonunitary if §(x) is non- unitary for all x >
0,x € G. The following lemma will be generalized immediately in Theorem (1.3.15) below.

Lemma (1.3.14)[23]: Let G be a finitely generated ordered group and B:G* - B a
nonunitary semigroup of isometries in a unital C*-algebra B. Then the unique x-
homomorphism £*:7(G) — B such that §*V = B is injective.

Proof. Let ] = ker(B8*). If ] is non- zero then G is non- zero (G = 0 implies 7(G) = 0, so
J = 0), so F(G) is non- zero, thus FI(G) is non- zero. Hence ] N FJ(G) is non- zero (as
J(G) is primitive and therefore prime). As FJ(G) is simple, | N FI(G) = FI(G), SO
FI(G) < J. Now there exists x € F(G),x > 0, so we have g, € J, thus 0 = 8*(q,) =
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(1 -V.V))=1—-B(x)B(x)", which implies that £ (x) is unitary. Since £ is nonunitary
this is impossible, so J cannot be non- zero. Thus B* is injective.

Theorem (1.3.15)[23]: Let G be an ordered group and f: G* — B a nonunitary semigroup
of isometries in a unital C*-algebra B. Then 8*:7(G) — B is injective.

Proof. Let I be the set of finite non-empty subsets of G, ordered by set inclusion (i.e. i <
jiffi<j). ThusI isadirectset. Fori € I let G; be the subgroup of G generated by i, and
let p*: G; — G be the inclusion homomorphism. Likewise for i < j in I let ®ij:G; > Gj be
the inclusion homomorphism. Of course all the G; are ordered groups and the maps ¢' and
@;; are positive. Since ¢ is the union of all G;(i € I) itis easily checked that G is the direct

limit (in the category of all partially ordered groups) of the direct system (goij: G; - G]-)

i<j
with the maps ¢! as natural maps. By Theorem (1.3.6) 7(G) is the direct limit (in the
category of C*-algebras) of the direct system (((pij)*:j(Gi) - :I(Gj)) ~with the maps

i<j
((pi)*:ﬂ(Gi) — 7(G;) as natural maps. Let A4; = ((pi)*(ﬂ(Gi))(i €I). Then 7(G) =
(U{4;:i € I})~, since 7(G) is the direct limit.

Let ¥': G} - G* be the restriction of ¢'. Now Byi:G; - B is a semigroup of
isometries over G; and B! is a nonunitary, since fy'(x) were a unitary then y¥'(x) = 0
implies x = 0 (!(x) = x). Hence by Lemma (1.3.14), (B") is injective. Let Vi: G} —
7(G;) and V:G* - 7(G) be the canonical maps. The 8*(¢!) Vi = gVl = B!, so
B*(¢') = (B')". Thus B is an isometry on each A;: i € I, implying that 8* is an isometry
onJ(G) = (U{4;:i el})~.

Theorem (1.3.16)[23]: Let G be an ordered group. Then 7(G) is prime.

Proof. We retain the notation of the proof of Theorem (1.3.15). Let J be a non- zero closed
ideal of 7(G). Then J n A; is non- zero for some i € I. (For otherwise letting m be the
quotient map from J(G) to 3(G)/J, m is isometric on each C*-algebra A;, so m is isometric
on 7(G) = (U{4;:i € I}), thus J = ker(mr) = 0.) Thus if J; and J, are non- zero closed
ideals of 7(G) then (since I is directed) /; N A; and J, N A; are non- zero closed ideals in
some 4;. Now (¢!)":7(Gy) - 7(G;) is injective since (¢!)" = (Vy!)" and Vy': G* -
J(G) is anonunitary semigroup of isometries (which implies (thi)*is injective by Theorem
(1.3.15)). Hence 4; = (¢)"(9(G,)) is *-isomorphic to 7(G;), so 4; is primitive (by Lemma
(1.3.13)), and therefore prime. It follows that (J; N 4;) N (J, N 4;) is non- zero,so J; N J,
is non- zero. Thus 7(G) is prime.

We included Theorem (1.3.16) here since one can derive it so easily given one has set
up the machinery to prove Theorem (1.3.15). Actually however we will show that 7(G) is
primitive (for G an ordered group) by exhibiting explicitly a faithful irreducible
representation of 7(G).

Theorem (1.3.17)[23]: If G is an ordered group then FJ(G) is simple.

Proof. Let J be a non- zero closed ideal of F7(G) and let  be the quotient map from 7(G)
to 7(G)/]. Letthe map B: G* — 7(G)/] be defined by setting f(x) = n(V,) (i.e. B = nV).
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B is clearly a semigroup of isometries and £* = . Suppose  were nonunitary. Then =
B is injective, so /] = 0. Thus g is not nonunitary, and so there is an element x € G, x > 0,
such that B(x) is a unitary. If y € F(G)* then y < nx for some n € N, so nx = y + z for

some z € G*. Hence B(x)" = B(y)B(z) = B(z)B(y), so B(y) is invertible as B(x)" is.
Thus (q,) = (1 - V1) =1 - BB = 0,50 FI(G) S ker(m) thus FI(G) = J.

Of course FI(G) is non- zero iff F(G) is non- zero.

Corollary (1.3.18)[23]: (Douglas, [27]). If G is an ordered subgroup of R (usual order) then
K(7(G)) is simple.

Proof. In this case F(G) = G. Hence 7(G)/FI(G) is abelian (as 1 — V. V' € FI(G) for all
x € G*), 50 FI(G) 2 K(9(G)) and we know already that F7(G) < K(3(G)), so FI(G) =

K(7(®)).

This result is attributed to Douglas because for G an order subgroup of R,V:G* —
J(G) is a nonunitary one- parameter semigroup of isometries in his terminology, and the
corollary follow from [27]. The techniques used by Douglas to prove this result are
completely different from ours.

We return to partially ordered groups. We exhibit an irreducible representation of the
Toeplitz algebra as a C*-algebra of generalized “Toeplitz” operators (this representation is
faithful for ordered groups). This involves our deriving a theory of such operators. The
results and many of the proofs are closely analogous to the classical special case G = Z,
although there are some interesting differences. Perhaps the most remarkable fact here is
that so much of the classical theory extends in such generality.

Let G be a partially ordered group, T the circle group, and recall that e(x): G" < Tis
the evaluation homomorphism &(x)(y) = y(x)(x € G,y € G")as is well known

(g(x))xEG forms an orthonormal basis for the Hilbert space L? = L?(G"), and letting P,
denote their linear span, it follows from the Stone- Weierstrass theorem that this *-
subalgebra of C(G") is dense in C(G™) in the sup-norm topology. The elements of P, are
called the trigonometric polynomials (relative to ). Denote by H? = H?(G) the closed
subspace of L? having orthonormal basis (s(x))xEG+ ,and let P € B(L?) be the projection
onto H?. If ¢ € L* = L*(G") we define T,, € B(H?) by setting T,,(f) = P(¢f).T, isthe
Toeplitz operator with symbol ¢ (relative to G). The map L — B(H*), ¢ +— T, , is easily
seen to be linear and norm- decreasing. Also Ty« = T,-.

If G = Z (with the usual ordering) then of course H? is the usual Hardy space and we
get the classical Toeplitz operators.

If G is a partially ordered group and F is finite non- empty subset of G, then there
exists x € G*such that x > y(y € F). (Proof: if F = {x?, ...,x™} then each x* = y* — Z¢
with yi,zt € G*. Take x = y* + -+ + y™.) This is used in the next easy but useful lemma.
(Both this result and the next lemma will be often used tacitly.)

Lemma (1.3.19)[23]: If G is a partially ordered group and ¢ € P, then e(x)@ € H?(G) for
some x inG™.
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Proof.p = A,e(y!) + -+ A,e(y™) for some yi,...,y* € G, and some A, ..,4, € C.
Choose x € G* such that x > —y?,...,—y™ Then A;e(x + y*) + -+ + A,e(x + y™) € H2.

As in the proof above shall often drop explicit reference to G when referring to the
spaces L2(G"), H2(G) and L®(G™).

If E is a subset of C then hull(E) denotes its closed convex hull.

Theorem (1.3.20)[23]: Let G be a partially ordered group. If ¢ € L”(G") then ||T,| =
llglle and Sp(e) < Sp(T,) < hull(Sp(e)). (Sp(g) is the essential range of ¢.)

Proof. Let M, € B(L*) be the multiplication defined by M, (f) = ¢f. Now the map L* —
B(L%),p = M,, is an isometric x-homo-morphism, so Sp(M,,) = Sp(¢). Let S = {e(x)f: x €
G*,f € H*}. Then S~ = L?, since (P;) ~ = L*andL, < S. Suppose that T, is bounded below,
so for some u>0,||T, || > ullfIl(f € H?). Then ||M,fe(x)[| = llofll = IP(p)Il =
1T, (Il = wllfll = u][eGF|. Hence [|M, (9)]| = ullgli(g € L). As S~ = L7. Thus for any
¢ € 12,Sp(¢) = Sp(M,,) < Sp(T,). Hence ||T,|| = r(T,) =r(M,) = llglle , so ||T,|| =
ll@llo. But an isometric *-linear map p: A — B from an abelian C*-algebra A to another C*-
algebra B has the property that Sp(p(a)) S Hull(Sp(a)) for all a € A(Douglas [5]). Hence
(A=L, B=B(H?),p(p) =T,)Sp(T,) S Hull(Sp(p))(p € L™).

For G a partially ordered group let H © = H*(G)be the set of all ¢ € L* such that
@ € H%. Then H® is a closed subalgebra of the Banach algebra L* (since for ¢ € L* we
have ¢ € H®iff pH? € H?).

Preposition (1.3.21)[23]: Let G be a partially ordered group and ¢,y € L*(G"). If ¢~ or
lp € HOO(G) then T<P1l1 B T(PTll}

Proof. If 1 € H*then yH ? € H?implies T, T, (f) = T,P(Yf) = T,(Yf) = P(pyf) =
Ty (F)(f € H?), 50 Ty, = T, Ty If on the other hand ¢~ € H* then (T,,) = Ty~ =
Ty-T,- (by what we just shown) = T,«Ty+ , thus Ty, = T, Ty,

If G is a partially ordered group then we denote by 77 (G) the C*-subalgebra of B(H?)
generated by all T, ((p € C(G")). We call 7" (G) the reduced Toeplitz algebra of G. For x €
G*, let U, be the isometry T,y and Q, be the projection 1 — U, Uy, and let U denote the
map G* - J7(G), x » U,. U is a semigroup of isometries and x < yin G* is equivalent
to @ < Q, in K(ﬂT(G)) (as we saw already in the proof of Preposition (1.3.4)). these
projections Q,, commute. Finally since (P;)~ = C(G") it is easily checked (using (Lemma
(1.3.19)) that U, (x € G*) generated 7" (G).

Lemma (1.3.22)[23]: Let G be a partially ordered group and let J be the linear span in 7" (G)

of all T, Ty, ... Ty, — Ty, — Pn(@1, ..., 0n € Pg). Then S € ] implies that § = SQ, for

somex € G*.
Proof. If §; and S, are in J and S; = S;Q,,; then (S1 +252) Qe 4x, = S10x, @y hx, T

AS2Qx, Qe 4x, = S1Qx, T+ 15,Q, = 51 + A5,(A € €). This calculation shows that is

suffices to prove the theorem for S of the form S =T, T,  ..T, — Ty o, (@1, -, Pn €
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P;). However since P is the linear span of all e(x)(x € G) it follows that we may, again
without loss of generality, assume each ¢; = e(yi) for some y! in G. In this case choose
x € G* such that x > all the elements —y!, —(y* + y2), ...,—(y* + -+ y™). Then

SUx = TeymTeyn1) = Teyhem) ~ Teom... coMew)
= TeomTeyn-1) - Tey2)eyVe) ~ Tepm).. ephe@) =
=Tegm..eyDe@) ~ Tey™)..e(rMe@x) =0

(true by Preposition (1.3.21) and since £(y*) ... e(yDe(x) € H®,i = 1,...,n). Thus SU, =
0,s0SU,U; =5(1—-Q,) =0, implying S = SQ,.

Theorem (1.3.23)[23]: If G is a partially ordered group then

(i) (Qx)xeq+ is an approximate unit for K (77(G)).
(ii)if € L (G") , then T, € K(97()) if and only if ¢ = 0.

Proof. (i). (G*, <) isadirect set, s0 (Q, ) e+ iSanet. LetJ be defined as in Lemma (1.3.22).

If @@L, 0n€P; then T (Tp. Ty, - To, —To,.0n) = ToTp, - To. = Topr.on +
Too,..on — TpTp, . 0, 15N J. Hence J™ is a closed ideal in 7" (G). By Lemma (1.3.22), S € ]

implies S = SQ, for some € G* , so we have imTQ, = T(T € /7). Thus (Qy)eg+ IS an
y

approximate unit for j=. Since all Q, € K(37(G)),J~ € K(37(G)) , and since all Q, €
J7,K(97(G))/J~ is abelian, implying that J~ 2 K(37(G)). Thus J~ = K(9"(G)) and
(Qx)xec+ is an approximate unit for K(77(G)).

(ii). Let ¢ € L” and T,, € K(7"(G)). Then T,, = lim T, Qx, s0 0 = lim T, U, U, thus 0 =
lijrcn”T(pUx” = 1i£n||T<ps(x)” = “;n”(pg(x)”oo = [l¢llw , S0 0 = ¢.

Part (i) of the above theorem generalizes the classical result that O is the only compact
Toeplitz operator (relative to G = Z) . K(97(G)) is K(H?(Z))., the ideal of all compact
operations on H2(Z).

Corollary (1.3.24)[23]: If ¢, € C(G") then Ty Ty, — Tyy € K(I7(G)).

Proof. Since (P;)~ = C(G") it suffices to show the result for ¢, € P;. But this case is
obvious from the proof of Theorem (1.3.23).

Theorem (1.3.25)[23]: Let G be a partially ordered group.
(i) The map
C(G™) = T7(6)/77(G) ¢ = Ty + K(37(B))
IS a - isomorphism.

(i) If S € 37(G) then there exists unique ¢ € C(G") and unique K € K(77(G))
suchthat S =Ty + K.
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Proof. Let p denote the map in (i). Then p is clearly x-linear and by Corollary (1.3.24)p is
multiplicative. p is injective by Theorem (1.3.23) and surjective since T¢(g0 € C(G"))
generate 3" (G). This proves (i), (ii) follows immediately from (i).

Lemma (1.3.26)[23]: Let H, be a dense linear submanifold of a Hilbert space H, and
(51)1e4 @ net in B(H) such that li/{n(S,l,f,g) exists for all f,g € H, and that there is a

positive number u such that |(S3, £, 9)| < ullfllllgll(A € A, f,g € H). Then there exists
S € B(H) such that S € B(H) such that S = li/{n S,in the weak operator topology on B(H).

For a proof, see Halmos [30].
Lemma (1.3.27)[23]: Let G be a discrete abelian group and suppose that the matrix
(ax,y)x’yeaof S € B(L*(G™)) with respect to the orthonormal basis (e(x),e¢) is a Laurent

matrix (i.e. ay4zy4+z = Gxy(x,y,z € G)). Then S is a multiplication, S = M, for some ¢ €
L (GM).

(Explicitly: a,,, = (S(e(y)), e(x)) )
For a proof, see Murphy [32].

Theorem (1.3.28)[23]: Let G be a partially ordered group, and let S € B(HZ(G)). Then S
is a Toeplitz operator (relative to G) if and only if U;SU, = S(x € G*).
Proof. If § =T, for some ¢ € L” then UxSUy = Toi5TpTex) = Tegrypex) = To =S (aS
e(x) € H®). Conversely suppose that U;SU, = S(x € G*). Define S, € B(L?) be setting
S,(f) = e(x) SPe(x)f, for x € G*, and note that ||S,|| <||S||. Also for f,g €
H2,(Sy £, 9) = (e(x) SPe(x)f, g) = (UzSUf, 9) = (Sf. 9).

Now let ¢,,¢, € P, and put u, = (S,0.,¢;). We show that the net
(tx) xeg+CONVeErges by showing that there exists x, € G*such that u, = p, for x > x,.
Certainly there exists x, € G* such that ,, ¢, € e(xo)H?. Let; = e(xo)@;,50; € H®.

Now if x2=x, thenu, = (SeeCro)Ps, e(xo)P,) = (Se(x — x0) iy, (x — X)) =

(Sy—xo¥1,¥2) = (S¥1,¥2) (@S Y1, € H? = p, . Since (P;)~ = L* it follows from Lemma

(1.3.26) that there exists T € B(L?) such that T = lim S, in the weak operator toplogy. Let
X

(ax'y)x,yEG be the matrix of T relative to the basis ((x)) __.of L. Ify,z € Gand x € G*,
then

Ayixzex = (Te(@)e(x), e()e(x)) = li{n(stg(x)g(z),g(x)é‘(}/)) - 1i{n(5t+x5(z),8(y))
= lim(S,£(2), ¢))

(since li{n Aty = li{n a;). Thus a, iy ,4x = a,,,, and one can now immediately extend this

egation to arbitrary x € G since G = G* — G*. Hence by Lemma (1.3.26), T = M,, for some
p L. clearly for f,g€H%(T,f,g) = (¢f.9) = (Tf,g) = im(S,f, 9) = (5f, 9)as
(Sxf,9) = (Sf,9).Thus S =T,
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The next preposition is important- it shows that H* (G ) displays “analytic behaviour”.

Preposition (1.3.29)[23]: Let G be a partially ordered group. If ¢ and ¢ € H*(G) then ¢ €
C1.

Proof. If x € G* and e(x) € H® then-x € G*,s0x = 0. Now ¢, € H®and x € G*,x > 0
implies 0 = (@, e(x)) = [ pe(x) as e(x) € (H?)*. Hence [ pe(x) = 0,ie. (p,e(x))=0.
But (¢, (x)) = 0 for x € G\G™ also, since ¢ € H®. Thus ¢ € C(0) = C1.

If G is a partially ordered group and ¢ € H®(G) we say that T,, is an analytic Toeplitz
operator (relative to G). Of course T,, is subnormal (it is restriction of M,). All analytic
Toeplitz operators commute. The map H* - B(H?),¢ » T, , is an isometric algebra
iIsomorphism onto the closed subalgebra of all analytic Toeplitz operators.

Theorem (1.3.30)[23]: Let G be a partially ordered group.

(i) IfS e B(HZ(G)) then S is an analytic Toeplitz operator (relative to G) if and only
ifU,S=SU,(x€G™).

(i) The analytic Toeplitz operators relative to G form a maximal commutative
subalgebra of B(H?(G)).

(iii) 1f @ € H® then Sp(T,) = Spy= ().

(iv) Every analytic Toeplitz operator has connected spectrum.

Proof.

(i) if S is an analytic Toeplitz operator then SU,, = U,.S since U, are analytic Toeplitz operators.
Conversely if SU, = U,(x € G*) then UySU, = S, so S =T, for some ¢ € L”by Theorem
(1.3.28).

Now for x,y € G™, ((p,s(x — y)) = ((ps(y),s(x)) = (T¢,Uye(0),e(x)) = (UyT(pe(O),e(x)) =
(Tq,s(o),s(x — y)). Thusifx —y & G*, then (¢, e(x —y)) = 0. S0 @ € H®. This proves (i), and
(i) follows immediately from this.

(iii) Let A be the maximal commutative subalgebra of B(H?) of all analytic Toeplitz
operators. Then Sp,(T,) = Sp(T,) for ¢ € H®. But Sp,(T,,) = Spy=(¢) since the map
H* = A, @ - T,,is an isomorphism. This proves (iii).

(iv) Let X be the character space of H*. If ¢ € H*® is an idempotent then ¢ = @2,
thus = @ € H* , so ¢ € C1 by Proposition (1.3.29). Thus ¢ = 0 or 1. Since H* thus has
no non- trivial idempotents it follows from the Shilov Idempotent Theorem that X is
connected. Now if ¢ € H® and ¢” denotes its Gelfand transform then Spy« (@) = ¢ (x)

is connected . i.e. Sp(T,,) is connected.

Theorem (1.3.31)[23]: If G is a partially ordered group then 77(G) and K(77(G)) are
irreducible algebras on H2(G). Moreover if G # 0 then lim Q,, = 1 in the strong operator
X

topology on B(H?(()).
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Proof. 37 (G) is irreducible iff its commutant B = C1 iff 0, 1 are the only projections in B
(since B is a von Newmann algebra). Now for € B,QU, = U,Q(x € G*) , so Q is an
analytic Toeplitz operator, thus Sp(Q) is connected. Thus if Q is a projection, then Sp(Q) =
{0}or{1},s0Q = 0 or 1. Hence B = C1 and 77 (G) is irreducible on H?.

If G = 0 then dim(H?) = 150 K(97(G)) is irreducible on H2. So we suppose that G
is non-zero. Let M = (K(37(G))H?) . If M =0then (77(G)) = 0,50 Q, = 0(x € G¥),
thus G* = 0 which implies G = 0. Thus M = 0. Since M reduces 7" (G),M = H2. If f €
K(7"(G))H?* then f = Tyf; + -+ + Tof, forsome Ty, ..., T,, € K(37(G)) and some fi, ..., f5
in H2.

Thus limQ,f =1imQ,T;f; + ---+1imQ,T,f, = Tif1 + -+ Tf, = f, because T; =
X X X

lim Q,T; (j = 1,..n). Hence f =1lim Q,f (f € H?) as K(37(G))H? is dense in H? , s0
X X

lim Q,, = 1 in the strong operator topology on B(H?).

X

Now suppose that N is an invariant closed subspace of H? for K(?T(G)), and f €
N,T € 37(G). Then Tf =limTQ,f isinN, since TQ,f € N(x € G*). Thus N is an
X

invariant subspace for 77 (G), so N = 0 or H2. We have thus shown K(:IT(G)) is irreducible
on H2.

Recall that if G is a partially ordered group then the map U:G* - 77(G) is a
semigroup of isometries, so it induces unique *- homo-morphism U*: 7(G) — 3" (G). Since
U,(x € GT) generate 7"(G),U* is onto. We can thus regard U* as an irreducible
representation of 7(G) on H?(G). This representation is not always faithful as the next
example shows:

For Example, M = N\{1} is a cone on Z. Thus (Z, M) is a partially ordered group.
Note that 2 and 3 are not comparable for the partial order <,,. Let G; = (Z,M) and G, =
(Z,N). The identity map ¢: G, — G, is a positive homomorphism, so it induces a *-
homomorphism ¢*:7(G,) = J(G,) and this is surjective since ¢ is surjective. Hence the
restriction ¢*: K(3(G,)) = K(9(G,)) is surjective, and thus non- zero. If K(7(G,)) were
simple then this restriction map ¢* would be a *-isomorphism, so 2 <, 3 implies g, < q;
in (7(G3)) .50 9*(q2) < ¢*(q3), implying q, < q5inK(7(Gy)),s0 2 <), 3, whichiis false.
Thus K(ﬂ(Gl)) is not simple. However it is easily seen that all Q1 are of finite rank (x € M),
50 K(J7(Gy)) € K(77(G,)) as (QL)xew are an approximate unit for K (97(G,)) and since
K(39(G,)) is irreducible on H?(G,) we therefore deduce that K(J7(G,)) = K(H%(Gy)). In
particular K (37 (G,)) is simple. Since K (7(G,)) is not simple, the map U*: 7(G,) - T" (G,)
IS not injective.

Theorem (1.3.32)[23]:If G is an ordered group then the canonical map U*:7(G) — 7" (G)
is a faithful irreducible representation of 7(G) on H%(G).

Proof. The map U:G* — J"(G) is a nonunitary semigroup of isometries, so by Theorem
(1.3.15) U~ is injective.
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The idea is to show that a number of the stronger results we proved earlier are in fact
“best possible”. For example if G is torsion- free partially ordered group for which K (7(G))
Is simple we show G is isomorphic to an ordered subgroup of R (cf. Corollary (1.3.18)) one
can interpret Theorem (1.3.15) as saying there is essentially only on candidate for the title
“Toeplitz algebra” if G is an ordered group. More specifically it implies that if B is any C*-
algebra generated by a nonunitary semigroup of isometries 8 over G then *:7(G) — B is
a x-isomorphism. We show that this result characterizes the ordered groups amongst the
torsion- free partially ordered groups.

If G is an abelian group we call a cone M in G maximal if M is not contained in any
other cone of G. A simple application of Zorn’s Lemma implies that every cone of G is
contained in a maximal cone of G. The following elementary result is probably known, but
we include a proof for the sake of completeness.

Lemma (1.3.33)[23]: If G is a torsion- free abelian group and M a cone of G then M is a
maximal cone of G if and only if (G, <,,) is an ordered group (i.e. <, is a total ordering).

Proof. Itis trivial that if (G, <,,) is totally ordered, then M is maximal (this does not require
G to be torsion- free). Suppose conversely that M is maximal. First, let x € G{0} such that
nx € M for some positive integer n. We show that x € M: define N ={y+mx:y €
M,m € N}. Clearly 0 e NNN+ N S N and G = N — N. Suppose that z€ N n (—N), so
that z =y, + myx = —y, — my,x for some y,,y, € M , and some m,,m, € N. Thus
0 <y nly, +y,) =(my +my)nx <, 0,50 n(y; +y,) =0=—(m; + my,)nx implying
that y; +y, = 0= (m; + my)x (since G is torsion- free), thus y, =y, = 0 (since
Y1,V2 =y 0), and m; + m, = 0 implies m;,m, = 0. Hence z = 0, implying that N n
(—N) =0.Thus N isacone,and N 2 M impliesN = M, so x € M.

Now suppose only that x € G\(—M). Again let N = {y + mx:y € M, m € N}and
againwehave 0 e NN+ NS NandG=N-N.Ifze Nn(—N)thenz=y, + myx =
—y, — m,x for some y,,y, € M, and some m,,m, € N. So y; + y, = —(m,; + m,)x thus
n(—x) € M where n = m; + m,. If n > 0 then by the earlier part of this proof, —x € M,
so x € —M, which is false. Thus n = 0 implies m; =m, =0, so y; +y, = 0, which
implies y;,y, = 0 (since 0 <, y¥1,¥2), S0 z = 0. We therefore have N n (—N) = 0, thus
N is acone, and since M € N,M = N. Thus x € M. We have shown that G = M U (—M)
I.e. (G,<p) is totally ordered.

The hypothesis that G is torsion- free is necessary in Lemma (1.3.33), since ordered
groups are torsion- free.

Theorem (1.3.34)[23]: Let (G, <) be a torsion- free partially ordered group such that for
every unital C*-algebra B and every nonunitary semigroup of isometrics B: G* - B, 5* is
injective. Then (G, <) is an ordered group.

Proof.G* is contained in a maximal cone M, so if ¢ denotes id; then ¢ is a positive

homomorphism from G, = (G,G*%) to G, = (G, M), and so induces a *-homomorphism ¢*

from 7(G,)to 7(G,). Since ¢ is surjective, so is ¢*. The semigroup of isometries f: G; —

T(Gz),x = (W), is nonunitary (for if §(x) is unitary then ¢*(V;) = V() is unitary, so

@(x) =0,i.e. x = 0). Hence B* = ¢* is injective. Thus if x,y € G* then we may suppose
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x <y y (since (G,M) is totally ordered). Hence g, < g, in K(3(G;)), s0 ¢*(qy) <
¢*(qy), implying that g, < q,, in K(3(G,)), sox < y. More generally if x, y € G then there
exists z € G* such that x,y € zimply z—y,z—x € G*, so z — y, z — x are comparable
in (G, <), thus x, y are comparable in (G, <). Thus (G, <) is totally ordered.

Theorem (1.3.35)[23]: If G is a torsion- free partially ordered group for which K(ﬂ(G)) IS
simple then G is order isomorphic to an ordered subgroup of R.

Proof. (Two partially ordered groups G4, G, are order isomorphic if there exists a bijective
map y: G; — G, such that 1 and 11 are positive homeomorphisms.)

First we show that G is simple: Let I be an ideal of G, and leti: I — G and ¢: G —
G /1 be the inclusion and quotient homeomorphisms respectively. Since ¢ is surjective, so

is ¢*:9(G) - I(G/I), and hence also the restriction map ¢*: K(7(G)) » K(3(G/D). As
K(H(G)) Is simple this restriction map ¢* is zero or injective. In the first case we have
K(3(G/D)=0,50 G/I =0, s0 G = I. In the second case for x € I'*,9*(qy) = qpu) =
qo = 0,50 q, =0,50x = 0. Thus I* = 0 implying that I = 0. This shows G is simple.

Now we show G is totally ordered: Using the same trick as in the proof of Theorem
(1.3.34), there is a maximal cone M containg G*. Let ¢ =idg, G; = (G,G"), and G, =
(G,M). Thus ¥ is a positive homomorphism from G,to G,. As ¥ is surjective, so is
¥*:9(G,) - I(G,), implying that the restriction map y*: K(3(G,)) - K(3(G)) is zero or
injective (again we are using the simplicity of K(7(G,))). In the first case K(7(G,)) = 0
which implies G = 0, so G is order isomorphic to the ordered subgroup 0 of R. In the second
case if x,y € G* we may suppose that x <), ¥,50q, < g, in K(9(G,)), i.e. *(qy) <
¢*(qy), 50 qx < q, in K(3(G,)), thus x < y. This implies that (G, <)is totally ordered.

Thus G is a simple ordered group, so G =F(G) ={x € G:forally >0, |x| <
ny for some n € N}.(for if x € G and x > 0 then I, = {z € G: |z| < nx for some n € N}
Is a non- zero ideal of G, so I, = G.) Thus G is an Archimedean group in the terminology
of Rudin [36], and by a well know result G is order group isomorphic to an ordered subgroup
of R ([36]).

One can thus summarize Theorem (1.3.35) and Douglas’ result (Corollary (1.3.18))
as follows: for G a torsion- free partially ordered group K(:](G)) Is simple iff G is a simple
ordered group iff G is order isomorphic to an ordered subgroup of R.

Recall that a C*-algebra A is elementary if there is a Hilbert space H such that A is *-
isomorphic to K(H).

Theorem (1.3.36)[23]: Let G be a torsion- free partially order group. Then K(J(G)) is
elementary if and only if G is order isomorphic to 0 or Z.

Proof. If G =0 then 7(G) = C,s0 K(7(G)) =0 = K(H) for H=0. If G = Zthen by
Theorem (1.3.32), K (7(G)) is *-isomorphic to K(37(G) ). but K(97(G)) = K (H?(G)) since
all Q,.(x € G™)are finite rank, and K(ﬂT(Gl)) is irreducible on H?(G).
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Conversely, suppose that K(7(G)) is elementary and that 8: K(3(G)) » K(H) is a
x-isomprphism for some Hilbert space H. Then in particular K(?(G)) Is simple, so we may
assume that G is an ordered subgroup of R, and without loss of generally suppose also G #
0. Since all B(g,)(x € G*) have finite rank in K(H) we may choose x € G,x > 0, such
that the rank of 8(q,) is minimal. Then x is a smallest positive element of G. Hence G =

Zx, so G is order isomorphic to Z.
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Chapter 2
Lower Bounds with New Estimate and Matrix Valued

We show the following theorem: given §,0 < § < 1/3 and n € N there exists an
(n 4+ 1) X n inner matrix function F € H(O72+1)><n such that I > F*(2)F(z) = 6% Vz €

-n -n
D, but the norm of any left inverse for F is at least [%] > G 5) . We improve an

estimate of Fuhrmann and Vasyunin in the vector valued corona theorem. We illustrate that
the norm of the solution of the H? corona problem in the polydisk D™ grows at most
proportionally to v/n. Our approach is based on one that was originated by Andersson. In
the disk it essentially depends on Green’s Theorem and duality to obtain the estimate. In the
polydisk we use Riesz projections to reduce the problem to the disk case.

Section (2.1): The Matrix Corona Theorem and the Codimension One Conjecture

The Operator Corona Problem is the problem of finding a necessary and sufficient
condition for a bounded operator-valued function F € Hg _; to have a left inverse in H®,
i.e. a function G € Hg _,; such that
(B) G(z)F(z) =1Vz € D.

If dim E < cowe call it the Matrix Corona Problem.

The equations of type (B) are sometimes called in the literature the Bezout equations,

and “B” here is for Bezout. The simplest necessary condition for (B) is
(O)F*(2)F(z) = 6°1, vzeD (6>0)
(the tag “C” 1s for Carleson).

If the condition (C) implies (B), we say that the Operator (Matrix)
Corona Theorem holds.

The Operator Corona Theorem plays an important role in different areas of analysis,
in particular in Operator Theory (angles between invariant subspaces, unconditionally
convergent spectral decompositions, see [44], [45], [52], [53]), as well as in Control Theory
and other applications.

Let us discuss the cases when the Operator Corona Theorem holds.

The first case is dimE = 1,dimE, =n < co. In this case F =[fi,fo ., fnl7, G =
(91, 92, --» gnland it is simply the famous Carleson Corona Theorem [40], see also [42],
[45].

Later, using the ideas from the T. Wolff’s proof of the Carleson Corona Theorem, M.
Rosenblum [47], V. Tolokonnikov [50] and Uchiyama [55] independently proved that the
Operator Corona Theorem holds if dimE = 1,dim E, = co.

Then, using simple linear algebra argument, P. Fuhrman [41] and V. Vasyunin [50]
independently proved that the Operator Corona Theorem holds if dim E < co,dim E, < co.
This theorem is now commonly referred to as the Matrix Corona Theorem.

A trivial observation: if F(z)E = E,Vz € D, then the left invertibility (C) implies the
invertibility of F(z), and so we can simply put G = F~1. So in this case the Operator Corona
Theorem holds as well.

As for the general Operator Corona Theorem, it was shown by the author ([51], see
also [52]) that it fails in the general case dim E = +oo,

Let us discuss the codimension one conjecture first. As we just mentioned above, the
Operator Corona Theorem fails if dim E = oo, but it holds if F(z)E = E,Vz € ID. So, what
happens if the operators F(z) are “almost” onto, namely if codim(F(z)E = 1Vz € D? It
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was conjectured by N. Nikolski and the author that in this case the Operator Corona Theorem
holds. It was also conjectured that the Matrix Corona Theorem holds for all (n + 1) X n
matrix-valued functions in Hg, 1)y, With uniform (independent on n) estimates. The

Operator Corona Theorem holds in the matrix case by Fuhrmann—Vasyunin, the question is
only in uniform estimates.

Besides the naive reason that the codimension one case is very close to the case of
invertible operator-function, there were some more deep facts that lead to the codimension
one conjecture. Namely, see Lemma (2.1.4) and Theorem (2.1.9) below, with each
(n + 1) X nmatrix function in H*one can canonically associate an (n + 1) X n matrix
(vector) with the same best norm of a left inverse.

Since in n+ 1 case it is possible to obtain the estimate in the Corona Theorem
independent of n, it seemed reasonable to propose the codimension one conjecture, at least
In its matrix version.

It is interesting that the above canonically associated vector (the so called co-analytic
complement) plays an important role in the construction.

Other important results in are Theorem (2.1.9) and Corollary (2.1.6) which clarify the
role of co-analytic orthogonal complements in the Operator Corona Problem.

The second problem we are dealing with is the problem of estimates in the matrix
case. It was shown by V. Vasyunin [50] (see also [54]) that if dimE = n < coand we
normalize the function F € Hg,; as

[ > F(2)F(z) = §%I, vz € D,
then one can always find a left inverse G € Hy,z ,GF = I, such that [|G]|, < C(n,d),
where
C(n,8) = C\n- 5 %" log 6™
Recently, T. Trent [54] was able to improve this estimate with
C(n,8)=C-6"1logés 2",
but in both cases C(n, §) grows exponentially in n.

On the other hand, it had been shown in [51], see also [52] that C(n, §) cannot be
uniformly (in n) bounded, namely that for any sufficiently small § > 0 one can find F €
Hp,p,dimE = n, satisfying I > F*(z)F (z) = §°1,Vz € D, and such that any left inverse
G € Hg,p_satisfies the inequality

G|l = c(n,8) = C5?log(6%n + 1)
so c(n, &) grows logarithmically in n. From this estimates it is easy to get
that the operator Corona Theorem fails in the general case dim E = oo,

We prove the lower bound [§/(1 — &§) 7™ which is quite close to Trent’s estimate.
so his estimate is probably very close to a sharp one. This estimate is obtained for (n + 1) X
nmatrices, so it disproves the codimension one conjecture (its matrix version).

Theorem (2.1.1)[38]: Givend,0 < 6 < 1/3 and n € N there exists an(n + 1) X n inner
matrix functionF € H;, . 1yxnSuch that

1 > F*(2)F(z) = §%I, vz € D,
but the norm of any left inverse forFis at least[6 /(1 —8) ™" = (% &)™
Recall that a function F € Hg”, is called inner if operators F(z) are isometries a.e.
on T, and an outer if FHZ is dense in H5 . We will call F co-inner (resp. co-outer) if FT is
inner (resp. outer).

Let us recall that any F € Hg2,; admits an inner-outer factorization
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F = F;Fy, where F; € Hg . is inner and F, € Hg’, is outer. Let us recall also that the
inner part F; (resp. the outer part F,) is unique up to a constant unitary factor on the right
(resp. on the left).

Let us also recall that any z-invariant subspace M (zM c M) of HZ can be represented
as @Hﬁl, where E; is an auxiliary Hilbert space and © € Hg, g is an inner function.
Definition (2.1.2)[38]: We say that an operator valued function v € Hg’,; has a bounded
co-analytic (orthogonal) complement if there exists a function v € Hg_ such that
kervT(z) = V(2)E; a.e. on T. The function V is called a co-analytic (orthogonal)
complement of v,

We will usually skip the word orthogonal, and simply say co-analytic complement.

The reason for the word co-analytic complement is the that the equality ker v (z) =
V (z)E; can be rewritten as

V(2)E; = W(2)E)* aeonT.

(Take the inner part of V) we can always assume that the function Vis inner.
Moreover, by taking the outer part of V7 we can always assume that V is also co-outer. So,
when we say the co-analytic complement we usually mean V7, where Vis an inner and co-
outer function. Lemma (2.1.3) below states that such inner and co-outer function is unique
up to a constant unitary factor on the right.

That if the function v is inner (i.e. operators v(z) are isometries a.e. on T), then the
operators W (z), where W = [vV] € Hggp ;. defined by

Wz)(e®e) =v(z)e+V(z)e;, ,e€EE,e; EE,;
are unitary a.e.on T.
Lemma (2.1.3)[38]: Let v € H?, ;. have a bounded co-analytic complement V, where V €
Hg g, is an inner and co- outer function such that

kervT(z) =V(2)E; ae.onT.

Then

{feHZ:VTf=0 a.e.onT} = VHE.
Moreover, any other such inner and co-outer function V, € Hg’ _,p_satisfiesV, = V U, where
U: E, — E; is a constant unitary operator.
Proof. Denote

M:={f €HZ:v"f=0 a.e.onT}.
Clearly, VHz, < M. Since zM c M,
M =VHE,

where V € HZ, . is an inner function.

Since HZ, ¢ M = VHZ , the preimage V~*(VHZ,) is a z-invariant subspace of HZ.
So it can be represented as V=*(VHZ ) = UHZ,, where U € Hg, _z is an inner function and
Eyis an auxiliary Hilbert space. Therefore VHZ = VUHZ,, so the space Ej;can be identified
with E; and the function Vcan be factorized as V = V U. Therefore V(2)E; c V(2)E, a.e.
on T, and so

kerv(z)T =V (2)E; c V(2)E c kerv(z)Ta.e.onT.

This implies that V(z)E; = V(z)Eand hence U(z)E; = Ea.e. on T. This means that
the function U takes unitary values a.e. on T, so UT is also an inner function. Since V is a
co-outer function, Umust be a constant (unitary operator).
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The following well-known lemma asserts that a matrix valued function always has a
bounded co-analytic complement.

Let F € H.;y,,be a matrix valued function. Since any minor of Fbelongs to H*, if it
IS non-zero on a set of positive measure in T, then it is non-zero a.e. on T. Recalling that the
rank of a matrix Ais a maximal ksuch that there exists a non-zero minor of order k, we can
conclude rank F(z) = Const a.e. on T. We will call this constant the rank of F(and denote
rank F).

Lemma (2.1.4)[38]: Let v be an n X m(m < n)matrix-value d function in H* = Hy )y,
and letrank v =n—rae.onT.

Then vhas a bounded co-analytic complement VV, where V € HZ,... is an inner and co-
outer function.

Proof. Consider the equation vt f = 0. Standard linear algebra argument implies that there
exist vector functions f, f5, ..., fwith entries in the meromorphic Nevanlina class NV :=
{f/g:f,g € H*}such that for almost all z € T

kerv'(2) = L{f1(2), f2(2), ... fr(2)}.
Multiplying all entries by the product ofall denominators, we obtain that all vector functions
fi, f2, .-, f-Can be chosen to have entries in H.

Consider subspace M c HZconsisting of all vectors f € H? satisfying vTf = 0.
Clearly zM < M, so Mcan be representedas M = VHrZ, , Where Visann x r'inner function.
Clearly, 7' < rand V(2)Cr’ c kerv(z)Ta.e.on T.

Since f1, f>, ..., fr € M = VH?, we have the opposite inclusion

kervT(z) c V(z)Cr' a.e.on T.
Both inclusions together imply that ' = r and
kervT(z) = V(z)Cr a.e.onT.

The rest follows from Lemma (2.1.3).

The theorem below shows relation between co-analytic complements and Corona
Problem. Let us mention, that to prove Theorems (2.1.1) and (2.1.10) one can use a weaker
version of it, namely the fact that the best possible norms of the left inverses of Fand
Vcoincide (provided that a co-analytic complement exists). Note, that such simple version
was first proved by V. Peller and [46]. However, it is always nice to have a complete
understanding, so we present the theorem in full generality.

Remark (2.1.5)[38]: Note, that in the matrix case (dimE,dimE, < o) a simple
dimension/rank counting shows that the equality

V(2)E; = ker FT (z)Vz € DD,
and the same equality a.e. on T are equivalent.

In the general operator valued case it is not known whether one implies the other.
Numerous counterexamples in the theory of analytic range functions, see [43] lead one to
suspect that none of the implications holds.

The following corollary gives necessary and sufficient condition for the Operator
Corona Theorem to be true in the case of finite codimension.

Corollary (2.1.6)[38]: Let F € Hg?, be an operator-valued function satisfying
F(2)*F(z) = 621 vz €D,
for some § > 0. Assume that at a point z € D (or on a set of positive measure in T)
codim(F(z)E ) = n < oo, n # 0. Then the following statements are equivalent:
(i) F is left invertible in H*, i.e. there exists G € Hg’_,gsuch that GF = I,
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(ii) There exists function V € H¢n_, satisfying V(2)*V (z) = 621, vz € D,§ > 0, such
that
V(2)C* = ker FT(2) vz € D (and a.e.on T)
Moreover, the function VV always can be chosen to be inner, and if both F
and V' are inner, the best norms of the left inverses for F and Vcoincide.
Proof. Consider the inner-outer factorizeation of F, F = F;F,. Note, that
F}(2)F;(z) = §?I, vz €D,
where § = §/||F|ls. The condition about the codimension of F(z)E implies that F(and
therefore F;) is not invertible in H*. Therefore, by Theorem (2.1.9) we have (i) = (ii).
Since the Operator Corona theorem holds for functions in Hen_, .,

Condition V(2)*V(z) = §21 implies that Vis left invertible. Since V; is a
co-analytic complement of I/, Theorem (2.1.9) implies that (ii) = (i).
To prove Theorem (2.1.9) we will need the following two well known results.
Recall, that given ® € L, , Hankel and Toeplitz operators Hg and T with symbol @ are
defined as
Ho:HE > (H3) Hof = P_(®f)’
Hy:HE > HE Hof = P, (®f),
where P,and P_are orthogonal projections onto H2and (H?)+ respectively.
Theorem (2.1.7)[38]: (Arveson [39], Sz.-Nagy—Foias [49]). Let F € Hg’, . The following
two statements are equivalent:
(i) The function Fis left invertible in H*, i.e. there exists G € Hg'_,gsuch that GF = I,

(i) The Toeplitz operator T is left invertible, that is
fEHé,rﬁf‘uﬂ”TFf” =0>0.
Moreover, the best possible norm of a left inverse G is exactly 1/§.

This theorem also can be found in the Monograph [44].

[44] states that F is right invertible in H if and only if T+ is left invertible: applying
itto FT we get the statement of Theorem (2.1.7). Similarly, the theorem in [49] states that
F is left invertible in H* if and only if T+ is left invertible, where F*(z) := F(Z). Again,
applying this theorem to F(Z) we get Theorem (2.1.7).

Lemma (2.1.8)[38]: Let F € Hg’,, and let F (&) be an isometry a.e. on T. Then Toeplitz
operator Ty is left invertible if and only if ||Hg|| < 1 (H is the Hankel operator). Moreover,
|Hr||? = 1 — &2, where
6 feHéIrﬁ;”:l”TFf”
Proof. Clearly Ff = Trf + Hpf for f € HZ, so
IAI12 = NFFI? = ITef 117 + N HEfIIZ,
and the lemma follows immediately.
Theorem (2.1.9)[38]: Let F € Hg,;_be an inner function. Assume that F is left invertible,
but not right invertible in H*. Then Fhas an co-analytic complement VV, where V € HE S ,is
an inner and co-outer function. Moreover
V(2)E;, = ker FT (z)Vz € D,
the function V is also left invertible, and the best possible norms of left inverses for Fand
Vcoincide.
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Proof. Let G € Hg _; be a left inverse of F, that is GF = I. Then FTGT =1, and for P €
Hp g, P :=G"F" we have
P2=G"(FTG"FT =G"F" =P,
so P(z) is a projection a.e. on T (and Vz € D). Since
P(2)GT(2)e =G(2)TF(2)TG(2)Te =G(2)Te Ve€E,,
we can conclude that P(2)E, = G(z)TEa.e. on T, as well as Vz € D. Since GT is left
invertible, ker P(z) = kerF(z)Ta.e. on T (and Vz € D). So, for the complementary
projection Q(z),Q =1 — P we have
Q(2)E, = kerF(2)T a.e.on T(and Vz € D).
Note, that Q(z) # 0 because F is not right invertible in H*. Taking V to be the inner part
of Q we see that F has a co-analytic complement.
Now let us prove the rest of the theorem. Since F is left invertible,
Theorem (2.1.7) implies that
fEHé.rlllffnﬂuTFf” =0>0
By Lemma (2.1.8) ||Hz||? = 1 — §2 (recall that F (&) is an isometry a.e. on T).
Consider the operator valued function W = [F,V] € Hygp .,
W) (e®e)=F()e+V(z)e,, e€E,e €E,z€T,
where V € Hg g is the inner and co-outer function from the definition of the co-analytic
complement. Recallthat the function Wtakes unitary values a.e. on T,
Consider Hankel operator Hy,. Its symbol is obtained from F by adding an analytic
block, so H,, differs from H by a zero block. Hence
|Hw I = [|Hg|I? = 1 — 62
and the Toeplitz operator Ty, is left invertible.
Let us show that the adjoint operator T}y, = Ty,~has trivial kernel.
Indeed, let Ty« f = 0, f € HZ . Then
T 1
wer = [F] e (tzen)
Since F € HY, ., thisimplies F*f = 0. By Lemma (2.1.3) f = Vg, g € HZ, thus g = 0 and
therefore f = 0. So ker Ty~ = {0}.
The operator Ty is left invertible and ker Ty, = {0}, that means Ty, is invertible. By Lemma
(2.1.8)||Ty+11? = 1 — &2. Since W *differs from V* by an analytic block, Hankel operators
Hy+ and Hy,-differ by a zero block, thus
|Hy+1I? = [[Hy+ > = [|Hy-|I* = 1 — &2
By the Nehari theorem ||Hy-|| = dist;(V*, H®), and since the transposition does not
change the norm in an operator valued L*and V = (V*)7,
|Hy || = diste (7, H®) = dist,eo (V*, H®) = ||Hy+|| = /1 — 2.
Therefore, by Theorem (2.1.7) the Toeplitz operator Ty is left invertible, and thus Vis left
invertible in H*.
Main construction and the proof of Theorem (2.1.1).

Foré < 1/3 let a > 0 be a small number such that

) s < 1
1—a 3
Definea :=6/(1—-6"),s0a/(1+a) = 6'. Note, that a < 1/2.

Consider (n + 1) X nmatrix F € H®,

45



p(z) 0 0 0 0
/—a p,(z) 0 0 0 \
| 0 —a ¢3(2) 0 0 |

F |0 0 -a 94(2) 0 K
\0 0 0 0 on() /
0 0 0 0 —a

where ¢are some inner functions to be chosen later. Another way to describe Fis to say
that its columns F can be represented as
Fy = pr(2)er — aepyq,
where ey, k = 1,2,...,n + 1 is the standard basis in C**1,
It is easy to check that the n + 1 dimensional vector-function (column)

an
1/2 / ", \

1-— az | n-2 |
_ a
V= (T) | & ]
ap19; ---‘Pn—1/
P1P2 - Pn

is inner and co-outer, and that Vis orthogonal to the columns of F. Let us now assume that
@, has zero, for example that ¢, (0) = 0. Then ||V (0)|| = a”\/(l —a?)/(1—a?"*2) <

a™V1 + a?, so the norm of a left inverse to the column V is at least V1 + a?/a™.
It is easy to see that ||F||, < 1 + a(1 comes from the main diagonal, a from the one
below).
Suppose, that we can pick the inner functions ¢, such that
|F(2)ell = (1 —a)alle]|, vz € D,Ve € C",
where a > 0 is from above.
Then for the inner part F; of F

(1-a)a
llell = [IF;(2)ell = ﬁllell = dlle]l,vz € D, Ve € C".

Theorem (2.1.7) implies that the norm of an analytic left inverse to F; is at least
V1 + a?/a™. Since
5 ) &' )
1= %% 15 "1y we~ 0
and acan be chosen arbitrarily small, we can construct a function F; such that the norm of
any Hleft inverse is at least [ /(1 — &§)]™and the theorem is proved.
To construct functions ¢, pick an integer Nsuch that (2a)" < aa. Put ¢,(z) =

Z,0,(2) = zV ,05(2) = zV°, ..., 0.(z) = zN"". In other words, @,(2) = z, @ 10.
Then for any fixed zthe inequality

aa < @,(z) < 2a
holds for at most one k = k(z) (it may happen that for a some zit does not hold for any k).
Fix z € D, and let k = k(z) be such number. Then in the matrix F(z) below
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F(z) = 0O 0 .. —a P 0O .. O

—a Qg1
O —a Pn
\ ey

in both, upper left and lower right blocks, the main diagonal dominates the other non-trivial
one. Therefore, both the upper left and the lower right blocks are invertible with the
estimates of the norm of the inverse 1/aand a=*(1 — a) ! respectively. So, if we delete the
kth row, we get a (block diagonal) invertible operator with the norm of the inverse at most
al(l-a) L

Since adding an extra row does not spoil left invertibility, we conclude that F(z) is
left invertible and

IF(2)ell = (1 — a)allell, Ve € C"
Theorem (2.1.10)[38]: Given §,0 < § < 1/3 there exists an inner operator valued function
F € Hg’,p (dim E = oo) such that

[ > F*(2)F(2) = 6%1 vz eD,
the codimension of F(z)E is E, is one Vz € D, but F does not have a left inverse in H*.
Moreover, the function Fcan be chosen such that codim(F(z)E) = 1 a.e. on T, or such that
F(z)isontoa.e.onT.
Proof.

Consider an operator-valued function F,

p1(z) O 0 0 o -
—a @,(z) 0 0 0 \
0 —-a (,03(2) O 0
F= 0 0 —a @u(z) 0

0 0 0 0 ™ @,(z)
which is an infinite dimensional analbgue of the function F constructed previously. Here
a, P4, ..., Pn, ... are exactly the same as above. We can show that

(1+a)?l = F*'(2)F(2) = (1 —a)?a’l = 6%l

Note, that for z € D operator F(z) is not onto: subspace (F(z)E)? is spanned by the vector
1

¢./a
P19,/

\@1@2 BT /
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On the other hand, it is easy to see that the operators F(z) are invertible a.e. on T (the
main diagonal dominates), so according to Corollary (2.1.6), F does not have a left inverse.
To get the statement about inner function, it is sufficient to take the inner part of F.

To prove that it is possible to pick Fsuch that F(z)Ehas codimension 1 a.e. on T, let
us first notice that for the vector Vabove

Jim V(@) = e

Therefore it is possible to find a simply connected domain D c D with C*-smooth
boundary, which touches T exactly at one point, such that

j log||V(2)]| - |dz| = +co.

aD
Since for such domains the harmonic measure is equivalent to the arclength |dz|, we can
replace |dz|by the harmonic measure, and still get 4+oco in the integral. Note also, that
everywhere on dDexcept the point dD N T, the codimension of F(z)Eis 1.

So, if w: D — D is a conformal mapping, then for F; := F o w, V; :=V o w we have

that for all z € closID except one pointon T

(F1(2)E)* = spanV, (2).
Notice, that also

lim j log||V(2)] - 1zl = f log||Vy(2)]] - |dz]| = +eo.
rT T
But it is easy to see that F; is not left invertible in H. Indeed, if F is left invertible in H*,
Corollary (2.1.6) asserts that there exist a vector function v € Hg? = HZ2, such that
(F(2)E)* = spanv(z)

for all z € D and a.e. on T. Any such function must be represented as v(z) = u(z)V;(2)
where uis a scalar function. Since ||V, (z)|| = 1 the function u must be bounded, and since
both v and V; are holomorphic in D, the function ualso must be holomorphic. Therefore
u€eEH”.

We discuss some open problem concerning the Operator Corona Problem. The
ultimate problem is to find a local necessary and sufficient condition for left invertibility of
F € Hg,p . Butthis is probably hopeless, so there are several problems that seem to be more
tractable.

Does there exist § > 0 (close to 1) such that for any F € Hg’, the inequality

[ > F(2)'F(z) = 6%1
implies that there exists G € Hg’, such that GF = I?

The counterexample constructed works only for § < % the method from [51] gives

counterexample for § < 1/+/2.

As Theorem (2.1.10) asserts, if F € Hg,g is invertible, there exists a left invertible
G € Hy, g such that ker F(z)" = V(2)E; a.e.on T.

Suppose F € Hy’, satisfies

F(2)*F(z) = 6°1 VzeD,
and suppose we know that there exists VHg. _,; such that ker F (2)T =V(2)E; a.e.on T also
satisfying the Corona Condition
V(2)*'V(z) = £21.
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Does this imply that F is left invertible in H*?

Section (2.2): Vector Valued Corona Problem

We give an improved estimate in the vector valued corona theorem for the unit disk.
Our proof will be split into two parts: first, we will resurrect the operator corona theorem
from the 1970s, and then we will use a Hilbert space argument, based on a version of Wolff’s
ideas. Since we use Hilbert space methods, the Riesz representation theorem replaces the
usual o-techniques.

In 1962 Carleson determined when a finitely generated ideal in H* (D) is actually all
of H* (D), by giving a function theory condition on the generators. Namely, 7(f3, ..., fn) =
H> (D) if and only if there existsan ¢ > 0, sothat ¥, |f;(2)|*> = €% forall z € D. Actually,
more was shown, as a bound for the size of solutions was given. If {f;}/*, € H*(D) such
that 1 > Y7, |fi(2)|? = &2 for all z € D,then there exists a B(g,m) < o and there exist
{g ¥, c H*(D) with X%, fig; = 1 and X1 g;(2)|?> < B(g,m) forall z € D.

Spawned numerous investigations in many directions, but we will mention only those
most closely related to our work [40]. For the scalar case above, Hormander introduced o-
methods, culminating in Wolff’s surprising proof of the corona theorem. (See [42].)
Rosenblum [47] and, independently, Tolokonnikov [66] removed the dependency on m.
This was fine-tuned by Uchiyama [55] to yield the estimate (for € small)

C 1 .
B(e) < g—zlng—z, C a universal constant.

For the operator version of the corona problem on the unit disk, Fuhrmann and later
Vasyunin (see [41], [45]) considered F € B(H?(D)(*), H?(D)™), with SWF = FS(*),
Here S denotes the unilateral shift and n is finite. So F can be viewed as an n X co. matrix
with analytic Toeplitz operators for entries. Vasyunin showed that the hypothesis I >
F(z)F(z)* = €I forall z € D and € > 0, enables one to get an estimate for the solution to
F(z)G(z) = I of the form

G(2)G(2)* < C(n, &)l forallz€ D,

where C(n, €) < CvVn(1/£?™)In(1/€?™) and C is a universal constant. If the best theoretical
bound for n = 1,C(1,¢) = B(¢) ~ 1/&2, is proven, the estimate of Vasyunin would be
C(n, &) < CVn(1/€?™) (for small ). Later an important result of Treil [67] showed that
C(n, &) 7 cwasn 7 oo, Thus the existence of a lower bound for F (z) F (z)*does not guarantee
the existence of a G(z) with F(z) G(z) = I, when n = oo, See Nikolskii [45]and the article
by Sz.-Nagy, [69]. Our estimate will remove the ‘“v/n’’ and, also, replace 2" by £™** and
thus give an improvement of Vasyunin’s estimate. However, for the case n = 1, it just
reproduces the estimate of Uchiyama.

We will consider operators in B(H2(D)™), H2(D)™), where m and n are finite and
n < m. Since our estimates will be independent of m, the case m = cowill follow from a
routine argument (see Nikolskii [45]). In part of our argument, we will be factoring certain
projections. This is where the finiteness of m is used.

F will stand for the multiplication operator acting from L?(0D)™ into L>(dD)™ by
(Fg)(eit) = [ﬁj(eit)]z;rzlg eit) a.e.t € [-m, ], where f;; € H*(D) for all i=
1,...,nandj = 1,...,m. For z € D, F(z) will denote the n X m matrix [ﬁj(z)]?ﬁl, giving
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a linear transformation in B(C™, C™). Tr will denote the analytic Toeplitz operator matrix,
gotten by restricting F to H2(D)™.

Our estimates are based on the following two theorems. Let {f,; (e)}"", < H*(D)

and let F = [Mfl.j] € B(L2(aD)™, 12(aD)™).
Theorem (2.2.1)[54]: If

[ > F(2)F(2)* = §%] forz €D,
Then

. 1 177
TFT <2C[ n+1lngﬁ) I.
[Here € = 2+/e + 2v/2eand 0 < €2 < ;.]
Theorem (2.2.2)[54]: If
TeT*r = 6°1,
then there exists
mmn oo
{oy},,_, c H(D),
so that
1
TFTG == I and ”TG” < -

S5
Note that

IT6ll = supllG(2)llpcm,cmy

Z€D
so Theorems (2.2.1) and (2.2.2) together constitute the vector valued corona theorem with

the improved bound. The conclusion of Theorem (2.2.2) is the desired ‘‘corona theorem’’
conclusion, but the hypothesis for Theorem (2.2.2) is an operator theory one, as contrasted
with the pointwise function theoretic assumption in Theorem (2.2.1). For this reason,
Theorem (2.2.2) is referred to as an ‘‘operator corona’” theorem. Various versions of
operator corona theorems were proved in the 1970s. See Arveson [39], Sz.-Nagy and Foias
[65], and Schubert [64]. More recent versions include Katsoulis et al. [63], Helton [60], Ball
and Trent [58], and Agler and McCarthy [56]. An expository account of the control theory
approach is given in Trent [68]. Thus we will not include a proof of Theorem (2.2.2).
However, we will make two comments. First, the exact constant occurs in Theorem (2.2.2),
so finding the optimal estimates in the corona theorem resides in the proof of Theorem
(2.2.1). Second, if the scalar corona problem is similarly posed over, say the bidisk, then for
a finite set {f;}jL, of bounded analytic functions on D x D, Theorem (2.2.1) holds for a

constant dependlng onm and ¢. See Lin [62] and Li [61]. Therefore the corona problem for
the bidisk reduces to the question of whether Theorem (2.2.2), an operator corona theorem,
holds for H2(D x D). For further comments on this see Trent [68] and Ball et al. [57].

Our proof of Theorem (2.2.1) will require the standard Littlewood—Paley type lemma.

Lemma (2.2.3)[54]: Let ¢ be €@ in a neighborhood of D. Then

¢ (0) = qu(e‘t)da——f Ap(2) In— I2 dm (2).

The proof of Lemma (2 2.3) follows from Green’s theorem. See, for example, Garnett

[42]. Note the special case that ¢ (z) = py(2)q(z), where p, and g are analytic polynomials
and py(0) = 0. Then the above equality says that
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1d
(Po, Qop = f py(2)q'(2) lm| E mz)

To just check the LittIewood—PaIey inner product result, consider terms of the form

z"Z'",n and m nonnegative integers, and n + m > 1. If n # m we clearly get 0 on both
sides. If n + m = 1 we need only check that

1 =fnZ|Z|2"‘2 lnidm(z)
|z|>

D
This is easily verified, using polar coordinates.
We require Lemma (2.2.3), which replaces the Hardy space inner product on dD with
an essentially equivalent inner product on D, to utilize the necessary condition that 2] <
F(z)F(z)* forall z € D.
Also, we use the standard observation that if Theorem (2.2.1) is proven for {f; ]}?]T:l

analytic on D and across dD and satisfying the hypothesis, then a compactness argument
gives the general case. Again details of this (but with a Mordell type compactness argument)
may be found in Nikolskii [45].

To derive a conclusion like AA* > §21, where A € B(X,H), we need the following
well-known lemma.
Lemma (2.2.4)[54]: Let A € B(K,H ), where K and H are Hilbert spaces. Suppose that

for all h in a dense subset of 7, there exists a u;, € K with Au,, = hand [|uy ||« < %llhll}[.

Then
AA* = 6%y .
(The converse holds, but we do not use it.)
Proof. By completeness of K and H', we may assume that for every h € H , there exists a

uy, € K with Au,, = hand ||ug||4 < % ||~[|¢. Thus the range of A is closed, so the range of
A* is closed and ker A* = {0}. Since the smallest solution to Ax = h,v;,, belongs to
(ker A)* = ranA* = rand*, we have v, = A*q for some g in H and ||A*qlls = llupllsc <
lupllse < = ||h||}[ Now since AA™ is one-to-one and onto, thus invertible, we have AA*q =
hand g = (AA )"1h.
Thus [|A"(AA") " hly < _”h”}[SO ((AA")h, h)ge < (1/8%)(h, h)or (AA")™' < (1/
54)1. Thus
1 1 1
Ly = (AA*)Z(AA)1(4A4%)2 < ﬁAA*

and we’re done.

Notice that if A € B(H) and AA* > §2I with § > 0, then P, = A*(AA*) 1Aand
Prera = Iy — A*(AA*)71A. Here Py denotes the orthogonal projection onto N, where N is

a closed subspace of H.
The proof of Theorem (2.2.1) proceeds as follows:

Assume that {fu} j=18r€ analytic functions in a neighborhood of Dand that F(z) =

[fij(z)] satisfies I > F(z)F(z) > £2] for all z € D. To reach our conclusion we use
Lemma (2.2.4). Let h € H2(dD)™ be an m-vector of analytic polynomials. We must find
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a u, € H2(@D)™ with Fu, = hand ||un|| < (C/e™) In(1/2™), with C = 2[2Ve +
2v/2e].
Now all solutions of Fx = h in L2(dD)™ have the form

x=F"(FF)'h— Peerpk  fork € (D)™

To get u, € H2(D)™, we must find k € L2(aD)™ so that
(F*(FF*)™*h — Pyerrk , o) =0  for py € HF (D)™
Or - -
(F*(FF*)™'h,Po) =k, PrerrPo)  for po € HF(D)™ (1)

Obviously, - - -

1
ll < 5 12 [ + &l

For the existence and norm estimate of a k € L2(aD)™ satisfying (1), we apply the
Riesz representation theorem. By considering the linear functional which sends Py, Fﬁo -
(po, F*(FF*)~'h), we require that

T c 1 _
Py e )| = e Pyl @
for all p, € HZ(D)™ and C = 2+v/e + 2v/2e. The remainder of the proof consists in

establisrﬁng (2).
We will need three lemmas.
9(2)Q9(2)"

Lemma (225)[54] For z € 5, PkerF(z) = m,
and the entries of Q(z) are analytic functions in D.
Proof. Fix any z € D,. Let fi + (fi,1(Z), ---»fi,m(z)) fori =1,..,n. Let {gj};,nzldenote the

where Q(z) € B ((C(nTl), (Cm>

standard orthonormal basis for C™, so f; = X7, f; ; (2)e;. Also {g]-};:n will denote any

orthonormal basis for C™ © span {f_}n . Note that our hypothesis that F(z)F(z)* = €21

—ili=1
—\n
and m\n shows that then {f } are linearly independent.
—1li=1
We will be using elementary computations with forms. See [59]. For 1 < k < m, I,
will denote the set of increasing k-tuples of {1,2,...,m}. Then for A1 € II,, with A =
(A s )y Ay <Ay <o < Ag,and 45 € {1,2,...,m},
e=e,Ney, N...ey,.
It is not hard to see that {e;} aep. €an be identified with the standard orthonormal basis for
k

(C(Trrll) in a natural way.

Define Q(z)* € B («:n, @(nTl)), formally by
(9(2) (W) =wA Zl A A Zn

By our hypothesis m > n. If m = n, then Q(z)* = 0. Of course, in this case ker F(z) =
{0}. Clearly, as a function of z € D,Q(z)* is conjugate analytic.

Denote the form j_fl A ...Af by F and denote Q(z) by Q.
- -n
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1)
Now for w € C\n+1/,
m_
=1

QW) whuy = ) W0 (W) = ) (wuy AP,
j=1 j=1

ow) =)

Also, Q* (7) =f /\j_f1 ~Af =0 forj=1,..., n(see [59]), s
=j/ =i = —n
Q*F(z)* =0and F(z)Q = 0. Thus ranQ c ker F(2).
We claim that ranQ = ker F(z). Let y € ker F(z) © rang.

Then y€ (ranQ)* =kerQ*, so 0=Q'y=y /\71 AAFfand thus ye€
Y y=yAf f y
Sp {?1, ,7 } See [59] Hence y = 2;'1:1 arj F.and y € kerF(z). SO, if a
J /. y ! y

(ay, ..., a,), then0 = F(Z)X = F(z)F(z)"a.But F(z)F(z)" isinvertible,so ¢ = 0 and
0.

<
Il

We must show that
0  _,
det(F(2)F(z)*) = kerF@r
Since ran Q = ker F(z), we need only show that Q /\/ det(F(z)F(z)*) is a partial isometry.
Thatis Q*QQ* = det(F(2)F(2)*)Q".

Forw € C"*,

0'00(w) = 20w AF) = QWAT)AF = |3 AT, APy |17

b
Recall that {gp};n:_ln is an orthonormal basis for C™ © ran F(z)".

Let w = u;, then since (u; AF, Uy AF) = 8jp det(F(z)F(z)") we’re done. This last
observation follows, since if A isan m X n matrix withm > n and a4, ..., a,are the columns
of 4, then a; A ... A @y = Ygcen, det(ExA) ax. Here ExcAis n X n and Ey is the identity
on {e]-}jex.

Thus
(g A oAay, by A ..Aby) = z det(EyA) det(EyB)

Kemy,

- z det(Eq A) det(B*Eye) = Z det(B*Eq A) = det(B*A) .
Kem, Kemn

Again, details can be found in [59].

We will need two additional lemmas. The first of these can be viewed as an extension
of the Littlewood-Paley lemma, Lemma (2.2.3), and seems to be due to Uchiyama. See
Nikolskii [45]. We include the proof for convenience.

Lemma (2.2.6)[54]: Assume a € C%(D),a =0 and Aa = 0. Then for p an analytic
polynomial, we have

[ aalplin— <ellal. [ Ipldo
jz[2 = TN |

] ] D oD

Proof. A computation gives us that for t > 0

A(e*®|p|?) = tet@Aalp|? + 4et*|ta,p + p'|? = tAa|p|?.
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Thus by Lemma (2.2.3),

1 1 1 dm s
fAMmHTT-;fA@WM)mrp—%@ =2 [ etppirdo

D aD

VIA
< T ptllalle f 2dg.
. Ip|

aD
Letting t = 1/||al|.. completes the proof.
We will apply the previous lemma to suitable choices for a(z). Recall that
[ > F(2)F(2)* = ?1 forallz €D,
Lemma (2.2.7)[54]:
(i) Altr(F(2)F(2))™'] =4 tr[(F(2)F(2)")'F(2)F'(2)" X
(F(2)F(2)) ' X F'(2)F(2)"(F(2)F(2))™'] -

4 tr|(F(2)F (2)) ' F' () Prer(r(ny X F'(2)" (F(2)F (2)) 7]
(i) A [1n LD = 4 7 [(F(2)F (2)) ' F'(2)Prer piny ' (2)']

(iii) Aldet(F(2)F(2)*)™] = 4 [(det(F(2)F(2)*))~1 x
|tr (F(2)F(2))'F(2)F*(2)*|*] — 4[det(F (2)F (2)) ™" X
tr [(F@F(2)) ' F (2)Prer i F' 2)']].
Proof. Using the resolvent identity, it is easy to see that for z € D,
0,[(F(2)F(2))7'] = (F(2)F(2)") ' F'(2)F (2)" (F(2)F (2)") ™"
and similarly for 8, . Now let 22 be a simply connected region containing [£2, 1] and with
d a simple smooth Jordan curve traced counter-clockwise. Let g be analytic in a
neighborhood of 2. By the Riesz functional calculus and the above derivative equation, we
get that
d,trlg(F(2)F(2))] = trlg'(F(2)F(2)")F'(2)F (2)"].
Applying thisto g(z) =logz ,—m < Arg z < m, we get
0,tr[In(F (2)F (2)")] = tr[(F(2)F (2)")"'F'(2)F (2)"].
Using the product rule (which is easily established for our case) yields
Atr[In(F(z)F(z)")]
=4 tr[-(F(2)F(2)) ' F(2)F' (2)" (F(2)F(2)") ' F'(2)F (2)']
+4tr [(F(2)F(2)) ' F'(2)F (2)7]
=4 tr[-(F(2)F(2)) ' F'(2)F (2)*(F(2)F (2)") ' F(2)F'(2)']
+tr [(F(2)F(2))'F'(2)F'(2)"]
=4tr [(F(F(@))'F' (D)1 - F@) (F(2)F(2)") ' F(2)]F'(2)"]
= 4tr [(FF (@) F' (@)Prerrn F'(2)'].

Now since
n [det(F(Z)F(Z)) i [ [(F(Z)F(Z) )” o [ [(F(Z)F(Z) )”
EZn 82 82
(ii) follows.
From above
3. In !det (F(Z):;(Z) )] — tr [(F(2)F(2)")"\F (2)F'(2)"].
But
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—  [det(F(2)F(2))] 8,det(F(2)F(2)*)

0z In [ ]  det(F(2)F(2)*)

Thus

a, det(F(2)F(2)") = det(F(2)F(2)*) tr [(F(2)F(2))F(2)F'(2)"].
So
A[(det(F(2)F(2)")™1)]

=4 62[— (det(F(2)F(2)*)) 2 det(F(2)F(2)*)
X tr[(F(2)F(2)") *F(2)F'(2)*]]
= 40,[— (det(F(2)F (2)"))™* x tr[(F(2)F (2)*)*F (2)F' (2)*]]
= 4 [det(F(2)F(2)*) 2 det(F(2)F (2)*)
X tr|[(F(2)F(2)*)"'F(2)F'(2)*]1]
_4 [det(p(z)p(z)*)—l x tr [(F(Z)F(z)*)‘lF’(Z)Pker(F(Z))F’(z)*”.

and (iii) holds.

For (i),
Atr[(F(2)F(2))™  =40,|tr[-(F(F(2)") ' F(2)F'(2)*(F(2)F (2)*) ]

=4tr [(F(2)F(2)") 'F'(2)F' (2)*(F(2)F(2)")™!
X F(2)F'(2)*(F(2)F(2)*)™']
+ 4 tr[-(F(2)F(2)") 'F'(2)F'(2)*(F(2)F(2)")™']
+4tr [(F(2)F(2)")'F(2)F'(2)*(F(2)F(2)")™
X F'(2)F(2)*(F(2)F(2)")™']
= —4tr [(F(2)F(2))'F'(2)Pxerry F' (2)* (F(2)F (2)) ]
+ 4 tr[(F(2)F(2)")'F(2)F'(2) (F(2)F(2)*)™"
X F'(2)F(2)*(F(2)F(2)")7!].

This completes the proof.
The remainder of our argument for Theorem (2.2.1) consists of establishing (2). That

is, for h € H2(0D)™ with analytic polynomial entries and for any p, € HZ(aD)™ with
analytic polynomial entries that vanish at 0, we claim that for C = (2\/— + 2\/_9)

(PP R 5 )| < e (5) 12 [ Pree B |- @)
By Lemma (2.2.5),

_ 2 _ 9(eM)9(e™) T
||PkerFBO|| = (PkerFBOJBO) D (det(F(elt)F( lt) )po(e t) po(e f) )(Cn dO'(t)

> j 2" (e®)pole™ || do(b).
aD
Denote Q*(2)p, (e't) by ky(z). Note that E has entries that vanish at 0 and are co-
analytic in a neighborhood of D. Thus it suffices to show that
_ C
|<F*(FF*)_1E'BO)| = gn+1 ln( 2n> ”h”“kO” (3)
By Lemma (2.2.3), the left hand side of (3) becomes
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(F*(FF)™'h,p ) = f A[(F (@) (F(2)F (2)) h(2), po(z»]xln— dm(z)
== f 0, [{((1 = F@)' (F(2)F (2)") ' F(2)F' (2)"
x (F(2)F(2)") ' h(2), po (@) ln— dm(z)

1
f 0, (PrerrinF' (@) F@F(2)) h(@), po(@) X In T3 dm(z).

Let dA denote 7. This last term becomes, by Lemma (2.2.5),

o F@F@Y
| 0.0 @F @y g O B

Computing the d,-derivative, we get that (4) is equal to the sum of the following four terms:

| o F@F@)
0= | @@re det(F(z)F(z))h()k(Z»lnI|

(F(2)F(2))™!
At FDF ) )h( z), ko(Z)HHW dA(z),

((F(Z)F(Z) ) (2)F(2) )

[ oy L X E@F@) 1
()=~ | (@@ () g S 1@ T @) X In; dA(2),

and, suppressing the z in the inner product,
_ _— 1 det(FF™)
== (@rEr
Note that the calculation of d,(det(F(z)F(z)*)) is done in the proof of Lemma
(2.2.7). We will be using the fact that for A € B(H) and x € H, then
lazl® < 1ailz]l” = na-allx]|” < e 4|z
In addition, we use the fact thatif A > 0 and if 0 < P < cI, then tr(PAP) = trA%PZA% <
trc?A = c?trA.
By Cauchy-Schwartz in both the inner product and the measure and then by Lemma
(2.2.3), we get, suppressing the z in a portion of the next line,

@

dA(2). (4)

dA(2),

ao=j<¢&wx)
D

tr[(FF*)"'F'F*]| h(2), ko) X ln| 1|2 dA(z).

1

F™(FF*)~ ] X ”h(z)” ln— dA(Z)] ”Ko”

|2

%
(det(FF*))?

<| j tr [(FF*)—lF'
| VD

<|[ ole@re)re e F'(z)*(F(z)F(z)*)-l]

<m0 dA(z)] I
So
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11 )
() < [—g— | ele@re 1F'(z)PkerF<Z>F'<z>*]
D

<m0 dA(z)] ol
Appealing to Lemmas (2.2.6) and (2.2.7) with a(z) = In (detw), we get

. e 1 1
() < |zt (o )] Il < Ve rgn () el kol

An entirely analogous argument applies to (ii).
For (iii), we use two Cauchy—Schwartz estimates and Lemmas (2.2.4) and (2.2.7) with

a(z)as before and with b(z)=tr((F(z)F(z)*)—l)+(£iz)a(z). Then |lall, <
ln( )andllblloo_ 2+( )ln( )We have

1
ZAa = tT[(F(Z)F(Z)*)_lF’(Z)PkerF(Z)F’(Z)*]

And
(tr [(F(Z)F(Z)"‘)_ll”(z)l”'(Z)*(F(Z)F(Z)*)_1 )

1 Ab > X F'(2)F(2)*(F(2)F(2)")™* =
- > inD.
4 det((F(z)F(z)*))

So

”Q*(Z)F'(Z)*(F(Z)F(Z)*)_% 2 ’
(iii) < fD T @) an dA®)

|

1

|z]?

|Fr@9y 2 @r@r F@r@)
dl det(F@F (2))

2 2
% lko @[ tn—s dA(z)l

J tr[(F@F(2)) ' F'(2)Per iy F' @ ||| lnl B dA(Z)l
D

<
1
(t (F(@F (@) 'F()F' (2)"(F()F(2)) ™! ) 2
X F'(2)F(2)*(F(2)F(2)*)~ 1! 2, 1
lfD det((F(z)F(z) )) X ”KO(Z)” lnl 2 dA(Z)l

1

[l [ 3 s e )
Ifo<e?< ;, then In(1/£2) > 1. So 8—2 < (1/£2™) In(1/&%™).
Then

1
(111)<e\/_ e (ﬁ)
To handle (iv), we again begin with two applications of Cauchy—
Schwartz. Use Lemmas (2.2.6) and (2.2.7) with a(z) as before and with c(z) =
(det(F(2)F(2)")~! + (1/&*™) In[det((F(2)F (2)") /*"].
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Then

1 1 1 2 1
”C”°° S g2n + g2n In <82n) = g2n In (8211)

And
1 tr[(F(DF () 'F'(@F(2)°]1? -
24 = det(F(2F (2)) onb.
We compute that
2 ]%
¢ le@renzreee |
(iv) < f 2t (FOF @)D ||k0(z)|| ln | dA(Z)l

|

| i o
1 1 1
e T e 2 T

< V2 ey in () kol

Finally, combining the four estimates, we deduce that whenever 0 < &2 <§ and
g2l < F(2)F(2)* < Iforall z € D, then

[Py B )| < (238 + 2v2e) o n () ko

Therefore

1 _2
TpTee > (2[2\/‘ +2V2 e] s (ng)) I.
We have completed the proof of Theorem (2.2. 1)

Combining Theorems (2.2.1) and (2.2.2), under the above hypothesis on F(z) we get
estimates for analytic solutions, G(z), of F(z)G(z) = I for aII z € D of the form

1
SupllG (2)lacem vy < 2[2V% + 2v7e] rin (7).
VAS

We end with two remarks:

(i) We apply similar techniques to obtain an improvement in the current bounds in
Theorem (2.2.1) for the polydisk and remove the dependency on m.

(i) If we were just interested in a proof of the vector-valued corona theorem without
worrying about best bounds, the computational Lemmas (2.2.6) and (2.2.7) could be
omitted. Then we would get a direct Hilbert space proof of the vector-valued corona
theorem.

Also, we note that if F is 1 X m, then Lemma (2.2.5) has a simple direct proof.

Section (2.3): Corona Problem in the Disk and Polydisk
The classical Carleson Corona Theorem, see [40], states that if functions f; €

H?(D)are such that Z;‘;l|fj|2 > §2 > 0 then there exist functions g; € H*(D) such that
2i=19;fj = 1. This is equivalent to the fact that the unit disk D is dense in the maximal
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ideal space of the algebra H*, but the importance of the Corona Theorem goes much beyond
the theory of maximal ideals of H*.

The Corona Theorem, and especially its generalization, the so called Matrix
(Operator) Corona Theorem play an important role in operator theory (such as the angles
between invariant subspaces, unconditionally convergent spectral decompositions,
computation of spectrum, etc.). The Matrix Corona Theorem says that if F €
H*(ID; E, — E) is a bounded analytic function whose values are operators from a Hilbert
space E,,dim E, < 4o, to another Hilbert space E such that

F*(z2)F(z) = 6%1 >0, vz € D, (©)
then F has a bounded analytic left inverse ¢ € H*(ID;E, —» E),GF = 1. We should
emphasize that the requirement dim E, + oois essential here. It was shown in [51], see also
[52] or [38], that the Operator Corona Theorem fails if dim E, = +o0. Note also that the
above condition (C) is necessary for the existence of a bounded left inverse.

The classical Carleson Corona Theorem is a particular case of the matrix one: one
just needs to consider F being the column F = (fi, f5, ..., f;,)T. It also worth noticing that
the Matrix Corona Theorem follows from the classical one. Using a simple linear algebra
argument Fuhrmann, see [41], was able to get the matrix version (dimE, ,dim E < +o0) of
the theorem from the classical result of Carleson. Later, using ideas from Wolff’s proof of
the Corona Theorem, M. Rosenblum, V. Tolokonnikov and A. Uchiyama, see [47], [50],
[55], independently extended the Corona Theorem to infinitely many functions f;.. Using
their result, V. Vasyunin was able to get the Operator Corona Theorem in the case dim E, <
+0o,dimE = o0,

Since the Corona Theorem turns out to be very important in operator theory, there
were some attempts to prove it using operator methods. While these attempts were not
completely successful, some interesting relations were discovered. In particular, it was
shown that a function F € H* = H*(ID; E, — E) is left invertible in H*if and only if the
Toeplitz operator T is left invertible; here F denotes the complex conjugate of the matrix
F.

Let us recall that given an operator function & € L*(T;E, — E), the Toeplitz
operator Tg: H2(E,) —» H?(E) with symbol @ is defined by

Tof = P.(Df),
where P, is the Riesz Projection (orthogonal projection onto H?).

Considering the adjoint operator (TF)* = T4 = Trrone can conclude from here that
F is left invertible in H*if and only if the Toeplitz operator T ,r: H*(E) — H?(E,) is right
invertible. Since FT is an analytic function

Torf =FTf, Vf € H?(E).
and F is left invertible in H*if and only if for any g € H?(E,) the equation
FTf=g (5)

has a solution g € H2(E) satisfying the uniform estimate |||, < Cllgll,.

The result that condition (C) implies (if dimE, < +o0) left invertibility of the
Toeplitz operator T, or equivalently the solvability of Eq. (5), is called the Toeplitz Corona
Theorem. In the case of the unit disk ID one can easily deduce the Matrix Corona Theorem
from the Toeplitz Corona Theorem by using the Commutant Lifting Theorem.

The main result is the Toeplitz Corona Theorem for the polydisk, see Theorem (2.3.2)
below. To simplify the notation we used F instead of F7, so the condition (C) is replaced by
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the condition FF* > §21. While in the polydisk it is not known how to get the Corona
Theorem from the Toeplitz Corona Theorem (the Commutant Lifting Theorem for the
polydisk is currently not known) the result seems to be of independent interest. In a
particular case when F from Theorem (2.3.2) is a row vector (a 1 X n matrix) this theorem
was proved by Lin, see [62] or [74]. His approach involved using the Koszul complex to

write down the d-equations. Unfortunately, in several variables, unlike the one-dimensional

case, higher order equations appear in addition to the d-equation so the computation become
quite messy. It is not clear how to use his technique to get the result in the matrix case we
are treating here since the Fuhrmann—Vasyunin trick of getting the matrix result from the
result for a column (row) vector does not work to solve the Toeplitz Corona Theorem.

We use tools from complex differential geometry to solve d-equations on
holomorphic vector bundles. In doing this we are following the ideas of Andersson, see [71]
or [72], which in turn go back to Berndtsson.

To solve the d-equation he uses a Hérmander type approach with weights and a
modification of a Bochner—Kodaira—Nakano—Hd6rmander identity from complex geometry.
While our approach is more along the lines of T. Wolff’s proof and does not require anything
more advanced than Green’s formula.

We first use our technique to get an estimate in the Toeplitz Corona Theorem in the
disk:

Theorem (2.3.1)[70]: Let F € H*(ID; E - E,),dimE, = r < 400, such that §21 < FF* <
Ifor some 0 < §2 < i For1 < p < wifg € HP(D; E,) then the equation

Ff =g
has an analytic solution f € HP (ID; E') with the estimate

C 1 1
171l < (srerlog 5 +5) gy (6)
with C = V1 + e2 + e + V2e ~ 8.38934.

For the p = 2 case the above result with a different constant C was obtained recently
using a different method by Trent [54]. The constant he obtained was C = 2+ve + 2+/2e ~
10.9859..

The result for all p can be obtained from the case p = 2 via the Commutant Lifting
Theorem, but we present here a simple direct proof.

Note, that we do not assume dim E < +oohere.

Using a simple modification of our proof in one dimension we are also able to get the
following result in the polydisk:

Theorem (2.3.2)[70]: Let F e H°(D™E - E,),dimE, = r < +o,such that §%I <

FF* < Iforsome 0 < 6% < g For1l <p < wif g € HP(D™; E,) then the equation

Ff =g
has an analytic solution f € HP (ID™; E') with the estimate
nCC(p)" 1 1
Ifly < (—5rs—logzzr +5 ) lgll, ()

where C =+V1+e? ++e++V2e =~ 8.38934, and C(p) = _;(n)the norm of the (scalar)
sin{ —
p

Riesz projection from L? (T) onto H? (D). For p = 2 the estimate can be improved to

60



ynC 1 1
IfIlz < <5r+1 logﬁ + g) lgll> (8)

With C = V1 + e2 + e + V2e ~ 8.38934

We will start with proving Theorem (2.3.1) for p = 2, we set up the main estimate
needed to prove the theorem, we discuss a version of the Carleson Embedding Theorem and
its analogue for functions defined on holomorphic vector bundles, which will be later used
to prove the main estimates, we perform computation of some derivatives and Laplacians
that will be used in the estimates. We also construct there subharmonic functions to be used
in the embedding theorems. Then we deal with the main estimate for p = 2; and explain
how to use the construction for other p and we treat the case of the polydisk for p = 2 and
finally we treat the case of general p.

To prove Theorem (2.3.1) for p = 2, for a given g € H? := H?(E,) with ||g|l, = 1,
we need to solve the equation

Ff=g,f € H*E) 9)
with the estimate ||f]|, < C = C(6,r). By a normal families argument it is enough to
suppose that F and g are analytic in a neighborhood of D. Any estimate obtained in this
case can be used to find an estimate when F is only analytic on . Since 6% < FF* < I, it
Is easy to find a non-analytic solution f, of (9),

for=®g :=F"(FF)™g.
To make f, into an analytic solution, we need to find v € L?(E) such that f := f, —
v € H? and v(z) € ker F(z) a.e. on T. Then
Ff=F(fo—v)=Ffo_FV=g_:
and we are done. The standard way to find such v is to solve a d-equation with the condition
v(z) € ker F(z) insured by a clever algebraic trick. This trick also admits a “scientific”
explanation, for one can get the desired formulas by writing a Koszul complex. What we do

essentially amounts to solving the 8-equation dv = df, on the holomorphic vector bundle
ker F(z). We mostly follow the ideas of Andersson found in [71]. He used ideas from

complex differential geometry to solve the corona problem by finding solutions to the d-
equation on holomorphic vector bundles.

Since our target audience consists of analysts, all differential geometry will be well
hidden. Our main technical tool will be Green’s formula

1 1
JT udm —u(0) = %fm) Aulogm dx dy (10)
a2 a2

T 5 it more convenient for us to use the

“normalized” one A:= iAa‘a = 90. If we denote by u the measure defined by

Instead of the usual Laplacian A=

d —21 L dx d
:u_n_oglzl xy'

then Green’s formula can be rewritten as

f udm —u(0) =f Au dp. (11)
T D
To find the function v we will use duality. We want f, — v € H2(E), therefore the

equality
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fT (fo, hydm = fT (v, hy dm

must hold for all h € (H?)1. Using Green’s formula we get

f (fo,h)dm=j (CDg,h)dmzj 65[(¢g,h)]du=f 0[(d®g, h)] du
T T D D

Here we used the harmonic extension of h, so h is anti-analytic and h(0) = 0. The functions
® := F*(FF*)~1 and g are already defined in the unit disk ID.

Now the critical moment: let [1(z) := Pyerr(z) be the orthogonal projection onto
ker F(z),N1 = I — F*(FF*)~'F.Direct computation shows that d® = [1(d®)*(FF*)~1, so
[0 = 0. Therefore, if we define a vector-valued function £ on D by £(2) = I(2)h(2),
then

f 6[(5¢g,h)]du=j 6[(6_Cbg,l'[h)]du=f o[(ddg, &) du =:L(&)
D D D

= Ly ($). (12)
Note, that L = L, is a conjugate linear functional, i.e. L (defined by L(¢) == L(¥)) isa linear
functional. Suppose we are able to prove the estimate
ILOI < Cr, DEl,,  vE=Thh € H*(E)™. (13)
Then (by a Hilbert space version of the Hahn—Banach Theorem, which is trivial) L can be
extended to a bounded linear functional on L?(E), so there exists a function v €
L%(E), ||v]l, < C, such that

L) = fT (v,&)dm, V& =TIk h € H2(E)*.

Replacing v by ITv we can always assume without loss of generality that v(z) € ker F(z)
a.e.on T, so Fv = 0. By the construction

j (v, h)dm = f (v,TTh)dm = L(I1h) = J (g, hydm, V he H?*(E),
T T T

SO f:fy —v:=dg —v € H?*(E) is the analytic solution we want to find. It satisfies the
estimate

1
IAllz < Wfollz +llvlly = 5 llgllz + €, &)Igll:.

Therefore, Theorem (2.3.1) would follow from the following proposition
Proposition (2.3.3)[70]: Under the assumptions of Theorem (2.3.1) the linear functional L
defined by (12) satisfies the estimate
LI <CT, 0Nz, VE=ThheH*(E)*
With
1

C(r,6) = =
where C = V1 + e2 ++/e +2e.
In what follows we will need the following simple technical lemma that is proved by
direct computation.
Lemma (2.3.4)[70]: For IT and @ defined above we have
oll = —F*(FF*)™'F'1],
od =M(F)*(FF")™1,

log

5r+1

and
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00® = oN(F')*(FF*)™' — (0®)F'® = 91 + (o1)*DF' .
Corollary (2.3.5)[70]: For the projection IT defined above we have
MoM = 0, (I = a1, ()1 = 0,101 = JIl.

The above identities are well-known in complex differential geometry, but we can
easily get them from Lemma (2.3.4). Namely, since II is the orthogonal projection onto
ker F we have FII = 0. Taking the adjoint we get IIF* = 0 which implies I10I1 = 0. The
second identity is trivial, and the last two are obtained from the first two by taking adjoints.

As is well known, Carleson measures play a prominent role in the proof of the Corona
theorem, both in Carleson’s original proof and in T. Wolff’s proof and subsequent
modifications. It is also known to the specialists, that essentially all Carleson measures can
be obtained from the Laplacian of a bounded subharmonic function. We will need the
following well-known theorem, see [45], which was probably first proved by Uchiyama.
Theorem (2.3.6)[70]: (Carleson Embedding Theorem). Let ¢ be a non-negative, bounded,
subharmonic function. Then for any f € H%(E)

j Ro@IIf @)I12du < ellolllIfI1Z.
D

Here du = %logé dx dy ,and A= iAz 90.
Proof. Because of homogeneity, we can assume without loss of generality that |||l = 1.
Direct computation shows that
A(e?@NIf(2)I*) = e?BollfI* + e?ll0gf + of 1> = AplIfII>.
Then Green’s formula implies

j Rollf |12 dy < f K |If112) du = j e[| 12 dm — e?© || £ (0)]]?
D D

T

<e | lFIdm = ellfI
T
Remark (2.3.7)[70]: It is easy to see, that the above Lemma implies the embedding

Jp I 7 du < C [ 1IfII? dm (with C = e) for all analytic functions f . Using the function

4/(2 — @) ) instead of e? it is possible to get the embedding for harmonic functions with
the constant C = 4. We suspect the constants e and 4 are the best possible for the analytic
and harmonic embedding respectively. We cannot prove that, but it is known that 4 is the
best constant in the dyadic (martingale) Carleson Embedding Theorem.

We will need a similar embedding theorem for functions of form & =Tlh,h €
H?(E)*. Such functions are not analytic or harmonic, so the classical Carleson Embedding
Theorem does not apply. As a result, the proof is more complicated, and the constant is
significantly worse.

Recall that TI(z) = Pyerr(z) Is the orthogonal projection onto ker F(z),II —

F*(FF*)~1F, and that du = %logé dx dy.

Lemma (2.3.8)[70]: Let ¢ be a non-negative, bounded, subharmonic function in D
satisfying

Ap(z) = [lo0(2)|I?, vz € D,
and let K = ||@||. Then for all ¢ of the form ¢ = Ih, h € H*(E)*

j Eo(DNIE@)I1? dut (2) < eKeX|[¢]2
D
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and

| 15617 dn < 1+ ekelgts
D

Proof. Let us take an arbitrary non-negative bounded subharmonic function ¢ and compute

A(e?||€|I?). Corollary (2.3.5) implies that 1011 = 0 and AI1I1 = OI1. Therefore, using oh =
0 we get 9¢ = d(I1h) = dllh + [1oh = 0I1h = 0I1¢, and so
(0¢,8) = (0§, 11) = (AlIA, T1E) = 0.

Therefore

d(e?lI€l1*) = e?apllS||* +e®(0, &) + e?( §,08) = e?a||€]1* + e?( &, 08).
Taking d of this equality (and again using ( ¢, d&) = 0) we get

R(elI112) = e? (RpliEll? + [|0g¢ + 3| + (£, B)).
To handle (¢, Af)we take the @ derivative of the equation ( &, &) = 0 to get

~ (0¢,08) + (£,00¢) = 0,
and therefore (¢, A&) = —||9&]|? = —|[(ATT)é||. Since ¢ = 0

] (Bollg11* = 1(OMEII?) du
D
< j (BollE? = 1MEN? + [| 09 + 3E||") e dp
D

B f e?|1¢11? dm; (14)
T

the equality is just Green’s formula (recall that £(0) = 0). In the last inequality replacing ¢
by te,t > 1 we get

f (tAplI€l*) — II(OMEI* du < j et?||E|> dm < et | €]15.
D T
Now we use the inequalityAg > |[(a11)||?. It implies Ag||€]|? — ||0T1&||? = 0, and therefore

(t—1) j KolI€1I2 du < et |1€]2.
D

Hence
tK

A 2 4, < mi 2 _ tK || £1|12
[, ol due < min = N2 = eKet )

(minimum is attained at t = 1 + 1/K), and thus the first statement of the lemma is proved.
To prove the second statement, put ¢ = 0 in (14) (we do not use any properties of ¢
except that ¢ = 0 in (14)) to get

] (l9¢]” - 11omE11? ) dy = j N2 dm = [|€]12.
D T

But the second term can be estimated as

f II(OH)EIIZdMSf BoligII* du < eKe®I€1I3,
D D

and therefore

[ 1361 du < @+ exesiens.
D

64



There will be points in the proof where we would like to invoke Carleson’s
Embedding Theorem. To do so we will need a non-negative, bounded, subharmonic
function. We construct the necessary subharmonic functions so they will be available when
we finally estimate the integral in question. We define the two functions used and collect
their relevant properties. First, we recall a basic fact that will aid in showing that the
functions we construct are subharmonic.

Lemma (2.3.9)[70]: Let A(t) be a differentiable n x n matrix-valued function. Define the
function £ (¢t) = det(A(t)). Then
f'() = det(A(D) tr (A" (DA’ (D).
Proof. Fix a point t and for brevity of notation let us use A instead of A(t). Since A(+) is
differentiable
det(A(t + h)) = det(A+ A'h + o(h)) = detAdet(I + A"*A’h + o(h))

= detA 1_[(1 + huy + o(h),
where ,, are the eigenvalues of A=1(t)A’(t). Expanding this product we have
1_[(1 4 h +o(h) = 1+ hz U+ 0(h) = 1+ htr(A~14") + o(h).

Then
det(A(t + h)) = det(4) + hdet(4) tr (A~*4") + o(h),
which implies the desired formula for the derivative.
Define the function ¢ = tr (log(6"2FF*)) = log(§ 2" det(FF*))
Then a straight forward application of the above lemma gives
Ap = 00 = d[tr(FF*)"'F(F))] = tr [(FF*)7'"F'TI(F")")]
with the last line following by substitution of II. For another approach to this computation
see [54]. Using the identities 112 = 11, tr (AB) = tr(BA), and recalling that
oll = —F*(FF")™1F'll
we get
Ap = tr[(FF*) YF'TI(F")*] = tr[F*(FF*) YF'TINI(F)*(FF*)~'F] = tr[oT(a11)*]
> ||ot||?
with the last inequality following since tr [AA*] = ||A||?. This function will play a
prominent role in the estimation of certain integrals. We should also note that

OSQDSKzzlog(S—in.
We will also need another function to help in the estimation of the linear
functional L in question. Let 2 = tr[(FF*)~1]. A simple computation gives,
AL = tr[®*(F)*(FF)™F'®] — tr[(FF)*F'TI(F")*(FF*)™1]
> tr[®*(F')*(FF*)"1F'®*] — §tr[oll(aIl)*].
Now we define the function ¥ = A + §2¢. Then, recalling that ® = (F)*(FF*)~! we get
Ay > tr[®*(F)*(FF*)™'F'®] = tr[®F' &(P(F) D) *] > [PF' D)2

So ¥ is subharmonicand 0 < ¢y < % + 5_121°g5%n' We should note that the assumption 0 <

6% < é implies log §72 = 1. This gives

2
OSIPSL:=§10gﬁ.

Now we need to estimate L(&). Computing d of the inner product we get
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L©) = | 2l(0wg ]du= | @309 du+ | Gog Edu+t | (G095 ds

=1+ I+ 1IL
We need to estimate each of the above integrals as closely as possible. Each integral has a
term involving derivatives of I1, g and &. The idea is to separate the integralsusing Cauchy—
Schwarz, giving one derivative to each term.
We now estimate the first integral. Recalling that 00® = 9T1d® + (A1) *PF' P we
get

[= | @30g,&)du=| {10n30g,6)+ (@M OF'Pg,)}du
D D
Since (AI1)*I1 = 0 we have (9I1)*¢ = 0, and so (dT1dd g, &) = 0. Therefore

= j (OT)* PF'dg, &) dyt = j (OF' Dg, (ADE) da,
D D

and the Cauchy—Schwarz inequality implies

e ( jD ||c1>F'c1>g||2du) ( jD ||<an)f||2du>

To estimate the second factor we use Lemma (2.3.9). Recall that the function
@ = log(6 2" det(FF*)),
constructed above satisfies the inequalities
Ap > ||011||? ,and 0 < ¢ < K :=log § " (15)
Therefore, Lemma (2.3.9) implies

j I(OMEII? du < eKe®[[€1l5 = e6~*" log 67" [I£]15 -
D

To estimate the first factor, notice that the function y constructed satisfies
Ap > ||OF'®||?, and0 <y <L :=25"2%logd ",
Then the Carleson Embedding Theorem (Theorem (2.3.6)) implies

=

1/2

j |OF dgl|*du < eLllgll3 = 2e672log 57" ||gll5,
D

and thus
V2e
[1| < VKL|[¢]l2lgllz = Wlogfzn 1€ Mlgll2 -

Now we estimate Il. By the Cauchy—Schwarz inequality, we have

1/2
| < j |<a‘c1>g',f>|dus<f ”5(1’”2”5”261#) (j ||g'||2du)
D D D

Observe that A]|g||?> = |lg’||? since g is holomorphic. So, applying Green’s Theorem to the
second factor we get

[ g dn= [ lglizdm = lg@I? < ligll
D T
To estimate the first integral, notice, that

@7 = [|®*®|| = [(FF)™H| < 672
(recall that @ = F*(FF*)™1). Since 0® = —(aI1)*®, we can estimate

||a"c1>||2 = ||(a®) d| = |@*onam)*®|| < [|aT(A)*|| - |P]I? < 5-2]|a11]|>.
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Therefore (see (15)), ||5<I>||2 < 6 2A¢@, where ¢ = log(§~2" det(FF™)) is the subharmonic
function constructed before. Applying Lemma (2.3.9) we get
— 2 -
| a0l an < 5 [ Bolil du < 5-2eke €13,
D D

where K = log § 2™, see (15). Joining the estimates together, we get

V2
| < 67 VeKe 2| gllolIll, < 67 VeKe*lIgll Ml = prorsa =L ] 1P 1P

(since 62 < é the value of K satisfies K'/? < K).
Finally moving on to integral 11l. Using Cauchy—Schwarz, we have
1

2
|m|sf |d0g, 5¢] dus<f ||5d>||2||g||2du> (j ||56||2dM>
D D D

As we already have shown above, ||d®||* < 6-2A¢. The Carleson Embedding Theorem
(Theorem (2.3.6)) implies

— 2 ~
f |0 llgll? du < 572 j Rollgll? du < 572eK]|gl13.
D D
Using Lemma (2.3.9) we can estimate

— 12
j 1GE]7 du < (1 + ekeSIEIE < (e~ + )KeX|I£]12
D

Here we are using the fact that K > 1 for §2 < 1/e. Combining the estimates, we get

A/ 2
1] < VT e2Ke  2llg gl = sy~ log 6" gl el
Joining the estimates for I, I1, 11 we get
Proposition (2.3.10)[70]: Under the assumptions of Theorem (2.3.1) the linear functional
L defined by (12) satisfies the estimate
LI <C,0Ell,,  v§=Thhe H*(E)*,

1/2

With
1
5T+1 logﬁ ’

C(r,8) =
where C = V1 + e2 + e + \2e.

Proposition (2.3.10) is just a restatement of Proposition (2.3.3), and this then proves
Theorem (2.3.1) for the case of p = 2.
\/_

Note, that the constant C is a bit better than the constant % + 2+/e =~ 10.9859 obtained
by Trent in [54].

Now we indicate how we can use the H? result to figure out the H? result. We can
use much of the same approach as in the H%(E) case. Our goal is to solve the equation

Ff =g,f € HP(E)
for the given g € HP(E,), with ||gl|, = 1, and furthermore we want the estimate ||f|[,, <
C. Again we will have the obvious non-analytic solution to the problem
fo=®g:=F"(FF)™g.
To make this into an analytic solution we will need to find a function v € LP(E’) such that
fo — v € HP and v(z) € ker F(z). This will be accomplished by duality. As in the H2(E)
case we need
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fjr(fo,h)dmzfqr(v,h)dm

to hold for all h € HP(E)* = Hg (E) (this uses the standard duality of HP spaces see [42]

or [45]). Again we can ensure that v € ker F(z) since & = I[1dd. So we need to get an
estimate on the linear functional

L&) = Ly(8) = fD 0[3dg, €] du

with & = TTh and h € HP(E)*. If we can then prove that
IL(OI = Cli¢llq

then by the Hahn—Banach Theorem and duality in LP spaces with values in a Hilbert space
we would have the existence of a function v € LP(E) with ||v||, < C, such that

L&) = j (v, &) dm, vE =Th h € HP(E)* .
T

Then replacing v by ITv we can assume without loss of generality that v(z) € ker F(z)a.e.
on T. But then the construction would give,

j (v, h) dmzf (v,ITh) dm = L(I1h) =f (dg,h) dm, Vh
T T T

€ HP(E)*,

so v — f, € HP(E). So we only need to show how to prove the estimate

ILOI = ClIEllg -

The main idea is to use the L? result we just proved. Namely, if we replace g by § =

@~ tgand & byé = @&, where @is an appropriate (scalar) outer function, then

Ly($) = Lg(‘f)- ~
Suppose we are able to find the outer function gsuch that ||g||2||€||2 < llgli,li€ll,.
Then, since ¢ is analytic, § € H?(E) and

EEK = C}JQS{Hh: h € H2(E)*}.

Therefore we can apply the L? result we have proved before to get

} C .
Ly = [Lg(5)] < gz log a7 g 112 €],

C
< 571108 = gl gl (16)
To find the function ¢ we need to consider the cases p < 2 and p > 2 separately.

First look at the case p < 2. Consider the outer part of g, i.e. a scalar-valued outer
function g, such that

19out (D] = llg(D| a.e.onT.

§(@) = (Goud?* ' (2)g(z)  and
£(2) = (Gou) P2 (2)E(2).

Then |Ig]l, = || g||g/ . and computation using Holder’s Inequality gives and”é: ||q <

Define

- 1 1 ~ 4 .. .
I1€l,41lgll, p/z,where; +~ = 1. Therefore 1G112[I€]l, < llgllplI€]lq and the main inequality
(16) is proved.
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The case when p > 2 is analogous, except in this case we need to construct a scalar

outer function &, such that

[$out(2)] = [I§(2)|| a.e.on T.
Note, that here we cannot say that &, IS the outer part of &, because ¢ is neither holomorphic
nor antiholomorphic. So, a little more explanation is needed.

First of all recall that we assumed (without loss of generality) that F is an analytic
function in a slightly bigger disk than D, so the projection I1 = — F*(FF*)~1F is real
analytic on the unit circle T. Second, we only need to estimate the functional L on a dense
set, so we can assume that the test function h is a trigonometric polynomial in

(H?)*. Therefore the function & = ITh is real analytic on T, and so [, log||¢(2)]| dm(z) >

—oo which guarantees existence of the outer function &,;.
Similarly to the above reasoning for the case p < 2 define forourcasep > 2 (g < 2),

= (fow)” ¢ and
g:= (fout)l_q/zg:
where 1/p +1/q = 1.Then ||¢]|, = ||€||Z/2,and applying Holder inequality to gwe get

gll, < ||g||p||6||3_Q/2(note, that the computations are the same asinthecase 1 <p < 2 if

we interchange p with g and g with §). Then again [|g I, |€]|, < llgll,lI€l4. S0 (16) holds.

The main estimate (16) implies (via duality) the solution of the HP corona problem
forl <p < oo,

The case p = 1 requires just a little more work since L is not the dual of L*, and a
bounded linear functional on L*is generally a measure. Namely, the main estimate (16)
implies that L is a bounded conjugate-linear functional, and by Hahn—Banach Theorem it
can be extended to a bounded conjugate-linear functional on L*(E). Since any bounded
linear functional on L*is a bounded linear functional on the space of continuous functions
on the unit circle, there exists a vector-valued measure v such that

L(E) = j (dv, §).
T

Without loss of generality one can replace v with Ilv, then

fT (dv, h) =-[1r (dv, &) = L(T1h) =JT (fo, h) dm.

Then rewriting this, and treating f, dm as a vector-valued measure we have

jT ((fodm—dv),h) =0

for any anti-analytic polynomial h. Then applying the F. & M. Riesz Theorem, see [45], we
can conclude that the measure f,dm — dv is absolutely continuous with respect to Lebesgue
measure, and moreover it is an analytic measure meaning fodm — dv = (f; — v)dm with
fo —v € HY(E) (The F. & M. Riesz Theorem is usually stated for scalar measures, but
applying it to the “coordinate” of the measure with respect to some orthonormal basis, one
can easily see that it holds for measures with values in a separable Hilbert space as well).

We will be considering operator- and vector-valued functions on the polydisk D™,
We begin with the H?(E) case. The general goal from previous has not changed. We want,
for agiven F € H*(D™ E — E*) and g € H? := H?>(D™; E,) with ||g||, = 1, to solve the
equation
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Ff=g, f € H*(D™; E) (17)
with the estimate ||f||, < C. Again by a normal families argument it is enough to suppose
that F and g are analytic in a neighborhood of D" because any estimate obtained can be
used to get an estimate when F is only analytic in D™. It is still easy to find a non-analytic
solution f;, of (17),

fo=®g=F"(FF)™g.

because we have §21 < FF* < I. We will again need to find a v € L?(T™; E) such that f :=
fo — v € H*(D™; E) with v(z) € ker F(z) a.e. on T™. Our approach is straightforward
reduction to the one variable case, unfortunately this approach will not yield a proof of the
H*Corona problem on the polydisk since the projections are not bounded when p = co.

We will denote a point in D™ or T™ by z = (z4, 2y, ..., z, ). We will use the symbol z;
for zwithout the coordinate z; and, slightly abusing notation, we can then write z =
(z.7) = (.7).

Let ij = ij (D™; E) be a subspace of LP (T™; E) consisting of all functions analytic
inz,ie.

HP (D" E) = {f € LP(T™; E): f(2;,) € HP(ID; E)for almost all z; € T" "}, (18)

Lemma (2.3.11)[70]: Any h € H*(D™; E)*can be written as h = }7_, h; withh; €
HF (D™; E)*.
Proof. Let P;:= PH]; be the orthogonal projection onto H]-2 = sz (D™; E). We can

decompose h in the following way:
h=Ph+ ({—-P)h=h'+hh € H*(D"E)* hl = P,h.
Similarly,
h = P,ht + (I — P,)h' = h? + h,h, € HZ(D™; E)+, h? = P,P,h.
Continuing the procedure we get
hk=1t = p Rkt + (I — P)R*™1 = h* + hyhy, € HZ(D™E)Y,  h* =P, ..P,Ph.
Combining everything we get
h=h;+h,+--h,+h" A" =PB,P,_; ..Pih
which proves the lemma, because the assumption h € H?(D™; E)*implies that A" =
P,..P,Pih = 0.

We also are going to need an analogue of Lemma (2.3.11) dealing with the
decomposition of functions on the holomorphic vector bundle TTH?, i.e. for the functions of
the form & = I1h, h € H2(ID™; E)*. To state this lemma we need some auxiliary definitions.
Let

K(D™ E) := clos(TI(H?(D™)4)). (19)
and
K;(D™; E) = clos (H(H]?(D")i)), vi=1,,n  (20)
Lemma (2.3.12)[70]: Let X be a subspace of a Hilbert space H, and let II be some
orthogonal projection in H. Then RanIl = I1H is decomposed into the orthogonal sum
[H = clos(IIX)® (X! n [IH).
Proof. The proof is a simple exercise in functional analysis.
Define the subspaces
Q(D™E) = H*nNL? ,Q;(D™ E) = Hf N2, (21)
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Applying the above lemmato H = L? and X = (H®)* or X = (sz)lwe get the following
result.
Corollary (2.3.13)[70]: The subspace IL? =TL*(D"E),n =1,2,3,... admits the
orthogonal decompositions

ML? = K®Q ,1L* = K;®Q;
with the subspaces K :=K(D™E), K;:=K;(D";E),Q:=Q(D"%E) and Q;:=
Q;(D™; E)defined by (2.3.12), (2.3.13) and (2.3.14), respectively.
Remark (2.3.14)[70]: Note, that the orthogonal projections P; and Py, are essentially
“onevariable” operators. Namely, to perform the projection Py, on the function & € T1L*we

simply need to perform for each z; € T"* (recall that z = (z;,2;)) the “one-variable”
projection Py, , onto the subspace

]

9(z;) = H*(D; E) n1(+,z;)L*(D; E) € H? = H*(D; E),
and similarly for the projection Py;.
Indeed, if
El(-, zj) = PQ(zj)E(-, zj) for almost all z; € T" ™,

then clearly

§'(-z;) € H*(D; E) N 11(+,2;)L*(T) for almost allz; € T"?,
so ¢ € H?2(D™; E) N IL2(D™; E). Moreover, for &:=& — &% and any n € H2(D™; E) N
L2

j (El(zj,zj),n(zj,zj)) dm (zj) = 0 for almostallz; € T" !,
T

and integrating over other variables z; we get that &, L n.

The following two lemmas says that in many respects the projection Py, behaves like
the projection 1 — P; from Lemma (2.3.11).
Lemma (2.3.15)[70]: Let H*> = H*(ID% E) and let Q and Q;,j = 1,2, be the subspaces as
defined above in (21). Then for the orthogonal projections Py, onto the subspaces Q; we
have

Po,Po, = P, Py, = Py
Proof. It follows from the definition of @ and Q; and from the inclusion H? c H]-2 that
Q=MNL*NH? cNL* NH} = Q;

we can conclude that for & € Q we have Pij =¢&j =12

Since by Corollary (2.3.13) we have the orthogonal decomposition
L* = K@Q, to prove the lemma we need to show that the equalities Py,Py ¢ =
0, Py, Py,& = 0hold for all ¢ € K. Clearly, it is sufficient to prove only one, say the first as

the second can be obtained by interchanging indices.

Consider the orthogonal decomposition of ¢ € K,

€=PK1€+P91€ =:§; +S(1-

To prove that Py, Py & = 0 we need to show that {* € K.

By definition &' L K;: = clos(TI((H?)*)), and since I((H)*) o (HE)* nT1L%, we
can conclude that

&' 1 (HH)* nIL2.
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We know that &,&; € K (¢; € K because K; c K), so ¢! € K. By Corollary (2.3.13),
&1 Q:=H?*nIIA
Combining the above two orthogonality relations we get
' L ((HA)Y + H*) n1L?,
and since in the bidisk H2 c (HZ)* + H?, we get that
E1TI2NHZ =0,
i.e.that £ € K,.
We get the following lemma.
Lemma (2.3.16)[70]: On I1L? := [IL?(T™; E) we have
PoiPo; = Po;Fo, = Poyng; = Przomz V1< kj=n,
where H7 (D™) := H7 (D™) N HZ (D™). Furthermore, this implies
PQl PQTL == PQn PQl == PHzﬂHLZ'
One can think of the space Hﬁc (D™) as the space of functions in L?(T™) which are,
upon fixing the other variables, holomorphic in both the jth and kth variable.

Proof. The first part of the lemma follows immediately from Lemma (2.3.15), because we
can just “freeze” all variables except z; and z,.. Namely, to perform the projection Pg.on the

function ¢ € T1L? we simply need to perform for each z; € T"* (recall that z = (zj,zj))
the “one variable” projection PQ(Z],) onto the subspace

9(z;) = H*(D; E) n1(+, z;)L*(D; E) € H? = H*(D; E),
see Remark (2.3.14).

To prove the second statement of the lemma let us notice that a product of commuting
orthogonal projections is an orthogonal projection. Therefore P = Py Py, ... Py is an
orthogonal projection.

Since for ¢ € H*(D™; E) N1IL* = Q c Q;

Py =¢ Vi=1,2,..,n,
we can conclude that
Q = H%(D™; E) N [1L? c Ran P.
On the other hand, since the projections Py .commute and RanPy; = Hj2 N I1L
RanP c H? NML? = Q;Vj = 1,2,..,n,
So

j=1 J
Therefore,Ran P = Q, i.e. P is the orthogonal projection onto Q.
We can now move onto proving Lemma (2.3.17).

Lemma (2.3.17)[70]: Let ¢ € K, then & = X7, &; with&; € K; forj =1, ...,nand
n

g3 = Y1l
j=1

To prove Lemma (2.3.17) we will need a few other lemmas. The first one is a simple
fact about the geometry of a Hilbert space.
Proof. We will follow the argument in Lemma (2.3.11). For £ € K consider the orthogonal
decomposition

n n
RanP c ﬂgj _ ﬂannLZ = H2 N2 = Q.
=1
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) §=Pg &+ Py ¢ =:¢& +¢&, $ € K,(D™E).
Since & L &F,

€05 = €115 + [1EM]13.
Decomposing &1 as

51 = PKzfl +szfl =:&; +fz» “51”% = ||fz||§ + ||Scz||%
we get the decomposition of &

E=&+8+8%,8 €K, 8% = Py, Py,¢,
and

1SN = 116113 + 12113 + 11€2113.

Repeating the procedure of decomposing on each step & using Py, ., we finally obtain

€=€1 +€2 ++€n+€n,€] EI(]’] = 1,2,...,11,.,;” =PQn szpglf,
and

€115 = 1€ 115 + 1162115 + - + E,115 + 1S 113,
But according Lemma (2.3.16)&™ = 0, so the lemma is proved.

The idea of the proof of the H? corona for the polydiskis quite simple, we want to
reduce everything to one-variable estimates. In the one-variable case we defined the

functional L on functions of the form I1Th where h € (HZ(]D)))lby

L) = | 0l(099.)] du
D
where du = %logé dxdy, see (12). We have also proved (see Proposition (2.3.3)) that the

functional L is bounded in the L? norm on clos {Hh :h e (HZ(]D)))l} (this is the one-

variable analogue of the space K defined for the polydisk).
For the polydisk, define (conjugate linear) functionals L; on K; by

4© = [ Loy (£6.2)) dmoa(5)
Since (-, z;) € K for almost all z; € T"~ if € € K; (see Remark (2.3.7)) the functional L;
are well defined and bounded, ||;|| = IILI|. Note also, that on a dense set of ¢ of the form
¢ =1Ilhh € (sz)lwe can represent

L@ =] | 3l609.0] duz) dm.-i(z)
Define a conjugate linear functional L on K by decomposing ¢ € K as

€=€1+€2++€n,€]EK,]=1,2,,n (22)
and putting

L©) = ) L(&).
j=1

We will show later that the functional L is well defined, i.e. that it does not depend
on the choice of decomposition of £(note that by Lemma (2.3.17) one can always find at
least one such decomposition).

Assuming for now that L is well defined, let us prove Theorem (2.3.2) for p = 2.
First of all, by Lemma (2.3.17) any function ¢ € K can be decomposed as
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&= ij, where¢; € K, andZ”E]” = |I€]I?.

Therefore, usmg the fact that IZ;|| = lILIIwe get for & e K
1/2
LI < ZIIL,-II gl = e ZIIE,-II < ||L|wﬁ<2||f,-||2) = VALl - g,
j=1 j=1 k=1
S0
VnC

1
ILIl < VAILI < S log 5
where C = V1 + e2 + e + V2e ~ 8.38934is the constant from Theorem (2.3.2).
Take h € (H]-Z)L, and decompose it according to Lemma (2.3.11) as
n

h= b€ (),
=

Repeating the reasoning with the Green’s Formula from the one-variable case we can easily
show that

j (Dg, ;) dmp(2) =

Denote

- fD 0;[(9;®g.¢))| du(z) dmy-1(z;) = L;(§)),
SO

(®g, h) dm,(z) = L(Ilh) = L(S).
’]I‘?’L
By the Hilbert space version of the Hahn—Banach Theorem the linear functional L
can be extended to a bounded functional on all of L2, i.e., we can find v € L? = L2(T™;, E)

such that

L) = | (v¢) dmy(2) = V¢ EK.
']I‘n

Replacing v by ITv if necessary, one can assume without loss of generality that v(z) €
RanI1(z) = ker F(z) a.e. on T", so Fv = 0 on T™. Since by the construction

(v,h) dm,(z) = (v,ITh) dm,(z) = L(Ilh) = (dg,h) dm,(z)Vh
™" ™" ™"
€ H2(D™ E)*,
the function f := f, — v := &g — v isanalytic. Since Fv = 0, it satisfies Ff = Ff, = g, S0
f is the analytic solution we want to find.
Let us consider first the case of the bidisk D?2. To show that L is well defined in this
case, it is sufficient to show that if
0=¢+¢;,$ €K;
then L,(&;) + L,(&,) = 0 (simply take the difference of two representations of the same
function in K). This holds if and only if
Li(§) = Ly(§)VE € Ky N K.
Thus, the following lemma shows that L is well defined in the case of bidisk 2.
Lemma (2.3.18)[70]: Let & € K; N K, c TIL2(T?; E). Then
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Li(§) = Ly(8)

Proof. The proof of this lemma is really nothing more than repeated applications of Green’s
Formula, and using that K; N K, = clos(Hﬁ) where H? are the functions which are anti-
holomorphic in both variables.
To see that K; N K, = clos(ITH?) we use Lemma (2.3.12). Since (K; N Ky)t =0, + Q, =
Kit + Ki = (H? + H2) nT1L2, then by Lemma (2.3.12) we have the result.

By density we can work with & of the form & = ITh with h anti-holomorphic in both
variables. So applying Green’s Formula twice gives

Li(©) = jT jD 0.[(3,09,8)] du(z) dm(z,) = fT jT (®g,&) dm(z) dm(z,)

_ f f 0,[(3,29,6)] du(z,) dm(z;) = L,(8).
T D

Since this result holds on a dense set of &, and the functionals L, and L, are continuous we
have the result for all § € K; N K.

For the polydisk the lemma has the following important corollary
Corollary (2.3.19)[70]: Let ¢ € K; N K;, © L*(T™; E). Then

L;(§) = Ly (8).

Proof. To prove the corollary one needs to apply Lemma (2.3.18) to the bidisk in variables
z; and z, and then integrate the obtained equality over T™=2 (with respect to Lebesgue
measure in all other variables).

Now we are ready to prove that L is well defined. To prove this it is sufficient to show
for any representation of

$j EK; (23)

Il
'M:
=
I

the equality
n
Z Li(§) =0
j=1
holds.

We will use induction in n. The case n = 2 is already settled, so let us assume the
functional L is well defined for the polydisk D™, It follows from (23) that
$n EK N (K + Ko+ + Kyq) = (KENKy) + (K NKR) + -+ (K NKR),
so &, can be represented as

=Zn,-, neEKNK,, j=12.n—1

On the other hand we know that &, = Z}‘;ll ¢;. Using the induction hypothesis and
integrating it over T with respect to dm (z,) we obtain that

zL(n,)— 2“4’3

Since n; € K; N K,,, Corollary (2 3 19) implies that L; (n]) = L,(n;). Therefore
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n-1 n n—-1
L) = D La() = ) L) = = ) L(E),
j=1 j=1 j=1

andso = —}7_; Lij(§;) = 0.

A simple idea of proving the HP corona problem in the polydisk is to try to mimic the
proof of the H? case. However, there is a much easier way: just use objects which are already
defined, and modify the crucial estimates.

First of all notice, that replacing the Corona data F and g by F(rz) and g(rz),r < 1
and using the standard normal families argument one can assume without loss of generality
(as long as we are getting the same uniform estimates on the norm of the solution) that both
F and G are holomorphic in a slightly bigger polydisk. So we can always assume that, for
example, the right hand side g is not only in HP, but is also bounded, smooth, etc.

As in the H? case we first construct a smooth solution f, := ®g, where ® :=
F*(FF*)™1, of the equation Ff = g and then correct it to be analytic. To do that it is
sufficient to show that the conjugate linear functional L introduced in the previous is L4

bounded, % + 2 =1, i.e. that

ILCOI < CliSllg
for all £ of form & = I1h, where h is a trigonometric polynomial in H?(D™; E)*.
If this estimate is proved, the linear functional Lcan be extended by the Hahn— Banach
Theorem to a linear functional on L7 , so there will exist a function v € LP(T™; E), ||v||, =

|IL]|,, such that

L&) =] (v,&)dm,(2) v& =Tlh,h € H>(D"; E)* n Pol.
'H‘n

Again, replacing v by ITv we can always assume without loss of generality that v(z) €
Ranll(z) = ker F(z) a.e. on T™. As in the previous, decomposing h as

n
h=) & & €
j=1
(h is a trigonometric polynomial, so we can use Lemma (2.3.11) here), we can show that

(g, h) dmy(z) = L(IIh) = L(¢)
"
S0

(v,hydm,(z) = | (v,Ih)dm,(z) = L(1h) = | (Pg, h)dm,(2),
™ ™ ™

for all h € H2(D"; E)* n Pol. Therefore, the function f = f, — v = &g — v is analytic,
and it clearly solves the equation Ff = g (on T", and therefore on D").

Let us introduce some notation. Denote

K1 := clos(II((HP)1)) c 114,909 :== H1n L4,
so for K and Q introduced in the previous K = K2 and Q@ = Q2. Let also
H! = H(D™;E) = {f € L1(T; E): f(-,2/) € HI(D; E)}
be the spaces of functions analytic in variable z;, and let
K = clos(l’[(qu (D™ E))) c NLA(TSE),  Qf:=H!(D™E) nILI(T"; E).
To estimate the functional L we need the following analogue of Lemma (2.3.17)
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Let us show how this lemma implies the estimate for L. We have proved the LP bound

for the functional L (in the one-variable case),
1

1
LI < C DN, C(r.8) = srplog 557,
where C = V1 + e2 + /e + +/2e. That would imply the same estimates for the functionals
L; on L1(T™; E), so applying Lemma (2.3.22) we get

LI <, 5)Z||e,|| <ca, 5)I|€I|qz C(@) < € OMC@[€llq

Recalling that C(p) = C (q) we get the desired estlmate of the solution.

There is a little detail here as the functional L was defined initially only on K2. So
formally, if g < 2 (i.e. if p > 2) the functional is not defined on K <. However this is not a
big problem and the simplest way of dealing with it is to use the standard approximation

arguments. Since the polynomials in (H?)"™ N Pol are dense in (ij)l,the functions of form
[Ih,h € sz N Pol are dense in qu. So, approximating functions ¢; from Lemma (2.3.22) by

functions of this form, we will get the desired estimate. Note, that we are estimating L($)
on a dense set of functions & = I1h, h € (H?)* n Pol, so we do not need it be formally
defined on K9,

The main step in proving Lemma (2.3.22) is the following result that states that in the
one-variable case the norm of the orthogonal projections Py and Py in L7 is the same as the
norm of the Riesz projection P.in L9. See [73] for the norms of P, in L?.

Lemma (2.3.20)[70]: Let H? = H*(ID; E) and let K,Q c H? be the subspaces defined
above in (19) and (21). Thenfor 1 < g < o

IPk¢llg < C(@IISlg ||PQ€||q < C(@lElly V¢ €NL? nIILY,
where C(q) = 1/sin(m/q) is the norm of the Riesz Projection P, in L? (or in LP,1/p +
1/q = 1).

Note that since TIL> N TILY is dense in I1L?, the projections Py and P, extend to

bounded operators on I1L9.
Proof. Take & € T1L? N T1L4 and decompose it as

§ = Pg$ + Ppé =:¢g + &o.
Since Q is a z-invariant subspace of H?(ID; E), by the Beurling—Lax theorem, see [44], it
can be represented as Q = OH?*(ID; E,), where ® € H*(E, — E) is an inner function (i.e.
0(z) isan isometry a.e. on T) and E, is an auxiliary Hilbert space. So &, can be represented
as

§o = On,n € H*(E,) N HY(E,).
By duality

Jeoll, =l = sup ] on.ny dm‘.

Irllg=1
Let hy = P, h.Sincen € H?
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Lr(n,h)dm=fT (n,h+)dm=j;r (@n,®h+)dm=j;r ($g,Oh,)dm

= jT (£,0h,) dm;

the second equality holds because © is an isometry a.e. on T, and the last one holds because
$k € K 1L ©h, .Therefore, since ||h. ||, < C(p)llhll,we can conclude

f (n, hy dm j (€, 0h,) dm| < lIEll, 1 ll, < CONENIIAL,
T T

50 |||, = C@II¢1lq- Thus we get the desired estimate for the norm of Py.

Since Py + P, = I we can estimate the norm of P, by C(p) + 1 for free. Note, that

unlike the case of Hilbert spaces, complementary projections in Banach spaces do not
necessarily have equal norms. So, to get rid of the 1 some extra work is needed.

<

It is easy to see that U,,~, ZK = {0}, so the decomposition I1L?> = K @ Q implies that

the set
U ZnQ = U Z"® H*(E,)

n>0 n>o0

is dense in TTL2. Thus [1L? = ©L2, and since O is an isometry a.e. on T we can conclude that
K = ©(H?(E)?1). Therefore we can represent & as
&k = On,n € H*(E,)* n LA(E,).
Performing the same calculations as in the case of ¢y, only using h_ = P_h,P_ =1 —
P, instead of h, we get the estimate ||Pk||,a < ||P-|| 4. But the isometry T,
1(2)f=z%1kezZ
interchanges H? and (H?)%, and sincer is an isometry in all L?, we conclude the ||P_|| ¢ <

1Pyl a.
Corollary (2.3.21)[70]: Let H* = H*(D™; E) and let K;, Q; © H? be the subspaces defined

in (20) and (21). Thenfor 1 < g < ocand 1 < j < n we have
et < c@iislo ||Pog]| < c@lilly  veemzams,

where C(q) = 1/ sin (g) is the norm of the (one- dimensional) Riesz Projection P,in L7 (or

inlP,1/p+1/q =1).
Proof. This corollary follows directly from Lemma (2.3.20). Since by Remark (2.3.14) we
can view Py and Py, as “one-variable” operators. Then we “freeze” all variables except the
z; variable and apply Lemma (2.3.20) and then integrate in the “frozen” variables.
It only remains to prove Lemma (2.3.22).
Lemma (2.3.22)[70]: Any function ¢ € K9 can be decomposed as
n

§=> &5k g, < c@gl,,
j=1
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where C(q) = 1/sin(m,q) is the norm of the scalar Riesz Projection P, from
Li(T)onto H1(ID) (note that C(p) = C(q) for1/p + 1/q = 1).
Proof. The proof is almost the same as the proof of Lemma (2.3.17), only here we cannot
use the fact that the Py are orthogonal projections. However, according to Corollary (2.3.21)

the projections Py ; are bounded, and this allows the proof to go through.

Take & € K9. Repeating the proof of Lemma (2.3.17) we can write
3 =PK1€+P91€ =& +Sez-
By Corollary (2.3.21) we have that &; € K[! with [|1&l, < C(@)II¢]l, and [IE*]l, <
C@IEllg-

Decomposing &1 in the same manner we have

51 =PK2$;1+P92€1 ==fz+s;2'
So

=& +8&+8%,  §EKT, §2=PyP ¢

Corollary (2.3.21) applied twice gives [|£,]l; < C(@QIIE N, < C(@)?1I€ll4, and thus
||5j||q < C(q)’1I€]l,. Continuing this decompo-sition at each step we find

=&+ + -+ 8, +E0, EjEqu' éTnzPQn"'P92PQ1E'
and ||€j||q < C(q)’I€]l, by applying Corollary (2.3.21) j times. Finally, by Lemma (2.3.16)

Py, ... Py, = 0 onthe dense set K9 N K2,
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Chapter 3
Toeplitz and Hankel Operators with Toeplitz Algebras

We show that the closed bilateral ideal of I(L%) generated by operators of the form
T;T, — T,T coincides with T(LZ%). We generalize an earlier work of Helton-Howe for the
usual trace of the anti-symmetrization of Toeplitz operators.
Section (3.1): Bergman Space of the Unit Ball

We show that if an operator A is a finite sum of finite products of Toeplitz operators
on the Bergman space of the unit ball B,, then A is compact if and only if its Berezin
transform vanishes at the boundary. For n = 1 the result was obtained by Axler and Zheng
in 1997.

Let B,, be the open unit ball in C™. We write L2(B,,) for the Hilbert space of the square
integrable functions defined on B,,. The inner product is defined in the standard way; this

means that for any f, g € L?*(B,,) we define(f, g) = [, f(2)g(2)dv (z),where du(z) is the

normalised volume measure on the unit ball B,,.

The Hilbert space L?(B,,) contains, as a closed submanifold, the space of square
integrable holomorphic functions. This space, called the Bergman space, will be denoted
with the symbol H?(B,,)). By a standard theorem we have that the orthogonal projection P,
from L?(B,) to H%(B,), is a bounded linear operator. It is well known that there exists a
function K: B,, X B,, = C, analytic with respect to the first entry and conjugate analytic with
respect to the second entry, such that, for every f € L2(B,) and every w € B,,, we have

Pf(w) = f(2)K(z,w)dv (2).

Bn
The function K, called the Bergman Reproducing Kernel, can be written explicitly:
1
K(z, = )
W) = g wy

where (z,w) = Y7_; zjw,. If ¢ € L”(B,) we can construct the so called Toeplitz operator
T,, where, by definition, T,, = PM,,. The symbol M, stands for the standard multiplication
operator. Therefore we can write

(Ta)w = | 9@g@RaGIv @)
Bp
We shall show that if an operator S € B(H?(B,)) can be written as S =

i 1'[:;"1 (e where u;, € L*(B,) then S is compact if and only if Ililm1 S(a) =0,
. alo

where, by definition, we have S(a) = (Skg,, k,). We study a family of operators which
plays a central role in our proof and we set up the basic construction, we prove an important
inequality which is a generalization of an inequality proven by S. Axler in the case of one
complex variable. Then we complete the proof of the main theorem. In the last we show that
many well-known results of this type are consequences of our result.

We need to point out some special features of B,,. Let Aut(B,) be the group of all
biholomorphic maps of B, of into B,,. It is well-known that Aut(B,,) is generated by the
unitary operators on C™ and the involutions of the form

_ a—F,z— (1 - |a|2)1/ZQaZ
Ya(2) = o
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where a € B,, P,, is the orthogonal projection into subspace generated by a, and Q,, is the
projection into the orthogonal complement, that is, @, = 1 — P,. We remind the reader that
we have the following equation

K(¢(2), W) Uc)z0cpIw = K (z,w)
where ¢: B,, = B,, is a biholomorphism and K, as usual, is the reproducing kernel and the
symbol J-¢ denotes the complex Jacobian of the transformation. In the following we shall
indicate with the symbol k, the normalised reproducing kernel, that is k,(z) =
|k |2k, (2) = ||k, |I21K (2, w). A direct calculation shows that the identity |Jcy,(2)]? =
|k, (2)|? holds for any z,a € B,,.
Proposition (3.1.1)[75]: On By, ko (¥4 (2) )ka(2) = 1.

With the family of automorphisms above defined we construct a family of operators

in B(L2 (Bn)) which will play an important role in our proof. For any a € B,, we define the
operator U,: H2(B,)) » H?(B,) as (U,f) = f oy, * k,, that is, for any ¢ € B(n)we have
(U ) = f(v,ba(()) - k,({). In the following Propositions we state and prove the main
properties of the U,'s.
Lemma (3.1.2)[75]: For any a € B,, the operator U, is a self-adjoint, idempotent isometry.
Proof. We start proving that U, is idempotent. Let f € H? then UZf = U,(U,f)and this
impliesthat U, f = U, (f e Yy " ky) = (f oYy o Py) - (kg o YP,) “ k. Then we have U, f =
f(kgoY,) - kg, therefore U2f = f. Now we prove that U, is an isometry. In fact, if f is
an element of H2(B,,) then

(Uafr Uaf) = |f ° lpa(W)lzlka(W)lsz(W)

By,

= If © e © Yo (@ |ke (o @)| Urtha (@) dv(2)

= | 1 o Wa o b ke (e )] Vetha@Fdv(2)

= | 1 ove o $e@P ke ()] ka2 du(2)

= | 1f o0 o Ya@Plke(¥a (@) - ka(@)| dv(2) = | If()|*dv(2)
() "

As before we have used the fact that k, o Y, - k, = 1 on B,,. Finally, we prove that U, is a
self-adjoint operator. Let f and g be elements of H?(B,,), then
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(Uaf,9) = | Waf)W)gw) du(z) = | (f o) (W) - ka(W)g(w) du(2)
= | (fovaoPa)(@) - (koo Pa)(@g(¥a(2))rpa(2)] dv(2)
Bn

= | f@ (ks ° ) (@) g(¥a(@)ria(2)]? dv(2)
B

= | f@(kq°Ya)(@)g(¥a(2))lka(2)|* dv(2)

= | f@(kqoYa k) @Dg(Ya(@))ka(z) dv(2) = | f(2)U,9(2) dv(2)

= (f,Ua9)-

For any A in B(H?(B,)) we define the operator A, as 4, = A,AU,, and we denote
with the symbol A the Berezin Transform of the operator A. This function is defined by
A(2) = {Ak,, k,). Now we can state the following.

Theorem (3.1.3)[75]: Let A be an operator in B(HZ(Bn)) which can be written as A =
i H;n:"l Tuj where u; , € L?(B,). Then the following are equivalent:
(i) A is compact;
(i)A(z) > 0as z - 9B,
(ili) A,1 - 0 weakly as z — 0By;
(iv) [|A,1]|, » Oasz — 9B, forany p > 1.

The proof of the stated theorem involves some technicalities. In order to make our
work clearer we prove some basic lemmas and we shall prove the theorem later.

We start with a simple Lemma which clarifies the relationship between the Berezin
Transform and the maps {y, }.

Lemma (3.1.4)[75]: If C is a bounded operator on L?(B,,) and z € C™, then C o ¢, = C,.
Proof. Suppose that C € B(L*(B,)) and z,w € C™. If f isin L?(B,,) then we have

(f UZKW> = (U.f,Ky) = (sz)W = (f ° l/}z)(W)kz(W) =(f, kz(W)Kl,b(W)>-

Since this equality holds for any f in L2(B,), thus we have U,K,, = k(W) Kywy- If we
rewrite the last equation as

KW UK K) = (K 100 (1K | Kpony )
it follows that U,k,, = (1K I 7*||Kyw) [|Kypwy)- Since the operator U, is unitary we can
assert that || K I17 || Ky ||, [K-(W) | = 1.

We can write
(I) Co l/JZ(W) = C(lpz(w))
(i) = (Chy,w), Ky, w))
(iii) =(CU,k, U k\,)
(iv) =(U,CUky, k)
(V) = (C k) k)
(vi) = C,(w).

We observe that in (ii) we only use the definition of the Berezin transform and in (iii) we
use the fact that U, k,, = aky, ., where a is a complex number of modulus 1.
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Finally, we observe that the above calculations imply that € oy, = C,, and we are
done.
Lemma (3.1.5)[75]: For every u € L”(B,,) and for every z € B, we have U,T,U, = Ty, .
Proof. Since U, is an idempotent operator it is enough to prove that U, T, = Ty, U,. We
start computing T, U,. Let f be an element of H?(B), then we have

(U, frlw) = (Tu((F o )k, ) bw) = (PMu((F o Yk ), ko) = ((u((F 0 %,)k,), Ko ))
- f w(D)(f o )k, () ey (D du ().

n

Now we calculate U,T,.,, . Let f be an element of H*(B), then we have
(UZTuOIlJZf' ky) = (Tuolpzf: Uzky) = (PMuolpi» Uzky) = ((uotp,)f, (ky o, k,)

= | f@o,)m)(ky oY)k, (m)dv(m).
Bn

To show the equality we use the substitution n = y,(B). If we call the last integral we have
written in the above list of equalities A, then we have

A= (f ° lpz)(ﬁ)u(ﬁ)kw(ﬁ)(kz ° l/)z)(ﬂ)l(/Rlpz):BldU(ﬂ)

= | (Fev)BulBky Bk, o) (B, (B)I?dv(B)

B(n)

= (f ° lpz)(ﬁ)u(ﬁ)kw(ﬂ)(kz ° lpz)(ﬁ)kz(ﬂ)kz(ﬁ)dv(ﬁ)

Bn

= | (fe)(BulBky Bk, (B)dv(B)

Bn

= (f°lpz)(ﬁ)u(ﬁ)kz(ﬁ)kw(ﬁ)dv(ﬁ)

Then it is clear that the claimed identity holds.
Before we state the next result we need to introduce a new operator. For any f €
H?(B,) we define U f € H2(B,) by (Uxf)w = f(—w).
If we denote with the symbol J..: B — [0, o) the function that acts in the following
way:
t
1a @ = [
5, (L= (z,w))
it is possible to prove (see [79]) that for ¢ < 0 and ¢ > —1 the function J, . is bounded on
B,.

The following proposition is necessary because we are going to apply Schur's Test
(see [77]), when we give a complete proof of the main Theorem.

Lemma (3.1.6)[75]: Givenp € R, with0 <p—1 < (n+ 1), and A € B(H?(B,)) then

1/
| 10RaUI K, o) < K272 (suplla_ 1l ) (5upldas ()] )
B ZEB ZEB

n

and

* 1/
URAURK, (WK, 15 (w) < K (w,w)?/? (supllAZ, 11, ) (supldas )| )
WE

Bn WEB
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Where2(p—1)/p<e<2/(n+Dp,a=p—-1)(n+1)—(n+1ep/2 and b=
—(n+ 1)ep/2andp~ + g~ = 1. Moreover, with such a choice the quantity

1/p 1/p
sup|Japs(@| " = sup|dp-1)mr1)-m+1)ep) 2 ~(mr1)ep/2(2)]
Z€EB ZEB

Is finite.
Proof. We prove the first inequality and we shall show that the second one is an easy
consequence of the first. We observe that
UrAURK, = ”KZHZURAURkZ = ”KZHZURAU—Zl = ”KZHZURU—ZA—Z]‘
= ”KZHZUR((A—Zl) ° llj—z ) k—z) = ||KZ||2((A—21) ° lp—z ° :R) ) kz

= (A, D)oy, o R) K,
Then we can write the left term of the first inequality as

el | 1(CA1) o oG-y - K 0w,
Bp
and, of course, this is the same as

1Kl anl((A—zl) o Y_,(—=w))| [k, (=w)[lIKy, l|5dv(w).
In the last evaluation we used the fact that ||k, ||, = |lk_ |l.. Now we use the substitution
w = 1_,(4) and we obtain

KMz | 1A DD k_ (—, D) || Ky, D | Urtp-2) A dv (2.
B

Since we have the identity |(Jey_,)A| = |k_,(2)|?. then we can write the last integral as
1Kl I(A_zl)(/l)lIk_z(lli-z(/l))lIIKlp_Z(A)IIZIk_z(/l)Izdv(l)-
Bn
If we write ||Ky__ ) ||;as | Ky, ||§_1, we observe that

K(—¢, (D), =, (D) = K(¥, (D), ¥, (D) = KADIUcp-)A™% = KA, D]k_, (D)2

and if we take the square root of both sides, then we have
”Klp_z(/'l)||2|k—z(lp—z(/1))||k—z(l)|2 = ”K/1”2|k—z(/1)|_1|k—z(lp—z(/1))||k—z(/1)|2

= 1Kz ll2|k—z (Y- (D)), D)| = Kl
This implies that the last integral is equal to

IIKzllzj [A_, DD k-, (D' ~#dv(2)
B

and, if we use the non-normalised reproducing kernel, we obtain

IK 2 | 1A_, D)DK NSNK NS K-, (D[P Edv ()
Bp
In other words, we have obtained

IK5 | (A DD IK_, (D]~ Edu(d).
Bn
If we apply Holder's Inequality with g7 + p~! = 1 and we call the last integral 7 = 7(2),
we have

1/p
I(z) < IIKZI|§|IA_21I|q< IIKallé’gIK_Z(A)Ip(l‘S)dv(/'D> :

Bn
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In order to complete the proof we need to study the integral in the right hand side. Using the
fact that we know explicitly the kernel, we have
dv(A)
pe p(1-¢) —
fB ||ka||2 |K_, (D] dv(4) JB (1— |/1|2)(n+1)l78/2|1 —(—z, ,1)|(n+1)p(1—8)'

n

In order to apply the theorem we define t = —(n + 1)pe/2. Because we need t > —1, then
we conclude that 2/(n + 1)p > . We also want to write (n+ I)p(1 —e)asn+ 1+t +
cand thisgivesus c=(n+1)(p —1) —pe (n+ 1)/2. We also want that ¢ < 0 so we
conclude that 2(p — 1) /p < . We can summarise our condition on ¢ in the double
inequality 2(p — 1) /p < € < 2(n + 1)/p. Itis clear that we can find such an ¢ if and only
if (p — 1) < (n+ 1)~! and this is possible because the only condition on p is that 2 > p >
1.

So far we have proved the first inequality. To prove the second inequality it is enough
to proceed as before, starting with A* and using the fact that (A*K,,)(z) = (AK,)w.
We remark that the last lemma implies the following
Corollary (3.1.7)[75]: If D denotes the unit disk in C and dA the Lebesgue area measure
and S is a bounded operator on H?(D) then, for any a € (1,3/2) and B €
(2(a = Da~1,2a™), there exists a constant c, s < oo such that, if a*™* + &~ =1, we
have
|SK,(w)| dA(w) < Ca,pllSz 1l
p (1—|w|)F/2 (1—|w|®)F

forall z € D and

|SK, (W) CapllSw1llar
J, G 400 < G
forallw € D.
This proposition has been proved, in the special case where « = 6/5 and f = 1/2,
in [76]. Finally, we prove the following
Proposition (3.1.8)[75]: Let A be an operator in B(Hz(Bn)) which can be written as A =

11'[m’ T, . e where u;, k € L”(B,). Then, for every q € (1, oo),sggll/lzlllq < o0,
Z
Proof. We can assume that A = Hﬂnleuj- Using Lemma (3.1.5) we have that A, =
| J 14 Ty;ey,- Since Fy: L7(B) — H9(B)is a bounded operator, then there exists a constant
¢q > 0 such that, for every f € LI(B), ||qu||q < ¢, lIf ll4- This implies that, for any f €
L1(B), IT.fllq = ||Punf||q < cgliMufllg < cqllullellfllg- Since [[u o P, lle = llulle, We
obtain ||Tu°¢zf||oo < cillullollfll;-  Then we can conclude that [|A,1]|, <
|q < cq' [Tk=1lluglles. Therefore we are done because our estimate is

Zl:l”Tuk“l’Z
independent of z € B,,.
We give the complete proof of the main theorem, and we remind that the main result
can be stated as follows:
Theorem (3.1.9)[75]: Let A be an operator in B(HZ(B")) which can be written as A =

i Hm’ Tuj,» Where u;, € L% (B™). Then the following are equivalent:
(i) A is compact;
(i)A(z) > 0asz - 9B,
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(i) A,1 - 0 weakly as z = 0B,;

(iv) [[A,1]l, » 0asz — 0B, forany p > 1.
Proofs.i = ii. Because A is compact and k, » 0 weakly in H2(B) as z - dB then a
standard theorem about compact operators implies that ||Ak,|l, = 0 as z = dB,and the
Cauchy-Schwarz inequality implies that |A(z)| = [{Ak,, k)| < l|Ak,|l,. Therefore we see
that A(z) —» 0 as z — 0B,,.

(ii) = (iii). We suppose that (ii) holds and we want to show that 4,1 — 0 weakly in
L*>(B) as z —» dB. We know that we can construct an orthonormal basis for H?(B,,)using
just polynomials in n variables, so it is enough to show that (Azlw“*) — 0 as z—- dB,,
where a*is a multindex and w = wf; ™,
We start by observing that since A(y,(w)) = 4,(w) = (A,ky ko) and k,(w) =

(1—|w|)@V/2y (@ - w%)/y,, We obtain

- A,wE, _
A @) = A - oy S B s
L @, fEN™ Vayﬁ
If we multiply both sides by w® /(1 — |w]|?)™*! we obtain that
A ar A WE, B .
Wol@)o |y § At [ o7 avie
v, AL — [@]?) St VaVs o,
This implies that
A(l/)z(w))F (AZWa,Wa*+a)

rzlall

dv(w) = r2le’l+2n Z

(1 - |w|?)™+ Ve
"Bn ] aENT . ] . ]
Observe that the left hand side goes to zero as |z| — 1 because the domain of integration is
bounded and the function goes to zero since (ii) holds. Therefore for any fixed » € (0,1) the
left side of the equality has limit zero as |z| — 1. Now we divide the left and right hand
sides by r2™*2, Then, on the right hand side, we obtain
(A,1,w®) N (AW, we +e)
Yo aéN o Ya
and we can conclude that, for any fixed r € (0,1),
(A Lw) (4w w* )

Yo N Ya

r2lal

r2lel 0

as z —» 0B,,. We also observe that

a ,,a+a n ©
Z (AzW , W >7"2|a| < “A” ( z ,r.2|a| + Z T2|a|>.
Ya

aEN™\0 |la|=1 la|>n
To complete the proof we need to analyse Y .., 7%!%!. To study this function we define
Py(n) = {z,% ...z,"": a; ... a,, = £} and we denote with the symbol a,(n) the cardinality
of Py(m). We have  [AN(Z ey 72 4+ X0en 1) = ANy, 2 +

Zlc;o>n af(n)er)-
Claim (3.1.10)[75]: If P,(n) and a,(n) are defined as above then
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: apq(n)
* lim sup

f—00 a{’(n)
Proof. We use induction and we observe that if n = 1 then a,(n) forall £ > 1 so, forn =

[, the claim is true. Since, fromm > 0,B,(n+ 1) = UTzolﬁ(n)z,T;lj then it follows that
Ame1(m+1) = a1 (n) + a,,(n + 1) and this implies that
appi(n+1)  apq(n) 41
a(n+1) = a,(n) '
Therefore, using induction, we can conclude that (*) is true. Now we observe that the Claim,

together with the Ratio test, implies that there exists an R > 0 such that .-, a,(n)r?* <
oo if r € [0, R). This implies that if  is small enough, then, for all z € B,,, the series is less
than € > 0, where e is arbitrary. Therefore we have

ZES%J(AZLW“*H <e.

< 00

Since ¢ is an arbitrary positive number, the inequality implies that |(Azl, w“*)| —»0asz—
dB,, and this proves our claim.

iii = iv. We want to prove that A, — 0 weakly in H2(B,)) as z - dB,, implies that
|A,1]|, = 0asz — dB,. If r € (0,1), we can write

14, 1]]; =f 1A, 1(W)|?dv(w) =j
B B

n n\7Bn

14, 1(w) |2 dv(w) + j 14, 1(w)[2dv(w)

By

< VBB AN + | 14,100 Pdvw)
By,

It is clear that we can choose r close enough to 1 in order to make the first term on
the right smaller than §. In fact we have shown that ||A,1]| is bounded independent of z. We
observe that a sequence of holomorphic functions which goes weakly to zero is going to
zero in norm on compacta and this shows that the second term on the right hand side goes
to zero as z goes to the boundary and this completes our proof. Now we assume that p €
(2,0). Then we have

14,11, < 14,1057 14,118,277

By our hypothesis the first term on the right hand side has limit zero as z — dB,, and the
second is bounded independent of z. Therefore, by Proposition (3.1.8), we conclude that
|A;1][, » 0 as z— dB™. For 1 <p < 2 we observe that ||4,1]|, < ||A,1]|, and we are
done.

iv = i. We suppose that ||4,1]|, = 0 as z — dB,, for every q € (1, c)and we want
to conclude that the operator is compact. Since the operator Uy is invertible, A is compact
if and only if Ur, AUy = Ag is compact. We are going to show that Ur AU is compact. We

observe that for any f € H?(B,,) and for any w € B,, we have

(UrAUgf)w = (UgrAUxf, K,,) = (f, UrA"UgK,,) = f(2)(UrA*UxK,,)(2)dv(z)

Bn

= | f@)UrAURK,)(W)dv(z).
BTL
Observe that equation (iv) is a consequence of
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(UzxA"UgK,)(2) = (UxA"UgKy, K;) = (K, UpAURK,) = (UrAURK,, K,,)
= (UrAUzK;)(W).
Forany ¢ € (0,1) we define the operator Ap;;on H?(B,) by

((AR)[t]f)W = f(2)(ArK,)(W)dv(w),

tBn
in other words, this integral operator has kernel

K[t] (z,w) = xtBn(Z)(ARKz)(W)'
where the symbol X, stands for the characteristic function of the set tB, =
{¢ € C™:[¢| < t}. We observe that the operator Ay is Hilbert-Schimdt for any ¢ € [0, 1) in
fact

j j |(ArK,) (W) Xy ()| dv(@dv(w) < [|Agll f 1K, 112 dv(2)
B, /By, tBn

dv(z)
= ||Agll - (1— |Z|2)”+1/2 < o
To show that Ay is compact, it is enough to prove that
lim [|4g — (AR)gg ]| = 0.

We observe that the operator A — (Ag), is an integral operator whose kernel is given by
the function¥;_¢(z, w) = X(p\¢p)(2) (ArK,)(w). To estimate the norm of this operator
we use the Schur Test. We choose, as test function, the function K (z, z)¢/2. If we choose p
such that0 < (p—1) < (n+1)71, and g such that p 1 +q 1 =1, and e € 2(p —
Dp~1,2(n+ 1) 1p~1) then we can apply Lemma (3.1.6), and if we denote the function
Xg,\¢8, Dy the symbol G(t,") we see that

1/
G (t, 2)ARK, WKy llzdvw) < (K.l sup [lA_,1ll4 sup |Jap (@] "

By, ZEBu\tB,
and

1/
G (t, 2)ARK,WIIIK llzdvw) < [IKyllz sup [lAZy, 1], SUP|Jab(W)| g

Bn WEBL\tB,
If we choose a and b as in Lemma (3.1.6) then we obtain sup |<7ab(W)| < oo and our
WEB,
hypothesis on the behaviour of [|A%,,1]|, as w goes to 8B, implies that |4z — (Ag) | = O
ast — 17. Therefore we have proved that UrAU = Ay is compact and this implies
that A is compact.

Observe that in the case when there is only a single operator, the main result can be
stated in a very simple form, in fact.

Corollary (3.1.11)[75]: Let f € L*(B,,). Then T is compact if and only if f(z) > 0asz—>
0B,,.

We remind that for any f € L*(B,,), the Hankel operator H;: H*(B,,) = H*(B,)*is
defined by Hrg = (I — P)(fg), forany g € L?>(B,). The next result has been proved, in the
case where the symbol is holomorphic, by Stroethoff.

Corollary (3.1.12)[75]: Let f € L™ (B,,). Then the following are equivalent:

(1) Hf is compact;
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(i[|HeK, ||, > 0 as z - 0By;
(i) [lf e, =P(fop,)ll; » Oasz = 0B,
The proof is the same as in the case of the disk and we refer the reader to [l] for details.
Using this result it is also possible to recover the main Theorem in [78].

Section (3.2): Bergman Space Coincides with Its Commutator Ideal

If 0 <p <o let LP =LP(ID,dA), where D is the open unit disk and dA(z) =
(1/m)dxdy, with z = x + iy, is the normalized area measure on ID. The Bergman space L}
Is formed by the analytic functions in LP. If 1 < p < oo then

f(w)
(Pf(2) = JD mdx‘l(w)
is a bounded projection from LP onto LP.. This is the usual Bergman projection. For a € L*
let M,:LP — LP be the operator of multiplication by a and P, = PM,. Then ||P,|| <

Cpllalle, Where C, is the norm of P acting on LP. The Toeplitz operator T: [P — [P is the
restriction of P, to the space LY. If B is a Banach space, we will write £(B) for the algebra
of all bounded operators on B and T(L?,) for the closed subalgebra of £(L%) generated by
{T,:a € L™}.

If A is a Banach algebra, its commutator ideal €A is the closed bilateral ideal
generated by elements of the form [x, y] €= xy — yx, with x,y € A. It is clear that €A is
the smallest closed ideal of A such that A/€A is a commutative Banach algebra. There is an
extensive literature on commutator ideals and abelianizations of Toeplitz algebras acting on
the Hardy space H?2. See ([45]). We only have a handful of results for Toeplitz algebras of
operators on L. Probably the most relevant on the subject are [13], [84] and [82].

If H is a Hilbert space of dimension greater than one then €2(H) = £(H). Although
this situation is very unusual for Toeplitz algebras, the purpose is to prove the following
Theorem (3.2.1)[81]: The Toeplitz algebra on L2 coincides with its commutator ideal.

In [83] it is shown that if ¢(z) = exp(ilog|z|~2) then the semicommutator Toe —

T$T¢ is a nontrivial scalar multiple of the identity. Analogously, it could happen that there

are two simple functions a, b € L* such that T, T, — T, T,is easily seen to be invertible. This
would immediately prove Theorem (3.2.1). Since | was unable to find such functions or
even prove their existence, the proof here is considerably more complicated.

—w)

Forze Dletg,(w) = ((12_—20)) the special automorphism of D that interchanges 0 and

z. The pseudo-hyperbolic metric is defined by p(z, w) = |p,(w)|for z, ¢ € D. It is well
known that p is invariant under the action of Aut(ID). We will also use that

(2 w) > p(z,u) — p(u,w)

1—-(z,u)(u,w)

IfOo<r<1iwriteK(z,r) ¥ [w € D: p(w, z) < r] for the closed ball of center z and radius

r with respect to p. A sequence S = {z,} in D will be called separated if gtljfp(zi,zj) > 0.

forall z, w,u € D.

Although | have not found the next result in its present form, it is a well known feature of
separated sequences. We sketch here a proof.
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Lemma (3.2.2)[81]: Let S be a separated sequence and 0 < o < 1. Then there is a finite
decomposition S = S; U ...U Sy such that forevery 1 < i < N:p(z,w) > oforall z # w in
Proof. Since S is separated, there is some positive integer N depending only on ¢ and the
degree of separation of S, such that K(z, ) N S has no more than N points for every z € D.
Let S; c S be a maximal sequence such that p(z, w) > o for every z, w € S; with z # w.
The maximality implies that S © U5, K(z, 0).

If S=5; we are done. Otherwise suppose that n>2,5;,...,5,-, are chosen and
S\(5;U..US,_;) #0. Let S, € S\(5; U ..US,_;) be a maximal sequence such that
p(z,w) > o forevery z, w € S,, with z # w. By the maximality at the previous steps, if z €
S, there issome z; € S; suchthat z € K(z;,0) forevery1 <i<n-—1.

Therefore {z, z;, ..., z,_1} € K(z,0) N S, and consequently n < N.

Lemma (3.2.3)[81]: For 1 < k < m let {a}"‘}j>1 be sequences in the unit ball of L®such that

supp af < (a;,7), where K(a;,7) N K(a;,7) = @ if i # j. Suppose that 1 < p < co and
{R]-}j>1 is a bounded sequence in 8(LP). If f € LP is such that 3., M mR;f € LP then

Z Pt . PomRif[| < G Z MarRif||

j=1 » j=1 »
where C, is the norm of the projection P acting on LP.
Proof. Write Q; = Pgz . Pa;n-leor allj=1and S =3, Ma1QiMamR;.

Then ||Q;|| < ¢;*~* and for f € LP we have

p
ISFIy = zMajl.QjMa;"|ij = z | Majl.QjMa;nij”p < ngm_l)pz ”Ma}nij”p
jz1 p It b jz1 ’
p
_ ¢omo Z(Ma}nRj) f (1)
=1

p
If the last quantity is finite then Sf* € LP and the sums S, f = Y7_; Majl, QjMa}nijconverge

to Sf in LP-norm when n — oco. Therefore
p

p
Zpa} "'Pa}”|ij = liTIln zpa} "'Pa}”ij = li7£n||PSnf||p = Cp”Sf“g-
j=z1 » j=1

The lemma follows combining this inequality with (1).
Corollary (3.2.4)[81]: Taking R; = 1 for every j in Lemma (3.2.3) we obtain

Zpa}_ Py <cm.

j=1 o(LP)
Proof. By the lemma,

zpa}_ ...Pa;nf <y zMayl <

j>1 =1
J p J p

90
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forevery f € LP.
The next result is a particular case of Lemma 4.2.2 in [85].
Lemma (3.2.5)[81]: Ift > —1,c isreal and

(1 - |w[?)*
Fou(2) = fD T (@) z€ED,
then F, is bounded when ¢ < 0 and |F,..(2)| < €(1 — |z|*)~¢ when ¢ > 0.

Lemma (3.2.6)[81]: Let 0 < r < 1 and {“1}121 c D such that K(a;,7) N K(a;,7) = O if
i#j. Ifr<R<1land0 < p <1then

Kty @D onee @] S 4w
j Z[ Jo ] — Zw|

< cp(R)(A — [2/)7F, (2)
where ¢z(R) > O whenR — 1.

Proof. If z € K(a;,7) and w € D\K(a;, R) then

p(w ) - p(a,2) SR
1-p(a,z)p(w ;) 1= Rr
where § = §(R) » 1 when R — 1. Therefore D\K(«;, R) € D\K(z, §) and

p(w,z) = =6,

Z X ()@ Xk (ay ) (@) S Z Xi(ayr) (D X oK) (@).
Hence, the mtegral in (2) is bounded by

2)-B
ZXK(O.’] r)(Z)j XD\K(z,6) ((U)( 1 _l l—?z dA(w)
_ (1-le.mI)7*
=) Xt ® | T 4)
(1= v»)F _
= flv|>5 |1 —zv|?=2F (1 = [z1)7F dA), (3)

where the equality comes from the change of variables v = ¢,(w) and the inequality
because K(aj,r) are pairwise disjoint. Pick some p = p(B) > 1 satisfying simultaneously

the conditions pp < 1andp(2 — B) < 2. If p~1 + g~ = 1, Holder’s inequality gives
1/p

— |28 _ [,12)-PB
j (1 llil ) dA(v) < J A=) dA(v) (1—462)14,
[v|>

5|1 —zv|?72F p 11— zp|2P-B)

Since 2p(1—B) =2 —pB + [p(2 — B) — 2] < 2 — pB,then Lemma (3.2.5) says that the
last expression is bounded by Cp (1 — 8§2)1/4, where Cp depends only on f. Going back to
(3) we see that the integral in (2) is bounded by

Cp(1— 8RHVIP (1 — |2)7F,
proving the lemma.
Lemma (3.2.7)[81]: Let 0 <7 <1 and «; € D,j > 1, such that K(a;,7) are pairwise
disjoint. Suppose that R € (r, 1) and a;, A; € L” are functions of norm < 1 such that
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suppa; C K(aj, r) and supp 4; D\K(aj,iR).
Then )., M, .PM,. is bounded on L? for every 1 < p < oo, with norm bounded by some
Jjz177a; j

constant k,(R) —» 0 when R — 1.
Proof. Write

1
—wz|?’

B(z,0) = ZXK(Q, 9 ok (a0 @) T
Let f € LP. Since ||a;| _, ||4; ||oo <1 forall j, then

dA(w)

> Mo My £ )| = [ g@) j 4@ @) G5

j=1 j=1
<[ oG olr@lda@).
Taking h(z) = |1 — |z|2|‘1/p]g, where p~ + g~ = 1, Lemma (3.2.6) asserts that
f ®(z, w)h(w)1dA(w) < C,_ (R)h(2)?
and Lemma (3.2.5) implig)s that there is some C > 0 such that
j ®d(z,w)h(z)PdA(w) < Ch(w)P.
By Schur’s theorem ([85], p.IDA)IZ) the integral operator with kernel ®(z, w) is bounded on LP

1/q
and its norm is bounded by (Cp_l(:R)) C/P 5 0asR - 1.

Let ajf, bj € L*,j = 1 and 1 < i < m, be functions of norm at most 1 supported on
K (aj,r), where the pseudo-hyperbolic disks are pairwise disjoint.

By Lemma (3.2.2) for any o € (r, 1) there is some n = n(o) = 1 and a partition of the
positive integers N = N; U ... U N,, such that

p(ai,aj)>a fori #j,i,j EN,, 1<k <n.
Lemma (3.2.8)[81]: If 1 < p < oo then

YD PayPap Pl ) > Py - PapPy, )

1<ksn JENg jz1
in operator norm when o — 1.

Proof. Write B; = X;en, b; When j € N, for some 1 < k < n. Since P(
i#j
Py, the first term in (4) can be decomposed as

n
Z lz Pa} ---Pa;”ij + Z Pa} ---Pa;"PBj =5 +S;,
k

=1|jEN JEN

n
:Z Pl me —zpl Pa;nPbJ

=P, +
Sienbi) i

where



and

n
S, = Z z Poi . PanPp; = ) Pgi..PynPp,
k=1 jEN j=1
Let f € LP. By Lemmas (3.2. ) and (3.2.7)
ISfllp < € ) ||Ma nPo,f| - (5)
j=z1

If w € suppB, for j € N, with 1 < k < n, then there is i # j in N such that w € K(a;, 7).
Then

p(aj'ai) —p(w, a;) S o—T
1— p(ocj, ag)p(w,a) 1—or
meaning that suppB; ¢ D\K (aj,fR(a)). Since R(6) - 1 when ¢ = 1, (5) and Lemma

(3.2.7) prove (4).
Corollary (3.2.9)[81]: Unfjer the conditions of Lemma (3.2.8),

p(w o) =

Z z T 1 ) T m T(ZLENk ) - 2 Ta]1_ "'Ta}-nTbj (6)
1<ks=n | JEN =

and
Z ZLENk z T 1 ...Ta’." - 2 TbjTa} ...Ta}n (7)

in operator norm when o — 1.
Proof. We obtain (6) by restricting the operators of (4) to LY. To prove (7) use (6) with

Z Tap T | T (500, )

1<k=n JEN
acting on L1 and then take adjoints.
Proposition (3.2.10)[81]: Let 1 <p < wand ¢}, ..., ¢}, a;, by, dj, ..., d* € L be functions
of norm < 1 supported on K (a;, ) for j > 1, where K(a],r) NK(a;r) =@ ifi #j.Then

z Tes T (e, To; = To,Ta;) Ty -+ Ta € CT(LE).

j=1
Proof. For r <o <1 decompose N = N; U ..U N,as in the paragraph that precedes
Lemma (3.2.8). By Corollary (3.2.9),

z [T Z]ezvk a] Zzezvk ) T(ZleNk )T(Z]ewka1>] - z (Ta-Tbj - TbjTaj)

1<ksn jz1
in operator norm when o — 1. Since the first operators belong to the commutator ideal, so
does their limit. Thus,

Z (T, Ty, = Ty, Ta;) € CT(L)
JeF
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for any subset F < N. In particular, this hold for F = N,,,1 < k < n. Then

Z z (Tainf B beTaf) T(Ziedeil) € 63(Le),

1<ksn | \ JENg
and since (6) says that the above operators converge to

2 (o, Ty, — T, Te) Ty

j=1
when o — 1, this operator is also in €Z(L},). Clearly, the same holds if the sum is over any
set F < N. We can repeat this process m — 1 more times using (6) and then [ times using
(7) to obtain the desired result.
Let a € L™ be a real-valued function such that a(w) = § > 0 for every w € D. Then
T, is self-adjoint and

(Tof, f) = jD alfI?dA > § fD If12d4 = 81If12

for every f € L%. Therefore T, is invertible. Theorem (3.2.1) will be proved by constructing
a function a as above such that T, € €I (L3).

We need to summarize several basic features of Toeplitz operators. If a,b € L™ then
T,T, =T, whena e H* or b€ H*. If z€ D then U,f = (f o ¢,) ¢, defines a unitary
self-adjoint operator on L. Therefore, if a € L* and f, g € L3,

(UzTaUZf' g) = (TaszJ Uz.g> = <a(f ° q)z)(péi (g ° q)z)q)é) = ((Cl ° (pz)f' g);
where the last equality comes from changing variables inside the integral. Thus

U,To, o To U, = U, Tq Uy o UTy Uy =Ty oy o Ta o, (8)

for a; € L*,1 < j < n. By diagonal operator we always mean diagonal with respect to the
orthonormal basis {vn + 12"} _ .

A straightforward calculation with polar coordinates shows that if a € L*is a radial
function (i.e. a(z) = a(]z|)), then T, is diagonal with n-entry
1

1
A, (a) = j a(tz) (n + 1)t"dt. ©)
0
If y,denotes the characteristic function of the ball {|w| < r}, where 0 < r < 1, then (9)
yields T, w™ = r2M*Dym,
Lemma (3.2.11)[81]: Let a € L™ be a radial functionand 0 < r < 1. Then
T Ta = Ty ()a(o/r):

Proof. The operator T (4)a(w/r) is diagonal, and its n-entry is
2

: t1/2 p £1/2
fX[O,r](tl/Z)a (T) (Tl + 1)tndt. = f a (T) (Tl + 1)tndt

0 0
1

= r2nt2 j a(u?)(n + Durdt,

0
where the last equality comes from the change of variables u = t/r%. By (9) T, T, is also

diagonal and has the same entries.
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A simple calculation shows that if n>1 then (Tgyw" w*) = (W™ w**tt) =
((n/n+ Dw™ 1, w*). A recursive argument then gives that for every nonnegative integer
k,

(n+1—-k)

) W™k ifn=>k

Taka)n =
and Tak(,l)n =0ifn < k. Thus

n+1-—k
TZkTern = T'Z(n+1) <Tl—+1> a)”_k lf nz= k,

and since T, T k™ = r2+k+Dn+k then

(T_kTy, )(Ty, T )™ = r#0rti+t) (%-I:-l) w"
= r‘“‘Tsz T_iT @™, (10)
where the second equality comes from the limit case r = 1 in the first equality and from
Ty 0" = rm* Dy, Since T,, and T ,«T_x« are diagonal, they commute, and since Ty, =
Ty , then
TXrkaTakTXr = T)?rkaTak = TXTZkaTak' (11)
By (10), (11) and Lemma (3.2.11),
S 2 Ty s T, | = Ty (T T = 74T T 1)
= TXTZkaTak — TXT2|(U|2k' (12)
Let P, € £(L%) be the operator P,f = f(0). Straightforward evaluations on the basis
{z"},,50 give the following identities
T,T5 = T1+log|w|2 ’T(DZTBZ = T1+210g|w|2 + P, and T)(rzpo = T4P0. (13)

Then
28; = S;by 35T, , (2T, Tg — To2Tg2) + T sort-zioi) MTXTZ (ol 21ar)
- 7"4P0 - TX 5 T'4P0. (14‘)
2(1-lw|?)

Since 25, — S, T, and Pyare diagonal operators, they commute. Consequently
PyT,. Ty =Ty PoT, =0,
which together with Lemma (3.2.11) and (14) gives

Txra(zsl - SZ)Ter = TETXr(Zsl - SZ)TXrT(J) =T . (15)

2
1o (1-128) o2
If « € D then (8), (12) and (15) yield
T o0 )@, (2 [T(xr°<pa)<pa' T(xrwpa)%] - [T(Xr°‘Pa)‘P¢21' T(Xroq)a)ai]) Totrow)0a
= UaTy (251 = S2)T,0Ua = Ty u000 (1100272 00l (16)
Suppose that 0 < r < 1 and {a;} c D is a sequence such that K (a;, ) N K (a;,7) =

@for i+j. Since (x40 @g)(@) = Xk(ar+(w), the characteristic function of
K(a,r%), then

A@) = Y 100 (90, (@) 1—@ |0a,(@)]

j=1
is in L® with ||A|| < 1. In conjunction with (16), Proposition (3.2.10) tells us that
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ZT 2 \2 , ECI(L2). (17)
j=1 Xr4°§0a |(Paj(w)| /T > |(paj(w)|

When w € D satisfies r*/4 < p(w a;) < (3/4)r* for some a; we have

2
|%]r( )| . (a))| (1— 223 2—222_2'

meaning that
7\8 3 rt

Alw) = (E) when w € K (aj, (Z) r4) \K (aj,z> for someq; . (18)
Lemma (3.2.12)[81]: Given 0 < o < 1 there is a separated sequence {a]-} in D such that
every z € D is in K(«j,30/4)\K(«;, 0/4) for some a;.
Proof. Take a sequence {@;} c D such that p(a;, ;) > 0/100 if i = j and

({a]} - ) <-— for every w € D. (19)

For an arbitrary z € D write §; = (pz(a]). The conformal mvarlance of p implies that
{ﬁj}j21 satisfies (19). We claim that there is some f; such that% < |Bi| < (3/4)0.
Otherwise

o
3 o (0 30 7 o
PG 1)) 20 (3.0\ <0l =53e)) =p (. (5.5 g
This contradicts (19) with respect to {Bj} forw = /2. 1f= <{,B]0}<( /4)o then

3
,0(0!]'0,2) =p ((pz(ajo)J ¢Z(Z)) p(ﬁJO,O) |'8]0| € (Z 4,0-

and since z € D is arbitrary, the lemma follows.
Returning to our construction, fix 0 <7 <1 and suppose that S = {aj}j>1 is a

sequence satisfying Lemma (3.2.12) for o = r*. Since S is separated, by Lemma (3.2.2) we
can decompose S = S; U ...U Sy, where for each 1 < k < N,K(a;, ) N K(a;,7) = @ if
ai,(xj € Sk with i i] For 1 < k < N write

4@ = D sy (0 @) [ 1- M [90,@)]

ajESk

Then ||Axlle < 1 and (17) says that T,, € €I(L%). Consequently
N

z Ty, = Tig. ap) € CTUR).

k=1
In addition, (18) says that forevery 1 < k < N,
7\8 3\ rt
Ap(w) = (E) whenw € K (a]-, (Z>r )\K Ty for someq; € Sy,

and since Lemma (3.2.12) asserts that

96



o= ) 1 #fer (o)

1<ks<N aj€Sg

8
ThenY¥_, Ap(w) = (g) for every w € D. This completes the construction and
proves Theorem (3.2.1).

Section (3.3): Dixmier Traces on the Unit Ball of C*

We study the Dixmier trace of a class of Toeplitz and Hankel operators on the Hardy
and weighted Bergman spaces on the unit ball of C¢. We give a brief account of the problem
and explain some motivations. Consider the Bergman space L% (D)of holomorphic functions
on the unit disk D in the complex plane. For a bounded function f let T, be the Toeplitz
operator on L2 (D). It is a well-known that for a holomorphic function f the commutator
[Tf*, Tf] is of trace class and the trace is given by the square of the Dirichlet norm of f,

17,7y = jD @) 2dm(2),

which is one of the best known M~ obius invariant integrals. This formula actually holds for
Toeplitz operators on any Bergman space on a bounded domain with the area measure
replaced any reasonable measure [88]. There is a significant difference between Toeplitz
operators on the unit disk and on the unit ball B = B% in C%,d > 1. Let LP be the Schatten
- von Neumann class of p-summable operators. The commutator [Tf*,Tf]on the weighted

Bergman space, say for holomorphic functions f in a neighborhood of the closed the unit
disk, is in the Schatten - von Neumann class L?, for p > %and iszeroifitisin LP, forp <

%% being called the cut-off; on the Hardy space [T;,Tf]can be in any Schatten - von

Neumann class L?, for p > 0; see [98] and [99] for the case of Hardy space and [87] for the
case of weighted Bergman space. However for d > 1, itis in LP, for p > d, with p = d
being the cut off, both on the weighted Bergman spaces and on the Hardy space. Thus no
trace formula was expected for the commutators. Nevertheless Helton and Howe [96] were
able to find an analogue of the previous formula. They showed, for smooth functions

fi, - f24 ON the closed unit ball, that the anti-symmetrization [T, T, ... Ty, | of the 2d
operators T¢,, Ty,, ... Tr, ,is of trace class and found that

tr[Tfl, sz, Tde] - jB df1 N dfz A ded

On the other hand, we observe that [T}, T,] is, for smooth functions f and g, in the
Macaev class L& (which is an analogue of the Lorentz space £%*), thus the product of d
such commutators [Ty, Ty, | [Ty, Ty, | - [Tr, Ty, ] is in L% and hence has a Dixmier trace.

One of our goals is to prove the foIIowmg formula for the Dixmier trace of this product of
commutators:

ol Tyl (T Tl = | 92 - 9,

Here {f, g} is the Poisson bracket of f and g; its restriction to the boundary S of B depends
only on the boundary values of f and g and can be expressed in terms of the boundary CR
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operators. This can be viewed as a generalization of the Helton-Howe theorem. We apply
our result also to Hankel operators and obtain a formula for the Dixmier trace of the d-th
power of the square modulus of the Hankel operators H%Hffor holomorphic functions f.

This provides a boundary £%* result for the Schattenvon Neumann LP(p > d) properties
of the square modulus of the Hankel operators (see [89], [91] and [101]).

There has been an intensive study of Dixmier trace and residue trace of pseudo-
differential operators, mostly on compact manifolds where the analysis is relatively easier,
see e.g. [90] and [93], thus the Toeplitz operators on Hardy spaces on the boundary of a
bounded strictly pseudo-convex domains can be treated using the techniques developed
there. The Hankel and Toeplitz operators on Bergman spaces, generally speaking, behaves
rather differently from those on Hardy space, and the result of Howe [97] roughly speaking
proves that Toeplitz operators of certain class can be treated similarly as in Hardy space case
(also called the de Monvel - Howe compactification [92]). Our result can thus be viewed a
generalization of the compactification to weighted Bergman spaces and an application of
the [94] ideas of computing Dixmier traces. In particular our Theorem (3.3.5) are closely
related to the results in [90] where the residue trace of pseudo-differential operators of
certain class is computed; here we use the Weyl transforms and they differ from pseudo-
differential operators of lower order, so that Theorem (3.3.5) can also be obtained from [90]
provided one proves the the lower order terms are of trace class.

We will study the Dixmier trace for Toeplitz operators on a general strongly pseudo-
convex domain [95].

Let dm(z) be the Lebesgue measure on C*¢ and consider the weighted measure

du, = C,(1 = |z|>)V"4"1dm(2),
where C,, is the normalizing constant to make dyu,, a probability measure and v > d. We let
H, be the corresponding Bergman space of holomorphic functions on B. We will also
consider the Hardy space of square integrable functions on S which are holomorphic on B.
This can be viewed as the analytic continuation of ;, at v = d. Thus we assume that v >
d.

Let f be a bounded smooth function on B, the closure of B. The Toeplitz operator T¢

on H,, with symbol f is defined by
Trg = P(fg)
where P is the Bergman or the Hardy projection for v > d and v = d, respectively.

As was shown by Howe [97] there is a more flexible and effective way of studying
the spectral properties of Toeplitz operators with smooth symbol, by using the theories of
representations of the Heisenberg group and of pseudo-differential operators. We will adopt
that approach. See [97] and [100]. So let H,, = C% x T be the Heisenberg group as in loc.
cit.. The Heisenberg group has an irreducible representation, p, on the Fock space F
consisting of entire functions f on €% such that

j If (2)[2e™™ dm(z) < co.
cd

The action of the Heisenberg group is explicitly given as follows. For w € C¢ viewed as an
element in Hy,
s ;) —
pWf(w') = e 2w ™ Y f(w’ —w),
where w’.w is the Hermitian inner product on C%. The action of T is given by the change
of variables.
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Identifying the Lie algebra b of the Heisenberg group with R?" @ R and thus R?"
with a subspace of the Lie algebra we get an action of R?" as holomorphic differential
operators on F, which extends from p to the whole enveloping algebra U(H) and which will

also be denoted by p. In particular, taking the basis elements d; = d/dw; and 5j = d/dw;
of R?™ we have

p(3)f W) = =0;,f(w), p(9;)f(w) = mw;f(w).  (20)
Let, following the notation in [97], A€ U(H) be the element

1 — —

Then p(A) acts on F as a diagonal self-adjoint operator [97], under the orthogonal basis
w% a = (aq,...,ag)}, Vviz

p(A)w?* = —n(lal +§) we, (21)

Let F(z)be a function on C¢ (viewed as a function on the Heisenberg group). The
Weyl transform p(F) of F is defined by

p(F) = L FW)p(w)dm(w).

To understand the operator theoretic properties of p(F) we will need the Fourier
transform of F. Let F be the (symplectic-) Fourier transform of F

F(W') — Z—dj F(W)eni Imw’.de(W),

cd
and F = G the twisted symplectic convolution
FxGw) = f F(2)G(w — z)e™mwWZam (7).
cd

We recall that

and
p(F)p(G) = p(F * G)
for appropriate class of functions. A well-known theorem of Calderon-Vaillancourt states
that if F and all its derivatives are bounded then p(F) can be defined as a bounded operator
onF.
We will need a finer class of symbols introduced by Howe. Let
PT(m,u) = {F € S*(CY): |6“6_313| < Cap(1+ |w|)m‘“(|“|+|/3|)}

and
w

PTraalm, ) = {F € PT(m,0):F = (1= g(Iwh) () wi™ + D, Dy
€ PT(m — u, u)}-
Here g is a smooth function on R such that 0 < g(t) < 1onR,,g(t) = 0 for |t|] = 2 and
gt)y=1for0 <t < 1.
For F € PT.,q(m, ) we will call

om(F) = () Il (22)

its principal symbol. It can be obtained, up to the factor |w|™, by
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Y(w) = tlim t"™mF(tw), weES.

Following Howe [97], we will call p(F), F € PT (m, u), a pseudo-Toeplitz operator of order
m and smoothness u. One has [97]
F € PT(my, 1), G € PT(my,u) = F *G € PT(my, + my,, 1).(23)
We will realize the Toeplitz operators Ty on 3, for f on B (or on S for the Hardy
space) as Weyl transforms p(F) of certain symbols F on C%. First we notice that

o)

form an orthonormal basis of H,,, and so do

— 1 B
Eﬁ = T[TW w
for F. (Here (v); :==v(w + 1) .. (v +j — 1) is the usual Pochhammer symbol.) Thus the

map

N| =

Is an unitary operator. First we will find the action of the elementary Toeplitz operators T«
under the intertwining map U.
Lemma (3.3.1)[86]: The operator UT,«U* on F is given by

d 1 1/2
UT,eU* = p(2)%p <n|“| (V—E——A) ) (25)
T /lal

This can be proved by direct computation. Indeed we have
1

S < (Ba )2 .
T \@ 1B )
and the right hand side (25) can be easily computed by (20) and (21).

By using the previous Lemma we have then the following result which was proved
by Howe [97] in the case when v = d + 1; the general case of v > d is essentially the same.
Proposition (3.3.2)[86]: Let f € C*(S) and let f be a C*® extension to B and T7 the
Toeplitz operator on H,,. Then under the unitary equivalence of , and the Fock space F
on €%, the Toeplitz operators are pseudo-Toeplitz operators with radial asymptotic limits
PTraa(0,1). More precisely, there exists F € PT;,4(0,1) such that UT;U* = p(F), and
f(Q) = lim F(ty) foreach¢ € S.

Recall that the Schatten-von Neumann class LP,p = 1, consists of compact operators

1
T such that the eigenvalues {un} of |T| = (T*T)z are p-summable, ¥ u? < oo. In particular
L2 is the Hilbert-Schmidt class, £ the trace class and £ are the compact operators. For
1<p<o,1<qg < ,the Macaev class LP? is obtained by the real interpolation between
L and L£=. However, we will need the Macaev class L1, which consists of all compact
operators such that, if u;, > u, > ...,

N
Z U, = O(logN).
n=1

There exists a linear functional on the space £1'*® that resembles the usual trace, called
the Dixmier trace. Its definition is rather involved and we refer to [95] for details. Let

100



C, (R, ) be the space of bounded continuous functions on R, and C,(R,) the subspace of

functions vanishing at . Let w be a positive linear functional on the quotient space

C,(R,)/Co(R,) such that w(1) = 1. For a positive compact operator T € L% with

eigenvalues {u,,}, extend u,, to a step function on R, and let M;(A) be its Cesaro mean,

which is a bounded continuous function on R*. The Dixmier trace of T is then defined by
tr, T = w(My).

It is then extended to all of £2* be linearity. In particular it is bounded and vanishes on

trace class operators. The fact that we will need is that
N

1
tr, T = lim z Uy, (T)

N-w log N ]
n:
if T is a positive operator and if the right hand side exists.

Lemma (3.3.3)[86]: For any c > Othe operator (C—p(A))_d = p(c6, —A)~% is in the
Macaev class £,

d
Proof. It follows from (21) that the eigenvalues of (¢ — p(A))d are (c + 1 (m + g)) m=
0,1, ...each of multiplicity
d,, = dim{w?, |a| = m} = (

The partial sums thus satisfy

) )
z c+n<m+§> dmzz c+n(m+z) m?1 ~logN,

msN msN
completing the proof.

Proposition (3.3.4)[86]: Let F € PT(—2d,1). Then the Weyl transform p(F) is in the
Macaev class L1,
Proof. By (3.5.6) in [97],

d+m-—1 — od—1
L) A me

2

T
A= T lwl?, (26)

so —A€ PT(2,1), whence by (23) (—=A)*¢ € PT(2,1) and (—A)** « F € PT(0,1). By the
Calderdn-Vaillancourt theorem [97], the corresponding Weyl transform, p(—=A)2p(F), is
bounded. Hence by the previous lemma p(F) € L1, since the Macaev class £L1® is an
ideal.

Theorem (3.3.5)[86]: Let F € PT;,q(—2d,1) with the principal symbol o_,,(F) as

defined in (22). Then the Dixmier trace tr,, p(F) is independent of w and is given by
d

T
tro p(F) = 77 f 6 ra(FYW)
S

where fs Is the normalized integral over the unit sphere.

Proof. The proof is quite similar to that of Connes [94] for pseudo-differential operators on
compact manifolds. Namely, by [97] and the definition of P74, the Dixmier trace tr,, p(F)
depends only on the leading symbol of a_Zd(ﬁ) and defines a positive measure on the unit

sphere S in C%. By the unitary invariance of p(F) the measure has to be a constant multiple
of the area measure. To find the constant we

note that the symbol of ¢, — A, ¢ > 0, is absolutely elliptic in the sense of (4.2.20) in [97],
and thus by pp. 246-247 in [97] we can construct F, € P7,,4(—2d, 1) such that p(F,) =
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(c— p(A))_d. The eigenvalue of p(F,) on the space of all m-homogeneous polynomials is,

by the proof of Lemma (3.3.3),
1

(cen(mned))

1
tre, p(Fp) = <7T_D) .
On the other hand the principal symbol o_,4(F,) is the constant function (4/m?)%|w|~2¢
by the definition (cf. (26)), whose integration over the sphere is (4/m2)%. This completes
the proof.

To apply our result to Toeplitz operators we need to introduce some more notation.
We let

Its Dixmier trace exists and is

a]P =0; — ZR, a_jb =0;—zR,
be the boundary Cauchy-Riemann operators [79], where R = Z] 1Z;0; is the holomorphic

radial derivative. As vector fields they are linearly dependent, to wit,
d d

Ez-al’ =0, Ez—-a‘l’ = 0. (27)

j=1 j=1

Definition (3.3.6)[86]: We define a bracket {f, g} for smooth functions f and g on S by

(. g% = Z(af’fa}’g - 3Pfapg)

and call it the boundary Poisson bracke{.
Lemma (3.3.7)[86]: Let F and G be two functions in PT;.,4(0, 1) with principal symbols

0o(F)(2) = f(i> ,00(G)(2) =g (i)

|z| |z]
for f and g in C*(S). Then the principal symbol of F xG — G = F is given by
72(F 56 =G ) = by ()11

Proof. By the general result for the symbol calculus for pseudo-Toeplitz operators, cf.
(2.25)in [97], we have F x G — G *x F € PT.,4(—2u, u) with the principal symbol

6-2(F + G~ G+ F)(@) = —{0,(F), 05(6)}(2),

where {:,-} is the ordinary Poisson bracket in complex coordinates
d

(¥, d} = Z(ajwéjeb —0,90;¥).
j=1
The function o_,(F * G — G * F)(z) is positive homogeneous degree of —2. We need only
to compute it for z € S. We write the radial derivative as

N 1 _ _
R=-E+- ,E=2(R-R), N=R+R
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E being the Reeb vector field, which is well-defined on S, and N being the outward unit
normal vector field on S. The vector field 6}’ — Z;E is thus a well-defined vector field on S,

and for any function ®(z) = ¢ (

i) we have

7 i
0,0@) = (3 + ZR)P() = (9f = 5E + 2N ) 0(2) = (3} - 5E)p(2),

since N®(z) = 0 by homogeneity. Similarly 97 ® = (9; + z;E)$on S. From this it follows
thatforz € S
{00(F), 09 (G)}(i)

= > (221 - 5B ) (329 + 5E9())
Jj=1
- (35 @~ 5EF () (00 9(2) + 7E9@))) = £, 9}
by using (27).
Theorem (3.3.8)[86]: Let fi, g1, ..., f4, 94 be smooth functions on S, f;, 1, ..., fa4, G4 their
smooth extensions to B and Tz, Ty, ..., T¢,,, Tg,the associated Toeplitz operators on 3¢, for

v = d. Then the product Hj?l:1 [Tfj, ng] Is in the Macaev class and its Dixmier trace is given

by
d d
trwl_[[Tfj’ng] = J ﬂ{ff"*"f}b'
j=1 S =1

Proof. The proof is straightforward from the preceding lemma, formula (2.2.5) in [97] and
Theorem (3.3.5).

We apply our result to Hankel operators with anti-holomorphic symbols. Let f be a
holomorphic function in a neighborhood of B and Hrg = (I — P)fg, g € H,the Hankel
operator. Then

[75,1,] = [17.7,] = |H7 ™ = H;Hy.
Corollary (3.3.9)[86]: Let f be as above. Then the Hankel operator is in £L2%% equivalently
the commutator [T7, Ty ] is in L4 and we have

2d d
tro |y =t (115771 = [ (wpP = IRF1YE
S
Notice that H is in the Schatten class LP for p > 2d and that its Schatten norm is

AP = [ = LRy awst? - 1rp2)Eamce

see [89] and [101] for the Bergman space case (v = d + 1) and Hardy space (v = d).
Our result formula provides thus a limiting result of the above estimates, and it is interesting
to note that estimate has an equality as its limit for p — 2n.
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Chapter 4
Essential Commutants and Exact Sequences

We show that the space of Toeplitz operators associated to F is completely isometric
to the commutant of the minimal normal extension F. Applications of these results are given
for Toeplitz operators on strictly pseudoconvex or bounded symmetric domains. We deduce
an essential version of the classical Hartman—Wintner spectral inclusion theorem, give a
new proof of Johnson and Parrot’s theorem on the essential commutant of abelian von
Neumann algebras for separable Hilbert spaces and construct short exact sequences of
Toeplitz algebras.

Section (4.1): Analytic Toeplitz Operators

For B,,, be the unit ball of C™. The n-dimensional vector space over the complex field
C, S, = 0By, is the boundary of B,. We use o to denote the unique rotation-invariant
probability measure on S,,. The Lebesgue spaces L, (S,,, do)have their customary meaning.
H?(S,) denotes the Hardy space which is the subspace of L2(S,,do). For ¢ €
L*(S,), Ty,and H, denotes the Toeplitz operator and the Hankel operator respectively. If

N c L*(S,), F(N) be the norm closed algebra generated by |T;:f € N|.L(H?(S,))
denotes all linearly bounded operators on H2(S,), and let X be its ideal of compact
operators. For A, B € L(H?(S,)), if [A, B] = AB — BA € X, then we say that A essentially

commutes with B . The set of operators which essentially commutes with any operator in
T (N) is defined as the essential cornmutant of 7(N), marked by E.7(N). Let

A =|f € L™(S,): Ty € E.T(H*(Sy))|, A = |f € L*(S,): Hyis compact].

When n = 1, Davidsson[1] showed E.T7(H*) =T A, =TA=T(H* +C), A, =
A=H"+Cinl1977.Whenn > 1, A, D A 2 H*(S,) = +C(5,)[12].

Recently, Guo Kunyu has obtained E.T(H®(S,)) = TA., and naturally put
forward the conjecture: A, = A!

We will show that the conjecture is true.

For convenience, L%(S,, do), H2(S,,) ... will be simply written as L%, H? ... .

We take an inner function n,7(0) = 0; then n*(k = 0,+1, +2 ...) are orthogonal to
each other in L?. So we have 111_>r£10 [ fn*do = 0, for vf € L[103].

FixS € E.T(H®),and put g, = S — T, *ST,*. Then there exists a subsequence which
is w*-converges. We still write it as |0y |, and mark S’ = w* — lim 0.
Lemma (4.1.1)[102]: For S, S’ and n, the following are true :
(i) S§—S8"=T;forsome f € L*;
(i) w*-— li]£n Ty ¥Ty ST, = Ty forany h € C(S);
(iii) [T}, S] is compact for any h € C(S);
(iv) there is a nautural number subsequence {m;} such that w*—
li;En T, *T"T, ST T,X = Ty for any inner function x and any h € C(S).
Lemma (4.1.2)[102]: Define a linear map F: L® — J(H?*) by F(h) = TS — Typ,. For h €
LOO
(i) If ||hylle, are uniformly bounded and h,, > h, a . e. do, then w* —
lim F(h,,) = F(h)
m-—oo

104



(i) If hy, h, are measuruble characteristic functions and the distance between their
supports is greater than zero, then F(h,)F(h,),F(h,)F*(h,) and F*(h,)F(h,)
are compact.

Argument of Lemma (4.1.1) and Lemma (4.1.2) are respectively similar to
Davedson's Lemma (4.1.1) and Lemma (4.1.2), so the proof is omitted here.

The following lemma is similar to Lemma (4.1.2) of [104] .

Lemma (4.1.3)[102]: There are natural numbers K,, (only depending onn) . If M > 0, then
the sphere S,, has a division {V,}, satisfying

(i) {V;}isafinite class ; every V; is a closed set, S,, = U; Vi;

(i) |V < M, in which |V;| demotes the diameter of V;

(i) V,nVy caVynaVy,l+ 1,0V denotes the boundary of V;

(iv) {V;} can be divided into K,, subclasses such that each subclass consists of mutually
disjoint sets V.

Let g be a bounded measurable characteristic function on S,,, the support of g is still

marked by g. We use y to denote the characteristic function with a closed support on S. In
the following, yg denotes the characteristic function as well as the support of yg.LetE,, =

{xg:lxl<-}.c. = supllF (xg)Il. Obviously. Cp = Cors1.
XS—

Let m: 7(H?) - J(H?)/XK be the canonical homomorphism onto the Calkin algebra. It is
easy to see that if |z(F(g))|| > « > 0, then lim C,, = C(a) > 0.
m— oo

Lemma (4.1.4)[102]: If ||7(F(g))|| > « > 0, then there exists a characteristic function

@. So there
are continuous function sequences {h,,,} such that ||h,,,|| < 1 + zim M (1= X¥m )l <
1 C(a)
— and IF (hp)ll > ==
Proof. Similar to Davidson's[1], we can find a characteristic function sequence {y,,}with a

mutually disjoint closed support such that ||F(x,,g)|| > @ Fix m such that y,,g is a
measurable set in S,. For every natural number k, there exists a closed set Fj, C
Xm9, 0 (Xmg — Fr) < % Let g, be the characteristic function of Fj,. Then there exists a

sequence {yx,,} with mutually disjoint closed support such that ||F (x,,g)|l >

continuous functions sequence {h;} such that 0 < h; < g; + Zim and h; - g, a.e. do. By
Egoroff 's theorem, there exists a -measurable set E;,, c S,,, such that a(S,, — E}) < i and
{h;} = gruniformly on E;. Hence there is h;, € {h;} such that |h, — gi| < % ,Vz € Ey,and
o (lhk — Xmd| = %) <o(¥mg — Fr) +o(S, —E;) < % So h;, = ymghave according to
the a measure. Thus there exists a subsequence {h;{j} such that h;{j - ¥mg a.e. do,0 <
i, =m0, < [, (1) < 5

According to quality (i) of function F in Lemma (4.1.2), there must k;,) such that

l; C(a) N . . ..
”F (hk,-(m)) ” >— Put h,, = hk,-(m)' that is our request. The proof is finished.

Lemma (4.1.5)[102]: Let h € C(S,,), e > 0. Then there are inner functions u and G € H*®
such that |u()h({) — G({)| < e a.e. do (c.f. Theorem 5.2 of [103] ) .

1 1
hk,-Sgk,+2—memg+2—m,and|
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Lemma (4.1.6)[102]: Let T € 7(H?), U a weakly closed subalgebra of 7(H?),{4,,,} < U.
Suppose that there exist § > 0, M > 0 such that [|[A,, Tl > 6 and ||X,c; Am|| < M for

all finite subsets J of number set N. Then there exists an element b in U such that [b, T] is
not compact (see Lemma 3 of [1] ) .
Theorem (4.1.7)[102]: Let g be a a-measurable characteristic function, F(g) = T,S —

Tyr, S € E.T(H®), where f is as in Lemma (4.1.1) . Then F(g) is compact.
Proof. Suppose that F(g) is not a compact. Then ||z(F(g))|| > a > 0. By Lemma (4.1.4),

there exists a continuous functions sequence {h,,} such that ||k, |l < 1 + zim Ny (1 —

Cc
Xm0l < o and [F ()l > 52
disjoint closed supports. By Lemma (4.1.5), for each h,,, &, = zim there exists an inner

function u,,, and f,,, € H* such that |u,,(O)h, () — (D] < &, , a.e. do. By Lemma
(4.1.2), (iv), for u,, there exists a number sub-sequence {l;}, [+ > l; such that w* —
lim T ¥ T Th, ST Ty, = Ty - Hence

, Where {x,,,} are characteristic functions with mutually

w* _hmTurrI:n‘l[umnlh , ] Ty, S — T, g+ W —llmT ! [Th ,S]

T, *(since [Ty, , S| is compact, the latter limit is zero) =T, S — Thmf = F(h,,) . It follows
that the norm is lower semicontinuous on w*-topology so that there exists k(m) such that

[t I > =52

But ”uk(m)nlk h,, — fn(m)_lr)lkmﬁn||Oo < &

C(a)

Hence ||[Tk(m) 1nlk fm,S]” > —==2|IS]l¢,,-
k(m)—

PUt @, = ™ 'kmfy,. Then g, € H, ||<Pm||oo <1+2, and [[¢n(1 = ¥mPllo <
| om = 0 R |+ (1 = dm@lleo <

For any finite subsets J of Z,. put ¢; = Zmej Pm- Then ||@;xmgl| . < llomlle +
Yiemll (1= 21Dl S 1+ 24, + 2 1em e <3, [l0;(1 = Zmamg) || <
2mllom (1 = xm@llo < ZZem < 2.Thus

.
2, zEl—ZXmg,
m

3, Z€ z)(mg.
m
So we have ||¢;]| < 3.

Put U =7T(H"),Ay, =T, . By Lemma (4.1.6), there exists ¢ € H® such that

[Tq,,S] is not compact. But S € E.7(H*); a contradiction. Hence F(g) is compact. The
proof is completed.

Corollary (4.1.8)[102]: For h € L*,F(h) = T;,S — Ty is compact .

Proof. Because h can be approximated uniformly by finite linear combinations of
characteristic functions, F(h) can be approximated by compact operators in operator norm.
Therefore F(h) is compact. The proof is thus completed.

|0j(2)] < 1

\
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Theorem (4.1.9)[102]: Let S € J(H?). Then S essentially commutes with all analytic
Tieplitz operators if and only if S = T, + K, where f € L* such that Hankel operator H is
compact, and K € K.

Proof. The "if" part is obvious. Only the "only if" part needs to be proved.

First take h = 1. Then F(1) = S — Ty = K iscompact. Hence S =T + K, and K €
J.And then take h=f€L® F(h) =TS —T2 =TT —T;2 +TfK = —H;Hy +
T7K is compact. So HrHeK is compact. It follows that Hy is compact. The proof is thus
completed.

According to Theorem (4.1.9), we obtain the result that E.T(H*®),T(A.;) =
T(A),and A, = A.

Since H® ¢ H* + C < A , we have the following corollaries.

Corollary (4.1.10)[102]: E.T(H*) = E.T(H® 4+ C) = E.T(A).

Corollary (4.1.11)[102]: Sequence (0) » K - T(A) 5 A - (0) is short exact, where
TET(H®) > L”, for SEET(H®),S =T+ k,f € L”, k € X, sutisfying 7(S) = f.
Section (4.2): Toeplitz Algebras of Spherical Isometries

A spherical isometry on a Hilbert space H is a commuting family S = {Tj}je]of

bounded operators on H such that }.;c;7;'T; = 1, To each spherical isometry one can

associate its set of Toeplitz-type operators consisting of all solutions of the operator equation

z T/ XT; = X.

One defines in a similar way Toeplitz operators associated to arbitrary commuting families
of spherical isometries.

We apply some operator space techniques in order to construct exact sequences for
C*—algebras generated by spherical isometries or by their associated Toeplitz-type
operators. We make use of the more or less known fact that the set 7 (F) of all Toeplitz
operators associated to an arbitrary family F of commuting spherical isometries is an
injective operator system, which means that it is the range of a completely positive unital
mapping ®: B(H) — B(H)with d o & = . This fact, when combined with a certain basic
property of such projections proved in [115] , enables us to show (see Theorem (4.2.10))
that F admits a commuting normal extension F on some Hilbert space # containing £ and
that if F is minimal then there exists a =-representation = from the C*-algebra generated by
T (F) onto the commutant of F in B(f() for which the compression map p(X) = Py X4,
Is a complete isometric cross whose range coincides with7 (F). When we restrict m to the
C*-algebra C*(F) generated by F in B(H) we obtain a *-representation of C*(F) onto
C*(F) whose kernel coincides with the commutator ideal of C*(F). We also show that any
operator in the commutant of F has a unique norm-preserving extension to an operator in
the commutant of F.

It turns out that several classes of Toeplitz operators on various Hardy spaces can be
realized as common fixed points of some commuting families of completely positive
mappings induced by spherical isometries. In this sense, apart from the well-known Brown-
Halmos characterization of Toeplitz operators on the unit circle (see [2] ) there is a similar
result due to A.M. Davie and N. Jewell [12] for the case of Toeplitz operators on the unit
sphere in C* where the unilateral shift is replaced by the Szego n—tuple. Similar
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characterizations also hold for Toeplitz operators on Hardy spaces on ordered groups [23] .
The method we shall develop here allows us to enlarge considerably the class of Toeplitz
operators that admit such characterization. We show that if Q c C" is either a bounded
strictly pseudoconvex domain or a bounded symmetric domain and m is any Borel
probability measure on the Shilov boundary of Q then the Toeplitz operators on the
corresponding Hardy space H?(m) are indeed the fixed points of a certain spherical
isometry.
As a consequence we obtain exact sequences and spectral inclusion theorems for operators
of the type mentioned above.

We recall for later use the following by-product of the proof of Theorem 3.1 in [115]
, wWhich is also stated as Lemma 6.1.2 in [118] .
Theorem (4.2.1)[105]: Let ®: B(H) — B(H) be a completely positive and completely
contractive mapping such that ®2 = &. Then for all X,Y € B(H) we have

P(PX)Y) = d(XP(Y)) = (P(X)P(V)).

In [115] and [118] this result is used to show that the range of @ is completely

iIsometric to a C*-algebra , where the multiplication is defined by the rule
P(X) o DY) = D(PX)P(Y))
for every X,Y € B(H). We shall recover the latter result as a consequence of Theorem
(4.2.2) below. Let ®: B(H) - B(H )be a completely positive and completely contractive
mapping such that ®2 = @ and let ¢ = Ran ® denote its range. We denote by C*(€) the
unital C*-algebra generated by ¢ in B(H). Let
®y: C*(E) » B(H)
denote the restriction of ® to C*(&). Then, according to the Stinespring dilation theorem
(see Theorem 5.2.1 in [118] ), there exist a Hilbert space &, a bounded operator V: H — K
and a unital -representation
m: C*(E) » B(K)

such that ®,(X) = V*r(X)V for all X € C*(E). Thus the diagram

C'(€) = BXK)
D, | lp

€ 5 B(H)

is commutative, where p(X) = V*XV whenever X € B(H), and ¢ is the inclusion map. We
shall assume that 7 is minimal in the sense that % is the smallest invariant subspace for
containing the range of V7. Now, under these conditions, we can state the following theorem
which will be very useful for our study of Toeplitz algebras.
Theorem (4.2.2)[105]: Let &, ®,,E,C*(E), K,V and m be as above. Then Ker ®, =
Ker and the mapping

p:t(C*(E) » B(H)
defined by p(n(X)) =V*'n(X)V for X € C*(E) isacomplete isometry whose range equals
¢ = Ran ®. Moreover, if Ran @ is g-weakly closed, then 7r(C*(£)) is also o-weakly closed,
hence a von Neumann subalgebra of B(X') and the map p defined above is a og-weak
homeomorphism.
Proof. First of all, one can easily see that Ker @, is an ideal in C*(E). Indeed, Theorem
(4.2.1) implies that Ker @, is invariant under multiplication by elements in € and then use
the fact that, since E is selfadjoint, the C*-algebra C* (&) is the closed linear span of all finite
products of elements from £ and the identity. Now, in order to prove the equality of the two
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kernels, we fixT € C*(&E) suchthat ®,(t) =andletX,Y € C*(&) and &, n € H bearbitrary.
Then

(m(MrCOVE,n(YIVn) = V(Y TX)VE,n) = (P (Y TX)E,n) =0
because Ker @, is an ideal. Since m is minimal, this shows that m(T) = 0. Since the other
inclusion is trivial, the equality of the two kernels is proved.

We now show that the mapping p is a complete isometry. First, we see that, since
®, = pomand Ker m = Ker®, it follows that p is one-to-one. Moreover, since ®3 = @,
we have that p o o p o T = p o 7 hence 7 o p is the identity on 7(C*(€)). It then follows,
since both r and p are completely contractive, that p is actually completely isometric. The
last assertion of the theorem follows easily from the previous one and the separate weak -
continuity of the multiplication on a von Neumann algebra. The proof of the theorem is
completed.

As we have mentioned above, this result offers an alternate proof of Theorem 3.1 in
[115] .

Theorem (4.2.3)[105]: Let &: B(H) — B(H) be a completely positive and completely
contractive mapping such that ®2 = ®. Then Ran® is completely isometric with a unital
C*-algebra where the product is defined by the rule

P(X) o D(Y) = P(P(X)P(Y))
forall X,Y € B(H).
Proof. Using the notation in Theorem (4.2.2), we see that the above defined product is
precisely the one induced from n(C*(S)) via the complete isometry p.
Remark (4.2.4)[105]: It is a well-known fact that if A is a unital C*-algebra and 6: A —
B(H) is a unital completely isometric mapping, then there exists a *-homomorphism

m:C*(0(4)) - A

suchthatm o 8 = id,, (see Theorem 4.1 in [114] ). Therefore, in the case when the mapping
® in Theorem (4.2.2) is unital and assuming Theorem (4.2.3) one can immediately see that
the mapping ®, appearing in Theorem (4.2.2) becomes a *-homomorphism when its range
is endowed with the multiplication defined in Theorem (4.2.3). This offers a shorter proof
of Theorem (4.2.2); however the line we took in that theorem gives simultaneously the
isomorphism in Theorem (4.2.3) and a spatial representation for that algebraic structure.

We shall apply Theorem (4.2.2) to the study of the C*- algebra generated by a
commuting family of spherical isometries.

Definition (4.2.5)[105]: A commuting family S = {Tj}jej of bounded operators on a Hilbert

space H is said to be a spherical isometry if

DT =1
Jj€J
in the weak operator topology.

For instance, if m is any probability Borel measure on the unit sphere S2*~1 in C™,
and H < L?(m) is a jointly invariant subspace for the multiplication operators
{M,,, ...,M,_} on L?(m), then their restrictions {T,_, ..., T, } to # form a spherical isometry.
Of particular interest is the case when m is the normalized area measure and H is the L2 (m)-
closure of all analytic polynomials (the Hardy space H*(S2"~1)) in which case {T, ..., T, }
is called the Szego n-tuple on H2(S?"1).
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If {Tj}jE] is an arbitrary family of operators on H satisfying the above equation in

particular a spherical isometry then a completely positive unital, hence completely
contractive mapping ¢: B(H) — B(H) can be defined by the formula

OO = ) T7XT,
- - - - jE]
and is also obvious that ¢ is o-weakly continuous.
The object of study in what follows is a commuting family of spherical isometries

F = {S,}4er ONn some Hilbert space #£. This means that if « € T then S, = {Tj'a}je] is a

spherical isometry and the union U ¢ S, 1S @ commutative set of operators.

Definition (4.2.6)[105]: Given a commuting family F = {S,},cr of spherical isometries on
H we define, using the notations above, the space 7' (F) of all F-Toeplitz operators to be
the set of all operators X € B(H) such that

N

je]a
forall ¢ €T.

In other words, 7 (F) is the set of all common fixed points of the completely positive
mappings associated to each spherical isometry from F. It is obvious that 7 (F) contains the
commutant of F in particular it contains all the sets S, for « € I'. We shall construct a
completely positive projection @ on this space which will play a crucial role for our study
of Toeplitz algebras associated to spherical isometries. We need the following lemma which
Is a particular case of a more general result proved in [110] . However for completeness we
shall give below a direct proof.

Lemma (4.2.8)[105]: Let {¢, },r be a set of commuting completely positive unital and o-
weak continuous mappings acting on B(H') for some Hilbert space . Then there exists a
completely positive mapping ®: B(H) — B(H) whose range is precisely the set
{(XeB(H):¢p,(X) =X, a €T}
and such that ®2 = .
Proof. Let S denote the semigroup of all finite products of elements from the set {¢,} er-
Each element s € S corresponds to a completely positive unital and o—weak continuous
mapping Ys: B(H) — B(H) which is a finite product of ¢,,’s.
It is obvious that the fixed point set of {a, },<r is the same as that of {1, }.cs.
We thus obtain an action
¥: S X B(H) = B(H)
defined by
y(s, X) = s (X)
forall s € Sand X € B(H). Since S is commutative, a well-known result of Dixmier [116]
shows that S is amenable, which means that there exists a state y on the C*-algebra £ (S)
of all bounded complex functions on S which is invariant under all translations with
elements from S. More precisely, if t € S and L;: £*°(S) —» £°(S)is defined by L. (f)(s) =
f(ts) fors € Sthen u(L:f) = u(f) forall f € £=(S).

Now, given T € B(H), for each pair of vectors &,n € H define [&,n]r =
u(y (-, T)é,n) and observe that this is a bounded sesquilinear map therefore there exists an
operator that we shall denote by ®(T) in B(H) such that
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(@(T)E,n) =& nlr
for all &,n € H. It is now a matter of routine to verify that the mapping T +— ®(T)is

completely positive. It is straightforward to see that if T € B(H) is such that ¢, (T) = T for
all s € S then ®(T) =T as well.

We will show now that y,(®(T)) = ®(T) for all T € B(H). In order to see that,
recall that all the mappings vy are ag-weakly continuous, which means that for any s € S
there exists a norm continuous mapping yz:on the space G, (H) of trace-class operators on
3 such that tr(ys(T)L) = tr(Tys (L)) forall T € B(H)and L € G, (3). Moreover one can
see that the mapping & satisfies the identity tr(®(T)L) = u(tr(y(,T)L) for all T €
B(H)and L € G, (). It then follows that for any t € S we have

tr( (@(T)L)) = tr(P (T35 (L)) = utr(yC, i (L)) = u(tr(y(t -, TH(L))
and because u is an invariant mean, this last term equals u(tr(y(-, T) (L)) which is equal to
tr(P(T)(L)) forall T € B(3)and L € G, (H). This shows that indeed trip,(T) = ®(T) for

all T € B(#), hence ®% = & as well. The proof of this lemma is completed.
We also need the following lemma.
Lemma (4.2.9)[105]: Suppose M c B(H) is a von Neumann algebra and M’ denotes its

commutant. Let R = {Tj}jej be a family of operators in M such that for all X € M

z T;XT; = X

in the o—weak topology. Then R € M n M.

We have the following result.
Theorem (4.2.10)[105]: Let F = {S,},er be a commuting family of spherical isometries
on some Hilbert space H with S, = {Tj,a}jeja for each a € T and let 7 (F) be the space of

all F-Toeplitz operators (see Definition (4.2.6) above). Let also C*(T(:F))denote the C*-
subalgebra of B(H') generated by 77 (F). Then we have:
(i) There exists a completely positive unital mapping ®: B(H) - B(H) such that 2 =
@ and whose range coincides with T (F).
(ii) There exist a Hilbert space H containing £ and a commuting family F = {Sa}aerof

normal spherical isometries on # with S, = {T}'“}je] which leaves H invariant and
a

whose restriction to A coincides with F in other words the family F is subnormal.
D) Suppose that the normal extension £ is minimal, i.e. F is the smallest reducing
subspace for F containing 7. Then there exists a unital *-representation
m: C*(T(F)) > B(H)
such that:
(3a) (Tj,) =Tj, foralla e Tand j € J,.
(3b) If Py, is the orthogonal projection of 7 onto A then
D(X) = Prer(X) s
for every X € C*(T(F)).
(3c) The image (C*(T(T))) of m coincides with the commutant

in B(L) of the C*-algebra C*(F) generated by F in B(H).
(3d) The mapping
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o (C*(T(T))) - B(H)
defined by p(m(X)) = Py (X)|s for X € C*(T(F)) is a complete isometry onto the
space 7' (F) of all F -Toeplitz operators such that m o p is the identity on (C*(:T(T))).
Therefore the short exact sequence
0 - Kerm & C*(T(F)) > (C*(:r(:F))) 50

has a completely isometric cross. Moreover, Ker i coincides with the closed two-sided ideal
of C*(T(F)) generated by all operators of the form XY — ®(XY) with X,Y € T(F).

(3e) If C*(F) denotes the unital C*-algebra generated by F in B(H )then

®(C*(F)) = C*(F) N T(F). Moreover the kernel of the restriction of 7 to C*(F)

coincides with the closed ideal of C*(F) generated by all the commutators XY — YX

with X,Y € T(F) n C*(F) hence it coincides with the commutator ideal C of C*(F).

Therefore we have a short exact sequence

0-CoC (F)>C(F)-0

for which the restriction of p to C(:If“) Is a completely isometric cross.

(3f) An operator X € B(H) belongs to the commutant of F if and only if both X and

X = X belong to the space T (F) of F -Toeplitz operators. In this case there exists a

unique operator X in the commutant of F which leaves # invariant and whose

restriction to £ coincides with X. Moreover the map X + X is norm preserving.
Proof. For each a €T let ¢,:B(H) » B(H) be the completely positive o-weakly
continuous mapping associated to the spherical isometry S, so for all X € B(H )we have
ba(X) = Xjej, TjaXTj o It follows that 7(F) is precisely the set of common fixed points
of the commutlng famlly of mappings {¢, },er- Therefore we can apply Lemma (4.2.8) to
infer the existence of an idempotent completely positive mapping ®: B(H) — B(H) whose
range is precisely T (F). This proves item (i).

Let & as in item (i) and let &, denote its restriction to C*(7(F)). Denote by
m: C*(T(F)) - B(H) the minimal Stinespring dilation of ®,. Therefore there exists an
isometry V: H — H such that

o, (X) = Va(X)V

for all X € C*(T(T)). We see that we are precisely in the situation of Theorem (4.2.2)
above, and moreover the range of @ is also o-weakly closed because it is the set of all

common fixed points of a family of o-weakly continuous mappings. The conclusion that
follows from Theorem (4.2.2) is that the mapping

i (C*(T(T))) — B(H)
defined by p(m(X)) = V*r(X)V for X € C*(T(F)) is a complete isometry onto the space
of all F -Toeplitz operators and that the image of  is a von Neumann subalgebra of B(7).

Let
Tia = m(Tja) o
for all « € T and j € J,, and let also denote S, = { ]'a}je] and let F = {S,}__. Our next

aim is to show that each family S, is a spherical isometry and that
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Y Dm0y = (0
J€Ja o
for all X € C*(T(F)). For this purpose, fix @ € T and observe that ¥’ ;e T/, T; o < 1 for
each finite subset F c J,. Therefore
> T

J€Ja
Now, let X € C*(T(F)) and let F < J, be a finite set. Then we see that

N

« <L

o D Tan 0T | = ) 10T
JEF JEF
Taking weak=*-limits in both sides, using the fact that p is a weak*-homeomorphism and
using that p is isometric we infer that

Y Dm0 = 7(X)
j€la X
forall X € C*(T(F)). In particular it follows that S, is indeed a spherical
isometry. Moreover, using Lemma (4.2.9) we infer that all T"]-‘a belong to the center of

T (C*(T(:F))), in particular they are commuting normal operators. Since T;, = V*Tj,aV
and both S, and S,, are spherical isometries it is easy to see that TMV H cVH forall a €
['and j € J,. This shows that the family F is subnormal, which proves item (ii).

We will show now that F is the minimal normal extension of F. For this purpose let
K be the smallest reducing subspace for n(C*(T)) containing VH. Let tye: C*(F) » B(K)
the =-representation defined by w4 (X) = Pyer(X)|4 where Py-denotes the orthogonal
projection of 7 onto . We will show that the map defined by py ((X)) = Pocr(X) |5 is
a *-isomorphism of (C*(T(T))) onto the commutan s (C*(F)) of msc (C*(F)).

It is clear that p4-is a completely positive and completely contractive mapping. It takes
values in 7 (C*(F))  because each T; , is in the center of (C*(T(:F))) and because the

space X is reducing for all T, ,. Let ps: s (C*(F)) = B(H) be defined by py (V) =
V*YV for Y € ng((C*(.’F))'. Then it is obvious that its image is included in T7(F) and
moreover p = ps Py Where p:n(C*(T(T))) — B(H) was defined above as p(Y) =

VYV forY € n(C*(T(T))). Recall now that we already proved that p is completely
iIsometric which implies that the mapping p4 is completely isometric. Therefore in order to
show that p4is onto, it suffices to show that the mapping ps is one-to-one. Suppose
therefore that Y € nx(C*(T))' is such that ps(Y) = V*YV = 0. In order to show that Y =

0 it suffices, because m4-is a minimal dilation of & restricted to C*(F) and ngC(C*(T))' is
abelian and Y is in its commutant, to show that for any two finite families
{Tivar o T JANAA{T, gos s Ty g, We have VAT LT YT 5 T 5 V= 0and

the latter equality follows immediately from the fact that V# is invariant for all . This
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shows that p; is indeed one-to-one hence p4 is onto. Since, by a well known result of
Kadison [122], any completely isometric surjective unital mapping between two

C*—algebras is multiplicative it follows that p4 is indeed a *-isomorphism of & (C*(T(?-")))

onto ng((C*(T))' in particular the space % is invariant under n(C*(T(T))). Since  is

minimal, this shows that in fact we have that X = . In particular this shows that 4 (X) =
m(X) forall X € C*(F). Moreover, the fact that Ker 7 is the ideal generated by all operators
of the form XY — ®(XY) with X,Y € T(F) follows by an easy induction argument on the
length of an arbitrary product of elements from 7' (F) using the fact that Ker m = Ker @,
which equals {X — ®(X): X € C*(T(F))} together with Theorem (4.2.1). This completes
the proof of (3a), (3b), (3c) and (3d).

In order to prove (3e) we show first that ®(C*(F)) = C*(F) nT(F). Since ®? =
® it is enough to show that CIJ(C*(T)) c C*(F). This inclusion follows easily from the fact
that since 5 (C*(F)) is abelian, @ takes any finite product of Tj,’s and T},’s into a

permutation of the same product having all the T}, ’s at the left and all the T; ,’s at the right.

Now we can easily prove that the kernel of my coincides with the ideal of
C*(F)generated by all commutators XY —YX with X,Y € C*(F) nT(F). First, since
nK(C*(T)) IS commutative, we have that any such commutator is in Ker 4. Let us denote
by @, the restriction of ® to C*(F).We see from the proof of Theorem (4.2.2) that
Ker ®, = Ker 7 therefore Ker 4 = Ker ®,, as well. On the other hand, since ®3, = @,
we see that Ker @, = Ran(l — ®,). Now, if X € C*(F) is a finite product of T; ,’s and
T;",’s it becomes obvious from the above description of ®,(X) that X — &,,(X)belongs to

],x
the ideal generated by all commutators XY —YX with X,Y € C*(F) nT(F). This
completes the proof of (3e).

An alternate proof of the fact that Ker my coincides with the commutator ideal in
C*(F) can be based on Bunce’ characterization of multiplicative functional on C*-algebras
generated by commuting hyponormal operators in terms of their joint approximate point
spectrum (see [113] ). Indeed, in our case, it can be easily shown that for any {T3,...,T,,} €
F, we have that o, (T4, ..., T,y )equals o, (n(Tl, s n(Tm)) where o, stands for the joint
approximate spectrum.

We now prove (3f). If X € B(H) is such that X commutes with all operators from F
then obviously X and X = X belong to 77 (F). Suppose now that X € B(H)is such that both
X and X = X belong to 7 (F). If X = m(X) then X commutes with all the normal extensions
from F and V*XV = X. Moreover || X|| = |IX]| so all we need to show is that XVH c V.
For this purpose, we observe that since X*X € T (F) then

XX =vVn(X*X)V =V*X*XV.

[v-xve|| = IIxgl = [|&ve]|
which implies that indeed XV#H < V. This finishes the proof of (3f) and the proof of the
theorem as well.

Let us note that both in the case of the unilateral shift S on H?(T), and in the more
general case of the Szego n-tuple all the assertions from (ii) and (iii) are well known. We
should refer here to the pioneering work of L.A. Coburn on the C*-algebra generated by a
single isometry; see [26] and [26]. In particular, in the first case (3d) and (3e) are classical

Therefore if & € H then
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results due to L. Coburn and R.G. Douglas, and moreover, the kernel of = at (3d) is the
corresponding commutator ideal; see Chapter VII in [5]. In the case of the Szeg6 n-tuple on
the unit sphere in C™ (3e) is proved in [13] , and (3d) appears in [12] . We mention also that
in both these cases the commutator ideal appearing in (3e) was shown to coincide with the
ideal of all compact operators on the corresponding Hardy space.

For the case of a commuting family of isometries, the existence of a commuting
unitary extension was proved in [121] . In this case, the commutant lifting at (3f) is quite
straightforward once we assume Ito’s result. These results hold true even on Banach spaces,
see [117] . Exact sequences similar to that in (3e) for finite families of commuting isometries
have been studied in [112] .

C*-algebras generated by isometric representations of commuting semigroups have
been studied mainly for semigroups of positive elements in ordered abelian groups, see for
example [111] , [27] ,[23] and [107] for a study based on crossed products by
endomorphism’'s.

For the case of a single finite spherical isometry the existence of a normal extension
along with a commutant lifting theorem were proved in [108] ; see also [109] for alternate
proofs.

The following general framework is frequently used when dealing with Toeplitz
operators on Hardy spaces. Let K be a compact Hausdorff space and let C(K)denote the
Banach algebra of all complex-valued continuous functionson K. Let A c C(K) be a norm-
closed subalgebra containing the constants and separating the points of K. Such algebras are
called function algebras or uniform algebras (see [119]). Let us consider a Borel probability
measure m on K and let supp(m) be its closed support. The generalized Hardy space
H?(m)associated to A is the L?(m) closure of A. For any function ¢ € L* (m) the Toeplitz
operator Ty: B(H?(m)) —» B(H?(m)) is defined by Tyh = Pyz(py(@h) for h € H2(m)
where P2 ., is the orthogonal projection of L?(m)onto H?(m). We shall also consider the
usual multiplication operators M, defined on L*(m) by Myf = ¢f forall f € L?(m). Let

H®(m) denote the intersection H?(m) n L*(m) which is
a weakx-closed subalgebra of L*(m). If B ¢ L*(m) is any unital subalgebra, we shall
denote by T(B) the C*—subalgebra of B(Hz(m)) generated by all Toeplitz operators T,
with ¢ € B and by C(B) the closed ideal in T7(B) generated by all operators of the form
Ty Ty = Ty Tor arbitrary ¢, € B.

For our purposes we need to introduce the following definition. We shall say that a
finite family of functions F = {¢, ..., ¢,} © C(K) is a spherical multifunction if

n

2
Z|¢j(x)| =1
j=1
for every x € K.

We are now able to state our main result.
Theorem (4.2.11)[105]: Let K be a compact Hausdorff space and let A ¢ C(K) be a unital
norm-closed subalgebra. Suppose there exists a family {F,},cr of spherical multifunctions
in C(K) where each F, is of the form F, = {d)j'a}je] with each ¢; , € A and such that for

each pair of distinct points x, y € K there exist an index « € I' and an index j € J, such that
®ja(x) # ¢; (). Then for any Borel probability measure m on K the following assertions
hold true.
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(i) A bounded operator X € B(H?(m)) is a Toeplitz operator if and only if it satisfies
the following equations:

z T<;j,aXT¢j,a =X
J€Ja
for all @ € T (in the case when A is the disc algebra and m is the Lebesgue measure on the
unit circle we then retrieve the classical result of Brown-Halmos by taking as spherical
multifunction ¢(z) = z).
(ii) A bounded operator X € B(H?(m)) is of the form X =T, for some ¥ €
H* (m)if and only if it commutes with Tp)q forall a €T and all j € J,, if and only if it
commutes with all T, with ¢ € A. The map ¢ — T,, is a Banach algebra isometric
isomorphism between H* (m) and the commutant of the family {T¢: ¢ € A}. Moreover this
commutant is a maximal abelian subalgebra of B(Hz(m)) and hence, for every ¢ €
B(H?(m)) we have that a(Tp) = 0 2(m) ().
(iii) There exists a short exact sequence of C*—algebras
0 - C(L>(m)) & T(L*(m)) - L*(m) - 0
such that n(Tqb) = ¢ for all ¢ € L*(m). In particular the spectral inclusion essran(¢) c
(T, ) holds true (in the case of the unit circle this is the classical theorem of Hartman and
Wintner [120] ) and we also have that

o(T,) © conv(essran(¢))
where conv denotes the convex hull.
(iv) There exists a short exact sequence
0 - c(C(K)) & T(CK)) > C(supp (m)) - 0
such that (T) = ¢ on supp(m). Moreover, in this case C(C(K)) coincides always with
the closed ideal in 7(C (K) ) generated by all commutators T Ty, — Ty T, With ¢, 3 € C(K).
Proof. Let us denote, for each a € I' and each j € J, by T;, the Toeplitz operator with
symbol ¢; ,. Since each tuple {¢j'“}jeja Is a spherical multifunction it follows easily that

in this case S, = {Tj'“}ael“ is a spherical isometry and that F = {S,},er iS a commuting

family of spherical isometries in B(H2 (m)). The separation property imposed on these
spherical multifunctions implies via the Stone- Weierstrass theorem that the C*—algebra
generated in C(K) by the union of all families F, with a« € T equals C(K) itself. In turn this
implies that the set Fof all the corresponding multiplication operators Mg, on L*(m) is the
minimal normal extension of F. Therefore, using Theorem (4.2.10) we infer that every
operator X € B(H2 (m)) satisfying equations (i) is the compression of a bounded operator
Y in the commutant of all operators My, ., therefore Y commutes with all multiplication
operators My with ¢ € C(K) which implies that Y itself is a multiplication operator with
some function iy € L”(m) which shows that X is a Toeplitz operator i.e. X =T,
Conversely, any Toeplitz operator obviously satisfies these equations because H?(m) is
invariant for all operators My, .- This completes the proof of (i). Now, the proofs of (ii), (iii)

and (iv) follow easily from the previous remarks combined with Theorem (4.2.10) (the last
assertion at (iii) follows from the well-known fact that for any bounded operator T we have
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that conv(a(T)) c W(T) with equality for normal operators, where W (T) stands for the
numerical range of T'; the case of the unit circle is due to A. Brown and P.R. Halmos [2] ).
As a remark, it can be shown, on the same lines of the proof of Theorem (4.2.10), or using
the results from [113] , that if the C*-algebra generated by H* (m) in L* (m) coincides with
L*(m) (equivalently if H*(m) separates the points in the maximal ideal space of L*(m))
then €(L* (m)) coincides with the closed ideal of (L% (m)) generated by all commutators
Ty Ty — Ty Ty wWith ¢,y € L*(m) (for instance this is the case when K is the unit circle, A
Is the disc algebra and m is the Lebesgue measure on K; see [5] ).

We also remark that a description of the character space of the quotient

T(L*(m))/c(L>(m))

valid for Hardy spaces over any function algebra was given in [125] .

Here follow two general examples of function algebras satisfying the hypotheses of
Theorem (4.2.11). We emphasize that this result holds for every Borel probability measure
on the corresponding Shilov boundaries. Toeplitz operators on such domains have been
studied see [126] and [127] .

Example (4.2.12)[105]: Let Q c C™ be a bounded strictly pseudoconvex domain and let
A(Q) be the algebra of all continuous functions on its closure and holomorphic on Q.

Let K = 0Q be the topological boundary of Q which coincides in this case with the Shilov
boundary of A(Q2) and let A be the set of all restrictions to € of all functions from A(Q). It
follows from an embedding theorem for such domains (see Theorem 3 in [124] ) that there
exist a natural number N > 1 and functions f;, ..., fy in A(2) such that the function F: dQ —
CN defined by F(x) = ( f1(0), ..., fn (x))is one-to-one and takes 9( into the unit sphere in
CN. This shows that it is a separating spherical multifunction for A and hence Theorem
(4.2.11) applies in this case. In particular this applies to any bounded domain with C?
boundary in the complex plane. For the case of finitely connected domains in C with analytic
boundary, exact sequences of the form (iii) and (iv) were constructed in [106] .

Example (4.2.13)[105]: Let Q < C™ be a bounded symmetric domain containing the origin
and such that ¢ € Q whenever ¢ € Q and 6 € R. Let A(Q) be as in the previous example.
Let K < 9Q be the Shilov boundary of A(Q) and let y = max{|{|: { € Q}. It is then known
that K = {z € 0Q: |z| = y} (see Theorem 6.5 in [123]). Therefore the function F(z) = z/y
is an imbedding of K into the unit sphere in C" hence Theorem (4.2.11) applies in this case
as well, taking A to be the algebra of all restrictions to K of functions from A(Q). In
particular we obtain that, given any Borel probability measure m on K, an operator X €
B(H?(m)) is a Toeplitz operator if and only if

n
z T; XT,, = y?X.
j=1

Section (4.3): Toeplitz Projections
A result of K. Davidson [1] from 1977, answering a question of R. Douglas, shows

that the essential commutant T,2°of the set T, = {Ty; f € H*(T)} c B(H*(T)) of all
analytic Toeplitz operators on the Hardy space H?(T) of the unit circle is given by

T ={T; +K; f € H*(T) + C(T) and K € K (H*(T))},
where (') denotes the set of all compact operators on a given Hilbert space . Itwas
observed by X. Ding and S. Sun [135] that the result of Davidson remains true on the Hardy
space H2(S) of the unit sphere S = dB,, in dimension n > 1 when the symbol algebra
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H*(T) + C(T) is replaced by the closed subalgebra § = {f € L*(S); Hy is compact} c
L™ (S), that s,
T2 ={Tr +K;f € Sand K € K(H*(S))}.

It is well known that H2(S) + C(S) & S is a proper subalgebra in every dimension
n > 1(see [12] ) and that therefore the higher dimensional version of Davidson’s result fails
if the algebra S is replaced by the smaller algebra H2(S) + C(S).

In [134] the above results were extended to Toeplitz operators formed with respect
to a quite general class of subnormal tuples on arbitrary Hilbert spaces containing, as a very
particular case, Toeplitz operators on strictly pseudoconvex domains in C*.

Let Ac C(K) be a closed subalgebra of the Banach algebra of all C-valued
continuous functions on a compact subset K < C"such that Acontains at least the
polynomials. A subnormal tuple T € B(H )™ is called an A-isometry [136] if the spectrum

of the minimal normal extension U € B(ﬁ)nof T is contained in the Shilov boundary d,0f
A and if A is contained in the restriction algebra R0f T. In this setting concrete T-Toeplitz
operators are defined as compressions Ty = Py Wy (f) |5, where Wy: L (u) — B(}T) Is the
L -functional calculus of Uand f € L*(u), while abstract T-Toeplitz operators are defined
as those operators X € B(H') which satisfy the Brown—Halmos condition

T;XTy = X
for all u-inner functions 6.

By results of A .Athavale [108] and T. Ito [121] the A(IB,,)-isometries on a given
Hilbert space hare precisely the spherical isometries on F, that is, the commuting tuples
T € B(H)"satisfying the identity Y., .;,, T;' T; = 14 and the class of A(D™)-isometries on
His given by the commuting tuples of isometries on #'. For any strictly pseudoconvex or
symmetric domain D c C", the tuple T, = (T,,, ..., T, ) € B(H?2(0))"on the Hardy space
H?(o)formed with respect to the canonical probability measure oon the Shilov boundary of
the domain algebra A(D) = {f € C(D); flp € O(D)} is an example of an A(D)-isometry.
Finally, every commuting tuple N € B(H)™of normal operators on a Hilbert space His a
C(a(N))-isometry.

Under a suitable regularity condition on T, which is satisfied in all the above examples
and which is needed to apply results of Aleksandrov [129] on the existence of sufficiently
many u-inner functions, it follows that the set 7 (T') of abstract T-Toeplitz operators is given
by the compressions

T(T) = Py (U) |3
of the operators in the commutant (U)" = W*(U)’of the von Neumann algebra generated
by U, while by the very definition, the concrete T-Toeplitz operators are given by the
compressions of all operators in W*(U).

It follows from results of B.Prunaru [105] on families of spherical isometries that
there is a completely positive unital projection ®,: B(H) — B(H) onto the set T7(T) of all
abstract T-Toeplitz operators [134] .We give a much more direct and straightforward
construction of Toeplitz projections ®;. We use the properties of these projections to
improve the main result of [134] on the essential commutant of analytic Toeplitz operators
and to extend a number of classical results on Toeplitz operators to our general setting.

After constructing Toeplitz projections, we show that every operator Sin the essential
commutant of the analytic Toeplitz operators associated with an essentially normal regular
A-isometry T € B(H)™ is a compact perturbation of the Toeplitz operator @, (S). Thus we
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improve a corresponding result obtained in [134] under the additional condition that
Tpossesses no joint eigenvalues. We obtain complete characterizations of the essential
commutant of essentially normal regular A-isometries and give, as a direct application, a
new proof of a classical theorem of Johnson and Parrot [8] on the essential commutant of
abelian von Neumann algebras in the case of separable Hilbert spaces. We show that the
Toeplitz projection associated with an arbitrary regular A-isometry annihilates the compact
operators if and only if Tpossesses no joint eigenvalues. We conclude that the Toeplitz
calculus associated with a regular A-isometry T with empty point spectrum satisfies the
essential version of the Hartman—Wintner spectral inclusion theorem and that the semi-
commutator ideal of Toeplitz algebras Jzgenerated by arbitrary symbol algebras
Bnecessarily contains every compact operator in 7.

Let T € B(H)™be a subnormal tuple on a complex Hilbert space #, that is,
acommuting tuple that can be extended to a commuting tuple of normal operators on a larger

Hilbert space. We denote by U € B()" the minimal normal extension of Twhich is unique
up to unitary equivalence [131] , and fix a scalar spectral measure ufor U. The measure uis
a positive regular Borel measure on the normal spectrum o, (T) = o(U)of T. By the spectral
theorem for normal tuples there is an isomorphism of von Neumann algebras Wy: L* (1) —
w*(U) c B(f[) extending the polynomial calculus of U. The restriction algebra
R ={f € L*(W); Py(H c H} c L”(w)
is aweak” closed subalgebra. For f € L* (u), we define the T-Toeplitz operator with symbol
fas the compression
Tr = Py Pu(H) s

Toeplitz operators of this form will be called concrete T-Toeplitz operators in the sequel.

Let A c C(K) be a unital closed subalgebra of the Banach algebra of all C-valued
continuous functions on a compact subset K < C" such that A contains at least the co-
ordinate functions. Then a subnormal tuple T € B(H )™ as above is called an A-isometry if
o, (T) is contained in the Shilov boundary d,0f Aand A|5, < R. Here the Shilov boundary
d, € Kis the smallest closed set such that ||l x = IIf |le0,0,,fOr €very f € Aand we regard
the scalar spectral measure uof Uas a positive measure on d,Vvia trivial extension. Since
R; c L®(u) is weak closed and contains A4, it also contains the dual algebra

HY () = A% < L ().
The unimodular elements in H;° (1), that is, the elements of the set
I, ={6 € H(u); |6] = 1 n — almost everywhere on d,}

will be called u-inner functions. In [129] Aleksandrov gives a sufficient condition for
H,° () to contain a rich supply of u-inner functions. The triple (4, K, u) is called regular in
the sense of Aleksandrov if, for every function ¢ € C(K) with ¢ > 0 on K, there is a
sequence (¢ ) of functions in Awith |¢,| < ¢on Kand llil?old)kl = ¢u-almost everywhere

on K. It follows from the results of Aleksandrov that the regularity of the triple (4, K, 1)
implies that the set I, c Hz°(u) of u-inner functions generates L*(u) as a von Neumann
algebra, that is, L (u) = W*(1,)(Corollary 2.5 in [133]). We call T € B(H)" a regular A-
isometry if Tis an A-isometry and the triple (4, K, u) is regular in the sense of Aleksandrov.
It was observed by Aleksandrov [129] that, for every regular positive measure u on the
Shilov boundary of the domain algebra A(D) of a strictly pseudoconvex or symmetric
domain D < C™, the triple (A(D), D, ) is regular.

119



Let T € B(H)"be a regular A-isometry with minimal normal extension U €
B(?—T)nand scalar spectral measure u € M*(9,). Since L*(u) is separable, its dual unit ball
By = {f € L*(W; If =y < 1} equipped with the relative weak'topology of
L*(u) = L'(u)" is a compact metrizable space. Hence B (,)and its subset I, consisting of
all u-inner functions are separable metrizable spaces in the relative weaktopology. For any
countable weak=dense subset I c I, the von Neumann algebra generated by Iin L* (u)
satisfies

w*(1) = w*(1,) = L*(w).
Let us fix any sequence (6 )1 in I, with the property that

W*({0: k = 1}) = L ().
For r > 0, the norm-closed ball B, = {X € B(#); [IX|l < r}equipped with the relative
topology of the weakxtopology of B(F') is a compact Hausdorff space. For X € B(#), the
averages

1 : o . . _
Py =1 ) WO )XWy (0] - . ) € B(R)
1<iq,mig<k

form a sequence (CD v (X ))k in B x| - Since by Tychonoff’s theorem the topological product

erg(ﬁ)anuiS compact and since convergence in the product topology is equivalent to

componentwise convergence, there is a subnet (®y ) of the sequence (@), such that

the weak limits

Oy (X) =w* —limdy ., (X) € B(H)
exist simultaneously for every X € B(:f[) Each choice of such a subnet yields a well-
defined map ®,: B(#) — B(H) with the properties that will be deduced.
Theorem (4.3.1)[128]: The mapping

¢, B(H) - B(H), Xvody
constructed above is a completely positive unital projection with
ran(®y) = (U)'.
Proof. Obviously, the mappings
Py B(H) > B(H), X &y(X)

are completely positive and unital. Since, for each N € N, weak”convergence for a net in
B(HN) identified with the space M (N,B(f[))of all N x Nmatrices over B(#) is

equivalent to coefficient wise weak convergence in B(ﬁ‘ ) and since the set of all positive
operators on a Hilbert space is weak=closed, it follows that

Oy:B(H) > B(H), X o w —limdyy, (X)
is completely positive and unital. By construction the mappings @ ., and hence also @y,
act as the identity operator on the commutant (U)" = W*(U)'. To complete the proof, it
suffices to show that ran(®,) < (U)’.
For1 <j<kandi = (il,..., (-1, ij+1,...,ik) € {1,...,k}*"1, we use the abbreviation
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Rij =%y | | 6,
v=1
ES]

Note that, for X € B(#),k = 1and 1 < j < k, the estimates
Wy (8)) Py, (XDWy () — Py X

k
1 _ _
< | 2% | 2 W@ ) - @) |,
i u=1
<F g = A
~ kk -k

hold. Hence for j > 1 and X € B(), we obtain
Wy (0) 0y (X)W (6;) =w* — lim Wy () Py, (X)Py(6;) = Py (X),
or equivalently, @, (X)W (6;) = Wy (6;)®y (X). It follows that
dy(X) € W*({‘{JU(BJ-);] > 1}) =w*WU)' = U)

for all X € B(J). This observation completes the proof.

A projection onto the space of all Toeplitz operators on the Hardy space of the unit
circle was constructed by Arveson in [39] using a generalized limit argument. In [105]
Prunaru used invariant means to construct a completely positive unital projection onto the
set of Toeplitz operators associated with a commuting family of spherical isometries. In our
setting, a projection onto the set of all abstract T-Toeplitz operators is obtained by
compressing @, to H.

For X € B(H), we denote by X = X @ 0 € B(H )its trivial extension to 7. Then for
k > 1and X € B(H), the operators

1
PrilX) = 1% Z T;,i"-...-eil)(Teil-...-e,ik €B(H)
1<iq,.miksk

are the compressions of the corresponding operators @, . ()?) that is,

Dy (X) = Py @y i (X)|,.((k 2 1,X € B(H)).
As before we denote by I, the set of all u-inner functions 8in H*A(u) and write

T(T) ={X € B(H);TyXTy = X forall 6 € I}
for the set of all abstract T stract T-Toeplitz operators on H.
Corollary (4.3.2)[128]: The mapping

O B(H) > BH), X &r(X) =w’ —lim Oy (X) = Py ®y(X)],,
is a well-defined completely positive unital projection with
ran(®dy) = T(T).
Proof. Since the compression mapping B(H') — B(H), X - Py X |3, is weak«continuous,
completely positive and unital, it follows that
w* —lim ®ry (X) = Pr®y(X)],,

for X € B(#) and that the map ®;: B(H) - B(H), X » ?HCDU()?)L[, is completely
positive and unital. Since @, (X) = Xfor each abstract T-Toeplitz operator X € T(T) and
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every k > 1, it follows that ®,;(X) = X for X € 7(T). Using Theorem (4.3.1), we obtain
that
TQ*CDT(X)TB = ?}[qju(e_)*?}[qju(X)qju(Q)b[ = Py WPy (0) @y X)Wy (0) |5
= Py @y (X)|y = Pr(X)
for every operator X € B(J) and each u-inner function 8 € I,. Hence ran(®r) = T(T),
and the proof is complete.
As a direct application of Theorem (4.3.1) and Corollary (4.3.2) we obtain a natural
description of the abstract T-Toeplitz operators.
Corollary (4.3.3)[128]: Let T € B(H)™be a regular A-isometry with minimal normal
extension U € B(#)". Then we have
T(T) =Py (U) |3
Proof. By Corollary (4.3.2) and Theorem (4.3.1)we have 7 (T) < P4 (U)'|4. Conversely,
if X € (U)'and 8 € I,is a p-inner function, then
To (PrX|3:)Tg = PpWPy(0) Py Xy (0) |30 = PPy (0) X WPy (0)3r = P X3
Hence also the reverse inclusion Py (U)' |4 < T(T) holds.
Let &, and @ be defined as above. Then
1:B(H) » B(H), X o oy(X)
defines a completely positive linear mapping with ®(X) = P (X)|4 forall X € B(H)
and ran(77) < (U)’. To see that equality holds here, we need some more preparations. Note
that
Iy =¥y(1,) c W*(U)
defines an abelian semigroup of unitary operators with W*(J,) = W*(U). The minimality
of Uas a normal extension of Timplies that
H = \/V*}[;V €Ty.
To see this it suffices to observe that the space on the right-hand side is invariant under
W*(3y) = W*(U).
Corollary (4.3.4)[128]: The compression mapping
0: (U) » T(T), X — Py Xl3
defines a completely isometric linear isomorphism with inverse given by
T(T) - U), X — (X).
Proof. We know from Corollary (4.3.3) that pis well-defined and surjective. As a
compression mapping eis completely contractive. Since
(XV*h,W*k) = (0(X)Wh,Vk)
forall X € (U)',V,W € J, and h, k € H, the remarks preceding the corollary imply thatois
injective. The observation that
o((X)) = @ (X) = X
for all X € 7(T) shows that 7 (T) — (U)', X — 7t(X), defines the inverse of the bijection
0:(U)' - 7(T). Since also 7t is completely contractive as a composition of completely
contractive mappings, it follows that o is completely isometric.
The restriction of #: B(3) — B(H )to the C*-algebra C*(7(T)) generated by all
abstract T-Toeplitz operators is even a C*-algebra homomorphism.
Theorem (4.3.5)[128]: The restriction
T = &l e (7 C(T(T)) - B(H)
Is the minimal Stinespring dilation of the completely positive unital projection
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C*(T(T)) » C*(T(D)), X — r(X).
For X € B(#) and Y € C*(7(T)), we have
a(XY) = a(X)7(Y).
Proof. We know that #: B(#) — B(#), and hence also its restriction 7, are completely
positive maps. To prove that 7 is a homomorphism of C*-algebras, it suffices to check its
multiplicativity. Fix operators X € B(H) and Y € 7(T). Since ran(w) c W*(U)', it
follows that
(RIXY)V*h k) = 1i£n<v*cpy,ka()’(7)h, k)
for V€3, and h € H,k € F. Applying Corollary (4.3.4) to the operator Y € 7(T), we
obtain the identity
Wy ()" XYWy (0)h = Wy (6) X Py Wy (O)R(Y)R

for 6 € I,and h € H. Using the definition of 7(X) = @, (X), we find that

(T(XY)V*h, k) =(V*'7(X)R(Y)h, k) = (7#(X)R(Y)V*h, k)
for 6 € [,and h € }{,k € . By the remarks preceding Corollary (4.3.4) it follows that
a(XY) = a(X)a(Y).

Inductively one obtains that

Xy .. X)) =Xy ... t(X,)
holds for any finite number of operators X; - ...- X, € T(T). Since C*(T(T)) Is the norm-
closed linear span of products of this type and since 7@ is norm-continuous, the
multiplicativity of w = 7| c+(7 (7)) follows.

Using the definition of w(14) = ®y (14 @ 04:1), one easily finds that m(14;) acts
as the identity operator on H. Since

n(130)V*h=V*n(l4)h =V*h
forall @ € 7, and h € 3, it follows that m(14;) = 14. Asan application of Corollary (4.3.4)
one obtains that 7(7y) = Wy (f) for all f € L* (). Hence the minimality of Uimplies that
mis the minimal Stinespring dilation of @[+ (yry). To see that fzpossesses the additional
multiplicativity property claimed in the theorem, it suffices to observe that
Xy, ... Y) =aX)aly) - ..-aX,) =aX)ay; ..Y,)
forX € B(H),Y,,...,Y,. € T(T), and to use the norm-continuity of 7.

For Y € (U)', we define the Toeplitz operator T, € T(T) with symbol Yas the
compression Ty = Py Y|4,. In the particular case that Y = W, (f) with f € L™ (u) we obtain
that Ty = Tis the Toeplitz operator with symbol f.

Corollary (4.3.6)[128]: Let T € B(H)™ be a regular A-isometry with minimal normal
extension U € B(.’f[)nand scalar spectral measure u € M*(d,). Let ®: B(H) - B(H)
and 7r: C*(7(T)) — B(H) be defined as before.

(i) For X € 7(T), the operator (X) is the unique element in (U)" with X =

Trx). ForY € (U)', we have n(Ty) =Y.
(i) ForY € (U)" and f € L*(u), we have
ITyll = IYIl and ||T¢|| = 1fllieo s
(i ForY; € (U),1<i<r7,1<j<s,wehave

r S
Pr zﬂTYU’ = Tor vy

i=1 j=1
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Proof. Part (i) and part (ii) follow immediately from Corollary (4.3.4). Since by Theorem
(4.3.5) the restriction T = ﬁlc*(T(T))is a C*-algebra homomorphism, we obtain that

r S r S
or| 3] 7 J= e 2] [2 () )| = Toraman,
i=1 j=1 =1 j=1 >
forY;; € (U)'as in part (iii).

Since the C*-algebra C*(7°(T)) is the norm-closure of the set of all finite sums of
finite products of Toeplitz operators of the form Ty with Y € (U)’, part(iii) of Corollary
(4.3.6) shows in particular that the action of any Toeplitz projection ®;: B(H) — B(H)
defined as above is uniquely determined by T on the Toeplitz C*-algebra C*(T(T)).

If W*(U) is a maximal abelian W *-algebra, or equivalently, W*(U) = W*(U)’, then
the abstract and concrete Toeplitz operators coincide, that is,

T(T) = {Ty; f € L”(W)}.
This can be seen as a generalization of the classical Brown—Halmos characterization [2] of
the Toeplitz operators on H?(T).
Let T € B(H)"be a regular A-isometry with minimal normal extension U €

B(f[)nand scalar spectral measure u € M*(d,).We denote by ®.:B(H) - B(H) a
Toeplitz projection defined as above. Recall that @ is the compression
D (U) = Py (X5 (X € B(H))
of a projection ®: B(H') - B(H) with ran(d,) = (U)’ and that
m:C*(T(T):» B(H), X oy(X)
iIs the minimal Stinespring dilation of the completely positive and unital mapping
Drlc+(7(ry). We denote by

To(T) = {Ts; f € HY (W)} © B(H)
the weak“closed subalgebra consisting of all analytic Toeplitz operators. Our next aim is to
calculate the essential commutant 7, (T)¢¢of the set of all analytic Toeplitz operators.
Lemma (4.3.7)[128]: Suppose that M < His a closed reducing subspace for 7°(T). Then
O7(X) = O ((PuXlp) © (Py2Xly2))

for every operator X € B(H).
Proof. We denote by M'the set of all operators X € B(H) with the property that XM c
M~+and XM+ c M. Fix an operator X € M. Then T,;XT, € Mfor all u-inner functions 6 €
I,and hence also ®1(X) € M (see Corollary (4.3.2)). On the other hand, the space Mis
reducing for the operator ®(X) € T(T). Therefore ®,(X) = 0 and the assertion follows.

Let S € T,(T)%“be arbitrary. It follows from Corollary (4.3.4) that Y5 = #(S) is the
unique operator in (U)'with ®;(S) = Py Ys|4c. Our aim is to show that, under suitable
conditions on T, the operator S is a compact perturbation of an abstract T-Toeplitz operator.
Since @, (S) € 77(T), it suffices to show that

S—d,(S) e K(H).
To prove this, we shall use the map
F:L(W) = BH), f = TS = Py (Ys Py ()],
Note first that S — ®,(S) = F(1)and that
F(f) =TS — @7 (S)T¢
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for every function f € Hz°(u). It clearly suffices to find conditions which ensure that the
whole image of Fconsists of compact operators. Since F is continuous linear, we only need
to show that Fmaps the characteristic function y,, of each Borel set w c d, into KX (H). We
begin with a very modest first step.

Lemma (4.3.8)[128]: For every point z € d,, the operator F(X{Z})is compact.

Proof. We may suppose that u({z}) > 0, since otherwise F(x(,;) = 0. As shown in [133]
the regularity of Timplies that x, € Hy°(u). Exactly as in [133]), it follows that the
eigenspace H,of Tassociated with the joint eigenvalue zcoincides with the eigenspace of

Uassociated with z, that is,
ﬂ Ker(z; — T;) = ﬂ Ker(z; — U;)

and that P, = CDU()({Z})| e B(}[) is the orthogonal projection onto H,. The space H,
P,His reducing for T(T) since

(PyX|3) P, = :P}[LPU(X{Z}):P}[Xlg_[ = P, (P Xl3)
forall X € (U)'. Let S = (Sif)ij=1,z be the matrix representation of S with respect to the

decomposition H = (H © H,) @ H,. Since P, =T, € T(T), it follows that SP, —
P,S € X(H), or equivalently, that S;,and S,;are compact. Using Lemma (4.3.7) and
passing to the equivalence classes in the Calkin algebra, we find that

[Foen] = [P(S11 @ S22) = @1 (S)P] = [P0 D Sp3) — @7(S11 © Sz2) P,
For each u-inner function 6 € I,, we have
(T5(511 ©® 522)T9|HZ = (T5522T9)|HZ = S22
Hence the definition of @ implies that ®7(S1; @ S32) |y, = Sz2. Butthen P,(0 @ S;;) —
D1 (S11 D Sz2)P, = 0and therefore F,(,3)is compact.

Let us suppose in addition that Tis essentially normal. Then it follows from Lemma
3.9 (c) in [134] that all operators in the image of the map

FiL?(w) » BH), f & TS = P (LPu ()],
belong to the essential commutant (T)¢“of T. Hence we can apply the following
consequence of the Allan-Douglas localization principle to every operator inran (F).
Proposition (4.3.9)[128]: Suppose that the regular A-isometry T € B(H)™is essentially
normal. Then for every operator X € (T)¢¢, we have

X1l = sup inf{||T,X|| ;£ € C(3,) with f(z) =1}.
ZEDy €

Proof. By Lemma3.9 (c) and Lemma 4.1 in [134], the essential normality of T yields that
D = (T)*“is a C*-algebra containing 7 (T) U K (H), that the C*-algebra

A = (c*({Tf: fe C(aA)})) + K (H) /K (H)
is contained in the center of the C*-algebra 7 = D /K (H) and that the mappingz: C(d,) —
A, f [Tf] IS a surjective C*-algebra homo-morphism. Hence, for each functional 1 €
A _4in the character space of A, there is a unique point z(1) € d,with

A[Tr]) = £(z0)(f € C @),

For 2 € 44 and z € 9, let I, c The the closed ideal generated by all elements [Tf] where
f € C(3,)and A([T;]) = 0, and let I; c Tbe the closed ideal generated by all elements [ T;]
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such that f € C(d,) satisfies f(z) = 0. Then I; = I,(yfor all 1 € 44, and the Allan-
Douglas localization principle (Theorem 7.47 in [5] ) implies that
IXlle = sup [[X] + Lz, < supll[X]+ Lll7/,

AEA 4 ZEDy

for every X € (T)®¢. But for X € (T)¢“and f € C(d,) with f(z) = 1, the estimate
IIXT+ LNy, = ||[TX] + 1z||7/,z < || T:x]l,

holds. This observation completes the proof.

An application of the dominated convergence theorem (Lemma 3.4 in [134] ) shows
that the mapping

FiL®(W) = BH), f & TS = P (Y Wy ()],
is pointwise boundedly SOT-continuous, that is, for every bounded sequence (fi,),in L= (u)
converging pointwise u-almost everywhere to some function f € L*(u), it follows that
F(f) = Ill_I)Elo F (fy) in the strong operator topology.
Corollary (4.3.10)[128]: Suppose that the regular A-isometry T € B(H)™is essentially
normal. For a given operator S € T,(T)¢, let F: L*(u) — B(H) be defined as above. If
F(L°°(u)) C K(H), then there is a sequence (fy)xOf continuous functions f; €
C (9,4, [0, 1])with pairwise disjoint supports such that
InfllF(fi)ll > 0.

Proof. Suppose that F(L°° (H)) & K (H). Since every bounded measurable function can be

approximated uniformly by linear combinations of characteristic functions of Borel sets, we

can choose a characteristic function yof some Borel set in d, such that o = % > 0. By

Proposition (4.3.9) there is a point z € d,with

IFGEONe = ITEF OO, > o
for all f € C(d,) with f(z) = 1. Here the first equality follows from Lemma 3.9 (c) in
[134]. Let kK = 0 be an integer. Suppose that g,,...,gx € C(9,4,[0,1])are functions with
pairwise disjoint supports such that [|F(g;x)|l. > ¢ and z & supp(g;) for j =0,..., k.
Choose a function f € €(d,, [0, 1])with f(z) = 1 and supp(f) N supp(g;) = @ forall j =
0,..., k. Let (Hj)jbe a sequence of functions in C(d,, [0, 1]) with z & supp(6; )for all jsuch

that 8;(w) — 1 as j — oofor every point w € d,\{z}. Since Fis pointwise boundedly SOT-
continuous, it follows that

F(xefx) = SOT — lim F(6,fx).
As an application of Lemma (4.3.8), we obtain that

IFCeeae£ON 2 NIFGFDNe > e
Hence there is an integer j > 1such that ||F(6,fx)| > e.

Inductively one obtains a sequence of functions g, € C(d,4,[0,1]) with pairwise
disjoint supports and ||F (gix)|| > o for all j. In the inductive step, one can define g,,, =
6;f with fand 6;as above. A standard application of Lusin’s theorem (Theorem 7.4.3 and

Proposition 3.1.2 in [130]) shows that there is a sequence (hj)]_ in C(dy, [0,1]) such that

h; — x for j —» oo u-almost everywhere. Since
F(gxx) = SOT — lim F(gih;) (k = 1),
]—)OO

126



for each k > 1, there is an index j, > 1 with ||[F(gxh;, )|l > o. But then the resulting
functions f, = g, h;, have all the required properties.

We are able to show the main result.
Theorem (4.3.11)[128]: Let T € B(H )™be an essentially normal regular A-isometry. Then
for every operator S € T,(T)®¢, we have

S — dp(S) EK(H).

Proof. Let F: L®(u) —» B(H) ,f ~ T;S — ?}[(YS‘PU(f))|H, be the map considered above.
Since S — @1(S) = F(1), it suffices to show that F(L* () < K (3). Let us assume that
this inclusion does not hold. Then by Corollary (4.3.10) there are a positive real number o >
0 and a sequence of functions f; € C(d,4,[0,1]) with pairwise disjoint supports A, =
supp(fi) such that ||[F(fi)|l > o forall k > 1.

Exactly as in [134] , one can use the regularity of Tto replace (f), by a sequence
(gi)«Of functions in A such that

- Q
1gicllenps < 2,11 grlleog e < 27FNF (gl > 5
forall k > 1. Recall that F(g;) = T, .S — ®(S)Ty,is the weak limit of a net consisting of
operators of the form

1 1
Tg;S =& z TowySTowTg; = 7% z Tow (To00S = STgj00)
ie{1,.,k}k i€{1,.,k}k
with suitable u-inner functions 8 (i) € I,. Hence, for each j > 1, there is a function 6;: 9, —

C with |6;] =1 on d,such that 6; € I,and such that the function h; = g;6; € H{ ()
satisfies
- Q
I, < 2000l 500 <27 | TS = 5T || > T

By hypothesis the commutators K; = [Thj,S] are compact. By passing to a subsequence,
one can achieve that the limit

e = lim [5]| € 3,

j—

exists. Since the sequence (hj)jis uniformly bounded on d,and converges to zero point-
wise on d,, it follows that the sequences (Kj)jand (Kj*)jconverge to zero strongly. Aresult

due to Muhly and Xia (Lemma 2.1 in [137]) shows that, by passing to a subsequence again,
one can achieve that the series
K= Z K;
j=1

converges in the strong operator topology and satisfies ||K ||, = ¢ > 0. Since each point of
d4belongs to at most one of the sets A;, the partial sums of the series 3.5, h;are uniformly

bounded on djand converge pointwise to a function h:d, — C. By the dominated
convergence theorem it follows that h € H;° A(u). Again using Lemma 3.4 from [134] , one
obtains that

T, = SOT — Z Ty, , [TuS] = SOT — Z [, 5] = k.
=1 =1
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But then T}, € 7,(T) would be an operator with non-compact commutator [T}, S] = K. This
contradiction completes the proof.

Let T € B(H)"be a regular A-isometry with minimal normal extension U €
B(3)"and scalar spectral measure p € M*(d,). Suppose that W*(U) c B(H) is a
maximal abelian von Neumann algebra, that is, W*(U) = (U)’.

Then Corollary (4.3.3) implies that 7'(T) = {T; f € L*(w)}. As a consequence, we obtain
a complete characterization of the essential commutant T, (T)¢“of the analytic Toeplitz
operators in this case.

Corollary (4.3.12)[128]: Let T € B(H )™ be an essentially normal regular A-isometry with
minimal normal extension U € B(H)™and scalar spectral measure u € M*(d,). If
W*(U) c B(#) is a maximal abelian von Neumann algebra and S € B(#), then
equivalent are:

(i) SeT,(T)e.

(i) S =T; + Kwith a compact operator K € K (#)and a symbol f € L (u)with the
property that the associated Hankel operator Hy is compact.

Proof. First, suppose that S € 7,(T)*¢. Then ®1(S) = Tywith a suitable function f €
L (). The proof of Theorem (4.3.11) shows that the image of the bounded linear map
Fil® (@) = BH) g = TyS — Py (PygN)],,
is contained in K (H). It follows that K = F(1) = S — Tyis compact and the identity
F(f)=TfS =Tz =TTy — Tpi2 + T7K
= Py Wy (f)PrcPu ()|, — PrcPu(H)Pu ()|, + TFK
= —Py Wy (f) Py Wy(F)|,, + T7K = —HfHy + +T7K
shows that also the operator His compact.

In order to prove the remaining implication, it suffices to verify that all Toeplitz
operators T, such that the corresponding Hankel operators Hy are compact essentially
commute with 7, (T). But this follows from the formula
which holds forall f € L*(u) and g € H ().

By considering Hankel operators Hy = (1 — Py)Y |4 € B(H, HL) with symbol Y €
(U)’, we obtain a similar characterization of the essential commutant of the analytic Toeplitz
operators in the general case.

Corollary (4.3.13)[128]: If T € B(H)™ is an essentially normal regular A-isometry with
minimal normal extension U € B(}T)n and scalar spectral measure u € M*(d,), then the
following statements are equivalent:

(i) SeT,(T)e.

(i) S = Ty + K with a compact operator K € K (H) and a symbol Y € (U)'such that
the associated Hankel operator Hy has the property that H;Hyis compact for every
feLl®w).

(ili) S = Ty + Kwith a compact operator K € K (H)and a symbol Y € (U)’ such that
the associated Hankel operator Hy has the property that H;HY Is compact for every
f € H ().

Proof. For arbitrary symbols f € L (u) and Y € (U)’, an elementary calculation shows that
_H,;HY =T¢Ty — P3Py (s
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Suppose that S € T, (T)¢¢. Then Theorem (4.3.11) implies that S = Ty, + K is a sum of the
Toeplitz operator Ty, = ®4(S) € B(H )with symbol Y € (U)’ and the compact operator
K=5—®;(5) € X(H). By the proof of Theorem (4.3.11) the range of the mapping
F:L¥(W) » BH) ,f » TpS — PPy ()Y g
is contained in K (H). Consequently, H;HY = T¢K — F(f) is compact for every symbol
f € L”(u). To complete the proof note that the identity
Hf’ny = Py Wy ()Y |3 — TeTy = Ty Ty — T¢Ty
holds for f € Hy"(u) and Y € (U)'.

Johnson and Parrott characterized the essential commutant U¢“of an abelian von
Neumann algebra U ¢ B(H) as the sum U’ + K (H) of its commutant and the compact
operators [8]. This result has been generalized in [138] to the non-abelian case. We present
an alternative proof of Johnson and Parrott’s result for finitely generated abelian von
Neumann algebras. To this end, let us observe that, for every compact subset K < C", the
Shilov boundary of C(K) is equal to Kitself and the triple (C(K), K, ) is regular [129] for
every choice of u € M*(K). Consequently, every commuting tuple N = (Ny, ..., N,) €
B(H)™of normal operators is a regular C(a(N))-isometry.

Corollary (4.3.14)[128]: (Johnson—Parrott). The essential commutant of a finitely
generated abelian von Neumann algebra Ul ¢ B(H)is given by

e = U + K (H).

Proof. Since Uis abelian, its generators Ny, ..., N,, € B(H)™ form a commuting tuple of
normal operators and hence a normal regular C(a(N))-isometry N € B(H)™. By Theorem
(4.3.11), the inclusion T, (N)¢¢ < T(N) + K (H) holds. Hence it suffices to check that the
analytic Toeplitz operators associated with Ncoincide with I = W*(N) and that the abstract
N-Toeplitz operators are precisely those operators that commute with I, Letu € M +(0’(N))
denote the scalar spectral measure associated with N. Then C(a(N)) is weakx-dense in
L™ (u), which implies that H‘C”(G(N))(u) = L*(u) and hence

W) = W (12G0) = Wy (Hef oy 1)) = Tu(),
To conclude the proof, we combine the fact that (N)' = W*(N)" = W'with Corollary (4.3.4)
to obtain the remaining identity 7(N) = W',

By [132], the preceding result applies in particular to every abelian von Neumann
algebra on a separable Hilbert space.

As another application of Theorem (4.3.11) we characterize those regular A-
isometries for which the associated Toeplitz projection d vanishes on the compact
operators. By following the lines of the proof of [133] and adapting it to the setting of regular
A-isometries, we observe that a regular A-isometry T € B(H )™has empty point spectrum if
and only if

T(T)NnKH) = {0}.
Corollary (4.3.15)[128]: The Toeplitz projection &, associated with a regular A-isometry
T € B(H)™ vanishes on K (#) if and only if 0,,(T) = .
Proof. Recall that the Toeplitz projection acts as the identity on the Toeplitz operators. Thus,
if T has an eigenvalue, we can choose a compact Toeplitz operator X + 0 satisfying

®,(X) = X # 0. On the other hand, the minimal normal extension U € B()" of T is a

normal regular A-isometry. Moreover, the mapping @,is the corresponding Toeplitz

projection. A look at Theorem (4.3.11) reveals that
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S —dy(S) € K(H)
for every element S € 7, (U)¢c. Now assume that K € ¥ (H) is a compact operator. Then
K=K®oe JC(}T) is compact and thus belongs to 7, (U)¢¢. Hence the above calculation
implies that @, (K) € X () nT(U) is a compact U-Toeplitz operator. Assuming that
0,(T) = @, we infer that & (K) = ?}[CDU(I?)L[ =0.
Using Corollary (4.3.15) we prove an essential spectral inclusion theorem for Toeplitz

operators.
Theorem (4.3.16)[128]: Let T € B(H)™be a regular A-isometry with minimal normal

extension U € B(}T)n. Then Thas empty point spectrum if and only if the spectral inclusion
o(Y) c o,(Ty)holds for every operator Y € (U)'.

Proof. Suppose that o,,(T) = @ and fix an operator Y € (U)". We first show that the left
spectrum of Yis contained in the left essential spectrum of Ty,. To prove this inclusion it
suffices to verify that Yis left invertible in B(# ) whenever Ty is left invertible in the Calkin
algebra C(H) = B(H) /K (H). Let us suppose that X € B(H) is an operator with XT,, —
14 € K (H). Using Corollary (4.3.4) and the proof of Theorem (4.3.5), we find that

a#(XY) = #(X)A(Ty) = #(XTy) = 14 + #(XTy — 14).
Since a0,(U) = 0,(T) = @, it follows from Corollary (4.3.15) applied to U that &
annihilates the compact operators. But then, using the definition of 7, we find that

RXOY = 1y + Oy ((XTy — 1) B 0) = 1y

Thus we have shown that the left spectrum of Yis contained in the left essential spectrum of
Ty. Applying the same argument to Y* € (U)’, we obtain that the left spectrum of Y™ is
contained in the left essential spectrum of Ty = Ty+. By standard duality results this means
precisely that the right spectrum of Y is contained in the right essential spectrum of Ty. In
total we have shown that o(Y) < o, (Ty )for every operator Y € (U)'under the hypothesis
that the point spectrum of Tis empty. If xis a joint eigenvector for T, then the orthogonal
projection Yof # onto the one-dimensional subspace spanned by xbelongs to the
commutant (U)’ and Tyis the corresponding rank-one projection on H. Then 1 € o(Y)
while g, (Ty) < {0}. Hence the essential spectral inclusion result does not hold.

For regular A-isometries with empty point spectrum, we even proved spectral
inclusion theorems for the left (essential) spectra and right (essential) spectra separately. If
0,(T) = @and pdenotes the scalar spectral measure of the minimal normal extension U €
B(7)", then we obtain in particular that

essran(f) = 0,20, (f) = o(¥y(f)) € 0c(Ty)
for every function f € L™ (u). For the particular case of Toeplitz operators on the Hardy
space of the unit disc or the unit ball, this result is contained in [5] and [12] .
For a given subalgebra B < (U)’, we denote by
Ty = alg({Ty; X € B}) € B(H)
the smallest norm-closed subalgebra containing all operators Tywith X € B. The semi-
commutator ideal SC(J3) of T3 is defined as the norm-closed ideal in Tzgenerated by all
operators Ty Ty — Txy With X, Y € B. Since J3is the norm-closure of the set of all finite sums
of finite products of operators of the form Tywith X € B, a straightforward argument using
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part (iii) of Corollary (4.3.6) shows that J3is invariant under the Toeplitz projection ®,and
that
SC(T3) = ker(¢T|TB) = ker(anB).
The last equality follows from Theorem (4.3.5) together with Corollary (4.3.4).
Corollary (4.3.17)[128]: Let T € B(H )™ be a regular A-isometry with minimal normal
extension U € B(H)™. For each subalgebra B c (U)’, there is a short exact sequence
0 SC(T) © Ty >B — 0
Of Banach algebras with m(Ty) = X for all X € B. If 0,(T) = @, then
Ts NK(H) c SC(T3).
Proof. The existence of the short exact sequence follows from the remarks preceding the
corollary. The last assertion is a consequence of Corollary (4.3.15).

Using part (ii) and part(iii) of Corollary (4.3.6) one obtains that, for every regular A-
isometry T € B(H )™and each subalgebra B < (U)’, the direct sum decomposition
Tp = SC(T3) @ {Ty; X € B}
holds with SC(73) = ker(®r|s,) and {Ty; X € B} = ®;(J3). If in addition the subalgebra
B c (U)'is self-adjoint in the sense that X* € Bwhenever X € B, then the sequence
described in Corollary (4.3.17) is a short exact sequence of C*-algebras.
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Chapter 5
Toeplitz Corona Theorems

We extend and refine some work of Agler-McCarthy and Amar concerning the
Corona problem for the polydisk and the unit ball in C™. For free functions a and b on a free
domain K defined free polynomial inequalities, a sufficient condition on the difference
aa® — bb* to imply the existence a free function ¢ taking contractive values on K such that
a = bc is established. The connection to recent work of Agler and McCarthy and their free
Toeplitz Corona Theorem is exposited.

Section (5.1): The Polydisk and the Unit Ball

Theorem (5.1.1)[139]: (Corona) Let {fj}j,"zl c H*(D). Assume that

m
0<e?< 2|fj(z)|2 <1 forallz€D.
=1

There exists a constant C (e, m) < oo and {gj};_":l C H®(D). so that

m m
sup E |gj(Z)|2 <(C(e,m)? and E fi(2)g;(z) =1 forallz € D.
Z€ED 4 -

Jj=1 j=1

Theorem (5.1.1) and especially the techniques utilized in its proof have been very

influential. See, for example, Garnett [42]. Among many questions raised by this theorem,

we wish to consider the analogous Corona problem for the polydisk and the unit ball in C™.
For the case of the bidisk, D2, Agler and McCarthy proved the following:

Theorem (5.1.2)[139]: (Agler and McCarthy) Let {f;}.__ < H®(D). Then there exist
{g,}_, € H*(D?). with

m m 1

2
ijgj =1 and sup 2|gj(z)| <<z
= zEDZj=1

TH(TE) = 87,
for all probability measures u on T2.
Although the Theorem (5.1.2) and its proof seemed to be restricted to n = 2 by the
classical and beautiful counterexample of Parrot [143], Amar managed to extend it to D™
(and to B™).

m
j=1

if and only if

Theorem (5.1.3)[139]:(Amar) Let {fj};nzl C H*(Q). Then there exist {gj};il c H*(Q)
with
m m
2 1
ijgj =1 and sugZ|gj(z)| Sﬁ
=1 Z€ 3
if and only if

TH(TE) = 871,
for all probability measures u on 91).

In other words, Amar shows that for {f;}_ < H*(Q)and § > 0

m
j=1
the following are equivalent:
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(i)  There exist {g]} c H*(Q) with

Zf]g]—l on Q and SupZ|gJ(z)| _52.

(i)  For all probablllty measures p on 98 and aII h € P%(u) there exists {kf}71:1 c

H*(Q)
Zﬁk = andEllk I} = 55 Il

By results of Andersson Carlsson [141] for the unit ball and Varopoulos [148], Li
[61], Lin [74], Trent [147], and Treil-Wick [70] for the polydisk case, we know that if the
input functions are bounded away from 0 on Q, we have an HP () Theorem (5.1.1) for 1 <
p < oo, That is, if

m
{f,-};”=1 CH*(Q) and 0 < €% < ;Q£Z||]g(z)||2 <1,
j=1

then for 1 < p < oo there exists a §,, > 0 so that
TpTr = 5511{11(9),
where F = (f1, f2,...). Unfortunately, the best of these estimateshave 6, | 0 asp T oo,

Thus Theorem (5.1.3) tells us that a solution to the Corona problem
for HP (Q) follows from the following statement:

?
TeTp = 621,6 >0=>3¢ >0  suchthat T;‘(T;)* > €2,
for all probability measures y on 9Q.

Necessity in Theorem (5.1.3) is trivial; so we will concentrate on weakening the
sufficient conditions to get the same Corona output.

We will extend Theorem (5.1.3) to an infinite number of input functions and refine
his theorem, so that we need only consider probability measures, u, of the form |H|?do,
where H € . In addition, we weaken the hypotheses to just have our operators dominate a
certain rank one operator. We begin with a series of lemmas.

Lemma (5.1.4)[139]: Let F(z) = [fij(z)]jj_:1 ,fij € H®(Q). Then

IT#ll /o = sup||F(2)llpq2)-
<EBH (Q)) z€Q
(00)
Proof. Let h € @H2(Q). Then
1

e h||oo = sup ||T(reit)ﬁ(re“)||22 do
H2(8) 0sr<1 50 L

1

< sup f||T(Z)||B(12) sup (f”h(relt)” da) < supllT(Z)” (12)||h||°°

ZEQ
1

For x € Ball, (%) and Z € Q
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2 2

ks

= |lF(2)*
A 7@ x

(00)

BH?(Q)
1

2
|12'

HT(Z)*Z

TFx——]|le =
”kZ”HZ(.Q) @HZ(Q)
1
Thus,

ITrll = IFll = sup  sup ||F(2)'x
z€eQ xeBall, (1?)

For a Hilbert space, K, and vectors x,y, h € K, we let x @ ydenote the rank one operator
defined on Kby

2 *
|, = supllF(2)* |52 = supllF ().
ZEQ Z€EQ

(x ® y)(h) = (h,y)x.

The next lemma will be used repeatedly with A = T# and k = H, for H € .
Lemma (5.1.5)[139]: Assume that for A € B(K) and k € Kwith || k|| = 1, AA* = §%k ®
k. Then there exists u;, € (Ker A)1, so that Auy, = k and |Jug||x < %.
Proof. By the Douglas Range Inclusion Theorem, see [142], there exists a C €
B(H, Ker A*) such that AC = k ® kand ||C|| < 5. Letw, = Ck.
Lemma (5.1.6)[139]: For f a positive, bounded, lower semi-continuous function on 01,
there exists a nonvanishing H € H* (), so that

f =|H|?0 — a.e.on 0Q.
Proof. For Q = D™ and dQ = T™", this is a result of Rudin [145]. For Q = B™ and 0Q =

dB™", this is a theorem of Alexandrov (see Rudin[146], p. 32).
Recall that

1
H 2 {H € H*(L): Hnonvanishing in , i € L*(6Q,do),and ||H||, = 1}.

For {aj};la fixed countable dense set in Q with a; = 0, define foreach N = 1,2,...
2

ka,

Cy = co 2:j=1,...,N

aj

2
Here k,(+) is the reproducing kernel for H2((). It is clear that C, is compact and convex in

L*(69Q, do).
Calculating, we see that for Q = D™ and g € Cy, we have
3 (1 3 ||a||>” < gD < (1 + ||a||>" < forallz e
1+ lall) — ~\1—|lall ’
where ||a|| = max{”aj”:j =1, ...,N}.
For Q = B™and g € Cy, we have

0< (1 — ”a”>n < g(2) < <1 T ”a“>n <o forallz €Q
1+|lall) — —\1—[all ’
1

2

where llall = (21 |||} )

Note that for g € Cy, the above calculation shows that, as sets, P2(g do)equals H%(Q).
(0/0]

Assume that TT; = 61 ® 1 and choose x € @H?(Q)so that Trx = 1 and ||x||, <
1

Oo_lr—t
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For N =1, 2,...define

(0/0]
Fy:Cy X ®H?*(Q) - [0, )
1
By
2
Fa(9.0) 2 [ x = Prercrpall}. 9o,
80
(0.0)
forg € Cy and a € BH?(Q).
1
Since g € Cy,

(00)

X — PKer(TF)Q € @HZ(Q)
1
and Fy (g, a) is finite and positive.
(0.0)

For fixed a € ®L*(do), g — Fy(g, a) is linear and thus concave on the compact convex
1

0.0)

set Cy. For fixed g € Cy, a — Fy(g, a) is convex and continuous on GH?(Q).
1
Lemma (5.1.7)[139]: Assume that TzT7 = §21® 1. ForeachN =1, 2,...,
Jnf  sup TN(g,g) = sup _inf SFN(g,g).

ac®nz() IEN 9N sedn2(Q)
1 1
Proof. By our remarks above, we may apply von Neumann’s minimax theorem. See, for

example, Gamelin [119].
We are now ready to present our extension of Theorem (5.1.3).
Theorem (5.1.8)[139]: Assume that for some 6 > 0, TxT; = §2H ® Hfor
(00)

all H € H. Then there exists a ¢ € @H?(Q) with
1

1
FG =1inQandsup||G(2)],z < =.
Z€N 6

That is,
TpT.r = Iin H*(Q).
(00]

Proof. Since T¢ Ty = 6?1 ® 1, we may choose x € @H?()so that Trx = 1 and ||x,||, <
1 1
Fix any positive integer, N, and any g € Cy. By Lemma (5.1.6), we may find an H €
H,sothat |[H|?> = g g-a.e. on 9Q.
By our assumption
TA(TH) = 6°H Q H,

(00}
so there exists an xy € @H?*(Q)with

1
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1 1
5 €]

IA

Té(xn) =1 and |y,
Since x — xy € Ker(Tr), we have xy — x = Pger(rpafor a = x — xy.
Thus (1) says that

1
-faQ”&_ PKer(TF)QHZ,g do = TN(Q,Q) < ﬁ

Since this is true for every g € Cy, we may apply the minimax theorem,
Lemma (5.1.7), and deduce that

1
Jnf  sup TN(g, a) < (2)
ac®n2(Q) IV
. 1
Then using (2), choose a € @H?(Q) so that
1

1 1
j ||x - PKer(TF)a”lzg do < (62 ) forall g € Cy.(3)
Since

2
|ka"| ec i =1,2,..,N
5 ny forj=12,..,N,
ke,

2
we see that if

GN £ X — PKer(TF)Q'

Then
- o, |
(i 16™ (@)% < L |6 ™Ity T zdo <+,
forj=1,2,..,N
G 6™ <2+2 and

(iii) FG™M =1inQ.
Repeating this argument for each N = 1,2,..., we get a sequence of elements, G €
(00)

DH2(Q), satisfying (i), (ii), and (iii).
1
By relabeling the sequence of elements, {G ™}, if necessary, let G
(0]

be a weak limit of {G™} " in GBH2 (Q). Fixany a,, € {aj};ozl. Then

1
IIG(ap)IIlz lim [|6®(a))]| . < 5 by (b,

N—-oo

Since Gis continuous in ) and {aj}j=1 is dense in , we have shown that

1
supl|G(2)llz < 5.
VALY

By (iii),
I = weak lim Tx(G™)) = Tz (G).

N—-oo
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Thus, by Lemma (5.1.4), TzT; = 1. This completes the proof of Theorem
(5.1.8).

We need the fact that Ker Tr = RanTy, for an appropriate analytic F. For Q = B™,
the unit ball in C™, the fact that Ker Tz = RanTxfollows from results of Andersson and
Carlsson [141]. For Q = D?, KerTr = RanTxfollows from Taylor spectrum results of
Putinar [144]. That Ker T = RanTrin the general case, 0 = D", follows from an extension
of the techniques of Trent [147] and will appear in a forthcoming concerning the Taylor
spectrum of Tp.

The following shows that the Theorem (5.1.1) for the polydisk or
unit ball, reduces to an estimation of a lower bound for TH(TH)* where H € 7€, but His not

cyclic for H2(Q). (Note that we always have E € L*(0Q,do).)

Theorem (5.1.9)[139]: For H € H and Hcyclic in H?((), then
TeTa(TH)* > 621 Q1= TH(TH)* > 6*°H Q H.
Proof. To show that, when His cyclic, TH(T#)* = 6?H @ H, it suffices to find u, €

(0]

B H?(Q), satisfying
1

1 1
Fuy =1 (so F(HEH) H)and”Hu ||oo . 5 Hl g2y = 5 .(4)
1
Let x = Tp(TpTz)~'1. Then such a uy must have the form uy = x — Pyer(r,)afor some
(0 0)
a € DH?(Q). To see that such an «a exists, satisfying (4), we compute
1
. 2
nf |2 = Pxercrpell,1HI? do

acE@®H?(Q) o0
1
= _nf f ||§H — TT(HQ)HIZZ do (since Ker(Ty) = Ran(Ty))
ac®H2(Q) "9
1

= jnf f ”zH — Tz (E)”; do (since H is cyclic) = ||Pan(TT_)(xH)||oo

pe®H2(q) ~ 00
1

H2(Q)
1

= ||P§er(TF)(§H)||§;H2(Q)(since Ran(Tz) = Ker(Tz)) =

1

2
(T Ty) AT HTE (TpTE) "1 |o = IT (T T HI%
DH?Z(Q) BH2(Q)
1 1

ran(TF) (Hx) || EBHZ(Q)

1 1
< ﬁ ”H”HZ(Q) = ﬁ
In the case that n = 1, we may choose H in Lemma (5.1.6) to be outer and thus cyclic for
H?(D). So Carleson’s Theorem (5.1.1) for H®(D) follows from Theorems (5.1.8) and
(5.1.9).
A very natural and interesting question arises from our work. Thanks to Treil’s
remarkable example [67], we know that for an analytic

F = [fy],_, with
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€?l < F(2)F(z)* < I3 forallz € Q,
there does not necessarily exist an analytic G = [g; ]]” .

with F(2)G(z) = Iz forallz € Q
and supllg (@) lpqe) < <.
VAS

How do we know when such a Gmust exist? For the case of the unit disk, D, it is
necessary and sufficient that there exist a § > 0 with
621 < T¢Ty.
For the polydisk and ball in C*, a natural question is: Does THTH* > §21, for some
6 > 0and forall H € 3 imply the existence of a bounded analytic Toeplitz operator Twith
TeTg = 127
For T (z), aq x comatrix with g < oo, a modification of our techniques works, but we
only get an estimate

|7 <
Section (5.2): Toeplitz Corona Problem

>

While isomorphic Banach algebras of continuous complex-valued functions with the
supremum norm can be defined on distinct topological spaces, the results of Gelfand (cf.
[5]) showed that for an algebra A € C(X), there is a canonical choice of domain, the
maximal space of the algebra. If the algebra Acontains the function 1, then its maximal ideal
space, M,, is compact. Determining M,for a concrete algebra is not always straightforward.
New points can appear, even when the original space Xis compact, as the disk algebra,
defined on the unit circle T, demonstrates. If Aseparates the points of X, then one can identify
Xas a subset of M with a point x,in Xcorresponding to the maximal ideal of all functions in
Avanishing at x,. When Xis not compact, new points must be present but there is still the
question of whether the closure of Xin M,is all of M or does there exist a “corona” M\ X +
1}

The celebrated theorem of Carleson states that the algebra H*(ID) of bounded
holomorphic functions on the unit disk Dhas no corona. There is a corona problem for
H* (Q) for every domain £ in C™but a positive solution exists only for the case m = 1 with
Q a finitely connected domain in C.

One can show with little difficulty that the absence of a corona for an algebra A means
that for {¢;}i=,in 4, the statement that

Zl(pi(x)lz > g2 >0 forallxinX (5)
i=1
is equivalent to the existence of functions{¢; Tl_linA such that

z @;(x)Y;(x) =1 forall xin X (6)

The original proof of Carleson [40] for H °°(]D)) has been simplified over the years but
the original ideas remain vital and important. One attempt at an alternate approach,
pioneered by Arveson [39] and Schubert [159], and extended by Agler —McCarthy [56],
Amar [140], and finally Trent — Wick [139] for the ball and polydisk, involves an analogous
question about Toeplitz operators.
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In particular, for {¢;}-, in H*(Q) for Q = B™or D™, one considers the Toeplitz operator
Te: H*(Q)? - H?(Q) defined To,f = X1, @if; for f in H2(Q), where f =/, @ ... D f;,
and X" =X @ ...@ X for any space X. One considers the relation between the operator
inequality

TeTq = €%l for some e > 0 (7)
and statement (5). One can readily show that (7) implies that one can solve (6) where the
functions {y;}* ,are in H%(Q). We will call the existence of such functions, statement (8).
The original hope was that one would be able to modify the method or the functions obtained
to achieve {y;}iL,in H*(Q). That (5) implies (7) follows from earlier work of Andersson —
Carlsson [141] for the unit ball and of VVaropoulos [148], Li [158], Lin [74], Trent [147] and
Treil -Wick [70] for the polydisk.

In the Trent —Wick [139] this goal was at least partially accomplished with the use of
(7) to obtain a solution to (8) for the case m = 1 and for the case m > 1 if one assumes (7)
for a family of weighted Hardy spaces. Their method was based on that of Amar [140].

We provide a modest generalization of the result of Trent — Wick in which weighted
Hardy spaces are replaced by cyclic submodules or cyclic invariant subspaces of the Hardy
space and reinterpretations are given in the language of Hilbert modules for some of their
other results. It is believed that this reformulation clarifies the situation and raises several
interesting questions about the corona problem and Hilbert modules. Moreover, it shows
various ways the Corona Theorem could be established for the ball and polydisk algebras.
However, most of our effort is directed at analyzing the proof in [139] and identifying key
hypotheses.

A Hilbert module over the algebra A(Q), for Q a bounded domain in C™, is a Hilbert
space H'which is a unital module over A(Q) for which there exists C > 1sothat || - fll4 <
Cllollacyllf llsfor @in A(Q) and fin . Here A(Q) is the closure in the supremum norm
over Q of all functions holomorphic in a neighborhood of the closure of Q.

We consider Hilbert modules with more structure which better imitate the classical
examples of the Hardy and Bergman spaces.

The Hilbert module Rover A(Q) is said to be quasi-free of multiplicity one if it has a
canonical identification as a Hilbert space closure of A(Q) such that:

(i) Evaluation at a point zin Q has a continuous extension to Rfor which the norm is
locally uniformly bounded.

(ii)Multiplication by a gin A(£2) extends to a bounded operator T,,in L(R).

(iii) For a sequence {@;} in A(Q) which is Cauchy in R, ¢, (z) — 0 for all zin Q if

and only if ||@x|ls — O.

We normalize the norm on R so that ||1]| = 1.

We are interested in establishing a connection between the corona problem for M'(R)
and the Toeplitz corona problem on R. Here M (RR) denotes the multiplier algebra for R;
that is, M (= M (R)) consists of the functions 1 on Q for which )R < R. Since 1 is in R,
we see that M is a subspace of R and hence consists of holomorphic functions on Q.
Moreover, a standard argument shows that is bounded (cf. [154]) and hence M ¢ H*(Q).
In general, M = H*(Q).

For yin Mwe let T,,denote the analytic Toeplitz operator in L(R) defined by module
multiplication by 1. Given functions {¢;}i-,in M, the set is said to

(i)  satisfy the corona condition if ¥, |¢@;(2)|?> = e*for some ¢ > 0 and all z in Q;
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(if)  have a corona solution if there exist {1;}i, in M'such that Y7, @;(2)y;(z) = 1
for zin Q;
(iii)  satisfy the Toeplitz corona condition ify.;-, T,, T,;. = e*Ixfor some & > 0;
and
(iv) satisfy the R-corona problem if there exist {f;};,in Rsuch that ¥, T, f; = 1 or
L, 0i(2)f (z) = lfor zin Qwith 1L [Ifil1> < 1/¢%

It is easy to show that (ii) = (i), (iv) = (iii) and (ii) = (iv). As mentioned in the
introduction, it has been shown that (i) = (iii) in case Q is the unit ball B™or the polydisk
D™and (i) = (iii) for Q = Dis Carleson’s Theorem. For a class of reproducing kernel
Hilbert spaces with complete Nevanlinna —Pick kernels one knows that (ii) and (iii) are
equivalent [152] (cf. [151], [157]). These results are closely related to generalizations of the
commutant lifting Theorem [48]. Finally, (iii) = (iv) results from the range inclusion
theorem see (cf. [142]).

Lemma (5.2.1)[149]: If {p;}}-, in Msatisfy Y7, T,, T, = e*Ixfor some & > 0, then there

exist {f;}, in Rsuch that Y™, ;(2)f;(z) = 1for zin Qand Y™, |If;ll32 < 1/&2.

Proof. The assumption that 31, T,, T, = £21 implies that the operator X: R"™ — Rdefined

by Xf = ¥i-, T, fisatisfies XX* = Y1, T, Tj = g%l and hence by [142] there exists

Y:R - R™ such that XY = I with ||Y]| < i Therefore, with Y; = f; @ ... @ f,,, we have
=192 fi(2) = X, Ty, fi = XY, = 1land YrfNE = IY1I21)% < 1/€2. Thus the

result is proved.

To compare our results to those in [139], we need the following observations.
Lemma (5.2.2)[149]: Let Rbe the Hilbert module L% (1) over A(Q) defined to be the closure
of A(Q) in L?(u) for some probability measure pon clos Q. For f in L2 (u), the Hilbert
modules L% (|f|*du) and [f], the cyclic submodule of Rgenerated by f, are isomorphic such
that1 — f.

Proof. Note that || - 1,2/ 12q,) = l@f ll12¢for @in A(Q) and the closure of this map sets
up the desired isomorphism.

Lemma (5.2.3)[149]: If {f;}]-, are functions in LZ(w)and g(z) = X, |lfi(2)]|%, then
L% (g du) is isomorphic to the cyclic submodule [f; @ ... D f,,] of L3 (u)"*with 1 - f; D
D £

In [139], Trent —Wick prove this result and use it to replace the L%spaces used by
Amar [140] by weighted Hardy spaces. However, before proceeding we want to explore the
meaning of this result from the Hilbert module point of view.

Lemma (5.2.4)[149]: For R = H?(B™) (or H?(D™)) the cyclic submodule of R™generated
by ¢, @ ... D p,with {¢;}-, in A(B™) (or A(D™)) is isomorphic to a cyclic submodule
of H2(B™) (or H2(D™)).

Proof. Combining Lemma 3 in [139] with the observations made in Lemmas (5.2.2) and
(5.2.3) above yields the result.

There are several remarks and questions that arise at this point. First, does this result
hold for arbitrary cyclic submodules in H2(B™)"or H?(D™)", which would require an
extension of Lemma 3 in [139] to arbitrary f in H2(B™)"or H2(D™)™? (This equivalence
follows from the fact that a converse to Lemma (5.2.2) is valid.) It is easy to see that the
lemma can be extended to an n-tuple of the form f,h @ ... @ f, h, where the {f;}-,are in

140



A(Q) and his in R. Thus one need only assume that the quotients {ﬁ-/fj}?j:lare inA(Q) or

even only equal a.e. to some continuous functions on 01).

Second, the argument works for cyclic submodules in H2(B™) & [? or H*(D™) ®
[as long as the generating vectors are in A(Q ) since Lemma 3 in [139] holds in this case
also.

Since every cyclic submodule of H?(D™) & [%is isomorphic to H?(D™), the
classical Hardy space has the property that all cyclic submodules for the case of infinite
multiplicity already occur, up to isomorphism, in the multiplicity one case. Although less
trivial to verify, the same is true for the bundle shift Hardy spaces of multiplicity one over
a finitely connected domain in C[150].

Third, one can ask if there are other Hilbert modules Rthat possess the property that
every cyclic submodule of R ® C"or R ® [2is isomorphic to a submodule of R? The
Bergman module L% (D) does not have this property since the cyclic submodule of L2 (D) &
L% (D) generated by 1 @ z is not isomorphic to a submodule of L% (D). If it were, we could
write the function 1 + |z|? = |f(2)|? for some fin L2 (D) which a simple calculation using
a Fourier expansion in terms of {z"z""} shows is not possible.

We now abstract some other properties of the Hardy modules over the ball and
polydisk.

We say that the Hilbert module Rover A(Q) has the modulus approximation property
(MAP) if for vectors {f;}}_,in M S R, there is a vector kin Rsuch that ||6k|% =
Z]:1||6fl||2for gin M. The map 6k — 6f;, P ... Ofythus extends to a module
isomorphism of [k] € Rand [f; @ ... D fy] c RV.

For zyin Q, let I, denote the maximal ideal in A(2) of all functions that vanish at z,,.
The quasi-free Hilbert module Rover A(Q) of multiplicity one is said to satisfy the weak
modulus approximation property (WMAP) if

(1) A nonzero vector k, in R © I, . R can be written in the form k,_- 1, where k,_is in

M, and Tkzohas closed range acting on R. In this case R is said to have a good kernel

function.
(ii)Property MAP holds for f; = A;k,,i =1,.. ,Nwith0 < A; < land X}L, A7 = 1.
Our main result relating properties (ii) and (iii) is the following one which generalizes
Theorem 1 of [139].
Theorem (5.2.5)[149]: Let Rbe a WMAP quasi-free Hilbert module over A(Q)of
multiplicity one and {¢;}i-, be functions in M. Then the following are equivalent:
(i)  There exist functlons {Y;}i=, In H*(Q)such that Y, ¢;(2)y;(z) = 1 and
Yl;(2)] < 1/ for some € > 0 and all z in Q, and
(i)  there exists € > Osuch that for every cyclic submodule Sof R, ¥\, TS TS >

i=1"¢;"@;
e%ls, where T = T<p|$for<p|n M.

Proof.We follow the proof in [139] making a few changes. Fix a dense set {z;};2, of Q.
2 2

First, we define for each positive integer N, the set Cyto be the functions {”| |” }

and the function 1 for i = 1 with abuse of notation. Since R being WMAP implies that |t
has a good kernel function, Cyconsists of nonnegative continuous functions on . For a
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N

2
function g in the convex hull of the set {”l |” } , the vector m Ak Z||12 D ..0 m Al Z|’|V isin RV,
zl Z1 ZN

By definition there exists Gin R such that [G] = ”;kzﬁ @D ..0 ||1A<I Z’ﬁ by extending the map
Z1 ZN

1,0k
s e 69 Z”for Qin M.
[z, | ||kzN||

Second, let {¢, ..., @, }be in ]v[and let T denote the column operator defined from
R™"0 Rby To(fy @ .. D fo) =Xt Ty fifor f= (f1® .. f,) in R"and set K =
ker T, © R™. Fix fin R™. Define the function
Fy:Cy XK — [0, 00)

0G —

by

Zl

TN(glh)_z}\z ||

where g = Y7, A%|k, | /||kzl.|| and Y7, A7 = 1. We are using the fact that the k_.are in
Mo realize k, (f — h) in R™.

Except for the fact we are restricting the domain of Fyto Cy X Kinstead of Cy X R",
this definition agrees with that of [139]. Again, as in [139], this function is linear in gfor
fixed hand convex in hfor fixed g. (Here one uses the triangular inequality and the fact that
the square function is convex.)

Third, we want to identify Fy(g, h) in terms of the product of Toeplitz operators

forh =h &P ..Bh,inR",

(Tig) (Tig) , Where Sgis the cyclic submodule of Rgenerated by a vector Pin Ras given

in Lemma (5.2.3) such that the map P — <”;kzﬁ D..0 ”Z Z’|\|’) extends to a module
Z1 ZN

A%|kzi|2 2 N 2
g7 0 S Shend R A =1
l

. . . S Sa\* .
Note for £ in R", inf Fy (g, h) < 1/e*|I T fI%if T, (Tq,g) > e2l,. Thus, if
T$(T8) = g?1s, for every cyclic submodule of R, we have jnf Fy (g, h) < 1/€2||TofI1%.

Thus from the von Neumann min-max theorem we obtain
1nf sup Fy (g, h) = sup 1nf Fyn(g, h) < 1/%||Tof]1%
heX gecy gecyh
From the inequality To,Tg = €215, We know that there exists fiin R™such that || f, || <
1/¢||1]l = 1/¢ and Tef, = 1. Moreover, we can find hyin Ksuch that Fy(g, hy) <

isomorphism with g = 3N

2
ky.
(1/£2 + 1/N)||ITopfoll> = 1/ + 1/N forall gin Cy. In particular, for g; = s we have

21
e

T (T2 2 e, , where ||ky,/||k || (o — )| < 5+ 1/N.

There is one subtle point here in that 1 may not be in the range of qu . However, if
Pis a vector generating the cyclic module §,, then Pis in Mand Tphas closed range. To see

this recall that the map
Ok,

Tl

Ok
6P - A,

Ik ||69 O




for 6 in M is an isometry. Since the functions {kzi/||kzi||}1iv=1 are in M by assumption, it

follows that the operator Mpis bounded on M € R and has closed range on R since the
operators M, ks have closed range, again by assumption. Therefore, find a vector f in

Sgsothat Tof = P.Butif f = f; @ ...@ f,, then f; is in [P] and hence has the form f; =
Pf; for f; in R. Therefore, T, Tp f = Por T, f = 1 which is what is needed since in the proof
fo—fisin XK.

To continue the proof we need the following lemma.
Lemma (5.2.6)[149]: If z, is a point in Qand h is a vector in R™, then ||h(z,)||gn <

2
ez /Nl 1]
Proof. Suppose h = hy @ ... D h,with {h;}}_,in A(Q). Then Ty, k, = h,(z,)k,,and hence
PG |kay |* = (Tikzys bz = Gz Th ez,

since Tkzohi = Tp,k,-(We are using the fact the k, h; =k, h;-1=hk, = hk, )
Therefore,

- 2 2

Rl ||” = [(Kags Tigy 1) < eI || T i 1|
or,

h,(zo) < ”Tkzo/llkzollhi”'
Finally,

n

2

1) = Y 1)l < [T e it
i=1

and since both terms of this inequality are continuous in the R-norm, we can eliminate the
assumption that h is in A(Q)™.
Returning to the proof of the theorem, we can apply the lemma to conclude that

I(Fo — ho) @DIEn < ||z, /|| ez ]| (Fo — h0)||2 < 1/e? 4+ 1/N. Therefore, we see that the
vector fy = fo — hy in R"satisfies

() To(fn —hy) =1,

(i) lfy —hyllz <1/e* +1/N and

(iii) [|(fy — hy)@DIEn < 1/e2 +1/N fori=1,..,N.
Since the sequence {f y }x=1 in R™ is uniformly bounded in norm, there exists a subsequence
converging in the weakx*-topology to a vector yin R". Since weakx*-convergence implies

pointwise convergence, we see that 7_, ¢;1; = 1 and ||y; (zi)||zn < S—lzfor allz;. Since is
continuous on Q and the set {z;} is dense in Q, it follows that 1 is in HZ(Q) and |[]] <
1/£2 which concludes the proof.
Note that we conclude that ¥ is in H*(Q) and not in M'which would be the hoped
for result.
One can note that the argument involving the min-max theorem enables one to show
that there are vectors hin which satisfy
2 1 1
||kzi(f_h)|| S€—2+N. 2
Moreover, this shows that there are vectors f so that Tof = 1,||f||” < 1/¢2 + 1/N, and

”f(zi)“z <1/¢?+1/Nfor i =1,..,N. An easy compactness argument completes the
143



proof since the sets of vectors for each Nare convex, compact and nested and hence have a
point in common.

With the definitions given, the question arises of which Hilbert modules are (MAP)
or which quasi-free ones are WMAP. Lemma (5.2.4) combined with observations in [139]
show that both H?(B™) and H?(D™) are WMAP. Indeed any L% space for a measure
supported on dB™or the distinguished boundary of D™ has these properties. One could also
ask for which quasi-free Hilbert modules Rthe kernel functions {k,},cqare in Mand
whether the Toeplitz operators T, are invertible operators as they are in the cases of

H?(B™) and H2(D™). It seems possible that the kernel functions for all quasi-free Hilbert
modules might have these properties when Q is strongly pseudo-convex, with smooth
boundary. In many concrete cases, the k, are actually holomorphic on a neighborhood of

the closure of Q for z,in Q, where the neighborhood, of course, depends on z,.
Note that the formulation of the criteria in terms of a cyclic submodule § of the quasi-
free Hilbert modules makes it obvious that the condition
T3(T3) = €%
IS equivalent to
ToTy = €%y
if the generating vector for Sis a cyclic vector. This is Theorem 2 of [139]. Also it is easy to
see that the assumption on the Toeplitz operators for all cyclic submodules is equivalent to
assuming it for all submodules. That is because
I(Ps ® Ien)TofIl = [|(Pgy ® Ien)To f ||
for fin the submodule S.

If for the ball or polydisk we knew that the function “representing” the modulus of a
vector-valued function could be taken to be continuous on clos(Q) or cyclic, the corona
problem would be solved for those cases. No such result is known, however and it seems
likely that such a result is false.

Finally, one would also like to reach the conclusion that the function is in the
multiplier algebra even if it is smaller than H* (). In [153] Costea, Sawyer and Wick this
goal is achieved for a family of spaces which includes the Drury —Arveson space. It seems
possible that one might be able to modify the line of proof discussed here to involve
derivatives of the {¢;}i-; to accomplish this goal in this case, but that would clearly be more
difficult.

Section (5.3): Douglas Property for Free Functions

Free functions can be traced back to the work of Taylor [177], [178] and generalize
formal power series which appear in the study of finite automata [176]. They have been of
interest for their connections with free probablity and engineering systems theory, [181],
[180], [179], [BGT], [169], [170], [161], [171], [172], [173], [174], [175], [162], [163],
[164], [165].

We provide a conceptually different proof of a result in [162] of a sufficient condition
for the existence of a factorization b = ac, for free functions a, band a free contractive-
valued function con a free domin determined by free polynomials. As a consquence, the
Toeplitz Corona Theorem of [162] is obtained. For more on the Corona and the Toeplitz-
Corona problems, see [162], [40], [153], [158], [74], [159], [70], [139], [149].
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All Hilbert spaces considered here are Complex and separable. Let M(C%) denote
graded set (Mn(@d)) , where ML, (C%) is the set of d-tuples X = (X4, ...,X;) of nxn
n

matrices. Observe that the graded set M, (C%) is closed with respect to direct sums and
unitary conjugations. More generally,

A non-commutative set £ = (L(n))nis a graded set where £(n) < M,,(C%) such that

forX € L(m),Y € L(n) and a unitary matrix U € M,,,(C),

i) XPY=X,0Y,...X;, YY) € KX(m+n); and

(i) U*XU = (U*XU,,...,U"X,U) € K (m).

AB(H, £)-valued non-commutative function defined on the non- commutative set Lis a
function such that for X € L(m),Y € L(n),

i) fX)eEBH QQC™ERQC™).

(i) fXBY)=fX)Df(Y)

(i) f(S71XS) = U @ S HF(X)(Uy & S) wheneverS € M,,(C)is invertible and

S~1XS € L(m).

We will say that such a function is bounded if sup E,, < oo, where E,, = sup |[f(X)]|.
neN x€L(n)

Henceforth we will use the abbreviation nc” for ’non-commutative”.

A typical example of an nc function is a free polynomial in the dnon- commuting
variables x;, ..., x4, which is defined as follows.

Let F,;be the semigroup of words formed using the d-symbols x;, ..., xand the empty
word @ denote the identity element of F,;. A B(C*)-valued free polynomial in the non-
commuting variables x4, ..., x4 is a finite formal sum of the form ¥, 7 p.,w, Where p,,, €
B(C*). For w = x; x;, ...x; , the evaluation of pat X € M, (C%), is given by p(X) =
Ywer,Pw ® X € B(CX @ C"), where X* = X; X;, ... X; . For 0 € M,(C%), p(0):=
pe ® I,. It is easy to see that pis a B(C*)-valued nc function defined on the nc set M(C%).

Let € and § be B(C¥)-valued free polynomials in x;, ..., xzand let K denote the
graded set (X (n)) , where

K(n) ={X € M,,(€C%):3 ¢ > 0 such thate(X)e(X)* — §(X)6(X)* > c(I, ® I,,))}. (8)
Observe that the graded set X = (K (n))nis an nc set. We will consider this nc set with the
additional assumption that0 € % (1). Our main result is the following.

A key ingredient in the proof is the existence of a left-invariant Haar probablity
measure on the compact group of unitary matrices in M,,(C).

Observe that if e = I,,@, where @ € F,is the empty word, then X is the domain G5 =
(Gs(n)) considered in [162], where

Gs(n) = {X = (X1, ..., X): 16O < 1} € M, (CY), (9)
with the additional assumption that 0 € Gs(1). The following theorem for the domain Ggshas
been proved in [162].

Lemma (5.3.1)[160]: Let X, Ybe separable Hilbert spacesand W € B(X ® C*, Y @ C").
If W= (U, VW, ® V*)for all unitaries V € M,,(C), then there exists an operator
W e B(X,Y)suchthat W =W Q I,In.
Proof. The result is an embodiment of the fact that the only n X nmatrices which commute
with all n X nmatrices are multiples of the identity. Since (I, @ V)W =W (I, Q V) for
every unitary V € M,,(C), it follows that

Iy @ )W = W(lx & X) (10)
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for every X € M,,(C). Let {e,, ..., e,} denote an orthonormal basis for C"and let Ej; =
ejerdenote the resulting matrix units. Write W = ¥ W; , &® E; ; for operators W ,: X —Y.
Choosing, for 1 < a, § < n, the matrix X = e, eg, from equation (10) it follows that

Ewﬂkebeaek—zvm@eaeﬁ

Hence, W, = 0 for k # ﬂ Wiq =0 forj# aand Waa = Wp gand the result follows by
taking W = W,,,.
Lemma (5.3.2)[160]: Let H be a Hilbert space and suppose A,B € B(H). If AA* — BB* >
cIfor some ¢ > 0, then there exists a unique E € B(#)such that B* = E*A*and ||E™*|| < 1.
Moreover, if is finite dimensional, then E is unique and ||E*|| < 1.
Proof. The Douglas lemma ([142]) implies the existence of a contraction E such that B =
AEassuming only that AA* — BB™ > 0. Since the hypotheses imply that AA* > clis
invertible, in the case that #is finite dimensional, it follows that Ais invertible and E =
A~1Bis uniquely determined. Moreover, since A(I — EE*)A* = cI and A is invertible, E is
a strict contraction.

Let G™ = {U € M,(C):U*U = I}. It is well known that G™ is a compact group
with respect to multiplication. Hence there exists a unique left-invariant Haar measure
h™on ¢ ™such that h™ (G) = 1 and

| ranwwy = [ romanew), (11)
¢ ¢
forall f € C(G™),U,V € G™. For more details see [40].
Recall the nc set Fdefined in (8) and the assumption that 0 € K (1).
Proposition (5.3.3)[160]: Let &;,&,,E; be Hilbert spaces and suppose that aand bare
bounded B(&,, £;)and B(&,, £5)valued nc-functions on K. There exists a B(&,, £,)valued
nc-function fsuch that, for all nand X € K (n),
M NIf®I =<1 and
(i) a(X) f(X) = b(X),
if there exists a B(#? @ C¥, £;)-valued nc function hdefined on K 'such that
a(T)a(R)" — b(T)b(R)" = h(D)[1,2 Q@ (e(T)e(R)” — 6(T)6(R))H]h(R)*
foralln € Nand R, T € K (n). (12)
Proof. Fixn € N. Forall R,T € K (n), rearranging (12) yields,
a(T)a(R)* + h(T) 1,2 Q 6(T)6(R)*]h(R)*

= h(T) [,z Q@ e(T)e(R)*JR(R)* + b(T)b(R)". (13)
Consider the closed subspaces:
(2 @ 6(R)HA(R)
(n) —_ £ n
D —span{[l a(g):hﬂ*]xxe&(@(l ,RE?C(n)},
RM = span{[( 7o ZER%*) (R) XEE;QRQCHLRE S‘C(n)},

of (?RC*RC) D (E, ®CYand (¥? ® C* ® C") @ (&; ® CM) respectively.
Let W(n): D™ — R™pe the linear map obtained by extending the map
[(1{)2 X 5(73)*)’1(73)*] MR [(132 ® e(R)h(R)"
a(R)" b(R)*
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linearly to all of D, It follows from equation (13) that W,,: D™ — R™ js an isometry
(and hence the map is indeed well defined). Since the codimensions of D™and R ™agree,
it follows that W™: D™ — R ™ can be extended to a unitary V™. Thus

m B
v = (?(n) g(n)> (PPRCJCD(E,RCH) - ({*RCRC) D (5, QCY

and satisfies
<A<"> B<">) ((Iez b S(R)*)h(ﬂ)*) _ ((Igz 03¢ E(R)*)h(R)*>
cm pm a(R)" B b(R)*

k
Z AM(I,z ® S(R)DIA(R)* + BMa(R)* = (I;2 @ e(R)DA(R),  (14)
£=1

CMW(I,e @ S(R)HR(R)* + D™Ma(R)* + b(R)". (15)
Let U € G™. Observe that U*RU € K (n). Replacing Rin equations (14)
and (15) by U*RUyields,
AU @ L, @ U)Upz @ 6(R)) (I, ®U) + B™ (I, @ U )a(R)* (I, ® U)
=z @@L ®U)Upz @ e(R)I(R) (I, ®U), (16)
and
C™Up @I ®UIUpz ® §(R)IRR) (Ie, ® U)
+ D™ (I, @ U)a(R)*(Ig, ® U)
= (I, ® U")b(R)* (I, ® U). (17)
Multiplying equation (16) on the left by (1,2 ® I,, ® U) and on the right by (g, ® U*) and
equation (17) on the left by (I, ® U) and on the left by (I, ® U*) yields,
U ®L @AM U @I @ U,z ® §(R)R(R)”
+ Iz X I, @ DB (I, @ U*)a(R)*
| = (I;2 ® e(R)")R(R)", (18)
an

(I, QU)C™W (I @ I @ U )2 ® 5(R)IR(R)”
+ (I, ® U)D™ (I, ® U*)a(R)* = b(R)". (19)
Let A, B, ¢Mand D™ denote the bounded (in fact, contractive) operators that
satisfy
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(A, y) = f AP 12 ® I, ® UM, (2 ® I ® U)y)dh™ (V)
¢

(BOa,b) = [(B(Ie, ® U")a, (U2 ® e ® UIBAR™ (1)
)]
‘ (20)
(CMz w) = f (C™ U @I, @ Uz, (Ie, ® U )w)dh™ (V)
¢

D@, = [ (1e, ® U%)g, (I, ® UR)AR® W)
¢

for all x,y,b,z€ 2R CFRQC* a,g €E, ®CY w,h € E; ® C*. Moreover, For x €
ERCtandy e 2 @ CFQ® C"u e & ® Cand v € £ ® C", it follows from equations
(20), (18) and (19) that (21)

([A™ U2 ® §(R)IR(R)* + B™a(R)]x,y)

- j<[(1{,2 QL @AM ® I, @ U (2 ® 5(R))IA(R)")
m)
+ glgz ® I @ UB™ (I, @ U*)a(R)*]x, y)dh™ (U)

- j (U ® (R)IR(R)"x, y)dh™ (U)
m
’ = (I ® e(R)IAR) x,y) 1)
as well as
([E™ (U2 ® 8(R)IR)" + DPa(R) |u, v)

- f<[(161 R U)C™ (e @Ik @ U (U2 ® 5(R)IR(R)")
(m)
+ (1, ® V)P, ® U")a(R) Ju, AR 0)

- f (b(R)"u, v)dh™ (U) = (b(R)"w, v) (22)
¢
Equations (21) and (22) together imply that
(AW §<n>) ((Igz 02 5(R)*)h(?€)*) _ ((Ifz ® e(iR)*)h(iR)*>
¢ pm a(R)* - b(R)*
A B\, . n) . ,
~ - )IS a contraction. Lastly, for V € G, the left invariance
cm  pmn
property of the Haar measure h implies that A™, B™ C™ andD™are invariant under
conjugation by I @ Vand hence
AW = (1, @I, VAW (I, @I, V™)
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BM™W = QL @ VIB™(I;, @ V*)

€W =, @V) MU QL V™)

D™ = (I, @ V)D™ (I, ® V™).
It follows from Lemma (5.3.1) that there exists bounded operators
AM™, BM ™ andD™such that A™® =A™ @ I,,B™ =B™ Q1,,™ =™ Q I,and
D™ =p™W L, where AM™eB*Q C),B™ € B(E,,¢*Q C),c™ € B(#?*Q
ck, &) and D™ € B(E,, E;). Moreover,

n n
(Ao Zo) @ ®CIOE - (@ BCI®E,

IS a contraction.

Llet H=({*QCHR@Eand E=(#?RQC)R® E,;. Observe that H @ Eis
separable. At this point, it has been proved that there exists an operator V € B(H, £) such
that ||V|] < 1 and

(I ® §(R)Hh(R)* (I ® e(R)"IR(R)"
Ve I"( a(R)* ) B ( b(R)* ) (23)
Let

L, = {(1(; 8) V| <1and(V Q In)solves(16)} c B(H & €&).

The argument above implies that L,, # @for eachn € N. It is also the case that L, isa WOT-
closed subset of the WOT-compact unit ball of B(H @ £). Thus L, is WOT-compact for
eachn € N. Moreover since 0 € K (1), it follows that L,, o L,,,,. By the nested intersection

property of compact sets, N,cyL, IS NON-empty. Say (0 0) € Npen Ln, Where V =

vV 0
(f, g)with AEB(2®CK), BEB (E,42®CY), CEB(2®CkE) and D€
B(gZJ gl)
Forall n € Nand R € K (n), we have,
AQ L)z ®@5R)IMR) + (B Q L)a(R)”
= I,z @ e(R))H(R)" (24)
(CRL)Up @SR)IR(R) + (D ® L)a(R)" = b(R) (25)
By Lemma (5.3.2), for each n € Nand R € K (n) there exists a uniquely determined strict
contraction y(R) € B(C* ® C") such that
§(R)" =y(R)" e(R)". (26)
Since |AQ L] <1 and |[ly(R)*|| < 1, rearranging equation (24) and using (26)
yields,
(L2 ® €(R)HA(R)*
= {2, QL, QL —(AQ L), @Y(R))} (B
& L)a(R)". (27)
Using (27) and (26) in (25) yields,
[(CRL)Upz YRz @I QL — (AR L), ®Y(R))} (B Iy)
+ (D ® I)]a(R)" = b(R)". (28)
Forn € N,R € K (n), define the function fon Kby
fRY=[CRLIUp @YR)NWp®@L®L - (AR L), ®Y(R))I} (B I,)
+ (D QLI (29)
Thus fis a B(&,, £,)-valued graded function which satisfies a(R)f(R) = b(R). It is
also easy to see that fpreserves direct sums.
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Finally, to show that fis an nc function, suppose R € K (n) and Sis an invertible n X
nmatrix such that S™'RS € X (n). We need to show that f(ST*RS) = (I, ®
S™f(R)(I, ® S). Observe that y(R)*is uniquely determined by (26), since e(R)*is
invertible. From the form of £, it is enough to show y(S™1RS) = ([, ® STHY(R) (I, ® S).
To this end, observe that,

(I ® S)S(R) (I ® (S)™1) = 8(ST'RS)" = y(ST'RS)"e(ST'RS)”

i =y(S7T'RS)" (I ® Se(R) (I ® (S)™H). (30)
Thus
(I @ SIY(R)'€R) (I ® ()1 =y(ST'RS) (I ® S)e(R) (I ® (S)7H).
Since e(R)*(I,, ® (S*)71) is invertible, taking adjoints, it follows that
(I @ STHY(R)Ux ® S) = y(ST'RS).
The proof is complete if we show that ||f(R)|| < 1 for every n € Nand R € K(n).
A B ARIL, BRI,
Recall thatforalln e N, VQ® I, = (C’ D) = <C®In DRI,
there exists bounded operators Pand Qsuch that
PP PQ\ _(legcecn 0 A* B*\N(A B
(Q*? Q*Q) = < 0 152®Cn> (5 ) p)=o
For notational convenience, let T(R):= (I, @ ¥(R)*), AR):= (12 Q L, ® I,, —
AT(R)) and ®(R): = A(R)™*. We have f(R)* = D + CT'(R)*(R)B.
Using equation (9), forn € Nand X € K (n), we have
(le, ® I) — fF(R)f (R)”
= (I, ®I,) - D*D — B*®(R)'T(R)*C*D — D*CT'(R)P(R)B
— B*®(R)’T(R)*¢*CI'(R)®(R)B
=Q'Q+B*B+B*®(R)T(R)(AB+PQ)+ (B A+ Q*P)I'R)P(R)B
—B*®R) TR (I —-—AA+PP)I'(R)P(R)B
= B*®(R)*'[AR)*A(R) + T'(R)*A*A(R) + A(R)*ATI'(R)
—T(R)U - A" A)T(R)|P(R)B+ Q*Q + B*®(R)'T(R)*P*Q
+ Q*PI(R)®(R)B + B*®(R)'T(R)*P*PI'(R)®(R)B
=B*®R)[I —T(R)T(R)]®(R)B
+ (Q + PI'(R)®(R)B)*(Q + PT(R)®(R)B) = 0.
Theorem (5.3.4)[160]: Let &;, &,, €5 be finite-dimensional Hilbert spaces and suppose that
aand b are bounded B(E&,, £s)and B(&;, £;)valued nc-functions on K = Gg. The following
are equivalent.
(i)  There exists a B(£? ® C¥, £;) valued nc-function hdefined on % such that
a(T)a(R)* = b(T)b(R)* = h(T)[l;z @ (I @ I,) — 6(T)S(R)*]h(R)*for alln
€ENand R,T € X(n).
(i)  There exists a bounded B(&,, £,) valued nc-function fsuch that ||f(X)|| < 1and
a(X)f(X) = b(X), foralln € Nand X € K (n).
(i) aX)a(X)*—=bX)b(X)* =0 for alln € Nand X € K (n).
It is immediate that a proof of the implication (i) = (ii) of Theorem (5.3.4), follows from
Proposition (5.3.3) by taking € = I,,@. Thus the proof given here of Proposition (5.3.3),
exploiting the Haar measure, provides an alternate and conceptually different proof of (i) =
(ii) than the one given in [162].
Proof. (i) implies (ii): Follows from Proposition (5.3.3), by letting € = I,,0.
(ii) implies (iii): Observe that for each n € Nand X € K (n),
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a(X)a(X)" = bX)b(X)" = a(X)a(X)" — a(X)f(X)f (X) a(X)"
= a(X)(Ie, ® I, = fFXOf(X)*)a(X)* > 0. (31)
(iii) implies (i): This is the content of Theorem 7.10 in [162].
Recall the non-commutative set Gs = (Gs(n)) from (9). The following is the
Toeplitz-Corona theorem of [162] for the non-commutative domain Gg = (G(g (n)) with the
assumptionthat 0 € Gs(1). Observe that certain well-known non-commutative domains, for

example, the non-commutative polydisc, can be realized as such Gg, for suitable §.
Theorem (5.3.5)[160]: Let a4, ..., a, be bounded C-valued nc—functions defined on G5 and

p>0.lfforalln € Nand R € Gs(n), ¥¢_; a;(R)a;(R)* > u?l,, then there exists C-valued
nc functions gy, ..., g, defined on Gs such that ¥¢_, a;(R)g;(R) = I,, for each n € Nand

R € Gs(n). Moreover the B(C, C*)valued nc function gsatisfies ||g(R)|l < % for all n €

Nand R € Gs(n), where g(R) =e; ® g1(R) + ¢, ® g;(R) and ey, ey, ..., epare the
standard unit (column) vectors in C?.
Proof. Letting & =& =Cand &, =C,a(R) = e; @ a;(R) + -+ e, ® a,(R) and
b(R) = ul,for R € Gg(n) in Theorem (5.3.4), the hypothesis becomes a(R)a(R)* —
b(R)b(R)* = 0. Theorem (5.3.4) now implies that there exists a B(C,C*) valued nc
function f such that || f(R)|| < 1 and

lef ® as(R) + -+ e; @ ;(R)f(R) = uly.  (32)
Choose C -valued nc functions fi, ..., f,such that f(R) =e; @ fi(R) + - e, Q fz(R).
Using this in equation (32) yields,

°

> a®FR) = .
i=1
Taking g; = %fi;i =1,2,..,¢, completes the proof.

Let A denote a linear r X r matrix-valued nc polynomial,

g
j=1

where the A;are r X rmatrices. The corresponding linear pencil is the expression
L(x) =1—A(x) — A(x),
where A*is the formal adjoint of A determined by,
N (X) = AX)"
for tuples X = (X, ..., X;) of n X nmatrices. In this case the graded set X = (?C(n))nis
known as a free (non-commutative) spectrahedron (See [168]). A bit of algebra shows

Lx) = U =MNE)UT = M) = A)AX)".
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Chapter 6
Toeplitz Algebra on the Bergman Space of the Unit Ball in C* and Localization
the Commutator Ideal

We can show that for n > 1, the closed bilateral ideal generated by operators of the
above form, where f, g can be required to be continuous on the open unit ball or supported
In a nowhere dense set, is also all of . The main results extend results of Xia and Zheng to
the case of the Bergman space. In the case of the Bargmann-Fock space, our results provide
new, more general conditions, that imply the work of Xia and Zheng via a more familiar

approach. We show that the norm closure of {Tf : f € LY(B; dv)} actually coincides with
the Toeplitz algebra ¥, i.e., the C*-algebra generated by {7y : f € L'(B; dv)}. A key
ingredient in the proof is the class of weakly localized operators recently introduced by
Isralowitz, Mitkovski and Wick. The approach simultaneously gives us the somewhat
surprising result that ¥ also coincides with the C*-algebra generated by the class of weakly
localized operators.

Section (6.1): Unit Ball in C"

For n > 1, let C™ denote the cartesian product of n copies of C. For any two points
z=(2q,..,2zy) and w = (wy, ...,w,,) in C", we use the notations (z,w) = z;w; + -+ +
z,w, and |z| = \/|21|2 + .-+ |z,|? for the inner product and the associated Euclidean
norm. Let B,, denote the open unit ball which consists of points z € C"* with |z] < 1. Let
dvdenote the Lebesgue measure on B, so normalized that v(B,) = 1. Let du(z) =
(1 —|z|?*) ™ 1du(z). Then du is invariant under the action of the group of automorphisms
Aut(B,,)) of B,. Even though du is an infinite measure on B,,, it will be very useful for us
later.

Let L? = L?(B,, dv) and L* = L*(B,,, dv). The Bergman space L? is the subspace of
L? which consists of all holomorphic functions. The orthogonal projection from L? onto L2
is given by

_ fw) 5
Pf(z) —Bf (1—(z,w))n+1dv (w) ,f € L?,z € B,

The normalized reproducing kernels for L2 are of the form
k,(w) = (1= 2|21 —(w,z)™7, z],lw| < 1.
We have ||k,|| = 1and (g, k,) = (1 — |z|>)**D/2g(z) forall g € L2.

Let B(L%) be the C*-algebra of all bounded linear operators on L2 . Let K denote the
ideal of compact operators on L.

Foranyn € L* let M,: L? — L? be the operator of multiplication by n and B, = PM,,.
Then ||P,|| < IInll. The Toeplitz operator T,,: L2 — L2 is the restriction of P,to L. For any
subset G of L, let T(G) denote the C*-subalgebra of B(L3)generated by {Tn: n e G}. The

commutator ideal of this algebra is denoted by €I (G). It is well-know that €X(C(B,)) is
the same as K, see [13].
The algebra T(L*) which is generated by all Toeplitz operators with bounded symbols is
called the full Toeplitz algebra. Its commutator ideal is €T (L™).

There have been many results on commutator ideals and abelianizations of Toeplitz
algebras acting on Hardy spaces. In contrast with this, there are only few results for Toeplitz
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algebras on Bergman spaces. Suérez showed in [81] that the Toeplitz algebra (L) on the
Bergman space of the unit disk coincides with its commutator ideal €Z(L*). Suarez used
some explicit computations and identities which are readily available on the unit disk to
construct a function n € L* with the property that n > ¢ > 0 on the disk and T, is in the
commutator ideal C€ZI(L*). In higher dimensions, the computations become more
complicated and some of the identities which were used by Suéarez are not available. We
could not find a way to get around these difficulties to construct a function similar to that of
Suarez so we tried a different approach. It turns out that our new approach gives more
general results about commutator ideals of the Toeplitz algebras. Indeed, we do not need G
to be all the functions in L to get €T(G) = T(G). We can take G to be L n C(B,,), the
set of all bounded continuous functions on the open unit ball, or we can take G to be all the
functions in L* which are supported in a set E where E can be a nowhere dense set with
v(E) as small as we please.

We next describe a metric on the unit ball which we will mainly use here. For any
z € B, let ¢, denote the Mobius automorphism of B,, that interchanges 0 and z. For any
z,w € B, let p(z,w) = |@,(w)]|. Then p is a metric which is invariant under the action of
the group of automorphisms Aut(B,,) of B,,. These properties of pcan be proved by using
identities in [79]. Further discussion of this metric will appear later.

A collection W = {w;:j € J} of points in B, is said to be separated if r =
inf{p(w;, wy):j # k} > 0. It is a consequence of Lemma (6.1.2) that in this case the index
set / is necessarily at most countable. The number r is called the degree of separation of W.

Forze B,and 0 <r <1, let

E(z,r) ={w€B,:p(w,z) <r}
denote the closed r-ball centered at z in the pmetric.
Theorem (6.1.1)[182]: Let {wj:j € N} be a separated sequence of points in B,, so that B,, =

Ujen E(wj, R) for some 0 < R < 1. Let n be a measurable function defined on [0, c) with
n=>0nt)=0ift<1and]|n|le=1.Foreach 0 <e <1putn.(z)=2zn(z|/e). Let
G, be the set of all functions of the form . ;¢ Ne°@w; OF Yjer Me"Pw; where F is a subset of

N. Then the operator
2
Ag _Z[ e Pw nsqow]

JEN
belongs to the commutator ideal €I (G, ). Furthermore, for all but countably many ¢, the
operator A.is invertible.

Put Eg=UjEN<ij(supp(nE)). Then G.is contained in the sub-space {( €

L™:{ is supported onE,}. If nis supported in a nowhere dense subset of [0, 1]then n,is
supported in a nowhere dense subset of B,,, hence E,, being the union of a locally finite
collection of nowhere dense sets, is a nowhere dense subset of B,,, too. Furthermore, we will
show that for € > 0, the Lebesgue measure of E, is 0(£2™). We will also show that if n is a
continuous function then G.is a subspace of C(B,,) forall 0 < € < 1.

The fact that A, belongs to the ideal €I (G, ) is proved exactly as in Suarez’s. The
reason is that all the properties of the metric p and the kernel functions which were crucial
for Suérez’s proof hold true in higher dimensions.
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The invertibility of A, follows from a general fact about operators which are
diagonalizable with respect to the standard orthonormal basis of L2 . In fact, sums of a “large
enough” number of operators which are unitarily equivalent to operators of the above type
are invertible. This is the content of Theorem (6.1.10) which follows.

For any z € B, the formula

U,(f) = (f e 9 )k, fE€ L?
defines a bounded operator on L2. It is well-known that U, is a unitary self-adjoint operator
and U,T,U; = T,.,, for all z € B, and all n € L™, see, for example, Lemma 7 and 8 in
[183].
Also a simple computation reveals that for all z, w € B,,,

11— (z,w)[\""
U, (ky) = <m> kg, (W).

This implies
Uy (kw @ ky)Uz = K,y ® ko, w)-
Now for any multi-index a = (a;,a5...,a,), let |a|l=a;+ -+, al =
al, .., a,land z% = Zfl ...sz”. Put

<<n+|a|)!>“2 i
eg=|———— z%.

n!a!

Then {e,: a € N"}is the standard orthonormal basis for L%, see Proposition 1.4.9 in
[79].

Recall that for any two nonzero elements f and g in L%, f ® g denotes the rank one
operator (f @ g)u = (u, g)f , forall u € L3,

The following inequalities illustrate the fact that the metric p in higher dimensions
also possesses all the properties used in Suarez’s. These results are well-known but since
we are not aware of an appropriate reference, we sketch here a proof.

Lemma (6.1.2)[182]: For any z, w in B,,, the followings hold:
2]~ wl | _ _ lz—wl
1= Talwl] =P =T
Proof. Using |[(z, w)| < |z||w]|, we get the inequalities
_lz—wl? _a- 1z12)(1 — [w|?) - 1z12)(1 — [w|?)
1—(zw)?~  |1-(zw)* =  ([@A-lzllwDh*>
Combining the above inequalities with the identity

(1 -1z = wl*)

(z,w)

1

1—|p,wW)|? = TEERE (see Theorem 2.2.2 in [79])
we obtain
|z — w]|? (Iz| — lw])?
1— <1-]p,W)*<1- ,
1= ¢:(W) A= Jzlwl)?

from which the stated inequalities follow.
From Lemma (6.1.2) and the invariance of p under the action of Aut(B,), we have
forany z,w,u € B,,
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|(,0u(Z)| - |(pu(W)|
p(z,w) = p(Pu(2), u(W)) > |7— PNGITAD]

|p(Z' u) - p(u' W)l

= : (1)
1- ,O(Z, u)p(u, W)

From the second inequality in Lemma (6.1.2), we see that if |z|, |[w| < R < 1 then
__lz—wl _lz—w ,
;)(Z,W)_|1_<Z,W)|_1_R2 : (2)

For all 0<r <1 and all 0 <R <1, from the compactness of E(0,R) in the
Euclidean metric, there is an M which depends only on n,r and R so that if {w, ...,w,,} is
a subset of E(0, R) and |w; — wy| = (1 — R®)r forall j # k thenm < M. Then (2) implies
that if {w,, ..., w,,,} is a subset of E (0, R) so that p(w;, wy ) = r for all j # k thenm < M.

The above properties of pallow us to prove the following characteristic of a separated
collection of points in B,,.

Lemma (6.1.3)[182]: Let {w;:j € ]} be a collection of points in B, so that p(w;, wy) > r
forall j # k,where 0 <r < 1.Let0 < Ry,R, < 1 be given. Then there isan N depending
only onn,r, R, and R, so that for any u € B, the set {j € J: E(u,R;) n E(w;,R,) # @} has
at most N elements.
Proof. By applying the Mobius automorphism that interchanges 0 and w if necessary, we
can assume without loss of generality thatu = 0. Let R = (R; + R,)/(1 + R;R;). Suppose
z,w € B, with |w| < R, and |z| > R. Then from Lemma (6.1.2),
pzw) > 1z| — |wl SRR

=1 —wllzl T 1-RR, %

So E(0,R))NE(zR,) =@ implies that |z| <R. Hence, {j €J:E(0,R)N
E(z;,R;) # @} is a subset of the set {j € J: |w;| < R}. From the remark preceding the
lemma, the second set has at most N elements, where N depends only on n,r, R, and R,.
The conclusion of the lemma follows from here.

The following lemma is similar to [81] but somewhat stronger even though the proof
is almost identical. We state here the lemma and give the proof, too.
Lemma (6.1.4)[182]: Let W = {w;:j € ]} be a separated collection of points in B, and 0 <
o < 1. Then there is a finite decomposition W = W, U ...U W, such that for every 1 <
I<N,E(z,c)NE(w,0) =0 forall z+ win W,
Proof. Let W, € Whe a maximal subset so that E(z,0) N E(w,0) = @ for all z# w in
W;. If W, =W we are done. Otherwise suppose that m > 2 and W,, ..., W,,,_; are chosen
sothat E(z,o) NE(w,g) =@ forallz=winW,all1<i<m-1and W\(W, U ..U
W) #0. Let W, c W\(W, U ..UW,,_,) be a maximal subset so that E(z,0) N
E(w,0) = @ for all z # w in W,,. By the maximality at each of the previous steps, if u €
W,, then for every 1 <i <m —1, there is a u; € W, so that E(u;,0) N E(u,0) # Q.
Therefore {u, uy, ..., um—1} € {j € J: E(u, 0) N E(w;,0) # @}. From Lemma (6.1.2), there
is an N depending on n, gand the degree of separation of W so that m < N.

From now, fix an r € (0,1) and a sequence of points W = {w;:j € N} in B, so that

E(w;,7) N E(wy, 1) = @ forall j # k in N.
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Now we state some lemmas which are in Suérez’s for the case n = 1 and for L? with
1 < p < oo, see [81]. Here we are interested in the case n > 2 and p = 2. The conclusions
of those lemmas in our case still hold true with no major changes in the proofs.
Lemma (6.1.5)[182]: Let0 < S < 1landr < R < 1 and let

D2 W) = D Ag(ury) X)WL = (W)
JEN
Then we have the following, where ¢; () > O0:

f Oz, w)(1 — |21 Fdv(z) < c; B)(L — [w]D) .

Bn
Lemma (6.1.6)[182]: Let 0 < <1l and r <R <1 and ®(z,w) as in Lemma (6.1.5).
Then

| @G - WP duw) < (8, - 127,
Bn
where ¢,(8,R) - Owhen R — 1.
Lemma (6.1.7)[182]: Suppose that R € (r,1) and a;, A; € L* are functions of norm <
1 such that
supp a; E(wj,r) and suppA4; c Bn\E(Wj,R).

Then the operator 3. ;e Mg PMy, is bounded on L?, with norm bounded by some
constant k(R) -» O when R — 1.

The following proposition is the case n > 1 and p = 2 of [81]. Since we have all the
needed properties of the metric p and all the necessary lemmas, the proof is identical to that
of Suérez.

Proposition (6.1.8)[182]: For each j € N, let cjl, ...,cjl, a;, b, d}, .., d;" € L* be functions
of norm < 1 supported on E(w;, 7). Then the following belongs to the commutator ideal
CI(L™) of the full Toeplitz algebra:

Z T Te (T, Ty, — T, Te) Tys T
jEN
In the proof of Proposition (6.1.8), we are dealing only with Toeplitz operators with
symbols in the subset G of L which consists of functions of the form ;<. f;, where F is a
subset of N and f is one of the symbols c?, ..., ¢!, a, b, d?, ..., d™. So in the above conclusion,
we can replace €I (L) by the smaller ideal €T (G).
Fix a bounded set {S,: a € N"} of strictly positive real numbers.
Lemma (6.1.9)[182]: Fix0 < R < 1and e > 0sothat (1 4+ &)R < 1. Let§ > 0 be given.
Then there is a constant C(8) > 0 so that for all |z] < R,

e ® K,C(B) Y Subq ® e+ 0 f Ky @k du(w). 3)

a€eN™ lwl<(1+€)R
Proof. Let f be in LZand |z| < R. Let J be a finite subset of N™. Put
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g; = Z(f, eqg)e, and h; = Z (f,ex)eq -
a€) a€ENT\J
Then

((ky @ K)f F) = F k)2 = |(g) ka) + (k)|
<2([gp k)| + ¢y k). )
aeNT\J

>2
s( > |<f.ea>|2(<1+e)R)2'“'>
aeNT\J

X( (n+Ia|)| a2 (1 + €)R)” 2|a|> )
aeNT\J

Now,
2

Z (f,egNex k)| = (@1 —|z]P)nt?

aeN™\J

2

[y )| = D (freadea@

aeNT\J

(n+ |al!)
( AL >|“|
!

2
D edea® ( > e
Q€N J

nlal
On the other hand, the homogeneity of the e,’s shows that
lal
FA+oR) = ) (fread ((1+R) “eg(©)

a€ENT

so that the change-of-variable w = (1 + €)R{ gives

(ke ® ke)f f)dp(w) = j |f (W) [2dv(w)

lwl<(1+€)R lwl<(1+€&)R

— ((1 + e)R)zn f |f (1 + &)R{|*dv(Q)
Bn

= ((1+&)R)™ Z (f,eadl? (1 + £)R)H

a€ENT

> (A +aR)™ Y [(f.eal? ((1+2R)

aeNT\J

2|a|

(6)

This implies

157



2|a|

D el (1 +eR)

aeN™\J

<(1+oR) ™ j (e ® k)f ) dp(w). )
lwl<(1+€)R

Inequalities (5) and (7) imply

A s( > (";"f')| a2 (1 + €)R)” 2'“')((1+8)R)‘2"
aeENT\J

x| (ke @ kS A
|z|<(1+&)R
Now from the identity

Ko@) = ) eaWea(©),
aeNT
forw,z € B,,, where K,,({) is the Bergman reproducing kernel, we have

1
D leatI? = Ky W) = Gy

If we take w = z/(1 + €)R, where |z| < R, we obtain
(n+ Ial )

2lal _ 2

12 ((1 + &)R)

a€ENT a€ENT

1

= 1 n+1"
(1~ m)

So there is a finite subset J of N™ which is independent of z so that
(n + |a|!)

Ca ((1 -I—Ze)R)

(8)

§ 2n
Iz “2((1+ )R) E((1+e)1!2)
aeNT\J

Hence for this J,

)
)5 [ (G ® kS Fdiw). ©)
w|<(1+€&)R

Also,

gy k|’ < ) 1 el (10)

aEj

From inequalities (4), (9) and (10), we conclude that

(e, @S2 (e ® NI 48 [ (i ® kIS FIAu(w),

a€j lw|<(1+&)R
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Since S, > 0 for all « €] and J is finite, there is a constant C(6) > 0 so that
C(6)S, = 2foralla € J. Then for any f € L3, and any |z| < R,

(k@ KN < CO) Y Sullea ® 1) +8 | (G ® kS fd(w)

a€] lw|<(1+&)R

<CO) Y Sdllea®ef N +8 [ (e ® S ARG,
a€eNm? lw|<(1+€)R
In other words, for any |z| < R,

@k SCO) ) Seea®ec+d [ ky @ kyduw)
a€EeNm lw|<(14€)R
Theorem (6.1.10)[182]: Let {e,: @ € N™}be a bounded set of strictly positive real numbers.
Let

S = Z Sqeeqx Qe,.

aeNm
Let {w;: j € N} be a separated sequence of points in B, so that B, = Uy E(w;, R)
for some 0 < R < 1. Then there is a positive constant c so that

z Uy, SU;,, = ¢ 2 0.

Proof. Let S = ¥ enn Sa€a @ e, and W = {w;: j € N} be as in the hypothesis of Theorem
(6.1.10). Choose an € > 0 so that (1 + )R < 1.

For each a € B,,, apply U, to the left and U, to the right of both sides of inequality
(3) in Lemma (6.1.9), we get, for |z| < R:

Up(ly ® kYU, < C(8)UgSU, + 8 f Uy (e ® ko) Usdu(w)

lw|<(1+¢&)R

= C(O)USU; + 6 j ky, ® ki, du(w)

wl<(1+&)R

= C(8)U,SU;

+45 j k; ® k; du(Q) (by the change — of — variable w
lpa(DI<(1+€)R

— @) = COUSU+5 [ e @ ke du®),
E(a,(1+&)R)
Since U, (k, ® k)Uy = kg () ® kg (), the above implies

Kpoz) @ kpoz) < C(6)ULSUG +6 f ke @ ke du(Q). (11)

E(a,(14+&)R)
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For each |z| <R, let

T(Z) = Z k(ij(Z) ® k‘ij(Z) .
jEN
Then (11) gives, for |z| < R:

T(2) < C((S)Z‘UW].S‘U";,]. + 52 f ke ® ke du(?). (12)
JEN JEN E(w;,(1+€)R)
Decompose W =W, U ...U Wy as in Lemma (6.1.4), where N depends only on

n, (1 + )R and the degree of separation of W. Then
N

o[ mekaws=) Y [ ke

JEN E(w,(1+€)R) (=1 weW; E(w,(1+¢&)R)

N
sz f ke ® kg du(g) = N.
i=1p,
Hence, for |z| < R,

T(z) < C(6) Z Uy, SU, + 5 N. (13)
jeN
By integrating T (z)with respect to dv(z)over the ball |z| < R, we get

fT(z)dv(z)Z(l—Rz)n“ jT(z)(l—lzlz)_("“)dv(z)

|z|<R |z|<R

= (1 - R2)™! j T(2)du(2)

|z|<R

= (1 - R?)"* z j ko, (2) ® Koy, () A1(2)

JEN |z|<R

= (1 - RH)™! z j k; @ kg du(d)

JEN E(w,R)

> (1 — R j k; ® k; du(Q) | sinceB, = U E(w;,R)
By, jEN
= (1 — R, (14)
Inequalities (13) and (14) together imply

c(5) Z Uy, SUs, + N > (1 — RH)MIR2M,
jEN
Now choose § so small that
SN < 271(1 — RH)"M1IR—2n,
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Then we have

c@)Zuszu*j > 271(1 — R)M1R-2n > 0, (15)

jEN
Suppose n.(z) = z;n(|z|/e) for all z = (z,, ..., z,) € B, as in the hypothesis of
Theorem (6.1.1). We will compute directly [Tng, Tﬁg] to see that it is a diagonal operator with

respect to the standard orthonormal basis.
For any multi-indices « and £ in N™, we have

(T, earep) = f ne(2ea(2)85(2) dv(z) = j n(12l/&)ze.(De3(2) du(z).

Bn |z|<e
Now,
1/2
(o = (@t lal) Y2+ laDin! (a+ (1,0, ...,0))! -
“1€als) = n!al Az = n! a! (n+ |a| + D! Ca+(10,..00\7
a; +1 \Y?
= (m) €q+(1,0,..,0) (2)-
So
a; +1 1/2
hewes) = (mrmg) | 102/Deasio.0 @@ dv@)
|z|<e
&
_ a; +1 1/2 one1. (T B
= (m) f (2n)r 77(;) f €q+(1,0,.,0)170)eg(r¢) da({) dr
a; +1 1/2 i ’
N (n +lal + 1)
0 if B+ a+(1,0,..,0),
&
(n+lal+1
% j(Zn)rzn‘ln (—) <L> rélel 2qr if = a+ (1,0, ...,0),
€ n
0
(see [79]).
We have
8 la| + 1 : r
N [n+|a
2n—1., ( _ 2|a|+2 — 2n+2|al+1,, (_
f(Zn)r n(g)( - )r dr jZ(n+ la| + Dr n(g)dr
0 0

1

1
= gZni2lal+2 f(n + |a| + Detlely (ti) dt
° 1
(by the change — of — variabler = sti) .

For m > 0, put ¥,,, = fol(m + 1)t™n(t'/?) dt > 0. Note that y,, depends only on
m and the function n. We then have
a; +1
Ty.eq = (m) g2+ 2lely, L alear 0,0

From this we see that for any multi-index «,
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a; \1/2 a
_ 2n+2|a
Tr—;gea = (n n |a|) € Yn+la|-1€a-(1,0,..,0)

ifa; = 1and Ty, e, = 0if oy = 1.
Now for multi-indices a with a; > 1,

a1 1z 2n+2|a|
TngTﬁgea = Tng (n T |a|) & Yn+la|-1€a-(1,0,...,0)

1/2 1/2
:< ! ) €2n+2|a|y . 1( ! ) <E.2n+2|0¢|y . e
n+ |al =1\ 4 g ntlal-1%a

and
a; +1 1/2

— 2n+2 2
TﬁsTneea - Tﬁe ((TL-I- |a,| + 1) gent e+ Vn+lal€a+(1,0,..., 0))

1/2 1/2
— ( a +1 ) €2n+2|a|+2< o +1 ) g2n+2lal+2
n+|al+1 n+|al+1
_ a1 ghntlalsy2 o
n+|al+1 ntlal~a
Therefore,
aq a; +1
T T le. = <_ _ M T amtlaln),,2 )e
[Ts.T.Jea n+ |a| n+lal +1 VYn+lal ) Ca
e n+|oc|+1]/721+|0,|_1_84 a,+1
a;+1 n+|a yleal n+lal+1
This formula also holds for multi-indices a with a; = 0.
Forall 0 < € < 1 s0 that
a; n+lal+17 -
£4€{ 1 | | n;lal 1:a: (“1,---;“71) ENYL}'
a,+1 n+|a Yrtlal

Vn+|a|ea

4(n+|al),,2 —
€ Vn+|a|—1

4(n+|al),,2
€ Yn+|a|€a:

the operator T = [T, Ty, ]” can be written as

T = Z Sqgey @ ey,

aeNT
where s, > 0 for all a.

Since {w;:j € N} is separated and B, = Uy E(w;,R) for some 0 <R <1,
Theorem (6.1.10) implies that there is a positive number c so

k 2 *
A, = z U, TU;, = Z U, [T, T Ui, = c > 0.
jEN jEN
Now for each j € N,

qu [TTIS’ Tﬁs]u‘:’] = qu [TneTﬁa - TﬁeTne]‘u‘th = quTneTﬁsu‘th - quTﬁsTnsu‘j’j

- (quTneu:Vf) (quTﬁeu:Vf) B (‘quTﬁe‘u:Vf) (quTﬂsuaf)

= Tn£° (ij Tﬁ£° (ij - Tr_le° (ij Tne° ‘ij = Tne° ‘ij' Tr_ls° ‘ij )

2
Hence A, = 3;cu [Ty oy T q,wj] .
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Note that for each j, the function n, o Pw, IS supported in the set

{z € By |gowj(z)| < s} ={z € B:p(z,w;) < e} = E(wj, ¢).
We now decompose W = W, U ...U Wy suchthat E(z,e) N E(w,&) = @ forall z +
winW;, forall1 <j < Nasin Lemma (6.1.4). Hence

Z N L S

i=1 wew;
where, by Proposition (6.1.8) and the remark following it, each of the summands is in
CI(G,). Here we remind that G, is the subset of L consisting of all functions of the form

Yjere © Pw, O Xjer e © @y, Where F is a subset of N.

It then follows that A, itself belongs to €T (G,).

We are discussing some remarks about Theorem (6.1.1). Our first remark is the
existence of a separated sequence as in the hypothesis of Theorem (6.1.1). This is actually
a consequence of Zorn’s lemma. In fact, let 0 < r < 1 and Q,. be the collection of all sets

of points {w;:j € J}in B, so that p(w;, w;) > r for all j = k. The sets in Q, are ordered by
inclusion. Apply Zorn’s lemma, we get a maximal set in ,.. Denote this set by {Wj: je] }
Since J must be infinite and countable, we can assume that J is N. Then for any z € B, by
maximality there is a j € N so that p(z,w;) < r. Hence B, = U ey E(w;, 7).

Note that all functions in G, vanish on B,\E., where E. is a subset of V, =
U]-ENE(WJ-, e). The following lemma gives an upper estimate for the Lebesgue measure of
V, for small € > 0.

Lemma (6.1.11)[182]: Suppose 0 < &, < 1sothat E(wj, &) N E(w;, &) = @ forall j = L.
Then for any € < g,

v(l) < (;0>2n v(Vz,)-

Proof. Forany 0 < § < 1 and z € B,,, we have

U(E(Z,5))= jdv(w)
E(z,6)

(1 — |Z|2)n+1

|1 — (¢, z)|>(+D)
E(0,5)

dv ({) (by the change — of — variable w = ¢, ({))

n1 &2 dv($)
( |Z|) f |1 ((’Z>|2(n+1)

= (1— |z]p)r+iem j (1 - 81z lks, (P dv(@)
E(0,1)
= (1 — |2[H)™162n(1 — 8121 |ks, (||
— (1 _ |Z|2)n+162n(1 _ 5|Z|2)—n—1.
Now for 0 < € < g, < 1 as in the hypothesis,
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JEN JEN
n+1 —n-1 e\ (1 — (¢ |W-|)2 "
-3 (1) e (1 Gl () ()
fEN( ) ( e 1= (elw)’
2
2 1— .
< (i) nzv (E(wj, 50)) (because (€0|W]|)2 <1fore< eo>
& & 1= (elwil)
£\ 2n
:(g) U(Vgo)'

This lemma implies that if the separated set is fixed then the Lebesgue measure v(V;)
can be made as small as we please provided that ¢ is small.

We will show that if nis a continuous function on [0, 1] then G, is contained in C(B,,),
the space of continuous functions on the open unit ball B,,. This remark together with
Theorem (6.1.1) implies that €Z(C(B,) N L) coincides with the full Toeplitz algebra
T(L™). The reader should compare this with the fact that (ZI(C(En)) is the same as the
ideal K of compact operators.

Suppose nis continuous on [0, 1], then for each j € N the function n, o Pw, IS

continuous and supported in the ball E(wj,e). Suppose F is a subset of N. Let f =
YjerNe © Pw;- Let 0 < R <1 be given. By Lemma (6.1.3), all but a finite number of

functions in the series vanish on E (0, R). Thus f, being a finite sum of continuous functions
on E(0, R), is continuous on E(0,R)forall 0 < R < 1. So f is continuous on the open unit

ball B,. Similarly, functions of the form ¥ 77, ° Pw,; are also continuous on B,,.
Section (6.2): Compactness in Bergman and Fock Spaces

The Bargmann-Fock space F?2 := F2(C") is the collection of entire functions on C*
such that

f If (D)%™ du(z) < .
(CTL

It is well known that F2 is a reproducing kernel Hilbert space with reproducing kernel given
by K,(w) = e?". As usual, we denote by k, the normalized reproducing kernel at z. For a
bounded operator Ton F?2, the Berezin transform of Tis the function defined by
T'(z) = (Tky k)52

It was proved recently by Bauer and Isralowitz that the vanishing Berezin transform is
sufficient for compactness whenever the operator is in the Toeplitz algebra [185]. However,
it is generally very difficult to check when a given operator T belongs in the Toeplitz
algebra, unless T is itself a Toeplitz operator or a combination of a few Toeplitz operators,
and as such one would like a “simpler” sufficient condition to guarantee this.

In [190] Xia and Zheng introduced a class of “sufficiently localized” operators on the
Fock space which include the algebraic closure of the Toeplitz operators. These are the
operators T acting on the Fock space such that there exist constants 2n < f < oo and 0 <
C < oo with
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(Tk,, k (16)

W)Tzl < (1 + |Z _ Wl)ﬁ
It was proved by Xia and Zheng that every bounded operator T from the C*algebra generated
by the sufficiently localized operators whose Berezin transform vanishes at infinity, i.e.,

lleiLnoo<Tkz: kg2 =0 (17)

is compact on F2. One of their main innovations is providing an easily checkable condition
(16) which is general enough to imply compactness from the seemingly much weaker
condition (17).

We wish to extend the Xia-Zheng notion of sufficiently localized to a larger class of
operators. Note that (16) easily implies

sup_ [ KTk, kb du(w) < o
zeCn ¢n
and consequently one should look at generalizations of sufficiently localized that allow for
weaker integral conditions. Next, we want to provide a simpler, more direct, proof of the
main result in [190] which follows a more traditional route and can be extended to other
spaces. Finally, we show that an analog of our more general theorem, remains true in the
case of the Bergman space.

We provide the following extension of the main result from [190]. For operators T
acting on the Fock space we impose the following conditions. We first assume that

sup fl(Tkz: ky)r2| duv(w) < oo, sup fl(T*kz:kw)szldv(W) < (18)
zZeCn A ZeCn A

which is enough to conclude that the operator T initially defined on the linear span of the
reproducing kernels extends to a bounded operator on F2. To show that the operator is
compact, we impose the following additional assumptions on T

lim sup j Tk, k)| dv(w) =0, lim sup j (T*k,, ky)r2| du(w) = 0. (19)
T

=00 zeCn =0 zeCn
D(z,r)¢ D(zr)¢

Definition (6.2.1)[184]: We will say that a linear operator T on F?2 is weakly localized if it
satisfies the conditions (18) and (19).
Notice that every sufficiently localized operator in the sense of Xia and Zheng obviously
satisfies (18) and (19) and is weakly localized in our sense too. We prove the following
result.
Theorem (6.2.2)[184]: Let T be an operator on F2 which belongs to the C*algebra
generated by weakly localized operators satisfying Definition (6.2.1). If

|Zl|i£noo<Tkz' k,)z2 =0,

then T is compact.
We can easily extend the result to the weighted Fock space F2.

Let B,, denote the unit ball in C™ and let the space A% := A%(BB,,) denote the classical
Bergman space, i.e., the collection of all holomorphic functions on B,, such that

||f||312 = j|f(Z)|2 dv(z) < .
Br
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The function K,(w) := (1 — zw)~™*1 is the reproducing kernel for A% and
n+1
(1—1|z]*) 2
Ky (w) = (1 — zw)@+D)
Is the normalized reproducing kernel at the point z. We also will let dA denote the invariant
measure on B,,, i.e.,

_ dv(z)
dA(z) = (1-— |Z|2)n+1'

We are interested in operators T acting on the Bergman space that satisfy the
following conditions. First, we assume that there exists Z—: < a < —such that

sup j (Tl o)l M2lla? 37003 < oo

b 1K, 112
sup j KTk e e 82 13 ) < (20)
o 1K, 112

These are enough to conclude that the operator Tinitially defined on the linear span of the
reproducing kernels extends to a bounded operator on A2. To treat compactness we make

the following additional assumptions on T: There exists :—: <a< ﬁ such that

“ z||A2

T

lim sup fl(Tkz:kw>A2|
=% zeB,
D(z,r)¢

=0, lim sup j (T*k,, k)| ——o dA(w) = 0. (21)

1K1l
=% zeB,

K
e TR

Definition (6.2.3)[184]: We say that a linear operator T on A? is weakly localized if it
satisfies the conditions (20) and (21).
We prove the following result.
Theorem (6.2.4)[184]: Let T be an operator on A% which belongs to the C*algebra generated
by weakly localized operators satisfying Definition (6.2.3). If
lim [Tk |2 = 0,

then T is compact.

For weakly localized operators we can deduce compactness under even weaker
assumption. We currently cannot prove this result for the C*algebra of weakly localized
operators on the Bergman space.

Theorem (6.2.5)[184]: Let T be a weakly localized operator on A2, If
|£i|r—r>l1<TkZ’ k,)s2 =0,

then T is compact.

It will be clear that the method of proof also will work in the weighted Bergman space AZ.
We wish to emphasize that when the operator T belongs to the Toeplitz algebra

generated by L*symbols, this result is known through deep work of Suarez, [189] in the

case of A2. See also [188] for the case of weighted Bergman spaces. We will prove below
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that the Toeplitz algebra generated by L*symbols is a subalgebra of the C*algebra generated
by the weakly localized operators.
Let ¢, be the MObius map of B,, that interchanges 0 and z. Then, we have the
following well known fact that
(1—1z]*)(1 — [w|?)
1- |§02(W)|2 = '

|1 —Zw|?2

As a consequence,
1
k2, kwdaz| = - (22)
kg, aml 2

Using the automorphism ¢,, the pseudohyperbolic and hyperbolic metrics on B,, are
defined by
1. 1+ p(z,w)
p(z,w):= |p,(w)| and B(z,w): = Elogm-

Recall that these metrics are connected by p = :z: = tanh # and it is well-known that
these metrics are invariant under the automorphism group of B,,. We let
D(z,r):={weB,: B(z,w) <r}={w e B,:p(z,w) <s =tanhr},
denote the hyperbolic disc centered at zof radius r. For z € B,,, define
U f(w):= f(QDZ(W))kZ(W),
which via a simple change of variables argument is clearly a unitary operator on A2. Then
for an operator Ton the Bergman space A2, for z € B,, we set
T,:=U,TU;.
Recall also that the orthogonal (Bergman) projection of L?(B,,, dv) onto A2 is given by the
integral operator

P(f)(2): = j (Ko K;) 42 f (W) do(w).
Tl

Therefore, for all f € A% we have f(2) = [ (f, k) a2k (2)dA(w). Moreover,

IfI%. = j F, o) g2 2 dA(W).
By,

As usual an important ingredient in our treatment will be the Rudin-Forelli estimates,
see [191] or [187]. Recall the standard Rudin-Forelli estimates:

r+s

|<KW; Kz)Ale
K52 1K I y2

n

forallr >k > s> 0,where k = k,;: = % We will use these in the following form: There

di(w) < C =C(r,s) <o, VzeB,(23)

exists =% < q < -2 such that
n+1 n+1

MG
(ky, ky) a2 K[ dA(w) < C =C(a) <o, VzeB,(24)
wil g2

n
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To see that this is true in the classical Bergman space setting, for a given Z—: <a< # set
r=14aands=1—a. Thenr+s =2, and sincea>2—;1we have that r =1+4+a >
22 (equivalently, a > == — 1 = 2=, Similarly, we have that s = 1 — a < k if and only
n+1 1 n+1 n+1
ifa>— % By plugging these in (23) we obtain (24).

We will also need the following uniform version of the Rudin-Forelli estimates.
Lemma (6.2.6)[184]: Let— < a < —— Then

lim sup f Kk, k) gz | 75— I Z”AZ dAi(w) = 0. (25)
R~ zeB,, | K 11 52
D(z,R)¢

Proof. Notice first that

1K, 1152 K, 1%
f |<kZ; kW)A |||K ”Az dA(W) = f |(kZJ k(PZ(W)>A2|Wd/1(W)
D(z,R)¢ 4 D(0,R)€ @zW) Il 42
KI5 k,, k) a2 |
- f e R e Az 13 ) = f %daw)
D(0,R)€ 1Kol 42 D(0,R)¢
dv(w)

_ n—+1(1—a)
D(O ryc |l — wz|tDa(1 — |w|?2) 72

-[* J- Zn_ldCdr
|1 —Zr(|("+1)a(1 _rZ) 2 li-a)’

— 1 when R — oo, Now the last integral can

In the last integral R: =
be written as

1

Zn_ldT'
I(n+1)a—n(rz) +1
i (1-r3y7 00
where
1.(z):= = .
c(2) f |1 — zr{|ctn
Sn
It is well known, and very simple to check in the n-dimensional case, see [191], that
2
— (k + - -Zi_ : a) 2k N 1 2k
I(n+1)a—n(7‘Z) Z n+1 |rz|“* = th‘ﬂ .
k=0 k!F( 7 Cl) k=0

The last relation follows from the Stirling formula. Thus,
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1 1 o
j p ( ) 7,.271—1d7,. j | |2k an—ldr
(n+1)a-nT"Z n+1 Z (n+1)(1 o 172 n+1
Fe (1- 2)—(1 a) o= k (1 2)—(1 a)

1 o

<f r2n=1g4, i f r2n=1g4,
(n+1)(1 a) n_+1 (n+1)(1-a) n_—l—l
R’ k=0k (1-7r2)z (1-a) k= ok g (1 —1r2)2 (1-a)

1-R"? o
(1—x)" 1
n_+1(1_ ) Zk(n+1)(1 a) — J n_—l—l(l_ )dxz k(n+1)(1 a)’

0 0
Our condition "—_1 <a<— |mpI|es that the series above is convergent (here we simply
n+1
need that a<— It also |mpI|es thatx z +~® js integrable on (0, 1) (here we require that

a>22 Thus, we have that
n+1

! 2n—-1
ren

T n+1
[ Hnsrsanrd) ——— 5 (1= @)T 4,
i (1-r2)yz 47
Therefore, taking the limit as R — oo (which is the same as R’ — 1) we obtain the desired
conclusion.

First, we want to make sure that the class of weakly localized operators is large
enough to contain some interesting operators. This is indeed true since every Toeplitz
operator with a bounded symbol belongs to this class.

Proposition (6.2.7)[184]: Each Toeplitz operator T,, on A% with a bounded symbol u(z) is
weakly localized.
Proof. By definition

Tk, (W) = P(ukz)(w) = j (K2 Ki) azu(x)k, (x) dv(x).

Therefore,

KTy, )] < j KK, Ko a2 GO ey, e 2] dAGO)

D)}
By,

< Ilullo f e k)2l ) 2] AC).

To check (21) we proceed as follows. For z,x € B, set

K152

Z(JC) f (kW; kx)A2 “K ”AZ

D(z,R)¢

dA(W) (K, kz) 2|

First note that

169



1K 115

f (Tukz; kw)AZ ”K ” dﬂ'( )
D(2,R)C A2
1K1l 2
< |lufle (k) k) a2 [{K, K 2) 42| dA(X) — dA(w)
1K [l 42

D(z,R)¢ B,

= llullen j 1,G) dAG) = llull. f t j 1L () dA).
. o) oaE)

Cc
To estimate the first integral notice that for x € D (z, g) we have D(z,1)¢ € D (x %) .
Therefore, the first integral is no greater than

1K, 152
| Gl e T2 AW ) AR,
c A2
b(23) p(z5)
It is easy to see that the last expression is no greater than C(a)||u||.A G) where

A(r) = sup j (e, ko) g2 7 1K Ny dA(w),
Z€By, DG “K ”Az
Z,
and C(a) is just the bound from the standard Rudin-Forelli estimates (24).
Estimating the second integral is simpler. The second integral is clearly no greater
than

1, 1%
| o - dAO0 G ) )

D(z5) B
By the standard Rudin-Forelli estimates (24) the inner integral is no greater than
1K Il
C(a)
1Ko Il 22
where the constant C(a) is independent of zand x. So, the whole integral is bounded by

C(a)A (g) Therefore

K,

sup j (TukZ:kW>A2 ”K ”a

Z€B,

dAw) < llullu (C(a)A( ) + C(@A (%))

Applying the uniform Rudin-Forelli estimates (25) in Lemma (6.2.6) we prove the
Proposition since 2C(a)||u||ooA(£) —»0asr — oo,

We next show that the class of weakly localized operators forms a *-algebra.
Proposition (6.2.8)[184]: The collection of all weakly localized operators on A2 forms a x-
algebra.

Proof. It is trivial that T € A implies T* € A. It is also easy to see that any linear
combination of two operators in A must be also in A. It remains to prove that if T,S €
A,then TS € A.
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1K 152
(TSk,, k) 2~
2K 1%,

D(z,r)¢ D(zr)¢

dﬂ'( ) = J (SkZIT kW)Az ||||KZ||||A2 d)[( )
A2

B j f ) 1K, |l 2
= (Sk, ky) g2k, T* ko) 2 dA(x) dA(w)

K a
Dl 15
aAw)
< || kTRl T Sk e 1K A,
B, D(zr)¢ 4

Proceeding exactly as in the proof of the previous Proposition and using the conditions
following from T, S € A in the place of the local Rudin-Forelli estimates (25) we obtain
that

lim sup j (TSk,, k)2 ——7dA(w) = 0.

1K |12
=% zeB,

K,,
by 1Ko Il 32

The corresponding version for (TS)* is proved in exactly the same way.

We next show that every weakly localized operator can be approximated by infinite
sums of well localized pieces. To state this property we need to recall the following
proposition proved in [187].

Proposition (6.2.9)[184]: There exists an integer N > 0 such that for any r > 0 there is a
covering F. = {f;} of B,, by disjoint Borel sets satisfying

(i) every point of B,, belongs to at most Nof the sets G;: = {z € Q: d(z,F;) < r},

(ii) diamgyF; < 2r for every j.

We use this to prove the following proposition, which is similar to what appears in
[187], but exploits condition (21).

Proposition (6.2.10)[184]: Let T: A2 — A? be a weakly localized operator. Then for every
€ > 0 there exists r > 0 such that for the covering F,. = {f]} (associated to r) from
Proposition (6.2.9)

TP — Z My, TPMy, <e.

A%2>12(By, dv)
Proof. Define

S=TP— Z My, TPMy,

]
It suffices to show that given € > 0 we can find an r > 0 so that

ISl = €llfll .

Given e choose r large enough so that

sup f (Thky, k) g2 T el dA(w) < e

K
seby I | K 11 42
and sup f (T ky,, ky) gz g 1Kz Il di(w) < €
z€By, 1K Il 5
D(z,r)¢

Note that for any z € B,, we have that
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ISFIS [ D 11,00 s T Koy K F W do) = [ 1Ky Ko e (o)

B, J {

< j (T Ky, Ko} 2| f (W) du(w)

D(zr)¢
Now

j < j |<T*KZ,KW>A2||f(w)|da(w)> dv(w)

B, \D(zr)¢

ISFI12 = j 1SF ()2 du(w) <
By,

T*K,, K,,) 2
< | ( I |<T*KZ,KW>A2|||KW||zz|f(w>|2dv<w)>< I A\ = ”a>A' dv(w)>dv(z)
B, \D(z,r)¢ wilaz

D(zr)¢

T*k,, k) 42
- | < I |<T*KZ,KW>A2|||KW||;;2|<f,kW>Az|2dz(w)>x( | i = ”a>A|d/1(w)>d/1(z)
B, \D(zr)° wilaz

D(zr)€

SEJ( J |<T*kZIkw)Azllle”ZZ|<f,kW>A2|2dﬂ(W)>”KZ”jZdA(Z)
B, \D(zr)¢
1Ky Il 52
— 2 wlla .
_ij k) a2 (D(er )C|<kZ,TkW>Az| A dl(z)>d/1(w)Sij 1, Ko 422 dA(w)

= e2||f 1%
We can now prove one of our main results. The proof is very similar to [187].

For completeness we give the details.

Theorem (6.2.11)[184]: Let T: A> - A? be a linear operator in the C*-algebra generated by

the weakly localized operators on A2, If |y|r—r>11”TkZ”A2 = 0, then T must be compact.

Proof. Let € > 0. By Proposition 6.2.10 there exists » > 0 such that for the covering F,. =
{F;} associated to r (from Proposition (6.2.18))

TP — Z My, TPMy, <e.

J A2512(B,, dv)
Since ¥ j<m MleTPMl Gjis compact for every m € N we have that the essential norm

of TP as an operator from L2(IB,, dv) to A can be estimated in the following way.

ITPll < (|TP = > My, TPM,,
) J

i<
J=m A2512(B,, dv)

<||lrp - ZMlF,TPMlc, T S 6
J J
Jj

A%2>12(By, dv)
where

Tm = Z MleTPMlGj .

jsm
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If we can show that
lim sup||Tp |l 425128, av) S €

m—-0o

then since e > 0 is arbitrary we will have that TP is compact and hence T is compact on A2.
Let f € A? be arbitrary of norm no greater than 1. Then,

2
: M1, TPM,, £| :
ITnf W = ) M, rPMs 1| = D === s, ]|
jzm jzm ||Mlij| A2
2 2
<Neup [,y |, = sulmy e
where
lj — PMl—G]f
||M1Gj A2
We now have
T, 75| 1 P,/
R < sup su Al L=
mllA2-12(B,, dv) jzrlrz ||f||£1 Tl g2+ % ||M1Gj .
and hence
. . PMl(;]f
lim sup|| T ll 42512, avy S limsup sup {||T4]| .14 = 75—
Mmoo joeo lIflest ||M16j 2
A
There exists a sequence {f;} in 4% with ||f;|| ., < 1 such that
PMlij
limsup sup ||Tg||A2:g = ——— ¢ — € < limsup||Tg; || 42,
jooo lIfllst ||M16j 2 joo
A
where
M, fi Jo Ao kew) azky, dA(w)
g; =P J _ j
j = = -
M —
” 1ol 4o (ijl(ﬁ'kw)Mlzkwd/'l(W))z

For each j = m pick z; € G;. There exists p > 0 such that G; c D(zj,p). Doing a simple
change of variables we obtain
o= [ ale,m)via(o,w),
(ij(G]')
where a;(w) is defined to be

(fi kw)Az
(J | Fi w12 (w))

N =

on G;, and zero otherwise.
We claim that g; = U;jhj, where
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h@i= | g (0n,0) kudd (0,00).
(ij(G]')
First, using the generalized Minkowski Inequality it is easy to see that h; € L?>(B,,; dv) and

consequently in A%. To prove that the claim is correct we only need to show that for each g €
L*(B,; dv) we have that (g;, g) = (h;, Uzjg). This can be readily done using Fubini’s

Theorem. The total wvariation of each member of the sequence of measures
a; ((pzj(w)) d/l((pzj(w)> (as measures on the compact set D(0,p)) satisfies

o (9.,0) d2 (0., )]| |, 5 2(02,(6)) < AD©.p).
A
Therefore, there exists a weak-* convergent subsequence which approaches some measure v.
Abusing notation slightly we keep indexing this subsequence by j. Let
h(z):= f k, (z)dv(w).

D(0,p)
The mentioned weak-* convergence implies that h; converges to h pointwise. Using

the Lebesgue Dominated Convergence Theorem we obtain that h; — h in L*(B,; dv). This
implies that h € A%, Inaddition, 1 = ||g,]| . = | Uz |, = 7] 2 Thus, llAll42 < 1. So,

we finally have
lim sup|| T |l g2 2B, qvy S lim sup||ng||A2 + € = lim sup ||TU;jh||  te
jooo jooo A

m—oo

< lim sup
j—oo

Choose h' in the linear span of normalized reproducing kernels such that ||h — h'|| ;2 <
€/||IT||. The assumption ||Tk,||,2 = 0 as |z| = 1 implies that ||TU;‘jh’|| ,>0asj— oo
A

|TU;jh||A2 +e.

Therefore we finally obtain
i SUPI Tl 212809  lim sup ”TU;‘jh”AZ < lim sup ”TU;jh’”Az te=e

Our next goal is to weaken the assumption ||Tk,|| .2 = 0to(Tk,, k,),2 = 0as |z| —
1.

We can do this only for weaklylocalized operators and not for the entire C*algebra.
We will make use of the following result due to Axler and Zheng in the case of the disc, and
Raimondo (with the same proof) in the case of the unit ball. See also the work of EngliS for
the case of bounded symmetric domains [186]. In all cases the proof appearing in [76],
[186], [75] applies to all bounded linear operators.
Theorem (6.2.12)[184]: (Axler and Zheng, [76]; Raimondo [75]). For any bounded operator
T on the Bergman space A? if

|lzi|Ln1<TkZ’ k,)s2 =0,

then T,k, — 0 weakly. Consequently, in this case T,k, converges to O uniformly on
compact subsets of the ball B,,.

We can show the following Lemma.
Lemma (6.2.13)[184]: If T is weakly localized operator on A2, then
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11K |l

1K, [1&, W) =

i, [k bl 2
|z|]-1
Proof. First, observe that:

j Tk k) e R 45001 = f j Tk k) el a2 5,
B

1K 132 e Hap" - 1K ll%2
Let € > 0. Our assumption on T implies that we can choose r > 0 large enough so that the
second integral is less than €. We need to show that the first integral can be made smaller
than (a constant times) €. Fix this » > 0 and then consider the first integral,

1K1 K152
.f |<TkZ’kW>A2| - adll( ) j. |<T kO: (PZ(W))Azl z_4 dﬂ.( )
1K 1K, 1%
b(@r) Dzr)°
K a
= f (T ko, k) 42| | Z”Aza dA(w)
D(0,r) ” pz(w) ”Az
KNS dA(w)
Sl i T v
D(0,r) ” Pz (w)” A

We can choose z with |z| large enough so that |T,k,(w)| < € for all w € D(0,r) (we have
uniform convergence to 0 on the compact set D(0,r)) . Therefore the second integral is no
greater than

”K ”a dﬂ(W) ”K ”a
X 1K, |2 J (e, k) 2| ———2— dA(w) < C(a)e.
A

D(01) ” z(W)” D(01) ” <Pz(W)||A2
Here we have used (22). Since € > 0 was arbitrary we are done with the proof.
We can now show the following result.
Theorem (6.2.14)[184]: Let T be a weakly localized operator on A2. If
|Lilr_r)ll(Tkz, k)42 =0,

then T is compact.
Proof. Notice first that

(T ) a = {F T ke = j (e g2l T 2 AA(2)

j (Tl e f o) g2 AA()
For each r > 0 define an operator T, by

(Trf' kW)Az = J (Tkz, kW)Az(f, kZ)Azd)L(Z).
D(0,r)
These are basically the operators S, that Axler and Zheng use in [76]. It is easy to see that
these are all Hilbert-Schmidt operators by testing the square integrability of the kernel.
Therefore, it suffices to show that T,. — T in the operator norm.
Let e > 0 and let f € AZ be an arbitrary element of norm 1. We have
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1T = Tfl = [T =T el dAGw).
Bn
We first examine the integrand.

(T = T)f k) ol < j (Thy ko) g2 ey g2 |dAC2)

D(0,r)¢
_ o 1Kl " 1K, 11572
= | KTk k) el A Ty ke bz [V K g2 | A dA(2)
b 1K 113 Klly
N WnAz
D(0,r)¢ a2
1
2
1K 115
W TR AT
D(0,r)¢ A2
2
KNI

< j Tkl 2|22 | gy 1202 (2)

D(O)e Kol
Here, the implied constant depends on (20). Thus, after an application of Fubini, we obtain

I =Tf5 s [ | [k ||||1<Z||||A2 dAw) | Kf, ko) Pd2(2).
D(O0,)¢ \B, 42

Notice that the variable z in the inner integral is from D(0,r)¢. Therefore, by Lemma

(6.2.13), we can choose r > 0 large enough so that for z € B,, with |z| sufficiently close to

1

1K1
Tk, k dA <€
fl( Z W)Azl ”K ”A2 ( )

Therefore, for such large r we have

IT=TflE s [ ellfi el dd) = ellfIi: = e
D(0,r)¢
This proves that T,, — T in the operator norm, and so we are done.

In Bargmann-Fock space case, we prove somewhat more general statement. Some
parts of the proof are essentially identical to the case of the Bergman space. We only outline
the necessary modifications.

Let

D(z,r):={weC"|w—2z| <r}
denote the standard Euclidean disc centered at the point z of radius » > 0. For z € C"*, we
define
U f(w): = f(z —w)k,(w),
which via a simple change of variables argument is clearly a unitary operator on F2. Then
for an operator T on the Bargmann-Fock space F?2, for z € C™ we set
T, = U,TU;.
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We denote
dv(z)
K72
Recall also that the orthogonal projection of L? ((C”, da(z)) onto F?2 is given by the integral
operator

do(z):= e‘|Z|2dv(z) =

PINGY= [(Kys o2 f W) w).
Therefore, for all f € F2 we have f(z§n= Jendf kw)z2zdu(w). Moreover,
A1 = [ F eusalduGw).
(CTI.

The following analog of Lemma (6.2.6) is simpler to prove in this case.
Lemma (6.2.15)[184]:

lim sup J (k; ky)p2du(w) = 0.
R—00 zecn
D(z,R)¢

The proof of this is immediate since

j (ky, ky)pzdu(w) = j e I du(w)
D(z,R)¢ D(0,R)¢
which clearly goes to zero as R — oo.

As in the Bergman case the class of weakly localized operators contains all Toeplitz
operators with bounded symbols. In addition this class forms a =-algebra. The proof of these
two facts is basically the same as in the Bergman space details.

Proposition (6.2.16)[184]: Each Toeplitz operator T,, on A? with a bounded symbol u(z)
is weakly localized.

Note that T, is sufficiently localized even in the sense of Xia and Zheng by [190].
Proposition (6.2.17)[184]: The collection of all weakly localized operators on 2 forms a
x-algebra.

We next prove that operators from the *-algebra of weakly localized operators can
also be approximated by infinite sums of well localized pieces. To state this property we
need to recall the following proposition proved in [187].

Proposition (6.2.18)[184]: There exists an integer N > 0 such that for any r > 0 there is a
covering %, = {F;} of C" by disjoint Borel sets satisfying

(i) every point of C" belongs to at most N of the sets G;: = {z € Q:d(z, F;) < r},

(ii) diamy F; < 2r for every j.

We use this to prove the following proposition, which is similar to what appears in [187],
but exploits condition (21).
Proposition (6.2.19)[184]: Let T: F2 — F2 be a linear operator satisfying (21). Then for
every e > 0 there exists r > 0 such that for the covering F. = {F;} (associated to ) from
Proposition (6.2.18).

TP_lep.TPMlG. < €.
: j j
J .’FZ—>L2((C”; e—lzl? dv(z))
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Proof. Define

S=TP— Z My, TPM,,
]
It suffices to show that given € > 0 we can find an r > 0 so that

ISfll7= = ellfllz

Given e choose r large enough so that

sup j T "k, k,)rz|dv(w) <€ and sup f Tk, ky)rz|dv(w) < €.
z€eC DGr)E zeC DG

Note that for any z € C™ we have that
SFIS [ D 15,00 65T b bl I ) o)
ctoj
= KK Kbl f W)ldo ).
GC

J
Now

ISFI1Z2 = j 1SF(2)|2do(z) < j j (T*K,, Kyre | |F(W)ldow) | do(2)
(Cn

C* \D(z1)?

< j f (T*K,, Koy yre | |f (W) |2do(w) j (T*K,, Ko )yeldow) | do(2)

€ \D(z,r)? D(z,r)?

= [ | wriednslis ka1 ksldom) | du)

c* \D(z,r)? D(zr)?

<e j j (T Ky, b g2l I(F, Ko he 2do(w) | dv(2)

C" \D(z,1)?2

—e j KF )z j (T Ky, Koy hre | dv(w) | du(w)
(:n

D(z,1)2
<& [I(f ks lPdvw) = Ifll,
(Cn

The proof of the next result is basically the same as the proof of Theorem (6.2.10) and
therefore we skip it.
Theorem (6.2.20)[184]: Let T: F? — F2 be a bounded linear operator in the C* algebra
generated by weakly localized operators. If

lim |17k |2 = 0,

then T is compact.
By combining this result with the following Proposition we obtain the desired proof
of Theorem (6.2.2).
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Proposition (6.2.21)[184]: Let T: F2 — F? be a bounded linear operator in the C* algebra
generated by weakly localized operators satisfying (19). If

|1|im (Tk,, k,)r2 =0,

Z|—>00

then
Z|—00

Proof. Let € > 0 be given. Note that we have

ITheliz: = [UTkkedralPdomd =( [+ [ KT kpaltdow) = 1411
cn D(zyr) D(zr)
For term I1 we use a standard approximation result. Since T is in the C* algebra generated
by (19), given € > 0 we can find T' that is weakly localized so that
| T — T'”Tz_ﬂ:z <eE.
Now choose r sufficiently large so that

sup [ Tk ko) Pdu(w) < e

Z€eCn

D(z,r)¢
which is possible since T’ satisfies (19). We use this to estimate /1.

I = f (Tky, k)2 2 (w)

D(z,r)°

s | WkakaePdo) + | KE =T ke Pdun),
D(zr)¢ D(zr)°
The first term is controlled by the choice of r above. We also have that for this choice of
r (actually all r) that

sup j (T = Ty, by 2 2dv(w) < sup j (T = Tk, Ky, Yo [2du(w)
A= PICEaE ZzeCn ¢n

- suCp”(T —Tk,l|72 < I(T = Tk, |25 <.
zZ€eCgn

Then then yields that

sup fl(Tkz,kW)g_-zlzdv(W)Se
zeCn
D(z,r)¢

Now for term I, note that we have

| Krkeskadee o) = [ (Toko kg, dse o)

D(z,r) D(z,r)
2 2 dv(w)
= |<Tzk0r k(pz(w) ).‘]—"2 | dv(w) = [T ko(W)] 2
L ”IQN|LF2
D(0,r) D(o,r)
= [ Imkoowdow),
D(0,r)
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By Englis [186] we can choose z with |z| large enough so that |T,k,(w)| < € for all w €
D(0,r) (we have uniform convergence to 0 on the compact set D(0,r)). Furthermore, we
have that a(D(0,7)) < (C™) < oo, and so

2
| Kk Pavm) = [ (Toko g, b o) < e

D(z,r) D(z,r)
Thus, we have

Jim Tk, = 0.
Z|—>00

2n+1

Corollary (6.2.22)[200]: Let 2= < a? < 22X Then
n+1 n+1 24
K> ||%~
1‘1’1—1;1;10 ZSUp j- |<kzz—1lkw2—1>A2| “ = 1”1222—1 dA(WZ - 1) = 0. (26)
(Z=1€Bn o) pe 1K w21l 5

Proof. Notice first that
a’-1

K.
ko1, k21 ) a2 ] K721 Il 2 dA(w? — 1)

2__
||Kw2—1||iz !

D(z%-1,R)¢
Z-1
1K 224 1l52

2__
||Kw2—1||22 !

di(w? —1)

— [,

D(z%2-1,R)¢
K. 2 a’-1
= [ kel T - 1)
D(0,R)€ “KWZ—lllAZ
k,2_q,k,2_ 2
= M2 o ;ZAZl dA(w? — 1)
D(O,R)C ||KW2—1||A2
_ dv(w? — 1)
B 2_ n+1
D(O,R)C |1 _ (WZ _ 1)(22 _ 1)|(a 1)(7’l+1)(1 _ |W2 _ 1|2)_a2(T)
1
(1 +3€)?™1dgd(1 + 3¢)
- |

R Sy |1 — (22 — 1)(1 + 36){|+D@-D(3¢(2 + 3e))_a2(7) |

i:. Notice that R" - 1 when R — oo. Now the last integral can

In the last integral R: = log
be written as

1
2n—1
jl(n+1)a2—1_n((1 +36)(z%2 - 1)) (1+3€) d(lz‘;ff)’
: (3e(2 +3¢€)) ™ (=)

where
o d¢
fe@® 1= Sf 11— (22 — DA + 3e)J|+n

It is well known, and very simple to check in the n-dimensional case, see [191], that
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2

n+1_ .,
@ 1yn+1)-n (1 +3€) (2% — 1)) z Fk(' - (n +21 (C: 11))))
k=0 > —

2 o 114 302~ DI

The last relation foIIows from the Stirling formula. Thus,

fl(az_lxnm_n((l 430 - 1) (1 + 36)2"1d(1 + 3¢)

|(1 + 3€e)(z2 — 1)k

(n+1)
i (3e(2 +36)) "
1
- (1 + 36)2n—1d(1 + 36)
- jzm|(1+3e)(22_1)|2k (n+1)
o (32 +30)) "
1 (1+39™7d(1 +36)
< fz k—a?(n+1) (n+1)
" e+ 36)) ™
- Z 1 (@439 430
- —a?(n+1) s
k=0 k R’ (36(2 + 36)) ( )
1-R"? _ ) )
(1—x)*? 1
= T"“)dx P a2(n+1) J YD) zm
0 X 2 =0 2,

.y 2 . .
Our condition n—fl <a’< E |mpI|es that the series above IS convergent (here we simply

n+1
need that a? < % It also implies that x‘“Z(T) is integrable on (0, 1) (here we require

that a? < 2. Thus, we have that
) n+1
2n—1 1
(1+ 3¢) d(1+ 3e) ~(1- (R’)2)1+a2(n-2'- )

f I(n+1)(a2_1)_n((1 + 36)(22 - 1)) _az(n_ﬂ)
R’ (3e(2 + 3¢)) 2
Therefore, taking the limit as R — oo (which is the same as R’ — 1) we obtain the desired
conclusion.

Corollary (6.2.23)[200]: Each Toeplitz operator T,, on A? with a bounded symbol
u(z? — 1) is weakly localized.
Proof. By definition

Tukzz_l(w2 - 1) = P(ukzz_l)(wz - 1)

= f(Kzz_l, sz_l)Azu(xz - 1)kzz_1(x2 - 1) dU(Xz - 1).
Bn
Therefore,
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|(Tukzz_1, kw2—1>A2| < fl(Kzz_l,sz_l)Aznu(xz - 1)||(kzz_1, kxz—l)Azl d/l(xz - 1)

< ||ull f(sz_l, kyo_i)zl{kyz_q, ky2_q) 42| dA(x? = 1).

To check (21) we proceed as follows. For (z2 — 1), (x? — 1) € B,,, set

2
1K 2 41152
[z 1y@2-1)i = j (kyw2_1,ky2_1) 42 = iz 1d/1(W2 — DCkyz_q, ky2_1) 42|
e K2l
First note that
K B a -1
(Tyk,2_q,k2_1) 42 I 1” 61/1(W2 -1)
”sz—lllAZ

D(z2-1,R)¢
S ”u”OO J f(sz_l, kx2_1>A2|<kx2_1, kZZ—l)Azl dl(xz
D(z%2-1,R)¢ B,

1K 2, [|%
- 1) A —diw? - 1) = [lulle jlzz_l(xz —1)dA(x2 - 1)

||Kw2—1||A2 B,

\

= |lullo | j + j )Izz_l(xz — 1)dA(x% —1).

D(22—1,1+23€) D( 2_4 1+23€)

1+3€
> ) we have

To estimate the first integral notice that for (x2—1) ED(zz—l,

D(z% -1, 1+3€)CCD(x —1“36) .

Therefore, the first integral is no greater than
|a -1

j J (ky2_q1, k2 1) a2 K72 | d/l(wz
1+3€ 1+3e\€ ”KW2—1”A2
D(zz—l, 5 )D(zz—l, 4 )
- 1)|<kx2—1: kZZ—1>A2| d)l(xz — 1)
It is easy to see that the last expression is no greater than C(a? — 1)||ul|A (“236) where

K, 2 ||%
A(1+3€) = sup f (ko q, k2 i) 2 ——A _dA(w? — 1),
(22-1)€By, K21 llG2""
D(z%2-1,14+3¢)¢

and C(a? — 1) is just the bound from the standard Rudin-Forelli estimates (24).
Estimating the second integral is simpler. The second integral is clearly no greater

than
Ia 21

1K 2,
f(sz—llkx2—1>A z1

1K 2 Il
p(z2- 11+23E)Bn w1

By the standard Rudin-Forelli estimates (24) the inner integral is no greater than

dAW? = Doy, kyz_y) 2| dAGx? = 1).
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K 2 a2—1
C(a® - 1) K, 1”21122_1'
1K w21l
where the constant C(a? — 1) is independent of (z2 — 1) and (x? — 1). So, the whole
integral is bounded by C(a? — 1)A (1+36). Therefore

2

1Kz gl
sup (Tukzz—lJ kw2—1>A2 2 dA(W - 1)
(22-1)€B, IKwz_1 %1
D(z2%2-1,1+3¢€)¢
1+ 3e
< 2llull., <C(a2 - 1),4( > )>
Applying the uniform Rudin-Forelli estimates (26) in Corollary (6.2.22) we prove the

Proposition since 2C(a? — 1) ||u/lo4 (1236) — 0as e - oo.

Corollary (6.2.24)[200]: The collection of all weakly localized operators on A2 forms a -
algebra.

Proof. It is trivial that T € A implies T* € A. It is also easy to see that any linear
combination of two operators in A4 must be also in A. It remains to prove that if T, (T +
€) €A, thenT(T +¢€) € A.

214
1K ,2_ 1%

2_
||Kw2—1||jz !

(T(T+ €e)k,2_q,ky2_q1) 42

D(z2%2-1,1+3¢€)¢

dA(w? —1)

a?-1

K,2_
N .] (T + €)k,2_4, T*kw2—1>A2 “ = 1“12122—1 d/l(wz - 1)
||Kw2—1||,42

D(z%2-1,1+3¢)¢
= j f((T +€)k,z2_4, kxz_l)Az(kxz_l,T*sz_1>A2d/1(x2 - 1)
D(z2-1,14+3¢€)¢ | B,

K : a2—1
X ” 72 1”,;1122_1 dﬂ(Wz _ 1)
||Kw2—1||A2

di(w? — 1)

2
||Kw2—1||22 !

< f j k21, T k21 ) 42|
B, D(z2%2-1,1+3¢)¢
2_
X {(T + €)k,2_4, kW2—1>A2|”K22—1”32 ! dl(xz —1).
Proceeding exactly as in the proof of the previous Proposition and using the conditions

following from T, (T + €) € A in the place of the local Rudin-Forelli estimates (25) we
obtain that

K _ a2—1
lim sup j (T(T +€e)k,z_q,k,2_1) 42 1K 1”‘422_1 di(w? —1) = 0.
€20 (22-1)eB, ||Kw2—1||f;2

D(z2%-1,1+3¢€)¢
The corresponding version for (T (T + €))* is proved in exactly the same way.
Corollary (6.2.25)[200]: Let T: A> - A? be a weakly localized operator. Then there exists
e > 0 such that for the covering Fy,. = {f;} (associated to (1 + €)) from Proposition
(6.2.9)

183



TP — Z M;, TPM;_ <e.
: j J
J

A%2>12(B,, dv)
Proof. Define

T+e=TP— leF,TPMlc_
: j j

J
It suffices to show that given € > 0, so that

I(T +e)fllaz 3 €llfll 2.
Given e choose (1 + ¢€) large enough so that

e
_sup f (Tk,2_1,ky2_1) 42 ||KZ mi ”‘22_1 dilw? —1)<e
(z _1)EBnD(ZZ—1,1+e)C we-1llaz
2_
\ IK,2_q I )
and sup (T*k,2_q,k,2_1) 42 —dA(w*—1)<e
(z2-1)€B,, “sz—llliz_l

D(z%2-1,1+€)¢
Note that for any (z% — 1) € B,, we have that

(T +e)f(z* — D)

= jz 1Fj(z2—1)1GjC(W2 — INT"K 24, Ky2_y) g2 f W2 — D]dv(w? — 1)

B, J

[T Ky Kl v = Dldv(w? - 1)
it

IA

D(z%2-1,1+¢€)¢
Now

1T + Of 1% = j (T + Of (2 — D2dv(w? — 1)
By,

NT*K 2, Kz |[f W2 = D] du(w? - 1).

< j j (T*K oy Koo 1) 2|l f(W? = Dldow? —1) | du(w?

B, \D(z2%2-1,1+€)¢

-1)
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T*kyz_y, ko
X I ||1§2 1 ”:2 11)"‘2|d;1(w2 1) |dazz - 1)
w2-1

D(z%2-1,1+¢€)¢

2_
<e€ f J |(T*kzz_1, sz_l)A2|||KW2_1||f:2 1|<f, sz_l)Azlzd)l(Wz
B, \D(z2%-1,1+¢)¢
-1) dA(z? —1)
T

, Ko 17

=€ | {f, kyz_1)al |(k,2_1, Tk,,2_1) 42| 1K ||a2 T dA(z
z2-1

D(w2-1,1+€)¢
“1) |daw? — 1) < €2 j F, )12 dAGW2 — 1) = €2[1f 1%

Corollary (6.2.26)[200]: Let T: A% - A2 be a linear operator in the C*-algebra generated
by the weakly localized operators on AZ2. If hm ||Tk 2_41ll,2 = 0, then T must be

compact.
Proof. Let by Corollary (6.2.25) there exists € = 0 such that for the covering F;,. =
{F;} associated to (1 + €) (from Proposition (6.2.18))

TP — Z My, TPMy, <e.

J A%2>12(By, dv)
Since Y4 MleTPMl Gjis compact for every (j + €) € N we have that the essential

norm of TP as an operator from L2(B,, dv) to A2 can be estimated in the following way.

ITPIl, < ||TP = ) My, TPMy,
) J

J—€ A2512(B,, dv)

<|rp-) M, TPM,, +|T-d|| s e

J A2512(B,, dv)

T—E ES leFjTPMlGj .
j—€

S €,

Where (¢ = 0)

If we can show that

I;r—neiliop”TJ-E ||A2—>L2 (B dv)

then since € > 0 is arbitrary we will have that TP is compact and hence T is compact on A2.
Let f € A? be arbitrary of norm no greater than 1. Then,
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2

2

2 2
”Tj—ef”AZ = z ||M1FjTPM Z . Lg; A2
Jj—€ Jj- 1G] A2
<N S,EIE) ||M1Fjle||A2 S Sj‘jIE)”le”Az»
where
lji=P——"—
||M16j A2
We now have
PMlij
. < . ", = —
||T]—6||A2—>L2(]Bn dv) ~ SI;IIE) ”?1"151 ||Tl] ||A2' l] ||M1Gj 2
A
and hence
. . PMlg]f
lgii?”E‘AMLﬂ%&uw)SIﬁiimnﬁﬁﬂl ”Thmﬂdf:|“@0
J W p2

There exists a sequence {f;} in 4% with ||f;|| ., < 1 such that

PM;
limsup sup ||T ||A2 — € <lim sup||ng||A2,
j=oo lIflls1 [ |l josoo
A
where
Ml(; fi ij<f},kW2_1)A2kW2_1d/1(W2 - 1)
gj = T

s,

5 1
A2 (ij|(fj, kW2—1>A2| kyz_1dA(w? — 1))2

Foreach e > 0 pick (z*> — 1); € G;. Thereexists e > 0 suchthat G; c D((z* - D1+ €).
Doing a simple change of variables we obtain

gj = j (a® = 1); (‘P(z2—1)j(W2 - 1)) (z2-1); ky2_1dA (§0(z2—1)]- (w? — 1)>'
‘P(z2-1)j(Gj)
where (a® — 1);(w? — 1) is defined to be
(fj; Kwz_1) 42

2
(J |5 kowa) | dA(w? = 1)
on Gj, and zero otherwise.
We claim that g; = U

N[ =

z2-1), 1 where

186



hi(z® —1):= f (a® = 1); ((p(zz_l)j(wz — 1)) k,2_,((z*
(p(zz—l)j(Gf)

= D)4 g2y, W? = D).
First, using the generalized Minkowski Inequality it is easy to see that h; €

L?(B,,; dv) and consequently in A2. To prove that the claim is correct we only need to show
that for each g € L*(B,,; dv) we have that (g;, g) = (h, U(Zz_l)jg). This can be readily

done using Fubini’s Theorem. The total variation of each member of the sequence of

measures (a® —1); ((p(zz_l)j (w? — 1)) dA ((p(zz_l)j(wz — 1)) (as measures on the
compact set D(0,1+ ¢€)) satisfies ” (a® = 1); (go(zz_l)j(wz — 1)) dA (go(zz_l)j (w? —

1)) ||A2 <A (<p(zz_1)j(aj)) < A(D(0,1 + €)).

Therefore, there exists a weak-* convergent subsequence which approaches some
measure v. Abusing notation slightly we keep indexing this subsequence by j. Let

h(z?—1):= J k,2_;(z* — 1)dv(w? — 1).
D(0,1+¢€)
The mentioned weak-* convergence implies that h; converges to h pointwise. Using the
Lebesgue Dominated Convergence Theorem we obtain that h; — h in L?(B,; dv). This

implies that h € A%. In addition, 1 2 ||g;]| , = ||U* b = [Rs]] - Thus, lIAll:2 <

(Zz—l)j ]

1. So, we finally have

lim Sup||7}_6||A2—>L2(IBn,dU) < 1ir}1_)5;1p||ng||A2 +e= lirjI_l_)sollp ||TU(*ZZ_1)},h||A2 +€

< lim sup ||TU(*22_1)jh||A2 +e

j—oo
Choose h' in the linear span of normalized reproducing kernels such that ||h — h'|| 2 <

e/|IT]I. The assumption ||Tk,2_, |l = 0 as |22 — 1] - 1 implies that ”TU* B

(22-1); -

AZ
0 as j — oo. Therefore we finally obtain

< lim sup |TUG2 0y 1|, <timsup ||TU(*22_1)jh'||A2 +e

lim supl||T;_ o Slmst

j—e—00 € ||A2—>L2(IBn,dU)

= €.
Corollary (6.2.27)[200]: If T is weakly localized operator on A2, then

a’-1
lim jl(Tkzz_l, kzz_l)Azl
B

”Kzz—lllAZ
|z2-1|-1

di(w? —-1) =0.
||KW2—1||Z§_1 ( )

Proof. First, observe that:
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|a 214

fI(TkZ k2 ) el 1Kz -dA(w? — 1)
”KWZ 1”A

21
1K 2_1ll52

2
IKw21ll52""

dA(w?

= f + f |<Tkzz—1'sz—1)A |
D(z?-1,14+€) D(z?-1,1+¢€)¢
- 1).
Let e > 0. Our assumption on T implies that we can choose € > 0 large enough so that the
second integral is less than €. We need to show that the first integral can be made smaller
than (a constant times) €. Fix this e = 0 and then consider the first integral,

1K 2y ||%°1
|<Tkzz_1,k 2_1>A |

) I Kw2_q]]4"~1
D(z%-1,1+¢€)

di(w? —1)

21
1K 21152

2_
IKwz—allgz™

_ f (RS e dA(w? — 1)

D(z%2-1,1+€)¢

IK 2_1|IZz_
e j |<TZZ—1k0’ k(p(zz_l)(W2_1)>A2 z a2—1 dA(WZ —_ 1)
D(0,1+€) ||K<P(Zz_1)(W2—1) 42
2
1K 2_q11% 7
- j|nawww—n| 2ol
D(0,1+€) ||K<p(zz_1)(wz—1) a2

We can choose (z2 — 1) with |z2 — 1] large enough so that |T,-_;ko(w? — 1)| < ¢
for all (w? —1) € D(0,1 + ¢) (we have uniform convergence to 0 on the compact set
D(0,1 + €)) . Therefore the second integral is no greater than

j ||Kzz_1||a -1 dA(w? — 1)

1K yzql a2

K¢(ZZ_1)(W2_1) A2
|K ,2_ ||a -1 di(w? —1)
=€ j |<kzz—11 kW2—1>A2| £ a?-1
D(0,1+€) ||K(p(zz_1)(wz—1) 2
< C(a® - 1)e.
Here we have used (22). Since € > 0 was arbitrary we are done with the proof.
Corollary (6.2.28)[200]: Let T be a weakly localized operator on A2, If
lim (Tk,2_q,k,2_{),2 =0,

|z2-1]-1

D(0,1+¢€)

1K w2l

then T is compact.
Proof. Notice first that

(Tf ky2_)az2 =(f, T k,2_1)42 = f(f, k,2_q)a2lk,2_1, T k,2_1) 42 dﬂ(ZZ - 1)

f@@_pzﬂm«wﬂayﬂ@hﬂy

Foreache > 0 defme an operator T, . by
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<T1+ef: kw2—1>A2 = f (Tkzz_l, kW2—1>A2<f' kzz_l)Azd/l(Zz - 1)
D(0,1+€)
These are basically the operators (T + €);4¢] that Axler and Zheng use in [76]. It is easy to

see that these are all Hilbert-Schmidt operators by testing the square integrability of the
kernel. Therefore, it suffices to show that 7; .. = T in the operator norm.

Let e > 0 and let f € A? be an arbitrary element of norm 1. We have
1T = Tree)fIle = j (T = Tieo)f oy g dA(W? = 1),
Bn
We first examine the integrand.

(T = Tir)f kwz_1)az| < Tkyz_1, ky2_1)a2{f, kp2_1) 42 |d/1(22 - 1)

D(0,1+€)¢
-1

2
_ Tk K 1/2 ”sz—lllAz Tk I 1/2 K
|( z2—1» W2—1)A2| a?-1 |< z2—-1» W2—1)A2| |<f; ZZ—1>A2|

a

D01+ K241l ,°
a’-1 —1
K241l 2>
X 2 4 —dA(z® - 1)
”sz—lllAz
1
_ 2
IKyodlSt
= (Tky2_1,kyz_1) a2 1K ”az 1 dA(z® —1)
D(0,1+¢€)¢ z2-1
1
2
1K 2411527
X j (Tk,2_,, kW2—1>A | = 22 1 |<f'kzz—1>A2|2d/1(Z2 - 1)
1Kwz-1ll32
D(0,1+€)¢
1
2

2_1
1K 24 l%2

[ k2 a2 2dA(22 — 1)

< j (Tk,2_q,k,2_1)42 |||K ”
D(0,1+€)¢ w?-1

Here, the implied constant depends on (1.5). Thus, after an application of Fubini, we obtain

I(T = Ty f Il

|a 21

|K,2_4]
< | (] Ty bl = s
D(0,1+€)¢ \B, Kwz—1

=1 | Kf, kzz—1>A2|2d/1(Z2 —1).

Notice that the variable (z? — 1) in the inner integral is from D (0,1 + €)¢. Therefore, by

Corollary (6.2.27), we can choose € = 0 large enough so that for (z2 — 1) € B,, with
|z% — 1| sufficiently close to 1
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K 3 a2—1
L% 1”‘222_1 di(w? —1) <e.
”sz—lllAZ

Therefore, for such large (1 + €) we have

IT=Teflze s [ ek i) el?ddG? = 0 s ellfI = e
D(0,1+€)¢
This proves that T; .. = T in the operator norm, and so we are done.
Corollary (6.2.29)[200]: Let T: F? — F2 be a linear operator satisfying (21). Then there
exists e = 0 such that for the covering ;.. = {F]} (associated to (1 + €)) from Proposition
(6.2.18).

j (Thyey, k1) a2
Bn

TP—leF.TPMlc, < e.
' J J 5

J T2—>L2<(C"; e~l72-1] dv(zz—1)>
Proof. Define

T+e=TP— ZMlF.TPMlcl
: j j
]

It suffices to show that we can find an € > 0 so that

(T + e)fllzz S €llf ll z2.
Given e choose (1 + ¢€) large enough so that

sup J (T k,2_q, ky2_1)pzldo(w? — 1) <€
(z2-1)ecn
D(z%2-1,1+€)¢
and
sup f (Tk,2_q, ky2_i)rzldv(w? — 1) < e.
(z2-1)eCn

D(z%2-1,1+¢)¢
Note that for any (z% — 1) € C™ we have that

I(T + e)f(z* — D)

< jz 1Fj(zz—1)1GjC(W2 - 1)|(T*kzz_1,sz_l)j;zllf(wz - 1)|d0’(W2 - 1)
c o J

= j (T*K 2oy, Koo g2 || f W2 — D]do(w? — 1).
Gf

Now
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1T + OfII2. = f (T + O)f (22 — D?do(z% - 1)
(Cn

|

C" \D(z%2-1,1+€)?

2
(T*K,2_q,Ky2_1)52||[f(W? — 1)|do(w? — 1)) do(z? — 1)

< f j |(T*Kzz—1le2—1>T2||f(W2 - 1)|2dO'(W2 - 1)>

C" \D(z%2-1,1+€)?

X ( f (T*K,2_1, K y2_1)52|do(w? — 1)) do(z?> —1)
D(z2-1,1+€)?
= f < f |(T*kzz_1,sz_1)}~2||<f, sz_l)g:2|2dv(w2 - 1))
" \D(z%2-1,1+¢€)?
X ( J |(T*kzz_1,sz_1)g_~2|dv(w2 - 1)) dv(z? - 1)
D(z%2-1,1+¢€)?

= J < j (T"kyz_q, kyz_1)g2|I(f, ka1 p2|*dv(w? — 1)> dv(z? —1)
" \D(z%2-1,1+¢€)?

_. j|<f,sz_1>fz|2<
(Cn

< Jl(f, ke )pz Pduw? — 1) = €2[If 2.
Cn

Corollary (6.2.30)[200]: Let T: F% — F2 be a bounded linear operator in the C*-algebra
generated by weakly localized operators satisfying (19). If
lim (Tkzz_l, kzz_l)}-z =0,

|z2—1|>c0

(T k,2_q, ky2_q)g2|do(w? — 1)) dv(w? — 1)

D(z2-1,1+¢€)?

then
lim ||[Tk,z_,||z2 = 0.

|z2—1]|->

Proof. Let € > 0 be given. Note that we have

||Tkzz_1||§_-z = jl(Tkzz_l, kzz_l);p2|2dv(W2 - 1)
Cn

= j + j (Tk,2_4, kzz_1>g_-2|2dv(w2 —1)=1+1I.
D(z?%2-1,1+¢€) D(z%-1,1+¢€)
For term 11 we use a standard approximation result. Since T is in the C*-algebra generated
by (1.6), given € > 0 we can find T’ that is weakly localized so that
T —T'||g252 < €.
Now choose (1 + €) sufficiently large so that

Zsup(c f |<T,kzz—1; kWZ_l)}QlZdU(WZ - 1) <e€
—-1)€e n
S D(z%2-1,1+¢)¢
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which is possible since T' satisfies (26). We use this to estimate I1.

Il = f |<Tkzz_1,sz_1)T2|2dU(W2 - 1)

D(z?%2-1,1+¢€)¢

< j (T k,z_q, sz_l)T2|2dU(W2 - 1)

D(z%2-1,1+¢€)¢

+ j (T = Tk, ke Vg2 |Pdo(w? — 1).

D(z%-1,1+¢€)¢
The first term is controlled by the choice of (1 + €) above. We also have that for this choice
of (1 + €) (actually all (1 + €)) that

( ZSlg)E(C j- |<(T - T,)kzz—p kw2—1>T2 |2dU(W2 - 1)
72— n
D(z%2-1,1+€)¢

< sup KO =Ty e Pdu(w? = 1)
(z2-1)ecn én
= sup (T —=T"kyz_qllz2 < (T = Tkye_qllpz_p2 < €.
(zZ-1)ecn

Then then yields that
sup f (Tk,2_1,k,2_1)52|?du(w? —1) S €

(z2-1)eCn
D(z%-1,1+€)¢

Now for term I, note that we have

j |<Tkzz_1,sz_1)g:2|2dv(wz - 1)

D(z2-1,1+¢€)
2
— .[ |<Tzz—1k07 k‘P(Zz_l)(W2—1)>fF2 dl}(W2 - 1)
D(z%2-1,1+¢€)
2
= j |<TZZ_1k0, k(P(ZZ_l)(WZ—l))TZ dU(WZ - 1)
D(0,1+¢€)
dv(w? — 1
= j T 2_1ko(W? — 1)|2(—2)
__J ||Kw2—1||j:2
D(0,1+¢€)
- j IT,2_ ko (W2 — 1)|2do(w? — 1).
D(0,1+¢€)

We can choose (z% — 1) with |z2 — 1| large enough so that |T,2_,ko(w? — 1)| < € for all
(w?—-1)€D(0,1+¢) (we have uniform convergence to 0 on the compact set
D(0,1 + €)). Furthermore, we have that ¢(D(0,1 + €)) < a(C™) < o, and so
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j |(Tkzz_1, sz_l)Tzlsz(Wz - 1)

D(z%2-1,1+¢€)

2
= j |<TZZ—1k0’k(P(Zz_l)(Wz—l))Tz dU(W2 — 1) < E.

D(z%-1,1+¢€)

Thus, we have
lim ||ITk,z_4||22 = 0.

|z2—1|—>
Section (6.3): Toeplitz Algebra on the Bergman Space

We begin with a discussion of localized operators. Let B denote the open unit ball
{z € C":|z| < 1} in C™. The Bergman metric on B is given by the formula

1 1+ |e,(w)]
zZ,w)=—=log————— ,Zz,w
lzw) =3l )]

where ¢, is the Mobius transform of the ball given in [79]. For each z € B and each r > 0,
the corresponding S-ball will be denoted by D(z,r). That is,
D(z,r) ={w €B:B(z,w) <1}
Let dv be the volume measure on B with the normalization v(B) = 1. Then the formula
il dv(z)
@ =G pym
gives us the standard Mobius-invariant measure on B.
Recall that the Bergman space L3 (B, dv) is the subspace
{h € L?(B, dv): h is analytic on B}
of L?(B, dv). It is well known that the normalized reproducing kernel for the Bergman space
Is given by the formula

€ B,

(1 _ |Z|2)(n+1)/2
k,(Q) = A=) ,z,{ €B. (27)

It was first discovered in [190] that localization is a powerful tool for analyzing operators
on reproducing-kernel Hilbert spaces. This idea was further explored in [184]. More
specially, in [184] Isralowitz, Mitkovski and Wick introduced the notion of weakly localized
operators on the Bergman space. Below we give a slightly more refined version of their
definition. Our refinement lies in the realization that we can define a class of localized
operators for each given localization parameter s.

Definition (6.3.1)[192]: Let a positive number (n —1)/(n + 1) < s < 1 be given.

(a) A bounded operator B on the Bergman space L2 (B, dv) is said to be s-weakly localized
if it satisfies the conditions

_ 25\ S(n+1)/2
sup f [(Bky, k)| (w> dA(w) < oo,

Z€B (1 - |Z|)2
( | | ) s(n+1)/2
(1 _ | |2) s(n+1)/2
B\D(z,r)
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and

(1 _ |W|2) s(n+1)/2
li Bk, k — dA(w) = 0.
B\D(z,r)

(b) Let A denote the collection of s-weakly localized operators defined as above.
(c) Let C*(As) denote the C*-algebra generated by A;.

For each (n—1)/(n+ 1) < s < 1, the simplest examples of s-weakly localized
operators are the Toeplitz operators, which, as we recall, are defined as follows. Let
P:L*(B,dv) - L%(B,dv) be the orthogonal projection. Then for f € L*(B,dv), the
formula

T¢h = P(fh), h € L%(B,dv),
defines the Toeplitz operator T;. Also recall that the Toeplitz algebra 7 on L% (B, dv) is the
C*-algebra generated by the collection of Toeplitz operators
{T;: f € L*(B, dv)}.
It was shown in [184] that A D {T;: f € L”(B,dv)}, hence C*(As) D T
In [189], Suarez showed that for A € T, the condition
|lzierr}(z‘lkz. k) =0 (28)

implies that A is compact. In [184], Isralowitz, Mitkovski and Wick showed that for A €
C*(Ay), condition (28) also implies that A is compact. The introduction of the notion of
weakly localized operators in [184] has the added virtue that it significantly simplifies the
work necessary to obtain the above result. Indeed the approach in [184] explains why such
results should hold true.

The results in [184], [189] certainly inspire further examinations of the inclusion
relation

T c C*(Ay). (29)
Given what we know about Toeplitz operators (see, e.g., [193]-
[86],[196],[197],[198],[199]), the C*-algebra T is certainly much better understood than
C*(A,). It is known, for example, that 7" coincides with its commutator ideal [81], [182].
Thus an obvious question is, is the C*-algebra C* (A, ) structurally different from 772
Question (6.3.2)[192]: Is the inclusion in (29) proper forany (n — 1)/(n+ 1) <s < 1?1s
there any difference between C*(A) and C*(A;) for s # t in the interval ((n —1)/(n +
1),1)?

The answer, as it turns out, is somewhat surprising:

Theorem (6.3.3)[192]: Forevery (n —1)/(n+ 1) <s < 1wehave C*(A,) =T .

An immediate consequence of Theorem (6.3.3) is, of course, that C*(A) = C*(A;)
for all s,te ((n—1)/(n+ 1),1). We emphasize that this equality at the level of C*-
algebras is obtained without knowing whether there is any kind of inclusion relation between
the classes A and A, in the case s # t.

Although Question (6.3.2) was the original motivation, our approach to this problem
naturally leads us to a stronger result, a result that simultaneously settles a much older
question. Let us introduce
Definition (6.3.4)[192]: Let 7! denote the closure of {Tf: f eL”(B, dv)} with respect to
the operator norm.

Below is our main result, which not only answers Question (6.3.2), but also tells us
something significant about the Toeplitz algebra T itself.
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The documented history of interest in 7 can be traced at least back to [83], [195],
where Engli§ showed that it contains all the compact operators on L2 (B, dv).

Later in [198], Suérez took another look at 7. There he introduced a sequence of
higher Berezin transforms B;, ..., By, ..., Which are generalizations of the original Berezin
transform B,. Suérez expressed his belief that every operator S in T is the limit in operator
norm of the sequence of Toeplitz operators {TBk(S)}. If this is true, then it certainly implies

that 7 = 7°. One can only speculate that, perhaps, the equality 7 = 7" was what Suérez
had in mind all along, and the higher Berezin transforms were his tools to try to prove it.
While we still do not know if it is true that

lim | T,.¢s) = S| = 0

k—oo

for every S € T, the equality 7 = T is now proven using completely different ideas.
From the proof of Theorem (6.3.13), we see that the approximation of a general S € T by
Toeplitz operators is quite complicated: it takes several stages.

Let us give an outline for the proof of Theorem (6.3.13). Since each A, is known to
be a *-algebra that contains {T;: f € L (B, dv)} [184], it suffices to show that A; ¢ 7O,
An elementary C*-algebraic argument further reduces this to the proof of the inclusion

ToATe € TW

for a suitably chosen Toeplitz operator Ty that is both positive and invertible. We can pick
the function @ in such a way that for every B € A, the operator T BTy is “resolved” in
the form

TpBTp = j f E, BE,dA(w)dA(2),

D(0,2)xD(0,2)
where each E, is a sum of rank-one operators over a lattice:

E, = z Kpu2) ® Koyu(2) -

uel
A crucial ingredient in the proof is the norm estimate in Lemma (6.3.10) below. This

estimate has a number of implications, and one of the implications is that the map (w, z) —
E,, BE, is continuous with respect to the operator norm. This norm continuity immediately
implies that T4, BTy is contained in the norm closure of the linear span of
{E,BE,:w,z € B}.

Thus we can complete the proof by showing that E,,BE, € T™ for all z,w € B. One can
think of E,, BE, as an infinite matrix. The localization condition for B ensures that the terms
in E,,BE, that are “far from the diagonal” form an operator of small norm. The rest of the
terms in E,,BE, are a linear combination of operators in a special class D, (see Definition
(6.3.14)). In other words, E,,BE, can be approximated in norm by operators in the linear
span of D,. Then, with several applications of the estimate in Lemma (6.3.10), we are able
to show that D, ¢ 7™, accomplishing our goal.

We discuss the analogue of Theorem (6.3.13) on the Fock space.
Definition (6.3.5)[192]: A subset I" of B is said to be separated if thereisa d = 6(I') > 0
such that the inequality S(u,v) = 6§ holds forall u = vinT.

Recall that for each z € B\{0}, the Mdbius transform ¢, is given by the formula

1 (¢, z) (¢, z)
@,({) = 1-C.2 {z TR (1 — |z|*)/? (C BRPE Z>}
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Also, we define ¢,({) = —{. Recall that each ¢, is an involution, i.e., ¢, o ¢, = id [79].
Let us list some of the elementary properties of separated sets that will be used repeatedly
in the sequel.

Lemma (6.3.6)[192]: Let I be a separated set in B.

(@)For each 0 <R < oo, there is a natural number N = N(T';R) such that
card{v eT:f(u,v) <R} < Nforeveryu €T,

(b) For every pair of z € B and p > 0, there is a finite partition I' = I'; U ... U I}, such
that for every i€ ({1,..,m}, the conditions w,v€Il; and u=+v imply
B(eu(2), 0,(2)) > p.

Proof. By definition, there isa § > 0 such that S(u,v) = 6 forall u # v inT. Thus
D(u,8/2)NnD(v,6/2) =@ forall u#v inT.
Let R > 0 be given. Then for every pair of u,v € T', the condition B(u,v) < R implies
D(v,6/2) c D(u,R + (5/2)). By the Mdbius invariance of the Bergman metric 8 and the
measure dA, we have
A(D(6/2)) = 2(¢,(D(0,6/2)) = A(D(0,5/2)).
Therefore if we write N (u) for the cardinality of the set {v € I': f(u, v) < R}, then
N@w)A(D(0,5/2))

- Z A(D(v,8/2)) < A0 (w, R + (8/2)) = 2(D(0.R + (5/2))).

vel
BL(u,v)<R

Thatis, N(w) < A(D(0,R + (6/2))/4(D(0,5/2)), which proves (i).

To prove (ii), let z € B and p > 0 be given, and set r = p + 2£(z,0 ). By (i), there
is an m € N such that card {v € I: B(u,v) < r} <mfor every u € I'. By a standard
maximality argument, there is a partitionI" = I'; U ... U I, such that forevery i € {1, ..., m},
the conditions w,v € I; and u # v imply B(u,v) > r. But if u, v satisfy the condition
B (u,v) > r, then by the Mdbius invariance of g we have

B(0u(2),9,(2)) = B(w,v) — B(py(2),u) — B(v, 9,(2))
= B(w,v) — B(9u(2), 9, (0)) — B(9,(0), 9, (2))
= ﬁ(u'v) —B(Z,O) —B(O,Z) >T1— ZB(Z,O) = p.

This completes the proof.
Lemma (6.3.7)[192]: For all u, v, x, y € B we have

A=l 2A = 0D oorpnn L= YA~ )2

|1 = (o (x), 0, ) 11— (u,v)|
Proof. For a,b € B, we have 1 — |¢,(b)|?> = (1 —|al®>)(1 — |b|?)/|1 —{a, b)?| [79].
Thus if we write

(- la®){ - b)Y
ST i—{ab

then

1 1 14|, 2
log— < —log—————— < log—.
Sa =2 T (.0 = Pa

Consequently

1 1
2\ 2\
e‘ﬁ(a'b) < (1 - |a| )2(1 - |b| )2 <

2~ Bab)
R Y B 50
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For u, v, x, y € B, by the M&bius invariance of the Bergman metric, we have

B(0u(2), 0, () = B, v) = B@u(x),u) = Blp, (1), v) = Bw,v) — B(x,0) — B(y,2).
Combining (30) with this inequality, we find that

_ 2N1/2(1 _ 23\1/2
a |¢?1(x)|() (()1 l((p1)7>(ly)| ) e B0u@9) < 2B +B(.0) g-B(ur)
—\Pu\X), Py

< 2Bx0+B(.0) (1= [ul®)2(1 - |v|?)1/?

11— (u, v)|

This proves the lemma.
Lemma (6.3.8)[192]: Let I' be a separated set in B. Then thereisa 0 < C(I') < oo such that

Z ((1 — 1§12 = [v»)Y?
11—, v

n+1
) (1 _ |v|2)(4n+1)/8 < C(F)(l _ |€|2)(4n+1)/8

ver
for every ¢ € B.

Proof. If I is a separated set in B, then there isa § > 0 such that f(u,v) = 6§ forall u # v
in T'. Thus D(u,6/2)NnD(v,6/2) =@ forall u=v inT. If we D(v,8/2), then v €
D(w,8/2) = ¢,,(D(0,6/2)). Thus If w € D(v,§/2), then there is a v’ € D(v, §/2) such
that v = ¢, (v"). Let & € B. Since & = ¢(0), we can apply Lemma (6.3.8) to obtain

A= EDY2A - pIY2 _ 5 (1= (€201 — w2

< 2e 31
1=, v)] T, w)l G
foreveryw € D(v,8/2). Also, since v = ¢,,(v') and v’ € D(0,6/2), we have
A=A - w?)
]2 =1 — "2 — < 1 — 2
1 |v| 1 |(pw(v)| |1_<UI,W>|2 —_ 1_|v,|2( |W| )
< 4e2P00 (1 — |w|?) < 4e8(1 — |w|?). (32)

SetC, = (2e5/2)n+1(4e5)(4n+1)/8. Then it follows from (30) and (31) that

1 — [E12)1/2(1 — |p|2)1/2 n+l

<( Iflll)_é v”lvl ) ) (1 — [v|2)@n+D)/e
_1£12\1/2(1 _ 2y1/2\ 1

< <(1 Iflll)_élW)IlWI ) ) (1 — |w|2)@n+Dr/8

for every w € D(v, §/2). Hence for each ¢ € B we have

A= IEDY2A = Y™ s
Z( S ) (1 - vl?)

¢, (1 - 18R — ant1
S P N (1= w5 dA(w)
,Zem@ (v,g))D f ( 1= )

< Cy - J ((1 — ||61|2_)§<(€1M—/)||W|2)5> (1- |w|2)4n8+1d/1(w)_ 33)
A (D (v, 7)) ’

To estimate the last integral, note that

verlr
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1 1
(11817201 = |w|?)?

= (1- (g1
|1 (& 0 ()]
Thus, making the substitution w = ¢¢(¢) and using the Mdbius invariance of dA, we have
1 1\ n+1
(1= €121 - [w|?)2 gyt
[\ —mi (1= wl)edAw)
(n+1) 5 (4n+1)
= [a-k» " (1-le:@f) * @
A- AP\ F
_ B 2(n+1)<1—§ 1—1¢ ) 8
Ja-1em S (1 e 440

= (1= fgpyemere | s
- o @a - g
To further estimate (*), let do be the standard spherical measure on the unit sphere
{x € C™:|x| = 1}. There is a constant C, such that
j do(x) - C,

11— (Z,x)|”+(%) (1 -z

for every z € B [79]. Combining this with the radial-spherical decomposition dv =
2nr?"drdo of the volume measure, we have

1 1
j dv({) - Cy2nr?™"1dr - Cf dt 8 c
n —  =—nC,.
1 = — +2)(1/4)+(3/8) — 2 — +)5/8 2
11— @a— gz 5 A7) g (1=0F 3
Therefore

= (*).

(*) < 3nC,(1 = [§[H)“n+D/8,
Substituting this in (33), we conclude that the desired inequality holds for the constant
Cr) = 3nC,;C,

A(D(0,6/2))

This completes the proof.
Recall that each Toeplitz operator has an “integral representation” in terms of the
normalized reproducing kernel {k,,: w € B}. Indeed for each f € L* (B, dv), we have

T = [ Fonky ® kudA(w). 38

This formula is obtained through direct verification.
Let £ be a subset of B which is maximal with respect to the property that

D(u,1)n D(v,1) =0 forall u# v in L. (35)
This £ will be fixed for the rest. The maximality of £ implies that
U D(u,2) = B. (36)
uel
Now, for each z € B, define
Be = Ky ® gy (37)
uel

Define the function
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= Yow (38)

uerL

on B. By (35) and Lemma (6.3.6) (i), there is a natural number ' € N such that
card{ve L:D(u,2)ND(w,2) # D} < N
for every u € L. This and (35) together tell us that the inequality
1<d<NV (39)
holds on the unit ball B. By (34) and the Md&bius invariance of g and d4, we have

Ty = f Ok, ® k,dA(w) = z J k, ® k,,dA(w)

uel p(u,2)
= Z f kpua ® ko, dA(2).
uel p(0,2)
That is, we have
Ty = f E,dA(z). (40)
D(0,2)

Lemma (6.3.9)[192]: There is a constant 0 < C, s < 1 such that ||E,|| < C, ¢ forevery z €
D(0,2).
Proof. By Lemma (6.3.7), for u, v, z € B we have

+1
| o Kpu)] = ((1 ~ @ (@11 ~ |<pu<z)|2)1/2>"
bo@) Teu®) 11— (0u(2), 9, (2)]
(1 —[ul®)z(1 - |v|*)?
< (2¢26@O)™H 41
(227522) 1= () 4
Let {€,: u € L} be an orthonormal set. For each z € B, define the operator
E, = Z €u ® Ky . (42)
ueL
Since E, = EJFE, and ||EF,|| = ||E,E; ||, it suffices to estimate the later. We have
EF = z (kq),,(z)rk(pu(z))Eu X €.
u,veL

Now suppose that z € D(0,2) and write C; = (2e*)™*1. By (41), for every vector x =
YuerXy€y We have

EEX)S D Ky gyl 16

u,veL L
(L= ) = )2\ ™
<G ) ( Tt el = € ) by, (43)
u,veL ’ UueL
where
-y € e 0 €l L O WY
o 1= ()l ""

VvEL

for each u € L. Next we apply the Schur test. Indeed by the Cauchy-Schwarz inequality and
Lemma (6.3.8), we have
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n+ 1 — [ul®)V2(1 = |p|2)1/2 n+1 P
Y2 < CO(1—lul?) Xz<( Mu)— <i v>||vI ) ) -

VvEL

Applying Lemma (6.3.8) again, we have

v2 n+ 1-— 2)1/2(1 — |v|?)/? .
Zyzf < C(L)Z a an+1 Z(l - |u|2)4 " x <( |u||1)— (Elrvﬂlvl ) >

UEL vEL(1—|U|2) 8 wueL

) |x, | , Antl , X
<cw) (=) 8 =20 ) Inl2
VEL (1 - |U|2) 8 VEL
Combining this with (43), we find that

(EEx%) < GO ) Il = Gl
uel
Since the vector x is arbitrary, we conclude that ||E, || = ||E,E|| < C,C(L) for every z €
D(0,2). This completes the proof.
Recall that for each z € B, the formula
(Uz)(©) = k,(Dh(9.(0)), ¢€B and heLi(Bdv), (44)
defines a unitary operator. These unitary operators will play an essential role.
As usual, we write H* (B) for the collection of bounded analytic functions on B. Also,

we write || k||, = sup|h{| for h € H*(B). Naturally, we consider H* (B) as a subset of the
{€B

Bergman space L (B, dv).
Lemma (6.3.10)[192]: Given any separated set I'" in B, there exists a constant 0 < B(T') <
oo such that the following estimate holds: Let {h,: u € I'} be functions in H*(B) such that

sup|lhylle < o, and let {e,: u € I'} be any orthonormal set. Then
uer

D W) ®e,
. uerlr . .
Proof. Given T, {h,:u € T'} and {e,: u € T'} as in the statement, let us write

A=) (Uh) e,

uer
for convenience. By (39), the self-adjoint Toeplitz operator Ty, is invertible with |75 || <

1. Therefore ||A|l = ||To ToA|| < IToAll. Combining this with (40), we see that

< B(D) suplhyllc-
uer

1Al < 2(D(0,2))  sup [IEAl. (45)
zeD(0,2)
Thus it suffices to estimate ||E,A|| for z € D(0,2). Let F, be the operator defined by (42).

Then Lemma (6.3.9) implies that ||E|| < Czl_éz for z € D(0,2). Hence

1
|E,All < CF IIEA z € D(0,2). (46)
Consequently, we only need to estimate ||E,A||.
To estimate ||E,A||, let us denote
H = sup||h,||c .

uer

Let z € D(0,2). Then note that
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A= Uphy kpyi)eu ®ey. (47)

u€eL uer
Since Uy,h, = k,, - hy, o @, the reproducing property of k,, () gives us

(thw k(pu(z)> = hv (Qov((pu(z))) (kv' k(pu(z) )'
which is one of the key facts on which depends. Thus

_ (A= YA = o)A
|(th,,, k(pu(z)>| < H|<kv» kqou(z))l = H( 11— (¢, (2),v)] ) '

Since v = ¢,,(0) and z € D(0,2), an application of Lemma (6.3.7) gives us

1 1\ nt+1
(1—[v[*)2(1 — |ul?)?
U,h, k < CiH ) 48
|< vity (pu(Z)>| 1 |1 _ (u’ v)l ( )
where C; = (2e2)™*1. Now consider vectors
X = z Xy€y and y= z Vo€qy -
uer uerLl
It follows from (47) and (48) that
1 1 n+1
(1—|v*)2(1 — |ul?)?
<
(B, Ax, ) _Clez< Tl oyl
UueL uer
= ClHZ bulyult (49)
uel
where
- z (1 - [p)V2(1 - u)72\" |
v 11— (u,v)| ol
uerlr

u € L. We apply the Schur test as we did in the proof of Lemma (6.3.9). By the Cauchy-
Schwarz inequality and the bound given in Lemma (6.3.8), we have
an+1 A= P2 - uPY\"
2 < _
be < CO)(A— ful) s xz( T
verl (

u € L. Applying Lemma (6.3.8) again, we obtain

an+1 (1 _ |v|2)1/2(1 _ |u|2)1/2 n+1 |xv|2
ZbZSC(F)ZZ(l_luD 8 X( |1—(u,v)| ) 4n+1

ueL vell uel (1 - |17|2) 8
an+1 |x, |

= C(F)C(L)Z(l —[v[*)7s ot = CADCO) x|,
ver (1—|v|?) s
Combining this with (49), we obtain
[(FAx, y)| < C{C(DCOY/*HIIxIyll.
Since the vectors x and y are arbitrary, this means
IEAll < ¢ {C(T)C(L)}*H
for z € D(0,2). Recalling (45) and (46), we see that the lemma holds for the constant
B(I) = A(D(0,2))C, ¢, {C(T)C (L)},
This completes the proof.

in+1"’
1—1v|*) 8
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Proposition (6.3.11)[192]: Suppose that I is a separated set in B. Furthermore, suppose that
{c,:u € T'} are complex numbers satisfying the condition

sup|c,| < co. (50)
uer
Then for each z € B, the operator
Y, = 2 Cukpyz) @ Ko, ) GD

uer
Is bounded on the Bergman space. Moreover, the map z +— Y, from B into B(L%l (B, dv)) IS
continuous with respect to the operator norm.
Proof. For u, z € B, simple computation shows that

11— (u,v)\""
Uyk, = <m> Kpu(2)- (52)

Therefore
k‘/’u(u) ® kfﬂu(u) = (Uyk,) & (Uyk,).
Let {e,: u € I'} be an orthonormal set. Then for every z € B we have the factorization
Y, = A,B;,
where

A, = Z Cu(Uukz) X ey and B, = Z(Uukz) X €y -
uer uer

Applying Lemma (6.3.10) to the case h,, = c, k,,u € I', we see that each A, is a bounded
operator. Similarly, each B, is also bounded. Hence Y, = A,B; is bounded.

To show that the map z +— Y, is continuous with respect to the operator norm, it
suffices to show that the maps z — A, and z +— B, are continuous with respect to the
operator norm. Since B, is just a special case of A,, it suffices to consider the map z — A4,.

Forany z,w € B, we have

A, —Ay = Cu(Uu(kz - kw)) X ey.

Applying Lemma (6.3.10) to the case where h,, = ¢, (k, — k,,),u € I, we find that
14, — Awll < BD)Cllk, — kyllw

where C = sup|c,|. For each z € B, it is elementary that
uer

lim||k, = kylle = 0.
wW—Z
Hence the map z — A, is continuous with respect to operator norm. This completes the
proof.
Let us recall two known facts about A. First, foreachgiven(n —1)/(n+ 1) <s <
1, we have A D {Tf:f € L (B, dv)} [184]. Indeed by (34), this is a consequence of the
fact

(1 . |W|2) s(n+1)/2
) dA(w) = 0.

limsup [ [0 k)l ke ki) d2GO) (m
B\D(z,1)
To prove this limit, the idea in [184] is to split the inner x-integral above as the sum of the
part on D(z,r/2) and the part on B\D(z,r/2). With such split, this limit follows from the
Rudin-Forelli estimate [184].
Second, each A is a x-algebra [184]. In this case, the gist of the matter is the limit
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s(n+1)/2
) dA(w) =0 (53)

_ 2
lim sup f fl(Tkz; k) |Cky, S k)| dA(x) X <(1 ™)
= zeB

(1-1z])?
B\D(z,r)

for S,T € A,. To prove this, [184] splits the inner x-integral in the same way as above.
Then it is easy to see that (53) follows from the localization condition for S and T.

Next comes the most crucial step in the proof of Theorem (6.3.13):
Proposition (6.3.12)[192]: Let (n —1)/(n+ 1) < s < 1. If B € Aq, then E,,BE, € T
forall z,w € B.

Assuming Proposition (6.3.12), we have
Theorem (6.3.13)[192]: For every (n—1)/(n+1) <s <1 we have 7MW = C*(A,).
Consequently, 7 =T = C*(Aj).
Proof. Let (n — 1)/(n+ 1) < s < 1 be given. By the fact that A, is a x-algebra mentioned
above, C*(A,) is just the norm closure of A,. Since we also know that A D
{T;: f € L”(B,dv)}, Theorem (6.3.13) will follow if we can show that A; c 7M. We
prove this inclusion into two steps.

(i) Let B € A, be given. As the first step, let us show that T¢BTe € 7M. Indeed it
follows from (40) that

T BTy =j J E,BE,dA(w)dA(z). (54)
D(0,2)xD(0,2)
Consider the map
(w,z) » E, BE, (55)
from B x B into B(L% (B, dv)). Proposition (6.3.12) tells us that the range of map (55) is
contained in 7. Hence every Riemann sum corresponding to the integral in (54) belongs
to 7. On the other hand, by Proposition (6.3.11), the map z + E, is continuous with
respect to the operator norm. Hence map (55) is also continuous with respect to the operator
norm. Since the closure of D(0,2) x D(0,2) is a compact subset of B x B, the norm
continuity of (55) means that the integral in (54) is the limit with respect to the operator
norm of a sequence of Riemann sums sy, s,, ..., Sk, .... Since each s, belongs to 7™ so does
TeBTs.
(ii) Given B € A, we will now show that B € 7M. Since Ty, € A, and since A is
an algebra, we have Tq’;BTg € A forall j,k € Z,. Thus it follows from (i) that
T)V'BTE e 7O for all integers j > 0 and k > 0. (56)
Let C*(Ty) be the unital C*-algebra generated by Ty. Since Ty, is self-adjoint, (56) implies
that
TeXBTeX € TW for every X € C*(Typ).
We again use the invertibility of T, which is guaranteed by (39). It is elementary that the
inverse Tg!, once it exists, must belong to the C*-algebra C*(Ty). Thus, letting X = Tg*
in the above, we obtain B € 7., This completes the proof of Theorem (6.3.13).
Our goal is to prove Proposition (6.3.12).
Definition (6.3.14)[192]: (a) Let D, denote the collection of operators of the form

Z Culty & Ky,

uer
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where T is any separated set in B, {c,,: u € I'} is any bounded set of complex coefficients,
and y:T' = B is any map for which there isa 0 < C < oo such that
Bluyw) <cC (57)

foreveryu €.
(b) Let D denote the operator-norm closure of the linear span of D,,.

With D, and D we can divide the proof of Proposition (6.3.12) into two independent
parts:

We will see that the proofs of these two propositions are based on different ideas.
More specifically, the proof of Proposition (6.3.20) relies on the estimate provided by
Lemma (6.3.10), whereas the proof of Proposition (6.3.16) takes advantage of the
localization condition of the operators in As. The proof of Proposition (6.3.10) begins with
Lemma (6.3.15)[192]: Let (n — 1)/(n+ 1) < s < 1 be given. If B € A, then for every
separated set I" in B and every pair of z, w € B we have

1— |U|2 s(n+1)/2
Alm sup 2, (Bkp, ) kg, )] <—1 - |u|2> =0 (7
B(u,v)>R
and
1 — |17|2 s(n+1)/2
Alm sup uzer (Koo Brgyon )| (—1 m W) =0 (59
B(u,v)>R
Proof. Given such s and B € A, by Definition (6.3.1) we have
(1 _ |<|2) S(Tl+1)/2
lim Sup j [(Bky, k¢)| <m) da({)=0  (60)
B\D(x,r)
and
(1-1¢1?)

s(n+1)/2
lim sup J |(B*ky, k¢)| < ) dA() =0. (61)

5% xeB — |x)?
B\D(x,r)
Let I, z and w also be given as in the lemma. Denote ¢ = D(0,1) and G,, = ¢,,(G). Then

it is easy to see that G,, < D(0,1 + B(w, 0)) For h € L2(B,dv) and v € T, we have

1
B(0w () = (1 0, ° 9)(O) = 7= f hoguopudi=res [ haa

A6
) (@ropw)(G)
_ h, Z
A(G) JG)hdA A(G) j(l |7|2)(n+1)/2 dA({).
@v(Gy
Thus

L 1~ g, (w)[2\ "

(h, Ky om)) = 6 f(h’kf)( T2 ) dA(Q).
@v(Gy)

If { € ,(G,), then { = ¢, (&) for some € € G,, < D(0,1 + S (w,0)), which means

24 2_(1—IvI2)(1—ICI) 1 oz
1= = 1= 1o = ey 2 (1= KA -1,
On the other hand,
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_-pRa-wP
1= I, ()I? = e < e (1= ).

Hence there isa 0 < C; < oo which depends only on n and w such that

(B, k)| (1 = 1025072 < 2 [ ky = 1)+ 02qa ()
A(G)

k‘Pv(Gw)

for all h € [3(B,dv) and v € I. Applying this inequality to the case where h =
Bk (z),u € T, we have

1— |U|2 s(n+1)/2
Bk, ) kg ,am)] <—1 - |u|2>

< b j (Bk, k) L g\ dA(0)
= A(6) pyu(2) ¢ 1— |ul? 0,
@y (Gw)

A= AU -1z
L= lou@? = <71

there isa 0 < C, < oo which depends only on n and z such that

1— |17|2 s(n+1)/2
[(Bkp, 2 kgu)] <—1 - |u|2)

v € I'. Since

(1—[ul®),

s(n+1)

C1 Gy f < 1-[¢J? ) 2
< Bk Lk dA(Q), 62
u,vel. SetL =1+ BWw,0)+ B(z0) and consider any R > L. If u, v € T are such that

B (u,v) > R, then for every ¢ € ¢,(G,,) € ¢, (D(O,l + B(w, 0))) we have

B(pu(2),0) = B(u,v) — B(u, 9y (2)) >R — 1~ B(W,0) — B(2,0) = R — L. (63)
Thus the combination of (62) and (63) gives us

1 — |17|2 s(n+1)/2
Z (CLINON:LINP] (—1 - |u|2>

vel
B(u,v)>R

C,C
< AZ G; f ZX%(GW) (O|(Bkg, (). k)|

B(pu(2),{)>R-L VET
s(n+1)

1-lR Y\ 2
(Cher) @O 9

u € I'. By the M6bius invariance of 8 and the fact that G,, ¢ D(0,1 + 5(w,0)), we have

¢,(G,) € D(v,1+ B(w,0)). Since T is separated, it follows from Lemma (6.3.6) (i) that
there is an N € N which depends only on I and w such that the inequality

z X‘Pv(Gw) =N

holds on B. Substituting this in (64), we conclude that
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1 — |17|2 s(n+1)/2
[(Bkpu(2y Kpyiw) )| <—1 = |u|2>

(n+1)/2
C,C,N 1—1712 \
<
=20 J ‘B"¢u<z>”‘<)<1—|<pu<z>|2 4
B(py(2),{)>R-L

for every u € I'. By this inequality, (57) follows from (59). Since
(BRg,(2) Kp,w) ) = (B"Kg, () Ko,w) )
(58) follows from (60) by the same argument. This completes the proof.
Proposition (6.3.16)[192]: Let (n — 1)/(n + 1) < s < 1. If B € A, then for every pair of
z,w € Bwe have E,,BE, € D.
Proof. Let(n—1)/(n+ 1) <s < 1.ForB € A, and z,w € B, we have

Ey,BE, = Z Kp,w) @ Kop,w) " B -k, 2) @ kyyz)

u,veL

vel
B(u,v)>R

- z (Bkyy,(2) ko) o,y & gy (2) -

U, veL
Thus for any R > 0, we can write E,, BE, = Vi + Wy, where

Vi = Z (Bko,(2) Kppw)Kp,w) @ Koy ()

u,veL
L(u,v)<R

and

Wy = Z (Bko,(2) Ko,w) K,y @ Ko, (2) -

U, veL
L (uv)>R

Obviously, the proposition will follow if we can prove the following two statements:
(i) lim [[Wgll = 0.
(ii) Vi € span (D,) for every R > 0.
To prove (i), note that by (52) and Lemma (6.3.10), there are constants C;, C, such

that
2 2
D [hkeguenl” < CUlIRIP and > Kb kg, < CollRIZ (65)
ueLl VEL
for every h € L4 (B, dv). Given h, g € L4(B, dv), we have
Weho ) < |(Bhyy Ky Sute, (66)
u,veEL
B(u,v)>R
where
sy = [(h kg, )] and £, = (kp,w) 9)|.
We apply the Schur test one more time. Indeed for each u € £, let us write
Yu = z |<Bk(Pu(Z)'k‘pv(W)>|tv (67)
VEL
B(u,v)>R

Then for each u € L, the Cauchy-Schwarz inequality gives us
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Yy < z [(BK (2, Koy} | (1

VEL

BL(u,v)>R
5 s(n+1) tg
= [vl*) 2 2 (Bkpy,2)» Kopyw))| SiD
vel 1-1v|2) 2
plum>R s(n+1)
1-ul?y 2,
< H(R) z [Bkour ko) 7751 o,
veEL
L (u,v)>R
where
s(n+1)
H(R) = su 2 |(Bk k )|<1_|u|2> i
rer £y 0s@ Couw) |\ T[22
B(&v)>R
Therefore
s(n+1)

2 1—u?) 2 2
Z%uSH(R)Z Z [(Bkouor ko)l 7752 ty
uel ueL veEL

B(u,v)>R
s(n+1)
) 1—Jul?) 2
=H(R)va Z [(Bkour koo T2
veL ueL
L (uv)>R
< H(R)G(R)ztg,
veLl
where
s(n+1)
G(R) = su Z [(Bk gy >|(1_|”|2> ’
rer £ 0u@) R oo\ T ]2
Bw,$)>R

By (66) and (67), we now have

1/2 1/2
(Wrh, g)| < z Syy < (z 55) <2 yi)
ueL ueL

ueLl

< {HR)G(R)}'/? (Z 55)1/2 (Z a%)l/z.

L . . . uerl uel
Combining this with (66), we find that
[(Wrh, g)| < {C1C;HR)GR)F?IIRlllIgl-
Since h, g € L% (B, dv) are arbitrary, this means
Wr < {C,C,H(R)G(R)}/?.
Applying Lemma (6.3.15), we have I%im H(R) =0 and I%im G(R) = 0. Therefore
;im ||[Wx|| = 0 as promised.
We now turn to the proof of (ii). First of all, given an R > 0, for each v € £ we define
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E,={u € L:B(u,v) <R}
By Lemma (6.3.6) (i), there isan N € N such that
card (F,) < N
for every v € L. Also, by Lemma (6.3.6) (ii), for the given w € B, there is a partition
L=L,U..ULp,
such that foreachi € {1, ..., m}, ifv,v’ € L; and v = v', then B¢, (W), ¢,7(w)) = 1. That
is, foreach i € {1, ..., m}, the set
K; = {p,(w):v € L;}
Is separated. We have V, = X; + -+ + X,,,, where

X; = Z Z<Bk<pu<z)»k<ov<w)>k<pv<w)®k<ou<z>'

@»(W)EK; UEF,
i € {1,...,m}. To prove (ii), it suffices to show that X; € span(D,) of every i € {1, ..., m}.
For this purpose we further decompose each K;. Indeed for each pair of i € {1, ..., m} and
j €{1,..., N}, we define
Lij={v €Lj:card (F,) =j} and K;;= {p,(W):v € Li,j}.
Then X; = X;; +--- + X; y, Where

Xij = z z (Bky, ) kg, w)Kp,) & Koy @),
Py(W)EK j UEF,
i €{1,..,m} and j € {1, ..., N}. Thus it suffices to show that X; ; € span(D,) for every
such pair of i, j. But it is obvious that given a pair of such i, j, we can define maps

1
yl(])l . ;yl(j) Kl] - B

such that
{pu@:u € BY =y (0,w)), . v P (0, (w))]

foreveryv € L; ;. Thus X; ; = X(l) + -+ Xl(j), where for each v € {1, ..., j} we have

x® = Z (Ble o ke s ® k0
UEF,
Hence the proof will be complete if we can show that yi’}’ € (D,) for every triple of indices
ief{l,..m}je{l,..,Ntandv € {1, ..., j}.
By the above definitions, for every such triple of i, j,v, if { € K; ;, then there exist
v € L;jand u € F, suchthat ¢ = ¢, (w) and yl.f}’) (&) = @, (2). Therefore

B(67©®) = Blos (W), 9u(2) < Blp, (W), v) + B, 1) + B(w, 9, (2))
< Bw,0)+ R+ B(0,z).
This shows that the map yl(;’) ; — B satisfies condition (57). By Definition (6.3.14) (a),

we have X(”) € (Dy). This completes the proof of Proposition (6.3.16).

Next we turn to the proof of Proposition (6.3.20), which involves a few steps.
Proposition (6.3.17)[192]: Suppose that I is a separated set in B. Furthermore, suppose that
{c,:u € T} are complex numbers for which (50) holds. Then for each z € B, the operator

Y, defined by (51) belongs to 77,
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Proof. (i) Let us first show that Y, € 7). Since T is separated, there is § > 0 such that
B(u,v) =6 for all u+v in I'. That is, if w,v €T and u+ v, then D(u,6/2) N
D(u,6/2) =@.Foreach0 < e < §/2, define the operator
4 j Y,dA(z).
¢ A(D(O €)) e
By the norm continuity of the map z — Y, provided by Proposition (6.3.11), we have

lim|[Yo — Yell = 0.

€

Thus to prove the membership Y, € 7, it suffices to show that each A, is a Toeplitz
operator with a bounded symbol. Indeed by the Md&bius invariance of 8 and d4, we have

AE /’l(D(O E)) 2 Cu j k‘/’u(z) ® kgou(z)d)l(z)

uer D(0,€)

f oy ® Koy dA(W) = f £ W)k, @ kyydA(w),
D(u,e)

1
~ 2(D(0,0) ZF “u

where

1
le = 3000,0) uzer ke
Since, 0 < e < §/2,wehave D(u,e) N D(v,e) = @ foru +# vinT. Hence f, € L*(B, dv).
By (34), we have 4, = Ty.. This proves the membership Y, € 7.
(i) Now consider an arbitrary z € B. By Lemma (6.3.6) (ii), there is a partition I' =
[ U ...UT, such that for every i € {1, ..., m}, the conditions u,v € I; and u # v imply
B(pu(2), ¢,(2)) = 1. That is, for each i € {1, ...,m}, the set

G = {py(2):u €T}
is separated. Obviusly, Y, =Y, +---+ Y, ,, where

Yoi = Z Cukpu(2) ® Koy (2)»
pu(2)€EG;
i=1,..,m By (1) wehave Y,; € TW forevery i € {1, ...,m}. Hence ¥, € 7V,
In addition to the normalized reproducing kernel k, given by (27), it will be
convenient for our next step to use the unnormalized reproducing kernel

1
KZ(C) = (1— (C,Z))n"'l ,Z,§ €B,

and other kernel-like functions. This involves monomials in the complex variables
{1, -, {n and the standard multi-index convention (see [79]). For each pair of « € Z%} and
z € B, we define

(a
(1 — <(’ Z))n+1+|a| !

Kz;a(z) =

¢ € B. Note that K, = K., for every z € B.
Proposition (6.3.18)[192]: Let I be a separated set in B and suppose that {c,:u € T'} is a
bounded set of complex coefficients. Then for every pair of « € Z} and z € B, we have

Z ey (UyK,) @ (UyKye) € TW.
u€er
Proof. We prove the proposition by an induction on |a]|. If || = 0, i.e. « = 0, then
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1
(UuKZ) ® (UuKZ;O) = (UuKz) ® (UuKZ) = (1 _ |Z|2)n+1 k‘Pu(Z) ® k‘Pu(Z)'

Hence the case where |a| = 0 follows from Proposition (6.3.17). Suppose that k € Z, and
that the proposition holds true for every a € Z} satisfying the condition |a| < k. Now
consider the case where a € Z% is such that |a| = k + 1. Then we can decompose « in the
form

a=a+b,
where |a| =k and |b| = 1. That is, there is some v € {1, ...,n} such that the v —th
component of b is 1 and the other components of b are all 0. We will also consider b as a
vector in C™. By the induction hypothesis, we have

z ¢ (UyK,) ® (UyKyo) €TW for every z € B. (69)
uer
Let z € B be given. Then there is an € = €(z) > 0 such that z+ c € B for every c €

C™ satisfying the condition |c| < €. For each t € [0, €], define the operators

At = z Cu(UuKz+tb) ® (UuKz+tb;a) and Bt

uer

= z Cu(UuKzritn) & (UuKszb;a)'
. uer
Also, we define

X = Z afn+ 1+ KWUK) Q (UuKye) + (n+ D(UyKyp) @ (UuKya)}
uer
and

Y= Z c{(m+1+ k)UK ® (UuKye) — (0 + D(UnKyp) ® (UuKza)}-
uer

We will show that
1
= (4, — 4g) —X| =0 (70)

lim
tlo
and

1
Before getting to their proofs, let us first see the consequence of these limits. By (69) we
have 4, € 7MW and B, € 7MW for all t € [0, €]. Hence it follows from (70) and (71) that

X,y €eTW  Thus
z Cu(UuKz) 03y (UuKZ;a) =

uer
completing the induction on |«.

Let us now turn to the proof of (70). Note that t =1 (4, — 4,) = G, + H,, where
1
He =3 ) cUuoen) ® (Uu(Konena — Kra))

uer

(1)
2(n+1+k)(X+Y)ET ’

and

1
Ge =7 culUu(ser = K} ® (Uukoa)

uer
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Similarly, we write X = V 4+ W, where
V= i+ 1+ DUK) ® (Uulye)

uer
and
W = 2 cu(n+ D(UuK,p) ® (UyUye).
uer

Since [|[t7Y(4; — Ap) — X|| < ||H; = V|| + ||G, — W||, (70) will follow if we can show

lim||H, — V|| =0 (72)

tl0
and

lim||G; — W]l = 0. (73)

To prove (72), for 0 < t < € we write H, — V = S, + T;, where
St = 2 Cu(UuKz+tb) X {Uu(t_l(KzH:b;a - Kz;a) - (Tl +1+ k)kz;a)}

uer
and

Ty = (4 14K ) Uy = K} @ (Uukoe)
uer

Thus the proof of (72) is reduced to the proof of the fact that ||S;|| = 0 and ||T; — O|| as t
descends to 0. To prove this, we pick an orthonormal set {e,: u € I'} and factor S, in the

form S, = S™VS®* where

Slgl) = z Cu(UuKZ+tb) ® eu

uerl
and
5@ = Z{Uu(t—l(xmb;a —Ko) — (n+ 1+ )k,0)) Q ey
uer
Set C = sup|cy|. Then it follows from Lemma (6.3.10) that
uer

15| = CBMIK,+ellcs

and

5P| < BOt (Kareia = Kaia) = (r+ 1+ kel -
Sincea + b = a and k = |a|, by (68) and elementary algebra, we have
lgH)1||t_1(Kz+tb;a - Kz;a) —(n+1+ k)kz;a”Oo = 0.
Also, it is trivial that ||k, .|l remains bounded as t descends to 0. Hence
151 < |SPY 52| < BT Merepllollt™ Kovena = Kna) = 0+ 1+ ksl
-0

as t descends to 0. For T,, we have the factorization T, = T,V T®*, where

TV = (4146 ) Ul — K} @ ey
uerlr
and
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T@) = z((] K, a) R ey.

By Lemma (6.3.10), ”T(l)” <(n+1+ k)CB(F)||k2+tb K,lle, and T® is a bounded

operator. It is obvious that
ltifgl”kz+tb - KZ”oo = 0.

Hence [|T;|| < ”Tt(l) ” |T@|| - 0 as t descends to 0. This completes the proof of (72).
To prove (73), note that

G —W = Z U (6 Kvep — K2) — (n+ Dkyp)} @ (UnKya) = Z,T@,
where <

Zy = Z Cu{Uu(t_l(KzH:b -K,)—(n+ 1)kz;b)} X ey .
uer

Applying Lemma (6.3.10) again, we have
1Zell < CBD ||t ™ (Kysen — K2) — (n+ Dk ||
Another easy exercise shows that

ltllr})l”t (Kz+tb z) - (TL + 1)kz;b”oo = 0.

Hence [IG; — Wl < lIZII||T®|| - 0 as ¢ descends to 0, proving (73). Thus we have
completed the proof of (70).

The proof of (71) uses essentially the same argument as above, and the only additional
care that needs to be taken is the following: The rank-one operator f & g is linear with
respect to f and conjugate linear with respect to g. Moreover, the inner product (¢, z) on C"
Is conjugate linear with respect to z. These are the properties that determine the + and —
signs in each term ¢, {...} in the sum that defines the operator Y. This completes the proof
of the proposition.

Proposition (6.3.19)[192]: Let I" be a separated set in B and let {c,: u € I'} be a bounded
set of complex coefficients. Then for every w € B we have

Z Cuky ® ki ) € T (74)
uerlr
Proof. For each a € Z, define the monomial function

Po({) = ¢¢

on B. Given aw € B, let us define
1 _ (W, u) >n+1

du(W) = Cu <|1 _ (W,U,)l

u € I'. Note that K., = p, forevery a € Z%. Also, U,K, = U; = k, foreveryu € I'. Thus,
applying Proposition (6.3.18) to the case where z = 0, we have

> duWlky ® (Uype) €T (75)
u€er
for every a € Z%. Define the function

gw({) =({{,w),{ €B.

For each j € Z,, define the operator
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A= dy Wk, ® (Ug)).

] uer
Since each g, is in the linear span of {p,: a € Z}}, (75) implies that Aj € 7 for every

j €Z,. Let{e,:u € I'} be an orthonormal set. Then we have the factorization A; = TB; for
each j € Z, where

T = Z d,(Wk, Q e, and B; = z(ng‘{;,) Re,.
uer u€er

Lemma (6.3.10) tells us that T is a bounded operator. Define
G = Z(Uqu) R ey .

uer
It also follows from Lemma (6.3.10) that
o () o ()
n+j)! n+jl
G- Z Bl s BO ||k - ) Sl (76)
j=0 j=0 -
for every k € Z... By the expansion formula
1 = n+j)!
- = ( ]) C",||<1,
A—-c)n+tt ¢ . n!j!
]=
and the fact that |w| < 1, we have
: (n+j)! j
A K = 2, 9w 0
j=0 -
Combining this with (76), we obtain
o ()] o (n+))!
n . n .
lim ||TG* — _] Aill = lim |[TG" —T _] Bi|| = 0.
k00 n!j! k-0 nljl -/
j=0 j=0
Since each A; belongs to 7™, we conclude that
Z dy(W)k, ® (UyKy,) =TG" € T,
uer
Since k,, = (1 — |w|?)®+D/2K  this implies
> du Wk, ® (U,K,) €T, (77)

uer

Recalling the definition of d,,(w) and (52), we see that (77) implies (74).
Proposition (6.3.20)[192]: We have D, c T,

Since 7 s a norm closed linear subspace of B(L% (B, dv)), Proposition (6.3.12)
follows immediately from Propositions (6.3.16) and (6.3.20).
Proof. Let I' be a separated set in B, let {c,: u € T'} be a bounded set of coefficients, and let
y: T — B be a map satisfying (58). Let K = {w € B: (0,w) < C}, where C is the constant
that appears in (58). We want to show that the operator

T = z cuky ® ke

uer
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belongs to 7M. For this purpose, define

W) = g (y(w) uer.
Since B(u,y(w)) < C, by the Mébius invariance of g and the fact ¢, (u) = 0, we have
B(0,9(w) = B(u,y(w)) < C for every u € T'. That is, (u) € K for every u € I'. Since

@u(Y(@W)) = y(w),u €T, by (52) we have
T = Z duku ® (Uuklp(u)) ’

uer
where |d, | = |c,| forevery u € T. Let {e,: u € I'} be an orthonormal set. Then we have the

factorization T = AB*, where

A= Z d,k, @ e, and B = z(Uuk¢(u)) X e, .

uer uer
We again use the fact that the map z — k, is |||| .-continuous. That is,
lim|lk, — k|l =0 for every Z € B.
wW—Z

Let € > 0 be given. Since K is compact, there are non-empty open sets €4, ..., ,,, in B and
z; € Q;,i =1, ...,m, such that
QU..UQ, DK (78)
and
||kzl. — kW”Oo <e€ wherever w € (;,
i =1,...,m. From the open cover (78) we obtain a partition
K=E U..UE,

such that E; c Q; forevery i € {1, ..., m}. We now define

={uely) ek}
i =1,..,m.Then ||k, — kyayl|| < eifueTl; Foreveryi€ {1,...,m}, we also define

B, = Z (Uuky,) ® ey

u€rl;
Foreachi € {1, ..., m} we have

AB; = z dyky, & (Uukzi) = Z duiku @ kg, 2

uer; uerl;
where |d,,;| = |d,| for u € T}. Thus it follows from Proposition (6.3.19) that
{AB;},..,AB;} c T, (79)
On the other hand, we have
m
B—(By++Bp) = z Z{Uu(kl,,(u) —k;,)} ®ey.
i=1 uer;

Since the sets I, ..., I, form a partition of T, i.e., I} N [; = @ whenever i # j, Lemma
(6.3.10) tells us that
IB— (B; + -+ B,,,))|l| < B(I') max SulP”k‘l’(u) — kZi”oo < B(DNe.
uel;

1<ism
Lemma (6.3.10) also tells us that A is a bounded operator. Hence
IT = (AB{ + -+ + ABp) Il = [[AB* — (AB1 + --- + ABp)|l < |Al[llB* — (B1 + -+ + Bp)l
= [[AlllIB = (By + - + Byl < lIAllB(D)e.
Since € > 0 is arbitrary, combining this inequality with (79), we conclude that T € 7,
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This completes the proof of Proposition (6.3.20).

The analogue of Theorem (6.3.13) also holds in the setting of the Fock space. To
discuss the details, let us first recall the necessary definitions.

Let du be the Gaussian measure on C”. It is well known that, in terms of the standard
volume measure dV on C", we have

du(z) = n_ne_|Z|ZdV(z).
Recall that the Fock space H?(C",du) is defined to be the subspace h €
L*(C™, dw): h is analytic on C"} of L2(C™, du). The symbol k, will denote the normalized
reproducing kernel for H2(C", du). That is,
k,(Q) = el¥2e12I/2 7z ¢ € Cn

In [190], the notion of sufficiently localized operators was introduced:
Definition (6.3.21)[192]: A bounded operator B on H?(C",du) is said to be sufficiently
localized if there exist constants 2n < § < co and 0 < € < oo such that

|<BkZJ k

N SRR P
forall z,w € C™.

Let C*(SL) be the C*-algebra generated by the collection of sufficiently localized
operators on H2(C™, du). Combining localization properties with a new approach, it was
shown in [190] that for A € C*(SL),

the condition |leiLnOO(Akz, k,) = 0 implies that A is compact: (80)

This was the result that motivated Isralowitz, Mitkovski and Wick to introduce the notion
of weakly localized operators in [184]. On the Fock space, weakly localized operators are
defined as follows.

Definition (6.3.22)[192]: [184] A bounded operator T on H?(C", du) is said to be weakly
localized if it satisfies the conditions

sup [Tk k) aviw) <o, sup [l )] dVOw) < o,

ZECM ZECn
and

lim sup j (Tk,, k,)|dV(w) =0, lim sup f (T*k,, k,)dV(w) = 0.
=0 zeCn =0 zeCn
|z—w|zr |z—w|zr

It is easy to see that any sufficiently localized operator is weakly localized. Moreover,
it was shown in [184] that (80) also holds true if A is in the C*-algebra generated by the
weakly localized operators on H2(C™, du).

Replacing the class A, by the class of operators defined in Definition (6.3.22), one
can prove the analogue of Theorem (6.3.13) on the Fock space H2(C™, du). The proof is in
fact easier in the Fock space case. This is because, compared with the Bergman space, the
structure of the Fock space i1s much simpler, and one generally gets much better “decaying
rate” in estimates.

For example, instead of general separated sets, in the Fock space setting we only need
to be concerned with the standard lattice

22" = {(jy + ik, o ju + ik 1, eer i Kgy oo Ky € Z}
and its subsets. What replaces D (0,2) is the fundamental cube
S ={0C + iy, e, Xp F V)1 X1, o, Xy V1y - Y €{0,1)}
in C™. With Z2™ and S we have
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fu—S}=c¢C", (81)
uezzn
which is a tiling of the space, meaning that there is no overlap between u — S and v — S for
u # v in Z?". Compared with the covering scheme (33), the tiling scheme (81) offers
considerable advantages. For example, the Toeplitz operator T4 used in the proof of
Theorem (6.3.13) can simply be replaced by the identity operator 1 in the case of Fock space.
There is, however, one technical issue in the Fock space case that warrants
mentioning. This stems from the fact that there are no bounded analytic functions on C"
other than constants. Thus the straightforward analogue of Lemma (6.3.10) on H2(C™, du),
while true, is not very useful. In the Fock-space setting, the supremum norm |||, must be
replaced by something else.
Definition (6.3.23)[192]: For an analytic function h on C", we write

1/2
Il = ([ In@re02 ar )

Let ., be the collection of analytic functions h on C™ satisfying the condition |||, < oo.
For each z € C", let U, be the unitary operator defined by the formula
W N)Q) =flz-Dk, (), JeC? (82)
f € H?(C", du). The following is what replaces Lemma (6.3.10) in the Fock-space setting:
Lemma (6.3.24)[192]: There is a constant 0 < C,, < oo such that the following estimate
holds: Let e, :u € Z?™ be any orthonormal set and let h, € H, ,u € Z?", be functions
satisfying the condition sup ||h||. < . Then

uezzn
D Wah) ®ey| < Cas sup [Ihll.
weTn u€ezzn

Proof. Let us first estimate |(U,h,, U,h,,)|. By (82), for u € Z?™ we have
(b U] = [ = O = D R @e ™ V@), (83)

Moreover,
|y (D (D] e K1 = e=(1/2) (ut P01 (84)
¢ € C™. Observe that

(lu=¢PP+v=0*= (Iu P+ lv=(*=

Thus, splitting the 1/2 in (84) as (1/4) + (1/4), we find that
|ku(f)kv({)|€_|5|2 < e~ W=V o=W/DIu~C? o~(1/Dw-3I*

Combining this with (83) and applying the Cauchy-Schwarz inequality, we obtain

lu—v|?

[\.)Ib—\

~(5)lu-vl® ~(5)lu-vl? 112
i [(Uyhy, Uphy)| < e\8 Ayl ]l < e '8 HZ, (85)
whnere
H, = sup lRll -
UEZZN
Write

= Z (Uyhy) @ ey
U€ELZn
and consider any vector x = ), cz2n Xy, €, . By (85), we have
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_ _ 1|2
1AxI2 < D KUy Unh Il < HE Y e OO [y, |
u,veZ2N u,veZ2n

Applying the Schur test to the right-hand side, we find that
lAxll? < CHZ )" [x|? = CHZ|xI?

UEZ2N
where C = ., cz2n e~/®IV* "which is finite. Since the vector x is arbitrary, we conclude
that ||A|| < C'/2H,. Thus the lemma holds for the constant C, , = C*/2.

In the proof of the Fock-space analogue of Theorem (6.3.13), the ||-||-CONtinuities
of the previous are replaced by the corresponding ||-||.-continuities. For example, for the
normalized reproducing kernel of the Fock space one easily verifies that

‘}Vi_rg”kz - kW”* =0
for every z € C™. Thus, using Lemma (6.3.24) in place of Lemma (6.3.10), the analogue of
Theorem (6.3.13) on the Fock space can be obtained by following the argument in the
previously.
Corollary (6.3.25)[200]: Let I" be a separated set in B.

(c)For each 0 <e < oo, there is a natural number N = N(I';1 + €)such that
cardf(u+e) el:f(u,u+e€)<1+¢€} <Nforeveryu€er.

(d) For every pair of (z2 —1) € B and € > 0, there is a finite partiton ' =T} U ...U
I,such that for every i € {1, ..., m}, the conditions u, (u + €) € I and € > Oimply
B(pu(z? = 1), puse(z> = 1)) > 1 + €.

Proof. By definition, there isa § > 0 such that S(u,u + €) = § forall e > 0in T'. Thus

)
D(u,6/2) nD(u+e,§> =@ foralle >0 inT.

Let € > 0 be given. Then for every pair of u, (u + €) € T, the condition f(u,u +€) <1 +
eimpliesD(u+¢€,6/2) c D(u, 1+e+ (5/2)). By the Mdbius invariance of the Bergman
metric fand the measure d4, we have
A(D(6/2)) = M @use(D(0,6/2)) = A(D(0,5/2)).
Therefore if we write N (u) for the cardinality of theset {(u + €) e T f(w,u +€) <1+ €},
then
N@)A(D(0,6/2))

_ z AD+€68/2)) < AD(w,1+ €+ (8/2))

(u+e)er
BL(uu+e)si+e

= 2(D(01+€+(6/2))).

Thatis, N(w) < A(D(0,1 + € + (6/2))/A(D(0,5/2)), which proves (a).

To prove (b), let (z2 — 1) € Band € > 0 be given, and set 28(z? — 1,0) = 0. By (a),
there isan m € N such that card{(u + €) eT:f(u,u+€) <1+¢€} <mforeveryu €T,
By a standard maximality argument, there is a partition I' = T; U ... U [},,such that for every
i € {1,...,m}, the conditions u, (u + €) € I;and € > Oimply B(u,u+¢€) > 1+ €. But if
u, (u + e)satisfy the condition g (u, u + €) > 1 + €, then by the Mdébius invariance of fwe
have
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ﬂ(‘pu(zz - 1)» (pu+e(zz - 1))
= ﬁ(u»u + E) - ,B(fpu(zz - 1)7“) - ﬁ(u t €, (pu+e(zz - 1))
= ﬁ(u» u+ E) - ﬁ(‘pu(zz - 1)7 (pu(o)) - ﬁ(‘pu+e(0); (pu+e(zz - 1))
=Bfwu+e)—Lz*-1,0)—p(0,z2-1)>1+€—28(z%—1,0)
=1+e.
This completes the proof.
Corollary (6.3.26)[200]: For all u, (u + €), x, (x + €) € B we have

(1= [ DY (1 — |@yse(x + €212
|1 - <§0u(x), (pu+e(x + E))l
) (1 — [ul)Y2(1 - |u+ €]*)/?
|1 —(u,u+ €)|
Proof. For a,a+e€ €B, we have 1—|g,(a+e)|?=1—|a|>)A —|a+€]|®)/|1-
(a,a + €)?|[79]. Thus if we write

< 26ﬁ(x,0)+ﬁ(x+e,0

_ (= aP)(1 = la+ e[

2
— 1 :
! 11— {a,a+¢€)?|
then
1 1 1+ a+e 2
log < -log [P ) < log :
a?—1"2 "1—|p,(a+¢€)l a?—1
Consequently
1 1
_ 2\5(1 _ 2\5
e~Blaate) < (1~ [al)2( = la + €[7)z < 2e B@a+e) (86)

|1 —{a,a+¢)
Foru, (u + €),x, (x + €) € B, by the M6bius invariance of the Bergman metric, we have
ﬂ((pu(zz - 1)» (pu+e(x + 6)) = B(u:u + E) - ﬁ((pu(x),u) - ﬂ((pu+e(x + E):u + E)
=pBw,u+e)—Bx0)—p(x+¢ez*—1).
Combining (86) with this inequality, we find that
(1 = o, ()DL = |@y e (x + €)[)?

|1 - (‘pu(x): (pu+6(x + E))l
< 2eﬁ(x,0)+ﬁ(x+e,0)e—B(u,u+e)

[ul)Y2(1 - |u + €|?)?/?
|1 — (u,u + €)|

< 2e _3(<Pu(x);(l’u+e(x+6))

< 2BE0)+B(x+€0) -

This proves the lemma.
Corollary (6.3.27)[200]: Let I'be a separated set in B. Then there isa 0 < C(I') < oosuch
that

(1182 =121 — |u +€[)/?

Z < |1 — (%2 —1,u+€)
< C(N)(1 - g7 = 1]7)¢n+re

for every (2 — 1) € B.
Proof. If T is a separated set in B, then there isa § > 0 such that S (u,u + €) = &forall e >
0in T. Thus D(u,6/2) N D(u+¢,6/2) = ¢for all e >0in T. If (W?—-1)€eD(u+
€,6/2), then (u+¢€)€DW?—1,6/2) = ¢,2_,(D(0,6/2)). Thus If (w?2—-1)€
D(u+¢€,6/2), thenthereisau’'+e € D(u+¢€,6/2) suchthat u + e =¢,2_,(u' +€).
Let (§2 — 1) € B. Since {* — 1 = ¢;2_,(0), we can apply Corollary (6.3.27) to obtain
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1 1
1—-182—11H)Y2(1 — |u + €|*)/? 5(1—182—-1|9)2(1 — |w? — 1]?)2
(1-1$ 1©)7°(1—| 1©) SZei( | 17)2(1—| 1©) 87)

|1 -(?—1Lu+e) |1—(§?—1Lw?—-1)]
for every (w2 —1) € D(u+¢,6/2). Also, since u+e=¢@,2_(u' +€) and u’' +€ €
D(0,5/2), we have
1—Jut+el?=1—|@,2_,(U +¢€)|?
LA+ el - [w? - 1)

|1 —(u' +¢e,w?2 —1)|?
< 1 — 2__1 2
_1—|u’+6|2( Iw »
< 4ezﬂ(u’+e,0)(1 _ |W2 _ 1|2)
< 4e%(1—|w? — 1]?). (88)
SetC, = (2e5/2)n+1(4e5)(4n+1)/8. Then it follows from (87) and (88) that
122 _112M1/2(1 27172\ Mt
(1 — €2 = 12)Y2(1 — Ju + €[?) (1 b 4 e[y onsnye
|11—(2—Lu+e)

2 2\1/2 2 2y1/2\ t1
<C (1_ |E _1| ) / (1_ |W - 1| ) / (1_ |W2 _1|2)(4n+1)/8
- |1 —(52—1,w? —1)|

for every (w? — 1) € D(u + ¢, 8/2). Hence for each (2 — 1) € Bwe have

(11— 1= 1)1~ |u+ €DV
z < |1 — (&2 —1,u+¢€)|

2 n+1
) (1 _ |u + 6|2)(4n+1)/8

(u+e)er
1 1\ N+l
Z (i J (1-1&* =121 = [w? = 1]*)z
- 5 |1 —(52—-1,w2—1)
(ute)er | <D (u + €, 7)) D(u+6,g>
4an+1
x(1—|w?-1]?)"8 di(w?-1)
1 1\ N+l
- C1 j (1—-1&* =121 — [w? = 1]*)2
o 1—(2-1,w2-1
A <D (u + €, %)) | € v )
in+1
x (1—|w?—=1|)"8 di(w?-1). (89)

To estimate the last integral, note that
1

(1- 182 = 1122 (1 - |pge, 62 - DI)?

[1- (62 =1, 952152 = D)
Thus, making the substitution w? — 1 = @z2_, ({* — 1) and using the Mdbius invariance of
dA, we have

=1 -12 - 1)V
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(4n+1)

(n+1) 2
— [a-12 =17 (1-lppn@® - DY) T aAgt -

(4n+1)

) @

_ iy (1 -8 -1HA - 12 - 1)
—j(l—l(z—llz) ( (1_<€2_1’{2_1)2)
— 1)

— (1 _ |€2 _ 1|2)(4n+1)/8f
= (%)

To further estimate (), let dobe the standard spherical measure on the unit sphere
{x € C™:|x| = 1}. There is a constant C,such that
j do(x) - C,
1\ — — |72 — 1|2)1/4
|1 _ (ZZ _ 1’x>|n+(4) (1 |Z 1| )
for every (z? — 1) € B [79]. Combining this with the radial-spherical decomposition d (u +

€) = 2n(1 + €)?"1d(1 + €)do of the volume measure, we have
1

diu+e)((%—-1)

11— (2 —1,¢2 - )@ - g2 - 1238

j du+e)({*—1) - j C,2n(1 + €)2"1d(1 + €)
|1 —(2—-1,{2 - 1)|"+(%)(1 —1¢2 — 1[2)3/8 B ) (1 — (14 €)2)W/D+G/®)
fd(1-2¢) 8

SnCZ (26—)5/8—§n 2.
0

Therefore
(%) < 3nC,(1 — |E2 — 1|2)@n+D)/8,
Substituting this in (89), we conclude that the desired inequality holds for the constant
3nC, G,
c(r) = |
A(D(0,5/2))

This completes the proof.

Corollary (6.3.28)[200]: There is a constant 0 < C, 5 < 1 such that ||E,z_,|| < C, 5 for
every (z2 — 1) € D(0,2).

Proof. By Corollary (6.3.26), for u, (u + €), (z? — 1) € Bwe have

(K 21 Kz = ((1 —19ure(z = DIV (1 = |gu (2 - 1>|2>1/2>”“
Pure 71y TeulETmD 11— (pu(z2 = 1), Puse(z2 = D)
1 1 n+1
< (262[)’(22—1,0))n+1 (1= [ul®»z( - |u + €]*)2 (90)
B 11— (w,u+€)l
Let {e,: u € L}be an orthonormal set. For each (z2 — 1) € B, define the operator
Fo = z €0 ® Ky, (1. 1)
ueLl
SinceE ,=F4% .F2_,and (|F2 .F .|| =||F,_,F>_.||, it suffices to estimate the
z°-1 zc—=1" z°-1 z4—-1" z°-1 z4=1% z4-1

later. We have
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FpoaFpoy = Z (Kgpysez2-1) Koy (z2-1))6u @ Eure:
u,(u+e)eL

Now suppose that (z2 — 1) € D(0,2) and write C; = (2e*)™*1. By (40), for every vector
X = Yy er Xy€,We have

(Fzz_le*z_lx,X> < Z |<k<Pu+e(Zz_1)’ k(pu(zz—1))||xu||xu+6|

u,(u+e)eL
1 1 n+1
1—1|ul®)z(1—|u+e€l?)z
S Cl ( | | ) ( | | ) |xu||xu+e|
|1 —(u,u + €)|
u,(ut+e)eL
=€) Irl G+ e, (92)
uerL
where
(1= [ul)2(1 — Ju+ e[\
(x + e)u = Z |xu+6|
|1 —(u,u + €)
(u+e)eLl

for each u € L. Next we apply the Schur test. Indeed by the Cauchy-Schwarz inequality and
Corollary (6.3.27), we have

4n+1
(x+e)2<CLA—[u®) 8
((1 — ulH)Y2(1 — |u + e|2)1/2>"“ Xsel?
_ In+1"
(ute)eLl |1 (u,u+6)| (1 - |u+6|2) 8

Applying Corollary (6.3.27) again, we have
2 4n+1
Z(x +6)2 <C(L) Z ol — 2(1 —ul?y

UueL (u+e)eL (1 - |u + E|2) 8 wueL
(1= [ul)2(1 — Ju+ e[\
X
|1 —(u,u+e)
X 2 4n+1
< c2(0) el ey

(u+e)eL (1 — |u + Elz) 8

=C(0) ) el

(u+e)eLl
Combining this with (92), we find that

(FpoaFe 200 < GO ) [usel® = Gl
ueLl
Since the vector xis arbitrary, we conclude that ||E,z_,|| = ||FZz_1FZ*2_1|| < C,C(L) for

every (z% — 1) € D(0,2). This completes the proof.
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Corollary (6.3.29)[200]: Given any separated set I' in B, there exists a constant 0 < (4 +
€)(I') < cosuch that the following estimate holds: Let {h,:u € I'}be functions in

H> (B)such that sup||h, |l < oo, and let {e,: u € T'}be any orthonormal set. Then
uer

D Wehy) ®ey| < (A+ M suplihyle
Ter uer
Proof. Given T, {h,:u € T'}and {e,: u € I'}as in the statement, let us write

A= Z(Uuhu) R e,
uer
for convenience. By (38), the self-adjoint Toeplitz operator Ty o_is invertible with

”Tz:é,ﬁ | < 1. Therefore ||A|| = ”TZE}%TZ‘%A” < ||Tz¢.mA”. Combining this with (39),
we see that
Al < A(D(O,Z))( sup  |[E,z_,All. (93)

22-1)eD(0,2)
Thus it suffices to estimate ||E,2_,A|lfor (z?2 — 1) € D(0,2). Let F,-_,be the operator

defined by (91). Then Corollary (6.3.28) implies that ||F._,|| < C,%*for (z2—1) €
D(0,2). Hence

1
IE,2_1 All < C2,|IF2_,Al|(2% — 1) € D(0,2). (94)
Consequently, we only need to estimate ||F,z_,A]|.
To estimate ||F,2_, A||, let us denote

H = Sullgllhulloo-
ue
Let (z2 — 1) € D(0,2). Then note that
Fpe 1A= z Z(Uu+ehu+er k(pu(zz—1)>6u Q eyte- (95)

u€eL uer
Since Uyiehyse = kuse - Muse © Puse, the reproducing property of k, ,2_qygives us

(Uusehuse kgou(zz—l)) = Nyse (§0u+6((pu(zz - 1))) (kyute kgou(zz—1)>'
which is one of the key facts on which depends. Thus
|(Uu+ehu+e k(pu(zz—l))l < H|(ku+e' k(pu(zz—1)>|
_H <<1 —Ju+e)V2(1 — g, (2% - 1)|2)1/2>"“
B 11— (@, (z2 —1),u +€)| '
Since u + € = ¢,,,.(0) and (z2 — 1) € D(0,2), an application of Corollary (6.3.26) gives
us

(1—Ju+€l®)z(1 - |u]*)z
|1 — (u,u + €)|

|(Uu+ehu+6» k(pu(zz—l))l < (iH ) (96)

where C; = (2e2)™*1. Now consider vectors

X = Z Xy+e€yte andx + € = Z(x + €).€y -
u€er ueLl
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It follows from (95) and (96) that
|(F,2_,Ax, x + €)]

(11— |u+el®z(1 - |ul?)z
<cC HZZ
1 |1_<u,u+€>| |xu+e||(x
ueL uerlr
+ Ol = GH ) (@t I+ e, (97)
UuerL

where

. 2N1/2(1 _ [4,1271/2\ 1
@+u= Y (TS e

|1 —(u,u+e)
uer

u € L. We apply the Schur test as we did in the proof of Corollary (6.3.28). By the Cauchy-

Schwarz inequality and the bound given in Corollary (6.3.27), we have
in+1

(a+e)y<CMA-uh s
i 1/ . 1/ n+1
o Z ((1 lu+el?)V2(1 = [ul*) 2) |Xurel®

_ in+1’
(u+e)er |1 <u,u T E>| (1 - |u + Elz) 8

u € L. Applying Corollary (6.3.27) again, we obtain

Yararscm Y Ya-uhs

ueL (ut+e)elr ueLl
((1 _ |u + €|2)1/2(1 _ |u|2)1/2>n+1 |xu+e|2
— in+1
|1 (u,u+e)| (1—|u+e|2)T
an+1 Xyl
=CCw) ) (A-lutel) s T
(u+e)er (1 - |u + Elz) 8

= C(DCLD)|lx]I*.

Combining this with (97), we obtain
[(F2_1A%,x + €)| < C{C(T)C(L}*H]x|ll|x + €ll.
Since the vectors xand (x + €)are arbitrary, this means
IF 21 All < C{C(DC(DY/*H

for (z2 — 1) € D(0,2). Recalling (93) and (94), we see that the lemma holds for the constant

(A +e)(T) = A(D(0,2)) L2 C{C(T)C(L)Y2.
This completes the proof.

Corollary (6.3.30)[200]: Suppose that Tis a separated set in B. Furthermore, suppose that
{c,:u € T’} are complex numbers satisfying the condition

sup|cy,| < oo. (98)
uer
Then for each (z% — 1) € B, the operator
Y,e, = Z cuky, 21 @ ko (99)

uer

223



is bounded on the Bergman space. Moreover, the map z? — 1+ Y,2_,from B into
B(L% (B, d(u + €)))is continuous with respect to the operator norm.
Proof. For u, (z2 — 1) € B, simple computation shows that

11— (wu+e\""
Uukzz1 = 1—(u,u+e) Pu(z=1)

(100)

Therefore
kpua ® koyay = Uuk,2_1) @ (Uyk,2_).
Let {e,: u € I'}be an orthonormal set. Then for every (z2 — 1) € Bwe have the factorization
Yzz—l = Azz_1(AZZ_1 + 6),
where

Ao, = Z Uk ) @ e and Ay, +e= Z(Uukzz_l) Re,.
uer uer

Applying Corollary (6.3.29) to the case h, = c, k,2_,,u € ', we see that each A,2_,is a
bounded operator. Similarly, each (A4,2_, +¢€)is also bounded. Hence Y,2_, =
A,z (A2_, + €)is bounded.

To show that the map z2 — 1+ Y 2_,is continuous with respect to the operator
norm, it suffices to show that the maps z2 — 1+ A,z_jand z2 — 1+ A,2_, + eare
continuous with respect to the operator norm. Since (A4,2_, + €)is just a special case of
A,2_,, it suffices to consider the map z2 — 1 +— A,z_;.

For any (z% — 1), (w? — 1) € B, we have

Az g —Ay2 4 = z Cu(Uu(kzz—l - sz—l)) X ey.
u€er

Applying Corollary (6.3.29) to the case where h,, = ¢, (k,2_; — k,,2_;),u € ', we find that
”Azz—l - Aw2—1” < (A + 6)(F)C”kzz—1 - kW2—1”oo ’

where C = sup|c,|. For each (z? — 1) € B, it is elementary that
u€er

W2_11i—r22_1”k22—1 - kW2—1“°° = 0.

Hence the map z% — 1 — A,2_,is continuous with respect to operator norm. This completes
the proof.

Corollary (6.3.31)[200]: For every (n—1)/(n+1)<1—¢, € < 1we have TW =
C*(A4_¢). Consequently, TW =T = C*(A,_,).

Proof. Let (n —1)/(n+ 1) <1 —¢€, € <1 be given. By the fact that A;_.is a *-algebra
mentioned above, C*(A;_,) is just the norm closure of A,_.. Since we also know that

Ai_¢ D {TZ frmi 0 fm € L7(B,d(u + e))}, Corollary (6.3.31) will follow if we can show
m m

that A, _, < 7M. We prove this inclusion into two steps.
(i) Let (A+¢€) € A;_cbe given. As the first step, let us show that Ty (A +

)Ty o € T™. Indeed it follows from (40) that

Ty oA+ OTs 0 = f f E,z. (A + €)E,2_dA(w? — 1)dA(z% — 1).(101)

D(0,2)xD(0,2)
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Consider the map

w?2—-1,z2—1)E,2_;(A+€)E,2_, (102)
from B x Binto B(L% (B, d(u + €))). Proposition (6.3.12) tells us that the range of map
(102) is contained in 771, Hence every Riemann sum corresponding to the integral in (101)
belongs to 7. On the other hand, by Proposition (102), the map z? — 1 E,._,is
continuous with respect to the operator norm. Hence map (54) is also continuous with
respect to the operator norm. Since the closure of D(0,2) x D(0,2) is a compact subset of
B X B,the norm continuity of (54) means that the integral in (101) is the limit with respect
to the operator norm of a sequence of Riemann sums 1 —¢;,1 —¢€,, ...,1 — €, .... Since
each (1 — €) belongs to 7™, so does Ty o (A+ )Ty .

(if) Given (4 + €) € A, _, we will now show that (4 +€) € T™). Since Ty o, €
A, _cand since A;_.is an algebra, we have TSy (A+6TE, € Aq_forall jkeZ,.
Zq)m Zcbm

Thus it follows from (i) that
szﬂcpm(A + )Ty, € TMforallintegersj =0 andk = 0.  (103)

Let C* (TZ q,m) be the unital C*-algebra generated by Ty ¢_. Since Ty o_ is self-adjoint,
(103) implies that
Ty o, X(A + €)Ty o, X € TWfor every X € C* (TZ q,m).

We again use the invertibility of Ty ¢_, which is guaranteed by (39). It is elementary that

the inverse Tg}bm, once it exists, must belong to the C*-algebra C* (TZ q,m). Thus, letting

X = Tz‘}pmin the above, we obtain (4 + €) € 7M., This completes the proof of Corollary

(6.3.31).
Corollary (6.3.32)[200]: Let (n—1)/(n+1)<1—¢€, € <1 be given. If (A+¢€) €
A, _., then for every separated set T'in B and every pair of (z2 — 1), (w? — 1) € B we have
(1-e)(n+1)
_ 1—|u+el? 2
lim sup Z (A + g2y K-\ T

uer
Buu+e)>1+€

% (104)
and
(1-e)(n+1)
’ k A+ ek —1 —lut el 2
61—>n;) ilélr? Z |( (pu(zz—l)’ ( E) (Pu+e(W2_1)>| 1 — |u|2

u€er
Buu+e)>1+€
= 0. (105)
Proof. Given such (1 —€)and (A + €) € A;_., by Definition (1.1) we have
(1-e)(n+1)
lim su j (A + )k, kp2s))| Sl tt" DANE dA(g2 - 1)
€00 3 B (1—]xP2
B\D(x,1+€)
=0 (106)
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and
(1-e)(n+1)

2
) dA(¢? — 1)

lim sup j (A" + )ky, ke2 )|<(1_ " —11%)
€00 et (1 —[x[)?
B\D(x,1+€)
=0. (107)
Let T, (z%2 —1)and (w? — 1)also be given as in the lemma. Denote ¢ = D(0,1) and
Gwz_1 = @y2_1(G). Then it is easy to see that G,,2_; < D(0,1 + B(w? —1,0)). For h €
L2(B,d(u + €))and (u + €) € T, we have

1
h((pwz—l(wz - 1)) = (ho@yeo QDWZ_l)(O) = MJ ho@yieo®y2_qdA
G

= % f hdA = % J hdA

((Pu+e°<PW2_1)(G) (Pu+e(GW2_1)

1 (h,kz2_q)
@ | G-y

<Pu+e(GW2_1

Thus

(o Ky ewr-1)

1 L lpurew? — D2\
- s j (h,qu_l)( T ) A - 1).

Pu+te GW2—1)

If ((* = 1) € puse(Gyz_y), then {? —1 =g, (§? — 1) for some (§* — 1) € G2, C
D(0,1 + B(w? — 1,0)), which means

1—]02 =12 =1— |y (62 —1)|% = 1—-lu+eHA-1¢2-1]2)

T— @2 = Lu+ ol
1
> 2 (1= 182 = 1)1 = lu + ).

On the other hand,
(1—Ju+el>)(1—|w?-1]%)
1 — 2 _ 1 2 < 1-— 2 .
|<pu+e(W )l |1—(W2—1,u+6>|2 —1_|W2_1|( |u+E| )
Hence there isa 0 < ¢; < cowhich depends only on nand (w? — 1)such that

) (1-e)(n+1)
(kg )| (= u+el®) 2

1+¢ 1-e)(n+1
<

( )
e B Y CE TR TO pa e VICEER

k
‘Pu+e(GW2_1)
forallh € L2(B,d(u + €))and (u + €) € T'. Applying this inequality to the case where h =
(A+e)k u €T, we have

(Pu(zz_l)'
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(1-e)(n+1)
1—|u+ e|2> 2

|((A + E)kﬁou(zz—l)’k§0u+e(W2_1)>| ( 1-— |u|2

1+¢
=20 |

‘Pu+e(Gw2—1)

(1-e)(n+1)
IR
+ E)kqou(zz—l)'kiz—l) 1— |ul? dA(¢c —-1),

(u+¢€) €T.Since
(1—[ul®)(1—12% - 1/?)

1- Z-1|* = < 1—|ul?),
|§0u(z )l |1_<Zz_1’u)|2 —1_|Z2_1|( |u| )
there isa 0 < €, < cowhich depends only on nand z2 — 1such that
(1-e)(n+1)
1—|u+el? 2
|<(A + E)kfpu(zz_l)' k‘Pu+e(W2_1))| 1— |u|2
Q1+e)(1+¢€y)
T | @+ Ok
‘Pu+6(Gw2—1)
(1-e)(n+1)
< il Ll ) i dA(Z% = 1) (108)
X —1),
1—-lpu(z? —DJ?

u,(u+e)€er.SetL =1+ p(w?—1,0) + f(z? — 1,0) and considerany € > 0. If u, (u +
€) el are such that B(u,u+¢€)>L+e, then for every ((?>-—1) € ¢,,.(G,) C
Oute (D(O,l + B(w? — 1,0))) we have
Blpu(z> = 1),0* = 1) 2 Bwu+e€) - B(w, 9, (z* = 1))

>L+e—1—Bw?—-10)—p(=z*-10) =e. (109)

Thus the combination of (108) and (109) gives us
(1-e)(n+1)

1—|u+ E|2> 2

|((A + E)krpu(zz—l)' (A + E)k<Pu+e(W2_1)>| ( 1— |ul?

(u+e)er
Buu+e)>L+e

1+e€6)A+e€y) 5
= A(G) f z X(pu+f(6w2—1) (Z B 1)

By (z2-1),2-1)>€ (ut+e)Er
X |((A + 6)k<pu(22—1)' kzz_l)l

) ) (1-e)(n+1)
1—¢*—1] ) 2
X dA(Z2 - 1), 110
(1— [0u D ‘ (110)
u € I'. By the Mdbius invariance of fand the fact that G,,2_; < D(0,1 + f(w? — 1,0)), we

have @y4e(Gy2_1) € D(u+€,1+ B(w? —1,0)). Since T is separated, it follows from

Corollary (6.3.25) (a) that there isan N € Nwhich depends only on T and (w? — 1)such that
the inequality
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Z X§0u+e(GW2_1) =N

(u+e)er
holds on B. Substituting this in (110), we conclude that
(1-e)(n+1)
1—|u+e€l? 2
|<(A + E)kfpu(zz_l)’k‘Pu+e(W2_1))| < 1— |u|2

(u+e)er
Buu+e)>L+e

< (1+€6)A+€)N
- A(G)

((A + E)ktpu(zz—l)' k{Z_l)

Bpu(z2-1),2-1)>€
(1-e)(n+1)

1-1¢* -1 )f
X dA((? —1
(1— 02— D S
for every u € I'. By this inequality, (104) follows from (106). Since
((A+ )y, 22-1) kg cw2-1) = (A" + Ry, 221y kg, cw2-),
(105) follows from (107) by the same argument. This completes the proof.

Corollary (6.3.33)[200]: Let(n — 1)/(n+ 1) <1 —€,e < 1.If(A+¢€) € A,_,, thenfor
every pair of (z2 —1),(w? —1) e Bwe have E,,2_, (A + €)E,2_, € D.
Proof.Let(n—1)/(n+1)<1—¢,e<1.For(A+¢€) € A;_and(z2—1),(w? —1) €
B, we have

Ey2y(A+€)E,2_y

Kpprew?-1) @ kg cwz—1) - (A+€) - ky z2-1) R ky (2-1)

u,(u+e)eL

= z ((A+ kg, z2-1) Kpprewz-1) Ky ew?-1) @ K221y
u,(u+e)eL
Thus forany e > 0,we canwrite E ,2_; (A + €)E,2_; = Vi, + Wi, Where

Vige = z ((A+ kg, 2-1) Koy cw?-1) Ky cw?-1) @ Ky 22-1)
u,(u+e)eL
L(uu+e)si+e
and

Wite = z ((A+ kg, 2-1) Koy v -1y cw?-1) @ Ky 221 -
u,(u+e)eL
B(uu+e)>1+e€
Obviously, the proposition will follow if we can prove the following two statements:

(i) lim [ W]l = 0.
(ii) V; .. € span(D,)for everye > 0.

To prove (i), note that by (100) and Corollary (6.3.29), there are constants
(14 €1),(1 + €;)such that
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2 2
ZI(h,k%(Zz_ml < (1 + €)llh]|*and z kg, .we-1))|” < (L + &)IRII>(111)
UueL (u+e)eL

for every h € L4 (B,d(u + €)). Given h, (h + €) € L3(B,d(u + €)), we have

[(Wireh, b+ €)| < 2 |<(A + e)kqou(zz—l)r k(pu+6(w2—1)>|‘3utu+er (112)
u,(u+e)eL
Buu+e)>1+€
where

&y = |(hky, 2 |andty e = [(ky. . w2_1) R+ €).
We apply the Schur test one more time. Indeed for each u € £, let us write

Yu = Z |<(A + E)k(l’u(zz_l)’ k‘Pu+e(W2_1))|tu+E (113)
(u+e)eL
Buu+e)>1+€
Then for each u € L, the Cauchy-Schwarz inequality gives us

2 , 1= m+1)
s ) [+ kg, kg )| A= lu+el) 2
(u+e)eL
Buu+e)>1+€
tire
X z |<(A + E)kfpu(zz_l)' k‘Pu+e(W2—1))| (1-€)(n+1)
(UFe)EL A1—|u+e€l?) 2
B(uu+e)>1+e€

<H(
+ €) Z [((4

(u+e)eLl

Buu+e)>1+e€
(A-e)(n+1)
1 — |ul? 2 ,
t kg2 kg0 (T 1 o tire
where
H(1+€)= sup z |((A
(§*-1)eL (u+e)eLl
B(é2—-1u+te)>1+€
(1-e)(n+1)
1—|ul? 2
+ E)k(PgZ_l(Zz_l)'k‘Pu+e(W2_1)>| 1— |€2 — 1|2
Therefore
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Zy% < H(1

ueLl
) D S (¢
ueL (ute)el
Buu+e)>1+€
A-e)(n+1)
1 — |ul? 2 X
+ e)kq’u(zz_l)’ k‘Pu+e(W2_1)>| 1— |u + e—lZ tu+6
—HO+O) ) the ) [@A+Oky,ern Ky, )]
(u+e)eL ueL
Luu+e)>1+e€
(1—e)(n+1)
-z \ 2 ,
X m SH(1+E)G(1+€) z tiver
(u+e)eLl
where
G(14+€)= sup Z |((A
(52_1)EL UEL
B(u,é%2-1)>1+€
(A-e)(n+1)

1— |ul? 2
T Okgu-1y ke, w0\ Tz o1
By (112) and (113), we now have

1/2 1/2
(Wrschh+ el <D sy < D st ] D 4

UeL u€eL uerL
1/2 1/2

< {H(1 + 6)G(1 + €)}1/2 2 62 2 £2
uel uel
Combining this with (111), we find that
[(Wiseh,h + ) < {(1+ €)1 + )H( + €)G(1 + €)}?||RlllIh + €ll.
Since h, (h + €) € L%2(B,d(u + €))are arbitrary, this means
Wire <{(1+€)A+&)H(A+€)G(1 + e)}/2
Applying Corollary (6.3.32), we have gLrg H(1l4+¢€)=0 and 611_)rg) G(1+¢€)=0.
Therefore Eli_)r£10||W1+6|| = 0 as promised.

We now turn to the proof of (ii). First of all, given an € > 0, for each (u + €) € Lwe

define
Foie=fuel:B(u,u+e)<1+e€l
By Corollary (6.3.25) (a), there is an N € Nsuch that
card(F,,.) < N
for every (u + €) € L. Also, by Corollary (6.3.25) (b), for the given (w? — 1) € B, there is
a partition
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L=L,U..UL,
such that for each ie{l,..,m}, if u+eu+e" €liand u+e+#u+e', then
B(PureW? — 1), ¢, c(W? — 1)) = 1. That is, for each i € {1, ...,m}, the set
Ki = {¢u+e(W2 - 1): (u + 6) € Li}
Is separated. We have V;, . = X; + - + X,,,, Where

Xi - 2 Z <(A + E)k(pU(Zz_l)' k(pu+E(W2_1))k(Pu+e(W2—1) ® k¢u(zz—1)’

Putre(W2—1)EK; UEF 4¢
i € {1,...,m}. To prove (ii), it suffices to show that X; € span(D,) of every i € {1, ..., m}.
For this purpose we further decompose each K;. Indeed for each pair of i € {1, ..., m}and
j €{1,.., N}, we define
Lij={(u+e)€Li:card(Fy.c) =j} and K;;= {goquE(w2 —1):(u+e) € Li‘j}.
Then X; = X;; +--- + X; , Where

Xi'j - Z z <(A + 6)k¢u(22_1)’ k‘Pu+e(W2_1)>k‘Pu+e(W2_1) ® k@u(zz_l)’
Pure(W?—1)EK; j UEFy 4¢

i €{1,..,m}andj € {1, ..., N}. Thus it suffices to show that X; ; € span(D,) for every such

pair of i,j. But it is obvious that given a pair of such i, j, we can define maps
L )
yifj)’ 'ylS‘J’) Ki,j - B
such that

(0u(z? = 1):u € Fued = 1P (0ureW? = 1)), o, v (@use w? - 1)
for every (u+e)€L;;. Thus X;; = Xl.(}) + -+ Xl.(j.), where for each (u+¢)€
{1, ..., j}we have

Xi(,?-}-E) — z ((A+ E)kyi(jﬁ)(fz—l)’ k§2—1> kfz—l (0% k}’i(,}we)(fz—l)'
UEFy +¢
Hence the proof will be complete if we can show that yi(’}“'e)
indicesi € {1,...,m},j €{1,..,N}and (u +¢€) € {1, ..., j}.
By the above definitions, for every such triple of i,j,u + ¢, if ((* — 1) € K; ;, then
there exist (u + €) € L; ;and u € F,,csuch that > — 1 = ¢, (w?* — 1) and yig'.““e) (82 —

1) = ¢, (z% — 1). Therefore
B (82— 1L¥596 - 1) = B(pureW? — 1), 9, (22 - 1))
< B(QuseW? =1, u+€) + Bu+eu) + B(u, 9 (22 — 1))
<pfWwW?-10+1+e+p(0,2z%2-1).

This shows that the map Vif}ﬁe): K; ; — Bsatisfies condition (57). By Definition (6.3.14)

(a), we have Xi(”j“) € (D,). This completes the proof of Corollary (6.3.33).

€ (D,)for every triple of

Corollary (6.3.34)[200]: Suppose that T'is a separated set in B. Furthermore, suppose that
{c,:u € T}are complex numbers for which (98) holds. Then for each (z? — 1) € B, the
operator Y ,2_, defined by (99) belongs to 7.
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Proof. (1) Let us first show that Y, € 7, Since T is separated, there is § > 0 such that
B(u,u+¢€)=>d6forall e #0inT. Thatis, if u,(u+¢€) €l and € # 0, then D(u,6/2) N
D(u,6/2) =@.Foreach 0 < e < 6/2, define the operator

A= | Vosde-v.
A(D(O e))D(0 5
By the norm continuity of the map z2 — 1 — Y ,._, provided by Corollary (6.3.30), we have
lim|[Yo — Yell = 0.
€
Thus to prove the membership Y, € 7, it suffices to show that each A.is a Toeplitz
operator with a bounded symbol. Indeed by the M6bius invariance of fand dA, we have

fe= A(D(o, 6))2 Ky (z2-1) ® Ky (z2-1)dA(z* — 1)

uel'  p(o,e)

2 _
- 0@ 6))2 j Koy @ ko dA(W? — 1)

uerl D(u,e)

= JfE(WZ — Dky2_q ® ky2z_1dA(w? — 1),

where

1
=——= ) cC :
fe A(D(O, 6)); uXD(u,€)
Since, 0 <e<6/2, we have D(u,e) nD(u+€,¢) = @for € # 0in T. Hence f; €
L*(B,d(u + €)). By (34), we have A, = T;_. This proves the membership Y, € 7.

(ii) Now consider an arbitrary (z? — 1) € B. By Corollary (6.3.25) (b), there is a
partition ' =T, U ... U I},such that for every i € {1,...,m}, the conditions u, (u+€) €
T;and € # 0imply B(¢,(z% — 1), @u1e(z? — 1)) = 1. That is, for each i € {1, ..., m}, the
set

G = {pu(z> - 1D:u €Ty}
is separated. Obviusly, Y, 2_; =Y ,2_qy1 + -+ Y (,2_4y ., Where

Y21 = z Cuky,(z2-1) & Kpyz2-1)»
Pu(z%-1)€G;
i=1,..,mBy(1)wehave Yz ;;, € TMforeveryi € {1,..,m}. Hence Y,._, € T,
Corollary (6.3.35)[200]: Let I' be a separated set in B and suppose that {c,:u € I'}is a
bounded set of complex coefficients. Then for every pair of (a®* — 1) € Z% and (z2 — 1) €
B, we have

Z cu(UyKy2_) @ (UyKy2_q,02_1) €TW.

uer
Proof. We prove the proposition by an induction on |a? — 1]. If |a? — 1| = 0, i.e. a? = 1,
then
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(UuKzz—l) ® (UuKzz—li)) = (UuKzz—l) ® (UuKzz—l)
= (1— |22 — 1|2)n+1 Kp,z2-1) @ Ko, (z2-1)-
Hence the case where |a? — 1| = 0 follows from Corollary (6.3.34). Suppose that k €
Z.and that the proposition holds true for every (a? — 1) € Z%satisfying the condition
|a? — 1| < k. Now consider the case where (a? — 1) € Z%is such that |a? — 1| = k + 1.
Then we can decompose (a? — 1)in the form
a’—1=2a+e,

where |a| = kand |a + €| = 1. That is, there is some (u + €) € {1, ..., n}such that the (u +
€) —th component of (a + €)is 1 and the other components of (a + €)are all 0. We will also
consider (a + €)as a vector in C™. By the induction hypothesis, we have

Z cu(UyKy2_1) @ (UyK (12_1y,042-1)) € T Pforevery (22 —1) € B. (114)
uer
Let (z2 — 1) € Bbe given. Then there isan e = €(z? — 1) > 0 suchthat z2 — 1 + ¢ € Bfor

every c € C"satisfying the condition |c| < €. For each (1 —2¢) € [0,€], define the
operators

Aie = Z Cu(UuKzz—1+(1—26)(a+6)) X (UuKzz—1+(1—26)(a+6);a)

uer
and

Ai_ye+ €= z Cu(UuKzz—1+i(1—26)(a+e)) X (UuKzz—1+i(1—26)(a+e);a)'
uer
Also, we define

X = z Cu{(n + 1 + k)(UuKZZ—l) ® (UUK(ZZ—l);((ZZ—l)) + (Tl + 1)(UUK(ZZ—1);((1+6))

uer
X (UuK(zz—l);a)}
and

Y = z Cu{(n + 1 + k)(UuKZZ—l) ® (UuK(zz—l);(az—l)) - (Tl + 1)(UUK(ZZ—1);(CI,+E))

uer
03y (UuK(zz—l);a)} .
We will show that

_ 1
i =3¢ uze =40 - x| =0 (15)
and
_ 1
I, =g ez = A0 =] = (116)

Before getting to their proofs, let us first see the consequence of these limits. By (114) we
have A;_,. € TWand (4;_, + €) € TWfor all (1 — 2¢) € [0, €]. Hence it follows from
(115) and (116) that X,Y € 7M. Thus
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1
Z Cu(UuKzz—l) ® (UUK(Zz—l);(az—l)) = Z(n + 1 + k) (X + Y) € T(l) )

uer
completing the induction on |a? — 1].
Let us now turn to the proof of (69). Note that (1 — 2¢€) 1 (4;_c — 4p) = G1_3¢ +
H,_,., Where

1
Hi_ze = 1——262 Cu(UuKzz—1+(1—26)(a+e)) X {Uu(Kzz—1+(1—Ze)(a+e);a - K(zz—l);a)}

uer
and

1
Gi_ze = EZ Cu{Uu(Kzz—1+(1—26)(a+e) - Kzz—l)} X (UuK(zz—l);a)'
u€er
Similarly, we write X = V 4+ W, where

V= a1+ DUK ) ® (ViU aoyion)
uer
and

W = z cu(n+ 1)(UuK(zz—1);(a+e)) Y (UuU(zz—l);a)'
uerlr
since [|(1 — 26) " (Ay_pe — Ag) — XI| < l1Hy—ze = VI + 11G1_e — W, (115) will follow
if we can show

Jim NHy e = VI =0 (117)
and
lim (16 — W] = 0. (118)

To prove (117),for0 <1 —-2e <ewewrite H;_,, —V = A;_,. + € + T; _,., Where

Ai_zete= Z Cu(UuKzz—1+(1—26)(a+e))

uer

X {Uu((l - 26)_1(KZZ—1+(1—26)(CL+6);(1 - K(zz—l);a) —(n+1

+ k)k(ZZ—l);(az—l))}
and

Tl—ZE = (Tl +1+ k) z Cu{Uu(Kzz—1+(1—26)(a+e) - Kzz—l)}
uer

® (VuK(z2-1ya2-1))
Thus the proof of (117) is reduced to the proof of the fact that ||A;_,. + €|l = 0 and
IT;—,c = O]las (1 — 2€)descends to 0. To prove this, we pick an orthonormal set

{e,:u € T}and factor (A;_,. + €)in the form A,_,, +€ = (Agl_)ZE + 26)(/1523;‘6 + 2¢),
where

1
Ag—)ZE + 2e = z Cu(UuKzz—1+(1—26)(a+e)) X ey
uer
and
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2 -
Ag—)ZE + 26 = Z{Uu((l - 26) 1(KZZ—26(Q+6);G, - K(Zz_l);a) - (Tl + 1
u€er

+ k)k(zz—l);(az—l))} ® eu.

Set 1 + € = sup|cy|. Then it follows from Corollary (6.3.29) that
uer

1
A, +2¢|| = W+ A+ QMK 21426 @il
and
(2)
||A1—26 + 26”
<A+e)D)
x ||(1 - 26)_1(KZZ—1+(1—26)(a+6);a - K(z2—1);a) —(n+1
+ k)k(Zz—l);(O_’z—l)”OO'
Since 2a + € = a? — 1and k = |a|, by (68) and elementary algebra, we have
1112%0”(1 —26) " (K 2_14(1-26)(@+era — Kz1ya) = (n+ 1+ k)k(z2—1);(a2—1)||oo = 0.
Also, it is trivial that ||k,2_1,(1-26)(a+e)||_remains bounded as (1 — 2¢)descends to O.

Hence
Ay_pe + €] < ||A§1_)26 + 26” ||A§2_)26 + 26”

<1+e(A+ 6)(1“))2||l’622-1+(1—ze)(a+e)||oo

X ”(1 - 26)_1(Kzz—1+(1—26)(a+e);a - K(zz—l);a) —(n+1
+ k)k(zz—l);(az—l)”w -0

as (1 — 2¢)descends to 0. For T;_,, we have the factorization T;_,. = T . T®", where

1
Tl(—)ZE = (n +1+ k) Z Cu{Uu(Kzz—1+(1—26)(a+6) - Kzz—l)} ® €u
u€er
and

T® = (UK 2 -1yar-1) ® ew

uer

By Corollary (6329), ||T\0[ <+ 1+ +)@A+OMk,21r0-26@re) =
K,2_4||_ ., and Tis a bounded operator. It is obvious that

1112%0||kzz—1+(1—26)(a+e) - Kzz—1||oo = 0.

Hence ||T; 5.l < ”Tl(f)zE ||T(2)|| — 0 as (1 — 2¢)descends to 0. This completes the proof
of (117).
To prove (118), note that

Gize =W = z Cu{Uu((l - 26)_1(KZZ—1+(1—26)(61+6) - Kzz—l) —(n

uer

+ 1)k(zz—1);(a+6))} X (UuK(zz—l);a) = Zl—ZET(Z)*:
where
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Zi_¢ = Z Cu{Uu((l - 26)_1(KZZ—1+(1—26)(61+6) - Kzz—l) —(n+ 1)k(zz—1);(a+e))}
uer
Xe,.
Applying Corollary (6.3.29) again, we have
1Z1-2¢ll < (1 4+ €)(A
+e)(D||(1 = 26) (K 2-141-26)ate) — Kz2-1) — (0 + 1)k(zz—1);(a+e)”oo'
Another easy exercise shows that

1112%0”(1 - 26)_1(KZZ—1+(1—26)((1+6) — Ky q)—(n+ 1)k(22—1);(a+e)||oo = 0.
Hence [|Gy_2c — Wl < 121 _2ll||T@]| - 0 as (1 — 2€)descends to 0, proving (118). Thus
we have completed the proof of (115).

The proof of (116) uses essentially the same argument as above, and the only

additional care that needs to be taken is the following: The rank-one operator ). f+ @ h +
m
eis linear with respect to the series ) fzand conjugate linear with respect to (h + €).
m

Moreover, the inner product ({2 — 1, z% — 1)on C"is conjugate linear with respect to (z2 —
1). These are the properties that determine the + and —signs in each term ¢, {... }in the sum
that defines the operator Y. This completes the proof of the proposition.

Corollary (6.3.36)[200]: Let I'be a separated set in B and let {c,: u € I'}be a bounded set
of complex coefficients. Then for every (w? — 1) € B we have

Z Cuky @ kg qpz_1) €TW. (119)
uerlr
Proof. For each (a? — 1) € Z7, define the monomial function

Pa21 (P = 1) = ({2 -1«
on B. Given a (w? — 1) € B, let us define
1—(w?-1u) >n+1

d,(w?—-1)=c, <|1 Wi L)

u €T. Note that K,.,2_, = p,z_,for every (a®—1) € Z}. Also, U K, = U; = k,for
every u € I'. Thus, applying Corollary (6.3.35) to the case where z? = 1, we have

)

Z d,(w? — Dk, ® (Uypoe_i) € TD (120)
u€er
for every (a? — 1) € Z%. Define the function

(h+€)y2,(*—1D=(*-1,w?-1), ({*-1)€B.
For each j € Z_, define the operator

A = Z d,(w? = Dk, @ (Uu(h+ )1, ).
. uer
Since each (h + e){Nz_lis in the linear span of {p,2_;: (@® — 1) € Z}}, (120) implies that
Aj € TMWfor every j€Z,. Let {e,:u € [}tbe an orthonormal set. Then we have the
factorization A; = T(A; + e)for each j € Z,, where
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7= dw? - Dk, @ eyandd; +e= ) (Uy(h+€)a ) Dey.
u€er u€er

Corollary (6.3.29) tells us that Tis a bounded operator. Define

G = z(Uquz—l) X ey .
uer

It also follows from Corollary (6.3.29) that

Z( ])'(A +oll<sA+eD||K,2_q — z(n+]])'(h+ )’ (121)

j=0 -
for every k € Z.. By the expansion formula
1 S (n+ )
D YT ¢, lel <1,
]:
and the fact that [w? — 1| < 1, we have
. (n J)'
lim |[K,2_ — Z (e ol._ |l =o.
Combining this with (121), we obtaln
k
n+j)! I
T | PR N ) 4| = Jim —Tz( ! 4 + o)l =o.
k—00 n!j!
j=0

Since each A;belongs to 7™, we conclude that

Z d,(w? — Dk, ® (U,K,2_y) = TG* € T,
uer

Since k,,2_; = (1 — |w? — 1|2)(*D/2K ., this implies

z d,(w? — Dy, @ (U,K,2_y) € T, (122)
uer

Recalling the definition of d,,(w? — 1) and (100), we see that (122) implies (119).
Corollary (6.3.37)[200]: We have D, c 7M.

Since 7Mis a norm closed linear subspace of B(L? (B, d(u + €))), Proposition (6.3.12)
follows immediately from Propositions (6.3.16) and (6.3.20).

Proof. Let I be a separated set in B, let {c,,: u € I'}be a bounded set of coefficients, and let
y:T — B be a map satisfying (58). Let K = {w? —1 € B: (0,w? — 1) < 1 + €}, where
(1 + €)is the constant that appears in (58). We want to show that the operator

T = z Cuku ® ky(u)

uer
belongs to 7M. For this purpose, define

Y) = @,(y(w),uer.
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Since ,B(u,y(u)) < 1 + ¢, by the Mdbius invariance of fand the fact ¢, (1) = 0, we have
B(0,9w)) = B(u,y(w)) < 1+ eforeveryu € I'. Thatis, Y(u) € Kforeveryu € T. Since

(pu(lp(u)) = y(u),u €T, by (3.1) we have

T = z dyky & (Uukllf(u)) ,

uer
where |d, | = |c,|for every u € T Let {e,: u € I'}be an orthonormal set. Then we have the

factorization T = A(A™ + €), where

A= Z dk, Qe and  A+e= Z(Uukw(u)) Re,.

uer uer

We again use the fact that the map z%2 — 1 +— k,2_,is ||-||-CoOntinuous. That is,
, lim, 1||kZz_1 —ky2_1lle =0  forevery (z>—1) €B.
we—1-z%—

Let € > 0 be given. Since Kis compact, there are non-empty open sets Qg, ..., Q,,in B and
(z2—1) € Q;,i=1,..,m,such that

i =1,...,m. From the open cover (123) we obtain a partition
K=E U..UE,
such that E; c Q;forevery i € {1, ..., m}. We now define
Fi = {u € Flp(U) € Ei},
k21— kyaw ” < eifu €T;. Foreveryi € {1, ...,m}, we also define

A +e= Z (Uukz§—1) X e, .

ue€r;

QuU..UuQ, DK (123)
and

ky2_q — kw2 ||oo <e wherever (w? —1) €

i=1,..,m. Then |

Foreachi € {1, ..., m}we have

AU+ €)= ) didey ® (Uikz_y) = ) dugky ® K21y,

uer; ue€r;
where |dy ;| = |dy[for u € T;. Thus it follows from Corollary (6.3.36) that
{A(4; +€), ., A(Al, + €)} c TD, (124)

On the other hand, we have

Ate—((A+e)+t Unte) =D > {U(kya —kyps)} ® e

i=1 uer;
Since the sets I, ..., I, form a partition of T', i.e., I; N I; = @whenever i # j, Corollary
(6.3.29) tells us that

l[A+e—((A1+e)++Ap+ e <(A+e)D) max sup ||k1,b(u) - kZ;_1||
<i<m uEFi i [e0]

< (A+e)(DNe.
Corollary (6.3.29) also tells us that Ais a bounded operator. Hence
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IT — (A(A1 +€) + -+ Ay + )l = |1A(A" + €) — (A(A1 + €) + -+ A(An + )l
< lAll]|(A* + &) — ((Af + &) + -+ (4 + ©)|
= lAll[[(A+€) — (A1 + &) + -+ (A + )| < IAlI(A + e)(De.

Since € > 0 is arbitrary, combining this inequality with (2.6), we conclude that T € 7.

This completes the proof of Corollary (6.3.37).

Corollary (6.3.38)[200]: There is a constant 0 < €, 4 < oo such that the following estimate

holds: Let e,:u € Z?"be any orthonormal set and let h, € #,,u € Z?", be functions

satisfying the condition sup |||, < oo. Then

Uu€ezZ2n

> W) ®ey|| < (1+e€0s) sup Iyl

u€ezzn
UEZ2n

Proof. Let us first estimate [(U,hy, U,tchyie)l. By (81), for u € Z2™we have
(Ui, Uy v ehiysie)|

N jhu(u — %+ Dhyye(u+ e — 3% + Dk (¢7

— Dkyre (@2 = De 1211 av (g2 — 1) (125)
Moreover,

(@2 = Dy @2 = D]l = e/ umealshure=ct1Py - (126)
({2 — 1) € C™. Observe that
(lu—*—12+|lu+e—-7*>+1)? 2%(|u—{2—1|2+|u+e—(2+1|2 Z%Ielz.
Thus, splitting the 1/2 in (126) as (1/4) + (1/4), we find that
Iy (02 = Dkgre @2 — 1)|e—|§2—1|2 < o~ W/Bel? o-(1/DNu-32-1" p-(1/|ut+e-¢2-1]"
Combining this with (125) and applying the Cauchy-Schwarz inequality, we obtain

~(5)lel? ~(g)lel? 172
h |(Uuhur Uu+6hu+e)| <e \8 ”hu”*“hu+6”* <e \8 H*' (127)
wnere
UEZn
Write

A= z (Uuhu) 0%y ey
UEZ2n
and consider any vector x = )}, cz2n Xy, €, . By (127), we have

_ 2
1AXI2 S " Wuschure Ukl el SHZ " e 001 1y ]
u,(u+€)eZ2n u,(u+e€)ezn

Applying the Schur test to the right-hand side, we find that

|1Ax||> < (1 + €)H;? Z Ixu1? = (1 + eHZ|Ix]I?,
zueZZ”
where 1+ € = ¥ ,2_1)ezon e"W/®1Z*=11" which is finite. Since the vector xis arbitrary, we
conclude that [|A|| < (1 + €)'/?H,. Thus the lemma holds for the constant 1 +€,, =
1+ e)%.
239



Corollary (6.3.39)[200]: Let " in B c Z?2, e,:u € Z?™ be any orthonormalset and h,, be

bounded function in #, satisfying sup ||hy||. < oo. Then
Uuezzn

(i) (A+e)(I) =1+ ¢,, foraconstantd < €, 4, < ©

(i)]|A+ €|l < (1 +¢€)zfor||ull =1whereu €T.
Proof: (i) From the two inequalities of Lemmas (6.3.29) and (6.3.38) we have that
A+e)[T)=1+¢€44.
(if) Taking the supremum over all values of I s.t. ||u|| = 1, we have, by Corollary (6.3.38),
that ||[A + €]| < (1 + €)a.

In the proof of the Fock-space analogue of Corollary (6.3.31), the ||-||-cOntinuities
of the previous are replaced by the corresponding ||-||.-continuities. For example, for the
normalized reproducing kernel of the Fock space one easily verifies that

lei_rgzllkzz—l - kw2—1”* =0
for every (z2 — 1) € C™. Thus, using Corollary (6.3.38) in place of Corollary (6.3.29), the
analogue of Corollary (6.3.31) on the Fock space can be obtained by following the argument

in the previously.
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List of Symbols

Symbol Page
H®: essential Hardy space 1
H?: Hardy space 1
L Hilbert space 1
L>: essential Lebesgue space 1
: tensor product 7
O: orthogonal difference 8
a.e: almost everywhere 10

VMO: vanishing mean oscillation 17
Aut: automorphism 24
ker: kernel 29
dim: Dimension 35

®: Direct sum 41
inf: Infimum 44
dist: distance 44
ran: range 50
det: determinant 52
Tr: trace 53
Arg: Argument 53
HP: Hardy space 59
LP: Lebesgue space 67
clos: closure 67
out: outer 67
Lt Lebesgue on the real line 68
LY: Dual Lebesgue space 75
HY: Dual Hardy space 75
sup: supremum 75

supp: support 91
L Lorentz space or Macaev class 91
LPA; Macaev class 99
rad: radial 99
ess: essential 115
conv: convex 115
max: maximum 116
SOT: strong operator topology 125
alg: algebra 129

co: convex 133
MAP modulus approximation property 133
WMAP: weak modulus approximation property 139
AZ: Bergman space 164
card: cardinal 192
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