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Chapter One 

1.1 Introduction : 

More than 600,000 people die from hepatocellular carcinoma (HCC) each year. Worldwide 

research on the disease needs to be intensified in both the medical and pharmaceutical fields, 

especially with a focus on providing help to areas where resources are limited. Treatment 

approaches depend on the stage of the disease at diagnosis and on access to complex treatment 

regimens. However, advanced disease is not curable, and management of advanced disease is 

expensive and only marginally effective in increasing quality-adjusted life-years.  The delivery of 

health-care services for HCC can be improved by developing centers of excellence. Concentrating 

medical care in this way can lead to an increased level of expertise, so that resections are performed 

by surgeons who understand liver disease and the limitations of resection and other relevant 

procedures “World Gastroenterology Organization, 2009”. 

 HCC is the sixth most common malignancy worldwide. It is the fifth most common malignant 

disease in men and the eighth most common in women. It is the third most common cause of death 

from cancer, after lung and stomach cancer. HCC is the most common malignant disease in several 

regions of Africa and Asia (Y. Hoshida, A etal, 2008). 

 Other  important  factors  include  poor  compliance,  with  inadequate  or  absent attendance in 

surveillance programs and thus late presentation of patients with large tumors; low awareness of 

the benefits of HCC treatment and ways of preventing underlying  liver  disease;  and  a  negative  

opinion  among  some  physicians  about screening.“ World Gastroenterology Organization, 2009. 

HCC  is  associated  with  liver  disease  independently  of  the  specific  cause  of  the disease 

either; infectious: chronic hepatitis B or C., nutritional and toxic: alcohol, obesity (nonalcoho lic 
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fatty liver disease), aflatoxin (co-factor with HBV), tobacco. Secondly, genetic: tyrosinos is, 

hemochromatosis (iron overload). However, iron overload as a cause per se and as a result of 

dietary intake (due to cooking in iron pots) is a subject of controversy. α1-Antitrypsin deficiency.  

Immunologic: autoimmune chronic active hepatitis, primary biliary cirrhosis “ World 

Gastroenterology Organization, 2009”. 

Computed Tomography (CT) in now a widely applied tool for diagnosis of hepatic tumors. The 

visual analysis of image series, acquired usually before a contrast product injection and during its 

propagation, enables doctors to detect lesions and to recognize, to a certain extent, the type of 

pathology. However, in most cases, visual inspection of CT scans could not be sufficient for proper 

image interpretation. Even for experienced radiologists, the correct differentiation of tumor 

affected tissue is a difficult task. The definitive diagnosis often requires invasive procedures like 

needle biopsy or even surgery, which carry a risk of complications. New computer-aided image 

processing methods (in particular methods of their texture analysis), in combination with effective 

classification algorithms, can considerably improve the accuracy of the diagnosis. Extracting the 

information not normally detected by the human eye, those techniques could reduce or even 

eliminate the necessity of performing the invasive techniques (Bruno A., et al 1997) 

An objective and explicit characterization of image regions is one of the crucial problems to deal 

with when a computer aided image analysis is performed. One of the most useful sources of 

information about analyzed image regions could be their texture [Haralick R. M]. The texture 

analysis consists in extracting a set of numerical parameters (so-called texture features) to 

characterize Regions of Interest (ROIs) defined in the organs under study. Each of the texture 

parameters expresses a specified property of the texture, like coarseness, homogeneity, or the local 

contrast. So far, a great variety of texture features extraction methods has been investigated.  

[Galloway M. M et al 1998]. 
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The first application of texture analysis for characterization of pathologically changed regions of 

liver tissue in tomographic images was presented in [Mir A. H., et al 1995]. In the work it was 

shown that values of the gray level distribution derived from the run- length matrix were 

significantly different in normal and malignant tissue. [Chen ,et al 1989] proposed an automatic 

diagnostic system for CT liver image classification that was able to automatically find, extract the 

liver boundary and to further classify its two major malignant lesions. The system used an artific ia l 

neural network in combination with fractal and co-occurrence features. A similar approach (the 

back- propagation neural network based on first order and co-occurrence features) was applied to 

recognizing a normal and abnormal liver [Husain , et al 2000]. In the combination of four different 

fractal dimension estimators (corresponding to the power spectrum method, box counting method, 

the morphological fractal estimator and the kth-near- est neighbor method) and the fuzzy C-Means 

algorithm were applied to differentiate normal liver parenchyma from hepatocellular carcinoma. 

Recently presented a system that used co-occurrence descriptors and three sequentially placed 

feed-forward neural networks for classification of normal and pathological liver regions. Finally, 

in a computer-aided diagnostic system to classify focal liver lesions by an ensemble of neural 

network and statistical classifiers was proposed. This system used first order statistics, co-

occurrence matrix and gray-level difference matrix features, Laws’ texture energy measures, and 

fractal dimension estimators to characterize four different types of liver tissue. All aforementioned 

systems were applied to non-enhanced CT scans and did not consider dynamic CT. In our 

investigations , texture classification of the hepatic metastasis was performed on the basis of 

dynamic CT. Images corresponding to three acquisition phases (non-enhanced images and after a 

contrast product injection, in arterial and portal phases) were analyzed separately. It was shown 

that considering the acquisition moments could improve the classification accuracy. In [Duda D., 

et al 2004], for the first time, three CT scans with the same slice position and corresponding to 
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three acquisition moments were analyzed simultaneously. The preliminary results showed that 

taking into account texture evolution when the contrast product is propagated led to a considerably 

better image recognition[Duda D., et al 2004].  

Only cancers that start in the liver are called liver cancer. To understand liver cancer, it helps to 

know about the normal structure and function of the liver. The liver is the largest internal organ. It 

lies under your right ribs just beneath your right lung. It is shaped like a pyramid and divided into 

right and left lobes. The lobes are further divided into segments  (American Cancer Society. Cancer 

Facts & Figures 2014) .  

Unlike most other organs, the liver gets blood from 2 sources: the hepatic artery supplies the liver 

with blood rich in oxygen from the heart, and the portal vein brings nutrient-rich blood from the 

intestines (American Joint Committee on Cancer 2010).  

You cannot live without your liver. It has several important functions: 

 It breaks down and stores many of the nutrients absorbed from the intestine that your body 

needs to function. Some nutrients must be changed (metabolized) in the liver before they 

can be used by the rest of the body for energy or to build and repair body tissues. 

 It makes most of the clotting factors that keep the body from bleeding too much when you 

are cut or injured. 

 It secretes bile into the intestines to help absorb nutrients (especially fats). 

 It filters out and breaks down toxic wastes in the blood, which are then removed from the 

body. 
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1.2 Problem of study: 

Generally in radiology the pathology or any abnormality was diagnosed by the radiologist as 

abnormal area if it reveals agreed upon defect on the image. This trend of diagnosis depend on 

visual perception; which is subjective and affected by many factors like experiences, oversight and 

so on. This situation leads  sometimes to send normal patient to biopsy as well as abnormal patient 

might not been send to biopsy for conformation . Therefore texture analysis can provide second 

opinion for the radiologist to diagnose liver pathology with some confident as well as it will draw 

his attention to the area of interest.   

1.3 Objectives:  

1.3.1 General Objectives: is to characterize Hepatocellular carcinoma in CT abdominal 

images using higher order statistic and Daubechies wavelet coefficient in order to reduce the miss 

detection rate as well as, to limit the usage of biopsy. 

1.3.2 Specific objective:   

 To write an algorithm and function that can be used to extract textural feature from CT 

images  

 To extract texture feature from liver tissue and HCC tissue (ROI). 

 To extract texture feature using Linear discriminant analysis.   

 To delineate the ROI (HCC) on the CT images. 

 To classify the extracted features using Grey Level Run Length Matrix (GLRLM). 

 To classify the extracted features using Daubechies wavelet. 

 To calculate the sensitivity, specificity and accuracy. 
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1.4 Overview of study:  

This study is concerned with characterization of hepatocellular carcinoma in CT image using 

higher order statistic and Daubechies coefficient, it falls into five chapters. Chapter one is an 

introduction, which include preparation of the problem of study and hepatocellular carcinoma, and 

liver as vital organ in human body as well as statement of the problem and study objectives. While 

Chapter two will include a comprehensive scholarly literature reviews concerning the previous 

studies. Chapter three deals with the methodology, where it provides an outline of material and 

methods used to acquire the data in this study as well as the method of analysis approach. While 

the results were presented in chapter four, and finally Chapter five include discussion of results, 

conclusion and recommendation followed by references and appendices. 

 

 

 

 

 

 

 

 

 

 



7 

 

Chapter two 

Literature review 

2.1 Hepatocellular Carcinoma: 

HCC its Most primary liver cancers are classified as hepatocellular carcinoma. Hepatocellular 

carcinoma is a malignant tumor composed of cells resembling hepatocytes ; however, the 

resemblance varies with the degree of differentiation . Hepatocellular carcinoma is commonly 

associated with cirrhosis (Figure 2.1) 

 

 

 

 

Figure 2.1. A, Cirrhotic liver with focal tumor; B, histological appearance 

This type of liver cancer is potentially curable by surgical resection. However, only those patients 

with localized disease are surgical candidates. Liver function impairment and degree of tumor 

localization determine patient prognosis proliferation . Clinical trials offer alternative treatment 

options for patients who are not candidates for resection (Ahmet Gurakar et al 2013). 

2.1.1 Symptoms of HCC:  

In the U.S., a significant number of hepatocellular carcinoma cases are detected during 

surveillance or investigation of underlying liver disease. Often, patients present with symptoms 

related to their underlying liver disease. In a report from Hong Kong, 76% of patients with 
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hepatocellular carcinoma presented to their hepatoma clinic with abdominal distention or 

discomfort; less common presentations included weight loss (4.4%), gastrointestinal hemorrhage 

(4.4%), and jaundice (2.6%). In the Hong Kong series, only 2% were asymptomatic. Rarely, 

hepatocellular carcinoma can present as an acute abdomen resulting from spontaneous rupture of 

the tumor into the peritoneal cavity. Hepatocellular carcinoma should be considered in the 

differential diagnosis of hemorrhagic ascites (Ahmet Gurakar et al 2013). 

2.1.2 Anatomy of liver:  

The liver is the largest organ in the abdominal cavity and the most complex. It consists of a myriad 

of individual microscopic functional units call lobules. The liver performs a variety of functions 

including the removal of endogenous and exogenous materials from the blood, complex metabolic 

processes including bile production, carbohydrate homeostasis , lipid metabolism, urea formation, 

and immune functions. 

The liver arises from the ventral mesogastrium and only the upper posterior surface is outside of 

thatstructure. The ligamentum teres and falciform ligament connect the liver to the anterior body 

wall. The lesser omentum connects it to the stomach and the coronary and triangular ligaments to 

the diaphragm. The liver is smooth and featureless on the diaphragmatic surface and presents with 

a series of indentations on the visceral surface where it meets the right kidney, adrenal gland, 

inferior vena cava, hepatoduodenal ligament and stomach (Figure 2), (Ahmet Gurakar et al 2013) 
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Figure 2.2 .A, Normal gross anatomy of a liver; B, histological slide; B’, histological view. 

The liver can be considered in terms of blood supply hepatocytes, Kuepfer cells and biliary 

passages. The liver receives its blood supply from the portal vein and hepatic artery, the former 

providing about 75% of the total 1500 ml/min flow. Small branches from each vessel the termina l 

portal venule and the terminal hepatic arteriole enter each acinus at the portal triad. Pooled blood 

then flows through sinusoids between plates and hepatocytes in order to exchange nutrients. The 

hepatic vein carries efferent blood into the inferior vena cava and a supply of lymphatic vessels 

drains the liver (Ahmet Gurakar et al 2013).  

Parenchymal cells or hepatocytes comprise the bulk of the organ and carry out complex metabolic 

processes. Hepatocytes are responsible for the liver’s central role in metabolism (Figure 2.2 B'). 

These cells are responsible for the formation and excretion of bile ; regulation of cabohydate 

homeostasis ; lipid synthesis and secretion of plasma lipoproteins; control of cholesterol 

metabolism; and formation of urea, serum albumin, clotting factors, enzymes, and numerous 

proteins. The liver also aids in the metabolism and detoxification of drugs and other foreign 

substances. 
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Kupffer cells line the hepatic sinusoids and are part of the reticuloendothelial system, filter ing 

outminute foreign particles, bacteria, and gut-derived toxins. They also play a role in immune 

processes that involve the liver. Biliary passages begin as tiny bile canaliculi formed by 

hepatocytes. These microvilli -lined structures progress into ductules, interlobular bile ducts, and 

larger hepatic ducts. Outside the porta hepatis, the main hepatic duct joins the cystic duct from the 

gallbladder to form the common bile duct, which drains into the duodenum (Ahmet Gurakar et al 

2013). 

2.1.3 Causes of HCC :  

Hepatitis B and C : The two most important etiological factors contributing to hepatocelluar 

carcinoma are hepatitis B andhepatitis C (Figure 2.3). In parts of China and Taiwan, 80% of 

hepatocellular carcinoma is due to hepatitis B. In the United States and Europe, hepatitis C and 

hepatitis B contribute equally to disease cases. In Japan, where the prevalence of hepatitis B and 

hepatitis C is similar, the incidence of hepatocellular carcinoma is higher in patients with hepatitis 

C compared to hepatitis B (10.4% vs. 3.9%). The pathogenesis of hepatocellular carcinomain the 

presence of hepatitis B virus may be due toincreased cell turnover from chronic liver disease, or a 

combination of processes specific to the hepatitis B virus. These may include integration of the 

hepatitis B DNA genome into the host genome, thereby disrupting the regulatory elements of cell 

cycling, or via transactivation of host oncogenes by either HBx protein ora truncated protein 

derived from pre-S2/S region of hepatitis B genome. The pathogenesis of hepatocellular carcinoma 

in hepatitis C is less understood. It is possiblethat some of these patients had previous exposure to 

hepatitis B virus (Ahmet Gurakar et al 2013). 
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Figure 2.3 Causes of hepatocellular carcinoma 

Cirrhosis, irrespective of its etiology , is a risk factor for the development of hepatocellular 

carcinoma. The risk is 3–4 times higher in patients with cirrhosis compared to those with chronic 

hepatitis in a given population. An increase in hepatocellular proliferation maylead to the 

activation of oncogenes and mutation of tumor suppressor genes. These changes, in turn, ma y 

initiate hepatocarcinogeneses. In low-incidence areas, more than 90% of patients with 

hepatocellular carcinoma have underlying cirrhosis. However, the presence of cirrhosis is less 

(approximately 80%) in high-incidence areas, which is probably related to vertical transmission of 

hepatitis B virus in these areas (Figure 2.3) (Ahmet Gurakar et al 2013). 

Other Factors: Other etiological factors affecting disease incidence include aflatoxins, alcohol, 

hemochromatosis , and anabolic steroid use (Figure 2.3). Exposure to dietary carcinogenic 

aflatoxins, produced by Aspergillus parasiticus and Aspergillus flavus, is common in certain 

regions of Southeast Asia and sub-Saharan Africa. Hepatitis B is also common in these areas. The 

relative contribution of aflatoxins and the hepatitis B virus to the pathogenesis of hepatocellular 

carcinoma in these parts of the world are poorly understood. In patients with hepatitis C viral 

infection, alcohol has been found to be another contributing factor. Whether this is related to a 
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more aggressive disease due to a combination of hepatitis C virus and alcohol, or whether alcohol 

is an independent factor remains unknown. The incidence of hepatocellular carcinoma in patients 

with hemochromatosis can be as high as 45%, and often the tumor is multifocal (Ahmet Gurakar 

et al 2013). 

 2.2 Diagnosis  of HCC: 

2.2.1 Alpha-Fetoprotein (AFP) : 

 Alpha-fetoprotein levels may be assessed by a blood test. Alpha-fetoprotein (AFP) is a tumor 

marker that is elevated in 60–70% of patients with hepatocellular carcinoma. Normally, levels of 

AFP are below 10 ng/ml, but marginal elevations (10–100) are common in patients with chronic 

hepatitis. However, all patients with elevated AFP should be screened (abdominal ultrasound, CT 

scan or MRI) for hepatocellular carcinoma, especially if there has been an increase from baseline 

levels. In our experience, a steadily rising AFP is almost diagnostic of hepatocellular carcinoma. 

The specificity of AFP is very high when the levels are above 400 ng/ml. Undifferentiated 

teratocarcinoma and embryonal cell carcinoma of the testis or ovary may give false-positive results 

and should be considered in the differential diagnosis of elevated AFP (Ahmet Gurakar et al 2013). 

The doubling time of AFP is around 60–90 days. Therefore, it may be advisable to check AFP 

every 3–4 months to screen high-risk cirrhotic patients (hepatitis C, hepatitis B, and 

hemochromatosis) for hepatocellular carcinoma.  

2.2.2 Radiographic Diagnosis: 

 The diagnostic accuracy of ultrasound, CT , magnetic resonance imaging (MRI) and angiography 

is dependent on a number of variables: expertise of the operator (especially with ultrasound), 

sophistication of equipment and technique, presence of cirrhosis and, most importantly, experience 
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of the interpreter. For small tumors (<2 cm), the diagnostic accuracy ranges from 60–80%. The 

diagnostic accuracy increases significantly with an increase in tumor size, ultimately reaching 

100% with  very large tumors with all modalities (Figure 2.4). 

 

 

 

 

Figure 2.4.Computed tomography (CT) scan of hepatocellular carcinoma 

Liver Biopsy and Histological Grading Liver biopsy is indicated when diagnosis is in doubt 

(Figure 2.4). If AFP is significantly elevated and a tumor is seen in the liver, it is reasonable to 

assume a diagnosis of hepatocellular carcinoma and a liver biopsy is not warranted (Ahmet 

Gurakar et al 2013). 

 

 

 

 

 

Figure 2.5 A, Biopsy of focal tumor; B, histological appearance; C, percutaneous approach to the 

liver 
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The World Health Organization has suggested that hepatocellular carcinoma might be classified 

into histological types based on the structural organization of tumor cells: trabecular or sinuso ida l 

type, pseudoglandular or acinar type, and compact or scirrhous sclerosing agent type. The tumo r 

could also be graded based on the degree of cell differentiation into well, moderately, and poorly 

differentiated (Ahmet Gurakar et al 2013). 

2.3 Therapy of HCC:  

The optimal management of hepatocellular carcinoma depends on a variety of factors includ ing 

the size, number, and distribution (unilobar vs. bilobar ) of tumors, the relationship of the tumor 

to hepatic vasculature, the status of distant metastases, the severity of liver disease (Child-Pugh 

score), the suitability of the patient for liver transplantation, the functional status of the patient, 

and local expertise. The mean survival of symptomatic patients with hepatocellular carcinoma is 

approximately 2–3 months. The doubling time of the tumor size is 2–3 months. Optimal 

management should attempt to prolong without compromising quality of life (Ahmet Gurakar et 

al 2013). 

2.4 Computed Radiography:  

Over more than 30 years of advances in technologies, including x-ray generation, filtration design, 

detector, firmware, and post-processing, CT has developed into a medical imaging modality with 

the capability of obtaining excellent resolution for both high contrast and  low contrast tasks, as 

well as the capability to perform volumetric imaging by the  implementation of multi-row detectors 

(MDCT). It has been a major diagnostic tool and has been impacting patient healthcare throughout 

the entire world. Today CT is routinely used as a key component in Radiology and Oncology 

departments for many areas of medical applications. To  name a few, within Radiology department, 

it is used in head scans to detect infarction,  hemorrhage, or trauma; it is used in thoracic scans for 
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detecting both acute and chronic changes  in the lung parenchyma; it is used in Cardiology to 

diagnose cardiovascular diseases; it is used in  abdomen or pelvic scans to determine the stage of 

cancer and to follow progress; it is also used  in extremity scans to image complex fractures, 

especially one around joints because of its ultra-high spatial resolution. Within Oncology 

department, CT is used to obtain attenuation properties for body tissues in order to perform 

necessary calculations of radiation dose distribution in treatment planning (Mettler, et al 2008).  

CT scanners use x-ray tubes to generation photons. In this process, electrons are emitted from 

cathode via thermionic emission and are accelerated within the tube towards anode driven  by the 

potential difference between the cathode and the anode. The highly energetic electrons  then 

interact with matter (usually tungsten) and convert their kinetic energy into heat and  

electromagnetic radiation (photons) through the process of bremsstrahlung. Figure 1 shows the  

physical look of the anode. The fluence of photons depends on kVp and mAs. kVp is defined as  

the peak tube potential between the cathode and the anode. It determines the highest energy of 

photons within the beam. mAs is the multiplication of tube current (the rate of the charge of  

electrons from the cathode to the anode) and exposure time. mAs is proportional to the fluence of  

the x-ray beam (Mettler,  et al 2008). 

During the CT scan a patient lies on the table while the x-ray tube and the detector ring spin in the 

gantry in a very fast speed (as fast as 0.27s/rotation for certain manufacturer). Fan  shaped beams 

are used in modern CT scanners as shown in figure (2.2) There are two different scan  modes with 

respect to the pattern of the movement of the bed: axial scan and helical scan. In  axial scan, the 

bed moves incrementally after every rotation so the anatomy is captured section  by section; in 

helical scan, the bed moves continuously while the tube and detector are rotating.  
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Under helical scan mode, pitch is defined as the advance of the table in a rotation divided by the 

nominal collimation width in z direction. Helical scan was introduced in 1990s and it has  

dramatically increased the time efficiency of CT scans. 

The number of CT scans in United States has increase from 18.3 million in 1993 to 62.0 million 

in 2006, with an estimated annual growth rate of 10% 5,6 . Especially since the  introduction of 

MDCT in mid 1990s, the use of CT has increased dramatically due to its  improved capacity. In 

clinical practice, CT exams consists 15% of the total number of  radiological imaging procedures, 

but it contributes to 50% of the population radiation exposure  from medical procedures, and it 

contributes to 25% of the population radiation exposure from all  sources, including background 

radiation. This has lead to concerns about the potential risks of  radiation hazards to patients 

(Mettler, 2008).  

Imaging is basically a process consisting of two distinct stages: image recording and image display 

(Wagner 1983, ICRU 1996). This division is especially important in digital imaging, where these 

stages are clearly separate. In digital imaging the image recording stage (or the image data stage) 

determines the information that has been captured in the image data and can be analyzed in terms 

of the pixel values. Performing actual physical measurements of the display stage is cumbersome 

and its evaluation is for the most part done mainly visually. 

2.5 Biomedical Image Processing: 

By the increasing use of direct digital imaging systems for medical diagnostics, digital image 

processing becomes more and more important in health care. In addition to originally digita l 

methods, such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), initia l ly 

analogue imaging modalities such as endoscopy or radiography are nowadays equipped with 

digital sensors (Deserno et al 2007). 
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Digital images are composed of individual pixels (this acronym is formed from the words “picture” 

and “element”), to which discrete brightness or color values are assigned. They can be efficient ly 

processed, objectively evaluated, and made available at many places at the same time by means of 

appropriate communication networks and protocols, such as Picture Archiving and 

Communication Systems (PACS) and the Digital Imaging and Communications in Medicine 

(DICOM) protocol, respectively. Based on digital imaging techniques, the entire spectrum of 

digital image processing is now applicable in medicine (Deserno et al 2007). 

 

 

 

 

 

 

 

 

Fig.2.6 .Modules of image processing, In general, image processing covers four main 

areas: image formation, visualization, analysis, and management. The algorithms 

of image enhancement can be assigned as pre- and postprocessing in all areas . 
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2.5.1 Steps of Image Processing :  

The commonly used term “biomedical image processing” means the provision of digital image 

processing for biomedical sciences. In general, digital image processing covers four major areas 

(Figure 2.6) : 

 Image formation includes all the steps from capturing the image to forming a digital image 

matrix. 

 Image visualization refers to all types of manipulation of this matrix, resulting in an 

optimized output of the image. 

 Image analysis includes all the steps of processing, which are used for quantitat ive 

measurements as well as abstract interpretations of biomedical images. These steps require 

a priori knowledge on the nature and content of the images, which must be integrated into 

the algorithms on a high level of abstraction. Thus, the process of image analysis is very 

specific, and developed algorithms can be transferred rarely directly into other application 

domains. 

 Image management sums up all techniques that provide the efficient storage, 

communication, transmission, archiving, and access (retrieval) of image data. Thus, the 

methods of telemedicine are also a part of the image management . 

In contrast to image analysis, which is often also referred to as high-level image processing, low-

level processing denotes manual or automatic techniques, which can be realized without a priori 

knowledge on the specific content of images. This type of algorithms has similar effects regardless 

of the content of the images. For example, histogram stretching of a radiograph improves the 

contrast as it does on any holiday photograph. Therefore, low-level processing methods are usually 

available with programs for image enhancement (Deserno et al 2007). 
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2.6 Texture analysis: 

Texture  analysis  is  presented  here  as  a  useful  computational  method  for  discrimina ting 

between pathologically different regions on medical images because it has been proven to  perform  

better  than  human  eyesight  at  discriminating  certain  classes  of  texture  (Julesz, 1975).  

2.6.1 First-Order Statistical Texture Analysis  

First-order  texture  analysis  measures  use  the  image histogram,  or  pixel  occurrence  

probability,  to  calculate  texture.  The  main  advantage  of  this  approach  is  

its  simplicity  through  the  use  of  standard  descriptors  (e.g.  mean  and  variance)  to  characterise  

the  data  (Press,  1998).  However,  the  power  of  the  approach  for  discriminating  between  

unique  textures is limited in certain applications because  the method does not consider the spatial   

relationship, and correlation, between pixels. For anysurface, or image, grey-levels are in  the range   

where Ng   is the total number of distinct grey-levels , If  (Ni) is the  number of pixels with intens ity 

i and M  is the total number of pixels in an image, it follows  that the histogram, or pixel occurrence 

probability, is given by, 

 

 

In general seven features commonly used to describethe properties of the image histogram,  and  

therefore  image  texture,  are  computed.  These  are:  mean;  variance;  coarseness;  skewness; 

kurtosis; energy; and entropy. 
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2.6.2 Second-Order Statistical Texture Analysis 

The human visual system cannot discriminate between texture pairs with matching second order 

statistics (see Fig. 2.6) (Julesz et al, 1975). The first machine-vision framework for calculat ing  

second-order or pixel co-occurrence texture information was developed for analysing aerial  

photography images (Haralick et al., 1973). In this technique pixel co-occurrence matrices,  which  

are  commonly  referred  to  as  grey-tone  spatial  dependence  matrices  (GTSDM),  are  computed. 

The entries in a GTSDM are the probability of finding a pixel with grey-level  i at  a  distance  d  

and  angle  α from  a  pixel  with  a  grey-level j . This  may  be  written  more  formally  as P(I,j:d,α 

) .  An  essential  component  of  this  framework  is  that  each  pixel  has eight nearest-neighbours 

connected to it, except atthe periphery. As a result four GTSDMs  are required to describe the 

texture content in thehorizontal (PH= 00 ) , vertical  (PV= 900 ) , right- (PRD= 450 ) ,  and left-diagona l  

(PLD= 1350 ) ,   directions. This is illustrated in Fig. 8 

 

 

 

 

 

 

Fig.  2.7.  Eight  nearest-neighbour  pixels  used  in  the  GTSDM  framework  to  describe  pixel  

connectivity. Cells 1 and 5 show the horizontal  (PH)   4 and 8 the right-diagonal   (PRD) ,  3 and  7 

the vertical   (PV) , and   2 and 6 the left-diagonal  (PLD)   nearest-neighbours. 
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An  example  of  the  calculation  of  a  horizontal  co-occurrence  matrix  (PH)   on  a  4×4  image  

containing four unique grey-levels is shown in Fig.6. A complete representation of image  texture  

is  contained  in  the  co-occurrence  matrices  calculated  in  the  four  directions.  

Extracting  information  from  these  matrices  using  textural  features,  which  are  sensitive  to  

specific  elements  of  texture,  provides  unique  information  on  the  structure  of  the  texture  

being investigated. Haralick et al., proposed a set of 14 local features specifically designed  for  

this  purpose  (Haralick  et  al.,  1973).  In  practice  the  information  provided  by  certain  features 

may be highly correlated or of limited practical use. A feature selection strategy is  therefore useful 

with this approach to take account of redundant, or irrelevant, information.  

This is discussed in more detail in section 5. It is also interesting to note that prior to any processing 

the GTSDMs, which are symmetric, can provide some useful information on the  characterist ics 

of the image being studied. For example, the co-occurrence matrix entries for  a  coarse  texture  

will  be  heavily  focused  along  the  diagonals  relative  to  the  distance  d between the pixels 

studied. 

 

Fig.  2.8.  Simple  example  demonstrating  the  formation  of  a  co-occurrence  matrix  from  an  

image.  Left,  4*4  image  with  four  unique  grey-levels.  Right,  the  resulting  horizontal   

co-occurrence matrix (PH). 
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Angular second moment  

 

Contrast, 

 

 

Correlation, 

 

 

where, Nq is the number of distinct grey-levels in the input and, µx, µy, σX ,   are the  

means and standard deviations of  P(i,j) . Throughout,   P(i,j)= P(i,j)/R where P(i,j) is 

(PH,PV,PLD,PRD)    and R is the maximum number of resolution cells in a GTSDM. 

2.6.3 Higher-Order Statistical Texture Analysis  

The  grey-level  run  length  method  (GLRLM)  is  based  on the  analysis  of  higher-order  

statistical information (Galloway, 1975). In this approach GLRLMs contain information on  the 

run of a particular grey-level, or grey-level range, in a particular direction. The number  of  pixels  

contained  within  the  run  is  the  run-length. 

  A  coarse  texture  will  therefore  be dominated by relatively long runs whereas a fine texture 

will be populated by much shorter  runs. The number of runs r  with gray-level i , or lying within 

a grey-level range i , of runlength j in  a  direction  α is  denoted  by R(α) = {r(I,j)/α} . 
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This  is  analogous  to  the  GTSDM technique  (Haralick  et  al.,  1973)  as  four  GTRLMs  are  

commonly  used  to  describe  texture  runs  in  the  directions (00 , 900, 1800 AND 1350 ) . on  

linearly  adjacent  pixels.  An  example  of  the  calculation of a horizontal GLRLM is shown in 

Fig. 2.10. 

 

Fig. 2.10 Simple example demonstrating the formation of a GLRLM. Left,  4*4  image with four 

unique grey-levels. Right, the resulting GLRLM in the direction 00 . 

 A set of seven numerical texture measures are computed from the GTRLMs. Three of these  

measures are presented here to illustrate the computation of feature information using this  

framework. 

 Short Run Emphasis,  

 

 

Long Run Emphasis, 
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Grey-Level Distribution, 

 

 

 

Where Ng  is the maximum number of grey-levels, Nr  is the number of different run lengths in 

the matrix and, 

 

 

TR serves as a normalizing factor in each of the run length equations. 

2.7 Fourier Power Spectrum: 

Two-dimensional transforms have been used extensively  in  image  processing  to  tackle  

problems  such  as  image  description  and  enhancement  (Pratt,  1978).  Of  these,  the  Fourier  

transform is one of the most widely used (Gonzalez and Woods, 2001). Fourier analysis can be  

used  to  study  the  properties  of  textured  scenes,  for  example  the  power  spectrum  reveals  

information  on  the  coarseness/fineness  (periodicity)  and  directionality  of  a  texture.  Texture  

directionality  is  preserved  in  the  power  spectrum  because  it  allows  directional  and  

nondirectional  components  of  the  texture  to  be  distinguished  (Bajscy,  1973).  These  

observations  have given rise to two powerful approaches for extracting texture primitives from 

the Fourier  power  spectrum,  namely,  ring  and  wedge  filters.  Working  from  the  origin  of  

the  power  spectrum  the  coarseness/fineness  is  measured  between  rings  of  inner  radius r1 

and r2  .   
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The  size of the rings can be varied according to the application. The directionality of the texture 

is  found by measuring the average power over wedge-shaped regions centred at the origin of the  

power  spectrum.  The  size  of  the  wedge ϕw=ϕ1-ϕ2 depends  upon  the  application.  Fig.  8  

illustrates  the  extraction  of  ring  and  wedge  filters  from  the  Fourier  power  spectrum  of  a 

32× 32  test  image  consisting  of  black  pixels  everywhere  except  for  a   3 ×3 region  of  white  

pixels centred at the origin. 

 

Fig.  2.11  Fourier  power  spectrum  showing  the  extraction  of  ring  and  wedge  filters.  The  

spectrum  was  generated  on  a   32× 32  test  image  consisting  of  black  pixels  everywhere 

except for a  3× 3 region of white pixels centred at the origin. 

In  image  analysis  the  Fourier  transform P(u,v) is  considered  in  its  discrete  form  and  the  

power spectrum P(u,v)   is calculated from, 

 

 

The average power contained in a ring centred at the origin with inner and outer radii 
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r1 and  r2 respectively, is given by the summation of the contributions along the direction ϕ . 

 

 

he  contribution  from  a  wedge  of  size ϕw  is  found  from  summation  of  the  radial components 

within the wedge boundaries. That is, 

 

 

where n is the window size.  

2.8 Guide to Wavelets: 

Fourier theory its a signal can be expressed as the sum of a, possibly infinite, series of sines 

and cosines. This sum is also referred to as a Fourier expansion. The big disadvantage of a 

Fourier expansion however is that it has only frequency resolution and no time resolution. 

This means that although we might be able to determine all the frequencies present in a 

signal, we do not know when they are present. To overcome this problem in the past decades 

several solutions have been developed which are more or less able to represent a signal in the 

time and frequency domain at the same time (she et al 1996). 

The idea behind these time-frequency joint representations is to cut the signal of interest into 

several parts and then analyze the parts separately. 

The problem here is that cutting the signal corresponds to a convolution between the signal and 

the cutting window. Since convolution in the time domain is identical to multiplication in the 

frequency domain and since the Fourier transform of a Dirac pulse contains all possible 

frequencies the frequency components of the signal will be smeared out all over the frequency 
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axis. In fact this situation is the opposite of the standard Fourier transform since we now have 

time resolution but no frequency resolution whatsoever (she et al 1996). 

The underlying principle of the phenomena just described is Heisenberg’s uncertainty 

principle, which, in signal processing terms, states that it is impossible to know the exact 

frequency and the exact time of occurrence of this frequency in a signal. In other words, a signal 

can simply not be represented as a point in the time-frequency space. The uncertainty princip le 

shows that it is very important how one cuts the signal (she 96). 

The wavelet transform or wavelet analysis is probably the most recent solution to overcome the 

shortcomings of the Fourier transform. In wavelet analysis the use of a fully scalable modulated 

window solves the signal-cutting problem. The window is shifted along the signal and for every 

position the spectrum is calculated. Then this process is repeated many times with a slight ly 

shorter (or longer) window for every new cycle. In the end the result will be a collection of time-

frequency representations of the signal, all with different resolutions. Because of this collection 

of representations, we can speak of a multiresolution analysis. In the case of wavelets we 

normally do not speak about time-frequency representations but about time-scale 

representations, scale being in a way the opposite of frequency, because the term frequency is 

reserved for the Fourier transform (she 96). 

2.8.1 Wavelet properties 

The most important properties of wavelets are the admissibility and the regularity conditions 

and these are the properties which gave wavelets their name. It can be shown [She96] that 

square integrable functions 5(t) satisfying the admissibility condition, 
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can be used to first analyze and then reconstruct a signal without loss of information. The 

admissibility condition implies that the Fourier transform of 5(t) vanishes at the zero frequency, 

i.e. 

 

This means that wavelets must have a band-pass like spectrum. This is a very important 

observation, which we will use later on to build an efficient wavelet transform. 

A zero at the zero frequency also means that the average value of the wavelet in the time domain 

must be zero, 

 

and therefore it must be oscillatory. In other words, 5(t) must be a wave. 

The time-bandwidth product of the wavelet transform is the square of the input signal and for 

most practical applications this is not a desirable property. Therefore one imposes some 

additional conditions on the wavelet functions in order to make the wavelet transform decrease 

quickly with decreasing scale s. These are the regularity conditions and they state that the 

wavelet function should have some smoothness and concentration in both time and frequency 

domains. Regularity is a quite complex concept and we will try to explain it a little using the 

concept of vanishing moments. 

If we expand the wavelet transform  we get [She96]: 
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Here ƒ(p) stands for the pth derivative of ƒ and "(n+1) means the rest of the expansion. Now, if 

we define the moments of the wavelet by Mp, 

 

then into the finite development 

 

From the admissibility condition we already have that the 0th moment M0 = 0 so that the first 

term in the right-hand side is zero. If we now manage to make the other moments up to Mn zero 

as well, then the wavelet transform coefficients f(s,-) will decay as fast as sn+2 for a smooth 

signal ƒ(t). This is known in literature as the vanishing moments3 or approximation order. If a 

wavelet has N vanishing moments, then the approximation order of the wavelet transform is also 

N. The moments do not have to be exactly zero, a small value is often good enough. In fact, 

experimental research suggests that the number of vanishing moments required depends heavily 

on the application [Cal et al 1996]. 

Summarizing, the admissibility condition gave us the wave, regularity and vanishing moments 

gave us the fast decay or the let, and put together they give us the wavelet. More about regular ity 

can be found for instance in [Bur et al 1998] and [Dau et al992]. 

2.8.2  The continuous wavelet transform 

The wavelet analysis described in the introduction is known as the continuous wavelet 

transform or CWT. More formally it is written as: 
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where * denotes complex conjugation. This equation shows how a function ƒ(t) is decomposed 

into a set of basis functions Ψs,-(t) , called the wavelets. The variables s and - are the new 

dimensions, scale and translation, after the wavelet transform. For completeness sake equation  

gives the inverse wavelet transform. I will not expand on this since we are not going to use it: 

 

 

 

The wavelets are generated from a single basic wavelet 5(t), the so-called mother wavelet, by 

scaling and translation: 

 

 

 

In s is the scale factor, - is the translation factor and the factor s-1/2 is for energy normaliza t io n 

across the different scales (cal et al 1996). 

This is a difference between the wavelet transform and the Fourier transform, or other 

transforms. The theory of wavelet transforms deals with the general properties of the wavelets 

and wavelet transforms only. It defines a framework within one can design wavelets to taste and 

wishes. 

2.8.3  Discrete wavelets 

the wavelet transform is calculated by continuously shifting a continuously scalable function over 

a signal and calculating the correlation between the two. It will be clear that these scaled functio ns 

will be nowhere near an orthogonal basis  and the obtained wavelet coefficients will therefore be 

highly redundant. For most practical applications we would like to remove this redundancy. 
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Even without the redundancy of the CWT we still have an infinite number of wavelets in the 

wavelet transform and we would like to see this number reduced to a more manageable count. This 

is the second problem we have. 

The third problem is that for most functions the wavelet transforms have no analytical solutio ns 

and they can be calculated only numerically or by an optical analog computer. Fast algorithms are 

needed to be able to exploit the power of the wavelet transform and it is in fact the existence of 

these fast algorithms that have put wavelet transforms where they are today. 

As mentioned before the CWT maps a one-dimensional signal to a two-dimensional time-scale 

joint representation that is highly redundant. The time-bandwidth product of the CWT is the 

square of that of the signal and for most applications, which seek a signal description with as few 

components as possible, this is not efficient. To overcome this problem discrete wavelets have 

been introduced. Discrete wavelets are not continuously scalable and translatable but can only 

be scaled and translated in discrete steps. This is achieved by modifying the wavelet 

representation to create [Dau92] 

 

Although it is called a discrete wavelet, it normally is a (piecewise) continuous function. In (10) 

j and k are integers and s0 > 1 is a fixed dilation step. The translation factor -0 depends on the 

dilation step. The effect of discretizing the wavelet is that the time-scale space is now sampled 

at discrete intervals. We usually choose s0 = 2 so that the sampling of the frequency axis 

corresponds to dyadic sampling. This is a very natural choice for computers, the human ear and 

music for instance. For the translation factor we usually choose -0=1 so that we also have dyadic 
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Figure 2.12 Localization of the discrete wavelets in the time-scale space on a dyadic grid. 

When discrete wavelets are used to transform a continuous signal the result will be a series of 

wavelet coefficients, and it is referred to as the wavelet series decomposition. An important issue 

in such a decomposition scheme is of course the question of reconstruction. It is all very well to 

sample the time-scale joint representation on a dyadic grid, but if it will not be possible to 

reconstruct the signal it will not be of great use. As it turns out, it is indeed possible to reconstruct 

a signal from its wavelet series decomposition. In [Dau92] it is proven that the necessary and 

sufficient condition for stable reconstruction is that the energy of the wavelet coefficients must 

lie between two positive bounds, i.e. 

 

Where ƒ 2 is the energy of ƒ(t), A > 0, B <    and A, B are independent of ƒ(t). When equation  

is satisfied, the family of basis functions 5j,k(t) with j, k    Z is referred to as a frame with frame 

bounds A and B. When A = B the frame is tight and the discrete wavelets behave exactly like an 

orthonormal basis. When A ¹ B exact reconstruction is still possible at the expense of a dual 

frame. In a dual frame discrete wavelet transform the decomposition wavelet is different from 
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the reconstruction wavelet. 

We will now immediately forget the frames and continue with the removal of all redundancy 

from the wavelet transform. The last step we have to take is making the discrete wavelets 

orthonormal. This can be done only with discrete wavelets. The discrete wavelets can be made 

orthogonal to their own dilations and translations by special choices of the mother wavelet, 

which means: 

 

 

 

An arbitrary signal can be reconstructed by summing the orthogonal wavelet basis functio ns , 

weighted by the wavelet transform coefficients [She96]: 

 

 

Equation shows the inverse wavelet transform for discrete wavelets, which we had not yet seen. 

Orthogonality is not essential in the representation of signals. The wavelets need not be 

orthogonal and in some applications the redundancy can help to reduce the sensitivity to noise 

[She96] or improve the shift invariance of the transform [Bur et al 1998]. This is a disadvantage 

of discrete wavelets: the resulting wavelet transform is no longer shift invariant, which means that 

the wavelet transforms of a signal and of a time-shifted version of the same signal are not simply 

shifted versions of each other. 
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2.9 Previous Study:  

Daniel Smutek et al (2011) is developing a computer-aided diagnostic (CAD) system for focal 

liver lesions in CT images.  The texture analysis methods are used for the classification of 

hepatocellular cancer and liver cysts. CT contrast enhanced images of 20 adult subjects with 

hepatocellular carcinoma or with non-parasitic solitary liver cyst were used as entry data. A total 

number of 130 spatial and second-order probabilistic texture features were computed from the 

images. Ensemble of Bayes classifiers was used for the tissue classification. 

Classification success rate was as high as 100% when estimated by leave-one-out method. This 

high success rate was achieved with as few as one optimal descriptive feature representing the 

average deviation of horizontal curvature computed from original pixel gray levels. This promising 

result allows further amplification of this approach in distinguishing more types of liver diseases 

from CT images. 

 

Samia A. F. Ahmed et al (2014) in this study A new approach to texture characterizat ion from 

dynamic CT scans of the liver is presented. This study was aimed to use the texture analysis and 

classification methods to characterize the hepatocellular carcinoma (HCC), liver and other 

abdominal regions in CT images using image processing program (IDL, interactive data language). 

Tri-phasic Multi detectors CT with contrast enhanced 

images of 200 adult subjects with hepatocellular carcinoma were used as entry data. Tiff format 

was created as IDL variables and then using 3x3 window the image was scanned and based on the 

image histogram the selected feature also called FOS was calculated using this window. Linear 

discriminant analysis was used for the tissue classification. The study found that the HCC texture 

reveal a different  
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underlying pattern compared to the liver and other abdominal tissues with classification sensitivity 

and specificity 96.5% and 86.6% respectively, and the combination of the texture features 

throughout the different tri-phasic image phases provide the highest predictive overall accuracy of 

89.1 % using linear discriminant analysis. 

 

in this study carried by  Gunasundari S et al  (2013) studied Liver diseases by considered seriously 

because liver is a vital  organ to human beings. Computer aided liver analysis is atechnique that 

can help radiologists to accurately identify diseases that can help in reducing the risk of liver 

surgery. 

The computer aided diagnosis (CAD) system consists of the segmentation of liver and lesion, 

extraction of features from a lesion and characterization of liver diseases by means of a classifier. 

In the last decade, the use of many segmentation techniques and classifier systems have been 

proposed by many authors with the intention to increase the performance of CAD systems This 

article focuses on various textural analysis methods used so far for the classification of liver 

diseases from abdominal Computed Tomography scans. It reviews the techniques and results of 

the various methods are analyzed and summarized. The future direction for the research is also 

discussed. 

 

Characterization of CT Liver Lesions Based on Texture Features and a Multiple Neural Network 

Classification Scheme S. Gr. Mougiakakou et al  (2003) using a Computer Aided Diagnosis (CAD)  

system for the characterization of hepatic tissue from Computed Tomography (CT) images is 

presented. Regions of Interest (ROI’s) corresponding to normal liver, cyst, hemangioma, and 

hepatocellular carcinoma, are drawn by an experienced radiologist on abdominal non-enhanced 

CT images. For each ROI, five distinct sets of texture features are extracted using the following 
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methods: first order statistics, spatial gray level dependence matrix, gray level difference method, 

Laws’ texture energy measures, and fractal dimension measurements. If the dimensionality of a 

feature set is greater than a predefined threshold, feature selection based on a Genetic Algorithm 

(GA) is applied. Classification of the ROI is then carried out by a system of five neural networks 

(NNs), each using as input one of the above feature sets. The members of the NN system (primary 

classifiers) are 4-class NNs trained by the backpropagation algorithm with adaptive learning rate 

and momentum. The final decision of the CAD system is based on the application of a voting 

scheme across the outputs of the individual NNs. The multiple classification scheme using the five 

sets of texture features results in significantly enhanced performance, as compared to the 

classification performance of the individual primary classifiers. 

 

M. Gletsos et al  (2001) in different study using a computer-aided diagnostic system for the 

classification of hepatic lesions from Computed  Tomography (CT) images is presented. Regions 

of Interest (ROI’s) taken from non-enhanced CT images of normal liver, hepatic cysts, 

hemangiomas, and hepatocellular carcinomas (a total of 147 samples), have been used as input to 

the system. 

The system consists of two levels: the feature extraction and the classification levels. The feature 

extraction level calculates the average grey scale and 48 texture characteristics, which are derived 

from the spatial grey-level co-occurrence matrices,  obtained from the ROI’s. The classifier level 

consists of three  sequentially placed feed-forward Neural Networks (NN’s), which are activated 

sequentially. The first NN classifies into normal or pathological liver regions. The pathologica l 

liver regions are classified by the second NN into cysts or “other disease”. The third NN classifies 

“other disease” into hemangiomas and hepatocellular carcinomas. In order to enhance the 

performance of the classifier and improve the execution time, the dimensionality of the init ia l 
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feature vector has been reduced using the sequential forward floating selection method for each 

individual NN input vector. A total classification rate of 98% has been achieved. 

 

Paola Campadelli (2009) this  work has been devoted to the development of semi-automatic 

and automatic techniques for the analysis of abdominal CT images. Some of the current interests 

are the automatic diagnosis of liver, spleen, and kidney pathologies and the 3D volume rendering 

of the abdominal organs. The first and fundamental step in all these studies is the automatic organs 

segmentation, that is still an open problem. In this paper we propose our fully automatic system 

that employs a hierarchical gray level based framework to segment heart, bones (i.e. ribs and 

spine), liver and its blood vessels, kidneys, and spleen. The overall system has been evaluated on 

the data of 100 patients, obtaining a good assessment both by visual inspection by three experts, 

and by comparing the computed results to the boundaries manually traced by experts. 

 

In a novel study carried by ROBERT M. HARALICK, et al (1973) Texture is one of the important 

characteristics used in identifying objects or regions of interest in an image, whether the image be 

a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily 

computable textural features based on graytone spatial dependancies, and illustrates their 

application in category identification tasks of three different kinds of image data: 

photomicrographs of five kinds of  sandstones, 1:20 000 panchromatic aerial photographs of eight 

land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery 

containing seven land-use categories. We use two kinds of decision rules: one for which the 

decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the 

decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the 

data set was divided into two parts, a training set and a test set. Test set identification accuracy is 
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89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 

percent for the satellite imagery. These results indicate that the easily computable textural features 

probably have a general applicability for a wide variety of image-classification applications. 

 

M. Gletsos et al  (2001) in this study they using a computer-aided diagnostic system for the 

classification of hepatic lesions from Computed  Tomography (CT) images is presented. Regions 

of Interest (ROI’s) taken from non-enhanced CT images of normal liver, hepatic cysts, 

hemangiomas, and hepatocellular carcinomas (a total of 147 samples), have been used as input to 

the system. 

The system consists of two levels: the feature extraction and the classification levels. The feature 

extraction level calculates the average grey scale and 48 texture characteristics, which are derived 

from the spatial grey-level co-occurrence matrices,  obtained from the ROI’s. The classifier level 

consists of three  sequentially placed feed-forward Neural Networks (NN’s), which are activated 

sequentially. The first NN classifies into normal or pathological liver regions. The pathologica l 

liver regions are classified by the second NN into cysts or “other disease”. The third NN classifies 

“other disease” into hemangiomas and hepatocellular carcinomas. In order to enhance the 

performance of the classifier and improve the execution time, the dimensionality of the init ia l 

feature vector has been reduced using the sequential forward floating selection method for each 

individual NN input vector. A total classification rate of 98% has been achieved. 

 

Matheus Alvarez , (2014) for a wavelet this research about Hepatocellular carcinoma (HCC) is a 

primary tumor of the liver. After local therapies, the tumor evaluation is based on the mRECIST 

criteria, which involves the measurement of the maximum diameter of the viable lesion. This paper 

describes a computed methodology to measure through the contrasted area of the lesions the 
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maximum diameter of the tumor by a computational algorithm. 63 computed tomography (CT) 

slices from 23 patients were assessed. Noncontrasted liver and HCC typical nodules were 

evaluated, and a virtual phantom  was developed For this purpose.  

Optimization of the algorithm detection and quantification was made using  the virtual phantom. 

After that, We compared the algorithm findings of maximum diameter of the target lesions against 

radiologist measures. 

Computed results of the  maximum diameter are in good agreement with the results obtained by  

radiologist evaluation, indicating that the  algorithm was able to detect properly the tumor limits. 

A comparison of the estimated maximum diameter by radiologist versus the algorithm revealed 

differences on the order of 0.25 cm  for large-sized tumors (diameter > 5 cm), whereas  agreement 

lesser than 1.0cm was found for small-sized tumors. 

Differences between algorithm and radiologist measures  were accurate for small-sized tumors 

with a trend to a small increase for tumors greater than 5 cm. Therefore, traditional  methods for 

measuring lesion diameter should Be complemented with non-subjective measurement methods, 

which  would allow a more correct evaluation of the contrast-enhanced areas of HCC according to 

the mRECIST criteria.  

 

Another author [Herwig Wendt et al ,2012] Wrote about Image classification often relies on texture 

characterization. Yet texture characterization has so far rarely been based on a true 2D multifrac ta l 

analysis. Recently, a 2D wavelet Leader based multifractal formalism has been proposed. It allows 

to perform an accurate, complete and low computational and memory costs multifrac ta l 

characterization of textures in images. This contribution describes the first application of such a 

formalism to a real large size (publicly available) image database, consisting of 25 classes of non 

traditional textures, with 40 high resolution images in each class. Multifractal attributes are 
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estimated from each image and used as classification features within a standard k nearest neighbor 

classification procedure. The results reported here show that this Leader based multifractal analysis 

enables the effective discrimination of different textures, as performances in both classifica t ion 

scores and computational costs compare favorably against those of procedures previously 

proposed in the literature on the same database. 

 

For daubechies wavelet [Cédric Vonesch et al , 2007]  present a generalization of the orthonormal 

Daubechies wavelets and of their related biorthogonal flavors (Cohen-Daubechies-Feauveau, 9/7). 

Our fundamental constraint is that the scaling functions should reproduce a predefined set of 

exponential polynomials. This allows one to tune the corresponding wavelet transform to a specific 

class of signals, thereby ensuring good approximation and sparsity properties. The main difference 

with the classical construction of Daubechies et al. is that the multiresolution spaces are derived 

from scale-dependent generating functions. However, from an algorithmic standpoint, Mallat’s 

Fast Wavelet Transform algorithm can still be applied; the only adaptation consists in using scale-

dependent filter banks.  

Finite support ensures the same computational efficiency as in the classical case. We characterize 

the scaling and wavelet filters, construct them and show several examples of the associated func- 

tions. We prove that these functions are square-integrable and that they converge to their classical 

counterparts of the corresponding order. 

 

Another auther [Saima Rathore et al, 2011] deal with classification using Texture is a combination 

of repeated patterns with regular/irregular frequency. It can only be visualized but hard to describe 

in words. Liver structure exhibit similar behavior; it has maximum disparity in intensity texture 

inside and along boundary which serves as a major problem in its segmentation and classificat ion. 
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Problem gets more complicated when one applies simple segmentation techniques without 

considering  variation in intensity texture. The problem of representing liver texture is solved by 

encoding it in terms of certain parameters for texture analysis. Numerous textural analysis 

techniques have  been devised for liver classification over the years some of which work equally 

work well for most of the imaging modalities. Here, we attempt to summarize the efficacy of 

textural analysis techniques devised for Computed Tomography (CT), Ultrasound and some other 

imaging modalities like Magnetic Resonance Imaging (MRI), in terms of well-known performance 

metrics. 
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Chapter Three 

Materials and Methods 

3.1 Material: 

 All patients examined on a Helical Multi detector CT scanner scanner (Somatom Siemens scanner 

dual slice, GE Dual slice, Philips Brilliance 64 slice and Aquilion ,CXXG-012A Toshiba scanner 

64 slice) in Alnilein Medical Diagnostic Center, Medical Modern Center, Dar elaj specialized 

hospital and Royal care international hospital respectively,  used for collecting data from CT 

Abdominal images. With 8 second rotation Time, Large SFOV, 120 kVp and (250-320 mAs) 

which differ through the phases.    

the protocol used for Abdomen scanning triple-phase helical CT with KVp of 120 and 250 to 320 

mAs, slice thickness 5mm, thin data require slice thickness of 5mm for reformatted images.  

3.2 Design of the study:  

This is an analytical study where selected the patient selected conventionally. 

3.3 Population of the study: 

The population of this study was data set (patients with CT Abdomen using triple phase portocol),  

The study include both gender with their age ranged from 26 years to 89 years old. 

3.4 Sample size and type: 

 This study consisted of 180 patients diagnosed with hepatocellular carcinoma (HCC).  

3.5 Data collection 

Data collected from radiologist reports with Special designed sheet from findings which appear  

in different CT cuts. The variable data collected from the acquisition of the CT image . 
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3.6 Data based acquisition:  

Technique : Imaging protocols :Images from 180 patients was gathered. The acquisitions were 

performed with MDCT device and the standardized acquisition protocol was applied:  helical 

scanning, with lice thickness 5 mm for each patient,  an appropriate amount of 60% Iodinated 

Contrast material (about 70 - 90 ml), was injected at 4 ml/s rate. The acquisition of the images in 

the arterial phase started about 20 seconds after contrast injection. Images corresponding to how 

the contrast acting with liver tissue (arterial , vinous and delay phase) were acquired with delay of 

50–60s sequences with single Breath-holds.  All images had a size of 512×512 pixels with 8-bit 

gray levels and were represented in DICOM format. 

3.7 Methods of analysis: 

The images that collected from the PACS viewed using RadiAnt Dicom Viewer software , Then 

the images in DICOM format  were converted to JPEG image to suit IDL manipulation,  Then the 

image were read by IDL in JEPG format and the user clicks on areas represents the back ground, 

HCC, normal liver, spine and ribs. The pixel intensity in these areas was assigned as classifica t ion 

centre, and by using the Euclidian distance between these classes and all the pixels the whole 

image classified into one of these classes. Then the classification map were further processed by 

region label to segment the liver from the rest of the structure and convert the segmented live from 

the classification map to binary image to extract the HCC from the whole original image.  

The extracted features classified into; HCC, liver, spine and ribs. to extract the features using Gray 

level Run Length Matrix (GLRLM). 

When using GLRLM in this study we clicks on areas represents these classes; in these 

areas a window of 3×3 pixel were set and the higher order statistic  were calculated, 

which include Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-Level 

Nonuniformity (GLN),  Run Length Nonuniformity (RLN),  Run Percentage (RP), 
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Low Gray-Level Run Emphasis (LGLRE),  High Gray-Level Run Emphasis (HGLRE),  

Short Run Low Gray-Level Emphasis (SRLGLE),  Short Run High Gray-Level 

Emphasis (SRHGLE), Long Run Low Gray-Level Emphasis (LRLGLE), Long Run 

High Gray-Level Emphasis (LRHGLE), These features were assigned as classification 

centre used by the Euclidian distances to classify the whole image. The algorithm scans 

the whole image using a window of 3×3 pixel and computes the higher order statistic 

and computes the distance (the Euclidean distance) between the calculated features and 

the class’s centers and assigns the window to the class with the lowest distance. Then 

the window interlaced one pixel and the same process started over till the entire image 

were classified and a classification map were generated. After all images were 

classified the data concerning the HCC, liver, spine and ribs entered into SPSS with its 

classes to generate  a classification score using stepwise linear discriminate analysis; to 

select the most discriminate features that can be used in the classification of HCC.  

3.8 Ethical approval 

The ethical approval was granted from the hospital and the radiology department; which include 

commitment of no disclose any information concerning the patient identification. 
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Chapter Four 

4.1 Results 

The main goal of this study to characterize the hepatocellular carcinoma in CT Images , the patients 

who diagnosed with HCC and examined by Computed Tomography , and the characterization of 

image done by higher order statistic and Daubechies coefficient based on Texture Analysis. 

The study  include 180  patients with hepatocellular carcinoma  The result of this study represented 

in figures and tables.   

 Table (4.1) Shows Gender distribution of  patients with HCC  

Gender Frequency Percentage 

Male 79 44 % 

Female 101 56 % 

 

Figure 4.1 show gender distribution of  patients with HCC 
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Figure 4.2 show Scatter plot generated using discriminante analysis function for four classes 

represents: HCC, Liver, Spine and Ribs . 

 

Table 4- 2 Classification score matrix generated by linear discriminate analysis with 

classification accuracy of  85.4%. 

    Original group 

 

Predicted Group Membership 

Total HCC Liver Spine Ribs 

 

Classes 

HCC 98.8 1.2 0 0 100% 

Liver 9.9 85.2 4.9 0 100% 

Spine 0 6.2 75.3 18.5 100% 

Ribs 0 0 18.1 81.9 100% 

 Total classification accuracy = 85.4%   

 

Figure 4.3show error bar plot for the  Short  Run Emphasis (SRE) textural features. 
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Figure 4.4 show error bar plot for the  Gray Level Non-uniformity (GLN) 

 

Figure 4.5 show error bar plot for the  High Gray Level Run Emphasis  (HGRE) 
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Figure 4.6 show error bar plot for the Short Run High Gray Level Emphasis (SRHGLE) 

 

Figure 4.7 show error bar plot for the  Long Run Low Gray Level Emphasis (LRLGE) 
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Daubechies wavelets based on Texture Analysis  

In this section the features were extracted from Hepatocellular Carcinoma (HCC) CT images using 

Daubechies wavelets based on Texture Analysis. and this features showed significant correlation 

with the predefined classes (HCC, Liver, Spine and Ribs) .  

Figure 4.8 show Scatter plot generated using discriminante analysis function for four classes 

represents: HCC, Liver, Spine and Ribs. 
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Table 4.3  Showed the classification accuracy of the HCC using linear discriminant analysis: 

             Classes 

Predicted Group Membership Total 

HCC Liver Spine Ribs 

Original 

HCC 97.1 2.9 .0 .0 100.0 

Liver 8.3 91.7 .0 .0 100.0 

Spine 2.9 .0 97.1 .0 100.0 

Ribs .0 .0 8.8 91.2 100.0 

 94.2% of original grouped cases correctly classified 

Figure 4.9 CT images image (A) and classification map (B), the original image (A) classified to 

(B) color map demonstrate the liver lesion. 
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Chapter Five 

Discussion, Conclusion and Recommendations 

5.1 Discussion: 

By the increasing use of direct digital imaging systems for medical diagnostics, digital image 

processing becomes more and more important in health care. 

Digital imaging technologies have become indispensable components for clinical procedures. 

Major advances in the field of medical imaging and computer technology have created opportunity 

for quantitative analyses of medical images and provided powerful techniques to probe the 

structure, pathology and function of the human body. The availability of many different imaging 

modalities increased the requirement for significant innovations to obtain accurate and fast results 

in all aspect of image processing. 

However, in characterization of hepatocellular carcinoma using CT images The system involves 

use of different measures, such as texture features (GLRLM), grey scale, fractal dimension 

estimators or shape descriptors, combined with a classifier using two method of analysis the data 

Gray Level Run Length Matrix (GLRLM) and Daubechies wavelet based on texture analysis . 

In This is analytical study, performed for 180 patients, male and female who are presented for CT 

Abdomen to liver abdominal using multi detector helical CT Scan (MDCT). In this study the higher 

order statistic (GLRLM) contain elven features extracted from Triple phase CT images using 3×3 

window. Three of them showed well classification with the predefined classes (HCC, Liver, Spine 

and Ribs) they includes short run emphasis , gray level non-uniformity , high gray level run 

emphasis , short run high gray level emphasis and long run low gray level emphasis . 
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Table 4.1 shows Gender distribution for hepatocellular carcinoma patient's, show that the female 

had higher rate 44:56 % male to female, and figure 4.1 show the distribution of gender where 79 

represent the male and 101 represent the female. 

Figure 4.2  show Scatter plot generated using discriminate analysis function for four classes 

represents: HCC, Liver, Spine and Ribs , with the Gray Level Run Length Matrix (GLRLM) and 

the classification showed that the HCC were classified well.  

Table 4- 2 show Classification score matrix generated by linear discriminate analysis for the scatter 

plot, the  linear discrimination analysis was applied to assign the classified region to their 

respective class, in order to find the accuracy of classification. Where the classification accuracy 

for the whole classes was 85.4%, with 98.8% classification for HCC, liver, spine and ribs was 

85.2%, 75.3 and 81.9 respectively.  

 Figures 4.3 , 4.4, 4.5, 4.6 and 4.7 show Error bar plot for the  Short  Run Emphasis (SRE) , Error 

bar plot for the  Gray Level Non-uniformity (GLN),  Error bar plot for the  High Gray Level Run 

Emphasis  (HGRE), Error bar plot for the Short Run High Gray Level Emphasis (SRHGLE) and  

Error bar plot for the  Long Run Low Gray Level Emphasis (LRLGE), that selected by the linear 

stepwise discriminate function as a discriminate feature where it  discriminate between all 

features between HCC, Liver, Spine and Ribs . were computed from Gray Level Run Length 

Matrix (GLRLM) and the results are represented that there is a well concentration of features 

around the class centers which give a remarkable difference among the four classes especially 

between the HCC and liver. 

Figure 4.8  show Scatter plot generated using discriminante analysis function for four classes 

represents: HCC, Liver, Spine and Ribs , with the Daubechies wavelet based texture analysis  and 

the classification showed that the HCC were classified well.  
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Table 4-3 show Classification score matrix generated by linear discriminate analysis for the scatter 

plot, the linear discrimination analysis was applied to assign the classified region to their respective 

class, in order to find the accuracy of classification. Where the classification accuracy for the whole 

classes was 94.2%, with 97.1% classification for HCC, liver, spine and ribs was 91.7%, 97.1 and 

91.2 respectively.  

Finally, HCC and other abdominal organ in CT images for simplicity can be diagnosed and classify 

by using higher order statistic and Daubechies coefficient. 

 Excellent discrimination between hepatocellular carcinoma and other abdominal organ can be 

established based on GLRLM and Daubechies coefficient serves as a second method to perform 

more characterization of the tumor. 
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5.2 Conclusions :  

Digital imaging technologies have become indispensable components for clinical procedures. 

Major advances in the field of medical imaging and computer technology have created opportunity 

for quantitative analyses of medical images and provided powerful techniques to probe the 

structure, pathology and function of the human body. The availability of many different imaging 

modalities increased the requirement for significant innovations to obtain accurate and fast results 

in all aspect of image processing. 

The texture reveals a different underlying pattern of the HCC compared to the liver and other  

abdominal tissues with classification sensitivity 98.8%, and the combination of the GLRLM 

throughout the different triphasic image phases provides the highest predictive  overall accuracy 

of 85.4 % using stepwise linear discriminant analysis.  

In the Daubechies wavelet transformation the classification sensitivity 97.1 %, and the 

combination of the texture features throughout the different triphasic image phases provides the 

highest predictive  overall accuracy of  94.2 % using stepwise linear discriminant analysis.  

This study dictate that texture analysis is superior to visual perception system where texture  

reveals the change and the difference of the image pattern objectively in respect to the ground  

truth.  

Gray level intensity values can be used as a valuable quantitative tool that would be helpful in  

improving the confidence in HCC diagnosis as well as facilitating more accurate diagnosis.   
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5.3 Recommendations  

 Existing techniques can be applied to classify and differentiate other types of liver   

lesions. 

 More texture features and techniques can be used to improve the performance.  

 Texture analysis can be carried out in all image slices where the tumor were visible 

therefore  to get  volume of the tumor and this can be used for planning process of 

diagnostic radiotherapy  treatment.  

 Study can also be  done in depth for other types of medical images like US and  

MRI  .   

 Initiation of image processing unit in the radiology department can help a lot in 

activation of  image processing projects.   

 Further classification of liver that associated with any hepatic disease. 
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