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CHAPTER ONE                                   

INTRODUCTION 

 

 

 

1.1 Preface 

          The current network infrastructure known as the 'Internet' has settled 

for more than a decade and has rooted deeply in our society. However, 

enterprises and carriers are starting to realize the limitations of current state 

with the rapidly evolving network technologies and the growing demands of 

the users [1]. Also, the level of access network differentiation was not 

foreseen in the development of basic network protocols. It was assumed, that 

different applications could communicate with each other without any 

restrictions in a global network. This assumption required an adjustment 

quite quickly and there were developed specialized devices such as firewalls, 

Intrusion Prevention Systems (IPS), network anti-viruses and Web 

Application Firewalls (WAF) [2]. 

          To overcome this limitation and security problems, Software-Defined 

Network (SDN) was suggested around 2005 as one of the most brilliant, 

flexible and cost-efficient solutions. The idea of Software Defined 

Networking (SDN) associated with OpenFlow protocol can provide a strong 

solution to resolve the problem of network threats from host or end user level, 

and from network level as well. 
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          This project focused on how to discover and prevent possible 

vulnerability and recognize abnormal behavior in virtual network devices and 

hosts that could be easily monitored and investigated without damage of the 

real production environment. The proposed technique reduces the cost of 

equipment, intellectual property and data recovering.  

          The main contribution of this project, is to implement an easy, flexible 

and cheaper firewall to secure virtual network environment based on an Open 

Source and SDN technology and make network administration easier and 

more effective. A basic network identifier that have the ability to recognize 

the host activities when trying to connect to another network objects in the 

local or external networks and how will be devolved. 

 

1.2    Problem Statement  

           There is need for a centralized, flexible, programmable and efficient 

mechanism to handle the procedures of network access control and malicious 

attack prevention. As well as, to achieve maximum leverage of network 

devices such as switches, routers and firewalls and to eliminate usage of 

expensive physical devices.      

 

1.3    Proposed Solution 

          An attractive solution for the mentioned problems is provided by 

Open Source applications with user friendly interface and flexible 

configuration. A well-known switch supporting OpenFlow protocol, which 
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is managed by SDN Controller with firewall module to control the 

forwarding behavior of the switch will be implemented.  

 

1.4    Research Aim and Objectives 

          The aim of this research is to propose a new flexible, robust and cost-

efficient method for network threats detection and prevention instead of the 

existing methods and solutions. As well as, to improve the network 

performance and its efficiency. 

          The detailed objectives of this research work are achieved through the 

following steps: 

▪ To establish a security algorithm running with SDN controller as a 

virtual firewall for the network devices. 

▪ To manage the forwarding behavior of the OpenFlow switch by SDN 

controller and the established firewall module. 

▪  To test the network performance and check wither any improvement 

has been occurred or not.  

           

1.5    Methodology  

          This research work is based on SDN controller and OpenFlow protocol 

which is a powerful solution that can be used to detect and control abnormal 

and suspicious network behavior by using switches that support OpenFlow 

protocol as network security appliances. The project introduces an 

implementation of packet filtering and detection mechanism on SDN 
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controller and a comparison between the existing non-SDN controller 

methods and the proposed solution.  

         The research methodology contains different stages, these have been 

illustrated in the following points:   

▪ A virtual network environment of three hosts connected by OpenFlow 

supporting switch have been implemented to test basic switch 

functionality (Without SDN Controller).  

▪ The switch has been managed with POX controller, reconfigured the 

OpenFlow switch to hub module, switch module and vice versa (With 

SDN controller and Without Firewall module).   

▪ POX controller has configured with the firewall module (security 

algorithm) which is a Paython_based Code. This algorithm added a 

firewall functionality by providing traffic filtering and decision-

making mechanism.  

▪ Hping3 is a free packet generator and analyzer for the TCP/IP protocol 

and it is a type of network security tester. This tool has been used to 

generate SYN flood - which is a kind of DoS attack - against the hosts 

and find out wither the POX firewall able to detect and terminate this 

kind of threat or not (First Scenario).  

▪ Iperf tool which is a traffic generator tool has been used to generate 

streams of TCP and UDP traffic that the POX controller was able to 

identify them and made the appropriate actions as drop, allow or deny 

traffic (Second Scenario).  

▪ Traffic Performance tests have been applied on both non-SDN method 

and the proposed methods and all the results have been written down. 

 

https://en.wikipedia.org/wiki/Packet_generator
https://en.wikipedia.org/wiki/TCP/IP
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1.6    Thesis Outlines  

          In Chapter two, general overview of firewalls, SDN controller and 

OpenFlow protocol technologies have been given. Also, some of the previous 

studies in the same field have been mentioned to take the maximum benefits. 

 

          In chapter three, the methodology of this work has been illustrated in 

detail with all Operating Systems, software packets and commands that have 

been used in the project.   

 

          In Chapter four, the firewall modules (Paython_based codes) have 

been used. Then, the traffic performance and penetration tests were applied 

and the results from each scenario have been presented.  

 

          In Chapter five, the conclusion has been obtained from all the results 

that were drew. Some recommendations for the future work related to this 

project are also proposed. 
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CHAPTER TWO                                        

LITERATURE REVIEW 

 

 

          In this chapter, a detailed background about SDN controller and 

OpenFlow protocol with all different aspects that are related have been 

mentioned. Also, some researches outcomes have been written down in this 

chapter. 

 

2.1    Background 

2.1.1   Traditional Firewalls  

           Firewalls are either software components or hardware devices that 

enforce security policies in order to restrict unauthorized network access. The 

security policies filter network traffic based on the information in one or more 

of the Open Systems Interconnection (OSI) layers [2] [3]. Even though the 

term firewall is widely used as a technical term, it was originally used by 

Lightoler in 1764 to describe a wall that confined a potential fire from 

spreading from one location to another [3]. The term was used also to 

describe the iron walls behind the engine compartment of steam trains. These 

iron walls were used to stop fire from spreading to the passenger 

compartment.  

           Routers were considered the first network firewalls in the late 1980s 

because they were used to separate a network into different broadcast 

domains. This separation limited problems from a domain or local area 

network (LAN) from affecting the whole network. In addition, routers helped 
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isolating “chatty” protocols, which use broadcasts messages for 

communication, from affecting the bandwidth of the rest of the network [3], 

[4]. 

 

2.1.1.1 Needs of Firewalls 

 

Firewalls can be used to enforce security policies for the following reasons: 

▪ To secure the underlying operating systems by preventing some types 

of communication, malware, attacks, etc. [3]. 

▪ To limit access to information on the Internet, an example of which is 

the filtering rules mandated in the United States by the Children’s 

Internet Protection Act (CHIPA) [3]. 

▪ Preventing the leakage of information to the outside of the network. 

▪ Enforcing policy rules on network traffic. 

▪ To provide auditing information for the network administrator [3].         

 

2.1.1.2 Firewall Types in Historical Order 
 

           In 1989, Jeffery Mogul described a solution that worked at the 

application layer to decide whether or not to pass packets through a router 

[3], [5]. His solution was to monitor the source address, destination address, 

protocol type, and port numbers to make the decision to allow or deny 

packets. However, Mogul’s solution considered neither the state of TCP 

connections nor the pseudo-state of UDP traffic [5]. The first commercial 

firewall was developed by Digital Equipment Corporation (DEC) and was 

based on the technology proposed by Mogul. However, Marcus Ranum at 

DEC rewrote the rest of the firewall code after inventing security proxies, 

and the final firewall product was called DEC Secure External Access Link 

(SEAL) [3], [4]. A chemical company was the first to have DEC SEAL on 
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June 13, 1991 [3], [4]. The DEC SEAL consisted of three devices, shown in 

Figure 2-1: an application proxy server called Gatekeeper, a packet filtering 

gateway called Gate, and an internal mail server called Mailgate. 

 

           Traffic from inside to outside should pass through the Gate and then 

to the Gatekeeper, which decided whether the traffic would be allowed to be 

sent to the destination. Traffic was not allowed to be sent directly from the 

source to the destination without passing through the Gatekeeper [3]. 

 

 

Figure 2-1: DEC SEAL - First Commercial Firewall  

           Application level proxies such as DEC SEAL provide good security 

and auditing capabilities because each packet is stopped at the proxy firewall, 

then examined, and finally recreated if it passes the rules. However, one 

drawback of this process is that a new application type requires a new 

application proxy to be developed. Moreover, the client program must be 

modified to account for the proxy in the network. A final drawback is 

performance, as each packet must be encapsulated two times, one at the 

Gatekeeper and one at the destination [3]. 
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          During the same time DEC was working on SEAL, Cheswick and 

Presotto at AT&T Bell Labs were designing a proxy-based firewall that 

worked at the transport layer, rather than at the application layer proxy as in 

DEC SEAL [6]. This design had the same issue that DEC SEAL had, which 

is the lack of performance as each packet was required to cross the network 

protocol stack two times [3]. Cheswick reported that the file transfer speed 

without the proxy was around 60-90 Kbps, while it was around 17-44 Kbps 

with the proxy. Furthermore, client programs need to be modified to account 

for the proxy-like application layer proxies. 

 

           In order to simplify the use of proxies, David Kolbas developed 

Socket Secure protocol (SOCKS), which routes traffic between a server and 

a client through a proxy. Some web browsers such as Netscape supported 

SOCKS. Avolio and Ranum released the source code of the Trusted 

Information Systems (TIS) Firewall Toolkit (FWTK) on October 1, 1993. 

This toolkit supported Simple Mail Transfer Protocol (SMTP), Network 

Transport Protocol (NTP), Telnet, File Transfer Protocol (FTP), and generic 

circuit-level application proxies [7]. However, FWTK did not support User 

Datagram Protocol (UDP) services. In 1994, Check Point introduced 

Firewall-1, which had a user-friendly interface that simplified the installation 

and administration of the firewall [4]. The TIS firewall became the Network 

Associates Incorporation’s (NAI) Gauntlet Internet firewall after the merger 

between TIS and NAI in 1998 [3]. 

 

           Packet filtering firewalls started with Mogul’s paper [3]. This type of 

firewall is much faster than the application and transport layer proxies 

because it does not require the packet to traverse the OSI network stack twice. 

In addition, it does not require any changes on the user side. Packet Filtering 
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firewalls filter packets based on one or more of the following parameters: 

source address, destination address, options in the packet header, options in 

the segment header (TCP or UDP header), and the physical interface number 

[3]. Even though packet filtering firewalls are faster compared to proxies, 

there are disadvantages. First, configuring the filter rules is complex and 

error-prone. Second, the IP addresses could be spoofed by attackers. Last, the 

original packet filter firewalls were stateless, i.e. they did not keep track of 

the state of the connections; therefore, an attacker might bypass the firewall 

by claiming to be part of an existing TCP connection [3]. As a result, stateful 

firewalls were developed to keep track of TCP sessions and to allow packets 

coming from outside to access the network if they belonged to an active 

session. Darren Reed was the first to implement that concept in his IP Filter 

(IPF) version 3.0 in 1996 [3]; however, the first published peer-reviewed 

paper was by Chow and Julkunen in 1998 [3]. 

 

           Network Address Translation (NAT) is a layer of protection like that 

provided by proxies since the inside network is isolated from the outside 

network through the router performing NAT. NAT device replaces the source 

IP address of the outbound packet with its own IP address, and it might also 

change the source port number of the packet to a random unused port number 

above 1024 and map that into a table to keep track of each translation. 

However, one drawback of NAT is that it might interfere with Internet 

Protocol Security (IPsec) operation, which uses a set of cryptography 

algorithms to ensure the integrity of Data [3], [8]. 

 

           In addition to the previous types, there are some packet filter firewalls 

and proxies that work on the data link layer but still use the information in 

layer 2 – 4 to filter the packets. Working on layer 2 makes a firewall / proxy 



13 
 

transparent at the network level, meaning that it could be placed anywhere in 

the network and that it neither requires an IP address to operate (except for 

management) nor changes to the host operating system; therefore, the 

installation time could be minimal [3]. 

 

           Signature-based firewall, which might work at the user level as a 

transparent proxy, monitors the payload for known malicious strings to 

prevent an attack from happening. This approach is sometimes called 

“fingerprint scrubber” or “application scrubbing” [3]. Snort is an intrusion 

detection system that Hogwash firewall uses to drop packets that match the 

rules [9]. 

 

           The emergence of new technologies such as Virtual Private Networks 

(VPNs) and Peer-to-Peer (P2P) networking raise new challenges for previous 

firewalls. For example. If the laptop’s security of a remote-user who uses 

VPN to access the internal network of a company is breached, then the entire 

inside network might be accessible by the attacker [3]. In addition, a software 

bug in P2P programs such as Gnutella could be used by attackers to gain 

access to the victim’s host [3]. 

 

2.1.2   Software Defined Networking (SDN) 

           SDN is a network architectural paradigm that separates the control 

plane, which is the logic that controls how traffic is forwarded from the data 

plane of a networking device, which is the underlying system that forwards 

traffic, such as a router or a switch [10], [11]. Proponents of SDN believe that 

this separation provides the network operator with many advantages over the 

conventional network architecture, such as promoting innovation and 

features development. In addition, it provides the operator the ability to use 
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less expensive commodity switching hardware under the control of a 

logically centralized programmatic control plane. This design uses elastic 

less-expensive computing power instead of over-priced high-end routing and 

switching products [12], [13]. Figure 2-2 illustrates the logical view of SDN 

architecture. Even though the separation of the control and data planes is one 

of the fundamental principles of SDN, it is also the most controversial [14]. 

The location of the control plane and how far away it could be located from 

the data plane, whether all the functions in the control plane could be 

relocated, and the number of instances needed to provide high-availability 

are all highly debated topics [12]. 

                         

Figure 2-2: Software-Defined Network Architecture  

 

           There are three approaches to the distribution of the control and data 

plane: the strictly centralized, the logically-centralized, and the full 

distributed control plane [12]. In the first approach, the switching devices are 
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dumb yet fast devices under the control of a centralized controller, which is 

considered the brain of the network. However, this extreme approach does 

not scale well, and it introduces a single point of failure in the network [12]. 

In the second approach, logically-centralized control plane, the switching 

devices retain some of the control plane functions, such as MAC addresses 

learning or ARP processing while at the same time a centralized controller 

can handle other functions that utilize the underlay network (switching 

devices) [12]. The last approach is the classical distributed control plane that 

each device has in addition to one or more data plane. These distributed 

control planes must cooperate with each other to have a functional network 

[12]. 

 

           The control plane is the brain of the device. It exchanges protocol 

updates and system management messages [15]. It also maintains the routing 

table, which is also called the routing information base (RIB), through 

exchanging updates between other control plane instances in the network 

(routing protocol updates) and the forwarding table [12]. The FIB, or 

forwarding information base, is just a reformatting of the stable RIB table 

into an ordered list with the most specific route for each IP prefix at the top 

[16]. The control plane provides the data plane with an accurate up-to-date 

forwarding table through an internal link [15]. The data plane could use 

different types of technology to store the FIB tables, such as hardware-

accelerated software, application-specific integrated circuits (ASICS), field-

programmable gate array (FPGA), or any combination [12], [15]. In addition 

to forwarding traffic, the data plane implements some advance features such 

as policers, access control lists, and class of service (COS) [15]. All traffic is 

compared against the FIB table entries once it enters an ingress port, and it is 
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forwarded out an egress port. However, if there is no entry for a packet’s 

destination address, then the packet must be sent to the control plane for 

further processing. In addition, the following conditions that might cause the 

same behavior are [16]: 

▪ Packets that are addressed to the router/switch, such as routing updates, 

pings, and trace routes. 

▪ Full FIB table. 

▪ IP packets that have the IP options field enabled. 

▪ Packets that require the Internet Control Message Protocol (ICMP) to 

be generated. 

▪ Packets that require compression or encryption. 

▪ Packets in which the Time-To-Live (TTL) field has expired. 

▪ Packets that require fragmentation due to exceeding the Maximum 

Transmission Unit (MTU). 

 

2.1.2.1 The Importance of the Separation 

           The separation of the data plane from the control plane is not a new 

idea. Network device manufacturers have applied the same concept to the 

multi-slot routers and switches that they built in the last 10 years [12]. The 

control plane is implemented on a dedicated card - Cisco usually calls it the 

supervisor engine. To provide high availability, two supervisor engines are 

required – and the forwarding plane is implemented on one or more cards 

(line cards) independently, as shown in Figure 2-3 below [12]. However, the 

high cost of this design, along with other components, discussed below, is 

the motivation behind SDN. 
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Figure 2-3: Control and data plane example implementation  

 

           First, I discuss the scaling issue of the service, forwarding, and control 

cards. Service cards can support only a limited number of subscribers or 

services state based on the generation of the embedded CPUs that they have. 

It takes a great deal of time for equipment vendors to take advantage of a new 

processor family in their service cards. In addition, the forwarding and 

control cards suffer from the same issue, which is the limitation of the 

embedded CPUs as well as the expensive memory that is limited in size [12]. 

Even though the SDN architecture still needs an upgrade in the control and 

service plane to accommodate scale, this upgrade could take advantage of the 
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commercial off-the shelf (COTS) computing power that evolved dramatically 

and was driven by cloud computing [12].  
 

           Second, SDN will save large enterprises and service providers money 

on capital expenditure (CAPEX) since the cost of commodity devices is low 

in comparison to cost of high-end routes and switches from well-known 

vendors [12], [17]. 

 

           Third, the separation of the control plane and data plane enables 

innovations in both planes since network operators would be able to provide 

new services by changing the software release independently from the 

hardware. This will also promote competition between enterprises or service 

providers to provide new services and features. 

 

           Fourth, the separation would make the forwarding elements more 

stable due to the smaller codebase required to implement the same network 

functionality in comparison to the conventional way. It is common these days 

to consider a smaller codebase more stable than a longer one that had many 

feature upgrades, such as the Multiprotocol Label Switching (MPLS) 

protocol [12]. 

 

           Finally, in conventional networks, the greater the number of control 

planes, the more complex and fragile the system. That is, adding more 

devices (control planes) will impact the scale of the network, i.e. convergence 

time [12]. To address this issue, equipment vendors created the concept of 

system clusters where elements of the cluster are connected (through an 

external link) to create a single logical system controlled by a single control 

plane. A distributed control plane in the cluster is also available to provide 

load balancing. Even though this solution has characteristics of SDN, it does 
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not solve the programmability issues of the control plane. Thus, SDN 

architecture is more flexible and provides a centralized control plane that 

reduces the complexity of the system [12]. 

 

2.1.3   OpenFlow Protocol 

          In 2008, a group of engineers from Stanford University developed an 

open standard protocol called OpenFlow, which enables researchers to 

evaluate and run experimental protocols in an existing production network 

without exposing the internal network. To allow that, OpenFlow enabled 

switch must be able to isolate experimental traffic from production traffic 

through either applying Virtual Local Area Networks (VLANs) or 

forwarding production traffic to the normal process of the switch [18]. 

OpenFlow protocol is a standard communications interface between the 

controller and the forwarding plane of the underlying network devices that 

allows network operators to manipulate the forwarding plane of these devices 

[19]. 

 

           OpenFlow consists of a set of protocols and Application Programming 

Interface (API). The protocols are divided into two parts, as shown in Figure 

2-4 below: 

▪ The OpenFlow protocol, also called the wire protocol. This defines a 

message structure that enables the controller to add, update, and delete 

flow entries in the OpenFlow Logical Switch flow tables as well as to 

collect statistics [12], [20]. 

▪ The OpenFlow management and configuration protocol that defines an 

OpenFlow enabled switch as an abstraction layer called an OpenFlow 
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Logical Switch. This enables high availability by allocating physical 

switch ports to a controller [21]. 

 

 

Figure 2-4: Relationship between components defined in the specification, the OF-

CONFIG protocol and the OpenFlow protocol 

 
 

 

 

2.1.3.1 OpenFlow Switch Components 

           An OpenFlow-enabled switch consists of a group table and one or 

more flow tables, one or more OpenFlow secure channels that connect the 

switch to an external controller, and an OpenFlow protocol that defines the 

control messages between the switch and the controller, as shown in Figure 

2-5 below [22]. 
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Figure 2-5: Main components of an OpenFlow switch  

 

 

 

2.1.3.2 OpenFlow Ports 

           An OpenFlow protocol has different port types that pass traffic 

between OpenFlow processing and the rest of the network. The OpenFlow 

standard ports are as follows: 

▪ Physical ports, which correspond to a hardware interface such as 

Ethernet switch port. 

▪ Logical ports, which do not correspond to a hardware interface 

directly, such as tunnels, loopback interfaces, and link aggregation 

groups. 

▪ Reserved ports, which are defined by the OpenFlow specification. The 

* means mandatory port. They define forwarding actions as follows 

[20]: 
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o ALL *: Represents all the switch ports except the packet ingress 

port and ports configured with OFPPC_NO_FWD. It can be 

used only as an egress port. 

o CONTROLLER *: Represents the port to the OpenFlow 

controller. 

o TABLE *: Represents the beginning of the OpenFlow pipeline. 

It used as an output action in the “packet-out” message’s action 

list. 

o IN_PORT *: Represents the ingress port of the packet. 

o ANY *: Represents a wildcard value. 

o LOCAL: Represents the management stack of the local switch. 

o NORMAL: Represents the traditional layer 2 or layer 3 

forwarding. 

o FLOOD: Represents flooding using the traditional pipeline of 

the switch to all ports except the ingress port and ports with 

flooding disabled state. 

 

2.1.3.3 Flow Table 

           Each entry in the flow table is made of the following fields, as shown 

in Figure 2-6 [20]: 

▪ Match fields: The matching criteria used against packets. They could 

be based on ingress port, packet headers, and metadata from the 

previous flow table. 

▪ Priority: Priority of the entry. The higher the number, the higher the 

priority. 

▪ Counters: This field increases when a packet matches an entry. 

▪ Instructions: Actions applied to matching packets. 
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▪ Timeouts: This could be an idle-time or hard-time that specifies the 

amount of time before an entry expires. 

▪ Cookie: This is not used to process packets, but it might be used by the 

controller to filter flows based on their types (statistics, modifications, 

and deletion). 

▪ Flags: This field changes how flow entries are managed; for example, 

an entry with the flag OFPFF_SEND_FLOW_REM means that a flow 

removed message will be sent to the comptroller once this entry is 

removed. 

 

 

 

Figure 2-6: Main components of a flow entry in a flow table  

 

 

 

2.1.3.4 OpenFlow Message Types 

           There are three main categories for message types and each category 

has its own types. The main categories are: controller-to-switch, 

asynchronous, and symmetric. The controller-to switch messages are 

originated from the controller, and they might not require the switch to 

respond to them. The asynchronous messages are originated from the switch 

to notify the controller of a packet arrival, an error, or switch state change. 

Last, the symmetric messages are created, without solicitation, by either the 

controller or the switch [20]. The sub-types of each category are as follows: 
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❖ Controller-to-Switch Messages 

▪ Features: Sent by the controller to request the identity and capabilities 

of a switch that should reply with a feature reply message containing 

the requested information. 

▪ Configuration: Allows the controller to quest or sent configuration 

parameters in the switch. 

▪  Modify-State: Sent by the controller to add, delete, or modify flow 

entries or a group of entries in the OpenFlow table as well as to set the 

port properties of the switch. 

▪ Read-State: Uses multipart messages to read the current configuration 

and collect statistics and capabilities information from the switch. 

▪ Packet-out: Used by the controller to send packets out a specific port. 

This type of message should have either a full packet as raw data 

created by the controller or the buffer ID of the packet stored in the 

switch, which the controller received via Packet-in message. 

Furthermore, it should have a list of actions. If the list of actions is 

empty, the switch will drop the packet. 

▪ Barrier: Used by controller to request and reply messages to either 

receive notification once operations are completed or to confirm that 

message requirements have been met. 

▪ Role-Request: Used to set the OpenFlow channel’s role or query for it. 

This is helpful when the switch is connected to multiple controllers to 

provide redundancy [20] [21]. 

 

❖ Switch-to-Controller Messages 

▪ Packet-in: Generated by the switch and sent to the controller for 

processing. This can be triggered if there is no entry for the received 
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packet in the flow table, if the output action of the flow entry is to send 

the packet to the controller, or if the packet needs other processing, 

such as TTL processing. Switches that support internal buffering will 

buffer the packet and send a configurable number of bytes, 128 bytes 

by default, along with a buffer ID to the controller. However, if the 

switch does not support internal buffering or if the buffer is full, it has 

to send the full packet to the controller. 

▪ Flow-Removed: Used to notify the controller about the removal of a 

flow entry if that entry has the OFPFF_SEND_FLOW_REM flag. 

▪ Port-status: Used to notify the controller when a change to the port 

state or configuration occurs. 

▪ Error: Used to notify the controller of a problem [20]. 

 

 

❖ Symmetric 

▪ Hello: Exchanged between the controller and the switch during the 

connection setup phase. 

▪ Echo request/ reply: Used as keep-alive messages between the 

controller and the switch. They might also be used to measure the 

latency and bandwidth between them. 

▪ Experimenter: Used to test new features [22]. 

 

 

2.1.3.5 Connection Setup 

           After configuring the switch with the IP address of the controller, the 

switch initiates a standard Transport Layer Security (TLS) or TCP connection 

to the controller listening on TCP port number 6653 or a user-specified TCP 

port. Once the TLS connection is established, each participant in the 
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connection must send an OFPT_HELLO message with the highest protocol 

version supported by the sender in the version field. If the sent and received 

Hello messages contain OFPHET_VERSIONBITMAP, the negotiated 

version must be the highest version supported by both. Otherwise, the 

smallest version should be supported [20]. 
 

           Upon successfully exchanging OFPT_HELLO messages and 

negotiating the protocol version number, the connection setup is completed 

and the OpenFlow messages described in the previous section can be 

exchanged; for example, the controller should first send an 

OFPT_FEATURE_REQUEST message to identify the Datapath ID of the 

switch, as the left side of Figure 2-7 illustrates [20]. The right side of Figure 

2-7 shows an example of exchanging different OpenFlow messages. 

 

Figure 2-7: OpenFlow protocol messages 

 

2.1.3.6 Multiple Controllers 

           To provide redundancy, high-availability, and load balancing, 

OpenFlow support multiple controllers that allow a switch to establish 
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communication with each one of them. However, the handover process 

between the controllers is performed by the controllers themselves. The 

default role of the controller is EQUAL “OFPCR_ROLE_EQUAL”, which 

gives the controller full access to the switch. However, the role can be 

changed to SLAVE (read-only) “OFPCR_ROLE_SLAVE” upon the request 

of the controller [22]. 

 

 

2.1.3.7 Flow Match Fields 

           As explained in previous that one of the main components of flow 

entry in the flow table is the match fields. Table 2-1 illustrates the match 

fields that must be supported by the OpenFlow-enabled switch in its pipeline. 

 

Table 2-1: Required Match Fields [20]  
 

 

 

 

2.1.3.8 Action Structure 

           Table 2-2 summarizes the actions that the SDN controller could use 

with each flow entry, packet, or group. 
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Table 2-2: Action Structure [20] 

 
 

 

 

2.1.3.9 OF-Config Versions 

           The OF-config protocol is structured around NETCONF protocol to set 

information related to OpenFlow on the network elements. With OF-config, 

the operator does not have to use other tools, such as FlowVisor to provide 

switch virtualization [12], [23]. Table 2-3 compares OF-config versions [12]. 

 

Table 2-3: Capability progression of OF-Config [12] 
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2.1.3.10 OpenFlow Versions 

           The Extensibility Working Group added new functionality and features 

to OpenFlow protocol v1.0. When OpenFlow protocol v1.3 was released in 

April 2012, the Open Networking Foundation (ONF) decided to slow down 

releasing new versions to allow for higher adaption rate of OpenFlow v1.3 

and to focus on bug-fix releases [12]. Table 2-4 below compares OpenFlow 

v1.1– 1.3. 

 

Table 2-4: The progression of enhancements to the OpenFlow pipeline from OF v1.1 

through OF v1.3 [12] 

 
 

 

 

2.1.4   SDN Controllers 

           There are several open sources and commercial SDN controllers that 

have been developed. NOX/ POX, Floodlight, and OpenDaylight are 
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examples of open source SDN controllers. On the other hand, Cisco OnePK 

controller is a commercial controller that integrates multiple southbound 

APIs. NOX is considered the first open source controller after being donated 

by Nicira to the research community in 2008. NOX provides a C++ OF v 1.0 

API and an event-based programming model [24], [25]. POX is the Python 

version of NOX, and it supports the same graphical user interface (GUI) as 

NOX [30]. Table 2-5 compares the features of some SDN controllers [10]. 

 

Table 2-5: Comparison among the controllers [10] 
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2.1.5   Northbound APIs 

           Even though SDN provides a way to program the network, it does not 

make it easy. SDN controllers such as NOX/ POX and Floodlight support a 

low-level interface that forces the applications to deal with the state of 

individual devices. Applications are developed as event handlers that respond 

to packet arrivals event. Having only a low-level interface, also called 

southbound interface, makes it extremely difficult to support multiple tasks/ 

module such as routing, switching, and firewall at the same time because the 

rules generated by one task/ module might have a conflict with the others 

(e.g., a rule to allow certain flow and another to deny it) [26]. 

 

          Frenetic is projected to increase the level of abstraction and make 

developing applications for SDN much easier. It provides a suite of 

abstractions for defining rules, querying the state of the network, and 

updating rules in a consistent way [26]. 
 

           Pyretic is an SDN programming language embedded in Python, and it 

is a member of the Frenetic family. It also provides powerful abstractions that 

enable programmers to develop modular network applications as Figure 2-8 

shows [27]. One of the main advantages of Pyretic over traditional OpenFlow 

programming is that Pyretic offers parallel and sequential composition of 

policies to perform multiple tasks without worrying about potential policy 

conflicts. For example, in sequential composition, the output of the policy on 

the left of the operator (>>) is the input of the policy on the right of the 

operator, as shown in the Pyretic policy below [27]: 

 
match(dstip’2.2.2.8’) >> fwd(1) 
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           On the other hand, in parallel composition the operator (+) combines 

and applies two policies to the same packet, as shown in the routing policy R 

below, and forwards packets destined to 2.2.2.8 out to port 1 and those 

destined to 2.2.2.9 out to port 2 [27]: 

 
R = (match(dstip=’2.2.2.8’) >> fwd(1)) + (match 

(dstip=’2.2.2.9’)   >> fwd(2)) 

 

 

 
 

Figure 2-8: Northbound API [27] 

 

 

2.1.6   SDN Use Cases 

           Since one of the main features of SDN is that it drives innovation [28], 

it is hard to summarize and imagine all SDN use cases. SDN could be utilized 

in campus, data center, cloud, and service provider networks [19]. 

 

           Network administrators in campus networks could use the SDN model 

to enforce policies across the wireless and wired network consistently. In 

addition, SDN ensures an optimal user experience by supporting automated 

management of network resources and provisioning [19]. 
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           SDN architecture supports network virtualization that enables 

automated migration of virtual machine (VM) and hyper-scalability. 

Furthermore, it saves costs by reducing energy use and provides a better 

server utilization [19]. 

 

           SDN also enables cloud service providers to allocate network 

resources in a very elastic way, which enhances provisioning. Moreover, 

SDN provides businesses with tools to safely manage their VMs in order to 

increase adaption of cloud services [19]. 

 

           Considering the features that SDN brings, it is much easier for service 

providers to deploy resources optimally, to support multi-tenancy and to 

reduce both operational expenditure (OPEX) and CAPEX [19]. In addition, 

cellular service providers could utilize SDN to provide new services, such as 

base transceiver station (BTS) virtualization, and to reduce handover latency 

and many more [17], [29] – [30]. 

 

           Finally, SDN could be used to replace expensive Layer 4-7 firewalls, 

load-balancers, and IPS/IDS with cost-effective high-performance switches 

and a logically centralized controller. 
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2.2    Related Works 

           In [31], it is introduced the SDN technology and systematically 

investigated its usage for security. Although many people have interests in 

this technology, until now, it is not yet well embraced by security researchers. 

They believe that SDN can, in time, prove to be one of the most impactful 

technologies to drive a variety of innovations in network security. They hope 

this study can not only provide a quick introduction and systematic survey 

but also give significant insights for using SDN for better security 

applications and stimulate more future research in this important area.  

 

           The authors in [32] had a surveyed research on security in SDN, a set 

of topics for future research have been identified. A strong theme amongst 

these topics is projection of potential security issues and automated response 

for quick reaction to network threats. By implementing proven security 

techniques from their current network deployments, resolving known 

security issues in SDN, and further exploiting the dynamic, programmable, 

and open characteristics of SDN, software-defined networks may well be 

more secure than traditional networks. There is much work to do before this 

vision is realized.  

 

           The authors in [33] had undertaken a comprehensive review of 

security-oriented research in software defined networks. They have classified 

current work in two main streams: threat detection, remediation and network 

correctness which simplify and enhance security of programmable networks, 

and security as a service, which offers new innovative security functionality 

to users, such as anonymity and specialized network management. 

Furthermore, they discussed possible challenges and future directions for 
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security in SDN: these include the critical question of securing SDN itself, of 

orchestrating security policies across heterogeneous networks, customizing 

overlay networks to provide secure environments, and extending the 

OpenFlow paradigm with customized hardware and network functions 

virtualization and building a richer set of features in the forwarding path. 

 

           In [1], it is figured out that the SDN is not only revolutionary in 

making the control flexible and manageable, but also for firewalls to achieve 

programmability by separating the firewall hardware and the control 

software. An OpenFlow-based firewall with a straightforward UI that 

integrates priority switching can bring another wave of innovation in the 

Internet world. 

 

           In [34], it was argued for the need to consider security and 

dependability when designing Software Defined Networks. They have 

presented several threats identified in these networks as strong arguments for 

this need, together with a brief discussion of the mechanisms they are using 

in building a secure and dependable SDN control platform. The novel 

concepts introduced by SDN are enabling a revolution in networking 

research. The know-how and good practices from several communities 

(databases, programming languages, systems) are being put together to help 

solve long-standing networking problems.  

 

           The essential idea of the authors in [35] and [36] was to provide a 

security kernel (e.g., by extending a controller like NOX) capable of ensuring 

prioritized flow rule installation on switches. Applications were classified in 

two types, one for security related applications and another for all remaining 
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applications. The first type represents specialized programs used to ensure 

security control policies in the network, such as to guarantee or restrict 

specific accesses to the network or take actions to control malicious data 

traffic. Flow rules generated by security applications have priority over the 

others. The security kernel is responsible for ensuring this behavior. 

FRESCO [36] was an extension of that work which made it easy to create 

and deploy security services in software-defined networks.  

 

           In [37], NICE had been built which was a tool for automating the testing 

of OpenFlow applications that combines model checking and concolic 

execution in a novel way to quickly explore the state space of unmodified 

controller programs written for the popular NOX platform. Further, it was 

devised a number of new, domain-specific techniques for mitigating the 

state-space explosion that plagues approaches. NICE had been contrasted 

with an approach that applies off-the-shelf model checkers to the OpenFlow 

domain, and it was demonstrated that NICE was five times faster even on 

small examples. NICE had been applied to implementations of three 

important applications, and found 11 bugs. 

 

           The authors in [38] have shown that Software Defined Networks using 

OpenFlow and NOX allow flexible, highly accurate, line rate detection of 

anomalies inside Home and SOHO networks. One of the key benefits of this 

approach is that the standardized programmability of SDN allows these 

algorithms to exist in the context of a broader framework. They envision a 

Home Operating System built using SDN, in which their algorithm 

implementations would coexist alongside other applications for the home 

network e.g. QoS and Access Control. The standardized interface provided 
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by a SDN would allow their applications to be updated easily as new security 

threats emerge while maintaining portability across a broad and diverse range 

of networking hardware. 

 

           In [39], a set of attributes of a secure, robust, and resilient SDN 

controller have been presented. The extent to which current state-of-the-art 

open-source controllers support these attributes has been discussed. It is 

promising that all except one of the defined security attributes is supported 

by one or more controller. The missing feature is the management of multiple 

application instances for application resilience. This must be a design 

consideration for future controller developments. With the clear split between 

high availability controllers and secure/resilient control layers, the next 

evolution in SDN controller design must be a means to achieve the combined 

goal of security, robustness, and resilience. 

 

           The authors in [40] had presented a lightweight method for DDoS 

attack detection. They showed that their technique extracts features of 

interest with a low overhead when compared to approaches based on the 

KDD-99 dataset. It is also able to monitor more than one observation point. 

The method is also very efficient at detecting DDoS attacks. It uses Self 

Organizing Maps, an unsupervised artificial neural network, trained with 

features of the traffic flow. The detection rate obtained is remarkably good 

as it is very close to other approaches. 
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CHAPTER THREE 

 

 DETECTION OF NETWORK THREATS USING 

SDN  

 

           In this chapter, the methodology of the work has been discussed in 

detail with all environment software, tools, configuration and technologies 

that are used. 

 

3.1    Preparation 

            This project provides a brilliant solution that is based on SDN OpenFlow 

protocol to monitor, identify, control and detect abnormal network behavior 

in LAN by using OpenFlow supporting switch and SDN controller (POX 

controller) as a network security appliance. An implementation of network 

anomaly detection algorithm (Firewall module) on SDN controller has been 

provided and a comparison between the existing non-SDN Open Flow 

methods and the proposed solution has been done.  

           To implement and test the provided theory, first, Mininet emulator - 

which works based on Linux operating system - will be used. A simple SDN 

OpenFlow based configuration which includes one POX controller, one 

OpenFlow supporting switch and four hosts - as shown in Figure 3-1 - will 

be built to implement behavioral network security on LAN networks. The 

idea is that there is no need for the controller to inspect every packet. The 

SDN OpenFlow controller applies distributed communication with switch to 

detect performance and security problems in the LAN networks.  
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           Finally, traffic generator tools such as hping3 and iperf will be used. 

The traffic generator will generate traffic with different protocols and rates, 

then SDN OpenFlow controller will send specific commands to the switch 

based on the behavioral algorithm, and the switch will deploy firewall flow 

policy based on the received commands. A better understanding of how this 

research works will be obtained from the upcoming explanations.  

 

 

Host A                          

Host B                                              

 Host C                                                     

  Host D                                                    

Figure 3-1: Simplified Project Topology 

SDN OpenFlow 

Switch 

SDN (POX) 

Controller 



41 
 

3.2    Research Activities 

           Figure 3-1 illustrates an overview in general of how this project was 

convened, in order to bring out the final implementation of a robust firewall 

using SDN controller and OpenFlow Switch. 

 

 

Figure 3-2: Flowchart of Research Activities  

 

Setting up VMware Workstation

Setting up Ubuntu OS

Installing Mininnet Emiulator

Installing POX Controller 

Project Design

Testing Under Various Scenarios 

Using Iperf and Comparing Results 
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3.3    Setting up VMware Workstation 

           VMware Workstation is a hosted hypervisor that runs on x64 versions 

of Windows and Linux operating systems (an x86 version of earlier releases 

was available); it enables users to set up virtual machines (VMs) on a single 

physical machine, and use them simultaneously along with the actual 

machine. Each virtual machine can execute its own operating system, 

including versions of Microsoft Windows, Linux, BSD, and MS-DOS [41]. 

           Here in this project, VMware Workstation Pro.lnk was used to run 

Ubuntu operating system in a physical machine (laptop). 

 

3.4    Setting up Ubuntu OS 

           Ubuntu is an open source operating system for personal computers and 

network servers. It is a Linux distribution based on the Debian architecture. 

          For this project, Ubuntu 14.04 LTS x64 had been chosen to provide an 

environment for the virtual network to be formed.  

 

3.5    Installing Mininet Emulator 

           Mininet is a network emulator, or perhaps more precisely a network 

emulation orchestration system. It runs a collection of end-hosts, switches, 

routers, and links on a single Linux kernel. It uses lightweight virtualization 

to make a single system look like a complete network, running the same 

kernel, system, and user code [42]. 

           Mininet supports parametrized topologies. With a few lines of Python 

code, you can create a flexible topology which can be configured based on 

the parameters you pass into it, and reused for multiple experiments [42]. 

https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/X64
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/BSD
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Debian
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          After opening the CLI (Command Line Interface), the following 

commands should be running before starting to install the Mininet. 

 

sudo apt-get update  

 

           This command downloads the package lists from the repositories and 

updates them to get information on the newest versions of packages and their 

dependencies. It will do this for all repositories and PPAs. From [43]: Used 

to re-synchronize the package index files from their sources. The indexes of 

available packages are fetched from the location(s) specified 

in /etc/apt/sources.list. An update should always be performed before an 

upgrade or dist-upgrade [44].  

 

sudo apt-get upgrade  

 

           This Command will fetch new versions of packages existing on the 

machine if APT knows about these new versions by way of apt-get update. 

From [43]: Used to install the newest versions of all packages currently 

installed on the system from the sources enumerated in /etc/apt/sources.list 

[44]. 

 

 

Sudo apt-get install git  

 

           Git is a version control system for tracking changes in computer 

files and coordinating work on those files among multiple people. It is 

primarily used for source code management in software development, but it 

can be used to keep track of changes in any set of files. As a distributed 

https://en.wikipedia.org/wiki/Version_control_system
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Source_code_management
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Distributed_revision_control
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revision control system it is aimed at speed, data integrity, and support for 

distributed, non-linear workflows [45] [46]. 

 

           After achieving these prerequisites, the following commands should 

be done to implement the research test environment:   

 

cd /home/ 

Sudo apt-get install mininet  

 

           This command used to start installing the Mininet in the home 

directory. 

 

git clone git://github.com/mininet/mininet  

 

           This command is executed to download a clone of the Mininet files 

from github.com into the mininet directory that have been created in the 

previous command. 

 

cd /mininet 

git tag 

git checkout –b cs244-spring-2012-final 

 

           These commands are used to switch the Mininnet clone to the latest 

branch (version). 

 

https://en.wikipedia.org/wiki/Distributed_revision_control
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3.6    Installing POX controller 

           POX controller can be installed by one of the two ways, either cloning 

it directly from the github.com using the following command: 

 

git clone http://github.com/noxrepo/pox  

 

           Or it can be installed with all components of the Mininet utility that 

are obtained using the following commands: 

 

Cd .. 

Mininet/util/install.sh –a 

 

           Figure 3-3 shows the /home directory with all packages that have been 

installed. 

 

Figure 3-3: Installed Packages  

 

           Finally, along with the POX controller, the previous command will 

install the Wireshark which is a free and open source packet analyzer. It is 

used for network troubleshooting, analysis, software and communications 

http://github.com/noxrepo/pox
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Packet_analyzer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Communications_protocol
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protocol development, and education. Or it can be easily installed using the 

following command: 

 

apt-get installed wireshark  

  

3.7    Project Design 

           This project is based on two main parts: the basic configuration and 

firewall implementation. 

 

3.7.1   Basic Configuration 

           First stage, a test environment of virtual network of four hosts 

connected by a switch (OVSK) - as shown in Figure 3-4 - had been built to 

test basic OpenFlow functionality. To verify the lab functionality, the 

connectivity between hosts through the virtual switch has been tested using 

Ping utility. The following commands were used. 
 

 

sodu mn -- topo single,4 -- mac  -- switch ovsk 

mininet> pingall 

 

           In the second stage, the OpenFlow switch was managed with POX 

controller. Running POX controller with switch module to hub module and 

vice versa. This test provides information about how to manage OpenFlow 

switch, control traffic routing and deploy flows to the switch. The following 

commands were used. 

 

./pox.py  log.level  -- DEBUG  forwarding.hub 

https://en.wikipedia.org/wiki/Communications_protocol
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./pox.py  log.level  -- DEBUG  forwarding.l2_learning 

sodu mn -- topo single,4 -- mac  -- switch ovsk -- controller 

remote 

 

Figure 3-4: Project Topology in Mininet 

 

3.7.2   Firewall Implementation 

           To implement firewall functionality, threat detection, traffic filtering 

and decision-making mechanisms have been added to POX controller. POX 

is a Python-based SDN controller platform geared towards research and 

education and allows flexibility in development. To identify malicious 

activities, a POX based firewall has been developed that will notice any 

abnormal network behavior in the virtual network.  
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           With a listing of different security concerns in Software Defined 

Networks, one of the main security threats were concentrated upon in this 

research work is on Denial-Of-Service. When a large number of packets are 

forwarded to a network device with an intention to either stop the service or 

affect the performance then such attacks are termed as Denial-of-service 

attacks. This kind of attacks can be detected at an early stage by monitoring 

few of packets based on the entropy changes. By applying entropy as a 

detection method, it could be able to detect attacks on one host or a subnet of 

hosts in a network and prevents the controller going down.  

 

           Entropy is the randomness collected by an operating system or 

application for use in cryptography or other uses that require random data. 

The main reason for choosing entropy is its ability to measure randomness in 

a network. 

 

           If assumed that W is a set of data with n elements, and X is an event 

in the set, then, the probability Pi of X can be calculated using the following 

equation: 

𝑃𝑖 =
𝑋𝑖

𝑛
   

 

 

Where Xi is one of the elements in W that is represented by equation 3.2: 

 

𝑊 = {𝑋1, 𝑋2, 𝑋3, … … … … … , 𝑋𝑛} 

 

The size of W is called the window size. 

            

3.1 

3.2 
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           To measure the entropy, referred to as H, the probability of all 

elements in the set were calculated and gathered as shown in equation 3.3:     

 

𝐻 = ∑ 𝑃𝑖 log 𝑃𝑖

𝑛

𝑖=1

 

                                               

           The entropy will be at its maximum if all elements have equal 

probabilities. If an element appears more than others, the entropy will be 

lower. 

 

           So, after creating this firewall module, it can be executed using the 

following commands.   
 

 

./pox.py  log.level  -- DEBUG  forwarding.POXFW1 

sodu mn -- topo single,4 -- mac  -- switch ovsk -- controller 

remote 

 

           To show the flexibility of developing a POX controller, second 

module has been built as a firewall which can identify ICMP traffic to the 

specific destination IP addresses 10.0.0.2 and 10.0.0.3. POX controller sends 

specific rules to the OpenFlow switch to deny the specific flows from the 

predefined hosts (h2 and h3) and allow them for other hosts. 

 

           Also, this module can filter all TCP packets and identify those with 

destination IP address 10.0.0.4 and deny them while allowing all other TCP 

packets to other hosts.  

3.3 
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           Finally, all UDP packets with destination IP address 10.0.0.1 will be 

dropped while other UPD packets will be switched to their destination hosts.  

After implementing this module, it can be executed using the following 

commands.  

 

./pox.py  log.level  -- DEBUG  forwarding.POXFW2 

sodu mn -- topo single,4 -- mac  -- switch ovsk -- controller 

remote 
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CHAPTER FOUR                                                    

RESULTS AND DISCUSSIONS 

 

 

            In this chapter, the POX controller will be tested under various scenarios 

and all the results will be captured and discussed. Also, different performance 

tests will be done. 

 

4.1    Mininet without POX Controller  

           Figure 4-1 shows the Mininet devices that have been created and used 

in this project and the result of the connectivity test which made using Ping 

utility. This Mininet has been created without managing the OpenFlow 

switch with a POX controller.   

 

Figure 4-1: Mininet Devices and Connectivity Test Result 
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4.2    Mininet with POX Controller 

           POX controller could be used with different modules to perform 

several types of network devices tasks. In this research work some modules 

will be undertaken. 

 

4.2.1   POX controller Running Hub Module / Switch Module 

           Figure 4-2 shows the Mininet topology that is configured to be 

managed by a POX controller which will be operated with a hub module and 

a switch module respectively. Also in both cases the connectivity is up 

between all hosts and all of them can ping each other without any losses as 

illustrated in Figure 4-3. If the Mininet would be managed with a POX 

controller and no one of the connecting modules would be operated, the 

connectivity between all hosts will be lost as show in Figure 4-4. 

 

Figure 4-2: Mininet Devices Managed by POX controller 
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Figure 4-3: Connectivity Test Using Ping tool (With connecting Module) 

 

 

Figure 4-4: Connectivity Test Using Ping tool (Without connecting Module) 

 

 

4.2.2   POX controller Running Firewall Module  

           In this research work, two emulation scenarios have been conducted. 

These scenarios are explained in detail - including their working algorithms 

and test results - in the upcoming sections. 
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4.2.2.1 First Emulation Scenario  

           A POX based Firewall has been implemented which is able to detect 

any DoS attack and take an action against this serious situation in the virtual 

network based on the entropy value. Entropy can be calculated by certain 

equations that are configured in the Firewall script (Python_based code). The 

algorithm of this code is illustrated in Figure 4-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 4-5: First POXFW Algorithm 
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           When POX controller running with this module and using pingall to 

make sure that the connectivity is up between hosts, it can be seen that the 

Entropy value equal one which is - normal flood of traffic - as appears in 

Figure 4-6. 

 

 

Figure 4-6: Entropy Value before DoS Attack 

 

           To test the efficiency of the developed firewall against DoS attack, 

hping3 tool has been used to generate a SYN flood from h2 (10.0.0.2) on 

port 80 of h4 (10.0.0.4) and it is clear from Figure 4-7 that that the Entropy 

value has been decreased and thus led to stopping of this malicious activity 

after 16 packets only from 4782938 packets as shown in Figure 4-8.  
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Figure 4-7: Entropy Value after DoS Attack 

 

Figure 4-8: POXFW Stopping DoS Attack 

 

           Also, the POX sends command to the OpenFlow switch to block the 

malicious port (port of h2) until a further notice as illustrated in Figure 4-9 

 

Figure 4-9: POXFW Blocked Port 2 
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4.2.2.2 Second Emulation Scenario  

           To identify malicious activities, a POX based Firewall has been 

devolved that will notice any abnormal network behavior in the virtual 

network based on the predefined rules and policies that have been configured 

in the Firewall script (Python_based code). The algorithm of this code is 

illustrated in Figure 4-10. 

 

           When testing the connectivity between all hosts in the Mininet using 

pingall command, the results shows that all ICMP packets sent to h2 10.0.0.2 

and h3 10.0.0.3 have been lost due to deny policy which configured in the 

POX Firewall code and applied by the OpenFlow switch. Figure 4-11 shows 

the losses that have been occured after applying the Firewall module. 
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Figure 4-10: Second POXFW Algorithm            
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Figure 4-11: POXFW Blocking ICMP Packets From h1 and h2 

 

           Figure 4-12 and Figure 4-13 illustrate the OpenFlow switch behaviore 

when UDP traffic flows in the network. The OpenFlow switch blocking any 

UDP packet that has been sent to h1 10.0.0.1 and switch it to any other host 

in the Mininet. To generate a stream of UDP packets, iperf tool has been 

installed and used. It is used as a client on one host and as a server on the 

other host to send parallel UDP streams.      
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Figure 4-12: POXFW Blocking UDP Packets to h1   

 

 

Figure 4-13: POXFW Allowing UDP Packets to Other hosts   
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            Figure 4-14 shows that any TCP packets sent to h4 10.0.0.4 have been 

blocked by the OpenFlow switch after applying the Firewall module while 

other TCP packets that are sending to any other hosts in the Mininet will be 

delivered to their destination as appears in Figure 4-15. Also in this test, iperf 

tool has been used to generate a stream of TCP packets.      

 

 

Figure 4-14: POXFW Blocking TCP Packets to h4   
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Figure 4-15: POXFW Allowing TCP Packets to Other hosts   

 

4.3    Performance Results  

           In this section, after firewall implementation and testing, a 

performance evaluation has been done. It compares the performance of the 

Firewall module with the performance of switch module and the traditional 

switch (without POX controller). IPERF which is a tool for network 

performance measurement, is used to analyze the performance. 

 

            In the first test, IPERF tool is used as a client on one host and as a 

server on the other host to generate a stream of UDP packets. Each time after 

running IPERF tool, the controller process is killed and restarted to make 

sure that the OpenFlow switch is ready for the next test and has no flow 

entries. Figure 4-16 shows the test results of multiple parallel UDP streams 
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and different modes. It is obvious from Figure 4-16 that the POX controller 

running with a Firewall module (the yellow line) introduces extra delay to 

the UDP streams compared with the traditional switch (without POX) and 

the case when POX controller running with switch module (the blue line). 

 

           The reason is that the UDP implementation of the firewall module 

expects a TCP-like handshake over UDP, which is not the case in IPERF, 

which sends UDP packets in just one direction (client to server). As a result, 

all the UDP packets will be forwarded to the controller, which has an upper 

limit for packets coming from one direction to prevent a DOS attack against 

itself. In addition, sending a flow entry to the switch to allow such behavior 

will create a security hole. For example, an attacker might send multiple UDP 

packets from one side in order to bypass the controller and then start sending 

malicious traffic. In the end, it is a trade-off between performance and 

security. So, it can be said that the firewall module suffers from a poor 

performance for UDP packets due to its security policy. 
 

 

Figure 4-16 : Comparison in Term of Jitter 
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           In the second test, IPERF tool is used to send parallel TCP streams. 

The throughput is calculated for traditional switch (the green line), switch 

module (the blue line) and the firewall module (the yellow line), as shown in 

Figure 4-17.This test proves that the switch module that is running with the 

POX controller has a good TCP performance compared to the traditional 

switch and that is due to the separation of data plane from control plane which 

enhancing the device ability to perform its job without caring about decision 

making which is the responsibility of the POX controller.     

 

           Also, it can be noticed that switch module throughput is much better 

than firewall module and this difference in throughput is due to the difference 

in processing time and security policies that are applied by the OpenFlow 

switch. For example, it takes time for the Openflow switch to process a new 

flow before sending the packet out to the controller (for the first four TCP 

packets only from each stream), and it takes time for the controller to process 

the packet and send commands back to the OpenFlow switch. 
 

 

Figure 4-17 : Comparison in Term of Throughput 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 
 

 

           In this chapter, the conclusion of this research work has been 

mentioned with some recommendations for the future work. 

 

 

5.1    Conclusion 

           Firewall devices are fundamental in any network to apply security. 

Despite of the remarkable firewalls that are available in the market, these 

firewalls are expensive, their provisioning time is high, and most of them do 

not have user friendly interface or provide programmability to the network 

administrators. On the other hand, SDN technology allows the use of 

commodity hardware, reduces provisioning time, and provides a huge 

flexibility in programming the control plane.  

 

           This research implemented an OpenFlow-based firewall module 

running with POX controller and capable of detecting and preventing DOS 

attack and any parallel streams of traffic such as TCP and UDP that could 

affect or disrupt the performance of network devices. 

 

           The performance analysis tests that have been done proved that the 

firewall module performed well in handling TCP traffic compared with a 

traditional switch while switch module provides much better throughput than 

traditional switch and firewall module. On the other hand, some limitations 

related to firewall module appears in terms of jitter delay and suffering from 
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poor performance of handling UDP packets due to security policy comparing 

to traditional switch and switch module. So, the trade-off between the 

security and performance is inevitable in any kind of network architecture.  

 
 

 

5.2    Recommendations 

          After the research work has been finished, some recommendations and 

research issues can be provided for who wants to carry on from this point. 

Future work on this topic can include: 

 

▪ One of the further development of the provided idea could be include 

the implementation of the self-study firewall that could dynamically 

identify abnormal network activities and conventional traffic. 

▪  Another important part, is the development of Graphical User 

Interface (GUI) for POX controller and for modules such as switch 

module and Firewall Module. 

▪ This research implementation cannot detect encrypted traffic. So, the 

future work could focus on this area as there are ways to analyze 

encrypted traffic such as packet size, direction, and timing. 

▪ Currently, this project design only looking at the header fields to 

identify the action. For future work, developers can further improve 

this logic by incorporating SDN capacities to improve network 

security by observing the entire network flow and efficiently block the 

network attacks in the early stage without having to perform deep 

packet inspection. 
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▪ The firewall implementation in this research supports only one 

OpenFlow switch. Therefore, future works could add more features 

and support for multiple OpenFlow switches. 

▪ Although OpenFlow protocol makes the network programmable, but 

it does not make it easy. Therefore, more advanced northbound APIs 

are highly required to produce an abstraction layer that makes the 

programmer be able to run parallel and subsequent modules/ 

applications without caring about the buffer ID issue and policy 

conflicts. 

▪ Current OpenFlow switches allow only a fixed set of “Match-Action” 

fields and their specifications define a limited set of action fields. So, 

there is a need to support new protocols and higher layers. The future 

work could focus on this area as well. 
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Appendix  
 

Appendix A        POXFW1 

           At this appendix, the python code of the POX Firewall that detects and 

prevents DoS attack has been illustrated.  

 

 

# Copyright 2012-2013 James McCauley 

# 

# Licensed under the Apache License, Version 2.0 (the "License"); 

# you may not use this file except in compliance with the License. 

# You may obtain a copy of the License at: 

# 

#     http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, 

software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

# See the License for the specific language governing permissions 

and 

# limitations under the License. 

 

""" 

A stupid L3 switch 

 

For each switch: 

1) Keep a table that maps IP addresses to MAC addresses and switch 

ports. 

   Stock this table using information from ARP and IP packets. 

2) When you see an ARP query, try to answer it using information in 

the table 

   from step 1.  If the info in the table is old, just flood the 

query. 

3) Flood all other ARPs. 

4) When you see an IP packet, if you know the destination port 

(because it's 

   in the table from step 1), install a flow for it. 

""" 

import datetime 

from pox.core import core 

import pox 

 

from pox.lib.packet.ethernet import ethernet, ETHER_BROADCAST 

from pox.lib.packet.ipv4 import ipv4 
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from pox.lib.packet.arp import arp 

from pox.lib.addresses import IPAddr, EthAddr 

from pox.lib.util import str_to_bool, dpid_to_str 

from pox.lib.recoco import Timer 

 

import pox.openflow.libopenflow_01 as of 

 

from pox.lib.revent import * 

import itertools  

import time 

#editing 

 

from .detection import Entropy 

diction = {} 

ent_obj = Entropy() 

set_Timer = False 

defendDDOS=False 

#blockPort="" 

#end of editing 

log = core.getLogger() 

# Timeout for flows 

FLOW_IDLE_TIMEOUT = 10 

 

# Timeout for ARP entries 

ARP_TIMEOUT = 60 * 2 

 

# Maximum number of packet to buffer on a switch for an unknown IP 

MAX_BUFFERED_PER_IP = 5 

 

# Maximum time to hang on to a buffer for an unknown IP in seconds 

MAX_BUFFER_TIME = 5 

 

 

class Entry (object): 

  """ 

  Not strictly an ARP entry. 

  We use the port to determine which port to forward traffic out 

of. 

  We use the MAC to answer ARP replies. 

  We use the timeout so that if an entry is older than ARP_TIMEOUT, 

we 

   flood the ARP request rather than try to answer it ourselves. 

  """ 

  def __init__ (self, port, mac): 

    self.timeout = time.time() + ARP_TIMEOUT 

    self.port = port 

    self.mac = mac 

 

  def __eq__ (self, other): 

    if type(other) == tuple: 

      return (self.port,self.mac)==other 

    else: 

      return (self.port,self.mac)==(other.port,other.mac) 

  def __ne__ (self, other): 
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    return not self.__eq__(other) 

 

  def isExpired (self): 

    if self.port == of.OFPP_NONE: return False 

    return time.time() > self.timeout 

 

 

def dpid_to_mac (dpid): 

  return EthAddr("%012x" % (dpid & 0xffFFffFFffFF,)) 

 

 

class l3_switch (EventMixin): 

  def __init__ (self, fakeways = [], arp_for_unknowns = False, wide 

= False): 

    # These are "fake gateways" -- we'll answer ARPs for them with 

MAC 

    # of the switch they're connected to. 

    self.fakeways = set(fakeways) 

 

    # If True, we create "wide" matches.  Otherwise, we create 

"narrow" 

    # (exact) matches. 

    self.wide = wide 

 

    # If this is true and we see a packet for an unknown 

    # host, we'll ARP for it. 

    self.arp_for_unknowns = arp_for_unknowns 

 

    # (dpid,IP) -> expire_time 

    # We use this to keep from spamming ARPs 

    self.outstanding_arps = {} 

 

    # (dpid,IP) -> [(expire_time,buffer_id,in_port), ...] 

    # These are buffers we've gotten at this datapath for this IP 

which 

    # we can't deliver because we don't know where they go. 

    self.lost_buffers = {} 

 

    # For each switch, we map IP addresses to Entries 

    self.arpTable = {} 

 

    # This timer handles expiring stuff 

    self._expire_timer = Timer(5, self._handle_expiration, 

recurring=True) 

 

    core.listen_to_dependencies(self) 

 

  def _handle_expiration (self): 

    # Called by a timer so that we can remove old items. 

    empty = [] 

    for k,v in self.lost_buffers.iteritems(): 

      dpid,ip = k 

 

      for item in list(v): 
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        expires_at,buffer_id,in_port = item 

        if expires_at < time.time(): 

          # This packet is old.  Tell this switch to drop it. 

          v.remove(item) 

          po = of.ofp_packet_out(buffer_id = buffer_id, in_port = 

in_port) 

          core.openflow.sendToDPID(dpid, po) 

      if len(v) == 0: empty.append(k) 

   

    # Remove empty buffer bins 

    for k in empty: 

      del self.lost_buffers[k] 

 

 # def dropDDOS (): 

    # Called by a timer so that we can remove old items. 

    #empty = [] 

    #for k,v in self.lost_buffers.iteritems(): 

    #  dpid,ip = k 

 

    #  for item in list(v): 

    #    expires_at,buffer_id,in_port = item 

    #    if expires_at < time.time(): 

          # This packet is old.  Tell this switch to drop it. 

    #      v.remove(item) 

               

 

#    po = of.ofp_packet_out(buffer_id = buffer_id, in_port = 

in_port) 

#    core.openflow.sendToDPID(dpid, po) 

    #if len(v) == 0: empty.append(k) 

 

    # Remove empty buffer bins 

    #for k in empty: 

    #  del self.lost_buffers[k] 

 

  def _send_lost_buffers (self, dpid, ipaddr, macaddr, port): 

    """ 

    We may have "lost" buffers -- packets we got but didn't know 

    where to send at the time.  We may know now.  Try and see. 

    """ 

    if (dpid,ipaddr) in self.lost_buffers: 

      # Yup! 

      bucket = self.lost_buffers[(dpid,ipaddr)] 

      del self.lost_buffers[(dpid,ipaddr)] 

      log.debug("Sending %i buffered packets to %s from %s" 

                % (len(bucket),ipaddr,dpid_to_str(dpid))) 

      for _,buffer_id,in_port in bucket: 

        po = of.ofp_packet_out(buffer_id=buffer_id,in_port=in_port) 

        po.actions.append(of.ofp_action_dl_addr.set_dst(macaddr)) 

        po.actions.append(of.ofp_action_output(port = port)) 

        core.openflow.sendToDPID(dpid, po) 

 

  def _handle_openflow_PacketIn (self, event): 

    dpid = event.connection.dpid 
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    inport = event.port 

    packet = event.parsed 

    global set_Timer 

    global defendDDOS 

    global blockPort 

    timerSet =False 

    global diction 

    def preventing(): 

      global diction 

      global set_Timer 

      if not set_Timer: 

        set_Timer =True 

      #Timer(1, _timer_func(), recurring=True) 

 

 

      #print"\n\n*********new packetIN************" 

      if len(diction) == 0: 

        print("Enpty diction ",str(event.connection.dpid), 

str(event.port)) 

        diction[event.connection.dpid] = {} 

        diction[event.connection.dpid][event.port] = 1 

      elif event.connection.dpid not in diction: 

        diction[event.connection.dpid] = {} 

        diction[event.connection.dpid][event.port] = 1 

        #print "ERROR" 

      else: 

        if event.connection.dpid in diction: 

      # temp = diction[event.connection.dpid] 

      #print(temp) 

      #print "error check " , 

str(diction[event.connection.dpid][event.port]) 

          if event.port in diction[event.connection.dpid]: 

            temp_count=0 

            temp_count =diction[event.connection.dpid][event.port] 

            temp_count = temp_count+1 

            diction[event.connection.dpid][event.port]=temp_count 

            #print "printting dpid port number and its packet 

count: ",  str(event.connection.dpid), 

str(diction[event.connection.dpid]), 

str(diction[event.connection.dpid][event.port]) 

          else: 

            diction[event.connection.dpid][event.port] = 1 

    

      print "\n",datetime.datetime.now(), ": printing diction 

",str(diction),"\n" 

     

     

    def _timer_func (): 

      global diction 

      global set_Timer 

      if set_Timer==True: 

        #print datetime.datetime.now(),": calling timer fucntion 

now!!!!!"  

        for k,v in diction.iteritems(): 
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          for i,j in v.iteritems(): 

            if j >=50: 

              print 

"__________________________________________________________________

___________________________" 

              print "\n",datetime.datetime.now(),"*******    DDOS 

DETECTED   ********" 

              print "\n",str(diction) 

              print "\n",datetime.datetime.now(),": BLOCKED PORT 

NUMBER  : ", str(i), " OF SWITCH ID: ", str(k) 

              print 

"\n________________________________________________________________

_____________________________" 

 

              #self.dropDDOS () 

              dpid = k 

              msg = of.ofp_packet_out(in_port=i) 

              #msg.priority=42 

              #msg.in_port = event.port 

              #po = of.ofp_packet_out(buffer_id = buffer_id, 

in_port = in_port) 

              core.openflow.sendToDPID(dpid,msg) 

 

               

                 

      diction={} 

 

    if not packet.parsed: 

      log.warning("%i %i ignoring unparsed packet", dpid, inport) 

      return 

 

    if dpid not in self.arpTable: 

      # New switch -- create an empty table 

      self.arpTable[dpid] = {} 

      for fake in self.fakeways: 

        self.arpTable[dpid][IPAddr(fake)] = Entry(of.OFPP_NONE, 

         dpid_to_mac(dpid)) 

 

    if packet.type == ethernet.LLDP_TYPE: 

      # Ignore LLDP packets 

      return 

 

    if isinstance(packet.next, ipv4): 

      log.debug("%i %i IP %s => %s", dpid,inport, 

                packet.next.srcip,packet.next.dstip) 

      ent_obj.statcolect(event.parsed.next.dstip)#editing 

      print "\n***** Entropy Value = ",str(ent_obj.value),"*****\n" 

      if ent_obj.value <0.5: 

        preventing() 

        if timerSet is not True: 

          Timer(2, _timer_func, recurring=True) 

          timerSet=False 

      else: 

        timerSet=False 
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      # Send any waiting packets... 

      self._send_lost_buffers(dpid, packet.next.srcip, packet.src, 

inport) 

 

      # Learn or update port/MAC info 

      if packet.next.srcip in self.arpTable[dpid]: 

        if self.arpTable[dpid][packet.next.srcip] != (inport, 

packet.src): 

          log.info("%i %i RE-learned %s", 

dpid,inport,packet.next.srcip) 

          if self.wide: 

            # Make sure we don't have any entries with the old 

info... 

            msg = of.ofp_flow_mod(command=of.OFPFC_DELETE) 

            msg.match.nw_dst = packet.next.srcip 

            msg.match.dl_type = ethernet.IP_TYPE 

            event.connection.send(msg) 

      else: 

        log.debug("%i %i learned %s", 

dpid,inport,packet.next.srcip) 

      self.arpTable[dpid][packet.next.srcip] = Entry(inport, 

packet.src) 

      #nandan: getting source ip address from the packetIn 

      #myPacketInSrcIP= packet.next.srcip 

      #myPacketInSrcEth= packet.src 

      #myPacketInDstIP= packet.next.dstip 

      #myPacketInDstEth= packet.dst 

 

      #print "switcID: "+str(dpid)+" ,Port: "+str(event.port)+" 

,MAC address: "+str(myPacketInSrcEth)+" ,SrcIP: "+ 

str(myPacketInSrcIP)+", Dst Mac: "+str(myPacketInDstEth)+", Dst IP: 

"+str(myPacketInDstEth) 

      # Try to forward 

      dstaddr = packet.next.dstip 

      if dstaddr in self.arpTable[dpid]: 

        # We have info about what port to send it out on... 

 

        prt = self.arpTable[dpid][dstaddr].port 

        mac = self.arpTable[dpid][dstaddr].mac 

        if prt == inport: 

          log.warning("%i %i not sending packet for %s back out of 

the " 

                      "input port" % (dpid, inport, dstaddr)) 

        else: 

          log.debug("%i %i installing flow for %s => %s out port 

%i" 

                    % (dpid, inport, packet.next.srcip, dstaddr, 

prt)) 

 

          actions = [] 

          actions.append(of.ofp_action_dl_addr.set_dst(mac)) 
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          actions.append(of.ofp_action_output(port = prt)) 

          if self.wide: 

            match = of.ofp_match(dl_type = packet.type, nw_dst = 

dstaddr) 

          else: 

            match = of.ofp_match.from_packet(packet, inport) 

 

          msg = of.ofp_flow_mod(command=of.OFPFC_ADD, 

                                idle_timeout=FLOW_IDLE_TIMEOUT, 

                                hard_timeout=of.OFP_FLOW_PERMANENT, 

                                buffer_id=event.ofp.buffer_id, 

                                actions=actions, 

                                match=match) 

          event.connection.send(msg.pack()) 

      elif self.arp_for_unknowns: 

        # We don't know this destination. 

        # First, we track this buffer so that we can try to resend 

it later 

        # if we learn the destination, second we ARP for the 

destination, 

        # which should ultimately result in it responding and us 

learning 

        # where it is 

 

        # Add to tracked buffers 

        if (dpid,dstaddr) not in self.lost_buffers: 

          self.lost_buffers[(dpid,dstaddr)] = [] 

        bucket = self.lost_buffers[(dpid,dstaddr)] 

        entry = (time.time() + 

MAX_BUFFER_TIME,event.ofp.buffer_id,inport) 

        bucket.append(entry) 

        while len(bucket) > MAX_BUFFERED_PER_IP: del bucket[0] 

 

        # Expire things from our outstanding ARP list... 

        self.outstanding_arps = {k:v for k,v in 

         self.outstanding_arps.iteritems() if v > time.time()} 

 

        # Check if we've already ARPed recently 

        if (dpid,dstaddr) in self.outstanding_arps: 

          # Oop, we've already done this one recently. 

          return 

 

        # And ARP... 

        self.outstanding_arps[(dpid,dstaddr)] = time.time() + 4 

 

        r = arp() 

        r.hwtype = r.HW_TYPE_ETHERNET 

        r.prototype = r.PROTO_TYPE_IP 

        r.hwlen = 6 

        r.protolen = r.protolen 

        r.opcode = r.REQUEST 

        r.hwdst = ETHER_BROADCAST 

        r.protodst = dstaddr 

        r.hwsrc = packet.src 
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        r.protosrc = packet.next.srcip 

        e = ethernet(type=ethernet.ARP_TYPE, src=packet.src, 

                     dst=ETHER_BROADCAST) 

        e.set_payload(r) 

        log.debug("%i %i ARPing for %s on behalf of %s" % (dpid, 

inport, 

         r.protodst, r.protosrc)) 

        msg = of.ofp_packet_out() 

        msg.data = e.pack() 

        msg.actions.append(of.ofp_action_output(port = 

of.OFPP_FLOOD)) 

        msg.in_port = inport 

        event.connection.send(msg) 

 

    elif isinstance(packet.next, arp): 

      a = packet.next 

      log.debug("%i %i ARP %s %s => %s", dpid, inport, 

       {arp.REQUEST:"request",arp.REPLY:"reply"}.get(a.opcode, 

       'op:%i' % (a.opcode,)), a.protosrc, a.protodst) 

 

      if a.prototype == arp.PROTO_TYPE_IP: 

        if a.hwtype == arp.HW_TYPE_ETHERNET: 

          if a.protosrc != 0: 

 

            # Learn or update port/MAC info 

            if a.protosrc in self.arpTable[dpid]: 

              if self.arpTable[dpid][a.protosrc] != (inport, 

packet.src): 

                log.info("%i %i RE-learned %s", 

dpid,inport,a.protosrc) 

                if self.wide: 

                  # Make sure we don't have any entries with the 

old info... 

                  msg = of.ofp_flow_mod(command=of.OFPFC_DELETE) 

                  msg.match.dl_type = ethernet.IP_TYPE 

                  msg.match.nw_dst = a.protosrc 

                  event.connection.send(msg) 

            else: 

              log.debug("%i %i learned %s", dpid,inport,a.protosrc) 

            self.arpTable[dpid][a.protosrc] = Entry(inport, 

packet.src) 

 

            # Send any waiting packets... 

            self._send_lost_buffers(dpid, a.protosrc, packet.src, 

inport) 

 

            if a.opcode == arp.REQUEST: 

              # Maybe we can answer 

 

              if a.protodst in self.arpTable[dpid]: 

                # We have an answer... 

 

                if not self.arpTable[dpid][a.protodst].isExpired(): 
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                  # .. and it's relatively current, so we'll reply 

ourselves 

 

                  r = arp() 

                  r.hwtype = a.hwtype 

                  r.prototype = a.prototype 

                  r.hwlen = a.hwlen 

                  r.protolen = a.protolen 

                  r.opcode = arp.REPLY 

                  r.hwdst = a.hwsrc 

                  r.protodst = a.protosrc 

                  r.protosrc = a.protodst 

                  r.hwsrc = self.arpTable[dpid][a.protodst].mac 

                  e = ethernet(type=packet.type, 

src=dpid_to_mac(dpid), 

                               dst=a.hwsrc) 

                  e.set_payload(r) 

                  log.debug("%i %i answering ARP for %s" % (dpid, 

inport, 

                   r.protosrc)) 

                  msg = of.ofp_packet_out() 

                  msg.data = e.pack() 

                  msg.actions.append(of.ofp_action_output(port = 

                                                          

of.OFPP_IN_PORT)) 

                  msg.in_port = inport 

                  event.connection.send(msg) 

                  return 

 

      # Didn't know how to answer or otherwise handle this ARP, so 

just flood it 

      log.debug("%i %i flooding ARP %s %s => %s" % (dpid, inport, 

       {arp.REQUEST:"request",arp.REPLY:"reply"}.get(a.opcode, 

       'op:%i' % (a.opcode,)), a.protosrc, a.protodst)) 

 

      msg = of.ofp_packet_out(in_port = inport, data = event.ofp, 

          action = of.ofp_action_output(port = of.OFPP_FLOOD)) 

      event.connection.send(msg) 

 

 

 

 

 

def launch (fakeways="", arp_for_unknowns=None, wide=False): 

  fakeways = fakeways.replace(","," ").split() 

  fakeways = [IPAddr(x) for x in fakeways] 

  if arp_for_unknowns is None: 

    arp_for_unknowns = len(fakeways) > 0 

  else: 

    arp_for_unknowns = str_to_bool(arp_for_unknowns) 

  core.registerNew(l3_switch, fakeways, arp_for_unknowns, wide) 

   

 



86 
 

Appendix B        POXFW2  

           This appendix illustrates the python code of the POX Firewall which 

filters any packet based on its protocol number (protocol type) and 

destination IP address.  

 

# Copyright 2012 James McCauley 

# 

# Licensed under the Apache License, Version 2.0 (the "License"); 

# you may not use this file except in compliance with the License. 

# You may obtain a copy of the License at: 

# 

#     http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, 

software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

# See the License for the specific language governing permissions 

and 

# limitations under the License. 

 

""" 

A super simple OpenFlow learning switch that installs rules for 

each pair of L2 addresses. 

""" 

 

# These next two imports are common POX convention 

from pox.core import core 

import pox.openflow.libopenflow_01 as of 

from pox.lib.packet.ethernet import ethernet 

 

# Even a simple usage of the logger is much nicer than print! 

log = core.getLogger() 

 

# This table maps (switch,MAC-addr) pairs to the port on 'switch' 

at 

# which we last saw a packet *from* 'MAC-addr'. 

# (In this case, we use a Connection object for the switch.) 

table = {} 

 

# To send out all ports, we can use either of the special ports 

# OFPP_FLOOD or OFPP_ALL.  We'd like to just use OFPP_FLOOD, 

# but it's not clear if all switches support this, so we make 

# it selectable. 

all_ports = of.OFPP_FLOOD 
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# Handle messages the switch has sent us because it has no 

# matching rule. 

def _handle_PacketIn(event): 

    packet = event.parsed 

    if packet.type == ethernet.IP_TYPE: 

        if packet.payload.protocol == 17 and packet.next.dstip == 

'10.0.0.1': 

            return 

 

    if packet.type == ethernet.IP_TYPE: 

        if packet.payload.protocol == 1 and packet.next.dstip == 

'10.0.0.2': 

            return 

 

    if packet.type == ethernet.IP_TYPE: 

        if packet.payload.protocol == 1 and packet.next.dstip == 

'10.0.0.3': 

            return 

 

    if packet.type == ethernet.IP_TYPE: 

        if packet.payload.protocol == 6 and packet.next.dstip == 

'10.0.0.4': 

            return 

    # Learn the source 

    table[(event.connection, packet.src)] = event.port 

 

    dst_port = table.get((event.connection, packet.dst)) 

 

    if dst_port is None: 

        # We don't know where the destination is yet.  So, we'll 

just 

        # send the packet out all ports (except the one it came in 

on!) 

        # and hope the destination is out there somewhere. :) 

        msg = of.ofp_packet_out(data=event.ofp) 

        msg.actions.append(of.ofp_action_output(port=all_ports)) 

        event.connection.send(msg) 

    else: 

        # Since we know the switch ports for both the source and 

dest 

        # MACs, we can install rules for both directions. 

        msg = of.ofp_flow_mod() 

        msg.match.dl_dst = packet.src 

        msg.match.dl_src = packet.dst 

        msg.match.dl_type = packet.type 

        msg.idle_timeout = 2 

        msg.hard_timeout = 0 

        msg.actions.append(of.ofp_action_output(port=event.port)) 

        event.connection.send(msg) 

 

        # This is the packet that just came in -- we want to 

        # install the rule and also resend the packet. 

        msg = of.ofp_flow_mod() 
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        msg.data = event.ofp  # Forward the incoming packet 

        msg.match.dl_src = packet.src 

        msg.match.dl_dst = packet.dst 

        msg.idle_timeout = 2 

        msg.hard_timeout = 0 

        msg.match.dl_type = packet.type 

        msg.actions.append(of.ofp_action_output(port=dst_port)) 

        event.connection.send(msg) 

 

        log.debug("Installing %s <-> %s" % (packet.src, 

packet.dst)) 

 

 

def launch(disable_flood=False): 

    global all_ports 

    if disable_flood: 

        all_ports = of.OFPP_ALL 

 

    core.openflow.addListenerByName("PacketIn", _handle_PacketIn) 

 

    log.info("Pair-Learning switch running.") 

 

 


