

SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY

FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

A SIMPLE JAVA-PYTHON

CONVERTER

PREPARED BY:

EMAN JAMMAA COCO

HADEEL ALI OSMAN

SUPERVIOR: Dr. NIEMAH IZZELDIN

OCTOBER 2017

A THESIS SUBMITTED AS A PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF B.Sc. (HONORS) IN COMPUTER

SYSTEMS AND NETWORKS

الله الرحمن الرحيمبسم

SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY

FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DEPARPMENT OF COMPUTER SYSTEMS AND NETWORK

A SIMPLE JAVA-PYTHON CONVERTER

PREPARED BY:

EMAN JAMMAA COCO

HADEEL ALI OSMAN

 SUPERVIOR: Dr. NIEMAH IZZELDIN

A THESIS SUBMITTED AS A PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF B.Sc. (HONORS) IN COMPUTER

SYSTEMS AND NETWORKS

 SIGNITURE OF SUPERVISOR: ………… DATE: …... OCTOBER 2017

iv

 الحمد لله

حزني وفي سعدي الحمد لله على إحسانه وله في الحمد لله في سري وفي علني والحمد لله

 الشكر على توفيقه و إمتنانه الحمد لله على ما أراد بنا من عاجل الخير و آجله

يعلم وأشهد أن لا إله إلا الله وحده لا شريك له و الحمد لله الذي علم بالقلم علم الإنسان ما لم

 أشهد أن محمد عبده ورسوله

v

 الآية

ُ عَمَلكَُمْ وَرَسُولهُُ وَالْمُؤْمِنوُنَ ۖ وَسَترَُدُّونَ إِلىَٰ عَالِمِ الْغيَْبِ وَالشه) هَادَ ِ وَقلُِ اعْمَلوُا فَسَيَرَى اللَّه

501الآية -سور التوبة (كُنْتمُْ تعَْمَلوُنَ فيَنَُبِِّئكُُمْ بِمَا

ن كُلِِّ مَا سَألَْتمُُوهُ ۚ وَإِن تعَدُُّوا نِعْمَتَ) نسَانَ لظََلوُمٌ كَفهارٌ (وآتاَكُم مِِّ ِ لَا تحُْصُوهَا ۗ إِنه الْإِ اللَّه

 43الآية -سور ابراهيم

تخََافَا ۖ إنِهنِي مَعَكُمَا أسَْمَعُ قَالَ لَا (31قَالَا رَبهنَا إِنهنَا نَخَافُ أنَْ يَفْرُطَ عَليَْنَا أوَْ أنَْ يَطْغىَ))

 (وَأرََىٰ

 34الآية -سور طه

http://qadatona.org/%D8%B9%D8%B1%D8%A8%D9%8A/%D8%A7%D9%84%D9%82%D8%B1%D8%A2%D9%86-%D8%A7%D9%84%D9%83%D8%B1%D9%8A%D9%85/9/105
http://quran.ksu.edu.sa/tafseer/tabary/sura14-aya34.html
http://quran.ksu.edu.sa/tafseer/tabary/sura20-aya46.html

vi

 الإهداء

ا إلي إلي من لا يمكن للكلمات أن توفي حقهما إلي من لا يمكن للأرقام أن تحصي فضلهم

الله تاجا علي رأسنا. والدي أدامهما

عونا لنا في هذه الحيا . يرخ االذين كانو ناو أخوات نناإلي إخو

 الى ول خطواتناأطوال هذه السنوات الدراسية من في تعليمنا واساهم معلمةو معلم إلي كل

الله. عونمرحلة التخرج ب

خير عون طوال هذه السنوات الدراسية. لنا كناللاتي إلي صديقاتنا وأخواتنا

عائلة لنا في سوب والشبكات التي كانت خيرقسم نظم الحا الغالية الدفعة العاشر فعتناإلي د

.هذه السنوات الدراسية الجامعية

 إلي كل من سقط القلم عن ذكرهم.

vii

 الشكر والعرفان

لعمل نتوجه بجزيل الشكر والإمتنان إلي كل من ساعدنا من قريب أو بعيد علي إنجاز هذا ا

عز الدين ةنعم دكتورال ةالفاضل ةنخص بالشكر الإنسانو .ابن صعوفي تذليل ما واجهناه م

هذا البحث كمالإلنا في ا عونالتي كانت ةموجيهاتها ونصائحها القيتالتي لم تبخل علينا ب

 بفضل الله تعالي.

viii

 المستخلص

في الوقت لغات البرمجة الأكثر شعبية وقو يثون منابلغة الجافا والتعتبر لغة

تتمتع كلتا اللغتين بمزايا فريد و .للكائنات لغات البرمجة الموجهة من كلاهماوالحاضر

 للمطورين والمستخدمين.

)أو Cو ++ C إستخدام لغات من ةيالتعليم المؤسساتالكثير من تمنذ سنوات عديد تحول

وبالنظر إلي مزايا لغة بايثون البرمجة. مقررات لتدريسجافا اللغة باسكال، الخ(إلى

يتوقع أن تحل بايثون ،وإرتباطها بالإتجاهات الجديد في علوم الحاسوب مثل إنترنت الأشياء

 محل لغة جافا في تعليم مقررات البرمجة في المستقبل القريب.

، ايثون لكسب ميزاتهاجافا إلى بلغة من تحويل برامجه أو الدارس المبرمج رغبأن في حال

 .والذي يعد إضاعة للجهد والوقت إعاد كتابة البرنامج بأكمله من البداية،يه علسيكون

 هو محول يقوم بتحويل لغة جافا إلي لغة بايثون وهو عبار عن قترح لهذه المشكلةالمالحل

دون جخرمبايثون ك كودتحويله إلى يقوم بل ودخميأخذ كود جافا كسطح المكتب لتطبيق

 بأكمله.بايثون برنامج عاد كتابة الإضطرار لإ

ix

ABSTRACT

Java and Python are two of the most popular and powerful

programming languages of present time. Both of them are object-

oriented programming languages. Both languages have their unique

advantages for developers and end users.

Many years ago a lot of educational institutions switched from C and

C++ or Pascal to Java for introducing programming courses. Given

the features of Python and how it is related to emerging fields in

computer science such as an Internet of things, it is expected that

Python will replace Java in teaching programming languages in the

near future.

If a programmer or student wants to convert their software programs

from Java to Python to gain its features, he will have to rewrite the

whole program from start, which is considered a waste of time and

effort.

The suggested solution to solve this problem is using a Simple Java-

Python converter, which is a desktop application that takes Java code

as an input and converts it to Python code as an output without having

to rewrite the whole program from start.

x

List of Abbreviations:

Abbreviation Expression
AST Abstract Syntax Tree

BCX The BASIC to C translator

BNF Backus–Naur form

DLL Dynamic Link Libraries

DOM Document Object Model

GUI Graphical User Interface

IDLE Python's Integrated Development and Learning

Environment

JIT Just-In-Time

JLCA Java Language Conversion Assistant

JVM Java Virtual Machine

Jython Python for the Java Platform

OOP Object Oriented Programming

Parse::RecDescent Recursive descent parser

Perthon Python-to-Perl Source Translator

RMI Remote Method Invocation

VB Visual Basic

XML eXtensible Markup Language

https://en.wikipedia.org/wiki/Recursive_descent_parser
https://en.wikipedia.org/wiki/Visual_Basic

xi

Index of Figures:

Figure 1.1 A Simple Java-Python Converter .. 3

Figure 3.1 Language Processing ... 20

Figure 3.2 A Compiler .. 21

Figure 3.3 Structure of a Compiler ... 22

Figure 3.4 An Interpreter .. 25

Figure 4.1 Conversion Stages ... 33

Figure 4.2 Java to XML Conversion Process ... 36

Figure 4.3 XML to Python Conversion Process ... 39

Figure 4.4 simple input & output from the converter: (a) the Java Input, (b) the

Intermediate XML Code and (c) the Python Output .. 40

Figure 5.1 Converter Application Icon ... 43

Figure 5.2 Converter GUI ... 44

Figure 5.3 Simple Example: (a) Java Input Code and (b) Python Output Code 45

Figure 5.4 Method Example: (a) Java Input Code and (b) Python Output Code 46

Figure 5.5 if Example: (a) Java Input Code and (b) Python Output Code 47

Figure 5.6 if...else Example: (a) Java Input Code and (b) Python Output Code 48

Figure 5.7 Nested if Example: (a) Java Input Code and (b) Python Output Code 48

Figure 5.8 switch Example: (a) Java Input Code and (b) Python Output Code 49

Figure 5.9 while Example: (a) Java Input Code and (b) Python Output Code 50

Figure 5.10 do...while Example: (a) Java Input Code and (b) Python Output Code 51

Figure 5.11 for Example: (a) Java Input Code and (b) Python Output Code 52

Figure 5.12 Empty for Example: (a) Java Input Code and (b) Python Output Code ... 53

file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498251991
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498251993
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498251997
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498251997
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252000
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252001
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252002
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252003
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252004
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252005
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252006
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252007
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252008
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252009

xii

Index of Tables:

Table 2.1 Primitive Data Types in Java .. 10

Table 2.2 Java vs. Python ... 16

Table 3.1 Symbol Table .. 23

Table 3.2 Compilers vs. Interpreters .. 26

Table 3.3 Comparison between Converters .. 30

Table 4.1 XML Tags Components ... 37

xiii

 Table of Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 OVERVIEW ... 2

1.2 PROBLEM STATEMENT ... 2

1.3 PROPOSED SOLUTION ... 2

1.4 OBJECTIVES: .. 3

1.5 SCOPE: .. 3

1.6 METHODOLOGY: .. 4

1.7 THESIS ORGANIZATION: ... 4

CHAPTER 2 PROGRAMMING LANGUAGES .. 5

2.1 INTRODUCTION .. 6

2.2 PROGRAMMING LANGUAGE .. 6

2.3 JAVA ... 6

2.3.1 Java history ... 6

2.3.2 Java Virtual Machine (JVM) .. 7

2.3.3 Characteristic of Java .. 8

2.3.4 Java structure .. 9

2.4 PYTHON .. 13

2.4.1 Introduction to Python .. 13

2.4.2 IDLE ... 13

2.4.3 Python structure .. 13

2.5 JAVA VS. PYTHON .. 16

2.6 SUMMARY .. 18

CHAPTER 3 LANGUAGE PROCESSORS AND LITERATURE REVIEW 19

3.1 INTRODUCTION .. 20

3.2 COMPILER .. 21

3.2.1 Structure of a compiler ... 22

3.3 INTERPRETERS.. 25

xiv

3.4 COMPILERS VS. INTERPRETERS: ... 26

3.5 JAVA AND PYTHON LANGUAGES PROCESSORS .. 27

3.5.1 Java ... 27

3.5.2 Python ... 27

3.6 LITERATURE REVIEW ... 27

3.6.1 java2python ... 27

3.6.2 Programming Language Inter-conversion .. 28

3.6.3 VARYCODE .. 28

3.6.4 Tangible Software Solutions ... 28

3.6.5 JLCA ... 29

3.6.6 BCX .. 29

3.6.7 PERTHON .. 30

3.7 COMPARISON BETWEEN CONVERTERS... 30

3.8 SUMMARY .. 31

CHAPTER 4 SYSTEM DESIGN .. 32

4.1 INTRODUCTION .. 33

4.2 SYSTEM DESCRIPTION.. 33

4.2.1 Reasons for using an intermediate language... 34

4.2.2 XML .. 34

4.2.3 Selecting XML as an intermediate language .. 34

4.3 SYSTEM ENVIRONMENT ... 34

4.4 CONVERSION PROCESS .. 35

4.4.1 Phase one .. 35

4.4.2 Phase two .. 38

4.4.3 Simple example ... 40

4.5 SUMMARY .. 41

CHAPTER 5 IMPLEMENTATION .. 42

5.1 INTRODUCTION: ... 43

5.2 RUNNING THE CONVERTER: ... 43

xv

5.3 SIMPLE EXAMPLES: .. 44

5.3.1 Methods: ... 46

5.3.2 Selection statements: ... 47

5.3.3 The switch statement: ... 49

5.3.4 Iteration statements: .. 50

5.4 SUMMARY: ... 53

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 54

6.1 RESULTS: ... 55

6.2 RECOMMENDATIONS: ... 55

6.3 CONCLUSIONS: ... 56

REFERENCES: .. 57

Chapter 1 INTRODUCTION

2

1.1 Overview

Java and Python are two of the most popular and powerful programming languages of

present time. Both of them are object-oriented programming languages. Both

languages have their unique advantages for developers and end users.

Many years ago a lot of educational institutions switched from C and C++ (or Pascal,

etc) to Java for introducing programming courses. Given the features of Python and

how it is related to emerging fields in computer science such as Internet of things, it is

expected that Python will replace Java in teaching programming languages in the near

future.

Python is an easier language for novice programmers to learn. One can progress faster

if learning Python as a first language instead of Java, because Java is restrictive and

more complex compared to Python.

Python is more user-friendly, easier to read and understand than Java, as it has a more

intuitive coding style and uses whitespaces to convey the beginning and end of blocks

of code.

Python is a more productive language than Java because it is a dynamically typed

programming language whereas java is statically typed.

1.2 Problem Statement

If programmers want to convert their software programs from Java to Python to gain

its features, they will have to rewrite the whole program from start which consumes

time and increases cost.

1.3 Proposed Solution

To reduce effort, time and cost that is consumed to convert programs from Java to

Python, we need a mechanism that converts them automatically.

3

The conversion process has been placed among the top 10 challenges in the

programming world [13]. Achieving the maximum efficiency of the conversion

without compromising the quality of the converted program is the programmer’s

target.

A Simple Java-Python Converter is a software that takes a Java file code as input and

converts it to Python file code as output as shown in Figure 1.1.

Figure 1.1 A Simple Java-Python Converter

1.4 Objectives:

The objectives of this project are to:

 Prevent the loss of programs that are written in java.

 Use old programs to produce the newer.

 Reduce the software evolution cost.

 Help Java programmers to learn Python.

 Help in switching from Java to Python.

1.5 Scope:

The Simple Java-Python Converter converts a program written in Java to a Python

program. The Java program must be free of syntax.

 The software covers the Java principles:

 Class declaration.

 Method declaration.

4

 Comments.

 Declaring and initializing primitive, floating point and boolean variables.

 Selection statements:

o If statement.

o If…else statement.

o Nested if statement.

 Switch statement.

 Iteration Statements:

o While statement.

o Do…while statement.

o For statement.

1.6 Methodology:

The Simple Java-Python Converter reads Java statements from the Java program,

converts them to XML (eXtensible Markup Language) tags as an intermediate code

and writes them in an .xml file. It then reads XML tags, converts them to Python

statements and writes them in a Python file.

1.7 Thesis Organization:

This thesis contains six chapters. Chapter two explains Java and Python programming

languages and compares the two languages. Chapter three explains language

processors (compiler and interpreter) and reviews the literature review. The system

design is implemented in Chapter four. Chapter five demonstrates results and provides

execution examples. Finally, Chapter six is conclusions and recommendations.

5

Chapter 2 PROGRAMMING

LANGUAGES

6

2.1 Introduction

This chapter explains in details Java and Python programming languages including

structure, data types and statements. It also compares the two languages.

2.2 Programming Language

Java programming language is used to develop the Simple Java-Python Converter

desktop application. It is used to develop both phases of the conversion process.

Java programming language is a popular programming language and it is used to

develop all kinds of applications. Such as mobile, client-server, web and desktop

applications.

Java is a highly portable language as it must be executed through a cross-platform

compatible Java Virtual Machine (JVM).

Java is a statically-typed language, which means the code will have to be checked for

errors before it can be built into an application.

As a statically typed language, Java is faster than dynamically typed languages

because things are more clearly defined.

Performance can be optimized in real time to help a Java program run faster. This is

very helpful as some applications grow larger or need to handle more processes.

2.3 Java

 2.3.1 Java history

Like the successful computer languages that came before, Java is a blend of the

best elements of its rich heritage combined with the innovative concepts required

by its unique mission. Computer language innovation and development occurs for

two fundamental reasons:

o To adapt to changing environments and uses.

o To implement refinements and improvements in the art of programming.

7

The development of Java was driven by both these elements in nearly equal

measure [1].

Java is related to C++, which is a direct descendant of C. From C, Java derives its

syntax. Many of Java’s object-oriented features were influenced by C++. Java was

conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike

Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first

working version. This language was initially called “Oak,” but was renamed “Java”

in 1995[1].

The primary motivation was the need for a platform-independent (that is,

architecture-neutral) language that could be used to create software to be embedded

in various consumer electronic devices, such as microwave ovens and remote

controls. With the emergence of the World Wide Web, Java was propelled to the

forefront of computer language design, because the Web, too, demanded portable

programs.

 2.3.2 Java Virtual Machine (JVM)

In other language the compiler coverts source code into executable code. However,

in java the output of a Java compiler is not executable code, it is bytecode.

Bytecode is a highly optimized set of instructions designed to be executed by the

Java run-time system, which is called the Java Virtual Machine (JVM) (an

interpreter for bytecode) [1]. Although the JVM differs from platform to another,

all of them understand the same bytecode and this supports portability features.

Because the JVM is in control, it can contain the program and prevent it from

generating side effects outside of the system [1].

In general executing code in two stages (bytecode, executable code) is slower than

executing it in one stage (executable code only). But Java is not slow as expected

because the bytecode is highly optimized which thus JVM executes it in a rapid

manor.

8

Sun supply’s its technology HotSpot, which provides a Just-In-Time (JIT) compiler

for bytecode.

The JIT is a part of the JVM which takes a part of the bytecode depending on the

demand and executes it.

It is not suitable to execute source code all at once, because there are some checks

done during run time only.

JIT compiler compiles only the part of code that will benefit from compilation and

interprets the rest.

 2.3.3 Characteristic of Java

 2.3.3.1 Object-oriented

Object-oriented programming (OOP) is at the core of Java. One of the central

issues in software development is how to reuse code. Object-oriented programming

provides great flexibility, modularity, clarity, and reusability through

encapsulation, inheritance, and polymorphism [1].

2.3.3.2 Robust

Java helps in finding mistakes in the java program by determining the area of the

error, java checks code in compile time and run time.

2.2.3.3 Multithreaded

Java was designed to meet the real-world requirement of creating interactive,

networked programs. To accomplish this, Java supports multithreaded

programming, which allows writing programs that run simultaneously [1].

2.3.3.4 Architecture-neutral

In general, the lifetime of the program is not guaranteed because the operating

system and the processor are updated continually.

9

Java designers made several hard decisions in the Java language and the Java

Virtual Machine in an attempt to alter this situation. Their goal was “write once;

run anywhere, anytime, forever” [1].

2.3.3.5 Distributed

Java is designed for the distributed environment of the Internet because it handles

TCP/IP protocols. In fact, accessing a resource using a URL is not much different

from accessing a file. Java also supports Remote Method Invocation (RMI). This

feature enables a program to invoke methods across a network [1].

 2.3.4 Java structure

2.3.4.1 Java class

public class Welcome{

 public static void main(String[] args) {

 System.out.println(“Welcome to java”); }

}

Public: is a keyword indicating that the class can be seen or manipulated by all

other classes.

Class: is a keyword to declare that a new class is being defined. Every java class

must begin with it.

Welcome: is the class name, and must be the same as the file name

(Welcome.java).

{}: the content of the java class must be between the {} braces, the { brace is the

start of the java class and } brace I the end of the java class.

void: is a keyword indicating that the main method does not return a value. If

the method returns a value, instead of void, the data type of the returned value is

written.

main(): the execution of a java program begins from the main method. Without

the main method the program can be compiled but cannot be executed. After the

10

method name the () braces must be included. If the method receives parameters

they are declared inside the () braces.

String[] args: the main method receives an array of string named args.

System.out.println(): System is a class in java that provides access to the

system, out is the output stream that is connected to the console, and println is

the method that prints the data that is passed to it followed by a new line.

2.3.4.2 Comments in Java

There are three types of comments in java:

 Line comment:

//this is a line comment

 Paragraph comment

/* This is paragraph comment */

 javadoc comment

/** This is javadoc comment

*/

2.3.4.3 Declaring variables in Java

Variables are used to store data in a program. Declaring a variable tells the

compiler to allocate appropriate memory space for the variable based on its data

type.

Syntax: datatype variable_Name= value;

2.3.4.4 Primitive data types

Java provides eight (8) primitive data types as shown in Table 2.1.

Table 2.1 Primitive Data Types in Java

Type Name Size

Numeric Byte 8-bit signed

Short 16-bit signed

11

Int 32-bit signed

Long 64-bit signed

Floating point Float 32-bit

Double 64-bit

Characters Char 16-bit

Boolean Boolean true or false

2.3.4.5 Selection statements

 If statement:

if(condition) {

 Statements;

}

 If else statement

if(condition) {

Statements;

} else{

Statements; }

 Nested if statement

if(condition) {

 Statements;

}//end outer if

else {

if{

Statements;

 } //end inner if

else{

Statements;

}//end inner else

}//end outer else

12

2.3.4.6 Switch statement

switch (expression)

{

case value1: statements;

 break;

case value2: statements;

 break;

default: statements;

}//end switch

The switch expression must hold a value of: char, byte, short, or int type.

2.3.4.7 Iteration statements

 While statement:

while(condition) {

// body of loop

}

 do-while statement

do {// body of loop

} while (condition);

 for statement

for(initialization; condition; iteration) {

// body

}

13

2.4 Python

2.4.1 Introduction to Python

Python programming language was created by Guido van Rossum in the late 1980s

[2]. Python is a higher-level programming language. It is considered to be a higher-

level language than C, C++, Java, and C#.

2.4.2 IDLE

Integrated Development and Learning Environment (IDLE) is a simple Python

integrated development environment available for Windows, Linux, and MacOS X

[2].

Python code can be written directly in IDLE shell to execute but will not be saved.

To save the python code it must be written in IDLE editor, for example (welcome.py).

The name of the python program is irrelevant but describes the nature of this program.

print("Welcome to python"): this statement prints Welcome to python on the screen.

2.4.3 Python structure

2.4.3.1 Operators

 Arithmetic Operators (+, -, *, /, **, //, %).

 Bitwise Operators (<<, >>, &, |, ~, ^).

 Relational Operators (<, >, <=, >=, ==,! =, <>).

 Logical Operators (and, or, not).

2.4.3.2 Declaring functions in Python

To declare a function in python the def keyword is used.

def name(arg1, arg2,... argN):

#block

return value

14

2.4.3.3 Comments in Python

Python uses the (#) symbol to indicate that this line is a comment and uses (''') in

case of a multiple line comment, the compiler ignores it.

this line is a comment

'''

this is a multiple line comment

'''

2.4.3.4 Values and variables

 To declare a variable in python, it doesn’t require determining its data type.

 Python by default determines the data type of the variable depending on its

value.

 To know the data type of a variable the type (variable_Name) function is used.

 Syntax:

o variable_Name = value

2.4.3.5 Boolean in Python

 Boolean take only two values True or False.

 In python 0 and "" indicate False and all other values indicate True.

2.4.3.6 Types of numbers

 In python version 2 there are four types of numbers: int, long, float, complex:

o Int:-21474836482147483647

o Long:> 2147483647 and < -2147483648 (End with L symbol)

o Float: contain floating point ex (2.5).

o Complex: Imaginary numbers ex (2+5j).

 In Python version three the int and long types are merged in int type.

2.4.3.7 Declaration of a string

There are three ways to declare a string in Python:

15

1. Double quote "string in Python".

2. Single quote ' string in Python'.

3. Triple quote """string in Python contain quote""".

2.4.3.8 Selection statements

 If statement

 If condition:

Statements

 If else statement

 If condition:

Statements

 else:

Statements

 Nested if statement

 If condition:

 Statements

 else:

if condition:

 Statements

 else:

 Statements

2.4.3.9 Iteration statements

 While statement:

while condition:

#block

 for statement:

16

for n in range(begin, end, step):

 # block

2.5 Java vs. Python

Table 2.2 compares Java and Python in terms of comments, variables, data types and

statements.

Table 2.2 Java vs. Python

 Java Python

Print statement System.out.println(“Welcome to java”); print(“Welcome to python”)

Comments // line comment

/*

paragraph comment

 */

 /**

javadoc comment */

#comment

Declaring

Variables

Datatype variable_Name = value;

variable_Name = value

Primitive Data

Types

byte, short, int, long, float, double, char,

boolean.

int, long, float, complex,

boolean.

If statement if(condition) {

 Statement;

}

If condition:

 Statements

If else

statement

if(condition)

{ Statement;

} else {

 Statement;

}

If condition:

 Statements

else:

 Statements

Nested if if(condition) If condition:

17

statement { Statement;

}//end outer if

else

{

if{

 Statement;

} //end inner if

else{

 Statement;

 }//end inner else

}//end our else

 Statements

else:

if condition:

 Statements

 else:

 Statements

Switch

statement

switch(expression)

{

 case value1: statements;

 break;

 case value2: statements;

 break;

 default: statements;

}//end switch

Doesn’t have a switch

statement

While

statement

while(condition)

{

 // body of loop

}

while condition:

block

for Statement for(initialization; condition; iteration) {

 // body

}

for n in range (begin, end,

step):

 # block

18

2.6 Summary

This chapter overviewed Java and Python programming languages in details including

introduction to each language, structure and statements, and compared the two

languages. The next chapter explains in details language processors including

compilers and interpreters. It also reviews the literature review.

19

Chapter 3 LANGUAGE PROCESSORS

AND LITERATURE REVIEW

20

3.1 Introduction

This chapter explains in details language processors (compilers and interpreter),

compare the two language processors, Java and Python language processors and

finally reviews the literature review.

All software used in computers is written in some programming language, but before

executing the program it must be converted to another form that can be understood by

the machine, as described in Figure 3.1.

Figure 3.1 Language Processing

21

Language processing is achieved by four steps. Following is an explanation of each

step.

Preprocessor: is concerned with the collection of the source program (which may be

divided into separates files) and expand shorthand into source code statements.

Compiler: takes the modified program from the preprocessor as an input and then

converts it to an assembly code (because it is easy to produce and easy to debug) as an

output.

Assembler: takes the assembly program as an input and then converts it to a machine

code.

Linker/Loader: the linker resolves external memory addresses, where the code in

one file may refer to a location in another file. The loader then puts together all of the

executable object files into memory for execution [3].

3.2 Compiler

A compiler is a program that can read a program in one language (the source

language) and translate it into an equivalent program in another language (the target

language) as can be seen in Figure 3.2 [3].

Figure 3.2 A Compiler

22

3.2.1 Structure of a compiler

The compiler consists of two parts: analysis and synthesis. The Analysis divides the

source code into pieces, applies the grammatical structure to them and generates an

intermediate representation of the source code. If the syntax of the source code is ill,

it generates an informative message to the user. It also collects information about the

source code and stores them on the symbol table. The synthesis part uses the symbol

table and intermediate representation to generate the target program. Figure 3.3

illustrates the structure of a compiler [3].

Figure 3.3 Structure of a Compiler

We will use a simple example to understand the job of each phase, using the

following statement:

 x = a * b/2

23

3.2.1.1 Lexical analyzer (scanning)

The lexical analyzer reads a stream of characters and groups them into a meaningful

sequence called lexemes and produces tokens as an output, its syntax:

(Token name, attribute value)

Token name is an abstract symbol used during syntax analysis, and attribute value

points to the token as in Table 3.1.

In our example the output tokens are:

 (id, 1) (=) (id, 2) (*) (id, 3) (/) (2)

In case of operators and values we use its symbol as its token name.

Table 3.1 Symbol Table

1 X

2 A

3 B

3.2.1.2 Syntax analyzer (parsing)

In this phase, the syntax tree is created from the tokens.

 =

 (id, 1) *

 (id, 2) /

 (id, 3) 2

3.2.1.3 Semantic analyzer

The semantic analyzer uses the syntax tree and the information in the symbol table to

check the source program for semantic consistency with the language definition [3].

It also:

 Gathers type information

24

 Type checking: checks that each operator has matching operands

 Reports errors

 Type conversion: suppose that x, a and b are floating point and (2) is an

integer then the 2 is converted to floating point number:

 =

 (id, 1) *

 (id, 2) /

 (id, 3) inttofloat

 2

3.2.1.4 Intermediate code generator

Which generates an intermediate representation (program for an abstract machine),

that must be easy to produce and easy to translate.

The output of this phase is three-address codes which consist of a sequence of

assembly like instructions with three operands per instruction. Each operand can act

as a register [3]. With respect to three-address code:

 Each instruction has at most one operator on the right side.

 The compiler must generate a temporary name to hold the result of three-

address instruction.

t1 = inttofloat(2)

t2 = id3 / t1

t3 = id2 * t2

id1 = t3

3.2.1.5 Code optimization

This phase is optional, and is used to improve the intermediate code to be:

 Faster

 Shorter

 Consume less power

t1 = id3 / 2.0

id1 = id2 * t1

25

3.2.1.6 Code generation

Maps the intermediate representation to the target language. In this phase registers or

memory locations are selected.

 LDF R2, id3

 DIVF R2, R2, #2.0

 LDF R1, id2

 MULF R1, R1, R2

 STF id1, R1

3.2.1.7 Symbol table

Is a data structure which contains records for source program variables and provide

information about them such as:

 Storage allocated

 Type

 Variable scope

In case of procedures it stores information about its name, the type of its arguments,

the method of passing and type returned.

3.3 Interpreters

An interpreter is another common kind of language processors that directly executes

the source program on user inputs as shown in Figure 3.4. The task of an interpreter is

more or less the same as of a compiler but the interpreter works in a different fashion.

The interpreter takes a single line of code as input at a time and executes that line. It

will terminate the execution of the code as soon as it finds an error. Memory

requirement is less because no object code is created [3].

Figure 3.4 An Interpreter

26

The machine language target program produced by a compiler is usually much faster

than an interpreter at mapping inputs to outputs. An interpreter, however, can usually

give better error diagnostics than a compiler, because it executes the source program

statement by statement.

3.4 Compilers vs. Interpreters:

Table 3.2 compares compilers and interpreters in input, intermediate code, memory

requirement, error checks, and time consumption.

Table 3.2 Compilers vs. Interpreters

 Compiler Interpreter

1 Compiler takes entire program as

input.

Interpreter takes a single instruction as

input.

2 Intermediate object code is

generated.

No intermediate object code is generated

3 Conditional control statements are

executed faster.

Conditional control statements are executed

slower.

4 Memory requirement more; since

object code is generated.

Memory requirement is less.

5 Program need not

be compiled every time.

Every time the higher level program is

converted into lower level program.

6 Errors are displayed after the entire

program is checked

Errors are displayed for every instruction

interpreted (if any).

 7 Compiled languages are more

efficient but difficult to debug.

Interpreted languages are less efficient but

easier to debug because interpreter stops

and reports errors as it encounters them.

 8 Compiler does not allow a program

to run until it is completely error-

free.

Interpreter runs the program from first line

and stops execution only if it encounters an

error.

9 It takes less amount of time to It takes large amount of time to analyze the

27

analyze the source code but the

overall execution time is slower.

source code but the overall execution time

is comparatively faster.

10 Example : C compiler Example : Python

3.5 Java and Python Languages Processors

3.5.1 Java

Java is both a compiled and interpreted language. When a Java program is written,

the javac compiler converts the program into bytecode. Bytecode compiled by javac, is

entered into the JVM memory where it is interpreted by another program

called java. This java program interprets bytecode line-by-line and converts it into

machine code to be run by the JVM [4].

3.5.2 Python

There are four steps that python takes when the return key is pressed: lexing, parsing,

compiling, and interpreting. Lexing is breaking the line of code into tokens. The parser

takes those tokens and generates a structure that shows their relationship to each other

in this case, an Abstract Syntax Tree (AST). The compiler then takes the AST and

turns it into one (or more) code objects. Finally, the interpreter takes each code object

and executes the code it represents.

3.6 Literature Review

3.6.1 java2python

A simple but effective tool to translate Java source code into Python source code.

Created by Troy Melhase, java2python is licensed under the GNU General Public

License 2.0. To translate code, java2python requires python 2.5, ANTLR and

PyANTLR [5].

http://techwelkin.com/java-and-memory

28

The java2python package can translate any syntactically valid Java source code file.

The generated Python code is not guaranteed to run, nor is guaranteed to be

syntactically valid Python [6].

Even though some manual checking is required in the output code; however, large

amounts of time from hand converting would be saved.

3.6.2 Programming Language Inter-conversion

This paper presents a new approach of programming languages inter-conversion which

can be applied to all types of programming languages [7].

The idea is an implementation of an intermediate language for inter-conversion. This

language can be used to store the logic of the program in an algorithmic format

without disturbing the structure of the original program. Separate convertors to and

from the intermediate language have to be created for each language.

This is not an easy task, but if correctly implemented, it would greatly change the

future of software development. It would simplify the process of developing programs,

maintaining them and hence bring down costs tremendously.

3.6.3 VARYCODE

Varycode [8] is an online all-in-one programming code converter between C#, Visual

Basic .Net, Java, C++, Ruby, Python and Boo, supporting 21 directions of conversion.

Varycode comes in different plans and pricing, and customers are provided with the

payment option according to the use packages.

Varycode does not completely claim that the codes generated after conversion are a

100% accurate so it needs some manual check.

The home page of Varycode is “https://varycode.com”.

3.6.4 Tangible Software Solutions

https://varycode.com/
https://varycode.com/

29

Tangible Software Solutions Inc. [9] is a privately held corporation founded in 1997.

It is a software development and consulting firm specializing in source code

conversion tools and source code conversion projects.

It offers the most accurate and reliable source code conversion utilities on the market

today: Instant C#, Instant VB, C++ to C# Converter, C++ to VB Converter, C++ to

Java Converter, C# to Java Converter, VB to Java Converter, Java to C#

Converter, Java to VB Converter, C# to C++ Converter, VB to C++ Converter,

and Java to C++ Converter.

The corporation produces desktop applications and provides free editions for folder

conversions up to 1000 lines at a time and code snippet conversions up to 100 lines at

a time, but the standard editions can only be purchased.

3.6.5 JLCA

The Microsoft Java Language Conversion Assistant (JLCA) [10] is a tool that

automatically converts existing Java-language source code to C# for developers who

want to move their existing applications to the Microsoft .NET Framework.

The Java Language Conversion Assistant provides integration with Visual Studio

.NET or Visual Studio 2005 IDE. It also allows to deliver full C# implementation by

using the power of the .NET Framework and the component oriented programming

features of C#.

Applications and services converted with the JLCA run only on the .NET Framework.

They do not run on any Java Virtual Machine. Microsoft developed the JLCA

independently. It is neither endorsed nor approved by Sun Microsystems, Inc.

3.6.6 BCX

BCX [7] [11] was originally started by Kevin Diggins. It is now completely open

source and developed by a group.

BCX is a small command line tool that inputs a BCX BASIC source code file and

outputs a 'C' source code file which can be compiled with many C or C++ compilers.

30

Using BCX and a C compiler enables the programmers to produce powerful 32-bit

native code Windows console mode programs, windows GUI applications, and

Dynamic Link Libraries (DLL's) without having to incur the costs of an expensive

commercial BASIC compiler.

The only drawback is that Hardware Voices Controls are disabled.

3.6.7 PERTHON

Perthon converts Python source code to human-readable Perl 5.x source code[7] [12].

It makes use of Damian Conway's Parse::RecDescent for parsing, and aims to re-

implement the Python language as specified in the Python Reference Manual and

Backus-Naur Form (BNF) grammar. Perthon is similar to Jython, which re-implements

Python on the JVM, except that Perthon works at the source code (not byte code)

level.

Perthon does not yet support 'use', 'BEGIN', 'END', etc. This is due to how Perl

handles these expressions: they get executed while parsing. It also does not handle

'bless', 'packages', etc. The references may or may not be resolved correctly. The

prefix/postfix operators are not resolved as well.

3.7 Comparison between Converters

Table 3.3 discusses the major differences between previous studies and the simple

Java Python converter.

Table 3.3 Comparison between Converters

Case Study Category Source

language

Target

language

Written

in

Intermediate

language

Manual

checking

Availability

java2python Tool Java Python - ANTLR Required Open

source

31

VARYCODE Online

web based

service

C#,

Visual

Basic

.Net,

Java,

C++,

Ruby,

Python

and Boo

C#,

Visual

Basic

.Net,

Java,

C++,

Ruby,

Python

and Boo

- - Required Free to

some 2048

to 4096

characters

Tangible

Software

Solutions

Desktop

application

C++, C#,

VB, Java

C++, C#,

VB, Java

- - Required Free up to

1000 line

for folder

and 100 line

for snippet

JLCA Tool Java C# - - Required Free

BCX Tool BCX

BASIC

C BCX

BASIC

- Required Open

source

Perthon Software Python Perl 5.x Perl - Required Free

A simple

Java-Python

converter

Desktop

application

Java Python Java XML DOM Required Free

3.8 Summary

This chapter explained in details language processors (compilers and interpreters), and

compared them. It also described Java and Python language processors and finally

reviewed the literature review. The next chapter illustrated the system design and

explains the conversion process in details.

32

Chapter 4 SYSTEM DESIGN

33

4.1 Introduction

This chapter explains the description of the system, the software environment, the

programming language used to develop the project and the conversion process.

4.2 System Description

The simple Java Python Converter converts the Java input file to XML (eXtensible

Markup Language) as an intermediate code and then converts the XML file to Python.

It reads Java statements from the Java file, converts them to XML tags and writes them

in a scripting file (.xml). Then it reads XML tags, converts them to Python statements

and writes them in a Python file as shown in Figure 4.1.

Figure 4.1 Conversion Stages

34

4.2.1 Reasons for using an intermediate language

The main reason of using an intermediate language is to facilitate the process of

conversion by extracting the basic components of each statement on which

programming languages depend on to build their own statement.

Also it can be used after some modifications associated with the structure of the

language to which the code is converted to facilitate the process of conversion to other

programming language besides Python without the need to start from the beginning

and repeat the conversion process from Java.

4.2.2 XML

Stands for eXtensible Markup Language, Some of XML features:

 Was designed to carry data.

 Was designed to be both human- and machine-readable.

 XML does not do anything.

 XML tags are not predefined.

4.2.3 Selecting XML as an intermediate language

 One of the most time-consuming challenges for developers is to exchange data

between incompatible applications. Exchanging data as XML greatly reduces this

complexity, since the data can be read by different incompatible applications.

 XML data is stored in text format. This makes it easier to expand or upgrade to

new operating systems, new applications, or new browsers, without losing data.

 With XML, data can be available to all kinds of "reading machines" (Handheld

computers, voice machines, news feeds, etc.).

4.3 System Environment

The Java Python Converter is a desktop application, and runs on desktop devices (PCs)

that use windows as its operating system.

35

The extension of the application is (.exe) so it can run on windows even if the Java

Virtual Machine (JVM) has not been installed.

4.4 Conversion Process

The conversion process goes through two phases. In the first phase the Java file is

converted to an XML file and in the second phase the XML file is converted to a

Python file.

4.4.1 Phase one

The converter reads the Java file character by character to extract the type and

components of the Java statements. Each Java statement is converted to an appropriate

XML tag; the tag name is determined based on the type of Java statement. The

components of the Java statement are stored in the tag attributes.

When an XML tag is created the Converter appends it to the XML Document Object

Model (DOM) tree. The conversion process will continue until the end of the Java file.

Then the Converter transforms the DOM tree to an XML file. As shown in Figure 4.2.

36

Figure 4.2 Java to XML Conversion Process

37

Table 4.1 describes XML tags names, attributes assigned to each one and if the tag has

a value or body. The tag name determines the type of the Java statement and the tag

attributes determine the components of the Java statement.

Table 4.1 XML Tags Components

Tag

Name

Tag Attributes

Value

Body Access Identifier static Type condition nl begin end counter

Class   

Comment  

Method

(method

header)

    

param

(method

parameter)

  

call

(method

call)

 

return

(method

return)

 

If  

Else 

For    

while (also

do…while)
  

Continue Doesn’t have tag attributes, value and body

Break Doesn’t have tag attributes, value and body

var

(variables

declaration

and

definition)

    

Display  

38

4.4.2 Phase two

The converter reads the XML file to extract the DOM tree. Then it reads the tree nodes

which are XML tags. Each XML tag is converted to an appropriate Python statement;

the type of Python statement is determined based on the tag name. The components of

the Python statement are extracted from the tag attributes.

The converter writes the Python statement in a Python file. The conversion process

will continue until the end of the DOM tree. As shown in Figure 4.3.

39

Figure 4.3 XML to Python Conversion Process

40

4.4.3 Simple example

Figure 4.4 (a) is an input Java code to the converter, (b) illustrates intermediate XML

code and (c) is an output python code from the converter.

(a)

(b)

(c)

Figure 4.4 simple input & output from the

converter: (a) the Java Input, (b) the Intermediate

XML Code and (c) the Python Output

41

4.5 Summary

In this chapter we explained the converter system design, the software environment,

the programming language used to develop the project, the conversion process and a

simple example for Java input code and its output in Python and XML. In the next

chapter we explain the implementation of the converter and more code examples in

details and how to run the converter.

42

Chapter 5 IMPLEMENTATION

43

5.1 Introduction:

In this chapter the implementation of the converter is demonstrated. The converter

screens are displayed and some examples of input and output of the converter are

described. This chapter also discusses the challenges facing the converter to get the

correct output as much as possible.

5.2 Running the Converter:

The converter runs by clicking the icon shown in Figure 5.1, which is a .exe file. The

GUI depicted in Figure 5.2 appears.

Figure 5.1 Converter Application Icon

The user clicks the browse button to specify the java file path, and the CONVERT

button to perform the conversion process. After the conversion process is complete,

the XML file and Python file are saved in the same path of the java file.

44

Figure 5.2 Converter GUI

5.3 Simple Examples:

Figure 5.3 (a) is an input Java code to the converter and Figure 5.3 (b) is an output

Python code from the converter.

This code covers comments, variables declaration and definition, type casting and

display on screen. Following are some notes:

 A Javadoc comment is converted to a multiple line comment because Python

doesn’t have doc comments.

 Reserved words in Python should not be used as variable names in the Java

code because this causes a problem with the Python code.

 Python does not allow the declaration of variables without assigning values to

them. So if a variable is declared in Java with no initial value, the converter

assigns zero to the variable in Python.

45

 In the case of declaration or definition of more than one variable in the same

statement in Java, the converter processes each variable separately and each

variable has its own line in Python because it is not possible to define more than

one variable in the same statement.

 When concatenating a string with another data type, by default Java considers it

as a string, but Python produces an error, so the converter castes the other data

type to string.

 Casting String to integer or string to float is out of the scope of the converter

because Java uses specific classes for casting: Integer.ParseInt("string") or

Double.ParseDouble("string ").

 When casting to short or long the converter converts to integer and converts

double to float; because Python does not contain these types.

 Python display statement print() prints a new line by default at the end of the

statement, so when System.out.print() is used in the Java code, the converter

adds (end="") to the end of the print() Python statement.

(b) (a)

Figure 5.3 Simple Example: (a) Java Input

Code and (b) Python Output Code

46

5.3.1 Methods:

Figure 5.4 shows an example of method conversion where (a) is an input Java code to

the converter and (b) is an output Python code from the converter.

By default, the execution of the program in Java starts from the main method.

Therefore, the converter invokes the main method in the Python code if found in the

Java code, because Python does not require the existence of the main method for

execution.

Unlike Java, Python doesn’t accept an empty block. So in case of an empty method

body the converter writes print(end="") to act as the method body.

(b) (a)

Figure 5.4 Method Example: (a) Java Input

Code and (b) Python Output Code

47

5.3.2 Selection statements:

5.3.2.1 The if statement:

Figure 5.5 is an example of if statement where (a) is an input Java code to the

converter and (b) is an output Python code from the converter.

When the converter finds if or else statements without a body it writes print(end="") in

Python to act as the body.

5.3.2.2 The if...else statement:

Figure 5.6 shows the if...else statement where (a) is an input Java code to the converter

and (b) is an output Python code from the converter.

(a) (b)

Figure 5.5 if Example: (a) Java Input Code

and (b) Python Output Code

48

5.3.2.3 Nested if statement:

Figure 5.7 (a) is an input Java code to the converter and (b) is an output Python code

from the converter. This code illustrates nested if statements in Java and Python.

(a) (b)

(a) (b)

Figure 5.6 if...else Example: (a) Java Input

Code and (b) Python Output Code

Figure 5.7 Nested if Example: (a) Java

Input Code and (b) Python Output Code

49

5.3.3 The switch statement:

Figure 5.8 (a) is an input Java code to the converter and (b) is an output Python code

from the converter. This code illustrates the switch statement in Java and the

corresponding if statement in Python.

It is known that Python does not contain the switch statement in its structure as Java.

Even though there are many ways to represent the Java switch statement in Python

code, it does not cover all cases.

The converter converts the Java switch statement to nested…if statements in Python,

because it is clear, simple and easy to understand.

It is worth noting that even with no break statement found in the switch statement the

conversion process is done assuming its existence.

(b) (a)

Figure 5.8 switch Example: (a) Java Input Code

and (b) Python Output Code

50

5.3.4 Iteration statements:

5.3.4.1 The while statement:

Figure 5.9 (a) is an input Java code to the Converter and (b) is an output python code

from the Converter. This code covers while statement in Java and Python.

When the converter finds a while statements without a body it writes a continue

statement to act as a body. This is shown in Error! Reference source not found. (a)

and (b).

5.3.4.2 The do…while statement:

The input and output codes illustrated in Figure 5.10 (a) and (b) are examples of the

do…while statement.

Python does not have a do…while loop, therefore the converter converts it to a while

loop with the following steps:

 The converter sets the condition of the while loop to True.

(a) (b)

Figure 5.9 while Example: (a) Java Input

Code and (b) Python Output Code

51

 It then appends an if…else statement to the body of the do…while loop with a

continue statement in the if body and a break statement in the else body. if

condition represents a do…while condition.

5.3.4.3 The for statement:

The code shown in Figure 5.11 covers the for statement, where (a) is the Java input

code and (b) is the Python output code.

There are many differences in syntax and logic between Java and Python for the for

statement. Therefore, the converter makes important changes to eliminate these

differences. These differences include:

 Python does not allow defining variables on the header of the for statement as

Java.

 The index of the for statement in Java holds the start value, while in Python a

variable separate from the index variable holds the start value.

(a) (b)

Figure 5.10 do...while Example: (a) Java

Input Code and (b) Python Output Code

52

 Start and end values should be explicitly mentioned in the Python for statement.

 The for loop in Java repeats until the end value but in Python until the end value

minus one. For example: if a for loop starts at 0 and ends at 5, in Java this for

loop repeats 6 times (0,1,2,3,4,5) while in Python it repeats 5 times (0,1,2,3,4).

 Therefore, when the start value is assigned to the index of the Java for

statement on the header, the converter defines it before the Python for

statement.

 The converter adds a public variable to reserve the index space and use the

variable which holds the start value as an index. It increases (or decreases) the

index at the end of the for statement body and adds an if…else statement to

break the loop if the condition is false. The body of the for statement becomes

the body of the if statement.

(a) (b)

Figure 5.11 for Example: (a) Java Input

Code and (b) Python Output Code

53

 When the repetition condition is not clarified in the Java for statement, the

converter considers the condition to be True and the end value is the maximum

value of the integer type to prevent errors. See Figure 5.12.

 When the header of the Java for loop is empty the converter represents it as a

while True statement. See Figure 5.12.

5.4 Summary:

This chapter demonstrated how to run the converter, and provided examples of how

the converter manipulates Java input file to gain the correct Python output. The next

chapter is conclusions and recommendations for future work.

(b) (a)

Figure 5.12 Empty for Example: (a) Java

Input Code and (b) Python Output Code

54

Chapter 6 CONCLUSIONS AND

RECOMMENDATIONS

55

This chapter explains the final result of this project, recommendations for future work

to improve the converter and the conclusion of this thesis.

6.1 Results:

After finishing the design, implementation and testing of the converter, we found that

it can convert the syntax of Java programs to Python without having to rewrite Python

program from start. It is better to check the Python program to make sure that the logic

is correct.

The converter covers the following Java principles:

 Class declaration.

 Method declaration.

 Comments.

 Declaring and initializing primitive, floating points and boolean variables.

 Selection statements:

o If statement.

o If…else statement.

o Nested if statement.

 Switch statement.

 Iteration Statements:

o While statement.

o Do…while statement.

o For statement.

6.2 Recommendations:

To improve the converter, we recommend the following:

 Extending the converter to convert arrays in Java to the corresponding type in

Python.

 Include Object Oriented Programming (OOP) principles.

56

 Use our first conversion phase (Java to XML) to convert from Java to other

programming languages besides Python.

6.3 Conclusions:

The conversion process has been placed among the top 10 challenges in the

programming world. Achieving the maximum efficiency of the conversion without

compromising the quality of the converted program is the programmer’s target.

This research has been completed, and serves the programmers in the transition from

Java programming language to Python programming language in business and

academia to gain time and effort.

Finally, we thank Allah, who helped us complete this project.

57

References:

[1] Naughton, P., &Schildt, H. (1996). Java: the complete reference.

Osborne/McGraw-Hill.

[2] Halterman, R. L. (2011). Learning to program with python. Retrieved January, 14,

2016.

[3] Aho, A. V., Sethi, R., & Ullman, J. D. (2007). Compilers: principles, techniques,

and tools (Vol. 2). Reading: Addison-wesley.

[4] Brown, P. J. (1979). Writing interactive compilers and interpreters. Wiley Series in

Computing, Chichester: Wiley, 1979.

[5] java2python, [online], available at: http://www.indicthreads.com/1154/translate-

java-code-into-python-source-code-using-java2python-tool/, date accessed: 15/4/2017.

[6] java2python, [online], available at: https://github.com/natural/java2python, date

accessed: 15/4/2017.

[7] George, D., Girase, P., Gupta, M., Gupta, P., & Sharma, A. (2010). Programming

Language Inter-conversion. syntax, 1(20).

[8] Varycode, [online], available at: http://www.thetaranights.com/varycode/, date

accessed: 3/10/2017.

[9] Tangible Software Solutions, [online], available at:

https://www.tangiblesoftwaresolutions.com/index.html, date accessed: 6/10/2017.

58

[10] JLCA, [online], available at: http://support.microsoft.com/kb/819018, date

accessed: 9/10/2017.

[11] BCX, [online], available at: http://bcx-basic.sourceforge.net/, date accessed:

3/10/2017.

[12] perthon, [online], available at: http://freshmeat.net/projects/perthon, date

accessed: 5/10/2017.

[13] Terekhov, A. A., & Verhoef, C. (2000). The realities of language conversions.

IEEE Software, 17(6), 111-124.

