SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY
FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

A SIMPLE JAVA-PYTHON
CONVERTER

PREPARED BY:
EMAN JAMMAA COCO
HADEEL ALI OSMAN

SUPERVIOR: Dr. NIEMAH IZZELDIN

OCTOBER 2017

A THESIS SUBMITTED AS A PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF B.Sc. (HONORS) IN COMPUTER
SYSTEMS AND NETWORKS

aa) craa)) s
SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY

FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DEPARPMENT OF COMPUTER SYSTEMS AND NETWORK

A SIMPLE JAVA-PYTHON CONVERTER

PREPARED BY:
EMAN JAMMAA COCO
HADEEL ALI OSMAN

SUPERVIOR: Dr. NIEMAH IZZELDIN

A THESIS SUBMITTED AS A PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF B.Sc. (HONORS) IN COMPUTER
SYSTEMS AND NETWORKS

SIGNITURE OF SUPERVISOR: DATE: OCTOBER 2017

A daall

alal 5 pall dale el o))l Lo Jdo dl aeal) ailina) 948 68 Je KA

sl el d Vooan o dll V) Al Y of 2gil 5 aley Al L Lyl ale GG ale (531 4 deall

d)u‘)}amdmu\.l@_u\

v

salgll al) e o &g i 570 e Al 5 A k5 &l Al (o i | glak) J85)

105 431 - L5l 5y us (sl 28 Ly 28558

(W 20T Gy) sadd Y) a1 535) 5% 540 L (R o L0)

il ke A Y 06 (45) ool o f gle B0 & calas) 5 Y6
(53
46) - adas) gu

http://qadatona.org/%D8%B9%D8%B1%D8%A8%D9%8A/%D8%A7%D9%84%D9%82%D8%B1%D8%A2%D9%86-%D8%A7%D9%84%D9%83%D8%B1%D9%8A%D9%85/9/105
http://quran.ksu.edu.sa/tafseer/tabary/sura14-aya34.html
http://quran.ksu.edu.sa/tafseer/tabary/sura20-aya46.html

slaay)

A Lagliad aand O QLW S0 Y e) Legia g8 o S Sy Y e)

Ll e Ll il Legalal gall

Bladloda AU Uise ja) g8) Ll il L al)
Ll sl J sl (e Al ol ol gl o2a JI sha Liaglad 8 1 gl dalaa g alaa S I

Al O g oA Al e

Ao Al sl 038 JIsha (s pa W oS U Ll il g Lildpaa)
G WAlle ya culS) ClSuall 5 o gulal) alai aud 3 a8kl dedall A0 Liiedy)

Aunalall :\:\A.M\JJM «L\}.\J\ 5l

2283 e alil) hadis (e JS)

Vi

Ol all g Sl

Jaadl 138 Jlad) e a5l w8 e Lae b e S) el s SRS Jy ja 4 5
Ol e A by Sall Alialdll L) KAl (et s laaa (e ligal g L Jil i
Gl 13 JleS) W Lo el) Al Lgadlai s Lgtlgea s Lide Jag ol)

(sl Jamdy

Vii

oaldiall
sl (B sy dpad SRV dsasdl Gl e AL daly Bl Al
B Ll ey uialll WIS ataiiy CLAKH dga gall daajll Gl (e Laa DS palall
el 5 () shaall
Sl) CHt 5 C Slad alasin) (e dpaglail) Sl all o 5SH g Bagae ol i Jia
Ol 4 We I kil dsesdl @l)i el Wl A) (& cdsal
Ol Jad O @ s e lud) i i) Jie G gulal) o gle 8 saaall cilalasYl Ledals)
el el b el iy jie el b il 23] e
Ll pe sl) sily) Bl A1 (e dsnal e daad Gl) el e OF Js B
)l 5 agall deLia) any (g3l 5 dalad) (e alaSh el) AU ke) e () S
O Boke s sl Al) Ul Al Jysath 0 gy Jme s AlS) 03] - il Ja)
03 7 AS 05l 38) algaty asi s JaaeS lla o€ Al ikl mhad

AL @ el RS B2l Y) el

viii

ABSTRACT

Java and Python are two of the most popular and powerful
programming languages of present time. Both of them are object-
oriented programming languages. Both languages have their unique

advantages for developers and end users.

Many years ago a lot of educational institutions switched from C and
C++ or Pascal to Java for introducing programming courses. Given
the features of Python and how it is related to emerging fields in
computer science such as an Internet of things, it is expected that
Python will replace Java in teaching programming languages in the

near future.

If a programmer or student wants to convert their software programs
from Java to Python to gain its features, he will have to rewrite the
whole program from start, which is considered a waste of time and
effort.

The suggested solution to solve this problem is using a Simple Java-
Python converter, which is a desktop application that takes Java code
as an input and converts it to Python code as an output without having

to rewrite the whole program from start.

List of Abbreviations:

Abbreviation Expression
AST Abstract Syntax Tree
BCX The BASIC to C translator
BNF Backus—Naur form
DLL Dynamic Link Libraries
DOM Document Object Model
GUI Graphical User Interface
IDLE Python's Integrated Development and Learning
Environment
JIT Just-In-Time
JLCA Java Language Conversion Assistant
JVM Java Virtual Machine
Jython Python for the Java Platform
OOP Object Oriented Programming
Parse::RecDescent Recursive descent parser
Perthon Python-to-Perl Source Translator
RMI Remote Method Invocation
VB Visual Basic
XML eXtensible Markup Language

https://en.wikipedia.org/wiki/Recursive_descent_parser
https://en.wikipedia.org/wiki/Visual_Basic

Index of Figures:

Figure 1.1 A Simple Java-Python CONVEIEr..........cccovveiiiiiie e 3
Figure 3.1 Language PrOCESSINGciiuuiirieriieiieesieesieesieesiessiesssessessssssessseessesssesssessses 20
FIQUIE 3.2 A COMPIIET ... ns 21
Figure 3.3 Structure 0f @ COMPIIETccviiiiiiecec e 22
FIQUIE 3.4 AN INTEIPIEIEE ..o nreers 25
Figure 4.1 CONVEISION STAJESveiviiieiieieesieesteeseesteesieesteesreeteete e ee e snaesreesreenns 33
Figure 4.2 Java to XML CONVEISION PrOCESScovvveiiieriieiiiiesiesie e sie e siee s seas 36
Figure 4.3 XML to Python CONVErSiON PrOCESS........ccccevveiieeiieesiresieeesieeesieesseesneeens 39
Figure 4.4 simple input & output from the converter: (a) the Java Input, (b) the

Intermediate XML Code and (c) the Python Output.........c.ccccoveviieve e 40
Figure 5.1 Converter ApPplication 1CON........cooiieeiiiiie e 43
Figure 5.2 CONVEITEr GUI........oiiiiieiie ittt 44
Figure 5.3 Simple Example: (a) Java Input Code and (b) Python Output Code........... 45
Figure 5.4 Method Example: (a) Java Input Code and (b) Python Output Code.......... 46
Figure 5.5 if Example: (a) Java Input Code and (b) Python Output Code.................... 47
Figure 5.6 if...else Example: (a) Java Input Code and (b) Python Output Code........... 48
Figure 5.7 Nested if Example: (a) Java Input Code and (b) Python Output Code........ 48
Figure 5.8 switch Example: (a) Java Input Code and (b) Python Output Code............ 49
Figure 5.9 while Example: (a) Java Input Code and (b) Python Output Code............. 50
Figure 5.10 do...while Example: (a) Java Input Code and (b) Python Output Code.... 51
Figure 5.11 for Example: (a) Java Input Code and (b) Python Output Code................ 52

Figure 5.12 Empty for Example: (a) Java Input Code and (b) Python Output Code ... 53

xi

file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498251991
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498251993
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498251997
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498251997
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252000
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252001
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252002
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252003
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252004
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252005
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252006
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252007
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252008
file:///C:/Users/let's%20CONVERT%20it%5e%5e/Desktop/new%20print/A%20Simple%20Java-Python%20Converter.docx%23_Toc498252009

Index of Tables:

Table 2.1 Primitive Data TYPES IN JAVA.......cccveieiiieiiieiie e 10
Table 2.2 Java VS. PYINON ..o 16
Table 3.1 SYmMbBOl TabIe.......ccvoiec e 23
Table 3.2 Compilers VS. INTEIPretersccvoiiiieiie e 26
Table 3.3 Comparison DetWeen CONVEITEIS.........ccuviviiieiieiie e 30
Table 4.1 XML Tags COMPONENTSccveiuieiiieieeie e see e seeseesree e e sraesreessaesseesseenseas 37

xii

Table of Contents

CHAPTER 1 INTRODUCTIONttt ettt 1
1.1 OVERVIEW .ottt ettt ettt sttt b ettt e st e e s bt e e b et et e e e bt esnbeesnneenene e e 2
1.2 PROBLEM STATEMENT ..cuviuietieriartatestestesteseeseeseeseesessassessessessessessesssssessssessessessensenes 2
1.3 PROPOSED SOLUTIONttittiatetaieeasteesiteestteesteessseessbessssesssseessseessessnsessnsesssneessneenes 2
1.4 OBJIECTIVES: ..utititieeitie ittt e site ettt et et e st e bt e et e e bt e esbe e aab e e s be e e sbeeebeeanbeesnbeesrneeneneenes 3
D SCOPE ... ittt ettt sttt eeneerenre et s 3
1.6 METHODOLOGYeiiutieiiteesiteesieeeteeasteessttestteesbeeasbeeesbeessbeesaeeesbeeebeesnbeesnbeessaeenaneenes 4
1.7 THESIS ORGANIZATION: .. .cvververiereateetessesteseesseseeseesessassessessessessessessessessssessessessensenes 4

CHAPTER 2 PROGRAMMING LANGUAGES........cccccoitiereseeeieeeee e, 5
2.1 INTRODUCTION ..teuteuiettereetestesteseesuessessesseseesaesessessessessessessessessessessessssessessessessensenses 6
2.2 PROGRAMMING LANGUAGE........ceitiiitiiaitieaiesstee sttt ettt sbeesbe st e sne e 6
2.3 JAVA bbb b nnes 6

P I N - AV 7 T 1 (o USSR 6
2.3.2 Java Virtual Maching (JVM)cooiiiiiieiieniese e 7
2.3.3 CharaCteriStiC Of JAVA.........coiiiiieiiiiie e 8
2.3.4 JAVA STTUCTUIE ..ottt ettt et e et e e sbn e e s nnnee e 9
A e 1 T) USSP 13
2.4.1 Introduction t0 PYLNONcoviiiiiic s 13
2A2IDLE ... 13
2.4.3 PYTNON STIUCKUIE ...ttt nee s 13
2.5 JAVA VS, PYTHON ..ottt sttt sttt naebesbesbe b re e 16
2.6 SUMMARY ...otiiititette ettt sttt ettt ettt be ekt et e e e st e e s hb e e s hb e e ebe e e bt e e nbe e anbe e enbeesnbeennne e e 18

CHAPTER 3 LANGUAGE PROCESSORS AND LITERATURE REVIEW..... 19
3.1 INTRODUCTION ..eutiiautieauteeaittesitee sttt esteeestee bt e asseessteesseeesbeeesbeeanbeeanbeeasbeessneennneenes 20
B2 COMPILER ...uveuviuietieteete ettt sttt sttt ettt saebeebe st e st e s b et e st et et e st e st eseebeebesbesbesreseens 21

3.2.1 Structure 0f @ COMPIIET ...cueiiiiiiiee e 22
3.3 INTERPRETERS.ccuttiititatieaitie st e sttt e atee et e bt e ssteesste e s be e e sbeeesbeeanbeeanbeeanbeessneennneenes 25

3.4 COMPILERS VS. INTERPRETERS: . .eetteeeeeee e et e et e e e e e e e e e e e e e e e eeeeeeeeeeaaaeaeens 26

3.5 JAVA AND PYTHON LANGUAGES PROCESSORS......ccitiierierieeeneaneareareaseasesseseenens 27
B5.L JAVA ittt b te e nre e ree s 27
352 PYENON o 27

3.6 LITERATURE REVIEW.....ociuiiiiitiiiisiesiesieieieseese e e e st ste st st eesseseaneesessessessessenens 27
3.6.1 JAVAZPYENON ...ttt 27
3.6.2 Programming Language INter-CoNVErsioNccccccvevveeieeiieeseesieesnesiee e 28
3.8.3VARYCODEoci ittt 28
3.6.4 Tangible SOftware SOIULIONS.........cccveiieiieiice e 28
BB D JLC A ettt r e rea s 29
B.B.8 BOX ittt ettt re e renrenrenn s 29
3.6.7 PERTHON ...ttt sttt 30

3.7 COMPARISON BETWEEN CONVERTERS......cciitiiiiiesiiiesiieesieeesteesiesssessssesssnesssnesnes 30

3.8 SUMMARY ...eterieriesieteeie ettt te st et et e e saeseeseatestesaesteste e e e esseneeseasaenearenseseeneens 31

CHAPTER 4 SYSTEM DESIGNccoioiiiiiieeeeeeese e 32

4.1 INTRODUCTION L..tttetertesiesieseaseasessessessessessessessesessessessessessessessessessessessssessessessensens 33

4.2 SYSTEM DESCRIPTION....c..eutitietietiitestestestestessessesesessessestessestesaessesessesseseasessesseseens 33
4.2.1 Reasons for using an intermediate language..........ccccevvvevieeveece e 34
B.2.2 XML ..ottt 34
4.2.3 Selecting XML as an intermediate languageccccooeverivieicnicie e 34

4.3 SYSTEM ENVIRONMENT ...oveviiiietisiisiistesiesieieeeeesesnesses e ssessessessessessesessessessesseneens 34

4.4 CONVERSION PROCESSc.cctiuiitiiteitestestesiesiessesesassessestestestessessessessessesessessessessens 35
4. 4.1 PRESE ONE ...ttt bbb nr e 35
A.4.2 PRASE TWO ...ttt e e reennaenns 38
4.4.3 SIMPIE XAMPIE.....cieiee e 40

4.5 SUMMARYttieititaitieaitee et e st et e st e s hb e ate e e ket e be e et e e e be e amb e e s abeeesbeeabeeenbeeenneeeneeas 41

CHAPTER 5 IMPLEMENTATION ..ottt 42

5.1 INTRODUCTION: ..cutttitieauteeaittesiteesieeesieeesteeabeessseessbeessneesbeeesbeeanbeesnbeeasbeesseeenneeenes 43

5.2 RUNNING THE CONVERTER:ccviitiiteiesietieteetestestestestestestestesaessessesasseasesressessesens 43

Xiv

TR I 1 [1 [0 0 3T 46
5.3.2 SelECtION SEA EIMENES: .eeiiiiieeee ettt ettt et et e e e e e e et e e et e e eeeeeerreeereeeeeeees 47
5.3.3 THe SWILCH StALEIMENT: ...ttt e e e e e e e e e e e e e e e e eannnnees 49
SRR L (=Y = 1o AT =L (10 1T T 50

D SUMM A RY .ttt ettt e ettt e et et e e et rseeeeeeeeessas i rseeeeeeeeessba e e eeeeeeeeeearna s 53
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS......ovvveveeeeeieee 54
TR I =1 15T 55
5.2 RECOMMENDATIONS: ... etteeeeeeee e e et eee ettt eeeeessase e eeteeeessessesnereeeeeeesssanssrneereees 55
5.3 CONCLUSIONS: ..tteetetttteseeeeeeeeeesssa s sseeeesssesssas it sssseseseessssassssseesssessssanaarreeeessensnns 56
REFERENCES : ...ttt e e e e e e e e ettt e e e e e e e e e e aaeens 57

XV

Chapter 1 INTRODUCTION

1.1 Overview

Java and Python are two of the most popular and powerful programming languages of
present time. Both of them are object-oriented programming languages. Both

languages have their unique advantages for developers and end users.

Many years ago a lot of educational institutions switched from C and C++ (or Pascal,
etc) to Java for introducing programming courses. Given the features of Python and
how it is related to emerging fields in computer science such as Internet of things, it is
expected that Python will replace Java in teaching programming languages in the near

future.

Python is an easier language for novice programmers to learn. One can progress faster
if learning Python as a first language instead of Java, because Java is restrictive and

more complex compared to Python.

Python is more user-friendly, easier to read and understand than Java, as it has a more
intuitive coding style and uses whitespaces to convey the beginning and end of blocks

of code.

Python is a more productive language than Java because it is a dynamically typed

programming language whereas java is statically typed.

1.2 Problem Statement

If programmers want to convert their software programs from Java to Python to gain
its features, they will have to rewrite the whole program from start which consumes

time and increases cost.
1.3 Proposed Solution

To reduce effort, time and cost that is consumed to convert programs from Java to

Python, we need a mechanism that converts them automatically.

The conversion process has been placed among the top 10 challenges in the
programming world [13]. Achieving the maximum efficiency of the conversion
without compromising the quality of the converted program is the programmer’s

target.

A Simple Java-Python Converter is a software that takes a Java file code as input and

converts it to Python file code as output as shown in Figure 1.1.

java | (3 python
file Zout sotware |—=2= file
code L J code

Figure 1.1 A Simple Java-Python Converter

1.4 Objectives:

The objectives of this project are to:

® Prevent the loss of programs that are written in java.

Use old programs to produce the newer.

Reduce the software evolution cost.

Help Java programmers to learn Python.

e Help in switching from Java to Python.

1.5 Scope:

The Simple Java-Python Converter converts a program written in Java to a Python

program. The Java program must be free of syntax.
The software covers the Java principles:

e Class declaration.

e Method declaration.

e Comments.
e Declaring and initializing primitive, floating point and boolean variables.
e Selection statements:
o If statement.
o If...else statement.
o Nested if statement.
e Switch statement.
e lIteration Statements:
o While statement.
o Do...while statement.

o For statement.

1.6 Methodology:

The Simple Java-Python Converter reads Java statements from the Java program,
converts them to XML (eXtensible Markup Language) tags as an intermediate code
and writes them in an .xml file. It then reads XML tags, converts them to Python

statements and writes them in a Python file.

1.7 Thesis Organization:

This thesis contains six chapters. Chapter two explains Java and Python programming
languages and compares the two languages. Chapter three explains language
processors (compiler and interpreter) and reviews the literature review. The system
design is implemented in Chapter four. Chapter five demonstrates results and provides

execution examples. Finally, Chapter six is conclusions and recommendations.

Chapter 2 PROGRAMMING
LANGUAGES

2.1 Introduction

This chapter explains in details Java and Python programming languages including

structure, data types and statements. It also compares the two languages.

2.2 Programming Language

Java programming language is used to develop the Simple Java-Python Converter

desktop application. It is used to develop both phases of the conversion process.

Java programming language is a popular programming language and it is used to
develop all kinds of applications. Such as mobile, client-server, web and desktop

applications.

Java is a highly portable language as it must be executed through a cross-platform
compatible Java Virtual Machine (JVM).

Java is a statically-typed language, which means the code will have to be checked for

errors before it can be built into an application.

As a statically typed language, Java is faster than dynamically typed languages

because things are more clearly defined.

Performance can be optimized in real time to help a Java program run faster. This is

very helpful as some applications grow larger or need to handle more processes.

2.3 Java
2.3.1 Java history

Like the successful computer languages that came before, Java is a blend of the
best elements of its rich heritage combined with the innovative concepts required
by its unique mission. Computer language innovation and development occurs for
two fundamental reasons:

o To adapt to changing environments and uses.

o To implement refinements and improvements in the art of programming.

The development of Java was driven by both these elements in nearly equal
measure [1].

Java is related to C++, which is a direct descendant of C. From C, Java derives its
syntax. Many of Java’s object-oriented features were influenced by C++. Java was
conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first
working version. This language was initially called “Oak,” but was renamed “Java”
in 1995[1].

The primary motivation was the need for a platform-independent (that is,
architecture-neutral) language that could be used to create software to be embedded
in various consumer electronic devices, such as microwave ovens and remote
controls. With the emergence of the World Wide Web, Java was propelled to the
forefront of computer language design, because the Web, too, demanded portable

programs.

2.3.2 Java Virtual Machine (JVM)

In other language the compiler coverts source code into executable code. However,
in java the output of a Java compiler is not executable code, it is bytecode.
Bytecode is a highly optimized set of instructions designed to be executed by the
Java run-time system, which is called the Java Virtual Machine (JVM) (an
interpreter for bytecode) [1]. Although the JVM differs from platform to another,

all of them understand the same bytecode and this supports portability features.

Because the JVM is in control, it can contain the program and prevent it from

generating side effects outside of the system [1].

In general executing code in two stages (bytecode, executable code) is slower than
executing it in one stage (executable code only). But Java is not slow as expected
because the bytecode is highly optimized which thus JVM executes it in a rapid

manor.

Sun supply’s its technology HotSpot, which provides a Just-In-Time (JIT) compiler
for bytecode.

The JIT is a part of the JVM which takes a part of the bytecode depending on the

demand and executes it.

It is not suitable to execute source code all at once, because there are some checks

done during run time only.

JIT compiler compiles only the part of code that will benefit from compilation and

interprets the rest.

2.3.3 Characteristic of Java

2.3.3.1 Object-oriented

Object-oriented programming (OOP) is at the core of Java. One of the central
Issues in software development is how to reuse code. Object-oriented programming
provides great flexibility, modularity, clarity, and reusability through

encapsulation, inheritance, and polymorphism [1].

2.3.3.2 Robust

Java helps in finding mistakes in the java program by determining the area of the

error, java checks code in compile time and run time.

2.2.3.3 Multithreaded
Java was designed to meet the real-world requirement of creating interactive,
networked programs. To accomplish this, Java supports multithreaded

programming, which allows writing programs that run simultaneously [1].

2.3.3.4 Architecture-neutral

In general, the lifetime of the program is not guaranteed because the operating

system and the processor are updated continually.

Java designers made several hard decisions in the Java language and the Java
Virtual Machine in an attempt to alter this situation. Their goal was “write once;

run anywhere, anytime, forever” [1].
yW

2.3.3.5 Distributed

Java is designed for the distributed environment of the Internet because it handles
TCP/IP protocols. In fact, accessing a resource using a URL is not much different
from accessing a file. Java also supports Remote Method Invocation (RMI). This

feature enables a program to invoke methods across a network [1].

2.3.4 Java structure

2.3.4.1 Java class
public class Welcome{
public static void main(String[] args) {
System.out.println(“Welcome to java™); }

¥

Public: is a keyword indicating that the class can be seen or manipulated by all

other classes.

Class: is a keyword to declare that a new class is being defined. Every java class

must begin with it.

Welcome: is the class name, and must be the same as the file name

(Welcome.java).

{}: the content of the java class must be between the {} braces, the { brace is the

start of the java class and } brace | the end of the java class.

void: is a keyword indicating that the main method does not return a value. If
the method returns a value, instead of void, the data type of the returned value is

written.

main(): the execution of a java program begins from the main method. Without

the main method the program can be compiled but cannot be executed. After the

9

method name the () braces must be included. If the method receives parameters

they are declared inside the () braces.
String[] args: the main method receives an array of string named args.

System.out.printin(): System is a class in java that provides access to the
system, out is the output stream that is connected to the console, and println is

the method that prints the data that is passed to it followed by a new line.

2.3.4.2 Comments in Java

There are three types of comments in java:

e Line comment:
/this is a line comment
e Paragraph comment
I* This is paragraph comment */
e javadoc comment
[** This is javadoc comment
*/
2.3.4.3 Declaring variables in Java

Variables are used to store data in a program. Declaring a variable tells the
compiler to allocate appropriate memory space for the variable based on its data

type.

Syntax:datatype variable_Name= value;

2.3.4.4 Primitive data types

Java provides eight (8) primitive data types as shown in Table 2.1.

Table 2.1 Primitive Data Types in Java

Type Name Size
Numeric Byte 8-bit signed
Short 16-bit signed

10

Int 32-bit signed

Long 64-bit signed
Floating point Float 32-bit

Double 64-Dbit
Characters Char 16-bit
Boolean Boolean true or false

2.3.4.5 Selection statements

e |f statement:

if(condition) {

Statements;

¥

e |f else statement
if(condition) {

Statements;

} else{

Statements;

¥

e Nested if statement

if(condition) {
Statements;

}Ylend outer if

else {

if{

Statements;
} /lend inner if

else{

Statements;

}lend inner else

}/end outer else

11

2.3.4.6 Switch statement

switch (expression)

{

case valuel: statements;
break;
case value2: statements;
break;
default: statements;
}H/end switch

The switch expression must hold a value of: char, byte, short, or int type.

2.3.4.7 Iteration statements

e While statement:

while(condition) {

// body of loop
b

e do-while statement
do {// body of loop
} while (condition);
o for statement
for(initialization; condition; iteration) {
// body
b

12

2.4 Python

2.4.1 Introduction to Python

Python programming language was created by Guido van Rossum in the late 1980s
[2]. Python is a higher-level programming language. It is considered to be a higher-

level language than C, C++, Java, and C#.

2.4.2 IDLE

Integrated Development and Learning Environment (IDLE) is a simple Python

integrated development environment available for Windows, Linux, and MacOS X

[2].

Python code can be written directly in IDLE shell to execute but will not be saved.

To save the python code it must be written in IDLE editor, for example (welcome.py).
The name of the python program is irrelevant but describes the nature of this program.

print(*Welcome to python"): this statement prints Welcome to python on the screen.
2.4.3 Python structure

2.4.3.1 Operators

e Arithmetic Operators (+, -, *, /, **, /], %).

e Bitwise Operators (<<, >>, &, |, ~,).

e Relational Operators (<, >, <=, >=, == 1 =, <3).

e Logical Operators (and, or, not).

2.4.3.2 Declaring functions in Python

To declare a function in python the def keyword is used.

def name(argl, arg2,... argN):
#block
return value

13

2.4.3.3 Comments in Python

Python uses the (#) symbol to indicate that this line is a comment and uses () in

case of a multiple line comment, the compiler ignores it.

this line is a comment

this is a multiple line comment

2.4.3.4 VValues and variables

e To declare a variable in python, it doesn’t require determining its data type.

e Python by default determines the data type of the variable depending on its
value.

e To know the data type of a variable the type (variable_Name) function is used.

e Syntax:

o variable_Name = value

2.4.3.5Boolean in Python

e Boolean take only two values True or False.

e Inpython 0 and "" indicate False and all other values indicate True.

2.4.3.6 Types of numbers

e In python version 2 there are four types of numbers: int, long, float, complex:
o Int:-2147483648>2147483647
o Long:> 2147483647 and < -2147483648 (End with L symbol)
o Float: contain floating point ex (2.5).
o Complex: Imaginary numbers ex (2+5j).

e In Python version three the int and long types are merged in int type.
2.4.3.7 Declaration of a string

There are three ways to declare a string in Python:
14

1. Double quote "string in Python".
2. Single quote ' string in Python'.

3. Triple quote ""'string in Python contain quote

2.4.3.8 Selection statements

If statement

If condition:
Statements

If else statement

If condition:
Statements
else:
Statements

Nested if statement

If condition:
Statements
else:
if condition:
Statements
else:
Statements

2.4.3.9 lteration statements

While statement:

while condition:
#block

for statement:

15

for n in range(begin, end, step):

block

2.5 Java vs. Python

Table 2.2 compares Java and Python in terms of comments, variables, data types and

statements.

Table 2.2 Java vs. Python

Java Python
Print statement | System.out.println(“Welcome to java”); | print(“Welcome to python™)
Comments /' line comment #comment

[*

paragraph comment

*/

[H*

javadoc comment */
Declaring Datatype variable_Name = value; variable_Name = value
Variables
Primitive Data | byte, short, int, long, float, double, char, | int, long, float, complex,
Types boolean. boolean.
If statement if(condition) { If condition:

Statement; Statements

}
If else | if(condition) If condition:
statement { Statement; Statements

}else { else:

Statement; Statements

by

Nested if | if(condition) If condition:

16

statement

{ Statement;
}/end outer if

else

{
if{
Statement;
} /lend inner if
else{
Statement;
}l/end inner else

Hlend our else

Statements
else:
if condition:
Statements
else:

Statements

Switch

statement

switch(expression)
{
case valuel: statements;
break;
case value2: statements;
break;
default: statements;
}/end switch

Doesn’t have a switch

statement

While

statement

while(condition)

{
// body of loop

while condition:
block

for Statement

for(initialization; condition; iteration) {
// body

for n in range (begin, end,
step):
block

17

2.6 Summary

This chapter overviewed Java and Python programming languages in details including
introduction to each language, structure and statements, and compared the two
languages. The next chapter explains in details language processors including

compilers and interpreters. It also reviews the literature review.

18

Chapter 3 LANGUAGE PROCESSORS
AND LITERATURE REVIEW

3.1 Introduction

This chapter explains in details language processors (compilers and interpreter),
compare the two language processors, Java and Python language processors and

finally reviews the literature review.

All software used in computers is written in some programming language, but before
executing the program it must be converted to another form that can be understood by

the machine, as described in Figure 3.1.

source program

‘ Preprocessor ’

modified source program

j Compiler

f

target assembly program

Assembler

relocatable machine code

1

Linker /Loader

'

target machine code

library files
relocatable object files

Figure 3.1 Language Processing

20

Language processing is achieved by four steps. Following is an explanation of each
step.

Preprocessor: is concerned with the collection of the source program (which may be

divided into separates files) and expand shorthand into source code statements.

Compiler: takes the modified program from the preprocessor as an input and then
converts it to an assembly code (because it is easy to produce and easy to debug) as an

output.

Assembler: takes the assembly program as an input and then converts it to a machine

code.

Linker/Loader: the linker resolves external memory addresses, where the code in
one file may refer to a location in another file. The loader then puts together all of the

executable object files into memory for execution [3].

3.2 Compiler

A compiler is a program that can read a program in one language (the source
language) and translate it into an equivalent program in another language (the target

language) as can be seen in Figure 3.2 [3].

source program

¢

Compiler

'

target program

Figure 3.2 A Compiler

21

3.2.1 Structure of a compiler

The compiler consists of two parts: analysis and synthesis. The Analysis divides the
source code into pieces, applies the grammatical structure to them and generates an
intermediate representation of the source code. If the syntax of the source code is ill,
it generates an informative message to the user. It also collects information about the
source code and stores them on the symbol table. The synthesis part uses the symbol
table and intermediate representation to generate the target program. Figure 3.3

illustrates the structure of a compiler [3].

charactelr stream intermediate representation
Lexical Analyzer Machine-Independent
Code Optimizer
| .] .
token stream intermediate representation
J N
Code Generator
Syntax Analyzer ‘
Symbol Table
| target-machine code
syntax tree \I/

Machine-Dependent
Code Optimize

‘ Semantic Analyzer

syma,!(tree target-machine code

N4

‘ Intermediate Code Generator

Figure 3.3 Structure of a Compiler

We will use a simple example to understand the job of each phase, using the
following statement:
X=a*Db/2

22

3.2.1.1 Lexical analyzer (scanning)

The lexical analyzer reads a stream of characters and groups them into a meaningful
sequence called lexemes and produces tokens as an output, its syntax:
(Token name, attribute value)
Token name is an abstract symbol used during syntax analysis, and attribute value
points to the token as in Table 3.1.
In our example the output tokens are:
(id, 1) (=) (id, 2) (*) (id, 3) (/) (2)

In case of operators and values we use its symbol as its token name.

Table 3.1 Symbol Table

1 X
2 A
3 B

3.2.1.2 Syntax analyzer (parsing)

In this phase, the syntax tree is created from the tokens.

AN
(id, 1) y *\

id,2) [
(i)/

(id, 3) 2

3.2.1.3 Semantic analyzer
The semantic analyzer uses the syntax tree and the information in the symbol table to
check the source program for semantic consistency with the language definition [3].

It also:

e Gathers type information

23

e Type checking: checks that each operator has matching operands
e Reports errors
e Type conversion: suppose that x, a and b are floating point and (2) is an

integer then the 2 is converted to floating point number:

AN
(id, 1) y *\

id, 2 /
RN

(id, 3) inttofloat
|
2

3.2.1.4 Intermediate code generator
Which generates an intermediate representation (program for an abstract machine),
that must be easy to produce and easy to translate.
The output of this phase is three-address codes which consist of a sequence of
assembly like instructions with three operands per instruction. Each operand can act
as a register [3]. With respect to three-address code:

e Each instruction has at most one operator on the right side.

e The compiler must generate a temporary name to hold the result of three-

address instruction.
t1 = inttofloat(2)

t2=1id3/t1
t3=1d2 *t2
id1 =t3

3.2.1.5 Code optimization

This phase is optional, and is used to improve the intermediate code to be:
o Faster
e Shorter

e Consume less power

t1=1id3/2.0
idl=id2 * t1

24

3.2.1.6 Code generation
Maps the intermediate representation to the target language. In this phase registers or

memory locations are selected.

LDF R2,id3

DIVF R2, R2, #2.0
LDF R1, id2

MULF R1, R1, R2
STF idl, R1

3.2.1.7 Symbol table
Is a data structure which contains records for source program variables and provide
information about them such as:
e Storage allocated
o Type
e Variable scope
In case of procedures it stores information about its name, the type of its arguments,

the method of passing and type returned.

3.3 Interpreters

An interpreter is another common kind of language processors that directly executes
the source program on user inputs as shown in Figure 3.4. The task of an interpreter is
more or less the same as of a compiler but the interpreter works in a different fashion.
The interpreter takes a single line of code as input at a time and executes that line. It
will terminate the execution of the code as soon as it finds an error. Memory

requirement is less because no object code is created [3].

source program —=
Interpreter output
input —e

Figure 3.4 An Interpreter

25

The machine language target program produced by a compiler is usually much faster
than an interpreter at mapping inputs to outputs. An interpreter, however, can usually
give better error diagnostics than a compiler, because it executes the source program

statement by statement.
3.4 Compilers vs. Interpreters:

Table 3.2 compares compilers and interpreters in input, intermediate code, memory

requirement, error checks, and time consumption.

Table 3.2 Compilers vs. Interpreters

Compiler
Compiler takes entire program as
input.
Intermediate object code is
generated.
Conditional control statements are

executed faster.

Memory requirement more; since
object code is generated.
Program need not

be compiled every time.
Errors are displayed after the entire
program is checked

are

Compiled more

efficient but difficult to debug.

languages

Compiler does not allow a program
to run until it is completely error-
free.

It takes less amount of time to

Interpreter
Interpreter takesa single instruction as
input.

No intermediate object code is generated

Conditional control statements are executed
slower.

Memory requirement is less.

Every time the higher level program is
converted into lower level program.

Errors are displayed for every instruction
interpreted (if any).

Interpreted languages are less efficient but
easier to debug because interpreter stops
and reports errors as it encounters them.
Interpreter runs the program from first line
and stops execution only if it encounters an
error.

It takes large amount of time to analyze the

26

analyze the source code but the source code but the overall execution time
overall execution time is slower. is comparatively faster.

10 Example : C compiler Example : Python

3.5 Java and Python Languages Processors
3.5.1 Java

Java is both a compiled and interpreted language. When a Java program is written,
the javac compiler converts the program into bytecode. Bytecode compiled by javac, is
entered intothe JVM memory where it is interpreted by another program
called java. This java program interprets bytecode line-by-line and converts it into
machine code to be run by the JVM [4].

3.5.2 Python

There are four steps that python takes when the return key is pressed: lexing, parsing,
compiling, and interpreting. Lexing is breaking the line of code into tokens. The parser
takes those tokens and generates a structure that shows their relationship to each other
in this case, an Abstract Syntax Tree (AST). The compiler then takes the AST and
turns it into one (or more) code objects. Finally, the interpreter takes each code object

and executes the code it represents.

3.6 Literature Review

3.6.1 javaZpython
A simple but effective tool to translate Java source code into Python source code.

Created by Troy Melhase, java2python is licensed under the GNU General Public
License 2.0. To translate code, java2python requires python 2.5, ANTLR and
PYANTLR [5].

27

http://techwelkin.com/java-and-memory

The java2python package can translate any syntactically valid Java source code file.
The generated Python code is not guaranteed to run, nor is guaranteed to be

syntactically valid Python [6].

Even though some manual checking is required in the output code; however, large
amounts of time from hand converting would be saved.

3.6.2 Programming Language Inter-conversion

This paper presents a new approach of programming languages inter-conversion which

can be applied to all types of programming languages [7].

The idea is an implementation of an intermediate language for inter-conversion. This
language can be used to store the logic of the program in an algorithmic format
without disturbing the structure of the original program. Separate convertors to and

from the intermediate language have to be created for each language.

This is not an easy task, but if correctly implemented, it would greatly change the
future of software development. It would simplify the process of developing programs,

maintaining them and hence bring down costs tremendously.

3.6.3 VARYCODE

Varycode [8] is an online all-in-one programming code converter between C#, Visual

Basic .Net, Java, C++, Ruby, Python and Boo, supporting 21 directions of conversion.

Varycode comes in different plans and pricing, and customers are provided with the

payment option according to the use packages.

Varycode does not completely claim that the codes generated after conversion are a

100% accurate so it needs some manual check.

The home page of Varycode is “https://varycode.com”.

3.6.4 Tangible Software Solutions

28

https://varycode.com/
https://varycode.com/

Tangible Software Solutions Inc. [9] is a privately held corporation founded in 1997.
It is a software development and consulting firm specializing in source code

conversion tools and source code conversion projects.

It offers the most accurate and reliable source code conversion utilities on the market
today: Instant C#, Instant VB, C++ to C# Converter, C++ to VB Converter, C++ to
Java Converter, C# to Java Converter, VB to Java Converter,Java to C#
Converter, Java to VB Converter, C# to C++ Converter, VB to C++ Converter,

and Java to C++ Converter.

The corporation produces desktop applications and provides free editions for folder
conversions up to 1000 lines at a time and code snippet conversions up to 100 lines at

a time, but the standard editions can only be purchased.

3.6.5JLCA

The Microsoft Java Language Conversion Assistant (JLCA) [10] is a tool that
automatically converts existing Java-language source code to C# for developers who

want to move their existing applications to the Microsoft .NET Framework.

The Java Language Conversion Assistant provides integration with Visual Studio
.NET or Visual Studio 2005 IDE. It also allows to deliver full C# implementation by
using the power of the .NET Framework and the component oriented programming

features of C#.

Applications and services converted with the JLCA run only on the .NET Framework.
They do not run on any Java Virtual Machine. Microsoft developed the JLCA

independently. It is neither endorsed nor approved by Sun Microsystems, Inc.

3.6.6 BCX

BCX [7] [11] was originally started by Kevin Diggins. It is now completely open

source and developed by a group.

BCX is a small command line tool that inputs a BCX BASIC source code file and
outputs a 'C' source code file which can be compiled with many C or C++ compilers.

29

Using BCX and a C compiler enables the programmers to produce powerful 32-bit
native code Windows console mode programs, windows GUI applications, and
Dynamic Link Libraries (DLL's) without having to incur the costs of an expensive

commercial BASIC compiler.

The only drawback is that Hardware Voices Controls are disabled.

3.6.7 PERTHON

Perthon converts Python source code to human-readable Perl 5.x source code[7] [12].
It makes use of Damian Conway's Parse::RecDescent for parsing, and aims to re-
implement the Python language as specified in the Python Reference Manual and
Backus-Naur Form (BNF) grammar. Perthon is similar to Jython, which re-implements
Python on the JVM, except that Perthon works at the source code (not byte code)

level.

Perthon does not yet support 'use’, 'BEGIN', 'END', etc. This is due to how Perl
handles these expressions: they get executed while parsing. It also does not handle
'bless’, 'packages’, etc. The references may or may not be resolved correctly. The

prefix/postfix operators are not resolved as well.

3.7 Comparison between Converters

Table 3.3 discusses the major differences between previous studies and the simple

Java Python converter.

Table 3.3 Comparison between Converters

Case Study | Category | Source Target | Written | Intermediate | Manual | Availability
language | language in language checking

java2python Tool Java Python - ANTLR Required Open
source

30

VARYCODE Online C#, C#, - - Required Free to
web based | Visual Visual some 2048
service Basic Basic to 4096
.Net, .Net, characters
Java, Java,
C++, C++,
Ruby, Ruby,
Python Python
and Boo | and Boo
Tangible Desktop | C++, C#, | C++, CH#, - - Required | Free up to
Software application | VB, Java | VB, Java 1000 line
Solutions for folder
and 100 line
for snippet
JLCA Tool Java C# - - Required Free
BCX Tool BCX C BCX - Required Open
BASIC BASIC source
Perthon Software Python Perl 5.x Perl - Required Free
A simple Desktop Java Python Java XML DOM | Required Free
Java-Python | application
converter

3.8 Summary

This chapter explained in details language processors (compilers and interpreters), and

compared them. It also described Java and Python language processors and finally

reviewed the literature review. The next chapter illustrated the system design and

explains the conversion process in details.

31

Chapter 4 SYSTEM DESIGN

4.1 Introduction

This chapter explains the description of the system, the software environment, the

programming language used to develop the project and the conversion process.

4.2 System Description

The simple Java Python Converter converts the Java input file to XML (eXtensible

Markup Language) as an intermediate code and then converts the XML file to Python.

It reads Java statements from the Java file, converts them to XML tags and writes them
in a scripting file (.xml). Then it reads XML tags, converts them to Python statements

and writes them in a Python file as shown in Figure 4.1.

Start

L 4

/ Java File /

v

Conversion process

/ XML File /

v

Conversion process

v

Python
File

k 4

End

Figure 4.1 Conversion Stages

33

4.2.1 Reasons for using an intermediate language

The main reason of using an intermediate language is to facilitate the process of
conversion by extracting the basic components of each statement on which
programming languages depend on to build their own statement.

Also it can be used after some modifications associated with the structure of the
language to which the code is converted to facilitate the process of conversion to other
programming language besides Python without the need to start from the beginning

and repeat the conversion process from Java.

4.2.2 XML

Stands for eXtensible Markup Language, Some of XML features:

e Was designed to carry data.

e Was designed to be both human- and machine-readable.
e XML does not do anything.

e XML tags are not predefined.

4.2.3 Selecting XML as an intermediate language

e One of the most time-consuming challenges for developers is to exchange data
between incompatible applications. Exchanging data as XML greatly reduces this
complexity, since the data can be read by different incompatible applications.

e XML data is stored in text format. This makes it easier to expand or upgrade to
new operating systems, new applications, or new browsers, without losing data.

e With XML, data can be available to all kinds of "reading machines" (Handheld

computers, voice machines, news feeds, etc.).

4.3 System Environment

The Java Python Converter is a desktop application, and runs on desktop devices (PCs)

that use windows as its operating system.

34

The extension of the application is (.exe) so it can run on windows even if the Java
Virtual Machine (JVM) has not been installed.

4.4 Conversion Process

The conversion process goes through two phases. In the first phase the Java file is
converted to an XML file and in the second phase the XML file is converted to a
Python file.

4.4.1 Phase one

The converter reads the Java file character by character to extract the type and
components of the Java statements. Each Java statement is converted to an appropriate
XML tag; the tag name is determined based on the type of Java statement. The
components of the Java statement are stored in the tag attributes.

When an XML tag is created the Converter appends it to the XML Document Object
Model (DOM) tree. The conversion process will continue until the end of the Java file.

Then the Converter transforms the DOM tree to an XML file. As shown in Figure 4.2.

35

start

Java file

read java file
Jjava statement

ves block no

W

no (control
statements)

“lass or meth
header

extract class or

no

method name (display
yes . statement)
declaration &
extract definition
modifiers
no b4 no
yes Conditional™_ (looping) y v yes Aow (comment)
gxecution extract name .
extract text control
& value
¥ v
efl?’act extract flow
condition type control type
¥
extract extract
condition loop type
Y
¥
extract begin, extract text
end & counter
N
create XML
tag

v

append tag to
XML tree

write XML
tree

I
[xae /

Figure 4.2 Java to XML Conversion Process

36

Table 4.1 describes XML tags names, attributes assigned to each one and if the tag has
a value or body. The tag name determines the type of the Java statement and the tag

attributes determine the components of the Java statement.

Table 4.1 XML Tags Components

Tag Attributes

Tag |
Name Access | Identifier | static | Type | condition | nl | begin | end | counter | Value | Body

Class v 4 4

Comment v v

Method
(method 4 v v v v

header)

param
(method 4 v
parameter)

call
(method v
call)

return
(method v
return)

If v

Else

For v vl v

while (also
do...while)

v v

Continue Doesn’t have tag attributes, value and body

Break Doesn’t have tag attributes, value and body

var
(variables
declaration v v v v v
and

definition)

Display v v

37

4.4.2 Phase two

The converter reads the XML file to extract the DOM tree. Then it reads the tree nodes
which are XML tags. Each XML tag is converted to an appropriate Python statement;
the type of Python statement is determined based on the tag name. The components of
the Python statement are extracted from the tag attributes.

The converter writes the Python statement in a Python file. The conversion process

will continue until the end of the DOM tree. As shown in Figure 4.3.

38

read XML file

read root
node

no

root has
subnodes

L

read a node

—

axtract tag name

v

determine type of
python statements

—$—

extract tag
attributes

'

write python
statement

l

a node has
subnodes

yes
parent exist

¥
r |

read parent
node

Figure 4.3 XML to Python Conversion Process

39

4.4.3 Simple example

Figure 4.4 (a) is an input Java code to the converter, (b) illustrates intermediate XML

code and (c) is an output python code from the converter.

puklic class Demo{ import sys
ffconverter $ converter
pukblic static wvoid main(String args[]){ . .
. _ lef main(args):
int x = 10;
while({ x > 0){ x = 10
System.out.println(x); while m>0:
if| x == &) print (x)
break; if x==5:
glse S
x——; L o
®x = x-1
main("args")
(a) (c)

— =class access="public” identifier="Demo">
<comment type="line"> converter</comment>
— <method access="public" identifier="main" static="trus" type="vo1d">
<param identifier="args" tyvpe="5tring[]"/ >
<var access— identifier="x" static="false" tyvpe="1nt"=10</var>
—<while 1f="1" condition="x>0">
<display nl="true"=x</display>
—=if _1if="2" condition="x=—=5">
<break~
=/if=
—<else if="2"=
=var access— ' identifier="x" static="false" type="">x-1</var>
</elsex
</while>
</method=
</class>
</root=

(b)

Figure 4.4 simple input & output from the
converter: (a) the Java Input, (b) the Intermediate
XML Code and (c) the Python Output

40

4.5 Summary

In this chapter we explained the converter system design, the software environment,
the programming language used to develop the project, the conversion process and a
simple example for Java input code and its output in Python and XML. In the next
chapter we explain the implementation of the converter and more code examples in

details and how to run the converter.

41

Chapter 5 IMPLEMENTATION

5.1 Introduction:

In this chapter the implementation of the converter is demonstrated. The converter
screens are displayed and some examples of input and output of the converter are
described. This chapter also discusses the challenges facing the converter to get the

correct output as much as possible.

5.2 Running the Converter:

The converter runs by clicking the icon shown in Figure 5.1, which is a .exe file. The
GUI depicted in Figure 5.2 appears.

Java-Python
Converter

Figure 5.1 Converter Application Icon

The user clicks the browse button to specify the java file path, and the CONVERT
button to perform the conversion process. After the conversion process is complete,

the XML file and Python file are saved in the same path of the java file.

43

Figure 5.2 Converter GUI

5.3 Simple Examples:

Figure 5.3 (a) is an input Java code to the converter and Figure 5.3 (b) is an output
Python code from the converter.

This code covers comments, variables declaration and definition, type casting and
display on screen. Following are some notes:

e A Javadoc comment is converted to a multiple line comment because Python

doesn’t have doc comments.

e Reserved words in Python should not be used as variable names in the Java
code because this causes a problem with the Python code.

e Python does not allow the declaration of variables without assigning values to
them. So if a variable is declared in Java with no initial value, the converter

assigns zero to the variable in Python.

44

e In the case of declaration or definition of more than one variable in the same
statement in Java, the converter processes each variable separately and each
variable has its own line in Python because it is not possible to define more than
one variable in the same statement.

e When concatenating a string with another data type, by default Java considers it
as a string, but Python produces an error, so the converter castes the other data
type to string.

e Casting String to integer or string to float is out of the scope of the converter
because Java uses specific classes for casting: Integer.Parselnt("string") or

Double.ParseDouble("string ").

e When casting to short or long the converter converts to integer and converts
double to float; because Python does not contain these types.

e Python display statement print() prints a new line by default at the end of the
statement, so when System.out.print() is used in the Java code, the converter
adds (end="") to the end of the print() Python statement.

This is javadoc comment This is javadoc comment
puklic class Demof =vs
public static void main(S5tring args[]){ main(args):
/f*this is paragraph comment "' this is paragraph comment
f*Don't use python reserved word "''" Don't use python reserved word
as variables name as wvariables name
int x; ®x =0
short v, =: v = 0
doukble d = 3.5; z =0
X = (imt) d; d = 3.5
¥y = (short) (d + 3): ®x = int (d)
String s ="®x = " + ==} ¥ = int (d+3)
System.out.println(s) 5 = str("x = ")+str(x)
char ch = (char} €5; print(s)
System.out.println("ch = "+ch); ch = chr (&5}
float £ = (float) =: print(str("ch = "}+=str(ch))
d = (doukle) f£4+v: f = float (x)
System.out.print (f) ; d = float(f)+v
print (£, end="")
] main{"args")
}// this is line comment ¥ his is line comment
(a) (b)

Figure 5.3 Simple Example: (a) Java Input
Code and (b) Python Output Code

45

5.3.1 Methods:

Figure 5.4 shows an example of method conversion where (a) is an input Java code to

the converter and (b) is an output Python code from the converter.

By default, the execution of the program in Java starts from the main method.
Therefore, the converter invokes the main method in the Python code if found in the
Java code, because Python does not require the existence of the main method for
execution.

Unlike Java, Python doesn’t accept an empty block. So in case of an empty method

body the converter writes print(end="") to act as the method body.

public class Demof 3ys
static void methodl(){ .
! methodl():
public static void method2(int X, int y){ print (end="")
System.out.println("x = "x); methodZ (X, vy) -
SYsEem. cub.printin(fy = Bl print(str("x = ")+str(x))
I e i e Wy = W -
protected static double method3(){ _ print (str (" J+str(y))
return 5.0: method3 () :
} 5.0
public static String method4 (String name){ methadd (name)
Teturn name;
: name
public static void mainiString [] args){ main(args):
methodl () ; methodl ()
double x = method3(); X = method3 ()
] i (} ("Converter™)). . . -
System.out.println(methodd ("Converter")): p:"_:'.tI:I['.Et.'ltld‘i{”-_Zf‘.'.“:l':':‘_'”]]
main("args")

(@) (b)

Figure 5.4 Method Example: (a) Java Input
Code and (b) Python Output Code

46

5.3.2 Selection statements:

5.3.2.1 The if statement:

Figure 5.5 is an example of if statement where (a) is an input Java code to the

converter and (b) is an output Python code from the converter.

When the converter finds if or else statements without a body it writes print(end="") in
Python to act as the bodly.

public class Demo{ ays
public static void main(String args[]){ mainfargs):
n:.ln::;.JI::le d= —.3.5: d = -3.§
if{d>0){ d>0:
System.out.println("positive"); print ("positive")
! d<0:
ifid<0) T
System.out.println("negitive"); L print ("negitive’)
if(d=10); A==
print (end="")
main("args")
(a) (b)

Figure 5.5 if Example: (a) Java Input Code
and (b) Python Output Code

5.3.2.2 The if...else statement:

Figure 5.6 shows the if...else statement where (a) is an input Java code to the converter

and (b) is an output Python code from the converter.

47

public class Demof
static int x;
public static void main(3tring
=5
if(x%2==0)1
System.out.printin(x+"

args[])

e e T
Iz An Even Number"™);

glzef
System.out.println(x+" Iz An Odd Number");
}//end of main method

}//end of class

import sys

=10

1ef main(args):
X=35
if x5I==:

main("args")
$ end of main method
$ end of class

print{str(x)+str("

print{str(x)4str(" Is In

I3 An Even Number"))

0dd Number"))

(@)

Figure 5.6 if...else Example: (a) Java Input
Code and (b) Python Output Code

5.3.2.3 Nested if statement:

(b)

Figure 5.7 (a) is an input Java code to the converter and (b) is an output Python code
from the converter. This code illustrates nested if statements in Java and Python.

pukblic class Demo{
public static void main(String args[]){
int degree = 7&;
char grade;
if (degree »>= §0)

grade = 'L';
else

if (degree >= E0)
grade = '"B";

else
if (degree >= T0)

grade = 'C';

else

if (degree >= &0)
grade = 'D';
else
grade = "F';
System.out.println("Grade = " + grade);
}//end of main method
}//end of class

import sys
def main(args):
degree = 76

grade = 0
if degree>=50:
grade =

if degree>=g0:

print(str("Grade = ")+str(grade))

main("args")
end of main method
end of class

EN

=

grade = 'B
if degree>=T0:

grade = 'C°

if degree>=60:
grade

]
=

grade

(a)

Figure 5.7 Nested if Example: (a) Java
Input Code and (b) Python Output Code

48

(b)

5.3.3 The switch statement:

Figure 5.8 (a) is an input Java code to the converter and (b) is an output Python code

from the converter. This code illustrates the switch statement in Java and the

corresponding if statement in Python.

It is known that Python does not contain the switch statement in its structure as Java.

Even though there are many ways to represent the Java switch statement in Python

code, it does not cover all cases.

The converter converts the Java switch statement to nested...if statements in Python,

because it is clear, simple and easy to understand.

It is worth noting that even with no break statement found in the switch statement the

conversion process is done assuming its existence.

puklic class Demof

aya
public static void main(String args[]){ i !
char ch = 'b'; mzin(args):
char ch2 = 'h'; th="p
switchch) { WA = Inl
case 'a'": Che = 1
System.out.println("case "a'"); ch=="a"
break; wint (Manas 1510
I print ("caze 'a'")
switch(ch2){
case 'x': gh=="b"s
System.out.println("case "xX'"); e
break: che=="x"
default: print("caze 'x'")
System.out.println|"inner default");
break;
print ("inner default")
break;
default: 0 e Eenell
System.out.println("outer default") print("outer default
] print ("outer”)
System.out.println("outer") o
main{"args")
t// end of class f end of class
(a) (b)

Figure 5.8 switch Example: (a) Java Input Code
and (b) Python Output Code

49

5.3.4 Iteration statements:

5.3.4.1 The while statement:

Figure 5.9 () is an input Java code to the Converter and (b) is an output python code

from the Converter. This code covers while statement in Java and Python.

When the converter finds a while statements without a body it writes a continue

statement to act as a body. This is shown in Error! Reference source not found. (a)
and (b).

public class Demof 3ys
public static void main(String args[]){ main(args):
int base = 3, power = I; haze = 3
while| power > 1){ -
bage *= base; PR = -
I— power:l:
] base = base* (base)
System.out.println("result = "+base); power = power-1
print{str("reault = "}+str(base))
int x = 0; x=10
while(x < 10) x<10:
o S X = %+l
System.out.println("x = "4+x);
print(str("x = "j+3tr(x))
while(x == 0); A=
}//end of main method
}//end of class main("args")
(a) (b)

Figure 5.9 while Example: (a) Java Input
Code and (b) Python Output Code

5.3.4.2 The do...while statement:

The input and output codes illustrated in Figure 5.10 (a) and (b) are examples of the

do...while statement.

Python does not have a do...while loop, therefore the converter converts it to a while
loop with the following steps:

e The converter sets the condition of the while loop to True.
50

e |t then appends an if...else statement to the body of the do...while loop with a
continue statement in the if body and a break statement in the else body. if

condition represents a do...while condition.

public class Demof svs
public static void main(String args[])f{ main(args):
int prevPrevVal = 0; preverevval = 0
] . prevval = 1
T = v
int prevval = 1; currval = 0
int currval; £ Fibonacci
{/Fibonacci :
ElD p:-_:-_t |:I'I L . End:rl I'I:I
System.out.print (" " currVal = prevVal+prevPrevval
CoTrEme ! print (currval, end="")
1 T = Lot e Reaty .
currVal = prevVal + prevPrevVal, prevPrevVal = prevval
System.out.print (currval); prevval = currVal
prevval<=10:
prevPrevVal = prevVal;
prevval = currVal;
lwhile(prevVal <= 10); print{)
System.out.println(); main{"args")
}//end of main method # end of main method
}//end of class # end of class
(a) (b)

Figure 5.10 do...while Example: (a) Java
Input Code and (b) Python Output Code

5.3.4.3 The for statement:

The code shown in Figure 5.11 covers the for statement, where (a) is the Java input
code and (b) is the Python output code.

There are many differences in syntax and logic between Java and Python for the for
statement. Therefore, the converter makes important changes to eliminate these
differences. These differences include:
e Python does not allow defining variables on the header of the for statement as
Java.
e The index of the for statement in Java holds the start value, while in Python a

variable separate from the index variable holds the start value.

51

e Start and end values should be explicitly mentioned in the Python for statement.

e The for loop in Java repeats until the end value but in Python until the end value

minus one. For example: if a for loop starts at 0 and ends at 5, in Java this for
loop repeats 6 times (0,1,2,3,4,5) while in Python it repeats 5 times (0,1,2,3,4).

e Therefore, when the start value is assigned to the index of the Java for

statement on the header, the converter defines it before the Python for

statement.

e The converter adds a public variable to reserve the index space and use the

variable which holds the start value as an index. It increases (or decreases) the

index at the end of the for statement body and adds an if...else statement to

break the loop if the condition is false. The body of the for statement becomes

the body of the if statement.

public class Demol
public static void main(String args[]){
for(int i =0; i < 10; i+=2){
System.out.pring (i+" ");

System.out.println("\n");

inti=0,x=5

for(;] <= 10;){
System.out.print(j4+" * "4x);
System.out.println(" = "+(i*x));

it

3ys
main{args):
i=24a
public range(i,10,1):
i<10:
print (str(i)+stx (" "),end="")
i=1i+(2)
print("\n")
i=0
X =25
public range (j,1041,1):
j<=10:
print (str(j)+stce (" * ")4str(x),end="")
print (st ("™ = ")+3tr({i*x)})
i=3j+1
main{"args")

(@)

(b)

Figure 5.11 for Example: (a) Java Input
Code and (b) Python Output Code

52

e When the repetition condition is not clarified in the Java for statement, the

converter considers the condition to be True and the end value is the maximum

value of the integer type to prevent errors. See Figure 5.12.

e When the header of the Java for loop is empty the converter represents it as a

while True statement. See Figure 5.12.

public class Demo{

public static void main(String args[]){

int i;

for(i = 0; ; 1+=2){
Syatem.out.println(i);

break;

for(:;;) i

==t
mainfargs):
i=20
i=20
public range (i, sys.maxsize, 1) :

print (i)

i=1i+(2)

main("args")

(a)

(b)

Figure 5.12 Empty for Example: (a) Java
Input Code and (b) Python Output Code

5.4 Summary:

This chapter demonstrated how to run the converter, and provided examples of how

the converter manipulates Java input file to gain the correct Python output. The next

chapter is conclusions and recommendations for future work.

53

Chapter 6 CONCLUSIONS AND
RECOMMENDATIONS

This chapter explains the final result of this project, recommendations for future work

to improve the converter and the conclusion of this thesis.

6.1 Results:

After finishing the design, implementation and testing of the converter, we found that
it can convert the syntax of Java programs to Python without having to rewrite Python
program from start. It is better to check the Python program to make sure that the logic
IS correct.

The converter covers the following Java principles:

o Class declaration.
e Method declaration.
e Comments.
e Declaring and initializing primitive, floating points and boolean variables.
e Selection statements:
o If statement.
o If...else statement.
o Nested if statement.
e Switch statement.
e lteration Statements:
o While statement.
o Do...while statement.

o For statement.

6.2 Recommendations:

To improve the converter, we recommend the following:

e Extending the converter to convert arrays in Java to the corresponding type in
Python.
¢ Include Object Oriented Programming (OOP) principles.

55

e Use our first conversion phase (Java to XML) to convert from Java to other

programming languages besides Python.

6.3 Conclusions:

The conversion process has been placed among the top 10 challenges in the
programming world. Achieving the maximum efficiency of the conversion without
compromising the quality of the converted program is the programmer’s target.

This research has been completed, and serves the programmers in the transition from
Java programming language to Python programming language in business and
academia to gain time and effort.

Finally, we thank Allah, who helped us complete this project.

56

References:

[1] Naughton, P., &Schildt, H. (1996).Java: the complete reference.

Osborne/McGraw-Hill.

[2] Halterman, R. L. (2011). Learning to program with python. Retrieved January, 14,

2016.

[3] Aho, A. V., Sethi, R., & Ullman, J. D. (2007). Compilers: principles, techniques,
and tools (Vol. 2). Reading: Addison-wesley.
[4] Brown, P. J. (1979). Writing interactive compilers and interpreters. Wiley Series in

Computing, Chichester: Wiley, 1979.

[5] javazpython, [online], available at: http://www.indicthreads.com/1154/translate-

java-code-into-python-source-code-using-java2python-tool/, date accessed: 15/4/2017.

[6] java2python, [online], available at: https://github.com/natural/java2python, date

accessed: 15/4/2017.

[7] George, D., Girase, P., Gupta, M., Gupta, P., & Sharma, A. (2010). Programming
Language Inter-conversion. syntax, 1(20).
[8] Varycode, [online], available at: http://www.thetaranights.com/varycode/, date

accessed: 3/10/2017.

[9] Tangible Software Solutions, [online], available at:

https://www.tangiblesoftwaresolutions.com/index.html, date accessed: 6/10/2017.

57

[10] JLCA, [online], available at: http://support.microsoft.com/kb/819018, date

accessed: 9/10/2017.

[11] BCX, [online], available at: http://bcx-basic.sourceforge.net/, date accessed:

3/10/2017.

[12] perthon, [online], available at: http://freshmeat.net/projects/perthon, date

accessed: 5/10/2017.

[13] Terekhov, A. A., & Verhoef, C. (2000). The realities of language conversions.

IEEE Software, 17(6), 111-124.

58

