

1

Sudan University of Science and Technology

College of computer science and information technology

Automatic Generation Of

System Test Cases For a Systems Under

Development

November 2017

2

 بسم الله الرحمن الرحيم

Sudan University of Science and Technology

College of Computer Science and Information

Technology

Automatic Generation of

System Test Cases For a Systems Under

Development

This Is Summated As a Partial Requirement B.SC.(Honor) Degree In Software

Engineering

Date: November 2017

By:

Abuhorira Faisal Abd Alraheem

Alsheikh Musa Mohammed Hamed

Makki Gamar Aldawla Makki

Zahier Bannaga Albashir Bannaga

Supervisor: Olla Faisal Noraldeen

Signature: …………………………

Date: ………………………………

I

 الآية

 اعوذ بالله من الشيطان الرجيم

نَا لا تُ رْجَعُونَ) قال تعالي: اَ خَلَقْنَاكُمْ عَبَ ثاً وَأنَمكُمْ إِليَ ْ تُمْ أَنَّم ُ الْمَلِكُ الْْقَُّ لا (111) أَفَحَسِب ْ فَ تَ عَالََ اللَّم
اَ حِسَابوُُ عِندَ ربَِّوِ (116)إِلَوَ إِلام ىُوَ رَبُّ الْعَرْشِ الْكَرِيِم وَمَن يَدعُْ مَعَ اللَّمِ إِلََاً آخَرَ لا بُ رْىَانَ لَوُ بوِِ فإَِنَّم

يَ وَقُل رمبِّ اغْفِرْ وَا(117)إِنموُ لا يُ فْلِحُ الْكَافِرُونَ رُ الرماحِِِ ((118)رْحَمْ وَأنَتَ خَي ْ

 المؤمنون

II

 إهداء

من أحِل أسمو بكل افتخار ..أرجو إلَمن علمني العطاء بدون انتظار .. إلَمن كللو الله بالَيبة والوقار .. إلَ
قد حان قطافها بعد طول انتظار وستبقى كلماتك نجوم أىتدي بها اليوم وفي اً من الله أن يمد في عمرك لترى ثمار

الأبد إلَ الغد و
(العزيز)والدي

 إلَ ملاكي في الْياة .. إلَ معنى الْب وإلَ معنى الْنان والتفاني .. إلَ بسمة الْياة وسر الوجود

 إلَ من كان دعائها سر نجاحي وحنانها بلسم جراحي إلَ أغلى الْبايب
غالية(أمي ال)

 إلَ من كانوا يضيئون لي الطريق ويساندوني ويتنازلون عن حقوقهم

 لإرضائي والعيش في ىناء

)إخوتي(

 دربي ونجاحي وني فيوالنوايا الصادقة إلَ من رافق ةالطيب وبالقل أصحابدربي إلَ اءإلَ توأم روحي ورفق
)أصدقائي(

اً إلَ كل من سقط من قلمي سهو

 أىدي ىذا العمل

III

 شكر وعرفان

 إلَ من علمتنا أن نقف و كانت سنداً لنا ولَا الفضل في إرشادنا إلَ الدرب القويم الأستاذة الجليلة

وأيضا نتقدم بجزيل شكرنا إلَ كل من مد لنا يد العون والمساعدةنور الدين عٌلا فيصل

ذه الدراسة على أكمل وجوىفي إخراج

IV

Abstract

This study presents a tool that helps programmers to test their program using

automatically generated test cases for return type methods without writing these

test cases manually.

A tool does this by analyzing program under test and defines all methods

that have testing values and then collecting these methods in a file and generate

test cases for every returned value methods.

 Each method has specific class saved in a file that contained the test cases

and provides these test cases for executing without a need to write them manually.

The use of this method reduces the exploited effort in writing test cases

manually so save time then accelerates the testing process.

Also, uses of this method accelerate the delivery time of the program of

which accelerates program development and delivery is final.

V

 المستخلص

تلقائيا لكل دالة تقوم بإرجاع قيمة على إختبار برامجهم عن طريق كتابة حالات الاختبار المبرمجيأداة تساعد ىذه الدراسة تقدم
 بدون كتابة ىذه الْالات يدويا.

التي يوجد لَا حالات إختبار وتجمع التي تقوم بإرجاع قيم و وتقوم ىذه الاداة بتحليل البرنامج قيد الإختبار وتحدد كل الدوال
ىذه الدوال في ملف وتولد حالات الإختبار لكل دالة على حدة وكل دالة لَا صنف معي يحفظ في ملف ىذا الملف يحتوي على

 حالات الإختبار الخاصة بالدالة وتكون حالات الإختبار جاىزة للتنفيذ من دون الْاجة ألَ كتابتها يدويا.

 لل من الجهد المبذول في كتابة حالات الإختبار يدويا وبالتالي توفر الوقت وتسرع من عملية إختبار البرنامج.ىذه الطريقة تق

أيضا بإستخدام ىذه الطريقة يتم تسريع عملية تسليم البرنامج ووضعو قيد الإستخدام مما يسرع عملية التطوير وتسليم البرنامج
 بشكل نهائي.

VI

Table of Contents

Section

Number

Section Name Page

Number

1. Introduction And Problem Statement

1.1 Introduction 1

1.2 Problem definition 2

1.2.1 Problems with manual Testing 2

1.2.2 Costs 2

1.2.3 Risks 3

1.2.4 Human resources 3

1.3 Automation testing 3

1.3.1 Problems with automation testing 3

1.4 Suggested solution 4

1.5 Research Questions 4

1.6 Importance of project 4

1.7 Scope of project 4

1.8 Objectives 4

1.9 Expected outcomes 5

1.10 Structure 5

2. Overview of the testing and previous studies

2.1 Introduction 6

2.2 General Concepts 6

2.2.1 Software testing 6

2.2.2 Testing Principles 7

2.2.3 Testing Objectives 7

2.2.4 Test-Case Design 8

2.2.5 Testing methods 8

2.2.5.1 White-Box Testing 8

2.2.5.2 Black-Box testing 9

2.2.6 Levels of Testing 10

2.2.6.1 Unit Testing 11

2.2.6.2 Integration Testing 11

2.2.6.3 System Testing 12

2.2.6.4 Acceptance Testing 12

2.2.7 Non-Functional Testing 13

2.2.7.1 Reliability Testing 13

VII

2.2.7.2 Usability Testing 13

2.2.7.3 Security Testing 13

2.2.7.4 Efficiency Testing 13

2.2.7.5 Portability testing 13

2.3 Literature survey 14

2.3.1 Randoop 14

2.3.2 Jwalk 15

2.3.3 Tool for Automatic Test Case Generation in Spreadsheets 15

2.3.4 Jtest 16

2.3.5 Survey summary 17

3. Tools and techniques used in the Implementation

3.1 Introduction 18

3.2 UML 18

3.2.1 Use case Diagram 18

3.2.2 Activity diagram 19

3.2.3 Sequence diagram 19

3.3 Enterprise Architect 19

3.4 Eclipse IDE 19

3.5 Java language 20

3.5.1 Java Is 20

3.5.2 GUI 22

3.5.3 Why we use Java language 22

3.6 JUNIT 22

4. Analysis by UML diagram

4.1 Introduction 23

4.2 Functional Requirements 23

4.3 Nonfunctional Requirements 23

4.4 Use Case Diagram Figure 24

4.5 Activity Diagram Figure 25

4.6 Sequence Diagram Figure 26

4.6.1 Create Project 26

4.6.2 Code Writing 27

4.6.3 Code Saving 28

4.6.4 Project Opening 29

4.6.5 Test Case Generation 30

4.6.6 Test Case Displaying 31

5. Implementation Automatic Generation of

System test cases for system under development

5.1 Introduction 32

VIII

5.2 Tools Process 32

5.2.1 Writing code 33

5.2.2 Import code 34

5.2.3 Generate Test Cases 35

5.2.3 Figure Test case for find maximum number method 36

5.2.3 Figure Test case for method that finds division result 37

5.2.3 Figure Test case for method that finds summation result 38

5.2.3 Figure Test case for method that finds subtract result 39

5.2.3 Figure Test case for method that finds multiple results 40

5.2.3 Figure Test case for method that finds minimum number result 41

5.3 Conclusion 41

6. Results and Recommendation

6.1 Introduction 42

6.2 Result 42

6.3 Conclusion 42

6.4 Recommendation 43

 References

 References 44

7. Appendix

A Business Process Modeling Notation(BPMN) 45

B Analyze code 46

IX

List of Figures

Figure Name Page

Number

Figure (2.1) White-Box Testing 9

Figure (2.2) Black-Box Testing

10

Figure (2.3) Levels Of Testing 11

Figure (2.4) Show Test Cases 16

Figure (4.1) Use Case Diagram 24

Figure (4.2) Activity Diagram 25

Figure (4.3) Create Project 26

Figure (4.4) Code Writing 27

Figure (4.5) Code Saving 28

Figure (4.6) Project Opening 29

Figure (4.7) Generate Test Case 30

Figure (4.8) Display Test Case 31

Figure (5.1) Main screen 32

Figure (5.2) Writing code 33

Figure (5.3) Import code 34

Figure (5.4) Example 35

Figure (5.5) Test case for find maximum number method 36

Figure (5.6) Test case for method that finds division result 37

Figure (5.7) Test case for method that finds summation result 38

Figure (5.8) Test case for method that finds subtract result 39

Figure (5.9) Test case for method that finds multiple results 40

Figure (5.10) Test case for method that finds minimum number result 41

Figure (7.1) BPMN 45

1

2

Chapter One

Introduction and Problem Statement

1

1.1 Introduction

 Software engineering is aimed to development and design of high-quality

software taking into account user requirements and customizations at all levels of

software development lifecycle.

Concerned with the composition of software engineering program since its early

stages during the analysis of the problem and then to find an adequate solution of

that problem design and implement, test that program, and use that program,

finally maintain it if there is a need to change or modify.

Software testing is one of the important parts of software development life cycle

because that it is the stage at which we can ascertain the validity of the program

have been developed, and determine the correctness of software under the

assumption of some specific hypotheses by detecting the bugs, defects, and

problems that lead failure of software.

The software historically evolved, in the beginning, it was the debugging oriented

period, where testing was often associated to debugging: there was no clear

difference between testing and debugging.In the period that followed there was the

demonstration oriented period where debugging and testing was distinguished now

- in this period it was shown that software satisfies the requirements.

Also in the period that followed is announced as the destruction oriented period,

where the goal was to find errors. The separation of debugging from testing was

initially introduced by Glenford J. Myers in 1979 And the concept of software

testing has been used in the 80s.
[1]

The process of testing generally consumes between 30 and 60 percent of the

overall development effort.

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Glenford_J._Myers

2

At the beginning the testing was performed manually and it performed without

using any tool or test script the tester playing the role of end user but this type of

testing has many problems such as it requires human resources, it consumes time

,also it has less reliable and cost for this it was developed to been execute

automatically.In automation, the tester writes scripts and uses software to test the

product. This process involves automation of a manual process.

 But still, in this type, we write test cases manually to ensure the actual

values of a program were agree with expected values.

 We are going to develop a tool that generates test cases automatically

instead of write manually.

1.2 Problem definition

 Software testing includes testing software manually without using an

automated tool. In this type, the tester takes over the role of an end-user and tests

the software to identify any unexpected behavior or bug. Testers must

ensure the completeness of testing by use test plans, test cases, or test scenarios to

test software, also involve exploratory testing, as testers explore the software to

identify errors in it.
 [2]

1.2.1 Problems with manual Testing

 There are many problems with manual testing it consumes human resources,

increase risk and cost. Also, less reliability. Certain tasks are difficult to do

manually.

1.2.1.1 Costs

 The manual creation of test cases needs high project efforts.

 Generation of test cases is consuming time.

 The traditional design of test cases is costly.

3

 Bad test cases lead to low production quality and high maintenance costs.

 We can‟t reuse manual tests if there is any change to the software; you

have to run the tests again by hand. This is valuable time lost.

1.2.1.2 Risk

 not all test cases captured.

 Incomplete tests may have serious impacts on a production environment.

 Untested scenarios lead to failures.

 Untested technical interfaces lead to failures.

1.2.1.3 Human resources

 Tester white test plan and perform testing, perform testing this need effort,

cost, and it consumes time. This

problem can solve by automation testing.

1.3 Automation testing

 This is also known as test automation in automation testing tester writes

scripts and uses software to test the product. This process involves automation of a

manual process.
 [2]

Automated tests are easily repeatable and quickly executed and it reduces cost,

time, human effort but it never replaces human testers, still need to write test cases

manually there is some tools generate test cases automatically but it is not captured

all test cases some was missing or ignored.

1.3.1 Problems with automation testing

 Automation testing tools may or may not generate test case automatically

 Automation testing tools (that generate test cases automatically) are

generating test cases after program execution.

4

1.4 Suggested solution

 Despite the use of automated testing we see that there is some problemssuch

as still need to write test cases manually and the tools that generate test cases

automatically not captured all test cases, based on this we will go to develop tool

that generates test cases automatically while programmer writing his code; when

he completes his program then we save all test cases of program in library and

running test cases without comeback to code.

1.5 Research Questions

 Is it possible to develop a tool that generates test cases automatically?

 Is this tool are covered all possible test cases?

 What is the methodology by which this tool can be developed?

1.6 Importance of project

Reduces cost and time of created test cases during the coding time by a tool

that generates test cases automatically while programmer writing his code this

reduces the time of delivery by reducing the time of testing.

1.7 Scope of project

This project focuses on a generation of the all possible test cases for returned

value methods of a program under test automatically.

1.8 Objectives

 Automatic generation of test cases (reducing the time of test cases

generation).

 Minimize the maintenance cost of the test.

5

 Produce high-quality test cases (that ensure reliable coverage).

 Developexecution tool to execute all generated test cases automatically.

 Improve performance of test case generation and execution.

1.9 Expected outcomes

 A tool that generates test cases automatically for a system under test.

 Make automation testing more powerful (generate test cases during coding).

 Make generation of test case more simple and quick.

1.10 Structure

This is research is divided into six chapters as follow after this introductory

first chapter, second chapter discusses general concepts about testing and literature

survey, third chapter discusses technologies, tool and techniques used in this

research, chapter four discusses analysis of the system, chapter five discusses the

implementation of the system, and the last chapter contains the result of this

research and recommendation.

6

Chapter Two

Overview of the Testing and previous studies

6

2.1 Introduction

In this chapter, we will explain the most important concepts in the software

testing of the types of testing and test of levels and testing methodologies and

previous studies conducted in this field of generating test cases and software

testing.

2.2 General concepts

The software testing became an independent and professional specialty in

itself. It was common practice in the field of software that the developer tests his

software manually, while now find tools for testing the software, the main goal of

the research is to developa tool that generates test cases automatically during

coding, in order to improve a testing process and develop it.

2.2.1 Software testing

Is a set of activities that can be planned in advance and conducted

systematically.Forthis reason, a template for software testing a set of steps into

which we can place specific test-case design techniques and testing methods

should be defined for the software process.
[3]

Also is a process of demonstrating that errors are not present.
 [4]

As well as the process of executing a program with the intent of finding errors. [4]

From all above definitions, testing means an activity performed for evaluating a

product or system quality for improving it by identifying defect and problems in

the product.

7

Testing has many levels of testing (unit testing, module testing, integration testing,

system testing, acceptance testing). We are focus In this level of testing Unit

Testing which can be performed via black box method or white box method.
[5]

2.2.2 Testing Principles

There are many principles that guide software testing. Before applying

methods to design effective test cases, a software engineer must understand the

basic principles that guide software testing. The following are the main principles

for testing:

 All tests should be traceable to customer requirements.

 Tests should be planned long before testing begins.

 The Pareto principle applies to software testing.

 Testing should begin “in the small” and progress toward testing “in the

large.”

 Exhaustive testing is not possible.

 To be most effective, testing should be conducted by an independent

third party.
[3]

2.2.3 Testing Objectives

The testing objective is to test the code, whereby there is a high probability

of discovering all errors.

This objective also demonstrates that the software functions are working

according to software requirements specification (SRS) with regard to

functionality, features, facilities, and performance. It should be noted, however,

that testing will detect errors in the written code, but it will not show an error if the

8

code does not address a specific requirement stipulated in the SRS but not coded in

the program.

Testing objectives are:

 A good test case is one that has a high probability of finding an as-yet-

undiscovered error.

 A successful test is one that uncovers an as-yet-undiscovered error.

2.2.4 Test-Case Design

A test case is a set of instructions designed to discover a particular type of

error or defect in the software system by inducing a failure.
 [3]

The goal of selected test cases is to ensure that there is no error in the program and

if there is it then should be immediately depicted. Ideal test casement should

contain all inputs to the program. This is often called exhaustive testing. There are

two criteria for the selection of test cases:

 Specifying a criterion for evaluating a set of test cases.

 Generating a set of test cases that satisfy a given criterion.
[3]

2.2.5 Testing methods

There are two basic types of testing methods White-Box Testing and Black-

Box Testing. These two basic are used to describe the point of view that test

engineering tasks when designing test cases.

2.2.5.1 White-Box Testing

Tester used source code for testing, White-box testing is the detailed

investigation of internal logic and structure of the code.

White-box testing is also called glass testing or open-box testing. In order to

9

perform white-box testing on an application, a tester needs to know the internal

workings of the code.

White-box testing is also known by other names, such as glass-box testing,

structural testing, clear-box testing, open-box testing, logic-driven testing, and

path-oriented testing. In white-box testing, test cases are selected on the basis of

examination of the code, rather than the specifications.
[3]

 Figure (2.1) White-box testing
 [3]

2.2.5.2 Black-Box Testing

The tester not having any knowledge of the interior structure of product the

tester is oblivious to the system architecture and does not have access to the source

code. Typically, while performing a black-box test, a tester will interact with the

system's user interface by providing inputs and examining outputs without

knowing how and where the inputs are worked upon.

10

Figure (2.2) Black-box testing
 [3]

2.2.6 Levels of Testing

Testing Levels Based on Software Activity Tests can be derived from

requirements and specifications, design artifacts, or the source code. A different

level of testing accompanies each distinct software development activity.

There are many levels during the process of testing. In this part, a brief description

is provided about these levels.
 [5]

11

Figure (2.3) Levels of testing
 [5]

2.2.6.1 Unit Testing

Unit testing is the smallest possible testable software component. This type of

testing has involved the Functions, Procedures, Classes, and Methods as Units

performed by developers before the setup is handed over to the testing team to

formally execute the test cases.
 [5]

2.2.6.2 Integration Testing

 Integration test for procedural code has two major goals:

 to detect defects that occur on the interfaces of units.

 to assemble the individual units into working subsystems and finally

a complete system that is ready for system test.
 [5]

12

Approaches to Integration Testing there are various approaches used for

integration testing are:

 Incremental Approach

 Top-down Integration

 Bottom-up Integration

 Regression Testing

 Smoke Testing

 Sandwich Integration

2.2.6.3 System Testing

System testing tests the system as a whole. Once all the components are

integrated, the application as a whole is tested rigorously to see that it meets the

specified Quality Standards.
 [5]

There are several types of system tests are as follows:

 Functional testing

 Performance testing

 Stress testing

 Configuration testing

 Security testing

 Recovery testing

2.2.6.4 Acceptance Testing

Validation testing with respect to user needs, requirements, and business

processes conducted to determine whether or not to accept the system.
 [5]

13

2.2.7 Non-Functional Testing

This section is based upon testing an application from its non-functional

attributes. Nonfunctional testing involves testing software from the requirements

which are nonfunctional in nature but important such as performance, security,

user interface, etc.
 [5]

2.2.7.1 Reliability Testing

Is defined further into the sub-characteristics maturity (robustness), fault-

tolerance, recoverability and compliance
 [5]

2.2.7.2 Usability Testing

Is divided into the sub-characteristics understandability, learnability,

operability, attractiveness, and compliance.
 [5]

2.2.7.3 Security Testing

Security testing involves testing software in order to identify any flaws and

gaps from security and vulnerability point of view.
 [5]

2.2.7.4 Efficiency Testing

Is divided into time behavior (performance), resource utilization and

compliance.
 [5]

2.2.7.5 Portability Testing

It consists of five sub-characteristics: adaptability, installability, co-

existence, replaceability, and compliance.
 [5]

14

2.3 Literature survey

In the following paragraph we will present some studies and techniques that

have been generated to generate automated test case we will explain the problems

and defects in these techniques and the following studies and we will compare

these techniques.

2.3.1 Randoop

Randoop is a unit test generator for Java programming language. Randoop is

used to automatically generate a test for classes in Java language programs, by

using JUnit format and feedback-directed random test generation. This technique

randomly, but smartly, generates sequences of method and constructor invocations

for the classes under test. The Randoop has two type of test output. The first is to

test code errors in java language The second output is tested that program still

performance correctly after the change.
[9]

A disadvantage of Randoop was the high cost of test code maintenance. The

regression tests generated in 30 seconds ran to some 96K lines of test code.

Another limitation was the inability to control values supplied as arguments to tests

(which were randomized), making it impossible to guarantee equivalence partition

coverage on inputs.

We will try to solve this problem by developing a fully automatic tool that

generates all test cases for all methods have returned value in the code.

15

2.3.2 JWalk

JWalk is a unit testing feature for the Java programming language.

Developed by Anthony Simons, it supports a testing paradigm called Lazy

Systematic Unit Testing. This is based on the two notions of a lazy specification,

the ability to infer the evolving specification of a class on the fly by dynamic

analysis, and systematic testing, the ability to explore and test the class's state

space exhaustively to bounded depths. It used to test single and compiled classes in

the Java programming language.
 [9]

2.3.3 Auto Test: A Tool for Automatic Test Case Generation in Spreadsheets

This paper presents a system that helps user‟s tests their spreadsheets using

automatically generated test cases.

The system generates the test cases by backward propagation and solution of

constraints on cell values, these constraints are obtained from the formula of the

cell that is being tested when we try to execute all feasible definition of use (DU)

associations within the formula.

The system generates a set of candidate test cases for the formula in the cell and

presents it to a user as shown in Figure.

16

 Figure (2.4) Show test cases

[10]

Users can validate generated test cases also can ignore generated test cases if they

are unable to decide if the computed output is right or wrong.

This is a good tool to generate test cases for spreadsheets but still generate test

cases specific for spreadsheets only.

That we try to solve it by a tool that generates test cases not prompt and for all.
[10]

2.3.4 Jtest

 “Jtest Its purpose is to help you increase your Java software reliability

while dramatically reducing the amount of time you spend testing. Jtest is designed

to reduce the burden on Java developers as they write and test their programs from

the class level at the earliest stages of development. Jtest automates four essential

types of Java testing including--for the first time in software development history

automating black-box testing by reading Design by Contract information built into

your class with the Design by Contract language. Jtest then automatically creates

and executes test cases based on these specifications. Jtest gives you the detailed

17

error information you need to make your JavaBeans, APIs and libraries,

applications, and applets more robust.

Jtest automatically performs white-box testing, black-box testing, regression

testing, and static analysis (coding standard enforcement) of Java code

During black-box testing Jtest automatically reads Design by Contract

specification information built into a class with the Design by Contract language,

then automatically creates and executes test cases that verify the functionality of

the specification. Jtest can also automatically provide a set of inputs based on

sophisticated analysis and then executes the class with the inputs. You may also

provide your own sets of inputs to be used by Jtest.

Design by Contract is a formal way of using comments to incorporate specification

information into the code itself. Basically, the code specification is expressed

unambiguously using a formal language that describes the code's implicit contracts.

Disadvantages of just are a Non Intuitive interface, Rules Builder can be frustrating

at first, Pricey ".
 [11]

2.3.5 Survey summary

From all these studies and tools we recognized that all of these are

generating test cases but there is some of the limitation such as not all test cases

will be captured some are missing and some are ignored.

We find that JWalk tool is not open source, Randoop not fully automatic and take,

auto test generate test cases for spreadsheets the only Jtest is not free, unfamiliar

interfaces.

18

Chapter Three

Tools and techniques used in the Implementation

18

3.1 Introduction

In this chapter we will present the techniques, tools, and languages we have

used and will try to clarify the advantages of these techniques and tools to

implement this project.

3.2 UML

 The Unified Modeling Language (UML) is general purpose visual modeling

language that is used to specify, visualize, construct and document the artifacts of a

software system.
 [6]

We have used the UML language because it provides a simplified graphical way to

express the different software models made easy by it to the relevant stakeholders

of analysts, designers, programmers and even the beneficiaries to communicate

among themselves and pass information in a standardized format and concise,

enriches them from the usual linguistic description

3.2.1 Use case Diagram

Use case Diagram is a graphical method that describes the interaction of the

user with the system, which describes the basic processes performed by the user in

the proposed system or system under development where the user represents the

actor and the basic processes represent the Use case.

We used this diagram to describe the basic processes performed by the user in the

proposed system.

19

3.2.2 Activity diagram

An activity diagram is a graphical schema that describes the sequence of

activities from the beginning of the first activity to the end of the last activity in the

system and there are conditional activities in order to move from one activity to

another and parallel activities in the system to be developed.

3.2.3 Sequence diagram

A sequence diagram is used to represent the flow of messages, events, and

actions between the objects or components of a system. The horizontal dimension

shows the objects participating in the interaction, and the vertical arrangement of

messages indicates their order.

3.3 Enterprise Architect

Sparx Systems' Enterprise Architect (EA) is a Computer Aided Software

Engineering (CASE) tool for designing and constructing software systems, for

business process modeling, and for more generalized modeling purposes. EA is

based on the UML 2.1 specification, which defines a visual language that you use

to model a particular domain or system (either existing or proposed).

EA is a progressive tool that supports all aspects of the development cycle,

providing full traceability from the initial design phase through to deployment and

maintenance. It also supports testing and change control.

3.4 Eclipse IDE

Eclipse is an IDE for "anything, and nothing at all," meaning that it can be

used to develop software in any language, not just Java. It started as a proprietary

replacement for Visual Age for Java from IBM but was open sourced in November

mk:@MSITStore:C:/Program%20Files%20(x86)/Sparx%20Systems/EA/EA.chm::/whatisuml.htm

20

2001. Eclipse is now controlled by an independent nonprofit organization called

the Eclipse Foundation.
 [7]

3.5 Java language

Java programming language was originally developed by Sun

Microsystems which was initiated by James Gosling and released in 1995 as a core

component of Sun Microsystems' Java platform (Java 1.0 [J2SE]).

The latest release of the Java Standard Edition is Java SE 8. With the advancement

of Java and its widespread popularity, multiple configurations were built to suit

various types of platforms. For example J2EE for Enterprise Applications, J2ME

for Mobile Applications. On 13 November 2006, Sun released much of Java as free

and open source software under the terms of the GNU General Public License

(GPL).

On 8 May 2007, Sun finished the process, making all of Java's core code free and

open-source, aside from a small portion of code to which Sun did not hold the

copyright.

The new J2 versions were renamed as Java SE, Java EE, and Java ME respectively.

Java is guaranteed to be Write Once, Run Anywhere.
 [8]

3.5.1 Java

Object-oriented in Java, everything is an Object. Java can be easily extended

since it is based on the Object model.

Platform Independent unlike many other programming languages including C and

C++, when Java is compiled, it is not compiled into platform specific machine,

rather into platform-independent bytecode. This bytecode is distributed over the

21

web and interpreted by the Virtual Machine (JVM) on whichever platform it is

being run on.

 Simple Java is designed to be easy to learn. If you understand the basic

concept of OOP Java, it would be easy to master.

 Secure with Java's secure feature it enables to develop virus-free, tamper-free

systems. Authentication techniques are based on public-key encryption.

 Architecture-neutral Java compiler generates an architecture-neutral object

file format, which makes the compiled code executable on many processors,

with the presence of Java runtime system.

 Portable Being architecture-neutral and having no implementation dependent

aspects of the specification makes Java portable. The compiler in Java is

written in ANSI C with a clean portability boundary, which is a POSIX subset.

 Robust Java makes an effort to eliminate error-prone situations by

emphasizing mainly on compile time error checking and runtime checking.

 Multithreaded with Java's multithreaded feature it is possible to write

programs that can perform many tasks simultaneously. This design feature

allows the developers to construct interactive applications that can run

smoothly.

 Interpreted Java bytecode is translated on the fly to native machine

instructions and is not stored anywhere. The development process is more

rapid and analytical since the linking is an incremental and light-weight

process.

 High Performance with the use of Just-In-Time compilers, Java enables high

performance.

 Distributed Java is designed for the distributed environment of the internet.

22

 Dynamic Java is considered to be more dynamic than C or C++ since it is

designed to adapt to an evolving environment. Java programs can carry an

extensive amount of run-time information that can be used to verify and

resolve accesses to objects at run-time.
[8]

3.5.2 GUI

Stands for Graphical User Interface this term not used only in Java but in all

programming languages that support the development of GUIs. A program's

graphical user interface presents an easy-to-use visual display to the user. It is

made up of graphical components (e.g., buttons, labels, windows) through which

the user can interact with the page or application. To make graphical user

interfaces in Java, use either Swing (older applications) or JavaFX.
[8]

3.5.3 Why we use Java language

One of reason it's rich API and most importantly it's highly visible because

come with Java installation „also powerful development tools e.g. Eclipse,

NetBeans, that id's helps in code completion also provides powerful debugging

capability, which is essential for real-world development' Great collection of Open

Source libraries like Apache, Google, and other organization' Java is free '

Excellent documentation support Java docs and Java is Everywhere.

3.6 JUNIT

JUnit is a unit testing framework for the Java programming language. Units

are the smallest module of functionality in a computer program. These are usually

in the form of a method. Therefore, JUnit is most commonly used to test the

functionality of individual methods. Experience with JUnit has been important in

the development of Test-Driven Development.

https://www.thoughtco.com/what-is-java-2034117
http://javarevisited.blogspot.com/2011/07/java-debugging-tutorial-example-tips.html
http://javarevisited.blogspot.com/2011/07/java-debugging-tutorial-example-tips.html

23

Chapter Four

Analysis by UML diagram

23

4.1 Introduction

In this chapter will discuss the general shape of the project by analysing and

designing the basic processes of the proposed system through the use of several

techniques, including the Unified Modeling Language and the programming

languages used and other necessary techniques, and how to design and implement

the project generating test cases during the software development process.

4.2 Functional Requirements

 Develop a tool that generates test cases for a system under development

process.

 A Tester can create a project to generate test cases for it.

 A Tester can generate test cases for the existing system.

 A Tester can write his own code to generate test cases for it.

 A Tester can extract generated test cases from a log file.

 The system must generate test cases for all methods in project code.

4.3 Nonfunctional Requirements

 The system must be easy to use for a user (Usability).

 The system must consist of all test cases for all methods of code

(consistency).

 The system must perform and give result in less than 10 seconds

 The system must generate all possible test cases for methods and not ignore

any method.

 The system must decrease consuming of resources.

24

 Use Case Diagram Figure

This figure shows the main processes performed by the user in the system

Figure (4.1) Use case Diagram

 uc Use case Diagram Figure

System

Tester

Tool

Create Project

Write Code

Sav e Project

Open Project

Generate Testcase

Display Testcase

25

4.4 Activity Diagram Figure

This figure shows the activity performed by the user in the system

 Figure (4.2) Activity Diagram

 act Activ ity Diagram Figure

T
o

o
l

U
s

e
r

new project or exist one

create project

open project write code

sav e project

load code ceck method

method have

return value
create testcase

ignore

testcases created

sav e testcases
display testcases

exist project

noyes

new project

26

4.5 Sequence Diagram Figure

This figure shows project creation, by the user in the system

Figure (4.3) Create Project

27

This figure shows code writing by the user in the system

Figure (4.4) Code Writing

28

This figure shows code saving by the user in the system

Figure (4.5) Code saving

29

This figure shows project openingby the user in the system

Figure (4.6) Project Opening

30

This figure shows generation of test cases

Figure (4.7) Test Case Generation

31

This figure shows test case displaying

Figure (4.8) Test Case Displaying

32

Chapter Five

ImplementationAutomatic Generation of

System test cases for system under development

32

5.1 Introduction

This chapter will explain the process of generating test cases for methods that

have returned values.

5.2 Tool process

The programmer writes his program under test either that write his code in an

area with a tool or import it from an external file the tool take the source code that

analyzes it to find out all methods that have returned values.

After defining methods tool take every method separately and generate a test case

for that method and save it in a file with the same name of the method

Figure (5.1) Main screen

33

5.2.1 Writing code

The tester writes his code under test in an area with the tool.

The figure below shows the main screen for writing code

Figure (5.2) Writing code

34

5.2.2 Import code

The programmer import code from external file

The figure below shows the main screen for writing code

Figure (5.3) Import code

35

5.2.3 Generate test cases

After tool identifies methods with test values it takes every method and

creates a class contained test case of the method that returns types.

In the example below we have six methods and tool going to generate test cases for

them:

Figure (5.4) example

36

The figures next page show the test cases after generating.

Figure (5.5) Test case for find maximum number method

37

Figure (5.6) Test case for method that finds division result

38

Figure (5.7) Test case for method that finds summation result

39

Figure (5.8) Test case for method that finds subtract result

40

Figure (5.9) Test case for method that finds multiple results

41

Figure (5.10) Test case for method that finds minimum number result

5.3 Conclusion

This chapter illustrated the process of generating test cases for methods that have

returned value.

Getting source code in two ways either tester writes it or importing it from an external

file, analyzes that code to capture all return type methods with testing values and save

these methods, finally generating test cases for these methods.

42

Chapter Six

Results and Recommendation

42

6.1 Introduction

In this chapter, we show the results of our research and how our tool

performed

6.2 Result

From the implementation, we extracted the flowing results

 The developed tool generates test cases for return type methods.

 That tool reduces the time of final delivery.

 Improve efficiency of the testing process (tests cases are generating in a few

minutes).

 Increase reliability of testing process (test cases are generating correctly).

 Reduce consuming resource, time and cost of the testing process.

 Create file contained generated test cases.

6.3 Conclusion

The main idea of research is to help programmer test his program and reduce

time, cost, risk, resources consuming and effort; there are many steps we did to

develop this tool:

 Firstly we define the requirements of the system.

 Analyze the requirements and suggested the system.

 Designing the system.

 Finish the system development.

The system has been developed to generate test cases for methods that are returned

values automatically.

43

6.4 Recommendation

 This research only generates test cases. These test cases can be used to

execute the testing process.

 This research only generates test cases for programs developed in Java

programming language; these test cases can be generated in

multiprogramming language.

44

References

44

References

1. Software testing ,https://complextester.wordpress.com, 21/9/2017 01.00Pm

2. Manual testing, http://www.tutorialpoint.com/software_testing, 21/3/2017

01.00Pm

3. Jones and Bartlett Publishers, Software Engineering and Testing, 2010

4. GlenfordJ.Myers, The Art of software testing, 2
nd

 Edition, 2004

5. Ilene Burnstien, Practical Software Testing, 2003

6. James Raumbough, Ivar Jacobson, Grady Booch, The Unified Modeling

Language Reference Manual, 1st Printing, December 1998

7. Ed Burnette, Eclipse IDE Pocket Guide, 1st Edition, Aug 2005

8. Herbert Schildt, Java beginner,s guide, 6st Edition, 2014

9. Comparing the Effectiveness of Automatically Generated tests by Randoop ,

Jwalk, and µjava with JUnit Tests, NastassiaSmeets, July 19, 2009

10. Auto Test(A Tool for Automatic Test Case Generation in Spreadsheets ,

Robin Abraham, Martin Erwig , School of EECS

11. Jtest , http://char.tuiasi.ro/doace/www.parasoft.com/products/jtest/quick.htm,

21/9/2017 10.00Pm

https://complextester.wordpress.com/2012/07/31/test-world/comment-page-1
http://www.tutorialpoint.com/software_testing
http://char.tuiasi.ro/doace/www.parasoft.com/products/jtest/quick.htm

45

Appendix

45

A. Business Process Modeling Notation(BPMN)

Figure (7.1) BPMN

46

B. Analyze code

The tool takes source code for testing and reads code line by line to find the

methods that have returned values and save header of these methods in a file.

import java.io.*;

importjava.util.*;

public class Analyzing

{

 static Scanner x ;

 staticPrintWriter y ;

 static String a ,q , s ;

 public static void openFile()

 {

 try

 {

 x = new Scanner(new File("D://MGM.txt"));

 }

 catch(Exception e)

 {

47

 System.out.print("err");

 }

 }

public static void readFile()

 {

 try

 {

 y = new PrintWriter("D://MGMx.txt");

while(x.hasNext())

 {

 a = x.nextLine();

 StringTokenizerst=new StringTokenizer(a, " (),");

 while(st.hasMoreTokens())

 {

 String key = st.nextToken();

 if(key.equals("public") || key.equals("private") ||

key.equals("protected"))

 {

 key = st.nextToken();

48

 if(key.equals("static"))|| key.equals(""))

 {

 key = st.nextToken();

 }

 if(key.equals("int") || key.equals("float") ||

key.equals("double") || key.equals("char") || key.equals("String") ||

key.equals("boolean"))

 {

 key = st.nextToken();

 int last = a.indexOf(')');

 String methodHeader = a.substring(0, last+1);

 y.println("The function is : "+methodHeader);

 System.out.println("The TestCase is : "+methodHeader);

 }

 }

 }

 }

y.close();

 }

 catch(Exception e)

49

 {

 System.out.println(e);

 }

 }

public static void closeFile()

 {

 x.close();

 }

public static void main (String[]args)

 {

 openFile();

 readFile();

 closeFile();

 }

}

