SUDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

COMPUTER SCIENCE AND INFORMATION SYSTEM DEPARTMENT

COMPARING THE PERFORMANCE OF APACHE
SPARK AND APACHE HADOOP MAPREDUCE
ON BIG DATA PROCESSING

THESIS SUMITTED AS A PARTIAL FULFILLMENT OF B.Sc. (HONOR) DEGREE
IN COMPUTER SECINCE AND INFORMATION SYSTEM

OCTOBER 2017

axx) han)l 4 any

SUDAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

COMPUTER SCIENCE AND INFORMATION SYSTEM
DEPARTMENT

COMPARING THE PERFORMANCE OF APACHE
SPARK AND APACHE HADOOP MAPREDUCE ON BIG

DATA PROCESSING
PREPARED BY:
ALAA ISMAIEL IBRAHIM SHUMO.
ESRA ADIL GALAL SALIH.
SAJDA LOTFY AHMED KHALED.
SARA HASSABO ABDALLAH ALBASHEER.

SUPERVISOR:
AHMED HAMZA ABDL-MONIEM HAMZA

SIGNATURE OF SUPERVISOR: DATE:

Y
rAlad g &l U8

“ 4 /O'o'/// - % - -4 pd }/.o// PRt o (o0 3 %@ . A9
@PAL@J'JJJ/A,\SUJ/,J\&,&@LJAJeJ\ﬁL\AJSMJ
A z °o_ -0~ o - - 8 ~9%G o _ @

28 WL " 2 LR 3 * ”») o L A T
{ Spuiadli LS (a8 10 aaliliady il

(70 — ¢)

A 2aall

sp s elall Cl b add el 5 Jalls) aali g ¢ jealdl s yud) alle 4l aeal)
Ay 2 iiall sed ¢ paall Cld gl i g o 8 Al (amy Jlnd ¢ el b s
C4835)0k aa sl casls

adle a5 b falus s doal) o Ao cainy 55184 A8 Lab ay S cdanad GEalla il
IS gal) Glllall caam s 43S g 4l g dse o 4y laa s 4lla g alad g o jas 5 alec
paday s aie) gom CAT Oladl Jusf ey Jda o slalla Jlind) adall i il a
S 1058 el g W) s el a2 U Sy g ol 5y o glall me 3y caBag B
LA S

AR g Al A Al el i Y ean gl V) AN Y () gl 48yl gt 5 s2gd) e sl
Al e g aluganle dl) Lia cifiay slaad Sle JDlall g adus i ¢4 gus 5 500 Taass Gl
Jhiie e 5 dBia 5o i (LS HulS jae oy in o Gl S ol dlaias
oiball dae e g il AU el e ol (aaad aa Gl A aadla
L4se galaal 338 Lis

s)aaY)
oaall 3 L ek aall (31l (e Lgtizia Al o) i e e)30 (e)
Gl el gl () oSy (S el gl alai g ellanll () 5S) (S Unall alad Al
n‘;‘ju

clallall @ jae 8 aaly 1 s il @l 3 Al 5 Al Gl 5 Al)l o2a (saal

Lo sisslall s ey culd
&) Balans Adaad W adil alelif S) s pdad it e 5l (WSl g e e)
oSl QBN) alel) 3ah el (a0 O 5V das

" in

‘51

& Gl g Alia)Y gl gia e ol g (S ailun g (G pdall (G s | 8IS e)

Molaall b Slad)5 Snaa"
Al gl w8 (e dadl)) WDISIL Bl (e IS ()

2013 sy Sl 5 e slaall alai (anad Zay)) Al 40k JS)
el 128 sl

QEJQ JJSM
i La daae L Gl pall 5 GlAN Ca il e Sl 5 330all 5 ¢palladl oy dl deall
Opallall cpudall all e 5 alu g 4dle

Lialaf o2 ¢ a5 ilasas (1) o s S sl aniall) 4y aniiti o il 5 Sl Jf
s Uy sk (3 358l 5 yuall Liegll s ¢ pue JS UL juy s cdadanl) Lel) alile 5
Ol il 5 ol Jiall 5 daadls G adl 5 Jodad) S Galli ansti | calell Saal)

b sluall b S 888 ¢ o han daal/Ca puiiall SO maailly Luatidl g Juadlly U joe
Gall saxi Y Lilal g alaBiall Al 5ol 7 g 8 aladl (S ja U S LS canll i
Lale Goaldl adall #Y) aig) 8 ol) ami g () palill and L) S sl J g3 3
A al g A all 5 8 L sl (8 e ye 5 A8 Uindie ¢ dlalans g aliady Llad g daly

Loy olia yf g diliven () jaa (8 @l Juan g aladl Adlal T a3l olal Lide Jay al5 daga
ALk Uigaa 5 o8 (53 aas jllae deaa/punigall SNy jag 2385 O (i W5 4l ad

Al all o2

Al) Cpalid) oY) SV SN Jy ja 2285 Jaeadly Lia "Wl yie) 57| a5 "old
Ligaa 53 (8 Juadll agd OIS 0l 5 ¢ oadall Cnd) e (3 Lo Lua 8 T2 151l
oMl de e snga 3 gl 5 KA Gads 5 diagll sala) auead A Liseluag
R IS aal el gl et | ganaii T e Juad el | ¢ alia |

o3) ya) g saeluall 5) sadl 2y W) gae (e IS) LS g o i ¢ 1 sl

Aas daS] e dl

aﬁjuﬁ\uwgyuwé‘é_ﬂbcdyuubj@\w&yg\m‘éj
oanp il e JS 5

Vi

Abstract

Imagine the massive volume of data in the world, and the rapid
growth of it every moment and every second, these data that carry many
useful values, which help companies to succeed and increase a
competitive advantage, is called 'Big Data', due to its sheer Volume,
Variety, Velocity and Veracity. Most of this data is unstructured, structured

or semi structured.

The large amounts of data created a need for new frameworks for
processing. The “Apache Hadoop MapReduce" model is a framework for
processing large-scale datasets with parallel and distributed algorithms.
The “Apache Hadoop MapReduce‘“allows for the distributed processing of
large data sets across clusters of computers using simple programming
models.

Recently a framework called Apache Spark has emerged, focused
on micro-batch data processing. In addition the main feature of Spark is
the in-memory computation.

In this research, we perform a comparative study on the performance
of these two frameworks. Additionally we use bigdatabench (tool) to load
dataset up to 420 million records. Experimental results show that Spark has
better performance and overall lower runtimes than Apache Hadoop
MapReduce.

vii

saliial)

028 (ol 5 Apli IS s dand € A gy uall gaill 5 callall 3 i) (e Jiled) anall SIS Juas
o3 Apndlitl Lg3 e 53 55 ladll e S Al aelud)y i) il e el Jend iyl
leinua (505 Lo yu g lge 51y (Jiled) Lgaaad 1 ki "8 Sl ULl mllaias Lgale (3llas iyl
Alea gt 5 alSe 4l Alge ULl o3a alana g
Hadoop sl e o S il ol Aadlaad sagas Jae Sl) sl 1) dlal) dalall cona 5 Gl
2l (Ao B sl bl dadlaal 4) giall 5 4o) sall Cilie 5l sadl aadin jUa) 58 5 MapReduce
alasinly (clusters) i suasl 5 jeal (3 4o sanal i) o dalleall o) 53 gy Layl 5 cad 5l)
Ay Ao 23l

micro-batch data e X, « Apache Spark s Jdal 3505 a1 43591
SSIA A aalledl) & Apache Spark J s)l o juall o)) 48laYU processing
Laadiinl @lld) AiLaU o Yl cda ool (e 40 jlia o) yaly Ll cand) 138 &
Apache Of daw il mUl) & jelal s Jas ke 420 A i Ul sl BigDataBench
.Hadoop MapReduce s J8 eduiii (pe) 5 ¢ Juzabl o6l S Spark

viii

Table of Contents

CHAPTER ONE: INTRODUCTION

1.1 INTRODUCTION

1.2 PROBLEM STATEMENT

1.3 OBJECTIVES

1.4 RESEARCH SIGNIFICANCE
1.5 PROPOSED SOLUTION
1.8 THESIS STRUCTURE
CHAPTER TWO: THEORETICAL BACKGROUND
2.1 INTRODUCTION
2.2 DETAILS ABOUT BIG DATA SCIENCE
2.3 HISTORICAL BACKGROUND
2.4 BIG DATA PROCESSING TYPES
2.4.1 BATCH PROCESSING
2.4.2 REAL-TIME DATA PROCESSING
2.4.2.1 IN-MEMOREY COMPUTING

2.4.2.2 REAL-TIME QUERIES OVER BIG DATA

10

10

12

12

13

2.4.3 STREAMING BIG DATA 13
2.5 OTHER BIG DATA FRAMEWORKS 15
2.5.1 APACHE STORM 15
2.5.2 APACHE FLINK 15
2.6 SUMMARY 16

CHAPTER THREE: LITERATURE REVIEW

17

3.1 INTRODUCTION 18
3.2 PREVIOUS STUDIES 18
3.2.1 COMPARISON BETWEEN FRAMEWORKS IN 18
PERFORMANCE
3.2.2 PRPCESSING 20
3.2.3 BENCHMARKING 21
3.3 SUMMARY 24
CHAPTER FOUR: TOOLS, TECHNIQUES AND RECEARCH 25
METHODOLOGY
4.1 INTRODUCTION 26
4.2 TOOLS 26
AND TECHNIQUES
4.2.1 APACHE HADOOP 26
4.2.2 APACHE SPARK 28
4.2.3 APACHE HIVE 29
4.2.4 BIG DATABENCH 30
4.3 RESEARCH METHODOLOGY 31
4.3.1 SURVEY 31
4.3.1.1 SURVEY PURPOSES 31
4.3.1.2 SAMPLE DISTRIBUTION AND FILLING UP | 31
4.3.1.3 SURVEY QUESTIONS 32
4.3.1.4 SURVEY RESULTS 32
4.3.2 PREPARE THE ENVIROMENT 39
4.3.3 CONFIGURES CONNECTION BETWEEN MACHINES | 40

4.3.3.1 CONFIGURING “HADOOP”
AND “SPARK” AND “HIVE” IN ALL MACHINES

41

4.3.3.2 DATA GENERATION 43
4.3.4 RUNNING JOBS 46
4.3.4.1 Run Word-Count Workload on 46
Hadoop cluster consist of one NameNode and two DataNodes
4.3.4.2 Run “select” query on The E- 48
Commerce data set (described above) using Hadoop
and Spark cluster consist of one NameNode and
3 DataNodes
4.4 SUMMARY 5%
CHAPTER FIVE: RESULTS AND RECOMMENDATIONS 54
5.1 INTRODUCTION 55
5.2 RESULTS 55
5.2.1 PERFORMANCE RESULTS OF 55
“WORD-COUNT” JOB ON HADOOP CLUSTER
5.2.2 PERFORMANCE MEASUREMENTS RESULTS 56
OF “select” QUERY IN HADOOP CLUSTER
5.2.3 RESULTS OF “select” QUERY IN SPARK CLUSTER 57
5.2.4 COMPARISON RESULT BASED ON TIME OF 58
PROCESSING
5.3 RECOMMENDATIONS 60
References 61
APPENDICES 64
APPENDIX (A) 65

Xi

CONFIGURATION OF FRAMEWORKS 65
APPINDEX (B) 88
BIG DATA IN SUDAN QUESIONNAIRE 88

List of Figures

Figure 2.1: illustrate processing iN SPArKccoiieieiiiiininereee e 15
Figure 4.1: Architecture of MapReduce eXECULION............ccceiviiiieie e 28
Figure 4.2: illustrate QUESTION L.......cciciiiiiiicic ettt sre s re e saesre s 32
Figure 4.3: illustrate QUESTION 2...........cciiiiiiieiiiiiie e 33
Figure 4.4: illustrate QUESTION 3..........ooiiiiiiiiieiiii e 33
Figure 4.5: illustrate QUESTION 4........oooviiiiiicie ettt be et sresbe e saesre s 34
Figure 4.6: illustrate QUESTION B.......cioiiiiiic ettt re e saeane s 34
Figure 4.7: illustrate QUESTION B...........ccuruiiiiiiiiisi et 35
Figure 4.8: illustrate QUESTION 7.........ccuoiiiiiiieieisie ettt 35
Figure 4.9: illustrate QUESTION 8..........coviiiiiiii et s saesre s 36
Figure 4.10: illustrate QUESTION 9cciciii i st s ae et re e 36
Figure 4.11: illustrate QUESTION 10cociiiiiiiiieisie e 37
Figure 4.12: illustrate QUESTION 11cooiiiiiiiiieisi et 37
Figure 4.13: illustrate QUESTION 12ccooiiiiiic et st s st re e 38
Figure 4.14: illustrate QUESTION 13coiiiiiic et s e et re e re e 38
FIQUIE 4152 SSH STEPS ...ttt b ettt ettt 40
Figure 4.16: Tormat NameENOE..........coiiiiii e 41
Figure 4.17: Successfully formatted.............ccoooiiiiii i 42
Figure 4.18: Starting Hadoop daBmON ..o 43
Figure 4.19: generated 30-0igabyte datacccoeiiiiiiiiiiiriees e 44
Figure 4.20: ORDERS.EXE FHlE.......ciiiiiiiiieee s 45
Figure 4.21: ORDERS _ITEM.IXEFIlE ..c.oiviiiiiiece e 46
Figure 4.22: Run_Microbenchmarks.sh file ... 47
Figure 4.23: start JODHISIONY SEIVICEccviiiiiieiiieece e e 48
Figure 4.24: JODHISTONY Uloviiiiiiiiicee e et 48
Figure 4.25: create a folder in HDFS called HiVe................ccocooiiiiiiiinie e 49

Figure 4.26: created table iN NIVE ... e 49
Figure 4.27: Select QUENY iN NIVooiiiiiie e 50
Figure 4.28: MapReduce started doing the Select Job ... 50
Figure 4.29: Start SPark SNEll..........c.ooiiiiiii s 51
Figure 4.30: write queries and interact with hive “metastore” using “HiveQL”cceceesvuerueeans 51
Figure 4.31: SPark CONTEXE VAIUEcceiveiiiiciieese sttt n e 52
Figure 4.32: load the data stored in “ORDERS_ITEM.txt” 52
Figure 4.33: store the result on “resu” variable 52
Figure 5.1: measurements was saved in “JobHistory” 56
Figure 5.2: result measurements in “SparkJobs” 58

xiii

List of Tables

Table 1: Table 3.1 illustrate our opinion
Table 2: Table 5.1 illustrate comparison

FESUIT. ettt e e e e e e e e e e seaeeeas

Xiv

_Ist of Abbreviations

| Term Description

1 |BDGS Big Data Generate Suite

2 |HDFS Hadoop Distributed File System
3 |BI Business Intelligence

4 |RDD Resilient Distributed Dataset

5 |ETL Extract, Transform, Load

6 |RDBMS Relational Database Systems

7 |GFS Google File System

8 | DStream Discretized Stream

9 | JVM Java Virtual Machine

XV

https://en.wikipedia.org/wiki/Extract,_transform,_load
https://en.wikipedia.org/wiki/Extract,_transform,_load

CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION

In 2010 year the 'Big Data' was virtually unknown, but by mid-2011 it was being
diffuse widely as the hot trend, the term has today been adopted by everyone, from
product vendors to large-scale outsourcing and cloud service providers intensive to

promote their offerings. But what really is Big Data?

Big Data is about quickly deriving business value from a range of new and
emerging of new technologies, devices and communication means like social network
sites, which led to a noticeable increase of the amount of data produced every year, even
every day. In addition, traditional algorithms and technologies are inefficient to process,

analyze and store this vast amount of data. [1]

And much more besides we can defining Big Data by the 3V models) volume,
velocity, variety), then, with the development of the large data, a new feature called
"veracity" was added, which is then called 4 V's of big data. Which we will explain each
of these characteristics by the next chapters. Also Big Data is about how these data can
be stored, processed, and comprehended such that it can be used for predicting the future

course of action with a great precision and acceptable time delay.

On the other hand big data has a lot of challenges, so we want to touch these
challenges of big data, and try to enumerate some of these challenges, but not limited
to. One of these challenges is storage and retrieval of vast amount of structured as well
as unstructured data which leads to time lag, another challenge is regarding to handle
and process vast amount of data with the traditional storage techniques, these challenges
Is the main reason that led to emergence the term Big Data[2]. So these challenges will
require treated solutions, we must support and encourage fundamental research towards
addressing these technical challenges if we are to achieve the promised benefits of Big
Data [3].

In this research we need to address the challenge of data processing on Big Data,
data processing is common part of processes inside every organization. Critical
challenges of these days came with Big Data processing. Although new technologies

appeared, traditional data sources and processes require variety of different approaches

[4].

In this research, we focus on studying two kind of very popular and most used
frameworks in Big Data field, they are Hadoop MapReduce and Spark. To illustrate how
these frameworks can service the data processing in well format. When it comes to
processing Big Data, Hadoop MapReduce and Spark must be the first choices, but they
aren't the only options. (Hadoop MapReduce) is actually quite simple. If your data can
be processed in batch, split into smaller processing jobs, spread across a cluster, and

their efforts recombined, hadoop will probably work just fine for you.

Spark differs from Hadoop MapReduce in that it works in-memory, speeding up

processing times [5].

1.2 PROBLEM STATEMENT

We take performance on data processing over Big Data as a problem on the one
hand, data processing is common part of processes and activities inside every

organization. “Critical challenges on these days came with Big Data processing.

On the other hand, we have chosen two big data solution frameworks, they are
Hadoop MapReduce and Spark, and saw the problem of how to choose one of them,

based on company’s resources, company’s needs, and company’s big data.

1.3 OBJECTIVES

* Implement a “Word-Count” Example on Unstructured data set using Hadoop
MapReduce, and get the performance measurements, consist of: time
performance, CPU spent time, RAM consumptions.

* Execute a “test” query on structural big data set using Hadoop MapReduce
and Spark, to compare between them considering the time performance and
error handling.

* Find the cases which Hadoop MpaReduce is the best than Spark and vice

Versa.

* Help company’s decision makers (e.g. top manager) to know the better big

data solution (Hadoop or Spark) that should use according to his needs.

1.4 RESEARCH SIGNIFICANCE

Big data has many processing solutions, this solutions have been already
built by large companies like Apache. Because companies which have big data
or unfortunately suffering from big data processing problem, big data
frameworks are needed.

But in Sudan these solutions are not implemented yet (according to the
survey was done in the research).

Decision-maker of these companies can choose solution that requires very high
capacity of rams or disks and pay a lot of money, although there is no need to pay
all that money! Because another solution is suitable for him and solve his problem
without big lose, so decision-maker must know all solutions of big data, and this
is very hardly job. He requires an implemented comparison between the big data

solutions and clean road map to make his decision.

Reports and quires and business intelligence are built over data processing, so
when data processing takes a lot of time; it is also cause a delay in production
time of reports and queries, so this problem leads to time and money consuming.
e.g. When there is company (x) started to generate a report that will be useful to
it, and it uses a traditional database techniques to generate this report, and there
is a competitor company (y) generates this report using big data framework
before company (x); it will be useless report for company (x) and it consumes its

resources on the air.

1.5 PROPOSED SOLUTION

This research will focus on two big data processing frameworks to compare
between them based on three criteria’s: time performance, configuration method, and
error and exception handling, they are Hadoop MapReduce and Spark, understand
functionality and use of each framework, how and where they are store and process
data, and so on.

Then will execute some work on each framework, and then obtain the resources
consumptions of machines when running this work on the same data set and on the
same cluster using each framework, after that a simple comparison will be made
between these two frameworks based on time performance and implementing way

and clearness of error and exceptions on each framework.

1.6 RESEARCH SCOPE

The scope of this research is implementation and comparison of two processing
frameworks Hadoop MapReduce and Spark, and their role in processing data. This
comparison will based on time performance of query, the configuration way of two

framework, and error and exception handling.

Also the scope will include measure CPU time spent, memory usage and running

time of the Hadoop cluster, but not for Spark.

1.7 RESEARCH METHODOLOGY

The methodology for this research will be include:

Work survey to find out the importance of this research and causes of needing
big data frameworks.

Generate unstructured data from “BigDataBench” suite as text data set,
contains Wikipedia entries on search engine and this data is will be uploaded

on Hadoop file system to store it there.

Working model “workload” called “Word Count” will be executed on this

data by Hadoop MapReduce framework.

When the workload has been completed the performance criteria “time

performance, CPU time spent and RAM usage” must be computed.

This research will address generation of another type of data, it is structured
data contains 420,000,000 record, and a simple query job will be implemented
using Hadoop MapReduce and Spark frameworks, after that, a comparison
will be done between these two frameworks (Hadoop MapReduce and Spark)
based on configuration methods and errors handling and time performance of

the query.

1.8 THESIS STRUCTURE

In addition to this chapter this research contains another four chapters:

» Chapter two: include the theoretical Background about sciences (big data

and its frameworks and also big data processing).

Chapter three: include literature review and related works.

Chapter four: include the tools and techniques that used in our research,
and also include the methodology and the activities that we did in our
project implementation.

Chapter five: include results and recommendations.

CHAPTER TWO

THEORETICAL

BACKGROUND

2.1 INTRODUCTION

Since big data has its own characteristics such as size, diversity and speed of
growth, it makes it difficult to process and manage them in traditional ways such as

relational database management system. In this chapter we talk about:

» Details about Big Data science.
« Some big data processing types.

» Some frameworks of big data.

2.2 DETAILS ABOUT BIG DATA
SCIENCE

The term big data is refers to: "datasets which have size that outside the capabilities
of traditional database software tools to capture, store, manage, and analyze". [4] It can

be structured, semi structured, and unstructured data based on context.
There are four key properties that define big data:

* Volume: The volume of data indicates to the size of data which controlled by the
system. Data which is to some degree habitually generated tends to be big. For
example data which generated by sensors in manufacturing or processing plants,
data which generates from scanning equipment looks like smart and credit card
readers, also data from measurement devices like soundtrack devices and the
data which generated from the internet of things is huge data because these billion

of devices which connected to the Internet generate data constantly.

* Velocity: It’s about the speed at which data is generated, collected, ingested, and
processed. High velocity is attributed to data when we consider the typical speed
of transactions on normal exchanges; this speed touches billions of transactions
per day on certain days. For example in twitter Velocity is useful in discovering
trends among people that are making million tweets every three minutes.

* Variety: Data is generated from different types of sources and these sources
have extended and contain for example Internet data like social media, research
data surveys, location data like mobile device data, images like satellites and
video data YouTube inserts hundreds of minutes of video every minute Big data
contains many kinds of data first, structured data are in the form of tables
containing rows and columns second, and semi structured data which data doesn’t
all have to track a static predefined structure. The third kind is unstructured data
which haven’t recognizable formal construction this kind of data establishes the
main challenge in today’s big data systems.

» Veracity: Veracity has two fixed features: the reliability of the source, and the

appropriateness of data for its target listeners. [6]

2.3 HISTORICAL BACKGROUND

Big data can cause a huge problem for large companies when this
company doesn’t make use of it. Google which is the most widely used search
engine has the first idea to solve big data problems, and gathers huge amount of
data every day. Google find out two key technologies to handle this amount of

data they want to store and analyze it.

Google first established Google File System which is a distributed storage
model, and became the underlining storage architecture for the large volume of
data which need to store. GFS runs on a large array of cheap hardware. The paper
of Google File System is published in 2003 by Google, after that in 2004, they

published extra paper on their distributed computing system called MapReduce.
10

Hadoop was made as an open source version as a result of these two basic
technologies from Google the google technologies. And we will talk about it in
chapter 4. In 2009 Additional framework called Spark was first established in
the” AMPLab”, and also we will talk about it in chapter 4. [7]

2.4 BIG DATA PROCESSING TYPES

This section described these popular types of data processing: Batch processing,

real-time data processing and Streaming Big Data.

2.4.1 BATCH PROCESSING

Batch processing is a technique that enables processes data in one large group,
instead of individually groups. MapReduce is one of famous solution model that using

big data batch processing. It is introduced and used by Google. [8]

MapReduce has three major Characteristics in its single package. These
Characteristics are: simple and easy programming model, automatic and linear

scalability, and built-in fault tolerance.

Google published its MapReduce framework with three major components: a
MapReduce execution engine, distributed file system called GFS, and a distributed
NoSQL database called BigTable. After Google’s published its MapReduce

Framework, Apache foundation started some open source execution projects on

MapReduce framework. Such as: [9]

« HDFS: is a distributed file system which delivers high-throughput access to

application data.

* Hadoop YARN: is a framework used to schedule the jobs and cluster

resource management.

11

« Hadoop MapReduce: is a system based on YARN for parallel processing of

large data sets. [10]

The MapReduce framework has made complex large-scale data processing simple
and efficient. From this despite MapReduce is designed for batch processing of large
volumes of data, and it is not fit for recent demands like real-time and online processing.
MapReduce is considered for high throughput batch processing of big data that take

several hours and even days.

There are many systems which are implemented the distributed system via the
MapReduce method like: Apache Hadoop, Disco from Nokia, HPCC from LexisNexis,
Dryad from Microsoft, and Sector/Sphere. However, Hadoop is the most well-known

and popular open source implementation of MapReduce.

Apache Hadoop is one of the big data open source frameworks which implemented
the distributed system by using the MapReduce techniques. Apache has many projects

which related to Hadoop and these projects are:

« Ambari: is atool based on web which used for provisioning, managing,
and observing Apache Hadoop clusters which includes support for Hadoop
HDFS, Hadoop MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie,
Pig and Sqoop. In addition Apache Ambari delivers a dashboard for
showing cluster health such as heatMaps and ability to view MapReduce,
Pig and Hive applications visually along with features to diagnose their

performance characteristics in a user-friendly manner.

* Avro: a data serialization system.

» Cassandra: climbable multi-master database with no single points of

failure.

« Chukwa: for data gathering used to manage large distributed systems.

12

http://incubator.apache.org/ambari/
http://incubator.apache.org/ambari/
http://incubator.apache.org/chukwa/
http://incubator.apache.org/chukwa/

» HBase: scalable, distributed database that supports structured data storage
for large tables.

» Hive: data warehouse arrangement that provides data summarization and ad
hoc querying.

» Mahout: scalable machine learning and data mining archive.

* Pig: A top data-flow language and implementation framework for parallel
computation.

» Spark: fast and general compute engine for Hadoop data. Spark provides a
simple and expressive programming model that provides a extensive range
of applications, including ETL, machine learning, stream processing, and
graph computation.

* Tez: generalized data-flow programming framework, constructed on
Hadoop YARN, which delivers a powerful and elastic engine to execute an
arbitrary DAG of tasks to process data for both batch and communicating
use-cases. Tez is being adopted by Hive, Pig and other frameworks in the
Hadoop ecosystem, and also by other commercial software (e.g. ETL tools),
to replace Hadoop MapReduce as the underlying execution engine.

» ZooKeeper: A high-performance coordination service for distributed

applications. [10]

2.4.2 REAL-TIME DATA PROCESSING

Can be classified into two major ways:

» Solutions that try to reduce the overhead of MapReduce and make it faster to
enable execution of jobs in less than seconds.
+ Solutions that focus on providing a means for real-time queries over structured

and unstructured big data using new optimized approaches.

13

http://hbase.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://pig.apache.org/

2.4.2.1 IN-MEMOREY COMPUTING

There are two problems that cause slowness in Hadoop:

The first problem in starting execution of jobs, is that it is not
optimized for fast execution, scheduling, task assignment, code
transfer to slaves. Beside job startup procedures are not designed
and programmed to finish in less than seconds, because Hadoop is
based on batch processing. To solve this problem job startup and

task execution modules are redesigning.

The second problem is in HDFS: it designed for high throughput
data 1/O rather than high performance 1/O, and the HDFS is stored
very large data blocks on hard disk drives and the Hadoop transfer
rates between 100 and 200 megabytes per second (this mean even
a simple search over the data will take minutes rather than seconds).
And the solution to this problem is: In memory computing solution
and it is used to solve distributing data among machines and reduce
the time of reading data. This main memory has many features and
some of this features is higher bandwidth, and Access latency is
also much better. There are few in-memory computing solutions
available like: Apache Spark GridGain, and XAP. And the Spark

is both open source and free, but others are commercial.

“In-memory computing” does not mean the whole data
should be kept in-memory, but means a distributed pool of
memory. If this distributed pool of memory is available, then
framework can use this memory for caching frequently used data.
There for the whole job execution performance can be improved

significantly.

14

Efficient caching can be effective when an iterative job is being
executed. Both Spark and GridGain support this caching paradigm.
Spark uses RDD and the RDD is primary abstraction means
distributed collection of items. Spark can be easily combined with
Hadoop and RDDs can be generated from data sources like HDFS
and HBase. The in-memory computing feature of Spark enables it
to compute data batches quicker than Hadoop.

In-memory caching can also help handling huge streaming data that

can easily choke disk-based storages. [9]

2.4.2.2 REAL-TIME QUERIES OVER BIG DATA

Real time in big data is focused on interactivity rather than
milliseconds response, but the real-time queries should respond in
order of seconds and minutes rather than batch jobs which finish in

hours and days.

2.4.3 STREAMING BIG DATA

Data streams now has many common examples such as, log streams, click
streams, message streams, and event streams. However, the standard MapReduce
like Hadoop framework is based on batch processing, and that means before the
computation is started, all of the input data must be completely available on an
input store, like, HDFS. After the framework process the input data, the output
result is been available only when all of this computation is not done that means

a MapReduce job execution is not continuous.

Today more application need to run continuously such as, query that
detects some special anomalies from incoming events. This means today’s
applications need more streams. Unfortunately this stream processing is not

available in MapReduce, but rather, this technique can partially handle streams

15

known as micro-batching. The idea is to give the stream as a form of sequence
of small batch chunks of data. On small breaks, the incoming stream is full to a
chunk of data and is delivered to batch system to be processed. There are some
examples of MapReduce model especially realtime that support streaming

processing like spark and GridGain.

In Spark the concept DStream support streaming which is represented as a
sequence of RDDs. The architecture of stream processing in Spark is given in Figure
(2.2).

input data batches of batches of
stream Spark input data Spark processed data
Streaming Engine | 1L

Figure 2.1: illustrate processing in Spark

Spark technique is not support full streaming process, and there are a limited
stream processing frameworks that are inherently designed for big data streams. The
most two famous frameworks are Storm from Twitter, and S4 from Yahoo. Both

frameworks using JVM and both process keyed streams. [9]

2.5 OTHER BIG DATA FRAMEWORKS

There are many open source data processing frameworks are being used
today, in addition of Apache Hadoop and spark frameworks which we were
implemented in this project we will talk about them and also we took randomly
another two of Apache open source framewaorks for processing big data and give

short identification about them.

16

2.5.1 APACHE STORM

Apache Storm is” a free and open source distributed real time computation
system”, Storm makes it easy to reliably process boundless streams of data, the
same thing which Hadoop do for batch processing storm do for real time

processing and it can be used with any programming language.

Storm can be used in many cases like: real time analytics, online machine
learning, continuous computation, and more. It is fast: over a million tuples
processed per second per node. Also storm is scalable, fault-tolerant, assurances

your data will be processed, and is easy to set up and work. [11]
2.5.2 APACHE FLINK

“Is an open-source stream processing framework for distributed, high

performing, always-available, and accurate data streaming applications”

Apache Flink has many features:

1- Itis continuously processes datasets that are added to it constantly.

2- It runs on thousands of nodes with efficient and good latency.

3- The result which is delivered by Apache Flink is precise, even in the case of
unordered or late arriving data.

4- It is fault-tolerant and “stateful” which it means can maintain a combination
or summary of data that has been processed over time.

5- Can recover from failures while maintaining exactly-once application state

[12].

2.6 SUMMARY

This chapter focused on Details about the Big Data science, some of big data

processing types, and some examples of frameworks of big data.
17

Next chapter will show the previous studies and table illustrate that what studies

agree with our research and what do not agree, and our opinion in each study.

18

CHAPTER THREE

LITERATURE REVIEW

3.1 INTRODUCTION

This chapter includes the previous studies, which related to this research,
and table illustrate that what studies agree with this research and what do not

agree, and our opinion in each study.

3.2 PREVIOUS STUDIES

3.2.1 FRAMEWORKS PERFORMANCE

3.2.1.1 ABOUT HDFS IN READ/WRITE

The traditional tools for processing and analyzing data, found it
difficult to process and capture big data. Hadoop architecture consist of a
file system called Hadoop Distributed File System (HDFS) which is an
architecture used to store data. The paper focused on which kind of read
and write way or technology would be selected and depending on what.

The paper talk about Hadoop and its two versions and concentrated
on YARN, also talk about Apache Avro framework and its reliability on
schemas. After that the paper explained the Sequence Files and its types,
then it put the light on HBase and shows its major architectural
components and the kind of its data store is a column-oriented, also the
paper represents the HDFS and HBase properties.

As a result of paper, sequential file is used to deal with flat files and
extract data form and put into them, and it is slower than normal file
system. Also HDFS files regard as write-once and read-many files, and
HBase is scale in terms of writes as well as total volume of data. Also itis
good for structural data and the need of extraction in column manner rather

than row by row. [13]

20

3.2.1.2 SPARK PERFORMANCE AND USABILITY

This paper talks about a group of people in Databricks who improve
Spark performance and usability, so they deploy Spark to a wide range of
organizations, they describe the challenges in Spark, also they show the
needs of Spark users, and lastly they improve Spark based on users report.
Some of Spark challenges that they mentioned are: debugging and

profiling, memory management ...etc.

To solve these challenges they describes three areas of works that
tackle these challenges, these areas are: Engine Improvements, debugging
tools.

They develop a more declarative API. This API is based on
dataFrames. They also have outgoing work to improve Spark performance
and usability. [14]

3.2.1.3 DATA PROCESSING USING HADOOP
FRAMEWORK

According to this paper the author talk about big data and its
characteristics and focuses on Hadoop framework which is used for
capture, processing and analyzing big data .and also focus on two major
components of Hadoop which are MapReduce and HDFS. Hadoop
MapReduce framework is difficult to understand and it Needs time for
execution. These problems solved by implemented Pig and Hive, so the
author also talk about them. After that he discusses the modeling of
Hadoop framework and its future work.

In conclusion the author presents the use of Hadoop in some

domains. [16]
21

3.2.2 FRAMEWORKS PRPCESSING

3.2.2.1 BATCH AND STREAM PROCESSING ON SPARK
AND FLINK FRAMEWORKS

The paper is focus in compare between batch API and stream API
in both framework, Apache Spark and Flink. By performing repeated
experiments for both and then extraction the result from the experiments.

Then the author reviewed related work and he suggested some
recommendation to future work, he used Tera-sort benchmark tool for
comparison and compare between the two frameworks in network usage
and disk usage.

He found in network usage comparison that is Apache Flink have
fixed rate in network data traffic and Apache Spark does not have this
fixed rate in network traffic. In contrast when compared to the disk usage
he found the attitude of the disk also reverses on attitude of the network ,
so Spark don’t use the network at the beginning for reading data, so it
caused late in the reading. Then used random bitstrings for streaming
compared, and found that is the response time of Apache Flink is
minimum than the response time of Apache Spark.

In conclusions he found that the Apache Flink framework is best in
the streaming processing because it based on the concept of streaming, and
Spark is better in the batch processing because it based on the concept of

micro-batch processing. [15]

22

3.2.2.2 COMPARISON BETWEEN MICRO-BATCH AND
STREAMING PROCESSING

The paper is about benchmarking between two open source
platform for batch processing as well as streaming processing engine by
using Amazon data ,also discuss these big data frameworks and show the
limitations of Spark as the existing system and the advantages of Flink as
the new system also talk about Spark streaming and Flink streaming .After
that the author compare between Apache Spark and Apache Flink in many
features and show the infrastructure statistics and data statistics which is
used for comparison , the paper presents the performance of Flink
streaming Vs Spark streaming, monthly distribution of reviews on
Amazon Data, monthly average ratings of new Amazon reviews

In conclusion the author found that both Spark and Flink supply
local connection with Hadoop and NoSQL Databases and able to process
HDFS data. Also the author find Spark is slower than ’Flink” but Spark is
more famous and has strong community support and contributors,
according to Amazon data he found Spark is 179.5% better than “Flink”,
and average time for processing With “Flink” is

240.3sec and Spark is 60.4sec. [17]

3.2.3 BENCHMARKING

3.23.1 COMPARING IN PERFORMANCE USING
BENCHMARKS BETWEEN HADOOP, SPARK AND
HAMAR:

According to this paper, author use benchmark to compare
HADOOP, SPARK and HAMAR performances. He selected and ran

PageRank, Word-Count, Sort, Tera-Sort, K-means and Naive Bayes

23

benchmarks on Hadoop and Spark runtime systems, and ran PageRank and
Word-Count on HAMR runtime system.

And data generators provided in HiBench Benchmark suite. He
measured the running time, maximum and average memory, CPU, usage
and the throughput to compare the performances difference among these
platforms for the six benchmarks.

As a result, the author found that Spark has brilliant performance
on machine learning applications including K-means and Naive Bayes.
For PageRank, Spark runs faster with small input size. Spark is faster on
Word-Count. For Sort and Tera-Sort, Spark runs faster with large input.
However, Spark consumes more memory capacity and the performance
for Spark is restricted by the memory. HAMR s faster than Hadoop for

both two benchmarks with improvements on CPU and memory usage. [7]

3.2.3.2 USING BENCHMARKING FOR
STREAMING SYSTEMS:

By Looking at the paper in (Dec, 2015) the Yahoo Company made
benchmark tool for comparing between the big data frameworks that based
on streaming processing, that frameworks which represented is: Apache
Storm - Apache Flink - Apache Spark.

Apache Storm and Flink, they similar that both of them based on
the real-time streaming processing, but Apache Spark based on microbatch
streaming processing.

Based on the comparison results made by Yahoo, it was found that
the company used in the current status the Apache Storm framework,
because the storm is very useful when it need the fast real-time system and
high response time, conversely if you want a high throughput but you have

delay in this case can use Apache Spark framework. [18]

24

* THE FOLLOWING TABLE SHOWS OUR IMPRESSION OF

THE PAPERS THAT ARE RELEVANT TO OUR RESEARCH

Study name

Our Opinion

0 About HDFS

read and write.

We agree with the author, the methodology of
read and write depends on the dataset or the
case which will process, and sequential files are
slower and must be selected when the
requirement required sequential processing

only.

O Spark
performance and

usability.

They do great work to improve Spark
performance, usability and API, and they
worked on really challenges and important
areas, these areas was problems that faces many
developers who wanted to implement Spark to
make use of their data and have less time to get
their result, and achieve Spark power which
concentrated in: in-memory processing and
simple API.

This paper is from 2015, and these
improvements have been done on Spark 1.2,
but now Spark 2 is available with more

improvements and features.

25

Data processing
using Hadoop

Framework

We don’t agree with author in his Opinion on
Hadoop MapReduce, because it is not difficult
to understand MapReduce job, and it takes

more time in some cases.

Batch and
stream

processing on
spark and Flink

frameworks.

The author adopted in the comparison on data
processing of the Spark in the disk, while
instead of that he could have benefited from the

feature of the Spark in-memory-processing.

Comparison

between micro-

The results of the experiment is contradictory

with the conclusion of the author because he

Batch and| said Flink is faster than Spark and the result
streaming shows the opposite.

processing.

Comparing in | This paper different from our project in two
performance things:

using ‘They compare HADOOP, SPRK and|
SSIEELE HAMAR, but we compare HADOOP and
between SPARK only.

Hadoop, ~ Spark * They use HiBench Benchmark suite regarding
and Hamar.

workloads and we use BigBench Benchmark
suite for generate structure data (E-commerce)

and using it.

26

O Using We like to mention the uses of frameworks
benchmarking | based on what is company need and the volume

for streaming| and kind of data.

systems.

Table 1: Table 3.1 illustrate our opinion.

3.3 SUMMARY

This chapter focused on related or previous studies in term of Big Data and
Benchmark and processing. The next chapters will show the research methodology and

tools and techniques used to develop the research’s framework.

27

CHAPTER FOUR

TOOLS, TECHNIQUES
AND

RECEARCH METHODOLOGY

4.1 INTRODUCTION

This chapter consists of two sections, the first section concerns the tools and

techniques used and the second section relates to the research methodology.

4.2 TOOLS AND TECHNIQUES

4.2.1 APACHE HADOOP

The Apache Hadoop software library is “a framework that allows for the
distributed processing of large data sets across clusters of computers using simple
programming models.” .Apache Hadoop ecosystem contain many component.
This research focused on using two components from Apache Hadoop
ecosystem, they are Hadoop Distributed File System (HDFS) and Hadoop

MapReduce framework.

0 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System is a distributed file system designed to
run on commodity machines. HDFS is a high degree of fault-tolerant and it
designed to be installed on low-cost hardware. Also it provides high data access

to application data and is appropriate for applications that have big data sets. [19]

0 Hadoop MapReduce

* MapReduce is a programming paradigm, and it is the heart of Hadoop,

it is a system for parallel processing on Big Data.

* The MapReduce has two basic functions: map and reduce. These two
functions take the input and exit the output, the input is a set of

key/value pairs, and the output is a list of key/value pairs (possibility

29

to be empty).The Execution of a MapReduce program involves two
phases, first phase : each input pair is given to map function and a set
of input pairs is produced with key and value, second phase :
aggregated all the intermediate values that have the same key into a
list, and then these list are given to a reduce function.

* To distribute MapReduce is implemented using architecture
master/slave. The master machine role is assign tasks and controlling
the slave machines. The master machine role is assignment of tasks
and controlling the slave machines. The graphic in Figure (3.1)
demonstrates the structure of MapReduce job: The input file is stored
in a shared store (such as a distributed file system) and it split into
chunks. First the implementation starts by giving copies of map and
reduce functions code, then the master assigns all map and reduce tasks
to workers. Any map worker reads the corresponding input split, and
sends all of its pairs to map function and writes the results of the map
function into intermediate files. After map phase is finished, the
reducer workers read intermediate files, and send the intermediate pairs
to reduce function, and finally write the pairs of result which has been

produced by reduce tasks into final output files.

O REASONS OF CHOOSING (HDFS) FOR STORING AND
(MAPREDUCE) FOR PROCESSING

Hadoop is the most common and popular implementation of MapReduce.

Hadoop uses master/slave architecture that illustrate in Figure (4.1) by default,
Hadoop stores input and output files on its distributed file system (HDFS). For
example, it can also use NoSQL databases like HBase and Cassandra and even
relational databases instead of HDFS. We have chosen HDFS because it is default
file system of Hadoop, and our data is one big table which is not an entire database,
and HDFS fits to our data. [9]

30

assign map _-- -~. assign reduce

" local write \".
Worker \
write
read Worker °‘;:|':m
Split
Split /
Split Worker — Ol;:'l:lt
i
il gy @ . remote
Input file rexd Output
Intermediate files
Map files Reduce
\ phase / \ phase /

Figure 4.1: Architecture of MapReduce execution

4.2.2 APACHE SPARK

Apache Spark “is a fast and general engine for large-scale data processing
“[20]. It provides applications that reuse set of data through parallel operations
.In addition Spark support scalability and fault tolerance looks like Hadoop
MapReduce [7].

Users take benefit of memory-centric computing structural design, which
is provided in Spark. In addition extra intelligent optimization of user programs

is enabled [21].
RESILIENT DISTRIBUTED DATASET(RDD)

It is the fundamental concept and data structure of Spark, which is a group
of fixed, distributed elements that can be worked in parallel [22].

When a job is assigned to Spark, the data is read from HDFS or other

distributed file systems, and it is then cached in memory .RDD helps to reduce

31

reading from and writing to disk which participates in speeding up the processing,
RDD could not update so any changes leads to create a new partition. Apache
Spark runs APIs in Java, Scala, Python and R shells.

RUNNING THREE CLUSTER MANAGER USING SPARK

- Standalone mode: in easy way can be used in single node, in this mode
the cluster can lunched by hand or by launch script, this mode supported by Spark
distribution

- Mesos mode: Mesos: is delivered by Apache designed to manage the
clusters

- YARN mode: requires Hadoop2.0 or any Hadoop version after
Hadoop2.0. [7]

APACHE SPARK AS A BEST CHOISE

Itis first a competitor to Hadoop MapReduce and it solved latency in Hadoop

MapReduce, and it’s approximate that always against it.

4.2.3 APACHE HIVE

It is a software for data warehouse that helps reading, writing, and
managing large datasets, that located in a distributed storage. It is build to work
on top of Apache Hadoop.

Apache Hive provides tools to allow easy access to data via SQL, so as to
support data warehousing jobs such as extract/transform/load (ETL), and
reporting. It enable enable access to files stored in Apache HDFS, or another data
storage system like HBase.

Apache Hive execute queries by Hadoop MapReduce, so as allows user to
get used with SQL by HiveQL in data query. Also programmers who are familiar
with Hadoop MapReduce framework can be able to connect their own mappers
and reducer to execute more advanced analysis by HiveQL that may not be

provided by natural skills of language [23].

32

0 THE CHOISE OF APACHE HIVE

Hive provides an SQL like interface called HiveOL, which makes your
work and even query easier. With this interface you can create tables in Hive and
store data in it, and even run an operations on tables created [24].

In our research we used Apache Hive to execute queries over data that has

been processed by Hadoop MapReduce and Spark.

424 BIGDATABENCH

BigDataBench offers several (parallel) big data generation tools-BDGS-
to generate big data, from small-scale real-world data while preserving their
original characteristics. For example, on an 8-node cluster system, BDGS
generates 10 TB data in 5 hours. For the same workloads [25].

THE PROPERITES OF BIGDATABENCH SUITE
In our research we used BigDataBench because it has many properties:

* There is a need to be specific when use Bigdatabench.

It had eight real scalable data sets that are extracted from real-

world data sets.

» For the same workload specification, diverse implementations
using competitive techniques are provided, such as Hadoop and
Spark

* It has six workload types, include: Streaming, Offline

Analytics.

» There are 42 workloads in the specification in Bigdatabench.

33

Bigdatabench properties that we mentioned are increasing

by updating the versions of Bigdatabench [26].
In our research we used BDGS to generate Amazon data, as
structural nature, and search engine data as an example for

unstructured data.

4.3 RESEARCH METHODOLOGY

Here you will found the steps and activities that we have done to reach our

objectives:

Survey.

Prepare the environment.

Configuring Hadoop and Spark in all machines.
Formatting name-node in master node.

Starting Hadoop and Spark and hive Services.
Data generation.

Running jobs.

4.3.1 SURVEY

4.3.1.1 SURVEY PURPOSES

To prove there is big data in Sudan.

To investigate whether there is big data and how it existence could

make real problem in companies.

To find out whether big data solutions have been used in Sudan.

34

4.3.1.2 SAMPLE DISTRIBUTION AND FILLING UP

We divided Sudan into three sectors: services sector,
telecommunication sector and banks sector. We have chosen these sectors
because companies belonging to these sectors may have big data. We took
a random sample of companies from these sectors. Then we design the
questionnaire by google form. And ask the employee of this companies to
help us getting information needed. Finally the questionnaire has been

filled up and discussed with those employees.
4.3.1.3 SURVEY QUESTIONS

As shown in appendix (B), the questions were very clear and most

of them cannot accept multiple answers.

We ask about latency in question 5 to see if the companies suffer
from its big data, for example in decision making or reports generating.
We also asked about batch processing and parallel processing, to see the
most one used in Sudan if existing. There are two questions that aim to
know the mechanism of storage in companies. There are also some
questions that aim to know which framework is used to process this big

data, if it exist.

4.3.1.4 SURVEY RESULTS

These are the questions and the result of each one:

35

company name :

et adaslt s 55

A syt
s

MTN

pslajal sy

Central Bank of Sudan

Zain Sudan

Figure 4.2: illustrate Question 1

Employee name :

e S

A

A=l 2eas(developer)

G o

Jse vaal

Abubakar Ahmed Elhussien

Elrasheed Elnoman Mohamed Abdalla

Figure 4.3: illustrate Question 2

36

Department name :

7 responses

il gl pusf 130

J 3Bl

Bl

manager bi

il 5 agall il my e
Information Technology

Business Intelligence and Data Warehouse

Figure 4.4: illustrate Question 3

Did your company has big data(e.g Billion record or 1 Tera volume...etc)

7 responses

@ ves

Figure 4.5: illustrate Question 4

37

Did this big data make latency in company’s decisions(e.g delaying reports or
delaying decisions ...etc)?

/ responses

® Yes
@® No

Figure 4.6: illustrate Question 5

Which techniques do you use to process this data?

RDBMS

Relational Database
RDBMS , DataWarehouse
oracle RDB, Tuning

Oracle Bl and DWH suits

Figure 4.7: illustrate Question 6

38

did you use Batch processing ?

7 responses

® Yes
@® No

39

Figure 4.8: illustrate Question 7

did you use parallel processing ?

7 responses

® Yes
® No

Figure 4.9: illustrate Question 8

where you store this big data(distributed or central)?

/ responses

@ distributed
@ central

v

40

Figure 4.10: illustrate Question 9
Did you store data in HDFS?

7 responses

® Yes
® No

Figure4.11: illustrate Question 10

Did you use Hadoop MapReduce to implement this big data?

7 responses

® Yes
® No

No
7 (100%)

41

Figure 4.12: illustrate Question 11

Did you hear about apache spark?

7 responses

® Yes
® No

Figure 4.13: illustrate Question 12

42

Did you use apache spark framework to implement this big data?

/ responses

® Yes
® No

Figure 4.14: illustrate Question 13

HINT:
According to these survey results and interviews that we done, we discovered
that a big data is really a big problem in some companies, especially in
telecom companies, and found that these companies are starting to address
big data concept this year, but they suffer from decrease of knowledge and
team practice and expertness, based on this results, we do our research to learn
and implement two big data solutions framework (Hadoop MapReduce and
Spark) to help these companies to implement big data solutions and make use

of their big data.

4.3.2 PREPARE THE ENVIROMENT

In this research the work was configured in 2 environments:

43

« Multi-node cluster in a distributed environment consist of 3
machines(nodes):
a. Master node (Containing Name-Node and Data-Node):
» Processor: dual core, 2.10GHz, 2.10 GHz.
 Installed memory (RAM): 4.00 GB.
« Disk: 298.09 GB.

b. slave node (Containing DataNode):
* Processor: core i3, 1.80GHz, 1.80 GHz.
* Installed memory (RAM): 4.00 GB.
» Disk: 465.75 GB.

c. slave node (Containing DataNode):

* Processor: dual core, 2.20GHz, 2.20 GHz.
» Installed memory (RAM): 4.00 GB.
* Disk: 465.75 GB.

* Multi-node cluster in a distributed environment consist of 2
machines(nodes):
a. Master node (Containing Name-Node and Data-Node):
* Processor: core i3, 1.80GHz, 1.80 GHz.
 Installed memory (RAM): 4.00 GB.
» Disk: 465.75 GB.

b. Slave node (containing DataNode):

* Processor: dual core, 2.10GHz, 2.10
GHz.

* Installed memory (RAM): 4.00 GB.

» Disk: 298.09 GB.

44

4.3.3 CONFIGUREING MACHINES
CONNECTION

In cluster mode implementation we connect machines with
Ethernet network. Firstly, we mapped nodes by editing (hosts) file in “etc”
folder in all machines, by specifying IP address for each machine followed
by hostname of the machine.

Secondly configure SSH login in each node, so that each machine can enter

to another one without password, by commands shown in figure (4.15).
$ sudo apt-get install openssh-server

$ ssh-keygen -t rsa

$ ssh-copy-id -1 ~/.ssh/id_rsa.pub hdusr@master

§ ssh-copy-id -1 ~/.ssh/id_rsa.pub hdusr@slavel

$ ssh-copy-id -1 ~/.ssh/id_rsa.pub hdusr@slave2

$ chmod 0600 ~/.ssh/authorized keys

$ sudo reboot

Figure 4.15: SSH steps

Configuring SSH in each node must be done before configuring Hadoop and
Spark frameworks, because master node must have access to all slave nodes, so

it can distribute data and work in slave nodes.

4.3.3.1 CONFIGURING “HADOOP”, “SPARK” AND “HIVE”

We wrote documents and share videos on YouTube for the
right and easiest way to configure “Hadoop” and “Spark”, and the
preinstalled programs needed by “Hadoop” and “Spark™. These

documents and videos are found in appendix (A).

+ FORMATING NAMENODE IN MASTER NODE :

45

It is an important step when configuring Hadoop. It empties
Hadoop file system from any data. We formatted it using command as
shown in figure (4.16), and the feedback after command is shown on figure
(4.17)

M & @ sajda@slave3: /usr/local/hadoop-2.7.0

Eajda@slave3: /usr/local/hadoop-2.7.05 bin/hadoop namenode -formatl

Figure 4.16: format NameNode
M & sajda@slave3: Jusr/local/hadoop-2.7.0
17/08/02 15:58:45 INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.num.user
s = 10
17/08/02 15:58:45 INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.windows.
minutes = 1,5,25
17/08/02 15:58:45 INFO namenode.FSNamesystem: Retry cache on namenode is enabled
17/08/062 15:58:45 INFO namenode.FSNamesystem: Retry cache will use 0.03 of total
heap and retry cache entry expiry time is 600000 millis
17/08/062 15:58:45 INFO util.GSet: Computing capacity for map NameNodeRetryCache
17/08/02 15:58:45 INFO util.GSet: VM type = 64-bit
17/08/02 15:58:45 INFO util.GSet: 0.029999999329447746% max memory 889 MB = 273.
1 KB
17/08/02 15:58:45 INFO util.GSet: capacity = 2715 = 32768 entries
17/08/062 15:58:45 INFO namenode.FSImage: Allocated new BlockPoollId: BP-758996794
-192.168.43.171-1501678725047
17/08/062 15:58:45 INFO common.Storage: Storage directory /usr/local/hadoop_tmp/h
dfs/namenode has been successfully formatted.
17/08/02 15:58:45 INFO namenode.NNStorageRetentionManager: Going to retain 1 ima
ges with txid >= 0
17/08/62 15:58:45 INFO util.ExitUtil: Exiting with status ©
17/08/02 15:58:45 INFO namenode.NameNode: SHUTDOWN_ MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at slave3/192.168.43.171

**/

sajda@slave3: /usr/local/hadoop-2.7.05 |}

Figure 4.17: Successfully formatted
« STARTING HADOOP AND SPARK AND HIVE SERVICES

Master node is responsible for starting Hadoop and Spark services (see

chapter two).

We cannot do any job in “Hadoop” or “Spark” without starting these services.

Figure (4.18) showing starting these services.

46

slavel: starting namenode, logging to /usr/local/hadoop-2.7.0/logs/hadoop-hdusr-
amenode-slavel.out
slavel: starting datanode, logging to /usr/local/hadoop-2.7.0/logs/hadoop-hdusr-
Hatanode-slavel.out
slave3: starting datanode, logging to /usr/local/hadoop-2.7.0/logs/hadoop-hdusr-
Hatanode-slave3.out
slave22: starting datanode, logging to /usr/local/hadoop-2.7.0/logs/hadoop-hdusr
datanode-slave22.out
Starting secondary namenodes [0.0.0.0]
P.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop-2.7.0/logs/had
bop-hdusr-secondarynamenode-slavel.out
17/10/17 14:34:33 WARN util.NativeCodelLoader: Unable to load native-hadoop libra
y for your platform... using builtin-java classes where applicable
starting yarn daemons
starting resourcemanager, logging to /usr/local/hadoop-2.7.0/logs/yarn-hdusr-res
burcemanager-slavel.out
slavel: starting nodemanager, logging to /usr/local/hadoop-2.7.0/logs/yarn-hdusr
nodemanager-slavel.out
slave3: starting nodemanager, logging to /usr/local/hadoop-2.7.0/logs/yarn-hdusr
nodemanager-slave3.out
slave22: starting nodemanager, logging to /usr/local/hadoop-2.7.0/logs/yarn-hdus
-nodemanager-slave22.out
d (d gvel: QC3g N3doon -

Figure 4.18: Starting Hadoop daemon

4.3.3.2 DATA GENERATION

We try to use data set from real case in Sudan, but we did not succeed

for the following reasons:

» Big data trend is novel in Sudan, and just big companies started
thinking of it. Unfortunately no company has a complete
implementation of real big data solution for its big data.

* In Sudan big companies are afraid of giving students its data.

* We have requested big data set from (X) company, at the
beginning they have accepted our request, but later they decided

to reject our request because of data sensitivity.

In this research we have generated E-commerce data as structural

data, and search engine data as unstructured data.

DATA DESCRIPTION
47

1. Search engine data set

o Text data has been generated, which is Wikipedia

Entries.

o Its one-gigabyte data.

2. E-commerce data set

o Table data has been generated, which is E-commerce

Transaction Data.

o Its 30-gigabyte data as shown in figure(4.19)

hdusr@slave1: /usr/local/BigDataBench_V3.1.1_Hadoop_Hive/Interactive_Query
hdusr@slave1: /usr/local/BigDataBe... X hdusr@slavet: - X hdusr@slave1: /usr/local/hadoop-2....

| 99.19% 06h:00m:155:736ms
| 99.23% 6h:00m:155:6ms

| 99.29% 0h:00m:13s5:749ms
| 99.36% 0h:00m:125:415ms
| 99.43% 6h:00m:115:85ms
| 99.49% Oh:00m:095:926ms
| 99.55% 0h:00m:08s:653ms
| 99.62% Oh:00m:07s:349ms
| 99.68% 0h:00m:06s:143ms
| 99.75% Oh:00m:04s:794ms
| 99.82% 0h:00m:03s:445ms
| 99.89% 0h:00m:02s5:148ms
| 99.96% 6h:00m:00s:866ms

: Oh:32m:195:659ms size: 21.0 GiB speed: 11.

Statistics

Overall time Oh:38m:305:93ms
32.9 GiB
14.6 MiB/s

Node 1. logged detalled processing statistics to file:/usr/local/BigDataBench_V3
.1.1_Hadoop_Hive/BigDataGeneratorSuite/Table_datagen/e-com/logs/GenerationStatis
tics 1.csv

Figure 4.19: generated 30-gigabyte data

o This data is divided into two text files, ORDERS.txt
and ORDERS_ITEMS.txt.

48

o ORDERS.txt file: consist of 3 attributes, order _id
(integer), buyer _id (integer) and create_date (string).
This file has 420,000,000 record.

o Figure (4.20) shows the format of the file
ORDERS_ITEMS.txt as it downloaded.

o7 -0a-2<al
211 -65S-06
o131 -0656-1S
o10-98 - 16
o077 -09 -2
©11-10-19

NNN

010 -8 -0S
2008 -05-31

NNNNN

o o o o) (8 00 D N O
00000
M
"
0
X
W
0

NNNNNNNNNNM SR b o o o o o o o o o e
VONOVNOWUNMOQUONOVAWNMONN

NNNNNNNNNNWMEp b QONONAWNWD
VONOVNOWNMOUON WD WN M mw ww mw m mwr o o o v oo

Figure 4.20: ORDERS.txt file

o ORDERS_ITEMS.txt file: consist of 3 attributes,
item_id (integer), order_id (integer), goods_id
(integer), goods_number (double), goods price
(double) and goods_amount (double). This file has
420,000,000 record also.

o Figure (4.21) shows the format of the file
ORDERS_ITEMS.txt as it downloaded.

49

©]4210351682594|0]567|661.40|375117.12
1]4308856748175|1]601[275.27|165442.89
2]4407361813756|2]843|338.43|285618.31
3]4505866879337]3]423]923.01|390460.66
4]4604371944918|4]424|862,.29|366151.53
5|47028770108499|5]99]28.64|2850.46
6]4801382076080|6]561|544.24|305651.61
7| 4899887141661 |7]972]|717.62|698228.44
814998392207242|8|1008(252.17|25407.78
9196897272823|9|712|618.97|440931.92
10]195402338404|10|4]921.31]4277.48
11]293907403985|11|666[347.65]231790.68
12]1392412469566|12]625|649.86[406562.44
13]490917535147|13|390|601.99|235281.48
14]589422600728|14|410}441.31|181267.49
15]687927666309]|15|282]17.84|5041.28

16| 786432731890 |16|626|899.59|563428.22
17]1884937797471|17]947|173.99]164909.55
18]983442863052|18|724]|120.60]87360.19
19]|1081947928633|19|799]494.25|395238.07
20]1180452994214|20|970]204.08]198085.33
21]|1278958059795|21|532|726.45|386942.86
22|1377463125376|22|340]878.88]299668.71
23]1475968190957|23]|2|759.89|1720.07
24|1574473256538|24|370[924.65]342427.39
25]|1672978322119|25|578959.32|555284.82

L a TR S ASA M IATETE AL w L AP AT e s el maTesa & o

Figure 4.21: ORDERS _ITEM.txt file

4.3.4 RUNNING JOBS

Two jobs have been run on that data generated, these jobs are:
Word-Count on Hadoop cluster and select query on Hadoop and Spark.
By these jobs, data processing concept has been implemented on Hadoop

and Spark.

4.3.4.1 Running Word-Count Workload on Hadoop cluster
Word-Count is a workload from Microbenchmarks suite, its
function is to count the appearance of each word in the input file,
and it work on text file as an input. This workload is a script file as

shown in the figure (4.22).

50

run_MicroBenchmarks.sh x

WORK_DIR="pwd
echo "WORK DIR=SWORK DIR data should be put in SWORK DIR/data-MicroBenchmarks/in"

algorithm=(sort grep wordcount)

Af [-n "S$1°]; then
cholce=$1

else
echo
echo "1,
echo "2. S{algorithm[1]) Workload'
echo "3. ${algorithm[2]} Workload
read -p "Enter your choice : " cholce

fi

echo "ok. You chose Schoice and we'll use ${algorithm[Schoice-1]} Workload"
Workloadtype=S{algorithn[$cholce-1]}

if [ype" == "xsort"]; then
S{Ha bin/hadoop fs -rmr S{WORK_DIR}/data-MicroBenchmarks/out/sort
time S{HADOOP_HOME}/bin/hadoop jar S{HADOOP_HOME}/share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar sort [sort-data /sort-datafoutput

ellf ["xSworkloadtype" == "xgrep"]; then

S{HADOOP_HOME}/bin/hadoop fs -rmr S{WORK_DIR}/data-MicroBenchmarks/out/grep
time S{HADOOP_HOME}/bin/hadoop jar ${HADOOP_HOME}/share/hadoop/mapreduce/hadoop-mapreduce-examples-*,jar grep S{WORK_DIR)/data-
MicroBenchmarks/in S{WORK_DIR}/data-MicroBenchmarks/out/grep a*xyz

elif ["xSworkloadtype" == “xwordcount™]; then
S{HADOOP_HOME) /bin/hadoop fs -rmr S{WORK_DIR}/data-MicroBenchmarks2/out/wordcount
time S{HADOOP_HOME}/bin/hadoop jar S{HADOOP_HOME}/share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar wordcount S${WORK DIR}/data-

MicroBenchmarks2/in S{WORK_DIR}/data-MicroBenchmarks2/out/wordcount

echo "unknown cluster type: Sclustertype”
fi |

sh+ TabWidth:8 + Ln 48, Col 4 INS

Figure 4.22: Run_Microbenchmarks.sh file

WordCount Functionality Description

To implement the wordCount Functionality, The first step NameNode stores
the input in HDFS on the background. Secondly word-count job is performed, to
operate map reduce job on Hadoop cluster. The last step is to collect result and store
it in a file in HDFS.

Machines performance data were collected while the word-count job is
running. We choose running time, physical memory consumption and CPU time
spent as operators, because they are the standard measurements to show the
performance of each job. A performance data are collected using JobHistory user
interface, which is a Hadoop service used to track MapReduce jobs. The first
JobHistory service in Hadoop is started as shown in figure (4.23), and then open it

in the browser. It is started in port 19888 as shown in figure (4.24).
51

spa gagegege W S0

dusr@slavel:~$ cd Jusr/local/hadoop-2.7.0/sbin
L S S AT AL T L R A S VA Al . /mr - Jobhistory-daemon.sh start histo
ryserver

ktarting historyserver, logging to Jusr/local/hadoop-2.7.0/logs/mapred-hdusr-his
oryserver-slavel.out

dusr@slavel: Jusr/local/hadoop-2.7.0/sbin$S

Figure 4.23: start JobHistory service

JobHistory

~ Application Retired Jobs

About
Jobs Show 20 +| entries Search;
Maps Maps
s Tonle Submit start Time Finish . User Oueue b
T(V'”“} Time 3 : y"p-,. N jl‘b D Name) gt A

Ciat
3

late + Total Completed

2017.10,12 2017.10.12 2017.10.12 job 1507816754217 0001 create table hdusr default SUCCEEDED 3 3
17:07:58 17:08:17 17:09:59 item_goods as
EAT EAT EAT

select
go...items(Stage

Showing 1 to 1 of 1 entries
Figure 4.24: JobHistory Ul

4.3.4.2 Run “select” query on E-Commerce data set (described
above) using Hadoop MapReduce and Spark

This “select” job was implemented on the same cluster, when using the
two frameworks.

O “Select” Query in Hadoop

The first step was to store the input files in “HDFS” using
commands as shown in figure (4.25). Figure (4.25) show that, firstly create

a folder in HDFS called Hive and create 2 folders inside it, item and order
52

Loggedin

folder, then bring the text files from path where it stored through
generation step, and put the ORDERS.txt file in order file on the HDFS,
and the ORDERS_ITEMS.txt file in items file on the HDFS.

cd SBigdataBench_Home/Interactive Query

hadoop dfs -rmr [hive

hadoop dfs -mkdir -p /hive/item

hadoop dfs -mkdir -p /hive/order

hadoop dfs -put $BigdataBench Home/Interactive Query/data2/0S ORDER.txt /hive/order/
hadoop dfs -put $8igdataBench_Home/Interactive_Query/data2/0S_ORDER_ITEM.txt /hive/iten/

Figure 4.25: create a folder in HDFS called Hive

Then by using Hive we have created a table called items_hadoop
consists of 6 columns (item_id, order_id, goods id, goods_number,
goods_price and goods_amount), with hiveQl command as shown in
figure (4.26).

hive> create external table {tems hadoop(item 1d int,order 1d int,qoods 1d int,g

000s_nunber double,goods price double,goods amount double) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|' STORED AS TEXTFILE LOCATION '/hive/tten';

Figure 4.26: created table in hive

The next step was to do the select Query over “items_hadoop”

table, using hiveOL command as shown in figure (4.27).

53

1.X releases.
hive> create table {tems_goods as select goods_price from items_hadoop;

Figure 4.27: Select Query in hive

Then MapReduce started doing the select job, as shown in figure (4.28).

hive> create table items_goods as select goods_price from items_hadoop;

FAILED: SemanticException 0:0 Error creating temporary folder on: hdfs://slavel:
9000 /user /hive/warehouse. Error encountered near token 'TOK_TMP_FILE'

hive> create table items_goods as select goods_price from items_hadoop;

WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the fut

re versions. Consider using a different execution engine (i.e. tez, spark) or ug
ing Hive 1.X releases.

Query ID = hdusr_20171016193439 _161ec424-45e2-44911-b1aa-820dcaBa27cf

Total jobs = 3

Launching Job 1 out of 3

Number of reduce tasks is set to © since there's no reduce operator

Starting Job = job_1508170046109_0001, Tracking URL = http://slavel:8088/proxy/3d
pplication_1508170046109 0001/

Figure 4.28: Hadoop MapReduce started doing the select job

Finally the result was fetched, and the job information was saved

in “jobHistory” interface, you will see these results in chapter 5.

O Select query in Spark

Firstly starting “Spark-shell” application, as shown in figure (4.29)
which is an application in Spark framework that enables you to write an
application to be performed by Spark using Scala, java, or R languages.

On this research we used Scala to write a program in Spark to do
the select Query.

Secondly we created “SparkContext” to initialize “hiveContext” in

Spark shell, which enable to write queries and interact with hive

“metastore” using “HiveQL” shown in figure (4.30)

Then used the Spark context value to create table called
“items_Spark™ with attributes: (item_id (integer), order id (integer),
goods_id (integer), goods_number (double), goods price (double) and
goods_amount (double)), as shown in figure (4.31), the system

automatically create a folder called “Sparkwarehouse” to store tables on
54

it. Then we load the data stored in “ORDERS ITEM.txt” file as shown in
figure (4.32). After that we wrote select query on table “items_Spark™ and
stored the result on “resu” variable, shown in figure (4.33).

Finally showing the result using “show () “method, and then went
to “SparkJobs” interface and tracked this job information, it is started
when we start Spark services, in port “4040”.

! ! A Ry () A

S UV i S S e

s e e e A S AR version 2.1.1
/_/

Using Scala version 2.11.8 (Open]DK Server VM, Java 1.7.0_151)

Type in expressions to have them evaluated.
Type :help for more information.

scala> val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)

arning: there was one deprecation warning; re-run with -deprecation for details
sqlContext: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.Hi
veContext@4da485

Figure 4.29: Start Spark shell

scala> val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)

warning: there was one deprecation warning; re-run with -deprecation for details
sqlContext: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.H1i
veContext@4da485

scala> |}

Figure 4.30: write queries and interact with hive

scala> sqlContext.sql("CREATE TABLE IF NOT EXISTS items_spark(item_id int,order_
id int,goods_1id int,goods_number double,goods_price double,goods_amount double)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' LINES TERMINATED BY '\n'")

res®: org.apache.spark.sql.DataFrame = []

scala>

55

Figure 4.31: Spark context value

cala> sqlContext.sql("LOAD DATA LOCAL INPATH '/usr/local/BigDataBench V3.1.1 Ha
doop_Hive/Interactive_Query/data2/0S_ORDER_ITEM.txt' INTO TABLE items_spark")

resl: org.apache.spark.sql.DataFrame = []

cala>

Figure 4.32: load the data stored in “ORDERS_ITEM.txt”

scala> val resu = sqlContext.sql("FROM items_spark SELECT goods_price")
resu: org.apache.spark.sql.DataFrame = [goods_price: double]

scala>

Figure 4.33: store the result on “resu” variable

After this “select” job, we searched a lot for tool that measure
machines performance while the job is running on the background, we
tried “collect and Graphana” tool, which is used for monitoring machine
resources (processor, RAM, Disk) performance, but we found that it
monitor a single machine, and we are doing our job on a “cluster” consist
of 3 machines. Then we tried “htop” service on Ubuntu, which read the
measurements of machine while “processes” is running, but we discovered
that when map Reduce or Spark run a job; this job started multiple
processes in Ubuntu, it executed many java script files, for that reason we
could not track jobs using this service (htop) because “htop”, giving results
to single running process. For these reasons we used Hadoop service
“JobHistory” to track MapReduce job, and “SparkJobs” interface to track
Spark job.

56

4.4 SUMMARY

This chapter shows the main tools and techniques that have been used to
achieve the goals of this project, and explained the research methodology that
used to achieve goals. In next chapter we will show you the results has been
collected from two jobs (Word-Count and select Query), and the comparison

results.

57

CHAPTER FIVE

RESULTS

AND

RECOMMENDATIONS

5.1 INTRODUCTION

Last chapter describes the work that have been done and the tools and
techniques used, it describes the two jobs (“Word-Count” and “Select” query)
that have been done on the cluster using Hadoop MapReduce and Spark. This
chapter will show you results that have collected when applying the two Jobs to
Hadoop MapReduce and Spark, then the comparison results between the two

frameworks. And also shows the recommendations.

5.2 RESULTS

These are the results that have collected when running jobs on Hadoop

MapReduce and Spark.

5.2.1 PERFORMANCE RESULTS OF

“WORD-COUNT” JOB ON ‘Hadoop
MapReduce’ CLUSTER

After running (Word-Count) on Hadoop cluster using Hadoop
MapReduce framework, the result is stored in output file in the (HDFS),
the output was in format of lines, and each line shows the word and its
appearance in the text input file. Then get the resources measurements
from “JobHistory” interface, we have chosen these three measurements to
be shown in this chapter, but actually “JobHistory” interface gives many

other measurements.

59

The result of “Word-Count” job take these consumptions while
running: (Running time = 4 mins, 22 sec, Physical memory (bytes) =
2738606080, CPU time spent (ms) = 580,700)

5.2.2 PERFORMANCE RESULTS OF “Select”
QUERY USING HADOOP MAPREDUCE

Resources measurements have get from “JobHistory” interface while the “select” job

Is running as shown in figure (5.1).

€9 slavel 8 $ &0
ime Mag Red Tol

Jata-local map tasks 0 0 3

Killed map task 0 0 1

Launched map tasks 0 0 4

Job Counters Other local map tasks 0 0 1

Total m yte- nds n by 3ll maj ks 0 0 297,588,736

Total time spent by all map tasks (ms 0 0 290,614

Total time spent by all maps in occupied slots (ms) 0 0 290,614

Total veore-seconds taken by all map tasks 0 0 290,614
Name - Map Reduce Tota

CPU time spent (ms) 51,240 0 51,240

failed Shuffles 0 0 0

GC time elapsed (ms 1,199 0 1,199

In | 789 0 789

Map-Reduce Framework Map input records 14,000,000 0 14,000,000

Map output records 0 0 0

Merged Map outputs 0 0 0

Physical mem napsh 456,957,952 0 456,957,952

Spilled Records 0 0 0

Total committed heap usage (bytes) 232,521,728 0 232,521,728

Virtual memory (bytes) snapshot 1,495,0¢ 2 1
Name . Map Reduce < Tota

Figure 5.1: measurements was saved in “JobHistory”

» RESULTS SNAPSHOT OF “select”
QUERY

Running time: 1mins, 42sec

CPU time spent (ms):
60

o) Map job takes = 51,240
o) Reduce job takes =0

o AVG= 51,240

Physical memory (bytes):
o Map job used = 456,957,952
o Reduce job used =0
o AVG=456,957,952

Virtual memory (bytes) snapshot:

o) Map job used = 1,495,048,192
o) Reduce job used = 0

o AVG=1,495,048,192

5.2.3 RESULTS OF “select” QUERY IN SPARK
CLUSTER

These results have get from “SparkJobs” interface, which shows
the job id, stages, submitted time, and job duration, as shown in figure
(5.2).

61

Spark Jobs ()

User: hdusr

Total Uptime: 5.3 min
Scheduling Mode: FIFO
Completed Jobs: 1

» Event Timeline

Completed Jobs (1)

Jobld v Description

0 show at <console>:29

Submitted Duration Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total

2017/10/17 14:55:57 5s n

11

Figure 5.2: result measurements in “SparkJobs”

We could not get performance measurements of machines in spark,

because “sparkJobs” interface does not show them, and we did not find another

interface that show these measurements.

5.2.4 COMPARISON RESULT BASED ON TIME
OF PROCESSING

Date records

Framework

420,000,000

Hadoop MapReduce

1mins, 42sec

Spark

5 Sec

Table 2. Table 5.1 illustrate comparison result

62

According to this table:

OWhen implementing “select” query job, we found that
“Hadoop MapReduce” takes a lot of time to do this job,
but spark gives you the result per “Enter press”, as you see
above by numbers. Although this is very simple job but
Hadoop MapReduce takes time greater than spark time, it
takes more than doubled time compare with spark. This
result is because Spark do its processing and store part of
input data in memory not in disk, but Hadoop MapReduce
do it’s processing in disk, and absolutely access to memory

is very fast than access to disk.

5.2.5 COMPARISON RESULTS

As a comparison between Hadoop ecosystem configuration and spark
configuration; we found that Hadoop has very complex configuration,
but “Spark” has simple and clear configuration.

“Hadoop” has clear error messages, and problems caused on it can be
understood easily, but spark gives unclear exceptions, we took a lot of
time to understand cause of problem or exceptions.

Hadoop MapReduce has great support on the internet, many
communities show questions and answers which help us very much,
but Spark has poor support over the internet, because Spark is new

technology which appear in 2014.

63

5.3 CONCLUSION:

From the experimental work, we found Spark overcomes Hadoop
MapReduce performance in all cases. We conclude that several factors can give
a rise to a significant performance difference. First, Spark pipelines resilient
distributed datasets (RDDs) transform and keep persistent RDDs in memory by
default, but Hadoop mainly concentrates on high throughput of data rather than
on job execution performance, such that MapReduce results in overheads due to
data replication, disk 1/O, and serialization, which can dominate application
execution times. Finally, yet importantly, Spark has more optimizations, such as
the number of disk accesses per second, memory bandwidth utilization and IPC
rate, than Hadoop, so that it provides a better performance, Spark is sure to be the
best fit.

5.4 RECOMMENDATIONS

We recommend to do the “select” query job multiple times in “Spark” and
“Hadoop MapReduce”, and each time of running, increase one of machine
resources such as, CPU cores, RAM used, or Disk space, to find that which
resource affect the job performance in, and in which case “Spark” has better
performance than “Hadoop MapReduce” and the opposite also.

Use more complex query rather than select query, when the machines has big
disk space and large memory.

Design an intelligent system that can help to choose a platform and the
configuration parameters, based on the applications and the input data sizes to

get the optimized performance.

64

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

UK, Fujitsu ; , Irelan;, BigDataThe definitive guide to therevolution in business analytics, 2012.

Bhadani, Abhay Kumar ; Jothimani, Dhanya ;, "Big Data: Challenges, Opportunities and Realities,"
in Effective Big Data Management and Opportunities for, India, Indian Institute of Technology

Delhi, 2015.

"Challenges and Opportunities with Challenges BigData," A community white paper developed

by leading researchers across the United States, 2015.

. N. Samal and N. Mishra, "Big Data Processing: Big Challenges and Opportunities," Journal of

Computer Sciences and Applications, vol. 3, pp. 177-180, 2015.

.M. Mayo and . K., "Top Big Data Processing Frameworks," 2016. [Online]. Available:
https://www.kdnuggets.com/201 % ** ¥* ¥k xkkkkdok ok xk Xk kx k¥ ***6/03 /top-big-data-

processing-frameworks.html. [Accessed 16 10 2017].

Elmasri, Ramez ; Navathe, Shamkant B;, FUNDAMENTALS OF Database Systems SEVENTH
EDITION, Texas : Department of Computer Science and EngineeringThe University of Texas at

Arlington, 2016, 2011, 2007.

Liu; Lu;, "Performance comparison by running benchmarks on Hadoop, Spark, and HAMR," no.

2015, 2016.

C. Hope, "Batch processing," 10 2 2017. [Online]. Available:

https://www.computerhope.com/jargon/b/batchpro.htm. [Accessed 17 10 2017].

S. Shahrivari, "Beyond Batch Processing: Towards Real-Time and Streaming Big Data," computers,

2014.

[10] T. A. S. Foundation., "Welcome to Apache™ Hadoop®!," 4 10 2017. [Online]. Available:

http://hadoop.Apache.org/. [Accessed 18 10 2017].

[11] A. S. Foundation., "Apache Storm," [Online]. Available: http://storm.Apache.org/. [Accessed 18

10 2017].

65

[12] T. A. S. Foundation, "Apache Flink® is an open-source stream processing framework for
distributed, high-performing, always-available, and accurate data streaming applications.,"

[Online]. Available: https://flink.Apache.org/. [Accessed 18 10 2017].

[13] S, Sunil Kumar ; G, Sanjeev Kanabargi;, "Challenges for HDFS to Read and Write Using Different

Technologies," International Journal of Science and Research (IJSR) , pp. 1-6, 2013.

[14] Armbrust, Michael; Das, Tathagata; Davidson, Aaron ; Ghodsi, Ali ; Or, Andrew ; Rosen, Josh ;
Stoica, lon; Wendell, Patrick ; Xin, Reynold ; Zaharia, Matei ;, "Scaling Spark in the Real World,"
Proceedings of the VLDB Endowment - Proceedings of the 41st International Conference on Very

Large Data Bases, Kohala Coast, Hawaii, vol. 8, no. 12, pp. 1840-1843 , 2015.

[15] Kevin , Jacobs; Kacper, Surdy; CERN. Geneva. IT Department;, "Apache Flink: Distributed Stream
Data Processing," 2016.

[16] Francis, Navya ; K, Sheena Kurian ;, "Data Processing for Big Data Applications," International

Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 8, 2015.

[17] Kaur, Dilraj ; Chadha, Raman ; Verma, Nitin, "COMPARISON OF MICRO - BATCH AND STREARMING
ENGINE ON REAL TIME DATA," INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES &
RESEARCHTECHNOLOGY, no. 2277-9655, 2017.

[18] R. Sliberman, "A benchmarking tool for Streaming systems," Big Data Architect, 2015.

[19] D. Borthakur, "The Hadoop Distributed File System:Architecture and Design.," The Apache

Software Foundation, 2007.

[20] [Online]. Available: http://spark.Apache.org/.

[21] "Apache Spark Primer," in databricks, 2017.

[22] [Online]. Available:
http://spark.Apache.org/docs/0.8.1/api/core/org/Apache/spark/rdd/RDD.html.

[23] "Apache Hive," Apache Community Development Project., 2017. [Online]. Available:
http://projects.Apache.org/project.html?hive.

66

[24] "StackOverFlow," 12 january 2016. [Online]. Available:
https://stackoverflow.com/questions/13911501/when-to-use-hadoop-hbase-hive-and-pig.
[Accessed 19 10 2017].

[25] Prof; Zhan, Jianfeng ;, BigDataBench User Manual, ICT, Chinese Academy of Sciences.

[26]1C. A. o. S. ICT, "BigDataBench," 16 february 2017. [Online]. Available:
http://prof.ict.ac.cn/#WhyBigDataBench. [Accessed 19 10 2017].

[27] [Online]. Available: https://www.ibm.com/analytics/us/en/technology/Hadoop/MapReduce/.

[28] Office of the Vice President for Management and Budget University of Virginia , "Benchmarking

in higher education".

67

APPENDICES

68

APPENDIX (A)

CONFIGURATION OF FRAMEWORKS

69

INTRODUCTION

To insure that the frameworks or the environment working well, we introduce the
steps of Hadoop , Spark and BigBench installations and configurations and also we

show some snapshots of the important steps that shows result when executed.

HADOOP CONFIGURATION

Before install Hadoop framework we have Prerequisite:
First, you must install ssh server:

* SSH, or Secure Shell, is a protocol used to securely log onto remote systems.

It is the most common way to access remote Linux and Unix-like servers.

Fire this command to do this:

$ sudo apt-get install openssh-server

then to make your machine communicate with one another without any prompt
for password:

this command to generate key between machines via:
$ ssh-keygen -t rsa this
command to copy the id via:
$ ssh-copy-id -i ~/.ssh/id_rsa.pub ubuntu@master this
command to change the mod:
$ chmod 0600 ~/.ssh/authorized_keys then
reboot or restart the machine:

$ sudo reboot

Second, install java:

70

*Java is the main prerequisite for Hadoop, here We install java 7. first
check if Java is not already installed, fire this:
$ java -version if it not
exist install it via:
$ sudo apt-get install default-jre
$ sudo apt-get install default-jdk

Thirdly, download and install Apache Hadoop source file, using the following

commands.:

*First thing you must sure that the ip address of master and slaves write in the

/etc/hosts via:
$ sudo gedit /etc/hosts

Checking for the IP address.

Open Save = Undo
sajda@slave3:~S sudo gedit /etc/host *hosts x
[sudo] password for sajda: 127.0.0.1 localhost
127.0.1.1 sajda-Satellite-C50-A251

(gedit:4769): Gtk-WARNING **: Calling Inhibit failled: GDBus.Error:org.fr

p.DBus.Error.ServiceUnknown: The name org.gnome.SessionManager was not piH The following lines are desirable for IPv6 capable hosts
byAany .service files 5 i ¢ ip6-localhost ip6-loopback

sajda@slave3:~$ sudo gedit /etc/hosts fed0::0 ip6-localnet

3 N X ffoo::0 ip6-mcastprefix

(gedit:4779): Gtk-WARNING **: Calling Inhibit failled: GDBus.Error:org.frdErreue ip6-allnodes

p.DBus.Error.ServiceUnknown: The name org.gnome.SessionManager was not piR ip6-allrouters

by any .service files

PlainText ~ Tabwidth:8 ~ Ln 13, Col1 INS

*Download Hadoop From

http://www-eu.Apache.org/dist/Hadoop/common/

*here, you can find the latest version and latest modification.
*we download Hadoop-2.7.0.tar.gz and extract it in /usr/local via this command:

71

http://www-eu.apache.org/dist/hadoop/common/
http://www-eu.apache.org/dist/hadoop/common/
http://www-eu.apache.org/dist/hadoop/common/
http://www-eu.apache.org/dist/hadoop/common/

PN

hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.
hadoop-2.

NNSN

$ sudo tar -xvf Hadoop-2.7.0.tar.gz

Extract Hadoop file.

sajda@slave3: fusr/local

.0/1libexec/yarn-config.cmd
.0/1libexec/hadoop-config.
.0/1libexec/mapred-config.
.0/libexec/httpfs-config.
.0/1libexec/hadoop-config.
.0/libexec/mapred-config.
.0/libexec/kms-config.sh
.0/1libexec/hdfs-config.cmd
.0/1libexec/yarn-config.sh
.0/1libexec/hdfs-config.sh
.O/README. txt

.O/NOTICE.txt

.0/1ib/

.0/1lib/native/
.0/1lib/native/libhadoop.a
.0/1lib/native/libhadoop.so
.0/lib/native/libhadooppipes.
.0/lib/native/libhdfs.s0.0.0.
.0/1lib/native/libhadooputils.
.0/1lib/native/libhdfs.a
.0/1lib/native/libhdfs.so
.0/1lib/native/libhadoop.so.1.
.O/LICENSE. txt

cmd
sh
sh
sh
cmd

sajda@slave3: fusr/local$s l

» Fourthly, then give the Hadoop file permission and privileges after you download

it via these steps:

$ sudo chown ubuntu:root /usr/local/Hadoop-2.7.0

$ sudo chmod 777 /usr/local/Hadoop-2.7.0/*

*ubuntu: is the user name in you machine.

*root: is group that had the permission and privilage.

» Fifthly, create Hadoop_tmp/hdfs :

$ sudo mkdir -p /usr/local/Hadoop_tmp/hdfs

* And then give it permission and privileges via:

72

$ sudo chown ubuntu:root /usr/local/Hadoop_tmp
$ sudo chmod 777 /usr/local/Hadoop_tmp/*
* We need to Update .bashrc file :
*.bashrc is a shell script that Bash runs whenever it is started interactively. You
can put any command in that file that you could type at the command
prompt.You put commands here to set up the shell for use in your particular

environment, or to customize things to your preferences.

* Fire via:
$ sudo gedit .bashrc

 in file .bashrc we write the java home and Hadoop home in the end of the file :

-- HADOOP ENVIRONMENT VARIABLES START --
export JAVA HOME-=/usr/lib/jvm/java-7-openjdk-amd64
export HADOOP_HOME-=/usr/local/Hadoop-2.7.0 export
PATH=$PATH:$HADOOP_HOME/bin export
PATH=$PATH:$HADOOP_HOME/sbin export
HADOOP_MAPRED_HOME=$HADOOP_HOME export
HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME

export
HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export HADOOP_OPTS="-Djava.library.path=HADOOP_HOME/lib*"
73

#-- HADOOP ENVIRONMENT VARIABLES END -- #

* bashrc (~) - gedit

File Edit View Search Tools Documents Help

E = open - Save || &

| 7] *.bashrc x

T IRUOMN WG (PrWVY OUTNOW A WmWCIP EAS LI S SERUI SO YW MWl & USEW W =IIUD L.
this, if it's already enabled in /etc/bash.bashrc and /fetc/profile
sources Jetc/bash.bashrc).
if ! shopt -oq posix; then
if [-f fusr/share/bash-completion/bash_completion]; then
. Jusr/share/bash-completion/bash_completion
elif [-f /etc/bash_completion]; then
. /etc/bash_completion

-- HADOOP ENVIRONMENT VARIABLES START -- #
JAVA_ HOME=/usr/1lib/jvm/java-7-openjdk-amd64
HADOOP_HOME=/usr/local/hadoop-2.7.0
PATH=SPATH: SHADOOP HOME/bin
PATH=SPATH: SHADOOP_ HOME /sbin
HADOOP _MAPRED HOME=SHADOOP_ HOME
HADOOP_COMMON_HOME=SHADOOP HOME
HADOOP_HDFS_HOME=SHADOOP_HOME
YARN_HOME=SHADOOP_HOME
HADOOP_COMMON_LIB NATIVE DIR=SHADOOP HOME/lib/native
HADOOP_OPTS="-Djava.library.path=SHADOOP HOME/Llib"
- - HADOOP ENVIRONMENT VARIABLES END -- #
PlainText + Tabwidth:8 ~ Ln 126, Col 43 INS

Write java path in .bashrc file.

O Sixthly, Configuration files :
1. Hadoop-env.sh its location in we Update JAVA_HOME variable:

/usr/local/Hadoop-2.7.0/etc/Hadoop
*fire this command:

$ sudo gedit Hadoop-env.sh

*and write:

JAVA HOME-=/usr/lib/jvm/java-7-openjdk-amd64

74

2. core-site.xml:
$ sudo gedit core-site.xml

*Paste these lines into <configuration> tag
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
</property>

3. hdfs-site.xml:

$ sudo gedit hdfs-site.xml

*Paste these lines into <configuration> tag

<property>
<name>dfs.replication</name>
<value>1</value>

</property>

<property>
<name>dfs.namenode.name.dir</name>
<value>/usr/local/Hadoop_tmp/hdfs/namenode</value>

</property>

<property>
<name>dfs.datanode.data.dir</name>

<value>/usr/local/Hadoop_tmp/hdfs/datanode</value> </property>
75

4. yarn-site.xml:
$ sudo gedit yarn-site.xml
*Paste these lines into <configuration> tag
<property>
<name>yarn.nodemanager.aux-services</name>
<value>MapReduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.auxservices.MapReduce.shuffle.class</name>
<value>org.Apache.Hadoop.mapred.ShuffleHandler</value>
</property>
5. mapred-site.xml:

*Copy template of mapred-site.xml.template file via:

$ sudo cp /usr/local/Hadoop-2.7.0/etc/Hadoop/mapred-site.xml.template
Jusr/local/Hadoop-2.7.0/etc/Hadoop/mapred-site.xml

*To edit file, fire the below given command
$ sudo gedit mapred-site.xml
*Paste these lines into <configuration> tag
<property>
<name>MapReduce.framework.name</name>
<value>yarn</value>

76

</property>

*Format Namenode in Hadoop-2.7.0 master:

*Hadoop NameNode is the centralized place of an HDFS file system which keeps the
directory tree of all files in the file system, and tracks where across the cluster the file
data is kept. In short, it keeps the metadata related to datanodes. When we format
namenode it formats the meta-data related to data-nodes. By doing that, all the
information on the datanodes are lost and they can be reused for new data.

* fire via:

$ bin/Hadoop namenode -format

Format namenode

& & & sajda@slave3: fusr/local/hadoop-2.7.0
sajda@slave3: /usr/local/hadoop-2.7.0S bin/hadoop namenode -formatl]]

77

sajda@slave3: Jusrflocal/hadoop-2.7.0

17/08/02 15:58:45 INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.num.user
s = 10

17/08/02 15:58:45 INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.windows.
minutes = 1,5,25

17/08/02 15:58:45 INFO namenode.FSNamesystem: Retry cache on namenode is enabled
17/08/02 15:58:45 INFO namenode.FSNamesystem: Retry cache will use 0.03 of total
heap and retry cache entry expiry time is 600000 millis

17/08/02 15:58:45 INFO util.GSet: Computing capacity for map NameNodeRetryCache
17/08/02 15:58:45 INFO util.GSet: VM type = 64-bit

17/08/02 15:58:45 INFO util.GSet: 0.029999999329447746% max memory 889 MB = 273.
1 KB

17/08/02 15:58:45 INFO util.GSet: capacity = 2715 = 32768 entries

17/08/02 15:58:45 INFO namenode.FSImage: Allocated new BlockPoolId: BP-758996794
-192.168.43.171-1501678725047

17/08/02 15:58:45 INFO common.Storage: Storage directory /usr/local/hadoop_tmp/h
dfs/namenode has been successfully formatted.

17/08/02 15:58:45 INFO namenode.NNStorageRetentionManager: Going to retain 1 ima
ges with txid >= 0

17/08/02 15:58:45 INFO util.ExitUtil: Exiting with status ©

17/08/02 15:58:45 INFO namenode.NameNode: SHUTDOWN_MSG:

/'k************************************‘k********************1\'*

SHUTDOWN_MSG: Shutting down NameNode at slave3/192.168.43.171

**/

sajda@slave3: /usr/local/hadoop-2.7.05 |}
Formatted namenode successfully

» if namenode don’t started in master:
» you must sure that if the Hadoop_tmp that contain namenode and datanode :
» Delete and recreate Hadoop_tmp/hdfs :

$ sudo rm -rf /usr/local/Hadoop_tmp $ sudo
mkdir -p /usr/local/Hadoop_tmp/hdfs
* have the Hadoop user owner:
$ sudo chown ubuntu:root /usr/local/Hadoop_tmp
+ (give privileges:
$ sudo chmod 777 /usr/local/Hadoop_tmp/*

* and then:
+ Start all Hadoop daemons :
* Used to start and stop Hadoop daemons all at once. Issuing it on the master

78

machine will start/stop the daemons on all the nodes of a cluster. Deprecated as

you have already noticed.

e Firevia:
$ sbin/start-all.sh

sajda@slave3: fusrflocal/hadoop-2.7.0

sajda@slave3: /usr/local/hadoop-2.7.0% sbin/start-all.sh

his script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
17/08/02 16:21:01 WARN util.NativeCodeloader: Unable to load native-hadoop 1libr
ry for your platform... using builtin-java classes where applicable
Starting namenodes on [slave3]
slave3: starting namenode, logging to /usr/local/hadoop-2.7.0/logs/hadoop-sajda
amenode-slave3.out
slave3: starting datanode, logging to /usr/local/hadoop-2.7.0/logs/hadoop-sajda
datanode-slave3.out
Starting secondary namenodes [0.0.0.0]

.0.0.0: secondarynamenode running as process 2770. Stop it first.

7/08/02 16:21:15 WARN util.NativeCodelLoader: Unable to load native-hadoop 1libr
ry for your platform... using builtin-java classes where applicable
starting yarn daemons
resourcemanager running as process 2968. Stop it first.
slave3: nodemanager running as process 3098. Stop it first.
sajda@slave3: /fusr/local/hadoop-2.7.0S$ jpsa

o command 'jpsa' found, did you mean:

Command 'jps' from package 'openjdk-7-jdk' (main)

Command 'jps' from package 'openjdk-6-jdk' (universe)

Command 'jp2a' from package 'jp2a' (universe)

jpsa: command not found
sajda@slave3: /usr/local/hadoop-2.7.0S5 spd

he program 'spd' is currently not installed. You can install it by typing:

Start Hadoop daemons

 Last thing to grantee you work is done correctly fire jps:
$jps

« That must show:
Jps to show the daemons of Hadoop

79

]

™ & @ sajda@slave3: fusr/local/hadoop-2.7.0

sajda@slave3: fusr/local/hadoop-2.7.0S5 jps
NameNode
NodeManager
ResourceManager
DataNode

Jps
SecondaryNameNode
sajda@slave3: fusr/local/hadoop-2.7.0$% l

*then open the namenode site:

localhost:50070

€ @ localhost B $§$ A 909

Hadoop Overview Datanodes Datanode Volume Failures Snapshot Startup Progress

Overview

Started: Tue Aug 15 17:44:04 +0300 2017

Version: 2.8.1, r20fe5304904fc2f5a18053c389e43cd26f7a70fe

Compiled: Fri Jun 02 09:14:00 +0300 2017 by vinodkv from branch-2.8.1-private
Cluster ID: CID-40728cb1-4ff1-41b8-bec4-31e2bb804578

Block Pool ID: BP-114661778-192.168.43.8-1502808219083

Summary

Security is off

Safemode is off.

Configured Capacitv: 93.79 GB

Namenode site

80

localhost

€

l@‘hadaap

~ Cluster Cluster Metrics
About Apps Apps Apps Apps Containers femory = Memg)y Memory (5
Node Submitted Pending Running ompl 1 Running L Total Reserve Used
Node Labels 0 0 0 0 0 08B 8GB 0B 0
ALpIC Cluster Nodes Metrics
NEW
NEW_SAVING Active Nodes Decommissioning Nodes Decommissioned Nodes L loc Unhealthy Nodes Rebooted |
SUBMITTED 1 0 0 0 0 0
ACCEPTED 7 = - = = =
Segry Scheduler Metrics
RUNNING
:_T‘E"{jﬁt Schedule T,[' e Sched ,‘I’A] Resource V,ﬂ' Minimum Allocatior Maximum Allocation Maxim
AILED
KILLED Capacity Scheduler [MEMORY] <memory:1024, vCores:1> <memory.8192, vCores:4> 0
Scheduler Show 20 -+ entries sSearc
nnir Allocate I e o of
» Tools I't) User Name AL;J‘.}:.' on Queue ,‘.({,'l‘.“\':_.:iu‘, StartTime FinishTime State FinalStatus CS i]‘:]‘ ;F‘U »4.‘“)‘:-”" Ques U,(»t:
P sy VCores MB

Showing 0 to 0 of 0 entries

and the yarn site:

localhost:8088

Yarn site

wBe $§$ &4 OO0

All Applications

No data available in table

SPARK CONFIGURATION

Before install Spark framework we have Prerequisite:

* First, like Hadoop framework we must do the same command before install Spark

framework ,we must install ssh server via following commands:

$ sudo apt-get install openssh-server

$ ssh-keygen -t rsa

$ ssh-copy-id -i ~/.ssh/id_rsa.pub ubuntu@master

$ chmod 0600 ~/.ssh/authorized_keys

* Then reboot the machine:

81

$ sudo reboot

« Secondly, install java:

« first check if Java is not already installed:
$ java -version

» if it not exist install it via:
$ sudo apt-get install default-jre $
sudo apt-get install default-jdk

« Thirdly, download Spark via these steps:

*First thing you must sure that the IP address of master and slaves write in the /etc/hosts

via:

$ sudo gedit /etc/hosts

82

1 I

127.0.0.1 ocalhost
127.0.1.1 esra-HP-Pavilion-15-Notebook-PC

¢ The following lines are desirable for IPv6 capable hosts
s | ip6-localhost ip6-loopback

fe00::0 ip6-localnet

Ffee::0 ip6-mcastprefix

Ffe2::1 ip6-allnodes

Ffe2::2 ip6-allrouters

92.168.43.8 Ases

Saving file'/etc/hos... Plain Text ¥ Tab width:8 » Ln 11, Col 1 v INS

Checking for the IP address.
* In next step install git, Spark build depends on git:

$ sudo apt-get install git

» Fourthly, in next step is install Scala, follow the following instructions to set up

Scala. First download the Scala from:

https://scala-lang.org/download/

» Here we install scala-2.12.3.tgz O Extract it via:
$ sudo tar -xvf scala-2.12.3.tgz
* And then give it permission and privilege via:
$ sudo chown ubuntu:root /usr/local/scala-2.12.3

$ sudo chmod 777 /usr/local/scala-2.12.3/*
83

https://scala-lang.org/download/
https://scala-lang.org/download/
https://scala-lang.org/download/
https://scala-lang.org/download/

esra@Ases: Jusr/local

.12.3/doc/
.12.3/doc/tools/
-2.12.3/doc/tools/scala.html
.12.3/doc/tools/index.html
.12.3/doc/tools/images/
.12.3/doc/tools/images/scala_logo.png
-2.12.3/doc/tools/images/external.gif
-2.12.3/doc/tools/fsc.html
-2.12.3/doc/tools/scalac.html
.12.3/doc/tools/css/
.12.3/doc/tools/css/style.css
-2.12.3/doc/tools/scalap.html
-2.12.3/doc/tools/scaladoc.html
.12.3/doc/License.rtf
.12.3/doc/licenses/
.12.3/doc/1licenses/bsd_asm. txt
.12.3/doc/licenses/mit_jquery.txt
.12.3/doc/licenses/bsd_jline.txt
.12.3/doc/licenses/mit_sizzle.txt
.12.3/doc/licenses/mit_tools.tooltip.txt
.12.3/doc/1licenses/apache_jansi.txt
-2.12.3/doc/LICENSE.md
.12.3/doc/README
:/usr/local$

Extract Scala file.

* In the next step, install the source of Apache Spark from:

https://Spark.Apache.org/downloads.html

* Here we install Spark-2.2.0 O Extract it via:
$ sudo tar -xvf Spark-2.2.0-bin-Hadoop2.7.tgz
» And then give it permission and privilege via:

$ sudo chown ubuntu:root /usr/local/Spark-2.2.0-bin-
Hadoop2.7

$ sudo chmod 777 /usr/local/Spark-2.2.0-bin-Hadoop2.7/*

84

https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html

esra@Ases: /usr/local

-bin-hadoop2.7/bin/pyspark
-bin-hadoop2.7/bin/sparkR.cmd
-bin-hadoop2.7/bin/spark-class2.cmd
-bin-hadoop2.7/bin/run-example.cmnd
-bin-hadoop2.7/bin/spark-submit2.cmd
-bin-hadoop2.7/bin/spark-class
-bin-hadoop2.7/bin/spark-submit
-bin-hadoop2.7/bin/spark-sql
-bin-hadoop2.7/bin/find-spark-home
-bin-hadoop2.7/bin/run-example
-bin-hadoop2.7/bin/beeline
-bin-hadoop2.7/bin/pyspark2.cmd
-bin-hadoop2.7/bin/spark-shell.cmd
-bin-hadoop2.7/bin/spark-class.cmd
-bin-hadoop2.7/bin/pyspark.cmd
-bin-hadoop2.7/bin/sparkR
-bin-hadoop2.7/bin/beeline.cmnd
.0-bin-hadoop2.7/bin/sparkR2.cmd
.0-bin-hadoop2.7/bin/load-spark-env.sh
.0-bin-hadoop2.7/bin/load-spark-env.cmd
.0-bin-hadoop2.7/yarn/
.0-bin-hadoop2.7/yarn/spark-2.2.0-yarn-shuffle. jar
.0-bin-hadoop2.7/README.md
:Jusr/local$

@

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
o)

Extract Spark file.

Then configure these Files:
 Edit the .bashrc file by write:

$ sudo gedit .bashrc

 Andwrite in it;

» the Scala home:

export SCALA HOME=/usr/local/scala-2.12.3 export
PATH=3SCALA HOME/bin:$PATH

* And Spark home:

export SPARK_HOME=/usr/local/Spark-2.2.0-bin-Hadoop2.7

export PATH=$SPARK_HOME/bin:$PATH

85

Open ¥ 1

-- SPARK ENVIRONMENT VARIABLES START --

export SCALA HOME=/usr/local/scala-2.12.3
export PATH=SPCALA_HOME/bin:SPATH

#the spark home:

export SPARK_HOME=/usr/local/spark-2.2.0-bin-hadoop2.7
export PATH=SSPARK HOME/bin:SPATH

-- SPARK ENVIRONMENT VARIABLES END --

-- HADOOP ENVIRONMENT VARIABLES START --
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export HADOOP HOME=J/usr/local/hadoop-2.8.1

export PATH=SPATH:SHADOOP_ HOME/bin

export PATH=SPATH:SHADOOP HOME/sbin

export HADOOP_MAPRED_ HOME=SHADOOP_ HOME

...... LAABAOOD S OMAMOAL_LAOMAT CAIADAAD _LIOMMY

sh ¥ Tabwidth:8 ~ Ln 24, Col 1 v INS

Edit .bashrc file.

» Copy the following files, and can find it in /Spark/conf/:
+ fire these command:

1. slaves file:
$ cp slaves.template slaves
$ sudo gedit slaves
* And then type inside file :

localhost

86

slaves

Open ¥ i+

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed
with

this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License,

Version 2.0

(the "License"); you may not use this file except in compliance
with

the License. You may obtain a copy of the License at

"
“ http://www.apache.org/licenses/LICENSE-2.0
#
"

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.

See the License for the specific language governing permissions and
limitations under the License.

#

=R

A Spark Worker will be started on each of the machines listed
below.

Saving file '/usr/loca... PlainText ¥ Tabwidth:8 ~ Ln 19, Col 1 v INS

The slaves file.
2. Spark-default.conf file:
$ cp Spark-defaults.conf.template Spark-defaults.conf
$ sudo gedit Spark-defaults.conf

* And then type inside file :

Spark.master Spark://localhost:7077

87

spark-defaults.conf

L)

the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.

See the License for the specific language governing permissions and
limitations under the License.
B

TR

Default system properties included when running spark-submit.

This is useful for setting default environmental settings.

Example:

spark.master spark://master:7677

spark.eventLog.enabled true

spark.eventlLog.dir hdfs://namenode:86021/directory
spark.serializer

org.apache.spark.serializer.KryoSerializer

spark.driver.memory 59

spark.executor.extralavaOptions -XX:+PrintGCDetails -Dkey=value -
Dnumbers="one two three"

spark.master spark://localhost:7077

Saving file‘/usr/loca... PlainText ¥ TabWidth:8 » Ln 28, Col 36 v INS

The Spark-default.conf file.
3. Spark-env.sh file:
$ cp Spark-env.sh.template Spark-env.sh
$ sudo gedit Spark-env.sh

* And then type inside file :

export SCALA HOME=/usr/local/scala-2.12.3

88

(e.g. "-Dx=y")
- SPARK_DAEMON_MEMORY, to allocate to the master, worker and
history server themselves (default: 1g).

- SPARK_HISTORY_OPTS, to set config properties only for the
history server (e.g. "-Dx=y")

- SPARK_SHUFFLE_OPTS, to set config properties only for the
external shuffle service (e.g. "-Dx=y")

- SPARK_DAEMON_JAVA OPTS, to set config properties for all daemons
(e.g. "-Dx=y")

- SPARK_PUBLIC_DNS, to set the public dns name of the master or
workers

Generic options for the daemons used in the standalone deploy mode

- SPARK_CONF_DIR Alternate conf dir. (Default: ${SPARK_HOME}/
conf)

f## - SPARK_LOG _DIR Where log files are stored. (Default:
S{SPARK_HOME}/logs)

- SPARK_PID_DIR Where the pid file is stored. (Default: /tmp)

- SPARK_IDENT_STRING A string representing this instance of
spark. (Default: SUSER)

- SPARK_NICENESS The scheduling priority for daemons.
(Default: 0)

- SPARK_NO_DAEMONIZE Run the proposed command in the foreground.
It will not output a PID file.

export SCALA HOME=/usr/local/scala-2.12.3|

sh ¥ Tabwidth:8 = Ln 63, Col 42 v INS

I

The Spark-env.sh file.

» Lastly start all Spark daemons:

$ sbin/start-master.sh
$ sbin/start-slaves.sh

e if these command not run, fire this:

$ sbin/start-all.sh

89

M = 5 esra@Ases: /usr/local/spark-2.2.0-bin-hadoop2.7

esra@Ases: /usr/local/spark-2.2.0-bin-hadoop2.75 sbin/start-master.sh

starting org.apache.spark.deploy.master.Master, logging to /usr/local/spark-2.2.
©®-bin-hadoop2.7/logs/spark-esra-org.apache.spark.deploy.master.Master-1-Ases.out
esra@Ases: /usr/local/spark-2.2.0-bin-hadoop2.7$ sbin/start-slaves.sh

localhost: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local
/spark-2.2.0-bin-hadoop2.7/1logs/spark-esra-org.apache.spark.deploy.worker.Worker
-1-Ases.out

esra@Ases: /usr/local/spark-2.2.0-bin-hadoop2.7$

start all Spark daemons.
» To guarantee that was working type :
$ jps
psra@Ases: Jusr/local/spark-2.2.0-bin-hadoop2.75 jps

D428 Worker

P295 Master
psra@Ases: Jusr/local/spark-2.2.0-bin-hadoop2.7S

Jps to show the daemons of Spark
» open Spark sites:

localhost:8080

90

D | localhost ¢ |Q wBe $ A OO0

S,{j'aﬁ‘zZ .., Spark Master at spark://Ases:7077

URL: spark:/Ases:7077

REST URL.: spark://Ases:6066 (cluster mode
Alive Workers: 1

Cores in use: 4 Total, 0 Used

Memory in use: 2.8 GB Total, 0.0 B Used

Applications: 0 Running, 0 Completed
Drivers: 0 Running, 0 Completed
Status: ALIVE
Workers
Worker Id Address State Cores Memory
worker-20170816160029-192.168.43.8-34777 192.168.43.8:34777 ALIVE 4 (0 Used) 2.8 GB (0.0 B Used)

Running Applications

Application ID Name Cores Memory per Executor Submitted Time User State Duration

Completed Applications

Application ID Name Cores Memory per Executor Submitted Time User State Duration
Spark website

HINT:

To clarify more, we have done work a channel with videos explaining for frameworks

configuration can found it in this link:

https://www.youtube.com/channel/UCW6umaU5sDzBXTf-vRUDelg

% HH £ Q. ases bigdata == O Youluhe =
n o BB ASES biGdatA Group fl6-
~ oS 5iia 5 ¥ UATA&TFL_}
st M il

k

"
n
5
u
5
=

o
n
fa

install hadoop single node in install spark stand alone

ubuntu 16.04 mode in ubuntu 16.04
(2) e s - swline 165 (2) oo ds + slas 117

91

https://www.youtube.com/channel/UCW6umaU5sDzBXTf-vRUDelg
https://www.youtube.com/channel/UCW6umaU5sDzBXTf-vRUDelg
https://www.youtube.com/channel/UCW6umaU5sDzBXTf-vRUDelg
https://www.youtube.com/channel/UCW6umaU5sDzBXTf-vRUDelg

APPINDEX (B)

BIG DATA IN SUDAN QUESIONNAIRE

92

INTRODUCTION:

Big data in Sudan survey is a survey which targeted many

companies in many sectors in Sudan.

SURVEY QUESTIONS:

Company Name?

Did your company has big data (e.g Billion record or 1 Tera volume
of data)?

es

0

Did this big data make latency in company’s decision(e.g delaying

report or delaying decision ...etc)

es

0]

Which techniques do you use to process this data?

93

Did you use Batch processing?
Y
es

0]

Did you use parallel processing?
e Y

es

0]

Where you store this big data?

istributed

entral

Did you store data in HDFS?
Y
es
0

Did you use Hadoop MapReduce to implement this big data?
Y
es
0

Did you hear about Apache Spark?

e Y
€s

94

0]

Did you use Apache Spark to implement this big data?

e Y
es

o HINT:

THIS IS THE SITE OF SURVEY:

https://docs.google.com/forms/d/e/1FAlpQLSfTCtxCKAXATXxC58wWNY55LI33mB8apl1BKjwkt6No

cWcLDA/viewform

95

https://docs.google.com/forms/d/e/1FAIpQLSfTCtxCK4xATXxC58-wNY55Ll33mB8apI1BKjwkt6NocWcLDA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfTCtxCK4xATXxC58-wNY55Ll33mB8apI1BKjwkt6NocWcLDA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfTCtxCK4xATXxC58-wNY55Ll33mB8apI1BKjwkt6NocWcLDA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfTCtxCK4xATXxC58-wNY55Ll33mB8apI1BKjwkt6NocWcLDA/viewform

