

Sudan University of Science and Technology College of Graduate Studies

Physicochemical characterization of baobab fruits, seeds and oil

التوصيف الفيزيوكيميائي لثمرة وبذور وزيت التبلدي

AThesis submitted in partial fulfillment for the requirements of master degree in chemistry

By

Esra Ezeldeen Mohamed Osman

(B.Sc., P.G.D. Chemistry)

Supervisor

Dr. Omer Adam Mohamed Gibla

April 2018

استهلال

قال تعالى:

(الَّذِي جَعَلَ لَكُمُ الْأَرْضَ فِرَ اشًا وَالسَّماءَ بِنَاءً وَأَنْزَلَ مِنَ السَّمَاءِ مَاءً فَأَخْرَجَ بِهِ مِنَ الثَّمَرَاتِ رِزْقًا لَكُمْ الْأَرْضَ فِرَ اشًا وَالسَّمِاءَ بِنَاءً وَأَنْتُمْ تَعْلَمُونَ) لَكُمْ الْفَكُمْ الْفَكُمْ الْفَكُمْ اللَّمَاءِ مَاءً فَأَمُونَ)

صدق الله العظيم

البقرة:(الآية ٢٢)

Dedication

This work is dedicated to my beloved parents,

my brother Ahmed,

my husband Mohamed and my son Abdallah......

Acknowledgement

First of all my greater thanks and gratitudes to Almighty Allah for giving me helth and strength to complete this work.

I would like to express my gratitude and appreciation to my supervisor Dr.Omer Adam M. Gibla for his valuable advice, encouragement and help throughout this work .

My thanks and appreciations would extend to the staff of the chemistry department, Sudan University of Science and Technology.

Special thanks would go to my husband Mohamed for his continuous encouragement and support.

Abstract

The aim of this study was the extraction of baobab oil and chemical characterization of the fruits ,seeds and oil. Baobab samples were obtained from Alobayed market(Kordofan). Ash and moisture contents were measured for the fruit powder and baobab seeds. Mineral contents of fruit powder and seeds were measured by ICP instrument. Vitamin(C)content was measured titrimetrically using Indophenol solution. Baobab seeds oil was extracted by petroleum ether using soxhlet. The chemical composition of baobab oil was investigated by GC-MS spectroscopy. Some physical and chemical properties of the extracted oil were also measured. They include pH value, viscosity, density, refractive index, acid value, peroxide value, saponification value and ester value.

The obtained results showed average ash content for baobab fruit powder as 9.37% while it was 4.93% for baobab seeds. The average moisture content of baobab fruit powder and seeds were 18.39% and 7.47% respectively.

The inductively coupled plasma analysis showed ,that, baobab fruit powder and seeds were rich in some minerals of macro and micro level including potassium(K), calcium (Ca), magnesium(Mg) , phosphorous(P), copper(Cu), manganese(Mn) and zinc(Zn). The hazardous elements showed very low concentrations in baobab fruit powder and seeds. Aluminium and silicon as undesired elements showed considerable concentrations in baobab fruit powder and seeds. Titanium(Ti) ,strontium(Sr) and lead(Pb) showed notable concentrations in baobab fruit and seeds. The baobab fruit powder showed high content of vitamin(C).

The GC-MS analysis of baobab oil gave considerable constituents of essential fatty acids including linoleic acid (25.10%), palmatic acid (21.14%), oleic acid(17.34%), stearic acid (7.92%), methyl dihydrosterculate (4.81%), methyl arachisate (1.47%), and behenic acid (1.23%).

المستخلص

الهدف من هذه الدراسة هو استخلاص زيت التبلدي وتوصيف الخواص الكيميائية لثمرة ببذور وزيت التبلدي. جمعت عينات التبلدي من سوق الأبيض (كردفان). تم تقدير محتوى الرطوبة والرماد لثمرة وبذور التبلدي .قد رالمحتوى المعدني لثمرة، بذور التبلدي باستخدام تقنية مطيافية الانبعاث الضوئي بالحث البلازمي المزدوج (ICP). قدر فايتمين (C) في بدرة ثمرة التبلدي بالمعايرة بواسطة صبغة الاندوفينول. استخلص الزيت بواسطة البتروليوم ايثر كمذيب باستخدام جهاز soxhlet . تم تحديد التركيب الكيميائي لزيت التبلدي باستخدام تقنية كروماتوغرافيا الغاز ومطيافية الكتلة (GC-MS). قدرت بعض الخواص الفيزيائية والكيميائية للزيت شملت الأس الهيدروجيني ، اللزوجة، الكثافة، معامل الانكسار، رقم االحموضة، رقم البيروكسيد، رقم التصين ورقم الاستر.

أظهرت الدراسة ان متوسط محتوى الرماد لبدرة ثمرة التبلدي 9.37% ولبذور التبلدي4.93%وان متوسط محتوي الرطوبة لثمرة التبلدي 18.39% ولبذور التبلدي 7.47%.

تم قياس تراكيز المغذيات المعدنية الكبري والصغري باستخدام تقنية ال(ICP) حيث تم تقدير البوتاسيوم (K)، الكالسيوم (Mn)، الماغنيزيوم (Mg)، الحديد (Fe)، النحاس (Cu))، المنجنيز (Ca) والزنك (Ca).

العناصر غير المرغوب فيها أظهرت تراكيز منخفضة جدا في ثمرة وبذور التبلدي.

كانت تراكيز كل من الالمونيوم(A1) والسيليكون(Si)عالية نسبيا كعناصر غير مرغوب فيها .

تمت ملاحظة تراكيز مقدرة لكل من التيتانيوم(Ti)، الاسترانشيوم(Sr) و الرصاص(Pb).

وقد كان محتوى فايتمين (C)في بدرة ثمرة التبلدي عالياً.

اظهر التحليل بكروماتوغرافيا الغاز ومطيافية الكتلة احتواء زيت التبلدي على نسب مقدرة من الأحماض الأمينية الأساسية شملت حمض اللينوليك (25.10%) ،حمض البالمتيك (21.14%)، حمض الأوليك(7.34%) ، ميثايل داي هيدرو ستيركيوليت(4.81%) ، ميثايل ارشسيت (1.47%) وحمض البيهنيك(1.23%).

List of contents

Title	Page
Approval Page	I
استهلال	II
Dedication	III
Acknowledgement	IV
Abstract-English	V
Abstract –Arabic	VI
list of contents	X
List of tables	XI
List of figures	XII
Chapter one	
1.Introduction	1
1.1.Baobab	1
1.2.Plant classification	3
1.3.Geographic disterbution	4
1.4.Description	4
1.5.Baobab tree species	5
1.6.Habitat and ecology	9
1.7.Traditional information	10
1.7.1Leaves of A.digitata	11
1.7.2Fruits pulp of A. digitata	12
1.7.3.seeds of A.digitata	13
1.8.Traditional uses	13
1.9.Medicinal uses	15

1.10.Benefits of baobab	16
1.11. The top health and beauty benefits	17
1.11.1.Immune system	17
1.11.2.Slow energy release	18
1.11.3.Blood sugar	18
1.11.4.Absorption of iron	19
1.11.5.Digestive health	19
1.11.6.Prebiotic	20
1.11.7.For skin radiant	21
1.11.8.For pregnant women	21
1.11.9.Alkalinity	22
1.12.Chemical composition	22
1.12.1.Moisture contents	22
1.12.2.Lipids	23
1.12.3.Protein	23
1.12.4.Fibers	24
1.12.5.Carbohydrates	24
1.13.physical Properties of baobab oil	25
1.13.1.Density	25
1.13.2.Viscosity	25
1.13.3.pH value	25
1.13.4.Refractive index	25
1.14.Chemical properties of baobab oil	25
1.14.1Acid value	25
1.14.2Saponification value	26
1.14.3Peroxide value	26

1.14.4.Ester value	26
1.15.Fatty acids in baobab oil	26
1.15.1Un saturated fatty acids	27
1.15.2.Essential fatty acids	29
1.15.3.Saturated fatty acids	29
1.15.4.Common names and structure	30
Chapter two	
2.Materials and methods	31
2.1.Collection of samples	31
2.2.Chemicals	31
2.3.Instruments	32
2.4.Methods of analysis	33
2.4.1.Determination of Moisture content	33
2.4.2.Determination of Ash content	33
2.4.3.Determination of minerals(ICP analysis)	33
2.4.4 Extraction of baobab oil	33
2.4.5Oil density	34
2.4.6.Oil viscosity	34
2.4.7.Oil pH	34
2.4.8.Oil refractive index	34
24.9.Determination of acid value	34
2.4.10.Determination of saponification value	35
2.4.11.Determination of peroxide value	36
2.4.12.Determination of ester value	36
2.4.13.Determination of vitamin C contents	36
2.4.14.GC-MS characterization of baobab oil	37

Chapter three	
3.Results and discussion	38
3.1.Moisture and ash contents in baobab fruit and seeds	38
3.2.Minerals contents of baobab fruit(powder and seeds)	39
3.3.Physical and chemical properties of baobab oil	41
3.4.GC-MS Charactarization of baobab oil	43
Conclusion	45
Recommendations	45
References	46

List of tables

Table	Page
Table(3.1) Moisture and ash contents of baobab fruit	38
Table(3.2) Moisture and ash contents of baobab seeds	38
Table(3.3) Macronutrients of baobab fruit	40
Table(3.4) Micronutrients of baobab fruit	40
Table(3.5) Toxic and hazardous elements of baobab fruit	41
Table(3.6) Physical properties of baobab oil	42
Table(3.7) Chemical properties of baobab oil	43
Table(3.8) GC-MS results of baobab oil	44

List of figures

Figure	Page
Fig(1.1) Zones of harvest of the six species of baobab; in Madagascar.	2
Fig(1.2) African baobab	6
Fig(1.3) Madagascar baobab	7
Fig(1.4) Australian baobab	8
Fig(1.5) Baobab fruit and pulp	9
Fig(1.6) Leaves of A. digitata.	11
Fig(1.7) Seeds of A. digitata.	13
Fig(1.8) Three-dimensional representations of several fatty acids	27