
May, 2018

Sudan University of Science and Technology

College of Graduate Studies

Model-Based Prediction of Resource Utilization

and Performance Risks

 الاداء مخاطر و ستغلال المواردلإذج ونمعلى المبني لتنبؤا

A Dissertation Submitted to the College of Graduation Studies,

Faculty of Computer Science and Information Technology,

Sudan University of Science and Technology

In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Software Performance Prediction

By

Haitham Abdel Moniem Mohamed

Supervisor

Hany Ammar, Professor

ii

 يــــــــــــــــــــــةالآ

iii

Dedication

I would like to dedicate my work to

My family,

My teachers, and

My friends ….

iv

ACKNOLEGEMENT

Firstly, Alhamdulillah

Secondly, I would like to express my deepest thanks, respect, and appreciation to Prof.

Hany Ammar, my supervisor for his ideas, inspiration, encouragement, support, and

patient.

Many thanks for Sudan University of Science and Technology for hospitality, generosity,

and attention.

I also place my sincere thanks to Future University for helping, supporting, and funding

my PhD.

Haitham A.Moniem

v

ABSTRACT

The growing complexity of modern software systems makes the prediction of

performance a challenging activity. Many drawbacks incurred by using the traditional

performance prediction techniques such as simulation, guessing, and depending on

previous experience. Moreover, performance assessment and prediction is time consuming

activity and may produce inaccurate results especially in complex and large scale software

applications.

To contribute to solving these problems, we adopt a model-based approach for

resource utilization and performance risk prediction. The steps of the approach can be

stated as follows: Firstly, we model the software system into annotated UML diagrams.

Secondly, performance model is derived from the annotated UML diagrams in order to be

evaluated. Thirdly, we run the performance model to generate and record performance

indices such as response time, system throughput, and resources utilization into a large

dataset by different values of workload. Finally, we can predict different performance

indices for new workloads based on previously observed performance dataset. In addition

to this, we can assess the software performance risk incurred on a given workload into three

classes of performance risk level either low, or medium, or high. The approach could be

used to enhance the work of human experts and improve efficiency of software

performance prediction and risk assessment.

In this research, we validate the approach by applying three different case studies: a

hospital system, an e-commerce system, and an online timetable system. The results were

compared of three machine learning techniques for performance risk prediction and the

approach shows prediction accuracy between 93.1 % and 97.6 %.

vi

لصـالمستخ

ٍِ اىَهبً اىصعجخ اىجشٍغيبد داءيغعو اىزجؤ ثباىجشٍغيبد اىحذيضخ ّمَخلا اىزعقيذ اىَزْبًٍإُ

اىزقييذيخ ٍضو اىَحبمبح، اىزخَيِ، ثبلاداء اىعذيذ ٍِ اىعيىة فً رقْيبد اىزْجؤاىجشٍغيبد. وهْبك ىَهْذسً

قذ و .اىجشٍغيخ ،فً اىزْجىء ثبدا وقزب طىيلا رىل لاسزغشاغ هزٓ اىزقْيبداىسبثقخ حاىخجش الاعزَبد عيًو

 اىْزبئظ غيش دقيقخ خبصخ فً اىزطجيقبد اىَعقذح و اىنجيشح اىحغٌ. هزٓ رنىُاىً أُ أيضبيؤدي

 ٍخبطشو َىاسداى زْجىء ثبسزغلاهاى ًٍْهغب قبئَب عي ىيَسبهَخ فً حو هزٓ اىَشبمو، ّقزشػ

ّقىً : أولا، الاريخ اىخطىاد اىَقزشحخ و رزجع اىَْهغيخ .ىغخ اىَْزعخ اىَىحذح رخطيظٍِ اىجشٍغيخ اداء

رحىيو َّبرط و يزٌ . صبّيب، اىزىضيحيخ اىجشٍغيخ ثبسزخذاً ىغخ اىَْزعخ اىَىحذحزصَيٌ ٍخططبد ث

 ّشبءلا اىجشٍغيخ ثزشغيو َّىرط اداء. صبىضب، ّقىً ودساسزهب ىزقييَهبططبد اىجشٍغيخ اىً َّبرط الاداء خٍ

اسزغبثخ اىْمبً، مجيشح رحزىي عيً سشعخ فئخ ثيبّبد و حفمهب فً ورسغيو ٍؤششاد اداء اىجشٍغيخ

اىزْجؤ ثَقبييس يَنْْب رغيش عتء اىعَو. أخيشا، ٍعل رى و، و اسزغلاه ٍىاسد الاعهضح عيخ اىْمبًباّز

اىجشٍغيبد ثقيٌ و قشاءاد ٍزعذدح اسزْبدا عيً اعجبء اىعَو اىسبثقخ اىَىعىدح فً فئخ اىجيبّبد. و اداء

ثبلاداء ثسجت عتء عَو ٍعيِ. و يَنِ رصْيف اىَخبطش اىَشرجطخ ايضب ح عيً رىل، يَنْْب وعلا

 .بدء ثبداء اىجشٍغيىذاً هزٓ اىَْهغيخ ىزعضيض عَو اىخجشاء و رحسيِ مفبءح اىزْجخاسز

صلاس دساسبد و رطجيق ٍِ خلاه اىَقزشحخ اىزحقق ٍِ صحخ اىَْهغيخفً هزا اىجحش، رٌ

 صٍِ عذوهّمبً زغبسح اىنزشوّيخ، و اىّمبً ٍسزشفً، و ٍعيىٍبد : ّمبً ٍخزيفخ هً رغبسة

ثبسزغلاه اىَىاسد وٍخبطش ٌ الاىخ ىيزْجؤ يرعي رقْيبد ٍقبسّخ ّزبئظ صلاس يغبٍعخ. و رَذاىَحبضشاد ى

 .9..1% اىً 9..1% ثيِ ثعذ رْفيز اىزغبسة اىَْهغيخ دقخ رْجؤرمهش و الاداء

vii

TABLE OF CONTENTS

 ii .. الآيــــــــــــــــــــــة

Dedication .. iii

ACKNOLEGEMENT .. iv

ABSTRACT .. v

 vi ... المستخـلص

TABLE OF CONTENTS .. vii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiv

LIST OF ABBREVATIONS .. xvi

PUBLICATIONS ... xvii

CHAPTER I ... 1

Research Introduction ... 1

1.1 Introduction: ... 1

1.2 Problem Statement: .. 2

1.3 Research Questions .. 3

1.4 Research Hypothesis .. 3

1.5 Research Objectives ... 4

1.6 Scope of the Research .. 4

1.7 Research Contribution .. 4

1.8 Thesis Outline: ... 5

viii

CHAPTER II .. 7

Background and Related Work .. 7

2.1 Introduction .. 7

2.2 An Overview of Software Performance Risk Assessment ... 7

2.3 Software Modeling Notation .. 8

2.3.1 Unified Modeling Language ... 8

2.4 Performance Modeling Notations .. 9

2.4.1 Queuing Networks .. 10

2.5 UML Profile for Schedulability, Performance and Time ... 12

2.5.1 PAprofile: Stereotypes and Tagged Values ... 12

2.5.2 <<PAcontext>> Stereotype ... 12

2.5.3 <<PAclosedLoad>> and <<PAopenLoad>> stereotypes 13

2.5.4 <<PAstep>> Stereotype .. 15

2.5.5 <<PAhost>> and <<PAresource>> Stereotypes ... 16

2.6 Machine Learning .. 17

2.6.1 Machine Learning Categories ... 18

(a) Supervised Learning ... 18

(b) Unsupervised Learning ... 20

2.6.2 Machine Learning Techniques .. 20

(a) Multivariate Regression .. 20

(b) Naïve Bayes Classifiers .. 20

(c) Bayesian Networks ... 21

(d) K-Nearest Neighbor (KNN) ... 24

(E) Support Vector Machines (SVMs): .. 24

2.7 Related Work: .. 26

2.8 Summary .. 29

CHAPTER III .. 30

ix

Methodology for Model-based Prediction of Resource Utilization and

Performance Risk .. 30

3.1 Introduction .. 30

3.2 Challenges in Performance Prediction ... 30

3.3 The steps of the Approach ... 32

3.4 Summary .. 36

CHAPTER IV .. 37

Predicting Performance of Hospital Information System 37

4.1 Introduction .. 37

4.2 The Architecture and Model .. 38

4.3 Transforming UML diagrams into Performance Model .. 42

4.4 Running the Performance Model ... 43

4.5 Generating the dataset .. 45

4.6 Resource Utilization Prediction using Machine Learning ... 48

4.7 Performance Risk Classification using Machine Learning .. 49

4.8 Results and Discussion ... 49

4.8.1 Database Server Utilization Prediction ... 49

4.8.2 Performance Risk Level Classification ... 50

4.9 Summary .. 54

CHAPTER V .. 55

Predicting Performance of E-commerce System .. 55

5.1 Introduction .. 55

5.2 The Architecture and Model .. 55

5.3 Transformation of UML Diagrams into Performance Model 60

5.4 Running the Performance Model: .. 61

5.5 Generating the dataset .. 64

5.5.1 Performance Prediction dataset ... 64

x

5.5.2 Performance Risk Classification dataset ... 67

5.6 Performance Prediction using Multivariate Regression ... 69

5.7 Performance Risk Assessment using Machine Learning Techniques 70

5.8 Results and Discussion ... 70

5.8.1 Prediction of System Response Time ... 70

5.8.2 Performance Risk Level Classification ... 71

5.9 Summary .. 76

CHAPTER VI .. 77

Prediction Performance of Online Time Table (OTT) ... 77

6.1 Introduction .. 77

6.2 The System Architecture .. 77

6.3 Collecting Performance Dataset using Appache JMeter .. 80

6.4 Using Statistical Machine Learning Multivariate Regression: 81

6.5 Using Machine Learning for Performance Risk Assessment: 84

6.6 Using WEKA to Visualize the Dataset .. 85

6.7 Using Multivariate Regression ... 88

6.8 Prediction Performance Risk Class .. 89

6.8.1 Using Naïve Bayes Technique .. 89

6.8.2 Using KNN Technique .. 90

6.8.3 Using SVM Technique .. 91

6.9 Summary .. 93

CHAPTER VII ... 94

DISCUSSION AND RESULTS .. 94

7.1 Introduction .. 94

7.2 Dataset Preparation .. 95

7.2.1 Selecting Data ... 95

7.2.2 Processing Data ... 96

xi

7.3 Comparison with Existing Studies ... 96

7.4 Result Discussion ... 99

7.5 Summary .. 100

CHAPTER VII ... 101

CONCLUSION AND FUTURE WORK ... 101

REFERENCES ... 104

xii

LIST OF TABLES

Table 3.1: Attributes of the performance dataset…………………………………………..35

Table 4.1: Service demands in milliseconds for each station in the system……………….39

Table 4.2: Resource utilization prediction ..….45

Table 4.3: Performance level classification dataset ……………………………………….47

Table 4.4: Database server utilization prediction accuracy ……………………………….49

Table 4.5: Naïve Bayes performance risk classification accuracy ………………………...50

Table 4.6: Naïve Bayes performance risk classification confusion matrix ………………..50

Table 4.7: KNN performance risk classification accuracy …………………………..……51

Table 4.8: KNN performance risk classification confusion matrix …………….…………51

Table 4.9: SVM performance risk classification accuracy ………………………………..52

Table 4.10: SVM performance risk classification confusion matrix ……………………...52

Table 4.11: Comparison between classification algorithm ………………………………..53

Table 5.1: Service demands in milliseconds for each station in the system ………………56

Table 5.2: ECS response time prediction using regression model dataset …………...……65

Table 5.3: Sample of classification dataset for performance risk level …………………...67

Table 5.4: ECS response time prediction accuracy ………………………………………..71

Table 5.5: Naïve Bayes performance risk classification accuracy ………………………...72

Table 5.6: Naïve Bayes performance risk classification confusion matrix ……….……….72

Table 5.7: KNN performance risk classification accuracy ………………………..………73

Table 5.8: KNN performance risk classification confusion matrix ………………..……...73

Table 5.9: SVM performance risk classification accuracy …………………………..……74

Table 5.10: SVM performance risk classification confusion matrix …………………...…74

Table 5.11: Comparison between classification techniques ………………………………75

Table 6.1: Sample of OTT response time dataset …………………………………………81

Table 6.2: Sample of OTT for performance risk classification …………………………...84

Table 6.3: Using multivariate regression to predict OTT response time ………………….88

Table 6.4: Using Naïve Bayes to classify performance risk level ………………………...89

xiii

Table 6.5: Confusion matrix for Naïve Bayes algorithms ………………………………...89

Table 6.6: Using KNN algorithms to classify performance risk level …………………….90

Table 6.7: Confusion matrix for KNN algorithms ………………………………………...91

Table 6.8: Using SVM algorithm to classify performance risk ………………………...…91

Table 6.9: Confusion matrix for SVM algorithm ………………………………………….91

Table 6.10: Comparison of classifiers ……………………………………………………..92

Table 7.1: Comparison with Existing Studies ……………………………………………..98

Table 7.2: Comparison between Case Studies using KNN technique …………………….99

xiv

LIST OF FIGURES

Figure 1.1 How to predict resource utilization and performance risk from a model? 2

Figure 2.1 Queusing Network basic elements ... 10

Figure 2.2 Queueing Network example with multiple class .. 33

Figure 2.3 Example of <<PAcontext>> annotation ... 13

Figure 2.4 Example of <<PAopenLoad>>annotation .. 14

Figure 2.5 Example of <<PAcloseLoad>>annotation ... 15

Figure 2.6 Example of <<PAstep>> annotation .. 16

Figure 2.7 Example of <<PAhost>> and <<PAresource>> .. 17

Figure 2.8 The process of supervised learning .. 19

Figure 2.9 The structure of Bayes Network ... 23

Figure 2.11 SVM classification .. 25

Figure 3.1 Our goal to mimic the behavior of real system by using model 31

Figure 3.2 The framework of the approach ... 33

Figure 4.1 Use case diagram for Hospital system ... 40

Figure 4.2 Sequence diagram for Hospital system .. 41

Figure 4.3 Deployment diagram for Hopital system ... 41

Figure 4.4 Queueing Network Model for Hospital system .. 42

Figure 4.5 The system response time ... 43

Figure 4.6 System throughput ... 44

Figure 4.7 System server utilization .. 44

Figure 4.8 Detaield accuracy by class .. 54

Figure 5.1 ECS use case diagram ... 57

Figure 5.2 ECS component diagram .. 58

Figure 5.3 ECS sequence diagram ... 59

Figure 5.4 ECS deployment diagram ... 60

Figure 5.5 Queueing Network Model for ECS .. 61

xv

Figure 5.6 ECS response time .. 62

Figure 5.7 ECS throughput ... 63

Figure 5.8 ECS server utilization ... 64

Figure 5.9 The detaield accuracy by class ... 75

Figure 6.1 OTT use case diagram .. 78

Figure 6.2 OTT sequence diagram for student .. 79

Figure 6.3 OTT system deployment diagram .. 79

Figure 6.4 OTT system response time ... 86

Figure 6.5 OTT system throughput ... 86

Figure 6.6 OTT application server utilization ... 87

Figure 6.7 using multivariate regression to predict OTT response time 88

Figure 6.8 Detailed accuracy by class ... 93

xvi

LIST OF ABBREVATIONS

BN Bayesian Network

JMT Java Modeling Tool

KNN K-Nearest Neighbor

MLR Multi linear Regression

MVA Mean Value Analysis

NB Naïve Bayes

OMG Object Management Group

OTT Online Time Table

QNM Queuing Network Model

SDLC System Development Life Cycle

SVM Support Vector Machine

UML Unified Modeling Language

WEKA Waikato Environment for Knowledge Analysis

xvii

PUBLICATIONS

Salih, H.A.M. & Ammar, H.H., 2017. Model-Based Resource Utilization and Performance

Risk Prediction using Machine Learning Techniques. , 1(3), pp.101–109. International

Journal on Informatics Visualization

Moniem, H.A., 2015. A framework for Performance Prediction of Service-Oriented

Architecture. , 4(11), pp.865–870. International Journal of Computer Applications

Technology and Research

Moniem, H.A., 2014. Performance Prediction of Service-Oriented Architecture - A survey.

, 3(12), pp.831–835. International Journal of Computer Applications Technology and

Research

1

CHAPTER I

Research Introduction

1.1 Introduction:

Nonfunctional requirements validation of software systems does not meet a proper

consideration from software developers yet. Minimum time and effort are given to this part

during the software development life cycle, and the approach of “fix-it-later” is still

dominant (Cortellessa et al. 2005). This benefits the software developers to shorten time to

the market, but software system ability to meet maintainability may degraded after software

system implementation.

Performance is one of the important nonfunctional requirements defined as the

amount of resources needed by the software to accomplish its functionality under all

possible environmental conditions. Software performance risk is defined as a probability

that some adverse circumstance will occur in a system. Performance risk is a combination

of two factors: the likelihood of the occurrence and the consequences of this risk

(Radhakrishnan & Virginia 2007). Moreover, performance failure defined as an unexpected

performance result originated from the violation of a performance requirement. Early

identification of performance metrics such as response time, utilization, throughput etc. is

key step to risk management of software system. There are two basic types of performance

requirements:

 Time–related, defined as the completion time of a specific operation must be less

than a certain threshold.

 Resource-related, defined as the utilization of a specific resource must fall into a

certain range.

2

1.2 Problem Statement:

Performance has a significant impact in software systems. However, many software

products fail to meet their performance requirement on performance when they are initially

built. Overcoming and fixing these problems is costly for two parts, software developer and

software customer. For the former part it causes schedule delays, and cost overruns, equally

for the second part it leads to productivity lost, damaged customer relations, missed

opportunities, and host other difficulties (Smith 1981).

Traditional software development approaches focus on software correctness,

handling performance issues comes later in the development process. This style of

developing defined as “fix-it-later” which is the dominant style in the software industry.

Furthermore, in the researchers community there is a growing interest in the performance

field and there are several approaches to early software performance predictive assessments

have been proposed (Balsamo et al. 2004).

Figure 1.1 How to predict resource utilization and performance risk from a model?

Several approaches have been created to evaluate and predict software system

performance. Most of them are based on Petri-Nets, stochastic algebra, simulation

technique or queuing networks. A good background has been published by a survey paper

3

(Moniem 2014). Also several proposals have been made to apply performance modeling to

the cycle of software development process. However, work on model based performance

risk assessment has been limited due to its complexity.

This thesis has recognized the need for a special-purpose of performance risk

evaluation for systems that considered as important and crucial such as hospital systems, e-

commerce systems, and online timetable systems (OTT). The proposed approach takes into

account the changing of workload and number of customer, the response time of the

system, and the utilization of server’s hardware. Therefore, the new performance

assessment approach can be used by the software engineers for evaluating different

parameters before system implementation to determine the configuration of the system to

meet user needs after deployment(Izzeldin & Osman 2010). From Fig 1.1 the research

problem can be stated as how to:

• Find a relationship between changing workloads and performance metrics.

• Predict software performance and classify performance risk into levels low, medium, or

high performance risk.

1.3 Research Questions

In this research we tried to answer the following questions regarding model-based

performance prediction and performance risk assessment:

• Q1: What are performance metrics and class of performance risk given a certain

workload?

• Q2: Which suitable Machine Learning technique to be used for predicting system

performance and risk assessment?

1.4 Research Hypothesis

The hypothesis of this research is that if we use queuing theory and machine

learning techniques we can predict software system performance and assess performance

risk into levels low, medium, or high on given workload. Moreover, the proposed

4

methodology is expected to give promising results as it will be extend queuing theory by

adding machine learning as intelligent tool that will enrich performance prediction process.

1.5 Research Objectives

The general objective of this research is to easy software performance prediction at

early design time in order to able software engineers and practitioners focusing on

delivering good software. In addition, the specific research objectives can stated as follows:

• To propose a framework for a methodology to simplify software performance

assessment.

• To predict multiple software performance metrics for new workloads based on

previous observed workload. All these activities done during software designing

and before software implementation. Software performance metrics agreed on in the

research are response time, throughput, and resource utilization according to ISO

9126(Adhianto et al. 2010).

• To assess the risk incurred by specific workload into either one of three levels low,

medium, or high risk.

• To verify and validate the framework using three case studies

• To find suitable machine learning techniques that assist software engineers and

practitioners to evaluate performance risk incurred by given workload.

1.6 Scope of the Research

The proposed approach focuses on prediction and assessment of performance risk

based on models. We used annotated UML diagrams to understand software system at early

design stages. UML has become the common language of software development, allowing

engineers to exchange their designs freely(Ram et al. 2011b).

1.7 Research Contribution

This thesis contributes a model-based performance risk prediction by using machine

learning techniques at modeling time. By using machine learning techniques we will mimic

5

the dynamic behavior of software systems for enabling software engineers to evaluate the

expected performance indices and performance risk at designing phase, and before coding

and implementing of the software system. The contributions of this thesis are:

• Propose a framework for a methodology to simplify software performance

assessment.

• Predict performance metrics from UML models by applying ML techniques to

benefit parameter estimation even with noisy and missing data.

• Assess the risk incurred by specific workload into either one of three levels low,

medium, or high risk.

• Verify and validate the framework using three case studies

• Compare different machine learning techniques to find the suitable techniques.

1.8 Thesis Outline:

The rest of thesis is structured as follows:

Chapter 2 presents background material for model-based performance risk

assessment. A categorization of performance models used in software performance

assessment. In addition, the uses of machine learning techniques in software performance

prediction field are discussed in detailed.

Chapter 3 introduces our approach for the model-based performance risk

prediction using machine learning techniques. The phases of implementation the method

are explained. A diagram of the framework is used along with the methodology to easy

understanding of the approach.

Chapter 4 this chapter introduces a case study of a hospital system that describes

the use of this technique. The case represents applying the approach on a small system. We

modeled the system into annotated UML diagrams, then transformed to performance model

to generate the dataset, and we apply three machine learning techniques to validate the

results.

6

Chapter 5 in this chapter the approach applied on a case study of an ecommerce

system. We applied our approach on a system that considered as an open large system. We

apply the same steps as mentioned on chapter four, and we considered this chapter as

second validation case study for the approach.

Chapter 6 in this chapter the approach has been validated applying the approach on

already running system for a university. The system is online timetable (OTT) serves

teachers, students, administration, and parents. We used a tool called JMeter to generate a

performance dataset in order to visualize, predict, and classify performance risk.

Chapter 7 in this chapter we stated the results and discussions of the research. We

compare the results with two related works from the literature. Moreover, we conducted a

comparison between the results of the three cases in order to come with main findings.

Chapter 8 in this chapter we presented the conclusion of our work, also we

mentioned the open issues for new researchers on the same field.

7

CHAPTER II

Background and Related Work

2.1 Introduction

In this chapter, the context for the thesis is set to review the model-based

performance risk assessment and machine learning in the literature. The chapter begins

with an overview of model-based performance prediction in software development. Then,

software modeling notation and performance modeling notation are discussed. The

software life cycle and performance analysis are stated in details. Finally the chapter

concludes with the justification of our approach and our contribution.

2.2 An Overview of Software Performance Risk Assessment

The increasing complexity of software and its spread out in everyday life in the last

years encouraged growing interest for software performance analysis. This has basically

directed to evaluate functional attributes of the software system and, in the case of safety

critical systems, known as dependability property (Ionita & Hammer 2002). The

quantitative behavior of a software system has gained popularity recently with the

emerging of software performance analysis. This type of analysis aims at evaluating

quantitative behavior of a software system by deep analyzing its structure and its quality,

from design to implementation.

8

Software performance is defined as the amount of resources needed by the software

system to provide full functionality under all possible environmental conditions. Software

performance risk is defined as undesired event or any uncertainty happened in the system.

The Software performance is defined as a combination of two factors, probability of

performance failure and the severity due to this failure. Performance failure happens when

a software system violate the required function of the performance requirements

(Radhakrishnan & Virginia 2007).

2.3 Software Modeling Notation

Software architects describe the static and dynamic aspects of the system by using

models. The static description comprises the software components or modules, while the

dynamics description of a software system states the system behavior at run time. There are

many types of notations to describe the static or the dynamic behavior of software system.

This part of the research will focus on notations that permit for the dynamic behavior

description since performance is a dynamic attribute of the system. In addition, the system

software behavior is important but not enough to fill out performance assessment of a

system, moreover the behavioral description of the software system has to be supported by

additional information such software system service demands and operational profiles.

According to (Cortellessa et al., 2011) there are two types of software model

notations: (a) basic notations inherited from computer scientists to model software system,

such as Automata, Process Algebras, Petri Nets, and Message Sequence Charts; (b) Unified

Modeling Language (UML) that has become dominant standards for modeling software

systems. Unlikely, modeling complex and real software system with pervious notations

turns out to be very complex, given that the research will focus on UML.

2.3.1 Unified Modeling Language

UML, declared by the Object Management Group (OMG), is a modeling language

for visualizing, specifying, constructing and documenting artifacts of software system.

Examples of these artifacts are requirements, architecture, design, source code, test cases,

and prototype. Most of the basic notations describing software dynamics, such as Petri

9

Nets, Message Sequence Charts, and Automata have been inspired UML diagrams(Canevet

et al. 2003).

UML diagrams model the software system either statically or dynamically in object

oriented style. The dynamics of a software system can be stated by using interaction

diagrams which describe the message exchange among instances, or by using state

diagrams to specify the internal behavior of each software components, or by using activity

diagrams to show the flow of activities performed by all the computation of interest, or by

using combinations of both interaction and state diagrams.

The system structure can be modeled by component diagram and class diagram. The

component diagram describes general view of the software system as combination of

software subsystem or components; whereas the class diagram presents a view that describe

how the software system will be constructed in an object oriented style defining classes and

their relations(Ram et al. 2011a). After all, UML offers the description of deployment of

software components to hardware nodes by using the deployment diagram.

2.4 Performance Modeling Notations

One of the major problems of emerging software performance modeling with

software development life cycle is the large gap between notations for static and dynamic

modeling (such as UML) and notations for modeling performance (such as Queuing

Networks).As per ISO 9126, the performance indices that may be required for software

systems are mainly: response time, throughput and utilization (Moniem 2015).

There are many performance modeling notations, such as Stochastic Petri Nets

Markov processes, Queuing Networks, Layered Queuing Networks, Execution Graphs,

Stochastic Process Algebras, and Simulation Models. The performance notation we will use

it in our research is Queuing Network Modeling (QNM), this is for the purpose of

popularity as performance model represent and analyze resource sharing system(Kattepur et

al. 2015). Furthermore, QNM has a good combination of enough satisfying accuracy in

performance results and the powerfulness in model analysis and evaluation.

10

2.4.1 Queuing Networks

Queuing Network is a collection of interacting Service Centers representing system

resources and customers representing the users receiving services and share the resources.

The building of a QN can be divided into two steps: Definition, this is includes

representation of service centers, number of service centers, and the interconnection

topology of the network. Parameterization, which marks the input values of the network,

which are the arrival processes, number of customers, the classes of customers, the service

rates, policy of scheduling, and length of the queue.

From Fig. 2.1 the basic elements are of queuing network illustrated. The Queued

center is a node where processes/jobs arrive, if the server busy then stays in the queue for

their turn. After each job finished a new job is fetched from the queue based on a certain

scheduling style. A delay center is a node that makes each process/job passing it afford a

specific delay time (Canessane & Srinivasan 2013). Queuing network can be open or

closed, as a result Source, Sink, and Terminals nodes will be considered.

Figure 2.1: Queuing Network: basic elements(Cortellessa et al. 2005)

The number of customers or the arrival processes represents the QN workload,

which is considered as the amount of requests that are addressed to the QN. There are two

types of workload: Open workload; which completely defined by the stochastic process that

11

identifies the arrival rate of customer requests. One or many sources of requests produce

arrivals to the QN (Franks et al. 2013). One or many sink nodes takes in the jobs

corresponding to requests from the QN. Moreover, the number of customer requests that

disseminate in an open QN in any time is not determined. Closed workload of QN in state

is totally determined by constant number of customers that disseminate in the QN. The QN

is stated to be closed because there is no entry or exit points (Tertilt & Krcmar 2011).

Terminal is a special node that represents the customers. A specific amount of time after

receiving the response called thinking time, whereas request is generated and leaves the

terminal node. Thus, the number of requests/jobs that disseminate in a closed QN is

constant at any time.

In each cases open or closed QN the classes of customers have to be identified.

From Fig 2.2 a customer class is a group of customer that sends the same type of requests

to the QN. In other words, a specific class of customer follows the same service rate and

routing probability distributions.

Figure 2.2: Queuing network example with multiple classes(Cortellessa et al. 2005)

 Product-Form QN is a special type of QN that can be simply solved by stable

algorithm to evaluate performances indices. For example algorithm such as Mean Value

Analysis (MVA) and Convolution that have a polynomial computational complexity in the

12

number of QN components. So as to classify the Product-From class as QN it must

confirm a set of attributes on its types of node, scheduling policy, and customer class.

2.5 UML Profile for Schedulability, Performance and Time

OMG has been adopted the Schedulability, Performance and Time Profile as

standard profile to identify the requirements for UML models analysis (Tribastone et al.

2010). It states the standard approach to model physical time, timing specifications,

resources, scheduling, and hardware and software infrastructure. It enables software

architects to give quantitative information in UML models allowing quantitative analysis

and modeling assessment. The analysis approaches considered in the profile are scheduling

analysis and performance analysis depends on the theory of queuing (Moniem 2015).

2.5.1 PAprofile: Stereotypes and Tagged Values

Performance analysis is basically instance based and it is implemented to models

that collect either actual or approximated execution runs of software systems comprises of

group of instances.

2.5.2 <<PAcontext>> Stereotype

A performance context defines one or more important scenarios to explore different

dynamics situations containing special set of resources and with critical performance.

Performance context comprises of a set of scenarios, their relative workload, and set of

resources. Fig.2.3 presents a high level context where two software resources, specifically

Client and Server components, communicate to provide Browse Cart functionality when

ordered by Customers.

13

Figure 2.3: Example of <<PAcontext>> annotation (Cortellessa et al. 2005)

2.5.3 <<PAclosedLoad>> and <<PAopenLoad>> stereotypes

A scenario is executed by user class with workload intensity; this workload could be

either open or closed. The modeling of stereotypes open and closed can be implemented at

the first step in performance context.

Open workload is defined as infinite number of requests which get into the queuing

system at specific rate, and population that change over the time. Customers that finished

their service depart the system model. The model for an open workload is

<<PAopenLoad>>. In Fig.2.4 an open workload is annotated on the Browse Cart

functionality using the <<PAopenLoad>> stereotype.

14

Figure 2.4: Example of <<PAopenLoad>> annotation (Cortellessa et al. 2005)

Closed workload has a specific number of jobs (population) which pass through

executing of the scenario, time outside the system between each two request (Think Time),

and time between the end of one response and the next request (externalDelay). The closed

workload modeled as <<PAclosedLoad>>. In Fig. 2.5 a closed workload is annotated on

the Browse Cart functionality using <<PAcloasedLoad>> stereotype. It specifies a

constant number of 3000 jobs, each job takes an assumed mean external delay time of 1

millisecond.

15

Figure 2.5: Example of <<PAclosedLoad>> annotation (Cortellessa et al. 2005)

2.5.4 <<PAstep>> Stereotype

Scenarios are comprised of (steps) with successor and predecessor relationships

which might include fork, join, and loops. A step is defined as simple operation, or sub

scenario. A scenario step represents an increment in the running of a scenario and it might

be use resources to perform function of the scenario. Moreover, a step consumes a finite

time to execute (execuationTime). At last, a scenario step may have performance attributes

and might be determine the resource needed in the accomplishment of the step. In Fig. 2.6

the request Browse Cart is annotated using the <<PAstep>> stereotype. The numerical

value assigned to the PAdemand tag states a measure mean service time demand of 5

milliseconds.

16

Figure 2.6: Example of <<PAstep>> annotation (Cortellessa et al. 2005)

2.5.5 <<PAhost>> and <<PAresource>> Stereotypes

A Resource models is a general view of passive or active resource, these resources

take part in one or more scenarios of the performance context. Resources are presented as

servers and keep information about throughput, utilization and scheduling Policy. The

active resources are the normal servers in performance models, and have service times.

Furthermore, <<PAhost>> stereotype models a processing resource.

Passive resources are gained and freed during scenario. In addition to properties it

inherits from the Resource entity, it has capacity stating the number of simultaneous users

and time holding (AccessTime and waitingTime).

Performance measures for a system involve waiting times, resource utilization,

execution demands and response time that is the actual time to execute scenario step. Each

measure might be: a required value, coming from the system requirements or from

performance budget based on them, an assumed value, based on experience, an estimated

17

value, calculated by a performance tool and reported back into the UML model, or a

measured value.

In Fig. 2.7 a CPU node is an active resource annotated with the <<PAhost>>

stereotype. It is implements a Preemption-Resume scheduling policy to each step executed.

The estimated mean context switching time required by such an active resource is 30

microseconds. The CPU communicates through a BUS that represents a passive resource

that dispatches information in 100 microseconds, while applying FIFO scheduling policy.

Figure 2.7: Example of <<PAhost>> and <<PAresource>> annotation (Cortellessa et al. 2005)

2.6 Machine Learning

Before moving into formal definition of machine learning, in Information and

Communication Technology (ICT) field, the two terms that comprises up machine learning;

machine or computer and learning. Defining these terminologies will be guide to select the

suitable machine learning definition for this research.

Computer is a machine for performing calculation; it accepts data, processes them

and provides information based on a sequence of instructions on how to be processed.

Moreover, learning can be defined as a process of acquiring modifications in existing skills,

knowledge and habits through experience and practice (Omary & Mtenzi 2009).

Alpaydin (Omary & Mtenzi 2010) defines machine learning is the ability of the

computer program to develop a new knowledge from available or non-available examples

for the reason of enhancing performance criteria. Software engineers and researchers have

been started using machine learning techniques in the area of quality of service assessment

18

and prediction. Furthermore, machine learning has proved it is efficiency to assist and

optimizes model based performance prediction (Moniem 2015).

Over the past 50 years, machine learning as any growing field of study has grown

hugely. The growing attention in machine learning is driven by two factors as per

Alpaydin:-

(a) Removing tedious human work.

(b) Reducing cost.

Machine learning techniques, when applied to different fields such as in medical

diagnosis, bio-surveillance, speech and handwriting recognition, computer vision and

detecting credit card fraud in financial institution, have confirmed to work with huge

amounts of data and provide results in a matter of seconds

2.6.1 Machine Learning Categories

Machine learning can categorized into two main groups, supervised learning and

unsupervised learning machine learning(Anon n.d.). The two different groups are related

with different machine learning algorithms that represent how the learning approach

works(Kotsiantis 2007).

(a) Supervised Learning

Supervised learning comprises of algorithms that realize from externally provided

cases to output general hypothesis which then make predictions about future

instances(Omary & Mtenzi 2010). In general, by using supervised learning there is a

presence of outcome variable to guide the learning process. There are several supervised

machine learning algorithms such as decision trees, K-Nearest Neighbor (KNN), Support

Vector Machine (SVM), and random Forest (Omary & Mtenzi 2009). Fig 2.8 describes the

process of applying supervised machine learning to a real world problem:

(1) Collecting the dataset.

(2) Data processing and data preprocessing.

19

(3) Defining and providing training dataset.

(4) Selecting the algorithm.

(5) Training and building the model.

(6) Evaluation and assessment with test set.

(7) If the evaluation is ok? Yes go to step 8, else go to step 9.

(8) Perform the classification operation. Go to step 10.

(9) Tune the parameters and go to step 5.

(10) End.

Figure 2.8 the process of supervised learning

20

(b) Unsupervised Learning

Opposite to supervised learning where there is presence of the outcome variable to

orient the learning process, unsupervised learning builds models from data without

predefined example (Moniem 2015). This means no guidance is available and learning

must perform heuristically by the algorithm examining different training data.

2.6.2 Machine Learning Techniques

There are various machine learning techniques can be used depending on the

application domain; four techniques are applied on the research that: Naïve Bayes, k-

nearest neighbor, support vector machines and multivariate regression. These four

techniques are used to give understanding of using machine learning techniques in the area

of model based performance and resource utilization prediction (Omary & Mtenzi 2009).

(a) Multivariate Regression

Multivariate regression (MR) is the most commonly used technique for modeling

the relationship between two or more independent variables and dependent variable by

fitting a linear question to observed data(Guo et al. 2012). The general form of a MR can be

given be:

y a0+a1xi1+... + akxik (1)

yi = a0+a1xi1+... + akxik+ei (2)

where xi1,…, xik are the independent variables, a0,…,ak the parameters to be

estimated, y the dependent variable to be predicted, yi the actual value of the dependent

variable, and ei is the error in the prediction of the i
th

 case.

(b) Naïve Bayes Classifiers

Naïve Bayesian (NB) are very simple Bayesian networks which are consist of

directed acyclic graphs with only one parent and several children with a strong assumption

21

of independence among child nodes in the context of their parent (Kotsiantis 2007).

Moreover, the independence model of Naïve Bayes is based on estimating:

 ∏

 ∏
 (3)

Comparing these two probabilities, the larger probability indicates that the class

label value that is more likely to be the actual label (if R>1: predict i else predict

j)(Mohanty 2012). Since the Bayes classification algorithm uses a product operation to

compute the probabilities P(X, i), it is especially prone to being especially affected by

probabilities of 0. This can be avoided by using Laplace estimator, by adding one to all

numerators and adding the number of added ones to the denominator.

The basic independent Bayes model has been modified in various ways in various

ways in attempts to improve its performance. Attempts to solve the independence

assumption are mainly based on adding more edges to include some of the dependencies

between the features. In this case, the network has the limitation that each feature can be

related to only one other feature. Semi-naïve Bayesian classifier is another important

attempt to avoid the independence assumption. In which attributes are partitioned into

groups and it is assumed that xi is conditionally independent of xj if and only if they are in

different groups.

The main important advantage of the naïve Bayes classifier is its small

computational time for training. Furthermore, since the model has the form of a product, it

can be converted into a sum through the use of logarithms with significant consequent

computational advantages. If a feature is numerical, the normal procedure is to discretize it

during data pre-processing (Kotsiantis 2007).

(c) Bayesian Networks

A Bayesian Network (BN) is a graphical model for probability relationships among

a set of variables. The Bayesian network structure S is a directed acyclic graph (DAG) and

the nodes in S are in one-to-one correspondence with the features X. The arcs represent

22

casual influences among the features while the lack of possible arcs in S encodes

conditional independences. Furthermore, a node is conditionally independent from its non-

descendants given its parents (X1 is conditionally independent from X2 given X3 if P (X1|X2,

X3) = P (X1|X3) for all possible values of X1, X2, X3).

Figure 2.9 the structure of Bayes Network

Naïve Bayes models are similar named for their “naive” assumption that variables

Xi are mutually independent given “special” variable C. The joint distribution is then given

compactly by:

 ∏
 (4)

From Fig 2.9 the univariate conditional distributions can take any form. If

the variable C is observed in the training data, naïve Bayes can be used for classification by

assigning test example to the class C with highest (Mohanty

2012). When C is unobserved, data points can be clustered by applying the EM

algorithm with C as the missing information; each value of C corresponds to a different

cluster, and is the point’s probability of membership in cluster C. Naïve

Bayes models can be viewed as Bayesian networks in which each Xi has C as the sole

parent and C has no parents. A naïve Bayes model with Gaussian is equivalent to

a mixture of Gaussian with diagonal covariance matrices. While mixtures of Gaussians are

widely used for density estimation in continuous domains, naïve Bayes models have seen

23

very little similar use in discrete and mixed domains. However, they have some notable

advantages for this purpose. In particular, they allow for very efficient inference of

marginal and conditional distributions. To consider this, let X be the set of query variables,

Z be the remaining variables, and K be the number of mixture components. The marginal

distribution of X by adding out C and Z:

 ∑ ∑

 (5)

 ∑∑ ∏ ∏

 ∑ ∏ ∏∑

 ∑ ∏

 Where the last equality holds because, for all j, ∑ thus the

non-query variables Z can simply be ignored when computing , and the time

required to compute is , independent of |Z|. This contrasts with Bayesian

network inference, which is worst-case exponential in |Z|. Similar considerations apply to

conditional probabilities, which can be computed efficiently as ratios of marginal

probabilities:

 (5)

 A little bit richer model than naïve Bayes which still allows for efficient

inference is the mixture of trees, where, in each cluster, each variable can have one other

parent in addition to C.

24

(d) K-Nearest Neighbor (KNN)

K-Nearest is one of the methods referred to as instance-based learning which

considered as supervised learning category (Keung & Nguyen 2010). KNN works by

simply storing the training data set, and when a new instance is used, a set of similar related

instances that are neighbors is retrieved from the training dataset set and used to classify the

new instance (Garcia et al. 2008). Classification is useful to take more than one neighbor

into account and then referred to as k-nearest neighbor (Chen & Ma 2013).

Let R= {r1, r2,... r m} be a set of m reference points in a d dimensional space, and let

Q = {q1, q2, …, qn} be a set of n query points in the same space. The k nearest neighbor

problem consists in searching the k nearest neighbor of each query point qi ϵ Q in the

reference set R given a specific distance. Fig. 2.10 illustrates the KNN problem with k = 3

for a set of points in a two dimensional space.

Figure 2.10 Illustration of KNN search problem for k = 3

(E) Support Vector Machines (SVMs):

Support Vector machine (SVMs) finds separating hyper planes between training

instances that maximize the margin and minimize the classification errors. Margins

sometimes known as geometric margin defined as distance between the hyper planes

25

separating two classes and the closest data points to the hyper planes(Abe 2015). The SVM

algorithm is able to work with both linearly and separable problems in classification and

regression tasks(Islam 2013).

SVMs were developed 1995 for binary classification. Their approach may be

roughly sketched as follows:

 Class separation: basically, we are looking for the optimal separating hyper plane

between the two classes by maximizing the margin between the class’s closet

points(Garcia et al. 2008). Fig.2.11shows the points lying on the boundaries are

called support vectors, and the middle of the margin is our optimal separating hyper

plane

Figure 2.11 SVM Classification

 Overlapping classes: data points on the wrong side of the discriminate margin are

weighted down to reduce their influence.

26

 Nonlinearity: when we cannot find a linear separator, data points are projected into

and usually higher dimensional space where the data points effectively become

linearly separable.

 Problem solution: the whole can be formulated as a quadratic optimization

problem which can be solved by known techniques. A program able to perform all

these tasks is called support vector machine.

Several extensions have been developed, the ones currently included in lib-svm are:

 V-classification: this model allows for more control over the number of support

vectors by specifying an additional parameter v which approximates the fraction of

support vectors.

 One-class-classification: this model tries to find the support of a distribution and

thus allows for outlier detection.

 Multi-class classification: basically, SVMs can only solve binary classification

problems. To allow for multi-class classification, lib-svm use the one-against-one

technique by fitting all binary sub-classifiers and finding the correct class by a

voting mechanism.

 ϵ-regression: the data points lie in between the two borders of the margin which is

maximized under suitable conditions to avoid outlier inclusion.

 V-regression: with analogue modifications of the regression model as in the

classification case.

2.7 Related Work:

From the literature, Ganapathi used machine learning on software performance

prediction(Moniem 2015). She proposed a machine learning technique to predict/optimize

multi components, parallel system utilization and performance. The proposed technique

gathers the correlation between a workload’s pre-execution characteristics configuration

parameters, and post-execution performance observations. Finally, the correlation has been

used for performance prediction and optimization. To prove the methodology, she presents

27

three cases on storage and computer-based parallel systems. The outcomes suggest the use

of machine learning based performance modeling to improve the quality of system

management decisions.

The above work is very useful representation of using statistical machine learning to

predict the performance of software systems; however, the approaches focused on software

systems that already designed and implemented not that are at the early modeling stage.

Archana has worked on the area of model based performance prediction by

designing a complementary tool called Software Performance Risk Assessment (SPRA).

The tool performs on scenario based performance risk assessment of a model by analyzing

annotated UML diagrams (Radhakrishnan & Virginia 2007). However, she applied her case

studies on case studies with small number of users which may not give a broad solution.

Our approach use machine learning techniques with thousands of users.

Dubach and et al. used machine learning technique to explore the good compiler

architecture design(Singh et al. 2007). He designed two performance models and applied

them to increase the efficiency of searching the design space for micro architecture. Models

predict performance metrics such as processor cycles, energy consumption, and the trade-

off of the two characteristics.

Malhotra and et al. have employed machine learning to measure software

maintainability. Number of the word “change” is observed over a period of three years on a

dataset. The researchers shown that when using Naïve Bayesian algorithm the classification

performs better than other machine learning techniques (Islam 2013).

Ipek and et al, used multilayer neural network, the network trained on input data

collected from execution on targeted platform (Li et al. 2009). This approach is useful for

predicting many aspects of performance and it takes full system complexity. The study

focuses on the high performance parallel application SMG2000. The model has predicted

performance within error 5% to 7% across a large, multidimensional parameter space.

However, the work of Ganapathi, Dubach, Malhotra, and Ipek applied on system

that already designed and implemented, but they didn’t start the performance prediction

28

process of software from the early modeling stage. The proposed approach proposes

building and evaluating performance model, so that if the model gives reasonable

performance indicators model and then we will continue constructing the system, otherwise

the change will be made on the model itself not on the final product.

UML profile for performance, Schedulability, and time has been announced by

Object Management Group (OMG) as standard specification mechanism (Brunnert &

Krcmar 2015). Starting from model-to-model transformation we have to take annotation

tags and stereotypes proposed in the profile, and the ability to add more specifications.

UML annotations concepts are enough to describe performance attributes of software

systems. Moreover, extending the queuing theory with the machine learning is one of a new

concept we have introduced in our research.

The main contribution of the research is to combine response time, system

throughput, resource utilization, and performance risk prediction from annotated UML

models. The approach started at early software development stage and before implementing

the software. In real life, the exact quantitative performance prediction is not enough in

specific situations, such as e-business systems where the delay in response time may lead to

losing thousands of customers. In addition, software engineers looking for feedback to

make decisions on leveling the consequences of performance risk such as low, medium, or

high performance risk.

We introduced a method to predict system response time, system throughput,

resource utilization, and performance risk from the software system modeled with

annotated UML diagrams based on machine learning techniques. Performance risk can be

categorized as: time related or resource related and the research merged them together in

new proposed approach. Moreover, we can predict resource utilization, response time, and

system throughput by formulating the case as statistical problem and we use multivariate

regression technique. Similarly, we can predict and categories the performance risk level as

(low, medium, or high) by formulating the case as classification prediction problem. To

illustrate the method clearly we presented the steps in Fig.1. In the next chapters we will

illustrate the methodology by using a complete three case studies and compare the results.

29

2.8 Summary

In this chapter, the background of performance risk prediction has been presented.

The relation of UML with performance notation discussed clearly as it considered

important part of our approach. Queuing network models paly crucial role in the modeling

of software system. Equally important, we use machine learning to extend QNM in order to

deal intelligently with performance risk prediction and assessment.

30

CHAPTER III

Methodology for Model-based Prediction of Resource Utilization and Performance

Risk

3.1 Introduction

 As a general definition, a performance measure how effective is a software

system with respect to time constraints and allocation of resource. Standard performance

indices stated by ISO 926 are response time, throughput and utilization. Response time

defined as the end to end time that a job spends to traverse a certain path within the system

(Shoaib & Das 2011). Throughput is defined as the number of jobs that can be completed

per unit of time by a specific part of the software system. Moreover, resource utilization

defined as the percentage of time that a certain part of the system is busy working.

3.2 Challenges in Performance Prediction

 Figure 3.1 shows a simple view of our performance prediction model. We

construct a model that represents our software system. Furthermore, the software system

model will be run and the input workloads observed. Meanwhile, the performance

measurement such as response time, system throughput, and resource utilization metrics

will be recorded to build large dataset.

 Our main objective is to build a model that represents the real system and

generate large dataset by running the model on different workload. In order to predict the

resource utilization and performance risk level for the system we decided to use machine

learning as intelligent technique. We build a model based on the generated dataset and then

we use this model to predict new instances base on the previous workload. However, there

are several obstacles and constraints we must overcome to successfully build performance

model for the system.

31

Challenge 1: Predicting software system performance requires deep knowledge of the

system under construction. Consequently, one of the software engineering myths, that

normal developer cannot measure and predict the performance until the program finished

and run.

Solution 1: Use a black-box modeling approach with performance metrics datasets to

predict software quality before software implemented and put on production environment.

Challenge 2: Performance modeling tools do not include performance risk prediction

concept and most of these tools only present the results of the analysis.

Solution 2: Extend the performance queuing modeling tool with machine learning in order

to predict and understand the performance of the software system before constructed.

Challenge 3: Software system performance risk prediction measured normally

quantitatively, which may have less meaning for the software engineers.

Solution 3: Define technique that can capture both quantitative and qualitative parameters

to help software engineers to decide changes if any at early design phases.

Figure 3.1 our goal is to mimic the behavior of real system by using model

Workload
MODEL

Performance

Machine

Learning

System

32

 Adjusting the performance modeling problems with these challenges in

consideration, and given black box system, our goal is to utilize machine learning

techniques to assist software engineers in performance analysis. Our dataset contains

recorded performance indices measurements with different workload in order to predict

response time or throughput or resource utilization. The dataset also represents the

measurement parameters classified into three performance risk levels low or medium or

high performance risk. Machine learning provides a variety of algorithms that can be used

for performance prediction and performance risk assessment.

3.3 The steps of the Approach

 The proposed approach depends mainly on prediction of the performance

and resource utilization of a software system at early stages of SDLC. Fig.3.2 presents the

approach which follows the stages:-

STEP 1: Annotated UML diagrams will be designed to describe the software system

as follows:

(a) Use Case: each actor in a Use Case diagram may represent a stream of requests

arriving at the system. There may be unlimited sequence of requests (open

workload), or fixed population of users requiring service from the system service

from the system (closed workload)

(b) Deployment diagrams: Deployment diagrams are used to model the physical

resources available in the system. Each resource is represented by a node in the

deployment diagrams (Moniem 2015).

(c) Sequence diagrams: shows interactions consisting of a set of objects and the

messages sent and received by those objects. Sequence diagram address the

dynamic behavior of a system with special emphasis on the chronological ordering

of messages.

STEP 2: Transform Annotated UML Diagrams into Performance Model

 In this step the annotated UML models will be mapped into performance

model. We used Java Modeling Tool (JMT) as performance model. JMT is a free open

33

source suite implementing several algorithms for the exact, asymptotic and simulative

analysis of queuing network models (Rabta et al. n.d.).

Figure 3.2 the Framework of the Approach

34

STEP 3: Running the Performance Modeling Tool and Generate Training Dataset

 In order to generate suitable size of a training dataset JMT will be run many

times with different workloads. We mean be workload here the number of users that

concurrently using the system and the type of operations they are doing on the system.

STEP 4: Use Machine Learning Techniques to:

(a) Predict Performance indices:-

 To predict the performance of a software system we use multivariate

regression machine learning technique. Moreover, performance defined as per ISO 9126

are three indices of a system, which are the response time, throughput, and resource

utilization (Moniem 2014).

 Response time is the measure of the time between the end of a request to a service

and the beginning of the time server response.

 Throughput defined as the number of requests application can process at a given

period of time.

 Resource utilization of an application is a time that application resource is busy by

performing requests expressed usually as percentage.

We build the model by using machine learning – regression, and then we can use

the model to predict any of the above mentioned performance indices (response time,

system throughput, and resource utilization) based on a training dataset(Ram et al. 2011a).

(b) Assess The Performance Risk :-

 After performance indices have been predicted, the second step is to

categories level of the performance risk. However, Software Performance risk is defined as

undesired event that prevents the software providing full functionality under all possible

environment conditions (Radhakrishnan & Virginia 2007). Early identification of software

performance metrics such as system response time, resource utilization, and system

35

throughput is a key step to manage performance risk of software system before

implementation (Moniem 2015). Software Performance requirements can be categorized

into two types:

 Time-related performance requirement, which means the completion time of a

specific operation must be less than a certain threshold (ex. response time for

product purchasing must be less than 8 seconds).

 Resource-related performance requirement, which means the utilization of a specific

resource must fall into a certain range (ex. sever utilization must be less than 80%

when 500 concurrent users logged into the system concurrently).

 In our approach we categorized performance risk into three levels low,

medium or high performance risk, according to the degree of the acceptance by user.

Whether that software system will meet the user requirement from the user perspective or

either time related performance or resource related performance requirement.

Table 3.1 attributes of the Performance dataset

Attribute Description Units

#user No of users currently logged onto the software system

resp System response time represents the time taken to

send and receive a response

ms

thro System throughput represents number of requests for a

given period of time

%

web Web server utilization represents the percentage of the

web server in operation

%

app Application server utilization represents the percentage

of server in operation

%

stor Database server utilization represents the percentage of

server in operation

%

class Represents the category of the performance risk either

it is low, medium, or high

36

3.4 Summary

 In this chapter, we introduced a machine learning based approach for

performance and risk prediction. Our approach uses statistical machine learning technique

to predict performance indices such as response time, system throughput, and resource

utilization. In addition, we used three other classification techniques to categories

performance risk into one of three levels low or, medium or, high. The strength of this

approach comes from extending of queuing network models with machine learning which

gives visualization for the relation between workloads, response time, throughput, resource

utilization, and performance risk level.

37

CHAPTER IV

Predicting Performance of Hospital Information System

4.1 Introduction

 Multi-tier application provides excellent features for designing distributed

internet applications; these features include flexible configuration and easy implementation.

In reality, the complexity nature of web applications requires their developers to follow one

of Software Development Life Cycle (SDLC) methodologies. Normally, users and

consumers expect web applications to be highly responsive, for this reason performance of

the application is taken at early SDLC phases and followed throughout entire the phases

(Shoaib & Das 2011).

 For validation, the proposed approach will be applied on a hospital system.

The system is proposed and presented by Salvaneschi (Serazzi 2008); the application has

been analyzed as part of the IT system of a hospital. The tasks of the application to manage

patient history, such as the arrival date in hospital, past diseases, or remarks related to his

recovery as daily measured temperature.

 We will mention a brief idea of the available functionalities. In Fig.4.1,

Fig.4.2 and Fig.4.3 the medicines prescriptions are centrally managed: doctors insert the

desired medicine quantity for a certain patient, and the pharmacy of the hospital makes

orders for the whole amount of a needed medicine. All the doctors have a personal

computer in their office which they use to insert data from visits and prescriptions. The

nurses have a device similar to a notebook to insert values of temperature, pressure, etc.,

while they are next to the bed of the patient. They also get from the system the quantity of

38

medicine for the patient. Moreover, there are functionalities that give the ability to create a

new file for a patient and retrieve a file searching for his name or his bed number (Salih &

Ammar 2017).

4.2 The Architecture and Model

 For the hospital system we suppose that the number of customers remains

constant which leads to choose a closed queuing model to represent our system. The

interaction of the customers with system is provided by a web application with a browser

on client side and typical 3-tier architecture on server side. The requests are submitted to a

web server, in case of a static page the application response is immediately passed back to

the clients, otherwise the web server interacts with an application server that performs some

quires on a backend database and processed data are passed back to the web server. Finally,

clients receive the dynamically generated page.

 The storage consists of three database servers in work parallel. The attribute

of a job to one of the storage servers is done by a load-balancer in a random way. The

distribution of the requests among the three servers is uniform. We suppose negligible the

delay introduced by the load-balancer in the reasonable hypothesis of a minimal processing

inside the load-balancer.

 They grouped the requests arriving at the system in two groups: the requests

for a database search and the requests for a database modification. The two groups are

modeled by classes with different service time for each station. Considering the point of

view of the database they refer to the search-class and the modification-class as the Heavy

Load class and the Light Load class. In table 4.1 the service demand are reported for each

station in the system and for each class. The different values of the two classes are due to

the different behavior of the two types of users

39

Table 4.1 Service demands time in milliseconds for each station in the system.

 Light Load Heavy Load

Web Server 1.40 1.10

Application Server 2.10 1.50

Storage 1 1.10 2.90

Storage 2 1.20 2.70

Storage 3 1.10 2.80

 The ratio between the number of Heavy Load requests and the Light Load is about

of 3/7. That means if there are 1000 customers using the system the ratio will be result in

300 jobs of light Load and 700 jobs of Heavy Load.

40

Figure 4.1 Use Case Diagram for Hospital System

 In Fig. 4.1 we presented the use case diagram for the hospital system. The

system has three actors: Doctors who login the system to search for a specific patient, add

medicine quantity for patient, and create patient file. Nurse can add patient medical

measurements such as temperature and blood pressure. The pharmacist can make medicine

order. The use case diagram is very important for our approach as we need to know the

type of the system whether it is open or close, the number of scenarios, and determine the

critical scenarios.

41

Figure 2.2 Sequence Diagram for Hospital System

Fig.4.2 shows UML sequence diagram which represents the dynamic view of the

system architecture. We presented the searching operation scenario for a specific patient.

The request moves from client to the web server and from the web server to database server

through application server.

Figure 4.3 Deployment Diagram for Hospital System

42

Fig.4.3 presents the deployment diagram. The deployment diagram explains the

distribution of software components on hardware resources. This diagram considered as

very important diagram for transformation from UML models to performance model.

4.3 Transforming UML diagrams into Performance Model

 Fig. 4.4 shows the Queuing Network model for the hospital system after

transformation to performance model using queuing model – Java Modeling Tool. The

model includes:

(i) A set of queuing centers (web server node, application server node, and three

database servers nodes) representing the hardware resources of the system, a

delay center represents the number of users.

(ii) Two classes of jobs (heavy load and light load), the ratio between the number of

heavy load requests and the light load requests is about 3/7. As example if the

number of user 1000, this result in 300 jobs of light load and 700 jobs of heavy

load.

Figure 4.4 Queuing Network Model for Hospital System

43

4.4 Running the Performance Model

 After running the performance model, we present the results of Java

Modeling Tool. In order to get good results we used Mean Value Analysis. Mean value

analysis (MVA) is an efficient algorithm that allows us to analyze product form queuing

networks and obtain mean values for queue lengths and response times, as well as

throughputs. The efficiency comes because MVA does not compute the joint probability

distribution for queue lengths (Marzolla 2010). However, in many cases of performance

evaluation situations, the mean values are the performance metrics that required by

software engineers.

Fig.4.5 represents the global response time in function of the number of customers

in the system keeping constant the mix of two classes. According to the theory for high

values of the number of customers, the response time grows linearly.

Figure 4.5 the system response time

44

Figure 4.6 System Throughputs

Fig. 4.6 represents the global system throughput, as shown in the figure system

throughput will be increased linearly with the number of users rising till reaches the

saturation point.

Figure 4.7 System servers utilization

45

Fig.4.6 represents utilization of each station in function of rising number of

customers in the system. The upper line refers to the application server, the lower line

refers to the web server and the other three lines represent the storage servers.

4.5 Generating the dataset

The generation of the performance dataset accomplished by running the

performance model tool JVM many times and record the number of users (workload),

system response time, system throughput, application server utilization, web server

utilization, and database server utilization. In our approach we generate two datasets:

(i) Performance Prediction dataset

This dataset consist of numeric data type features such as number of current users of

the application, the response time, throughput, web server utilization, application server

utilization, and database server utilization(Magalhães et al. 2015). We can predict any

feature either response time, or throughput, or any resource utilization.

Table 4.1 Attributes of Performance dataset

Attribute Description Units

#user No of users currently logged onto the software system

SysRes System response time represents the time taken to

send and receive a response

ms

SystThro System throughput represents number of requests for a

given period of time

%

webSerUtli Web server utilization represents the percentage of the

web server in operation

%

AppSerUtli Application server utilization represents the percentage

of server in operation

%

DbServUtli Database server utilization represents the percentage

of server in operation

%

class Represents the category of the performance risk either

it is low, medium, or high

46

Table 4.2 Resource utilization prediction

#users SysRes SystThro webSerUtli AppSerUtli DbServUtli

10 1008.25 0.01 0.01 0.02 0.02

69 1009.16 0.07 0.09 0.13 0.11

128 1010.23 0.13 0.17 0.24 0.21

200 1012.04 0.20 0.26 0.38 0.32

413 1025.03 0.40 0.53 0.77 0.66

489 1041.00 0.47 0.62 0.90 0.77

500 1045.12 0.48 0.63 0.92 0.78

572 1106.41 0.52 0.68 0.99 0.84

649 1243.86 0.52 0.68 1.00 0.86

899 1714.08 0.52 0.68 1.00 0.88

1340 2542.67 0.53 0.68 1.00 0.89

35 1008.54 0.03 0.05 0.07 0.06

2740 5169.85 0.53 0.69 ? 0.91

433 1027.88 0.42 0.55 ? 0.69

520 1055.05 0.49 0.65 ? 0.80

600 1152.79 0.52 0.68 ? 0.85

710 1358.83 0.52 0.68 ? 0.86

1000 1904.06 0.53 0.68 ? 0.88

5000 9408.67 0.53 0.69 ? 0.92

- - - - - -

- - - - - -

47

In table .4.2 we presented sample of resource utilization dataset. The dataset

contains six features: number of users who access the system, the corresponding system

response time, throughput, web server utilization, application server utilization, and

database server utilization. The dataset shows that we can predict the application server

utilization by using machine learning statistical regression.

(ii) Performance Risk Classification dataset

This dataset consists of numeric data type features and category feature. The

numeric features are the number of current users of the application, the response time,

throughput, web server utilization, application server utilization, and database server

utilization. While the category feature is the level of the performance risk (low, or medium,

or high) that incurred by a given workload use the system on same time.

Table 4.3 Performance Risk level classification dataset

#users SysRes SystThro webSerUtli AppSerUtli DbSerUtli class

10 1008.25 0.01 0.01 0.02 0.02 LR

139 1010.50 0.14 0.18 0.26 0.22 LR

244 1013.47 0.24 0.32 0.46 0.39 LR

516 1052.77 0.49 0.64 0.94 0.80 MR

572 1106.41 0.52 0.68 0.99 0.84 MR

623 1195.13 0.52 0.68 1.00 0.85 HR

960 1828.90 0.52 0.68 1.00 0.88 HR

134 1010.37 0.13 0.17 0.25 0.22 LR

3700 6970.57 0.53 0.69 1.00 0.92 HR

4890 9408.67 0.53 0.69 1.00 0.92 HR

48

140 1010.51 0.14 0.18 0.27 0.23 LR

167 1011.14 0.17 0.22 0.32 0.27 LR

518 1053.88 0.49 0.64 0.94 0.80 ?

5000 9408.67 0.53 0.69 1.00 0.92 ?

1899 3591.77 0.53 0.69 1.00 0.91 ?

710 1358.83 0.52 0.68 1.00 0.86 ?

567 1099.52 0.52 0.68 0.99 0.84 ?

33 1008.59 0.03 0.04 0.06 0.05 ?

80 1009.33 0.08 0.10 0.15 0.13 ?

- - - - - - -

- - - - - - -

In table 4.3 we presented a sample of performance risk classification dataset. The

dataset contains 196 instances generated by running the JMT. We change the workload of

the system and the performance indices recorded for every change. The generated dataset

will work as training dataset and to build the model.

4.6 Resource Utilization Prediction using Machine Learning

By using machine learning, we can accurately predict the server utilization on a

given workload. Specifically, we focus here on answering questions like: “How much

resource utilization will be if a certain number of users are using the system concurrently?”

To answer the previous question we used the technique of regression. Regression is

one of the machine learning techniques used to predict numerical values. Table 4.4 shows

the dataset for database server utilization(Zhang et al. 2007). The technique of regression

learn from the dataset and build prediction model based on the actual dataset (Prof et al.

n.d.).

49

4.7 Performance Risk Classification using Machine Learning

By using machine learning we can predict the level of performance risk whether it

is low or medium or high performance risk, if we apply the software system on specific

scenario. We focus here on answering questions like: “What is the class of performance

risk if a certain number of users are using the system concurrently?”

To answer the previous question we used three machine techniques; Naïve Bays, K-

Nearest Neighbor (KNN) (Based 2004), and Support Vector Machines (SVMs). Each

technique build a model in order to predict new instances based on the previous workload

pattern. Furthermore, we compare between the results of the three techniques. Table 5.4

shows the training dataset for performance risk level prediction. It contains the features

number of users, system response time, system throughput, web server utilization,

application server utilization, database server utilization and the corresponding class of

performance risk.

4.8 Results and Discussion

We have presented the results from our experiments after using regression in

prediction database server utilization. In addition, we used and compare between three

machine learning classification techniques in order to validate of our result to classify the

level of performance risks whether it is high, medium, or low performance risk.

4.8.1 Database Server Utilization Prediction

We used a tool called WEKA as machine learning tool in order to predict database

server utilization. Table.4.4. represents the regression technique prediction with mean

square error 0.01. The value of correlation coefficient indicates that there is a high

correlation between the predicted value and the actual value.

50

Table 4.4 Database server utilization prediction accuracy

=== Evaluation on test split ===

=== Summary ===

Correlation coefficient 0.7

Mean absolute error 3.5

Root mean square error 4.4

Total Number of Instances 194

4.8.2 Performance Risk Level Classification

After prediction and using of server utilization database, next step is to classify

performance risk level. We compare between three machine learning algorithms Naïve

Bayes, K-Nearest Neighbor (KNN), and Support Vector Machine (SVM).

(i) Naïve Bayes

In table 4.5 we presented the accuracy of our approach by using Naïve Bayes

technique. The table shows the mean square error is 0.23, which is considered as small

error percentage.

Table 4.5 Naïve Bayes risk classification accuracy

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances 53 91.3 %

Incorrectly Classified Instances 5 8.6 %

Mean absolute error 0.06

Root mean squared error 0.23

Total Number of Instances 58

51

Table 4.6 stated the confusion matrix of Naïve Bayes where four instances are

classified as medium performance risk while they are actually high performance risk, and

one instance is classified as medium performance risk while it is actually high performance

risk.

Table 4.6 Naïve Bayes risk classification confusion matrix

=== Confusion Matrix ===

A b C

22 4 0 a = LR

0 12 0 b = MR

0 1 19 c = HR

(ii) K-Nearest Neighbor (KNN)

In table 4.7 we presented the accuracy percentage of the second technique we used.

KNN is one of famous machine learning techniques. KNN presents mean square error 0.21

which is considered as better than Naïve Bayes.

Table 4.7 KNN performance risk classification accuracy

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances 54 93.1 %

Incorrectly Classified Instances 4 6.8 %

Mean absolute error 0.05

Root mean squared error 0.21

Total Number of Instances 58

52

In table 4.8 the confusion matrix of KNN stated that three instances are classified as

low performance risk while they are actually medium performance risk, and one instance is

classified as medium performance risk while it is actually high performance risk.

Table 4.8 KNN performance risk classification confusion matrix

=== Confusion Matrix ===

A B C

23 3 0 a = LR

0 12 0 b = MR

0 1 19 c = HR

(iii) Support Vector Machine (SVM)

In table 4.9 we present the accuracy of SVM for prediction of performance risk

classification. SVM works and produce mean square error 0.4 which considered as highest

percentage of error.

Table 4.9 SVM performance risk classification accuracy

=== Evaluation on test split ===

=== Summary ===

Correctly classified Instances 40 68.9 %

Incorrectly Classified Instances 18 31.03 %

Mean absolute error 0.31

Root mean squared error 0.40

Total Number of Instances 58

53

In table 4.10 the confusion matrix of SVM showed that two instances are classified

as medium performance risk while they are actually low performance risk, also four

instances are classified as high performance risk while they are actually low performance

risk, and twelve instances are classified as high performance risk while they are actually

medium performance risk.

Table 4.10 SVM performance risk classification confusion matrix

=== Confusion Matrix ===

a B C

20 2 4 a = LR

0 0 12 b = MR

0 0 20 c = HR

The results of the experiments are summarized in table 4.11. The performances of

the three models where evaluated based on three criteria, the prediction accuracy, learning

time and error rate.

Table 4.11 comparisons between Classification Algorithms

Evaluation criteria Classifiers

Naïve

Bayes

KNN SVM

Timing to build model (in sec) 0.01 0.01 0.28

Correctly classified instances 53 54 40

Incorrectly classified instances 5 4 18

Prediction accuracy 91% 93.1% 68.9%

54

The results indicate that the K-Nearest Neighbor classifier outperforms most other

Naïve Bayes and Support Vector Machine methods in prediction. Although the timing to

build the model between Naïve Bayes and KNN are similar, the prediction accuracy differs

significantly.

Fig. 4.8 shows the results of accuracy by performance risk class. As marked on the

figure the precision of the class LR zone is very high, which indicates that the techniques

works well when the relation is linear and consequently degrades when the relation change

to exponential at classification of MR and HR performance risk zones.

Figure4.8 Detailed Accuracy by Class

4.9 Summary

In this chapter we applied our approach on a case study of a hospital system. We

studied the system and then the UML diagrams that describe the system were built.

Furthered, we mapped UML diagrams to performance model. The performance model was

generated by using JVM as standard tool based on Java. JVM run by changing workloads

and record the corresponding response time, throughput, and server’s utilization into a

dataset. We build the dataset in order to enable machine learning to build the classification

model. To validate our approach we compare between three techniques Naïve Bayes, SVM,

and KNN. KNN technique showed good and more accurate results among the mentioned

techniques.

55

CHAPTER V

Predicting Performance of E-commerce System

5.1 Introduction

 The performance of e-commerce sites plays a crucial role in attracting and

retaining customers. Frustrated customers leave these sites and do not return, casing

revenue to be lost. E-commerce system is a web-based application that manages data of the

business: Customers browse catalogs and make selection of items that need to be

purchased. Moreover, suppliers can upload their catalogs; change the prices and availability

of products (Cortellessa et al. 2005). The scenarios we analyzed in this chapter here are:

Browse Catalog and Make Purchase. The first scenario can be critical for performance

attribute because it is required by a large number of customers who registered or who are

not registered, while the latter can be also critical for performance attribute because it

requires several database accesses that can be degrade the application performance.

5.2 The Architecture and Model

 E-commerce system has been studied; the system was analyzed by Trubian,

2011. Trubian supposed that the max number of customer reach up to 5000 users. The

interaction of the customers with system is provided by a web application with a browser

on client side and database on server side. The requests are submitted to a web server node,

then the request passed to the library node, and finally to the control node in case of a static

request. Moreover, the web server node interacts with an application server that performs

some quires on a backend database server and processed data are passed back to the web

server node. Finally clients receive the dynamically generated result via the web browser.

56

 They grouped the requests arriving at the system in two groups: the requests

for a Browse catalog and the requests for a make purchase. The two groups are modeled by

classes with different service time for each station. Considering the point of view of the

database they refer to the search-class and the modification-class as the Browse catalog

class and the make purchase class. In table 5.1 the service demand are reported for each

station in the system and for each class. The different values of the two classes are due to

the different behavior of the two types of users

Table 5.1 Service demands in milliseconds for each station in the system.

Browse

catalog

(Class A)

Make

purchase

(Class B)

Lan 44 msec 44 msec

Wan 208 msec 208 msec

webServerNode 2 msec 4 msec

librayNode 7 msec 16 msec

controlNode 3 msec 3 msec

db_cpu 15 msec 30 msec

db_Disk 30 msec 60 msec

The ratio between the number of Browse catalog requests and the Make purchase is

about of 90% for Browse catalog and 10% for Make purchase. That means if there are 5000

customers using the system the ratio will be result in 500 requests of Make purchase and

4500 requests of Browse catalog.

The use case diagram in Fig. 5.1 represents the artifact modeling the e-commerce

system at the level of requirements specification (Cortellessa et al. 2005). The diagram

annotated the link connecting the customer actor to the browse catalog functionality to

express a response time requirement, that is: a customer should not wait more than eight

seconds to access the catalog. From the analysis point of view we can explain this limit

57

either as an average or as an upper bound (Rajagopal & Thilakavalli 2017). The capability

of annotating UML diagrams with additional information such as performance parameters

and indices is provided from the UML profiling technique that has been described in

Chapter 2.

Figure 5.1 ECS Use Case Diagram

Through the proceeding in the software development process, Fig. 5.2 shows an

annotated UML component diagram of the example, which represents a static view of the

e-commerce system. Component diagrams are used to model physical features of a system

and the relation between each object.

58

Figure 5.2 ECS Components Diagram

Component diagram describes the components used to make functionalities of the system.

Furthermore, a single component diagram cannot represent the entire system but a

collection of diagrams are used to represent the whole.

59

Fig. 5.3 shows an annotated UML sequence diagram which represents the dynamic

view of the system architecture. A sequence diagrams indicates interactions among a set of

objects temporal order, which is good for understanding timing and interplay issues.

Figure 5.3 ECS Sequence Diagram

 Also, the diagram depicts the objects via their lifelines and shows messages they exchange

in time sequence.

60

Figure 5.4 ECS Deployment Diagram

Moreover, Fig.5.4 shows the UML deployment diagram of the system that reflects

the configuration of run-time processing nodes and the components hosted on them.

Deployment diagrams address the static deployment view of architecture. Furthermore,

they related to component diagrams with nodes hosting one or more components.

5.3 Transformation of UML Diagrams into Performance Model

Fig. 5.5 shows the Queuing Network model for the e-commerce case study. It

includes:

(i) A set of queuing centers (web server node, Library server node, control node,

database servers nodes) representing the hardware resources of the system, a

delay center represents the number of users.

61

(ii) Two classes of jobs (browse catalog and make purchase), the ratio between the

number of browse catalog requests and the purchase requests is about 90%for

browse catalog to 10% for make purchase. As example if the number of users

1000, this result in 100 jobs of make purchase and 900 jobs of browse catalog.

Figure 5.5 Queuing Network Model for E-commerce System

5.4 Running the Performance Model:

After running the performance model, we present the results of Java Modeling Tool

(JMT). In order to get good results we use Mean Value Analysis algorithm (MVA). The

reasons for using MVA are mention in Chapter 4. Fig.5.6 represents the global response

62

time in function of the number of customers in the system keeping constant the mix of two

classes. According to the theory for high values of the number of customers, the response

time grows linearly.

Figure 5.6 ECS response time

63

Figure 5.7 ECS throughput

Fig. 5.7 represents the global system throughput, as shown in the figure system

throughput will be increased linearly with the number of users rising till the system reaches

the saturation point.

64

Figure 5.8 ECS Servers utilization

Fig. 5.8 represents utilization of each station in function of increasing number of

customers in the system. The upper line refers to the library node server; the lower line

refers to the web server, control node, and database server.

5.5 Generating the dataset

The generation of the performance dataset accomplished by running the

performance model tool JVM many times and record the number of users (workload),

system response time, system throughput, library node server utilization, web server

utilization, control node server, and database server utilization. In our approach we generate

two datasets for performance prediction and for performance risk classification:-

5.5.1 Performance Prediction dataset

Table 5.2 presents the response time of the ECS system. This dataset consist of

numeric data type features such as number of current users of the application, the response

65

time, throughput, web server utilization, application server utilization, and database server

utilization. We can predict any feature either response time, or throughput, or any of the

server utilization value.

Table 5.2 ECS Response time prediction using regression model dataset

users Res thro webutil librutil control dbCPU dbDisk

10 1 9.92 0.01 0.02 0.01 0.01 0.01

15 1 14.89 0.02 0.03 0.01 0.01 0.01

19 1 18.85 0.02 0.03 0.02 0.02 0.02

22 1 21.83 0.02 0.04 0.02 0.02 0.02

26 1 25.8 0.03 0.05 0.03 0.03 0.03

28 1 27.78 0.03 0.05 0.03 0.03 0.03

30 1 29.77 0.04 0.06 0.03 0.04 0.03

34 1 33.74 0.04 0.06 0.04 0.04 0.04

39 1 38.69 0.05 0.07 0.04 0.05 0.04

41 1 40.68 0.05 0.08 0.05 0.05 0.05

46 1 45.64 0.06 0.09 0.05 0.06 0.05

49 1 48.61 0.06 0.09 0.06 0.06 0.06

53 1 52.58 0.07 0.1 0.06 0.07 0.06

56 1 55.55 0.07 0.11 0.07 0.07 0.07

59 1 58.53 0.08 0.11 0.07 0.07 0.07

63 1 62.49 0.08 0.12 0.07 0.08 0.07

67 1 66.45 0.09 0.13 0.08 0.09 0.08

69 1 68.44 0.09 0.13 0.08 0.09 0.08

66

…. .… …. …. …. …. …. ….

…. …. …. …. …. …. .… ….

1100 2.23 492.49 0.67 1 0.64 0.67 0.63

1117 2.26 492.57 0.67 1 0.64 0.67 0.63

1128 2.28 492.58 0.67 0.80 0.64 0.67 0.63

1137 ? 492.61 0.67 0.77 0.64 0.67 0.63

1154 ? 492.55 0.67 0.33 0.64 0.67 0.63

1162 ? 492.59 0.67 0.67 0.64 0.67 0.63

1179 ? 492.67 0.67 0.49 0.64 0.67 0.63

1189 ? 492.68 0.67 0.99 0.64 0.67 0.64

1198 ? 492.72 0.67 0.76 0.64 0.67 0.64

1200 ? 492.69 0.67 0.65 0.64 0.67 0.64

1220 ? 492.73 0.67 0.90 0.64 0.67 0.64

1250 ? 492.78 0.67 1 0.64 0.67 0.64

1450 ? 493.08 0.67 0.67 0.64 0.68 0.64

1550 ? 493.21 0.67 0.98 0.64 0.68 0.64

2900 ? 494.1 0.67 0.55 0.65 0.68 0.65

3000 ? 494.14 0.67 0.50 0.65 0.68 0.65

3700 ? 494.33 0.67 1 0.65 0.68 0.65

4500 ? 494.49 0.67 0.76 0.65 0.68 0.65

4530 ? 494.49 0.67 0.77 0.65 0.68 0.65

10000 ? 494.89 0.67 0.77 0.66 0.69 0.65

10500 ? 494.91 0.67 0.78 0.66 0.69 0.65

67

100000 ? 495.2 0.67 0.79 0.66 0.69 0.65

5.5.2 Performance Risk Classification dataset

This dataset consists of numeric data type features and category feature. The

numeric features are the number of current users of the application, the response time,

throughput, library server utilization, control server utilization, database server CPU

utilization, and database Disk server utilization. In addition, the category feature is the of

the performance risk level which is low, or medium, or high that incurred on a given

workload.

Table 5.3 Sample of Classification dataset for performance risk level

Users res thro webutil librutil Control dbCPU dbDisk Class

10 1 9.92 0.01 0.02 0.01 0.01 0.01 LR

15 1 14.89 0.02 0.03 0.01 0.01 0.01 LR

19 1 18.85 0.02 0.03 0.02 0.02 0.02 LR

22 1 21.83 0.02 0.04 0.02 0.02 0.02 LR

26 1 25.8 0.03 0.05 0.03 0.03 0.03 LR

28 1 27.78 0.03 0.05 0.03 0.03 0.03 LR

30 1 29.77 0.04 0.06 0.03 0.04 0.03 LR

524 1.07 485.34 0.66 0.99 0.62 0.65 0.61 MR

526 1.08 486.06 0.66 0.99 0.62 0.65 0.61 MR

529 1.08 486.79 0.66 0.99 0.62 0.65 0.61 MR

531 1.08 487.21 0.66 0.99 0.62 0.65 0.61 MR

533 1.09 487.59 0.66 0.99 0.62 0.65 0.61 MR

68

535 1.09 487.92 0.66 0.99 0.62 0.65 0.61 MR

538 1.1 488.57 0.66 0.99 0.62 0.66 0.62 MR

540 1.1 488.81 0.66 0.99 0.62 0.66 0.62 MR

543 1.11 489.1 0.66 0.99 0.62 0.66 0.62 MR

545 1.11 489.26 0.6 0.99 0.62 0.66 0.62 MR

547 1.11 489.63 0.67 0.99 0.62 0.66 0.62 MR

549 1.12 489.74 0.67 0.99 0.62 0.66 0.62 MR

552 1.12 489.88 0.67 0.99 0.62 0.66 0.62 MR

555 1.13 489.94 0.67 0.99 0.62 0.66 0.62 MR

945 1.92 492.03 0.67 1 0.64 0.67 0.63 HR

951 1.93 492.11 0.67 1 0.64 0.67 0.63 HR

957 1.9 492.19 0.67 1 0.64 0.67 0.63 HR

964 1.95 492.1 0.67 1 0.64 0.67 0.63 HR

969 1.96 492.19 0.67 0.80 0.64 0.67 0.63 HR

974 1.97 492.12 0.67 0.77 0.64 0.67 0.63 HR

983 1.99 492.16 0.67 0.33 0.64 0.67 0.63 HR

989 2 492.25 0.67 0.67 0.64 0.67 0.63 HR

990 2.01 492.23 0.67 0.49 0.64 0.67 0.63 HR

1000 2.03 492.26 0.67 0.99 0.64 0.67 0.63 HR

1006 2.04 492.34 0.67 0.76 0.64 0.67 0.63 ?

1015 2.06 492.21 0.67 0.65 0.64 0.67 0.63 ?

1027 2.08 492.37 0.67 0.90 0.64 0.67 0.63 ?

1033 2.09 492.29 0.67 1 0.64 0.67 0.63 ?

69

1046 2.12 492.43 0.67 0.67 0.64 0.67 0.63 ?

1052 2.13 492.35 0.67 0.98 0.67 0.67 0.63 ?

1059 2.15 492.42 0.67 0.55 0.67 0.67 0.63 ?

1065 2.16 492.34 0.67 0.50 0.64 0.67 0.63 ?

1072 2.17 492.4 0.67 1 0.64 0.67 0.63 ?

380 1.01 373.06 0.51 0.76 0.47 0.5 0.47 ?

385 1.01 377.8 0.51 0.77 0.48 0.5 0.47 ?

389 1.01 381.58 0.52 0.77 0.48 0.51 0.48 ?

392 1.01 384.41 0.52 0.78 0.49 0.51 0.48 ?

400 1.02 391.92 0.53 0.79 0.5 0.52 0.49 ?

403 1.02 394.73 0.54 0.8 0.5 0.53 0.5 ?

412 1.02 403.1 0.55 0.82 0.51 0.54 0.51 ?

419 1.02 409.55 0.56 0.83 0.52 0.55 0.51 ?

425 1.02 415.03 0.56 0.84 0.52 0.55 0.52 ?

428 1.02 417.76 0.57 0.85 0.53 0.56 0.53 ?

430 1.02 419.56 0.57 0.85 0.53 0.56 0.53 ?

437 1.02 425.84 0.58 0.86 0.54 0.57 0.54 ?

442 1.02 430.27 0.58 0.87 0.54 0.58 0.54 ?

5.6 Performance Prediction using Multivariate Regression

By using machine learning, we can accurately predict the system response time on a

given workload. Specifically, we focus here on answering questions like: “How much the

system response time will be if a certain number of users using the system concurrently?”

70

To answer the previous question we used the technique of regression. Regression is

one of the machine learning prediction technique used to predict numerical values.

5.7 Performance Risk Assessment using Machine Learning Techniques

By using machine learning we can predict the level of performance risk whether it

is low or medium or high performance risk, if we apply the software system on specific

configuration. We focus here on answering questions like: “What is the class of

performance risk if a certain number of users are using the system concurrently?”

To answer the previous question we compare between three machine learning

algorithms; Naïve Bays, K-Nearest Neighbor (KNN), and Support Vector Machines

(SVMs). We apply the classifiers on the training dataset contains 250 instances, and then

we compare between the results. Table 5.3 shows a sample of training dataset for

performance risk level prediction. It contains number of users, system response time,

system throughput, library server utilization, control server utilization, database CPU server

utilization, database Disk server utilization and the class of performance risk.

5.8 Results and Discussion

We have presented the results from our experiments after using multivariate

regression in prediction system response time. In addition, we used and compare between

three classification techniques in order to classify the level of performance risks whether it

is high, medium, or low performance risk.

5.8.1 Prediction of System Response Time

We used WEKA as machine learning tool in order to predict system response time.

Figure 5.4 represents the multivariate regression technique prediction with mean square

error 2.12. The high value of the correlation coefficient indicates the small differences

between the actual value and the predicted value of system response time.

71

Table 5.4 ECS Response Time Prediction Accuracy

=== Evaluation on test split ===

=== Summary ===

Correlation coefficient 0.8

Mean absolute error 2.9

Root mean squared error 3.7

Total Number of Instances 250

5.8.2 Performance Risk Level Classification

After prediction of system response time, the next step is to classify performance

risk level. We compare between three machine learning algorithms Naïve Bayes, K-Nearest

Neighbor (KNN), and Support Vector Machine (SVM) same as the previous example of

hospital system presented in chapter four.

5.8.2.1 Naïve Bayes

In Fig.5.5 we presented the accuracy of our approach by using Naïve Bayes

algorithm. From the figure the mean square error is 0.22.

72

Table 5.5 Naïve Bayes performance risk classification accuracy

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances 78 91.7 %

Incorrectly Classified Instances 7 8.2 %

Mean absolute error 0.05

Root mean squared error 0.22

Total Number of Instances 58

Fig. 5.6 stated the confusion matrix of Naïve Bayes where two instances are

classified as medium performance risk while actually they are low performance risk.

Moreover, four instances is classified as medium performance risk while correctly it is high

performance risk, and one instance is classified as low performance risk while actually it is

medium performance risk.

Table 5.6 Naïve Bayes performance risk classification confusion matrix

=== Confusion Matrix ===

a b C

50 2 0 a = LR

1 14 0 b = MR

0 4 14 c = HR

5.8.2.2 K-Nearest Neighbor (KNN)

In table 5.7 we presented the accuracy percentage of KNN algorithm with mean

square error 0.12. KNN gives a good percentage for correctly classified instances.

73

Table 5.7 KNN performance risk classification accuracy

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances 83 97.64 %

Incorrectly Classified Instances 2 2.3 %

Mean absolute error 0.02

Root mean squared error 0.12

Total Number of Instances 85

In table 5.8 the confusion matrix of KNN stated that two instances incorrectly

classified. One instance is classified as medium performance risk while actually it is low

performance risk, while one instance classified as medium risk while it is actually high

performance risk.

Table 5.8 KNN performance risk classification confusion matrix

=== Confusion Matrix ===

a b C

51 1 0 a = LR

0 14 1 b = MR

0 0 18 c = HR

74

5.8.2.3 Support Vector Machine (SVM)

In table 5.9 we present the accuracy of SVM for prediction of performance risk

classification with mean square error is 0.4. SVM shows low percentage of correctly

classified instance.

Table 5.9 SVM performance risk classification accuracy

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances 60 70.5 %

Incorrectly Classified Instances 25 29.4 %

Mean absolute error 0.19

Root mean squared error 0.44

Total Number of Instances 85

In table 5.10 the confusion matrix of SVM showed that eight instances are classified

as low performance risk while they are actually medium performance risk, and seventeen

instances are classified as low performance risk while they are actually high performance

risk.

Table 5.10 SVM performance risk classification confusion matrix

=== Confusion Matrix ===

a b C

52 0 0 a = LR

8 7 0 b = MR

17 0 1 c = HR

75

The results of the experiments are summarized in table 5.11. The performances of

the three models where evaluated and compared based on three criteria, the prediction

accuracy, learning time and error rate.

Table 5.11 Comparisons between Classification Techniques

Evaluation criteria Classifiers

Naïve

Bayes

KNN SVM

Timing to build model (in sec) 0.01 0.01 0.55

Correctly classified instances 78 83 60

Incorrectly classified instances 7 2 25

Prediction accuracy 91.7 % 97.6 % 70.5 %

The results indicate that the K-Nearest Neighbor classifier outperforms in prediction

than Naïve Bayes and Support Vector Machine methods. Although the timing to build the

model between Naïve Bayes and KNN are similar, the prediction accuracy differs

significantly.

Figure 5.9 the detailed accuracy by class

76

As marked on the figure the accuracy of prediction looks to be very high at the zone

of LR which is linear, while the accuracy degrades at MR and HR as the relation changed

to exponential relation.

5.9 Summary

In this chapter we applied our approach on a case study of e-commerce system. We

studied the system and UML diagrams were designed. After that, we mapped UML

diagrams to performance model. The performance model was designed by using JVM as

standard tool based on Java code. Moreover, the JVM runs by changing workload and

record corresponding response time, throughput, and server’s utilization. We use the

dataset in order to predict performance of system response time. In addition, we apply three

machine learning techniques to classify the performance risk of a specific workload. The

comparison states that KNN gives a good result among the other techniques.

77

CHAPTER VI

Prediction Performance of Online Time Table (OTT)

6.1 Introduction

In this chapter the methodology with already running system has been applied. OTT

is an online time table system that serves university teachers and students. The performance

of the system is crucial as both teachers and students are login to the system in order to

know their classes with associated timing.

6.2 The System Architecture

The system contains three modules: Administrator module, lecturer module, and

student module. The role of the administrator is to handle entire administration task.

Administrator has to handle additional, editing and deleting classes, subjects, and timing.

For the lecture module it contains the function to view timetable for the specific

lecturer and the timetable for all the semester. Students can view timetable and print. OTT

also contains a database, which stores the lectures and class rooms. Only the administrator

can view, add and delete the data in the timetable.

In Fig. 6.1 the admin of the system can login, add, update, and delete classes

according to specific time. However, teachers and students login the system to view their

classes timing and the assigned room.

78

Figure 6.1 OTT Use Case Diagram

 Fig. 6.2 shows the sequence diagram for the students trying to inquiry for

semester timetable. At the beginning the system validates the student user name and

password. After that student input his batch year, then the application server sends the

request to the database and comes with answer to be displayed as HTML on the browser of

the student.

79

Figure 6.2 OTT Sequence Diagram for Student

 Fig. 6.3 shows the distribution of the software on the hardware. The OTT

system consists of three servers: web server, application server, and database server. Users

of the system use their smart phones, laptops, and PCs to get system services.

Figure 6.3 OTT System Deployment Diagram

80

6.3 Collecting Performance Dataset using Appache JMeter

 The Apache JMeter application is open source software, a 100% pure Java

application designed to load test functional behavior and measure performance. It was

originally designed for testing Web Applications but has since expanded to other test

functions.

Apache JMeter may be used to test performance both on static and dynamic

resources, Web dynamic applications (Singh & Kumar 2011). It can be used to simulate a

heavy load on a server, group of servers, network or object to test its strength or to analyze

overall performance under different load types.

Apache JMeter features include:

 Ability to load and performance test many different applications/server/protocol

types:

 Web - HTTP, HTTPS (Java, NodeJS, PHP, ASP.NET, …)

 SOAP / REST Webservices

 FTP

 Database via JDBC

 LDAP

 Message-oriented middleware (MOM) via JMS

 Mail - SMTP(S), POP3(S) and IMAP(S)

 Native commands or shell scripts

 TCP

 Java Objects

 We used JMeter in order to gather and collect dataset of OTT system. The

performance dataset is collected by running the OTT and JMeter which creates virtual users

to mimic the system on production environment. We collected a performance dataset that

consists of 205 instances containing the features #users, system response time, system

throughput, application server utilization, and database server utilization.

81

6.4 Using Statistical Machine Learning Multivariate Regression:

 Table 6.1 shows a sample of OTT performance dataset for prediction system

response time. To predict the performance of the system, we train the machine learning by

dividing the dataset into 70% of the dataset for training and 30% for testing.

Table 6.1 Sample of OTT response time dataset

users respons_time throughput app_UTLI DB_UTLI

1 1082 20.8 0 0.01

2 1086 1.3 0.02 0.01

3 1087 1.7 0.03 0.02

4 1086 2.2 0.03 0.02

10 1094 5 0.08 0.04

18 1085 8.7 0.1 0.05

19 1082 9.3 0.12 0.05

22 1080 10.9 0.14 0.05

23 1080 11.2 0.15 0.04

27 1078 13.4 0.13 0.03

29 1077 14.1 0.16 0.04

35 1074 17 0.17 0.12

39 1074 18.8 0.19 0.08

41 1075 20.1 0.25 0.11

42 1077 20.4 0.25 0.13

46 1072 22.4 0.31 0.12

49 1078 23.8 0.3 0.15

82

53 1072 25.8 0.32 0.18

61 1073 29.6 0.37 0.28

63 1073 30.7 0.42 0.19

64 1070 31.2 0.5 0.25

31 ? 46.5 2.25 1.65

315 ? 49.2 2.33 1.64

321 ? 47.9 2.18 1.48

322 ? 46.7 2.96 1.89

325 ? 44.9 2.91 1.83

331 ? 47.3 2.77 1.85

332 ? 48.1 2.75 1.77

333 ? 46.7 2.9 1.96

334 ? 47.6 2.86 1.84

335 ? 44 2.68 2

336 ? 45.3 2.79 1.88

337 ? 48.7 2.8 1.7

341 ? 48.4 2.76 1.81

344 ? 48.2 2.85 1.8

348 ? 47.3 2.83 1.79

350 ? 50 2.95 1.87

351 ? 47.3 3.19 2.07

355 ? 49.7 2.93 1.87

356 ? 46.4 3.12 1.94

83

…. …. …. …. ….

…. …. …. …. ….

501 ? 46.3 6.76 4.42

505 ? 49.6 5.67 3.79

508 ? 47.4 9.26 6.03

512 ? 49.6 6.17 4.12

515 ? 50.9 5 3.19

516 ? 42.1 5.43 3.5

519 ? 51.3 4.79 3.36

545 ? 84.9 5.4 3.45

549 ? 82.3 6.11 4.27

550 ? 83 10.22 7.03

555 ? 86.2 5.2 3.7

559 ? 83.8 5.12 3.53

561 ? 83.9 8.39 5.72

569 ? 81.1 5.04 3.58

575 ? 84.5 12.31 8

578 ? 85.7 6.36 4.39

579 ? 84.9 5.48 3.5

580 ? 82 10.15 6.86

584 ? 81.6 5.99 4

587 ? 85.5 5.23 3.55

590 ? 84.6 4.85 3.4

84

593 ? 81.3 13.3 8.62

597 ? 83.2 5.73 3.74

600 ? 86.1 10.23 7.09

- - - - -

6.5 Using Machine Learning for Performance Risk Assessment:

At the first part of our methodology we are become able to predict any of

performance indices from dataset such as system response time, system throughput, or each

of server utilization by using multivariate regression. At the second part of our

methodology we will become able to classify the performance risk for each instance by

using either Naïve Bays, or KNN, or SVM techniques. Fig. 6.2 shows a sample of dataset

to predict performance risk level.

Table 6.2 Sample dataset of OTT system for performance risk classification

Users Resp Throu Apputi dbuti class

555 5751 86.20 5.20 3.70 HR

600 6386 86.10 10.23 7.09 HR

584 6639 81.60 5.99 4.00 HR

593 6623 81.30 13.30 8.62 MR

569 6657 81.10 5.04 3.58 MR

523 5116 51.80 5.32 3.79 HR

355 3573 49.70 2.93 1.87 LR

528 5094 51.60 4.87 2.99 HR

521 5129 51.30 6.41 4.34 HR

85

519 5143 51.30 4.79 3.36 ?

515 5058 50.90 5.00 3.19 ?

525 5246 50.70 5.87 3.86 ?

461 4630 50.60 4.34 3.04 ?

524 5245 50.60 6.44 4.11 ?

411 4092 50.40 3.10 2.08 ?

424 4158 50.40 3.04 2.10 ?

530 5235 50.30 5.02 3.38 ?

469 4812 50.10 4.37 2.95 ?

538 5417 50.10 5.41 3.47 ?

350 3551 50.00 2.95 1.87 ?

534 5421 50.00 7.91 4.94 ?

360 3591 49.90 2.77 1.89 ?

454 4606 49.90 4.41 2.88 ?

6.6 Using WEKA to Visualize the Dataset

We used WEKA to visualize and validate the dataset. Fig 6.4 shows the response

time diagram, the diagram represents the relationship between the numbers of users and

response time values. It looks clear that the response time increases with number of users

linearly and then exponentially after saturation point.

86

Figure 6.4 OTT System Response Time - Performance Dataset Visualized by WEKA

Fig. 6.5 shows the system throughput. The throughput increased as the number of

users increase till it reached stabilized point when the numbers of users reach certain.

Figure 6.5 OTT System Throughput – Performance Dataset Visualized by WEKA

87

 Figure 6.6 represents the application server utilization. It is obvious that

system reaches saturation point when a specific number of users access the system

concurrently.

Figure 6.6 Application server utilization – performance dataset visualized by WEKA

 Fig. 6.7 represents the database server utilization. The utilization of server

increased when the number of customer grows till it reaches saturation point.

88

Figure 6.7 Using multivariate regressions to predict OTT system response time

6.7 Using Multivariate Regression

 Table 6.3 shows the correlation coefficient between actual response time and

predicted response time. The high value of the correlation coefficient indicates the small

different between the actual response time and the predicted response time.

Table 6.3 Using multivariate linear regression to predict OTT system response time

=== Evaluation on test split ===

=== Summary ===

Correlation coefficient 0.7

Mean absolute error 4.1

Root mean squared error 5.1

Total Number of Instances 205

89

6.8 Prediction Performance Risk Class

6.8.1 Using Naïve Bayes Technique

Table 6.4 states the usage of Naïve Bayes technique as simple technique to assess

performance risk. The result shows the percentage of the error as 6.5% which is good

result, but due to instability of the algorithm we make validation using more techniques.

Table 6.4 Using Naïve Bayes to classify Performance risk level

=== Evaluation on test split ===

=== Summary ===

Correctly classified Instances 57 93.4 %

Incorrectly Classified Instances 4 6.5 %

Mean absolute error 0.04

Root mean squared error 0.18

Total Number of Instances 61

Table 6.5 shows the confusion matrix of Naïve Bayes technique. As listed on the

table there are two instances are classified as low performance risk but in reality they are

medium performance risk. Moreover, there are two states are classified as medium

performance risk while actually they are high performance risk.

Table 6.5 Confusion Matrix for Naïve Bayes Algorithm

=== Confusion Matrix ===

A b C

10 2 0 a = LR

0 9 2 b = MR

0 0 38 c = HR

90

6.8.2 Using KNN Technique

Table 6.6 presents the results of usage KNN technique. The algorithm shows error

3.27% which looks better than Naïve Bayes.

 Table 6.6 Using KNN technique to classify performance risk level

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances 59 96.72 %

Incorrectly Classified Instances 2 3.27 %

Mean absolute error 0.03

Root mean squared error 0.14

Total Number of Instances 61

 Table 6.7 shows the confusion matrix of KNN. As stated on the table there

is one instance is classified as low performance risk while actually it must be medium

performance risk. In addition, one instance is classified as medium performance risk while

in reality it must be high performance risk.

Table 6.7 Confusion Matrix for KNN Technique

=== Confusion Matrix ===

A b C

11 1 0 a = LR

0 10 1 b = MR

0 0 38 c = HR

91

6.8.3 Using SVM Technique

Table 6.8 shows the result of performance risk classification using SVM technique.

The high percentage of error 37.70% explains the inability of the technique to give accurate

result.

 Table 6.8 Using SVM technique to classify performance risk level

Table 6.9 presents the confusion matrix of the SVM technique. It is obvious that

SVM technique failed to classify the instances as it classifies all instances as high

performance risk.

Table 6.9 Confusion Matrix for SVM technique

=== Confusion Matrix ===

A b C

0 0 12 a = LR

0 0 11 b = MR

0 0 38 c = HR

=== Evaluation on test split ===

=== Summary ===

Correctly classified Instances 38 62.29 %

Incorrectly Classified Instances 23 37.70 %

Mean absolute error 0.25

Root mean squared error 0.50

Total Number of Instances 61

92

Table 6.10 presents the comparison between the three machine learning techniques.

Naïve Bayes works probably and gives a good result, but it considered as instable machine

learning technique and simple. We focus on KNN as stable technique that give good results

with all three case studies. Moreover, KNN gives prediction accuracy 96.72% which

considered as high result among the three techniques.

Table 6.10 Comparison of the classifiers techinques

Evaluation criteria Classifiers

Naïve

Bayes

KNN SVM

Timing to build model (in sec) 0.01 0.01 0.27

Correctly classified instances 57 59 38

Incorrectly classified instances 4 2 23

Prediction accuracy 93.4% 96.72% 62.29%

Fig. 6.8 presents the detailed accuracy by class. As per the figure the precision of

the accuracy is very high at LR zone as the relation is linear, while the precision degrades at

MR and HR as the relation moved to exponential relation.

93

Figure 6.8 Detailed accuracy by class

6.9 Summary

This chapter considered as third validation work for our approach, we apply the

approach on a running OTT system. The OTT is already developed and working system

serving university to inform teachers, students, administration, and parents about class

times. We have generated a dataset from the system by using Apache JMeter. JMeter is a

Java based tool to mimic virtual users accessing the system at same time. Furthermore, we

used machine learning techniques to visualize, analyze, predict, and assess performance

risk. After we performed our experiments we made comparison between the three

mentioned above machine learning techniques. KNN gives low percentage of error about

3.27 % which considered a promising result.

94

CHAPTER VII

DISCUSSION AND RESULTS

7.1 Introduction

Performance risk prediction and assessment is very often ignored when designing

the software system, this due to invisibility of most units of software system. Bad

performance of software system is not immediately obvious and tangible, moreover

correcting the performance problems afterwards can be just as costly and difficulty as

stated by Brebner et al. (2009). Furthermore, the complexity of modern software systems

makes it hard to understand how the system will perform under a changed load, or even

after changes on the software or hardware. Existing approaches, methods, and tools are

either tailored for a very special type of application, or they come with a variety of

configurations, resulting in the need of expert knowledge to operate them.

Not knowing the performance behavior of software system thought is a disaster and

big risk. In order to contribute to these challenges, we develop an approach to predict

performance risk of application software at early stages of SDLC and before software

implementation. The approach applied on three case studies: a hospital system, an e-

commerce system, and already running online timetable system. The produced results are

good and give promising results, moreover this contribution can open a new area for

researchers to design and build a tool that combine queuing network model and machine

learning to easy prediction of software performance at the planning stage.

In this chapter we will discuss our findings from the thesis and explain what does it

means. Furthermore, this chapter highlights the stages of preparing the dataset that used for

performance risk prediction. In addition, the chapter compares the results of the approach

with the related work.

95

7.2 Dataset Preparation

The process of using machine learning in research may not be exactly the same, but

there are certain standard and necessary steps:

a) Define the problem

b) Prepare the dataset

c) Evaluate machine learning techniques

d) Improve the results

e) Present the results.

In order to achieve reliable predictions from a machine learning model, it is very

important to handle and organize the data precisely. There are three steps involved in

preparing a dataset for use by a machine learning algorithm. First, selecting the data and

then process and transform the data.

7.2.1 Selecting Data

Data which are relevant to the problem chosen should be selected. Sometimes it is

good to collect all the relevant data that are available for the problem domain because it

helps to train the model well. The preparation of dataset started when building the

performance model using JMT. JMT is a queuing tool to model software performance by

implementing several algorithms for the exact, asymptotic and simulative analysis of

queuing models. By changing workloads the performance of the software recorded on

dataset contains more than 250 instances. Moreover, there are five numeric attributes such

as number of users, system response time, system throughput, application server utilization,

database server utilization, and the sixth attribute is classification attribute represents the

class of performance that ranking risk into three levels {low, medium, high}.

96

7.2.2 Processing Data

After data collection, the next step focuses on the utilization of data by the learning

algorithms. Data processing helps to build and create a framework for the collected data in

order for the algorithm to work efficiently on the data. There are steps for processing data:

(a) Formatting: The raw data which has been collected from JMT was not in suitable

format for use by Weka, therefor formatting the data according to the needs of Weka.

(b) Cleaning: There may be some incomplete or missing data in the raw data. A process

has been done to fix or remove the missing data in order to make the dataset consistent and

useful for the performance risk prediction and assessment.

 For the sake of dataset validation we use statistical method to estimate the accuracy

of the models that we created on unseen data. To be sure about the accuracy of the best

model, we evaluated it on actual unseen dataset. To do this, we took some dataset that

algorithms will not see and use this data later to get a second and independent idea of how

accurate the best model really is. Dataset will be split into two, 80% -70% of which used to

train our models and 20% - 30% of which used to hold back as a validation and testing

dataset.

7.3 Comparison with Existing Studies

Several studies were carried out in the past few years to predict software

performance risk. In this part of the research we will conduct a detailed comparison

between our work and work done by Ganapathi in 2011 and Archana in 2007. There are

partly differences in their research questions and scope from our work, but are anyway

useful benchmarks to test the validity of our results. Important differences are the

following:

 Time of usage:

This feature indicates the phase of SDLC at which the approach is applied. “Early”

means the application of approach at the planning phase and before the software

97

being constructed. In contrast “Late” means application of the approach after

software constructed.

 Number of concurrent users:

This feature indicates the capacity of the approach and state the number of users

who can concurrently use the software application.

 Cost:

Cost means how much the process of applying software performance evaluation

method costs in terms of consuming time and resources.

 Techniques:

This feature states the tools and methods used in the approach. Techniques are

varying such as simulation, execution graph, Markov chain, queuing network

model. Modern techniques of software quality attributes measurements have been

started using artificial intelligence techniques such as neural network, multi-agent

system, and machine learning in order to predict many software quality attributes

such as maintainability, performance, security.

 Easy of Configuration:

Easy of configuration state the effort needed to setup and use the approach. This

criterion is very important as many of these approaches were ignored because of it

is complexity and difficulty.

 Result:

Performances risk assessments has different scope and domain, in this comparisons

we tried to find the most related approaches that have similar concern.

 Modeling Language:

Using modeling language such as UML means the planning for performance

assessments starts at early phases of SDLC. Our approach focus on performance

prediction based at modeling stage.

 Number of Activity:

Software performance evaluation requires a number of activities in order to be

achieved. Each step has input, process, and output. Some of the methods perform

these steps sequentially or others iteratively or in parallel way.

98

Table 7.1 Comparison with Existing Studies

Criteria Ganapathi Archana
Our

Approach

Time of usage Late Early Early

Number of concurrent users Large Small Large

Cost Expensive Not Expensive Not Expensive

Techniques Statistical

Machine

Learning

Execution

Graph and

Simulation

QNM and

Machine

Learning

Easy of configuration Complex Easy Easy

Results Performance

Prediction

Risk

Assessment

Performance

prediction and

risk estimation

Usage of Modeling Language No Yes Yes

Number of Activities 4 steps 5 steps 5 steps

In contrast, there are major differences between other related works in the literature

we didn’t mention them. Firstly, the work of Dubach and et al. used machine learning

technique to explore the good compiler architecture design. Architecture design of compiler

is far away from our scope as we focused on n-tier application architecture. Moreover, their

dataset features are completely different that contains features such as processor cycles,

energy consumption, and the trade of the two characteristics. Secondly, the work of

Malhotra and et al. applied on prediction of different non-functional requirement that is

maintainability using machine learning techniques. Thirdly, the work of Ipek and et al. used

99

multilayer neural network, the network trained on input data collected from execution on

targeted platform. However, the work used to predict performance of parallel application

SMG2000 after the application run on working environment.

7.4 Result Discussion

In this section, the researcher analyzes and discusses the result of three case studies

chapter four the hospital system, chapter five the e-commerce system, and chapter six the

OTT system. The comparison conducted using KNN technique as it gives good and stable

results among the techniques that have been used. We used criterion such as number of

dataset instances, timing to build the model, correctly classified instances, incorrectly

classified instances, and the accuracy percentage to show major differences.

Table 7.2 Comparison between case studies using KNN

Criteria

Case Study 1

Hospital System

Case Study 2

Ecommerce

System

Case Study 3

OTT System

Number of dataset

instances
196 250 205

Timing to build the

model
0.01 0.01 0.01

Number of correctly

classified instances
54 83 95

Number of

incorrectly classified

instances

4 2 2

Accuracy Percentage 93.1 % 97.6 % 96.7 %

100

The table 7.2 shows that case study No.2 on ecommerce system gives high accuracy

prediction percentage reaches up to 97.6 % with dataset splitting 70 % as training set and

30 % as test set. This indicates that the relation between accuracy percentage of the result

and the training dataset size is proportionally.

7.5 Summary

In this chapter a deep comparison has been conducted between our approach and

two previous approaches. The results stated that our approach has more functions than the

previous approaches; firstly, it can predict resource utilization, response time, throughput of

the software application. Secondly, it can predict and rank performance risk into three

levels low, medium, and high risk. Moreover, regarding to the capacity and number of

concurrent users our approach can handle large number of users compared to the work of

Ganapathi and Archana.

101

CHAPTER VII

CONCLUSION AND FUTURE WORK

 This research proposed a new approach for model based resource utilization

prediction and performance risk assessment using machine learning techniques. We build

models for three case studies using Java Modeling Tool (JMT) as performance modeling

tool. Furthermore, we generated dataset from JMT by recording the performance indices

such as system response time, system throughput, and resources utilization corresponding

to their workloads. Based on the generated datasets we can build machine learning model to

predict the new instances of workload from previous recorded workloads.

 To validate our work, we applied the approach on three different systems:

hospital system as small closed queuing system, ecommerce system as large opened

queuing system, and OTT as already implemented and running system. Moreover, we

predicted the resource utilization, system response time, system throughput, and

performance risk with accuracy ranged from 93.1 % up to 97.6 %. Based on the three case

studies, the research shown that machine learning (ML) based approach provides a high

degree of automation, not require too much ML expertise, and work better than many

alternatives.

The steps of the approach started by designing annotated UML diagrams to analyze

the system. Correspondingly, these diagrams transformed to performance models in order

to produce a large dataset that contains the related performance indices corresponding to

the workloads.

102

In chapter four we applied our methodology on a hospital system. Using

information available prior to system software put on production environment; we were

able to predict multiple performance metrics such as response time, system throughput, and

resource utilization. In this chapter we achieved prediction accuracy with error percentage

0.21%.

The second validation for our approach is in chapter five which we used the steps of

our approach for predicting performance of e-commerce system. As performance

considered as important attribute for e-commerce website and frustrated customer can leave

website of the company and move to other company website. In this case, we achieved very

high prediction accuracy with error percentage 0.12 %.

In chapter six, we performed the third case study for our methodology on OTT

system. The OTT is a system that already running, designed and implemented to serve a

university students, staff, and parents. By using our approach we achieved prediction

accuracy with error percentage 0.14%.

Chapter seven we conducted comparisons between our work and two different

related work. We found that our approach has many advantages over the current work, as it

focuses on prediction of performance risk at early stages of the SDLC. Furthermore, we

extended the approach by adding ML to increase the accuracy and capacity of the approach.

In the future researches, we suggest that our machine learning based approach can

provide powerful tools for managing and analyzing state-of-art systems. We expect our

approach to have scope beyond the three success cases presented in the research. Moreover,

we believe that queuing theory should join machine learning in essential toolkit that system

researches and practitioners should use. The produced tool can be intelligent tool to predict

performance risk and resource utilization of software application at design time.

 In like manner, with growing work on the internet of things technology and the

emergence of critical timing applications, our approach can be used in wide range of this

area. Examples of these applications are autopilot autonomous cars; autopilot car is a

103

vehicle that is capable of sensing its environment and navigating without human input. Our

approach can be used to predict the response time of application to outside events.

Moreover, in Tele-health & remote patient monitoring application, this type of application

connects any wearable or portable device to the cloud, pulls and analyzes collected patient

data in real time, and also it monitors patients at home using live video and audio

streaming.

104

REFERENCES

Abe, S., 2015. Fuzzy support vector machines for multilabel classification. Pattern

Recognition, 48(6), pp.2110–2117. International Journal of Computer Applications

(0975 – 8887). Volume 131 – No.3 Available at:

http://dx.doi.org/10.1016/j.patcog.2015.01.009.

Adhianto, L. et al., 2010. HPCTOOLKIT: Tools for performance analysis of optimized

parallel programs. Journal Concurrency Computation Practice and Experience, 22(6),

pp.685–701.

Balsamo, S. et al., 2004. Model-based performance prediction in software development: a

survey. IEEE Transactions on Software Engineering, 30(5), pp.295–310.

Based, N., 2004. Neighbor Based Algorithm for Multi-label Classification. , pp.718–721.

Granular Computing, 2005 IEEE International Conference

Brunnert, A. & Krcmar, H., 2015. Continuous performance evaluation and capacity

planning using resource profiles for enterprise applications. Journal of Systems and

Software. Available at: http://dx.doi.org/10.1016/j.jss.2015.08.030.

Canessane, R.A. & Srinivasan, S., 2013. Performance Optimization of Software Design

using Queuing Networks. , 2(12), pp.3390–3395. International Journal of Engineering

Research & Technology (IJERT) · Vol. 2 Issue 12

Canevet, C. et al., 2003. Performance modelling with UML and stochastic process algebras.

IEE Proceedings: Computers and Digital Techniques, pp.1–14. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.5340&rep=rep1&type=p

df%5Cnpapers://c142b844-46f9-47f1-9c59-24141d995c3f/Paper/p5190.

Chen, M. & Ma, Y., 2013. A Hybrid Approach to Web Service Recommendation Based on

QoS-Aware Rating and Ranking. Services Computing (SCC), 2015 IEEE International

Conference , pp.1–23.

105

Cortellessa, V. et al., 2005. Model-Based Performance Risk Analysis. Journal IEEE

Transactions on Software Engineering archive, 31(1), pp.3–20.

Franks, G. et al., 2013. Layered Queueing Network Solver and Simulator User Manual.

Journal of Systems and Software, v.80 n.4, p.510-527

Garcia, V., Debreuve, E. & Barlaud, M., 2008. Fast k Nearest Neighbor Search

using GPU. Journal of the ACM,vol. 45, pp. 891–923, 1998

Guo, J. et al., 2012. Variability-Aware Performance Modeling : A Statistical Learning

Approach. , (August). Automated Software Engineering Journal, 2017. Volume 8800,

2014

Ionita, M.T. & Hammer, D.K., 2002. Scenario-based software architecture evaluation

methods: An overview. International Journal of Pharmacy and Technology

8(4):25720-25733 Sara 2002 @Icse. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.8382&rep=rep1&a

mp;type=pdf.

Islam, B., 2013. Predict Software Reliability by Support Vector Machine. The

International Journal of Advanced Manufacturing Technology

February 2006, Volume 28, Issue 1–2, pp 154–161, 2(4), pp.46–52.

Izzeldin, R. & Osman, M., 2010. Performance Modelling of Database Designs using a

Queueing Networks Approach Performance Modelling of Database Designs using a

Queueing Networks Approach. Journal of Systems and Software, v.82 n.3

Kattepur, A., Nambiar, M. & Kattepur, A., 2015. Performance Modeling of Multi-tiered

Web Applications with Varying Service Demands Performance Modeling of Multi-

tiered Web Applications with Varying Service Demands. International Journal of

Networking and Computing(6)(2016)

Keung, J.W. & Nguyen, T., 2010. Quantitative Analysis for Non-linear System

Performance Data Using Case-Based Reasoning. Software Engineering Conference

(APSEC), 2010 17th Asia Pacific, pp.346–355.

https://www.researchgate.net/journal/0975-766X_International_Journal_of_Pharmacy_and_Technology
https://link.springer.com/journal/170
https://link.springer.com/journal/170
https://link.springer.com/journal/170/28/1/page/1

106

Kotsiantis, S.B., 2007. Supervised Machine Learning : A Review of Classification

Techniques. Proceedings of the 2007 conference on Emerging Artificial Intelligence,

31, pp.249–268.

Li, J. et al., 2009. Machine learning based online performance prediction for runtime

parallelization and task scheduling. Performance Analysis of Systems and Software,

2009. ISPASS 2009. IEEE International Symposium on, 1(c), pp.89–100.

Magalhães, D. et al., 2015. Workload modeling for resource usage analysis and simulation

in cloud computing. IEEE Transactions on Cloud Computing (Volume: 2, Issue: 2,

April-June 1 2014), 47, pp.69–81.

Marzolla, M., 2010. The qnetworks Toolbox : A Software Package for Queueing

Networks Analysis Moreno Marzolla Technical Report UBLCS-2010-04 Department of

Computer Science. , (February). International Conference on Analytical and Stochastic

Modeling Techniques and Applications ASMTA 2010: Analytical and Stochastic Modeling

Techniques and Applications pp 102-116

Mohanty, R., 2012. Classification of Web Services Using Bayesian Network. Journal of

Software Engineering and Applications, 5(4), pp.291–296. Available at:

http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jsea.2012.54034.

Moniem, H.A., 2015. A framework for Performance Prediction of Service-Oriented

Architecture. International Journal of Computer Applications Technology and Research

Volume 4– Issue 11, 865 - 870, 2015, , 4(11), pp.865–870.

Moniem, H.A., 2014. Performance Prediction of Service-Oriented Architecture - A survey.

, 3(12), pp.831–835. INTERNATIONAL JOURNAL ON INFORMATICS

VISUALIZATION, VOL 1 (2017) NO 3

Omary, Z. & Mtenzi, F., 2009. Dataset threshold for the performance estimators in

supervised machine learning experiments. 2009 International Conference for Internet

Technology and Secured Transactions, (ICITST), 3(3), pp.314–325.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245519
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6863722
https://link.springer.com/conference/asmta
https://link.springer.com/conference/asmta
https://link.springer.com/book/10.1007/978-3-642-13568-2
https://link.springer.com/book/10.1007/978-3-642-13568-2

107

Omary, Z. & Mtenzi, F., 2010. Machine Learning Approach to Identifying the Dataset

Threshold for the Performance Estimators in Supervised Learning. International

Journal, 3(3), pp.314–325.

Prof, E. et al., Proactive Prediction Models for Web Application Resource Provisioning in

the Cloud., Service Oriented System Engineering (SOSE), 2013 IEEE 7
th

 Conference

Rabta, B., Alp, A. & Reiner, G., Queueing Networks Modeling Software for

Manufacturing. International journal of production research 24(6):1485–1503.

Radhakrishnan, A. & Virginia, W., 2007. Tool Support for Software Performance Risk

Assessment Tool Support for Software Performance Risk Assessment. IEEE Access (

Volume:5) Journal

Rajagopal, D. & Thilakavalli, K., 2017. A Study : UML for OOA and OOD. , 7(2), pp.5–

20. International Journal of Knowledge Content Development and Technology,

2017;7(2)

Ram, C. et al., 2011a. E Arly Performance Prediction of Web Services. , 2(3), pp.31–41.,

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September

2011

Ram, C. et al., 2011b. P REDICTING P ERFORMANCE OF W EB S ERVICES USING

SMTQA. The Journal of Supercomputing archive Volume 71 Issue 2, February

2015Pages 673-696 , pp.58–66.

Salih, H.A.M. & Ammar, H.H., 2017. Model-Based Resource Utilization and Performance

Risk Prediction using Machine Learning Techniques. , 1(3), pp.101–109.,

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION, VOL 1 (2017)

NO 3

Serazzi, G., 2008. Performance Evaluation Modelling with JMT : learning by examples.

Shoaib, Y. & Das, O., 2011. Web Application Performance Modeling Using Layered

Queueing Networks. Electronic Notes in Theoretical Computer Science, 275(1),

108

pp.123–142. Available at: http://dx.doi.org/10.1016/j.entcs.2011.09.009.

Singh, H. & Kumar, S., 2011. Dispatcher Based Dynamic Load Balancing on Web Server

System. , 4(3), pp.89–106.

Singh, K. et al., 2007. Predicting parallel application performance via machine learning

approaches: Research Articles. Concurr. Comput. : Pract. Exper., 19(17), pp.2219–

2235. Available at: http://dx.doi.org/10.1002/cpe.v19:17.

Smith, C., 1981. Software Performance Engineering. Computerworld. Available at:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:SOFTWARE+PER

FORMANCE+ENGINEERING#0%5Cnhttp://scholar.google.com/scholar?hl=en&btn

G=Search&q=intitle:Software+Performance+Engineering.#0.

Tertilt, D. & Krcmar, H., 2011. Generic Performance Prediction for Erp and Soa

Applications. Proceedings of the 19th European Conference on Information Systems

ECIS 2011 ICT and Sustainable Service Development, p.197. Available at:

http://aisel.aisnet.org/ecis2011/197/.

Tribastone, M., Mayer, P. & Wirsing, M., 2010. Performance prediction of service-oriented

systems with layered queueing networks. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 6416 LNCS(PART 2), pp.51–65.

Zhang, Q., Cherkasova, L. & Smirni, E., 2007. A Regression-Based Analytic Model for

Dynamic Resource Provisioning of Multi-Tier Applications, ICAC '07 Proceedings of

the Fourth International Conference on Autonomic Computing, June 11 - 15, 2007

