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Abstract

Traditional intrusion prevention techniques, such as firewalls, access control or
encryption, failed to fully protect networks and systems from increasing attacks.
Therefore, an intrusion detection system (IDS) has become an important
component of security infrastructure and a key part of system defense to detect
these attacks before they make a disaster in the system, intrusion detection based
upon computational intelligence (CI) is currently attracting considerable interest
from the research community. Characteristics of Cl systems, such as adaptation,
fault tolerance, high computational speed and error resilience in the face of noisy
information fit the requirements of building a good intrusion detection model. The
scope of this thesis will be on core methods of CI. One of the important research
challenges for constructing high performance Network Intrusion Detection
Models (NIDS) is dealing with data containing large number of features.
Which make it harder to detect and classify the intrusion, causing slow
training and testing process, higher resource consumption as well as poor
detection rate. Therefore, feature selection methods were used to reduce the
dimensionality of the dataset by removing redundant features. Feature selection
improves the NIDS classification performance by searching for the subset of
features, which decrease the size of the structure without significantly
decreasing prediction accuracy of the classifier built using only the selected
features. Therefore, applying feature selection as a preprocessing step when
building NIDS is very important if real-time detection is desired. This thesis
proposed different NIDS models; PCA-SVM model, GA-NB model and GA-
IEM-C4.5 model; those models involves data preprocessing, data reduction
and intrusion classification. All this implemented in Weka machine learning
tools, with KDD CUP 99 and NSL-KDD intrusion detection data sets.
Experimental results show the advantages of enhancing the detection accuracy

and testing speed by reducing the feature dimension space.
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