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Abstract 

Cloud Computing refers to computing services over the internet and deals 

with varied different virtualization resources. The task scheduling plays a crucial role 

in enhancing the performance of cloud computing. The issue with task scheduling is 

distribution of tasks within the system in a manner that optimize the performance of 

overall system and minimize the execution time. To achieve such good plan the 

provider need to evaluate and choose among different algorithms to allocate and 

schedule the available resources. The challenging decision of choosing the proper 

algorithm is taking based on different performance metrics for task scheduling. In 

this research the focus is concentrated on task Execution Time as criteria for 

evaluating among the chosen algorithms. The selected mechanisms contain 

information of jobs (cloudlets) and resources (virtual machines) such as length of 

jobs, speed of resources and identifier for both. In order to generate the population, 

first, set of jobs and resources were created, then the execution times of jobs were 

computed as a fitness values. Second, the algorithms iterated to themselves in order 

to regenerate populations to produce the best job schedule that gives the minimum 

execution time of jobs. The methodology of this research is based on simulation of 

the selected mechanisms using the Java Language and CloudSim simulator. The 

comparison and analysis of different task scheduling algorithms has been discussed 

in this research on the basis of time execution. The results revealed that when having 

small sizes of scheduling problems PSO take the lead. However, in case of large size 

of jobs, Cat Swarm Optimization significantly outperforms the considered Particle 

Swarm Optimization, Firefly Algorithm and Glowworm Swarm Optimization in 

terms of execution time. 
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 المدتخلص

يقرج بالحؽسبو الدحابية: خجمات الحؽسبة السقجمة عؼ طخيق الإنتخنت والتي تتعامل مع العجيج مؼ 

الافتخاضية السختمفة. يعتسج تحديؼ اداء الحؽسبة الدحابية برؽرة اساسية عمى طخيقة ججولة السيام في  السؽارد

ة تؤدي الى تحديؼ الأداء العام في الدحابة. واليجف مؼ ججولة السيام ىؽ تؽزيع السيام داخل الشعام بطخيق

ػ والاختيار بيؼ عجة يقجم الخجمو التقيجب عمى مولتشفيح ميسة الججولة بطخيقة فعالو ييل وقت التشفيح. مالشعام وتق

وتكسؼ صعؽبة وىشاك مقاييذ مختمفو لقياس اداء الخؽارزمية.  .خؽارزميات تدتخجم في ججولة تخريص السؽارد

بحث تػ التخكيد عمى لأغخاض ىحا الؤشخات مختمفو في اداء الخؽارزمية.و أنيا تعتسج عمى م التقييػ والإختيار في

مشعام يم. كل خؽارزمية تحتؽي عمى معمؽمات السيسة الجاخمسحجد لمتقييػ بيؼ الخؽارزميات السختارهوقت التشفيح ك

(tolduovc( والسؽارد الستاحة )virtual machines) سخعة السؽارد السيسو و ػ جتختص ىحه السعمؽمات بح

خاض عجد مؼ السيام ( أولًا تقؽم بإفتilidolcplpلتسثيل السجتسع ) سو ومحجداتيسا.لسخررة لتمغ السيا

ح لكل ة عذؽائية, ويتػ حداب وقت التشفيطخيقلسيام عمى حدب السؽارد الستاحو بالسؽارد, ومؼ ثػ تخريص او 

ة اخخى لمحرؽل عمى أفزل ججولة لمسيام في أقل زمؼ تشفيح. ميسو. ثانياً تقؽم الخؽارزمية بتكخار العسمية مخ 

. تست مقارنة CloudSimulatorيتبع ىحا بحث مشيجية محاكاة الخؽارزميات السقتخحة باستخجام لغة الجافا و

ليا اقل زمؼ تشفيح  PSOزمؼ التشفيح وأظيخت الشتائج أن خؽارزميةحميل خؽارزميات ججولة السيام عمى اساس وت

مقارنة مع الخؽارزميات في حالة عجد السيام الكثيخة أقل زمؼ تشفيح ليا كان CSOعجد السيام القميل, اما ةفي حال

 الاخخى. ةالثلاث
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1.1 Introduction 

This chapter introduce the research work, describe the problem background, 

problem statement, the research objective and the thesis structure. 

1.2 Problem Background 

In recent years, there has been a dramatic increase in the popularity of cloud 

computing systems that rent computing resources on-demand, bill on a pay-as-you-

go basis, and multiplex many users on the same physical infrastructure. Cloud 

computing that has become an increasingly important trend, is a virtualization 

technology that uses the internet and central remote servers to offer the sharing of 

resources that include infrastructures, software, applications and business processes 

to the market environment to fulfill the elastic demand(Ngenzi and Nair, 2015).These 

cloud computing environments provide an illusion of infinite computing resources to 

cloud users so that they can increase or decrease their resource consumption rate 

according to the demands Two players in cloud computing environments, cloud 

providers and cloud users, pursue different goals; providers want to maximize 

revenue by achieving high resource utilization, while users want to minimize 

expenses while meeting their performance requirements. However, it is difficult to 

allocate resources in a mutually optimal way. Moreover, ever-increasing 

heterogeneity and variability of the environment poses even harder challenges for 

both parties(Quan et al., 2011). 

Cloud computing data centres are emerging as new candidates for replacing 

traditional data centres that are growing rapidly in both number and capacity to meet 

the increasing demands for computing resources and storages(Quan et al., 2011). 

Large Cloud datacenters comprise of many thousands of servers and most of the time 

these servers are underutilized. The massive amount of wastage of resources in 

Cloud datacenters results in resource management problems. The challenges related 
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to datacenters with a particular emphasis on how new virtualization technologies can 

be used to simplify deployment, improve resource efficiency and reduce the number 

of usage of physical servers(Ngenzi and Nair, 2015). 

The computing resources, either software or hardware, are virtualized and 

allocated as services from providers to users. Since the consumers may access 

applications and data of the ―Cloud‖ from anywhere at any time, it is difficult for the 

cloud service providers to allocate the cloud resources dynamically and 

efficiently(Patil and Mehrotra, 2012). 

Cloud is developing day by day and faces many challenges, one of them is 

scheduling. Scheduling refers to a set of policies to control the order of work to be 

performed by a computer system. A good scheduler adapts its scheduling strategy 

according to the changing environment and the type of task. There has been various 

types of scheduling algorithm existing in distributed computing system, and job 

scheduling is one of them. The main advantage of job scheduling algorithm is to 

achieve a high performance computing and the best system throughput. Scheduling 

manages availability of CPU memory and good scheduling policy gives maximum 

utilization of resource(Agarwal and Jain, 2014).  

In cloud computing, the underlying large-scale computing infrastructure is 

often heterogeneous. To maximize cloud utilization, the capacity of application 

requirements shall be calculated so that minimal cloud computing infrastructure 

devices shall be procured and maintained. Given access to the cloud computing 

infrastructure, applications shall allocate proper resources to perform the 

computation with minimum time and infrastructure cost. 

Scheduling is a difficult task in cloud computing environment because a 

cloud provider has to take care of many users according to their different QoS needs. 

Every task could have varied parameters like needed information, desired completion 

time, expected execution time, job priority etc..,(SundarRajan et al., 2016). 
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Management of these resources requires efficient planning and proper layout. 

While designing an algorithm for resource provisioning on cloud the developer must 

take into consideration different cloud scenarios and must be aware of the issues that 

are to be resolved by the selected algorithm(Katyal and Mishra, 2014).There are 

many promising methods to solve Job scheduling problems inspired from the nature. 

For sake of this research we focus on four algorithms, which are: Particle Swarm 

Optimization (PSO), Cat Swarm Optimization (CSO), Firefly Algorithm (FA) and 

Glowworm Swarm Optimization (GSO). 

1.3 Problem statement 

Many cloud datacenters have problems in understanding and implementing 

the techniques to manage, allocate and migrate the resources in their premises. The 

consequences of improper resource management may result into underutilized and 

wastage of resources which may also result into poor service delivery in these 

datacenters. Multiple resource types in datacenters make the situation even more 

complex, thus a careful planning for relocation is necessary. To achieve such good 

plan, the provider, need to evaluate and choose among different algorithms to 

allocate and schedule the available resources. The challenging decision of choosing 

the proper algorithm is taken based on different performance metrics for task 

scheduling. In this research the focus is concentrated on task Execution Time as 

criteria for evaluating among the chosen algorithms (Esa and Yousif, 2016a) (Katyal 

and Mishra, 2014). 
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1.4 Research Question 

1- Are data center providers fully aware of the perspective of task 

scheduling algorithms? 

2-  What is the best swarm intelligence technique used in scheduling, to 

achieve the minimum task execution time? 

1.5 Research Objectives 

1. To provide a perspective on the domain of task scheduling in cloud 

data centers by summarizing different methods used. 

2.  Evaluating the swarm intelligence task scheduling algorithms in 

accordance to task execution time. 

1.6 Research Scope 

The resources allocation techniques in cloud data center and comparative 

study. 

  



5 

 

1.7 Research importance 

Researches in the field of Resource allocation in Cloud Datahas become 

increasingly popular worldwide, and there is a need to shift from traditional working 

environment to achieve the ultimate electronic solution in solving our problem and 

processing our data, thus the efforts from the researchers and providers should be 

increase in this field. The contribution of this research is to provide a starting point 

for researchers and developers who want to evaluate and develop thetask scheduling 

techniques in Cloud data center, specially, in Sudan since few researches done to 

cover this field. 

1.8 Thesis Structure 

This thesis contains six chapters. Chapter two gives an overall idea of cloud 

computing and job scheduling in cloud computing. Chapter three describes the 

research methodology. Chapter four presents the swarm intelligence algorithms 

under the study for task scheduling. Chapter five Simulation Results and 

Performance Analysis. Chapter six provides the conclusion and recommendation.



 

 

 

 

 

 

Chapter Two 

Literature Review
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2.1 Introduction 

In order to achieve our objectives, set before, we need to review recent 

researches that were conducted in the same field, here below are some of selected 

studies. 

2.2 Cloud computing definition 

Cloud application is very popular in recent years. Specially, cloud computing 

has emerged as a promising approach to rent IT infrastructure on a short-term pay-

per-usage basis. With cloud computing, companies can scale up to massive capacities 

in an instant without having to invest in new infrastructure, train new personnel, or 

license new software. cloud computing is of a particular benefit to small-medium 

size business who wish to completely outsource their data center infrastructure, or 

large companies who wish to get peak load capacity without increasing the higher 

cost of building large data center internally(Tsai et al., 2013).  

Cloud computing is defined as a model enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services) that can be rapidly provisioned 

and released with minimal management effort or service provider interaction 

(Mohamaddiah et al., 2014).Also, it can be defined as a computing paradigm, where 

a large pool of systems is connected in private or public networks, to provide 

dynamically scalable infrastructure for application, data and file storage. With the 

advent of this technology, the cost of computation, application hosting, content 

storage and delivery is reduced significantly(Sarga, 2012). 

Other defined it as a new technology that provides resources as an elastic 

pool of services in a pay-as-you-go model. Whether it is storage space, 

computational power, or software, customers can get it over the internet from one of 
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the cloud service providers. In both instances, services consumers use, what they 

need on the internet and pay only for what they use(Mohammad et al., 2012). 

Cloud computing provides a shared pool of various resources including data 

storage space, networks, computer processing power, and user applications. The 

cloud services consist of highly optimized virtual datacenter and provide various 

hardware, software and information resources for use. The aim of cloud computing 

environment is to optimally use the available computing resources. Virtualization 

greatly helps in valuable utilization of resources and build an effective system. A 

cloud consist of several data centers, servers, clients which are interconnected in an 

efficient way(Kaur and Dhindsa, 2016).Resource allocation is a complicated task in 

cloud computing environment because there are many alternative computers with 

varying capacities. 

2.3 Definitions of Resource allocation 

Resource allocation is process of assigning the available resources in an 

economic, efficient and effective way. Resource allocation is the scheduling of the 

available resources and available activities required by those activities while taking 

into consideration both the resource availability and the project time. Resource 

provisioning and allocation solves that problem by allowing the service providers to 

manage the resources for each individual request of resource(Rajasekar and 

Manigandan, 2015).  

In cloud computing, Resource Allocation (RA) is the process of assigning 

available resources to the needed cloud applications over the internet. Resource 

allocation starves services if the allocation is not managed precisely.(Anuradha and 

Sumathi, 2014). 

In cloud computing, resource allocation (RA) is a field that is taken into 

account in many computing areas such as datacenter management, operating 
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systems, and grid computing. RA deals with the division of available resources 

between cloud users and applications in an economic and effective way(Alnajdi et 

al., 2012). 

2.4 Cloud Scheduling 

Scheduling is the vital task in cloud computing environment. Scheduling 

means the set of rules and mechanisms for controlling the order of work to be 

performed by computing systems. There are numerous types of scheduling 

algorithms and task scheduling being the significant one. In cloud task scheduling is 

the major problem. The scheduling of tasks means an optimal usage of available 

resources. The main purpose of scheduling is to achieve the high performance, 

reduce the waiting time, increase system throughput and so on. Task scheduling is a 

challenging issue in cloud computing because it is parallel and distributed 

architecture. The task completion time determination is difficult in cloud because the 

tasks may be distributed between more than one Virtual machine (Kaur and Dhindsa, 

2016). 

 Traditional cloud scheduling algorithms typically aim to minimise and 

decrease the time and cost for processing all tasks scheduled. However, in cloud 

computing environment, computing capability varies from different resources and 

the cost of the resource usage. Therefore, it is important to take into consideration the 

cost. A scheduling algorithm is implemented by programmers to schedule the task 

with maximum estimated gain or profit and execute the task in the queue.  
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2.5 Need for Cloud Scheduling 

 In cloud computing, users may utilize hundreds of thousands of virtualized 

resources and it is impossible for everyone to allocate each task manually. Due to 

commercialization and Virtualization, cloud computing left the task scheduling 

complexity to virtual machine layer by utilizing resources virtually. Hence to assign 

the resources to each task efficiently and effectively, Scheduling plays an important 

role in cloud computing(Goyal and Sharma, 2016). 

2.6 The different types of cloud scheduling are 

• User level scheduling: User level scheduling comprises of market based and 

auction based scheduling. FIFO scheduling, priority based, non-pre-emptive 

scheduling etc. are used in user level scheduling.  

• Cloud Service Scheduling: Cloud service scheduling is classified at user level and 

system level. At user level, it mainly considers the service regarding problems 

between the provider and the user. At system level, scheduling and resource 

management is done. In addition to real time satisfaction, fault tolerance, reliability, 

resource sharing and QoS parameters are also taken under consideration. 

• Static and Dynamic Scheduling: Static scheduling permits pre-fetching of required 

data and pipelining of distant stages of task execution. Static scheduling imposes 

minimum runtime overhead. In case of dynamic scheduling, information of the job 

components or task is not known before. Thus the execution time of the task may not 

be known and the allocation of tasks is done only as the application executes.  

• Heuristics Scheduling: In cloud environment, heuristic based scheduling can be 

done to optimize results. More accurate results can be built by heuristic methods. 
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• Workflow Scheduling: For the management of workflow execution, workflow 

scheduling is done.  

• Real Time Scheduling: Real Time Scheduling in cloud environment is done to 

increase the throughput and to decrease the average response time instead of meeting 

deadline(Goyal and Sharma, 2016). 

2.7 Load Balancing in Cloud Computing Environment  

Load balancing in cloud computing provides an efficient solution to various issues 

residing in cloud computing environment set-up and usage. Load balancing must 

take into account two major tasks, one is the resource provisioning or resource 

allocation and other is task scheduling in distributed environment(Katyal and Mishra, 

2014).  

2.8 Task scheduling 

There are various types of task scheduling algorithm. The main goal of a scheduling 

algorithm is to achieve high computing performance and best system throughput. 

Traditional scheduling algorithms cannot operate in cloud environment (because of 

overhead costs), thus providers have resorted to heuristic or hybrid algorithms to fill 

this gap. Effectiveness of task scheduling has a direct effect on the quality of cloud, 

thus many algorithms have been developed to resolve this particular problem. In 

some studies, algorithms have been developed to optimize the resource 

efficiency(Chalack and Germi). 

In order to efficiently and cost effectively schedule the tasks and data of applications 

onto these cloud computing environments, application schedulers have different 

policies that vary according to the objective function: minimize total execution time, 

minimize total cost to execute, balance the load on resources used while meeting the 

deadline constraints of the application, and so forth(Pandey et al., 2010).  
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2.9 Performance metrics for task scheduling 

A good scheduling algorithm always considers benefits of both the parties the 

cloud users and the service providers. The algorithms should try to reduce both the 

cost and power consumption as well as provide better performance. Scheduling 

algorithms must consider Load balancing, energy consumption, user's fairness and 

security while providing services. Below is an overview of common Performance 

metrics for task scheduling recommended by different researches in the field: 

 

1. Execution Time 

 The CPU time or burst time spent by the computer system for execution of a 

task is known as execution time, including the time consumed to provide system 

services for task execution(Ali and Alam, 2016). In other way, the exact time taken 

to execute the given tasks. A good scheduling algorithm ultimately aims to minimize 

execution time(Yadav and Mandoria, 2017). 

2. Response Time  

The amount of time taken by the system to reply the user task very first time 

for required service. That service may also be something from a memory fetch, to a 

disk IO, to an elaborate database question, or loading a full web page. Response time 

of the system should be minimum(Ali and Alam, 2016).  

3. Makespan 

 [Syed and Mansaf], the amount of time, from start to finish for completing a 

set of tasks. The makespan is the maximum time to complete all jobs(Ali and Alam, 

2016). Whereas, [Ashwani and Hardwari] refers it as the aggregate consummation 
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time of all tasks in the job queue. A good scheduling algorithm dependably tries to 

diminish the makespan(Yadav and Mandoria, 2017).  

4. Throughput 

Throughput uses the consideration of total number of tasks, which are 

implemented successfully. In cloud computing, throughput means some tasks 

completed in a certain time period. Minimum throughput is required for task 

scheduling (Madni et al., 2017). 

5. Resource Utilization 

 In addition to response time and throughput, another parameter for 

performance measurement of a system is resource consumption. How much amount 

of system resources are busy? is track using resource utilization. Scheduling 

algorithm should increase the utilization of resources(Ali and Alam, 2016).  

6. Load Balancing 

 [Ashwani and Hardwari]It is the strategy for dissemination of the whole load 

in a cloud network crosswise over various nodes furthermore, connects so that at 

once no nodes and connections remain under loaded while a few nodes or 

connections are over-loaded. Most of the scheduling algorithms try to keep the load 

balanced in a cloud network in order to increase the efficiency of the system(Yadav 

and Mandoria, 2017). 
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7. Fault Tolerance  

Fault tolerance is the property that allows for a procedure to continue running 

effectively within the incident of the failure in its components. It is an important 

parameter to check the capability of any system(Ali and Alam, 2016).  

8. Energy Consumption  

Energy consumption is the amount of resource energy used to produce the 

output. Energy consumption should be minimal(Ali and Alam, 2016).  

Energy utilization in cloud data centers is a present issue that ought to be 

considered with more care nowadays. Numerous scheduling algorithms were 

developed for diminishing power consumption and enhancing execution and 

consequently making the cloud services green(Yadav and Mandoria, 2017).  

9. Scalability  

It is a characteristic of a system, model or function that describes its ability to 

manage and participate in below multiplied or increasing workload. A process that 

scales well might be competent to hold or even broaden its level of efficiency when 

tested by using higher operational needs(Ali and Alam, 2016).  

10. Performance 

 The accomplishment of a given task measured against pre-set identified 

requirements of completeness, cost, accuracy, and velocity. In computing 

performance is measured by the time and cost, a system should complete a user task 
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in less time and minimum cost of services. A performance should be considered at 

both sides user and provider by scheduling algorithm(Ali and Alam, 2016). 

11. Quality of Service  

Best of provider considers user involvement restrictions like meeting cut-off 

date, efficiency, execution price, make span, and so forth. Everything are outlined in 

Service Level Agreement (SLAs) which is a contract file outlined between the cloud 

user and cloud service provider. Input constraints such as meeting execution cost, 

deadline, performance, cost, makespan, etc enhances quality of service(Ali and 

Alam, 2016). 

12. Cost 

 Cost means the total payment generate against the utilization or usage of 

resources, which is paid to the cloud providers by the cloud users. The main 

determination is to the growth of revenue and profit for cloud providers while 

reducing the expenses for cloud user with efficient utilization (Madni et al., 2017). 

Job scheduling, one of the most famous optimization problems. Job 

scheduling has been considered as one of crucial problems in cloud computing. An 

optimized scheduler would improve many factors in scheduling of jobs in a cloud 

system such as throughput and performance. Different Approaches have tried to 

solve this problem like Genetic algorithm, Ant colony optimization, Particle swarm 

optimization and etc. which are considered types of swarm Intelligence techniques. 

2.10 Swarm Intelligence (SI) 

Swarm intelligence models are referred to as computational models inspired 

by natural swarm systems. To date, several swarm intelligence models based on 
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different natural swarm systems have been proposed in the literature, and 

successfully applied in many real-life applications. Examples of swarm intelligence 

models are: Ant Colony Optimization ‎, Particle Swarm Optimization, Artificial Bee 

Colony, Bacterial Foraging, Cat Swarm Optimization, Artificial Immune System, 

and Glowworm Swarm Optimization (Ahmed and Glasgow, 2012).In this research, 

we will primarily focus on four of the most popular swarm intelligences models, 

namely, Particle Swarm Optimization, Cat Swarm Optimization, Glowworm Swarm 

Optimization and Firefly Swarm Optimization.  

2.10.1 Particle Swarm Optimization(PSO) 

PSO is a population-based optimization technique that finds solution to a 

problem in a search space by modeling and predicting insect social behavior in the 

presence of objectives. The general term ―particle‖ is used to represent birds, bees or 

any other individuals who exhibit social behavior as group and interact with each 

other. Under PSO, multiple candidate solutions –called particles– coexist and 

indirectly 

collaboratesimultaneously.Eachparticle―flies‖intheproblemsearchspacelookingfor the 

optimal position to land. A particle adjusts its position as time passes according to its 

own experience as well as according to the experience of neighbor particles. 

Moreover, particles are essentially described by two characteristics: the particle 

position, which defines where the particle is located with respect to other solutions in 

the search space, and the particle velocity, which defines the direction and how fast 

the particle should 

movetoimproveitsfitness.Thefitnesssofaparticleisanumberrepresentinghowclose a 

particle is to the optimum point compared to other particles in the search 

space(Pacini et al., 2014). 

2.10.2 Firefly Algorithm (FA) 

This firefly algorithm has been designed based on the inspiration on the 

swarm behavior of fireflies. Fireflies are generally known to exist as groups and they 
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are said to have a swarm kind of behavior. The blinking light in the fireflies is their 

attribute of attractiveness mainly used for the purpose of attracting mates and to 

defend themselves from other predators. The swarm of fireflies usually moves in the 

direction of the brightest one. All the other fireflieswith lower light intensities move 

toward the ones with higher light intensities. So as the distance between the fireflies 

goes on increasing, the light intensity also increases(SundarRajan et al., 2016). 

2.10.3 Cat Swarm Optimization (CSO) 

In this CSO heuristic optimization algorithm, created based on the inspiration 

towards the swarm behavior of cats. Cats that generally have swarm behavior are 

said to have two modes of behavior namely 1. seeking mode and 2. Tracking mode  

Seeking mode: In seeking mode the cat stays idle and only has position 

whereas they do not have velocity.  

Tracking Mode: In tracing mode the cat is in motion and is said to possess 

both position and velocity.           

This algorithm wholly lies on two modes of operation. The fitness factor for 

each cat is calculated and the best one is picked out. The best cat is stored in memory 

and it is updated with the next best cat. Here in the Cat swarm algorithm the virtual 

machines are disguised as cats(SundarRajan et al., 2016).  

2.10.4 Glowworm swarm optimization (GSO) 

Glowworm swarm optimization (GSO), introduced by Krishnanand and 

Ghose in 2005 for simultaneous computation of multiple optima of multimodal 

functions. GSO is a new optimization algorithm, inspired by nature, which imitates 

the behavior of the lighting worms. The agents in GSO are thought of as glowworms 
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that carry a luminescence quantity called luciferinLi(t) along with them. The 

glowworms encode the fitness of their current locations, evaluated using the 

objective function, into a luciferin value that they broadcast to their neighbors. The 

glowworm identifies its neighbors and computes its movements by exploiting an 

adaptive neighborhood, which is bounded above by its sensor rangerdi(t). Each 

glowworm selects, using a probabilistic mechanism, a neighbor that has a luciferin 

value higher than its own and moves toward it. These movements—based only on 

local information and selective neighbor interactions—enable the swarm of 

glowworms to partition into disjoint subgroups that converge on multiple optima of a 

given multimodal function. Each iteration consists of a luciferin-update phase 

followed by a movement-phase based on a transition rule and Local-decision range 

update phase (Esa and Yousif, 2016a).  

2.11 Related works 

A number of task scheduling algorithms have been proposed by many 

researchers. In this research we focus on four algorithms which are Particle Swarm 

Optimization, Cat Swarm Optimization, Firefly algorithms and Glowworm Swarm 

Optimization. However, after reviewing these studies it’s been found that proposed 

algorithms were discussed separately. In this section previous studies were listed to 

show their relevance to the proposed mechanism. 

 In this paper, a simplified version of particle swarm optimization (PSO) 

algorithm is proposed to solve the job scheduling problem in cloud computing 

environment. To evaluate the performance of the proposed approach, this study 

compares the proposed PSO strategy with genetic algorithm (GA), by having both of 

them implemented on CloudSim toolkit. The results obtained demonstrate that the 

presented PSO algorithm can significantly reduce the makespan of job scheduling 

problem compared with the other metaheuristic algorithm evaluated in this 

paper(Attiya and Zhang, 2017).  
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The study on comparison of ACO and PSO has been presented in this paper 

by analysing the optimization methods of each algorithm. Both optimization 

techniques are assigned with a specific task to allocate resources within minimum 

execution time by analysing the makespan to measure the throughput. PSO is 

considered as best optimization with low computational cost(BOOBA and GOPAL). 

In cloud computing environment, there are a large number of users, which 

lead to huge amount of tasks to be processed by system. In order to make the system 

complete the service requests efficiently, how to schedule the tasks becomes the 

focus of cloud computing Research. A task scheduling algorithm based on PSO and 

ACO for cloud computing is presented in this paper. First, the algorithm uses particle 

swarm optimization algorithm to get the initial solution quickly, and then according 

to this scheduling result the initial pheromone distribution of ant colony algorithm is 

generated. Finally, the ant colony algorithm is used to get the optimal solution of task 

scheduling. The experiment simulated on CloudSim platform shows that the 

algorithm has good effect in real-time performance and optimization capability. It is 

an effective task scheduling algorithm(Wang and Chen).  

This paper proposes a new job scheduling mechanism using Firefly 

Algorithm to minimize the execution time of jobs. The proposed mechanism based 

on information of jobs and resources such as length of job speed of resource and 

identifiers. Different settings have been considered in the evaluation and 

experimentation phase to examine the proposed mechanism in different workloads. 

The results revealed that the proposed mechanism minimizes the execution time 

significantly. Furthermore, the proposed mechanism outperformed the FCFS 

algorithm(Esa and Yousif, 2016b). 

 The proposed mechanism aims to find the best mapping in order to minimize 

the execution time of jobs. The methodology of this research is based on simulation 

of the proposed mechanism using the CloudSim simulator. The evaluation process of 

the proposed mechanism started with a set of different experiments. These 

experiments revealed that, the proposed mechanism minimized the execution time of 
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jobs. The proposed mechanism is compared with the First Come First Servers 

(FCFS) algorithm and experimental results revealed that the proposed mechanism 

has a better performance than FCFS for minimizing the execution time of jobs(Esa 

and Yousif, 2016a).  

In a paper written by Bilgaiyan and others the authors presented a scheduling 

technique based on a relatively new swarm-based approach known as Cat Swarm 

Optimization. This technique shows considerable improvement over PSO in terms of 

speed of convergence(Bilgaiyan et al., 2014).  



 

 

 

 

 

 

Chapter Three 
Research Methodology 
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3.1 Introduction  

This chapter describes all phases of research methods that have been applied 

to develop the proposed mechanisms and tools used in the research work. 

3.2 Operational Framework 

This research aims to develop a comparative study for PSO, CSO, FA and 

GSO in term of Execution Time. Based on simulation of the proposed mechanisms 

using the Java Language and CloudSim simulator. CloudSim toolkit is a tool for 

modeling and simulation of cloud computing environment. It supports dynamic 

creation information of jobs (cloudlets) and resources (virtual machines) such as 

length of jobs, speed of resources and identifier for both. In order to generate the 

population, first, set of jobs and resources were created, and jobs were assigned to 

resources randomly, then the execution times of jobs was computeas a fitness values. 

Second, iterations were used by algorithms to regenerate populations to produce the 

best job schedule that gives the minimum execution time of jobs. 

The operational framework of the study is described in Figure (3.1) and the 

following subsection illustrates this framework. 

3.2.1 Problem Formulation 

This research aims to evaluate PSO, CSO, FA and GSO in term of Execution 

Time. 

3.2.2 Proposal Writing 
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In this step research objectives and the overall research plan were set. The 

research methodology that will be employed in the research work is described in 

details and initial results are presented. 

 

  

Phase 2: Design algorithms 

 
Design a mechanism for comparing between 

task scheduling algorithms in cloud 

computing in terms of Execution time 

Phase 3: Implementation & Simulation 

 
Prepare the Case Study 

 

Simulation Results 

Summarize the results and sum up the thesis 

 

Phase 1: problem formulation 

 
Review of the literature 

 
Formulation of the problem and 

proposal writing 

 

Figure (3.1): Research Operational Framework 
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3.2.3 Design of Proposed Framework 

In the design phase we focus on how to enhance the performance of cloud 

computing in term of execution time by studying all selected algorithms and compare 

them to find the best algorithms that minimize the execution time significantly. 

3.3 Implementation 

In this phase the design of the proposed mechanism and its application tool 

was done using CloudSim simulator implemented in Eclipse by using Java language. 

This phase started by preparing the case study that will be used in the testing process. 

CloudSim toolkit is a tool for modeling and simulation of cloud computing 

environment. 

3.4 Tool Used in This Methodology 

Use CloudSim simulator implemented in Eclipse by using Java language. 

 



 

 

 

 

 

 

Chapter Four 

Swarm Intelligence Technique
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4.1 Introduction 

In this chapter, four of swarm intelligence techniques (PSO, CSO, FA and 

GSO) were explained in depth, followed by Pseudo code and flowchart for each. 

4.2 Swarm Intelligence (SI) 

Swarm Intelligence (SI) has received increasing attention lately among 

researchers, and refers to the collective behavior that emerges from social insects’ 

swarms to solve complex problems. Hence, researchers have proposed algorithms for 

combinatorial optimization problems. Moreover, scheduling in Clouds is also a 

combinatorial optimization problem, and hence schedulers exploiting SI have been 

proposed(Pacini et al., 2014). 

4.2.1 Particle Swarm Optimization (PSO) 

The particle swarm optimization algorithm was first proposed in 1995 by 

James Kennedy and Russell C. Eberhart. PSO is a method for optimizing hard 

numerical functions on metaphor of social behavior of flocks of birds and schools of 

fish. The original PSO algorithm is discovered through simplified social model 

simulation. It was first designed to simulate birds seeking food which is defined as a 

cornfield vector. The bird would find food through social cooperation with other 

birds around it and expanded to multidimensional search(Surekha and Sumathi, 

2011).  

 PSO has particles which represent candidate solutions of the problem, each 

particle searches for optimal solution in the search space, each particle or candidate 

solution has a position and velocity. A particle updates its velocity and position 
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based on its inertia, own experience and gained knowledge from other particles in the 

swarm, aiming to find the optimal solution of the problem. 

In every iteration, each particle is updated by following two ―best‖ values. 

The first one is best solution it has achieved; its value is called pbest. Another ―best‖ 

value that is tracked by the particle swarm optimizer is the best value, obtained so far 

by any particle in the population. This best value is a global best and called gbest. 

When particle takes part of the population as its neighbors, the best value is the local 

best and called lbest. In the local population, each particle keeps track of the best 

position lbest attained by its local neighboring particles. For the global population, 

the best position gbest is determined by any particles in the entire swarm. Thus the 

gbest model is a special case of the lbest model. Peng- Yeng Yin. 

After finding the two best values, the particle updates its velocity and 

positions with following equation (1) and (2). 

v[] = ω*v[]+ cl rand()*(pbest[]- present[])+c2rand() * (gbest[]- present[]) (1)  

present [] = present [] + v[]    (2) 

Where,  

- v []: The velocity for the i th particle, represents the distance to be traveled 
by this particle from the current position.  

- ω inertia weights usually 0.8 to 0.9.  
- rand () is a random number between (0,1)  
- c1, c2 are learning factors. Usually c1 = c2 = 2.  
- Present []: The location of the ith particle i.e., particle position.  
- Pbest []: The best previous position of the ith particle is recorded and 

represented as pbest []. 
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Gbest []: The index of the best particle among all the particles in the 

population is represented by gbest []. 

  

Figure (4.1): Flowchart of Particle Swarm Optimization 

Start 

End 

Initialization on the population with N Particle where problem 

with search for optimal solution through the movement of these 

particles and set of iteration counter I=0  

Calculating the fitness value, by Calculating the percentage of each 

particle, the shares in minimizing the total processing time to find 

the optimal solution 

Compare the Calculated fitness value of each particle with its (lbest). If current 

value is better than (lbest), then set the current location as the (lbest) location. 

Futhermore, if current value is better than (gbest), then reset to the current 

index in particle array. Select the pest particle as (gbest) 

Update each Particle Velocity and position 

v = ω*v+ c l rand() * (pbest - present) + c2rand() * (gbest- present) 

 

Execution time function assigns the best fitness 

value in the iteration  

I=I+1 

Find the optimal time and solution 

 

If Execution 

time is finished 
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4.2.1.1 Pseudo Code for PSO algorithm 

Input the scheduling problem 
Setup the parameters 
Generate a swarm of particles with random positions and velocities 
Calculate the fitness value of each particle in the swarm 
Select the particle with best fitness value from all particles as global best 
while termination criterion is not met do 
for each particle 𝑖 do 
Update the particle’s velocity 
Check the velocity boundaries for each component of velocity-vector 
Update the particle’s position 
Round off the real values in particle’s position into the nearest integer 
Evaluate the fitness of the particle 
if F(Xi ) < F (Pi ) then 
Update the global best 
end if 
end for 
end while 
Output the best particle (schedule) as the final solution 

4.2.2 Cat Swarm Optimization (CSO)  

A new swarm-based evolutionary algorithm named Cat Swarm Optimization 

(CSO) has been introduced by Chuand Tsai in 2007. It is inspired and Tsai in 2007. 

It is inspired Cats exhibit two modes of behavior - 1) Seeking mode, in which cats do 

not move. They just stay in a certain position and sense for the next best move, thus 

having only state and notvelocity. 2) Tracing mode, in which cats move to their next 

best positions with some velocity, representing how the cats chase their target. 

The proposed algorithm uses an initial population of N cats among which 

some are in seeking mode while others are in tracing mode, according to MR. Each 

cat represents a task-resource mapping, which is updated as per the mode that the cat 

is in. Assessing the fitness value of the cats leads to finding the mapping having 
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minimum cost. In each iteration, a new set of cats is chosen to be in tracing mode. 

The final solution, represented by the best position among the cats, gives the best 

mapping that has the minimum cost among all mappings. 

Seeking mode:  This represents the majority of cats that search the global 

space while being in a resting state by intelligence position updating. Here the 

algorithm uses two basic factors - SMP and CDC. SMP (seeking memory pool) 

represents the number of copies to be made for each cat. CDC (count of dimension to 

change) defines how many of the allocations are to be altered in a single copy. The 

general steps are as follows: 

Step 1. Create j copies of the i
th 

cat as represented by SMP. 

Step 2. Modify CDC dimension of each copy randomly 

Step 3.Evaluate fitness of each copy 

Step 4.Find the best solutions among all copies that is the 

mapping have minimum Execution time 

Step 5.Randomly choose a solution among them and 

replace it for the i
th 

cat 

Tracing mode:  This represents the cats that are in a fast moving mode and 

search the local space by moving towards the next best position with high energy. 

The general steps are as follows: 

Step 1.Find the velocity   
    for the 𝑖   cat as per 

  
        

                 
   

There w is the inertia weight, r1 is a random number such 

that        and c1 is the acceleration constant.    
  is 

the previous velocity,      is the best location and   
  is the 

current location.  

Step 2. Update position for the cat as per 

  
      

    
    

Where   
  is the current position. 

Step 3. Check if the position goes out of the defined range. 

If so, assign the boundary value of the position. 

Step 4. Assess the fitness value for the cats. 

Step 5. Update the solution set with the best position of the 

current iteration. 
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Start 

Create cat population 

Initialize cats with the random position and velocity 

Distribute cats in seeking and tracking models 

Assess fitness of each cat and store the best cat in memory 

Create copies 

Is cat in 

seeking 

mode? 

Modify every copy 

Evaluate fitness for all copies 

Randomly select one of the best copies 

Replace original cat with selected copies 

Fined new velocity 

Update position for cat 

Reevaluate fitness for all cats 

 
Update best cat in memory 

Is stopping 

criteria 

reached 

End 

Figure (4.2) Flowchart of CSO algorithm(Bilgaiyan et al., 2014) 
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4.2.3 Glowworm Swarm Optimization algorithm (GSO) 

Glowworm swarm optimization (GSO), introduced by Krishnanand and 

Ghose in 2005 for simultaneous computation of multiple optima of multimodal 

functions. GSO is a new optimization algorithm, inspired by nature, which imitates 

the behavior of the lighting worms. SI systems consist typically of a population of 

simple agents or interacting locally with one another and with their environment. The 

agents in GSO are thought of as glowworms that carry a luminescence quantity 

called luciferinLi(t) along with them. The glowworms encode the fitness of their 

current locations, evaluated using the objective function, into a luciferin value that 

they broadcast to their neighbors. The glowworm identifies its neighbors and 

computes its movements by exploiting an adaptive neighborhood, which is bounded 

above by its sensor rangerdi(t). Each glowworm selects, using a probabilistic 

mechanism, a neighbor that has a luciferin value higher than its own and moves 

toward it. These movements—based only on local information and selective 

neighbor interactions—enable the swarm of glowworms to partition into disjoint 

subgroups that converge on multiple optima of a given multimodal function. Each 

iteration consists of a luciferin-update phase followed by a movement-phase based 

on a transition rule and Local-decision range update phase(Esa and Yousif, 2016a). 

4.2.3.1 Luciferin-update-phase 

At time t, the location of the glowworm i is xi(t), and its corresponding value 

of the objective function at glowworm i’s location at time t is J(xi(t)). The luciferin 

level associated with glowworm i at time t is given by equation (1) 

                                 (1) 

4.2.3.2 Movement-phase 

Find the neighbors j for each glowworm i: Ni(t) using equation(2) 
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           𝑖    𝑖              𝑖      (2) 

Each Glowworm i moves towards a neighbor j with a certain probability 

computed by equation (3) 

       
       𝑖   

    𝑖          𝑖   
 

The glowworm i position is updated using equation (4) 

                     
       𝑖   

        𝑖    
  

where S is the step size. 

4.2.3.3 Local-decision Range Update Rule 

The neighborhood range is updated using equation (5)  

  
                                                           (5) 

where β is a constant parameter, rs is the constant radial sensor range, nt is a 

parameter used to control the number of neighbors and |Ni(t)| is the actual number of 

neighbors. 

 At the beginning, all the glowworms contain an equal quantity of luciferin l0 

and the same neighborhood decision range r0. Each iteration consists of a luciferin 

update phase followed by a movement phase based on a transition rule. Other 
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involved parameters are the luciferin decay constant (ρ), the luciferin enhancement 

constant (γ), the step size (s), the number of neighbors (nt), the sensor range (rs) and 

a constant value (β). 

 Parameters values of Glowworm Algorithm that are Kept Constant for all 

experiments are described in Table 1(Esa and Yousif, 2016a). 

Table (4.1) Glowworm Optimization Parameters 

Ρ Γ β nt S L0 

0.4 0.6 0.08 5 0.03 5 

4.2.3.4 Pseudo Code for the GSO Algorithm(Kaipa and Ghose, 2017) 

Glowworm Swarm Optimization (GSO) Algorithm 

Set number of dimensions m  

Set number of glowworm n 

let s be the step size  

Let xi(t) be the location of glowworm i at time t 

Deploy-agents-randomly 

For i=1 to n do  𝑖       

  
         

Set maximum iteration number =  𝑖       ; 

Set t = 1 ; 

While    𝑖         do: 

{ 

        For each glowworm i do: % luciferin-update phase 

                              
        For each glowworm i do: % Movement phase 

        { 

      {           
                }  

 For each glowworm         do : 

       
       𝑖   

    𝑖          𝑖   
 

   j = select-glowworm (p); 

                     
       𝑖   

        𝑖    
  

  
                                                  

       } 

        t= t+1 

} 
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Figure (4.3): Flow chart of Glowworm Optimization(Jin et al., 2017) 

4.2.4 Firefly Algorithm (FA) 

The Firefly algorithm was introduced by Dr. Xin She yang at Cambridge 

University in 2007 which was inspired by the mating or flashing behavior of fireflies. 

Although the algorithm has many similarities with other swarm based algorithms 

such as Particle Swarm Optimization, Artificial Bee Colony Optimization and Ant 

Colony Optimization, the Firefly algorithm has proved to be much simpler both in 

concept and implementation(Hashmi et al., 2013). 
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The firefly algorithm is based on three main principles:  

1. All fireflies are unisex, implying that all the elements of a population can 

attract each other.   

2. The attractiveness between fireflies is proportional to their brightness.  The 

firefly with less bright will move towards the brighter one. If no one is brighter than 

a particular firefly, it moves randomly. Attractiveness is proportional to the 

brightness which decreases with increasing distance between fireflies.  

3. The brightness or light intensity of a firefly is related with the type of 

function to be optimized. In practice, the brightness of each firefly can be directly 

proportional to the value of the objective function(Francisco et al., 2014). 

4.2.3.1 Firefly Algorithm for Cloud Job Scheduling 

In the proposed mechanism the study used Firefly Algorithm in solving the 

problem of job scheduling and allocation of jobs to resources. Each firefly is a 

solution for allocation of jobs                                   each element 

inside the firefly population vector is a random number between 1 to s where: 

s is the total number of resources.  

n is number of fireflies.  

k is number of jobs that represent the length of each firefly. 

The study represents resources as a vector that stores the speed of each 

resource                  and also jobs as a vector that stores the length of each 

job                   then we calculated the fitness function    𝑖  for each firefly 

by dividing each job length by the resource speed that the job is allocated to. The 

next step is to find the summation of the division results. This followed by finding 

the maximum fitness value. The firefly that has maximum fitness either moves 

randomly or does not move at all. The distance between each two fireflies is the 
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number of non-corresponding elements[14] in the firefly population is calculated and 

stored in                                vector, and then calculate the 

attractiveness                                      for each Firefly from the 

fitness of the firefly by the equation        𝑖          
 where γ is fixed light 

absorption coefficient and e is exponential constant. 

Finally, firefly moves towards the brightest based on the attractiveness by the 

equation 

                     
               

 

 
  

Where α is randomization parameter between 0 and 1. 

Pseudo Code for FA  

Begin 
Initialize parameter: t, itra_max, α, γ. 
Generate initial population of fireflies                                   
Set maximum iteration number=iter_max. 
Set t=1  
For each resource do  
Set speed for each resource Ri 

end for   
for each job do 
Set length for each jobs Ji 

end for  
while (t<=iter_max)  
for each firefly i do  
            Compute Fitness function    𝑖   
      end for 
foreach firefly i do 
for each firefly jdo  
Compute the distance between firefly i and firefly j   

       𝑖           
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             end for 
      end for 
for each firefly i do  
for each firefly j do 
find the max attractiveness and its position 
end for   
for each job to firefly i do  
Move firefly i towards firefly has max attractiveness using  

                     
               

 
 
  

end for  
      end for 
t←t+1  
end while(Esa and Yousif, 2016b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.4) Flowchart of Firefly Algorithm(SundarRajan et al., 2016)  
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4.3 CloudSim 

For measuring the execution time of task scheduling algorithms simulation 

environment are required. CloudSim is the most efficient tool that can be used for 

modeling of Cloud. During the lifecycle of a Cloud, CloudSim allows VMs to be 

managed by hosts which in turn are managed by datacenters.  

Cloudsim provides architecture with four basic entities. These entities allow 

user to set-up a basic cloud computing environment and measure the execution time 

of task scheduling algorithms. A typical Cloud modeled using CloudSim consists of 

following four entities Datacenters, Hosts, Virtual Machines and Application as well 

as System Software. Datacenters entity has the responsibility of providing 

Infrastructure level Services to the Cloud Users. They act as a home to several Host 

Entities or several instances hosts’ entities aggregate to form a single Datacenter 

entity. Hosts in Cloud are Physical Servers that have pre-configured processing 

capabilities. Host is responsible for providing Software level service to the Cloud 

Users. Hosts have their own storage and memory. Processing capabilities of hosts is 

expressed in MIPS (million instructions per second). They act as a home to Virtual 

Machines or several instances of Virtual machine entity aggregate to form a Host 

entity. Virtual Machine allows development as well as deployment of custom 

application service models. They are mapped to a host that matches their critical 

characteristics like storage, processing, memory, software and availability 

requirements. Thus, similar instances of Virtual Machine are mapped to some 

instance of a Host based upon its availability. Application and System software are 

executed on Virtual Machine on-demand(Katyal and Mishra, 2014). 
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5.1 Introduction 

To evaluate the four chosen Swarm Optimization mechanisms for cloud job 

scheduling this study implemented the four algorithms using CloudSim simulator. 

Different scenarios were experimented to measure the execution time of each 

mechanism. The experimentation phase scenarios are simulated as presented in this 

section. 

5.2 Particle Swarm Optimization (PSO) 

Three scenarios have been considered to evaluate particle swarm optimization 

as follows: 

5.2.1 The First Scenario 

In this scenario, the study considered number of 50 jobs and number of 20 

resources. 

Table (5.1): The Execution Time of Ten Iterations in First Scenario for PSO 

Iteration number Execution Time 

1 153.31738157353482 

2 75.39274624154655 

3 75.39274624154655 

4 75.39274624154655 

5 75.39274624154655 

6 75.39274624154655 

7 75.39274624154655 

8 75.39274624154655 

9 75.39274624154655 

10 75.39274624154655 



 

38 
 

 

Figure (5.1): The Execution Time of Ten Iterations in First Scenario for PSO 

As described in Table (5.1) and Figure (5.1) the result of the initial execution 

time was 153.31738157353482, and itgradually decreased until it reached 

75.39274624154655. Which indicates a better performance from the second 

iteration. 
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5.2.2 The Second Scenario  

In this scenario the study considered number of 60 jobs and number of 30 

resources. 

Table (5.2): The Execution Time of Ten Iterations in Second Scenario for 

PSO 

Iteration number Execution Time 

1 212.7475833943387 

2 110.69590540178777 

3 106.57142970548544 

4 106.57142970548544 

5 106.57142970548544 

6 106.57142970548544 

7 106.57142970548544 

8 106.57142970548544 

9 106.57142970548544 

10 106.57142970548544 

 

Figure (5.2): The Execution Time of Ten Iterations in Second Scenario for 

PSO 

As described in Table (5.2) and Figure (5.2) the result of the initial execution 

time was 212.7475833943387then it decreased sharply to106.57142970548544from 

the second iteration. This indicates that the PSO algorithm succeed in reducing the 

execution time. 
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5.2.3 The Third Scenario  

In this scenario we considered number of 150 jobs and number of 70 

resources. 

Table (5.3): The Execution Time of Ten Iterations in Third Scenario for PSO 

Iteration number Execution Time 

1 620.5561493178764 

2 595.2909102335573 

3 595.2909102335573 

4 595.2909102335573 

5 595.2909102335573 

6 595.2909102335573 

7 485.75975051088005 

8 485.75975051088005 

9 485.75975051088005 

10 485.75975051088005 

 

Figure (5.3): The Execution Time of Ten Iterations in Third Scenario for PSO 

As described in Table (5.3) and Figure (5.3) the result of the initial execution 

time was 620.5561493178764, which reduced to 595.2909102335573, the algorithm 

maintained this time till the 6
th

iteration, where it sharply changed to 

485.75975051088005 till the 10
th

 iteration. 
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5.3 CatSwarm Optimization (CSO) 

Three scenarios have been considered to evaluate Cat swarm optimization as 

follows: 

5.2.3 The First Scenario 

In this scenario, the study considered number of 50 jobs and number of 20 

resources. 

Table (5.4): The Execution Time of Ten Iterations in First Scenario for CSO 

Iteration number Execution Time 

1 164.5409268062519 

2 118.49798472511321 

3 112.2652032736785 

4 112.2652032736785 

5 112.2652032736785 

6 112.2652032736785 

7 112.2652032736785 

8 112.2652032736785 

9 107.00915060172028 

10 107.00915060172028 

 

Figure (5.4): The Execution Time of Ten Iterations in First Scenario for CSO 
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As described in Table (5.4) and Figure (5.4) the result of the initial execution 

time was 164.5409268062519 gradually decreased until it reached 

107.00915060172028. This indicates that the CSO algorithm reduced the execution 

time. 

5.2.3 The Second Scenario  

In this scenario we considered number of 60 jobs and number of 30 

resources. 

Table (5.5): The Execution Time of Ten Iterations in Second Scenario for CSO 
 

 

 

 

 

 

Figure (5.5): The Execution Time of Ten Iterations in Second Scenario for CSO 

As described in Table (5.5) and Figure (5.5) the result of the initial execution 

time was 201.48353261049226, which sharply decreased until it reached 

118.6076512831467. This indicates that the CSO algorithm decreased the execution 

time from the second iteration and continued to enhance its performance till the last 

iteration with time of 102.04418576064688. 
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1 201.48353261049226 

2 118.6076512831467 
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4 111.01993021078034 
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7 110.73966750285199 
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9 102.04418576064688 
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5.3.3 The Third Scenario  

In this scenario we considered number of 150 jobs and number of 70 

resources. 

Table (5.6): The Execution Time of Ten Iterations in Third Scenario for GSO 

Iteration number Execution Time 

1 571.4923707790051 

2 369.88142445275207 

3 369.88142445275207 

4 312.253347266184 

5 312.253347266184 

6 312.253347266184 

7 288.5688397467151 

8 288.5688397467151 

9 288.5688397467151 

10 288.5688397467151 

 

Figure (5.6): The Execution Time of Ten Iterations in Third Scenario for GSO 

As described in Table (5.6) and Figure (5.6) the result of the initial execution 

time was 571.4923707790051, it gradually decreased until it reached 

288.5688397467151. 
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5.4 Firefly Algorithms (FA) 

Three scenarios have been considered to evaluate Firefly Algorithms as 

follows: 

5.2.3 The First Scenario 

In this scenario, the study considered number of 50 jobs and number of 20 

resources. 

Table (5.7): The Execution Time of Ten Iterations in First Scenario for FA 

Iteration number Execution Time 

1 184.79477586397093 

2 184.79477586397093 

3 184.79477586397093 

4 160.9562009670756 

5 160.9562009670756 

6 160.9562009670756 

7 160.9562009670756 

8 160.9562009670756 

9 160.9562009670756 

10 160.9562009670756 

 

Figure (5.7): The Execution Time of Ten Iterations in First Scenario for FA 

As described in Table (5.7) and Figure (5.7) the result of the initial execution 

time was 184.79477586397093 for the first third iterations the it drastically 
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decreased until it reached 160.9562009670756, in the 4
th

 iteration and maintained it 

till the last iteration. 

5.2.3 The Second Scenario  

In this scenario we considered number of 60 jobs and number of 30 

resources. 

Table (5.8): The Execution Time of Ten Iterations in Second Scenario for FA 

Iteration number Execution Time 

1 222.1725185469669 

2 222.1725185469669 

3 198.99817797756182 

4 176.119549514586 

5 176.119549514586 

6 176.119549514586 

7  176.119549514586 

8 176.119549514586 

9 176.119549514586 

10 176.119549514586 

 

Figure (5.8): The Execution Time of Ten Iterations in Second Scenario for FA 

As described in Table (5.8) and Figure (5.8) the result of the initial execution 

for the first and second iteration was 222.1725185469669. Then it decreased sharply 

until it reached 176.119549514586 and the same time till the end maintained. 

170 

180 

190 

200 

210 

220 

230 

1 2 3 4 5 6 7 8 9 10 

EX
EC

U
TI

O
N

 T
IM

E
 

ITERATION 

FA



 

46 
 

5.4.3 The Third Scenario  

In this scenario we considered number of 150 jobs and number of 70 

resources. 

Table (5.9): The Execution Time of Ten Iterations in Third Scenario for FA 

Iteration number Execution Time 

1 691.1954378511617 

2 691.1954378511617 

3 691.1954378511617 

4 691.1954378511617 

5 691.1954378511617 

6 691.1954378511617 

7  651.1540671966757 

8 651.1540671966757 

9 651.1540671966757 

10 543.3117858574376 

 

Figure (5.9): The Execution Time of Ten Iterations in Third Scenario for FA 

As described in Table (5.9) and Figure (5.9) the algorithm failed to reduce the 

initial execution time 691.1954378511617 till the 6
th

 iteration where it reduced 

gradually until it reached 651.1540671966757. However, the algorithm succeeds in 

reducing the time sharply to 543.3117858574376 at the last iteration. 
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5.5 Glowworm Swarm Optimization (GSO) 

Three scenarios have been considered to evaluate Glowworm Swarm 

Optimization as follows: 

5.2.3 The First Scenario 

 In this scenario, the study considered number of 50 jobs and number of 20 

resources. 

Table (5.10): The Execution Time of Ten Iterations in First Scenariofor GSO 

Iteration number Execution Time 

1 193.41970639279785 

2 193.41970639279785 

3 193.41970639279785 

4 180.46191974249658 

5 180.46191974249658 

6 180.46191974249658 

7  163.3355664682965 

8 163.3355664682965 

9 163.3355664682965 

10 163.3355664682965 

 

Figure (5.10): The Execution Time of Ten Iterations in First Scenario for GSO 
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As described in Table (5.10) and Figure (5.10) the result of the initial 

execution time was 193.41970639279785, which is gradually decreased after each 

two iterations until it reached 163.3355664682965, after the 7
th

 iteration and 

maintained the same execution time till the last iteration. 

5.2.3 The Second Scenario  

In this scenario we considered number of 60 jobs and number of 30 

resources. 

Table (5.11): The Execution Time of Ten Iterations in Second Scenario for GSO 
 

Iteration number Execution Time 

1 193.41970639279785 

2 193.41970639279785 

3 193.41970639279785 

4 180.46191974249658 

5 180.46191974249658 

6 180.46191974249658 

7  163.3355664682965 

8 163.3355664682965 

9 163.3355664682965 

10 163.3355664682965 

 

Figure (5.11): The Execution Time of Ten Iterations in Second Scenario for GSO 

As described in Table (5.11) and Figure (5.11) the result of the initial 

execution time was 193.41970639279785, which change gradually after each two 
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iterations until it reached 163.3355664682965, in the 7
th

 iteration and maintained it 

till the last iteration. 

5.5.3 The Third Scenario  

In this scenario we considered number of 150 jobs and number of 70 

resources. 

Table (5.12): The Execution Time of Ten Iterations in First Scenario for GSO 

Iteration number Execution Time 

1 713.5431209169094 

2 713.5431209169094 

3 612.0312774122625 

4 612.0312774122625 

5 580.8035105449121 

6 580.8035105449121 

7  580.8035105449121 

8 580.8035105449121 

9 580.8035105449121 

10 485.4380432574824 

 

Figure (5.12): The Execution Time of Ten Iterations in First Scenario for GSO 

As described in Table (5.12) and Figure (5.12) the result of the initial 

execution time was 713.5431209169094 gradually decreased until it reached 

485.4380432574824. 
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5.6 Simulation Results and Performance Analysis 

Four scenarios have been considered to evaluate and comparative between 

the algorithms that have been selected as follows: 

5.6.1 Comparative in first Scenario 

This scenario compares the execution time between the four selected 

algorithms with the same number of jobs and resources (50 jobs and 20 resources). 
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Table: (5.13) Comparative in first Scenario 

 

Figure (5.13): Comparative in First Scenario 

As described in Table (5.13) and Figure (5.13), in this case a comparison 

between PSO, CSO, FA and GSO is conducted after computing the execution times 

for 10iterations, The PSO achieved the best performance in term of execution time 

among the four algorithms, followed by CSO,FA, and GSO. In each iteration the 

execution time was decreased and the effectiveness of the proposed mechanisms 

became better and better.  
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Iteration 
number 

PSO CAT Firefly Glowworm 

1 153.31738157353482 164.5409268062519 184.79477586397093 193.41970639279785 

2 75.39274624154655 118.49798472511321 184.79477586397093 193.41970639279785 

3 75.39274624154655 112.2652032736785 184.79477586397093 193.41970639279785 

4 75.39274624154655 112.2652032736785 160.9562009670756 180.46191974249658 

5 75.39274624154655 112.2652032736785 160.9562009670756 180.46191974249658 

6 75.39274624154655 112.2652032736785 160.9562009670756 180.46191974249658 

7 75.39274624154655 112.2652032736785 160.9562009670756 163.3355664682965 

8 75.39274624154655 112.2652032736785 160.9562009670756 163.3355664682965 

9 75.39274624154655 107.00915060172028 160.9562009670756 163.3355664682965 

10 75.39274624154655 107.00915060172028 160.9562009670756 163.3355664682965 
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5.6.2 Comparative in Second Scenario 

This scenario compares the execution time between the four proposed 

Algorithms with the same number of jobs and resources (60 jobs and 30 resources). 

Table: (5.14) Comparative in Second Scenario 

Iteration 
number 

PSO CAT Firefly Glowworm 

1 212.7475833943387 201.48353261049226 222.1725185469669 193.54897425420936 

2 110.69590540178777 118.6076512831467 222.1725185469669 193.54897425420936 

3 106.57142970548544 111.01993021078034 198.99817797756182 193.54897425420936 

4 106.57142970548544 111.01993021078034 176.119549514586 173.16782011570015 

5 106.57142970548544 111.01993021078034 176.119549514586 173.16782011570015 

6 106.57142970548544 110.73966750285199 176.119549514586 130.67495856826483 

7 106.57142970548544 110.73966750285199 176.119549514586 130.67495856826483 

8 106.57142970548544 104.5230702819497 176.119549514586 130.67495856826483 

9 106.57142970548544 102.04418576064688 176.119549514586 130.67495856826483 

10 106.57142970548544 102.04418576064688 176.119549514586 130.67495856826483 

 

Figure (5.14): Comparative in Second Scenario 

As described in Table (5.14) and Figure (5.14), in this case a comparison 

between PSO, CSO, FA and GSO is conducted after computing the execution times 

for 10iterations. In term of execution time PSO and CSO achieved the shortest time, 

with minor differences between the two, where CSO overcome PSO at the last three 

iterations. The two other algorithms (FA and GSO) stood behind.  
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5.6.3 Comparative in third Scenario 

This scenario compares the execution time between the four proposed 

Algorithms with the same number of jobs and resources (150 jobs and 70 resources). 

Table (5.15): Comparative in third Scenario 

Iteration 

number 

PSO CAT Firefly Glowworm 

1 620.5561493178764 571.4923707790051 691.1954378511617 713.5431209169094 

2 595.2909102335573 369.88142445275207 691.1954378511617 713.5431209169094 

3 595.2909102335573 369.88142445275207 691.1954378511617 612.0312774122625 

4 595.2909102335573 312.253347266184 691.1954378511617 612.0312774122625 

5 595.2909102335573 312.253347266184 691.1954378511617 580.8035105449121 

6 595.2909102335573 312.253347266184 691.1954378511617 580.8035105449121 

7 485.75975051088005 288.5688397467151 651.1540671966757 580.8035105449121 

8 485.75975051088005 288.5688397467151 651.1540671966757 580.8035105449121 

9 485.75975051088005 288.5688397467151 651.1540671966757 580.8035105449121 

10 485.75975051088005 288.5688397467151 543.3117858574376 485.4380432574824 

 

Figure (5.15): Comparative in third Scenario 

As described in Table (5.15) and Figure (5.15), in the case of 150 jobs and 70 

resources comparison between PSO, CSO, FA and GSO showed the CSO algorithm 

achieved the best performance in term of execution time. While the three other 

algorithms varied in their performance, where PSO and GSO reached the same 

250

300

350

400

450

500

550

600

650

700

750

1  2  3  4  5  6  7  8  9  1 0  

EX
EC

U
TI

O
N

 T
IM

E
 

ITERATION 

PSO

Cat

FireFly

Glowworm



 

54 
 

execution time at last iteration. Glowworm started with the longest execution time in 

the first two iterations and it started to perform better in (4-9) iteration till it reached 

the same execution time of PSO in the last iteration, where they reach the second 

position after CSO. Firefly maintained the same performance till the sixth iteration 

where it started decrease the time. Despite this change it couldn’t overcome the other 

algorithms and came at the last position.  

5.6.4 The Fourth Scenario  

In this scenario, different numbers of jobs and resources are considered to 

evaluate the Swarm Intelligence mechanisms and to examine the performance of the 

SI mechanisms in different workload. 

Table (5.16): The Fourth Scenario 

Time PSO CAT Firefly Glowworm 

Time 1  

(20 jobs 

and 10 

resources) 

30.958730158730155 37.19404761904762 40.01666666666667 38.14960317460318 

Time 2  

(60 jobs 

and 30 

resources) 

106.57142970548544 102.04418576064688 176.119549514586 163.3355664682965 

Time 3  

(100 jobs 

and 50 

resources) 

271.66686481732916 165.85901883246106 307.9912744616086 350.2123042458601 

Time 4  

(120 jobs 

and 80 

resources) 

300.4969150858924 182.83863086605297 309.76665483892725 264.49118590922234 

Time 5  

(150 jobs 

and 100 

resources) 

325.1070806948886 214.88563695884247 691.1954378511617 580.8035105449121 
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Figure (5.16): The Fourth Scenario 

As described in Table (5.16) and Figure (5.16), in this case a comparison 

between PSO, CSO, FA and GSO is conducted by computing the execution times for 

each algorithm in different Scenarios. At time1 the PSO had the shortest execution 

time, however, as the problem size increases by adding more and more jobs the 

effectiveness of PSO decreased, and CSO came to take the lead in terms of execution 

time.  

5.7 Discussion: 

This research aims to provide a perspective on the domain of task scheduling 

in cloud data centers by summarizing different methods used and to evaluating the 

swarm intelligence task scheduling algorithms in accordance to task execution time. 

After conducting simulation using different scenarios to evaluate the selected 

techniques, the results revealed that when having small sizes of scheduling problems 

PSO take the lead, however in case of large size of jobs Cat Swarm Optimization 

significantly outperforms the considered PSO, FA and GSO algorithms in terms of 

execution time. There have not been any studies conducted comparing the four 

selected techniques in term of execution time. However, there was a study which 

compared only two of the techniques in term of the speed of convergence. The study 

showed that CSO considerable improvement over PSO. This research also shows that 

CSO over performed PSO and other selected algorithms, but in term of execution 
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time. However, the results finding from this research were limited to small sized 

jobs, which may differ in real cloud environment. For future research the job size 

may be increased and the CSO might be compared to different algorithms using 

different criteria. 

 



 

 

 

 

 

 

 

Chapter Six 
Conclusions and Recommendation 
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6.1 Conclusions 

In cloud computing, the resources should be utilized effectively and 

consequently scheduling should consider the resource utilization to decrease the 

execution time and thereby increasing the throughput of the system. In this research, 

a simplified four of swarm optimization-based job scheduling algorithms (particles 

warm optimization, Cat swarm optimization, Firefly algorithm and Glowworm 

swarm optimization) were implemented for scheduling of jobs in cloud environment 

in order to minimize the execution time. The performance of the selected methods 

was compared to each other through carrying out extensive simulation tests. The 

selected algorithms were tested among four different scenarios. In each scenario the 

number of jobs and allocation resources were changed. In each scenario, the selected 

algorithms iteration changes their plans 10 times to come up with the best 

performance. The execution time is computed in each iteration to compare between 

the algorithms. Simulation results revealed that when having small sizes of 

scheduling problems PSO take the lead, however in case of large size of jobs Cat 

Swarm Optimization significantly outperforms the considered PSO, FA and GSO 

algorithms in terms of execution time. 

6.2 Recommendation 

1. Since results revealed that Cat has the best performance among selected 

algorithm, in the future Cat could be compared to different algorithms 

rather than (PSO, FA and GSO) to come up with the best algorithm ever 

and generalize the result. 

2. In the future, research works can address other important factors such as the 

flow time, overall execution cost and load balancing during the 

scheduling of tasks and jobs. 
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