

A Comparative Study of Swarm Intelligence

(SI) Task Scheduling Algorithms in Cloud

Computing

دراسة مقارنة بين خهارزميات الدرب الذكي لجدولة المهام
 في الحهسبة الدحابية

A Thesis Submitted in Partial Fulfillment of the requirements for the degree of

M.Sc.in Information Technology

By

Isra Faisal Abdalla Elhag

Supervisor

Dr. Adil Yousif

October 2017

Sudan University of Science and Technology

College of Graduate Studies

Master of Information Technology

I

 ةـــــــــــــــــالآي

مِنِينَ)قـال تعالى: ضِ لََيَاتٍ لِلأمُؤأ َرأ مَاوَاتِ وَالْأ (وَفِي 3" إِنَّ فِي الدَّ

مٍ يُهقِنُهنَ قِكُمأ وَمَا يَبُثُّ مِنأ دَابَّةٍ آيَاتٌ لِقَهأ " (4) خَلأ

 (الجاثيةسورة)

 صدق الله العظيم

II

ACKNOWLEDGEMEN

This thesis becomes a reality with the kind support and help of many

individuals. I would like to extend my sincere thanks to all of them.

Foremost, I want to offer this endeavor to our GOD Almighty for the wisdom

he bestowed upon me, the strength, peace of my mind and good health in order to

finish this research.

I would like to express my special gratitude and thanks to my adviser, Dr

Adil Yousif for imparting his knowledge and expertise in this study.

I would like to express my gratitude towards my family for the

encouragement which helped me in completion of this research. My supportive

sister, who is always by my side when times I needed her most and helped me a lot in

making this study, and my lovable brothers who served as my inspiration to pursue

this undertaking

I am highly indebted to Sudan University of Science and Technology Faculty

of Graduate Studies for their guidance and constant supervision as well as for

providing necessary information regarding this research & also for their support in

completing this endeavor

My thanks and appreciations also go to my colleague and people who have

willingly helped me out with their abilities

III

Abstract

Cloud Computing refers to computing services over the internet and deals

with varied different virtualization resources. The task scheduling plays a crucial role

in enhancing the performance of cloud computing. The issue with task scheduling is

distribution of tasks within the system in a manner that optimize the performance of

overall system and minimize the execution time. To achieve such good plan the

provider need to evaluate and choose among different algorithms to allocate and

schedule the available resources. The challenging decision of choosing the proper

algorithm is taking based on different performance metrics for task scheduling. In

this research the focus is concentrated on task Execution Time as criteria for

evaluating among the chosen algorithms. The selected mechanisms contain

information of jobs (cloudlets) and resources (virtual machines) such as length of

jobs, speed of resources and identifier for both. In order to generate the population,

first, set of jobs and resources were created, then the execution times of jobs were

computed as a fitness values. Second, the algorithms iterated to themselves in order

to regenerate populations to produce the best job schedule that gives the minimum

execution time of jobs. The methodology of this research is based on simulation of

the selected mechanisms using the Java Language and CloudSim simulator. The

comparison and analysis of different task scheduling algorithms has been discussed

in this research on the basis of time execution. The results revealed that when having

small sizes of scheduling problems PSO take the lead. However, in case of large size

of jobs, Cat Swarm Optimization significantly outperforms the considered Particle

Swarm Optimization, Firefly Algorithm and Glowworm Swarm Optimization in

terms of execution time.

IV

 المدتخلص

يقرج بالحؽسبو الدحابية: خجمات الحؽسبة السقجمة عؼ طخيق الإنتخنت والتي تتعامل مع العجيج مؼ

الافتخاضية السختمفة. يعتسج تحديؼ اداء الحؽسبة الدحابية برؽرة اساسية عمى طخيقة ججولة السيام في السؽارد

ة تؤدي الى تحديؼ الأداء العام في الدحابة. واليجف مؼ ججولة السيام ىؽ تؽزيع السيام داخل الشعام بطخيق

ػ والاختيار بيؼ عجة يقجم الخجمو التقيجب عمى مولتشفيح ميسة الججولة بطخيقة فعالو ييل وقت التشفيح. مالشعام وتق

وتكسؼ صعؽبة وىشاك مقاييذ مختمفو لقياس اداء الخؽارزمية. .خؽارزميات تدتخجم في ججولة تخريص السؽارد

بحث تػ التخكيد عمى لأغخاض ىحا الؤشخات مختمفو في اداء الخؽارزمية.و أنيا تعتسج عمى م التقييػ والإختيار في

مشعام يم. كل خؽارزمية تحتؽي عمى معمؽمات السيسة الجاخمسحجد لمتقييػ بيؼ الخؽارزميات السختارهوقت التشفيح ك

(tolduovc(والسؽارد الستاحة)virtual machines) سخعة السؽارد السيسو و ػ جتختص ىحه السعمؽمات بح

خاض عجد مؼ السيام (أولًا تقؽم بإفتilidolcplpلتسثيل السجتسع) سو ومحجداتيسا.لسخررة لتمغ السيا

ح لكل ة عذؽائية, ويتػ حداب وقت التشفيطخيقلسيام عمى حدب السؽارد الستاحو بالسؽارد, ومؼ ثػ تخريص او

ة اخخى لمحرؽل عمى أفزل ججولة لمسيام في أقل زمؼ تشفيح. ميسو. ثانياً تقؽم الخؽارزمية بتكخار العسمية مخ

. تست مقارنة CloudSimulatorيتبع ىحا بحث مشيجية محاكاة الخؽارزميات السقتخحة باستخجام لغة الجافا و

ليا اقل زمؼ تشفيح PSOزمؼ التشفيح وأظيخت الشتائج أن خؽارزميةحميل خؽارزميات ججولة السيام عمى اساس وت

مقارنة مع الخؽارزميات في حالة عجد السيام الكثيخة أقل زمؼ تشفيح ليا كان CSOعجد السيام القميل, اما ةفي حال

 الاخخى. ةالثلاث

V

TABLE OF CONTENTS
 I..الآية

Acknowledgment...II

Abstract...III

 IV..المستخلص

Table of Contents...V

List of Figures..VIII

List of Tables..IX

List of Abbreviations and Symbols……………………………….……………...…. X

CHAPTER1: Introduction

1.1 Introduction ...1

1.2 Problem Background ...1

1.3 Problem statement ...3

1.4 Research Objectives ...4

1.5 Research Question ...4

1.6 Research Scope ...4

1.7 Research importance ...4

1.8 Thesis Structure ...5

CHAPTER 2: Literature Review

2.1 Introduction ...6

2.2 Cloud computing definition ...6

2.3 Definitions of Resource allocation ...7

2.4 Cloud Scheduling ...8

2.5 Need for Cloud Scheduling ...9

2.6 The different types of cloud scheduling are ...9

2.7 Load Balancing in Cloud Computing Environment10

2.8 Task scheduling ...10

VI

2.9 Performance metrics for task scheduling ...11

2.10 Swarm Intelligence (SI) ...14

2.10.1 Particle Swarm Optimization (PSO) ...15

2.10.2 Firefly Algorithm (FA) ...15

2.10.3 Cat Swarm Optimization (CSO) ...16

2.10.4 Glowworm swarm optimization (GSO)16

2.11 Related works ...17

CHAPTER 3: Research Methodology

3.1 Introduction ...20

3.2 Operational Framework ...20

3.2.1 Problem Formulation ...20

3.2.2 Proposal Writing ...21

3.2.3 Design of Proposed Framework ...22

3.3 Implementation ...22

3.4 Tool Used in This Methodology ...22

CHAPTER 4: Swarm Intelligence Techniques

4.1 Introduction ...23

4.2 Swarm Intelligence (SI) ...23

4.2.1 Particle Swarm Optimization (PSO) ...23

4.2.2 Cat Swarm Optimization (CSO) ...26

4.2.3 Glowworm Swarm Optimization algorithm (GSO)29

4.2.4 Firefly Algorithm (FA) ...32

4.3 CloudSim ...36

CHAPTER 5: Simulation Results and Performance Analysis

5.1 Introduction ...37

5.2 Particle Swarm Optimization (PSO) ...37

5.2.1 The First Scenario ...37

VII

5.2.2 The Second Scenario ...39

5.2.3 The Third Scenario ...40

5.3 Cat Swarm Optimization (CSO) ...41

5.2.3 The First Scenario ...41

5.2.3 The Second Scenario ...42

5.3.3 The Third Scenario ...43

5.4 Firefly Algorithms (FA) ...44

5.2.3 The First Scenario ...44

5.2.3 The Second Scenario ...45

5.4.3 The Third Scenario ...46

5.5 Glowworm Swarm Optimization (GSO) ...47

5.2.3 The First Scenario ...47

5.2.3 The Second Scenario ...48

5.5.3 The Third Scenario ...49

5.6 Experiments Simulation Results and Performance Analysis ……………….50

5.6.1 Comparative in first Scenario ...50

5.6.2 Comparative in Second Scenario ...52

5.6.3 Comparative in third Scenario ...53

5.6.4 The Fourth Scenario ...54

5.7 Discussion ...55

CHAPTER 6: Conclusions and Recommendation

6.1 Conclusions ...57

6.2 Recommendation ...57

Refrences ...58

VIII

List of Figures

Figures

Number

Figures Name Page

Number

Figure (3.1) Research Operational Frame work 21

Figure (4.1) Flowchart of Particle Swarm Intelligence 25

Figure (4.2) Flowchart of Cat Swarm Intelligence 28

Figure (4.3) Flowchart of Glowworm Swarm Intelligence 32

Figure (4.4) Flowchart of Firefly Algorithm 35

Figure (5.1) The Execution Time of Ten Iterations in First

Scenario for PSO

38

Figure (5.2) The Execution Time of Ten Iterations in Second

Scenario for PSO

39

Figure (5.3) The Execution Time of Ten Iterations in Third

Scenario for PSO

40

Figure (5.4) The Execution Time of Ten Iterations in First

Scenario for CSO

41

Figure (5.5) The Execution Time of Ten Iterations in Second

Scenario for CSO

42

Figure (5.6) The Execution Time of Ten Iterations in Third

Scenario for CSO

43

Figure (5.7) The Execution Time of Ten Iterations in First

Scenario for FA

44

Figure (5.8) The Execution Time of Ten Iterations in Second

Scenario for FA

45

Figure (5.9) The Execution Time of Ten Iterations in Third

Scenario for FA

46

Figure (5.10) The Execution Time of Ten Iterations in First

Scenario for GSO

48

Figure (5.11) The Execution Time of Ten Iterations in Second

Scenario for GSO

49

Figure (5.12) The Execution Time of Ten Iterations in Third

Scenario for GSO

50

Figure (5.13) Comparative in first Scenario 51

Figure (5.14) Comparative in Second Scenario 52

Figure (5.15) Comparative in third Scenario 53

Figure (5.16) Comparative in the Fourth Scenario 55

IX

List of Tables

Table Number Table Name Page Number

Table(4.1) Glowworm Optimization Parameters 31

Table(5.1) The Execution Time of Ten Iterations in First

Scenario for PSO

37

Table(5.2) The Execution Time of Ten Iterations in Second

Scenario for PSO

39

Table(5.3) The Execution Time of Ten Iterations in Third

Scenario for PSO

40

Table(5.4) The Execution Time of Ten Iterations in First

Scenario for CSO

41

Table(5.5) The Execution Time of Ten Iterations in Second

Scenario for CSO

42

Table(5.6) The Execution Time of Ten Iterations in Third

Scenario for CSO

43

Table(5.7) The Execution Time of Ten Iterations in First

Scenario for FA

44

Table(5.8) The Execution Time of Ten Iterations in Second

Scenario for FA

45

Table(5.9) The Execution Time of Ten Iterations in Third

Scenario for FA

46

Table(5.10) The Execution Time of Ten Iterations in First

Scenario for GSO

47

Table(5.11) The Execution Time of Ten Iterations in Second

Scenario for GSO

48

Table(5.12) The Execution Time of Ten Iterations in Third

Scenario for GSO

49

Table(5.13) Comparative in first Scenario 51

Table(5.14) Comparative in Second Scenario 52

Table(5.15) Comparative in third Scenario 53

Table(5.16) Comparative in four Scenario 54

X

List of Abbreviations and Symbols

Abbreviation/Symbols Explanation

CPU Central Processing Unit

PSO Particle Swarm Optimization

CSO Cat Swarm Optimization

FSO Firefly Swarm Optimization

GSO Glowworm Swarm Optimization

QoS Quality of Service

RA Resource Allocation

FIFO First In First Out

IO Input Output

SLAs Service Level Agreements

CloudSim Cloud Simulator

SI Swarm Intelligence

PBest Particle Best

GBes Global Best

V Velocity

W Weight

SMP Seeking Memory Pool

CDC Count of Dimension to Change

IT Information Technology

FA Firefly Algorithm

GA Genetic Algorithm

ACO Ant colony optimization

FCFS First Com First Servers

VM Virtual machine

MIPS Million Instruction per second

β Constant Parameter

α Alpha

P Luciferin decay Constant

Y Luciferin Enhancement

Chapter One

Introduction

1

1.1 Introduction

This chapter introduce the research work, describe the problem background,

problem statement, the research objective and the thesis structure.

1.2 Problem Background

In recent years, there has been a dramatic increase in the popularity of cloud

computing systems that rent computing resources on-demand, bill on a pay-as-you-

go basis, and multiplex many users on the same physical infrastructure. Cloud

computing that has become an increasingly important trend, is a virtualization

technology that uses the internet and central remote servers to offer the sharing of

resources that include infrastructures, software, applications and business processes

to the market environment to fulfill the elastic demand(Ngenzi and Nair, 2015).These

cloud computing environments provide an illusion of infinite computing resources to

cloud users so that they can increase or decrease their resource consumption rate

according to the demands Two players in cloud computing environments, cloud

providers and cloud users, pursue different goals; providers want to maximize

revenue by achieving high resource utilization, while users want to minimize

expenses while meeting their performance requirements. However, it is difficult to

allocate resources in a mutually optimal way. Moreover, ever-increasing

heterogeneity and variability of the environment poses even harder challenges for

both parties(Quan et al., 2011).

Cloud computing data centres are emerging as new candidates for replacing

traditional data centres that are growing rapidly in both number and capacity to meet

the increasing demands for computing resources and storages(Quan et al., 2011).

Large Cloud datacenters comprise of many thousands of servers and most of the time

these servers are underutilized. The massive amount of wastage of resources in

Cloud datacenters results in resource management problems. The challenges related

2

to datacenters with a particular emphasis on how new virtualization technologies can

be used to simplify deployment, improve resource efficiency and reduce the number

of usage of physical servers(Ngenzi and Nair, 2015).

The computing resources, either software or hardware, are virtualized and

allocated as services from providers to users. Since the consumers may access

applications and data of the ―Cloud‖ from anywhere at any time, it is difficult for the

cloud service providers to allocate the cloud resources dynamically and

efficiently(Patil and Mehrotra, 2012).

Cloud is developing day by day and faces many challenges, one of them is

scheduling. Scheduling refers to a set of policies to control the order of work to be

performed by a computer system. A good scheduler adapts its scheduling strategy

according to the changing environment and the type of task. There has been various

types of scheduling algorithm existing in distributed computing system, and job

scheduling is one of them. The main advantage of job scheduling algorithm is to

achieve a high performance computing and the best system throughput. Scheduling

manages availability of CPU memory and good scheduling policy gives maximum

utilization of resource(Agarwal and Jain, 2014).

In cloud computing, the underlying large-scale computing infrastructure is

often heterogeneous. To maximize cloud utilization, the capacity of application

requirements shall be calculated so that minimal cloud computing infrastructure

devices shall be procured and maintained. Given access to the cloud computing

infrastructure, applications shall allocate proper resources to perform the

computation with minimum time and infrastructure cost.

Scheduling is a difficult task in cloud computing environment because a

cloud provider has to take care of many users according to their different QoS needs.

Every task could have varied parameters like needed information, desired completion

time, expected execution time, job priority etc..,(SundarRajan et al., 2016).

3

Management of these resources requires efficient planning and proper layout.

While designing an algorithm for resource provisioning on cloud the developer must

take into consideration different cloud scenarios and must be aware of the issues that

are to be resolved by the selected algorithm(Katyal and Mishra, 2014).There are

many promising methods to solve Job scheduling problems inspired from the nature.

For sake of this research we focus on four algorithms, which are: Particle Swarm

Optimization (PSO), Cat Swarm Optimization (CSO), Firefly Algorithm (FA) and

Glowworm Swarm Optimization (GSO).

1.3 Problem statement

Many cloud datacenters have problems in understanding and implementing

the techniques to manage, allocate and migrate the resources in their premises. The

consequences of improper resource management may result into underutilized and

wastage of resources which may also result into poor service delivery in these

datacenters. Multiple resource types in datacenters make the situation even more

complex, thus a careful planning for relocation is necessary. To achieve such good

plan, the provider, need to evaluate and choose among different algorithms to

allocate and schedule the available resources. The challenging decision of choosing

the proper algorithm is taken based on different performance metrics for task

scheduling. In this research the focus is concentrated on task Execution Time as

criteria for evaluating among the chosen algorithms (Esa and Yousif, 2016a) (Katyal

and Mishra, 2014).

4

1.4 Research Question

1- Are data center providers fully aware of the perspective of task

scheduling algorithms?

2- What is the best swarm intelligence technique used in scheduling, to

achieve the minimum task execution time?

1.5 Research Objectives

1. To provide a perspective on the domain of task scheduling in cloud

data centers by summarizing different methods used.

2. Evaluating the swarm intelligence task scheduling algorithms in

accordance to task execution time.

1.6 Research Scope

The resources allocation techniques in cloud data center and comparative

study.

5

1.7 Research importance

Researches in the field of Resource allocation in Cloud Datahas become

increasingly popular worldwide, and there is a need to shift from traditional working

environment to achieve the ultimate electronic solution in solving our problem and

processing our data, thus the efforts from the researchers and providers should be

increase in this field. The contribution of this research is to provide a starting point

for researchers and developers who want to evaluate and develop thetask scheduling

techniques in Cloud data center, specially, in Sudan since few researches done to

cover this field.

1.8 Thesis Structure

This thesis contains six chapters. Chapter two gives an overall idea of cloud

computing and job scheduling in cloud computing. Chapter three describes the

research methodology. Chapter four presents the swarm intelligence algorithms

under the study for task scheduling. Chapter five Simulation Results and

Performance Analysis. Chapter six provides the conclusion and recommendation.

Chapter Two

Literature Review

6

2.1 Introduction

In order to achieve our objectives, set before, we need to review recent

researches that were conducted in the same field, here below are some of selected

studies.

2.2 Cloud computing definition

Cloud application is very popular in recent years. Specially, cloud computing

has emerged as a promising approach to rent IT infrastructure on a short-term pay-

per-usage basis. With cloud computing, companies can scale up to massive capacities

in an instant without having to invest in new infrastructure, train new personnel, or

license new software. cloud computing is of a particular benefit to small-medium

size business who wish to completely outsource their data center infrastructure, or

large companies who wish to get peak load capacity without increasing the higher

cost of building large data center internally(Tsai et al., 2013).

Cloud computing is defined as a model enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction

(Mohamaddiah et al., 2014).Also, it can be defined as a computing paradigm, where

a large pool of systems is connected in private or public networks, to provide

dynamically scalable infrastructure for application, data and file storage. With the

advent of this technology, the cost of computation, application hosting, content

storage and delivery is reduced significantly(Sarga, 2012).

Other defined it as a new technology that provides resources as an elastic

pool of services in a pay-as-you-go model. Whether it is storage space,

computational power, or software, customers can get it over the internet from one of

7

the cloud service providers. In both instances, services consumers use, what they

need on the internet and pay only for what they use(Mohammad et al., 2012).

Cloud computing provides a shared pool of various resources including data

storage space, networks, computer processing power, and user applications. The

cloud services consist of highly optimized virtual datacenter and provide various

hardware, software and information resources for use. The aim of cloud computing

environment is to optimally use the available computing resources. Virtualization

greatly helps in valuable utilization of resources and build an effective system. A

cloud consist of several data centers, servers, clients which are interconnected in an

efficient way(Kaur and Dhindsa, 2016).Resource allocation is a complicated task in

cloud computing environment because there are many alternative computers with

varying capacities.

2.3 Definitions of Resource allocation

Resource allocation is process of assigning the available resources in an

economic, efficient and effective way. Resource allocation is the scheduling of the

available resources and available activities required by those activities while taking

into consideration both the resource availability and the project time. Resource

provisioning and allocation solves that problem by allowing the service providers to

manage the resources for each individual request of resource(Rajasekar and

Manigandan, 2015).

In cloud computing, Resource Allocation (RA) is the process of assigning

available resources to the needed cloud applications over the internet. Resource

allocation starves services if the allocation is not managed precisely.(Anuradha and

Sumathi, 2014).

In cloud computing, resource allocation (RA) is a field that is taken into

account in many computing areas such as datacenter management, operating

8

systems, and grid computing. RA deals with the division of available resources

between cloud users and applications in an economic and effective way(Alnajdi et

al., 2012).

2.4 Cloud Scheduling

Scheduling is the vital task in cloud computing environment. Scheduling

means the set of rules and mechanisms for controlling the order of work to be

performed by computing systems. There are numerous types of scheduling

algorithms and task scheduling being the significant one. In cloud task scheduling is

the major problem. The scheduling of tasks means an optimal usage of available

resources. The main purpose of scheduling is to achieve the high performance,

reduce the waiting time, increase system throughput and so on. Task scheduling is a

challenging issue in cloud computing because it is parallel and distributed

architecture. The task completion time determination is difficult in cloud because the

tasks may be distributed between more than one Virtual machine (Kaur and Dhindsa,

2016).

 Traditional cloud scheduling algorithms typically aim to minimise and

decrease the time and cost for processing all tasks scheduled. However, in cloud

computing environment, computing capability varies from different resources and

the cost of the resource usage. Therefore, it is important to take into consideration the

cost. A scheduling algorithm is implemented by programmers to schedule the task

with maximum estimated gain or profit and execute the task in the queue.

9

2.5 Need for Cloud Scheduling

 In cloud computing, users may utilize hundreds of thousands of virtualized

resources and it is impossible for everyone to allocate each task manually. Due to

commercialization and Virtualization, cloud computing left the task scheduling

complexity to virtual machine layer by utilizing resources virtually. Hence to assign

the resources to each task efficiently and effectively, Scheduling plays an important

role in cloud computing(Goyal and Sharma, 2016).

2.6 The different types of cloud scheduling are

• User level scheduling: User level scheduling comprises of market based and

auction based scheduling. FIFO scheduling, priority based, non-pre-emptive

scheduling etc. are used in user level scheduling.

• Cloud Service Scheduling: Cloud service scheduling is classified at user level and

system level. At user level, it mainly considers the service regarding problems

between the provider and the user. At system level, scheduling and resource

management is done. In addition to real time satisfaction, fault tolerance, reliability,

resource sharing and QoS parameters are also taken under consideration.

• Static and Dynamic Scheduling: Static scheduling permits pre-fetching of required

data and pipelining of distant stages of task execution. Static scheduling imposes

minimum runtime overhead. In case of dynamic scheduling, information of the job

components or task is not known before. Thus the execution time of the task may not

be known and the allocation of tasks is done only as the application executes.

• Heuristics Scheduling: In cloud environment, heuristic based scheduling can be

done to optimize results. More accurate results can be built by heuristic methods.

11

• Workflow Scheduling: For the management of workflow execution, workflow

scheduling is done.

• Real Time Scheduling: Real Time Scheduling in cloud environment is done to

increase the throughput and to decrease the average response time instead of meeting

deadline(Goyal and Sharma, 2016).

2.7 Load Balancing in Cloud Computing Environment

Load balancing in cloud computing provides an efficient solution to various issues

residing in cloud computing environment set-up and usage. Load balancing must

take into account two major tasks, one is the resource provisioning or resource

allocation and other is task scheduling in distributed environment(Katyal and Mishra,

2014).

2.8 Task scheduling

There are various types of task scheduling algorithm. The main goal of a scheduling

algorithm is to achieve high computing performance and best system throughput.

Traditional scheduling algorithms cannot operate in cloud environment (because of

overhead costs), thus providers have resorted to heuristic or hybrid algorithms to fill

this gap. Effectiveness of task scheduling has a direct effect on the quality of cloud,

thus many algorithms have been developed to resolve this particular problem. In

some studies, algorithms have been developed to optimize the resource

efficiency(Chalack and Germi).

In order to efficiently and cost effectively schedule the tasks and data of applications

onto these cloud computing environments, application schedulers have different

policies that vary according to the objective function: minimize total execution time,

minimize total cost to execute, balance the load on resources used while meeting the

deadline constraints of the application, and so forth(Pandey et al., 2010).

11

2.9 Performance metrics for task scheduling

A good scheduling algorithm always considers benefits of both the parties the

cloud users and the service providers. The algorithms should try to reduce both the

cost and power consumption as well as provide better performance. Scheduling

algorithms must consider Load balancing, energy consumption, user's fairness and

security while providing services. Below is an overview of common Performance

metrics for task scheduling recommended by different researches in the field:

1. Execution Time

 The CPU time or burst time spent by the computer system for execution of a

task is known as execution time, including the time consumed to provide system

services for task execution(Ali and Alam, 2016). In other way, the exact time taken

to execute the given tasks. A good scheduling algorithm ultimately aims to minimize

execution time(Yadav and Mandoria, 2017).

2. Response Time

The amount of time taken by the system to reply the user task very first time

for required service. That service may also be something from a memory fetch, to a

disk IO, to an elaborate database question, or loading a full web page. Response time

of the system should be minimum(Ali and Alam, 2016).

3. Makespan

 [Syed and Mansaf], the amount of time, from start to finish for completing a

set of tasks. The makespan is the maximum time to complete all jobs(Ali and Alam,

2016). Whereas, [Ashwani and Hardwari] refers it as the aggregate consummation

12

time of all tasks in the job queue. A good scheduling algorithm dependably tries to

diminish the makespan(Yadav and Mandoria, 2017).

4. Throughput

Throughput uses the consideration of total number of tasks, which are

implemented successfully. In cloud computing, throughput means some tasks

completed in a certain time period. Minimum throughput is required for task

scheduling (Madni et al., 2017).

5. Resource Utilization

 In addition to response time and throughput, another parameter for

performance measurement of a system is resource consumption. How much amount

of system resources are busy? is track using resource utilization. Scheduling

algorithm should increase the utilization of resources(Ali and Alam, 2016).

6. Load Balancing

 [Ashwani and Hardwari]It is the strategy for dissemination of the whole load

in a cloud network crosswise over various nodes furthermore, connects so that at

once no nodes and connections remain under loaded while a few nodes or

connections are over-loaded. Most of the scheduling algorithms try to keep the load

balanced in a cloud network in order to increase the efficiency of the system(Yadav

and Mandoria, 2017).

13

7. Fault Tolerance

Fault tolerance is the property that allows for a procedure to continue running

effectively within the incident of the failure in its components. It is an important

parameter to check the capability of any system(Ali and Alam, 2016).

8. Energy Consumption

Energy consumption is the amount of resource energy used to produce the

output. Energy consumption should be minimal(Ali and Alam, 2016).

Energy utilization in cloud data centers is a present issue that ought to be

considered with more care nowadays. Numerous scheduling algorithms were

developed for diminishing power consumption and enhancing execution and

consequently making the cloud services green(Yadav and Mandoria, 2017).

9. Scalability

It is a characteristic of a system, model or function that describes its ability to

manage and participate in below multiplied or increasing workload. A process that

scales well might be competent to hold or even broaden its level of efficiency when

tested by using higher operational needs(Ali and Alam, 2016).

10. Performance

 The accomplishment of a given task measured against pre-set identified

requirements of completeness, cost, accuracy, and velocity. In computing

performance is measured by the time and cost, a system should complete a user task

14

in less time and minimum cost of services. A performance should be considered at

both sides user and provider by scheduling algorithm(Ali and Alam, 2016).

11. Quality of Service

Best of provider considers user involvement restrictions like meeting cut-off

date, efficiency, execution price, make span, and so forth. Everything are outlined in

Service Level Agreement (SLAs) which is a contract file outlined between the cloud

user and cloud service provider. Input constraints such as meeting execution cost,

deadline, performance, cost, makespan, etc enhances quality of service(Ali and

Alam, 2016).

12. Cost

 Cost means the total payment generate against the utilization or usage of

resources, which is paid to the cloud providers by the cloud users. The main

determination is to the growth of revenue and profit for cloud providers while

reducing the expenses for cloud user with efficient utilization (Madni et al., 2017).

Job scheduling, one of the most famous optimization problems. Job

scheduling has been considered as one of crucial problems in cloud computing. An

optimized scheduler would improve many factors in scheduling of jobs in a cloud

system such as throughput and performance. Different Approaches have tried to

solve this problem like Genetic algorithm, Ant colony optimization, Particle swarm

optimization and etc. which are considered types of swarm Intelligence techniques.

2.10 Swarm Intelligence (SI)

Swarm intelligence models are referred to as computational models inspired

by natural swarm systems. To date, several swarm intelligence models based on

15

different natural swarm systems have been proposed in the literature, and

successfully applied in many real-life applications. Examples of swarm intelligence

models are: Ant Colony Optimization ‎, Particle Swarm Optimization, Artificial Bee

Colony, Bacterial Foraging, Cat Swarm Optimization, Artificial Immune System,

and Glowworm Swarm Optimization (Ahmed and Glasgow, 2012).In this research,

we will primarily focus on four of the most popular swarm intelligences models,

namely, Particle Swarm Optimization, Cat Swarm Optimization, Glowworm Swarm

Optimization and Firefly Swarm Optimization.

2.10.1 Particle Swarm Optimization(PSO)

PSO is a population-based optimization technique that finds solution to a

problem in a search space by modeling and predicting insect social behavior in the

presence of objectives. The general term ―particle‖ is used to represent birds, bees or

any other individuals who exhibit social behavior as group and interact with each

other. Under PSO, multiple candidate solutions –called particles– coexist and

indirectly

collaboratesimultaneously.Eachparticle―flies‖intheproblemsearchspacelookingfor the

optimal position to land. A particle adjusts its position as time passes according to its

own experience as well as according to the experience of neighbor particles.

Moreover, particles are essentially described by two characteristics: the particle

position, which defines where the particle is located with respect to other solutions in

the search space, and the particle velocity, which defines the direction and how fast

the particle should

movetoimproveitsfitness.Thefitnesssofaparticleisanumberrepresentinghowclose a

particle is to the optimum point compared to other particles in the search

space(Pacini et al., 2014).

2.10.2 Firefly Algorithm (FA)

This firefly algorithm has been designed based on the inspiration on the

swarm behavior of fireflies. Fireflies are generally known to exist as groups and they

16

are said to have a swarm kind of behavior. The blinking light in the fireflies is their

attribute of attractiveness mainly used for the purpose of attracting mates and to

defend themselves from other predators. The swarm of fireflies usually moves in the

direction of the brightest one. All the other fireflieswith lower light intensities move

toward the ones with higher light intensities. So as the distance between the fireflies

goes on increasing, the light intensity also increases(SundarRajan et al., 2016).

2.10.3 Cat Swarm Optimization (CSO)

In this CSO heuristic optimization algorithm, created based on the inspiration

towards the swarm behavior of cats. Cats that generally have swarm behavior are

said to have two modes of behavior namely 1. seeking mode and 2. Tracking mode

Seeking mode: In seeking mode the cat stays idle and only has position

whereas they do not have velocity.

Tracking Mode: In tracing mode the cat is in motion and is said to possess

both position and velocity.

This algorithm wholly lies on two modes of operation. The fitness factor for

each cat is calculated and the best one is picked out. The best cat is stored in memory

and it is updated with the next best cat. Here in the Cat swarm algorithm the virtual

machines are disguised as cats(SundarRajan et al., 2016).

2.10.4 Glowworm swarm optimization (GSO)

Glowworm swarm optimization (GSO), introduced by Krishnanand and

Ghose in 2005 for simultaneous computation of multiple optima of multimodal

functions. GSO is a new optimization algorithm, inspired by nature, which imitates

the behavior of the lighting worms. The agents in GSO are thought of as glowworms

17

that carry a luminescence quantity called luciferinLi(t) along with them. The

glowworms encode the fitness of their current locations, evaluated using the

objective function, into a luciferin value that they broadcast to their neighbors. The

glowworm identifies its neighbors and computes its movements by exploiting an

adaptive neighborhood, which is bounded above by its sensor rangerdi(t). Each

glowworm selects, using a probabilistic mechanism, a neighbor that has a luciferin

value higher than its own and moves toward it. These movements—based only on

local information and selective neighbor interactions—enable the swarm of

glowworms to partition into disjoint subgroups that converge on multiple optima of a

given multimodal function. Each iteration consists of a luciferin-update phase

followed by a movement-phase based on a transition rule and Local-decision range

update phase (Esa and Yousif, 2016a).

2.11 Related works

A number of task scheduling algorithms have been proposed by many

researchers. In this research we focus on four algorithms which are Particle Swarm

Optimization, Cat Swarm Optimization, Firefly algorithms and Glowworm Swarm

Optimization. However, after reviewing these studies it’s been found that proposed

algorithms were discussed separately. In this section previous studies were listed to

show their relevance to the proposed mechanism.

 In this paper, a simplified version of particle swarm optimization (PSO)

algorithm is proposed to solve the job scheduling problem in cloud computing

environment. To evaluate the performance of the proposed approach, this study

compares the proposed PSO strategy with genetic algorithm (GA), by having both of

them implemented on CloudSim toolkit. The results obtained demonstrate that the

presented PSO algorithm can significantly reduce the makespan of job scheduling

problem compared with the other metaheuristic algorithm evaluated in this

paper(Attiya and Zhang, 2017).

18

The study on comparison of ACO and PSO has been presented in this paper

by analysing the optimization methods of each algorithm. Both optimization

techniques are assigned with a specific task to allocate resources within minimum

execution time by analysing the makespan to measure the throughput. PSO is

considered as best optimization with low computational cost(BOOBA and GOPAL).

In cloud computing environment, there are a large number of users, which

lead to huge amount of tasks to be processed by system. In order to make the system

complete the service requests efficiently, how to schedule the tasks becomes the

focus of cloud computing Research. A task scheduling algorithm based on PSO and

ACO for cloud computing is presented in this paper. First, the algorithm uses particle

swarm optimization algorithm to get the initial solution quickly, and then according

to this scheduling result the initial pheromone distribution of ant colony algorithm is

generated. Finally, the ant colony algorithm is used to get the optimal solution of task

scheduling. The experiment simulated on CloudSim platform shows that the

algorithm has good effect in real-time performance and optimization capability. It is

an effective task scheduling algorithm(Wang and Chen).

This paper proposes a new job scheduling mechanism using Firefly

Algorithm to minimize the execution time of jobs. The proposed mechanism based

on information of jobs and resources such as length of job speed of resource and

identifiers. Different settings have been considered in the evaluation and

experimentation phase to examine the proposed mechanism in different workloads.

The results revealed that the proposed mechanism minimizes the execution time

significantly. Furthermore, the proposed mechanism outperformed the FCFS

algorithm(Esa and Yousif, 2016b).

 The proposed mechanism aims to find the best mapping in order to minimize

the execution time of jobs. The methodology of this research is based on simulation

of the proposed mechanism using the CloudSim simulator. The evaluation process of

the proposed mechanism started with a set of different experiments. These

experiments revealed that, the proposed mechanism minimized the execution time of

19

jobs. The proposed mechanism is compared with the First Come First Servers

(FCFS) algorithm and experimental results revealed that the proposed mechanism

has a better performance than FCFS for minimizing the execution time of jobs(Esa

and Yousif, 2016a).

In a paper written by Bilgaiyan and others the authors presented a scheduling

technique based on a relatively new swarm-based approach known as Cat Swarm

Optimization. This technique shows considerable improvement over PSO in terms of

speed of convergence(Bilgaiyan et al., 2014).

Chapter Three
Research Methodology

21

3.1 Introduction

This chapter describes all phases of research methods that have been applied

to develop the proposed mechanisms and tools used in the research work.

3.2 Operational Framework

This research aims to develop a comparative study for PSO, CSO, FA and

GSO in term of Execution Time. Based on simulation of the proposed mechanisms

using the Java Language and CloudSim simulator. CloudSim toolkit is a tool for

modeling and simulation of cloud computing environment. It supports dynamic

creation information of jobs (cloudlets) and resources (virtual machines) such as

length of jobs, speed of resources and identifier for both. In order to generate the

population, first, set of jobs and resources were created, and jobs were assigned to

resources randomly, then the execution times of jobs was computeas a fitness values.

Second, iterations were used by algorithms to regenerate populations to produce the

best job schedule that gives the minimum execution time of jobs.

The operational framework of the study is described in Figure (3.1) and the

following subsection illustrates this framework.

3.2.1 Problem Formulation

This research aims to evaluate PSO, CSO, FA and GSO in term of Execution

Time.

3.2.2 Proposal Writing

21

In this step research objectives and the overall research plan were set. The

research methodology that will be employed in the research work is described in

details and initial results are presented.

Phase 2: Design algorithms

Design a mechanism for comparing between

task scheduling algorithms in cloud

computing in terms of Execution time

Phase 3: Implementation & Simulation

Prepare the Case Study

Simulation Results

Summarize the results and sum up the thesis

Phase 1: problem formulation

Review of the literature

Formulation of the problem and

proposal writing

Figure (3.1): Research Operational Framework

22

3.2.3 Design of Proposed Framework

In the design phase we focus on how to enhance the performance of cloud

computing in term of execution time by studying all selected algorithms and compare

them to find the best algorithms that minimize the execution time significantly.

3.3 Implementation

In this phase the design of the proposed mechanism and its application tool

was done using CloudSim simulator implemented in Eclipse by using Java language.

This phase started by preparing the case study that will be used in the testing process.

CloudSim toolkit is a tool for modeling and simulation of cloud computing

environment.

3.4 Tool Used in This Methodology

Use CloudSim simulator implemented in Eclipse by using Java language.

Chapter Four

Swarm Intelligence Technique

23

4.1 Introduction

In this chapter, four of swarm intelligence techniques (PSO, CSO, FA and

GSO) were explained in depth, followed by Pseudo code and flowchart for each.

4.2 Swarm Intelligence (SI)

Swarm Intelligence (SI) has received increasing attention lately among

researchers, and refers to the collective behavior that emerges from social insects’

swarms to solve complex problems. Hence, researchers have proposed algorithms for

combinatorial optimization problems. Moreover, scheduling in Clouds is also a

combinatorial optimization problem, and hence schedulers exploiting SI have been

proposed(Pacini et al., 2014).

4.2.1 Particle Swarm Optimization (PSO)

The particle swarm optimization algorithm was first proposed in 1995 by

James Kennedy and Russell C. Eberhart. PSO is a method for optimizing hard

numerical functions on metaphor of social behavior of flocks of birds and schools of

fish. The original PSO algorithm is discovered through simplified social model

simulation. It was first designed to simulate birds seeking food which is defined as a

cornfield vector. The bird would find food through social cooperation with other

birds around it and expanded to multidimensional search(Surekha and Sumathi,

2011).

 PSO has particles which represent candidate solutions of the problem, each

particle searches for optimal solution in the search space, each particle or candidate

solution has a position and velocity. A particle updates its velocity and position

24

based on its inertia, own experience and gained knowledge from other particles in the

swarm, aiming to find the optimal solution of the problem.

In every iteration, each particle is updated by following two ―best‖ values.

The first one is best solution it has achieved; its value is called pbest. Another ―best‖

value that is tracked by the particle swarm optimizer is the best value, obtained so far

by any particle in the population. This best value is a global best and called gbest.

When particle takes part of the population as its neighbors, the best value is the local

best and called lbest. In the local population, each particle keeps track of the best

position lbest attained by its local neighboring particles. For the global population,

the best position gbest is determined by any particles in the entire swarm. Thus the

gbest model is a special case of the lbest model. Peng- Yeng Yin.

After finding the two best values, the particle updates its velocity and

positions with following equation (1) and (2).

v[] = ω*v[]+ cl rand()*(pbest[]- present[])+c2rand() * (gbest[]- present[]) (1)

present [] = present [] + v[] (2)

Where,

- v []: The velocity for the i th particle, represents the distance to be traveled
by this particle from the current position.

- ω inertia weights usually 0.8 to 0.9.
- rand () is a random number between (0,1)
- c1, c2 are learning factors. Usually c1 = c2 = 2.
- Present []: The location of the ith particle i.e., particle position.
- Pbest []: The best previous position of the ith particle is recorded and

represented as pbest [].

25

Gbest []: The index of the best particle among all the particles in the

population is represented by gbest [].

Figure (4.1): Flowchart of Particle Swarm Optimization

Start

End

Initialization on the population with N Particle where problem

with search for optimal solution through the movement of these

particles and set of iteration counter I=0

Calculating the fitness value, by Calculating the percentage of each

particle, the shares in minimizing the total processing time to find

the optimal solution

Compare the Calculated fitness value of each particle with its (lbest). If current

value is better than (lbest), then set the current location as the (lbest) location.

Futhermore, if current value is better than (gbest), then reset to the current

index in particle array. Select the pest particle as (gbest)

Update each Particle Velocity and position

v = ω*v+ c l rand() * (pbest - present) + c2rand() * (gbest- present)

Execution time function assigns the best fitness

value in the iteration

I=I+1

Find the optimal time and solution

If Execution

time is finished

26

4.2.1.1 Pseudo Code for PSO algorithm

Input the scheduling problem
Setup the parameters
Generate a swarm of particles with random positions and velocities
Calculate the fitness value of each particle in the swarm
Select the particle with best fitness value from all particles as global best
while termination criterion is not met do
for each particle 𝑖 do
Update the particle’s velocity
Check the velocity boundaries for each component of velocity-vector
Update the particle’s position
Round off the real values in particle’s position into the nearest integer
Evaluate the fitness of the particle
if F(Xi) < F (Pi) then
Update the global best
end if
end for
end while
Output the best particle (schedule) as the final solution

4.2.2 Cat Swarm Optimization (CSO)

A new swarm-based evolutionary algorithm named Cat Swarm Optimization

(CSO) has been introduced by Chuand Tsai in 2007. It is inspired and Tsai in 2007.

It is inspired Cats exhibit two modes of behavior - 1) Seeking mode, in which cats do

not move. They just stay in a certain position and sense for the next best move, thus

having only state and notvelocity. 2) Tracing mode, in which cats move to their next

best positions with some velocity, representing how the cats chase their target.

The proposed algorithm uses an initial population of N cats among which

some are in seeking mode while others are in tracing mode, according to MR. Each

cat represents a task-resource mapping, which is updated as per the mode that the cat

is in. Assessing the fitness value of the cats leads to finding the mapping having

27

minimum cost. In each iteration, a new set of cats is chosen to be in tracing mode.

The final solution, represented by the best position among the cats, gives the best

mapping that has the minimum cost among all mappings.

Seeking mode: This represents the majority of cats that search the global

space while being in a resting state by intelligence position updating. Here the

algorithm uses two basic factors - SMP and CDC. SMP (seeking memory pool)

represents the number of copies to be made for each cat. CDC (count of dimension to

change) defines how many of the allocations are to be altered in a single copy. The

general steps are as follows:

Step 1. Create j copies of the i
th

cat as represented by SMP.

Step 2. Modify CDC dimension of each copy randomly

Step 3.Evaluate fitness of each copy

Step 4.Find the best solutions among all copies that is the

mapping have minimum Execution time

Step 5.Randomly choose a solution among them and

replace it for the i
th

cat

Tracing mode: This represents the cats that are in a fast moving mode and

search the local space by moving towards the next best position with high energy.

The general steps are as follows:

Step 1.Find the velocity
 for the 𝑖 cat as per

There w is the inertia weight, r1 is a random number such

that and c1 is the acceleration constant.
 is

the previous velocity, is the best location and
 is the

current location.

Step 2. Update position for the cat as per

Where
 is the current position.

Step 3. Check if the position goes out of the defined range.

If so, assign the boundary value of the position.

Step 4. Assess the fitness value for the cats.

Step 5. Update the solution set with the best position of the

current iteration.

28

Start

Create cat population

Initialize cats with the random position and velocity

Distribute cats in seeking and tracking models

Assess fitness of each cat and store the best cat in memory

Create copies

Is cat in

seeking

mode?

Modify every copy

Evaluate fitness for all copies

Randomly select one of the best copies

Replace original cat with selected copies

Fined new velocity

Update position for cat

Reevaluate fitness for all cats

Update best cat in memory

Is stopping

criteria

reached

End

Figure (4.2) Flowchart of CSO algorithm(Bilgaiyan et al., 2014)

29

4.2.3 Glowworm Swarm Optimization algorithm (GSO)

Glowworm swarm optimization (GSO), introduced by Krishnanand and

Ghose in 2005 for simultaneous computation of multiple optima of multimodal

functions. GSO is a new optimization algorithm, inspired by nature, which imitates

the behavior of the lighting worms. SI systems consist typically of a population of

simple agents or interacting locally with one another and with their environment. The

agents in GSO are thought of as glowworms that carry a luminescence quantity

called luciferinLi(t) along with them. The glowworms encode the fitness of their

current locations, evaluated using the objective function, into a luciferin value that

they broadcast to their neighbors. The glowworm identifies its neighbors and

computes its movements by exploiting an adaptive neighborhood, which is bounded

above by its sensor rangerdi(t). Each glowworm selects, using a probabilistic

mechanism, a neighbor that has a luciferin value higher than its own and moves

toward it. These movements—based only on local information and selective

neighbor interactions—enable the swarm of glowworms to partition into disjoint

subgroups that converge on multiple optima of a given multimodal function. Each

iteration consists of a luciferin-update phase followed by a movement-phase based

on a transition rule and Local-decision range update phase(Esa and Yousif, 2016a).

4.2.3.1 Luciferin-update-phase

At time t, the location of the glowworm i is xi(t), and its corresponding value

of the objective function at glowworm i’s location at time t is J(xi(t)). The luciferin

level associated with glowworm i at time t is given by equation (1)

 (1)

4.2.3.2 Movement-phase

Find the neighbors j for each glowworm i: Ni(t) using equation(2)

31

 𝑖 𝑖 𝑖 (2)

Each Glowworm i moves towards a neighbor j with a certain probability

computed by equation (3)

 𝑖

 𝑖 𝑖

The glowworm i position is updated using equation (4)

 𝑖

 𝑖

where S is the step size.

4.2.3.3 Local-decision Range Update Rule

The neighborhood range is updated using equation (5)

 (5)

where β is a constant parameter, rs is the constant radial sensor range, nt is a

parameter used to control the number of neighbors and |Ni(t)| is the actual number of

neighbors.

 At the beginning, all the glowworms contain an equal quantity of luciferin l0

and the same neighborhood decision range r0. Each iteration consists of a luciferin

update phase followed by a movement phase based on a transition rule. Other

31

involved parameters are the luciferin decay constant (ρ), the luciferin enhancement

constant (γ), the step size (s), the number of neighbors (nt), the sensor range (rs) and

a constant value (β).

 Parameters values of Glowworm Algorithm that are Kept Constant for all

experiments are described in Table 1(Esa and Yousif, 2016a).

Table (4.1) Glowworm Optimization Parameters

Ρ Γ β nt S L0

0.4 0.6 0.08 5 0.03 5

4.2.3.4 Pseudo Code for the GSO Algorithm(Kaipa and Ghose, 2017)

Glowworm Swarm Optimization (GSO) Algorithm

Set number of dimensions m

Set number of glowworm n

let s be the step size

Let xi(t) be the location of glowworm i at time t

Deploy-agents-randomly

For i=1 to n do 𝑖

Set maximum iteration number = 𝑖 ;

Set t = 1 ;

While 𝑖 do:

{

 For each glowworm i do: % luciferin-update phase

 For each glowworm i do: % Movement phase

 {

 {
 }

 For each glowworm do :

 𝑖

 𝑖 𝑖

 j = select-glowworm (p);

 𝑖

 𝑖

 }

 t= t+1

}

32

Figure (4.3): Flow chart of Glowworm Optimization(Jin et al., 2017)

4.2.4 Firefly Algorithm (FA)

The Firefly algorithm was introduced by Dr. Xin She yang at Cambridge

University in 2007 which was inspired by the mating or flashing behavior of fireflies.

Although the algorithm has many similarities with other swarm based algorithms

such as Particle Swarm Optimization, Artificial Bee Colony Optimization and Ant

Colony Optimization, the Firefly algorithm has proved to be much simpler both in

concept and implementation(Hashmi et al., 2013).

33

The firefly algorithm is based on three main principles:

1. All fireflies are unisex, implying that all the elements of a population can

attract each other.

2. The attractiveness between fireflies is proportional to their brightness. The

firefly with less bright will move towards the brighter one. If no one is brighter than

a particular firefly, it moves randomly. Attractiveness is proportional to the

brightness which decreases with increasing distance between fireflies.

3. The brightness or light intensity of a firefly is related with the type of

function to be optimized. In practice, the brightness of each firefly can be directly

proportional to the value of the objective function(Francisco et al., 2014).

4.2.3.1 Firefly Algorithm for Cloud Job Scheduling

In the proposed mechanism the study used Firefly Algorithm in solving the

problem of job scheduling and allocation of jobs to resources. Each firefly is a

solution for allocation of jobs each element

inside the firefly population vector is a random number between 1 to s where:

s is the total number of resources.

n is number of fireflies.

k is number of jobs that represent the length of each firefly.

The study represents resources as a vector that stores the speed of each

resource and also jobs as a vector that stores the length of each

job then we calculated the fitness function 𝑖 for each firefly

by dividing each job length by the resource speed that the job is allocated to. The

next step is to find the summation of the division results. This followed by finding

the maximum fitness value. The firefly that has maximum fitness either moves

randomly or does not move at all. The distance between each two fireflies is the

34

number of non-corresponding elements[14] in the firefly population is calculated and

stored in vector, and then calculate the

attractiveness for each Firefly from the

fitness of the firefly by the equation 𝑖
 where γ is fixed light

absorption coefficient and e is exponential constant.

Finally, firefly moves towards the brightest based on the attractiveness by the

equation

Where α is randomization parameter between 0 and 1.

Pseudo Code for FA

Begin
Initialize parameter: t, itra_max, α, γ.
Generate initial population of fireflies
Set maximum iteration number=iter_max.
Set t=1
For each resource do
Set speed for each resource Ri

end for
for each job do
Set length for each jobs Ji

end for
while (t<=iter_max)
for each firefly i do
 Compute Fitness function 𝑖
 end for
foreach firefly i do
for each firefly jdo
Compute the distance between firefly i and firefly j

 𝑖

35

 end for
 end for
for each firefly i do
for each firefly j do
find the max attractiveness and its position
end for
for each job to firefly i do
Move firefly i towards firefly has max attractiveness using

end for
 end for
t←t+1
end while(Esa and Yousif, 2016b)

Figure (4.4) Flowchart of Firefly Algorithm(SundarRajan et al., 2016)

Start

Generate the new of Fireflies

Evaluate fitness of all the Fireflies from

the objective function

Update the light intensity (fitness value) of Fireflies

Rank the of Fireflies and update the position

Optimal solution

Reach

minimum

iteration

End

36

4.3 CloudSim

For measuring the execution time of task scheduling algorithms simulation

environment are required. CloudSim is the most efficient tool that can be used for

modeling of Cloud. During the lifecycle of a Cloud, CloudSim allows VMs to be

managed by hosts which in turn are managed by datacenters.

Cloudsim provides architecture with four basic entities. These entities allow

user to set-up a basic cloud computing environment and measure the execution time

of task scheduling algorithms. A typical Cloud modeled using CloudSim consists of

following four entities Datacenters, Hosts, Virtual Machines and Application as well

as System Software. Datacenters entity has the responsibility of providing

Infrastructure level Services to the Cloud Users. They act as a home to several Host

Entities or several instances hosts’ entities aggregate to form a single Datacenter

entity. Hosts in Cloud are Physical Servers that have pre-configured processing

capabilities. Host is responsible for providing Software level service to the Cloud

Users. Hosts have their own storage and memory. Processing capabilities of hosts is

expressed in MIPS (million instructions per second). They act as a home to Virtual

Machines or several instances of Virtual machine entity aggregate to form a Host

entity. Virtual Machine allows development as well as deployment of custom

application service models. They are mapped to a host that matches their critical

characteristics like storage, processing, memory, software and availability

requirements. Thus, similar instances of Virtual Machine are mapped to some

instance of a Host based upon its availability. Application and System software are

executed on Virtual Machine on-demand(Katyal and Mishra, 2014).

Chapter Five
Simulation Results and Performance

Analysis

37

5.1 Introduction

To evaluate the four chosen Swarm Optimization mechanisms for cloud job

scheduling this study implemented the four algorithms using CloudSim simulator.

Different scenarios were experimented to measure the execution time of each

mechanism. The experimentation phase scenarios are simulated as presented in this

section.

5.2 Particle Swarm Optimization (PSO)

Three scenarios have been considered to evaluate particle swarm optimization

as follows:

5.2.1 The First Scenario

In this scenario, the study considered number of 50 jobs and number of 20

resources.

Table (5.1): The Execution Time of Ten Iterations in First Scenario for PSO

Iteration number Execution Time

1 153.31738157353482

2 75.39274624154655

3 75.39274624154655

4 75.39274624154655

5 75.39274624154655

6 75.39274624154655

7 75.39274624154655

8 75.39274624154655

9 75.39274624154655

10 75.39274624154655

38

Figure (5.1): The Execution Time of Ten Iterations in First Scenario for PSO

As described in Table (5.1) and Figure (5.1) the result of the initial execution

time was 153.31738157353482, and itgradually decreased until it reached

75.39274624154655. Which indicates a better performance from the second

iteration.

70

80

90

100

110

120

130

140

150

160

1 2 3 4 5 6 7 8 9 10

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

PSO

39

5.2.2 The Second Scenario

In this scenario the study considered number of 60 jobs and number of 30

resources.

Table (5.2): The Execution Time of Ten Iterations in Second Scenario for

PSO

Iteration number Execution Time

1 212.7475833943387

2 110.69590540178777

3 106.57142970548544

4 106.57142970548544

5 106.57142970548544

6 106.57142970548544

7 106.57142970548544

8 106.57142970548544

9 106.57142970548544

10 106.57142970548544

Figure (5.2): The Execution Time of Ten Iterations in Second Scenario for

PSO

As described in Table (5.2) and Figure (5.2) the result of the initial execution

time was 212.7475833943387then it decreased sharply to106.57142970548544from

the second iteration. This indicates that the PSO algorithm succeed in reducing the

execution time.

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9 10

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

PSO

41

5.2.3 The Third Scenario

In this scenario we considered number of 150 jobs and number of 70

resources.

Table (5.3): The Execution Time of Ten Iterations in Third Scenario for PSO

Iteration number Execution Time

1 620.5561493178764

2 595.2909102335573

3 595.2909102335573

4 595.2909102335573

5 595.2909102335573

6 595.2909102335573

7 485.75975051088005

8 485.75975051088005

9 485.75975051088005

10 485.75975051088005

Figure (5.3): The Execution Time of Ten Iterations in Third Scenario for PSO

As described in Table (5.3) and Figure (5.3) the result of the initial execution

time was 620.5561493178764, which reduced to 595.2909102335573, the algorithm

maintained this time till the 6
th

iteration, where it sharply changed to

485.75975051088005 till the 10
th

 iteration.

470

490

510

530

550

570

590

610

630

1 2 3 4 5 6 7 8 9 10

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

PSO

41

5.3 CatSwarm Optimization (CSO)

Three scenarios have been considered to evaluate Cat swarm optimization as

follows:

5.2.3 The First Scenario

In this scenario, the study considered number of 50 jobs and number of 20

resources.

Table (5.4): The Execution Time of Ten Iterations in First Scenario for CSO

Iteration number Execution Time

1 164.5409268062519

2 118.49798472511321

3 112.2652032736785

4 112.2652032736785

5 112.2652032736785

6 112.2652032736785

7 112.2652032736785

8 112.2652032736785

9 107.00915060172028

10 107.00915060172028

Figure (5.4): The Execution Time of Ten Iterations in First Scenario for CSO

100

110

120

130

140

150

160

170

1 2 3 4 5 6 7 8 9 10

A
X

IS
 T

IT
LE

ITERATION

CSO

42

As described in Table (5.4) and Figure (5.4) the result of the initial execution

time was 164.5409268062519 gradually decreased until it reached

107.00915060172028. This indicates that the CSO algorithm reduced the execution

time.

5.2.3 The Second Scenario

In this scenario we considered number of 60 jobs and number of 30

resources.

Table (5.5): The Execution Time of Ten Iterations in Second Scenario for CSO

Figure (5.5): The Execution Time of Ten Iterations in Second Scenario for CSO

As described in Table (5.5) and Figure (5.5) the result of the initial execution

time was 201.48353261049226, which sharply decreased until it reached

118.6076512831467. This indicates that the CSO algorithm decreased the execution

time from the second iteration and continued to enhance its performance till the last

iteration with time of 102.04418576064688.

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9 10

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

CSO

Iteration number Execution Time

1 201.48353261049226

2 118.6076512831467

3 111.01993021078034

4 111.01993021078034

5 111.01993021078034

6 110.73966750285199

7 110.73966750285199

8 104.5230702819497

9 102.04418576064688

10 102.04418576064688

43

5.3.3 The Third Scenario

In this scenario we considered number of 150 jobs and number of 70

resources.

Table (5.6): The Execution Time of Ten Iterations in Third Scenario for GSO

Iteration number Execution Time

1 571.4923707790051

2 369.88142445275207

3 369.88142445275207

4 312.253347266184

5 312.253347266184

6 312.253347266184

7 288.5688397467151

8 288.5688397467151

9 288.5688397467151

10 288.5688397467151

Figure (5.6): The Execution Time of Ten Iterations in Third Scenario for GSO

As described in Table (5.6) and Figure (5.6) the result of the initial execution

time was 571.4923707790051, it gradually decreased until it reached

288.5688397467151.

250

300

350

400

450

500

550

600

1 2 3 4 5 6 7 8 9 10

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

CSO

44

5.4 Firefly Algorithms (FA)

Three scenarios have been considered to evaluate Firefly Algorithms as

follows:

5.2.3 The First Scenario

In this scenario, the study considered number of 50 jobs and number of 20

resources.

Table (5.7): The Execution Time of Ten Iterations in First Scenario for FA

Iteration number Execution Time

1 184.79477586397093

2 184.79477586397093

3 184.79477586397093

4 160.9562009670756

5 160.9562009670756

6 160.9562009670756

7 160.9562009670756

8 160.9562009670756

9 160.9562009670756

10 160.9562009670756

Figure (5.7): The Execution Time of Ten Iterations in First Scenario for FA

As described in Table (5.7) and Figure (5.7) the result of the initial execution

time was 184.79477586397093 for the first third iterations the it drastically

160

165

170

175

180

185

190

1 2 3 4 5 6 7 8 9 10

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

FA

45

decreased until it reached 160.9562009670756, in the 4
th

 iteration and maintained it

till the last iteration.

5.2.3 The Second Scenario

In this scenario we considered number of 60 jobs and number of 30

resources.

Table (5.8): The Execution Time of Ten Iterations in Second Scenario for FA

Iteration number Execution Time

1 222.1725185469669

2 222.1725185469669

3 198.99817797756182

4 176.119549514586

5 176.119549514586

6 176.119549514586

7 176.119549514586

8 176.119549514586

9 176.119549514586

10 176.119549514586

Figure (5.8): The Execution Time of Ten Iterations in Second Scenario for FA

As described in Table (5.8) and Figure (5.8) the result of the initial execution

for the first and second iteration was 222.1725185469669. Then it decreased sharply

until it reached 176.119549514586 and the same time till the end maintained.

170

180

190

200

210

220

230

1 2 3 4 5 6 7 8 9 10

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

FA

46

5.4.3 The Third Scenario

In this scenario we considered number of 150 jobs and number of 70

resources.

Table (5.9): The Execution Time of Ten Iterations in Third Scenario for FA

Iteration number Execution Time

1 691.1954378511617

2 691.1954378511617

3 691.1954378511617

4 691.1954378511617

5 691.1954378511617

6 691.1954378511617

7 651.1540671966757

8 651.1540671966757

9 651.1540671966757

10 543.3117858574376

Figure (5.9): The Execution Time of Ten Iterations in Third Scenario for FA

As described in Table (5.9) and Figure (5.9) the algorithm failed to reduce the

initial execution time 691.1954378511617 till the 6
th

 iteration where it reduced

gradually until it reached 651.1540671966757. However, the algorithm succeeds in

reducing the time sharply to 543.3117858574376 at the last iteration.

530

550

570

590

610

630

650

670

690

1 2 3 4 5 6 7 8 9 10

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

FA

47

5.5 Glowworm Swarm Optimization (GSO)

Three scenarios have been considered to evaluate Glowworm Swarm

Optimization as follows:

5.2.3 The First Scenario

 In this scenario, the study considered number of 50 jobs and number of 20

resources.

Table (5.10): The Execution Time of Ten Iterations in First Scenariofor GSO

Iteration number Execution Time

1 193.41970639279785

2 193.41970639279785

3 193.41970639279785

4 180.46191974249658

5 180.46191974249658

6 180.46191974249658

7 163.3355664682965

8 163.3355664682965

9 163.3355664682965

10 163.3355664682965

Figure (5.10): The Execution Time of Ten Iterations in First Scenario for GSO

160

165

170

175

180

185

190

195

1 2 3 4 5 6 7 8 9

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

GSO

48

As described in Table (5.10) and Figure (5.10) the result of the initial

execution time was 193.41970639279785, which is gradually decreased after each

two iterations until it reached 163.3355664682965, after the 7
th

 iteration and

maintained the same execution time till the last iteration.

5.2.3 The Second Scenario

In this scenario we considered number of 60 jobs and number of 30

resources.

Table (5.11): The Execution Time of Ten Iterations in Second Scenario for GSO

Iteration number Execution Time

1 193.41970639279785

2 193.41970639279785

3 193.41970639279785

4 180.46191974249658

5 180.46191974249658

6 180.46191974249658

7 163.3355664682965

8 163.3355664682965

9 163.3355664682965

10 163.3355664682965

Figure (5.11): The Execution Time of Ten Iterations in Second Scenario for GSO

As described in Table (5.11) and Figure (5.11) the result of the initial

execution time was 193.41970639279785, which change gradually after each two

160

165

170

175

180

185

190

195

1 2 3 4 5 6 7 8 9 10

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

GSO

49

iterations until it reached 163.3355664682965, in the 7
th

 iteration and maintained it

till the last iteration.

5.5.3 The Third Scenario

In this scenario we considered number of 150 jobs and number of 70

resources.

Table (5.12): The Execution Time of Ten Iterations in First Scenario for GSO

Iteration number Execution Time

1 713.5431209169094

2 713.5431209169094

3 612.0312774122625

4 612.0312774122625

5 580.8035105449121

6 580.8035105449121

7 580.8035105449121

8 580.8035105449121

9 580.8035105449121

10 485.4380432574824

Figure (5.12): The Execution Time of Ten Iterations in First Scenario for GSO

As described in Table (5.12) and Figure (5.12) the result of the initial

execution time was 713.5431209169094 gradually decreased until it reached

485.4380432574824.

450

500

550

600

650

700

750

1 2 3 4 5 6 7 8 9 10

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

GSO

51

5.6 Simulation Results and Performance Analysis

Four scenarios have been considered to evaluate and comparative between

the algorithms that have been selected as follows:

5.6.1 Comparative in first Scenario

This scenario compares the execution time between the four selected

algorithms with the same number of jobs and resources (50 jobs and 20 resources).

51

Table: (5.13) Comparative in first Scenario

Figure (5.13): Comparative in First Scenario

As described in Table (5.13) and Figure (5.13), in this case a comparison

between PSO, CSO, FA and GSO is conducted after computing the execution times

for 10iterations, The PSO achieved the best performance in term of execution time

among the four algorithms, followed by CSO,FA, and GSO. In each iteration the

execution time was decreased and the effectiveness of the proposed mechanisms

became better and better.

70

90

110

130

150

170

190

1 2 3 4 5 6 7 8 9 1 0

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

PSO CAT FireFly Gloworm

Iteration
number

PSO CAT Firefly Glowworm

1 153.31738157353482 164.5409268062519 184.79477586397093 193.41970639279785

2 75.39274624154655 118.49798472511321 184.79477586397093 193.41970639279785

3 75.39274624154655 112.2652032736785 184.79477586397093 193.41970639279785

4 75.39274624154655 112.2652032736785 160.9562009670756 180.46191974249658

5 75.39274624154655 112.2652032736785 160.9562009670756 180.46191974249658

6 75.39274624154655 112.2652032736785 160.9562009670756 180.46191974249658

7 75.39274624154655 112.2652032736785 160.9562009670756 163.3355664682965

8 75.39274624154655 112.2652032736785 160.9562009670756 163.3355664682965

9 75.39274624154655 107.00915060172028 160.9562009670756 163.3355664682965

10 75.39274624154655 107.00915060172028 160.9562009670756 163.3355664682965

52

5.6.2 Comparative in Second Scenario

This scenario compares the execution time between the four proposed

Algorithms with the same number of jobs and resources (60 jobs and 30 resources).

Table: (5.14) Comparative in Second Scenario

Iteration
number

PSO CAT Firefly Glowworm

1 212.7475833943387 201.48353261049226 222.1725185469669 193.54897425420936

2 110.69590540178777 118.6076512831467 222.1725185469669 193.54897425420936

3 106.57142970548544 111.01993021078034 198.99817797756182 193.54897425420936

4 106.57142970548544 111.01993021078034 176.119549514586 173.16782011570015

5 106.57142970548544 111.01993021078034 176.119549514586 173.16782011570015

6 106.57142970548544 110.73966750285199 176.119549514586 130.67495856826483

7 106.57142970548544 110.73966750285199 176.119549514586 130.67495856826483

8 106.57142970548544 104.5230702819497 176.119549514586 130.67495856826483

9 106.57142970548544 102.04418576064688 176.119549514586 130.67495856826483

10 106.57142970548544 102.04418576064688 176.119549514586 130.67495856826483

Figure (5.14): Comparative in Second Scenario

As described in Table (5.14) and Figure (5.14), in this case a comparison

between PSO, CSO, FA and GSO is conducted after computing the execution times

for 10iterations. In term of execution time PSO and CSO achieved the shortest time,

with minor differences between the two, where CSO overcome PSO at the last three

iterations. The two other algorithms (FA and GSO) stood behind.

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9 1 0

E
X

E
C

U
T

IO
N

 T
IM

E

ITERATION

POS CAT FireFly Glowworm

53

5.6.3 Comparative in third Scenario

This scenario compares the execution time between the four proposed

Algorithms with the same number of jobs and resources (150 jobs and 70 resources).

Table (5.15): Comparative in third Scenario

Iteration

number

PSO CAT Firefly Glowworm

1 620.5561493178764 571.4923707790051 691.1954378511617 713.5431209169094

2 595.2909102335573 369.88142445275207 691.1954378511617 713.5431209169094

3 595.2909102335573 369.88142445275207 691.1954378511617 612.0312774122625

4 595.2909102335573 312.253347266184 691.1954378511617 612.0312774122625

5 595.2909102335573 312.253347266184 691.1954378511617 580.8035105449121

6 595.2909102335573 312.253347266184 691.1954378511617 580.8035105449121

7 485.75975051088005 288.5688397467151 651.1540671966757 580.8035105449121

8 485.75975051088005 288.5688397467151 651.1540671966757 580.8035105449121

9 485.75975051088005 288.5688397467151 651.1540671966757 580.8035105449121

10 485.75975051088005 288.5688397467151 543.3117858574376 485.4380432574824

Figure (5.15): Comparative in third Scenario

As described in Table (5.15) and Figure (5.15), in the case of 150 jobs and 70

resources comparison between PSO, CSO, FA and GSO showed the CSO algorithm

achieved the best performance in term of execution time. While the three other

algorithms varied in their performance, where PSO and GSO reached the same

250

300

350

400

450

500

550

600

650

700

750

1 2 3 4 5 6 7 8 9 1 0

EX
EC

U
TI

O
N

 T
IM

E

ITERATION

PSO

Cat

FireFly

Glowworm

54

execution time at last iteration. Glowworm started with the longest execution time in

the first two iterations and it started to perform better in (4-9) iteration till it reached

the same execution time of PSO in the last iteration, where they reach the second

position after CSO. Firefly maintained the same performance till the sixth iteration

where it started decrease the time. Despite this change it couldn’t overcome the other

algorithms and came at the last position.

5.6.4 The Fourth Scenario

In this scenario, different numbers of jobs and resources are considered to

evaluate the Swarm Intelligence mechanisms and to examine the performance of the

SI mechanisms in different workload.

Table (5.16): The Fourth Scenario

Time PSO CAT Firefly Glowworm

Time 1

(20 jobs

and 10

resources)

30.958730158730155 37.19404761904762 40.01666666666667 38.14960317460318

Time 2

(60 jobs

and 30

resources)

106.57142970548544 102.04418576064688 176.119549514586 163.3355664682965

Time 3

(100 jobs

and 50

resources)

271.66686481732916 165.85901883246106 307.9912744616086 350.2123042458601

Time 4

(120 jobs

and 80

resources)

300.4969150858924 182.83863086605297 309.76665483892725 264.49118590922234

Time 5

(150 jobs

and 100

resources)

325.1070806948886 214.88563695884247 691.1954378511617 580.8035105449121

55

Figure (5.16): The Fourth Scenario

As described in Table (5.16) and Figure (5.16), in this case a comparison

between PSO, CSO, FA and GSO is conducted by computing the execution times for

each algorithm in different Scenarios. At time1 the PSO had the shortest execution

time, however, as the problem size increases by adding more and more jobs the

effectiveness of PSO decreased, and CSO came to take the lead in terms of execution

time.

5.7 Discussion:

This research aims to provide a perspective on the domain of task scheduling

in cloud data centers by summarizing different methods used and to evaluating the

swarm intelligence task scheduling algorithms in accordance to task execution time.

After conducting simulation using different scenarios to evaluate the selected

techniques, the results revealed that when having small sizes of scheduling problems

PSO take the lead, however in case of large size of jobs Cat Swarm Optimization

significantly outperforms the considered PSO, FA and GSO algorithms in terms of

execution time. There have not been any studies conducted comparing the four

selected techniques in term of execution time. However, there was a study which

compared only two of the techniques in term of the speed of convergence. The study

showed that CSO considerable improvement over PSO. This research also shows that

CSO over performed PSO and other selected algorithms, but in term of execution

0

100

200

300

400

500

600

700

800

T I M E 1 T I M E 2 T I M E 3 T I M E 4 T I M E 5

TI
M

E
EX

EC
U

TI
O

N

ITERATION

PSO

Cat

FireFly

Glowworm

56

time. However, the results finding from this research were limited to small sized

jobs, which may differ in real cloud environment. For future research the job size

may be increased and the CSO might be compared to different algorithms using

different criteria.

Chapter Six
Conclusions and Recommendation

57

6.1 Conclusions

In cloud computing, the resources should be utilized effectively and

consequently scheduling should consider the resource utilization to decrease the

execution time and thereby increasing the throughput of the system. In this research,

a simplified four of swarm optimization-based job scheduling algorithms (particles

warm optimization, Cat swarm optimization, Firefly algorithm and Glowworm

swarm optimization) were implemented for scheduling of jobs in cloud environment

in order to minimize the execution time. The performance of the selected methods

was compared to each other through carrying out extensive simulation tests. The

selected algorithms were tested among four different scenarios. In each scenario the

number of jobs and allocation resources were changed. In each scenario, the selected

algorithms iteration changes their plans 10 times to come up with the best

performance. The execution time is computed in each iteration to compare between

the algorithms. Simulation results revealed that when having small sizes of

scheduling problems PSO take the lead, however in case of large size of jobs Cat

Swarm Optimization significantly outperforms the considered PSO, FA and GSO

algorithms in terms of execution time.

6.2 Recommendation

1. Since results revealed that Cat has the best performance among selected

algorithm, in the future Cat could be compared to different algorithms

rather than (PSO, FA and GSO) to come up with the best algorithm ever

and generalize the result.

2. In the future, research works can address other important factors such as the

flow time, overall execution cost and load balancing during the

scheduling of tasks and jobs.

58

Refrences

AGARWAL, D. & JAIN, S. 2014. Efficient optimal algorithm of task

scheduling in cloud computing environment. arXiv preprint arXiv:1404.2076.

AHMED, H. & GLASGOW, J. 2012. Swarm intelligence: concepts, models

and applications. School Of Computing, Queens University Technical Report.

ALI, S. A. & ALAM, M. A relative study of task scheduling algorithms in

cloud computing environment. Contemporary Computing and Informatics (IC3I),

2016 2nd International Conference on, 2016. IEEE, 105-111.

ALNAJDI, S., DOGAN, M. & AL-QAHTANI, E. 2012. ASurvey ON

RESOURCE ALLOCATION IN CLOUD COMPUTING.

ANURADHA, V. & SUMATHI, D. A survey on resource allocation

strategies in cloud computing. Information Communication and Embedded Systems

(ICICES), 2014 International Conference on, 2014. IEEE, 1-7.

ATTIYA, I. & ZHANG, X. 2017. A Simplified Particle Swarm Optimization

for Job Scheduling in Cloud Computing. International Journal of Computer

Applications, 163.

BILGAIYAN, S., SAGNIKA, S. & DAS, M. Workflow scheduling in cloud

computing environment using cat swarm optimization. Advance Computing

Conference (IACC), 2014 IEEE International, 2014. IEEE, 680-685.

BOOBA, B. & GOPAL, T. COMPARISON OF ANT COLONY

OPTIMIZATION & PARTICLE SWARM OPTIMIZATION IN GRID

ENVIRONMENT.

CHALACK, V. A.&GERMI, I. Resource Allocation in Cloud Environment

Using Approaches Based Particle Swarm Optimization.

ESA, D. I. & YOUSIF, A. 2016a. Glowworm Swarm Optimization (GSO) for

Cloud Jobs Scheduling. International Journal of Advanced Science and Technology,

96, 71-88.

59

ESA, D. I. & YOUSIF, A. 2016b. Scheduling Jobs on Cloud Computing

using Firefly Algorithm. International Journal of Grid and Distributed Computing,

9, 149-158.

FRANCISCO, R. B., COSTA, M. F. P. & ROCHA, A. M. A. Experiments

with Firefly Algorithm. International Conference on Computational Science and Its

Applications, 2014. Springer, 227-236.

GOYAL, G. & SHARMA, D. 2016. Profit Based Swarm Intelligence Task

SchedulingFor Cloud Computing: Review.

GROLINGER, K., HIGASHINO, W. A., TIWARI, A. & CAPRETZ, M. A.

2013. Data management in cloud environments: NoSQL and NewSQL data stores.

Journal of Cloud Computing: advances, systems and applications, 2, 22.

HASHMI, A., GOEL, N., GOEL, S. & GUPTA, D. 2013. Firefly algorithm

for unconstrained optimization. IOSR J Comput Eng, 11, 75-78.

JIN, Y., HOU, W., LI, G. & CHEN, X. 2017. A Glowworm Swarm

Optimization-Based Maximum Power Point Tracking for Photovoltaic/Thermal

Systems under Non-Uniform Solar Irradiation and Temperature Distribution.

Energies, 10, 541.

KAIPA, K. N. & GHOSE, D. 2017. Glowworm Swarm Optimization:

Algorithm Development. Glowworm Swarm Optimization. Springer.

KATYAL, M. & MISHRA, A. 2014. A comparative study of load balancing

algorithms in cloud computing environment. arXiv preprint arXiv:1403.6918.

KAUR, A. & DHINDSA, D. K. S. 2016. Analysis of Task Scheduling

Algorithms using CloudComputing.

MADNI, S. H. H., LATIFF, M. S. A., ABDULLAHI, M. & USMAN, M. J.

2017. Performance comparison of heuristic algorithms for task scheduling in IaaS

cloud computing environment. PloS one, 12, e0176321.

61

MOHAMADDIAH, M. H., ABDULLAH, A., SUBRAMANIAM, S. &

HUSSIN, M. 2014. A survey on resource allocation and monitoring in cloud

computing. International Journal of Machine Learning and Computing, 4, 31.

MOHAMMAD, S., BREß, S. & SCHALLEHN, E. Cloud Data Management:

A Short Overview and Comparison of Current Approaches. Grundlagen von

Datenbanken, 2012. 41-46.

NGENZI, A. & NAIR, S. R. 2015. Dynamic resource management in Cloud

datacenters for Server consolidation. arXiv preprint arXiv:1505.00577.

PACINI, E., MATEOS, C. & GARCÍA GARINO, C. 2014. Dynamic

scheduling based on particle swarm optimization for cloud-based scientific

experiments. CLEI Electronic Journal, 17, 3-3.

PANDEY, S., WU, L., GURU, S. M. &BUYYA, R. A particle swarm

optimization-based heuristic for scheduling workflow applications in cloud

computing environments. Advanced information networking and applications

(AINA), 2010 24th IEEE international conference on, 2010. IEEE, 400-407.

PATIL ,M. S. D. & MEHROTRA, D. S. 2012. Resource allocation and

Scheduling in the Cloud. International Journal of Emerging Trends and Technology

in Computer Science (IJETTCS), 1.

QUAN, D. M., BASMADJIAN, R., DE MEER, H., LENT, R.,

MAHMOODI, T., SANNELLI, D., MEZZA, F., TELESCA, L. & DUPONT, C.

2011. Energy efficient resource allocation strategy for cloud data centres. Computer

and information sciences II. Springer.

RAJASEKAR, B. & MANIGANDAN, S. 2015. An Efficient Resource

Allocation Strategies in Cloud Computing. International Journal of Innovative

Research in Computer and Communication Engineering, 3, 1239-1244.

SARGA, L. 2012. Cloud computing: an overview. Journal of Systems

Integration, 3, 3.

SUNDARRAJAN, R., VASUDEVAN, V. & MITHYA, S. Workflow

scheduling in cloud computing environment using firefly algorithm. Electrical,

61

Electronics, and Optimization Techniques (ICEEOT), International Conference on,

2016. IEEE, 955-960.

SUREKHA, P. & SUMATHI, S. 2011. PSO and ACO based approach for

solving combinatorial Fuzzy Job Shop Scheduling Problem. Int. J. Comp. Tech.

Appl, 2, 112-120.

TSAI, J.-T., FANG, J.-C. & CHOU, J.-H. 2013. Optimized task scheduling

and resource allocation on cloud computing environment using improved differential

evolution algorithm. Computers & Operations Research, 40, 3045-3055.

WANG, C. & CHEN, K. Research on the task scheduling algorithm

optimization based on hybrid PSO and ACO in cloud computing.

YADAV, A. K. & MANDORIA, H. L. 2017. Study of Task Scheduling

Algorithms in the

Cloud Computing Environment: A Review.

