Sudan University of Science and Technology

College of Graduated Studies

An Entire Security Model for SQL-injection:

Formal Specification Using Petri Nets

6 i DSl alaAiuly caw) Caa s :SQL s Clangd (Jebid/JalS) Gal 73 500

A Thesis Submitted in Partial Fulfillment of the Requirements of M.Sc. in Computer Science
(Information Security Track)

By
Lobaba Eltayeb Ahmed Mohamed

Supervisor
Dr. Awad Mohamed Awadelkarim

2016

DEDICATION

| dedicate this research to person whose prayer helps me my mother
To person whose encourage me to the way of success my father

My brothers and sisters for their support

My friends and my colleagues the people whom | love and respect

Everyone from him | learned.

ACKNOWLEDGEMENT

I would like to express my special thanks and gratitude to my supervisor Dr. Awad
Mohamed Awadelkarim for constructive guidance.

It is great pleasure to thank my best friends and colleagues for their cooperation.

ABSTRACT

Database Security has gained significance and concern as institutions reliance on
database systems has increased dramatically in addition to the simultaneous and severe
grown of the associated offensives. Furthermore, and with the development, use and
widespread of the Internet and web applications, it has been very important to ensure
the confidentiality of information and protection from threats such as SQL Injection
Attack (SQLIA). Which are considered as one of the top threats and prevalent types of

database-driven applications security vulnerability.

Consequently, SQLIA prevention and detection has become one of the most active
topics of research in the computer science field. Therefore, this research contributes to
such context by proposing an inclusive and formal security model for nearly all
existing SQL-injection attacks using Petri Nets language. Additionally, the study has
followed a scientific and formal methodology including determination of security
requirements based on comprehensive security risk analysis and assessment. Moreover,
The proposed model guarantees and supports multi-defense lines with variform-
adaptable mechanisms that might gain the superiority of safeguard for the intended
model. Finally, the study conducts and develops formal modeling in company with
formal system specification for the proposed model using Petri Nets notation in order

to assure and prove modularity, conformity, reliability, as well as flexibility.

oaldial)
LS (g Aagipall Cilangdly bl 2ol Lakasl alsll abasy) (e liball acld oyl dpaal Cijels
e Olaa Laal) (e Jea ul) ik Bl L) auly aladiuyls ookl o
shal e aals iey A L(SQLIA) SQL (jia assa Jie clhaagall (e lgileas cileglal)
SQL s assd (e Lleall Cnpal (ol dam clilyl) acld o sadiaad) clipdaill cilasgall

sl agle eV laal Apalall Crganll b Ualis SSY) aalsall s

clwlal) ale Jlae & ddadill ppalsall SSTaal SQL (s asaa i€y e poual ccllil Ay
Glasa 9 ey dald il zagai 258 DA e dlaall 138 3 aaliy Cnd) 138 8 ()
Lagie bl il 2 cdlld) AlaaY L gin lSs Al Aasiul Lys 4l SQL (s
ke s Auia¥) Hlalaall Jald audis Jalat (el o diaY) clilliall apaad el dsan s duale
GV e el (s el DA (e g lis ok e SST s g aniay el z3sall) (8 celld e
By Adnadis an) zisad sl Al i clpaly L angall (e dleall 8 58 anns s
BLaYL Adsalls dadal) il plas dal e (i CISE 281 030 padiuly phdsuls L,

Aigyall)

LIST OF FIGURES

Figure 2.1: Normal User Input Process in a Web Applicationcccccovveiiiienniinnnn 5
Figure 2.2: Malicious Input Process in a Web Applicationcccccocvveiieeiiiineniinnns 6
Figure 2.3: Example for SQLIA Data FIOWccooviiiiiiiiiiii e 7

Figure 2.4: (a) A simple graph (b) Anon-simple graph with multiple edges (c) A non-
simple graph With 10OPScooviiiiiii s 26
Figure 2.5: (a) Unlabeled graph (b) An edge-label graph (c) A vertex-labeled graph .27
Figure 2.6: A Dipartite graph ..o 27
Figure 2.7: Petri Net Formalism. (a) Petri nets consist of places, transitions, arcs and
tokens. (b) Just places are allowed to carry tokens. (c) Two nodes of the same type
cannot be connected with each Other ... 28
Figure 2.8: Places and Transitions. Place pl is called pre-place of transition t1, and

transition t1 is the post-transition of place pl. Place p2 is called post-place of transition

t2, and transition t2 is the pre-transition of place p2ccccee v, 29
Figure 2.9: A SIMPle PELIT NEL ...ocvvviiiiec e 31
Figure 2.10: Firing of TransSition t1.coooviiiiiei e 33
Figure 2.11: (a) Source Transition (b) Sink Transitionccccceeiviieeiiiee e, 33
Figure 2.12: (a) Impure Petri net, (b) Pure Petrinetccccoeeeviee i 33
Figure 2.13: Transitions to, t, t;, t; are LO live (dead), L1 live, L2 live and L3 live
FESPECHIVEIY oot e e e e e e e e e e e et e e e e n e e e a e e e e 36
Figure 2.14: Transition t1 occurs first and then transition t2 OCCUrScccvveeennee. 37

Figure 2.15: Transition t1 fires when the place p2 gets a token so that all the input

places of transition t1 have tOKENSovviiiiieie e 37
Figure 2.16: Transition t1 occurs first and then transition t2 OCCUrSccccvvveennee. 37
Figure 2.17: Transitions t1, t2 and t3 are CONCUITENtccevevviviireeiiiiee e 38
Figure 2.18: Transitions t1, t2 and t2, t3 are in conflict but t1, t3 are concurrent 38
Figure 2.19: (a) Symmetric Confusion (b) Asymmetric Confusioncccccccvveennen. 39
Figure 2.20: If — else CONAITIONccoviviieeeiiiie e e 39
Figure 2.21: If — else With and OPeratorcccoovcvieee e 40

file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649040
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649041
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649042
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649043
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649043
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649044
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649045
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649046
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649046
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649046
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649047
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649047
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649047
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649048
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649049
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649050
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649051
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649052
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649052
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649053
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649054
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649054
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649055
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649056
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649057
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649058
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649059
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649060

Figure 2.22: (a) SWItCh STAtEMENTccviiiiiiii s 40

FIgure 2.23 WhIlE 100Dvvviiiiiieiiiie e 40
T [V =R S o g (oo o PR 41
Figure 2.25: Precedence relationcccooiiiiiiii i 41
Figure 2.26: TIMed tranSItioNcccooiiieeiiiieiiiie e 41
Figure 2.27: Either — or STateMENTooviiiiiiiiie e 42
Figure 2.28: Preferential either — or Statementccccoviieiiii i 42
Figure 2.29: (a) Reachability tree. (b) Reachability graph.ccccooiiiiiiniiiiiin, 44
Figure 2.30: (b) The incidence matrix of a given Petri net in (2).cccoceevvveriveninnns 45
Figure 2.31: Client Side Frameworkccccoiiiiiiiiiii e 47
Figure 2.32: Server Side Frameworkccoccoiiiiiiiiiii e 48
Figure 2.33: Overview of the Proposed SYStemccocveiiiriiiiiiie e 49
Figure 2.34: Details of Smart FIltercccoooviiiiiii e 50
Figure 2.35: Methodology of the Proposed SYStemcccccveveviieeeiiiee e 53
Figure 3.1: Main Phases for Research Methodologycccceveviiieiiiec i, 54
Figure 4.1 Main Phases of Proposed Model............cccccoviiieiiie i 57
Figure 4.2 Abstract Level of Initial Phase.........cccccoovveiiiiii e 58
Figure 4.3 Abstract Level of Training Phase...........cccccoviiii i 59
Figure 4.4 Abstract Level of Detection Phasecccccccveeiiiie e 60
Figure 4.5 DeteCtor FOIMAL...........coooiiiiiiieiiiie e e 61
Figure 4.6 Convert SQL query to detector format............cccceeviiiiieie i 62
Figure 4.7 Create Initial Self DeteCtOrS........cvvvieeiiiiii e 63
Figure 4.8 Create Initial Non-self Detectors.cccvvvveeiiiiiree i 64
Figure 4.9 Update Self Detectors & Create Self Flow Detectors.........cccccveevvcvvveeeennee. 66
Figure 4.10 Update Non-self Detectors & Create Non-self flow Detectors 67
Figure 4.11 Start Step(S) in Detection PRASEcc.evveeviiiieieiiiiiiee e 72
Figure 4.12 Step A in DeteCtion PRaSE............uvvieiiiiiiie e 73
Figure 4.13 Step C in Detection PRaSe.........cuvvvieiiiiiiie e 74
Figure 4.14 Step B in Detection PRaSe.........cvvviieiiiiiii e 75
Figure 4.13 Step D in DeteCtion PNASE..........cooiiiiiiiiiei i 76

file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649061
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649062
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649063
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649064
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649065
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649066
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649067
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649068
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649069
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649070
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649071
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649072
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649073
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649074
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649075
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649076
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649077
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649078
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649079
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649080
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649081
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649082
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649083
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649084
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649085
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649086
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649087
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649088
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649089
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649090

Figure 5.1 Convert SQL Query to Detector Using Petri Nets Notation 78

Figure 5.2 Create Initial Self Detectors Using Petri Nets Notation............cccccccvveenen. 79
Figure 5.3 Create Initial Non-Self Detectors Using Petri Nets Notation...................... 80
Figure 5.4 Update Self Detectors & Create Self Flow Detectors Using Petri Nets
N0 7 LA o] o SRS 81

Figure 5.5 Update Non-Self Detectors & Create Non-Self Flow Detectors Using Petri

AN 3 A\ 0] 7=V [0 RO UPRTPROTI 82
Figure 5.6 Start Step(S) in Detection Phase Using Petri Nets Notation 83
Figure 5.7 Step A in Detection Phase Using Petri Nets Notationcccccceviieinnens 84
Figure 5.8 Step B in Detection Phase Using Petri Nets Notation.............ccccccevvveineen. 85
Figure 5.9 Step C in Detection Phase Using Petri Nets Notation.............ccccccevvvenneen. 86
Figure 5.10 Step D in Detection Phase Using Petri Nets Notation.............c..cccocvevneens 87
Figure 5.11 Flow of Transition Using Stepper Simulator Manuallyc.ccceeveen. 89
Figure 5.12 1-bound & Safe Model Using Stepper Simulator Manually 90

file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649091
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649092
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649093
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649094
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649094
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649095
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649095
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649096
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649097
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649098
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649099
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649100
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649101
file:///F:/An%20Entire%20Security%20Model%20for%20SQL-injection%20Formal%20Specification%20Using%20Petri%20Nets.docx%23_Toc440649102

LIST OF TABLES

Table 2.1: Formal Specification Languages............cceoviviiriiniiiiiiiiiieeiieneanann 25
Table 4.1: Risk analysis & Security requIrementsccoeviiiiiiiiiiniiiiiienennn, 56
71

Table 4.2 Query Classification Probabilities in Detection Phase

Table of Contents

DEDICATION L.ttt e e e e e e s s e r e e e e e e e e s e anreees a
ACKNOWLEDGEMENT L..ootiiiiii e b
AB ST R A CT Lt a e e e e e c
e PP PRPPPPT d
LIST OF FIGURES ... e
LISTOF TABLES ... h
TabIe OF CONTENES ... bbbt
Chapter 1 - INTrOQUCTIONoouiiiiiieiiec et 1
I 1 oo [0 Tod o] I PPV TRP PP 1
1.2 Problem SEatemMENT..........ccvoiiiiiiiie e 2
1.3 The ReSearch ODJECHIVES........ccoiiiieiiiie et 2
1.4 The Research Methodologyccoiiiieiiiii i 3
1.5 Organization of the RESEAICNcccveiiiiie i 3
Chapter 2 - LIterature REVIEW..........ciiiiiie e et see e srn e srna e snnee e 4
2.1 INEFOTUCTION ...ttt ne s 4
2.2 SQLIA OVEIVIBW......eiiiiiie ettt s s e e e e e e e s s e s bbb e e e e e e e e e e aans 4
A RS O]I [] =Tt o] o R 4

2.2.2 SQL Injection Vulnerability (SQLIV) versus SQL Injection Attack (SQLIA)

... 4
2.2.3 SQLIA PIOCESS ... 6
2.2.4 SQLIA MEChANISMS.....uviiiiiiiii i 7
2.3 Classification of SQLIA ... 8
2.3.1 By AttaCKer INTENT........ccoiiiiiee e 8

2.3.2 By attaCk tEChNIQUEScoviiiieiiiii e 10

2.4 ReSUIt OF SQLIAo e 14
2.4.1 Reports about the seriousness of SQLIA ... 14
2.4.2 Consequence OF SQLIA ... 15

2.5 SQLIA Defense TEChNIQUESccvvviiiiieeiiiiee et 16
2.5.1 By nature of defense ..o 16
2.5.2 By detection prinCipleoooiiiie 17
2.5.3 By analysisS Methodcooiiiiiiiiiiei e 20
2.5.4 BY deteCHION THMEvviiiiie et 21
2.5.5 By detection 10CALIONc.coviiiiiiiiiie e 22
2.5.0 BY FESPONSE. ...ciiiiiiiiiiiitiit et 22
2.5.7 BY IMPIEMENTALIONccvvviiiiiic e 23

2.6 Formal Specification OVEIVIEW..........c..eciivieeiiiee e 24
2.6.1 Formal Specification Definitionccccceeiiiieiiiee e 24
2.6.2 Advantages of Formal Specification............ccccceeviiee i, 24
2.6.3 Formal Specification LangUAGESeeevvrreiiiieeiiiieesiieeesiie e svee e sive e 25

2.7 Petri NetS LanQUAGEvviieeeeeiiiie e e et e st e e e et e e e e st e e e e e e e e e e annes 26
2.7.1 Basic Definitions of Graph Theory........cccccevivei e 26
2.7.2 BaSICS OF Petri NETS........oiiiiiiiii e 28
2.7.3 Properties Of Petri NEet..........cvvii i 34

2.8 Modeling With Petri NETScocviiiie e 36
2.8.1 Basic Modeling CONSLIUCESccvvvveeiiiiiiie e 36
2.8.2 Primitives for Programming CONSEIUCESccvvveeiiiiiiee e 39

2.9 ANalysiS OF Ptri NETScviiie e 42

2.9.1 Reachability ANAIYSISccoiviiiiiiieiiie s 43

2.9.2 Incidence MatriX ANAIYSIS.......ccocviiiiiiiiiiiie et 45
2.10 Related WOTKScvvieiiieiiieeeee e 46
Chapter 3 - Research Methodology.........cooiuiiiiiiiiiiiii s 54
B L INTrOTUCTION ...ttt et nbe e 54
3.2 The Research Methodologycccoiiiiiiiiiieiie e 54
3.2.1 Risk @nalysSiS Phasecoiiiiiiiiiiii e 55
3.2.2 Security requirements definition and determination phase................cco...... 55
3.2.3 The model development PRASEcceeiiiiiiiiiiee e 55

3.2.4 Formal specification and verification of the proposed model using Petri Nets

NOTALIONS PRASE ...ttt 55
Chapter 4 — The Proposed MOdel.............oooviiiiiiii i 56
4.1 INEFOTUCTION ..ottt sb e ree e nne e 56
4.2 Risk analysis & Security reqUIreMENTS........ccveeiueeeiiieeeiiie e iieeesire e e sieeeesiene e 56
4.3 PropoSed MOGEL..........ovieiiiie e 57
4.3.1 Initial phase (create initial values & initial detectors)c.cccceevcvveeiinnenn, 61
4.3.2 Training Phase (Update detectors and Create flow detectors) 64
4.3.3 DeteCtion PRASE......ccciiiiiee e e ittt 68
Chapter 5 - Formal Specification and Verification..............cccccceeviiiee i 77
5.1 TINA TOO .. 77
5.2 Formal Specification Using TiNa TOOIccccoeeiiiiiiii e 77
5.2.1 Initial Phase (Create initial Detectors).......ccccovvvveeeiiiiieee e 78
5.2.2 Training Phase (Update detectors and Create flow detectors)..................... 81
5.2.3 DeteCtiON PNASE.....cccuviiee ettt 83

5.3 Verification Using TiNa TOOIooiiiiiiiiiiiiiiiieeiee e 88

Chapter 6 - Conclusion and FULUIre WOIKcccooiiiiriiiieniiiee e
6.1 CONCIUSIONS ...t e e e e e e e st e e e e s e nae e e e e e ennes

8.2 FULUIE WOTK vttt ettt ettt e et e e et e e et e e e e e e et e e e et e e e et e eerteeeenaes

Chapter 1 - Introduction

1.1 Introduction

Nowadays a Database security has become an important issue in technical world. The
main objective of database security is to forbid unnecessary information exposure and
modification data while ensuring the availability of the needed services. A numbers of
security methods have been created for protecting the databases. Many security models
have been developed based on different security aspects of database. All of these
security methods are useful only when the database management system is designed
and developing for protecting the database. Recently the growth of web application
with database at its backend Secure Database Management System is more essential
than only a Secure Database [1] But we must also protect web applications connected
to databases because the vulnerabilities in Web applications that can negatively affect

on the security of database.

With the rising use of internet, web application vulnerability has been increasing
effectively. All web applications are depended on the Internet. Example: e-banking,
admission portals, online shopping, and various government activities like online
electricity bills payment etc. Since these applications are used by hundreds of people,
In many cases the security level is weak, which makes them vulnerable to be attacked
by external users. From time to time, the users need to interact with the backend
databases through the user interfaces for various tasks such as: modify data,
manipulating queries, extracting data, and so forth. For all these operations, design
interface plays crucial role, the quality of which has a great bang on the security of the
stored data in the database. A less secure Web application design may allow crafted
injection and malicious update on the backend database. This trend can cause lots of
damages and thefts of trusted users’ sensitive data by unauthorized users. In the worst

case, the attacker may gainful control over the Web application and totally destroy or

damage the system. This is effectively achieved, in general, through SQL injection
attacks on the online Web application database. According to OWASP report released

in 2012, SQL Injection attacks are top most risk/danger to Web applications [2].

SQL injection is typically involves malicious modifications of the user SQL input
either by adding additional clauses or by changing the structure of an existing clause.
SQL injection enables attackers to access, modify, or delete critical information in a

database without proper authorization [3].

Formal specification is part of a more general collection of techniques that are known
as Formal Methods. These are all based on mathematical representation and analysis of

software. This is a technique for unambiguous specification of software [4].

Formal specifications are better than natural and programming language specification.
Because the natural language specification is too ambiguous and imprecise and the
programming language specification is too many details (not an abstraction of reality),
cannot be understood by stakeholders, does not give the overall picture and many
design decision on the way. But formal specifications have many advantages as
Abstraction (good mechanism to support implementation freedom) and Precision (still

maintain ability to precisely describe what is needed of the system) [5].

1.2 Problem Statement

SQL injections Attack still remain as one of the largest web application vulnerabilities.
Number of models have been proposed and developed to counter SQL Injection
Attack, and according to the best of our knowledge, there is no a particular distinct
formal and inclusive model that countermeasure all occurred SQL Injection forms,

therefore, this research contributes to such context.

1.3 The Research Objectives

The main objective of this research is to develop an inclusive and formal security

model for SQL-injection by using Petri Nets language.

2

1.4 The Research Methodology

To accomplish the research objectives, the research phases can be summarized as
follows:
1. Risk Analysis phase: in order to identify and determine the anticipated security
vulnerabilities and attacks.
2. Security requirements definition and determination phase: in order to identify
and determine the security requirements of the proposed model.
3. The model development phase.
4. Formal specification and verification of the proposed model using Petri Nets

notations.

1.5 Organization of the Research

The thesis consist of six chapters as follows: chapter 1 represents the Introduction,
chapter 2 provides the background and related work, chapter 3 deliberates the research
methodology, chapter 4 presents the proposed model, chapter 5 demonstrates the
formal specification and verification of the proposed model using Petri Nets notations.

Finally, conclusion and future works to hand in chapter 6.

Chapter 2 - Literature Review

2.1 Introduction

This chapter provides the literature review done on concepts and methods that are used
in this thesis, Section Two presents SQL injection attack (SQLIA) definition, basic
concepts, process, and mechanism. Section Three presents classification of SQLIA.
Section Four presents consequence of SQLIA. Section Five presents the defense
techniques that are used to address the problems of SQLIAs. Section Six presents a
formal specification definition, advantages of use it, and languages. Section Seven
presents Petri nets language basics, formal definition, and properties. Section Eight
presents modeling power of Petri Nets. Section Nine presents analysis of Petri Nets.

Finally, in Section Ten presents related work.

2.2 SQLIA Overview

2.2.1 SQL Injection

SQL (Structured Query Language) is a textual language used to interact with relational
Database. The typical unit of execution of SQL is the ‘query’, which is a collection of
statements that typically return a single ‘resultset’. SQL statements can modify the
structure of databases and manipulate the contents of databases by using various DDL,
DML commands respectively. SQL Injection occurs when an attacker is able to insert a

series of SQL statements into a query by manipulating data input into an application

[6].
2.2.2 SQL Injection Vulnerability (SQLIV) versus SQL
Injection Attack (SQLIA)

Vulnerability in any system is defined as a bug, loophole, weakness or flaw existing in

the system that can be exploited by an unauthorized user in order to gain unlimited

access to the stored data. Attack generally means an illegal access, gained through well
crafted mechanisms, to an application or system.

An SQL Injection Attack (SQLIA) is a type of attack whereby an attacker (a crafted
user) adds malicious keywords or operators into an SQL query (e.g., SQL malicious
code statements), then injects it to a user input box of a Web application. This allows
the attacker to have illegal and unrestricted access to the data stored at the backend
database. Figure 2.1 shows the normal user input process in a Web application, which
is self-explanatory. Figure 2.2 shows an example how a malicious input could be
processed in a Web application. In this case, the malicious input is the carefully

formulated SQL query which passes through the system’s verification method [7].

Firewall

Application Internal Database
Server Firewall Server

ELECT * FROM accounts WHERE username= ‘Ahmad’
AND password= ‘provided_password’;

Note: Only Ahmad Rows are
returned.

Figure 2.1: Normal User Input Process in a Web Application [7]
5

Firewall

e A hmad'OR 1=1 -
c
o

Successful SQL
Injection !!!

o Internal Database
Application
pgerver Firewall Server

SELECT * FROM accounts WHERE username= ‘Ahmad
*OR 1=1-’ AND password= ‘not needed;

Note: Ahmad Rows OR wherever
1=1 are returned,
(ALL ROWS)

Figure 2.2: Malicious Input Process in a Web Application [7]

2.2.3 SQLIA Process

SQLIA is hacking technigue which the attacker adds SQL statements through a web
application’s input field or hidden parameter to access to resources. Lack of input

validation in web applications causes hacker to be successful. Basically SQL process

structured in three phases [6]:

I. An attack sends the malicious HTTP request to the web application.

Ii. Create the SQL Statements.

1. Submits the SQL statements to the back end database

Figure 2.3 shows an example for SQLIA data flow.

6

%
v Il\. 3 .II
=

Seject ™ froamiaber whens

Ty
WEBCLIENTS HTTP Reguest WER SOL Stalements "En;;;
: ——+ APPLICATION i
[ATTACKER)
e
: : —
a3 i

upermame= admin” ar
“1"="1" "where
password="1234"

i

ke (1)
Ussmame=admin” or "1=1" W
Passweed="1234" VWarchar="gelect * fromn ser where

. nsermame="sumer="and
password="=pass=""

Figure 2.3: Example for SQLIA Data Flow [6]

2.2.4 SQLIA Mechanisms

Malicious SQL statements can be introduced into a vulnerable application using many

of different input mechanisms. These are the most common mechanisms [8]

2.2.4.1 Injection through user input
In the type of injection the attacker injects SQL commands by providing suitably
crafted user input. A web application can read user’s input in several ways based on the

environment in which the application is deployed.

2.2.4.2 Injections through cookies

Cookies are the small files that containing state information generated by Web
applications and stored on the client machine. When a client returns to the Web
application the cookie is used to be restore the client information. Since the client has
control over the storage of cookie, a malicious client could tamper with the cookie’s
content. And then if Web application uses the cookie content to build SQL queries, an
attacker could easily submit an attack by embedding it in the cookie.

7

2.2.4.3 Injections through the server variables

Server variables are collections of variables that contain HTTP, network headers, and
environmental variables .Web applications used these server variables in a variety of
ways like logging usage. If these servers logged to a database without sanitization, this
could create SQLI vulnerability because attacker can forge the values that are placed in
HTTP and network headers. They can exploit this vulnerability by placing an SQLIA
directly into the headers. And when the query to log the server variable is issued to the

database, the attack in the forged header is triggered automatically.

2.2.4.4 Second order injection
In second order injection, attacker seed malicious inputs in to a system or database to
indirectly trigger an SQLIA when that input is used at a later time. The attack takes

place when the malicious input reaches to the database.

2.3 Classification of SQLIA

An SQLIA can be classified by using some of properties such as attacker intent and

attack techniques utilized by threat agents.

2.3.1 By Attacker Intent

An important classification of SQLIA is related to the attacker's intent, or in other

words, the goal of the attack.

2.3.1.1 Extracting data

This category of attacks tries to extract data values from the back end database. Based
on the type of web application, this information could be sensitive, for example, credit
card numbers, social numbers; private data are highly valuable to the attacker. This

kind of intent is the most common type of SQLIA [6].

2.3.1.2 Adding or modifying data

The purpose of these attacks is to add or change data values within a database [6].

2.3.1.3 Performing database finger printing

In this category of attack the malicious user wants to discover technical information on
the database such as the type and version that a specific web application is using. It is
noticeable that certain types of databases respond differently to different queries and
attacks, and this information can be used to "fingerprint" the database. Once the
intruder knows the type and the version of the database it is possible to organize a

particular attack to that database [6].

2.3.1.4 By passing authentication
By this attack, intruders try to bypass database and application authentication
mechanisms. Once it has been over passed, such mechanisms could allow the intruder

to assume the rights and privileges associated with another application user [6].

2.3.1.5 Identifying injects able parameter
Its goal is to explore a web application to discover which parameters and user-input
fields are vulnerable to SQLIA. By using an automated tool called a "vulnerabilities

scanner” this intent can be identified [6].

2.3.1.6 Determining database schema

The goal of this attack is to obtain all the database schema information (such as table
names, column names, and column data types). This is very useful to an attacker to
gather this information to extract data from the database successfully. Usually by
exploiting specific tools such as penetration testers and vulnerabilities scanners this

goal is achieved [6].

2.3.1.7 Performing denial of service

In these category intruders make interrupt in system services by performing some
instruction so the database of a web application shutdown, thus denying service
happens. Attacks involving locking or dropping database tables also fall into this

category [6].

2.3.1.8 Evading detection
This category refers to certain attack techniques that are employed to avoid auditing

and detection by system protection mechanisms [9].

2.3.1.9 Executing remote commands
These types of attacks attempt to execute arbitrary commands on the database. These

commands can be stored procedures or functions available to database users [9].

2.3.1.10 Performing privilege escalation
These attacks take advantage of implementation errors or logical flaws in the database
in order to escalate the privileges of the attacker. As opposed to bypassing

authentication attacks, these attacks focus on exploiting the database user privileges

[91.
2.3.2 By attack techniques

2.3.2.1 Tautology:

Attack Intent: Bypassing authentication, identifying inject able parameters, extracting
data [6].

Description: In the tautology attack the attacker tries to use a conditional query
statement to be evaluated always true. Attacker uses WHERE clause to inject and turn
the condition into a tautology which is always true. The simplest form of tautology

Example:

SELECT *FROM Accounts WHERE user=""or1=1— ‘AND pass=""AND eid=
The result would be all the data in accounts table because the condition of the WHERE

clause is always true [8].

2.3.2.2 lllegal/Logical Incorrect queries
Attack Intent: ldentifying inject able parameters, performing database finger-printing,

extracting data [6].

10

Description: When a query is rejected an error message is returned from the database
including useful debugging information. This information helps attackers to make
move further and find vulnerable parameters in the application and consequently
database of the application.

Example:

SELECT * FROM Accounts WHERE wuser=" ¢ AND pass=" ‘AND eid
=convert(int,(SELECT TOP 1name FROM sysobjects WHERE xtype="u’))

In the example the attacker attempts to convert the name of the first user defined table
in the metadata table of the database to ‘int’. This type conversion is not legal therefore

the result is an error which reveals some information that should not be shown [8].

2.3.2.3 Union queries

Attack Intent: Bypassing Authentication, extracting data [6].

Description: In this type of queries unauthorized query is attached with the authorized
query by using UNION clause.

Example:

SELECT * FROM Accounts WHERE user="" UNION SELECT * FROM Students—
‘AND pass=""AND eid=

The result of the first query in the example given above is null and the second one
returns all the data in students table so the union of these two queries is the student
table [8].

2.3.2.4 Piggy-Backed query

Attack Intent: Extracting data, adding or modifying data, performing denial of
service, executing remote commands [6].

Description: In the query attack attacker tries to add an additional queries in to the
original query string .In this injection the intruders exploit database by the query

delimiter, such as “;”, to append extra query to the original query

Example:

11

SELECT*FROM Accounts WHERE user="’; drop table Accounts—‘AND pass=" °
AND eid=
The result of the example is losing the credential information of the accounts table

because it would be dropped branch from database [8].

2.3.2.5 Stored Procedure

Attack Intent: Performing privilege escalation, performing denial of service,
executing remote commands [6].

Description: In this technique, attacker focuses on the stored procedures which are
present in the database system. Stored procedures run directly by the database engine.
Stored procedure is nothing but a code and it can be vulnerable as program code. For
authorized/unauthorized user the stored procedure returns true/false. As an SQL
Injection Attack, intruder input “; SHUTDOWN; --" for username or password. Then
the stored procedure generates the following query:

Example:

SELECT accounts FROM wusers WHERE login= '1111' AND pass='1234
SHUTDOWN;--;

This type of attack works as piggyback attack. The first original query is executed and
consequently the second query which is illegitimate is executed and causes database
shut down. So, it is considerable that stored procedures are as vulnerable as web

application code [10].

2.3.2.6 Inference

Attack Intent: Identifying inject able parameters, extracting data, determining
database schema [6].

Description: By this type of attack, intruders change the behavior of a database or
application. There are two well known attack techniques that are based on inference:

blind injection and timing attacks.

12

a) Blind Injection

At times developers hide the error details which help attackers to compromise the
database. In this situation attacker face to a generic page provided by developer,
instead of an error message. So the SQLIA would be very difficult but not impossible.
An attacker can still steal data by asking a series of True/False questions through SQL
statements.

Example:

SELECT accounts FROM users WHERE login= 'doe' and 1 =0 -- AND pass = AND
pin=0 SELECT accounts FROM users WHERE login='doe' and 1 = 1 -- AND pass =
AND pin=0

If the application is secured, both queries would be unsuccessful, because of input
validation. But if there is no input validation, the attacker can try the chance. First the
attacker submits the first query and receives an error message because of "1 =0 ". So
the attacker does not understand the error is for input validation or for logical error in
query. Then the attacker submits the second query which always true. If there is no

login error message, then the attacker finds the login field vulnerable to injection [10].

b) Timing Attacks

A timing attack lets attacker gather information from a database by observing timing
delays in the database's responses. This technique by using if-then statement cause the
SQL engine to execute a long running query or a time delay statement depending on
the logic injected. This attack is similar to blind injection and attacker can then
measure the time the page takes to load to determine if the injected statement is true.
This technique uses an if-then statement for injecting queries. WAITFOR is a keyword
along the branches, which causes the database to delay its response by a specified time.

Example, in the following query:

declare @ varchar(8000)
select @ = db_nameO if (ascii(substring(@, 1, 1)) & (power(2, 0))) > 0 waitfor delay
'0:0:5'

13

Database will pause for five seconds if the first bit of the first byte of the name of the
current database is 1. Then code is then injected to generate a delay in response time
when the condition is true. Also, attacker can ask a series of other questions about this
character. As these examples show, the information is extracted from the database

using a vulnerable parameter [10].

2.3.2.7 Alternate encoding

Attack Intent: Evading detection [6].

Description: In this type of attack the regular strings and characters are converted into
hexadecimal, ASCII and Unicode. Because of this the input query is escaped from
filter which scans the query for some bad character which results SQLIA and the
converted SQLIA is considered as normal query.

Example:

SELECT * FROM Accounts WHERE user="user1’; exec(char(0x8774675u8769¢)) - -
AND pass=" ¢ AND eid=

The example char () function and ASCII hexadecimal encoding are used. The functions
will get integer number as a parameter and return as a sample of that character. In the
example it will return “SHUTDOWN”, so whenever the query is interpreted the
SHUTDOWN command is executed [8].

2.4 Result of SQLIA

2.4.1 Reports about the seriousness of SQLIA

The open web application security project (OWASP) ranks SQLI as the most
widespread website security risk in 2011. The National Institute of Standards and
Technology’s National vulnerability Database reported 289 SQL wvulnerabilities in
websites including those of IBM, HP, and MICROSOFT. In December 2011, SANS
Institute security experts reported a major SQL injection attack that affects
approximately 160000 websites using Microsoft’s Internet Information Services (IIS),

ASP.NET, and SQL Server Frameworks [8].
14

Semiannual Report (July to December 2010) from the Web Hacking Incidents
Database (WHID) shows that that SQL injection are consistently or near the top 21%
of the reported vulnerabilities in 2010 ,consider as top 2 attack and recently in August,
2011, Hacker steals user records from Nokia Developer Site using "SQL injection”.
They are easy to detect and exploit; that is why SQLIAs are frequently employed by
malicious user for different reasons. E.g. financial fraud, theft, confidential data, deface
website, sabotage, espionage, cyber terrorism, or simply for fun. Throughout 2010,
Government, Finance and Retail verticals faced different, but equally important,
outcomes. Attacks against Government agencies resulted in defacement in 26% of SQL
injection attacks, while Retail was most affected by credit card leakage at 27% of SQL
injection and finance experienced monetary loss in 64% of attacks [44]. Furthermore,
SQL Injection attack techniques have become more common more ambitious, and
increasingly sophisticated, so there is a deep to need to find an effective and feasible

solution for this problem in the computer security community [6].

2.4.2 Consequence of SQLIA

The code injected in the application can manipulate the information and structure of
the database by using just few statements. Being common and efficient technique it is
very important for the developers and administrators to consider it a major concern
[11]. The result of SQLIA can be disastrous because a successful SQL injection can
read sensitive data from the database, modify database data (Insert/Update/Delete),
execute administrative operations on the Database (such as shutdown the DBMS),
recover the content on the DBMS file system and execute commands (xp cmdshell) to

the operating system [6] The main consequences of these vulnerabilities are attacks on:

2.4.2.1 Authorization

A successful SQLIA can allow an attacker to change user privilege on the web
application. The authorization to any certain operations on the database can be
changed. Vital information stored on database may be altered if unauthorized access to

the SQL database is gained through vulnerabilities in the database [12].

15

2.4.2.2 Authentication
When username and password are not validated properly, the consequences would be
devastating. Anyone would be capable of gaining access to the system without

knowing the right username and password [12].

2.4.2.3 Confidentially

A successful SQLIA would violate the confidentiality expected to be derived from
storing data in a database because databases are usually used to store delicate and
important information. This information must be kept out of the wrong hands. If a

system fails, confidentiality of the database is lost and this becomes a problem [12].

2.4.2.4 Integrity

By a successful SQLIA not only an attacker reads sensitive information, but also, it is
possible to change or delete this private information [6]. When an attacker is able to
change or remove the contents of a database, this results to loss of system integrity.

When integrity is compromised, false records can also be created [12].

2.5 SQLIA Defense Techniques

Researchers have proposed many different defense techniques to address the problems

of SQLIAs. According to the [13] these different techniques can be categorized as:

2.5.1 By nature of defense

Nature of defense figures out how a technique is going to defend the application from

injections. They can be classified into three types:

2.5.1.1 Prevention

Prevention technique averts or severely handicaps the possibility of success of SQLIAs
by statically identifying vulnerabilities in the code, proposing a different development
paradigm for generating SQL queries, or inspecting the application to enforces best

defensive coding practices during development.

16

2.5.1.2 Detection

Detection technique discriminates SQLIA attempts and preparation from benign
activity and alerts the system. It detects SQLIAs mostly during the operation time.
After detection of attacks, it alerts the authorities so that they can perform certain

actions such as rejecting and escaping of attacks.

2.5.1.3 Deflection

Deflection technique leads an attacker to believe that he has succeeded in an injection
attempt whereas the reality is that he has been succeeded to compromise false
information only. It is designed is such a way that attackers get easily attracted towards
it. This technique helps in learning more about different SQLIAs and their attacking

customs. Honeypot is the only one technique that falls under this category.

2.5.2 By detection principle

Each technique has its own criteria to detect the existence of vulnerabilities in the web

application. They can be identified into four different detection principles:

2.5.2.1 Grammar based violation

The grammatical structure of SQL statement is the notion of this detection technique to
detect SQL injection vulnerabilities. SQL injection occurs when the attacker provides
malicious input that will change the structure of SQL query as intended by the
application developer. Grammar-based violation detection technique detects the invalid
structure of the SQL statement by comparing the parse tree or finite state machines
(FSM) built with user input and without user input. A parse tree can be defined as a
data structure for the parsed representation of a SQL statement. If the grammatical
structures of parse trees are different, it implies that user input is malicious that will

change the indented structure of query and will not allow SQL statement to execute.

2.5.2.2 Signature based
Signature can be as simple as a regular expression describing the known attack pattern.

The signature-based detection systems maintain a list of possible attack signatures, and

17

then compare external input strings against the list of signatures at runtime to detect
and block SQL Injection related patterns. The idea of signature based detection
techniques is to look for known attack patterns to block. We identified two sub

categories of signature based detection techniques.

» Input signature: This technique detect potential malicious characters by checking
external input strings against white list or blacklist. White list is a set of safe
(possible correct) values where as blacklist is set of unsafe (negative) values. In
white list, external input strings are verified against a set of good input
values/patterns/conditions and block anything that is not on the white list. In
blacklist, external input strings are verified against set of the negative/bad
values/patterns/conditions and sanitize the input by user defined action such as
rejecting, escaping (adding a backslash) etc. The single quotation mark (°) is one of

an example of blacklist.

» Output signature: this technique detect potential malicious characters from the
output of the web application execution before it will be sent to build the SQL
query. It is essential to keep in mind that output often contains user input. Secure

output handling is important to prevent from SQL injection attack vulnerabilities.

2.5.2.3 Tainted data flow

The key idea of tainted data flow detection is to detect whether tainted data will reach
sensitive sinks in the application. A tainted data is the input from the user which should
always be treated as malicious. Sensitive sinks is any point in the application which
could lead to security issues when executed over any un-sanitized user input. Tainted
data flow detection identifies user inputs and also untrustworthy sources and keeps
track of all the data that is affected by those input data. Tainted data flow detection can

be further divided in two sub categories.

» Positive tainting: this approach identifies and mark trusted data instead of untrusted
data. It only allows trusted data to form the semantically correct SQL queries such
as SQL keywords and operators.

18

» Negative tainting: this approach identifies and mark un-trusted data instead of
trusted data. It basically keeps track of taintedness of data values and checking
specifically for malicious contents only in the parts of output that came from un-

trustworthy sources.

2.5.2.4 Anomaly detection

Anomaly detection techniques triggers alarm when run time behaviour of application
diverges from normal system behaviour which was tracked during training period. It is
challenging to identify abnormal behaviour of application at run time. The current state
of application is periodically compared with the models of the normal system
behaviour to detect anomalies. Anomaly detection techniques can only identify attacks

which are modeled during training period.

» Learning based: This approach relies on training dataset to build profiles of the
normal, benign behaviour of applications. It commonly uses data mining
techniques, clustering techniques to characterize the network traffic and identify
intrusion patterns. Some techniques use statistical analysis to characterize the user
behaviour, while other uses artificial neural network (ANN) to train and learn the
normal traffic pattern. Some techniques build legitimate libraries while training and

detects the attack using that library.

» Programmed based: The description of accepted network behaviour is
programmed by network administrator or user to detect anomalous events (which
fall outside the model of accepted network behaviour). Thus the user defines the
rules on what is considered abnormal enough for an application to alert for security
violation. Programmed based anomaly detection uses trained specifications of
normal behaviour and generate threshold values for different parameters. Such
parameters can be the number of network connections, the number of unsuccessful
logins etc. Threshold values define whether to raise the alarm or not. For example,

alarm if the number of unsuccessful logins is greater than two.

19

2.5.3 By analysis method

SQL injection detection techniques use several different analysis methods to detect the
existence of vulnerabilities in the web application. They can be identified into six

different types:

2.5.3.1 Secure programming

Secure programming is a defensive coding approach to reduce injection vulnerabilities
by implementing input validation routines or by using existing standard API or library
classes to build the sentence in the source code of application during development. The
main drawback of secure programming is that it requires developer training to learn the

proper use of secure libraries.

2.5.3.2 Static analysis

Static analysis techniques analyze applications artifacts such as source code, binary
code, byte code, and configuration files in order to get information about an
application. Information can be how the data would flow at run time without executing

the code. Such conservative static analysis can produce high number of false positives.

2.5.3.3 Dynamic analysis

Dynamic analysis techniques analyze the information acquired during program
execution to detect SQL injection vulnerabilities. The information might be request and
response patterns, structure of queries. Dynamic analysis can be performed at testing
time during development or at run time after release. The drawback of dynamic
analysis is that it only detects the vulnerabilities in the execution paths but it cannot

detect which were not executed in the code.

2.5.3.4 Hybrid analysis

Hybrid analysis uses combination of both static and dynamic analysis to analyze the
information obtained during program execution. Some techniques have used hybrid
analysis to reduce the performance overhead and increase the efficiency to detect

vulnerabilities.

20

2.5.3.5 Black box testing

Black box testing is a test design methods to detect vulnerabilities by testing
application based on requirement specification. Requirement specification means what
are the available inputs and the expected outputs that should result from each input. It

Is not concerned with application source code.

2.5.3.6 White box testing
White box testing is also a test design methods to detect vulnerabilities by testing
application with test cases. Test cases are generated from the internal structure of the

system i.e. source code.

2.5.4 By detection time

SQLIAs and their vulnerabilities can be detected at various times. They can be

classified into three categories:

2.5.4.1 Coding time

If SQLIA wvulnerabilities are detected during coding time of an application
development cycle, then it is considered as coding time detection. Detecting
vulnerabilities in this early stage helps in tumbling the cost caused by tardy detection.
Static analysis techniques detect SQLIA vulnerabilities during coding time without the

need of code execution.

2.5.4.2 Testing time

If SQLIAs and their vulnerabilities are detected during testing time of an application
development cycle, then it is considered as testing time detection. The different testing
approaches, such as Black-box testing and White-box testing can be used as analysis

methods in testing time for detecting attacks and their vulnerabilities.

2.5.4.3 Operating time
If SQLIAs and their vulnerabilities are detected at run time in the real world field after
product is released then it is considered as operation time detection. Run time defense

techniques usually prevent SQLIAs by terminating the execution of attacks or
21

sanitizing them. However, in case of false positives, terminating the execution can lead

significant inconvenience to users.

2.5.5 By detection location

SQLIAs and their vulnerabilities can be detected at various locations of the system.

They can be classified into four categories:

2.5.5.1 Client- side application

Client-side application techniques detect SQLIAs by analyzing HTML pages. While
client side scripts are also analyzed by some techniques which are used for detecting
both SQLIA and cross-site scripting.

2.5.5.2 Client-side proxy

Client-side proxy acts as a gateway or intermediate server between a user and a web
server. It intercepts user’s requests and responses from web server in order to detect
SQLIAs. After detecting malicious inputs, either it rejects the request or alters

malicious inputs to benign inputs.

2.5.5.3 Server-side application
Server-side application technique detects SQLIAs by analyzing server side application

written in programming and script languages.

2.5.5.4 Server-side proxy
Server-side proxy acts as supplementary server between an application server and a
database server. It intercepts SQL queries from an application before reaching to

database server. It aids in blocking the malicious query execution in database.

2.5.6 By response

Whenever the techniques detect the attacks, it responds to it. They can be classified
into five different categories based on the reaction when the SQL injection

vulnerabilities are detected.

22

2.5.6.1 Report
Some of the defense techniques report whenever it detects vulnerabilities in the
application. The report often consists of the vulnerable line number of the source code

in the application. Static analysis and vulnerability testing tools generates reports.

2.5.6.2 Reject
Some of the defense techniques reject the user requests whenever it figures out that the

user input is malicious and blocks the execution.

2.5.6.3 Escape
Some of the defense techniques instead of rejecting the user requests, tries to sanitize
by escaping the malicious input. However, escaping malicious input is still vulnerable

to SQL second order injection attacks.

2.5.6.4 User defined action
Application developer defines the action whenever they detect malicious input. They
can set rules which will escape or encode the user input when a malicious pattern is

found. It can be rejecting or escaping.

2.5.6.5 Code suggestion
Some techniques collect information from source code containing SQL Injection
vulnerabilities and generate replacement secure code that can maintain applications

functional integrity. It suggests the secure code whenever it detects vulnerability.

2.5.7 By implementation

To deploy any techniques, developer needs to know if they require modifying the
source code of the application. According to the implementation of the techniques, they

can be identified into two categories:

23

2.5.7.1 Modification of code base
The developer need to modify the source code of the application to deploy the SQL
injection defense techniques. Therefore, it is often laborious, time consuming and

tedious.

2.5.7.2 No modification of code base.
The developers do not need to modify the source code of the application to deploy the
SQL injection defense techniques. It provides flexibility and takes less effort in the

implementation of the techniques.

2.6 Formal Specification Overview

2.6.1 Formal Specification Definition

A formal specification is a specification written in a formal language with a restricted
syntax and well-defined semantics based on well-established mathematical concepts.

Formal specifications use a language with precise semantics. This avoids ambiguity

and may allow for proofs of properties about the specification. These languages

support precise descriptions of the behavior of system functions and generally

eliminate implementation details [14].

2.6.2 Advantages of Formal Specification

~

» The development of a formal specification provides insights and understanding of
the software requirements and the software design.

» Given a formal system specification and a complete formal programming language

definition, it may be possible to prove that a program conforms to its

specifications.

~

» Formal specification may be automatically processed. Software tools can be built to

assist with their development, understanding, and debugging.

M

Depending on the formal specification language being used, it may be possible to

animate a formal system specification to provide a prototype system.

24

» Formal specifications are mathematical entities and may be studied and analyzed
using mathematical methods.

» Formal specifications may be used as a guide to the tester of a component in
identifying appropriate test cases [15].

2.6.3 Formal Specification Languages

Two fundamental approaches to formal specification have been used to write detailed

specifications for industrial software systems. These are:

1. An algebraic approach where the system is described in terms of operations and

their relationships.

2. A model-based approach where a model of the system is built using mathematical
constructs such as sets and sequences and the system operations are defined by how

they modify the system state.

Different languages in these families have been developed to specify sequential and
concurrent systems. Table 2.1 shows examples of the languages in each of these
classes. You can see from this table that most of these languages were developed in the
1980s. It takes several years to refine a formal specification language, so most formal
specification research is now based on these languages and is not concerned with

Inventing new notations [16].

Sequential Concurrent
) Larch (Guttag, et al., 1993), Lotos (Bolognesi and Brinksma,
Algebraic)
OBJ (Futatsugi, et al., 1985) 1987),
Z (Spivey, 1992) CSP (Hoare, 1985)
Model-based | VDM (Jones, 1980) Petri Nets (Peterson, 1981)
B (Wordsworth, 1996)

Table 2.1 Formal Specification Languages [16]

25

2.7 Petri Nets Language

Petri nets were introduced in 1962 by Dr. Carl Adam Petri. Petri nets are a powerful
modeling formalism in computer science, system engineering, and many other
disciplines. Petri nets combine a well-defined mathematical theory with a graphical
representation of the dynamic behavior of systems. The theoretic aspect of Petri nets
allows precise modeling and analysis of system behavior, while the graphical
representation of Petri nets enables visualization of the modeled system state
changes. This combination is the main reason for the great success of Petri nets.
Consequently, Petri nets have been used to model various kinds of dynamic event-
driven such as computer networks, communication systems, manufacturing plants,
command and control systems, real-time computing systems, logistic networks, and
workflows to mention only a few important examples. This wide spectrum of
applications is accompanied by wide spectrum different aspects, which have been

considered in the research on Petri nets [17].

2.7.1 Basic Definitions of Graph Theory

A graph G= (V, E) is a mathematical structure consisting of two set V (vertices/nodes)
and E (edges).

Each edge has a set of one or two vertices associated to it, which one called its

endpoints.

A loop is an edge whose endpoints are equal. A non-simple graph with loops is

depicted in Figure 2.4. (c).

- — ——
o= | ™ &« | | ik "
S~ — —f ™ —.
— e [
i . p!
(a) (k) ()

Figure 2.4: (a) A simple graph (b) Anon-simple graph with multiple edges (c) A non-
simple graph with loops [18]

26

A multi-edge is a collection of two or more edges having identical endpoints.
A simple graph is a graph having no loops or multi-edges.
A directed graph is a graph each of whose edges is directed (Digraph).

A weighted graph is a graph in which each branch is given a numerical weight. A
weighted graph is therefore a special type of labeled graph in which the labels are
numbers (which are usually taken to be positive).Graphs with labels attached to edges

or vertices are called labeled graph; see Figure 2.5.

3
* f --:jj H’*? lt::’ ’T
x__lf g 4 —___||I'“"- x—';., i _'_. o
|II |||3 I|IJ
® ‘ ®
(a) (b} (e}

Figure 2.5: (a) Unlabeled graph (b) An edge-label graph (c) A vertex-labeled graph [18]

A bipartite graph G is a graph whose vertex set V can be partitioned into two subset
U and W, such that each edge of G has one endpoint in U and one endpoint in W [18]

see Figure 2.6.

Figure 2.6: A bipartite graph [18]

27

2.7.2 Basics of Petri Nets

2.7.2.1 A Petri nets

A Petri net is a particular kind of bipartite directed graphs populated by four types of
objects. These objects are places, transitions, directed arcs, and tokens [19]; see Figure
2.7, (a).

(a) O Place (b) @ Elx
|:| Transition © C,\ |:| f,\l‘/
S O—0

o Tokn (00X

Figure 2.7: Petri Net Formalism. (a) Petri nets consist of places, transitions, arcs and
tokens. (b) Just places are allowed to carry tokens. (c) Two nodes of the same type cannot
be connected with each other [20].

» Places are passive nodes. They are indicated by circles and refer to conditions or

states. Only places are allowed to carry tokens [20]; see Figure 2.7, (b).

» Tokens are variable elements of a Petri net. They are indicated as dots or numbers
within a place and represent the discrete value of a condition. Tokens are
consumed and produced by transitions. A Petri net without any tokens is called
“empty”. The initial marking affects many properties of a Petri net [20], which are

considered in section 2.7.3.

» Transitions: are active nodes and are depicted by squares. They describe state

shifts, system events and activities in a network. If a place is connected by an arc

28

with a transition, the place (transition) is called pre-place (post-transition). If a
transition is connected by an arc with a place, the transition (place) is called pre-
transition (post-place); see Figure 2.8. Transitions consume tokens from its pre-
places and produce tokens within its post-places according to the arc weights [20]

(firing of transition concept) see example 2.2.

Pre-Place Fost-Transiton Fre-Tranzition Pozt-Place
O— —(
P ty tz P2

Figure 2.8: Places and Transitions. Place p1 is called pre-place of transition t1, and transition
t1 is the post-transition of place pl. Place p2 is called post-place of transition t2, and
transition t2 is the pre-transition of place p2 [20].

» Directed arcs are inactive elements and are visualised by arrows. They specify the
causal relationships between transitions and places and indicate how the
marking is changed by firing of a transition [20], which are consider the firing
concept in section 2.7.2.3. Arcs connect only nodes of different types; see Figure
2.7, (c). Each arc is connected with an arc weight. The arc weight sets the number

of tokens that are consumed or produced by a transition [20].

» Inhibitor arc is connects an input place to a transition, and is pictorially represented
by an arc terminated with a small circle. The presence of an inhibitor arc connecting
an input place to a transition changes the transition enabling conditions. In the
presence of the inhibitor arc, a transition is regarded as enabled if each input place,
connected to the transition by a normal arc (an arc terminated with an arrow),
contains at least the number of tokens equal to the weight of the arc, and no
tokens are present on each input place connected to the transition by the
inhibitor arc [17]; see Figure 2.20.

29

2.7.2.2 Formal definitions of Petri Nets
A Petri net is a five-tuple PN = (P, T, F, W, MO) where:

P={pl, p2, .., pm}is a finite set of places
T={1t1,12, ..., tn} is a finite set of transitions
F < (PxT) U (TxP) is a set of arcs
W:F— {1,2,..} is aweight function
MO:P— {0,1,2,...} is the initial marking
PNT=dandPNnT=0®
[21]

PN without the initial marking is denoted by N:
N=(P,T,F, W), PN=(N, M0)

Some authors [22] prefer to use the input-output functions (| and O) in the Petri net

definition instead of using set of arcs (F) and a weight function (W)
N=(P,T,10)

I: (P XT) — No+

} Arc definition
O: (P XT) — No+

Weight of arc is defined in the following way. If | (pi ,tj) = k, where k > 1is an
integer, a directed arc from place pi to transition t j is drawn with the label (weight) k.

If k=1, an unlabeled arc is drawn and if it happens that k = 0 then no arc is drawn.
Example 2.1 (A Simple Petri net)

Figure 2.9 shows a simple Petri net. In this Petri net, we have

P={p1, p2, p3, p4};
30

T ={t1, t2, t3};

I(t1, p1)=2, I(t1, pi)=0 for i=2, 3, 4;

I(t2, p2)=1, I(t2, pi)=0 for i=1, 3, 4;

I(ts, p3)=1, I(ts, pi)=0 for i=1, 2, 4;

O(t1, p2)=2, O(t1, ps)=1, O(ts, pi)=0 for i=1, 4;
O(tz, p2)=1, O(tz, pi)=0 for i=1, 2, 3;

O(ts, p2)=1, O(ts, pi)=0 for i=1, 2, 3;

Mo=(2 0 0 0).

—
-

2 — ~ —y
a2 T i
p1 I‘\._._./" H‘m‘__‘ _}_ _/,-I p4
8] T —
O]

o &

Figure 2.9: A simple Petri net [17]

2.7.2.3 Enabling and firing rules

The execution of a Petri net is controlled by the number and distribution of tokens
in the Petri net. By changing distribution of tokens in places, which may reflect the
occurrence of events or execution of operations, for instance, one can study the
dynamic behavior of the modeled system. A Petri net is executed by firing transitions.
We now introduce the enabling rule and firing rule of a transition, which govern the

flows of tokens:

1) Enabling Rule: A transition t is said to be enabled if each input place p of t contains

at least the number of tokens equal to the weight of the directed arc connecting p to
t, i.e., M(p)2I(t, p) for all p in P. If I(t, p)=0, then t and p are not connected, so we
do not care about the marking of p when considering the firing of t.

31

2) Firing Rule: Only enabled transitions can fire. The firing of an enabled transition t
removes from each input place p the number of tokens equal to I(t, p), and deposits

in each output place p the number of tokens equal to O(t, p).
Mathematically, firing t at M yields a new marking
M (p) = M(p) — I(t, p) + O(t, p) forall p in P

Note that since only enabled transitions can fire, the number of tokens in each place
always remains nonnegative when a transition is fired. Firing a transition can never try

to remove a token that is not there.

The transition firings rule to inhibitor arc the same for normally connected places. The
firing, however, does not change the marking in the inhibitor arc connected places [17].

A Petri net with an inhibitor arc is shown in Figure 2.19.
Example 2.2 (Firing of Transition)
Consider the simple Petri net shown in Figure 2.9. Under the initial marking,

MO= (2 0 0 0), only tl is enabled. Firing of t1 results in a new marking, say M1. It

follows from the firing rule that
M1=(0210)

The new token distribution of this Petri net is shown in Figure 2.10. Again, in marking

M1, both transitions of t2 and t3 are enabled. If t2 fires, the new marking, say M2, is
M2=(0111)
If t3 fires, the new marking, say M3, is

M3=(0201)

32

Figure 2.10: Firing of Transition t1. [17]

A transition without any input place is called a source transition, and one without any
output place is called a sink transition. Note that a source transition is unconditionally
enabled, and that the firing of a sink transition consumes tokens, but does not produce
tokens [19]; see Figure 2.11.

AT T

(a) (b)
Figure 2.11: (a) Source Transition (b) Sink Transition [22]

A pair of a place p and a transition t is called a self-loop, if p is both an input place and
an output place of t. A Petri net is said to be pure if it has no self-loops [19]. Any
impure Petri net (Petri a net having self-loops) can be made pure by adding

appropriate dummy places and transitions to it [22]; see Figure 2.12.

Dummy transition

T

Dummy place

Figure 2.12: (a) Impure Petri net, (b) Pure Petri net [22]

33

2.7.3 Properties of Petri Net

As a mathematical tool, Petri nets possess a number of properties. These properties,
when interpreted in the context of the modeled system, allow system designer to
identify the presence or absence of the application domain specific functional
properties of the system under design. Two types of properties can be distinguished,
behavioral and structural ones. The behavioral properties are those which depend
on the initial state or marking of a Petri net. The structural properties, on the
other hand, do not depend on the initial marking of a Petri net. They depend on the
topology, or net structure, of a Petri net. Here we provide an overview of some of the
most important, from the practical point of view, behavioral properties: reachability,
safeness, and liveness [17]. For more details about the rest of the properties can
review [22] [18] [21].

2.7.3.1 Reachability

An important issue in designing event-driven systems is whether a system can reach a
specific state, or exhibit a particular functional behavior. In general, the question is
whether the system modeled with a Petri net exhibits all desirable properties as

specified in the requirement specification, and no undesirable ones.

To find out whether the modeled system can reach a specific state as a result of a
required functional behavior, it is necessary to find such a transition firing sequence
that would transform its Petri net model from the initial marking Mo to the desired
marking M, where M; represents the specific state, and the firing sequence represents
the required functional behavior. In general, a marking M;is said to be reachable from
a marking Mi if there exists a sequence of transition firings that transforms Mito M;. A
marking M; is said to be immediately reachable from Miif firing an enabled transition
in Miresults in M;. The set of all markings reachable from marking M is denoted by
R(M) [17].We will explain how to get R(M) in section 2.9.1.

34

2.7.3.2 Safeness

The Petri net property, which helps to identify the existence of overflows in the
modeled system, is the concept of boundedness. A place p is said to be k-bounded if
the number of tokens in p is always less than or equal to k (k is a nonnegative integer
number) for every marking M reachable from the initial marking Mo, i.e.,M & R(Mo).

It is safe if it is 1-bounded.

A Petri net N =(P, T, I, O, Mo) is k-bounded (safe) if each place in P is k-bounded

(safe). It is unbounded if k is infinitely large. For example, the Petri net of Figure 2.9 is
2-bounded, but the net of Figure 2.10 is unbounded [17].

2.7.3.3 Liveness

The concept of liveness is closely related to the deadlock situation, which has been

situated extensively in the context of computer operating systems.

A Petri net modeling a deadlock-free system must be live. This implies that for any
reachable marking M, any transition in the net can eventually be fired by progressing
through some firing sequence. This requirement, however, might be too strict to
represent some real systems or scenarios that exhibit deadlock free behavior. For
instance, the initialization of a system can be modeled by a transition (or a set of
transitions) that fires a finite number of times. After initialization, the system may
exhibit a deadlock-free behavior, although the Petri net representing this system is no
longer live as specified above. For this reason, different levels of liveness are defined.
Denote by L(Mo) the set of all possible firing sequences starting from Mo. A transition t

in a Petri net is said to be
(1) LO-live (or dead) if there is no firing sequence in L(Mo) in which t can fire.

(2) L1-live (potentially firable) if t can be fired at least once in some firing sequence
in L(Mo).

(3) L2-live if t can be fired at least k times in some firing sequence in L(Mo) given

any positive integer k.
35

(4) L3-live if t can be fired infinitely often in some firing sequence in L(Mo).
(5) L4-live (or live) if tis L1-live (potentially firable) in every marking in R(Mo).

For example, Transitions t0, t1, t2, t3 are LO live (dead), L1 live, L2 live and L3 live
respectively in the net of Figure 2.13

Figure 2.13: Transitions to, 11, t5, tzare LO live (dead), L1 live, L2 live
and L3 live respectively [22]

2.8 Modeling with Petri Nets

The success of any model depends on two factors: its modeling power and its decision
power. Modeling power refers to the ability to correctly represent the system to be
modeled; decision power refers to the ability to analyze the model and determine
properties of the modeled system [23]. The modeling power of Petri Nets has been
examined in this section and in next section we take into consideration the analysis

techniques of Petri Nets.

2.8.1 Basic Modeling Constructs

In this section, some basic situations are taken which are encountered often during
modeling a physical system. This section describes how Petri net handles these real life
modeling situations, thus revealing the modeling power and ease of representation of
Petri nets [22].

36

2.8.1.1 Sequential execution
Sequential execution poses a precedence constraint among the activities (transitions).

In Figure 2.14 transition t2 can fire only after the firing of t1.

t1 tZ

P1 Pz Pz

Figure 2.14: Transition t1 occurs first and then transition t2 occurs [22]

2.8.1.2 Synchronization
Petri nets can successfully capture the synchronization mechanism in the modeling
phase. In Figure 2.15 transition t1 will fire only when the empty input place gets a

token. Thus, the three input places of t1 are synchronized for the firing of transition t1.

Figure 2.15: Transition t1 fires when the place p2 gets a token so that all the
input places of transition t1 have tokens [22].

2.8.1.3 Conflict
In Figure 2.16 transitions ti, tzand tsare in conflict. All three transitions are enabled but
only one can fire at a time. Hence, choice has to be made regarding which transition

will be fired. Firing one will lead to the disabling of other transitions.

ts tz t3

Figure 2.16: Transition t1 occurs first and then transition t2 occurs [22]

37

2.8.1.4 Concurrency
In Figure 2.17 transitions t1, t2 and t3 are concurrent. Concurrency is characterized by
the existence of a forking transition that deposits tokens simultaneously in two or more

output places. In Figure 2.16 tois the forking transition.

) (..
L

Figure 2.17: Transitions t1, t2 and t3 are concurrent [22]

ta

2.8.1.5 Confusion

Confusion occurs when conflict and concurrency co-exist. In such a situation, it is not
clear that whether a conflict is needed to be resolved or not, in going to the new state
(marking). In Figure 2.18 transitions t:and tzare concurrent whereas transitions t: and t.

are in conflict. Also tzand tsare in conflict.

() (@)

ts

Figure 2.18: Transitions t1, t2 and t2, t3 are in conflict but t1, t3 are concurrent [22]

Confusions can be of two types: Symmetric Confusion and Asymmetric Confusion.
Figure 2.19 (a) shows Symmetric Confusion where t. and t; are concurrent (both

enabled and firable) and at the same time they are in conflict with t..

38

In Figure 2.19 (b), t:and t: are concurrent and if t: fires first, then t: and t will be in
conflict. This situation is called Asymmetric Confusion. Asymmetric confusion occurs
when one place feeds to a set of transitions via output arcs from it and there exists
another place in the net which feeds to a subset of those transitions. In Figure 2.19 (b)

the place p:feeds to a set of transitions {t., ts} via output arcs from p2and there exists a

place psin the net which feeds to {t:} = {t, t:}.

t

P2
t3
(a)

Figure 2.19: (a) Symmetric Confusion (b) Asymmetric Confusion [22]

(b)

2.8.2 Primitives for Programming Constructs

This section describes basic programming constructs in Petri net formalism. This, in
turn, will express the modeling power of Petri nets and these constructs will be used in

subsequent modeling examples [22].

2.8.2.1 Selection (if — else)
a) If condition A then do activity X, else do activity Y.

! ©

Y
Figure 2.20: If — else condition [22]

39

b) If condition A and condition B hold, then do activity X.

X Q

Figure 2.21: If — else with and operator [22]

2.8.2.2 Case (Switch) statement
If Case A do activity P, if Case B do activity Q, if Case C do activity R, if Case D do
activity S.

Figure 2.22: (a) Switch statement [22]

2.8.2.3 While loop
While condition A holds, do activity X.

Figure 2.23 While loop [22]

40

2.8.2.4 Repeat (for) loop
For condition A, do activity X.

S Eaas el

Null

Figure 2.24: For loop [22]

2.8.2.5 Precedence

Activity X should precede activity Y.

9

4
> I
r

Figure 2.25: Precedence relation [22]

2.8.2.6 Timed occurrence

After k seconds do activity X

k

Figure 2.26: Timed transition [22]

41

2.8.2.7 Either — or (Mutual exclusion)
a) Either do activity X or do activity Y.

Y

Figure 2.27: Either — or statement [22]

b) Either do activity X or do activity Y with preference to activity X (preferential either

- or)

Y

Figure 2.28: Preferential either — or statement [22]

2.9 Analysis of Petri Nets

We have introduced the modeling power of Petri nets in the previous sections.
However, modeling by itself is of little use. It is necessary to analyze the modeled
system. This analysis will hopefully lead to important insights into the behavior of the

modeled system [17].

Some of the methods used for modeling and analyzing systems with Petri nets are the

reachability tree and incidence matrix [21].

42

2.9.1 Reachability Analysis

Reachability analysis is conducted through the construction of reachability tree if the
net is bounded. Given a Petri net N, from its initial marking Mo, we can obtain as many
“new” markings as the number of the enabled transitions. From each new marking, we
can again reach more markings. Repeating the procedure over and over results in a tree
representation of the markings. Nodes represent markings generated from Mo and its
successors, and each arc represents a transition firing, which transforms one marking to

another.

The above tree representation, however, will grow infinitely large if the net is
unbounded. To keep the tree finite, we introduce a special symbol «, which can be
thought of as “infinity.” It has the properties that for each integer n,w>n, w+n=w, and
w>w. Generally, we do not know if a Petri net is bounded or not before we perform the

reachability analysis. However, we can construct a coverability tree if the net is
unbounded or a reachability tree if the net is bounded according to the following

general algorithm:
1. Label the initial marking MO as the root and tag it “new.”
2. For every new marking M:

2.1 If M is identical to a marking already appeared in the tree, then tag M “old” and

go to another new marking.

2.2 If no transitions are enabled at M, tag M “dead-end” and go to another new

marking.

2.3 While there exist enabled transitions at M, do the following for each enabled

transition t at M:

2.3.1 Obtain the marking M _ that results from firing t at M.

43

2.3.2 On the path from the root to M if there exists a marking M" such that M’
(p)= M" (p) for each place p and M=M", i.e., M" is coverable, then replace M'
(p) by o for each p such that M’ (p)>M" (p).

2.3.3 Introduce M' as a node, draw an arc with label t from M to M', and tag M’

[13 29

new.

If w appears in a marking, then the net is unbounded and the tree is a coverability tree;
otherwise, the net is bounded and the tree is a reachability tree. Merging the same
nodes in a coverability tree (Reachability tree) results in a coverability graph
(reachability graph) [17].

Example 2.3 (Reachability analysis)

Consider the Petri net shown in Figure 2.9. All reachable markings are Mo=(2, 0, 0, 0),
M:=(0, 2,1, 0), M2=(0, 1, 1, 1), Ms=(0, 2, 0, 1), Ms=(0, 0, 1, 2), Ms=(0, 1, 0, 2), and Ms
=(0, 0, 0, 3).

The reachability tree of this Petri net is shown in Figure 2.29(a), and the reachability
graph is shown in Figure 2.29(b).

:/ M_\\ Root "(/M
M .
ty
;w_

|

¢ ™, M

T ~ .
O M M., O M Mo
~2 o ~2 L N
ts £
| o
P N Bt Pl _“\.I T
I %) [M.: A i M-—_L { 1%}
N N =/ B/ x__i.)
2 old x /
ta ty i3 to
O XD S
e S N e =/
Dead-end Old
(a) ()

Figure 2.29: (a) Reachability tree. (b) Reachability graph. [17]

44

2.9.2 Incidence Matrix Analysis

An alternative method for representation and analysis of Petri nets is based on matrix equations

used to represent the dynamic behavior of Petri nets. The method involves constructing the

incidence matrix that defines all possible interconnections between places and transitions. The

incidence matrix of a Petri net is an matrix, where is the number of transitions and is the number

of places [21].

Incidence Matrix: For a Petri net PN with n transitions and m places, the incidence

matrix A = [aij] is an n x m matrix of integers and its typical entry is given by;

where aij" = w(i, j) is the weight of the arc from transition i to its output place
jandaij =wf(i, j) is the weight of the arc to transition i from its input place j.
Transition i is enabled at marking M iff

ai <=M(j),j=1,2 ..., m[18]

(a} — (b}

N/,m " /,,____f' -2 1 1

N 'H 1-1 0
\ = L, 1 0 -1

i - 0o -22
\ piie e (& jpa — —
2-.\.- .___ﬂ-"kx‘ 4 o
o .H'.‘\ 2
x\f — -_'_'_'__E_,__,—'—' ‘ | t3
e
P A

Figure 2.30: (b) The incidence matrix of a given Petri net in (a). [18]

45

2.10 Related works

Jaskanwal Minhas and Raman Kumar [24] proposed a technique to detect SQLIAs,
which uses combined static and dynamic analysis technique. In this, work stored the
valid query structure (static queries) in a database. And in runtime removed attribute
values of dynamic queries and compared with previously stored static queries having
the same number of tokens as in dynamic query. If a match is found requested dynamic

query is valid query otherwise it is SQL Injection Attack.

The advantages of a proposed system are: Firstly, reduce false positives and a false
negative by using a model is combined static and dynamic analysis technique.
Secondly, it can improve response time by comparing dynamic queries only with that
static query having the same number of tokens. Thirdly, it simplicity framework
because is complexity of the algorithm is divided into two parts- first token calculation
and second searching for dynamic query. Fourthly, it defines and detects a new type of
SQLIA known as white space manipulation. Fifthly, SQL query independent of the
database by removing of attribute values from SQL query.

This research didn’t refer to any limitation but also didn’t refer to an ability of detect

new SQLIA forms.

Diksha Gautam Kumar and Madhumita Chatterjee [25] proposed a block model
against SQL injection attacks. The model works both on client and server side. Client
side implements a filter program that checks the length and data type of the submitted
variables, and detects the injection-sensitive characters and keywords. Server side is
based on entropy in information theory, and it works in two phases training and
detection. In training phase first to compute the static entropy of each query in the
source code based on complexity the entropy and is derived from token’s probability
distribution. Next, apply Message authentication code (MAC) on entropy. Finally, this
entropy is stored in a database. In detection, Phase first created entropy to dynamic

query in run time. Next, apply MAC on entropy calculated from first step. Finally

46

compare entropy stored in a database (static) with dynamic query to detect an attack.

Client side and server side are shown in figure 2.31 & figure 2.32 respectively.

The advantages of a proposed system are: Firstly, client side reduces CPU cycles since
it avoids a number of round trips to the server. Secondly, it can detect all known SQLI
attacks. Thirdly, it can reveal several unknown vulnerabilities. It does not rely on the
specific type of attack inputs. Fourthly, does not require tainted data flow analysis or
complex static analysis. Fifthly, can be applied for a wide variety of scripting

languages and by applying Mac; we provide an additional layer of security.

The Limitations of a proposed system are: In the client, sides are firstly limiting the
size of input and restricting the use of special characters cannot be imposed on user in
all applications. Secondly, the protection provided by client side scripts can be easily

bypassed. This approach does not address the SQLIA in stored procedures.

Subnmt
to
Server

Size = N Special
Specified Character

ﬂ‘fes BYE-E.

Display Error Message and
Transfer to Error Page

User
Imput

Figure 2.31: Client Side Framework [25]

47

Prograin Server Static ™I Static
Source |:> Script ‘:> Entropwy |:> . |:> MMAC
Code Analyser Calculator C DB
> |
—
-— |
-
Training Phase Key I
Generator |
"""""""""" st & Storage |07 T
Detection Phase
. |
-
-~

Query Dymamic Dynanmic

% |
Invoca |::> Entropwy A MLAC >
tion Calculator C DB
Yes SQLI

Benign Query

Execute

Figure 2.32: Server Side Framework [25]

Witt Yi Win and Hnin Hnin Htun [3] proposed a framework to detect SQL injection
attacks. The main idea of this framework is combined static analysis and Runtime
Monitoring as shown in figure 2.33. In its static analysis, part uses program analysis
technique to automatically build the abstract legitimate queries that could be generated
by the application and after that store, these abstract legitimate queries separately
according to the query statement in a master database. In its dynamic part, monitors the
dynamically generated queries at runtime and checks them with the statically-generated
queries pervious stored in a master database. In case not matched, then it is flagged as
SQLIA, else it is passed.

The advantages of a proposed system are:, this framework is eliminated the problem of
false negatives that may result from the incomplete identification of all untrusted data
sources because is based on positive tainting, which explicitly identifies trusted (rather
than untrusted) data in a program. Secondly, it can reduce the runtime scanning
overhead by restricting the number of queries that need to be scanned along any

execution path that is taken in the program.

This research didn’t refer to any limitation but also didn’t refer to an ability of detect

all types of SQLIA,; it was referring to five types in evaluation.
48

K] [|Runtime query
% Token Generabion
Staic: Query W []
Get query fype and Transfomed
no of fokens Jery natiem
Token Generation v
i
E 4
Static false
: Exract uery als
Transfomed . Block the
] o comesponding » Maiching
query pattem Maste query
Database Query patiem
g
Send query fo L,
database server Dafabase
Stafic Analysis Runtime Validation SEer

Figure 2.33: Overview of the Proposed System [3]

Reshma Rai and Jitendra Jadhav [26] proposed a technique that uses a concept of
filter called “Smart Filter,” that avoid the SQL injections with static matching and
dynamic signature based intrusion-detection mechanism. This smart filter actually
works in between the web application & database server. Therefore, before sending
SQL queries to the database, the smart filter will analyze the query to check the
vulnerability. If it found any, it reported else it forwards the query to the database
server. Apart from the checking, the SQL query by smart filter, it also reports the new
vulnerabilities found in SQL queries. This technique implements in three modules
Injection parser module, signature based detection module and threat recorder module

all of these modules are shown in Figure 2.34.

a) Injection parser module: It used a recursive descent parser to ensure the

administrator that; the query does not contain any vulnerable character.

49

b) Signature based detection module: It is the core part of the proposed technique. It
works when: Query may have special characters or injected query cannot detect by
the injection parser module. It can upgrade the knowledge using supervised-

learning; the administrator can update the knowledge of the system periodically.

¢) Threat recorder module: It is developed for the auditing purpose, as it generates
the reports that help the administrator to identify the errors, choose the signatures to
upgrade the system knowledge. This module and log file recording is also

important to keeping track of applications that have little to no human interaction.

The advantages of a proposed system are: Firstly, it provides a standard and common
guideline for the evaluation process of detection and prevention of SQL injection
attack tools in general without any restriction or limitations. Secondly, database and
operating system independent. Thirdly, it provides a complete evaluation by analyzing

different aspects of the tool.

The Limitation of a proposed system is: a language dependent; one has to migrate the

logic to other language.

i \ Smart Filter
‘.._-_\ . - —
== \"‘-.‘_ o - _.---"___ - o
|: Network :?
. — /-'
= d
_//—"" ' Smart Filter .
/ Web Server Database Engine
—v—él :"*'1(?11“[.3 1 Module 2 Module 3
. —— N Injection Signature Threat Recording
Parser Module Based Module
Client Side
Server Side

Figure 2.34: Details of Smart Filter [26]
50

Jalal Omer Atoum and Amer Jibril Qaralleh [27] proposed a hybrid technique
combined static and runtime SQL queries analysis to create a defense strategy that can
detect and prevent various types of SQL injection attacks. This technique is done in
two main phases: runtime analysis, and static analysis. The first phase is a
dynamic/runtime analysis method that depends on applying tracking methods to trace
and monitor the execution processes of all received queries. The result of affected
objects of this monitoring will be compared with a prepared set of expected changes
that the developer had created before, and the result of this comparison process will
decide if there is an existence of any type of SQLIA, and if so they will be forwarded
to the following phase. The next phase is a static analysis phase that is performing a
string comparison between the received SQL queries and previous expected SQL
queries to prevent any query that is described as a suspicious query. This technique is
based on different stages to reject any malicious query from being passed through the

database engine before its execution process.

The advantages of a proposed system are: Firstly, it can detect and prevent SQLIAs
that are performed through the system or through a direct SQL query to the database.
Secondly, it is the only one that can detect and prevent SQLIAs that are using Built-In

functions to perform such attacks.

The Limitations of a proposed system are: the time delay that the database recovery
takes after the SQLIA is detected is needed to increase, also didn’t refer to an ability of
detect new SQLIA forms.

Pranita Talekar, et al [28] proposed a technique for detecting and preventing SQLIA
using both static phase and dynamic phase. This technique uses static Anomaly
Detection using Aho—Corasick Pattern matching algorithm. In Static Phase, the user
generated SQL Queries Compared with the stored in Static Pattern List (list of known
Anomaly Pattern), If the pattern is exactly match with one of the stored pattern then the

SQL Query is affected with SQL Injection Attack. In Dynamic Phase, if any new
51

anomaly is occur then Alarm will indicate and new Anomaly Pattern will be generated.

The new anomaly pattern will be updated to the Static Pattern List.

The results of this technique show that model protects against 100% of tested attacks

before reaching the database layer.

The Limitation of a proposed system is not eliminated the problem of false negatives
that may result from the incomplete identification of all Patterns because is based on

known Anomaly Pattern.

Ammar Alazab, et al [29] proposed a general model for protecting web applications
based on SQL syntax at the web application layer, and negative taint at the database
layer. It performs negative taint by storing untrusted markings, based on the evasion
methods, at the database layer. Also, performs syntax-aware evaluation in web
application server of query strings, before executing the query in the database, by
validating queries whose input matches with untrusted markings that contain one or
more characters without trust markings, the matching process done with SQL

keywords and operators.

Applying negative taint in database layer helps us to identify untrusted data in the
database layer. Also, able to detect maliciousness caused by tricky data and
obfuscation techniques while and minimizing false negatives. The main challenge, is

that if the username and password correct not always led to a legitimate query.

The major advantage of a proposed system is: apart from efficiently is that it does not

change the web architecture.

The Limitation of a proposed system is: test the model with a larger dataset and with a

more comprehensive vulnerabilities lookup for various other obfuscations.

52

Login Screen

User Name || Userl I

FireWall Web, Serven

Web Application

1. Syntax Evaluation

Vulnerabilities

2. Negative Tainting
check

Union

Arithmetic

Operation

etc.
M—/

Figure 2.35: Methodology of the Proposed System [29]

In our model we integrate hybrid techniques, combined static and dynamic analysis,
which are used in studies 1, 2 and 5, positive tainting technique is used in study 3,
negative tainting technique is used in both studies 6 and 7, and Signature based
technique is used in study 4. We integrate all these techniques to provide more than
one level of defense in order to build a high secured system. This system not only
detects known attack, but it has the ability to detect unknown attack by using learned
based technique -Anomaly Detection and the ability to reduce false positives and false

negative alarm.

53

Chapter 3 - Research Methodology

3.1 Introduction

This chapter explains the research methodology applied in this thesis. It describes the

overall phases to build secure system.

3.2 The Research Methodology

This thesis involves the main phases and outputs for each phase as shown in Figure
3.1

Risk analysis phase

!

Determine SOLIV & SOLIA

l

Security requirements definition and

determination phase

I

Security requirements

!

The model development phase

l

Proposed model

v

Formal specification and verification

of the proposed model using Petri

Nets notations phase

Final proposed model

Figure 3.1: Main Phases for Research Methodology
54

3.2.1 Risk analysis phase

To determine security’s requirements for building a secure system, firstly, we need to
analyze the risk to identify vulnerabilities (SQLIVS). We use these SQLIVs to identify
attacks (SQLIAS) in section 2.3; we present these SQLIAS. The outputs from this phase
are SQLIAs.

3.2.2 Security requirements definition and determination

phase

The first step to determine security’s requirements is SQLIAs mentioned in the
previous section. The next step, in order to identify the security services, we use these
SQLIAs, which illustrated in section 2.4, the last step, in order to achieve security
services; we use security mechanisms as illustrated in section 2.5. The outputs from

this phase are security’s requirements.

3.2.3 The model development phase

In this research, we propose a model by using many of the security mechanisms to
achieve security requirements illustrated in previous section to build protected system.
In chapter 4, we will present this phase in more details. The output from this phase is a

propose model.

3.2.4 Formal specification and verification of the proposed

model using Petri Nets notations phase

At this phase, we present formal specification and verification to propose a model,
using Petri nets notations. In chapter 5, we will present this phase in more details. The

output from this phase is a final propose model.

55

Chapter 4 — The Proposed Model

4.1 Introduction

This chapter explains the proposed model. It describes the overall phases of the model

used in this study.

4.2 Risk analysis & Security requirements

Table 4.1 shows the abstract needed to build Entire model depending on risk analysis

& critical review in section (2.3, 2.4).

Security requirements IS S =:
8 &8 = o8 2
x S x = x 3 x P
n g n 2 n = w e
> 5 o} -

< < O

* *

*

* *
* *
* * *

*

*

Table 4.1 Risk Analysis & Security Requirements

56

4.3 Proposed Model

Depend on previous stage 4.2 we build our model by combining a number of defense

techniques. We categorized them as based on literature in section 2.5 as the following:

»

»

»

»

»

»

»

By nature of defense (Prevention, detection and deflection)

By detection principle (Grammar based violation, Signature based, Tainted data
flow [positive tainting, negative tainting] and anomaly detection [learning
based]).

By analysis method (hybrid analysis (static analysis, dynamic analysis))
By detection time (coding time, testing time, operation time)

By detection location (server-side application, server-side proxy)

By response(report, user defined action)

By implementation(no modification of code base)

Figure 4.1 shows the abstract levels of the model.

Initial Phase

!

Training Phase

¢

Detection phase

Figure 4.1 Main Phases of Proposed Maodel

Figure 4.2, Figure 4.3 & Figure 4.4 respectively, shows the abstract levels for all

phases of the model.

57

Defense

techniques‘ \I - -" Server-side application, Grammar based violation,

b
1
1
1
1
\

Analysis module

(Static Analysis)

.

Detector Module

(Crammer base)

Initial Self

Detectors

Detector Module

(Signature based)

Initial Non-

Self Detectors

Figure 4.2 Abstract Level of Initial Phase

58

Defense

- —— = = = = =
- =~

techniques- - Server-side proxy, Tainted data flow ™

[positive tainting], anomaly detection

[learning based] dynamic analysis,

N -

o —————

testing time

U

Runtime Monitoring Module
(Dynamic analysis)

!

Create or Update
Self Flow
Detector

- - ~-o

Server-side proxy, Tainted data flow)

Create or Update
Self Detector

Defense

-

techniques - - #/*

[negative tainting], anomaly detection

[learning based] dynamic analysis,

r--
1
1
1
1
1
1
1
1
1
1
1
1
1

testing time

Runtime Monitoring Module
(Dynamic analysis)

!

Create or Update
Non-Self Flow
Detector

Create or Update
Non-Self
Detector

Figure 4.3 Abstract Level of Training Phase
59

Real
Database

C

Self
Detectors
&Self Flow
Detectors

N,

Virtual

Database

C D

Non-Self
Detectors
T
&Non-Self
Flow
® Detectors

N—

Legitimate
SQL

Defense

Real
Database

techniques,~ detection, deflection, Grammar

*y based violation, Signature based,
Tainted data flow, anomaly
detection, dynamic analysis,

operation time, report, user

N e e e — — — — — — — — ——————

S —

defined action, no modification of ,

Legitimate “

* Web Application Source
Code

!

Runtime Monitoring

Module (Dynamic

analvsis)

!

Detector Matching

Module & response
Module

Virtual
Database
SQLIAs or
Suspected SQL

Self & Non- Self & Non-
Self Flow Self
Detectors

-

Detectors

-

Figure 4.4 Abstract Level of Detection Phase
60

4.3.1 Initial phase (create initial values & initial detectors)

In this phase, we create initial detectors used to identify normal query from injected
query. These detectors divided into two types self and non-self detectors; self-detector

represent normal queries, and non-self detectors represent injected queries.

The initial detector is used as first line of defense, this detector generally is rule contain

some elements that can be used to recognize query.
At this phase should also define the threshold value.

4.3.1.1 Convert SQL query to detector format
a. Determine the main token in SQL query, SEVEN keyword (SELECT, INSERT,
UPDATE, DELETE, CREAT, DROP, ALTER)

b. Convert SQL query to tokens using space as a delimiter by token in query.
c. Calculate numbers of tokens in SQL query.

d. Create a fitness flag to represent the number of occurrences of this query, initial

values are zero.

e. Put this SQL query in detector format; see Figure 4.5.

Main token Numbers oftokens_ Fitness

Figure 4.5 Detector Format
The main steps of this phase illustrated in Figure 4.6.

4.3.1.2 Create initial self detectors

In this sub-phase, we create self-detectors as the following:

1. Extract all possible SQL queries in web application source code using static analysis

technique.

61

2. Convert all SQL query to detector Format.
3. Store initial self detector in disk.
The main steps of this phase illustrated in Figure 4.7.

Start

v

SQL Query

!

Determine the main token in
SQL query

}

Convert SQL query to tokens

|

Calculate numbers of tokens in
SQL query

!

Create a fitness flag by zero value

!

Put SQL query in detector format

!

Detector

|

End

Figure 4.6 Convert SQL query to detector format

62

Start

l

Extract all possible SQL queries in

application

!

Convert queries to self detectors

l

Store Initial self detectors in disk

!

Initial self detectors

}

End

Figure 4.7 Create Initial Self Detectors

4.3.1.3 Create initial non-self detectors

In this phase, we adopt the sensitive characters/keywords of the SQLIAs and convert
them to detector format as initial non-self detectors. According to [25] the sensitive
characters/keywords of the SQLIA include: "exec", "xp_", "sp_", "declare", "Union
MU= 0 O M, which are not to be bound to use in the general

structure query statement. After determine the sensitive keywords of the SQLIA, we

represent these keywords as non-self detectors.

The main steps of this phase illustrated in Figure 4.8.

63

Start

!

Adopt SQLIA keywords

!

Convert SQLIA keywords to non-self

detectors

}

Store Initial non-self detectors in disk

!

Initial non-self

detectors

!

End

Figure 4.8 Create Initial Non-self Detectors

4.3.2 Training Phase (Update detectors and Create flow

detectors)

We used normal and injected query at runtime application and compare runtime query

with initial detectors to update them and create flow detectors.
This phase we spited to two sub-phases as follows:

4.3.2.1 Update self detectors and create self flow detectors

After create initial self-detectors, we used them to identify normal query from injected
query. We monitor the web application in runtime at training time. At this time, we
request normal query to application and compared with initial self detectors, if a
detector is matched, then increase fitness of this detector and store flow of this query as
self-flow detectors. If no matches found, then add this query to self-detectors to reduce

false-positive alarms in detection phase; see Figure 4.9.

64

4.3.2.2 Update non-self detectors and create non-self flow detectors

After create initial non-self detectors we used them to identify normal query from
injected query. We monitor the web application in runtime at training time. In this time
we request injected query to application and compared with non-self detectors, if
detector is match then increase fitness of this detector and store flow of this query as
non-self flow detectors. If no matches found then add this query to non-self detectors

to reduce false negative in detection phase; see Figure 4.10

65

Start

v

Monitoring application during runtime

v

» Insert normal query to application

v

Convert query to detector format

v

No Is query found ves x
Add to self detectors Increase fitness to self
“— in initial self —>
detector

detectors?

\ 4

Extract flow of query
No Is flow found in ves i
Add to self flow Increase fitness to self
<+ self flow —>
detectors flow detector
detectors?

No

Is finished

training time?

l Yes

Final self detectors &

self flow detectors

v

End

Figure 4.9 Update Self Detectors & Create Self Flow Detectors
66

Start

v

Monitoring application during runtime

v

» Insert malicious query to application

v

Convert query to detector format

v

Yes
No Is query found
Add to non-self) q) -y Increase fitness to
I — in initial non- —>
detectors non-self detector
self detectors?
v
Extract flow of query
No Is flow found in ves -
Add to non-self flow Increase fitness to
<+ non-self flow —>
detectors non-self flow detector
detectors?

v

No Is finished

training time?

l Yes

Final non-self detectors &

non-self flow detectors

v

End

Figure 4.10 Update Non-self Detectors & Create Non-self flow Detectors
67

4.3.3 Detection phase

After create detectors and flow detectors we run the model in the reality in detection

phase; see Figure 4.11
This phase we can summarized as follow:
Start Step(S):
1) Monitoring application during runtime.
2) Execute query.
3) Convert query to detector format.
4) Extract flow of query.
5) Compare query with self detectors
» If found: marked detector & flow detector as self then go to step (A).
» If not found : Compare query with non-self detectors
v'If found: marked detector & flow detector as non-self then go to step (A).

v'If not found: marked detector & flow detector as suspected then go to step (B).

Step A:
Is this detector, holds self mark?
» |If yes: compare flow of query with self flow detectors

= |f found: increase the fitness of self detector and self flow detector and execute

the query in real database then go to step (S).

» |f not found : compare flow of query with non-self flow detectors

68

e If found: go to step (C).
e If not found: Compare fitness of self detector with threshold value
o If (fitness >= threshold) execute the query in real database then go to step (S).
o If (fitness < threshold) then go to step (D).
» If No: compare flow of query with non-self flow detectors

= |f found: increase the fitness of non-self detector and non-self flow detector and

execute the query in virtual database then go to step (S).
= |f not found : compare flow of query with self flow detectors
e |f found: go to step (C).
e |f not found: Compare fitness of non-self detector with threshold value

o If (fitness >= threshold) execute the query in virtual database then go to
step (S).

o If (fitness < threshold) then go to step (D).

Step C:
Is this detector, holds self mark?
» If yes: Compare fitness of self detector with threshold value

o If (fitness >= threshold): Compare fitness of non-self flow detector with

threshold value
o If (fitness < threshold) execute the query in real database then go to step (S).

o If (fitness >= threshold) execute the query in virtual database then go to step
(S).
69

o If (fitness < threshold): execute the query in virtual database then go to step

(S).
» If No: Compare fitness of non-self detector with threshold value

e |f (fitness >= threshold): Compare fitness of self flow detector with threshold

value

o If (fitness < threshold) execute the query in virtual database then go to step

(S).

oIf (fitness >= threshold) execute the query in real database then go to step

(S).
e | (fitness < threshold): execute the query in real database then go to step (S).
Step B:
Compare flow of query with self flow detectors
» |If found: Compare fitness of self flow detector with threshold value

e If (fitness >= threshold) execute the query in real database then go to step

(S).
o |f (fitness < threshold) go to step (D).
» If not found: Compare flow of query with non-self flow detector.
e |f found: Compare fitness of non-self flow detector with threshold value

o If (fitness >= threshold) execute the query in virtual database then

go to step (S).
o If (fitness < threshold) go to step (D).

e |f not found: go to step (D).

70

Step D:

Send a message to system administrator and wait for the response until the end of

waiting time.

= If admin response: add this query as selected by admin and execute it then go to
step (S).

= If admin not response: execute the query in virtual database then go to step (S).

Table 4.2 shows the probabilities of query classification in detection phase.

Detector

Flow Detector
*Admin

Selected/
Non-Self

—

*Admin
Selected/
Non-Self

*Admin *Admin
Selected/ | Selected/
Non-Self | Non-Self

*Admin
Selected/
Non-Self

Table 4.2 Query Classification Probabilities in Detection Phase

(F) Fitness, (T) Threshold
(*)Suspected Query (As selected by admin Or Non-Self if not selected)

71

S

Monitoring application during runtime

v

Extract flow of query +— Execute query

v

Convert query to detector format
|

v

No Is detector Yes

i— found in self
detectors? ’
v

Put self mark to detector

No Compare detector Yes
. & flow detector
with non-self
detectors
\ 4
Put suspected mark to Put non-self mark to
detector & flow detector > detector & flow detector

!

Figure 4.11 Start Step(S) in Detection Phase

72

Is this detector,

No Yes
- holds self
l mark?
Compare flow No No
with non-self . -_
flow detectors
lYes
Increase fitness of non-self
detector and non-self flow
detector
Compare flow
with non-self
No Compare flow flow detectors
with self flow
r detectors
Yes
Is fitness of Yes
non-self
detector > o
threshold? No

database and send response

Compare flow
with self flow

detectors

l Yes

Increase fitness of self detector

and self flow detector

No

Is fitness of self
detector >
threshold?

l Yes
v

Manipulate query in real

database and send response

l Yes
v
Manipulate query in virtual

Figure 4.12 Step A in Detection Phase
73

No

No

No

Is fitness of non-
self detector >
=threshold?

Yesl

Is fitness of self
flow detector <
threshold?

Yes l

Manipulate query in virtual

database and send response

Is this query,
holds self

mark?

A

Is fitness of
self detector

>= threshold?

Yesl

Is fitness of non-
self flow detector

< threshold?

Yes l

Manipulate query in real

database and send response

Figure 4.13 Step C in Detection Phase

74

Compare with Compare with
No Yes
self flow —> non-self flow
detectors detectors
lYes
No
Is fitness of self Is fitness of non-
No No
flow detector > self flow
threshold? detector >
l Yes v l Yes

Manipulate query in real Put suspected mark to Manipulate query in virtual
database and send response detector & flow database and send response
detector

Figure 4.14 Step B in Detection Phase

75

Send to Admin for

response

|
v No

Is Is waiting the
- No
administrator S response time
responded? finished?
Yes
l Yes

Add this query as
admin selected

l

Is this query,
No
select as
self?
Yes
v v

Manipulate query in real Manipulate query in virtual
database and send response database and send response

Figure 4.13 Step D in Detection Phase

76

Chapter 5 - Formal Specification and

Verification

5.1 Tina Tool

Tina (TIme petri Net Analyzer) is a toolbox for the editing and analyzing Petri nets and
Time Petri nets. The toolbox includes an editor for graphical or textual description of
Petri nets and Time Petri nets. TINA can perform construction of reachability graphs,
perform structural and path analysis. TINA was developed by the OLC group at LAAS
(Laboratory of Analysis and Architecture of Systems) which is a research unit in the
CNRS (National Center for Scientific Research) at Toulouse Cedex, France. OLC is a

group that carries on research activities in the design of communication software.

The TINA toolbox contains set of tools in our model we use the following:

» nd (NetDraw): Editor and GUI for Petri nets, Time Petri Nets and Automata.
Handles graphically or textually described nets or automata. Includes drawing
facilities for nets and automata and a stepper simulator for nets.

» play: Stepper simulator: Allows to simulate interactively and step by step net
descriptions in all formats accepted by tina. Its capabilities are similar to those of
the nd stepper except that it is faster and may also simulate Time Transition
Systems [30].

5.2 Formal Specification Using Tina Tool

In our model we use nd in Tina Tool to draw all models by using Petri Nets notation

shown from Figure 5.1 to Figure 5.10.

77

5.2.1 Initial Phase (Create initial Detectors)

5.2.1.1 Convert SQL Query To Detector

SQL Que
v Calculate Numbers of Tokens in Query ~ Query Numbers of Tokens

saLa

QNT

NTQ

Determine the Main Token in query Create a Fitness Fag by Zero Value

CFF

=

Query Mg Fitness,Created

FC

Convert Query to Tokens Put SQL Query in Detector Format

Y

RSQLQDF

Figure 5.1 Convert SQL Query to Detector Using Petri Nets Notation
78

5.2.1.2 Create initial self detectors

Source Code Extract All Possible SQL Queries SQL Queries

oy

EAPSQLQs

SQLQs

Convert to Self Detectors

CSDs

Self Dgiectors

SDs

Store Self Defectors in Disk

S5DsD

Initial Se tectors

ISDs

Figure 5.2 Create Initial Self Detectors Using Petri Nets Notation
79

5.2.1.3 Create initial non-self detectors

Start Adopt SQLIA Keywords SQLIA Keywords
@ S >| I O SQLIAK
ASQLIAK

Convert to Non-Self Detectors
Y

CNSDs

Non-Self Detectors

NSDs

Store Non-Self Eletectﬂrs in Disk

SNSDsD

Initial Non-Sgif Detetcors

INSDs

Figure 5.3 Create Initial Non-Self Detectors Using Petri Nets Notation
380

5.2.2 Training Phase (Update detectors and Create flow

detectors)

5.2.2.1 Update self detectors and create self flow detectors

Start Preparation of Input Training time

(o) Ny
/ ~J
cg Code eal Database Initial Self Flow Detectors
T
. sc RDB . ISSFDs

Runtime Nlonitoring

Initial Self Detectors Normal Queries

Insert Norfnal Query Copy of Query

Instance2 of Query Instance] of Query

Extract Self Flow of Query

ESFQ

Self FlowlDetector

. SFD

Compare With Storedl Seff Flow Detectors
Cs$D CSfFD

‘Self Detegfor Existed
Self Flow Defector Existed

. SDE
. SFDE

.
.
Add to Self Flow Détectors Increase hm‘ess to Self Flow Detector
ASFDS\'-\
-, N
Add to Self Detectors Increase Fitnesss to Self Detector \\

E Self FlowDetectors Updated

AN

Self Defegtors Updated

SPsy-

T

Check Trg

Repeat gll steps

[Raske

ol

Final Self Detectors & Self Flow Detectors

ining Time

Figure 5.4 Update Self Detectors & Create Self Flow Detectors Using Petri Nets Notation
81

5.2.2.2 Update non-self detectors and create flow non-self detectors

Start

Preparation of Input Training time

@s

Repeat Al Steps

Initial Non-Self Detectors

S {)n

Malicious Queries Sourcg Code rtual Database itial Non-Self Flow Detsctors

Ty
. sc VDB . INSFDs

Insert Maligious Query Copy of Query Runtime Monitoring

Instance Lof Query

Extract Non-Self Fow of Query

ENSFQ

Non-Self Flgw Detector

. NSFD

On- Compare With Non;SelfFlow Detectors
CNSDs CNSFDs

Non-Self Defector Existed
Non-Self Flow [etector Existed

. NSDE
. NSFDE
._\‘-
s
Add to Non-Self FlowDetectors Increase F\Il\mQS to Non-Self Flow Detector

\
ANSFD¥
A

Add to Non-Self Detectors Increase Fitnessito Non-Self Detector

. . Non-Self Fl

ANSDs NSD

Non-Self Detectors Updated

Check Training Time

@_

Final Non-Self Detectors & Non-Self Flow Detectors

Figure 5.5 Update Non-Self Detectors & Create Non-Self Flow Detectors Using Petri Nets Notation

82

5.2.3 Detection phase

5.2.3.1 Start Step (S) in detection phase

Step S Prepartation of Input

O

Runtime Nlonitoring

Virtual Database,
tored Self & Non-Self Detectors

Request Quegy to Execution SS&NSD

Extract Flow of Query Executg Query

Copy2 of Query

Copy1 of Query

Convert Query to Detector

Compare With Stored Non-Self Detectors

Flow q=tec10r Non-Self Defector Existed

ctor & Flow Detector

Put Suspected Mal or ut Self Mark to Detg

Figure 5.6 Start Step(S) in Detection Phase Using Petri Nets Notation
83

5.2.3.2 Step A in detection phase

Step A Preparation Of Input

O L

Virtual Database

Stored Non-Self Flow Detecto lol?d Self Flow Dete

\‘Ossm

\
Check Detpctor Mark \\

Real Database

Compare Flow with Non-Sg Compare Flov)wilh Self Flow Detectors

Compare Flow with Non-Self Flow Detectors Self Flow Dejector Existed

CFNSFDs

=3

Cf

Non-Self Flow Detector Existeg Increase Fitness of Seff Defector & Self Flow Detector

SFOE GoloSiepCl GoloSepCl] NSFOE

EFNSDSNSFD

EFSDRSFD

Non-Self Detector & Non-galf Flow Detector Updated Self Detector & Seff Flow Detector Updated

)

NSD8NSFOU SORSFDU

Compare Non-Self Detector Fitness with Threshold Compare Sef Detector Fitness with Threshold

Execut Self[1
Exacute Querylas Non-Self [1] ecute Quaty as Self[1]

CSDFT

Self Detector Fitrless>=Threshold

SDF>=T

\is% Query as Seff [

Manipulate Query |

\

Manipulaté()‘uery in Real Database

EQS1

MQRDB

Figure 5.7 Step A in Detection Phase Using Petri Nets Notation
84

5.2.3.3 Step B in detection phase

StepB Prepration of Input

©=

Virtual Database

Real Database

.\\
\sm@ Self Flow Detectors
- RDB
SSFD

Suspected Detector & Juspected FlowDetector)

Stored Non-Self Flow Detegler

Compare Se Detector Fitness with Thresheld
Y

I

CSFDFT

Non-Self Flow [Jetector Existed GotoStepD[2]

Self Flow Detector fitness>=Threshold Execute Query as Self

Execute Query as Non-Self ~ Non-Self Flow Detecigr Fitness>=Threshold

NSFDF>=T

GOtOSpD[S] Gofo S pD“]

Non-Self Executed Self Expeuted

GStD3
NSE SE
5,
Manipulate Query [n Virttial Database Step S Manipulate Qugry jn Real Database
MQVDE MQRDB

Figure 5.8 Step B in Detection Phase Using Petri Nets Notation
85

5.2.3.4 Step C in detection phase

StepC Prepration of Input

(9=
S T

Virtual Database
low Detector \ H"‘“H-.H
B Real Database
\ ‘MH"‘“\“_

..
RDB
Stored SelfBefetcors & Non-Self Flow Detetcors

SNSD&SFD Check Defector Mark . SSDENSFD

Compare Non-Self Detector Fitness with Threshold Compare Self Detecton Fitness with Threshold

CSDFT

Non-Seff Detector Fjtness >=Threshold

Self Detector Fitness >=Threshold

NSDF>=T SDF>=T
Execute Query as Self[1] Execute Query as Non-Self 1]

Compare Self Flow Fitness with Threshold Eqs)f\ QNS1

Compare Non-Self Flow Fitness with Threshold

|

CNSFFT

Self Flow Detector fitness < Threshold Non-Self Flow Detectr Fitness <Threshold

. NSFDF<T

Execute Query as Self [3]

SFDF<T
" Execute Queryas Self 2]
—

Il

EQS2 \\\

Execute Query as Non-Self [2]

EQNSZ
Execute Query|as Non-Self [3]

.

EQNS3 ™. EQS3
\\\‘
“Hon-Self Exg \Se Execut
. N ‘
. NSE
Manipulate Query in Virtual Database Manipulate Query|in Real Database
< |
MQVDB T MQRDB
"““HH Step S

O

Figure 5.9 Step C in Detection Phase Using Petri Nets Notation
86

5.2.3.5 Step D in detection phase

SkepD

Preprafion of Input

O

Virtual Database

Suspected Defector & guspected FlowDetector

Send to Administrator

Wait Administrator response Add to Detector as Administrator Choice

Add as Non-Self

Waiting Tinle Finished Check Waiting Time

WIF
Self Detector & Self Fow Detector Updated
Non-Self Detector & Non-eff Flow Detector Updated
SD&SFOU
(NSD&NSFDU
Execute Query|as Non-Self [1]
Execute Query as Seff
EQNS1
Execute Query|as Non-Seff[2] Non-Self[Fxecuted Seff Executed

:N' NSE

Step Stat

- ™

Mani

Real Database

RDB

e Querylin Real Database

MavDe

/
r"/
Manipulate QueryLrerual Database

s
\J

MQRDB

Figure 5.10 Step D in Detection Phase Using Petri Nets Notation
87

5.3 Verification Using Tina Tool

In our model we use Stepper simulator for all parts of model to follow the firing of

Petri Nets transitions (events execution) to check dynamic behavior of model.

For instance, suppose we have these sequence of messages (EAPSQLQs - Extract All
Possible SQL Queries, CSDs - Convert to Self Detectors, SSDsD - Store Self Detectors
in Disk) these transition of Create Initial Self Detectors shown in Figure 5.2, transition
EAPSQLQs is only enabled transition at the beginning of execution because the input
place SC is contains number of tokens equal to weight of the directed arc connected
them; this transition should be fired by removes token form input place SC and
deposits token to output place SQLQs; to make enable the CSDs transitions and so on.
We show the flow of transition & safeness of the model in Figure 5.11 and Figure 5.12

respectively.

88

File ~Mode Help File Mode Help
_ —_—
~
Source Code ,Eﬁact All Possible SQL Queries\, SQL Queries Source Code Exdract All Possible SQL Queries SQL Queries
\]
* Sfl -;. > SQLQs SE > »{ & | 50QLQs
1 ! | . \
\ EAPSQLQs / EAPSQLQs P
N\ / 7 ~
So — - /Cunverth If Detectors / Convert to SIf Detectars >
- /
. N
\ /
\ CYDs 7
\ ~ — — - /
Self Defectors SeIng ectors
SDs () SDs
Store Self Detectors in Disk Store Self Defectors in Disk
SShsD
Step 1: Step 2:
Initial SelfPetectors Initial Sel Petectors
EAPSQLQs 1505 CSDs O.sm
Enabled Enabled
D [GED GEp Fle Hode Hep
Source Code Extract All Possible SQL Queries SQL Queries

I
|

>O SQLQs

Convert to Sgif Detectors

[]

CY0s

Ocr‘
>

EAPSQLQs

Self Dg ectors

o

-——-

- N

e
4 -
/ Store Self Deflectors in Disk ~ \

‘ L] '
\ /

S sshD e
Step 3: o
Initial Sel Petectnrs
SSDsD O
Enabled

Source Code

Extract All Possible SQL Queries

SQL Queries

h 4

SQLQs

-
EAPSQLOs

O(‘P
7

Step 4:

End execution

Convert to Sglf Detectors

Self Degectors

SDs

Store Self Detectors in Disk

Figure 5.11 Flow of Transition Using Stepper Simulator Manually

89

File Mode Help
- =~

File Mode Help

— -~

~

~

/ r Source Code Piract All Possible SQL Queries SQL Queries

v N
Source Code Extract All Possible SQL Querids SQL Queries \

Convert to Sgif Detectors

[]

C3Ds
P
, N
/ Self Degectors \

! 1
| (.) SDs
\ 1

/
N ’
~ -
e
Store Self Deflectors in Disk

SSPsD
Step 3:
Initial Sek Petectnrs
S DS O 15Ds
1-bound

Step 4:
ISDs

1-bound

1 I
@ SE t -;. > SQLQs O SE =| I =® 5QLQAs "
N /l EAPSQLQs EAPSQLQs \ \ /
\ s ~ /
SN~ Convert to Self Detectors Convert Tr Sef Dtectars
CYDs
Self Defectors SeIng ectors
SDs () SDs
Store Self Detectors in Disk Store Self Defectors in Disk
SShsD
Step 1: Step 2:
Initial SelfPetectors Initial Sel Petectors
SC ISDs SQLQs Olsns
1-bound 1-bound
M s [y Fie Mode Help
Source Code Extract All Possible SQL Quedes SQL Queries Source Code Extract All Possible SQL Queries SQL Queries
SE =| I > SQLQAs |
O | O 56 " > 5QLOs
EAPSQLQs EAPSOLO
s

Convert to Sglf Detectors

Self Degectors

SDs

Store Self Detectors in Disk

~
// h
[Initial SelfDetectors
|\ 1sDs 1
/
-

Figure 5.12 1-bound & Safe Model Using Stepper Simulator Manually

Chapter 6 - Conclusion and Future work

6.1 Conclusions

In this research we have presented an extensive review of the different types of SQLIA
with descriptions and examples of how attacks of that type could be performed. We
also provide and analyze existing detection and prevention models against SQLIA and
we discuss its strengths and weaknesses and its differences with our model. The model
has been presented in flowcharts form and subsequently we demonstrate its formal
specifications using Petri net language and verify it.

As a consequence, the results showed the effectiveness of the model in terms of the

correct syntax and safeness.
6.2 Future work
In the future studies we recommend the following:

» Apply formal verification to assess the readiness of the proposed model for execute

in real word.

» Increase training time and comprehensive data set will reduce the proportion of

positive and negative false alarms and also reduces the probability of suspicious

query.

91

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

M. e. a. Muntjir, "Security Issues and Their Techniques in DBMS-A Novel
Survey," International Journal of Computer Applications, vol. 85, no. 13, pp. 39-
43, Janeruary 2014.

N. a. S. G. Mishra, "Defenses To Protect Against SQL Injection Attacks,"
International Journal of Advanced Research in Computer and Communication

Engineering, vol. 2, no. 10, October 2013.

W. a. H. H. H. Win, "A Simple and Efficient Framework for Detection of SQL
Injection Attack," IJCCER, vol. 1, no. 2, pp. 26-30, July 2013.

Jamal, Md. Shahid Sagar and Aafrin, "BASIS OF FORMAL SPECIFICATION
IN DISCRETE MATHEMATICS," VSRD international journal of computer

science & information, vol. 2, no. 11, November 2012.

"Formal specification languages,” [Online]. Available:

http://www.liacs.nl/~mtbeek/re-formal.pdf. [Accessed 16 February 2014].

V. Nithya, "A Survey on SQL Injection attacks, their Detection and Prevention
Techniques," IJECS, vol. 2, no. 4, pp. 886-905 , April 2013.

Pathan, Diallo Abdoulaye Kindy and Al-Sakib Khan, "A Detailed Survey on
various aspects of SQLInjection in Web Applications: Vulnerabilities,Innovative
Attacks and Remedies," International Journal of Communication Networks and
Information Security (IJCNIS), vol. 5, no. 2, pp. 80 - 92, August 2013.

Manish Kumar et al, "Detection and Prevention of SQL Injection attack,"
International Journal of Computer Science and Information Technologies
(IJCSIT), vol. 5, no. 1, pp. 374-377, 2014.

92

[9] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso, "A Classification of
SQL Injection Attacks and Countermeasures," Proceedings of the IEEE

International Symposium on Secure Software Engineering, vol. 1, pp. 13-15, 2006.

[10] Neha Mishra and Sunita Gond, "Defenses To Protect Against SQL Injection
Attacks," International Journal of Advanced Research in Computer and

Communication Engineering, vol. 2, no. 10, pp. 3829 - 3833, October 2013.

[11] Yash Tiwari ,Mallika Tiwari, "A Study of SQL of Injections Techniques and their
Prevention Methods," International Journal of Computer Applications, vol. 114,
no. 17, March 2015.

[12] MA Lawal, ABM Sultan, AO Shakiru, "Systematic Literature Review on SQL
Injection Attack," International Journal of Soft Computing , vol. 11, no. 1, pp. 26-
35, 2016.

[13] Anup Shakya and Dhiraj Aryal, "A Taxonomy of SQL Injection Defense
Techniques,” Doctoral dissertation, Master’s Thesis Computer Science, School of

Computing Blekinge Institute of Technology, Sweden, June 2011.

[14] M. Bishop, "Formal Specification," in Computer Security: Art and Science, 2003,
p. 548.

[15] A. D. Boyd, "A Formal Definition of the Object-Oriented Paradigm for
Requirements Analysis," AIR FORCE INST OF TECH WRIGHT-PATTERSON
AFB OH, 1991.

[16] I. Sommerville, "Formal Specification,” in Software Engineering 8th, 2006, pp.
246-267.

[17] JiacunWang, "Petri Nets for Dynamic Event-Driven System Modeling," in
Handbook of Dynamic System Modeling, Gainesville, U.S.A., Edited by Paul A.

93

Fishwick ,University of Florida, 2007.

[18] B. YILMAZ, "APPLICATIONS OF PETRI NETS," Doctoral dissertation, Izmir
Institute of Technology, October 2008.

[19] J. e. Wang, "Petri Nets," in Handbook of Finite State Based Models and
Applications, Boca Raton, FL, USA: CRC Press, Taylor and Francis Group, 2013,
pp. 298-299.

[20] M. A. M. H. a. W. M. Blétke, "Tutorial Petri Nets in Systems Biology.," Otto von
Guericke University and Magdeburg, Centre for Systems Biology, 2011.

[21] R. L. Paturca, "BIOMODELING WITH PETRI NETS," TURKU UNIVERSITY
OF APPLIED SCIENCES ,BACHELOR’S THESIS, 13.01.2014.

[22] A. Halder, "A study of Petri nets modeling, analysis," Department of Aerospace
Engineering Indian Institute of Technology Kharagpur, India, 2006..

[23] A. Bobbio, "SYSTEM MODELLING WITH PETRI NETS," Systems reliability
assessment. Springer Netherlands, pp. 103-143, 1990.

[24] J. M. a. R. Kumar, "Blocking of SQL Injection Attacks by Comparing Static and
Dynamic Queries," International Journal of Computer Network and Information
Security (IJCNIS), vol. 5, no. 2, pp. 1-9, 2013.

[25] D. G. a. M. C. Kumar, "An Approach for SQL Injection Attack Prevention,"
VESIT , International Technological Conference, pp. 23-27, January 2014.

[26] Reshma Rai and Jitendra Jadhav , "IMPLEMENTATION OF SMART FILTER
TO AVOID SQL INJECTIONS WITH SIGNATURE BASED INTRUSION
DETECTION," International Journal of Advanced Research in Computer Science
and Electronics Engineering (IJARCSEE), vol. 2, no. 1, pp. 100-107, January
2013.

94

[27]J. O. A. a. A. J. Qaralleh, "A HYBRID TECHNIQUE FOR SQL INJECTION
ATTACKS DETECTION AND PREVENTION," International Journal of
Database Management Systems (IJIDMS), vol. 6, no. 1, pp. 21-28, February
2014.

[28] e. a. Pranita Talekar, "WEB APPLICATION PROTECTION AGAINST SQL
INJECTION ATTACK.," Bimonthly International Journal, vol. 2, no. 05/06, pp.
096-100, 2014.

[29] e. a. Ammar Alazab, "Web application protection against SQL injection attack.,"”
Proceedings of the 7th International Conference on Information Technology and

Applications, pp. 1-7, 2011.

[30] "TIme petri Net Analyzer,” OLC Group (Tools and Software for Communicating
systems) Laboratory for Analysis and Architecture of Systems (LAAS)National
Center for Scientific Research (CNRS), [Online]. Available:
http://projects.laas.fr/tina//. [Accessed 15 10 2015].

95

