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Abstract 

The renal sinus is a space that forms the medial border of the kidney and is 

surrounded by the renal parenchyma laterally. The renal arteries, veins, 

lymphatic vessels, nerve fibers, renal pelvis and major and minor calices are 

located within the renal sinus. 50 images were used in the study. The study 

conducted at radiology department in Royal Care hospital using CT scan 64 

slice manufactured by Toshiba. Then the image were read by IDL in TIFF 

format and the user clicks on areas represents the renal cortex, renal sinus fat 

and psoas muscle fat area  in case of test group; in these areas  a window 

3×3 pixel were generated and textural feature for the classes center were 

generated. These textural features includes FOS; (coefficient of variation, 

stander deviation, variance, signal, energy, and entropy) were used. These 

features were assigned as classification center using the Euclidian distances 

to classify the whole image. 

The result of the study revealed that the classification accuracy result using 

linear discriminant function, in which 93.4% of original grouped cases 

correctly classified. Overall classification accuracy = 93.4%. Sensitivity of 

renal sinus, kidney tissue and abdominal fat = 87.7%, 100%, and 94.0% 

respectively. In respect to the applied features the mean, SD, energy and 

entropy on CT images can differentiate between renal sinus fat and rest of 

the tissue successfully and the best feature is the mean followed by energy, 

then entropy and the least is SD. 

Texture analysis depending on the relative attenuation coefficient of tissues 

could serve the diagnostic field and overcoming the visual diagnosis that 

comes with different interpretation.  
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 ملخص البحث
 

انجٍة انكهىي هى انفشاغ انزي ٌشكم انذذود انذاخهٍح يٍ انكهى وذذٍظ تها انُسٍج انكهىي أفمٍا. 

انكهىٌح. ذى اسرخذاو ذمع داخم انجٍىب  انششاٌٍٍ انكهىٌح، الأوسدج، الأوعٍح انهًفاوٌح، الأنٍاف انعصثٍح

أجشٌد فً لسى الأشعح فً يسرشفى سوٌال كٍش تاسرخذاو الأشعح  و انرً صىسج فً انذساسح 05

عهى ( IDLتثشَايج )ششٌذح انًصُعح يٍ لثم ذىشٍثا. ثى ذى لشاءج انصىسج  46 راخانًمطعٍح 

انًُاطك ذى إَشاء . فً هزِ انثطٍدهىٌ انجٍة انكهىي و دهىٌ عضلاخ يُاطك ذًثم انمششج انكهىٌح، 

ًٍزج انركىٌٍُح نًشكز انطثماخ. وذشًم هزِ انًلايخ انركىٌٍُح.)يعايم انوذى إَشاء  3×  3َافزج 

(. ذى ذعٍٍٍ هزِ انًٍزاخ كًشكز َرااوٌٍ، الإشاسج، انطالح، والاالاخرلاف، الاَذشاف انًعٍاسي، انرثا

  ذصٍُف تاسرخذاو انًسافاخ نرصٍُف انصىسج تأكًهها.

ائج انذساسح أٌ َرٍجح دلح انرصٍُف تاسرخذاو انذانح انرًٍٍزٌح انخطٍح، دٍث ذى ذصٍُف وكشفد َر

٪. دساسٍح انجٍة 43.6٪ يٍ انذالاخ الأصهٍح تشكم صذٍخ. دلح انرصٍُف الإجًانٍح = 43.6

هك ٪ عهى انرىانً. فًٍا ٌرع46.5٪، و 055٪، 78.8انكهىي، أَسجح انكهى وانذهىٌ فً انثطٍ = 

يٍ دهىٌ عضهح انثطٍ انكهىٌح و جٍة دهىٌانصىس تٍٍ فً ًٌكٍ أٌ ذفشق انرً طثٍمٍح تانًٍزاخ انر

والألم  دسجح الاَرااو ذهٍها انطالح، ثى  انىسظ انذساتًوأفضم يٍزج هى . الأَسجح تُجاح

  .الاَذشاف انًعٍاسيهى

اعرًادا عهى يعايم انرىهٍٍ انُسثً نلأَسجح ًٌكٍ أٌ ٌخذو انًجال انرشخٍصً وانرغهة  ُسٍجذذهٍم ان

  . عهى انرشخٍص انثصشي انزي ٌأذً يع ذفسٍش يخرهف
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Chapter one  

Introduction 

1.1 Introduction:  

The renal sinus (RS) is a space that forms the medial border of the kidney 

and is surrounded by the renal parenchyma laterally. The renal arteries, veins, 

lymphatic vessels, nerve fibers, renal pelvis and major and minor calices are 

located within the RS. Properly functioning kidneys are essential for 

maintaining proper blood volume and composition; for filtering and 

excreting or saving various chemical metabolites; and for helping to 

maintain proper blood pressure. Hypertension (high blood pressure) is 

known to result from improperly functioning kidneys. Research carried out 

during the last few years indicates that both saturated fat and cholesterol play 

important roles in maintaining kidney function, as do the omega-3 fatty 

acids(Sokhi et al., 2015). 

The kidneys need stable fats both for their cushioning and as their energy 

source. We know that the kidney fat normally has a higher concentration of 

the important saturated fatty acids than are found in any of the other fat 

depots. These saturated fatty acids are myristic acid (the 14-carbon saturate), 

palmitic acid (the 16-carbon saturate), and stearic acid (the 18-carbon 

saturate). When we consume various polyunsaturated fatty acids in large 

amounts, they are incorporated into kidney tissues, usually at the expense of 

oleic acid, because the normal high level of saturated fatty acids in the 

kidney fat does not change(Murakami et al., 2016).  

A species of rat known to be prone to strokes and to spontaneously develop 

hypertension (high blood pressure) has been used to evaluate effects of 



 

2 
 

different lipids such as plant sterols or cholesterol, and also fatty acids such 

as omega-3 or omega-6 fatty acids in the finely tuned functions of the kidney. 

These animals are very sensitive to dietary cholesterol manipulations and a 

deficiency of cholesterol in their membranes makes their membranes weak 

and fragile. When plant sterols found in vegetable oils are substituted for 

cholesterol in their diets, these animals have a shortened life span. Also, 

these animals are reported to need a proper omega-6 to omega-3 ratio in the 

kidney phospholipids (Dwyer et al., 1995).  

The observation of renal sinus fat is important for detecting a small tumor 

location in that area and determining the exact tumor stage. Multiplaner CT 

or MR images can allow exact evaluation of extend of complex renal sinus 

diseases. CT is the most sensitive, effective, comprehensive image modality 

for evaluating the kidney and for a wide variety of renal sinus lesion, 

multicolimater CT provide faster scan and image acquisition and improve 

spatial resolution by using thinner collimation, multiplanner reconstruction 

image can allows exact determination of  the extent of complex renal sinus 

diseases, the coronal plane is the most useful for the evaluation of renal 

sinus lesion because it provide comprehensive view of kidney, including 

renal sinus. 

The computer programs like IDL was been used to analysis the image data 

from CT, to improve the image, and analysis the image data. IDL is 

computer software system, is an acronym for interactive data language, 

consist of both interactive programing environment and program language, 

its used wide range of science and engineering discipline for processing and 

analyzing numerical image data. 
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While obesity as defined based on body mass index (BMI) is associated with 

the development of CKD, reports indicate that measures of abdominal 

adiposity are also associated with CKD(Montani et al., 2004). The observed 

associations of abdominal adiposity with CKD suggest that regional fat 

accumulation and ectopic fat, defined as the accumulation of fat within and 

around non-adipose tissues and organs, may mediate the relation of obesity 

to renal function(Dietrich and Kangarloo, 1986). Within the kidney, ectopic 

fat can accumulate within the renal sinus, a renal cavity that also contains the 

renal artery, renal vein, lymphatic vessels, and nerves and has been observed 

in humans and in an animal model of diet-induced obesity (Dwyer et al., 

1995). It is hypothesized to impair renal function through compression of 

renal structures, the release of locally acting molecules, or lipotoxicity in 

renal tissue (Vora et al., 2017). 

Because the effects of such organ-specific fat accumulation are not captured 

using traditional anthropometric measurements of adiposity, radiographic 

techniques are necessary to investigate the potential role of kidney-specific 

fat accumulation in renal function. 

1.2Problem of the study: 

Renal sinus fat may obesity-related vascular disease, and other health issue, 

the computer programs allow to identify the different between the sinus fat 

tissues and renal tissue to give accurate results for the amount of fat tissue in 

the renal sinus to renal tissue, and calculation of the fat volume by using 

image processing techniques. 
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1.3 Objectives of the study 

1.3.1 General objectives:  

The main objective of this study was to characterize the renal sinus fat in CT 

images using texture analysis. 

1.3.2 Specific objectives: 

 To identify the different between abdominal fat tissue and renal tissue 

by the differences in density of each one of them. 

 To measure the amount of fat tissue inside the renal. 

1.4 Overview of the study: 

This study consist of five chapters, with chapter one as an introduction , 

problem of the study, objectives, significance of the study and the overview 

as end of this chapter) ,Followed by chapter two which  include :( anatomy, 

physiology, basics of texture analysis), a literature review that includes a 

comprehensive review of the scholarly literature. The material and method 

will be cited in chapter three while Chapter four includes result presentation 

and finally chapter five includes :( discussion, conclusion, and 

recommendations). 
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Chapter Two 

Literature review 

2.1 Anatomy of the urinary system  

2.1.1. The kidneys: 

The kidneys are reddish brown and lie behind the peritoneum and the 

posterior abdominal wall on either side of vertebral column. Each kidney is 

12cm in length, 5cm in wide 2.5cm in thick. It has convex lateral surface and 

concave medial surface [through which the renal vessels, the lymphatic and 

the ureter pass] also has an anterior and posterior surface and an upper and 

lower pole. On the medial surface of the kidney there is hilum which leads to 

renal sinus. The sinus contains major and minor calyces which the expansion 

of them and upper ureter made the renal pelvis(Patton, 2015). 

The kidneys have the following coverings; Fibrous capsule: this surrounds 

the kidney and is closely applied to its outer surface. Perirenal fat: this cover 

the fibrous capsule. Renal fascia: this condensation of connective tissue that 

lies outside the perirenal fat and encloses the kidneys and suprarenal gland, 

it’s continuous laterally with the fascia transversals. Para renal fat: this lies 

external to renal fascia and its form part of the retroperitoneal fat. All this 

coverings support the kidneys and hold them on the posterior abdominal 

wall(Patton, 2015). 

2.1.1.2 Structure of the kidneys: 

The kidney consist of reddish brown outer part the cortex , and paler inner 

portion ,the medulla which composed of pyramids .The pyramids contain the 

collecting tubule which open on the papillae and this project into minor 
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calyces. The essential functional unit of kidney is nephron and there one 

million of them on each adult kidney .The nephron consist of renal corpuscle, 

tubule and associated blood vessels(Tarzamni et al., 2016).
 

2.1.1.3 The relations of kidneys: 

Right kidney: Anteriorly: The suprarenal gland, the liver, the second part of 

duodenum, and the right colic flexure. Posteriorly: The diaphragm; the cost 

diaphragmatic recess of the pleura; the 12
th
 rib; and the psoas, 

quadrateslumbrum, and transverse abdominis muscles, and ilioinguinal 

nerves run downward and laterally. 

Left kidney: Anteriorly: the suprarenal gland, the spleen, the stomach, the 

pancreases, the left colic flexure, and coils of jejunum. Posteriorly: the 

diaphragm; the cost diaphragmatic recess of the pleura; the 11
th
 and 12

th
 rips; 

and the psoas, quadrates lumbered, and transverse abdominal muscle, and 

ilioguinal nerves run downward and laterally(Tarzamni et al., 2016). 

2.1.1.4Blood Supply: 

Arteries: The renal artery arises from the aorta at the level of the second 

lumbar vertebra. Renal artery divides into five segmental arteries that enter 

the hilum of the kidney. Lobar arteries arise from each segmental artery, 

each lobar gives off two or three interloper arteries. The interloper arteries 

run toward the cortex on each side of renal pyramid. At the junction of the 

cortex and medulla the interloper arteries give off the accurate arteries. The 

accurate arteries give of several interlobular arteries that ascend in the cortex. 

Then the interlobular arteries branches into afferent glomerular arterioles.
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Veins: the renal vein emerges from the hilum in front of the renal artery and 

drain in to the inferior vena cava(Tarzamni et al., 2016).
 

Lymph drainage: lymph drains to the lateral aortic lymph nodes around the 

origin of the renal artery. Nerve supply: the nerve supply is the renal 

sympathetic plexus.
 

 

Figure 2.2.Show anatomy of the kidney. 
 

2.2. Physiology of the urinary system: 

2.2.1The kidney: 

The kidney playas major role in the control of the constancy of the internal 

environment. The blood flowing in the kidneys is first filtered by glomerular 

filtration, so that all blood constituents except blood cell and plasma proteins 

go in to micro tubular system. In the tubules the useful substance including 

the filtered water, glucose and protein are quickly reabsorbed (tubular 
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reabsorption) back into the blood. Unwanted substances that escape filtration 

are quickly secreted into tubular lumen (tubular section). There are several 

hormones (antidiuretic hormone and aldosterone) act on the kidney to enable 

it to adjust the final composition of urine. The glomerular filtrate flows first 

into proximal convoluted tubules which absorbed useful substances and then 

the filtrate passes into the descending limb of loop of the henle which play 

major role in the urine concentration. The ascending limb of the loop is joins 

to the distal convoluted tubules and the latter is joining to the collecting duct. 

The urine from the collecting duct go to renal papillae which open in to 

minor calyces of renal pelvis and then pass through major calyces to renal 

pelvis(Patton, 2015). 

2.2.2. The ureter: 

The urine from the renal pelvis convey to the urinary bladder by the ureter. 

2.2.3. The urinary bladder: 

The urinary bladder store the urine and voided at intervals by process act of 

micturition which consist of contraction of muscles of bladder and relaxation 

of sphincter of urethra and the then urine flow throughout the body by 

urethra. 
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Figure2.3.Show the nephrons 

2.3 Texture Analysis Methods in Biomedical Image Processing: 

Imaging physics as a developed field of study provide different diagnosis 

tools for different researchers such as clinicians and biologists. Popular 

imaging modalities are X-ray, Computed Tomography (CT) and Magnetic 

Resonance Imaging (MRI), 3-Dultrasound and whole slide microscopy 

images which widely used in clinical routine for different aims. For example, 

MRI imaging is a common and powerful approach to represent the soft 

tissues of the human body, which can be used for three-dimensional 

visualization of the body organs (Ahmadvand and Daliri, 2015).  

Extraction of target tissues, tumors and lesions like MS are the preliminary 

step in many medical procedures. For instance, extraction of three main 

cerebral tissues such as white matter, gray matter and cerebrospinal fluid is 
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an important step for different diagnosis and treatment procedures such as 

3D-brain visualization, heterotopia, and brain atrophy (Ahmadvand et al., 

2015a). Currently, computerized analysis of image data has become one of 

the main subjects in diagnostic procedures.  This important field of research 

area is known as computer-aided diagnosis (CAD).  These methods mainly 

provide a description of pathologic tissues for radiologists, biologist and, so 

forth for detection and diagnosis of normal and pathological tissues (Ojala et 

al., 2001). Textures are one of the vital features in image processing and 

especially biomedical image analysis. Although, textures look intuitive, so 

far a single unifying of them have not been suggested, which could present a 

comprehensive definition for textures.  Therefore, researchers proposed 

different methods for extraction of texture features, which each group of 

features have their positive and negative properties as well. Textures as an 

important property in medical images have attracted much attention in CAD 

systems. Texture analysis methods can be divided in different sub-

categories(Depeursinge et al., 2014).  

2.3.1 Statistical Methods: 

Statistical features consist of different categories such as first-order, second-

order statistical methods, Local Binary Pattern (LBP) methods and so forth.  

These features especially LBP have been the center of attention because of 

obtaining promising results which they recently have achieved in different 

applications with changing in level of noises, illumination, sizes of textures. 

As medical images are detected by many artifacts during imaging providing 

an invariant group of features is crucial in these applications(Haralick and 

Shanmugam, 1973).  
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2.3.1.1 First order and second order methods: 

The first order statistical features include the features which are extracted 

from the statistical property of image histogram including mean, variance, 

standard deviation and etc. Although these features are very straightforward 

and simple, they provide a good description of texture in the image. 

Moreover, there are three main sub-categories which have been proposed for 

second-order statistical features including Spatial Grey-level difference 

Method based on the analysis of co-occurrence matrix, the Grey-Level 

difference and the Grey-Level Run Method. Statistical features have widely 

been used for extraction of relevant features in CAD systems(Karahaliou et 

al., 2007). 

The first-order histogram P (I) is defined as: 

 

Based on the definition of P (I), the Mean m1and Central Moments µkof Iare 

given by: 

 

Where Ngis the number of possible gray levels. The most frequently used 

central moments are Variance, Skewness and Kurtosis given by µ2, µ3, and 

µ4 respectively. The Variance is a measure of the histogram width that 
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measures the deviation of gray levels from the Mean. Skewness is a measure 

of the degree of histogram asymmetry around the Mean and Kurtosis is a 

measure of the histogram sharpness. 

The histogram of intensity levels is obviously a concise and simple summary 

of the statistical information contained in the image. Calculation of the grey-

level histogram involves single pixels. Thus the histogram contains the first-

order statistical information about the image (or its fragment). Dividing the 

values h(i) by the total number of pixels in the image one obtains the 

approximate probability density of occurrence of the intensity levels. 

 

The histogram can be easily computed, given the image. The shape of the 

histogram provides many clues as to the character of the image. For example, 

a narrowly distributed histogram indicated the low-contrast image. A 

bimodal histogram often suggests that the image contained an object with a 

narrow intensity range against a background of differing intensity. Different 

useful parameters (image features) can be worked out from the histogram to 

quantitatively describe the first-order statistical properties of the image. 

Most often the so-called central moments (Papoulis 1965) are derived from 

it to characterize the texture, as defined by Equations below 
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The features generated from the first-order statistics provide information 

related to the gray-level distribution of the image. However they do not give 

any information about the relative positions of the various gray levels within 

the image. These features will not be able to measure whether all low-value 

gray levels are positioned together, or they are interchanged with the high-

value gray levels. An occurrence of some gray-level configuration can be 

described by a matrix of relative frequencies Pθ,d(I1, I2). It describes how 

frequently two pixels with gray-levels I1,I2appear in the window separated 

by a distance din direction θ. The information can be extracted from the co-

occurrence matrix that measures second-order image statistics, where the 

pixels are considered in pairs. The co-occurrence matrix is a function of two 

parameters: relative distance measured in pixel numbers (d) and their 

relative orientation θ. The orientation θ is quantized in four directions that 

represent horizontal, diagonal, vertical and anti-diagonal by 0˚, 45˚, 90˚and 
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135˚respectively. Non-normalized frequencies of co-occurrence matrix as 

functions of distance, d and angle 0˚, 45˚, 90˚and 135˚can be represented 

respectively as 
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Using Co-occurrence matrix, features can be defined which quantifies 

coarseness, smoothness and texture-related information that have high 

discriminatory power. Among them, Angular Second Moment (ASM), 

Contrast, Correlation, Homogeneity and Entropy are few such measures 

which are given by: 

 

 

 

ASM is a feature that measures the smoothness of the image. The less 

smooth the region is, the more uniformly distributed P(I1,I2) and the lower 

will be the value of ASM. Contrast is a measure of local level variations 

which takes high values for image of high contrast. Correlation is a measure 

of correlation between pixels in two different directions. Homogeneity is a 

measure that takes high values for low-contrast images. Entropy is a 

measure of randomness and takes low values for smooth images. Together 
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all these features provide high discriminative power to distinguish two 

different kind of images. All features are functions of the distance dand the 

orientation θ. Thus, if an image is rotated, the values of the features will be 

different. In practice, for each d the resulting values for the four directions 

are averaged out. This will generate features that will be rotations invariant. 

2.3.1.2 LBP Methods 

The other important category of statistical methods is Local Binary Pattern 

(LBP) based approaches. In a new LBP method has been proposed which 

tries to incorporate spectral features into LBP method. Therefore, LBP will 

be more robust and powerful to invariant texture analysis in this case.  

Different types of this method have been proposed for texture analysis of 

biomedical applications and find a great attention in CAD systems 

(Ahmadvand et al., 2015b).  

2.3.1.3 Model Based Approaches: 

Some researchers have tried to model contextual, textural and spatial 

properties of images and then texture features can be extracted by 

incorporating these features during image analysis. The main categories of 

model based methods which have been considered for this aim are Markov 

models.  These methods have different types including the Gaussian Markov 

random fields and Gibbs random fields. In fact, Markov random field 

method is an optimization method which defines an energy function on a 

label field and the goal is to minimize the energy function. This energy 

function must be defined in a way that textural features and also spatial 

relationships of neighborhood pixels to be considered. Methods based on 

auto-regressive and Hidden Markov Model have been proposed for texture 
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Classification and have had good results in this field(Ahmadvand and Kabiri, 

2016). 

2.3.1.4 Filter Banks Based Methods: 

The other important groups of texture analysis methods which have been 

considered in biomedical image analysis applications are filter bank based 

methods.  The filter bank methods consist of three main sub-categories 

including the frequency, spatial and spatial-frequency approaches. 

Frequency filter banks mainly use Fourier transform and discrete cosine 

transform for extraction of features and try to extract the texture feature in 

frequency domain. On the other hand, spatial methods just apply filter banks 

on spatial domain of textures and then extract the texture features from the 

image(Leung and Malik, 2001). 

2.3.1.5Spatial filter banks and frequency analysis based approaches: 

Spatial filter banks have long history for biomedical feature extraction. 

These methods are containing of two important groups such as smoothing 

filters like Gaussian filters and sharpening filters like Laplacian and Sobel 

filters. However, recently, different authors inspired from the visual cortex, 

try to use a bank of oriented spatial Filters in different scales for modeling of 

texture images(Gevaa et al., 2016). 

2.3.1.6 Spatial-frequency based methods: 

Frequency analysis just decomposes each signal into frequency components 

of the signal and completely ignores the spatial domain. Moreover, spatial 

filters just consider the spatial information; therefore, these two groups of 

methods intrinsically have limitation for analysis of textures(Bhateja et al., 
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2015).These shortcomings could be solved if both the spatial and spectral 

information considered because appropriate analysis of real world images 

needs both information. Spatial-frequency methods include a range of filter 

banks which wavelet transform and Gabor filter are among the most 

important ones. In most feature based methods such as pyramid-structured 

wavelet transforms and tree-structured wavelet transform (TSWT), texture 

features are extracted by some features in different resolution and channels, 

two way for combination of DWT method with spatial  filter banks is 

proposed and try to incorporate spectral information in multi-resolution 

analysis methods like DWT for extraction of invariant features. DWT based 

methods are very important for biomedical image analysis. The other 

important multi resolution based methods are Gabor filters and Gabor 

wavelets. According to the ability of Gabor filters for invariant texture 

analysis these methods have provided good results in biomedical image 

analysis applications(Zou et al., 2016). 

2.4 Basics CT imaging: 

2.4.1 Principles of Helical CT Scanners 

The development of helical or spiral CT around 1990 was a truly 

revolutionary advancement in CT scanning that finally allowed true 3D 

image acquisition within a single breath hold. The technique involves the 

continuous acquisition of projection data through a 3D volume of tissue by 

continuous rotation of the x-ray tube and detectors and simultaneous 

translation of the patient through the gantry opening (Kalender, et al, 1990). 

Three technological developments were required: slip-ring gantry designs, 
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very high power x-ray tubes, and interpolation algorithms to handle the non-

coplanar projection data (Beck, 1996). 

 

Figure 2.4: Principles of helical CT. As the patient is transported through the 

gantry, the x-ray tube traces a spiral or helical path around the patient, 

acquiring data as it rotates. t = time in seconds (Mahesh, 2002). 

2.4 .2 Slip-Ring Technology 

Slip rings are electromechanical devices consisting of circular electrical 

conductive rings and brushes that transmit electrical energy across a moving 

interface. All power and control signals from the stationary parts of the 

scanner system are communicated to the rotating frame through the slip ring. 

The slip-ring design consists of sets of parallel conductive rings concentric 

to the gantry axis that connect to the tube, detectors, and control circuits by 

sliding contactors. These sliding contactors allow the scan frame to rotate 

continuously with no need to stop between rotations to rewind system cables 

(Brunnettet al., 1994). This engineering advancement resulted initially from 

a desire to reduce inter scan delay and improve throughput. However, 
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reduced interscan delay increased the thermal demands on the x-ray tube; 

hence, tubes with much higher thermal capacities were required to withstand 

continuous operation over multiple rotations. (Mahesh, 2002) 

 

 

Figure 2.5: Diagram of the slip-ring configuration. Sliding contactors permit 

continuous rotation of the x-ray tube and detectors while maintaining 

electrical contact with stationary components. 
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Figure 2.6: Time line of the key technological developments in CT  

2.4.3 Capabilities of Single-Row Detector Helical CT 

With the advent of helical CT, considerable progress was made on the road 

toward 3D radiography. An example of a 3D reconstruction from single-row 

detector helical scanning is shown in Fig (2.9).Complete organs could be 

scanned in about 30–40 seconds; artifacts due to patient motion and tissue 

misregistration due to involuntary motion were virtually eliminated. It 

became possible to generate sections in any arbitrary plane through the 

scanned volume. Significant improvements in z-axis resolution were 

achieved due to improved sampling, since sections could be reconstructed at 

fine intervals less than the section width along the z axis. Near-isotropic 

resolution could be obtained with the thinnest (∼1 mm) section widths at a 

pitch of 1, but this could be done only over relatively short lengths due to 

tube and breath-hold limitations (Kalender 1995), (Levy, 1995). Higher-

power tubes capable of longer continuous operation coupled with faster 

rotation speeds could scan greater lengths with higher resolution. The 

practical limit on such brute force approaches, however, became the length 

http://radiographics.rsna.org/content/22/4/949.full#ref-19
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of time a sick patient could reliably suspend breathing. This turns out to be 

no more than 30 seconds. Even though the z-axis resolution for helical CT 

images far exceeds that of conventional CT images, the type of interpolation 

algorithm and the pitch still affect the overall image quality. The section 

sensitivity profiles of helical CT images are different compared with those of 

conventional CT images, which are influenced by the type of interpolation 

algorithm and the selected pitch.  

2.4.4 Multiple-Row Detector Helical CT 

Continued scanner development on the road to a 3D radiograph called for 

further progress, but single-row detector helical scanners had reached their 

limits. An obvious improvement would be to make more efficient use of the 

x rays that are produced by the tube while improving z-axis spatial 

resolution; this led to the development of multiple-row detector arrays. The 

principal difference between single- and multiple-row detector helical 

scanners is illustrated in Figure (2.7).  The basic idea actually dates to the 

very first EMI Mark I scanner, which had two parallel detectors and 

acquired two sections simultaneously.  
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Figure 2.7: Diagram shows the difference between single-row detector and 

multiple-row detector CT designs. The multiple-row detector array shown is 

asymmetrical and represents that of one particular manufacturer. 

The first helical scanner to use this idea, the CT Twin was launched in 1992. 

(Mahesh, 2002).This design was so superior to single-row detector designs 

that all scanner manufacturers went back to the drawing board. By late 1998, 

all major CT manufacturers launched multiple-row detector CT scanners 

capable of acquiring at least four sections per rotation. The arrangement of 

detectors along the z axis and the widths of the available sections vary 

between the systems. Fig (2.8) illustrates different multiple-row detector 

array configurations from several manufacturers.  

http://radiographics.rsna.org/content/22/4/949.full#F14
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Figure 2.8: Various detector array designs used in multiple-row detector 

CT scanners. 

In single-row detector helical CT designs, scan volume can be increased 

with an increased pitch at the expense of poorer z-axis resolution, whereas z-

axis resolution can be preserved in multiple-row detector designs. For 

example, if a 10-mm collimation were divided into four 2.5-mm detectors, 

the same scan length could be obtained in the same time but with a z-axis 

resolution improved from 10 mm to 2.5 mm. In another example, a multiple-

row detector scanner with four 5-mm detectors and a beam width of 20 mm 

reduces the scan time by a factor of 4–15 seconds for the same z-axis 

resolution (Mahesh, 2002). By increasing the number of CT scanner detector 

rows, data acquisition capability dramatically increases while greatly 
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improving the efficiency of x-ray tubes. Further developments in scanner 

rotational speeds and tube outputs have made isotropic resolution a practical 

possibility with even better improvements on the horizon. Current multiple-

row detector scanners can scan large 40-cm volume lengths in less than 30 

seconds with near-isotropic resolution and image quality that could not be 

envisioned at the time of Hounsfield’s invention.  

MDCT systems are CT scanners with a detector array consisting of more 

than a single row of detectors. The “multi-detector-row” nature of MDCT 

scanners refers to the use of multiple detector arrays (rows) in the 

longitudinal direction (that is, along the length of the patient lying on the 

patient table). MDCT scanners utilize third generation CT geometry in 

which the arc of detectors and the x-ray tube rotate together. All MDCT 

scanners use a slip-ring gantry, allowing helical acquisition at rotation 

speeds as fast as 0.33 second for a full rotation of 360 degrees of the X-ray 

tube around the patient. A scanner with two rows of detectors (Mahesh, 

2002) had already been on the market since 1992 and MDCT scanners with 

four detector rows were introduced in 1998 by several manufacturers. The 

primary advantage of these scanners is the ability to scan more than one slice 

simultaneously and hence more efficiently use the radiation delivered from 

the X-ray tube (Fig.2.11). The time required to scan a certain volume could 

thus be reduced considerably. 

The number of slices, or data channels, acquired per axial rotation continues 

to increase, with 64-detector systems now common (Flohr et al., 2005a; 

Flohr et al., 2005b). It is likely that in the coming years even larger arrays of 

detectors having longitudinal coverage per rotation > 4 cm will be 

commercially available. Preliminary results from a 256-detector scanner 
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(12.8 cm longitudinal coverage at the center of rotation) have already been 

published (Mori et al., 2004). Further, an MDCT system with two x-ray 

sources is now commercially available, signaling continued evolution of CT 

technology and applications (Flohr et al., 2006). 

MDCT scanners can also be used to cover a specific anatomic volume with 

thinner slices. This considerably improves the spatial resolution in the 

longitudinal direction without the drawback of extended scan times. 

Improved resolution in the longitudinal direction is of great value in 

multiplanar reformatting (MPR, perpendicular or oblique to the trans axial 

plane) and in 3-dimensional (3D) representations. Spiral scanning is the 

most common scan acquisition mode in MDCT, since the total scan time can 

be reduced most efficiently by continuous data acquisition and overlapping 

data sets and this allows improved multi-planar reconstruction (MPR) and 

3D image quality to be reconstructed without additional radiation dose to the 

patient. 

 

Figure 2.9: single CT detector versus Multi slice CT detector. 
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2.4.5 CT imaging protocol  

The technique used in CT-scanners share most of its characteristics with 

conventional X-ray imaging, and the prime differences are seen in projection, 

detection and acquisition as presented in Figure 2.10 below. 

 

 

Figure 2.10 Simple overview of a third generation CT-imaging system 

 

2.4.6 Parameters  

In order to properly calculate and compare doses, it is imperative to have a 

standardized nomenclature to ensure that all data is comparative (Kalra, M. 

K ,et al 2006). Without this, it will be difficult to reproduce measurements, 

and to develop consistent protocols. When performing a CT examination, a 

number of parameters are defined by the operator. The thesis will cover the 

parameters deemed important for correct, uniform dosimetry: tube current, 

tube voltage, rotation time, total scan length, slice thickness and pitch. 
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Automatic exposure control (AEC) and iterative reconstruction will be 

briefly covered, as their impact on dose and image quality is more of a 

qualitative influence than a quantitative one.  

2.4.6.1 Tube current  

The tube current [mA] influences the number of photons exiting the X-ray 

tube, as it determines the number of electrons leaving the cathode. The tube 

current is directly proportional to radiation dose, and as such is a prime 

parameter in adjusting the dose. Instead of tube current is sometimes used 

the tube-current-time-product [mAs], which is the tube current multiplied 

with the scan time.  

2.4.6.2 Tube Voltage  

The tube voltage [kV] determines the voltage across the anode and cathode 

of the X-ray tube, and therefore the acceleration of the electrodes across the 

interior vacuum. This determines the kinetic energy of the electrodes when 

they reach the anode, and therefore the number of interactions they can 

initiate before being absorbed. As a consequence, an increase in tube voltage 

will increase the dose, all other factors kept constant; however, the increase 

is not directly proportional as was the case with current. Voltage determines 

the energy of the electrons, and therefore the energy distribution of the 

incident X-rays. It is rarely adjusted from the customary value of 120 kV. 

Certain examinations use a different voltage, but seldom outside the range of 

80 to 140 kV (Kalra, M. K ,et al 2006). 

2.4.6.3 Rotation Time  

The rotation time of the gantry [s] has decreased greatly over the last few 

decades, with modern scanners having a rotation time in the area of 0.4 

seconds. The main consequence of the decreased rotation time is an increase 
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in the noise and a reduction in absorbed dose. To avoid the noise, it is 

customary to increase the tube current accordingly (M. K., Maher,et al 2004).  

2.4.6.4 Total Scan Length  

It is apparent that the total scan length [cm] influence the absorbed dose, as 

an increase in scan length will expose a larger part of the patient to radiation. 

Therefore, it is imperative that scan length is to be limited to cover just the 

diagnostically relevant part of the patient; otherwise, an unnecessary 

increase in dose will be seen (ICRP, 2000). This is relatively easy with 

SSCT; however, the situation is more complicated for MSCT. At the 

initiation of the scan, the X-ray tube will be activated the moment the first 

row of detectors reach the diagnostic area. The X-ray beam will irradiate the 

entire detector-array, but only the first row of detectors will be acquiring 

image data. The remaining detector rows will not acquire data, but the area 

will still be irradiated. This is called over scan, and a small degree of over 

scan is required for correct reconstruction. As the table moves, more rows of 

detectors are entering the diagnostic area, contributing to the image. At the 

reverse end of the patient, the same scenario occurs, and a noteworthy part 

of the dose is absorbed in the patient outside the diagnostic area (M. K., 

Maher, et al 2004). 

2.4.6.5 Slice Thickness  

In SSCT, with only a single row of detectors, the slice thickness [cm] is 

determined by simple collimation. The maximum slice thickness is limited 

by the width of the individual detector element (typically 10 mm (M. K., 

Maher, et al 2004)), and by collimating the beam, this thickness can be 

decreased. In other words, the width of the beam is equal to slice thickness. 

In MSCT, the width of each individual detector element in the longitudinal 



 

30 
 

direction determines the minimum slice thickness, and by merging multiple 

adjacent detector elements during detection, one can increase the slice 

thickness. This has a significant impact on image quality, as thin slices have 

better spatial resolution compared to thick slices, but lower SNR. To address 

the decrease in SNR, it is necessary to increase for instance the tube current, 

resulting in a significant increase in dose to the patient (Kalender,et al,2005).  

2.4.6.6 Pitch  

With the prevalence of helical MSCT, it is necessary to incorporate the 

incremental movement of the table, in relation to the irradiated area. This is 

defined as pitch, being the increment of the table per rotation, divided by the 

width of the beam. In Figure 2.13 below, a 4-slice MSCT is rotated twice 

around the patient, resulting in the acquisition of eight slices in pairs of two 

(indicated by color). The slices are in reality at an incline, as the patient is 

moving during exposure. 

 

 

Figure 2.11the effect of pitch on irradiated area, with overlap for pitch < 1 (23 

 

 

pitch = table feed per rotation/collimation 
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2.4.6.7 Automatic Exposure Control: 

Technological advances lead to the development of a technique where the 

tube current is modulated in real-time, in order to minimize the dose while 

retaining image quality. This technique, Automatic Exposure Control (AEC) 

varies the tube current during exposure. The variance is relative to patient 

thickness, optimized to achieve dose distribution defined by a desirable 

image quality. It is possible to achieve a significant reduction in dose based 

on which type of AEC is used: either the exposure varies within a single 

slice, i.e. in the image plane of the slice, or it is modulated in the 

longitudinal direction of the patient. It is also possible to combine these two 

types of AEC. 

2.5 Previous studies: 

The study conducted by (Meredith et.al, 2011) Single-slice measurements 

were obtained in 92 participants (mean age 60 years, 49% women, median 

renal sinus fat 0.43 cm2). Intra- and inter-reader intra-class correlation 

coefficients were 0.93 and 0.86, respectively. Single-slice renal sinus fat was 

correlated with body mass index (r = 0.35, p = 0.0006), waist circumference 

(r =0.31, p = 0.003), and abdominal visceral fat (r = 0.48, p < 0.0001). 

Similar correlations were observed for volumetric renal sinus fat in the right 

kidney. 
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Chapter Three 

Materials and Methods 

3.1 Materials: 

3.1.1 Subjects: 

This was a cross sectional descriptive study done to evaluate the renal 

sinus fat. 50 images enrolled in the study. The study conducted at radiology 

department in Royal Care hospital.  

3.1.2 Machine Used 

The machine used was CT scan 64 slice manufactured by Toshiba. 

3.2 Methods: 

3.2.1 Imaging Technique Used 

All patients scanned with the following imaging parameters: 

Kvp(120-140), mAs (140-160). 

Slice thickness: 5 mm 

Breath hold: yes 

Intravenous Contrast: None 

Patient position: Supine head first, the arms were raised and placed behind 

the head. 

Start location and end: From Diaphragm to pubis. 

3.2.2 Image analysis: 

After that CT images were stored in computer disk were viewed by the 

Radiant, Ant DICOM in computer to selected the axial images that suit the 

criteria of research population then uploaded into the computer based 

software Interactive Data Language (IDL) where the DICOM image 
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converted to TIFF format to suit IDL platform. Then the image were read by 

IDL in TIFF format and the user clicks on areas represents the renal cortex, 

renal sinus fat and psoas muscle fat area  in case of test group; in these areas  

a window 3×3 pixel were generated and textural feature for the classes 

center were generated. These textural features includes FOS; (coefficient of 

variation, stander deviation, variance, signal, energy, and entropy) were used. 

These features were assigned as classification center using the Euclidian 

distances to classify the whole image. The algorithm scans the whole image 

using a window; 3×3 pixels and computes the above mentioned textural 

features and then computes the distance (the Euclidean distance) between the 

calculated features during the scanning and the class’s centers and assigns 

the window to the class with the lowest distance. Then the window 

interlaced one pixel and the same processes started over again till the entire 

image were classified and classification maps were generated. After all 

images were classified the data concerning the renal cortex, renal sinus fat 

and psoas muscle fat entered into SPSS with its classes to generate  a 

classification score using stepwise linear discriminate analysis; to select the 

most discriminate features that can be used in the classification of renal 

sinus fat in CT images. Where scatter plot using discriminate function were 

generated as well as classification accuracy and linear discriminate function 

equations to classify renal sinus fat into the previous classes without 

segmentation process for unseen images in routine work.  

3.2.3 Statistical analysis: 

All statistical analyses were performed using the SPSS 19.0 for Windows. 

All parametric results were expressed as mean ± standard deviation. 

Differences were considered significant if p values were less than 0.05. 
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Chapter Four 

Results 

 

Table 4.1 Classification Results
a,c

 

  Classes Predicted Group Membership Total 

  Renal sinus 

fat 

Kidney 

tissue 

Abdominal 

fat 

Original Count Renal sinus fat 228 1 31 260 

Kidney tissue 0 200 0 200 

Abdominal fat 13 0 205 218 

% Renal sinus fat 87.7 .4 11.9 100.0 

Kidney tissue .0 100.0 .0 100.0 

Abdominal fat 6.0 .0 94.0 100.0 
 

93.4% of original grouped cases correctly classified. Overall classification 

accuracy =93.4%. Sensitivity of renal sinus, kidney tissue and abdominal fat 

=87.7%, 100%, and 94.0% respectively. 

 
Figure 4.1 classification Map that created using linear discriminant analysis, 

function to predicted overall accuracy showed 94.4% 
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Figure 4.2 Error bar plot show the discriminate power of the mean textural 

feature distribution for the selected classes on CT images. 
 

 

 
Figure 4.3Error bar plot show the discriminate power of the variance textural 

feature distribution for the selected classes on CT images. 
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Figure 4.4 Error bar plot show the discriminate power of the skewness 

textural feature distribution for the selected classes on CT images. 
 

 

 
Figure 4.5 Error bar plot show the discriminate power of the Kurtosis 

textural feature distribution for the selected classes on CT images. 



 

37 
 

 
 

Figure 4.6 Error bar plot show the discriminate power of the energy textural 

feature distribution for the selected classes on CT images. 
 

 

 

Figure 4.7 Error bar plot show the discriminate power of the mean textural 

feature distribution for the selected classes on CT images. 
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Table 4.2 Classification Function Coefficients 

 classes 

Renal sinus 

fat 

kidney 

tissue 

abdominal fat 

Mean 32.785 24.995 29.236 

Variance .045 -.012 .042 

Skewness 4.060 4.966 1.997 

Energy .225 .103 .238 

Entropy -4.254 -3.151 -3.818 

(Constant) -243.237 -191.133 -190.525 

Fisher's linear discriminant functions 

 

Renal sinus fat= (mean*32.785) + (variance*0.045) + (skewness*4.06) + (energy*0.225) 

+ (entropy*-4.254)-243.237 
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Chapter Five 

Discussion, Conclusion and Recommendations 

5.1Discussion: 

CT scan obtained from imaging sequences which aim to differentiate 

between different renal tissues according to its intensities, this study was 

conducted using axial CT image to characterize the renal sinus fat. As shown 

in Figure 1, the classification Map that created using linear discriminant 

analysis functions where the three different tissue classes of renal cortex, 

renal sinus fat and abdominal fat were clearly separated according to 

calculated texture at P<0.05, and CL=95%. Table (1): Showed the 

classification accuracy result using linear discriminant function, in which 

93.4% of original grouped cases correctly classified. Overall classification 

accuracy = 93.4%. Sensitivity of renal sinus, kidney tissue and abdominal fat 

= 87.7%, 100%, and 94.0% respectively. This result for 3x3 windows 

generated using step-wise technique to select the most significant features 

that can be used for purpose of renal sinus fat characterization which are: 

mean variance, energy and entropy from first order statistics. The result also 

showed that the result of the classification of the renal sinus tissue tissues 

were very different from result of the tissues. 

Although by definition, visual analysis of the CT image appears with 

abdominal fat, the texture parameter maps validate the fact that there are 

indeed subtle differences, but these differences surface only upon numerical 

processing of the images. These maps were obtained by selecting a small 

neighborhood around each image pixel, computing the texture parameter for 

that neighborhood, and then attributing the value of this parameter to the 

pixel. This was done for all renal pixels and not just in the region of interest. 



 

40 
 

Nevertheless, these maps give an idea about the texture variation in the 

kidney and its surrounding tissues, and they “visually” show that there are, 

indeed, texture differences of the renal sinus and extension over the 

abdominal fat. 

In respect to the applied features the mean, SD, energy and entropy on CT 

images can differentiate between renal sinus fat and rest of the tissue 

successfully and the best feature is the mean followed by energy, then 

entropy and the least is SD. 

Texture analysis depending on the relative attenuation coefficient of tissues 

i.e. the CT No in HU could serves the diagnostic field and overcoming the 

visual diagnosis that comes with different interpretation and also would have 

promising future to avoid invasive technique if the base line for individual 

tissues being determined and algorithmic aided computer have been applied.   
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5.2 Conclusion: 

The study concluded that CT is  first choice compared with other modality 

due to many advantages it have such as need short time for procedure and 

accurately identifies the renal abnormalities such as stone and obstruction. 

Renal sinus fat accumulation can be measured using computed tomography. 

In respect to the applied features the mean, SD, energy and entropy on CT 

images can differentiate between renal sinus fat and rest of the tissue 

successfully and the best feature is the mean followed by energy, then 

entropy and the least is SD. 

Texture analysis depending on the relative attenuation coefficient of tissues 

i.e. the CT No in HU could serves the diagnostic field and overcoming the 

visual diagnosis that comes with different interpretation and also would have 

promising future to avoid invasive technique if the base line for individual 

tissues being determined and algorithmic aided computer have been applied.   
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5.3 Recommendations 

The study ends with in the following recommendation: 

 Further studies in evaluation renal dimension with larger sample of 

population for more accurate results. Also renal sinus fat volume 

should be measured after classification.   

 Further studies must achieve bearing in mind the body weight. 

 Further studies must achieve with the effect the age and gender.                 
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