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Abstract 

 

The control system of a quadcopter is the most important part. Control system governing 

quadcopter stability and control movement by correcting measurement errors and comparing to 

the desired values achieving pilot desired and safe flight.  

This thesis concerned with the implementation of a quadcopter control system that is 

tested through visual simulation with real physics then hardware capabilities test that describes 

the capabilities of the hardware mounted on the quadcopter after the construction is over. 

This work was divided into two subsections: simulation and construction; the simulation 

was conducted using Protues circuit simulation software that failed and was replaced by unity 3D 

due to its limitation to simulate electronic speed controller ( ESCs) and Inertial Measurement 

Unit (IMU) which are essential to simulate the quadcopter system, Unity 3D simulation software 

provided 3D visual simulation of the quadcopter depending only on the code and no components 

simulation was need only the mass and drag properties of the frame. 

The construction of the quadcopter consisted of choosing a suitable frame to carry the 

load of the quadcopter that was plastic foam due its light weight and flexibility casted with fiber 

glass to reinforce to ensure strength. The quadcopter components were mounted on it with 

distributed load to ensure equilibrium then the transmitter was setup to determine what position 

of the transmitter sticks belonged to which flight movement and all the ESCs were calibrated to 

operate at the same speed then the Proportional-Integral-Derivative (PID) controller code was 

uploaded and operation was successful which gives us the time to add auto leveling. 

Auto leveling of the quadcopter were possible by taking the readings of the gyroscope 

and applying correction when there is no user input received; the Proportional-Integral-

Derivative (PID) applies gyroscope correction to stabilize the aircraft which is zero gyroscope 

orientation in all axes.  
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 التجريد
 

نظام التحكم في الطائرات بدون طيار يعد اهم جزء منها لانه يحكم استقرارية و حركة الطائرة  عن طريق تصحيح اخطاء  

 قياسها ومقارنتها بالقيم المراده لطيران آمن حسب رغبة الطيار.

ارها عن طريق المحاكاة البصرية بقيم هذا البحث يهتم بتضمين نظام تحكم للطائرة رباعية المراوح بدون طيار والتي تم اختب 

قسم البحث الي جزئين جزء المحاكاة وجزء  التي سوف تركب علي الطائرة.وقوي فيزيائية حقيقة محوسبة  واختبار مقدرات اجزاءها 

اء الحسية فر محاكاة بصرية للطائرة كما تمت محاكاة الاجزلتو unity 3D و Protuesالبناء, جزء المحاكاة تم عن طريق برنامج 

 للطائرة عن طريق برنامج يحدد خصائص الطائرة بعد تركيب اجزائها.

تطلب بناء الطائرة وجود هيكل يجمع بين المرونة وخفة الوزن الذي تم التحصل عليه بالجمع بين مادتي الفلين والفايبر جلاس 

ثبيت الاجزاء الالكترونية عليه وتمت تهيئة المرسل لمعرفة الذي منح الهيكل صلابة الفايبر ومرونة وخفة الفلين. بعد صناعة الهيكل تم ت

كلها في نفس اي حركة من حركات الطيران تنتمي الي اي وضع من اواع حركة ذراع المرسل ثم تمت تهيئة متحكمات السرعة لتعمل 

 ية التوازن الذاتي.الوقت بنفس السرعة ثم تم تحميل برنامج الطيران علي الطائرة مما اعطانا بعض الوقت لاضافة خاص

الذي يقوم بتصحيح حركة الطيران الي وضع الاتزان حينما لا  gyroscopeالتوازن الذاتي للطائرة يعتمد علي قراءات ال

 يتحكم في الطائرة.يكون المستخدم 
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Chapter One 

Introduction 
 

1.1 Overview 
Study and development of unmanned aerial vehicles (UAV) and micro aerial vehicles 

(MAV) are getting high encouragement nowadays, since the application of UAV and MAV can 

apply to variety of areas such as rescue mission, military, film making, agriculture and others [1]. 

Quadcopter has advantages over the conventional helicopter where the mechanical design is 

simpler. Besides that, Quadcopter changes direction by manipulating the individual propeller’s 

speed and does not require cyclic and collective pitch control [2]. 

 

1.2 Aim & Objectives 

1.2.1 Aim 

 

This work aim to fly the quadcopter using hand gestures on a Leap Motion hand gesture 

sensor; each hand gesture has a unique instruction programmed on the motion sensor transmitted 

to the quadcopter flight controller with Wi-Fi wireless signals. 

 

1.2.2 Objectives 

• Run a successful visual simulation of the controller in Unity3D software. 

• Implementation of the PID controller to the Arduino microcontroller as flight controller 

unit 

• Construct the quadcopter and record a successful flight time of at least 1 minute 

 

1.3 Problem Statement 
The stability and control of a quadcopter is a challenging matter and the most fundamental 

feature in UAVs to sustain a balanced well controlled flight when building it instead of ready 

manufactured flight controllers. 
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1.4 Proposed Solution 
PID controller allows you to change the UAVs flight characteristics, including how it 

responds to user input, how well and how quickly it stabilizes. 

1.5 Methodology 
The method applied on choosing the proper PID controller gains is trial and error method 

to set the values that results in balanced, stable and controlled flight. A collection of 

hardware components was used to build the quadcopter model providing the hardware to 

implement the PID flight controller. 

1.6 Thesis Outline 
 Chapter 2 is the literature review and background discussing the UAVs historically and 

providing a background of the components that are essential in the operation of the quadcopter; 

relative reports that discussed building a quadcopter controller are also included in the literature 

review. 

Chapter 3 includes the modeling of the quadcopter and the simulation of implementing 

the PID controller to a quadcopter flight controller. 

 Chapter 4 shows the steps that were followed in constructing the hardware of the 

quadcopter model that was used to implement the PID controller. 

 Chapter 5 discusses the result and discusses those results that were observed during 

building the hardware and implementing the software. 

 Chapter 6 is the conclusion of the thesis that includes the recommendations for our 

successors to solve the problems we could not and start their work where we finished. 
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Chapter Two 

Literature Review and Background 

 

2.1 Introduction 
A quad copter flying machine also known as quad rotor is a rotary wing aircraft powered 

by four motors mounted on each edge of the structure in a an x or + formation depending on the 

formation. 

 

Figure 1: Shows the x and + structure configurations of a quadcopter 

 

 However the quadcopter concept isn’t introduced recently considering that it existed 

since 1921; in January 1921 a US Army Corps. Contract of developing a vertical flying Machine 

was awarded to Dr. George de Bothezat and Ivan Jerome. The 1678 kg X-shaped structure 

supported 8.1 m diameter 6 blade rotor at each end of the 9 m arms and a 180 hp Le Rohne radial 

engine. At the ends of the lateral arms, two small propellers with variable pitch were used for 

thrusting and yaw control; each rotor had individual collective pitch control to produce 

differential thrust through vehicle inclination for translation. 
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Figure 2: shows the quadcopter rotorcraft of Bothezat 

 On the aircraft first flight in October 1922, the rotor craft weighed 1700 kg at take-off; 

the engine was soon upgraded to a 220 hp Bentley BR-2 rotary, about 100 flights were made by 

the end of 1923. Although the contract called for a 100 m hover, the highest it ever reached was 

5 m. After expanding $200,000 de Bothezat demonstrated that his vehicle could be quite stable 

and that the practical helicopter, it was however unpowered, unresponsive, mechanically 

complex, susceptible to reliability problems and pilot work load was too high during hover to 

attempt lateral motion [3]. 

2.2 History of Quadcopter 
Only few works were reported in the literature of a helicopter having four rotors. Young 

et al [4]. Sponsored by the Directorate Aerospace in NASA Ames Research Center present new 

configuration s of mini-drones and their applications among which the helicopter with four rotors 

called the Quad-rotor Tail-Sitter. 

 Pounds et al [5]; Conceived and developed a control algorithm for a prototype of an 

aerial vehicle having four rotors; they considered using an MIU (Measurement Inertial Unit) to 

measure the speed and acceleration. They use a linearization of the dynamic model to conceive 

the control algorithm; the result of the control law was tested in the simulation. 

 Altug et al [6]; Proposed a control algorithm to stabilize the quad-rotor using vision as 

principal sensor. They studied two methods, the first uses a control algorithm of linearization and 

the other uses the technique of back-stepping. They have tested the control laws in the 

simulation; they also present an experience using vision to measure yaw angle and the altitude. 

 The main reason there’s few works of literature taking quad-rotors as case study or 

research area is that the interest in quadcopters has increased recently and more researchers and 

aeronautics specialists are looking into the matter and conducting research. 
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2.3 Dynamic Model 

2.3.1 Quad-rotor Characteristics 

 

Consider Figure 3 below; the front and rear motors rotate counter-clockwise while the 

other two rotate clockwise, gyroscopic effects and aerodynamic torques tend to cancel in 

trimming flight.  

 

Figure 3: shows the Quad-rotor rotorcraft 

 This four-rotor rotor-craft does not have a swash plate; in fact, it doesn’t need any blade 

pitch control. The collective input or throttle input is the sum of the thrusts of each motor (Figure 

4). 
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Figure 4: shows throttle control input 

 Pitch movement is obtained by increasing/reducing the speed of the rear motor while 

reducing/increasing the speed of the front motor. The roll movement is obtained similarly using 

the lateral motors. The yaw movement is obtained by increasing/decreasing the speed of the front 

and rear motors while decreasing/increasing the speed of the lateral motors; this should be done 

while keeping the total thrust constant. 

 

Figure 5: (a) Pitch   (b) Roll   (c) Yaw 
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2.3.2 System Description 

 

The dynamic model of the quadcopter is presented simply by regarding it as a solid body 

developed in the three dimensions experiencing one force and three moments; the electric 

motors’ dynamics are neglected along with its blades flexibility due to its relatively fast speed. 

The generalized coordinates of the rotorcraft are: 

 

 𝑞 = (𝑥, 𝑦, 𝑧, 𝜑, 𝜃, ∅)  ∈  𝑅6 
 

…….2.1 

 

Where: 

(x, y, z) ≡ The position of the center of mass of the quadcopter 

(𝜑, 𝜃, ∅) ≡ Euler angles- angles of pitch, yaw and roll- of the quadcopter 

 

Hence the model is naturally divided into translational and rotational coordinates: 

 

 𝜉 = (𝑥, 𝑦, 𝑧) ∈  ℜ3,  𝜂 = (𝜑, 𝜃, ∅) ∈  𝑆3 

 
…….2.2 

 

The translational kinetic energy of the rotorcraft is 

 

 𝑇𝑡𝑟𝑎𝑛𝑠 ≜ 
𝑚

2
 𝜉 𝑇𝜉 

 
…….2.3 

 

 

Where m denotes the mass of the rotorcraft. The rotational kinetic energy is: 

 
𝑇𝑟𝑜𝑡  ≜  

1

2
 𝜂𝑇𝕁𝜂 

 
…….2.4 
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The matrix 𝕁 acts as the inertia matrix for the full rotational kinetic energy of the 

rotorcraft expressed directly in terms of generalized coordinates 𝜂. The only potential energy 

which needs to be considered is the gravitational potential given by 

 

 𝑈 = 𝑚𝑔𝑧 

 
…….2.5 

 

 

The Langrangian is 

 

 
𝐿(𝑞, 𝑞.) =  𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑟𝑜𝑡 − 𝑈 =  

𝑚

2
 𝜉 𝑇𝜉 +

1

2
 𝜂𝑇𝕁𝜂 −  𝑚𝑔𝑧 

 
…….2.6 

 

 

Figure 6: shows the quadcopter in an inertial frame 
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The dynamic model of the quadcopter is obtained from the Euler Lagrange equations 

with external generalized force 

 

 𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞.
− 

𝜕𝐿

𝜕𝑞
= 𝐹 

 

…….2.7 

 

 

𝐹 = (𝐹𝜉 , τ) Where 𝜏 are the generalized moments and 𝐹𝜉  is the translational force applied 

to the rotorcraft due to control inputs, we ignore the small body forces because they are generally 

of a much smaller magnitude than the principal control inputs u and𝜏, then we write 

 

 
ℱ =  (

0
0
𝑢
) 

 

…….2.8 

 

 

See figure 4: 

 

 𝑢 = 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 

 
…….2.9 

 

 𝑓𝑖 = 𝑘𝑖𝜔𝑖
2   𝑖 = 1,… , 4 

 
…….2.10 

 

Where 𝑘𝑖 > 0 is a constant and 𝜔𝑖 is the angular speed of motor i then 

 

 𝐹𝜉 = 𝑅ℱ …….2.11 

 

Where R is the transformation matrix representing the orientation of the rotorcraft, we use 𝑐𝜃 for 

cosθ and 𝑠𝜃 for 𝑠𝑖𝑛(𝜃) 
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𝑅 = (

𝑐𝜃𝑐𝜓 𝑠𝜓𝑠𝜃 −𝑠𝜃

𝑐𝜓𝑠𝜃𝑠𝜙 −𝑠𝜓𝑐𝜙𝑠𝜓𝑠𝜃𝑠𝜙 +𝑐𝜓𝑐𝜙𝑐𝜃𝑠𝜙

𝑐𝜓𝑠𝜃𝑐𝜙 +𝑠𝜓𝑠𝜙𝑠𝜓𝑠𝜃𝑐𝜙 −𝑐𝜓𝑠𝜙𝑐𝜃𝑐𝜙

) …….2.12 

 

The generalized moments on the η variables are 

 

 
𝜏 ≜  (

𝜏𝜓

𝜏𝜃

𝜏𝜙

) …….2.13 

 

Where 

 

 

𝜏𝜓 = ∑ 𝜏𝑀ℓ

4

𝑖=1

     𝜏𝜃 = (𝑓2 − 𝑓4)ℓ        𝜏𝜙 = (𝑓3 − 𝑓1)ℓ …….2.14 

 

Where ℓ is the distance from the motors to the center of gravity and 𝜏𝑀ℓ
 is the couple 

produced by motor 𝑀𝑖. 

 Since the Langrangian contains no cross-terms in the kinetic energy combining �̇� and �̇�, 

the Euler-Langrange equation may be divided to the �̇� dynamics and η dynamics. 

 

 
𝑚�̈� + (

0
0

𝑚𝑔
) = ℱ𝜉 …….2.15 

 

 
𝕁�̈� + 𝕁�̇̇� −  

1

2
 
𝜕

𝜕𝜂
 (�̇�𝑇𝕁�̇�) =  𝜏 …….2.16 

 

Defining the Coriolis/centripetal vector 

 

 
�̅�(𝜂, �̇�) =  𝕁�̇̇� −  

1

2
 
𝜕

𝜕𝜂
 (�̇�𝑇𝕁�̇�) …….2.17 
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We may write 

 𝕁�̈� + �̅�(𝜂, �̇�) =  𝜏 …….2.18 

 

But we can rewrite  �̅�(𝜂, �̇�) 

 

 
�̅�(𝜂, �̇�) =  (�̇� − 

1

2
 
𝜕

𝜕𝜂
 (�̇�𝑇𝕁)�̇�) = 𝐶(𝜂, �̇�)�̇� …….2.19) 

 

Where 𝐶(𝜂, �̇�) is referred to as the Coriolis terms and contains the gyroscopic and 

centrifugal terms associated with the η dependence of  𝕁. Finally: 

 

 

𝑚�̈� = 𝑢 (
−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙

) + (
0
0

− 𝑚𝑔
) 

 

…….2.20 

 𝕁�̈� =  −𝐶(𝜂, �̇�)�̇� +  𝜏 …….2.21 

 

 

In order to simplify let us propose a change of input variables. 

 𝜏 =  𝐶(𝜂, �̇�)�̇� +  𝕁�̃� …….2.22 

 

 

�̃� =  (

�̃�𝜓

�̃�𝜃

�̃�𝜙

) …….2.23 

 

Are the new inputs, then 𝜂 =̈  �̃�, rewriting the equations 

 𝑚�̈� =  −𝑢 𝑠𝑖𝑛𝜃          𝑚�̈� = 𝑢 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙         𝑚�̈� = 𝑢 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙 − 𝑚 …….2.24 

 

 �̈� =  �̃�𝜓                  �̈� =  �̃�𝜃                 �̈� =  �̃�𝜙 …….2.25 
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Where x and y are the coordinates of the horizontal plane and z is the vertical position. 𝜓 

is the yaw angle around the z-axis, 𝜃 is the pitch angle around (new) y-axis and 𝜙 is the roll 

angle around the (new) x-axis. The control inputs u,�̃�𝜓, �̃�𝜃 and �̃�𝜙 are the total thrust or 

collective input directed from the bottom of the aircraft and the new angular moments. 

 

2.4 Quadcopter Block Diagram 
 

The quadcopter rotorcraft consists of an Inertial Measurement Unit (IMU), flight control 

unit, Electric Speed Controllers (ESC) for the motors and a Radio Frequency (RF) receiver; as 

shown on figure 7 below the IMU consists of an accelerometer, gyroscope and a magnetometer. 

 

Figure 7: Quadcopter Block Diagram 

2.4.1 Inertial Measurement Unit (IMU) 

Accelerometers are devices that measure acceleration. A gyroscope is a device consisting 

of a wheel or disk m0ounted so that it can spin rapidly about an axis that is itself free to alter in 

direction. The orientation of the axis is not affected by tilting of the mounting; so, gyroscopes 

can be used to provide stability or maintain a reference direction in navigation systems, 
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automatic pilots, and stabilizers. A magnetometer is an instrument used for measuring magnetic 

forces, especially the earth's magnetism. 

2.4.2 RF Receiver 

A quadcopter consists of a communication system to transmit pilot commands to the 

copter flight controller to carry out a pitch, roll or a yaw; this system consists of a transmitter 

which is the R/C controller the pilot uses to control the rotorcraft and a Radio Frequency receiver 

on the quad copter (RF) to receive information signals sent by the R/C controller. 

2.4.3 Brushless DC Motor 

 

BLDC motors are a type of synchronous motor. This means the magnetic field generated 

by the stator and the magnetic field generated by the rotor rotates at the same frequency. The 

stator of a BLDC motor consists of stacked steel laminations with windings placed in the slots 

that are axially cut along the inner periphery, the stator resembles that of an induction motor; 

however, the windings are distributed in a different manner. Most BLDC motors have three 

stator windings connected in star fashion. Each of these windings is constructed with numerous 

coils interconnected to form a winding. One or more coils are placed in the slots and they are 

interconnected to make a winding. Each of these windings is distributed over the stator periphery 

to form even numbers of poles. 

 The rotor is made of permanent magnet and can vary from two to eight pole pairs with 

alternate North (N) and South (S) poles. Based on the required magnetic field density in the 

rotor, the proper magnetic material is chosen to make the rotor. Ferrite magnets are traditionally 

used to make permanent magnets. As the technology advances, rare earth alloy magnets are 

gaining popularity. The ferrite magnets are less expensive but they have the disadvantage of low 

flux density for a given volume. In contrast, the alloy material has high magnetic density per 

volume and enables the rotor to compress further for the same torque. Also, these alloy magnets 

improve the size-to-weight ratio and give higher torque for the same size motor using ferrite 

magnets. Neodymium (Nd), Samarium Cobalt (SmCo) and the alloy of Neodymium, Ferrite and 

Boron (NdFeB) are some examples of rare earth alloy magnets. Continuous research is going on 

to improve the flux density to compress the rotor further. 

2.4.4 Electronic Speed Controller (ESC) 

An electronic speed controller or ESC is an electronic circuit that vary an electric motor's 

speed, its direction and possibly also to act as a dynamic brake. ESCs most often used 

for brushless motors essentially providing an electronically generated three-phase electric 

power low voltage source of energy for the motor. 
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2.4.5 Flight Controller 

A Flight Controller Unit is the block responsible of receiving the flight commands, 

stabilizing the quad copter, executing pilot commands, controlling the speed of the motors and 

performing flight movements. 

2.5 Tools 

2.5.1 Arduino 

Arduino is an open-source electronics platform based on easy-to-use hardware and 

software. Arduino boards are able to read inputs - light on a sensor, a finger on a button, or a 

Twitter message - and turn it into an output - activating a motor, turning on an LED, publishing 

something online. You can tell your board what to do by sending a set of instructions to the 

microcontroller on the board. [7] 

2.5.2 Proteus 8 Labcenter 

Protues software by Labcenter enabling powerful features to design, test and layout 

professional PCB layouts and supports the schematics and simulation of 800 microcontrollers. 

2.5.3 Unity 3D 

Unity3D is a powerful cross-platform 3D engine and a user-friendly development 

environment for developing 3D projects and simulations equipped with graphical and 

programmatic documentation and scripting guide to simulate real world physics and variables 

making it easy for the user to run their simulations and see the result visually rather than tables 

and figures. 

2.5.4 eCalc – xcopterCalc 

eCalc is an online tool for simulating real-life quadrotor parameters by providing 

quadcopter parameters such as model weight, number of rotors, frame size, elevation, … etc. and 

other parameters concerning the flight controller, Motors and propellers then assessing and 

providing suggestion to get the best performance of the quadcopter. 
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Chapter Three 

Modeling and Simulation 
 

3.1 Mathematical Modeling 

 

To mathematically write the movement of an aircraft we must employ Newton’s second 

law of motion. As such, the equations of the net force and moment acting on the Quadrotor’s 

body (respectively 𝐹𝒏𝒆𝒕 and 𝑀𝒏𝒆𝒕) are provided: 

  

𝐹𝑛𝑒𝑡 =
𝑑

𝑑𝑡
(𝑚𝑣)𝑏 + 𝜔− × (𝑚𝑣)𝑏………………………………3.1 

 

𝑀𝑛𝑒𝑡 =
𝑑

𝑑𝑡
(𝐼𝜔−)𝑏 + 𝜔− × (𝐼𝜔−)𝑏…………………………….3.2 

Where I is the inertia matrix of the Quadrotor, v is the vector of linear velocities and𝜔− 

is the vector of angular velocities. If the equation of Newton’s second law is to be as complete as 

possible, we should add extra terms such as the force of gravity (Fg) which is too significant to 

be neglected, thus it is defined by 

𝐹𝑔 = 𝑚𝑆[0  0  𝑔]𝑇 = 𝑚𝑔[−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅  𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅]𝑇
𝑏……………3.3 

Where S is the rotation matrix 

S= [

cos 𝜃 cos𝜑 cos 𝜃 sin φ − sin 𝜃
sin φ sin 𝜃 cos𝜑 − cos∅ sin𝜑 cos ∅ cos 𝜑 + sin∅ sin 𝜃 sinφ sin∅ cos 𝜃
cos ∅ sin 𝜃 cos𝜑 + sin∅ sin 𝜑 sin 𝜃 cos ∅ sinφ −sin∅ cos𝜑 cos 𝜃 cos ∅

] 

The force of gravity together with the total thrust generated by the propellers (FP) have 

therefore to be equal to the sum of forces acting on the Quadcopter: 
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𝐹𝑛𝑒𝑡 = 𝐹𝑝 + 𝐹𝑔……………………………3.4 

Combine equations 1, 3, 4. We can write the vector of linear accelerations acting on the 

vehicle’s body: 

[
𝑈∙

𝑉 ∙

𝑊 ∙
] = [

0
𝑅

−𝑄

−𝑅
0
𝑃

𝑄
𝑃
0
] [

𝑈
𝑉
𝑊

] +
1

𝑚
[

𝐹𝑝𝑥

𝐹𝑝𝑦

𝐹𝑝𝑧

] + [
−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅
𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅

] 𝑔………………….3.5 

 

Where [FP x FP y FP z] are the vector elements of FP. 

The forces and moments acting on Quadcopter of (×) congigrations 

𝐹𝑝𝑧 = −(𝑇1 + 𝑇2 + 𝑇3 + 𝑇4)                  …………………………….3.6 

𝑀𝑥 = 𝑙(−𝑇1 − 𝑇2 + 𝑇3 + 𝑇4)                   …………………………3.7 

𝑀𝑦 = 𝑙(𝑇1 − 𝑇2 + 𝑇3 − 𝑇4)              ……………………….3.8 

𝑀𝑧 = 𝐾𝑇 𝑀(𝑇1 + 𝑇2 − 𝑇3 + 𝑇4)…………………3.9 

 

where  

L is the distance to the aircrafts COG, and KT M is a constant that relates moment 

and thrust of a propeller  

Assuming the Quadcopter is a rigid body with constant mass and axis aligned with the 

principal axis of inertia, then the tensor I becomes a diagonal matrix containing only the 

principal moments of inertia: 

𝐼 = [
𝐼𝑥𝑥

0
0

0   
𝐼𝑌𝑌

0

0
0

𝐼𝑍𝑍

]…………………………3.10 

 

Combine equation 9 and 10 result: 
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𝑀𝑛𝑒𝑡 = [

𝐼𝑥𝑥𝑃
∙

𝐼𝑦𝑦𝑄∙

𝐼𝑧𝑧𝑅
∙
] + [

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑃𝑅
(𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑃𝑄

]………………….3.11 

 

𝑀𝑛𝑒𝑡 = [
𝐼𝑥𝑥

0
0

0   
𝐼𝑌𝑌

0

0
0
𝐼𝑍𝑍

] [
𝑃∙

𝑄∙

𝑅∙
] + [

𝑃
𝑄
𝑅
] × [

𝐼𝑥𝑥

0
0

0   
𝐼𝑌𝑌

0

0
0
𝐼𝑍𝑍

] [
𝑃
𝑄
𝑅
]...........3.12 

Then  

[
𝑃∙

𝑄∙

𝑅∙
] =

[
 
 
 
 
𝑀𝑥

𝐼𝑥𝑥

𝑀𝑦

𝐼𝑦𝑦

𝑀𝑧

𝐼𝑧𝑧]
 
 
 
 

−

[
 
 
 
 
 
(𝐼𝑧𝑧−𝐼𝑦𝑦)𝑄𝑅

𝐼𝑥𝑥

(𝐼𝑥𝑥−𝐼𝑧𝑧)𝑃𝑅

𝐼𝑦

(𝐼𝑦𝑦−𝐼𝑥𝑥)𝑃𝑄

𝐼𝑧𝑧 ]
 
 
 
 
 

…………………….3.13 

 

Figure 8: Quadcopter control loop 

 

3.1 PID Controller 
Proportional-Integral-Derivative controller is a closed feedback loop system used in 

applications requiring continuous modulated control by continuously calculating an error value 

𝑒(𝑡) representing a difference between a desired set point and a measured process variable then 

applies correction based on proportional, integral and derivative terms 
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3.1.1 Theory of operation 

 The sum of the three PID terms produces a Manipulated Variable (MV) that is used to 

correct the error of the system: 

 

 𝑢(𝑡) = 𝑀𝑉(𝑡) =  𝐾𝑝 𝑒(𝑡) + 𝐾𝑖  ∫ 𝜏 𝑑𝜏 
𝑡

0
+ 𝐾𝑑  

𝑑𝑒(𝑡)

𝑑𝑡
……………………. 3.14 

 

Where 

𝐾𝑝 is proportional gain 

𝐾𝑖 is the integral gain 

𝐾𝑑 is the derivative gain 

𝑒(𝑡) is the error 

t is the continuous time 

𝜏 is the variable of integrations 

 The proportional term produces an output value that is proportional to the current error 

value. The proportional response can be adjusted by multiplying the error by a constant 𝐾𝑝, 

called the proportional gain constant.  

The contribution from the integral term is proportional to both the magnitude of the error 

and the duration of the error. The integral in a PID controller is the sum of the instantaneous 

error over time and gives the accumulated offset that should have been corrected previously. The 

accumulated error is then multiplied by the integral gain (𝐾𝑖) and added to the controller output. 

The derivative term of the process error is calculated by determining the slope of the 

error over time and multiplying this rate of change by the derivative gain 𝐾𝑑. The magnitude of 

the contribution of the derivative term to the overall control action is termed the derivative 

gain𝐾𝑑. 

The present, past and future errors are dependent on the terms of the PID respectively 

meaning the present error depends on P, past error accumulates the I and future error is 

forecasted by the D term. 

The proportional controller 𝐾𝑃 will reduce the rise time and the steady state error but will 

not eliminate the steady state error; the integral controller 𝐾𝐼 will eliminate the steady state error 

however it may worsen the transient error; a derivative controller 𝐾𝐷 will increase the stability of 

the system by reducing the overshoot and improving the transient response. 
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Table 1: Effects of each of controllers 𝑲𝒑, 𝑲𝒊, and 𝑲𝒅 on a closed-loop system 

Closed Loop 

Response 

Rise Time Overshoot Settling 

Time 

Steady State 

Error 

𝑲𝑷 Decrease Increase Small Change Decrease 

𝑲𝑰 Decrease Increase Increase Eliminate 

𝑲𝑫 Small Change Decrease Decrease Small Change 

 

3.1.2 PID Tuning 

  

Tuning a control loop is the adjustment of its control parameters (proportional band/gain, 

integral gain/reset, derivative gain/rate) to the optimum values for the desired control response. 

Stability (no unbounded oscillation) is a basic requirement, but beyond that, different systems 

have different behavior, different applications have different requirements, and requirements 

may conflict with one another. [8] 

3.1.3 Classic PID Equations 

Proportional controller 

 𝐴(𝑡) =  𝐾𝑃 ∗ 𝑒(𝑡)…………………….3.15 

 

Integral Controller 

 𝐴(𝑡) =  𝐾𝐼 ∗  ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
…………………….3.16 

 
 

Derivative Controller 

 𝐴(𝑡) =  𝐾𝐷 ∗  
𝑑 𝑒(𝑡)

𝑑𝑡
…………………….3.17 

 

The total equation of the classic controller 

 𝑢(𝑡) =  𝐾𝑃 ∗ 𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝐷  

𝑑 𝑒(𝑡)

𝑑𝑡
…………………….3.18  
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3.2 Simulation 
 

Simulation of the quadcopter was conducted over three software’s each of which 

completing the other’s limitation Proteus was used to design the circuit and add the code 

simulating the operation of the quadrotor; unity provided a graphic simulation of the quadrotor 

operating using a PID controller simulated using unity scripting and documentation references; 

the hardware capabilities of the quadrotor were tested using eCalc to define which parameters 

needed adjusting until an appropriate hardware status was obtained. 

 

3.2.1 Unity 

Unity documentation provided a better ground to build the simulation of the PID 

controllers through code only existing inside the unity environment written for the purpose of 

simulating real life physics subjecting the PID controller to an environment similar to real life 

parameters. 

 

Figure 9: Quadrotor 3D model 

From figure 10 above illustrates the three-dimensional model of the quadrotor, the physics forces 

applied on the motors to rotate them is supplied to the four motors simultaneously, hence the 

motors are named individually as Front Right (FR), Front Left (FL), Back Right (BR) and Back 

Left (BL). 

To simulate the quadrotor as a rigid body unity offers a physics component called a rigid 

body providing all the physical specifications of a real rigid body. Consider figure 11 below: 
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Figure 10 :Rigid body component attached to the quadrotor 3D model 

The Transform tab describes the coordinates- x, y and z coordinates system- of the 

quadrotor position, rotation and scale in the simulation; position (0, 5, 0) means the quadrotor is 

in the origin of the simulation plane with an elevation of 5 units from the ground and (0, 0, 0) 

rotation means that the quadrotor is perfectly balanced and there is no rotation around any axes 

and the scale is one unit cubed representing height, width and length. 

A rigid body in unity is a component simulating real objects physics qualities such as mass, drag, 

angular drag, etc.; the use gravity check box allows you to use real gravity which is going to 

affect the object as soon as the simulation starts and is kinematic specifies whether the object 

will remain at rest the whole time the simulation is running and the collision detection is set to 

discrete that will update it every frame of the simulation. 

Now when the simulation runs the gravity will pull the quadrotor to the ground and it will remain 

in this state if no force is applied to counter the gravity two pieces of code are associated with 

this the quadcopter controller which is the implementation of the PID controller to the 

quadcopter that is simulated in another script. 

The simulation will require constant variables to be initialized by the quadcopter PID 

controller; maximum propeller force, maximum torque, throttle and move factor are set as shown 

in figure below, the mass and drag of the quadcopter is set in the rigid body component. 
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Figure 11: Quadcopter controller parameters 

Once the simulation starts the quadrotor will be affected by gravity and instantly pulled to 

the ground waiting for user input as it orientation is balanced; the craft controller has two sticks 

the one on the left controls the steering forward and back, left and right and the right stick 

controls the throttle and the turning-yawing – left and right which pass the user input to another 

function to execute the command that is set as desired point for the controller. 

Pitch, roll and yaw errors will be calculated to be passed to the PID controller assuming 

no errors at all when the simulations starts then adapting the PID variables to the throttle and 

calculating the force that must be added to the propellers based on the PID output to translate the 

quadrotor from its measured position to the user desired point. 

 

3.2.3 eCalc 

 

The hardware chosen for the quadrotor was passed as input with detailed specifications to 

the eCalc tool to determine its ability to withstand the load and power consumption then 

adjusting the hardware based on the suggestions provided to ensure best performance possible. 
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As shown in Figure above the specification of hardware pieces are passed onto to the 

input fields of the tool providing a detailed description about the important hardware operating 

the quadcopter such as battery cell, controller, motor and propellers also general specifications of 

weight, number of rotors, frame size, … etc., are required in order to provide specific 

performance graphs. 

 

Figure 13 :Range Estimation 

 

Figure 12: Hardware Specifications passed into eCalc for evaluation 
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 Figure above shows the analysis made by eCalc for the range that the quadcopter 

with the specifications entered possesses. Flight time estimated by eCalc is 9 minutes with a 

maximum speed of 54 km/h (33.2 mph); the green area denotes the best flight operation range. 

 

Figure 14: Motor characteristics at full throttle 

Figure above denotes the characteristics of the motors at full throttle, the best 

characteristics are a power of 137.5 W, 75% efficiency, a maximum RPM of 85 rpm and a 

wasted power of 25 W shown by the circles. 
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Chapter Four 

Construction 
 

4.1 Overall hardware connection to the microcontroller  

 

 

Figure 15: Overall Quadcopter hardware connection 
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4.2 Hardware Components 

4.2.1 The Frame of the Quadcopter 

Typical quad-rotors utilize a four-spar method, with each spar anchored to the central 

hub. The frame of the quad copter is composed of a combination of materials chosen for their 

strength, weight and flexibility.  

  When designing an autonomous quad-rotor, there are several material options which must 

be considered. When designing a machine capable of flight, weight must be greatly well thought-

out.  

The airframe is the mechanical structure of an aircraft that supports all the components, 

much like a “skeleton” in Human Beings. Designing an airframe from scratch involves important 

concepts of physics, aerodynamics, materials engineering and manufacturing techniques to 

achieve certain performance, reliability and cost criteria. 

 

4.2.2 The Microcontroller – Arduino Uno 

Arduino Uno is a microcontroller board based on the ATmega328P It has 14 digital 

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz quartz 

crystal, a USB connection, a power jack, an ICSP header and a reset button.  

It contains everything needed to support the microcontroller; simply connect it to a 

computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. "Uno" 

means one in Italian and was chosen to mark the release of Arduino Software (IDE) 1.0. The 

Figure 16: Plastic foam frame incase in fiber glass 
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Uno board and version 1.0 of Arduino Software (IDE) were the reference versions of Arduino, 

The Uno board is the first in a series of USB Arduino boards, and the reference model for the 

Arduino platform; for an extensive list of current, past or outdated boards see the Arduino index 

of boards. 

 

Figure 17: Arduino UNO Microcontroller Board 

 

4.2.3 Electronic Speed Controllers 

An electronic speed control or ESC is a circuit with the purpose to control an electric 

motor's speed, its direction and possibly also to act as a dynamic brake in some cases. ESCs are 

often used on electrically powered brushless motors essentially providing an electronically-

generated three phase electric power, with a low voltage source. 

An ESC interprets control information in a way that varies the switching rate of a 

network of field effect transistors (FETs), not as mechanical motion as would be the case of a 

servo. The quick switching of the transistors is what causes the motor itself to emanate its 

characteristic high-pitched whine, which is especially noticeable at lower speeds. It also allows 

much smoother and more precise variation of motor speeds in a far more efficient manner than 

the mechanical type with a resistive coil and moving arm once in common use.  
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The ESC generally accepts a nominal 50 Hz Pulse Width Modulation (PWM) servo input 

signal whose pulse width varies from 1ms to 2ms. When supplied with a 1ms width pulse at 50 

Hz, the ESC responds by turning off the DC motor attached to its output. A 1.5ms pulse-width 

input signal results in a 50% duty cycle output signal that drives the motor at approximately 50% 

speed. When presented with 2.0ms input signal, the motor runs at full speed due to the 100% 

duty cycle (on constantly) output.  

The correct phase varies with the motor rotation, controlled and monitored by the ESC.  

The orientation of the motor is determined by the back EMF (Electromotive Force). The back 

EMF is the voltage induced in a motor wire by the magnet spinning past its internal coils. 

Finally, a PID algorithm in the controller adjusts the PWM to maintain a constant RPM.  

 Reversing the motor's direction may also be accomplished by switching any two of the 

three leads from the ESC to the motor. 

Ideally the ESC controller should be paired to the motor and rotor craft with the 

following considerations.  

 1. Temperature and thermal characteristics.  

 2. Max Current output and Impendence.  

 3. Needs to be Equipped with a BEC (Battery Eliminator Circuit) to eliminate the need 

of a second battery.   

 4. Size and Weight properties.   

 5. Magnet Rating. 

 

 

Figure 18: 30A Brushless ESC 
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Additionally, the speed controller has fixed throttle settings so that the "stop" and "full 

throttle” points of all the various modes which can be cut through cleanly. The controller 

produces audible beeps to assist in navigating through the program modes and troubleshooting 

logs. 

Table 2 : Specification for 30A Brushless ESC 

 

4.2.4 Inertial Measurement Unit 

 

Precision and accuracy is important when it comes to Accelerometer and gyroscope 

measurement. We require a 3-axis accelerometer and gyroscope that provides reliable and 

accurate data. It is also an advantage if they can be on the same chip. For this reason, we went 

with the MPU-600, which is a small, thin, ultralow power, 3-axis accelerometer and gyroscope. 

The device is very accurate, as it contains 16-bis analog to digital conversion hardware for each 

channel. It measures the static acceleration of gravity in tilt-sensing applications, as well as 

dynamic acceleration resulting from motion or shock. The sensor has a "Digital motion 

processor" which can be programmed with firmware and is able to do complex calculations with 

the sensor values. 

 

30A Brushless ESC Output Continuous 30A, burst 40A up to 10 Sec 

Input voltage 2-4 cells lithium battery or 5-12 cells NiCd/NiMH battery 

BEC 2A / 5V (Linear mode). 

Max speed 210,000rpm for 2 poles BLM, 70,000rpm for 6 poles BLM, 

35,000rpm for 12 poles BLM. (BLM: Brushless Motor 

Size 45 * 24 * 11mm / 1.8 * 0.9 * 0.4in 

Weight 25g / 0.9oz 

Item total weight 480g / 1.06Lbs 
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Figure 19: MPU6050 IMU used in our quadcopter 

 

 

4.2.5 IMU interface with ARDUINO 

 

 

Figure 20: MPU6050 Interface with Arduino 
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4.2.6 The Battery Pack 

Selecting the proper battery for our rotor copter was a challenging task. Nickel Cadmium 

(NiCd), Nickel Metal Hydride (NiMH), and Lithium Polymer (LiPo) were common choices with 

the advantages and disadvantages of each battery pack.  

NiCd batteries are reasonably inexpensive, but they have a number of negatives. NiCd 

batteries need to be fully discharged after each use. If they aren’t, they will not discharge to their 

full potential (capacity) on following discharge cycles, causing the cell to develop what’s 

commonly referred to as a memory. Additionally, the capacity per weight (energy density) of 

NiCd cells is commonly less than NiMH or LiPo cell types as well. Finally, the Cadmium that is 

used in the cell is quite destructive to the environment, making disposal of NiCd cells an issue.  

NiMH cells have many advantages over their NiCd counterparts. NiMH cell 

manufacturers are able to offer significantly higher capacities in cells approximately the same 

size and weight of equivalent NiCd cells. NiMH cells have an advantage when it comes to cell 

memory as well, as they do not develop the same issues as a result of inappropriate discharge 

care.  

Lithium Polymer (LiPo) cells are one of the newest and most revolutionary battery cells 

Available. LiPo cells maintain a more consistent voltage over the discharge curve when 

compared to NiCd or NiMH cells. The higher nominal voltage of a single LiPo cell (3.7V vs. 

1.2V for a typically NiCd or NiMH cell); making it possible to have an equivalent or even higher 

total nominal voltage in a much smaller package LiPo cells typically offer very high capacity for 

their weight, delivering upwards of twice the capacity for ½ the weight of comparable NiMH 

cells.  

Lastly, a LiPo cell battery needs to be carefully monitored during charging since 

overcharging and the charging of a physically damaged or discharged cell can be a potential fire 

hazard and possibly even fatal.  

LiPo Pro's:   

• Highest power/weight ratio.  

• Very low self-discharge.  
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• Less affected by low temperatures than some. 

 

LiPo Con's:   

• Intolerant of over-charging. 

• Intolerant of over-discharging Battery.  

• significant fire risk  

 

 

Figure 21: 3S LiPo Battery 
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Table 3 : LiPo batteries 3S 11.1V 2600MAH 30C packs 

 

Capacity 2600mAh 

Configuration 3S1P 

Dimensions 116X34X26mm 

Weight 200g 

Constant Discharge 30C 

Burst Discharge 60C 

Balance connector ST-XHR 

Discharge plug T plug 

Use Vehicles & Remote-Control 

Toys 

Material EVA 

 

4.2.7 The Brushless Motors 

Each of the four rotors comprises of a Brushless DC Motor attached to a propeller. The 

Brushless motor differs from the conventional Brushed DC Motors in their concept essentially in 

that the commutation of the input voltage applied to the armature's circuit is done electronically, 

whereas in the latter, by a mechanical brush. As any rotating mechanical device, it suffers wear 

during operation, and as a consequence it has a shorter nominal life time than the newer 

Brushless motors.   

In spite of the extra complexity in its electronic switching circuit, the brushless design 

offers several advantages over its counterpart, to name a few: higher torque/weight ratio, less 

operational noise, longer lifetime, less generation of electromagnetic interference and much more 

power per volume. Virtually limited only by its inherent heat generation, whose transfer to the 

outer environment usually occurs by conduction. 
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Figure 22: A2212/13T 1000 KV BLDC (Brushless DC Motor) 

 

Table 4 : Specifications of A2212 / 920 KV out runner motor 

No. of Cells: 2 - 3 Li-Poly 

6 - 10 NiCd/NiMH 

Kv: 

Max Efficiency: 

Max Efficiency Current: 

1000 RPM/V 

80% 

4 - 10A (>75%) 

No Load Current: 

Resistance: 

Max Current: 

0.5A @10V 

0.090 ohms 

13A for 60S 

Max Watts: 

Weight: 

Size: 

150W 

52.7 g / 1.86 oz. 

28 mm diameter x 28 mm bell length 

Shaft Diameter: 

Poles: 

Model Weight: 

3.2 mm 

14 

300 - 800g / 10.5 - 28.2 oz. 
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4.2.8 Propellers  

 

Propeller is a set of rotating blades design to convert the power (torque) of the 

Engine in to thrust.  

The Quadrotor consists of four propellers coupled to the brushless motor. Among 

These four propellers, two clockwise and the remaining other two are counter clockwise. 

Clockwise and anticlockwise propellers cancel their torque from each other.  

Propellers are specified by their diameter and pitch.  The propeller used is 1045 

Fixed-pitch, symmetric, tapered Normal Rotation Carbon Fiber Propeller, shown in (figure):  

 

 

 

Figure 23: 1045 fixed-pitch, Carbon fiber Propeller 

4.3 Software Implementation 

4.3.1 Quadcopter Flowchart 

The operation flow of the quadcopter is illustrated in figure below demonstrating steps at 

which quadcopter flows in order to fly and satisfy pilot commands. 
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Figure 24: Quadcopter flow chart 

4.3.2 Transmitter and Receiver 

  

A four channel RC transmitter is used for the purpose of giving freedom to control 

throttle, pitch, roll and yaw individually. To obtain an accurate response set points and minimum 

and maximum ranges must be determined before transmission execution. 

 Since the main loop of the code executes sequentially - one line at a time- an interrupt 

needs to occur enabling receiving signals transmitted from the RC; Arduino allows pins to allow 

interrupt only if the interrupt for a specific pin was declared in the code. 

Before declaring the interrupt pins, interrupt mode must be activated through the following 

syntax: 

PCICR |= (1 << PCIE0); 
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After enabling interrupt mode four pins are declared as receiver interrupt pins each for each 

channel of the transmitter, the pins being Arduino pins 8, 9,10 and 11 declared as following: 

PCMSK0 |= (1 << PCINT0); 

PCMSK0 |= (1 << PCINT1); 

PCMSK0 |= (1 << PCINT2); 

PCMSK0 |= (1 << PCINT3);  

 

4.3.3 Gyroscope 

  

In order to determine the error, the actual quadcopter readings and the received signal 

needs to be compared with each other; the gyroscope is interfaced with an I2C interface- 

pronounced Isquared-C, is a multi-master, multi-slave, single-ended, serial computer bus 

invented- typically used for attaching lower-speed peripheral ICs to processors and 

microcontrollers in short-distance, intra-board communication. 

 To connect to the gyroscope the Wire Library is included in code allowing the Arduino to 

use the I2C; communications start by the master (Arduino) sending a tart bit followed by the 7-

bit address of the slave (GY-85 with address 0x68) so that only gyroscope is chosen using the 

following statement: 

Wire.beginTransmission (0x68); 

 

 Referring to the Gyroscope data-sheet set the gyro output scale to ±2000 deg/s by writing 

the value (3) decimal to the 3th and 4th bits of (22) gyroscope register. 

 

Wire.write (22);   // calling the register of Full Scale 

Wire.write (3<< 3);  // write 3 then shift it to left of Full Scale register 

Wire.endTransmittion ();  // necessary to end each call to register 

 

 250 readings per second has to be obtained, we do so by setting the sampling rate of the 

gyroscope sampling rate register; the first three bits of register (22) are used for setting internal 

sampling rate with either 1KHz or 8KHz. 
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 Register (21) can also be used for setting the sampling rate and is called Sampling Rate 

Divider Register which output is set to any values satisfying the equation: 

 

 𝐹𝑠𝑎𝑚𝑝𝑙𝑒 = 𝐹𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (𝑑𝑖𝑣𝑖𝑑𝑒𝑟 + 1)⁄  (31) 

 

𝐹sample is the sample rate  

𝐹internal is the internal rate determined by register (22) which is either (1KHz,8KHz)  

Divider is determined by register (21) 

 

Hence, to get 250 reading out of that gyro, reg. (22) need to be set to zero which is 

already the default value, the divider register (21) need to be set to 31 decimals, simply be 

writing that value to that register. 

 

Wire.begingTransmittion (0x68); 

Wire.write (21); 

Wire.write (31); 

Wire.endTransmittion (); 

 

After configuring sensor register, the gyro is ready to provide readings through the 

registers (29-34) readings are ready in registers to be picked by the microcontroller any time. The 

readings collected usually have consistent off-set errors which differ in the value from an axis to 

another which are eliminated by calculating the average value for a fair amount of readings 

storing this into variables (gyro_roll_cal, gyro_pitch_cal, gyro_yaw_cal) these values are 

subtracted from each reading taken hence eliminating the gyro offset error. 

The calibrated reading taken from gyroscope includes noise-measurement noise from 

propellers and motors- which can't be eliminated by eliminating the offset error but with the use 

of a very simple filter that was proven to provide accurate results. 
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Figure 25:  Recursive Filter Block Diagram 

 

 𝑦(𝑛) = 𝑎𝑦(𝑛 − 1) + 𝑏𝑥(2) (32) 

 

Where a = b – 1 

 

 The filter takes the input x (n) and sums it with the feedback y (n – 1); a and b are gains 

to be tuned to get the required output response. Applying filter to the three inputs of system (roll, 

pitch, yaw) will eliminate the noise and obtain the required response. 

 

4.3.4 ESCs connection to Arduino 

 

So far, the RC signal was transmitted, received and processed by the Arduino then the 

Gyro sensor provided the angular accelerations the Quadcopter which were filtered, calibrated 

and processed in the Arduino. 

The Arduino output ports connected to the ESCs need to be declared before computing 

the total received input signal. 

 

DDRD |= B11110000; 
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The output of the ESCs controls the motors depending on the PID output however the 

basic movement of the quadcopter is satisfied by the following equations passed as output values 

of the ESCs. 

 𝑒𝑠𝑐_1 =  𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 − 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑝𝑖𝑡𝑐ℎ + 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑟𝑜𝑙𝑙 − 𝑃𝐼𝐷 𝑜𝑢𝑡 _𝑦𝑎𝑤 (33) 

   

 𝑒𝑠𝑐_2 =  𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 + 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑝𝑖𝑡𝑐ℎ +  𝑃𝐼𝐷𝑜𝑢𝑡 _𝑟𝑜𝑙𝑙 + 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑦𝑎𝑤 (34) 

   

 𝑒𝑠𝑐_3 =  𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 + 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑝𝑖𝑡𝑐ℎ − 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑟𝑜𝑙𝑙 − 𝑃𝐼𝐷 𝑜𝑢𝑡 _𝑦𝑎𝑤 (35) 

 

 𝑒𝑠𝑐_4 =  𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 − 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑝𝑖𝑡𝑐ℎ − 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑟𝑜𝑙𝑙 + 𝑃𝐼𝐷 𝑜𝑢𝑡 _𝑦𝑎𝑤 (36) 

 

The positive and negative signs for the PID outputs in the ESCs equations are set 

according to the basic movements of the Quadcopter. Lastly tuning the PID gains (𝐾𝑃, 𝐾𝐼, 𝐾𝑃) to 

provide a smooth and stable response of the Quadcopter. 

 

 

 



41 

 

Chapter Five 

Results and Discussion 
 

 The results that will be discussed in this chapter will include notice of unnatural behavior 

by the quadcopter during construction and after unnatural here is defined as any error or fault 

that can endanger the safety of the quadcopter. 

 It has been noticed that the motors had a variation of speed resulting from the ESCs; the 

voltage supplied from the battery to the ESCs- with only the battery connected to the ESCs 

without any software code or even Arduino connected- vary from one ESC to the other, this was 

resolved by ESC calibration meaning all ESCs start the motors at the same time with the same 

speed on the condition that all ESCs has the same current rating, if the ESCs had different 

current rating overheat will if the rating of ESC is less than the others due because it will try to 

compensate the difference by operating the motor at a higher speed. 

 A power regulator must be used and the mounting, isolation and soldering of the 

components must be accurate and tight, at one point one of the ESCs experienced excessive 

overheat without and obvious reason however when the isolation was removed it was found that 

the soldering was loose; if the mounting of the propellers and motor is not tight a high degree of 

vibration occurs in the quadcopter and will also cause the propellers to detach itself from the 

quadcopter body. 

 A high vibration was clearly noticed in the propellers that was perceived at first to be a 

vibration problem so the propeller was re-mounted at the center of the propeller shaft and a 

square piece of duct tape was added to them as load to reduce vibration which reduced the 

vibration to a minimal value measured by computer code implemented to the quadcopter 

(Appendix-X). 

 The trial and error method in choosing the PID parameters that result in the stability of 

the quadcopter; the ease of control was noticed in the quadcopter however a negative roll angle 

kept occurring however a successful flight time of 53 seconds was recorded in the process of 

finding the suitable PID gains for a stable flight without any drifts.  
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Chapter Six 

Conclusion and Recommendations 

6.1 Conclusion 
 

 The research phase of the thesis aided in understanding the mathematical model of the 

quadcopter which is a step required before control and a background of the PID controller and it 

operation theory in order to transform its equations to equations that are applicable to the 

quadcopter and were implemented in the Arduino microcontroller. 

 The choice of the unity software was made upon the fact that it provided an environment 

with no limitation on executing and constructing a PID controller with code based on its basic 

equations and theory of operation. 

 In conclusion the construction of the circuit that connected the hardware components and 

implementation of the software was the initial work however troubleshooting and tuning the PID 

gains was challenging and the trial and error method proved to be a failure in choosing the 

proper PID parameters that provide stable flight without any offsets or deviations. 

 

6.2 Recommendations 
1. Another method should be used to choose the proper PID gains for a more stable flight 

2. Wires can be connected with jacks instead of soldering wires together. 

3. Power distribution boards are more helpful in mounting the IMU properly on the frame 

beneath the microcontroller and placing the battery safely. 

4. Replacing the RC transmitter with a motion sensor that captures hand gestures transmitted as 

movement commands with a wireless Wi-Fi communication. 
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Appendix A: eCalc Hardware Analysis 
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Appendix B: Quadcopter Simulation Code 

B.1 PID Controller Simulation Code 
using UnityEngine; 
using System.Collections; 
 
public class PIDController : MonoBehaviour 
{ 
    float error_old = 0f; 
    //The controller will be more robust if you are using a further ba
ck sample 
    float error_old_2 = 0f; 
    float error_sum = 0f; 
    //If we want to average an error as input 
    float error_sum2 = 0f; 
 
    //PID parameters 
    public float gain_P = 0f;  
    public float gain_I = 0f; 
    public float gain_D = 0f; 
    //Sometimes you have to limit the total sum of all errors used in 
the I 
    private float error_sumMax = 20f; 
 
    public float GetFactorFromPIDController(float error) 
    { 
        float output = CalculatePIDOutput(error); 
 
        return output; 
    } 
 
    //Use this when experimenting with PID parameters 
    public float GetFactorFromPIDController(float gain_P, float gain_I
, float gain_D, float error) 
    { 
        this.gain_P = gain_P; 
        this.gain_I = gain_I; 
        this.gain_D = gain_D; 



III 

 

 
        float output = CalculatePIDOutput(error); 
 
        return output; 
    } 
 
    //Use this when experimenting with PID parameters and the gains ar
e stored in a Vector3 
    public float GetFactorFromPIDController(Vector3 gains, float error
) 
    { 
        this.gain_P = gains.x; 
        this.gain_I = gains.y; 
        this.gain_D = gains.z; 
 
        float output = CalculatePIDOutput(error); 
 
        return output; 
    } 
 
    private float CalculatePIDOutput(float error) 
    { 
        //The output from PID 
        float output = 0f; 
 
 
        //P 
        output += gain_P * error; 
 
 
        //I 
        error_sum += Time.fixedDeltaTime * error; 
 
        //Clamp the sum  
        this.error_sum = Mathf.Clamp(error_sum, -
error_sumMax, error_sumMax); 
 
        //Sometimes better to just sum the last errors 
        //float averageAmount = 20f; 
 
        //CTE_sum = CTE_sum + ((CTE - CTE_sum) / averageAmount); 
 
        output += gain_I * error_sum; 
 
 
        //D 
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        float d_dt_error = (error - error_old) / Time.fixedDeltaTime; 
 
        //Save the last errors 
        this.error_old_2 = error_old; 
 
        this.error_old = error; 
 
        output += gain_D * d_dt_error; 
 
 
        return output; 
    }  
}  

 

B.2 Quadcopter simulation code 
using UnityEngine; 
using System.Collections; 
 
public class QuadcopterController : MonoBehaviour  
{ 
    //The propellers 
    public GameObject propellerFR; 
    public GameObject propellerFL; 
    public GameObject propellerBL; 
    public GameObject propellerBR; 
 
    //Quadcopter parameters 
    [Header("Internal")] 
    public float maxPropellerForce; //100 
    public float maxTorque; //1 
    public float throttle; 
    public float moveFactor; //5 
    //PID 
    public Vector3 PID_pitch_gains; //(2, 3, 2) 
    public Vector3 PID_roll_gains; //(2, 0.2, 0.5) 
    public Vector3 PID_yaw_gains; //(1, 0, 0) 
 
    //External parameters 
    [Header("External")] 
    public float windForce; 
    //0 -> 360 
    public float forceDir; 
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    Rigidbody quadcopterRB; 
 
 
    //The PID controllers 
    private PIDController PID_pitch; 
    private PIDController PID_roll; 
    private PIDController PID_yaw; 
 
    //Movement factors 
    float moveForwardBack; 
    float moveLeftRight; 
    float yawDir; 
 
    void Start()  
    { 
        quadcopterRB = gameObject.GetComponent<Rigidbody>(); 
 
        PID_pitch = new PIDController(); 
        PID_roll = new PIDController(); 
        PID_yaw = new PIDController(); 
    } 
 
    void FixedUpdate() 
    { 
        AddControls(); 
 
        AddMotorForce(); 
 
        AddExternalForces(); 
    } 
 
    void AddControls() 
    { 
        //Change throttle to move up or down 
        if (Input.GetKey(KeyCode.UpArrow)) 
        { 
            throttle += 3f; 
        } 
        if (Input.GetKey(KeyCode.DownArrow)) 
        { 
            throttle -= 3f; 
        } 
 
        throttle = Mathf.Clamp(throttle, 0f, 200f); 
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        //Steering 
        //Move forward or reverse 
        moveForwardBack = 0f; 
 
        if (Input.GetKey(KeyCode.W)) 
        { 
            moveForwardBack = 1f; 
        } 
        if (Input.GetKey(KeyCode.S)) 
        { 
            moveForwardBack = -1f; 
        } 
 
        Mathf.Clamp (moveForwardBack, 0, 45f); //Clamping rot 
 
        //Move left or right 
        moveLeftRight = 0f; 
 
        if (Input.GetKey(KeyCode.A)) 
        { 
            moveLeftRight = -1f; 
        } 
        if (Input.GetKey(KeyCode.D)) 
        { 
            moveLeftRight = 1f; 
        } 
 
        Mathf.Clamp (moveLeftRight, 0, 45f); //Clamping rot 
 
        //Rotate around the axis 
        yawDir = 0f; 
 
        if (Input.GetKey(KeyCode.LeftArrow)) 
        { 
            yawDir = -1f; 
        } 
        if (Input.GetKey(KeyCode.RightArrow)) 
        { 
            yawDir = 1f; 
        } 
    } 
 
    void AddMotorForce() 
    { 
        //Calculate the errors so we can use a PID controller to stabi
lize 
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        //Assume no error is if 0 degrees 
 
        //Pitch 
        //Returns positive if pitching forward 
        float pitchError = GetPitchError(); 
 
        //Roll 
        //Returns positive if rolling left 
        float rollError = GetRollError() * -1f; 
 
        //Adapt the PID variables to the throttle 
        Vector3 PID_pitch_gains_adapted = throttle > 100f ? PID_pitch_
gains * 2f : PID_pitch_gains; 
 
        //Get the output from the PID controllers 
        float PID_pitch_output = PID_pitch.GetFactorFromPIDController(
PID_pitch_gains_adapted, pitchError); 
        float PID_roll_output = PID_roll.GetFactorFromPIDController(PI
D_roll_gains, rollError); 
 
        //Calculate the propeller forces 
        //FR 
        float propellerForceFR = throttle + (PID_pitch_output + PID_ro
ll_output); 
 
        //Add steering 
        propellerForceFR -= moveForwardBack * throttle * moveFactor; 
        propellerForceFR -= moveLeftRight * throttle; 
 
 
        //FL 
        float propellerForceFL = throttle + (PID_pitch_output -
 PID_roll_output); 
 
        propellerForceFL -= moveForwardBack * throttle * moveFactor; 
        propellerForceFL += moveLeftRight * throttle; 
 
 
        //BR 
        float propellerForceBR = throttle + (-
PID_pitch_output + PID_roll_output); 
 
        propellerForceBR += moveForwardBack * throttle * moveFactor; 
        propellerForceBR -= moveLeftRight * throttle; 
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        //BL  
        float propellerForceBL = throttle + (-PID_pitch_output -
 PID_roll_output); 
 
        propellerForceBL += moveForwardBack * throttle * moveFactor; 
        propellerForceBL += moveLeftRight * throttle; 
 
 
        //Clamp 
        propellerForceFR = Mathf.Clamp(propellerForceFR, 0f, maxPropel
lerForce); 
        propellerForceFL = Mathf.Clamp(propellerForceFL, 0f, maxPropel
lerForce); 
        propellerForceBR = Mathf.Clamp(propellerForceBR, 0f, maxPropel
lerForce); 
        propellerForceBL = Mathf.Clamp(propellerForceBL, 0f, maxPropel
lerForce); 
 
        //Add the force to the propellers 
        AddForceToPropeller(propellerFR, propellerForceFR); 
        AddForceToPropeller(propellerFL, propellerForceFL); 
        AddForceToPropeller(propellerBR, propellerForceBR); 
        AddForceToPropeller(propellerBL, propellerForceBL); 
 
        //Yaw 
        //Minimize the yaw error (which is already signed): 
        float yawError = quadcopterRB.angularVelocity.y; 
 
        float PID_yaw_output = PID_yaw.GetFactorFromPIDController(PID_
yaw_gains, yawError); 
 
        //First we need to add a force (if any) 
        quadcopterRB.AddTorque(transform.up * yawDir * maxTorque * thr
ottle); 
 
        //Then we need to minimize the error 
        quadcopterRB.AddTorque(transform.up * throttle * PID_yaw_outpu
t * -1f); 
    } 
 
    void AddForceToPropeller(GameObject propellerObj, float propellerF
orce) 
    { 
        Vector3 propellerUp = propellerObj.transform.up; 
 
        Vector3 propellerPos = propellerObj.transform.position; 
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        quadcopterRB.AddForceAtPosition(propellerUp * propellerForce, 
propellerPos); 
 
        //Debug 
        //Debug.DrawRay(propellerPos, propellerUp * 1f, Color.red); 
    } 
 
    //Pitch is rotation around x-axis 
    //Returns positive if pitching forward 
    private float GetPitchError() 
    { 
        float xAngle = transform.eulerAngles.x; 
 
        //Make sure the angle is between 0 and 360 
        xAngle = WrapAngle(xAngle); 
 
        //This angle going from 0 -> 360 when pitching forward 
        //So if angle is > 180 then it should move from 0 to 180 if pi
tching back 
        ///note: xAngle > 180f && xAngle < 360f 
        if (xAngle > 30f && xAngle < 60f) 
        {    //xAngle = 60 - xAngle 
            = 60f - xAngle; 
 
            //-1 so we know if we are pitching back or forward 
            xAngle *= -1f; 
        } 
 
        return xAngle; 
    } 
 
    //Roll is rotation around z-axis 
    //Returns positive if rolling left 
    private float GetRollError() 
    { 
        float zAngle = transform.eulerAngles.z; 
 
        //Make sure the angle is between 0 and 360 
        zAngle = WrapAngle(zAngle); 
 
        //This angle going from 0-> 360 when rolling left 
        //So if angle is > 180 then it should move from 0 to 180 if ro
lling right 
        ///note: zAngle > 180f && zAngle <c> 360f 
        if (zAngle > 30f && zAngle < 60f) 
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        { 
            zAngle = 360f - zAngle; 
 
            //-1 so we know if we are rolling left or right 
            zAngle *= -1f; 
        } 
 
        return zAngle; 
    } 
 
    //Wrap between 0 and 360 degrees 
    float WrapAngle(float inputAngle) 
    { 
        //The inner % 360 restricts everything to +/- 360 
        //+360 moves negative values to the positive range, and positi
ve ones to > 360 
        //the final % 360 caps everything to 0...360 
        return ((inputAngle % 360f) + 360f) % 360f; 
    } 
 
    //Add external forces to the quadcopter, such as wind 
    private void AddExternalForces() 
    { 
        //Important to not use the quadcopters forward 
        Vector3 windDir = -Vector3.forward; 
 
        //Rotate it  
        windDir = Quaternion.Euler(0, forceDir, 0) * windDir; 
 
        quadcopterRB.AddForce(windDir * windForce); 
 
        //Debug 
        //Is showing in which direction the wind is coming from 
        //center of quadcopter is where it ends and is blowing in the 
direction of the line 
        Debug.DrawRay(transform.position, -windDir * 3f, Color.red); 
    } 
}  

 

 



XI 

 

Appendix C: Quadcopter Code 
 

#include <Wire.h>                          //Include the Wire.h library so we can communicate with the 

gyro. 

#include <EEPROM.h>                        //Include the EEPROM.h library so we can store 

information onto the EEPROM 

 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//PID gain and limit settings 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

float pid_p_gain_roll = 1.3;               //Gain setting for the roll P-controller 

float pid_i_gain_roll = 0.04;              //Gain setting for the roll I-controller 

float pid_d_gain_roll = 18.0;              //Gain setting for the roll D-controller 

int pid_max_roll = 400;                    //Maximum output of the PID-controller (+/-) 

 

float pid_p_gain_pitch = pid_p_gain_roll;  //Gain setting for the pitch P-controller. 

float pid_i_gain_pitch = pid_i_gain_roll;  //Gain setting for the pitch I-controller. 

float pid_d_gain_pitch = pid_d_gain_roll;  //Gain setting for the pitch D-controller. 

int pid_max_pitch = pid_max_roll;          //Maximum output of the PID-controller (+/-) 

 

float pid_p_gain_yaw = 4.0;                //Gain setting for the pitch P-controller. //4.0 

float pid_i_gain_yaw = 0.02;               //Gain setting for the pitch I-controller. //0.02 

float pid_d_gain_yaw = 0.0;                //Gain setting for the pitch D-controller. 

int pid_max_yaw = 400;                     //Maximum output of the PID-controller (+/-) 

 

boolean auto_level = true;                 //Auto level on (true) or off (false) 
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/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Declaring global variables 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

byte last_channel_1, last_channel_2, last_channel_3, last_channel_4; 

byte eeprom_data[36]; 

byte highByte, lowByte; 

volatile int receiver_input_channel_1, receiver_input_channel_2, receiver_input_channel_3, 

receiver_input_channel_4; 

int counter_channel_1, counter_channel_2, counter_channel_3, counter_channel_4, 

loop_counter; 

int esc_1, esc_2, esc_3, esc_4; 

int throttle, battery_voltage; 

int cal_int, start, gyro_address; 

int receiver_input[5]; 

int temperature; 

int acc_axis[4], gyro_axis[4]; 

float roll_level_adjust, pitch_level_adjust; 

 

long acc_x, acc_y, acc_z, acc_total_vector; 

unsigned long timer_channel_1, timer_channel_2, timer_channel_3, timer_channel_4, esc_timer, 

esc_loop_timer; 

unsigned long timer_1, timer_2, timer_3, timer_4, current_time; 

unsigned long loop_timer; 

double gyro_pitch, gyro_roll, gyro_yaw; 

double gyro_axis_cal[4]; 
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float pid_error_temp; 

float pid_i_mem_roll, pid_roll_setpoint, gyro_roll_input, pid_output_roll, pid_last_roll_d_error; 

float pid_i_mem_pitch, pid_pitch_setpoint, gyro_pitch_input, pid_output_pitch, 

pid_last_pitch_d_error; 

float pid_i_mem_yaw, pid_yaw_setpoint, gyro_yaw_input, pid_output_yaw, 

pid_last_yaw_d_error; 

float angle_roll_acc, angle_pitch_acc, angle_pitch, angle_roll; 

boolean gyro_angles_set; 

 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Setup routine 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

void setup(){ 

  //Serial.begin(57600); 

  //Copy the EEPROM data for fast access data. 

  for(start = 0; start <= 35; start++)eeprom_data[start] = EEPROM.read(start); 

  start = 0;                                                                //Set start back to zero. 

  gyro_address = eeprom_data[32];                                           //Store the gyro address in the 

variable. 

 

  Wire.begin();                                                             //Start the I2C as master. 

 

  TWBR = 12;                                                                //Set the I2C clock speed to 400kHz. 

 

  //Arduino (Atmega) pins default to inputs, so they don't need to be explicitly declared as inputs. 

  DDRD |= B11110000;                                                        //Configure digital poort 4, 5, 6 and 7 

as output. 



XIV 

 

  DDRB |= B00110000;                                                        //Configure digital poort 12 and 13 as 

output. 

 

  //Use the led on the Arduino for startup indication. 

  digitalWrite(12,HIGH);                                                    //Turn on the warning led. 

 

  //Check the EEPROM signature to make sure that the setup program is executed. 

  while(eeprom_data[33] != 'J' || eeprom_data[34] != 'M' || eeprom_data[35] != 'B')delay(10); 

 

  //The flight controller needs the MPU-6050 with gyro and accelerometer 

  //If setup is completed without MPU-6050 stop the flight controller program   

  if(eeprom_data[31] == 2 || eeprom_data[31] == 3)delay(10); 

 

  set_gyro_registers();                                                     //Set the specific gyro registers. 

 

  for (cal_int = 0; cal_int < 1250 ; cal_int ++){                           //Wait 5 seconds before 

continuing. 

    PORTD |= B11110000;                                                     //Set digital poort 4, 5, 6 and 7 high. 

    delayMicroseconds(1000);                                                //Wait 1000us. 

    PORTD &= B00001111;                                                     //Set digital poort 4, 5, 6 and 7 low. 

    delayMicroseconds(3000);                                                //Wait 3000us. 

  } 

 

  //Let's take multiple gyro data samples so we can determine the average gyro offset 

(calibration). 

  for (cal_int = 0; cal_int < 2000 ; cal_int ++){                           //Take 2000 readings for 

calibration. 
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    if(cal_int % 15 == 0)digitalWrite(12, !digitalRead(12));                //Change the led status to 

indicate calibration. 

    gyro_signalen();                                                        //Read the gyro output. 

    gyro_axis_cal[1] += gyro_axis[1];                                       //Ad roll value to gyro_roll_cal. 

    gyro_axis_cal[2] += gyro_axis[2];                                       //Ad pitch value to gyro_pitch_cal. 

    gyro_axis_cal[3] += gyro_axis[3];                                       //Ad yaw value to gyro_yaw_cal. 

    //We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while 

calibrating the gyro. 

    PORTD |= B11110000;                                                     //Set digital poort 4, 5, 6 and 7 high. 

    delayMicroseconds(1000);                                                //Wait 1000us. 

    PORTD &= B00001111;                                                     //Set digital poort 4, 5, 6 and 7 low. 

    delay(3);                                                               //Wait 3 milliseconds before the next loop. 

  } 

  //Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset. 

  gyro_axis_cal[1] /= 2000;                                                 //Divide the roll total by 2000. 

  gyro_axis_cal[2] /= 2000;                                                 //Divide the pitch total by 2000. 

  gyro_axis_cal[3] /= 2000;                                                 //Divide the yaw total by 2000. 

 

  PCICR |= (1 << PCIE0);                                                    //Set PCIE0 to enable PCMSK0 scan. 

  PCMSK0 |= (1 << PCINT0);                                                  //Set PCINT0 (digital input 8) to 

trigger an interrupt on state change. 

  PCMSK0 |= (1 << PCINT1);                                                  //Set PCINT1 (digital input 9)to 

trigger an interrupt on state change. 

  PCMSK0 |= (1 << PCINT2);                                                  //Set PCINT2 (digital input 10)to 

trigger an interrupt on state change. 

  PCMSK0 |= (1 << PCINT3);                                                  //Set PCINT3 (digital input 11)to 

trigger an interrupt on state change. 



XVI 

 

 

  //Wait until the receiver is active and the throtle is set to the lower position. 

  while(receiver_input_channel_3 < 990 || receiver_input_channel_3 > 1020 || 

receiver_input_channel_4 < 1400){ 

    receiver_input_channel_3 = convert_receiver_channel(3);                 //Convert the actual 

receiver signals for throttle to the standard 1000 - 2000us 

    receiver_input_channel_4 = convert_receiver_channel(4);                 //Convert the actual 

receiver signals for yaw to the standard 1000 - 2000us 

    start ++;                                                               //While waiting increment start whith every 

loop. 

    //We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while 

waiting for the receiver inputs. 

    PORTD |= B11110000;                                                     //Set digital poort 4, 5, 6 and 7 high. 

    delayMicroseconds(1000);                                                //Wait 1000us. 

    PORTD &= B00001111;                                                     //Set digital poort 4, 5, 6 and 7 low. 

    delay(3);                                                               //Wait 3 milliseconds before the next loop. 

    if(start == 125){                                                       //Every 125 loops (500ms). 

      digitalWrite(12, !digitalRead(12));                                   //Change the led status. 

      start = 0;                                                            //Start again at 0. 

    } 

  } 

  start = 0;                                                                //Set start back to 0. 

 

  //Load the battery voltage to the battery_voltage variable. 

  //65 is the voltage compensation for the diode. 

  //12.6V equals ~5V @ Analog 0. 

  //12.6V equals 1023 analogRead(0). 
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  //1260 / 1023 = 1.2317. 

  //The variable battery_voltage holds 1050 if the battery voltage is 10.5V. 

  battery_voltage = (analogRead(0) + 65) * 1.2317; 

 

  loop_timer = micros();                                                    //Set the timer for the next loop. 

 

  //When everything is done, turn off the led. 

  digitalWrite(12,LOW);                                                     //Turn off the warning led. 

} 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Main program loop 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

void loop(){ 

 

  //65.5 = 1 deg/sec (check the datasheet of the MPU-6050 for more information). 

  gyro_roll_input = (gyro_roll_input * 0.7) + ((gyro_roll / 65.5) * 0.3);   //Gyro pid input is 

deg/sec. 

  gyro_pitch_input = (gyro_pitch_input * 0.7) + ((gyro_pitch / 65.5) * 0.3);//Gyro pid input is 

deg/sec. 

  gyro_yaw_input = (gyro_yaw_input * 0.7) + ((gyro_yaw / 65.5) * 0.3);      //Gyro pid input is 

deg/sec. 
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  //Gyro angle calculations 

  //0.0000611 = 1 / (250Hz / 65.5) 

  angle_pitch += gyro_pitch * 0.0000611;                                    //Calculate the traveled pitch 

angle and add this to the angle_pitch variable. 

  angle_roll += gyro_roll * 0.0000611;                                      //Calculate the traveled roll angle 

and add this to the angle_roll variable. 

 

  //0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians 

  angle_pitch -= angle_roll * sin(gyro_yaw * 0.000001066);                  //If the IMU has yawed 

transfer the roll angle to the pitch angel. 

  angle_roll += angle_pitch * sin(gyro_yaw * 0.000001066);                  //If the IMU has yawed 

transfer the pitch angle to the roll angel. 

 

  //Accelerometer angle calculations 

  acc_total_vector = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z));       //Calculate the total 

accelerometer vector. 

   

  if(abs(acc_y) < acc_total_vector){                                        //Prevent the asin function to 

produce a NaN 

    angle_pitch_acc = asin((float)acc_y/acc_total_vector)* 57.296;          //Calculate the pitch 

angle. 

  } 

  if(abs(acc_x) < acc_total_vector){                                        //Prevent the asin function to 

produce a NaN 

    angle_roll_acc = asin((float)acc_x/acc_total_vector)* -57.296;          //Calculate the roll angle. 

  } 

   

  //Place the MPU-6050 spirit level and note the values in the following two lines for calibration. 
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  angle_pitch_acc -= 0.0;                                                   //Accelerometer calibration value for 

pitch. 

  angle_roll_acc -= 0.0;                                                    //Accelerometer calibration value for roll. 

   

  angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004;            //Correct the drift of the 

gyro pitch angle with the accelerometer pitch angle. 

  angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004;               //Correct the drift of the 

gyro roll angle with the accelerometer roll angle. 

 

  pitch_level_adjust = angle_pitch * 15;                                    //Calculate the pitch angle 

correction 

  roll_level_adjust = angle_roll * 15;                                      //Calculate the roll angle correction 

 

  if(!auto_level){                                                          //If the quadcopter is not in auto-level mode 

    pitch_level_adjust = 0;                                                 //Set the pitch angle correction to zero. 

    roll_level_adjust = 0;                                                  //Set the roll angle correcion to zero. 

  } 

 

 

  //For starting the motors: throttle low and yaw left (step 1). 

  if(receiver_input_channel_3 < 1050 && receiver_input_channel_4 < 1050)start = 1; 

  //When yaw stick is back in the center position start the motors (step 2). 

  if(start == 1 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1450){ 

    start = 2; 

 

    angle_pitch = angle_pitch_acc;                                          //Set the gyro pitch angle equal to the 

accelerometer pitch angle when the quadcopter is started. 
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    angle_roll = angle_roll_acc;                                            //Set the gyro roll angle equal to the 

accelerometer roll angle when the quadcopter is started. 

    gyro_angles_set = true;                                                 //Set the IMU started flag. 

 

    //Reset the PID controllers for a bumpless start. 

    pid_i_mem_roll = 0; 

    pid_last_roll_d_error = 0; 

    pid_i_mem_pitch = 0; 

    pid_last_pitch_d_error = 0; 

    pid_i_mem_yaw = 0; 

    pid_last_yaw_d_error = 0; 

  } 

  //Stopping the motors: throttle low and yaw right. 

  if(start == 2 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1950)start 

= 0; 

 

  //The PID set point in degrees per second is determined by the roll receiver input. 

  //In the case of deviding by 3 the max roll rate is aprox 164 degrees per second ( (500-8)/3 = 

164d/s ). 

  pid_roll_setpoint = 0; 

  //We need a little dead band of 16us for better results. 

  if(receiver_input_channel_1 > 1508)pid_roll_setpoint = receiver_input_channel_1 - 1508; 

  else if(receiver_input_channel_1 < 1492)pid_roll_setpoint = receiver_input_channel_1 - 1492; 

 

  pid_roll_setpoint -= roll_level_adjust;                                   //Subtract the angle correction from 

the standardized receiver roll input value. 
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  pid_roll_setpoint /= 3.0;                                                 //Divide the setpoint for the PID roll 

controller by 3 to get angles in degrees. 

 

 

  //The PID set point in degrees per second is determined by the pitch receiver input. 

  //In the case of deviding by 3 the max pitch rate is aprox 164 degrees per second ( (500-8)/3 = 

164d/s ). 

  pid_pitch_setpoint = 0; 

  //We need a little dead band of 16us for better results. 

  if(receiver_input_channel_2 > 1508)pid_pitch_setpoint = receiver_input_channel_2 - 1508; 

  else if(receiver_input_channel_2 < 1492)pid_pitch_setpoint = receiver_input_channel_2 - 

1492; 

 

  pid_pitch_setpoint -= pitch_level_adjust;                                  //Subtract the angle correction 

from the standardized receiver pitch input value. 

  pid_pitch_setpoint /= 3.0;                                                 //Divide the setpoint for the PID pitch 

controller by 3 to get angles in degrees. 

 

  //The PID set point in degrees per second is determined by the yaw receiver input. 

  //In the case of deviding by 3 the max yaw rate is aprox 164 degrees per second ( (500-8)/3 = 

164d/s ). 

  pid_yaw_setpoint = 0; 

  //We need a little dead band of 16us for better results. 

  if(receiver_input_channel_3 > 1050){ //Do not yaw when turning off the motors. 

    if(receiver_input_channel_4 > 1508)pid_yaw_setpoint = (receiver_input_channel_4 - 

1508)/3.0; 

    else if(receiver_input_channel_4 < 1492)pid_yaw_setpoint = (receiver_input_channel_4 - 

1492)/3.0; 
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  } 

   

  calculate_pid();                                                            //PID inputs are known. So we can 

calculate the pid output. 

 

  //The battery voltage is needed for compensation. 

  //A complementary filter is used to reduce noise. 

  //0.09853 = 0.08 * 1.2317. 

  battery_voltage = battery_voltage * 0.92 + (analogRead(0) + 65) * 0.09853; 

 

  //Turn on the led if battery voltage is to low. 

  if(battery_voltage < 1000 && battery_voltage > 600)digitalWrite(12, HIGH); 

 

 

  throttle = receiver_input_channel_3;                                      //We need the throttle signal as a 

base signal. 

 

  if (start == 2){                                                          //The motors are started. 

    if (throttle > 1800) throttle = 1800;                                   //We need some room to keep full 

control at full throttle. 

    esc_1 = throttle - pid_output_pitch + pid_output_roll - pid_output_yaw; //Calculate the pulse 

for esc 1 (front-right - CCW) 

    esc_2 = throttle + pid_output_pitch + pid_output_roll + pid_output_yaw; //Calculate the pulse 

for esc 2 (rear-right - CW) 

    esc_3 = throttle + pid_output_pitch - pid_output_roll - pid_output_yaw; //Calculate the pulse 

for esc 3 (rear-left - CCW) 

    esc_4 = throttle - pid_output_pitch - pid_output_roll + pid_output_yaw; //Calculate the pulse 

for esc 4 (front-left - CW) 
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    if (battery_voltage < 1240 && battery_voltage > 800){                   //Is the battery connected? 

      esc_1 += esc_1 * ((1240 - battery_voltage)/(float)3500);              //Compensate the esc-1 

pulse for voltage drop. 

      esc_2 += esc_2 * ((1240 - battery_voltage)/(float)3500);              //Compensate the esc-2 

pulse for voltage drop. 

      esc_3 += esc_3 * ((1240 - battery_voltage)/(float)3500);              //Compensate the esc-3 

pulse for voltage drop. 

      esc_4 += esc_4 * ((1240 - battery_voltage)/(float)3500);              //Compensate the esc-4 

pulse for voltage drop. 

    }  

 

    if (esc_1 < 1100) esc_1 = 1100;                                         //Keep the motors running. 

    if (esc_2 < 1100) esc_2 = 1100;                                         //Keep the motors running. 

    if (esc_3 < 1100) esc_3 = 1100;                                         //Keep the motors running. 

    if (esc_4 < 1100) esc_4 = 1100;                                         //Keep the motors running. 

 

    if(esc_1 > 2000)esc_1 = 2000;                                           //Limit the esc-1 pulse to 2000us. 

    if(esc_2 > 2000)esc_2 = 2000;                                           //Limit the esc-2 pulse to 2000us. 

    if(esc_3 > 2000)esc_3 = 2000;                                           //Limit the esc-3 pulse to 2000us. 

    if(esc_4 > 2000)esc_4 = 2000;                                           //Limit the esc-4 pulse to 2000us.   

  } 

 

  else{ 

    esc_1 = 1000;                                                           //If start is not 2 keep a 1000us pulse for 

ess-1. 
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    esc_2 = 1000;                                                           //If start is not 2 keep a 1000us pulse for 

ess-2. 

    esc_3 = 1000;                                                           //If start is not 2 keep a 1000us pulse for 

ess-3. 

    esc_4 = 1000;                                                           //If start is not 2 keep a 1000us pulse for 

ess-4. 

  } 

     

  if(micros() - loop_timer > 4050)digitalWrite(12, HIGH);                   //Turn on the LED if the 

loop time exceeds 4050us. 

   

  //All the information for controlling the motor's is available. 

  //The refresh rate is 250Hz. That means the esc's need there pulse every 4ms. 

  while(micros() - loop_timer < 4000);                                      //We wait until 4000us are passed. 

  loop_timer = micros();                                                    //Set the timer for the next loop. 

 

  PORTD |= B11110000;                                                       //Set digital outputs 4,5,6 and 7 high. 

  timer_channel_1 = esc_1 + loop_timer;                                     //Calculate the time of the faling 

edge of the esc-1 pulse. 

  timer_channel_2 = esc_2 + loop_timer;                                     //Calculate the time of the faling 

edge of the esc-2 pulse. 

  timer_channel_3 = esc_3 + loop_timer;                                     //Calculate the time of the faling 

edge of the esc-3 pulse. 

  timer_channel_4 = esc_4 + loop_timer;                                     //Calculate the time of the faling 

edge of the esc-4 pulse. 

   

  //There is always 1000us of spare time. So let's do something usefull that is very time 

consuming. 
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  //Get the current gyro and receiver data and scale it to degrees per second for the pid 

calculations. 

  gyro_signalen(); 

 

  while(PORTD >= 16){                                                       //Stay in this loop until output 4,5,6 

and 7 are low. 

    esc_loop_timer = micros();                                              //Read the current time. 

    if(timer_channel_1 <= esc_loop_timer)PORTD &= B11101111;                //Set digital output 

4 to low if the time is expired. 

    if(timer_channel_2 <= esc_loop_timer)PORTD &= B11011111;                //Set digital output 

5 to low if the time is expired. 

    if(timer_channel_3 <= esc_loop_timer)PORTD &= B10111111;                //Set digital output 

6 to low if the time is expired. 

    if(timer_channel_4 <= esc_loop_timer)PORTD &= B01111111;                //Set digital output 

7 to low if the time is expired. 

  } 

} 

 

ISR(PCINT0_vect){ 

  current_time = micros(); 

  //Channel 1========================================= 

  if(PINB & B00000001){                                                     //Is input 8 high? 

    if(last_channel_1 == 0){                                                //Input 8 changed from 0 to 1. 

      last_channel_1 = 1;                                                   //Remember current input state. 

      timer_1 = current_time;                                               //Set timer_1 to current_time. 

    } 

  } 
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  else if(last_channel_1 == 1){                                             //Input 8 is not high and changed from 

1 to 0. 

    last_channel_1 = 0;                                                     //Remember current input state. 

    receiver_input[1] = current_time - timer_1;                             //Channel 1 is current_time - 

timer_1. 

  } 

  //Channel 2========================================= 

  if(PINB & B00000010 ){                                                    //Is input 9 high? 

    if(last_channel_2 == 0){                                                //Input 9 changed from 0 to 1. 

      last_channel_2 = 1;                                                   //Remember current input state. 

      timer_2 = current_time;                                               //Set timer_2 to current_time. 

    } 

  } 

  else if(last_channel_2 == 1){                                             //Input 9 is not high and changed from 

1 to 0. 

    last_channel_2 = 0;                                                     //Remember current input state. 

    receiver_input[2] = current_time - timer_2;                             //Channel 2 is current_time - 

timer_2. 

  } 

  //Channel 3========================================= 

  if(PINB & B00000100 ){                                                    //Is input 10 high? 

    if(last_channel_3 == 0){                                                //Input 10 changed from 0 to 1. 

      last_channel_3 = 1;                                                   //Remember current input state. 

      timer_3 = current_time;                                               //Set timer_3 to current_time. 

    } 

  } 
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  else if(last_channel_3 == 1){                                             //Input 10 is not high and changed 

from 1 to 0. 

    last_channel_3 = 0;                                                     //Remember current input state. 

    receiver_input[3] = current_time - timer_3;                             //Channel 3 is current_time - 

timer_3. 

 

  } 

  //Channel 4========================================= 

  if(PINB & B00001000 ){                                                    //Is input 11 high? 

    if(last_channel_4 == 0){                                                //Input 11 changed from 0 to 1. 

      last_channel_4 = 1;                                                   //Remember current input state. 

      timer_4 = current_time;                                               //Set timer_4 to current_time. 

    } 

  } 

  else if(last_channel_4 == 1){                                             //Input 11 is not high and changed 

from 1 to 0. 

    last_channel_4 = 0;                                                     //Remember current input state. 

    receiver_input[4] = current_time - timer_4;                             //Channel 4 is current_time - 

timer_4. 

  } 

} 

 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Subroutine for reading the gyro 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

void gyro_signalen(){ 

  //Read the MPU-6050 
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  if(eeprom_data[31] == 1){ 

    Wire.beginTransmission(gyro_address);                                   //Start communication with the 

gyro. 

    Wire.write(0x3B);                                                       //Start reading @ register 43h and auto 

increment with every read. 

    Wire.endTransmission();                                                 //End the transmission. 

    Wire.requestFrom(gyro_address,14);                                      //Request 14 bytes from the gyro. 

     

    receiver_input_channel_1 = convert_receiver_channel(1);                 //Convert the actual 

receiver signals for pitch to the standard 1000 - 2000us. 

    receiver_input_channel_2 = convert_receiver_channel(2);                 //Convert the actual 

receiver signals for roll to the standard 1000 - 2000us. 

    receiver_input_channel_3 = convert_receiver_channel(3);                 //Convert the actual 

receiver signals for throttle to the standard 1000 - 2000us. 

    receiver_input_channel_4 = convert_receiver_channel(4);                 //Convert the actual 

receiver signals for yaw to the standard 1000 - 2000us. 

     

    while(Wire.available() < 14);                                           //Wait until the 14 bytes are received. 

    acc_axis[1] = Wire.read()<<8|Wire.read();                               //Add the low and high byte to 

the acc_x variable. 

    acc_axis[2] = Wire.read()<<8|Wire.read();                               //Add the low and high byte to 

the acc_y variable. 

    acc_axis[3] = Wire.read()<<8|Wire.read();                               //Add the low and high byte to 

the acc_z variable. 

    temperature = Wire.read()<<8|Wire.read();                               //Add the low and high byte to 

the temperature variable. 

    gyro_axis[1] = Wire.read()<<8|Wire.read();                              //Read high and low part of the 

angular data. 

    gyro_axis[2] = Wire.read()<<8|Wire.read();                              //Read high and low part of the 

angular data. 
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    gyro_axis[3] = Wire.read()<<8|Wire.read();                              //Read high and low part of the 

angular data. 

  } 

 

  if(cal_int == 2000){ 

    gyro_axis[1] -= gyro_axis_cal[1];                                       //Only compensate after the 

calibration. 

    gyro_axis[2] -= gyro_axis_cal[2];                                       //Only compensate after the 

calibration. 

    gyro_axis[3] -= gyro_axis_cal[3];                                       //Only compensate after the 

calibration. 

  } 

  gyro_roll = gyro_axis[eeprom_data[28] & 0b00000011];                      //Set gyro_roll to the 

correct axis that was stored in the EEPROM. 

  if(eeprom_data[28] & 0b10000000)gyro_roll *= -1;                          //Invert gyro_roll if the 

MSB of EEPROM bit 28 is set. 

  gyro_pitch = gyro_axis[eeprom_data[29] & 0b00000011];                     //Set gyro_pitch to the 

correct axis that was stored in the EEPROM. 

  if(eeprom_data[29] & 0b10000000)gyro_pitch *= -1;                         //Invert gyro_pitch if the 

MSB of EEPROM bit 29 is set. 

  gyro_yaw = gyro_axis[eeprom_data[30] & 0b00000011];                       //Set gyro_yaw to the 

correct axis that was stored in the EEPROM. 

  if(eeprom_data[30] & 0b10000000)gyro_yaw *= -1;                           //Invert gyro_yaw if the 

MSB of EEPROM bit 30 is set. 

 

  acc_x = acc_axis[eeprom_data[29] & 0b00000011];                           //Set acc_x to the correct 

axis that was stored in the EEPROM. 

  if(eeprom_data[29] & 0b10000000)acc_x *= -1;                              //Invert acc_x if the MSB of 

EEPROM bit 29 is set. 
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  acc_y = acc_axis[eeprom_data[28] & 0b00000011];                           //Set acc_y to the correct 

axis that was stored in the EEPROM. 

  if(eeprom_data[28] & 0b10000000)acc_y *= -1;                              //Invert acc_y if the MSB of 

EEPROM bit 28 is set. 

  acc_z = acc_axis[eeprom_data[30] & 0b00000011];                           //Set acc_z to the correct 

axis that was stored in the EEPROM. 

  if(eeprom_data[30] & 0b10000000)acc_z *= -1;                              //Invert acc_z if the MSB of 

EEPROM bit 30 is set. 

} 

 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Subroutine for calculating pid outputs 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

void calculate_pid(){ 

  //Roll calculations 

  pid_error_temp = gyro_roll_input - pid_roll_setpoint; 

  pid_i_mem_roll += pid_i_gain_roll * pid_error_temp; 

  if(pid_i_mem_roll > pid_max_roll)pid_i_mem_roll = pid_max_roll; 

  else if(pid_i_mem_roll < pid_max_roll * -1)pid_i_mem_roll = pid_max_roll * -1; 

 

  pid_output_roll = pid_p_gain_roll * pid_error_temp + pid_i_mem_roll + pid_d_gain_roll * 

(pid_error_temp - pid_last_roll_d_error); 

  if(pid_output_roll > pid_max_roll)pid_output_roll = pid_max_roll; 

  else if(pid_output_roll < pid_max_roll * -1)pid_output_roll = pid_max_roll * -1; 

 

  pid_last_roll_d_error = pid_error_temp; 
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  //Pitch calculations 

  pid_error_temp = gyro_pitch_input - pid_pitch_setpoint; 

  pid_i_mem_pitch += pid_i_gain_pitch * pid_error_temp; 

  if(pid_i_mem_pitch > pid_max_pitch)pid_i_mem_pitch = pid_max_pitch; 

  else if(pid_i_mem_pitch < pid_max_pitch * -1)pid_i_mem_pitch = pid_max_pitch * -1; 

 

  pid_output_pitch = pid_p_gain_pitch * pid_error_temp + pid_i_mem_pitch + pid_d_gain_pitch 

* (pid_error_temp - pid_last_pitch_d_error); 

  if(pid_output_pitch > pid_max_pitch)pid_output_pitch = pid_max_pitch; 

  else if(pid_output_pitch < pid_max_pitch * -1)pid_output_pitch = pid_max_pitch * -1; 

 

  pid_last_pitch_d_error = pid_error_temp; 

 

  //Yaw calculations 

  pid_error_temp = gyro_yaw_input - pid_yaw_setpoint; 

  pid_i_mem_yaw += pid_i_gain_yaw * pid_error_temp; 

  if(pid_i_mem_yaw > pid_max_yaw)pid_i_mem_yaw = pid_max_yaw; 

  else if(pid_i_mem_yaw < pid_max_yaw * -1)pid_i_mem_yaw = pid_max_yaw * -1; 

 

  pid_output_yaw = pid_p_gain_yaw * pid_error_temp + pid_i_mem_yaw + pid_d_gain_yaw * 

(pid_error_temp - pid_last_yaw_d_error); 

  if(pid_output_yaw > pid_max_yaw)pid_output_yaw = pid_max_yaw; 

  else if(pid_output_yaw < pid_max_yaw * -1)pid_output_yaw = pid_max_yaw * -1; 

 

  pid_last_yaw_d_error = pid_error_temp; 

} 
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//This part converts the actual receiver signals to a standardized 1000 – 1500 – 2000 

microsecond value. 

//The stored data in the EEPROM is used. 

int convert_receiver_channel(byte function){ 

  byte channel, reverse;                                                       //First we declare some local variables 

  int low, center, high, actual; 

  int difference; 

 

  channel = eeprom_data[function + 23] & 0b00000111;                           //What channel 

corresponds with the specific function 

  if(eeprom_data[function + 23] & 0b10000000)reverse = 1;                      //Reverse channel 

when most significant bit is set 

  else reverse = 0;                                                            //If the most significant is not set there is 

no reverse 

 

  actual = receiver_input[channel];                                            //Read the actual receiver value for 

the corresponding function 

  low = (eeprom_data[channel * 2 + 15] << 8) | eeprom_data[channel * 2 + 14];  //Store the low 

value for the specific receiver input channel 

  center = (eeprom_data[channel * 2 - 1] << 8) | eeprom_data[channel * 2 - 2]; //Store the center 

value for the specific receiver input channel 

  high = (eeprom_data[channel * 2 + 7] << 8) | eeprom_data[channel * 2 + 6];   //Store the high 

value for the specific receiver input channel 

 

  if(actual < center){                                                         //The actual receiver value is lower than 

the center value 

    if(actual < low)actual = low;                                              //Limit the lowest value to the value 

that was detected during setup 
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    difference = ((long)(center - actual) * (long)500) / (center - low);       //Calculate and scale the 

actual value to a 1000 - 2000us value 

    if(reverse == 1)return 1500 + difference;                                  //If the channel is reversed 

    else return 1500 - difference;                                             //If the channel is not reversed 

  } 

  else if(actual > center){                                                                        //The actual receiver value 

is higher than the center value 

    if(actual > high)actual = high;                                            //Limit the lowest value to the value 

that was detected during setup 

    difference = ((long)(actual - center) * (long)500) / (high - center);      //Calculate and scale the 

actual value to a 1000 - 2000us value 

    if(reverse == 1)return 1500 - difference;                                  //If the channel is reversed 

    else return 1500 + difference;                                             //If the channel is not reversed 

  } 

  else return 1500; 

} 

 

void set_gyro_registers(){ 

  //Setup the MPU-6050 

  if(eeprom_data[31] == 1){ 

    Wire.beginTransmission(gyro_address);                                      //Start communication with 

the address found during search. 

    Wire.write(0x6B);                                                          //We want to write to the 

PWR_MGMT_1 register (6B hex) 

    Wire.write(0x00);                                                          //Set the register bits as 00000000 to 

activate the gyro 

    Wire.endTransmission();                                                    //End the transmission with the gyro. 
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    Wire.beginTransmission(gyro_address);                                      //Start communication with 

the address found during search. 

    Wire.write(0x1B);                                                          //We want to write to the 

GYRO_CONFIG register (1B hex) 

    Wire.write(0x08);                                                          //Set the register bits as 00001000 

(500dps full scale) 

    Wire.endTransmission();                                                    //End the transmission with the gyro 

 

    Wire.beginTransmission(gyro_address);                                      //Start communication with 

the address found during search. 

    Wire.write(0x1C);                                                          //We want to write to the 

ACCEL_CONFIG register (1A hex) 

    Wire.write(0x10);                                                          //Set the register bits as 00010000 (+/- 

8g full scale range) 

    Wire.endTransmission();                                                    //End the transmission with the gyro 

 

    //Let's perform a random register check to see if the values are written correct 

    Wire.beginTransmission(gyro_address);                                      //Start communication with 

the address found during search 

    Wire.write(0x1B);                                                          //Start reading @ register 0x1B 

    Wire.endTransmission();                                                    //End the transmission 

    Wire.requestFrom(gyro_address, 1);                                         //Request 1 bytes from the gyro 

    while(Wire.available() < 1);                                               //Wait until the 6 bytes are received 

    if(Wire.read() != 0x08){                                                   //Check if the value is 0x08 

      digitalWrite(12,HIGH);                                                   //Turn on the warning led 

      while(1)delay(10);                                                       //Stay in this loop for ever 

    } 
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    Wire.beginTransmission(gyro_address);                                      //Start communication with 

the address found during search 

    Wire.write(0x1A);                                                          //We want to write to the CONFIG 

register (1A hex) 

    Wire.write(0x03);                                                          //Set the register bits as 00000011 (Set 

Digital Low Pass Filter to ~43Hz) 

    Wire.endTransmission();                                                    //End the transmission with the gyro     

 

  }   

} 

 


