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Abstract

The control system of a quadcopter is the most important part. Control system governing
quadcopter stability and control movement by correcting measurement errors and comparing to
the desired values achieving pilot desired and safe flight.

This thesis concerned with the implementation of a quadcopter control system that is
tested through visual simulation with real physics then hardware capabilities test that describes
the capabilities of the hardware mounted on the quadcopter after the construction is over.

This work was divided into two subsections: simulation and construction; the simulation
was conducted using Protues circuit simulation software that failed and was replaced by unity 3D
due to its limitation to simulate electronic speed controller ( ESCs) and Inertial Measurement
Unit (IMU) which are essential to simulate the quadcopter system, Unity 3D simulation software
provided 3D visual simulation of the quadcopter depending only on the code and no components
simulation was need only the mass and drag properties of the frame.

The construction of the quadcopter consisted of choosing a suitable frame to carry the
load of the quadcopter that was plastic foam due its light weight and flexibility casted with fiber
glass to reinforce to ensure strength. The quadcopter components were mounted on it with
distributed load to ensure equilibrium then the transmitter was setup to determine what position
of the transmitter sticks belonged to which flight movement and all the ESCs were calibrated to
operate at the same speed then the Proportional-Integral-Derivative (PID) controller code was
uploaded and operation was successful which gives us the time to add auto leveling.

Auto leveling of the quadcopter were possible by taking the readings of the gyroscope
and applying correction when there is no user input received; the Proportional-Integral-
Derivative (PID) applies gyroscope correction to stabilize the aircraft which is zero gyroscope
orientation in all axes.
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Chapter One
Introduction

1.1 Overview

Study and development of unmanned aerial vehicles (UAV) and micro aerial vehicles
(MAV) are getting high encouragement nowadays, since the application of UAV and MAV can
apply to variety of areas such as rescue mission, military, film making, agriculture and others [1].

Quadcopter has advantages over the conventional helicopter where the mechanical design is
simpler. Besides that, Quadcopter changes direction by manipulating the individual propeller’s
speed and does not require cyclic and collective pitch control [2].

1.2 Aim & Objectives

This work aim to fly the quadcopter using hand gestures on a Leap Motion hand gesture
sensor; each hand gesture has a unique instruction programmed on the motion sensor transmitted
to the quadcopter flight controller with Wi-Fi wireless signals.

e Run a successful visual simulation of the controller in Unity3D software.

e Implementation of the PID controller to the Arduino microcontroller as flight controller
unit

e Construct the quadcopter and record a successful flight time of at least 1 minute

1.3 Problem Statement

The stability and control of a quadcopter is a challenging matter and the most fundamental
feature in UAVs to sustain a balanced well controlled flight when building it instead of ready
manufactured flight controllers.



1.4 Proposed Solution
PID controller allows you to change the UAVs flight characteristics, including how it
responds to user input, how well and how quickly it stabilizes.

1.5 Methodology

The method applied on choosing the proper PID controller gains is trial and error method
to set the values that results in balanced, stable and controlled flight. A collection of
hardware components was used to build the quadcopter model providing the hardware to
implement the PID flight controller.

1.6 Thesis Outline

Chapter 2 is the literature review and background discussing the UAVs historically and
providing a background of the components that are essential in the operation of the quadcopter;
relative reports that discussed building a quadcopter controller are also included in the literature
review.

Chapter 3 includes the modeling of the quadcopter and the simulation of implementing
the PID controller to a quadcopter flight controller.

Chapter 4 shows the steps that were followed in constructing the hardware of the
quadcopter model that was used to implement the PID controller.

Chapter 5 discusses the result and discusses those results that were observed during
building the hardware and implementing the software.

Chapter 6 is the conclusion of the thesis that includes the recommendations for our
successors to solve the problems we could not and start their work where we finished.



Chapter Two

Literature Review and Background

2.1 Introduction

A quad copter flying machine also known as quad rotor is a rotary wing aircraft powered
by four motors mounted on each edge of the structure in a an x or + formation depending on the
formation.

x'i-'t: M ( ;\\
- \. P
N
( ;l-\? +4 (&) n X4
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Figure 1: Shows the x and + structure configurations of a quadcopter

However the quadcopter concept isn’t introduced recently considering that it existed
since 1921; in January 1921 a US Army Corps. Contract of developing a vertical flying Machine
was awarded to Dr. George de Bothezat and Ivan Jerome. The 1678 kg X-shaped structure
supported 8.1 m diameter 6 blade rotor at each end of the 9 m arms and a 180 hp Le Rohne radial
engine. At the ends of the lateral arms, two small propellers with variable pitch were used for
thrusting and yaw control; each rotor had individual collective pitch control to produce
differential thrust through vehicle inclination for translation.



Figure 2: shows the quadcopter rotorcraft of Bothezat

On the aircraft first flight in October 1922, the rotor craft weighed 1700 kg at take-off;
the engine was soon upgraded to a 220 hp Bentley BR-2 rotary, about 100 flights were made by
the end of 1923. Although the contract called for a 100 m hover, the highest it ever reached was
5 m. After expanding $200,000 de Bothezat demonstrated that his vehicle could be quite stable
and that the practical helicopter, it was however unpowered, unresponsive, mechanically
complex, susceptible to reliability problems and pilot work load was too high during hover to
attempt lateral motion [3].

2.2 History of Quadcopter

Only few works were reported in the literature of a helicopter having four rotors. Young
et al [4]. Sponsored by the Directorate Aerospace in NASA Ames Research Center present new
configuration s of mini-drones and their applications among which the helicopter with four rotors
called the Quad-rotor Tail-Sitter.

Pounds et al [5]; Conceived and developed a control algorithm for a prototype of an
aerial vehicle having four rotors; they considered using an MIU (Measurement Inertial Unit) to
measure the speed and acceleration. They use a linearization of the dynamic model to conceive
the control algorithm; the result of the control law was tested in the simulation.

Altug et al [6]; Proposed a control algorithm to stabilize the quad-rotor using vision as
principal sensor. They studied two methods, the first uses a control algorithm of linearization and
the other uses the technique of back-stepping. They have tested the control laws in the
simulation; they also present an experience using vision to measure yaw angle and the altitude.

The main reason there’s few works of literature taking quad-rotors as case study or
research area is that the interest in quadcopters has increased recently and more researchers and
aeronautics specialists are looking into the matter and conducting research.
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2.3 Dynamic Model

Consider Figure 3 below; the front and rear motors rotate counter-clockwise while the
other two rotate clockwise, gyroscopic effects and aerodynamic torques tend to cancel in

trimming flight.
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Figure 3: shows the Quad-rotor rotorcraft

or Blade

This four-rotor rotor-craft does not have a swash plate; in fact, it doesn’t need any blade
pitch control. The collective input or throttle input is the sum of the thrusts of each motor (Figure

4).
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Figure 4: shows throttle control input

Pitch movement is obtained by increasing/reducing the speed of the rear motor while
reducing/increasing the speed of the front motor. The roll movement is obtained similarly using
the lateral motors. The yaw movement is obtained by increasing/decreasing the speed of the front
and rear motors while decreasing/increasing the speed of the lateral motors; this should be done
while keeping the total thrust constant.
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Figure 5: (a) Pitch (b) Roll (c) Yaw



The dynamic model of the quadcopter is presented simply by regarding it as a solid body
developed in the three dimensions experiencing one force and three moments; the electric
motors’ dynamics are neglected along with its blades flexibility due to its relatively fast speed.

The generalized coordinates of the rotorcraft are:

q=(7y,2¢,0,0) € R®

....... 2.1
Where:
(X, Y, z) = The position of the center of mass of the quadcopter
(¢, 8, ) = Euler angles- angles of pitch, yaw and roll- of the quadcopter
Hence the model is naturally divided into translational and rotational coordinates:
{=@y2eR, n=(p6,0)¢€ s 2.2
The translational kinetic energy of the rotorcraft is
A m
Torans & 5676 2.3
Where m denotes the mass of the rotorcraft. The rotational Kinetic energy is:
1
Trot = 2 "o 2.4



The matrix J acts as the inertia matrix for the full rotational kinetic energy of the
rotorcraft expressed directly in terms of generalized coordinates n. The only potential energy
which needs to be considered is the gravitational potential given by

U=mgz 2.5
The Langrangian is
m 1 -
L(q,q9) = Teans + Tror — U = 7 §TS + E n Hn - mgz 2.6
b
: ”f; -
u‘ , -
1 7 My I1 &
= — -I'lr
Ay f,ﬁ f_(’f-; My 4
7
My Dy
;’j \mg
g/ A

Figure 6: shows the quadcopter in an inertial frame



The dynamic model of the quadcopter is obtained from the Euler Lagrange equations
with external generalized force

dt dq¢- dq Fe 2.7

F = (F¢,T) Where 7 are the generalized moments and F is the translational force applied

to the rotorcraft due to control inputs, we ignore the small body forces because they are generally
of a much smaller magnitude than the principal control inputs u andz, then we write

0
F={0y 2.8
u

See figure 4:

u=fl+f2+f3+f4

....... 2.9
fi= ko i=1..4 2.10

Where k; > 0 is a constant and w; is the angular speed of motor i then
Fg=RF L. 2.11

Where R is the transformation matrix representing the orientation of the rotorcraft, we use cq for
cosb and sg for sin(0)



CgClp SlpSg —Sp
R = <C¢895¢ —S¢C¢S¢SQS¢ +C¢C¢CQS¢>

....... 212
CySeCy +SwS¢S¢SQC¢ —CySpCeCy

The generalized moments on the n variables are

Ty
t2(T9 ) 2.13
To

Where

4

i=1

Ty = Z ™M, to=(f2—f8E ty=(3-f ... 2.14

Where £ is the distance from the motors to the center of gravity and 7y, is the couple
produced by motor M;.

Since the Langrangian contains no cross-terms in the kinetic energy combining ¢ and 7,
the Euler-Langrange equation may be divided to the ¢ dynamics and n dynamics.

0
mé’+<0>=3ff ....... 2.15
mg

i+ T — = — (7i) = 2.16
Jn+ Jn zannﬂn—r ....... )

Defining the Coriolis/centripetal vector

_ . 10
Vin,m) = Jn— 290 (GE /) N 2.17
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We may write

i+ v = . 2.18

But we can rewrite V(n,7)

_ .10
Vi = (- 55 6'D1)=cain 2.19)

Where C(n,7n) is referred to as the Coriolis terms and contains the gyroscopic and
centrifugal terms associated with the n dependence of J. Finally:

) —sinf 0
mé = u <C059 Sm(p) * < 0 ) ....... 2.20
cosf cose —mg
Jij = =Cp,n+* 2.21

In order to simplify let us propose a change of input variables.

t=Coa+JE L. 2.22
Ty

=% . 2.23
Ty

Are the new inputs, then n'= £, rewriting the equations

mX = —u sinf my = u cosf sing mZ =ucosf cosp —m ... 2.24

P =1, b= 7 b=t . 2.25
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Where x and y are the coordinates of the horizontal plane and z is the vertical position. ¥
is the yaw angle around the z-axis, 6 is the pitch angle around (new) y-axis and ¢ is the roll
angle around the (new) x-axis. The control inputs u,%,, g and %4 are the total thrust or
collective input directed from the bottom of the aircraft and the new angular moments.

2.4 Quadcopter Block Diagram

The quadcopter rotorcraft consists of an Inertial Measurement Unit (IMU), flight control
unit, Electric Speed Controllers (ESC) for the motors and a Radio Frequency (RF) receiver; as
shown on figure 7 below the IMU consists of an accelerometer, gyroscope and a magnetometer.

—
Inartial Measuremant Unit \ Electronic

Speed
Controller

Speed
Controller

Speed
Controller

Electronic

Speed
Controller

Figure 7: Quadcopter Block Diagram

2.4.1 Inertial Measurement Unit (IMU)

Accelerometers are devices that measure acceleration. A gyroscope is a device consisting
of a wheel or disk mOounted so that it can spin rapidly about an axis that is itself free to alter in
direction. The orientation of the axis is not affected by tilting of the mounting; so, gyroscopes
can be used to provide stability or maintain a reference direction in navigation systems,

12



automatic pilots, and stabilizers. A magnetometer is an instrument used for measuring magnetic
forces, especially the earth's magnetism.

A quadcopter consists of a communication system to transmit pilot commands to the
copter flight controller to carry out a pitch, roll or a yaw; this system consists of a transmitter
which is the R/C controller the pilot uses to control the rotorcraft and a Radio Frequency receiver
on the quad copter (RF) to receive information signals sent by the R/C controller.

BLDC motors are a type of synchronous motor. This means the magnetic field generated
by the stator and the magnetic field generated by the rotor rotates at the same frequency. The
stator of a BLDC motor consists of stacked steel laminations with windings placed in the slots
that are axially cut along the inner periphery, the stator resembles that of an induction motor;
however, the windings are distributed in a different manner. Most BLDC motors have three
stator windings connected in star fashion. Each of these windings is constructed with numerous
coils interconnected to form a winding. One or more coils are placed in the slots and they are
interconnected to make a winding. Each of these windings is distributed over the stator periphery
to form even numbers of poles.

The rotor is made of permanent magnet and can vary from two to eight pole pairs with
alternate North (N) and South (S) poles. Based on the required magnetic field density in the
rotor, the proper magnetic material is chosen to make the rotor. Ferrite magnets are traditionally
used to make permanent magnets. As the technology advances, rare earth alloy magnets are
gaining popularity. The ferrite magnets are less expensive but they have the disadvantage of low
flux density for a given volume. In contrast, the alloy material has high magnetic density per
volume and enables the rotor to compress further for the same torque. Also, these alloy magnets
improve the size-to-weight ratio and give higher torque for the same size motor using ferrite
magnets. Neodymium (Nd), Samarium Cobalt (SmCo) and the alloy of Neodymium, Ferrite and
Boron (NdFeB) are some examples of rare earth alloy magnets. Continuous research is going on
to improve the flux density to compress the rotor further.

An electronic speed controller or ESC is an electronic circuit that vary an electric motor's
speed, its direction and possibly also to act as adynamic brake. ESCs most often used
for brushless motors essentially providing an electronically generated three-phase electric
power low voltage source of energy for the motor.
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A Flight Controller Unit is the block responsible of receiving the flight commands,
stabilizing the quad copter, executing pilot commands, controlling the speed of the motors and
performing flight movements.

2.5 Tools

Arduino is an open-source electronics platform based on easy-to-use hardware and

software. Arduino boards are able to read inputs - light on a sensor, a finger on a button, or a
Twitter message - and turn it into an output - activating a motor, turning on an LED, publishing
something online. You can tell your board what to do by sending a set of instructions to the
microcontroller on the board. [7]

Protues software by Labcenter enabling powerful features to design, test and layout
professional PCB layouts and supports the schematics and simulation of 800 microcontrollers.

Unity3D is a powerful cross-platform 3D engine and a user-friendly development
environment for developing 3D projects and simulations equipped with graphical and
programmatic documentation and scripting guide to simulate real world physics and variables
making it easy for the user to run their simulations and see the result visually rather than tables
and figures.

eCalc is an online tool for simulating real-life quadrotor parameters by providing
quadcopter parameters such as model weight, number of rotors, frame size, elevation, ... etc. and
other parameters concerning the flight controller, Motors and propellers then assessing and
providing suggestion to get the best performance of the quadcopter.
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Chapter Three
Modeling and Simulation

3.1 Mathematical Modeling

To mathematically write the movement of an aircraft we must employ Newton’s second
law of motion. As such, the equations of the net force and moment acting on the Quadrotor’s

body (respectively F,,, and M,,,) are provided:

Fpoe = %(mv)b F W7 X (MU)peeeeernrrernennrnsreeeacnsscannes 3.1

M, = %(lw_)b F W7 X (T ) peeecerereraesasnrereecasnsnsaacans 3.2

Where 1 is the inertia matrix of the Quadrotor, v is the vector of linear velocities andw™
is the vector of angular velocities. If the equation of Newton’s second law is to be as complete as
possible, we should add extra terms such as the force of gravity (Fg) which is too significant to

be neglected, thus it is defined by

F; = mS[0 0 g]" = mg[—sinf cosOsin® cosfcosP]” ,......eue..... 3.3

Where S is the rotation matrix
cos 6 cos ¢ cos @ sin @ —sin@
S=|sin @ sinf cosp —cos@sing cosP cos ¢ +sin@ sinfsing sin@cosb

cos@sinfcosp +sin@Psing sinfcos@sing —sin@cosp cosbcosP

The force of gravity together with the total thrust generated by the propellers (Fp) have

therefore to be equal to the sum of forces acting on the Quadcopter:
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Fret = By + Fyeveeveeueneenieenieneeneenenene 3.4

Combine equations 1, 3, 4. We can write the vector of linear accelerations acting on the

vehicle’s body:

E

U 0 —RQ1[U R —sinf
Vii=|R 0P||V]|+— By |+ cosHsin(D]g ...................... 3.5
wr —Q P ollw E,, cos6cosP

Where [Frx FpyFpr:] are the vector elements of Fe.

The forces and moments acting on Quadcopter of (x) congigrations

sz - —(T1 + T2 + T3 + T4) .................................. 36
Mx = l(_Tl - TZ + T3 + T4) .............................. 37
My = l(Tl - TZ + T3 - T4_) ............................ 38

MZ = KTM(Tl + TZ - T3 + T4) ..................... 39

where

L is the distance to the aircrafts COG, and KT M is a constant that relates moment

and thrust of a propeller

Assuming the Quadcopter is a rigid body with constant mass and axis aligned with the
principal axis of inertia, then the tensor | becomes a diagonal matrix containing only the

principal moments of inertia:

L0 O
I={01Ipy O [oooooeooiiiiiie, 3.10
0 01z

Combine equation 9 and 10 result:
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LoPl [(I..—1L,)QR
Mper = |lyyQ | + | Iy = L,)PR [oevvneiiiiiainn, 3.11
I.R (Iyy - Ixx)PQ

L,0 O071[P P L,0 07[P
Myor = OIyyO Q|+]|0|Xx OIYYO (0} P 3.12
0 01z lLlR R 0 01Izz1LR
Then
x Izz—1lyy )QR
, l[a‘l I[( Ix);y) —I
. ﬂ I (Ixx_Izz)PR I
0] = 2| | 3.13
Sl [ (ORI
zzZ 12
r-rroas B ——
P (P
Jle Driver V:"v:’v ,,V41 Motors Quadcopter ;
|
| ¢
| 6
: Sensor 1/)

Figure 8: Quadcopter control loop

3.1 PID Controller

Proportional-Integral-Derivative controller is a closed feedback loop system used in
applications requiring continuous modulated control by continuously calculating an error value
e(t) representing a difference between a desired set point and a measured process variable then
applies correction based on proportional, integral and derivative terms
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The sum of the three PID terms produces a Manipulated Variable (MV) that is used to
correct the error of the system:

u(t) = MV(£) = Ky e(®) + K; [, 7dT + Kg 20, 3.14

Where

K,, is proportional gain

K; is the integral gain

K is the derivative gain

e(t) is the error

t is the continuous time

T is the variable of integrations

The proportional term produces an output value that is proportional to the current error
value. The proportional response can be adjusted by multiplying the error by a constant K,,,

called the proportional gain constant.

The contribution from the integral term is proportional to both the magnitude of the error
and the duration of the error. The integral in a PID controller is the sum of the instantaneous
error over time and gives the accumulated offset that should have been corrected previously. The
accumulated error is then multiplied by the integral gain (K;) and added to the controller output.

The derivative term of the process error is calculated by determining the slope of the
error over time and multiplying this rate of change by the derivative gain K;. The magnitude of
the contribution of the derivative term to the overall control action is termed the derivative
gaink,.

The present, past and future errors are dependent on the terms of the PID respectively
meaning the present error depends on P, past error accumulates the | and future error is
forecasted by the D term.

The proportional controller K, will reduce the rise time and the steady state error but will
not eliminate the steady state error; the integral controller K; will eliminate the steady state error
however it may worsen the transient error; a derivative controller K, will increase the stability of
the system by reducing the overshoot and improving the transient response.

18



Table 1: Effects of each of controllers K, K;, and K4 on a closed-loop system

Closed Loop Rise Time Overshoot Settling Steady State
Response Time Error
Kp Decrease Increase Small Change Decrease
K, Decrease Increase Increase Eliminate
Kp Small Change Decrease Decrease Small Change

Tuning a control loop is the adjustment of its control parameters (proportional band/gain,
integral gain/reset, derivative gain/rate) to the optimum values for the desired control response.
Stability (no unbounded oscillation) is a basic requirement, but beyond that, different systems
have different behavior, different applications have different requirements, and requirements
may conflict with one another. [8]

Proportional controller

Alt) = Kpxe(t).ocoooeiiiiiiiii. 3.15
Integral Controller
At) = K * [ e()dt...occiiinnn, 3.16
Derivative Controller
A®) = Kpx S50 e 3.17

The total equation of the classic controller

de(t)

......................... 3.18
dt

u(t) = Kp xe(t) + K, [, e(t)dt + Kp
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3.2 Simulation

Simulation of the quadcopter was conducted over three software’s each of which
completing the other’s limitation Proteus was used to design the circuit and add the code
simulating the operation of the quadrotor; unity provided a graphic simulation of the quadrotor
operating using a PID controller simulated using unity scripting and documentation references;
the hardware capabilities of the quadrotor were tested using eCalc to define which parameters
needed adjusting until an appropriate hardware status was obtained.

Unity documentation provided a better ground to build the simulation of the PID
controllers through code only existing inside the unity environment written for the purpose of
simulating real life physics subjecting the PID controller to an environment similar to real life
parameters.

.

Figure 9: Quadrotor 3D model

From figure 10 above illustrates the three-dimensional model of the quadrotor, the physics forces
applied on the motors to rotate them is supplied to the four motors simultaneously, hence the
motors are named individually as Front Right (FR), Front Left (FL), Back Right (BR) and Back
Left (BL).

To simulate the quadrotor as a rigid body unity offers a physics component called a rigid
body providing all the physical specifications of a real rigid body. Consider figure 11 below:

20



¥ .~ Transform [ #
Position X |0 Y |5 Z0
Rotation |0 Y0 Z0
Scale ¥l ¥l Z(1
|G| ¥ Quadcopter Controller (Scripld %
| @ PID Controller (Script) ﬁ i,
¥ % Rigidbody ) #.
Mass 20
Crag 1
Angular Drag 0.05
Use Gravity [+
Is Kinematic ]
Interpolate | Mane al
Collision Detection | Discrete ¢
¥ Constraints
Freeze Positien [ X (¥ [IZ
Freeze Rotation [ ¥ [ ¥ [JZ

Figure 10 :Rigid body component attached to the quadrotor 3D model

The Transform tab describes the coordinates- x, y and z coordinates system- of the
quadrotor position, rotation and scale in the simulation; position (0, 5, 0) means the quadrotor is
in the origin of the simulation plane with an elevation of 5 units from the ground and (0, 0, 0)
rotation means that the quadrotor is perfectly balanced and there is no rotation around any axes
and the scale is one unit cubed representing height, width and length.

A rigid body in unity is a component simulating real objects physics qualities such as mass, drag,
angular drag, etc.; the use gravity check box allows you to use real gravity which is going to
affect the object as soon as the simulation starts and is kinematic specifies whether the object
will remain at rest the whole time the simulation is running and the collision detection is set to
discrete that will update it every frame of the simulation.

Now when the simulation runs the gravity will pull the quadrotor to the ground and it will remain
in this state if no force is applied to counter the gravity two pieces of code are associated with
this the quadcopter controller which is the implementation of the PID controller to the
quadcopter that is simulated in another script.

The simulation will require constant variables to be initialized by the quadcopter PID
controller; maximum propeller force, maximum torque, throttle and move factor are set as shown
in figure below, the mass and drag of the quadcopter is set in the rigid body component.
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b J @ [+ Quadcopter Controller {Scrip'ﬁ i,
Script QuadcopterContre @
Propeller FR WFR (o]
Propeller FL WFL @
Propeller BL WEBL @
Propeller BR WBR (o]

Internal
Max Propeller Force 100

Max Torque 1
Throttle 0
Move Factor 3
PID_pitch_gains

xX|2 b Z|2
PID_roll_gains

X2 ¥ 0.2 Z/05
PID_yaw_gains

® 1l Y0 Z\0

External
Wind Force

Force Dir 0

Figure 11: Quadcopter controller parameters

Once the simulation starts the quadrotor will be affected by gravity and instantly pulled to
the ground waiting for user input as it orientation is balanced; the craft controller has two sticks
the one on the left controls the steering forward and back, left and right and the right stick
controls the throttle and the turning-yawing — left and right which pass the user input to another
function to execute the command that is set as desired point for the controller.

Pitch, roll and yaw errors will be calculated to be passed to the PID controller assuming
no errors at all when the simulations starts then adapting the PID variables to the throttle and
calculating the force that must be added to the propellers based on the PID output to translate the
quadrotor from its measured position to the user desired point.

The hardware chosen for the quadrotor was passed as input with detailed specifications to
the eCalc tool to determine its ability to withstand the load and power consumption then
adjusting the hardware based on the suggestions provided to ensure best performance possible.
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General Iodel Weight: #of Rotors: Frame Size: FCU Tilf Limit: Field Elevation:  Air Temperature:  Pressure (QNH):

800 g incl Drive v 4 25 mm no limit ¥ 500 |mASL 3 T 1013 |hPa
82 |z fat v 461 inch 1640 (fASL 05 F 2091 |inHg
Battery Cell  Type (Cont. / max. C) - charge state: Configuration: Cell Capacity: mayx. discharge:  Resistance: Voltage: C-Rate: Weight-
LiPo 2200mah - 25/35C |- nomal v 3 5 | P 2200 mah B v 0.0095 | Ohm 37 v 25 Ccont 55 g
2200 mAhfotal 3 Cmax 10 0z
Controller  Type: Current; Resistance: \Weight: Accessories Current drain: \Weight:
max 304 v 0 Acont 0003 Ohm 40 g 0 A 0 g
a0 A max 14 d 0 d
Motor Ianufacturer - Type (Kv) - Cooling: KV (wio torque): no-load Current: Limit (upfo 158);  Resistance: Case Length: #mag. Poles; Weight:
FroTronk v |- 2210-1000 (1000) v 1000 | rpmiV 16 |A@pB4 |V 220 Wl 005 |Ohm HE mm 14 g8 g
good ¥ | search... | |Prop—Kv—‘.“v'izard\ 124 |inch ER | 0z
Propeller  Type - yoke twist: Diameter. Pitch: # Blades: PConst/TConst  Gear Ratio:
select.. vy 10 inch 45 inch 2 12 |/10 1 R calculate
284 |mm 1143 |mm

Figure 12: Hardware Specifications passed into eCalc for evaluation

As shown in Figure above the specification of hardware pieces are passed onto to the
input fields of the tool providing a detailed description about the important hardware operating
the quadcopter such as battery cell, controller, motor and propellers also general specifications of
weight, number of rotors, frame size, ... etc., are required in order to provide specific
performance graphs.

Range Estimator
4000m

<) by eCalc V2.42 2 49mi
)
6
~1 2000
| 1.24mi
1800
0,99
1200
o= 2
@] o78m
800m
0.5m
400m
Smi
max. Speed
P> « bestrange om
30km. r 40km/h 45xm Okm 55km 80km. o
18.8mph  21.8mph  249mph 28mph 31imph  342mph  37.3mph
Air Speed

Figure 13 :Range Estimation
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Figure above shows the analysis made by eCalc for the range that the quadcopter
with the specifications entered possesses. Flight time estimated by eCalc is 9 minutes with a
maximum speed of 54 km/h (33.2 mph); the green area denotes the best flight operation range.

Motor Characteristic at Full Throttle

I el Power [in 1WW]

150 @ Eficiency [%]

Wl 3 max. Revolutions [in 100pm]
Bl & waste Power [in 1W]

- | I & Motor Case Temp. [°C]

B Il Motor Case Temp. overdimit [*C]

75

Motor @ Hover (c) by eCalc V205

o z 4 g 2 10 12 14 18 18
Ampere

Figure 14: Motor characteristics at full throttle

Figure above denotes the characteristics of the motors at full throttle, the best
characteristics are a power of 137.5 W, 75% efficiency, a maximum RPM of 85 rpm and a
wasted power of 25 W shown by the circles.
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Chapter Four
Construction

4.1 Overall hardware connection to the microcontroller

. ESCs
T FRONT cw
e
flight controller 2 £ a motor 1
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o< LEFT cew
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3 motor 2
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RIGHT cCwW
10 D?BL £SC
: 04
40 : -r motor 3
4L BACK cw
»E +
=5 = .
£3 e P motor 4

DI} DS§ D6) Dif DI} D2

RF Receiver

Figure 15: Overall Quadcopter hardware connection
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4.2 Hardware Components

Typical quad-rotors utilize a four-spar method, with each spar anchored to the central
hub. The frame of the quad copter is composed of a combination of materials chosen for their

strength, weight and flexibility.

When designing an autonomous quad-rotor, there are several material options which must
be considered. When designing a machine capable of flight, weight must be greatly well thought-

out.

The airframe is the mechanical structure of an aircraft that supports all the components,
much like a “skeleton” in Human Beings. Designing an airframe from scratch involves important
concepts of physics, aerodynamics, materials engineering and manufacturing techniques to

achieve certain performance, reliability and cost criteria.

Figure 16: Plastic foam frame incase in fiber glass

Arduino Uno is a microcontroller board based on the ATmega328P It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz quartz
crystal, a USB connection, a power jack, an ICSP header and a reset button.

It contains everything needed to support the microcontroller; simply connect it to a
computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. "Uno"

means one in Italian and was chosen to mark the release of Arduino Software (IDE) 1.0. The
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Uno board and version 1.0 of Arduino Software (IDE) were the reference versions of Arduino,
The Uno board is the first in a series of USB Arduino boards, and the reference model for the
Arduino platform; for an extensive list of current, past or outdated boards see the Arduino index

of boards.

Figure 17: Arduino UNO Microcontroller Board

An electronic speed control or ESC is a circuit with the purpose to control an electric
motor's speed, its direction and possibly also to act as a dynamic brake in some cases. ESCs are
often used on electrically powered brushless motors essentially providing an electronically-

generated three phase electric power, with a low voltage source.

An ESC interprets control information in a way that varies the switching rate of a
network of field effect transistors (FETS), not as mechanical motion as would be the case of a
servo. The quick switching of the transistors is what causes the motor itself to emanate its
characteristic high-pitched whine, which is especially noticeable at lower speeds. It also allows
much smoother and more precise variation of motor speeds in a far more efficient manner than

the mechanical type with a resistive coil and moving arm once in common use.
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The ESC generally accepts a nominal 50 Hz Pulse Width Modulation (PWM) servo input
signal whose pulse width varies from 1ms to 2ms. When supplied with a 1ms width pulse at 50
Hz, the ESC responds by turning off the DC motor attached to its output. A 1.5ms pulse-width
input signal results in a 50% duty cycle output signal that drives the motor at approximately 50%
speed. When presented with 2.0ms input signal, the motor runs at full speed due to the 100%

duty cycle (on constantly) output.

The correct phase varies with the motor rotation, controlled and monitored by the ESC.
The orientation of the motor is determined by the back EMF (Electromotive Force). The back
EMF is the voltage induced in a motor wire by the magnet spinning past its internal coils.

Finally, a PID algorithm in the controller adjusts the PWM to maintain a constant RPM.

Reversing the motor's direction may also be accomplished by switching any two of the

three leads from the ESC to the motor.

Ideally the ESC controller should be paired to the motor and rotor craft with the

following considerations.
1. Temperature and thermal characteristics.
2. Max Current output and Impendence.

3. Needs to be Equipped with a BEC (Battery Eliminator Circuit) to eliminate the need

of a second battery.
4. Size and Weight properties.

5. Magnet Rating.

Figure 18: 30A Brushless ESC
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Additionally, the speed controller has fixed throttle settings so that the "stop” and "full
throttle” points of all the various modes which can be cut through cleanly. The controller

produces audible beeps to assist in navigating through the program modes and troubleshooting

logs.
Table 2  Specification for 30A Brushless ESC
30A Brushless ESC Output Continuous 30A, burst 40A up to 10 Sec
Input voltage 2-4 cells lithium battery or 5-12 cells NiCd/NiMH battery
BEC 2A 1 5V (Linear mode).
Max speed 210,000rpm for 2 poles BLM, 70,000rpm for 6 poles BLM,
35,000rpm for 12 poles BLM. (BLM: Brushless Motor
Size 45*24*11mm/ 1.8 *0.9 * 0.4in
Weight 250/ 0.90z
Item total weight 480g / 1.06Lbs

Precision and accuracy is important when it comes to Accelerometer and gyroscope
measurement. We require a 3-axis accelerometer and gyroscope that provides reliable and
accurate data. It is also an advantage if they can be on the same chip. For this reason, we went
with the MPU-600, which is a small, thin, ultralow power, 3-axis accelerometer and gyroscope.
The device is very accurate, as it contains 16-bis analog to digital conversion hardware for each
channel. It measures the static acceleration of gravity in tilt-sensing applications, as well as
dynamic acceleration resulting from motion or shock. The sensor has a "Digital motion
processor™ which can be programmed with firmware and is able to do complex calculations with

the sensor values.
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Arduino Uno connections

Figure 19: MPU6050 IMU used in our quadcopter

° o ® MPU6050 GY-521 6DOF

Figure 20: MPU6050 Interface with Arduino
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Selecting the proper battery for our rotor copter was a challenging task. Nickel Cadmium
(NiCd), Nickel Metal Hydride (NiMH), and Lithium Polymer (LiPo) were common choices with
the advantages and disadvantages of each battery pack.

NiCd batteries are reasonably inexpensive, but they have a number of negatives. NiCd
batteries need to be fully discharged after each use. If they aren’t, they will not discharge to their
full potential (capacity) on following discharge cycles, causing the cell to develop what’s
commonly referred to as a memory. Additionally, the capacity per weight (energy density) of
NiCd cells is commonly less than NiMH or LiPo cell types as well. Finally, the Cadmium that is
used in the cell is quite destructive to the environment, making disposal of NiCd cells an issue.

NiMH cells have many advantages over their NiCd counterparts. NiMH cell
manufacturers are able to offer significantly higher capacities in cells approximately the same
size and weight of equivalent NiCd cells. NiMH cells have an advantage when it comes to cell
memory as well, as they do not develop the same issues as a result of inappropriate discharge

care.

Lithium Polymer (LiPo) cells are one of the newest and most revolutionary battery cells
Available. LiPo cells maintain a more consistent voltage over the discharge curve when
compared to NiCd or NiMH cells. The higher nominal voltage of a single LiPo cell (3.7V vs.
1.2V for a typically NiCd or NiMH cell); making it possible to have an equivalent or even higher
total nominal voltage in a much smaller package LiPo cells typically offer very high capacity for
their weight, delivering upwards of twice the capacity for % the weight of comparable NiMH

cells.

Lastly, a LiPo cell battery needs to be carefully monitored during charging since
overcharging and the charging of a physically damaged or discharged cell can be a potential fire

hazard and possibly even fatal.
LiPo Pro's:

e Highest power/weight ratio.

e Very low self-discharge.
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e Less affected by low temperatures than some.

LiPo Con's:

e Intolerant of over-charging.
e Intolerant of over-discharging Battery.

e significant fire risk

Figure 21: 3S LiPo Battery

32



Table 3 : LiPo batteries 3S 11.1V 2600MAH 30C packs

Capacity 2600mAh

Configuration 3S1P

Dimensions 116X34X26mm

Weight 200g

Constant Discharge 30C

Burst Discharge 60C

Balance connector ST-XHR

Discharge plug T plug

Use Vehicles & Remote-Control
Toys

Material EVA

Each of the four rotors comprises of a Brushless DC Motor attached to a propeller. The
Brushless motor differs from the conventional Brushed DC Motors in their concept essentially in
that the commutation of the input voltage applied to the armature's circuit is done electronically,
whereas in the latter, by a mechanical brush. As any rotating mechanical device, it suffers wear
during operation, and as a consequence it has a shorter nominal life time than the newer

Brushless motors.

In spite of the extra complexity in its electronic switching circuit, the brushless design
offers several advantages over its counterpart, to name a few: higher torque/weight ratio, less
operational noise, longer lifetime, less generation of electromagnetic interference and much more
power per volume. Virtually limited only by its inherent heat generation, whose transfer to the

outer environment usually occurs by conduction.
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A2212/137
(- ! 1000KY :

Figure 22: A2212/13T 1000 KV BLDC (Brushless DC Motor)

Table 4 : Specifications of A2212 /920 KV out runner motor

No. of Cells: 2 - 3 Li-Poly
6 - 10 NiCd/NiMH
Kv: 1000 RPM/V
Max Efficiency: 80%
Max Efficiency Current: 4 - 10A (>75%)
No Load Current: 0.5A @10V
Resistance: 0.090 ohms
Max Current: 13A for 60S
Max Watts: 150W
Weight: 52.79/1.86 oz.
Size: 28 mm diameter x 28 mm bell length
Shaft Diameter: 3.2 mm
Poles: 14
Model Weight: 300 - 800g/10.5-28.2 oz.
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Propeller is a set of rotating blades design to convert the power (torque) of the
Engine in to thrust.

The Quadrotor consists of four propellers coupled to the brushless motor. Among
These four propellers, two clockwise and the remaining other two are counter clockwise.
Clockwise and anticlockwise propellers cancel their torque from each other.
Propellers are specified by their diameter and pitch. The propeller used is 1045

Fixed-pitch, symmetric, tapered Normal Rotation Carbon Fiber Propeller, shown in (figure):

Figure 23: 1045 fixed-pitch, Carbon fiber Propeller

4.3 Software Implementation

The operation flow of the quadcopter is illustrated in figure below demonstrating steps at
which quadcopter flows in order to fly and satisfy pilot commands.
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Figure 24: Quadcopter flow chart

A four channel RC transmitter is used for the purpose of giving freedom to control
throttle, pitch, roll and yaw individually. To obtain an accurate response set points and minimum
and maximum ranges must be determined before transmission execution.

Since the main loop of the code executes sequentially - one line at a time- an interrupt
needs to occur enabling receiving signals transmitted from the RC; Arduino allows pins to allow
interrupt only if the interrupt for a specific pin was declared in the code.

Before declaring the interrupt pins, interrupt mode must be activated through the following
syntax:

PCICR |= (1 << PCIEQ);
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After enabling interrupt mode four pins are declared as receiver interrupt pins each for each
channel of the transmitter, the pins being Arduino pins 8, 9,10 and 11 declared as following:

PCMSKO |= (1 << PCINTO);
PCMSKO |= (1 << PCINTL):
PCMSKO |= (1 << PCINT2):

PCMSKO |= (1 << PCINT3):

In order to determine the error, the actual quadcopter readings and the received signal
needs to be compared with each other; the gyroscope is interfaced with an 12C interface-
pronounced Isquared-C, is a multi-master, multi-slave, single-ended, serial computer bus
invented- typically used for attaching lower-speed peripheral ICs to processors and
microcontrollers in short-distance, intra-board communication.

To connect to the gyroscope the Wire Library is included in code allowing the Arduino to
use the 12C; communications start by the master (Arduino) sending a tart bit followed by the 7-
bit address of the slave (GY-85 with address 0x68) so that only gyroscope is chosen using the
following statement:

Wire.beginTransmission (0x68);

Referring to the Gyroscope data-sheet set the gyro output scale to 2000 deg/s by writing
the value (3) decimal to the 3th and 4th bits of (22) gyroscope register.

Wire.write (22); /[ calling the register of Full Scale
Wire.write (3<< 3); /I write 3 then shift it to left of Full Scale register
Wire.endTransmittion (); /I necessary to end each call to register

250 readings per second has to be obtained, we do so by setting the sampling rate of the
gyroscope sampling rate register; the first three bits of register (22) are used for setting internal
sampling rate with either 1KHz or 8KHz.
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Register (21) can also be used for setting the sampling rate and is called Sampling Rate
Divider Register which output is set to any values satisfying the equation:

Fsample = Fiternar/ (divider + 1) (31)

Fsampie is the sample rate
Finternal 1S the internal rate determined by register (22) which is either (1KHz,8KHz)

Divider is determined by register (21)

Hence, to get 250 reading out of that gyro, reg. (22) need to be set to zero which is
already the default value, the divider register (21) need to be set to 31 decimals, simply be
writing that value to that register.

Wire.begingTransmittion (0x68);
Wire.write (21);
Wire.write (31);

Wire.endTransmittion ();

After configuring sensor register, the gyro is ready to provide readings through the
registers (29-34) readings are ready in registers to be picked by the microcontroller any time. The
readings collected usually have consistent off-set errors which differ in the value from an axis to
another which are eliminated by calculating the average value for a fair amount of readings
storing this into variables (gyro_roll_cal, gyro_pitch_cal, gyro_yaw cal) these values are
subtracted from each reading taken hence eliminating the gyro offset error.

The calibrated reading taken from gyroscope includes noise-measurement noise from
propellers and motors- which can't be eliminated by eliminating the offset error but with the use
of a very simple filter that was proven to provide accurate results.
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y(n)

Figure 25: Recursive Filter Block Diagram

y(m) = ay(n —1) + bx(2) (32)

Wherea=b-1

The filter takes the input x (n) and sums it with the feedback y (n — 1); a and b are gains
to be tuned to get the required output response. Applying filter to the three inputs of system (roll,
pitch, yaw) will eliminate the noise and obtain the required response.

So far, the RC signal was transmitted, received and processed by the Arduino then the
Gyro sensor provided the angular accelerations the Quadcopter which were filtered, calibrated
and processed in the Arduino.

The Arduino output ports connected to the ESCs need to be declared before computing
the total received input signal.

DDRD |= B11110000;
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The output of the ESCs controls the motors depending on the PID output however the
basic movement of the quadcopter is satisfied by the following equations passed as output values
of the ESCs.

esc_1 = throttle — PIDyyt pitch + PIDout vour — PID out yaw (33)
esc_2 = throttle + PIDyy; pitch + PIDout rouu + PIDout yaw (34)
esc_3 = throttle + PIDyyt pitch — PIDout vour — PID out yaw (35)
esc_4 = throttle — PIDyyt pitch — PIDout rou + PID out yaw (36)

The positive and negative signs for the PID outputs in the ESCs equations are set
according to the basic movements of the Quadcopter. Lastly tuning the PID gains (Kp, K, Kp) to
provide a smooth and stable response of the Quadcopter.
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Chapter Five

Results and Discussion

The results that will be discussed in this chapter will include notice of unnatural behavior
by the quadcopter during construction and after unnatural here is defined as any error or fault
that can endanger the safety of the quadcopter.

It has been noticed that the motors had a variation of speed resulting from the ESCs; the
voltage supplied from the battery to the ESCs- with only the battery connected to the ESCs
without any software code or even Arduino connected- vary from one ESC to the other, this was
resolved by ESC calibration meaning all ESCs start the motors at the same time with the same
speed on the condition that all ESCs has the same current rating, if the ESCs had different
current rating overheat will if the rating of ESC is less than the others due because it will try to
compensate the difference by operating the motor at a higher speed.

A power regulator must be used and the mounting, isolation and soldering of the
components must be accurate and tight, at one point one of the ESCs experienced excessive
overheat without and obvious reason however when the isolation was removed it was found that
the soldering was loose; if the mounting of the propellers and motor is not tight a high degree of
vibration occurs in the quadcopter and will also cause the propellers to detach itself from the
quadcopter body.

A high vibration was clearly noticed in the propellers that was perceived at first to be a
vibration problem so the propeller was re-mounted at the center of the propeller shaft and a
square piece of duct tape was added to them as load to reduce vibration which reduced the
vibration to a minimal value measured by computer code implemented to the quadcopter
(Appendix-X).

The trial and error method in choosing the PID parameters that result in the stability of
the quadcopter; the ease of control was noticed in the quadcopter however a negative roll angle
kept occurring however a successful flight time of 53 seconds was recorded in the process of
finding the suitable PID gains for a stable flight without any drifts.
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Chapter Six

Conclusion and Recommendations

6.1 Conclusion

The research phase of the thesis aided in understanding the mathematical model of the
quadcopter which is a step required before control and a background of the PID controller and it
operation theory in order to transform its equations to equations that are applicable to the
quadcopter and were implemented in the Arduino microcontroller.

The choice of the unity software was made upon the fact that it provided an environment
with no limitation on executing and constructing a PID controller with code based on its basic
equations and theory of operation.

In conclusion the construction of the circuit that connected the hardware components and
implementation of the software was the initial work however troubleshooting and tuning the PID
gains was challenging and the trial and error method proved to be a failure in choosing the
proper PID parameters that provide stable flight without any offsets or deviations.

6.2 Recommendations

1. Another method should be used to choose the proper PID gains for a more stable flight

2. Wires can be connected with jacks instead of soldering wires together.

3. Power distribution boards are more helpful in mounting the IMU properly on the frame
beneath the microcontroller and placing the battery safely.

4. Replacing the RC transmitter with a motion sensor that captures hand gestures transmitted as
movement commands with a wireless Wi-Fi communication.
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Appendix A:

eCalc Hardware Analysis

Hover Flight Time: eleciric Power: est. Temperature: Thrust-Weight: specific Thrust: Configuration
Remarks:
Battery Motor @ Optimum Efficiency Motor @ Maximum Motor @ Hover Total Drive Multicopter
Load: 2746 C Current: 1569 A Current: 1510 A Current: 229 A Drive Weight: 745 g All-up Weight: 800 g
Voltage: 933 v “oltage: a1 v “oltage: 926 W “oltage: 1082 v 26.3 oz 232 oz
Rated Voltage: 1110 V Revolutions™: 3299 rpm Revolutions™: 3405 rpm Revolutions™: 4050 rpm Thrust-Weight: 311 add. Payload: 1350 g
Energy: 24.42 Wh electric Power: 1442 W electric Power: 13083 W Throttle (log): 30 % Current @ Hover: 913 A 476 oz
Total Capacity: 2200 mAh mech. Power: M"7.0wW mech. Power: 1134 W Throttle (linear): 40 % P(in) @ Hover: 1018 W max Tilt: 63 ¢
Used Capacity: 1870 mAh Efficiency: 812 % FPower-Weight: G99.0 Wikg electric Power: 243 W P(out) @ Hover: 718 W max. Spead: 41 kmih
min. Flight Time: 1.9 min 317.1 Wib mech. Power: 180 W Efficiency @ Hover: 70.5 % 255 mph
Mixed Flight Time: 6.9 min Efficiency: 811 % Fower-Weight: 127.3 Wikg Current @ max: 6041 A est. rate of climb: 3.3 mis
Hover Flight Time: 12.2 min est. Temperature: 46 °C B7.7T Wilb P(in) @ max: 670.5 W 1732 fi/min
‘Weight: 165 g 115 °F Efficiency: 724 % Plout) @ max: 453.5 W Total Disc Area: 2027 dm*
58 oz B est. Temperature: 33 °C Efficiency @ max: 67.6 % 314159 in®
G REIEE 100 *F with Rotor fail:
Current: G604 A o
Voltage: 033 v specific Thrust: 206 gw
Power: 566.6 W 0.28 oz/W




Appendix B: Quadcopter Simulation Code

B.1 PID Controller Simulation Code
using UnityEngine;
using System.Collections;

public class PIDController : MonoBehaviour

{
float error_old = of;

//The controller will be more robust if you are using a further ba
ck sample

float error_old 2 = of;

float error_sum = 0f;

//If we want to average an error as input

float error_sum2 = 0f;

//PID parameters

public float gain_P = of;
public float gain_I = of;
public float gain_D = 0of;

//Sometimes you have to Limit the total sum of all errors used in
the I

private float error_sumMax = 20 ;

public float GetFactorFromPIDController(float error)

{
float output = CalculatePIDOutput(error);

return output;

}

//Use this when experimenting with PID parameters
public float GetFactorFromPIDController(float gain_P, float gain_I
, float gain_D, float error)

{
this.gain_P = gain_P;
this.gain_I = gain_I;
this.gain_D = gain_D;



float output = CalculatePIDOutput(error);

return output;

}

//Use this when experimenting with PID parameters and the gains ar
e stored in a Vector3

public float GetFactorFromPIDController(Vector3 gains, float error
)

{

this.gain_P = gains.x;
this.gain_I = gains.y;
this.gain_D = gains.z;

float output = CalculatePIDOutput(error);

return output;

}

private float CalculatePIDOutput(float error)

{
//The output from PID

float output = of;

//P
output += gain_P * error;

//I

error_sum += Time.fixedDeltaTime * error;
//Clamp the sum

this.error_sum = Mathf.Clamp(error_sum, -

error_sumMax, error_sumMax);

//Sometimes better to just sum the Last errors
//float averageAmount = 20f;

//CTE _sum = CTE _sum + ((CTE - CTE _sum) / averageAmount);

output += gain_I * error_sum;

//D
Il



float d_dt_error = (error - error_old) / Time.fixedDeltaTime;

//Save the last errors
this.error_old 2 = error_old;

this.error_old = error;

output += gain D * d_dt_error;

return output;

B.2 Quadcopter simulation code
using UnityEngine;
using System.Collections;

public class QuadcopterController : MonoBehaviour
{

//The propellers

public GameObject propellerFR;

public GameObject propellerFL;

public GameObject propellerBL;

public GameObject propellerBR;

//Quadcopter parameters

[Header("Internal™)]

public float maxPropellerForce; //160

public float maxTorque; //1

public float throttle;

public float moveFactor; //5

//PID

public Vector3 PID_pitch_gains; //(2, 3, 2)
public Vector3 PID_roll gains; //(2, 6.2, 0.5)
public Vector3 PID_yaw_gains; //(1, 6, @)

//External parameters
[Header("External™)]
public float windForce;
//6 -> 360

public float forceDir;



Rigidbody quadcopterRB;

//The PID controllers

private PIDController PID pitch;
private PIDController PID_roll;
private PIDController PID_yaw;

//Movement factors
float moveForwardBack;
float movelLeftRight;
float yawDir;

void Start()

{
quadcopterRB = gameObject.GetComponent<Rigidbody>();
PID pitch = new PIDController();
PID roll = new PIDController();
PID yaw = new PIDController();

}

void FixedUpdate()

{
AddControls();
AddMotorForce();
AddExternalForces();

}

void AddControls()

{

//Change throttle to move up or down
if (Input.GetKey(KeyCode.UpArrow))

{
throttle += 3f;
}
if (Input.GetKey(KeyCode.DownArrow))
{
throttle -= 3f;
}

throttle = Mathf.Clamp(throttle, 0f, 200f);



//Steering
//Move forward or reverse
moveForwardBack = 0f;

if (Input.GetKey(KeyCode.W))

{
moveForwardBack = 1f;
}
if (Input.GetKey(KeyCode.S))
{
moveForwardBack = -1f;
}

Mathf.Clamp (moveForwardBack, 0, 45f); //Clamping rot

//Move Lleft or right
movelLeftRight = of;

if (Input.GetKey(KeyCode.A))

{
movelLeftRight = -1f;
}
if (Input.GetKey(KeyCode.D))
{
movelLeftRight = 1f;
}

Mathf.Clamp (moveLeftRight, ©, 45f); //Clamping rot

//Rotate around the axis
yawDir = of;

if (Input.GetKey(KeyCode.LeftArrow))

{
yawDir = -1f;
}
if (Input.GetKey(KeyCode.RightArrow))
{
yawDir = 1f;
}
}
void AddMotorForce()
{
//Calculate the errors so we can use a PID controller to stabi
lLize
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gains *

//Assume no error 1s 1f @ degrees

//Pitch
//Returns positive if pitching forward
float pitchError = GetPitchError();

//Roll
//Returns positive if rolling left
float rollError = GetRollError() * -1f;

//Adapt the PID variables to the throttle
Vector3 PID_pitch_gains_adapted = throttle > 106f ? PID_pitch_
2f : PID_pitch_gains;

//Get the output from the PID controllers
float PID pitch output = PID pitch.GetFactorFromPIDController(

PID pitch_gains_adapted, pitchError);

float PID roll output = PID roll.GetFactorFromPIDController(PI

D_roll gains, rollError);

//Calculate the propeller forces

//FR
float propellerForceFR = throttle + (PID_pitch_output + PID_ro

11 output);

//Add steering
propellerForceFR -= moveForwardBack * throttle * moveFactor;
propellerForceFR -= movelLeftRight * throttle;

//FL
float propellerForceFL = throttle + (PID pitch output -

PID roll output);

propellerForceFL -= moveForwardBack * throttle * moveFactor;
propellerForceFL += movelLeftRight * throttle;

//BR
float propellerForceBR = throttle + (-

PID pitch_output + PID_roll output);

propellerForceBR += moveForwardBack * throttle * moveFactor;
propellerForceBR -= moveLeftRight * throttle;
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//BL
float propellerForceBL = throttle + (-PID_pitch_output -
PID roll output);

propellerForceBL += moveForwardBack * throttle * moveFactor;
propellerForceBL += moveLeftRight * throttle;

//Clamp

propellerForceFR = Mathf.Clamp(propellerForceFR, 0f, maxPropel
lerForce);

propellerForceFL = Mathf.Clamp(propellerForceFL, ©f, maxPropel
lerForce);

propellerForceBR = Mathf.Clamp(propellerForceBR, 9f, maxPropel
lerForce);

propellerForceBL = Mathf.Clamp(propellerForceBL, 9f, maxPropel

lerForce);

//Add the force to the propellers

AddForceToPropeller(propellerFR, propellerForceFR);
AddForceToPropeller(propellerFL, propellerForceFL);
AddForceToPropeller(propellerBR, propellerForceBR);
AddForceToPropeller(propellerBL, propellerForceBL);

//Yaw
//Minimize the yaw error (which is already signed):
float yawError = quadcopterRB.angularVelocity.y;

float PID yaw_output = PID yaw.GetFactorFromPIDController(PID _
yaw_gains, yawError);

//First we need to add a force (if any)
quadcopterRB.AddTorque(transform.up * yawDir * maxTorque * thr
ottle);

//Then we need to minimize the error
quadcopterRB.AddTorque(transform.up * throttle * PID_yaw outpu
*  _ .
t 1f);
}

void AddForceToPropeller(GameObject propellerObj, float propellerF
orce)

{
Vector3 propellerUp = propellerObj.transform.up;

Vector3 propellerPos = propellerObj.transform.position;
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quadcopterRB.AddForceAtPosition(propellerUp * propellerForce,
propellerPos);

//Debug
//Debug.DrawRay (propellerPos, propellerUp * 1f, Color.red);

}

//Pitch 1is rotation around x-axis
//Returns positive 1if pitching forward
private float GetPitchError()

{

float xAngle = transform.eulerAngles.x;

//Make sure the angle is between © and 360
xAngle = WrapAngle(xAngle);

//This angle going from © -> 360 when pitching forward
//So if angle is > 180 then it should move from 6 to 180 1if pi
tching back
///note: xAngle > 180f && xAngle < 360f
if (xAngle > 30f && xAngle < 60f)
{ //xAngle = 60 - xAngle
= 60f - xAngle;

//-1 so we kRnow 1f we are pitching back or forward
xAngle *= -1f;
}

return xAngle;

}

//Roll 1is rotation around z-axis
//Returns positive 1if rolling Lleft
private float GetRollError()

{

float zAngle = transform.eulerAngles.z;

//Make sure the angle 1is between @ and 366
zAngle = WrapAngle(zAngle);

//This angle going from ©-> 360 when rolling Lleft

//So if angle is > 180 then it should move from @ to 180 1if ro
LLing right

///note: zAngle > 180f && zAngle <c> 360f

if (zAngle > 30f && zAngle < 60f)
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zAngle = 360f - zAngle;

//-1 so we kRnow 1f we are rolling Lleft or right
zAngle *= -1f;
}

return zAngle;

}

//Wrap between © and 360 degrees
float WrapAngle(float inputAngle)
{
//The inner % 360 restricts everything to +/- 360
//+360 moves negative values to the positive range, and positi
ve ones to > 360
//the final % 360 caps everything to 0...360
return ((inputAngle % 366f) + 360f) % 360f;

}

//Add external forces to the quadcopter, such as wind
private void AddExternalForces()

{

//Important to not use the quadcopters forward
Vector3 windDir = -Vector3.forward;

//Rotate it
windDir = Quaternion.Euler(©, forceDir, ©) * windDir;

quadcopterRB.AddForce(windDir * windForce);

//Debug

//Is showing in which direction the wind is coming from

//center of quadcopter is where it ends and is blowing in the
direction of the Lline

Debug.DrawRay(transform.position, -windDir * 3f, Color.red);

}



Appendix C: Quadcopter Code

#include <Wire.h> //Include the Wire.h library so we can communicate with the
gyro.
#include <EEPROM.h> //Include the EEPROM.h library so we can store

information onto the EEPROM

U T T
//PID gain and limit settings

T e T T

float pid_p_gain_roll = 1.3; //Gain setting for the roll P-controller

float pid_i_gain_roll = 0.04; //Gain setting for the roll 1-controller

float pid_d_gain_roll = 18.0; //Gain setting for the roll D-controller

int pid_max_roll = 400; /IMaximum output of the PID-controller (+/-)

float pid_p_gain_pitch = pid_p_gain_roll; //Gain setting for the pitch P-controller.
float pid_i_gain_pitch = pid_i_gain_roll; //Gain setting for the pitch I-controller.

float pid_d_gain_pitch = pid_d_gain_roll; //Gain setting for the pitch D-controller.

int pid_max_pitch = pid_max_roll; //Maximum output of the PID-controller (+/-)
float pid_p_gain_yaw = 4.0; //Gain setting for the pitch P-controller. /4.0
float pid_i_gain_yaw = 0.02; //Gain setting for the pitch I-controller. //0.02
float pid_d_gain_yaw = 0.0; //Gain setting for the pitch D-controller.

int pid_max_yaw = 400; //Maximum output of the PID-controller (+/-)
boolean auto_level = true; /[Auto level on (true) or off (false)
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o
/[Declaring global variables
i
byte last_channel_1, last_channel_2, last_channel_3, last_channel_4;

byte eeprom_data[36];

byte highByte, lowByte;

volatile int receiver_input_channel_1, receiver_input_channel_2, receiver_input_channel_3,
receiver_input_channel_4;

int counter_channel_1, counter_channel_2, counter_channel_3, counter_channel_4,
loop_counter;

intesc_1,esc 2,esc_3,esc 4,
int throttle, battery voltage;
int cal_int, start, gyro_address;
int receiver_input[5];

int temperature;

int acc_axis[4], gyro_axis[4];

float roll_level _adjust, pitch_level adjust;

long acc_x, acc_y, acc_z, acc_total_vector;

unsigned long timer_channel_1, timer_channel_2, timer_channel_3, timer_channel_4, esc_timer,
esc_loop_timer;

unsigned long timer_1, timer_2, timer_3, timer_4, current_time;
unsigned long loop_timer;
double gyro_pitch, gyro_roll, gyro_yaw;

double gyro_axis_cal[4];
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float pid_error_temp;
float pid_i_mem_roll, pid_roll_setpoint, gyro_roll_input, pid_output_roll, pid_last roll_d_error;

float pid_i_mem_pitch, pid_pitch_setpoint, gyro_pitch_input, pid_output_pitch,
pid_last_pitch_d_error;

float pid_i_mem_yaw, pid_yaw_setpoint, gyro_yaw_input, pid_output_yaw,
pid_last_yaw_d_error;

float angle_roll_acc, angle_pitch_acc, angle_pitch, angle_roll;

boolean gyro_angles_set;

T T T
/[Setup routine
U T T
void setup(){

//Serial.begin(57600);

//Copy the EEPROM data for fast access data.

for(start = O; start <= 35; start++)eeprom_data[start] = EEPROM.read(start);

start = 0; //Set start back to zero.

gyro_address = eeprom_data[32]; //Store the gyro address in the
variable.

Wire.begin(); //Start the 12C as master.

TWBR =12; //Set the 12C clock speed to 400kHz.

/IArduino (Atmega) pins default to inputs, so they don't need to be explicitly declared as inputs.

DDRD |=B11110000; /[Configure digital poort 4, 5, 6 and 7
as output.
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DDRB |= B00110000; //Configure digital poort 12 and 13 as
output.

//Use the led on the Arduino for startup indication.

digitalWrite(12,HIGH); /[Turn on the warning led.

/ICheck the EEPROM signature to make sure that the setup program is executed.

while(eeprom_data[33] !'="J' || eeprom_data[34] !='M" || eeprom_data[35] != 'B")delay(10);

/[The flight controller needs the MPU-6050 with gyro and accelerometer
/Nf setup is completed without MPU-6050 stop the flight controller program

if(eeprom_data[31] == 2 || eeprom_data[31] == 3)delay(10);

set_gyro_registers(); //Set the specific gyro registers.
for (cal_int =0; cal_int <1250 ; cal_int ++){ //Wait 5 seconds before
continuing.

PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high.
delayMicroseconds(1000); //Wait 1000us.
PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.
delayMicroseconds(3000); //Wait 3000us.

}

//Let's take multiple gyro data samples so we can determine the average gyro offset
(calibration).

for (cal_int = 0; cal_int <2000 ; cal_int ++){ /[Take 2000 readings for
calibration.
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if(cal_int % 15 == 0)digitalWrite(12, !digitalRead(12)); //Change the led status to
indicate calibration.

gyro_signalen(); //Read the gyro output.

gyro_axis_cal[1] += gyro_axis[1]; //Ad roll value to gyro_roll_cal.
gyro_axis_cal[2] += gyro_axis[2]; //Ad pitch value to gyro_pitch_cal.
gyro_axis_cal[3] += gyro_axis[3]; //Ad yaw value to gyro_yaw_cal.

//We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while
calibrating the gyro.

PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high.
delayMicroseconds(1000); //Wait 1000us.
PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.
delay(3); //Wait 3 milliseconds before the next loop.
}
//Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset.
gyro_axis_cal[1] /= 2000; //Divide the roll total by 2000.
gyro_axis_cal[2] /= 2000; //Divide the pitch total by 2000.
gyro_axis_cal[3] /= 2000; //Divide the yaw total by 2000.
PCICR |= (1 << PCIEQ); //Set PCIEOQ to enable PCMSKO scan.
PCMSKO |= (1 << PCINTO); //Set PCINTO (digital input 8) to

trigger an interrupt on state change.

PCMSKO |= (1 << PCINTY); //Set PCINT1 (digital input 9)to
trigger an interrupt on state change.

PCMSKO |= (1 << PCINT2); //Set PCINT2 (digital input 10)to
trigger an interrupt on state change.

PCMSKO |= (1 << PCINT3); //Set PCINT3 (digital input 11)to
trigger an interrupt on state change.
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//Wait until the receiver is active and the throtle is set to the lower position.

while(receiver_input_channel_3 <990 || receiver_input_channel_3 > 1020 ||
receiver_input_channel_4 < 1400){

receiver_input_channel_3 = convert_receiver_channel(3); /[Convert the actual
receiver signals for throttle to the standard 1000 - 2000us

receiver_input_channel_4 = convert_receiver_channel(4); /[Convert the actual
receiver signals for yaw to the standard 1000 - 2000us

start ++; //While waiting increment start whith every
loop.

//We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while
waiting for the receiver inputs.

PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high.
delayMicroseconds(1000); //Wait 1000us.
PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.
delay(3); //Wait 3 milliseconds before the next loop.
if(start == 125){ /[Every 125 loops (500ms).
digitalWrite(12, !digitalRead(12)); //IChange the led status.
start = 0; /[Start again at 0.
}
}
start = 0; //Set start back to 0.

/[Load the battery voltage to the battery voltage variable.
1165 is the voltage compensation for the diode.
//12.6V equals ~5V @ Analog 0.

//12.6V equals 1023 analogRead(0).
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/11260 / 1023 = 1.2317.
/[The variable battery voltage holds 1050 if the battery voltage is 10.5V.

battery voltage = (analogRead(0) + 65) * 1.2317,;

loop_timer = micros(); //Set the timer for the next loop.

//When everything is done, turn off the led.

digitalWrite(12,LOW); /[Turn off the warning led.
}
o
/IMain program loop
T T ]

void loop(){

1/65.5 = 1 deg/sec (check the datasheet of the MPU-6050 for more information).

gyro_roll_input = (gyro_roll_input * 0.7) + ((gyro_roll / 65.5) * 0.3); //Gyro pid input is
deg/sec.

gyro_pitch_input = (gyro_pitch_input * 0.7) + ((gyro_pitch / 65.5) * 0.3);//Gyro pid input is
deg/sec.

gyro_yaw_input = (gyro_yaw_input * 0.7) + ((gyro_yaw / 65.5) * 0.3);  //Gyro pid input is
deg/sec.
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/IGyro angle calculations
//0.0000611 =1/ (250Hz / 65.5)

angle_pitch += gyro_pitch * 0.0000611,; /[Calculate the traveled pitch
angle and add this to the angle_pitch variable.

angle_roll += gyro_roll * 0.0000611, /[Calculate the traveled roll angle
and add this to the angle_roll variable.

//0.000001066 = 0.0000611 * (3.142(P1) / 180degr) The Arduino sin function is in radians

angle_pitch -=angle_roll * sin(gyro_yaw * 0.000001066); /Nf the IMU has yawed
transfer the roll angle to the pitch angel.

angle_roll += angle_pitch * sin(gyro_yaw * 0.000001066); /1f the IMU has yawed
transfer the pitch angle to the roll angel.

/[Accelerometer angle calculations

acc_total_vector = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z));  //Calculate the total
accelerometer vector.

if(abs(acc_y) < acc_total vector){ //Prevent the asin function to
produce a NaN

angle_pitch_acc = asin((float)acc_y/acc_total vector)* 57.296; //Calculate the pitch
angle.
}
if(abs(acc_x) < acc_total_vector){ /[Prevent the asin function to

produce a NaN

angle_roll_acc = asin((float)acc_x/acc_total_vector)* -57.296; /[Calculate the roll angle.

¥

/IPlace the MPU-6050 spirit level and note the values in the following two lines for calibration.
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angle_pitch_acc -=0.0; //Accelerometer calibration value for
pitch.

angle_roll_acc -=0.0; I/ Accelerometer calibration value for roll.

angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004; //Correct the drift of the
gyro pitch angle with the accelerometer pitch angle.

angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004; [/[Correct the drift of the
gyro roll angle with the accelerometer roll angle.

pitch_level_adjust = angle_pitch * 15; /ICalculate the pitch angle
correction
roll_level _adjust = angle_roll * 15; /[Calculate the roll angle correction
if(lauto_level){ //1f the quadcopter is not in auto-level mode
pitch_level adjust = 0; //Set the pitch angle correction to zero.
roll_level _adjust = 0; //Set the roll angle correcion to zero.
}

/IFor starting the motors: throttle low and yaw left (step 1).

if(receiver_input_channel_3 < 1050 && receiver_input_channel_4 < 1050)start = 1;
//When yaw stick is back in the center position start the motors (step 2).

if(start == 1 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1450){

start = 2;

angle_pitch = angle_pitch_acc; //Set the gyro pitch angle equal to the
accelerometer pitch angle when the quadcopter is started.
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angle_roll = angle_roll_acc; //Set the gyro roll angle equal to the
accelerometer roll angle when the quadcopter is started.

gyro_angles_set = true; //Set the IMU started flag.

//IReset the PID controllers for a bumpless start.
pid_i_mem_roll = 0;
pid_last_roll_d_error = 0;
pid_i_mem_pitch = 0;
pid_last_pitch_d_error = 0;
pid_i_mem_yaw = 0;
pid_last yaw d_error = 0;
}
//Stopping the motors: throttle low and yaw right.

if(start == 2 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1950)start
= O’

/[The PID set point in degrees per second is determined by the roll receiver input.

/ln the case of deviding by 3 the max roll rate is aprox 164 degrees per second ( (500-8)/3 =
164d/s).

pid_roll_setpoint = 0;
//We need a little dead band of 16us for better results.
if(receiver_input_channel_1 > 1508)pid_roll_setpoint = receiver_input_channel_1 - 1508;

else if(receiver_input_channel_1 < 1492)pid_roll_setpoint = receiver_input_channel_1 - 1492;

pid_roll_setpoint -=roll_level adjust; //Subtract the angle correction from
the standardized receiver roll input value.
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pid_roll_setpoint /= 3.0; //Divide the setpoint for the PID roll
controller by 3 to get angles in degrees.

/[The PID set point in degrees per second is determined by the pitch receiver input.

//In the case of deviding by 3 the max pitch rate is aprox 164 degrees per second ( (500-8)/3 =
164d/s).

pid_pitch_setpoint = 0;
//We need a little dead band of 16us for better results.
if(receiver_input_channel_2 > 1508)pid_pitch_setpoint = receiver_input_channel_2 - 1508;

else if(receiver_input_channel_2 < 1492)pid_pitch_setpoint = receiver_input_channel_2 -
1492;

pid_pitch_setpoint -= pitch_level adjust; //Subtract the angle correction
from the standardized receiver pitch input value.

pid_pitch_setpoint /= 3.0; /IDivide the setpoint for the PID pitch
controller by 3 to get angles in degrees.

/[The PID set point in degrees per second is determined by the yaw receiver input.

//In the case of deviding by 3 the max yaw rate is aprox 164 degrees per second ( (500-8)/3 =
164d/s).

pid_yaw_setpoint = 0;
//We need a little dead band of 16us for better results.
if(receiver_input_channel 3 > 1050){ /Do not yaw when turning off the motors.

if(receiver_input_channel_4 > 1508)pid_yaw_setpoint = (receiver_input_channel 4 -
1508)/3.0;

else if(receiver_input_channel 4 < 1492)pid_yaw_setpoint = (receiver_input_channel_4 -
1492)/3.0;
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calculate_pid(); /[P1D inputs are known. So we can
calculate the pid output.

/[The battery voltage is needed for compensation.
/A complementary filter is used to reduce noise.
//0.09853 = 0.08 * 1.2317.

battery voltage = battery_voltage * 0.92 + (analogRead(0) + 65) * 0.09853;

/[Turn on the led if battery voltage is to low.

if(battery_voltage < 1000 && battery voltage > 600)digitalWrite(12, HIGH);

throttle = receiver_input_channel_3; //We need the throttle signal as a
base signal.
if (start == 2){ /[The motors are started.
if (throttle > 1800) throttle = 1800; //We need some room to keep full

control at full throttle.

esc_1 = throttle - pid_output_pitch + pid_output_roll - pid_output_yaw; //Calculate the pulse
for esc 1 (front-right - CCW)

esc_2 = throttle + pid_output_pitch + pid_output_roll + pid_output_yaw; //Calculate the pulse
for esc 2 (rear-right - CW)

esc_3 = throttle + pid_output_pitch - pid_output_roll - pid_output_yaw; //Calculate the pulse
for esc 3 (rear-left - CCW)

esc_4 = throttle - pid_output_pitch - pid_output_roll + pid_output_yaw; //Calculate the pulse
for esc 4 (front-left - CW)
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if (battery_voltage < 1240 && battery voltage > 800){

esc_1+=-esc_1* ((1240 - battery_voltage)/(float)3500)
pulse for voltage drop.

esc_2 +=esc_2 * ((1240 - battery_voltage)/(float)3500)
pulse for voltage drop.

esc_3 +=esc_3 * ((1240 - battery_voltage)/(float)3500)
pulse for voltage drop.

esc_4 +=esc_4 * ((1240 - battery_voltage)/(float)3500)
pulse for voltage drop.

}

if (esc_1 < 1100) esc_1 =1100;
if (esc_2 < 1100) esc_2 = 1100;
if (esc_3 < 1100) esc_3 =1100;

if (esc_4 < 1100) esc_4 = 1100;

if(esc_1 > 2000)esc_1 = 2000;
if(esc_2 > 2000)esc_2 = 2000;
if(esc_3 > 2000)esc_3 = 2000;

if(esc_4 > 2000)esc_4 = 2000;

else{

//1s the battery connected?

; //Compensate the esc-1

; //Compensate the esc-2

; //Compensate the esc-3

; //Compensate the esc-4

//Keep the motors running.
//Keep the motors running.
//Keep the motors running.

//[Keep the motors running.

//Limit the esc-1 pulse to 2000us.
//Limit the esc-2 pulse to 2000us.
//Limit the esc-3 pulse to 2000us.

//Limit the esc-4 pulse to 2000us.

esc_1 =1000; /f start is not 2 keep a 1000us pulse for

ess-1.
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esc_2 =1000; /111 start is not 2 keep a 1000us pulse for
ess-2.

esc_3 =1000; //1f start is not 2 keep a 1000us pulse for
ess-3.
esc_4 =1000; //1f start is not 2 keep a 1000us pulse for
ess-4.
}
if(micros() - loop_timer > 4050)digitalWrite(12, HIGH); /[Turn on the LED if the

loop time exceeds 4050us.

/[All the information for controlling the motor's is available.

/[The refresh rate is 250Hz. That means the esc's need there pulse every 4ms.

while(micros() - loop_timer < 4000); //We wait until 4000us are passed.
loop_timer = micros(); //Set the timer for the next loop.

PORTD |= B11110000; //Set digital outputs 4,5,6 and 7 high.
timer_channel_1 =esc_1 + loop_timer; /[Calculate the time of the faling

edge of the esc-1 pulse.

timer_channel_2 =esc_2 + loop_timer; /[Calculate the time of the faling
edge of the esc-2 pulse.

timer_channel_3 = esc_3 + loop_timer; /[Calculate the time of the faling
edge of the esc-3 pulse.

timer_channel_4 =esc_4 + loop_timer; /[Calculate the time of the faling
edge of the esc-4 pulse.

/[There is always 1000us of spare time. So let's do something usefull that is very time
consuming.
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//Get the current gyro and receiver data and scale it to degrees per second for the pid

calculations.

gyro_signalen();

while(PORTD >= 16){ //Stay in this loop until output 4,5,6
and 7 are low.
esc_loop_timer = micros(); //Read the current time.

if(timer_channel_1 <=esc_loop_timer)PORTD &= B11101111;
4 to low if the time is expired.

if(timer_channel_2 <=esc_loop_timer)PORTD &= B11011111;
5 to low if the time is expired.

if(timer_channel_3 <=esc_loop_timer)PORTD &= B10111111;
6 to low if the time is expired.

if(timer_channel_4 <=esc_loop_timer)PORTD &= B01111111;
7 to low if the time is expired.

¥
k

ISR(PCINTO_vect){

current_time = micros();

//Set digital output

//Set digital output

//Set digital output

//Set digital output

if(PINB & B0O0000001){
if(last_channel_1 == 0){
last_channel_1=1;
timer_1 = current_time;
}
}

/l1s input 8 high?
/Nnput 8 changed from 0 to 1.
/[Remember current input state.

//Set timer_1 to current_time.
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else if(last_channel_1 ==1){
1t0 0.

last_channel_1=0;

receiver_input[1] = current_time - timer_1;
timer_1.

ky

/lnput 8 is not high and changed from

//Remember current input state.

//Channel 1 is current_time -

//Channel 2= == === == ==

if(PINB & B00000010 ){
if(last_channel 2 == 0){
last_channel 2 =1;
timer_2 = current_time;
}
}

else if(last_channel_2 ==1){
1t0 0.

last_channel 2 =0;

receiver_input[2] = current_time - timer_2;
timer_2.

by

//IChannel 3 == === ==

if(PINB & B00000100 ){
if(last_channel_3 == 0){
last_channel 3=1;
timer_3 = current_time;
}
}

/s input 9 high?
/nput 9 changed from 0 to 1.
//Remember current input state.

//Set timer_2 to current_time.

/lInput 9 is not high and changed from

//Remember current input state.

//Channel 2 is current_time -

/s input 10 high?
//Input 10 changed from 0 to 1.
//Remember current input state.

//Set timer_3 to current_time.
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else if(last_channel_3 ==1){ /Mnput 10 is not high and changed
from 1 to O.

last_channel_3=0; //Remember current input state.
receiver_input[3] = current_time - timer_3; //Channel 3 is current_time -
timer_3.
}
/IChannel 4 ============= ===================
if(PINB & B00001000 ){ /s input 11 high?
if(last_channel_4 == 0){ /lnput 11 changed from O to 1.
last_channel_4 =1, //Remember current input state.
timer_4 = current_time; //Set timer_4 to current_time.
}
}
else if(last_channel_4 ==1){ /Mnput 11 is not high and changed
from 1 to O.
last_channel_4 =0; //[Remember current input state.
receiver_input[4] = current_time - timer_4; //[Channel 4 is current_time -
timer_4.
}
}

T T T T T
//Subroutine for reading the gyro
i
void gyro_signalen(){

//IRead the MPU-6050
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if(eeprom_data[31] == 1){

Wire.beginTransmission(gyro_address);
gyro.

Wire.write(0x3B);
increment with every read.

Wire.endTransmission();

Wire.requestFrom(gyro_address,14);

//Start communication with the

//Start reading @ register 43h and auto

//End the transmission.

//Request 14 bytes from the gyro.

receiver_input_channel_1 = convert_receiver_channel(1); //Convert the actual
receiver signals for pitch to the standard 1000 - 2000us.

receiver_input_channel_2 = convert_receiver_channel(2); //Convert the actual

receiver signals for roll to the standard 1000 - 2000us.

receiver_input_channel_3 = convert_receiver_channel(3); //Convert the actual
receiver signals for throttle to the standard 1000 - 2000us.

receiver_input_channel_4 = convert_receiver_channel(4); /[Convert the actual

receiver signals for yaw to the standard 1000 - 2000us.

while(Wire.available() < 14);

acc_axis[1] = Wire.read()<<8|Wire.read();
the acc_x variable.

acc_axis[2] = Wire.read()<<8|Wire.read();
the acc_y variable.

acc_axis[3] = Wire.read()<<8|Wire.read();
the acc_z variable.

temperature = Wire.read()<<8|Wire.read();
the temperature variable.

gyro_axis[1] = Wire.read()<<8|Wire.read();
angular data.

gyro_axis[2] = Wire.read()<<8|Wire.read();
angular data.
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//Wait until the 14 bytes are received.

//Add the low and high byte to

//Add the low and high byte to

//Add the low and high byte to

/IAdd the low and high byte to

/IRead high and low part of the

//IRead high and low part of the



gyro_axis[3] = Wire.read()<<8|Wire.read();
angular data.

¥

if(cal_int == 2000){

gyro_axis[1] -= gyro_axis_cal[1];
calibration.

gyro_axis[2] -= gyro_axis_cal[2];
calibration.

gyro_axis[3] -= gyro_axis_cal[3];
calibration.

}

gyro_roll = gyro_axis[eeprom_data[28] & 0b00000011];
correct axis that was stored in the EEPROM.

if(eeprom_data[28] & 0b10000000)gyro_roll *=-1;
MSB of EEPROM bit 28 is set.

gyro_pitch = gyro_axis[eeprom_data[29] & 0b00000011];
correct axis that was stored in the EEPROM.

if(eeprom_data[29] & 0b10000000)gyro_pitch *=-1;
MSB of EEPROM bit 29 is set.

gyro_yaw = gyro_axis[eeprom_data[30] & 0b00000011];
correct axis that was stored in the EEPROM.

if(eeprom_data[30] & 0b10000000)gyro_yaw *= -1;
MSB of EEPROM bit 30 is set.

acc_x =acc_axis[eeprom_data[29] & 0b00000011];
axis that was stored in the EEPROM.

if(eeprom_data[29] & 0b10000000)acc_x *= -1,
EEPROM bit 29 is set.
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/IRead high and low part of the

//Only compensate after the

//Only compensate after the

//Only compensate after the

//Set gyro_roll to the

/lnvert gyro_roll if the

//Set gyro_pitch to the

/lnvert gyro_pitch if the

//Set gyro_yaw to the

/lInvert gyro_yaw if the

//Set acc_x to the correct

/lInvert acc_x if the MSB of



acc_y = acc_axis[eeprom_data[28] & 0b00000011]; //Set acc_y to the correct
axis that was stored in the EEPROM.

if(eeprom_data[28] & 0b10000000)acc_y *= -1, llnvert acc_y if the MSB of
EEPROM bit 28 is set.

acc_z = acc_axis[eeprom_data[30] & 0b00000011]; //Set acc_z to the correct
axis that was stored in the EEPROM.

if(eeprom_data[30] & Ob10000000)acc_z *= -1; /lnvert acc_z if the MSB of
EEPROM bit 30 is set.
}

o
//Subroutine for calculating pid outputs
T T T T
void calculate_pid(){

//Roll calculations

pid_error_temp = gyro_roll_input - pid_roll_setpoint;

pid_i_mem_roll += pid_i_gain_roll * pid_error_temp;

if(pid_i_mem_roll > pid_max_roll)pid_i_mem_roll = pid_max_roll;

else if(pid_i_mem_roll < pid_max_roll * -1)pid_i_mem_roll = pid_max_roll * -1,

pid_output_roll = pid_p_gain_roll * pid_error_temp + pid_i_mem_roll + pid_d_gain_roll *
(pid_error_temp - pid_last_roll_d_error);

if(pid_output_roll > pid_max_roll)pid_output_roll = pid_max_roll;

else if(pid_output_roll < pid_max_roll * -1)pid_output_roll = pid_max_roll * -1;

pid_last_roll_d_error = pid_error_temp;
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/Pitch calculations

pid_error_temp = gyro_pitch_input - pid_pitch_setpoint;
pid_i_mem_pitch += pid_i_gain_pitch * pid_error_temp;
if(pid_i_mem_pitch > pid_max_pitch)pid_i_mem_pitch = pid_max_pitch;

else if(pid_i_mem_pitch < pid_max_pitch * -1)pid_i_mem_pitch = pid_max_pitch * -1;

pid_output_pitch = pid_p_gain_pitch * pid_error_temp + pid_i_mem_pitch + pid_d_gain_pitch
* (pid_error_temp - pid_last_pitch_d_error);

if(pid_output_pitch > pid_max_pitch)pid_output_pitch = pid_max_pitch;

else if(pid_output_pitch < pid_max_pitch * -1)pid_output_pitch = pid_max_pitch * -1;

pid_last_pitch_d_error = pid_error_temp;

/I'Yaw calculations

pid_error_temp = gyro_yaw_input - pid_yaw_setpoint;
pid_i_mem_yaw += pid_i_gain_yaw * pid_error_temp;
if(pid_i_mem_yaw > pid_max_yaw)pid_i_mem_yaw = pid_max_yaw;

else if(pid_i_mem_yaw < pid_max_yaw * -1)pid_i_mem_yaw = pid_max_yaw * -1,

pid_output_yaw = pid_p_gain_yaw * pid_error_temp + pid_i_mem_yaw + pid_d_gain_yaw *
(pid_error_temp - pid_last_yaw_d_error);

if(pid_output_yaw > pid_max_yaw)pid_output_yaw = pid_max_yaw;

else if(pid_output_yaw < pid_max_yaw * -1)pid_output_yaw = pid_max_yaw * -1,

pid_last_yaw_d_error = pid_error_temp;
}
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/[This part converts the actual receiver signals to a standardized 1000 — 1500 — 2000
microsecond value.

/[The stored data in the EEPROM is used.

int convert_receiver_channel(byte function){
byte channel, reverse; /[First we declare some local variables
int low, center, high, actual;

int difference;

channel = eeprom_data[function + 23] & 0b00000111; //What channel
corresponds with the specific function

if(eeprom_data[function + 23] & 0b10000000)reverse = 1; //IReverse channel
when most significant bit is set

else reverse = 0; /1f the most significant is not set there is
no reverse

actual = receiver_input[channel]; //Read the actual receiver value for

the corresponding function

low = (eeprom_data[channel * 2 + 15] << 8) | eeprom_data[channel * 2 + 14]; //Store the low
value for the specific receiver input channel

center = (eeprom_data[channel * 2 - 1] << 8) | eeprom_data[channel * 2 - 2]; //Store the center
value for the specific receiver input channel

high = (eeprom_data[channel * 2 + 7] << 8) | eeprom_data[channel * 2 + 6]; //Store the high
value for the specific receiver input channel

if(actual < center){ /[The actual receiver value is lower than
the center value

if(actual < low)actual = low; /[Limit the lowest value to the value
that was detected during setup
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difference = ((long)(center - actual) * (long)500) / (center - low);

actual value to a 1000 - 2000us value
if(reverse == 1)return 1500 + difference;
else return 1500 - difference;

ks

else if(actual > center){
is higher than the center value

if(actual > high)actual = high;
that was detected during setup

difference = ((long)(actual - center) * (long)500) / (high - center);

actual value to a 1000 - 2000us value
if(reverse == 1)return 1500 - difference;
else return 1500 + difference;

ks

else return 1500;

¥

void set_gyro_registers(){
//Setup the MPU-6050
if(eeprom_data[31] == 1){

Wire.beginTransmission(gyro_address);
the address found during search.

Wire.write(Ox6B);
PWR_MGMT _1 register (6B hex)

Wire.write(0x00);
activate the gyro

Wire.endTransmission();

XXXI

/ICalculate and scale the

{/11f the channel is reversed

//1f the channel is not reversed

/IThe actual receiver value

/ILimit the lowest value to the value

/ICalculate and scale the

//1f the channel is reversed

//1f the channel is not reversed

/IStart communication with

/We want to write to the

//Set the register bits as 00000000 to

/IEnd the transmission with the gyro.



Wire.beginTransmission(gyro_address);
the address found during search.

Wire.write(0x1B);
GYRO_CONFIG register (1B hex)

Wire.write(0x08);
(500dps full scale)

Wire.endTransmission();

Wire.beginTransmission(gyro_address);
the address found during search.

Wire.write(0x1C);
ACCEL_CONFIG register (1A hex)

Wire.write(0x10);
8g full scale range)

Wire.endTransmission();

/IStart communication with

/IWe want to write to the

//Set the register bits as 00001000

//End the transmission with the gyro

//Start communication with

//We want to write to the

//Set the register bits as 00010000 (+/-

//End the transmission with the gyro

//Let's perform a random register check to see if the values are written correct

Wire.beginTransmission(gyro_address);
the address found during search

Wire.write(0x1B);

Wire.endTransmission();

Wire.requestFrom(gyro_address, 1);

while(Wire.available() < 1);

if(Wire.read() '= 0x08){
digitalWrite(12,HIGH);
while(1)delay(10);

}

/IStart communication with

//Start reading @ register 0x1B
//End the transmission
/IRequest 1 bytes from the gyro
//Wait until the 6 bytes are received
//Check if the value is 0x08
/[Turn on the warning led

//Stay in this loop for ever



Wire.beginTransmission(gyro_address); //Start communication with
the address found during search

Wire.write(Ox1A); //We want to write to the CONFIG
register (1A hex)
Wire.write(0x03); //Set the register bits as 00000011 (Set
Digital Low Pass Filter to ~43Hz)
Wire.endTransmission(); //End the transmission with the gyro
}
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