Sudan University of Science and Technology College of graduate studies

Identification of Heavy Metals in SomeWater Sources in Khartoum State using Laser Induced Breakdown Spectroscopy

التعرف علي العناصر الثقيلة الموجودة في بعض مصادر المياه بولاية الخرطوم باستخدام مطيافية الانهيار الكهربي المستحث بالليزر

A thesis submitted for the fulfillment of the requirements for the degree of Doctor of Philosophy in Laser Applications in physics

By:

EHESSAN BAKRI MIRGANI

Supervised by:

Prof. Dr. Nafie A. Almuslet

Co Supervisor Dr. Mubarak Elmahal Ahmed

بسم الله الرحمن الرحيم

ذُورُ السَّمَ الطَّلَاتَ وَ الأَرْضِ مَ ثَلُ نُورِهِ كَمِشْكَاةٍ فِيهَا مِصْبَاحٌ الْمِصْبَاحُ فِي اللَّهَ وَالأَرْضِ مَ ثَلُ نُورِهِ كَمِشْكَاةٍ فِيهَا مِصْبَاحٌ الْمُصْبَاحُ فِي اللَّهَ وَالْمَاهُ وَاللَّهُ اللَّهُ وَاللَّهُ وَاللَّهُ اللَّهَ وَاللَّهُ وَاللَّهَ وَاللّهَ وَاللّهُ وَاللّهَ وَاللّهَ وَاللّهَ وَاللّهَ وَاللّهَ وَاللّهَ وَاللّهَ وَاللّهَ وَاللّهُ وَاللّهَ وَاللّهَ وَاللّهَ وَاللّهَ وَاللّهُ وَاللّ

صدق الله العظيم

(الاية 35 سورةالنور)

Dedication

To my father

To my mother

To my husband

To my son

To my brothers& sisters

To my friends

To my colleagues

To soul of my friend Anne

To all

Acknowledgements

After thanking Allah for inspiring me to accomplish this work, I would like to express my faithful indebtedness to Prof. Dr. Nafie A. Almulet for his supervision of this work, encouragement, guidance, advice, and patience.

Thanks also extend to all the staff of the Institute of Laser-Sudan University of Science and Technology.

My deepest gratitude goes to my family and to everybody who helped me during this work specially my husband Atef Ali and my colleague Dr. Masher Ahmed and my student Amar Kamal.

Abstract

In this work, Laser Induced Breakdown Spectroscopy (LIBS) was used to investigate, and identify, the heavy metals in samples of water collected from different places in Khartoum state during the period from 2013 to 2015. Eight water samples were used as study samples.

The breakdown of the samples was induced by focusing a pulsed Nd: YAG laser at 532 nm, 2Hz Rpetion Rate, pulse duration of 10 ns, with different pulse energies: 60, 80, 100, and 120 mJ, respectively. The emission spectra of the samples plasma were collected via optical fiber and recorded by Ocean Optics 4000- spectrometer. The recorded spectra of the samples were analyzed using NIST data.

The analysis of the spectra showed considerable amounts of neutral atoms like (Ni, As, Ru, Th, Zr, Tb, Eu, Li, I, Cu, Xe, K, He, Ne, Cs, Hg, Cr, Tl, Cl, Na, Fe, Na, Ra and Ca)elements in addition to the ions: (Ni⁺¹, As⁺¹, Th⁺¹, Th⁺², Zr⁺¹, Cs⁺¹, Cs⁺², Cr⁺¹, Cr⁺², Tl⁺¹, Tl⁺², Fe⁺¹ and Fe⁺²).

The heavy metals like:(Cr, Hg, and Tl) were appeared in the eight samples with nearly amounts, they are toxic metals harmful to human and environment. Also metals like: (Na, I, Cu and K) were appeared with different amounts in many samples.

It can be concluded that LIBS technique proved to be, fast and accurate technique for the detection of heavy metals and can be used for the determination of its concentrations.

A portable LIBS system for online analysis indifferent sites can be recommended for improvement of the environment.

المستخلص

في هذه الدراسة تم إستخدام تقانة الإنهيار الكهربي المستحثب الليزر (LIBS) للكشف والتعرف على العناصر الثقيلة في ثمانية عينات مختلفة من مصادر المياه التي جمعت منبعض الاماكن في ولاية الخرطوم خلال الفترة من 2013 الى 2015.

تم تشعيع هذه العينات بواسطة ليزر النيوديميوم – ياق النبضي ذي الطول الموجي 532 نانو متر بطاقات نبضة 100,80,60 ملي جول وبزمن نبضة قدره 10 نانو ثانية وتردد 2 هيرتز وتكرار التشعيع 20 مرة لكل عينة .

تم تسجيل أطياف الإنبعاث للعينات بواسطة جهاز المطياف نوع(Spectrometer - Ocean,4000)

وباستخدام قاعدة بيانات التحليل الطيفي للعناصر (Atomic Spectra Database line) .تم تسجيل النتائج وتحليلها للتعرف على العناصر الموجودة في العينات.

تم التعرف على العناصر التالية:

(Ni, As, Ru, Th, Zr, Tb, Eu, Li, I, Cu, Xe, K, He, Ne, Cs, Hg, Cr, Tl, Cl, Na, Fe, Na, Ra and Ca)

 $(\mathrm{Ni^{+1},\,As^{+1},\,Th^{+1},\,Th^{+2},\,Zr^{+1},\,Cs^{+1},\,:}$ بالاضافة لظهور ايونات بعض هذه العناصر مثل $\mathrm{Cs^{+2},\,Cr^{+1},\,Cr^{+2}\,,\,Tl^{+1},\,Tl^{+2},\,Fe^{+1}}$ and $\mathrm{Fe^{+2}}).$

وجد أن عناصر الكروم ,الزئبق والثاليوم تتواجد بكميات مختلفة في بعض العينات وكانت هذه الكميات متساوية تقريبا وهي عناصر ذات سمية عالية لها تاثير سلبي على صحة الانسان والبيئة.

بالاضافة لظهور بعض العناصر غير الثقيلة كاليود والصوديوم والنحاس والبوتاسيوم بكميات مختلفة في بعض العينات.

من النتائج المتحصله يستنتج أن طريقة الأنبعاث المستحث بالليزر (LIBS) تعتبر طريقة كفؤة و سريعة ودقيقة للكشف عن العناصر الثقيلة وحساب كمياتها في العينات السائلة.

في نهاية البحث تمت التوصية بتصميم نظام متكامل محمول ميدانيا لإستخدام ثقانة الانبعاث المستحث بالليزر (LIBS) للكشف عن العناصر الثقيلة في مواقع مختلفة من البيئة.

List of Contents

Title	Page No.
الآية	II
Acknowledgements	III
Dedication	IV
Abstract	V
المستخلص	VI
The contents	VIII
List of Figures	XI
List of Tables	XIV
Chapter One: Introduction and basic conce	epts
1.1Introduction	1
1.2 The study objectives	3
1.3 The thesis structure	3
1.4 Absorption and emission of radiation	3
1.4.1Absorption	4
1.4.2 Spontaneous emission	4
1.4.3Stimulated emission	5
1.5Laser spectroscopy	6
1.5.1Absorption spectroscopy	7
1.5.2Laser – induced Molecular Dissociation	8
1.5.3Laser Raman Spectroscopy	9
1.5.4HyperRaman Spectroscopy	10
1.5.5Stimulated Raman Spectroscopy	11

1.5.6Coherent anti – stokes Raman Spectroscopy	12
1.5.7 Laser induced fluorescence	13
1.5.8 Cavity ring-down spectroscopy	13
1.5.9 Light detection and ranging (LIDAR)	15
1.5.10 Femtosecond spectroscopy	16
Chapter Two: Laser Induced Breakdown Spectroso	copy,
Principles and Applications	
2.1Introduction	18
2.2 Fundamentals of LIBS	19
2.2.1 Introduction	19
2.2.2 Plasma parameters	21
2.2.3 Fundamentals of absorption and emission	21
2.2.4 Line broadening	25
2.3LIBS instrumentation	27
2.4 Lasers for LIBS	30
2.5 Spectrographs	31
2.6LIBS advantages and disadvantages	31
2.7 LIBS applications	33
2.8 Literature review	36
Chapter Three: Materials and Methods	
3.1 Introduction	42
3.2 The samples and sample collection	42
3. 3 Preparation of the sample	42
3.4 The experimental setup	42
3.4.1 The laser	43
3.4.2 The glass cell	47

3.4.3 Optical System	47
3.4.4 Detection System	47
3.4.5 The software system	50
3.5 Electricity and instrument safety	51
3.6 Methodology	51
Chapter Four: Results and Discussion	
4.1 Introduction	53
4.2 The qualitative results	53
4.2.1 Irradiation with 60 mJ	53
4.2.2 Irradiation by 80 mJ	57
4.2.3 Irradiation by 100 mJ	61
4.2.4 Irradiation by 120 mJ	65
4.3 Discussion	69
4. 4 Conclusions	72
4. 5 Future work	72
References	74

List of Figures

Figure	
	No
Figure (1-1) Schematic illustration of the three processes:	4
(a) spontaneous emission, (b) stimulated emission, (c) absorption	
Figure (1-2) Linear laser-absorption spectroscopy using tunable laser (a) Direct absorption. (b) opto-acoustic method using a microphone.	7
Figure (1-3): Schematic representation of laser photolysis by three methods. The short arrows represent infrared photons and the long represent one ultraviolet photons.	9
Figure (1-4) Energy-level diagram for spontaneous Raman scattering.	10
Figure (1-5) The hyper Raman spectrum of ethane.	11
Figure (1-6) Stimulated Raman scattering experiment.	12
Figure (1-7) concentric rings observed, in the forward direction.	12
Figure (1-8) Schematic diagram showing how a cavity ring – down absorption spectrum is obtained	14
Figure (1-9) LIDAR device using a Cassagrain telescope	15
Figure (2-1) the conventional LIBS system configuration	18
Figure (2-2) Schematic of typical experimental LIBS setup	29
Figure (2-3) LIBS can analyze and identify samples in solid ,liquid ,and gas forms	34
Figure (2-4) LIBS instrument for pharmaceutical industry	36
Figure (3-1)The experimental setup	43
Figure (3-2)Schematic diagram of the setup	43

Figure (3-3) Front view of the Nd -Yag laser	45
Figure (3-4) The USB4000 spectrometer	47
Figure (3-5) The spectrum of the emitted intensity of the sample	50
Figure (4-1) LIBS emission spectrum of sample1after irradiated by60 mj	54
Figure (4-2) LIBS emission spectrum of sample2after irradiated by60 mj	54
Figure (4-3) LIBS emission spectrum of sample3after irradiated by60 mj	55
Figure (4-4) LIBS emission spectrum of sample4after irradiated by 60 mj	55
Figure (4-5) LIBS emission spectrum of sample5after irradiated by 60 mj	56
Figure (4-6) LIBS emission spectrum of sample6after irradiated by 60 mj	56
Figure (4-7) LIBS emission spectrum of sample7after irradiated by 60 mj	57
Figure (4-8) LIBS emission spectrum of sample8after irradiated by 60 mj	57
Figure (4-9) LIBS emission spectrum of sample1 after irradiated by 80 mj	59
Figure (4-10) LIBS emission spectrum of sample2 after irradiated by 80 mj	59
Figure (4-11) LIBS emission spectrum of sample3 after irradiated by 80 mj	60
Figure (4-12) LIBS emission spectrum of sample4 after irradiated by 80 mj	60
Figure (4-13) LIBS emission spectrum of sample5 after irradiated by 80 mj	61
Figure (4-14) LIBS emission spectrum of sample6 after irradiated by 80 mj	61
Figure (4-15) LIBS emission spectrum of sample7 after irradiated by 80 mj	62
Figure (4-16) LIBS emission spectrum of sample8 after irradiated by 80 mj	62

Figure (4-17) LIBS emission spectrum of sample1 after irradiated by 100 mj	64
Figure (4-18) LIBS emission spectrum of sample2 after irradiated by 100 mj	64
Figure (4-19) LIBS emission spectrum of sample3 after irradiated by 100 mj	65
Figure (4-20) LIBS emission spectrum of sample4 after irradiated by 100 mj	65
Figure (4-21) LIBS emission spectrum of sample5 after irradiated by 100 mj	66
Figure (4-22) LIBS emission spectrum of sample6 after irradiated by 100 mj	66
Figure (4-23) LIBS emission spectrum of sample7 after irradiated by 100 mj	67
Figure (4-24) LIBS emission spectrum of sample8 after irradiated by 100mj	67
Figure (4-25) LIBS emission spectrum of sample1 after irradiated by 120 mj	69
Figure (4-26) LIBS emission spectrum of sample2 after irradiated by 120 mj	69
Figure (4-27) LIBS emission spectrum of sample3 after irradiated by 120 mj	70
Figure (4-28) LIBS emission spectrum of sample4 after irradiated by 120 mj	70
Figure (4-29) LIBS emission spectrum of sample5 after irradiated by 120 mj	71
Figure (4-30) LIBS emission spectrum of sample6 after irradiated by 120 mj	71
Figure (4-31) LIBS emission spectrum of sample7 after irradiated by 120 mj	72
Figure (4-32) LIBS emission spectrum of sample8 after irradiated by 120 mj	72

List of Tables

Contents	
	No
Table (2-1) Advantages and disadvantages of LIBS technique	32
Table (3-1) laser specifications	44
Table (4-1) The analyzed data of the eight samples irradiated by 60 mj	58
Table (4-2) The analyzed data of the eight samples irradiated by 80 mj	63
Table (4-3) The analyzed data of the eight samples irradiated by 100 mj	68
Table (4-4) The analyzed data of the eight samples irradiated by 120 mj	73