

Sudan University of Science and Technology

Faculty of engineering

Biomedical engineering

Design of Patient Monitor Using Android
Application

Prepared By:

1. AmnaAbdelmoneim Bashir
2. RayanOmer Ibrahim Alataya
3. Mohammed Ahmed Mohammed

Supervised By:

Dr.musaabAlkhair

(October,2017)

I

 الآیـــــــــــــة

یَرْفَعْ اللَّھُ الَّذِینَ آمَنُوا مِنْكُمْ وَالَّذِینَ أُوتُوا الْعِلْمَ دَرَجَاتٍ وَاللَّھُ بِمَا {
 }تَعْمَلُونَ خَبِیرٌ

 صدق االله العظیم
 }11{ یةالآ المجادلةسورة

Dedication

II

Every challenge work needs self-efforts as well as guidance of elders especially

those who were very close to our heart.

Our humble effort I dedicate to our sweet and loving

Families

Whose affection, love, encouragement and prays of day and night make able to

get such success and honor,

Along with all hard working and respected

Teachers

Acknowledgement

III

We would like to express our sincere appreciation our principal supervisor, Dr.

MusaabAlkhair, for his constant guidance and encouragement, without which this

work would not have been possible. For his unwavering support, we are truly

grateful. We are also grateful to all the lecturers in our department for their support

towards the successful completion this project.

We also would like to express our heartfelt gratitude’s to Eng. BayadirFath-

elrahman and the electronics department in Sudan University of science and

technology for supporting us during the entire data collection period, really grateful

to them.

We would also like to thanks our families, colleagues at university and outside

for supporting and encouragement.

 TABLEOF CONTENTS
Content Page No.

 I الایة
DEDICATION II
ACKNOWLEDGEMENT III

IV

TABLE OF CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
ABSTRACT VIII
 IX المستخلص

Chapter one
INTRODUCTION

1.1General Review 3
1.2 Motivation 4
1.3 Objective 4
1.4 Methodology 4
1.5 Thesis structure 5

Chapter two
LITERATURE REVIEW

LITERATURE REVIEW 7
Chapter three

METHODOLOGY
3.1 Over view 14
3.2 Parameters 15
3.2.1 Heart rate 15
3.2.2 Body temperature 16
3.2.3 ECG 16
3.2.4 SPO2 18
3.2.5 Blood pressure 19
3.3Component 21
3.3.1 Pulse rate sensor 21
3.3.2 The LM35 temperature Sensor 22
3.3.3 Arduino Uno 22
3.3.4 Bluetooth module HC-05 24
3.4 Physio Net 25
3.5 Android application 26
3.6 Circuit Diagram and Explanation 31

Chapter four
RESULTS

4.1 RESULTS 35
4.1.1 Heart Rate 35
4.1.2 Body temperature 35
4.2 Discussions 38

Chapter five

V

CONCLUSION & Recommendation
5.1 CONCLUSION 40
5.2 Recommendation and future work 41

Chapter six
REFERENCES

REFERENCES 43
Appendices 45

LIST OF TABLES

No of table Title No of
page

Table 3.1 Heart rate 16
Table 3.2 Saturation of SPO2% 19
Table 3.3 blood pressure measurement 20

VI

LIST OF FIGURES

No. of figure Title No. of
page

Fig 3.1 ECG signal 17
Fig 3.2 Edited signal 18
Fig 3.3 Blood pressure measurement 20

VII

Fig 3.4 Pulse sensor 21
Fig 3.5 LM35 sensor 22
Fig 3.6 Arduino 23
Fig 3.7 hc05 module 25
Fig 3.8 Application form 27
Fig 3.9 Application page (1) 28
Fig 3.10 Application page(2) 28
Fig 3.11 Pulse sensor Connections 31
Fig 3.12 LM35 Connections 32
Fig 3.13 hc05 module connection 33
Fig 4.1 Error results of sensors 36
Fig 4.2 Actual results of sensors 36
Fig 4.3 Results of saved (ECG, blood pressure, SPO2) 37

VIII

ABSTRACT

In the last decade the healthcare monitoring systems have drawn

considerable attentions of the researchers and students. The prime goal was to

develop a reliable patient monitoring system so that the healthcare professionals

can monitor their patients, who are either hospitalized or executing their normal

daily life activities, the patient monitors are expensive, difficult to move from

one place to another, not available at all healthcare centers and in rural areas. In

this work we present a mobile phone device (android APP) based wireless

healthcare monitoring system about physiological conditions (ECG, blood

pressure, oxygen saturation, heart beats per minute and body temperature of a

patient. Our proposed system is designed to measure and monitor important

physiological data of a patient in order to accurately describe the status of

her/his health, fitness and basic vital signs in easy procedures. In addition the

proposed system is able to send alarming message about the patient’s critical

health data by text messages or by email reports to the doctors. By using the

information contained in the text or e-mail message the healthcare professional

can provide necessary medical advising. The system mainly consists of mobile

phone, the data acquisition unit, microcontroller (i.e., Arduino UNO), and

software (i.e., LabVIEW). The patient’s temperature, heart beat rate, blood

pressure, oxygen saturation, and ECG data are monitored, displayed, and stored

by our system to be easy for recalling by user and reference doctor. To ensure

reliability and accuracy the proposed system has been field tested. The test

results show that our system is able to measure the patient’s physiological data

with reliable, acceptance values and inexpensive costs.

IX

 المستخلص

الاخیره أصبحت أنظمة مراقبة الرعایھ الصحیة محور إھتماام الطلاب والباحثین، وقد في الاونھ

كان الھدف الاساسي ھو تطویر وتصمیم نظام موثوق بھ لمراقبة المرضي ، بحیث یمكن للمختصین في

الرعایھ الصحیھ مراقبة مرضاھم حین تواجدھم بالمستشفي أو أثناء أداء مھامھم الیومیھ خارج

إضافة إلي ذلك نجد أن أجھزة المراقبھ باھظة الثمن كما لا یمكن نقلھا بسھولھ من مكان الي .يالمستشف

 .آخر وایضا عدم تواجدھا في المراكز الصحیھ بالمناطق النائیة

في ھذا المشروع نقوم بتصمیم جھاز مراقبھ صحیھ في الھاتف المحمول عبر تطبیق اندروید

طریقھ لاسلكیھ ، وھذه البیانات یتم التحصل علیھا باستخدام بعض والذي یعتمد علي نقل البیانات ب

المحسسات والاجھزه الالكترونیة وذلك بمراقبة حالة المریض الصحیھ وقیاس بعض المعاملات المھمھ

جدا مثل درجة الحرارة ، ضغط الدم ، معدل ضربات القلب ، تركیز الاوكسجین وغیرھا من المعاملات

 .الھ المریض بكل دقھ سھولھحتي یتمكن من وصف ح

ومن ثم یمكن لھذا النظام إرسال رسالة نصیھ أو تقریر متكامل عبر البرید الالكتروني للطبیب المختص

وھذه الرسالھ تحتوي علي جمیع القراءات المتحصل علیھا والتي یستخدمھا الطبیب لتوفیر رعایھ صحیھ

 .الجھ لاحقامثلي للافراد وقد تساعد في عملیات التشخیص والمع

یتكون النظام من ھاتف محمول و وحدة الحصول علي المعلومات التي تشمل العدید من المحسسات

 .وجھاز اردوینو وغیرھا من الاجھزه الاكترونیھ

درجة حرارة المریض ، ضغط الدم ، تركیز الاوكسجین ، معدل ضربات القلب وإشارة ضربات القلب

یتم مراقبتھا وعرضھا وتخزینھا بحیث تصبح سھلة المنال من قبل المستخدم أو الطبیب المختص ،

علي القیاس ولضمان موثوقیة ھذا النظام قد تم إختباره میدانیا وتحصلنا علي نتائج تظھر أن النظام قادر

 . بدقھ ومراقبھ حالھ المریض الصحیھ بكل سھولھ ویسر

Chapter One Introduction

1

Chapter One
Introduction

Chapter One Introduction

2

INTRODUCTION
Patient monitor continuous measurement of patient parameters such as

heart rate and rhythm, respiratory rate, blood pressure, blood-oxygen saturation,

and many other parameters have become a common feature of the care of

critically ill patients. When accurate and immediate decision-making is crucial

for effective patient care, electronic monitors frequently are used to collect and

display physiological data. Increasingly, such data are collected using non-

invasive sensors from less seriously ill patients in a hospital’s medical-surgical

units, labor and delivery suites, nursing homes, or patients’ own homes to

detect unexpected life-threatening conditions or to record routine but required

data efficiently.[1]

Modern bioinstrumentation, computers, and telecommunication

technologies a modern PM should acquire, record, display, and transmit the

physiological data from the patient body to a remote location at any time. For

more efficient, timely, and emergency medical care the PMS must also be

incorporated with an alarm system [1]. In order to alert the patient as well as the

health care service providers the PM should not only monitor and analyze the

critical patient’s data but it should also send alarming messages in case the

monitored data go outside their normal ranges.

Using the mobile phone healthcare system can be made available for people,

who are living in remote areas without much access to other types of

communications. Even a simple mobile phone can become a powerful

healthcare tool now.

Chapter One Introduction

3

1.1 General Review

The patient monitoring systems is one of the major improvements

because of its advanced technology to measure vital signs of patient (blood

pressure, body temperature, heart rate per minute, ECG, and oxygen saturation).

At the same time, the use of smartphones is quite generalized in the society, and

it will increase meanwhile the prices of the technology is falling. Even if the

smartphone has big computational capabilities, internet connection and several

peripheral connection capabilities, it is not massively used in the personal

medic field.

So we are here, just connecting the bio sensors(temperature sensor ,

heartbeat sensor, pulse rate sensor) so that simultaneously we can monitor the

patient’s condition and hence ruling out the use of the thermometer , pulse

oximeter and other devices to check the condition of the patient. This project

describes the design of a simple Arduino (UNO) based vital signs measures that

could be transmitted to android mobile phone device.

The device alarms when the values of parameters exceed the provided

threshold value. This threshold value is defined by the programmer at the time

of programming the android.

The threshold value given for the project is as(80 to 120 mmhg)for blood

pressure ,(20 to 120 pulses per minute) for heart beat indication , (37°C) for

temperature ,(80 pulse per minutes) for ECG and (100)for SPO2. This

information i.e. the Heart Rate & the Body Temperature and saline level is then

transmitted wirelessly to the doctor which in not in the vicinity of the patient.

Chapter One Introduction

4

1.2 Motivation
Traditionally, it was a custom to get these vital signs measured during a

visit to the doctor, with advances in medicine and technology, this concept has

adapted. There are many devices available in the market today that allow

patients to monitor their own health on a regular basis from the comfort of their

home. These devices are having a huge impact on health care costs as they are

reducing the time and resources of medical physicians and facilities required by

patients.

1.3Objectives

Design portable patient monitor, make it easily to use and available at

inexpensive costs also ability to use it by any person to measure vital signs

homely (that achieve the simplicity).

1.4Methodology
Design measure and monitor basic vital signs of body (ECG, blood

pressure, heart rate, SPO2, body temperature), mechanism of programmed

information by used Arduino (UNO) appendices(A), and android application to

calculate, compare and display results of measured . Patient monitor system

differ of our design in gain the data from PHYSIONET instead of pick up

signals based on sensors from body.

 Getting ideal ECG signal is almost difficult, the platform, power supply, GSM

module and other components make much noise to signals, and so perfect way

to avoid this is PHYSIONET. Ideal signal is saved in android application

appendices (B). The problem in previous design is the negative values of ECG

signal couldn’t determine by Arduino that make the percentage of error is

Chapter One Introduction

5

decreased, we fixed this error by edit the signals that obtained from

PHYSIONET by MATLAB VEIW to be easy to insert in controller.

Available sensors like pulse rate sensor and temperature sensor LM35 are

applied in platform to get values and measured from patient directly. Android

APP represents signs known by ever one.

1.5Thesis structure
Chapter one is an introduction to the research, the related work is shown

in chapter tow, while in chapter three the methodology used to conduct the

project is explained, the results are mentioned, explained, and discussed in

chapter four, In chapter five the conclusion and the recommendations are

viewed in chapter six, chapter seven contains the references and appendices

Chapter Two Literature Review

6

Chapter two

Literature Review

Chapter Two Literature Review

7

LITERATURE REVIEW
This project of Dhvani Parekh, deals with the signal conditioning and

data acquisition of three vital signs: heart rate, blood pressure, and body

temperature [2]. Heart rate is measured through an Electrocardiogram that is

obtained by attaching skin surface electrodes on the patient’s wrists and legs.

Blood pressure combines the methodologies of Electrocardiography and

Photoplethysmography to continuously monitor the systolic and diastolic blood

pressure. Body temperature is measured inside the ear with a thermistor.

 Deals with our design in vital signs, mechanism of programmed data. The

results display in interface wave form, so make it difficult to determine by

patients or user, this problem fixed by our design, the results displayed at

numbers form to be easy to know by user.

Remote healthcare system for monitoring electrocardiographic and

temperature data by Manjarres, has been presented in [3]. The system consists

of three modules namely a hardware module, Bluetooth module and display

module. The hardware module is used for data acquisition. The Bluetooth

module is used for data transmission. Finally, the data are displayed by using

the display module. The acquired clinical data are sent to a database server by

using GPRS or Wi-Fi. The performances of the system have been tested on

different patients and it has been found that the proposed system is very helpful

for the physicians to read patient’s vital signs, and help facilitate healthcare.

Differ in parameters used with our project, added other vital signs such as heart

rate and oxygen saturation, also differ in hardware module and display and the

way of transmitted data.

Chapter Two Literature Review

8

In this paper, Fernando Cornelio is presented for the remote monitoring

of the body temperature and heart rate of a patient[4] by means of a wireless

sensor network (WSN) and mobile augmented reality (MAR). The combination

of a WSN and MAR provides a novel alternative to remotely measure body

temperature and heart rate in real time during patient care. The system is

composed of hardware such as Arduino microcontrollers (in the patient nodes),

personal computers (for the nurse server), smartphones (for the mobile nurse

monitor and the virtual patient file) and sensors (to measure body temperature

and heart rate), a network layer using Wi-Fi technology and software such as

LabVIEW. The results obtained from tests show that the system can perform

effectively within a range of 20 m and requires ten minutes to stabilize the

temperature sensor to detect hyperthermia, hypothermia or normal body

temperature conditions. Additionally, the heart rate sensor can detect conditions

of tachycardia and bradycardia.

The benefit of this paper used mobile phone to display the results of

measured data neglected in our design the wireless sensors network (WSN) and

personal computer.

The aim of this thesis [5] by Alex CorsBardolet, used sensors include

breath rate sensor and a commercial thermistor used for human temperature

measures. All this sensors will be connected through a device that handles the

power and communication. After that, an Android application has been done to

control this device and show the results of the measures. The values of the

measures are sent to a remote server in order to store information. The results of

a research of the actual state of art are presented.But didn’t mention other vital

signs for body.

Chapter Two Literature Review

9

Amna Abdullah, presents a smartphone based wireless healthcare

monitoring system (WHMS) [6], which can provide real time online

information about medical status of a patient. In addition alarming and

reminding messages about the patient health status can also be sent to patient

mentors for necessary medical diagnosis and advising. The proposed system

consists of sensors, a data acquisition unit, smartphone, and the LabVIEW

program. The system is able to display, record, and send patient’s physiological

data. The patient is equipped with biomedical sensors, which transform the

changes in the monitored physiological quantities into electronic data that are

measured and recorded. The LabVIEW program assists monitoring and

displaying the data. The patient’s temperature, heart beat rate, muscles, blood

pressure, blood glucose level, and ECG data can be monitored by present

system. Their careful design of the hardware and software components of the

system is able to fulfil any further requirement of the users. The results of this

project are accurate enough to display.

We excerpt most data from this project (smart phone, microcontroller,

parameters and LabVIEW program) except the sensors and ability to display in

PC. The great benefits of this paper to collect most of data, tools, software

programs, the way of display results and alarming. Also its result is more

accurate and clear.

Aim of work by Tamil Nadu is to monitor the human body temperature,

blood pressure (BP), Pulse Rate, GSR, Glucose, Body position, ECG. The

human body temperature, BP, Pulse Rate and ECG are detected in the working

[7] environment. This can be sensed by using respective sensors. The sensed

information is send to the microcontroller through signal conditioning circuit.

The sensor information will be transmitted from the patient unit to the main

Chapter Two Literature Review

10

controller unit with the help of ZigBee communication system which is

connected with the microcontrollers. The main controller unit will send those

sensed data as well as the location of that patient by the help of GPS Module to

the observer/doctor. The results of project message is sent to a mobile phone

using Global system mobile (GSM) Modem.

Measurement is almost not accurate because there are percentages of errors

affected by sensors, circuits and missing some of data when transfer. Fix that by

design our system and enhance the results of measured.

At paper of Maradugu Anil Kumar [8], critical cases are supposed to be

monitored continuously SP02, Heart Rate as well as temperature. In the earlier

methods, the doctors need to be present physically or in several cases SMS will

be sent using GSM. In the earlier case the history of the patient cannot be

displayed, only current data is displayed. In the current paper, we are using a

novel idea for continuous monitoring patient’s health conditions. The health

care scheme is focus on the measurement and Monitoring various biological

parameters of patient’s body like heart rate, oxygen saturation level in blood

and temperature using a web server and android application, where doctor can

continuously monitor the patient’s condition on his smart phone using an

Android application. And also the patient history will be stored on the web

server and doctor can access the information whenever needed from anywhere

and need not physically present.

Agree with our project in most parameters differ in procedure, and way

to transmit data. We used Bluetooth module to transmit data to mobile phone

instead of using GSM.

Chapter Two Literature Review

11

This paper deals with design and developed for remote patient

monitoring in healthcare field[9]. The primary function of this system is to

constantly monitor patient’s physiological parameters such as pulse rate,

breathing rate, blood pressure rate and patient’s body movement, and display

the same information to the doctor. In hospitals, where patient’s physiological

parameters are needed to be constantly monitored, is usually done by a doctor

or other paramedical staff for maintaining a record of it. It is a tedious method.

In this proposed system transmitting module continuously reads patient’s pulse

rate or heart beat rate, breathing rate, patient body movement and blood

pressure rate through a pulse sensor, airflow sensor, accelerometer and

sphygmomanometer .The sensors are used sense the information and

Microcontroller is used to receive the data from the sensor. Using a ZigBee

transmitter the retrieval information be send to corresponding receiver locate at

the computer. The ZigBee receiver receives the data from transmitter and

finally displays record to doctors via web browser. Provide notification message

about the emergency to the physicians through GSM module. The main aim is

to reduce the cost for monitoring patient health using different types of sensor.

In this project the sensor nodes can wirelessly communicate with any

smart phone through an Android application to continuously monitor and have

complete access to the medical data of the patient [10]. Moreover it also aims to

maintain an efficient electronic medical record of the person. Moreover, the

consultant and the caretaker of the patient can have this important information

remotely through an internet connection and provide with significant advice

which encapsulates the term -smart first aid technology. In the proposed

framework miniaturized sensors are worn on the body and non-intrusively

Chapter Two Literature Review

12

monitor a person’s physiological state. The body vital signs (e.g.: heart rate,

temperature etc.) are recorded through the sensor nodes and transmit to the

smart phone via Bluetooth, where the data of vital signs is stored and will

further transmitted to remote locations if needed.

Chapter Three Methodology

13

Chapter Three

Methodology

Chapter Three Methodology

14

METHODOLOGY
3.1 Over view

proposed design is measured, monitor the basic vital signs of body ECG,

blood pressure, heart rate, SPO2 and body temperature, monitor the health and

fitness, we found that most of biosensors are not available in our region like

ECG sensor, blood pressure sensor and SPO2 sensor so we used PHISIONET

to pick up signals and values of parameters mentioned above, on other hand the

available sensors are pulse rate sensor and temperature sensor applied them in

platform to pick up values. To implement this design the component have been

available in circuit are pulse rate sensor, temperature sensor (LM35), amplifiers,

filters, Arduino (UNO), Bluetooth module and mobile device (android app).

Block diagram (1) for system design

The block diagram above is represent all the components are used and the

way of connection them. The first sensor used in the design is pulse rate sensor

which is put in the patient’s finger used to have a signal with special properties,

the output of these circuits are connected to Arduino UNO in port A0. The

second sensor is LM35 that used to measure temperature from patient’s finger

also connected with Arduino in port A1. The outputs of circuits are analog

signal and Arduino mention in Appendices (A) is dealing with analog signals.

The output signals are very small and have a noise so need amplifier and filter

to remove noise. Signals of ECG, SPO2 and blood pressure are obtained from

Chapter Three Methodology

15

PHISIONET, because the sensors of vital signs mentioned above are expensive

and not available. The signals have negative peaks so, need to modulate

because the Arduino never deals with negative values. PHISIONET is accurate

web site contains real signals of patients, established by researchers, doctors,

international hospitals and healthcare institutions.

3.2 Parameters

3.2.1Heart rate

Heart has a very important role to play in pumping your blood around the

body, through a cycle of continuously and regularly contracting then relaxing.

We can measure the rate of thiscontraction of the heart directly using pulse rate

sensor placed on finger. The rate of the heart contractions can vary greatly, and

is affected by many factors, including your state of excitement, exercise,

disease and medications.[2]

The normal resulting heart rate is typically listed as between 60-80 beats

per minute. In many cases there are easily explained reasons for resting heart

rate to be outside of typical range. An abnormal heart rate is when your heart

beats too fast, slow, or irregularly. This is also called an arrhythmia mentioned

in table (3.1)

Within the heart is a complex system of valves, nodes, and chambers that

control how and when the blood is pumped. If the functions of this vital system

are disrupted, damaged, or compromised, it can change the pattern with which

your heart beats. Arrhythmias can cause no symptoms, or you may feel

discomfort, fluttering, pain, or pounding in your chest. Not all arrhythmias are

life-threatening or cause health complications. To be on the safe side, though,

any abnormal heart rhythm should be reported to your doctor. [2]

Chapter Three Methodology

16

Table3.1: heart rate.

Beat/min Rate
120-160 Normal
>160 Tachycardia
<120 Bradycardia

3.2.2 Body temperature

Temperature is a measure of the degree of heat intensity. The temperature

of a body is an expression of its molecular excitation. The temperature

difference between two points indicates a potential for heat to move from the

warmer to the colder point. The human body’s core temperature varies from day

to day, and from time to time, but these fluctuations are small, usually no more

than 1.0ºC. Humans are homoeothermic and body temperature is regulated at

about 37ºC ±1ºC. The thermoregulatory center in the hypothalamus plays a very

active role in keeping body temperature in the normal range. External and

internal heat sources influence body temperature [11].

3.2.3 ECG

 Including the shape of the P wave (atrial depolarization), the amplitude of

the QRS complex fig.3.1(ventricular depolarization), and the shape of the T

wave (ventricular recovery), are reproduced faithfully.

When the sampling rate is decreased to 100 measurements per second, however,

the amplitude and shape of the QRS complex begin to be distorted. When only

50 observations per second are recorded, the QRS complex is grossly distorted,

and the other features also begin to distort. At a recording rate of only 25

Measurements per second, gross signal distortion occurs, and even estimating

heart rate by measuring intervals from R to R is problematic.

Chapter Three Methodology

17

Fig.3.1: ECG signal.

The sensors are used to measure the ECG signal called electrodes, ECG

electrode is a device attached to the skin on certain parts of a patient’s body —

generally the arms, legs, and chest — during an electrocardiogram procedure. It

detects electrical impulse produced each time the heart beats. The number and

placement of electrodes on the body can vary, but the function remains the

same. The electricity that an electrode detects is transmitted via this wire to a

machine, which translates the electricity into wavy lines recorded on a piece of

paper. The ECG records, in a great detail, are used to diagnose a very broad

range of heart conditions. An ECG electrode is usually composed of a small

metal plate surrounded by an adhesive pad, which is coated with a conducting

gel that transmits the electrical signal. These electrodes are available but have

highly costs, so we used PHYSIONET to obtain the accurate, actual, precise,

filtered signal without noises that come from power supply, platform and other

components. The obtain signal is edited by software view (matlab) in fig 3.2.

Chapter Three Methodology

18

Fig.3.2: Edited signal.

3.2.4 SPO2

The heart pumps blood to the lungs where hemoglobin in the red blood

cells is oxygenated. This oxygenated blood is then pumped to various parts of

the body via the arteries. Arterial blood gas saturation (SpO2) is the percentage

of hemoglobin in the arteries that is oxygenated. [13]

Person is getting enough oxygen. Arterial oxygen saturation of healthy

people will be in the range 94%-99%. Anything below 90% indicates insouciant

supply of oxygen. Low SpO2 can be due to problems in the lungs causing

insouciant perfusion of oxygen to the blood or in the blood cells themselves as

in the case of anemia. In newborns, low SpO2 is indicative of Septicemia

(infection) congenital heart defects, anemia, respiratory distress syndrome etc.

Chapter Three Methodology

19

 “Is a reading that indicates the percentage of hemoglobin molecules in the

arterial blood which are saturated with oxygen? The reading may be referred to

as Sao2. Reading varies from 0 to 100% mention in table (3.2). Normal

readings in a healthy adult, however, range from 94% to 100%. SPO2 sensor is

not available so we also used PHYSIONET to pick up data; data saved in

memory of Arduino to represent by APP.

Table3.2: saturation of SPO2%.

Range State Priority

<64 Error level 5

65-79 High risk level 4

80-91 risk level 3

92-94 Deviant level 2

95-100 Normal level 1

>100 Error level 5

3.2.5Blood pressure

Is the force exerted by blood against the walls of the arteries. Systolic

pressure occurs when the heart contracts; diastolic pressure occurs when the

heart expands. Blood pressure is measured in millimeters of mercury (mmHg)

look fig.3.3. Blood pressure is affected by many factors: age, weight, time of

day, activity level, climate, altitude and season. Certain activities can

significantly alter one’s blood pressure. Walking can raise systolic pressure by

12 mmHg and diastolic pressure by 5.5 mmHg. Sleeping can decrease systolic

blood pressure by as much as 10 mmHg. Taking your blood pressure repeatedly

Chapter Three Methodology

20

without waiting an interval of 5 minutes between readings, or without raising

your arm to allow blood to flow back to the heart, can also affect it. Normal less

than 120 and less than 80Prehypertension 120-139 or 80-89, Stage 1

Hypertension 140-159 or 90-99Stage 2 Hypertension greater than or equal to

160 or greater than or equal to 100 all this mention in table (3.3).

Table3.3: blood pressure measurement.

Diastolic systolic Category
<80 And <120 Optimal
80-84 And/or 120-129 Normal
85-89 And/or 130-139 High normal
90-99 And/or 140-159 Grade 1

hypertension
100-109 And/or 160-179 Grade 2

hypertension
>=110 And/or >=180 Grade 3

hypertension
<90 And >=140 Isolated systolic

hypertension

Fig.3.3: Blood pressure measurement.

Chapter Three Methodology

21

3.3Component

3.3.1 Pulse rate sensor

Is a sensor used to measure the heart beats per minute in fig.3.1, the

normal beats 80-120 bpm. The sensor is a plug-and-play for arduino.it

essentially combines a simple optical heart rate sensor with amplification, noise

cancellation and light emitting diode LED. Simply clip it to your finger in 5v

Arduino.

Fig.3.4: Pulse sensor.

Chapter Three Methodology

22

3.3.2 The LM35 temperature Sensor

Body temperature can be measured by a lot of sensors such as lm35

fig.3.2, DS60 and thermostat. The LM35 can be applied easily in the same way

as other integrated-circuit temperature sensors.TheLM35 is linear, analog, can

measure temperature from -55 to +155, sensor does not require any external

calibration to provide typical accuracies values. The LM35's low output

impedance, linear output, precise and easy to use. So we used it to

implementation the project.

Connect LM35 to Arduino Uno as shown in circuit diagram. The +5v for

LM35 can be taken from vcc +5v out pin of Arduino. Also the ground pin of

LM35 can be connected to GND pin of Arduino. Connect Vout to p1 pin of

Arduino.

Fig.3.5: LM35 sensor.

3.3.3Arduino Uno

The Arduino Uno is microcontroller board based on the AT mega 328

look fig.3.6. It has 14 digital input/output pins, 6 analog inputs, a USB

connection, a power jack and 16MHZ ceramicresonator. Simply connect to

computer with a USB cable with AC-to-DC adapter or battery to get started.

Programmed by code in appendices (A), it mentioned in chapter six.

Chapter Three Methodology

23

Pin0 of Arduino UNO is connected by the output of the pulse rate sensor; pin1

is connected by output of IM35 temperature sensor. Arduinocomparable with

microcontrollers is more accurate than it.

Signals from PHYSIONET are saved in the memory of Arduino to be

easy to recall and represent in android APP during measurement. PHYSIONET

is a free web access to large collections of recorded physiologic signals. They

are available in digital forms in large amount of datasheet, so not difficult to

convert them to graph such as ECG or actual values like SPO2 and blood

pressure. All data picked up from sensors and obtained from PHYSIONETis

saved in the memory of Arduino then transmitted these data through Wi-Fi

module to be received by android APP that can represent the status of all

measured data.

Fig.3.6: Arduino.

Chapter Three Methodology

24

3.3.4 Bluetooth module HC-05

HC05 module is an easy to use Bluetooth SPP (Serial Port Protocol)

module, in fig.3.7 designed for transparent wireless serial connection setup.

Serial port Bluetooth module is fully qualified Bluetooth V2.0+EDR (Enhanced

Data Rate) 3Mbps Modulation with complete 2.4GHz radio transceiver and

baseband. It uses CSR Blue core 04 External single chip Bluetooth systems

with CMOS technology and with AFH (Adaptive Frequency Hopping Feature).

It has the footprint as small as 12.7mmx27mm. Hope it will simplify your

overall design/development cycle.

Hardware features

Typical 80dBm sensitivity, Up to +4dBm RF transmits power, low

Power 1.8V Operation, 3.3 to 5 V I/O, PIO control and with integrated antenna

and with edge connector.

Software features

Slave default Baud rate: 9600, Data bits:8, Stop bit:1,Parity:No parity,

PIO9 and PIO8 can be connected to red and blue led separately, When master

and slave are paired, red and blue led blinks 1time/2s in interval, while

disconnected only blue led blinks 2times/s, Auto connect to the last device on

power as default, Permit pairing device to connect as default, Auto pairing

PINCODE:”1234” as default and Auto reconnect in 30 min when disconnected

as a result of beyond the range of connection.

Chapter Three Methodology

25

Fig.3.7: hc05 module.

3.4Physio Net

Is a research resource intended to stimulate current research and new

investigations in the study of complex biomedical and physiologic signals [12].

It has three major components: Physio Bank is a large and growing archive of

well characterized digital recordings of physiologic signals, time series, and

related data for use by the biomedical research community. Physio Bank

currently includes more than 50 collections of cardiopulmonary, neural, and

other biomedical signals from healthy subjects and patients with a variety of

conditions with major public health implications, including sudden cardiac

death, congestive heart failure, epilepsy, gait disorders, sleep apnea, and aging.

These collections include data from a wide range of studies, as developed and

contributed by members of the research community. Physio Toolkit is a large

and growing library of software for physiologic signal processing and analysis,

detection of physiologically significant events using both classical techniques

and novel methods based on statistical physics and nonlinear dynamics,

interactive display and characterization of signals, creation of new databases,

simulation of physiologic and other signals, quantitative evaluation and

Chapter Three Methodology

26

comparison of analysis methods, and analysis of no equilibrium and no

stationary processes. A unifying theme of many of the research projects that

contribute software to Physio Toolkit is the extraction of “hidden” information

from biomedical signals, information that may have diagnostic or prognostic

value in medicine, or explanatory or predictive power in basic research. All

Physio Toolkit software is available in source form under the GNU General

Public License (GPL). Physio Networks is a virtual laboratory for development

of data and software resources that will eventually become components of

Physio Bank and Physio Toolkit. By providing large, secure workspaces with

redundant backup to active researchers who can easily share them with

colleagues anywhere, Physio Networks encourages investigators to create well-

organized and documented, usable data and software repositories during the

conduct of their research. When the research is complete and the major results

have been published (or at any time the researcher wishes) the repository can be

shared with a colleague, a group of colleagues, or the research community at

large.

3.5 Android application
All data have been picked up from sensors and obtained from

PHYSIONET which are programmed by Arduino Uno transfer from it through

Bluetooth module are received by android Application.

 APP fig 3.8 can represent all data in familiar and easy form to be

readable by ever one. Smart mobile phone recently is most popular between all

levels of ages. Easy to share the APP to arrive all people in all ages. The APP

saved ideal values of measured vital signs range of 120-70 for normal pressure,

Chapter Three Methodology

27

range of 90-100% for oxygen saturation, range of 60-100 for heart beat per

minute and 37 degree centigrade for body temperature.

The project targeted rural areas and seniors most of them found difficulty

to use and know measurements, so we used simplest form to represent data.

Android APP could be used by several people or patients. It is saved privacy for

users, has an internal folder which has many files related with users. If someone

creates a new account, his/her file was also created automatically and saved all

measured values with actual date and time for a period of time to be easy to

recall and revision by a doctor. If you want to establish new account, first enter

your details look fig.3.9 in APP and register it, also go to welcome page,

rewrite in fig.3.10 the details to go to measurements page, then other

measurement page obtained from sensors. You can captured the pages and send

them to doctor.

Fig.3.8: application form.

Chapter Three Methodology

28

Fig.3.9Fig.3.10

Mobile device accepted data from Bluetooth module, then transformed

data to language which could be known by android to represent result in similar

way of normal patient monitor display, APP take small space in memory of

mobile device and can simply open and send the APP source to other mobile

phone device so, easily to gain smart patient monitor in your region in your

home in your phone. Android APP designed by three complex codes first one

for the face page, second for main body of representation results and the third

code for measured data.

Chapter Three Methodology

29

The program flowchart shown next representsthe steps of the program for

the system. The program starts by receiving the readings from the sensors

connected to the patient’s body through wires and PHISIONET. The acquired

data is then sent to the programming environment (i.e., LabVIEW Software).

The program analyzes and displays the data regarding the ECG, blood

pressure, SPO2, heart rate and body temperature. Finally, the data are saved and

also used to generate well-organized measurements and monitoring by the

system with respect to the time.

Chapter Three Methodology

30

Flow chart system program

Heart beat ECG, Blood
pressure, SPO2

Temperature

Save

Start

Take readings from
sensors and physionet

Analysis data

Programmed android

Display output as

End

Chapter Three Methodology

31

3.6Circuit Diagram and Explanation

Connect the Pulse Sensor with the Arduino fig 3.11. The connections of

the pulse sensor are very easy. Pulse sensor has three pins. Connect 5V and the

ground pin of the pulse sensor to the 5V and the ground of the Arduino and the

signal pin to the A0 of Arduino. You do not have to connect a resistor with

because the Arduino has built in resistor at pin 13.

Fig.3.11Pulse sensor Connections

The red color is voltage, black is ground and blue is output of pulse

sensor. Yellow wire is reset, black is ground, red is voltage, brown is receiving,

gray is transferring between Arduino and board. Thisconnection installed in

board and then wounded.

After that connect the LM35 sensor with Arduino. Connection also is

very easy, we mentioned above that LM35 sensor has three pins, connected Vcc

with +5v appear in wire with red color, GND of sensor with ground of

Chapter Three Methodology

32

Arduinoin wire with blue color and output with pin A1 of Arduino in wire with

green color look fig 3.12.

Fig.3.12:LM35 Connections.

Finally, Connect the Bluetooth module with the Arduino, HC-05 is a

serial port module which makes it very easy to use. If you see the pin

configuration of HC-05, there are total 6 but we only need 4 middle ones for

our set-upconnect VCC with 5V of Arduino, please do not connect it with 5V

as that can cook the module, connect GND with any GND of Arduino and

connect Rx pin with RX of Arduino, connect TX pin with TX of Arduino.

Green is RX, yellow is TX, black is ground, Red is vcc shown in fig 3.13.

Chapter Three Methodology

33

Fig.3.13: hc05 moduleconnection.

Chapter Four Results

34

Chapter Four

Results

Chapter Four Results

35

4.1RESULTS
Here developed an android application for receiving the medical

parameters and displayed on android mobile with the help of Bluetooth Module

and at a time uploaded on to the android web server. After opening the android

app in mobile it shows the list of Bluetooth modules shows in Figure then

connected the required Bluetooth module that is connected with the system

hardware. Then took readings for temperature sensor and pulse rate

sensor.Through various test procedures and techniques, many parts of this

project were improved. Initially, basic features were tested to ensure that each

component or block worked and then as testing progressed, modifications or

adjustments were made to the circuits so they functioned well practically.

4.1.1Heart Rate

Circuit of heart rate was built in the board, the pulse rate sensor tested

initially, the readings is acceptable in the range of heart beats per minute and

readings in and testing was performed on each configuration, in relaxed and

standing, observed in the next photo taken from application in mobile device.

4.1.2Body temperature

The LM35 was initially tested to ensure that it performed according to

specifications.

A medical LM35 currently available in the market was used to compare

the results with the temperature values. The initially readings not acceptable

because out of range and was not performed its normal function so exchange

LM35 sensor. Then tested five times and observed readings were differing

completely from Previous and in range, shown in figure:

Chapter Four Results

36

Fig.4.1

Acceptable readings for both heart rate and body temperature:

Fig.4.2

Chapter Four Results

37

The signals of ECG, blood pressure oxygen saturation had obtained from

PHYSIONET which saved in memory of Arduino to be displayed by the

application in smart phone is:

 The signal of ECG is represented in image of patient monitor it is

abnormal, that’s refer tosavefile of patient that take information

from it in PHYSINET.

 The saved data of blood pressure was 71 mmhg in normal range.

 The saved signal of SPO2 was 95% in normal range.

While the in the case of parameters within the normal range there is no

alarm for patient that allow to understand, patient is in safe side.

Fig.4.3

Chapter Four Results

38

4.2Discussions
Results are simple, acceptale and accurate. The system is very power

efficient. Only thesmartphone or the tablet is needed to be charged enough to

do the test.

It is easy to use, fast, accurate, high efficiency, and safe (without any

danger of electric shocks). In contrast to other conventionalpatient monitoring

equipments the system has the ability to save data for future reference. Finally,

thereliability and validity of the system have been ensured via field tests. The

field tests show that it can produce medical data that are similar to those

produced by the existing medicalequipment.

After completing all the procedures the collected data can be used to

monitor (in real time) the state of a patient or to get sensitive information in

order to be subsequently analyzed for medical diagnosis. The Android

applications have been designed in order to easily see the patient's information.

Chapter Five Conclusions & Recommendations

39

Chapter Five

Conclusions & Recommendations

Chapter Five Conclusions & Recommendations

40

5.1CONCLUSION
Our system is simple. It is just few wires, sensors and Bluetooth module

connected to a small kit Arduino Uno with a smartphone. The system is very

power efficient. Only the smartphone or the tablet needs to be charged enough

to do the test. It is easy to use, fast and safe (without any danger of electric

shocks). In contrast to other conventional medical equipment the system has the

ability to save data for future reference to be recall any time. Finally, the

reliability and validity of our system have been ensured via field tests. The field

tests show that our system can produce medical data that are similar to those

produced by the existing medical equipment.

This project was build low cost, low power, reliable, and portable

monitoring system that would accurately measure the vital signs. A reliable and

continuous vital sign monitoring system targeted rural areas. The resulting

system was also low in power and cost, and provided real time monitoring. It is

also easy to use and provides accurate measurements. Given the scope of this

project, the ECG, temperature, heart rate signal, body temperature SPO2 and

blood pressure.

Chapter Five Conclusions & Recommendations

41

5.2Recommendation and future work
This project can be improved and expanded in numerous ways. First of

all, the targetgroup for this product can be expanded to include people in

everywhere and every ages. Currently, the signal conditioning circuits for these

sensors are in analog form on breadboards.Also, the sensors used for measuring

heart rate and temperature can be upgraded. All these sensors should be

wirelessly connected to the phone and Arduino Uno, making it comfortable and

non-invasive for the user to wear.

Some recommendations on future work would be to add vital signs

monitor to this system, which is measuring the glucose concentration in blood.

This can be achieved through glucose sensor, it can easily be extended to

measure it to help diabetes patient. Adding this last sensing component would

make this system a complete vital signs monitor.

In conclusion, with refinements to the design, the smart measuring ECG,

blood pressure, heart rate, oxygen saturation and body temperature would make

a great competitor against other products that currently exist in the market.

In future, we can develop a big data base of all the patients of any hospital and

the these health parameters can be monitored continuosly, and also the

information is uploaded to the hospital server. These servers keep the

information of the patients in the data base, and doctors can have the access of

patient’s history, when any further consulatcy happens with the doctor

Chapter Six References

42

Chapter six
References

Chapter Six References

43

REFERENCES
[1] FRANCIS S. COLLINS, Mobile Technology And Healthcare,

http://www.nlm.nih.gov/medlineplus/magazine/issues/winter11

[2] Dhvani Parekh, Prof. Jamal Deen, Project Coordinator: Prof. T. Doyle,

Designing Heart Rate, Blood Pressure and Body Temperature Sensors for

Mobile On-Call System, Department of Electrical and Computer Engineering,

Faculty , Electrical and Biomedical Project Report, Submitted in Partial

fulfillment of the requirements, for the degree of Bachelor of Engineering,

McMaster University Hamilton, Ontario, Canada, April 2010 .

[3] Tell, J.P.; Manjarres, O; Quijano, M.; Blanco, Remote Monitoring

System of ECG and Human Body Temperature Signals, 2013, IEEE Latin

American Transaction, Vol. 11, No. 1, February, pp. 314-318

[4] Fernando Cornelio Jiménez González 1;2;*, Osslan Osiris Vergara

Villegas 2, Dulce Esperanza Torres Ramírez 1, Vianey Guadalupe Cruz

Sánchez 2 and Humberto Ochoa Domínguez, Smart Multi-Level Tool for

Remote Patient Monitoring Based on a Wireless Sensor Network and

Mobile Augmented Reality ,www.mdpi.com/journal/sensors,. 2014

[5] Alex CorsBardolet , Supervisor: Andrzej G lowacz, A Remote Patient

Monitoring System using Android Mobile Devices, 30th June 2014

[6] Amna Abdullah, Asma Ismael, Aisha Rashid, Ali Abou-ElNour, and

Mohammed Tarique, , Real Time Wireless Health Monitoring Application

Using Mobile Devices, International Journal of Computer Networks &

Communications (IJCNC) Vol.7, No.3, DOI: 10.5121/ijcnc.2015.7302

13Department of Electrical Engineering, Ajman University of Science and

Technology,, P.O. Box 2202, Fujairah, United Arab Emirates, May 2015

Chapter Six References

44

[7] K. DEEPALAKSHMI, 2 Ms. A. SIVASANKARI,1, 2, Department of

computer science, DKM College for women, Vellore, Tamil Nadu, India,

Patient Monitoring System Using Android APP ISSN 2348-1196 (print)

International Journal of Computer Science and Information Technology

Research ISSN 2348-120X (online) Vol. 3, Issue 3, pp: (299-308), Available at:

www.researchpublish.com Page | 299 Research Publish Journals, , September

2015.

[8] PATIENT MONITORING SYSTEM USING ANDROID

TECHNOLOGY, IJCSMC, Vol. 2, Issue. 5, pg.191 – 201, RESEARCH

ARTICLE © 2013, IJCSMC All Rights Reserved 191, Biomedical Engineering

& P.S.N.A College of Engineering and Technology, India,

premas@psnacet.edu.in, May 2013.

[9] K.C. Kavitha, A.BazilaBanu, Wireless Health Care Monitoring,

Post Graduate Student, Department of Information Technology, Velammal

College of Engineering and Technology, Madurai, India, Assistant Professor,

Department of Information Technology, Velammal College of Engineering and

Technology, Madurai, India

[10] Najeed Ahmed Khan , Real Time Monitoring of Human Body Vital

Signs using Bluetooth and WLAN, Computer Science & IT Department

NED University of Engineering & Technology ,Karachi, Pakistan.

[11] G. Speed, "Primary four."

[12] http://physionet.org/)

[13] M. Tavakoli, L. Turicchia, and R. Sarpeshkar, An Ultra-Low-Power

Pulse

Oximeter Implemented with an Energy-E_cientTransimpedanceAmpli-

_er, IEEE Transactions on Biomedical Circuits and Systems, Vol. 4, No. 1,

pp. 27-38, Feb. 2010.

Appendices

Appendices

Appendices (A)

#include <SoftwareSerial.h>

#define DEBUG true

SoftwareSerialbluetooth(7, 8);

#include <LiquidCrystal.h>

#include <stdlib.h>

LiquidCrystallcd(12, 11, 5, 4, 3, 2);

//Variables

float temp;

int hum;

String tempC;

int error;

intpulsePin = 0; // Pulse Sensor purple wire connected to analog pin 0

intblinkPin = 13; // pin to blink led at each beat

intfadePin = 5;

intfadeRate = 0;

// Volatile Variables, used in the interrupt service routine!

volatileint BPM; // int that holds raw Analog in 0. updated every
2mS

volatileint Signal; // holds the incoming raw data

Appendices

volatileint IBI = 600; // int that holds the time interval between beats!
Must be seeded!

volatileboolean Pulse = false; // "True" when heartbeat is detected. "False"
when not a "live beat".

volatileboolean QS = false; // becomes true when Arduino finds a beat.

// Regards Serial OutPut -- Set This Up to your needs

staticbooleanserialVisual = true; // Set to 'false' by Default. Re-set to 'true' to
see Arduino Serial Monitor ASCII Visual Pulse

volatileint rate[10]; // array to hold last ten IBI values

volatile unsigned long sampleCounter = 0; // used to determine pulse
timing

volatile unsigned long lastBeatTime = 0; // used to find IBI

volatileint P = 512; // used to find peak in pulse wave, seeded

volatileint T = 512; // used to find trough in pulse wave, seeded

volatileint thresh = 525; // used to find instant moment of heart beat,
seeded

volatileint amp = 100; // used to hold amplitude of pulse waveform,
seeded

volatilebooleanfirstBeat = true; // used to seed rate array so we startup with
reasonable BPM

volatilebooleansecondBeat = false; // used to seed rate array so we startup
with reasonable BPM

void setup()

{

Appendices

lcd.begin(16, 2);

lcd.print("heath monitor");

delay(100);

lcd.setCursor(0, 1);

lcd.print("Connecting...");

bluetooth.begin(9600);

Serial.begin(9600); //or use default 115200.

interruptSetup();

}

void loop() {

lcd.clear();

start: //label

error = 0;

lcd.setCursor(0, 0);

lcd.print("BPM = ");

lcd.print(BPM);

bluetooth.println("BPM="+String(BPM));

int x = analogRead(A1);

float y = (x / 1024.0) * 5000;

float temp = y / 10;

lcd.setCursor(0, 1);

lcd.print("TEMP= ");

lcd.print(temp);

Appendices

bluetooth.println("TEMP="+String(temp));

delay (100);

 //Resend if transmission is not completed

if (error == 1) {

goto start; //go to label "start"

 }

delay(3000);

}

voidinterruptSetup() {

 TCCR2A = 0x02; // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND
GO INTO CTC MODE

 TCCR2B = 0x06; // DON'T FORCE COMPARE, 256 PRESCALER

 OCR2A = 0X7C; // SET THE TOP OF THE COUNT TO 124 FOR 500Hz
SAMPLE RATE

 TIMSK2 = 0x02; // ENABLE INTERRUPT ON MATCH BETWEEN
TIMER2 AND OCR2A

sei(); // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED

}

ISR(TIMER2_COMPA_vect) { // triggered when Timer2 counts
to 124

cli(); // disable interrupts while we do this

 Signal = analogRead(pulsePin); // read the Pulse Sensor

sampleCounter += 2; // keep track of the time in mS

Appendices

int N = sampleCounter - lastBeatTime; // monitor the time since the last
beat to avoid noise

// find the peak and trough of the pulse wave

if (Signal < thresh && N > (IBI / 5) * 3) { // avoid dichrotic noise by waiting
3/5 of last IBI

if (Signal < T) { // T is the trough

 T = Signal; // keep track of lowest point in pulse wave

 }

 }

if (Signal > thresh && Signal > P) { // thresh condition helps avoid noise

 P = Signal; // P is the peak

 } // keep track of highest point in pulse wave

 // NOW IT'S TIME TO LOOK FOR THE HEART BEAT

 // signal surges up in value every time there is a pulse

if (N > 250) { // avoid high frequency noise

if ((Signal > thresh) && (Pulse == false) && (N > (IBI / 5) * 3)) {

 Pulse = true; // set the Pulse flag when there is a pulse

digitalWrite(blinkPin, HIGH); // turn on pin 13 LED

 IBI = sampleCounter - lastBeatTime; // time between beats in mS

lastBeatTime = sampleCounter; // keep track of time for next pulse

if (secondBeat) { // if this is the second beat

secondBeat = false; // clear secondBeat flag

for (int i = 0; i <= 9; i++) { // seed the running total to get a realistic BPM at
startup

Appendices

rate[i] = IBI;

 }

 }

if (firstBeat) { // if it's the first time beat is found

firstBeat = false; // clear firstBeat flag

secondBeat = true; // set the second beat flag

sei(); // enable interrupts again

return; // IBI value is unreliable so discard it

 }

wordrunningTotal = 0; // clear the runningTotal variable

for (int i = 0; i <= 8; i++) { // shift data in the rate array

rate[i] = rate[i + 1]; // and drop the oldest IBI value

runningTotal += rate[i]; // add up the 9 oldest IBI values

 }

rate[9] = IBI; // add the latest IBI to the rate array

runningTotal += rate[9]; // add the latest IBI to runningTotal

runningTotal /= 10; // average the last 10 IBI values

 BPM = 60000 / runningTotal; // how many beats can fit into a
minute? that's BPM!

 QS = true; // set Quantified Self flag

 // QS FLAG IS NOT CLEARED INSIDE THIS ISR

 }

Appendices

 }

if (Signal < thresh && Pulse == true) { // when the values are going down, the
beat is over

digitalWrite(blinkPin, LOW); // turn off pin 13 LED

 Pulse = false; // reset the Pulse flag so we can do it again

amp = P - T; // get amplitude of the pulse wave

thresh = amp / 2 + T; // set thresh at 50% of the amplitude

 P = thresh; // reset these for next time

 T = thresh;

 }

if (N > 2500) { // if 2.5 seconds go by without a beat

thresh = 512; // set thresh default

 P = 512; // set P default

 T = 512; // set T default

lastBeatTime = sampleCounter; // bring the lastBeatTime up to date

firstBeat = true; // set these to avoid noise

secondBeat = false; // when we get the heartbeat back

 }

sei();

 // enable interrupts when youre done!

}// end

Appendices

Appendices (B)

login code:

packagecom.uni.bluetoothtest;

importandroid.content.Intent;

import android.support.v7.app.AppCompatActivity;

importandroid.os.Bundle;

importandroid.view.View;

importandroid.widget.Button;

importandroid.widget.TextView;

public class Login extends AppCompatActivity {

 @Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.login);

 Button login = (Button) findViewById(R.id.login) ;

TextView register = (TextView) findViewById(R.id.register) ;

login.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

startActivity(new Intent(Login.this , Main.class));

finish();

 }

Appendices

 });

register.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

startActivity(new Intent(Login.this , Register.class));

finish();

 }

 });

 }

}

control code:

packagecom.uni.bluetoothtest;

importandroid.app.ProgressDialog;

importandroid.bluetooth.BluetoothAdapter;

importandroid.bluetooth.BluetoothDevice;

importandroid.bluetooth.BluetoothSocket;

importandroid.content.Intent;

importandroid.content.pm.ActivityInfo;

importandroid.os.AsyncTask;

import android.support.v7.app.AppCompatActivity;

importandroid.os.Bundle;

importandroid.view.MotionEvent;

importandroid.view.View;

Appendices

importandroid.view.Window;

importandroid.widget.Button;

importandroid.widget.SeekBar;

importandroid.widget.Toast;

importjava.io.IOException;

importjava.util.UUID;

public class Control extends AppCompatActivity {

 Button baseLeft, baseRight ,elbowUp , elbowDown, kneeUp , kneeDown,
wristUp , wristDown, gripClose , gripOpen, btnDis;

 String address = null;

privateProgressDialog progress;

BluetoothAdaptermyBluetooth = null;

BluetoothSocketbtSocket = null;

privatebooleanisBtConnected = false;

static final UUID myUUID = UUID.fromString("00001101-0000-1000-8000-
00805F9B34FB");

 @Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

 //
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCA
PE);

setContentView(R.layout.control);

 //receive the address of the bluetooth device

Appendices

 Intent newint = getIntent();

address = newint.getStringExtra("address");

//call the widgtes

baseLeft = (Button)findViewById(R.id.baseLeft);

baseRight = (Button)findViewById(R.id.baseRight);

elbowUp = (Button)findViewById(R.id.elbowUp);

elbowDown = (Button)findViewById(R.id.elbowDown);

kneeUp = (Button)findViewById(R.id.kneeUp);

kneeDown = (Button)findViewById(R.id.kneeDown);

wristUp = (Button)findViewById(R.id.wristUp);

wristDown = (Button)findViewById(R.id.wristDown);

gripClose = (Button)findViewById(R.id.gripClose);

gripOpen = (Button)findViewById(R.id.gripOpen);

btnDis = (Button)findViewById(R.id.btnDis);

newConnectBT().execute() ;

baseLeft.setOnTouchListener(new View.OnTouchListener() {

 @Override

publicbooleanonTouch(View view, MotionEventmotionEvent) {

if(motionEvent.getAction() == MotionEvent.ACTION_DOWN){

send("+basel*");

return true;

}else if (motionEvent.getAction() == MotionEvent.ACTION_UP){

send("+1234*");

Appendices

 }

return false;

 }

 });

baseRight.setOnTouchListener(new View.OnTouchListener() {

 @Override

publicbooleanonTouch(View view, MotionEventmotionEvent) {

if(motionEvent.getAction() == MotionEvent.ACTION_DOWN){

send("+baser*");

return true;

}else if (motionEvent.getAction() == MotionEvent.ACTION_UP){

send("+1234*");

 }

return false;

 }

 });

elbowUp.setOnTouchListener(new View.OnTouchListener() {

 @Override

publicbooleanonTouch(View view, MotionEventmotionEvent) {

if(motionEvent.getAction() == MotionEvent.ACTION_DOWN){

send("+elbwu*");

return true;

}else if (motionEvent.getAction() == MotionEvent.ACTION_UP){

Appendices

send("+1234*");

 }

return false;

 }

 });

elbowDown.setOnTouchListener(new View.OnTouchListener() {

 @Override

publicbooleanonTouch(View view, MotionEventmotionEvent) {

if(motionEvent.getAction() == MotionEvent.ACTION_DOWN){

send("+elbwd*");

return true;

}else if (motionEvent.getAction() == MotionEvent.ACTION_UP){

send("+1234*");

 }

return false

 }

 });

kneeUp.setOnTouchListener(new View.OnTouchListener() {

 @Override

publicbooleanonTouch(View view, MotionEventmotionEvent) {

if(motionEvent.getAction() == MotionEvent.ACTION_DOWN){

send("+kneeu*");

return true;

Appendices

}else if (motionEvent.getAction() == MotionEvent.ACTION_UP){

send("+1234*");

 }

return false;

 }

 });

kneeDown.setOnTouchListener(new View.OnTouchListener() {

 @Override

publicbooleanonTouch(View view, MotionEventmotionEvent) {

if(motionEvent.getAction() == MotionEvent.ACTION_DOWN){

send("+kneed*");

return true;

}else if (motionEvent.getAction() == MotionEvent.ACTION_UP){

send("+1234*");

 }

return false;

 }

 });

wristUp.setOnTouchListener(new View.OnTouchListener() {

 @Override

publicbooleanonTouch(View view, MotionEventmotionEvent) {

if(motionEvent.getAction() == MotionEvent.ACTION_DOWN){

send("+wrstu*");

Appendices

return true;

}else if (motionEvent.getAction() == MotionEvent.ACTION_UP){

send("+1234*");

 }

return false;

 }

 });

wristDown.setOnTouchListener(new View.OnTouchListener() {

 @Override

publicbooleanonTouch(View view, MotionEventmotionEvent) {

if(motionEvent.getAction() == MotionEvent.ACTION_DOWN){

send("+wrstd*");

return true;

}else if (motionEvent.getAction() == MotionEvent.ACTION_UP){

send("+1234*");

 }

return false;

 }

 });

gripClose.setOnTouchListener(new View.OnTouchListener() {

 @Override

publicbooleanonTouch(View view, MotionEventmotionEvent) {

if(motionEvent.getAction() == MotionEvent.ACTION_DOWN){

Appendices

send("+gribc*");

return true;

}else if (motionEvent.getAction() == MotionEvent.ACTION_UP){

send("+1234*");

 }

return false;

 }

 });

gripOpen.setOnTouchListener(new View.OnTouchListener() {

 @Override

publicbooleanonTouch(View view, MotionEventmotionEvent) {

if(motionEvent.getAction() == MotionEvent.ACTION_DOWN){

send("+gribo*");

return true;

}else if (motionEvent.getAction() == MotionEvent.ACTION_UP){

send("+1234*");

 }

return false;

 }

 });

btnDis.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View view) {

Appendices

Disconnect();

 }

 });

 }

private class ConnectBT extends AsyncTask<Void, Void, Void> // UI thread

 {

privatebooleanConnectSuccess = true; //if it's here, it's almost connected

 @Override

protected void onPreExecute()

 {

progress = ProgressDialog.show(Control.this, "Connecting...", "Please
wait!!!"); //show a progress dialog

 }

 // +1234*

 @Override

protected Void doInBackground(Void... devices) //while the progress dialog is
shown, the connection is done in background

 {

try

 {

if (btSocket == null || !isBtConnected)

 {

myBluetooth = BluetoothAdapter.getDefaultAdapter();//get the mobile
bluetooth device

Appendices

BluetoothDevicedispositivo =
myBluetooth.getRemoteDevice(address);//connects to the device's address and
checks if it's available

btSocket =
dispositivo.createInsecureRfcommSocketToServiceRecord(myUUID);//create a
RFCOMM (SPP) connection

BluetoothAdapter.getDefaultAdapter().cancelDiscovery();

btSocket.connect();//start connection

 }

 }

catch (IOException e)

 {

ConnectSuccess = false;//if the try failed, you can check the exception here

 }

return null;

 }

 @Override

protected void onPostExecute(Void result) //after the doInBackground, it
checks if everything went fine

 {

super.onPostExecute(result);

if (!ConnectSuccess)

 {

msg("Connection Failed. Is it a SPP Bluetooth? Try again.");

Appendices

finish();

 }

else

 {

msg("Connected.");

isBtConnected = true;

 }

if (progress != null &&progress.isShowing()) {

progress.dismiss();

 }

 }

 }

 @Override

protected void onDestroy() {

progress.dismiss();

super.onDestroy();

 }

private void msg(String s)

 {

Toast.makeText(getApplicationContext(),s,Toast.LENGTH_LONG).show();

 }

private void Disconnect()

 {

Appendices

if (btSocket!=null) //If the btSocket is busy

 {

try

 {

btSocket.close(); //close connection

 }

catch (IOException e)

{ msg("Error");}

 }

finish(); //return to the first layout

 }

private void send(String message)

 {

if (btSocket!=null)

 {

try

 {

btSocket.getOutputStream().write(message.getBytes());

 }

catch (IOException e)

 {

msg("Error");

 }

Appendices

 }

 }

}

main code:

packagecom.uni.bluetoothtest;

importandroid.app.ProgressDialog;

importandroid.bluetooth.BluetoothAdapter;

importandroid.bluetooth.BluetoothDevice;

importandroid.bluetooth.BluetoothSocket;

importandroid.content.Intent;

importandroid.os.AsyncTask;

importandroid.os.ParcelUuid;

import android.support.v7.app.AppCompatActivity;

importandroid.os.Bundle;

import android.support.v7.widget.Toolbar;

importandroid.view.Menu;

importandroid.view.MenuItem;

importandroid.view.View;

importandroid.widget.AdapterView;

importandroid.widget.ArrayAdapter;

importandroid.widget.Button;

importandroid.widget.ListView;

importandroid.widget.TextView;

Appendices

importandroid.widget.Toast;

importandroid.bluetooth.BluetoothDevice;

importjava.util.ArrayList;

importjava.util.ResourceBundle;

importjava.util.Set;

importjava.util.UUID;

public class Main extends AppCompatActivity {

privateBluetoothAdaptermyBluetooth = null;

private Set<BluetoothDevice>pairedDevices;

 Button baseLeft ,btnPaired;

ListViewdevicelist;

 @Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar) ;

setSupportActionBar(toolbar);

devicelist = (ListView)findViewById(R.id.list);

myBluetooth = BluetoothAdapter.getDefaultAdapter();

if(myBluetooth == null)

 {

 //Show a mensag. thatthedevice has no bluetooth adapter

Appendices

Toast.makeText(getApplicationContext(), "Bluetooth Device Not Available",
Toast.LENGTH_LONG).show();

 //finish apk

finish();

 }

else

 {

if (myBluetooth.isEnabled())

 { }

else

 {

 //Ask to the user turn the bluetooth on

 Intent turnBTon = new
Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

startActivityForResult(turnBTon,1);

 }

 }

 }

private void pairedDevicesList()

 {

pairedDevices = myBluetooth.getBondedDevices();

ArrayList list = new ArrayList();

if (pairedDevices.size()>0)

Appendices

 {

for(BluetoothDevicebt : pairedDevices)

 {

list.add(bt.getName() + "\n" + bt.getAddress()); //Get the device's name and the
address

 }

 }

else

 {

Toast.makeText(getApplicationContext(), "No Paired Bluetooth Devices
Found.", Toast.LENGTH_LONG).show();

 }

finalArrayAdapter adapter = new
ArrayAdapter(this,android.R.layout.simple_list_item_1, list);

devicelist.setAdapter(adapter);

devicelist.setOnItemClickListener(myListClickListener); //Method called when
the device from the list is clicked

 }

privateAdapterView.OnItemClickListenermyListClickListener = new
AdapterView.OnItemClickListener()

 {

public void onItemClick (AdapterViewav, View v, int arg2, long arg3)

 {

 // Get the device MAC address, the last 17 chars in the View

Appendices

 String info = ((TextView) v).getText().toString();

 String address = info.substring(info.length() - 17);

 // Make an intent to start next activity.

 Intent i = new Intent(Main.this, Receive.class);

 //Change the activity.

i.putExtra("address", address); //this will be received at ledControl (class)
Activity

startActivity(i);

 }

 };

 @Override

protectedbooleanonPrepareOptionsPanel(View view, Menu menu) {

getMenuInflater().inflate(R.menu.actions_menu,menu);

returnsuper.onPrepareOptionsPanel(view, menu);

 }

 @Override

publicbooleanonOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

caseR.id.scan :

pairedDevicesList();

break;

 }

returnsuper.onOptionsItemSelected(item);

Appendices

 }

}

receive code:

packagecom.uni.bluetoothtest;

importandroid.app.ProgressDialog;

importandroid.bluetooth.BluetoothAdapter;

importandroid.bluetooth.BluetoothDevice;

importandroid.bluetooth.BluetoothSocket;

importandroid.content.Intent;

importandroid.content.pm.ActivityInfo;

importandroid.os.AsyncTask;

importandroid.os.CountDownTimer;

importandroid.os.Message;

import android.support.v7.app.AppCompatActivity;

importandroid.os.Bundle;

importandroid.util.Log;

importandroid.widget.Button;

importandroid.widget.TextView;

importandroid.widget.Toast;

import com.jjoe64.graphview.GraphView;

import com.jjoe64.graphview.series.DataPoint;

import com.jjoe64.graphview.series.LineGraphSeries;

importjava.io.IOException;

Appendices

importjava.io.InputStream;

importjava.io.OutputStream;

importjava.io.UnsupportedEncodingException;

importjava.util.UUID;

importjava.util.logging.Handler;

importjava.util.logging.LogRecord;

public class Receive extends AppCompatActivity {

 Button baseLeft, baseRight ,elbowUp , elbowDown, kneeUp , kneeDown,
wristUp , wristDown, gripClose , gripOpen, btnDis;

 String address = null;

privateProgressDialog progress;

BluetoothAdaptermyBluetooth = null;

BluetoothSocketbtSocket = null;

privatebooleanisBtConnected = false;

static final UUID myUUID = UUID.fromString("00001101-0000-1000-8000-
00805F9B34FB");

byte[] mmBuffer ;

 Handler mHandler ;

InputStreammmInStream ;

TextViewtxt ;

TextViewhb ;

TextViewtemp ;

TextViewbrpm ;

Appendices

 @Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

 //
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCA
PE);

setContentView(R.layout.receive);

 Intent newint = getIntent();

address = newint.getStringExtra("address");

txt = (TextView) findViewById(R.id.txt) ;

hb = (TextView) findViewById(R.id.heartbeat) ;

temp = (TextView) findViewById(R.id.temp) ;

brpm = (TextView) findViewById(R.id.brpm) ;

GraphView graph = (GraphView) findViewById(R.id.graph);

LineGraphSeries<DataPoint> series = new LineGraphSeries<>(new
DataPoint[] {

newDataPoint(0, 1),

newDataPoint(1, 5),

newDataPoint(2, 3),

newDataPoint(3, 2),

newDataPoint(4, 6)

 });

graph.addSeries(series);

newConnectBT().execute() ;

Appendices

CountDownTimer timer = new CountDownTimer(10000,500) {

int c = 0 ;

 @Override

public void onTick(long millisUntilFinished) {

brpm.setText(""+c);

 c = c++ ;

if (c > 120) {

 c = c-- ;

brpm.setText(""+c);

 }

 }

 @Override

public void onFinish() {

 }

 };

timer.start();

 }

private class ConnectBT extends AsyncTask<Void, Void, Void> // UI thread

 {

privatebooleanConnectSuccess = true; //if it's here, it's almost connected

 @Override

protected void onPreExecute()

 {

Appendices

 // progress = ProgressDialog.show(Receive.this, "Connecting...", "Please
wait!!!"); //show a progress dialog

 }

 // +1234*

 @Override

protected Void doInBackground(Void... devices) //while the progress dialog is
shown, the connection is done in background

 {

try

 {

if (btSocket == null || !isBtConnected)

 {

myBluetooth = BluetoothAdapter.getDefaultAdapter();//get the mobile
bluetooth device

BluetoothDevicedispositivo =
myBluetooth.getRemoteDevice(address);//connects to the device's address and
checks if it's available

btSocket =
dispositivo.createInsecureRfcommSocketToServiceRecord(myUUID);//create a
RFCOMM (SPP) connection

BluetoothAdapter.getDefaultAdapter().cancelDiscovery();

btSocket.connect();//start connection

 }

 }

catch (IOException e)

Appendices

 {

ConnectSuccess = false;//if the try failed, you can check the exception here

 }

return null;

 }

 @Override

protected void onPostExecute(Void result) //after the doInBackground, it
checks if everything went fine

 {

super.onPostExecute(result);

if (!ConnectSuccess)

 {

msg("Connection Failed. Is it a SPP Bluetooth? Try again.");

finish();

 }

else

 {

msg("Connected.");

isBtConnected = true;

InputStreamtmpInput = null ;

try {

tmpInput = btSocket.getInputStream() ;

Log.d("socket" ,tmpInput.toString()) ;

Appendices

}catch (IOException e) {

 // Log.d

 }

byte[] buffer = new byte[2048] ;

int bytes ;

try {

bytes = tmpInput.read(buffer) ;

Log.d("buufe" ,buffer.toString()) ;

 String msg = null;

try {

msg = new String (buffer , "utf-8");

txt.setText(msg);

if (msg.contains("T")){

temp.setText(msg);

}else if (msg.contains("B")){

hb.setText(msg);

 }

 } catch (UnsupportedEncodingException e) {

e.printStackTrace();

 }

txt.setText(msg);

}catch (IOException e){

 }

Appendices

 // new ReadThread().read(btSocket);

 }

if (progress != null &&progress.isShowing()) {

 // progress.dismiss();

 }

 }

 }

private void msg(String s)

 {

Toast.makeText(Receive.this,s,Toast.LENGTH_LONG).show();

 }

}

register code:

packagecom.uni.bluetoothtest;

importandroid.content.Intent;

import android.support.v7.app.AppCompatActivity;

importandroid.os.Bundle;

importandroid.util.Log;

importandroid.view.View;

importandroid.widget.Button;

importandroid.widget.TextView;

public class Register extends AppCompatActivity {

 @Override

Appendices

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.register);

 Button register = (Button) findViewById(R.id.register) ;

register.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

startActivity(new Intent(Register.this , Login.class));

finish();

 }

 });

 }

}

