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Abstract 

We show and characterise the critical branching Brownian 

motion in a strip and with absorption. We determine the large 

deviations for branching Brownian motion in presence of 

selection, coalescence and the all-time minimum with drift. 
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العزل ار و يحددنا الانحرافات الكبيرة لأجل حركة براونيان المتفرعة في الحضور للاخت

 .رافأصغرية الزمن مع الانج -وكل
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Chapter 1 

Branching Brownian Motion in Strip: Survival Near Criticality   

 

We consider branching Brownian motion with linear drift in which particles 

are killed on exiting the interval (0, 𝐾) and study the evolution of the process on the 

event of survival as the width of the interval shrinks to  the critical value at which 

survival is no longer possible. We combine spine techniques and a backbone 

decomposition to obtain exact asymptotics for the near-critical survival probability. 
 

Section (1.1): Spine Techniques and Martingale Changes of Measure 

We consider branching Brownian motion in which each particle performs a 

Brownian motion with drift −𝜇, for 𝜇 ≥ 0, and is killed on hitting 0 or 𝐾. All 

living particles undergo branching at constant rate 𝛽 to be replaced by a random 

number of offspring particles, 𝐴, where 𝐴 is an independent random variable with 

distribution {𝑞𝑘; 𝑘 = 0, 1, … }, finite mean 𝑚 > 1 and such that 𝐸(𝐴 log+ 𝐴) < ∞. 

Once born, offspring particles move off independently from their birth position, 

repeating the stochastic behavior of their parent. 

In other words, the motion of a single particle is governed by the infinitesimal 

generator 

𝐿 =
1

2

𝑑2

𝑑𝑥2
− 𝜇

𝑑

𝑑𝑥
, 𝑥 ∈ (0, 𝐾),                  (1) 

defined for all functions 𝑢 ∈ 𝐶2(0, 𝐾) , the space of twice continuously 

differentiable functions on (0, 𝐾) , with 𝑢(0 +) = 𝑢(𝐾 −) = 0 . The branching 

activity is characterised by the branching mechanism 

𝐹(𝑠) = 𝛽(𝐺(𝑠) − 𝑠), 𝑠 ∈ [0, 1],                         (2) 

where 𝐺(𝑠) = ∑ 𝑞𝑘𝑠𝑘∞
𝑘=0  is the probability generating function of 𝐴. 

Let us introduce some notation. Denote by 𝑁𝑡 and |𝑁𝑡| the set of and the number 

of particles alive at time t respectively. For a particle 𝑢 ∈ 𝑁𝑡, we write 𝑥𝑢(𝑡) for 

its spatial position at time 𝑡 . We define 𝑋𝑡 = ∑ 𝛿𝑥𝑢
(𝑡)𝑢∈𝑁𝑡

 to be the spatial 

configuration of particles alive at time 𝑡 and we set 𝑋 = (𝑋𝑡 , 𝑡 ≥ 0). Denote by 

𝑃𝜈
𝐾  the law of 𝑋  with 𝑋0 = 𝜈  where 𝜈 ∈ ℳ𝑎(0, 𝐾) , the space of finite atomic 

measures on (0, 𝐾)  of the form ∑ 𝛿𝑥𝑖

𝑛
𝑖=1   with 𝑥𝑖 ∈ (0, 𝐾)  and 𝑛 ∈  ℕ . If the 

process is initiated from a single particle at 𝑥 ∈  (0, 𝐾), then we simply write 𝑃𝑥
𝐾 

(instead of 𝑃𝛿𝑥

𝐾  ). We will sometimes neglect the dependence on the initial 

configuration and write 𝑃𝐾  without a subscript. We call the process 𝑋  a 𝑃𝐾 -

branching diffusion. 

https://arxiv.org/abs/1212.1444
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Further, (𝜉 = (𝜉𝑡 , 𝑡 ≥ 0), ℙ𝑥
𝐾 ) will henceforth denote a Brownian motion with 

drift −𝜇 starting from 𝑥 ∈ (0, 𝐾) which is killed upon exiting the interval (0, 𝐾). 

ℙ𝐾 is the law of the single particle motion under 𝑃𝐾. For 𝑥 ∈ [0, 𝐾] we define the 

survival probability 𝑝𝐾(𝑥) = 𝑃𝑥
𝐾(𝜁 = ∞) where 𝜁 = inf{𝑡 > 0: |𝑁𝑡| = 0}  is the 

time of extinction. As a first result we identify the critical width 𝐾0 below which 

survival is no longer possible. 

As we want to study the evolution of the 𝑃𝐾 -branching diffusion on 

survival, we will develop a decomposition which identifies the particles with 

infinite genealogical lines of descent, that is, particles which produce 

a family of descendants which survives forever. To illustrate this, in a realisation 

of 𝑋, let us colour blue all particles with an infinite line of descent and colour red 

all remaining particles. Thus, on the event of survival, the resulting picture 

consists of a blue tree ‘dressed’ with red trees whereas, on the event of extinction, 

we see a red tree only. 

The branching rates of the branching diffusions corresponding to the blue and red 

trees can be intuitively derived as follows. For simplicity, consider the dyadic 

branching case only. A particles dies and is replaced by two offspring, at position 

𝑥  say, at rate 𝛽 . The probability that one of its offspring has an infinite 

genealogical line of descent is 𝑝𝐾(𝑥), independent of the other particle. Thus, with 

probability 𝑝𝐾(𝑥)2 both offspring particles are blue and likewise with probability 

(1 − 𝑝𝐾(𝑥))
2
 and probability 2𝑝𝐾(𝑥)(1 − 𝑝𝐾(𝑥)) two red ones, respectively one 

blue and one red particle are born. Thus, given a particle is blue, it branches into 

two blue particles at rate 𝛽
𝑝𝐾(·)2

𝑝𝐾(·)
= 𝛽𝑝𝐾(·) and, given a particle is red, it branches 

into two red particles at rate 𝛽(1 − 𝑝𝐾(·))  while, given a particle is blue, 

immigration of a red particle occurs at rate 2𝛽(1 − 𝑝𝐾(·)). Similar reasoning 

gives the result for the general branching mechanism case. There we shall also see 

that particles in branching diffusion corresponding to the red trees, respectively 

the blue tree, move according to a Brownian motion with drift − (𝜇 +
𝑝𝐾

′

1−𝑝𝐾
), 

respectively − (𝜇 −
𝑝𝐾

′

𝑝𝐾
). This results from ℎ-transforms of 𝐿  using ℎ = 1 − 𝑝𝐾 

and ℎ = 𝑝𝐾  respectively. In fact we will show that the laws of the branching 

diffusions corresponding to the red tree, the blue and the dressed blue tree arise 

from martingale changes of measure which, on the level of infinitesimal 

generators, correspond to the aforementioned ℎ-transforms. 
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Suppose we know the branching mechanisms of the branching diffusions 

corresponding to the blue and the red trees in the general case as well as the 

immigration rates (we will see that a branching mechanism of the general form 

induces a second type of immigration at the branching times of the blue tree). 

Intuitively speaking, the coloured tree starting from 𝑥 ∈ (0, 𝐾) is then constructed 

by flipping a coin with probability 1 − 𝑝𝐾(𝑥) of ‘heads’ and if it lands ‘heads’ we 

grow a red tree with initial particle at 𝑥, while if it lands ‘tails’ we grow a blue 

tree at 𝑥 and dress its branches with red trees. Let us write 𝐏𝑥
𝐾 for the law of the 

coloured tree which is defined on the filtration ℱ𝑡
𝑐: = 𝜎{ℱ𝑡 , 𝑐(𝑢)𝑢∈𝑁𝑡

} , where 

(ℱ𝑡, 𝑡 ≥ 0) is the natural filtration of (𝑋, 𝑃𝐾) and 𝑐(𝑢) is the colour of particle 

𝑢 ∈ 𝑁𝑡. Note that the colours of all particles are ℱ∞- measurable. Then we can 

state (what will turn out to be a simplified version of) the so-called backbone 

decomposition. 

Theorem (1.1.1) [1]: (Backbone Decomposition) 

Let 𝐾 > 𝐾0 and 𝑥 ∈ (0, 𝐾). On the filtration (ℱ𝑡, 𝑡 ≥ 0) (which means we ignore 

the colouring), (𝑋, 𝐏𝑥
𝐾) is equal in law to (𝑋, 𝑃𝑥

𝐾). This is, for all 𝑡 ∈  [0, ∞] and 

𝐴 ∈ ℱ𝑡, we have 𝐏𝑥
𝐾(𝐴) = 𝑃𝑥

𝐾(𝐴). 

We show that the backbone decomposition arises naturally from combining 

changes of measure which condition (𝑋, 𝑃𝐾) on either the event of survival or the 

event of extinction. A significant convenience of the backbone decomposition is 

that conditioning the 𝑃𝐾 -branching diffusion on survival is the same as 

conditioning on there being a dressed blue tree, that is a blue tree ‘dressed’ with 

red trees. Thus, instead of studying the quasi-stationary limit lim
𝐾↓𝐾0

𝑃𝑥
𝐾(· |𝜁 = ∞) it 

suffices to study the evolution of the branching diffusion corresponding to a 

dressed blue tree as 𝐾 ↓ 𝐾0. 

In order to do this, we need to know the asymptotics of the survival probability 𝑝𝐾 

near criticality. For a first asymptotic result note that 𝑢 = 1 − 𝑝𝐾  solves the 

differential equation 𝐿𝑢 + 𝐹(𝑢) = 0  on (0, 𝐾)  with boundary condition      

𝑢(0) = 𝑢(𝐾) = 1. Near criticality we may assume that 𝑝𝐾(𝑥) is very small for a 

fixed 𝑥  and neglecting all terms of order (𝑝𝐾(𝑥))
2

 and higher we obtain the 

linearization 𝐿𝑝𝐾 + 𝑚𝛽𝑝𝐾 = 0 . This suggests 𝑝𝐾(𝑥) ∼ 𝐶𝐾 sin (
𝜋𝑥

𝐾0
) 𝑒𝜇𝑥 . In fact 

we have the following result. 

The construction of the backbone via a martingale change of measure 

allows us to give a very simple proof of this quasi-stationary limit result. Theorem 

(1.2.10) can be seen as an extension of the spine decomposition we mentioned in 
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the discussion following Theorem (1.1.5) to the critical width 𝐾0. We emphasize 

however that the result, as stated, only holds over finite time horizons [0, 𝑇]. 

We demonstrate the robustness of our approach by applying  the results for the 

𝑃𝐾-branching diffusion to study the evolution of a supercritical super-Brownian 

motion with absorption at 0 and 𝐾  near criticality. We outline a backbone 

decomposition analogous to Theorem (1.1.9) in which we will see that the 

backbone of the super-Brownian motion with absorption at 0 and 𝐾 is the same as 

the backbone of an associated 𝑃𝐾-branching diffusion. This connection allows us 

to deduce asymptotic results for the survival rate of the super-Brownian motion 

with absorption on (0, 𝐾) directly from the results on the survival probability of 

the associated 𝑃𝐾 -branching diffusion. Further, we can find a quasi-stationary 

limit result for the super-Brownian motion equivalent to Theorem (1.2.10). We 

intended to highlight the applicability of the backbone approach and we will only 

sketch the proofs of the results therein. 

  We present the proof of Theorem (1.1.5) using spine techniques. We show 

that the backbone arises from a martingale change of measure which conditions 

(𝑋, 𝑃𝜈
𝐾) on survival, and we establish the backbone decomposition. We prove the 

asymptotic results for the survival probability given in Theorem (1.2.1).  

The proof of the quasi-stationary limit result in Theorem (1.2.10) follows sketches 

the analogous results for the super-Brownian motion on (0, 𝐾). 

Spine techniques of the type used in the proof of Theorem (1.1.5) were 

developed in the theory of branching processes.  

The results for superprocesses are complemented by the decomposition which 

considers the (1 + 𝛽)-super-process conditioned on survival. This work is of 

particular interest in the current context since it also presents the equivalent result 

for the approximating branching particle system. However we should point out 

that in their case the immigrants are conditioned to become extinct up to a fixed 

time 𝑇 whereas, in our setting, we condition on extinction in the strip (0, 𝐾). Thus 

the underlying transformations are time-dependent in contrast to the space-

dependent ℎ-transforms we see in our setting. 

We also point out that our derivation of the backbone decomposition differs in 

that we show that the backbone arises from combining changes of measure which 

condition (𝑋, 𝐾𝜈
𝐾) on either the event of survival or the event of extinction. 

However, it has not been possible so far to give such an explicit expression 

for the constant analogous to 𝐶𝐾. 

A similarly fashioned result to Theorem (1.2.10) was obtained in the 

aforementioned. Their result extends the Evans immortal particle representation 
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for superprocesses which is the equivalent of the spine representation for 

branching processes. Again we point out that, in contrast to our setting, extinction 

is a time-dependent phenomenon. Further, our martingale change 8 of measure 

approach to the backbone decomposition allows us to give a very simple proof of 

the quasi-stationary limit result. 

Remark (1.1.2) [1]:   

The martingale construction above applies more generally to branching diffusions 

with spatially dependent branching mechanism. Suppose we have a branching 

diffusion 𝑌  on [0, 𝐾]  with branching mechanism 𝐹(𝑠, 𝑥), 𝑠 ∈ [0, 1], 𝑥 ∈ (0, 𝐾) 

and set 𝐹′(𝑥, 1): =
𝑑

𝑑𝑠
𝐹(𝑥, 𝑠)|𝑠=1 . Let Υ̂ = (Υ̂(𝑡), 𝑡 ≥ 0)  be a unit-mean 

martingale for the single particle motion and accordingly, for 𝑢 ∈ 𝑁𝑡, define Υ̂𝑢(𝑡) 

as the same object but with the associated single particle replaced by the particle 

position 𝑦𝑢(𝑡). Then 

�̂�(𝑡) = ∑ exp {− ∫ 𝐹′(𝑦𝑢(𝑠), 1) 𝑑𝑠

𝑡

0

} Υ̂𝑢(𝑡)

𝑢∈𝑁𝑡

                       (3) 

defines a martingale with respect to 𝜎(𝑌𝑡, 𝑡 ≥ 0). Changing measure with the 

martingale �̂� induces a spine decomposition in which the spine has martingale 

density Υ̂(𝑡) with respect to the law of the single particle motion in 𝑌. 

Let us continue with the study of the martingale 𝑍𝐾 . Since we assumed 

𝐸(𝐴 log+ 𝐴) < ∞, Proposition (1.1.3) gives a necessary and sufficient condition 

for the 𝐿1(𝑃𝑥
𝐾)-convergence of 𝑍𝐾. 

Proposition (1.1.3) [1]: 

Recall that 𝜆(𝐾) = (𝑚 − 1)𝛽 −
𝜇2

2
−

𝜋2

2𝐾2
 and let 0 < 𝑥 < 𝐾. 

(i) If 𝜆(𝐾) > 0  then the martingale 𝑍𝐾  is 𝐿1(𝑃𝑥
𝐾) -convergent and in 

particular uniformly integrable. 

(ii) If 𝜆(𝐾) ≤ 0 then lim
𝑡→∞

𝑍𝐾(𝑡) = 0 𝑃𝑥
𝐾-a.s. 

We refrain from giving the proof of Proposition (1.1.3) since it is a 

straightforward adaptation which presents the 𝐿1-convergence result in the case of 

a branching Brownian motion with absorption at a space-time barrier. 

We will now show that the martingale limit 𝑍𝐾(∞) is zero if and only if the 

process becomes extinct. 

Proposition (1.1.4) [1]: 

For 𝑥 ∈ (0, 𝐾), the events {𝑍𝐾(∞) = 0} and {𝜁 < ∞} agree 𝑃𝑥
𝐾-a.s. 
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An essential idea in the proof of Proposition (1.1.4) is to embed the killed 

branching diffusion in a branching diffusion with killing on a larger strip. Let us 

introduce this procedure and some notation now as it will be used again later. 

Denote by 𝑃𝑥
(𝑎,𝑏)

 the law under which 𝑋 is our usual branching Brownian motion 

but with killing upon exiting the interval (𝑎, 𝑏), where −∞ ≤ 𝑎 < 𝑏 ≤ ∞ (and we 

simply write 𝑃𝑥
𝑏 instead of 𝑃𝑥

(0,𝑏)
 in accordance with our previous notation). We 

denote by 𝜏𝑢 and 𝜎𝑢 the birth and death time respectively of a particle 𝑢 and write 

𝑣 ≤ 𝑢 if 𝑣 is an ancestor of 𝑢 (𝑢 is considered to be an ancestor of itself). For an 

𝜖 > 0, we choose 𝑎 and 𝑏 such that 𝑎 ≤ 0 < 𝜖 ≤ 𝑏. Under 𝑃𝑥
(𝑎,𝑏)

, we define 

𝑁𝑡|(0,𝜖) = {𝑢 ∈ 𝑁𝑡: 𝑥𝑣(𝑠) ∈ (0, 𝜖)∀𝑣 ≤ 𝑢, 𝜏𝑣 ≤ 𝑠 ≤ 𝜎𝑣 ∧ 𝑡}, 

which is the set of particles 𝑢 ∈ 𝑁𝑡 whose ancestors (not forgetting 𝑢 itself) have 

not exited (0, 𝜖) up to time 𝑡. Now we can define the restriction of 𝑋 to (0, 𝜖) 

under 𝑃𝑥
(𝑎,𝑏)

 by 

𝑋𝑡|(0,𝜖) = ∑ 𝛿𝑥𝑢(𝑡)

𝑢∈𝑁𝑡|(0,𝜖)

, 𝑡 ≥ 0. 

Then we conclude immediately that, for an initial position in (0, 𝜖), the restricted 

process 𝑋|(0,𝜖) = (𝑋𝑡|(0,𝜖), 𝑡 ≥ 0) under 𝑃𝑥
(𝑎,𝑏)

 has the same law as (𝑋, 𝑃𝑥
𝜖). 

Proof. Clearly {𝜁 < ∞} ⊂ {𝑍𝐾(∞) = 0}  and it remains to show that survival 

implies that 𝑍(∞)  is strictly positive. We consider the cases 𝜆(𝐾) ≤ 0  and 

𝜆(𝐾) > 0 separately. 

Assume 𝜆(𝐾) ≤ 0. Suppose for a contradiction that 𝑍𝐾(∞) = 0 on survival. This 

requires the terms 𝑒𝜇𝑥𝑢(𝑡) sin (
𝜋𝑥𝑢(𝑡)

𝐾
)  to vanish which can only happen if all 

particles move towards the killing boundaries 0 and 𝐾. That is to say, for any 𝜖 >

0, all particles leave the interval (𝜖, 𝐾 − 𝜖) eventually, and thus we may assume 

without loss of generality that the process survives in a small strip (0, 𝜖), for any 

𝜖 > 0. We will now lead this argument to a contradiction by showing that, for 𝜖 

small enough, the 𝑃𝑥
𝜖-branching diffusion, 𝑥 ∈ (0, 𝜖), will become extinct a.s. 

We embed the 𝑃𝜖 -branching diffusion in a 𝑃(−𝛿,𝜖+𝛿) -branching diffusion 

according to the previously described procedure. Now we choose 𝛿 and 𝜖 small 

enough such that 𝜆(𝜖 + 2𝛿): = (𝑚 − 1)𝛽 − 𝜇2/2 −
𝜋2

2(𝜖+2𝛿)2
< 0 . Then, under 

𝑃(−𝛿, 𝜖 + 𝛿), the process 

𝑍(−𝛿,𝜖+𝛿)(𝑡) ≔ ∑ {𝑒𝜇(𝑥𝑢(𝑡)+𝛿)−𝜆(𝜖+2𝛿)𝑡 sin (
𝜋(𝑥𝑢(𝑡) + 𝛿)

(𝜖 + 2𝛿)
)}

𝑢∈𝑁𝑡

, 𝑡 ≥ 0, 
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is a martingale of the form in Proposition (1.1.3). Considering now the 

contribution coming from the particles in the set 𝑁𝑡|(0,𝜖) only, we first note that 

survival of the 𝑃𝜖-branching diffusion ensures that this set is non-empty for any 

time 𝑡. Further, for particles 𝑢 ∈ 𝑁𝑡|(0,𝜖), the terms 𝑒𝜇(𝑥𝑢(𝑡)+𝛿) sin (
𝜋(𝑥𝑢(𝑡)+𝛿)

(𝜖+2𝛿)
) are 

uniformly bounded from below by a constant 𝑐 >  0 and hence, under 𝑃𝑥
(−𝛿,𝜖+𝛿)

, 

we get 

𝑍(−𝛿,𝜖+𝛿)(𝑡) ≥ 𝑐𝑁𝑡|(0,𝜖)𝑒−𝜆(𝜖+2𝛿)𝑡 . 

Since we have chosen 𝛿 and 𝜖 such that 𝜆(𝜖 +  2𝛿) < 0, we now conclude that 

𝑍(−𝛿,𝜖+𝛿)(∞) = ∞, 𝑃𝑥
(−𝛿,𝜖+𝛿)

 -a.s. This is a contradiction since 𝑍(−𝛿,𝜖+𝛿)  is a 

positive martingale and therefore has a finite limit. Hence, for 𝜆(𝐾) ≤ 0 , the 

martingale limit 𝑍𝐾(∞)  cannot be zero on survival. Assume now 𝜆(𝐾) > 0 . 

Suppose for a contradiction that {𝜁 = ∞} ∩ {𝑍𝐾(∞) = 0} is non empty and work 

on this event from now on. Now let 𝑧𝐾(𝑥) = 𝑃𝑥
𝐾(𝑍𝐾(∞) = 0), for 𝑥 ∈ (0, 𝐾). 

Define 𝑀∞: = 𝟙{𝑍𝐾(∞)=0} and set 

𝑀𝑡: = 𝐸𝑥
𝐾(𝑀∞|ℱ𝑡) = ∏ 𝑧𝐾(𝑥𝑢(𝑡))

𝑢∈𝑁𝑡

, 

where the second equality follows from the branching Markov property. Then 

(𝑀𝑡 , 𝑡 ≥ 0)  is a uniformly integrable 𝑃𝑥
𝐾 -martingale with limit 𝑀∞ . Hence its 

limit on the event {𝜁 = ∞} ∩ {𝑍𝐾(∞) = 0} is 1, 𝑃𝑥
𝐾-a.s. This requires in turn that 

all particles 𝑥𝑢(𝑡), 𝑢 ∈ 𝑁𝑡 move towards 0 and 𝐾 as 𝑡 → ∞, since we know from 

Proposition (1.1.3) (i) that 𝑧𝐾(𝑥)  < 1 for 𝑥 within  (0, 𝐾). The previous part of 

this proof already showed that this leads to a contradiction. Thus, for 𝜆(𝐾) > 0, 

the martingale limit cannot be zero on survival. This completes the proof. 

Theorem (1.1.5) [1]:  

If 𝜇 < √2(𝑚 − 1)𝛽  and 𝐾 > 𝐾0  where 𝐾0: = 𝜋(2(𝑚 − 1)𝛽 − 𝜇2)−1 , then 

𝑝𝐾(𝑥) > 0 for all 𝑥 ∈ (0, 𝐾); otherwise 𝑝𝐾(𝑥) = 0 for all 𝑥 ∈ [0, 𝐾]. 

The proof of Theorem (1.1.5) uses a spine argument, decomposing 𝑋 into a 

Brownian motion conditioned to stay in (0, 𝐾) dressed with independent copies of 

(𝑋, 𝑃𝐾) which immigrate along its path. 

Proof . We use classical spine techniques applications in the setting of Branching 

Brownian motion with absorption at 0. 

We will briefly recall the key steps in the spine construction. Recall that we 

denote by (𝜉, ℙ𝑥
𝐾)  a Brownian motion with drift – 𝜇  initiated from 𝑥 ∈ (0, 𝐾) 

which is killed upon exiting (0, 𝐾). Then the process 



8 
 

Υ𝐾(𝑡) = 𝑠𝑖𝑛 (
𝜋𝜉𝑡

𝐾
) 𝑒

𝜇𝜉𝑡+(
𝜇2

2
+

𝜋2

2𝐾2)𝑡
, 𝑡 ≥  0,          (4) 

is a martingale with respect to 𝜎(𝜉𝑠: 𝑠 ≤ 𝑡) . Define ℚ𝑥
𝐾  to be the probability 

measure which has martingale density Υ𝐾(𝑡) with respect to ℙ𝑥
𝐾 on 𝜎(𝜉𝑠: 𝑠 ≤ 𝑡). 

Under ℚ𝑥
𝐾 , 𝜉 is now a Brownian motion conditioned to stay in (0, 𝐾). 

We can use Υ𝐾 to construct a martingale with respect to ℱ𝑡 = 𝜎(𝑋𝑠, 𝑠 ≤ 𝑡), the 

filtration generated by the 𝑃𝐾-branching diffusion up to time 𝑡. For each 𝑢 ∈ 𝑁𝑡, 

write Υ𝑢
𝐾(𝑡) = sin(𝜋𝑥𝑢(𝑡)/𝐾) 𝑒

𝜇𝑥𝑢(𝑡)+(
𝜇2

1
+

𝜋2

2𝐾2)𝑡
, 𝑡 ≥ 0  Define the process 𝑍𝐾 =

(𝑍𝐾(𝑡), 𝑡 ≥ 0) given by 

𝑍𝐾(𝑡) = ∑ 𝑒−(𝑚−1)𝛽𝑡Υ𝑢(𝑡)

𝑢∈𝑁𝑡

= ∑ 𝑒𝜇𝑥𝑢(𝑡)−𝜆(𝐾)𝑡 sin(𝜋𝑥𝑢(𝑡)/𝐾)

𝑢∈𝑁𝑡

, 𝑡 ≥ 0, 

where we set 𝜆(𝐾) ∶= (𝑚 − 1)𝛽 −
𝜇2

2
−

𝜋2

2𝐾2
. Then 𝑍 is a nonnegative (𝑃𝑥

𝐾 , ℱ𝑡)-

martingale. For 𝑥 ∈ (0, 𝐾), we define a martingale change of measure on the 

probability space of the 𝑃𝐾-branching diffusion via 

𝑑𝑄𝑥
𝐾

𝑑𝑃𝑥
𝐾

|
ℱ𝑡

=
𝑍𝐾(𝑡)

𝑍𝐾(0) 
.                                                   (5) 

This change of measure induces the following spine construction for the path of 𝑋 

under 𝑄𝑥
𝐾. From the initial position 𝑥, we run a ℚ𝑋

𝐾-diffusion, that is a Brownian 

motion conditioned to stay in (0, 𝐾), and we call it a spine. At times of a Poisson 

process with rate 𝑚𝛽 we immigrate �̃� independent copies of (𝑋, 𝑃𝐾) rooted at the 

spatial position of the spine at this time. The number of immigrants �̃� has the size-

biased offspring distribution 

�̃�𝑘 =
1 + 𝑘

𝑚
𝑞𝑘+1, 𝑘 ≥ 0. 

Let us remark that the change of measure with the martingale Υ𝐾  in (4) is 

equivalent to a Doob’s ℎ -transform on 𝐿  using ℎ(𝑥) = sin(𝜋𝑥/𝐾)𝑒𝜇𝑥 . The 

infinitesimal generator 𝐿∗ of a Brownian motion conditioned to stay in (0, 𝐾) is 

therefore 

𝐿𝐾
∗ =

1

2

𝑑2

𝑑𝑥2
+

𝜋/𝐾0

tan(𝜋𝑥/𝐾0)

𝑑

𝑑𝑥
, on (0, 𝐾, ), 

with domain 𝐶2(0, 𝐾). We then call the Brownian motion conditioned to stay in 

(0, 𝐾) a 𝐿𝐾
∗  -diffusion and note that it is positive recurrent with invariant density 

2

𝐾
sin2(𝜋𝑥/𝐾), for 𝑥 ∈ (0, 𝐾). 
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Note that 𝜆(𝐾) ≥ 0  if and only if 𝜇 < √2(𝑚 − 1)𝛽  and 𝐾 > 𝐾0 . The result 

follows now immediately from Proposition (1.1.3) and Propositon (1.1.4). 

Remark (1.1.6) [1]: 

We can apply the same argument given for the process 𝑀  in the proof of 

Proposition (1.1.4) to show that 

𝐸𝑥
𝐾 (𝟙{𝜁𝐾<∞}|ℱ𝑡) = ∏ (1 − 𝑝𝐾(𝑥𝑢(𝑡)))

𝑢∈𝑁𝑡

, 𝑡 ≥ 0 

is a uniformly integrable product martingale which, gives that 1 − 𝑝𝐾(𝑥) solves 

𝐿𝑢 + 𝐹(𝑢) = 0       𝑜𝑛 (0, 𝐾) 

 𝑢(0) = 𝑢(𝐾) = 1.                                                  (6) 

We will show later in Remark (1.1.12) that, if there exists a non trivial solution to 

(6), then it is unique. This will then again imply that {𝑍𝐾(∞) = 0} and {𝜁 < ∞} 

agree 𝑃𝑥
𝐾-a.s. 

We decompose the 𝑃𝐾 -branching diffusion into branching diffusions 

corresponding to the blue and red trees described in our intuitive picture. The blue 

tree which consists of all genealogical lines of descent that will never become 

extinct will be shown to correspond to a branching diffusion which we will 

henceforth refer to as the backbone. Secondly, the red trees which contain all 

remaining lines of descent will be shown to correspond to copies of the 𝑃𝐾 -

branching diffusion conditioned on becoming extinct. 

The law of the branching diffusion corresponding to the coloured tree, 𝐏𝐾 , is 

defined by the law of 𝑋 under 𝑃𝐾 and a subsequent deterministic colouring of the 

particles as described previously. Its natural filtration is ℱ̃𝑡: = 𝜎{ℱ𝑡 , 𝑐(𝑢)𝑢∈𝑁𝑡
} 

where 𝑐(𝑢) is the colour of a particle 𝑢 ∈ 𝑁𝑡. We say a particle 𝑢 is blue if it has 

an infinite genealogical line of descent and we write 𝑐(𝑢) = 𝑏, otherwise we say 

it is red and write 𝑐(𝑢) = 𝑟. We have, for all 𝑡 ≥  0, 

        
𝑑𝐏𝑥

𝐾

𝑑𝑃𝑥
𝐾

|
ℱ∞

= ∏(𝟙{𝑐(𝑢)=𝑏} + 𝟙{𝑐(𝑢)}=𝑟)

𝑢∈𝑁𝑡

= 1 

and thus 



10 
 

        
𝑑𝐏𝑥

𝐾

𝑑𝑃𝑥
𝐾

|
ℱ𝑡

= 𝐸𝑥
𝐾(∏ (𝟙{𝑐(𝑢)=𝑏} + 𝟙{𝑐(𝑢)}=𝑟)𝑢∈𝑁𝑡

|ℱ𝑡)

= ∑ ∏ 𝑃𝑥
𝐾(𝑐(𝑢) = 𝑐𝑢|ℱ𝑡)

𝑢∈𝑁𝑡(𝑐𝑢)𝑢∈𝑁𝑡

= ∑ ∏ 𝑝𝐾(𝑥𝑢(𝑡))

𝑢∈𝑁𝑡

∏ (1 − 𝑝𝐾(𝑥𝑢(𝑡)))

𝑢∈𝑁𝑡,𝑐𝑢=𝑟(𝑐𝑢)𝑢∈𝑁𝑡

= 1,          (7) 

where (𝑐𝑢)𝑢∈𝑁𝑡
 is the set of all possible colourings of 𝑁𝑡. In particular, for 𝐴 ∈ ℱ𝑡, 

we get 

𝐏𝑥
𝐾(𝐴; 𝑐(𝑢) = 𝑐𝑢 ∀𝑢 ∈ 𝑁𝑡|ℱ𝑡)

= 𝟙𝐴 ∏ 𝑝𝐾(𝑥𝑢(𝑡))

𝑢∈𝑁𝑡,𝑐𝑢=𝑏

∏ (1 − 𝑝𝐾(𝑥𝑢(𝑡)))

𝑢∈𝑁𝑡,𝑐𝑢=𝑟

. 

We can now easily derive the change of measure for the branching diffusion 

corresponding to the red tree. Let 𝐴 ∈ ℱ𝑡, and write 𝑐(0) = 𝑟 for the event that 

the initial particle is red and thus 

 𝐏𝑥
𝑅,𝐾(𝐴) ≔ 𝐏𝑥

𝐾(𝐴|𝑐(0) = 𝑟) =
𝐏𝑥

𝐾(𝐴;𝑐(𝑢)=𝑟 ∀𝑢∈𝑁𝑡)

𝐏𝑥
𝐾(𝑐(0)=𝑟)

 

 =
𝐸𝑥

𝐾(𝟙𝐴 ∏ (1−𝑝𝐾(𝑥𝑢(𝑡)))𝑢∈𝑁𝑡
)

1−𝑝𝐾(𝑥)
.                                      (8) 

Clearly, conditioning the genealogical line of the initial particle to become extinct 

agrees with conditioning the whole process to become extinct and therefore the 

law of 𝑋  under 𝐏𝑅,𝐾  agrees with the law of 𝑋  conditioned on extinction. The 

following Proposition characterizes the process under 𝐏𝑅,𝐾. 

Proposition (1.1.7) [1]: 

For 𝜈 ∈ ℳ𝑎(0, 𝐾), define 𝐏𝜈
𝑅,𝐾

 via (3.2). Then (𝑋, 𝐏𝜈
𝑅,𝐾) is a branching process 

with single particle motion characterised by the infinitesimal generator 

𝐿𝐾
𝑅 =

1

2

𝑑2

𝑑𝑥2
− (𝜇 +

𝑝𝐾
′

1 − 𝑝𝐾
) 

𝑑

𝑑𝑥
      𝑜𝑛 (0, 𝐾), 

for 𝑢 ∈ 𝐶2(0, 𝐾)  with 𝑢(0 +) = 𝑢(𝐾 −) = 0  and the branching activity is 

governed by the space- dependent branching mechanism 

𝐹𝐾
𝑅(𝑠, 𝑦) =

1

1 − 𝑝𝐾(𝑦)
(𝐹 (𝑠(1 − 𝑝𝐾(𝑦))) − 𝑠𝐹(1 − 𝑝𝐾(𝑦))), 

for  𝑠 ∈ [0, 1]  and 𝑦 ∈ (0, 𝐾). 
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Proof. The change of measure in (8) preserves the branching property in the 

following sense. Let 𝜈 = ∑ 𝛿𝑥𝑖

𝑛
𝑖=1  be an initial configuration in (0, 𝐾) and 𝐴 ∈ ℱ𝑡. 

Then 

𝐏𝜈
𝑅,𝐾(𝐴): = 𝐸𝑥

𝐾 (𝟙𝐴

∏ (1 − 𝑝𝐾(𝑥𝑢(𝑡)))𝑢∈𝑁𝑡

∏ (1 − 𝑝𝐾(𝑥𝑖))𝑛
𝑖=1

)

= ∏ 𝐸𝑥𝑖

𝐾 (𝟙𝐴

∏ (1 − 𝑝𝐾(𝑥𝑢(𝑡)))𝑢∈𝑁𝑡

1 − 𝑝𝐾(𝑥𝑖)
)

𝑛

𝑖=1

= (⊕𝑖=1
𝑛 𝐏𝑥𝑖

𝑅,𝐾)(𝐴). 

The process (𝑋, 𝑷𝑅,𝐾) is therefore completely characterised by its evolution up to 

the first branching time 𝑇. Let 𝜉 = {𝜉𝑡 , 0 ≤ 𝑡 ≤ 𝑇} denote the path of the initial 

particle up to time 𝑇 and let 𝐻 be a positive bounded measurable functional of this 

path. We begin with considering the case 𝑡 < 𝑇. We have 

𝑬𝑥
𝑅,𝐾(𝐻(𝜉𝑠, 𝑠 ≤ 𝑡); 𝑇 > 𝑡) = 𝔼𝒙

𝐾 (𝐻(𝜉𝑠, 𝑠 ≤ 𝑡)
1 − 𝑝𝐾(𝜉𝑡)

1 − 𝑝𝐾(𝑥)
; 𝑇 > 𝑡) 

= 𝑒−𝛽𝑡𝔼𝒙
𝑅,𝐾 (𝐻(𝜉𝑠, 𝑠 ≤ 𝑡)𝑒

− ∫
𝐹(1−𝑝𝐾(𝜉𝑠))

1−𝑝𝐾(𝜉𝑠)
𝑑𝑠

𝑡

0 ),             (9) 

where ℙ𝑥
𝑅,𝐾

 is defined by the change of measure 

𝑑ℙ𝑥
𝑅,𝐾

𝑑ℙ𝑥
𝐾

|
𝒢𝑡

=
1 − 𝑝𝐾(𝜉𝑡)

1 − 𝑝𝐾(𝑥)
𝑒

∫
𝐹(1−𝑝𝐾(𝜉𝑠))

1−𝑝𝐾(𝜉𝑠)
𝑑𝑠

𝑡

0 ,     𝑡 ≥ 0                        (10) 

and (𝒢𝑡 , 𝑡 ≥ 0) denotes the natural filtration of (𝜉, ℙ𝑥
𝐾). Thus the initial particle 

performs a ℙ𝑅,𝐾 -motion which is governed by the infinitesimal generator 𝐿𝐾
𝑅  as 

given in the statement of the proposition. Taking 𝐻 = 1  above, we see 

immediately that under 𝑷𝑅,𝐾 the branching rate changes to 

𝛽𝑅(𝑦) =
𝐹(1 − 𝑝𝐾(𝑦)) + 𝛽(1 − 𝑝𝐾(𝑦))

1 − 𝑝𝐾(𝑦)
= 𝛽 ∑ 𝑞𝑘(1 − 𝑝𝐾(𝑦))

𝑘−1

𝑘≥0

,     (11) 

for 𝑦 ∈ (0, 𝐾). 

It remains to identify the offspring distribution and we therefore study the process 

at its first branching time 𝑇. We get 
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𝑬𝑥
𝑅,𝐾(𝐻(𝜉𝑠, 𝑠 ≤ 𝑇); 𝑁𝑇 = 𝑘; 𝑇 ∈ 𝑑𝑡) 

= 𝐸𝒙
𝐾 (

(1 − 𝑝𝐾(𝜉𝑇))
𝑁𝑇

1 − 𝑝𝐾(𝑥)
𝐻(𝜉𝑠, 𝑠 ≤ 𝑇); 𝑇 ∈ 𝑑𝑡; 𝑁𝑇 = 𝑘) 

= 𝐸𝒙
𝐾 (

(1 − 𝑝𝐾(𝜉𝑇))
𝑘

1 − 𝑝𝐾(𝑥)
𝐻(𝜉𝑠, 𝑠 ≤ 𝑇)𝛽𝑒−𝛽𝑇𝑞𝑘) 

= 𝔼𝒙
𝑅,𝐾 (𝐻(𝜉𝑠, 𝑠 ≤ 𝑇)𝛽𝑅(𝜉𝑇)𝑒− ∫ 𝛽𝑅(𝜉𝑠)𝑑𝑠

𝑇

0
𝛽

𝛽𝑅(𝜉𝑇)
𝑞𝑘(1 − 𝑝𝐾(𝜉𝑇))

𝑘−1
). 

We see that, in addition to the change in the motion and the branching rate, the 

offspring distribution under 𝑷𝑅,𝐾 becomes {𝑞𝑘
𝑅 , 𝑘 ≥ 0} where 

𝑞𝑘
𝑅(𝑦) = 𝛽(𝛽𝑅(𝑦))

−1
𝑞𝑘(1 − 𝑝𝐾(𝑦))

𝑘−1
,   𝑘 ≥ 0.                (12) 

A simple computation shows that 𝐹𝐾
𝑅(𝑠, 𝑦) = 𝛽𝑅(𝑦)(∑ 𝑞𝑘

𝑅(𝑦)𝑠𝑘
𝑘≥0 − 𝑠) takes the 

desired form.                           

Similarly to the above reasoning, we obtain the law of the dressed 

backbone, that is a backbone with immigration of 𝑷𝑅,𝐾-branching diffusions, by 

conditioning on the first particle being blue. Thus 

                 𝑷𝑥
𝐷,𝐾(𝐴) ≔ 𝑷𝑥

𝐾(𝐴|𝑐(0) = 𝑏) 

=
𝑷𝑥

𝐾(𝐴; 𝑐(𝑢) = 𝑏 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑢 ∈ 𝑁𝑡)

𝑷𝑥
𝐾(𝑐(0) = 𝑏)

 

=
𝐸𝒙

𝐾 (𝟏𝐴 (1 − ∏ (1 − 𝑝𝐾(𝑥𝑢(𝑡)))𝑢∈𝑁𝑡
))

𝑝𝐾(𝑥)
                             (13) 

Then (𝑋, 𝑷𝐷,𝐾)  certainly agrees with (𝑋, 𝑃𝐾)  conditioned on survival. Let us 

characterise the evolution under 𝑷𝒙
𝐷,𝐾

. We use the previous notation and in 

addition let 𝜏 = 𝑇 ∧ 𝜏(0,𝐾) denote the death time of the initial particle, where 𝜏(0,𝐾) 

is the first time this particle exits (0, 𝐾). Then 

𝑬𝑥
𝐷,𝐾(𝐻(𝜉𝑠, 𝑠 ≤ 𝑡); 𝜏 > 𝑡) = 𝑒−𝛽𝑡𝔼𝒙

𝐾 (𝐻(𝜉𝑠, 𝑠 ≤ 𝑡)
𝑝𝐾(𝜉𝑡)

𝑝𝐾(𝑥)
; 𝜏(0,𝐾) > 𝑡) 

= 𝑒−𝛽𝑡𝔼𝒙
𝐵,𝐾 (𝐻(𝜉𝑠, 𝑠 ≤ 𝑡)𝑒

∫
𝐹(1−𝑝𝐾(𝜉𝑠))

𝑝𝐾(𝜉𝑠)
𝑑𝑠

𝑡

0 ),          (14) 
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where ℙ𝑥
𝐵,𝐾

 is defined by the change of measure, for 𝑡 ≥ 0, 

𝑑ℙ𝑥
𝐵,𝐾

𝑑ℙ𝑥
𝐾

|
𝒢𝑡

=
𝑝𝐾(𝜉𝑡)

𝑝𝐾(𝑥)
exp {− ∫

𝐹(1 − 𝑝𝐾(𝜉𝑠))

𝑝𝐾(𝜉𝑠)
𝑑𝑠

𝑡

0

} 𝟏{𝜏(0,𝐾)>𝑡},            (15) 

and (𝒢𝑡 , 𝑡 ≥ 0) is again the natural filtration of (𝜉, ℙ𝑥
𝐾). Thus, setting 

                            𝛽𝐷(𝑥) = −
𝐹(1 − 𝑝𝐾(𝑥)) − 𝛽𝑃𝐾(𝑥)

𝑝𝐾(𝜉𝑠)
 

= −𝛽
1 − ∑ (1 − 𝑝𝐾(𝑥))

𝑘
𝑞𝑘

∞
𝑘=0

𝑝𝐾(𝜉𝑠)
,     for 𝑥 ∈ (0, 𝐾),        (16) 

we see that (14) simplifies to 

𝑬𝑥
𝐷,𝐾(𝐻(𝜉𝑠, 𝑠 ≤ 𝑡); 𝜏 > 𝑡) = 𝔼𝒙

𝐵,𝐾 (𝐻(𝜉𝑠, 𝑠 ≤ 𝑡)𝑒∫ 𝛽𝐷(𝜉𝑠)𝑑𝑠
𝑡

0 ).           (17) 

We deduce from this that, under 𝑷𝐷,𝐾, the motion of the initial particle is given by 

the change of measure in (15) and it branches at rate 𝛽𝐷(∙) as in (16). 

It remains to specify the offspring distribution. We begin with the expression in 

(13) and then use (15) and (16) to get 

𝑬𝑥
𝐷,𝐾(𝐻(𝜉𝑠, 𝑠 ≤ 𝑇); 𝑇 ∈ 𝑑𝑡; 𝑁𝑇 = 𝑘) 

= 𝐸𝒙
𝐾 (

1 − (1 − 𝑝𝐾(𝜉𝑇))
𝑘

𝑝𝐾(𝑥)
𝐻(𝜉𝑠, 𝑠 ≤ 𝑇)𝛽𝑒−𝛽𝑇𝑞𝑘) 

= 𝔼𝒙
𝑅,𝐾 (𝐻(𝜉𝑠, 𝑠 ≤ 𝑇)𝛽𝐷𝑒− ∫ 𝛽𝐷(𝜉𝑠)𝑑𝑠

𝑇

0
𝛽

𝛽𝐷(𝜉𝑇)
𝑞𝑘

1 − (1 − 𝑝𝐾(𝜉𝑇))
𝑘

𝑝𝐾(𝜉𝑇)
). 

Again this reveals the evolution of the initial particle as described above and we 

further see that the offspring distribution of the initial particle under 𝑷𝐷,𝐾 is given 

by {𝑞𝑘
𝐷, 𝑘 ≥ 0} where 

𝑞𝑘
𝐷(𝑥) ∝ 𝑞𝑘

1 − (1 − 𝑝𝐾(𝜉𝑇))
𝑘

𝑝𝐾(𝜉𝑇)
,     for 𝑥 ∈ (0, 𝐾) 
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up to the normalising constant 𝛽(𝛽𝐷(𝑥))
−1

. We note that 𝑞0(𝑥) = 0 for all 𝑥 ∈

(0, 𝐾)  which we expected to see since (𝑋, 𝑷𝐷,𝐾)  is equal in law to (𝑋, 𝑃𝐾) 

conditioned on survival. However, we have so far neglected the fact that the initial 

particle can give birth to particles of the same type, i.e. blue particles (referred to 

as branching), and red particles which evolve as under 𝑷𝑅,𝐾  (referred to as 

immigration). We will split up the rate 𝛽𝐷 and the offspring distribution 𝑞𝐾
𝐷 into 

terms corresponding to branching respectively immigration. Firstly, note that we 

can decompose the rate 𝛽𝐷 into 

𝛽𝐷(𝑦) = 𝛽 ∑ ∑ 𝑞𝑛 (
𝑛
𝑘

) 𝑝𝐾(𝑦)𝑘−1(1 − 𝑝𝐾(𝑦))
𝑛−𝑘

𝑛≥𝑘𝑘≥2

+ 𝛽 ∑ 𝑞𝑛𝑛(1 − 𝑝𝐾(𝑦))
𝑛−1

𝑛≥1

 

= : 𝛽𝐵(𝑦) + 𝛽𝐼(𝑦).                                                                                            (18) 

Then 𝛽𝐼 is the rate at which the initial particle gives birth to one blue particle and 

a random number of (red) immigrants (immigration rate) while 𝛽𝐵 is the rate at 

which the initial particle gives birth to at least two particles of the blue type and a 

random number of (red) immigrants occur (branching rate of the branching 

diffusion corresponding to the blue tree). We can now rewrite the offspring 

distribution 𝑞𝑘
𝐷 as 

𝑞𝑘
𝐷 ∝ 𝑞𝑘

1 − (1 − 𝑝𝐾(𝑥))
𝑁𝑇

𝑝𝐾(𝑥)
 

= 𝑞𝑘 ∑ (
𝑘
𝑖

) 𝑝𝐾(𝑥)𝑖−1(1 − 𝑝𝐾(𝑥))
𝑘−𝑖

𝑘

𝑖=2

+ 𝑞𝑘(1 − 𝑝𝐾(𝑥))
𝑘−1

,   𝑘 ≥ 1.       (19) 

Then the term in (18) gives, up to normalisation, the probability that the initial 

particle branches into 𝑖 particles of its type and, at the same branching time, 𝑘 − 𝑖 

particles immigrate. The term in (19) is the probability that 𝑘 − 1 immigrants 

occur, again up to a normalizing constant. 

Note that (𝑋, 𝑷𝐷,𝐾) inherits the branching Markov property from (𝑋, 𝑃𝐾) by (13) 

in a similar spirit to the case of (𝑋, 𝑷𝑅,𝐾). Thus the description of the initial 

particle also characterises the evolution of all particles of the blue type and 

together with the characterisation of the immigrating 𝑷𝑅,𝐾-branching diffusions in 

Proposition (1.1.12) we have completely characterised the evolution of 𝑋 under 

𝑷𝐷,𝐾. The following result is now an immediate consequence. 
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Theorem (1.1.8) [1]: (The Dressed Backbone) 

 Let 𝐾 > 𝐾0 and 𝑥 ∈ (0, 𝐾). The process (𝑋, 𝑷𝐷,𝐾) evolves as follows. 

(i) From 𝑥, we run a ℙ𝑥
𝐵,𝐾

 -diffusion which dies at rate 𝛽𝐵, 

(ii) at the space-time position of its death, it is replaced by 𝐴𝐵 particles where 𝐴𝐵 

is distributed according to the probabilities, 

𝑞𝑘
𝐵(𝑦) = 𝛽𝛽𝐵(𝑦)−1 ∑ 𝑞𝑛 (

𝑛
𝑘

) 𝑝𝐾(𝑦)𝑘−1(1 − 𝑝𝐾(𝑦))
𝑛−𝑘

𝑛≥𝑘

,          (20) 

for 𝑘 ≥ 2 and 𝑦 ∈ (0, 𝐾). 

(iii) Each of the offspring particles repeats its parent’s stochastic behaviour. 

(iv) Conditionally on the branching diffusion, say 𝑋𝐵, generated by steps (i) - (iii), 

we have the following. 

 (Continuous immigration) Along the trajectories of each particle in 𝑋𝐵, an 

immigration with 𝑛 ≥ 1 immigrants occurs at rate 

𝛽𝑛
𝐼 (𝑦) = 𝛽𝑞𝑛+1(𝑛 + 1)(1 − 𝑝𝐾(𝑦))

𝑛
,    𝑦 ∈ (0, 𝐾).             (21) 

 (Branch point immigration) At a branch point of 𝑋𝐵 with 𝑘 ≥ 2 particles, 

we see an immigration of 𝑛 ≥ 0 immigrants with probability 

𝑞𝑛
𝐼 (𝑦) = 𝑞𝑛+𝑘 (

𝑛 + 𝑘
𝑘

) 𝑝𝐾(𝑦)𝑘−1(1 − 𝑝𝐾(𝑦))
𝑛

, 𝑦 ∈ (0, 𝐾).     (22) 

Each immigrant initiates an independent copy of (𝑋, 𝑷𝑅,𝐾) from the space-

time position of its birth. 

Theorem (1.1.9) [1]: (Backbone Decomposition) 

Let 𝐾 > 𝐾0  and 𝑣 ∈ ℳ𝑎(0, 𝐾)  such that 𝑣 = ∑ 𝛿𝑥𝑖

𝑛
𝑖=1  with 𝑥𝑖 ∈ (0, 𝐾) , 𝑛 ≥ 1 . 

For 𝑡 ≥ 0, we can define 

𝑑𝑷𝑣
𝐾

𝑑𝑃𝑣
𝐾

|
ℱ𝑡

= ∑ ∑ ∏ 𝑝(𝑥𝑖)

𝑘

𝑖=1

𝑑𝑷𝑣
𝐾

𝑑𝑃𝑣
𝐾

|
ℱ𝑡

∏ (1 − 𝑝(𝑥𝑖))

𝑛

𝑗=𝑘+1

𝑑𝑷𝑥𝑖

𝑅,𝐾

𝑑𝑃𝑥𝑖
𝐾

|
ℱ𝑡(𝑥1,…,𝑥𝑘)

𝑛

𝑘=0

, (23) 

where the second sum above is taken over all 𝑘-tuples of 𝑥1, … , 𝑥𝑛. However note 

that the right-hand side of (23) is equal to 1 and thus, trivially, on the filtration 

(ℱ𝑡)𝑡≥0, (𝑋, 𝑷𝑣
𝐾) is Markovian and equal in law to (𝑋, 𝑃𝑣

𝐾). 
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Proof.  

The change of measure is just a restatement of (7) and the result follows from 

Proposition (1.1.7) and Theorem (1.1.8).                      

Intuitively speaking, we can describe the evolution under 𝑷𝑣
𝐷,𝐾

 and thus 

also under 𝑃𝑣
𝐾 as follows. Independently for each initial particle 𝑥𝑖, we flip a coin 

with probability 𝑝(𝑥𝑖)  of ‘heads’. If it lands ‘heads’, we initiate a copy of 

(𝑋, 𝑷𝑥𝑖

𝐷,𝐾)  and otherwise we initiate a copy of (𝑋, 𝑷𝑥𝑖

𝑅,𝐾). 

Corollary (1.1.10) [1]: 

Given the number of particles of (𝑋, 𝑃𝑣
𝐾) and their positions, say 𝑥1, … , 𝑥𝑛  for 

some 𝑛 ∈ ℕ, at a fixed time 𝑡, the number of particles of 𝑋𝑡
𝐵  is the number of 

successes in a sequence of 𝑛  independent Bernoulli trials each with success 

probability 𝑝(𝑥1), … , 𝑝(𝑥𝑛). 

We refer to the branching diffusion generated by steps (i)-(iii) of Theorem 

(1.1.9) above as the backbone. Its law can be characterised as follows. 

Proposition (1.1.11) [1]: (The Backbone) 

For 𝑣 ∈ ℳ𝑎(0, 𝐾) such that 𝑣 = ∑ 𝛿𝑥𝑖

𝑛
𝑖=1  with 𝑥𝑖 ∈ (0, 𝐾), 𝑛 ≥ 1, we define the 

measure 𝑷𝑣
𝐵,𝐾

 via the following change of measure. For 𝑡 ≥ 0, 

𝑑𝑷𝑣
𝐵,𝐾

𝑑𝑃𝑣
𝐾

|
ℱ𝑡

= ∏
𝑝𝐾(𝑥𝑣(𝜎𝑣 ∧ 𝑡))

𝑝𝐾(𝑥𝑣(𝜏𝑣))
𝟏

{𝑡<𝜏(0,𝐾)
𝑣 }

𝑣∈𝓣𝑡

× exp {∫ 𝐹′ (1 − 𝑝𝐾(𝑥𝑣(𝑠))) + 𝛽𝑑𝑠
𝜎𝑡∧𝑡

𝜏𝑣

} 

                  × ∏
𝑞𝐴𝑣

𝐵 (𝑥𝑣(𝜎𝑣))

𝑞𝐴𝑣
𝛽(𝑥𝑣(𝜎𝑣)) (𝛽𝐵(𝑥𝑣(𝜎𝑣)))

−1

𝑣∈𝓣𝑡−

, 

where 𝓣𝑡  is the set of all particles 𝑣 ∈ 𝓣  with 𝜏𝑣 < 𝑡  and 𝑣  is in 𝓣𝑡 −  if, in 

addition, 𝜎𝑣 < 𝑡. As usual, 𝜏𝑣 and 𝜎𝑣 are the birth respectively death times, 𝜏(0,𝐾)
𝑣  

is the first exit time from (0, 𝐾) and 𝐴𝑣 is the random number of offspring of a 

particle 𝑣 ∈ 𝓣𝑡−. 

The branching diffusion (𝑋, 𝑷𝑣
𝐵,𝐾) has infinitesimal generator 
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𝐿𝐾
𝐵 =

1

2

𝑑2

𝑑𝑥2
− (𝜇 −

𝑝𝐾
′

𝑝𝐾
)

𝑑

𝑑𝑥
      𝑜𝑛   (0, 𝐾), 

defined for all 𝑢 ∈ 𝐶2(0, 𝐾), and space-dependent branching mechanism 

𝐹𝐾
𝐵(𝑠, 𝑦) =

1

𝑝𝐾(𝑦)
(𝐹 (𝑠𝑝𝐾(𝑦) + (1 − 𝑝𝐾(𝑦))) − (1 − 𝑠)𝐹(1 − 𝑝𝐾(𝑦))), 

for 𝑠 ∈ [0,1] and 𝑦 ∈ (0, 𝐾). The process (𝑋, 𝑷𝑥
𝐵,𝐾) evolves according to the steps 

(i)-(iii) of Theorem (1.1.9). 

Proof. First note that the motion under ℙ𝐵,𝐾, given by the change of measure in 

(15), is governed by the infinitesimal generator 𝐿𝐾
𝐵  as given in the statement. A 

simple computation also shows that 𝐹𝐾
𝐵(𝑠, 𝑦) = 𝛽𝐵(𝑦)(∑ 𝑞𝑘

𝐵(𝑥)𝑠𝑘 − 𝑠𝑘≥2 ) with 

𝛽𝐵 and 𝑞𝑘
𝐵 as in (18) and (20) gives the desired form. The result then follows from 

rewriting the change of measure up to the first branching time 𝑇 as 

𝑑𝑷𝑥
𝐵,𝐾

𝑑𝑃𝑥
𝐾

|
ℱ𝑇

=
𝑝𝐾(𝜉𝑇)

𝑝𝐾(𝑥)
exp {− ∫

𝐹(1 − 𝑝𝐾(𝜉𝑠))

𝑝𝐾(𝜉𝑠)
𝑑𝑠

𝑇

0

} 𝟏{𝑡<𝜏(0,𝐾)} 

×
1

𝛽
𝛽𝐵(𝜉𝑇) exp {− ∫ 𝛽𝐵(𝜉𝑠) − 𝛽𝑑𝑠

𝑇

0

} ×
𝑞𝑁𝑇

𝐵 (𝜉𝑇)

𝑞𝑁𝑇

, 

noting that the first line on the right-hand side accounts for the change of motion, 

the first term in the second line for the change in the branching rate and the last 

term in the second line for the change in the offspring distribution.                   

Remark (1.1.12) [1]: 

As promised earlier, with the help of Corollary (1.1.11), we can show that, if (6) 

has a non-trivial solution, then it is unique. Assume 𝑔𝐾(𝑥) is a non-trivial solution 

to (2.4). It follows that 

𝑀𝐾(𝑡) = ∏ 𝑔𝐾(𝑥𝑢(𝑡))

𝑢∈𝑁𝑡

,       𝑡 ≥ 0, 

is a 𝑃𝑥
𝐾  -product martingale. Since 𝑀𝐾  is uniformly integrable, its limit 𝑀𝐾(∞) 

exits 𝑃𝑥
𝐾 -a.s. On the event of extinction, 𝑀𝐾(∞) = 1. On the event of survival, 

we have 
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𝑀𝐾(𝑡) = ∏ 𝑔𝐾(𝑥𝑢(𝑡))

𝑢∈𝑁𝑡

≤ ∏ 𝑔𝐾(𝑥𝑢
𝐵(𝑡))

𝑢∈𝑁𝑡
𝐵

,                      (24) 

where 𝑁𝑡
𝐵  is the set and 𝑥𝑢(𝑡) are the spatial positions of the particles in 𝑋𝑡

𝐵 . 

Clearly |𝑁𝑡|𝐵 → ∞ as 𝑡 → ∞ since each particle in 𝑋𝐵 is replaced by at least two 

offspring and there is no killing. Further particles in 𝑋𝐵  perform an ergodic 

motion and it is therefore not possible that lim inf 𝑔(𝑥𝑢(𝑡)) tends to 1. Thus the 

right-hand side of (24) tends to 0 and we conclude that 𝑀𝐾(∞) = 𝟏{𝜁<∞}. Hence 

𝑔𝐾(𝑥) = 𝐸𝑥
𝐾(𝑀𝐾(∞)) = 𝑃𝑥

𝐾(𝜁 < ∞) which implies uniqueness. 

In particular we may conclude that (6) has a non-trivial solution if and only if 𝜇 <

√2(𝑚 − 1)𝛽 and 𝐾 > 𝐾0. 

Section (1.2): Super-Brownian Motion in a Strip 

Theorem (1.2.1) [1]:   

Uniformly for all 𝑥 ∈ (0, 𝐾0), we have 

𝑝𝐾(𝑥) ∼ 𝐶𝐾  sin (
𝜋𝑥

𝐾0
) 𝑒𝜇𝑥, 𝑎𝑠 𝐾 ↓ 𝐾0,               (23) 

where 𝐶𝐾 is independent of x and can explicitly be determined as 

𝐶𝐾 = (𝐾 − 𝐾0) 
(𝐾0

2𝜇2 + 𝜋2)(𝐾0
2𝜇2 + 9𝜋2)

12(𝑚 − 1)𝛽𝜋𝐾0
3(𝑒𝜇𝐾0 + 1)

,     𝑎𝑠 𝐾 ↓ 𝐾0, 

and in particular 𝐶𝐾 ↓ 0 as 𝐾 ↓ 𝐾0. 

We will prove a first part of Theorem (1.2.1) using spine techniques. It is to 

be particularly emphasized that we are able to determine 𝐶𝐾 here. 𝐶𝐾 is a ‘non-

linear’ constant and ‘linear’ spine techniques fail when trying to identify it. 

Nevertheless, a careful application of the backbone decomposition given in 

Theorem (1.1.1) will deliver an explicit expression here since the blue tree 

captures enough ‘non-linear’ branching information about the evolution of 

(𝑋, 𝑃𝐾) on survival. With Theorem (1.1.1) and (1.2.1) in hand we look for a 

quasi-stationary limit result for the law of the branching diffusion corresponding 

to a dressed blue tree, which agrees with the law of 𝑋 conditioned on survival, as 

we approach criticality. In the dyadic case, the heuristic derivation of the 

branching rates already suggests that, given the particle positions 𝑥𝑢(𝑡) for 𝑢 ∈ 𝑁𝑡 

in 𝑋𝑡, the number of particles in the blue tree at time 𝑡, is the number of successes 

in a sequence of independent Bernoulli trials each with probability of success 

𝑝𝐾(𝑥𝑢(𝑡)), 𝑢 ∈ 𝑁𝑡 (We will address this thinning argument rigorously in Remark 
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(1.1.2)). Now, as 𝐾 ↓ 𝐾0, the probabilities 𝑝𝐾(·) tend to 0 uniformly by Theorem 

(1.2.1) and thus the blue tree becomes increasingly thinner on (0, 𝐾0). Under 

conditioning on survival, it cannot vanish completely though since the 

genealogical line of the initial blue particle cannot become extinct and thus one 

may believe that, over a fixed time interval [0, 𝑇], the blue tree thins down to a 

single genealogical line at criticality. In the case of a dyadic branching mechanism 

this conjecture can readily by confirmed by looking at the branching rates. The 

blue branching rate 𝛽𝑝𝐾  drops down to 0 as 𝐾 ↓ 𝐾0 , at the same time the red 

branching rate 𝛽(1 − 𝑝𝐾) increases to 𝛽 and the rate of immigration 2𝛽(1 − 𝑝𝐾) 

rises to 2𝛽 at criticality. 

Formalising this idea and taking into account the change in the single 

particle motion, the general results reads as follows. 

Proof. We break up Theorem (1.2.1) into two parts which will be proved in the 

following. We begin with a preliminary result which ensures that the survival 

probability 𝑝𝐾 is right-continuous at 𝐾0. 

Lemma (1.2.2) [1]:  

Let 𝑥 ∈ (0, 𝐾0). Then lim
𝐾↓𝐾0

𝑝𝐾(𝑥) = 0. 

Proof. We fix 𝑥 ∈ (0, 𝐾0) throughout the proof and consider 𝑝𝐾(𝑥) as a function in 

𝐾. For a fixed 𝑡 > 0, let us define the probability 𝑝𝐾(𝑥, 𝑡) ≔ 𝑃𝑥
𝐾 (survival in (0, 𝐾) 

up to time 𝑡). By monotonicity of measures we have lim
𝐾↓𝐾0

𝑝𝐾(𝑥, 𝑡) = 𝑝𝐾0
(𝑥, 𝑡). Now 

we can write 𝑝𝐾(𝑥) = inf
𝑡>0

𝑝𝐾(𝑥, 𝑡). Hence 𝑝𝐾(𝑥) is the infimum of a sequence of 

functions which are continuous at 𝐾0 and thus upper semicontinuous at 𝐾0, that is 

lim sup
𝐾↓𝐾0

𝑝𝐾(𝑥) ≤ 𝑝𝐾0
(𝑥). 

Furthermore, 𝑝𝐾(𝑥) is decreasing as 𝐾 ↓ 𝐾0 and bounded, so the right limit exists 

and 

𝑝𝐾0
(𝑥) ≤ lim

𝐾↓𝐾0

𝑝𝐾(𝑥). 

Combining the two inequalities above we obtain right-continuity of 𝑝𝐾(𝑥) at 𝐾0. 

By Theorem (1.1.5), 𝑝𝐾0
(𝑥) = 0 and so we have lim

𝐾↓𝐾0

𝑝𝐾(𝑥) = 0.                  

The following lemma is the essential part in the proof of Proposition (1.2.4).  
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Definition (1.2.3) [5]:  (Lebesgue Dominated Convergence Theorem) 

Suppose 𝑓𝑛: ℝ → [−∞, ∞]  are (Lebesgue) measurable functions such that the 

pointwise limit 𝑓(𝑥) = lim
𝑛→∞

𝑓𝑛(𝑥) exists. 

Assume there is an integrable 𝑔: ℝ → [0, ∞] with |𝑓𝑛(𝑥)| ≤ 𝑔(𝑥) for each 𝑥 ∈ ℝ. 

Then f is integrable as is 𝑓𝑛 for each n, and 

lim
𝑛→∞

∫ 𝑓𝑛𝑑𝜇
ℝ

= ∫ lim
𝑛→∞

𝑓𝑛 𝑑𝜇
ℝ

= ∫ 𝑓𝑑𝜇
ℝ

 

Lemma (1.2.4) [1]:  

Let 𝑦 ∈ (0, 𝐾0). Then we have 

lim
𝐾↓𝐾0

𝑝𝐾(𝑥)

𝑝𝐾(𝑦)
=

sin(𝜋𝑥/𝐾0)

sin(𝜋𝑦/𝐾0)
𝑒𝜇(𝑥−𝑦).                            (26) 

uniformly for all 𝑥 ∈ (0, 𝐾0). 

Proof. Fix 𝑦 ∈ (0, 𝐾0) . We begin with showing that the asymptotics hold 

uniformly for all 𝑥 ∈ (0, 𝑦). 

Let 𝓣 denote the set of labels of particles realised in (𝑋, 𝑃𝑥
𝐾). Define 𝑇𝑦 as the set 

containing all particles which are the first ones in their genealogical line to exit the 

strip (0, 𝑦), i.e. 

𝑇𝑦 = {𝑢 ∈ 𝓣: ∃𝑠 ∈ [𝜏𝑢, 𝜎𝑢] s. t.  𝑥𝑢(𝑠) ∉ (0, 𝑦) 

  
and  𝑥𝑣(𝜏) ∈ (0, 𝑦)  for all  𝑣 < 𝑢, 𝑟 ∈ [𝜏𝑣, 𝜎𝑣]}, 

where 𝑣 < 𝑢 means that 𝑣 is a strict ancestor of 𝑢. Further, for 𝑢 ∈ 𝑇𝑦 denote by 

𝑇𝑦
𝑢 the first exit time of 𝑢 from (0, 𝑦). The random set 𝑇𝑦 is a stopping line. 

Since 𝑦 ∈ (0, 𝐾0) the width of the strip (0, 𝑦) is subcritical and hence, for any 

initial position 𝑥 ∈ (0, 𝑦), all particles will exit it eventually which ensures that 𝑇𝑦 

is a dissecting stopping line. Now let |𝑇𝑦| be the number of particles which are the 

first ones in their line of descent to hit 𝑦, which can be written as 

|𝑇𝑦| = ∑ 𝟏{𝑥𝑢(𝑇𝑦
𝑢)=𝑦}

𝑢∈𝑇𝑦

. 
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Recall from Remark (1.1.6) that (∏ (1 − 𝑝𝐾(𝑥𝑢(𝑡)))𝑢∈𝑁𝑡
, 𝑡 ≥ 0)  is a 𝑃𝑥

𝐾  - 

martingale. Since 𝑇𝑦 is dissecting it follows that we can stop the martingale at 𝑇𝑦 

and obtain, for 𝑥 ∈ (0, 𝑦), 

1 − 𝑝𝐾(𝑥) = 𝐸𝑥
𝐾 (∏ (1 − 𝑝𝐾 (𝑥𝑢(𝑇𝑦

𝑢)))

𝑢∈𝑇𝑦

) = 𝐸𝑥
𝐾 ((1 − 𝑝𝐾(𝑦))

|𝑇𝑦|
),     (27) 

where we have used that the process started at zero becomes extinct immediately, 

i.e. 𝑝𝐾(0) = 0. Further |𝑇𝑦| has the same distribution under 𝑃𝑥
𝐾 and 𝑃𝑥

𝐾0 since we 

consider particles stopped at level 𝑦 below 𝐾0 and thus we can replace 𝐸𝑥
𝐾 by 𝐸𝑥

𝐾0 

on the right-hand side above. 

Now, using first (27) and then the geometric sum ∑ 𝑎𝑗𝑛−1
𝑗=0 =

1−𝑎𝑛

1−𝑎
, we get 

𝑝𝐾(𝑥)

𝑝𝐾(𝑦)
= 𝐸𝑥

𝐾0 (
1 − (1 − 𝑝𝐾(𝑦))

|𝑇𝑦|

1 − (1 − 𝑝𝐾(𝑦))
) = 𝐸𝑥

𝐾0 ( ∑ (1 − 𝑝𝐾(𝑦))
𝑗

|𝑇𝑦|−1

𝑗=0

).    (28) 

The sum on the right-hand side is dominated by |𝑇𝑦| which does not depend on 𝐾 

and has finite expectation (which will shortly be shown below). We can therefore 

apply the Dominated convergence theorem to the right-hand side in (28) and we 

conclude that 

lim
𝐾↓𝐾0

𝐸𝑥
𝐾0 ( ∑ (1 − 𝑝𝐾(𝑦))

𝑗

|𝑇𝑦|−1

𝑗=0

) 

= 𝐸𝑥
𝐾0 ( ∑ lim

𝐾↓𝐾0

(1 − 𝑝𝐾(𝑦))
𝑗

|𝑇𝑦|−1

𝑗=0

) = 𝐸𝑥
𝐾0(|𝑇𝑦|),                  (29) 

where the convergence holds point-wise in 𝑥 ∈ (0, 𝑦). In order to get uniform 

convergence we observe the following.  

We set 𝜑(𝑥, 𝐾) = 𝐸𝑥
𝐾0 (∑ (1 − 𝑝𝐾(𝑦))

𝑗|𝑇𝑦|−1

𝑗=0
), for 𝑥 ∈ [0, 𝑦] (with the convention 

that the 𝑃𝐾-branching diffusion becomes extinct immediately for initial position 
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𝑥 = 0 respectively stopped for 𝑥 = 𝑦) and denote by 𝜑(𝑥) = 𝐸𝑥
𝐾0(|𝑇𝑦|) its point-

wise limit. Since 1 − 𝑝𝐾(𝑦) ≤ 1 − 𝑝𝐾′(𝑦) , for 𝐾 ≥ 𝐾′ , we have             

𝜑(𝑥, 𝐾) ≤ 𝜑(𝑥, 𝐾′)  and thus, for any 𝑥 ∈ [0, 𝑦] , the sequence 𝜑(𝑥, 𝐾)  is 

monotone increasing as 𝐾 ↓ 𝐾0 . Moreover the functions 𝜑(𝑥, 𝐾)  and 𝜑(𝑥)  are 

continuous in 𝑥, for any 𝐾. In conclusion, we have an increasing sequence of 

continuous functions on a compact set with a continuous point-wise limit and 

therefore the convergence also holds uniformly in 𝑥 ∈ [0, 𝑦]. 

Combining (28) and (29) and the uniformity argument, we arrive at 

lim
𝐾↓𝐾0

𝑝𝐾(𝑥)

𝑝𝐾(𝑦)
= 𝐸𝑥

𝐾0(|𝑇𝑦|),                                                         (30) 

where, for fixed 𝑦, the convergence holds uniformly in 𝑥 ∈ (0, 𝑦). Now let 𝜏𝜉 ≔

inf{𝑡 > 0: 𝜉𝑡 ∈ (0, 𝑦)} be the first time a Brownian motion 𝜉 with drift – 𝜇 exists 

the interval (0, 𝑦). Since 𝑇𝑦 is dissecting it follows that we can apply the Many-to-

one Lemma for the stopping line 𝑇𝑦. This gives 

𝐸𝑥
𝐾0(|𝑇𝑦|) = ℚ𝑥

𝐾0 (
sin(𝜋𝑥/𝐾0) 𝑒𝜇𝑥

sin (𝜋𝜉𝜏𝜉
/𝐾0) 𝑒

𝜇𝜉𝜏𝜉
+(𝜇2/2+𝜋2/2𝐾0

2)𝜏𝜉𝑦

𝑒
(𝑚−1)𝛽𝜏𝜉𝑦 , 𝟏

(𝜉𝜏𝜉𝑦
=𝑦)

) 

     =
sin(𝜋𝑥/𝐾0)

sin(𝜋𝑦/𝐾0)
𝑒𝜇(𝑥−𝑦)ℚ𝑥

𝐾0 (𝜉𝜏𝜉𝑦
= 𝑦), 

where we have used that (𝑚 − 1)𝛽 −
𝜇2

2
− 𝜋2/2𝐾0

2 = 0 (and ℚ𝑥
𝐾0  is used as an 

expectation operator). Under ℚ𝑥
𝐾0 , 𝜉 will never hit 0 since it is conditioned to stay 

in (0, 𝐾0) . However as 𝜉  is positive recurrent it will eventually cross 𝑦  and 

therefore ℚ𝑥
𝐾0 (𝜉𝜏𝜉𝑦

= 𝑦) = 1. This proves our earlier claim that |𝑇𝑦| has finite 

expectation and together with (30) it completes the argument. 

For uniformity for all 𝑥 ∈ (0, 𝐾) , it remains to show that (26) also holds 

uniformly for 𝑥 ∈ (𝑦, 𝐾0). Instead of approaching criticality by taking the limit in 

𝐾 we can now fix a 𝐾 > 𝐾0 and consider a (supercritical) strip (𝑧, 𝐾) and let 𝑧 ↑

𝑧0 where 𝑧0 ≔ 𝐾 − 𝐾0. Denote by 𝑝(𝑧,𝐾)(𝑥 + 𝑧) the probability of survival in the 

strip (𝑧, 𝐾) when starting from 𝑥 + 𝑧. We then have 
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lim
𝐾↓𝐾0

𝑝𝐾(𝑥)

𝑝𝐾(𝑦)
= lim

𝑧↑𝑧0

𝑝(𝑧,𝐾)(𝑥 + 𝑧)

𝑝(𝑧,𝐾)(𝑦 + 𝑧)
. 

Hence (26) is equivalent to showing that, uniformly for 𝑥 ∈ (𝑦, 𝐾0), 

lim
𝑧↑𝑧0

𝑝(𝑧,𝐾)(𝑥 + 𝑧)

𝑝(𝑧,𝐾)(𝑦 + 𝑧)
=

sin(𝜋𝑥/𝐾0)

sin(𝜋𝑦/𝐾0)
𝑒𝜇(𝑥−𝑦). 

Then consider the stopping line containing all particles which exit the strip 

(𝑦 + 𝑧, 𝐾)  and accordingly the set of particles which are the first in their 

genealogical line to exit (𝑦 + 𝑧, 𝐾) at 𝑦. Noting that the latter has the same law 

under 𝑃𝑥+𝑧
𝑧,𝐾

 and 𝑃𝑥+𝑧
𝑧0,𝐾

, we can then repeat the argument in the first part.        

Proposition (1.2.4) [1]:  

Uniformly for all 𝑥 ∈ (0, 𝐾0), 

𝑝𝐾(𝑥)~𝑐𝐾 sin(𝜋𝑥/𝐾0) 𝑒𝜇𝑥,      𝑎𝑠 𝐾 ↓ 𝐾0, 

where 𝑐𝐾 is independent of 𝑥 and 𝑐𝐾 ↓ 0 as 𝐾 ↓ 𝐾0. 

Proof. Choose a 𝑦 ∈ (0, 𝐾0). Then an application of Lemma (1.2.3) gives, as 𝐾 ↓

𝐾0, 

𝑝𝐾(𝑥) = 𝑝𝐾(𝑦)
𝑝𝐾(𝑥)

𝑝𝐾(𝑦)
~𝑝𝐾(𝑦)

sin(𝜋𝑥/𝐾0)

sin(𝜋𝑦/𝐾0)
𝑒𝜇(𝑥−𝑦) = 𝑐𝐾 sin(𝜋𝑥/𝐾0) 𝑒𝜇𝑥, 

uniformly for all 𝑥 ∈ (0, 𝐾0), where 𝑐𝐾 ≔
𝑝𝐾(𝑦)

sin(𝜋𝑦/𝐾0)
𝑒−𝜇𝑦. By Proposition (1.1.3), 

𝑐𝐾 ↓ 0 as 𝐾 ↓ 𝐾0 which completes the proof.                      

Step (i) (The growth rate of the backbone) Consider a process 𝑌𝐵 = (𝑌𝑡
𝐵, 𝑡 ≥ 0) 

performing the single particle motion of the backbone, that is according to the 

infinitesimal generator 𝐿𝐾
𝐵  which is given in Proposition (1.1.11) as 

𝐿𝐾
𝐵 =

1

2

𝑑2

𝑑𝑥2
− (𝜇 −

𝑝𝐾
′

𝑝𝐾
)

𝑑

𝑑𝑥
      𝑜𝑛   (0, 𝐾), 

with domain 𝐶2(0, 𝐾). Let Π𝐾
𝐵  be the invariant density for 𝐿𝐾

𝐵 , i.e. the positive 

solution of �̃�𝐾
𝐵 Π𝐾

𝐵 = 0 where �̃�𝐾
𝐵  is the formal adjoint of 𝐿𝐾

𝐵 . 

Then 
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Π𝐾
𝐵(𝑥) ∝ 𝑝𝐾(𝑥)2𝑒−2𝜇𝑥,          𝑥 ∈ (0, 𝐾). 

For 𝑡 ≥ 0 , we define Γ(𝑡, 𝐴) = ∫ 𝟏{𝑌𝑠
𝐵∈𝐴}𝑑𝑠

𝑡

0
, 𝐴 ⊂ [0, 𝐾]A ⊂ [0,K], to be the 

occupation time up to 𝑡 of 𝑌𝐵 in 𝐴. Then large deviation theory suggests that the 

probability that the measure 𝑡−1Γ(𝑡,⋅)  is ‘close’ to ∫ 𝟏{∙}(𝑦)𝑓2(𝑦)Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0
 

should be roughly 

exp {𝑡 ∫ 𝐿𝐾
𝐵 𝑓(𝑦)𝑓(𝑦)Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0

}. 

Now, as each particle in the backbone moves according to 𝐿𝐾
𝐵 , we guess that the 

expected number of particles at time 𝑡 with occupation density like 𝑓2Π𝐾
𝐵 is very 

roughly 

exp {𝑡 ∫ (𝐿𝐾
𝐵 + 𝐹𝐾

𝐵′
(1, 𝑦)) 𝑓(𝑦)𝑓(𝑦)Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0

},               (31) 

where  

𝐹𝐾
𝐵′

(1, 𝑥) ≔
𝑑

𝑑𝑠
𝐹𝐵(𝑠, 𝑥)|𝑠=1 = (𝑚 − 1)𝛽 +

𝐹(1 − 𝑝𝐾(𝑥))

𝑝𝐾(𝑥)
,     𝑥 ∈ (0, 𝐾). 

The expected growth rate of the blue tree is given by maximising the integral 

appearing in (31) over all 𝑓 with ∫ 𝑓2(𝑥)Π𝐾
𝐵(𝑥)𝑑𝑥

𝐾

0
= 1. We can compute this 

optimal function 𝑓∗ explicitly as the normalised eigenfunction corresponding to 

the largest eigenvalue 𝜆 where 

(𝐿𝐾
𝐵 + 𝐹𝐾

𝐵′
(1, 𝑥)) 𝑓∗(𝑥) = 𝜆𝑓∗(𝑥)      in (0, 𝐾),                               (32) 

and we find that, in fact, 𝜆 = 𝜆(𝐾) = (𝑚 − 1)𝛽 − 𝜇2/2 − 𝜋2/2𝐾2 and 

𝑓∗(𝑥) ∝
sin(𝜋𝑥/𝐾)

𝑝𝐾(𝑥)
𝑒𝜇𝑥,    𝑥 ∈ (0, 𝐾),                                    (33) 

up to a normalising constant. Then we find the ’optimal’ occupation density as 

Π𝐾
𝐵,∗(𝑥) ≔ (𝑓∗(𝑥))

2
Π𝐾

𝐵(𝑥) =
2

𝐾
sin2(𝜋𝑥/𝐾) ,    𝑥 ∈ (0, 𝐾). 

In summary, we guess that the expected growth rate of the number of particles in 

the blue tree is 𝜆(𝐾) and that 
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𝜆(𝐾) = ∫ (𝐿𝐾
𝐵 + 𝐹𝐾

𝐵′
(1, 𝑦)) 𝑓∗(𝑦)𝑓∗(𝑦)Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0

.          (34) 

We would anticipate that the a.s. growth rate is also 𝜆(𝐾) in agreement with the 

expected growth rate. 

Step (ii)(Upper bound on 𝝀(𝑲)) The term 𝐿𝐾
𝐵 𝑓∗𝑓∗ is non-positive as it represents 

the cost of spending time like (𝑓∗)2Π𝐾
𝐵(𝑥), hence omitting it will give an upper 

bound for 𝜆(𝐾), that is 

∫ 𝐹𝐾
𝐵′

(1, 𝑦)Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0

≤ 𝜆(𝐾) 

Step (iii)(Lower bound on 𝝀(𝑲)) By taking 𝑓 = 1 in (34), we get a lower bound 

on 𝜆(𝐾) since 𝑓∗ maximizes the expression in (31). Thus 

𝜆(𝐾) ≤ ∫ 𝐹𝐾
𝐵′

(1, 𝑦)Π𝐾
𝐵,∗(𝑦)𝑑𝑦

𝐾

0

. 

Step (iv) (Asymptotics) By Theorem (1.2.1), 𝑝𝐾(𝑥)~𝑐𝐾 sin(𝜋𝑥/𝐾0) 𝑒𝜇𝑥, as 𝐾 ↓

𝐾0, and we can easily deduce that Π𝐾
𝐵(𝑥)~Π𝐾0

𝐵,∗(𝑥), as 𝐾 ↓ 𝐾0. 

We will make rigorous later that 𝐹𝐾
𝐵′

(1, 𝑥)~(𝑚 − 1)𝛽𝑐𝐾 sin(𝜋𝑥/𝐾0) 𝑒𝜇𝑥 as 𝐾 ↓

𝐾0. Our conjecture is therefore that 

𝜆(𝐾)~𝑐𝐾

2𝛽

𝐾0
∫ sin3(𝜋𝑦/𝐾0) 𝑒𝜇𝑦𝑑𝑦

𝐾0

0

,     as 𝐾 ↓ 𝐾0. 

Since we can calculate the integral explicitly this gives an exact asymptotic for 𝑐𝐾 

which agrees with the one given in Proposition (1.2.9) and Theorem (1.2.1). 

Lemma (1.2.5) [1]: 

The function 𝑓∗ is uniformly bounded in (0, 𝐾). 

Proof. The function 𝑓∗  is continuous in (0, 𝐾) and it is therefore sufficient to 

show that lim sup
𝑥↓0

𝑓∗(𝑥) and lim sup
𝑥↑𝐾

𝑓∗(𝑥) are bounded. 

An application of L'Hôpital's rule gives 
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lim
𝑥↓0

sin(𝜋𝑥/𝐾) 𝑒𝜇𝑥

𝜋
−2𝐾𝜇

(𝑒−2𝜇𝑥 − 1)
= 1                                         (35) 

To conclude that lim sup
𝑥↓0

𝑓∗(𝑥) < ∞, it therefore suffices to show that there exists 

a constant 𝑐 > 0 such that 

𝑐
1

−2𝜇
(1 − 𝑒2𝜇𝑥) ≤ 𝑝𝐾(𝑥),  for all 𝑥 sufficiently close to zero. 

By Remark (1.1.6), (∏ (1 − 𝑝𝐾(𝑥𝑢(𝑡)))𝑢∈𝑁𝑡
, 𝑡 ≥ 0) is a 𝑃𝒙

𝐾 -martingale and it 

follows then by a standard Feynman-Kac argument that 1 − 𝑝𝐾(𝑥) satisfies 

1 − 𝑝𝐾(𝑥) = 1 + 𝔼𝒙
𝐾 ∫ 𝐹(1 − 𝑝𝐾(𝜉𝑠))𝑑𝑠

𝜏(0,𝐾)

0

,    𝑥 ∈ (0, 𝐾), 

where 𝜏(0,𝐾)  is the first time 𝜉  exists the interval (0, 𝐾) . To compute the 

expectation above we use the potential density of 𝜉, and we get 

       −𝑝𝐾(𝑥) = 𝔼𝒙
𝐾 ∫ 𝐹(1 − 𝑝𝐾(𝜉𝑠))𝑑𝑠

𝜏(0,𝐾)

0

 

=
1

−𝜇
(𝑒−2𝜇𝑥 − 1) ∫ 𝐹(1 − 𝑝𝐾(𝑦))

(𝑒−2𝜇(𝐾−𝑦) − 1)

(𝑒−2𝜇𝐾 − 1)
𝑑𝑦

𝐾

0

 

+
1

𝜇
∫ 𝐹(1 − 𝑝𝐾(𝑦))(𝑒−2𝜇(𝑥−𝑦) − 1)𝑑𝑦

𝐾

0

.             (36) 

Since 𝐹(𝑠) < 0 for 0 < 𝑠 < 1, the first integral in the last equality on the right-

hand side of (36) is strictly negative. Regarding boundedness of this integral it is 

clear that the integrand is bounded for 𝑦 near 𝐾. By an application of L'Hôpital's 

rule it follows that the integrand is also bounded near 0. Hence we can set 

𝑐 ≔ − ∫ 𝐹(1 − 𝑝𝐾(𝑦))
(𝑒−2𝜇(𝐾−𝑦) − 1)

(𝑒−2𝜇𝐾 − 1)
𝑑𝑦

𝐾

0

> 0. 

With the second integral in the last equality on the right-hand side of (36) being 

non-positive, for 𝑥 close to 0, we get 

𝑝𝐾(𝑥) ≥ 2𝑐
1

−2𝜇
(𝑒−2𝜇𝑥 − 1),  for all 𝑥 sufficiently close to zero. 
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which, by (35), gives the desired result. To establish boundedness as 𝑥 approaches 

𝐾 , we observe that 𝑝𝐾(𝑥) = �̅�𝐾(𝐾 − 𝑥) , where �̅�𝐾  denotes the survival 

probability for a branching diffusion which evolves as under 𝑃𝒙
𝐾 but with positive 

drift 𝜇. Similarly to the previous argument we can then show that there exists a 

constant 𝑐 > 0 such that     𝑐�̅�𝐾(𝐾 − 𝑥) ≥ sin(𝜋𝑥/𝐾) 𝑒𝜇𝑥, for 𝑥 sufficiently close 

to 𝐾, which finishes the proof. 

Proposition (1.2.6) [1]: 

For 𝑥 ∈ (0, 𝐾), 

lim
𝑡→∞

1

𝑡
log|𝑁𝑡| = 𝜆(𝐾),       𝑷𝒙

𝐵,𝐾 − a. s. 

Step (i) of the heuristic suggests that the growth rate of the backbone is 𝜆(𝐾) and, 

moreover, that it can be expressed as (34). The idea of the rigorous proof of 

Proposition 1.7 is now to construct a martingale of the form in (3) with Υ̂ built 

from 𝑓∗ in (33). We then find upper and lower bounds for this martingale which 

will, in turn, give bounds on the growth of the number of particles. Before we do 

this we prove an auxiliary result on the boundedness of 𝑓∗. 

Proof. We proof the upper bound by contradiction. Recall the embedding 

procedure described. Choose 𝜀 small enough such that  𝜆(𝐾 + 2𝜀) > 0. Choose a 

𝛿 > 0  and suppose that there exists an increasing (random) sequence           

𝑡𝑛, 𝑛 = 1,2, … , which tends to infinity, such that log 𝑁𝑡𝑛
 is bigger than        

(𝜆(𝐾 + 2𝜀) + 𝛿)𝑡𝑛, for any 𝑛 ∈ ℕ under 𝑃𝐾. Then, under 𝑃(𝜀,𝐾+𝜀), 

        𝑍(𝜀,𝐾+𝜀) ≔ ∑ sin(𝜋(𝑥𝑢(𝑡) + 𝜀)/(𝐾 + 2𝜀)) 𝑒−𝜆(𝐾+2𝜀)𝑡𝑒𝜇(𝑥𝑢(𝑡)+𝜀)

𝑢∈𝑁𝑡

 

≥ |𝑁𝑡|(0,𝐾)|𝑒−𝜆(𝐾+2𝜀)𝑡 × sin(𝜋𝜀/(𝐾 + 2𝜀)). 

Since we assumed that, along the sequence 𝑡𝑛, 𝑛 = 1,2, …, the number of particles 

|𝑁𝑡𝑛
|

(0,𝐾)
|  is bounded from below by exp{(𝜆(𝐾 + 2𝜀) + 𝛿)𝑡𝑛} , the right-hand 

side above tends to infinity along this sequence as 𝑛 → ∞  which contradicts 

Proposition (1.1.3). As we can take 𝜀  and 𝛿  arbitrary small we obtain 

lim sup
𝑡→∞

(𝜆(𝐾)𝑡)−1 log|𝑁𝑡| ≤ 1, under 𝑃𝐾. By the thinning argument in Corollary 

(1.1.10), we immediately get that 𝜆(𝐾) is also an upper bound for the growth rate 

of |𝑁𝑡| under 𝑷𝐵,𝐾. 



28 
 

For the lower bound, as alluded to above, we begin with constructing a 𝑷𝐵,𝐾-

martingale of the form (3). Since 𝑓∗  satisfies (𝐿𝐾
𝐵 + 𝐹𝐾

𝐵′
(1) − 𝜆(𝐾)) 𝑓∗ = 0, it 

follows by an application of Itô's formula that 

𝑓∗(𝜉𝑡)𝑒∫ (𝐹′(𝜉𝑠,1)−𝜆(𝐾))𝑑𝑠
𝑡

0 ,        𝑡 ≥ 0 

is a martingale with respect to 𝜎(𝜉𝑡 , 𝑡 ≥ 0), where (𝜉, ℙ𝐵,𝐾) is an 𝐿𝐾
𝐵 -diffusion. 

Appealing to the discussion in Remark (1.1.2) we then see that 

𝑀𝑓∗(𝑡) = ∑ 𝑓∗(𝑥𝑢(𝑡))𝑒−𝜆(𝐾)𝑡

𝑢∈𝑁𝑡

,        𝑡 ≥ 0, 

is a 𝑷𝑥
𝐵,𝐾

 -martingale. 

The proof of 𝐿1(𝑷𝑥
𝐵,𝐾) -convergence of 𝑀𝑓∗  follows by a classical spine 

decomposition argument, and is therefore omitted. 

𝐿1(𝑷𝑥
𝐵,𝐾) -convergence implies then that 𝑷𝑥

𝐵,𝐾(𝑀𝑓∗(∞) > 0) > 0 . Now set 

𝑔(𝑥) ≔ 𝑷𝑥
𝐵,𝐾(𝑀𝑓∗(∞) = 0), for 𝑥 ∈ (0, 𝐾). Then the product 

𝜋𝑔(𝑡) = ∏ 𝑔(𝑥𝑢(𝑡))

𝑢∈𝑁𝑡

,      𝑡 ≥ 0, 

is a 𝑷𝑥
𝐵,𝐾

 -martingale with almost sure lim 𝟏
{𝑀𝑓∗(∞)=0}

 (cf. proof of Proposition 

(1.1.3)). Therefore we have 

𝑔(𝑥) = 𝑬𝑥
𝐵,𝐾(𝜋𝑔(𝑡)) ≤ 𝔼𝒙

𝐵,𝐾(𝑔(𝜉𝑡)),   for all 𝑥 ∈ (0, 𝐾). 

Hence we conclude that the process (𝑔(𝜉𝑡), 𝑡 ≥ 0)  is a [0,1] -valued               

ℙ𝒙
𝐵,𝐾

-submartingale and it converges ℙ𝒙
𝐵,𝐾

-a.s. to a limit 𝑔∞ . However 𝜉  is 

positive recurrent under ℙ𝒙
𝐵,𝐾

 and thus 𝑔(𝜉𝑡) can only converge if it is constant, 

hence 𝑔(𝑥) = 𝑔∞ for all 𝑥 ∈ (0, 𝐾). Since 0 ≤ 𝑔 ≤ 1 we then have 𝑔∞ ∈ [0,1]. 

Assume now that 𝑔∞ ∈ [0,1). Note that, under 𝑷𝑥
𝐵,𝐾

, |𝑁𝑡| tends to infinity as 𝑡 →

∞ since each particle in (𝑋, 𝑷𝑥
𝐵,𝐾) is replaced by at least two offspring when it 

dies and there is no killing. Thus we get 𝜋𝑔(𝑡) → 0 , 𝑷𝑥
𝐵,𝐾

-a.s. and therefore               

𝑔(𝑥) = 𝑬𝑥
𝐵,𝐾(𝜋𝑔(∞)) = 0. In conclusion, 𝑔 is identical to either 0 or 1. But we 

already know that the martingale limit 𝑀𝑓∗(∞) is strictly positive with positive 

probability and consequently, 𝑔(𝑥) = 𝑷𝑥
𝐵,𝐾(𝑀𝑓∗(∞) = 0) = 0, for all 𝑥 ∈ (0, 𝐾). 
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We may now conclude that lim inf
𝑡→∞

log 𝑀𝑓∗(𝑡)/𝜆(𝐾)𝑡 ≥ 0 𝑷𝑥
𝐵,𝐾

-a.s. We look for 

an upper bound on 𝑀𝑓∗(𝑡) which will, in turn, provide a lower bound on |𝑁𝑡| 

under 𝑷𝑥
𝐵,𝐾

. By Lemma (1.2.5), 𝑓∗ is bounded by a constant 𝑐 > 0 in (0, 𝐾). Thus, 

under 𝑷𝑥
𝐵,𝐾

, for 𝑡 ≥ 0, 

𝑀𝑓∗(𝑡) ≤ 𝑐|𝑁𝑡|𝑒−𝜆(𝐾)𝑡 , 

and we see that, 𝑷𝑥
𝐵,𝐾

-a.s., 

lim
𝑡→∞

inf
log|𝑁𝑡|

𝜆(𝐾)𝑡
≥ lim

𝑡→∞
inf

log 𝑀𝑓∗(𝑡) − log 𝑐 + 𝜆(𝐾)𝑡

𝜆(𝐾)𝑡
≥ 1, 

which completes the proof.                     

In step (ii) of the heuristic we claimed that (𝐿𝐾
𝐵 𝑓∗)𝑓∗ is non-positive to get an 

upper bound on 𝜆(𝐾) which is essentially what we will now do. Recall that the 

invariant density for the infinitesimal generator 𝐿𝐾
𝐵  respectively the optimal 

occupation density of (𝑋, 𝑷𝑥
𝐵,𝐾) are given by 

Π𝐾
𝐵(𝑦) =

𝑝𝐾(𝑦)2𝑒−2𝜇𝑦

∫ 𝑝𝐾(𝑧)2𝑒−2𝜇𝑧𝑑𝑧
𝐾

0

 

and 

Π𝐾
𝐵,∗(𝑦) = (𝑓∗(𝑦))

2
Π𝐾

𝐵(𝑦) =
2

𝐾
sin2(𝜋𝑦/𝐾).                                     (37) 

Lemma (1.2.7) [1]: 

For 𝐾 > 𝐾0, we have 

𝜆(𝐾) ≤ ∫ 𝐹𝐾
𝐵′

(1, 𝑦)Π𝐾
𝐵,∗(𝑦)𝑑𝑦

𝐾

0

. 

Proof. We have ∫ (𝑓∗(𝑦))
2

Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0
= ∫ 2/𝐾 sin2(𝜋𝑥/𝐾) 𝑑𝑥

𝐾

0
= 1 . Then 

multiplying by 𝜆(𝐾) gives 

𝜆(𝐾) = ∫ 𝜆(𝐾)𝑓∗(𝑦)𝑓∗(𝑦)Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0
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Recall that 𝑓∗ is given by (33) and satisfies the ODE in (32). Thus we can replace 

the term 𝜆(𝐾)𝑓∗ above by (𝐿𝐾
𝐵 + 𝐹𝐾

𝐵′
(1, 𝑦)) 𝑓∗(𝑦). Therefore 

𝜆(𝐾) = ∫ (
1

2
(𝑓∗(𝑦))

′′
− (𝜇 −

𝑝𝐾(𝑦)′

𝑝𝐾(𝑦)
) (𝑓∗(𝑦))

′
) 𝑓∗(𝑦)Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0

 

+ ∫ 𝐹𝐾
𝐵′

(1, 𝑦)(𝑓∗(𝑦))
2

Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0

.                            (38) 

Noting that Π𝐾
𝐵,∗(𝑦) = (𝑓∗(𝑦))

2
Π𝐾

𝐵(𝑦), the result then follows if we can show that 

the first integral in (38) is non-positive.  

We use integration by parts for the first term in the first integral in (38) to get 

 

∫
1

2
(𝑓∗(𝑦))

′′
𝑓∗(𝑦)Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0

 

=
1

2
([(𝑓∗(𝑦))

′
𝑓∗(𝑦)Π𝐾

𝐵(𝑦)]
0

𝐾

− ∫ (𝑓∗(𝑦))
′

((𝑓∗(𝑦))
′
Π𝐾

𝐵(𝑦)𝑑𝑦 + 𝑓∗(𝑦)(Π𝐾
𝐵(𝑦))

′
𝑑𝑦)

𝐾

0

).    (39) 

We want to show that the first term on the right-hand side above is zero. By 

Lemma (1.2.5), 𝑓∗ takes a finite value at 0 and 𝐾 and hence it suffices to show 

that (𝑓∗)′Π𝐾
𝐵  evaluated at 0  and 𝐾  is zero. By simply differentiating 𝑓∗  and 

recalling that Π𝐾
𝐵(𝑦) ∝ 𝑝𝑘(𝑦)2𝑒−2𝜇𝑦 we get 

(𝑓∗(𝑦))
′
Π𝐾

𝐵(𝑦)

∝ 𝑒−𝜇𝑦 ((𝜇 sin(𝜋𝑦/𝐾) +
𝜋

𝐾
cos(𝜋𝑦/𝐾)) 𝑝𝐾(𝑦) − sin(𝜋𝑦/𝐾) 𝑝𝐾

′ (𝑦)). 

Differentiating both sides of equation (1.12) with respect to 𝑥, it is easily seen that 

𝑝𝐾
′ (𝑦) is bounded for all 𝑥 ∈ [0, 𝐾]. Therefore (𝑓∗(𝑦))

′
Π𝐾

𝐵(𝑦) is equal to 0 at 0 

and 𝐾 and thus the first term on the right-hand side of (39) vanishes. 

The first integral in (38) now becomes 
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∫ (
1

2
(𝑓∗(𝑦))

′′
− (𝜇 −

𝑝𝐾
′ (𝑦)

𝑝𝐾(𝑦)
) (𝑓∗(𝑦))

′
) 𝑓∗(𝑦)Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0

 

= −
1

2
∫ (((𝑓∗(𝑦))

′
)

2
− (𝑓∗(𝑦))

′
𝑓∗(𝑦)(Π𝐾

𝐵(𝑦))
′
) Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0

 

− ∫ (𝜇 −
𝑝𝐾

′ (𝑦)

𝑝𝐾(𝑦)
) 𝑓∗(𝑦)(𝑓∗(𝑦))

′
Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0

.    (40) 

Differentiating Π𝐾
𝐵 gives (Π𝐾

𝐵)′ = −2 (𝜇 −
𝑝𝐾

′

𝑝𝐾
) Π𝐾

𝐵. Thus, in the righthand side of 

(40), the second term in the first integral cancels with the second integral and we 

arrive at 

∫ (
1

2
(𝑓∗(𝑦))

′′
− (𝜇 −

𝑝𝐾
′ (𝑦)

𝑝𝐾(𝑦)
) (𝑓∗(𝑦))

′
) 𝑓∗(𝑦)Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0

 

= −
1

2
∫ ((𝑓∗(𝑦))

′
)

2
Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0

, 

which is less than or equal to zero and the proof is complete.                    

Step (iii) of the heuristic claims that we can lower bound 𝜆(𝐾) by replacing 𝑓∗ in 

(33) with 𝑓 = 1. This suggests to modify the martingale argument in the proof of 

Proposition (1.2.6) using a martingale of the form (3) with Υ̂  built from the 

constant function 𝟏. 

Lemma (1.2.8) [1]: 

For 𝑥 ∈ (0, 𝐾), 

𝜆(𝐾) ≥ ∫ 𝐹𝐾
𝐵′

(1, 𝑦)Π𝐾
𝐵,∗(𝑦)𝑑𝑦

𝐾

0

. 

Proof. The constant process �̂� = (�̂�(𝑡) = 1, 𝑡 ≥ 0) is a trivial martingale with 

respect to 𝜎(𝜉𝑡 , 𝑡 ≥ 0), where (𝜉, 𝑷𝐵,𝐾) is an 𝐿𝐾
𝐵 -diffusion. 

Thus according to Remark (1.1.2), the process 𝑀1 = (𝑀1(𝑡) = 1, 𝑡 ≥ 0) defined 

by 

𝑀1(𝑡) = ∑ 𝑒− ∫ 𝐹𝐾
𝐵′

(1,𝑥𝑢(𝑠))𝑑𝑠
𝑡

0

𝑢∈𝑁𝑡
𝐵

,        𝑡 ≥ 0, 
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is a 𝑷𝑥
𝐵,𝐾

-martingale. 𝐿1(𝑷𝑥
𝐵,𝐾)-convergence and uniform integrability of 𝑀1 again 

follow by a spine decompisition argument in the manner of the proof of Theorem 

(1.1.5). 𝐿1(𝑷𝑥
𝐵,𝐾)-convergence implies that 𝑷𝑥

𝐵,𝐾(𝑀1(∞) > 0) > 0 and repeating 

the argument in the proof of Proposition (1.2.6) we immediately see that       

𝑷𝑥
𝐵,𝐾(𝑀1(∞) > 0) = 1.  

Therefore, we conclude that lim inf
𝑡→∞

log 𝑀1(𝑡)/𝜆(𝐾)𝑡 ≥ 0 , 𝑷𝑥
𝐵,𝐾

-a.s. On the 

filtration ℱ𝑡 = 𝜎(𝑋𝑠, 𝑠 ≤ 𝑡) we define a change of measure by 

𝑑𝑃𝑥
𝑀1,𝐾

𝑑𝑷𝑥
𝐵,𝐾 |

ℱ𝑡

=
𝑀1(𝑡)

𝑀1(0)
,        𝑡 ≥ 0, 

Since the martingale 𝑀1 is of the form in (3), it induces as spine decomposition 

which, according to Remark (1.1.2), reads as follows. Under 𝑃𝑥
𝑀1,𝐾

, the spine 𝜉 is 

an 𝐿𝐾
𝐵 -diffusion and along its path we immigrate independent copies of the 𝑷𝐵,𝐾-

branching diffusion (we do not need to specify the rate of immigration and the 

distribution of the number of immigrants since they will not be relevant). 

Next, fix an 𝜀 > 0 and define, for 𝑡 ≥ 0 and each 𝑢 ∈ 𝑁𝑡
𝐵, the set 

𝐴𝑡
𝑢 = {|

1

𝑡
∫ 𝐹𝐾

𝐵′
(1, 𝑥𝑢(𝑠))𝑑𝑠

𝑡

0

− ∫ 𝐹𝐾
𝐵′

(1, 𝑦)Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0

| < 𝜀} 

and consider the process we obtain from 𝑀1 by considering the particles in 𝐴𝑡
𝑢 

only, that is 

�̃�1(𝑡) = ∑ 𝟏𝐴𝑡
𝑢,𝜀𝑒− ∫ 𝐹𝐾

𝐵′
(1,𝑥𝑢(𝑠))𝑑𝑠

𝑡

0

𝑢∈𝑁𝑡
𝐵

,        𝑡 ≥ 0. 

Let 𝐴𝑡
𝜉
 be the event we get if we simply replace 𝑥𝑢(𝑡) by the spine process 𝜉𝑡 in 

the definition of 𝐴𝑡
𝑢. Since (𝜉, 𝑃𝑀1,𝐾) has invariant density Π𝐾

𝐵 we have 𝟏𝐴𝑡
𝜀 → 1 

𝑃𝑥
𝑀1,𝐾

-a.s. �̃�1 therefore has the same limit as 𝑀1 under 𝑃𝑥
𝑀1,𝐾

, and moreover, since 

𝑀1 is 

uniformly integrable, this also holds true under 𝑷𝑥
𝐵,𝐾

. In particular we have 

lim
𝑡→∞

inf
log �̃�1(𝑡)

𝜆(𝐾)𝑡
= lim

𝑡→∞
inf

log 𝑀1(𝑡)

𝜆(𝐾)𝑡
≥ 0,                   𝑷𝑥

𝐵,𝐾
-a.s. 

For 𝑡 ≥ 0, we now get an upper bound for �̃�1(𝑡) under 𝑷𝑥
𝐵,𝐾

 by 



33 
 

�̃�1(𝑡) ≤ |𝑁𝑡|𝑒−𝑡 ∫ 𝐹𝐾
𝐵′

(1,𝑦)Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0
−𝜀 . 

Consequently, 𝑷𝑥
𝐵,𝐾

-a.s., 

lim
𝑡→∞

inf
log|𝑁𝑡|

𝑡 (∫ 𝐹𝐾
𝐵′

(1, 𝑦)Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0
)

≥ lim
𝑡→∞

inf
log �̃�1(𝑡) + 𝑡 (∫ 𝐹𝐾

𝐵′
(1, 𝑦)Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0
− 𝜀)

𝑡 (∫ 𝐹𝐾
𝐵′

(1, 𝑦)Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0
)

≥
∫ 𝐹𝐾

𝐵′
(1, 𝑦)Π𝐾

𝐵(𝑦)𝑑𝑦
𝐾

0
− 𝜀

∫ 𝐹𝐾
𝐵′

(1, 𝑦)Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0

, 

and taking 𝜀 ↓ 0 gives the result.                        

Proposition (1.2.9) [1]: 

The constant 𝑐𝐾 in Proposition (1.2.4) satisfies 

𝑐𝐾~(𝐾 − 𝐾0)
(𝐾0

2𝜇2 + 𝜋2)(𝐾0
2𝜇2 + 9𝜋2)

12(𝑚 − 1)𝛽𝜋𝐾0
3(𝑒𝜇𝐾0 + 1)

      𝑎𝑠 𝐾 ↓ 𝐾0,          (41) 

Theorem (1.2.1) then follows by defining 𝐶𝐾 to be the expression on the 

left-hand side in (41). 

We will provide entirely probabilistic proofs of the results above. We remark that, 

although it would take some effort to make rigorous, it is also possible to recover 

the asymptotics of 𝑝𝐾 and the explicit constant 𝐶𝐾 in an analytic approach using a 

careful asymptotic expansion of the non-linear ODE 𝐿𝑢 + 𝐹(𝑢) = 0  with    

𝑢(0) = 𝑢(𝐾) = 1. 

Proof. We will present the proof which gives an explicit expression for the 

constant 𝑐𝐾  appearing in the asymptotics for the survival probability in 

Proposition (1.2.8). We outline a heuristic derivation of the explicit constant 𝑐𝐾 in 

Proposition (1.2.9) which will give the intuition for the rigorous proofs presented 

subsequently. 

Let us now come to the rigorous  proof. Recall that the backbone (𝑋, 𝑷𝐵,𝐾) is the 

process constructed in steps (i)-(iii) in Theorem (1.1.9), which was further 
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characterised in Proposition (1.1.11). First, we need to confirm the conjecture that 

the number of particles in (𝑋, 𝑷𝒙
𝐵,𝐾) grows at rate 𝜆(𝐾). 

By Lemma (1.2.7) and (1.2.8), we get the following bounds on  𝜆(𝐾) 

∫ 𝐹𝐾
𝐵′

(1, 𝑦)Π𝐾
𝐵(𝑦)𝑑𝑦

𝐾

0

≤ 𝜆(𝐾) ≤ ∫ 𝐹𝐾
𝐵′

(1, 𝑦)Π𝐾
𝐵,∗(𝑦)𝑑𝑦

𝐾

0

,            (42) 

where Π𝐾
𝐵 and Π𝐾

𝐵,∗
 were defined in (37). By Proposition (1.1.8), we have, as 𝐾 ↓

𝐾0, 

Π𝐾
𝐵(𝑦) =

𝑝𝐾(𝑦)2𝑒−2𝜇𝑦

∫ 𝑝𝐾(𝑧)2𝑒−2𝜇𝑧𝑑𝑧
𝐾

0

~
2

𝐾0
sin2(𝜋𝑦/𝐾) = Π𝐾0

𝐵,∗(𝑦),         (43) 

where we have used that the asymptotics in Proposition (1.1.8) hold uniformly to 

deal with the integral in the denominator of the second term in (43). The 

uniformity in Proposition (1.1.8) also ensures that (43) holds uniformly for all 𝑦 ∈

(0, 𝐾0). Further 

lim
𝑠↑1

𝐹(𝑠)

𝑠(𝑠 − 1)
= lim

𝑠↑1

𝛽(∑ 𝑞𝑛𝑠𝑛
𝑛≥2 − 1)

𝑠 − 1
= lim

𝑠↑1
𝛽 ∑ 𝑞𝑛𝑛𝑠𝑛−1

𝑛≥2

= (𝑚 − 1)𝛽, 

where we applied L'Hôpitals rule in the second equality above. Then, together 

with Proposition (1.1.8), as 𝐾 ↓ 𝐾0, 

𝐹𝐾
𝐵′

(1, 𝑦) = (𝑚 − 1)𝛽 +
𝐹(1 − 𝑝𝐾(𝑦))

𝑝𝐾(𝑦)
 

~(𝑚 − 1)𝛽𝑝𝐾(𝑦)~(𝑚 − 1)𝛽𝑐𝐾 sin(𝜋𝑦/𝐾0) 𝑒𝜇𝑦 .           (44) 

Note that 
𝐹(1−𝑝𝐾(𝑦))

𝑝𝐾(𝑦)
= −

𝐹(1)−𝐹(1−𝑝𝐾(𝑦))

1−(1−𝑝𝐾(𝑦))
. Convexity of 𝐹  yields then that 

|
𝐹(1−𝑝𝐾(𝑦))

𝑝𝐾(𝑦)
| is bounded by (𝑚 − 1)𝛽. Thus |𝐹𝐾

𝐵′
(1, 𝑦)| ≤ 2(𝑚 − 1)𝛽 and we can 

appeal to bounded convergence as we take the limit in (42). With (43) and (44) we 

get 

𝜆(𝐾)~𝑐𝐾

2(𝑚 − 1)𝛽

𝐾0
∫ sin3(𝜋𝑦/𝐾0) 𝑒𝜇𝑦𝑑𝑦

𝐾0

0

,       as 𝐾 ↓ 𝐾0. 

Evaluating the integral gives 
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𝜆(𝐾)~𝑐𝐾

12(𝑚 − 1)𝛽𝜋3(𝑒𝜇𝐾0 + 1)

(𝐾0
2𝜇2 + 𝜋2)(𝐾0

2𝜇2 + 9𝜋2)
,       as 𝐾 ↓ 𝐾0. 

Finally, 𝜆(𝐾)~𝜋2(𝐾 − 𝐾0)𝐾0
−3 as 𝐾 ↓ 𝐾0 which follows from the linearization 

      𝜆(𝐾) = (𝑚 − 1)𝛽 − 𝜇2/2 − 𝜋2/2𝐾2 =
𝜋2

2𝐾0
2 −

𝜋2

2𝐾2
 

=
𝜋2(𝐾 − 𝐾0 + 𝐾0)2

2𝐾0
2𝐾2

−
𝜋2𝐾0

2

2𝐾0
2𝐾2

=
𝜋2(𝐾 − 𝐾0)

2𝐾0𝐾2
−

𝜋2(𝐾 − 𝐾0)2

2𝐾0
2𝐾2

 

and noting that the first term in the last line is the leading order term as 𝐾 ↓ 𝐾0. 

This completes the proof.                         

Theorem (1.2.10) [1]: 

Let 𝑥 ∈ (0, 𝐾0). Consider a process 𝑋∗ = (𝑋𝑡
∗, 𝑡 ≥ 0) which evolves as follows. 

𝑋∗  is initiated from a single particle at 𝑥  performing a Brownian motion 

conditioned to stay in (0, 𝐾0), i.e. a strong Markov process with infinitesimal 

generator  

𝐿𝐾0

∗ =
1

2

𝑑2

𝑑𝑥2
+

𝜋/𝐾0

tan(𝜋𝑥/𝐾0)

𝑑

𝑑𝑥
,                         (45) 

defined for all 𝑢 ∈ 𝐶2(0, 𝐾0). Along its path we immigrate �̃� independent copies 

of (𝑋, 𝑃𝐾)  at rate 𝑚𝛽  where �̃�  has the size-biased offspring distribution    

(�̃�𝑘, 𝑘 = 0, 1, … ) with 

�̃�𝑘 = 𝑞𝑘+1

𝑘 + 1

𝑚
, 𝑘 ≥ 0. 

Denote the law of 𝑋∗ by 𝑃𝑥
∗. Then, for any fixed time 𝑇 > 0, the law of  (𝑋𝑡 , 0 ≤ 𝑡 ≤ 𝑇) 

under the measure lim
𝐾↓𝐾0

𝑃𝑥
𝐾(· |𝜁 = ∞) is equal to (𝑋𝑡

∗, 0 ≤ 𝑡 ≤ 𝑇) under 𝑃𝑥
∗. 

Proof. Recall that (𝑋, 𝑷𝐷,𝐾) was defined as the process (𝑋, 𝑃𝐾) conditioned on 

the event of survival and characterized via the change of measure in (13) and 

Theorem (1.1.8). 

Fix a 𝐾′ > 𝐾0 and further denote by 𝑁𝑡|(0,𝐾) the set of particles whose ancestors 

(including themselves) have not exited (0, 𝐾) up to time 𝑡. 

Then, for 𝐾 ≤ 𝐾′, and for 𝑥 ∈ (0, 𝐾0) and 𝐴 ∈ ℱ𝑡, 

lim
𝐾↓𝐾0

𝑷𝑥
𝐷,𝐾(𝐴) = 𝐸𝑥

𝐾′
(𝟏𝐴 lim

𝐾↓𝐾0

1 − ∏ (1 − 𝑝𝐾(𝑥𝑢(𝑡)))𝑢∈𝑁𝑡|(0,𝐾)

𝑝𝐾(𝑥)
), 
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since 𝑁𝑡|(0,𝐾)  has the same law under 𝑃𝐾  and 𝑃𝐾′
. Suppose the particles in 

𝑁𝑡|(0,𝐾) are ordered, for instance according to their spatial positions, and we write 

𝑢1, … , 𝑢𝑁𝑡|(0,𝐾)
. We can now expand the term within the expectation on the right-

hand side as 

1 − ∏ (1 − 𝑝𝐾(𝑥𝑢(𝑡)))𝑢∈𝑁𝑡|(0,𝐾)

𝑝𝐾(𝑥)
 

= ∑
𝑝𝐾 (𝑥𝑢𝑖

(𝑡))

𝑝𝐾(𝑥)
∏ (1 − 𝑝𝐾 (𝑥𝑢𝑗

(𝑡)))

𝑗<𝑖

|𝑁𝑡|(0,𝐾)|

𝑖=1

      (46) 

which is bounded from above by |𝑁𝑡|(0,𝐾)|(𝑝𝐾(𝑥))
−1

. Recall the asymptotics for 

𝑝𝐾 in Theorem (1.2.1) and in particular Lemma (1.2.3), noting that these results 

hold uniformly in (0, 𝐾0). Since |𝑁𝑡|(0,𝐾)| has finite expectation, we can apply the 

Dominated convergence theorem to the expression in (46), and we get 

𝐸𝐾′
(𝟏𝐴 lim

𝐾↓𝐾0

∑
𝑝𝐾 (𝑥𝑢𝑖

(𝑡))

𝑝𝐾(𝑥)
∏ (1 − 𝑝𝐾 (𝑥𝑢𝑗

(𝑡)))

𝑗<𝑖

|𝑁𝑡|(0,𝐾)|

𝑖=1

) 

= 𝐸𝐾0 (𝟏𝐴 ∑
sin(𝜋𝑥𝑢𝑖

(𝑡)/𝐾0) 𝑒𝜇𝑥𝑢𝑖
(𝑡)

sin(𝜋𝑥/𝐾0) 𝑒𝜇𝑥

|𝑁𝑡|(0,𝐾)|

𝑖=1

). 

Hence, for 𝐴 ∈ ℱ𝑡, we arrive at 

lim
𝐾↓𝐾0

𝐸𝑥
𝐷,𝐾(𝐴) = 𝐸𝑥

𝐾0 (𝟏𝐴 lim
𝐾↓𝐾0

∑ sin (
𝜋𝑥𝑢(𝑡)

𝐾0
) 𝑒𝜇𝑥𝑢(𝑡)

𝑢∈𝑁𝑡

sin (
𝜋𝑥
𝐾0

) 𝑒𝜇𝑥
) 

= 𝐸𝑥
𝐾0 (𝟏𝐴 lim

𝐾↓𝐾0

𝑍𝐾0(𝑡)

𝑍𝐾0(0)
),            

where 𝑍𝐾0 is the martingale used in the change of measure in (5). The evolution 

under this change of measure is described in the paragraph following (5) and 

agrees with that of (𝑋∗, 𝑃𝑥
∗) as defined in Theorem (1.2.10).                   
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Recall from (1) that the infinitesimal generator 𝐿 is given as 𝐿 =
1

2

𝑑2

𝑑𝑥2
− 𝜇

𝑑

𝑑𝑥
, 𝑥 ∈

(0, 𝐾0) , defined for all functions 𝑢 ∈ 𝐶2(0, 𝐾)  with 𝑢(0 +) = 𝑢(𝐾 −) = 0 . 

Changing the domain to 𝑢 ∈ 𝐶2(0, 𝐾)  with 𝑢′′(0 +) = 𝑢′′(𝐾 −) = 0 , then 𝐿 

corresponds to Brownian motion with absorption (instead of killing) at 0 and 𝐾. 

For technical reason, we will assume from now on that 𝓟𝐾 = {𝓟𝑡
𝐾 , 𝑡 ≥ 0} is the 

corresponding diffusion semi-group of Brownian motion with absorption and is 

therefore conservative. Note that all the results presented for branching Brownian 

motion with killing at 0 and 𝐾 also hold in the setting of absorption at 0 and 𝐾 

when we restrict the process with absorption to particles within (0, 𝐾) , in 

particular when defining 𝑁𝑡 as the number of particles who are alive and have not 

been absorbed at time 𝑡. 

Suppose 𝑌 = {𝑌𝑡 , 𝑡 ≥ 0} is a Super-Brownian motion with associated semi-group 

𝓟𝐾 and branching mechanism 𝜓 of the form 

𝜓(𝜆) = −𝛼𝜆 + 𝛽𝜆2 + ∫ (𝑒−𝜆𝑦 − 1 + 𝜆𝑦)Π(𝑑𝑦)
∞

0

,    𝜆 ≥ 0, 

where 𝛼 = −𝜓′(0 +) ∈ (0, ∞), 𝛽 ≥ 0 and Π is a measure concentrated on (0, ∞) 

satisfying ∫ (𝑥⋀𝑥2)Π(𝑑𝑥)
(0,∞)

< ∞ . For an initial configuration 𝜂 ∈ ℳ𝑓(0, 𝐾) , 

the space of finite measures supported on (0, 𝐾), we denote the law of 𝑌 by �̃�𝜂
𝐾. 

Since 𝛼 = −𝜓′(0 +) > 0 , the function 𝜓  is the branching mechanism of a 

supercritcal continuous-state branching process (CSBP), say 𝑍 . We assume 

henceforth that 𝜓 satisfies the non-explosion condition ∫ |𝜓(𝑠)|−1𝑑𝑠
0+

= ∞ and 

further that 𝜓(∞) = ∞. The last condition, together with 𝜓′(0 +) < 0, ensures 

that 𝜓 has a unique positive root 𝜆∗. 

The parameter 𝜆∗ is the survival rate of 𝑍 in the sense that the probability of the 

event { lim
𝑡→∞

𝑍𝑡 = 0} given 𝑍0 = 𝑥 is 𝑒−𝜆∗𝑥 , which is strictly positive. We further 

assume from now on that ∫ (𝜓(𝑠))
−1

𝑑𝑠
+∞

< ∞, which guarantees that the event 

{ lim
𝑡→∞

𝑍𝑡 = 0} agrees with the event of extinction, that is                   {∃𝑡 > 0: 𝑍𝑡 =

0} a.s. This implies in turn that, for the Super-Brownian motion 𝑌, the event of 

becoming extinguished and the event of extinction agree �̃�𝐾-a.s. We denote the 

event of extinction of 𝑌 by 𝜀 = {∃𝑡 > 0: 𝑌𝑡(0, 𝐾) = 0}, where 𝑌𝑡(0, 𝐾) is the total 
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mass within (0, 𝐾) at time 𝑡. We can characterise the �̃�𝜂
𝐾-superdiffusion via its 

Laplace functional. 

Lemma (1.2.11) [1]: 

For all 𝑓 ∈ 𝐵+(0, 𝐾), 

�̃�𝑥
𝐾(𝑒−〈𝑓,𝑌𝑡〉) = 𝑒−〈𝑢𝑓

𝐾(∙,𝑡),𝜂〉,           𝜂 ∈ ℳ𝑓(0, 𝐾),    𝑡 ≥ 0, 

where �̃�𝑓
𝐾(𝑥, 𝑡) is the unique non-negative solution to the semi-group equation 

�̃�𝑓
𝐾(𝑥, 𝑡) = 𝒫𝑡

𝐾[𝑓(∙)](𝑥) − ∫ 𝒫𝑡−𝑠
𝐾 [𝜓 (�̃�𝑓

𝐾(∙, 𝑠))] (𝑥)𝑑𝑠
𝑡

0

.                (47) 

We call the function �̃�𝑓
𝐾(𝑥, 𝑡) the Laplace functional of (𝑌, �̃�𝜂

𝐾). We have used the 

notation 〈𝑓, 𝜂〉 = ∫ 𝑓(𝑥)𝜂(𝑑𝑥)
𝐾

0
, for 𝜂 ∈ ℳ𝑓[0, 𝐾]. We define the survival rate 

𝑤𝐾 of the �̃�𝐾-superdiffusion as the function satisfying 

�̃�𝑥
𝐾(𝜀) = exp{−𝑤𝐾(𝑥)} ,          for 𝜂 ∈ ℳ𝑓[0, 𝐾]                    (48) 

and, taking 𝑓 ≡ 𝜃 constant in Lemma 6, we can deduce that 

− log �̃�𝑥
𝐾(𝜀) = lim

𝑡→∞
lim

𝜃→∞
〈�̃�𝜃(∙), 𝜂〉 = 〈𝑤𝐾 , 𝜂〉. 

It can be derived, again by Lemma (1.2.11), that 𝑤𝐾 is a solution to 

𝐿𝑢 − 𝜓(𝑢) = 0    with    𝑢(0) = 𝑢(𝐾) = 0                        (49) 

Analogous to Theorem (1.1.5), it is possible to give a necessary and sufficient 

condition for a positive survival rate which follows from a spine change of 

measure argument in the spirit, now using the �̃�𝑥
𝐾 -martingale 

�̃�𝐾(𝑡) = ∫ sin(𝜋𝑥/𝐾) 𝑒𝜇𝑥−𝜆(𝐾)𝑡𝑌𝑡(𝑑𝑥)
𝐾

0

,    𝑡 ≥ 0,           (50) 

where here 𝜆(𝐾) = −𝜓′(0 +) − 𝜇2/2 − 𝜋2/2𝐾2 . Assuming henceforth in 

addition that ∫ 𝑥 log 𝑥 ∏(𝑑𝑥)
∞

0
< ∞ , one can then show that �̃�𝐾  is an 𝐿1(�̃�𝑥

𝐾) 

martingale if and only if 𝜆(𝐾) > 0. It can thus be concluded that 𝑤𝐾 is positive if 

𝜆(𝐾) > 0. 
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Let us now establish the connection between the �̃�𝐾 -superdiffusion and a 𝑃𝐾 -

branching diffusion via the following relations. Set 

𝐹(𝑠) =  
1

𝜆∗
𝜓(𝜆∗(1 − 𝑠)),    𝑠 ∈ (0,1),                               (51) 

�̅�𝐾(𝑥) =  𝜆∗𝑝𝐾(𝑥),                𝑥 ∈ (0, 𝐾),                               (52) 

where 𝑝𝐾 is the survival probability of the 𝑃𝐾-branching diffusion. 

We can show that (51) is the branching mechanism of a Galton-Watson process 

and they identify the Galton-Watson process with branching mechanism 𝐹 of (51) 

as the backbone of the CSBP with branching mechanism 𝜓. If we can show that 

�̅�𝐾 in (52) is indeed the survival rate 𝑤𝐾 then the following Theorem is a direct 

consequence of Theorem (1.1.5) and Theorem (1.2.1). 

Theorem (1.2.12) [1]: 

 (i) If 𝜇 < √−2𝜓′(0 +)  and 𝐾 > 𝐾0  where 𝐾0 ≔ 𝜋(√−2𝜓′(0 +))
−1

, then 

𝑤𝐾(𝑥) > 0 for all 𝑥 ∈ (0, 𝐾); otherwise 𝑤𝐾(𝑥) = 0 for all 𝑥 ∈ (0, 𝐾). 

(ii)  Uniformly for 𝑥 ∈ (0, 𝐾0), as 𝐾 ↓ 𝐾0, 

𝑤𝐾(𝑥)~𝜆∗(𝐾 − 𝐾0)
(𝐾0

2𝜇2 + 𝜋2)(𝐾0
2𝜇2 + 9𝜋2)

12𝜓′(0 +)𝜋𝐾0
3(𝑒𝜇𝐾0 + 1)

sin(𝜋𝑥/𝐾0) 𝑒𝜇𝑥.      (53) 

Proof. The relation in (51) gives (𝑚 − 1)𝛽 = 𝐹′(1 −) = −𝜓′(0 +) and hence 

the 𝐾0 in Theorem (1.2.12) is the same as the one in Theorem (1.1.5) and the 𝜆(𝐾) 

defined earlier agrees with 𝜆(𝐾) as in Proposition (1.1.3). In particular, 𝜆(𝐾) > 0 

if and only if 𝜇 < √−2𝜓′(0 +) and 𝐾 > 𝐾0. 

Suppose 𝜇 < √−2𝜓′(0 +) and 𝐾 > 𝐾0 . By Remark (1.1.12), 𝑝𝐾  is the unique 

non-trivial solution to 𝐿(𝑢) − 𝐹(1 − 𝑢) = 0  on (0, 𝐾)  with 𝑢(0) = 𝑢(𝐾) = 0 . 

Using (51) it follows then that �̅�𝐾 given by (52) solves (49) and the uniqueness 

carries over. That is, for 𝜇 < √−2𝜓′(0 +) and 𝐾 > 𝐾0 , �̅�𝐾  is the unique non-

trivial solution to (49). On the other hand, we know that 𝑤𝐾 solves (49) and, by 

the spine argument we mentioned after (50), we know that 𝑤𝐾is positive within 

(0, 𝐾). By uniqueness, we have �̅�𝐾 = 𝑤𝐾.  

Suppose 𝜇 ≥ √−2𝜓′(0 +) or 𝐾 ≤ 𝐾0. Then 𝑝𝐾  is identically zero and (6) does 

not have a non-trivial solution. By the transformation in (51), the same holds true 
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for (49) and since 𝑤𝐾is always a solution to (49) it must be equal to zero. Thus 

(52) holds true again. 

The result is now a direct consequence of Theorems (1.1.5) and (1.2.1).               

We will now outline the backbone decomposition for the �̃�𝜂
𝐾 –superdiffusion 

which consists of a copy of (𝑌, �̃�𝜂
𝐾) conditioned on becoming extinct and further 

independent copies of (𝑌, �̃�𝜂
𝐾) conditioned on becoming extinct which immigrate 

along a 𝑷𝐵,𝐾-branching diffusion. 

Recall that the 𝑷𝐵,𝐾-branching diffusion is also the backbone of the 𝑃𝐾-branching 

diffusion (Theorem (1.1.9)). 

Let us begin by studying the process (𝑌, �̃�𝜂
𝐾) conditioned on becoming extinct. 

Proposition (1.2.13) [1]: 

Define for 𝜂 ∈ ℳ𝑓[0, 𝐾] and 𝑡 ≥ 0, 

𝑑�̃�𝜂
𝑅,𝐾

𝑑�̃�𝜂
𝐾

|
ℱ̃𝑡

=
𝑒−〈𝑤𝐾,𝑌𝑡〉

𝑒−〈𝑤𝐾,𝜂〉
, 

where (ℱ̃𝑡 , 𝑡 ≥ 0) is the natural filtration generated by (𝑌, �̃�𝜂
𝐾). Then (𝑌, �̃�𝜂

𝑅,𝐾) is 

equal in law to (𝑌, �̃�𝜂
𝐾(∙ |𝜀)). Further (𝑌, �̃�𝜂

𝑅,𝐾) has spatially dependent branching 

mechanism 

𝜓𝑅,𝐾(𝑠, 𝑥) = 𝜓(𝑠 + 𝑤𝐾(𝑥)) − 𝜓(𝑤𝐾(𝑥)),     𝑠 ≥ 0 and 𝑥 ∈ [0, 𝐾], 

and diffusion semigroup 𝒫𝐾. 

Proof.  

We point out that the motion of the �̃�𝑅,𝐾- superdiffusion remains unchanged and it 

is therefore different from the motion of the 𝑷𝑅,𝐾 -branching diffusion in 

Proposition (1.1.7). However, set �̃�𝑓
𝑅(𝑥, 𝑡) = 𝜆∗(1 − 𝑝𝐾(𝑥)) (1 − 𝑢𝑓

𝑅(𝑥, 𝑡)) , 

where 𝑢𝑓
𝑅  is the Laplace functional of the �̃�𝑅,𝐾 -branching diffusion (Laplace 

functionals for branching diffusions are defined in a similar fashion to Lemma 

(1.2.11). Then together with the relations (51) and (52) we can find that �̃�𝑓
𝑅 is the 

Laplace functional of the �̃�𝑅,𝐾-superdiffusion. Thus the �̃�𝑅,𝐾-superdiffusion can 
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in this way be seen as the analogue of the 𝑷𝑅,𝐾 -branching diffusion in the 

superdiffusion setting. 

We need to introduce some more notation before we can establish the backbone 

decomposition. Associated to the laws {�̃�𝛿𝑥

𝑅,𝐾 , 𝑥 ∈ [0, 𝐾]} is the family of the so-

called excursion measures {ℕ𝑥
𝑅,𝐾 , 𝑥 ∈ [0, 𝐾]}, defined on the same measurable 

space, which satisfy 

ℕ𝑥
𝑅,𝐾(1 − exp{−〈𝑓, 𝑌𝑡〉}) = − log �̃�𝛿𝑥

𝑅,𝐾(exp{−〈𝑓, 𝑌𝑡〉}),         (54) 

for any 𝑓 ∈ 𝐵+[0, 𝐾]  and 𝑡 ≥ 0 . Intuitively speaking, the branching property 

implies that �̃�𝑥
𝑅,𝐾

 is an infinitely divisible measure on the path space of 𝑌 and (54) 

is a ’Lévy–Khintchine’ formula in which ℕ𝑥
𝑅,𝐾

 plays the role of the Lévy measure. 

In this sense, ℕ𝑥
𝑅,𝐾

 can be considered as the rate at which �̃�𝑅,𝐾-superdiffusions 

with infinitesimally small initial mass contribute to a unit mass at position 𝑥 . 

Further we define, for 𝑛 ≥ 2, 𝑥 ∈ (0, 𝐾), 

𝜌𝑛(𝑑𝑦, 𝑥) =
𝛽𝑤𝐾(𝑥)2𝛿0(𝑑𝑦)𝟏{𝑛=2} + 𝑤𝐾(𝑥)𝑛 𝑦𝑛

𝑛!
𝑒𝑤𝐾(𝑥)𝑦 ∏(𝑑𝑦)

𝑞𝑛
𝐵,𝐾(𝑥)𝑤𝐾(𝑥)𝛽𝐵,𝐾(𝑥)

, 

which will turn out to be the distribution of the initial mass of the immigrating 

�̃�𝑅,𝐾-superdiffusions at branch points of the backbone on the event of 𝑛 offspring. 

Definition (1.2.14) [1]: 

Let 𝐾 > 𝐾0  and 𝑣 ∈ ℳ𝑎(0, 𝐾) . Let 𝑋𝐵 = (𝑋𝑡
𝐵, 𝑡 ≥ 0)  be a 𝑷𝑅,𝐾 - branching 

diffusion with initial configuration 𝑣 . Suppose 𝐼�̃�𝑅,𝐾
= (𝐼𝑡

�̃�𝑅,𝐾
, 𝑡 ≥ 0) ,          

𝐼ℕ𝑅,𝐾
= (𝐼𝑡

ℕ𝑅,𝐾
, 𝑡 ≥ 0)  and 𝐼𝜌 = (𝐼𝑡

𝜌
, 𝑡 ≥ 0)  are three immigration processes 

(defined below) which are, conditionally on 𝑋𝐵, independent of each other. Then 

we define the process 𝑌𝐷 = (𝑌𝑡
𝐷, 𝑡 ≥ 0) by 

𝑌𝑡
𝐷 = 𝐼𝑡

ℕ𝑅,𝐾
+ 𝐼�̃�𝑅,𝐾

+ 𝐼𝜌,         𝑡 ≥ 0 

and denote its law by �̃�𝑣
𝐷,𝐾

. 

The immigration processes are constructed as follows: 

(i) Continuous immigration: The process 𝐼ℕ𝑅,𝐾
= (𝐼𝑡

ℕ𝑅,𝐾
, 𝑡 ≥ 0) is defined as 
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𝐼𝑡
ℕ𝑅,𝐾

= ∑ ∑ 𝑌𝑡−𝑠
(1,𝑢,𝑠)

𝑢∈𝜏𝑢
𝐵^𝑡≤𝑠≤𝜎𝑢

𝐵^𝑡𝑢∈𝜏𝐵

,        𝑡 ≥ 0, 

where, given 𝑋𝐵, independently for each 𝑢 ∈ 𝜏𝐵 such that 𝜏𝑢
𝐵 < 𝑡, the processes 

𝑌(1,𝑢,𝑠) are countable in number and correspond to Poissonian immigration along 

the space-time trajectory {(𝑥𝑢
𝐵(𝑠), 𝑠): 𝑠 ∈ (𝜏𝑢

𝐵, 𝜎𝑢
𝐵]} with rate 2𝛽𝑑𝑠 × 𝑑ℕ𝑥𝑢

𝐵(𝑠)
𝑅 . 

(ii) Discontinuous immigration: The process 𝐼�̃�𝑅,𝐾
= (𝐼𝑡

�̃�𝑅,𝐾
, 𝑡 ≥ 0) is defined as 

𝐼𝑡
�̃�𝑅,𝐾

= ∑ ∑ 𝑌𝑡−𝑠
(2,𝑢,𝑠)

𝑢∈𝜏𝑢
𝐵^𝑡≤𝑠≤𝜎𝑢

𝐵^𝑡𝑢∈𝜏𝐵

,        𝑡 ≥ 0, 

where, given 𝑋𝐵 , independently for each 𝑢 ∈ 𝜏𝐵  such that 𝜏𝑢
𝐵 < 𝑡 the processes 

𝑌(2,𝑢,𝑠) are countable in number and correspond to Poissonian immigration along 

the space-time trajectory {(𝑥𝑢
𝐵(𝑠), 𝑠): 𝑠 ∈ (𝜏𝑢

𝐵, 𝜎𝑢
𝐵]}  with rate 𝑑𝑠 ×

∫ 𝑦 exp{−𝑤𝐾(𝑥𝑢
𝐵(𝑠))𝑦} ∏(𝑑𝑦)

∞

0
× 𝑑𝑃𝑦𝛿

𝑥𝑢
𝐵(𝑠)

𝑅,𝐾
. 

(iii) Immigration at branch points: The process 𝐼𝜌 = (𝐼𝑡
𝜌

, 𝑡 ≥ 0) is defined as 

𝐼𝑡
𝜌

= ∑ 1{𝜎𝑢
𝐵≤𝑡}𝑌

𝑡−𝜎𝑢
𝐵

(3,𝑢)

𝑢∈𝜏𝐵

,        𝑡 ≥ 0, 

where, given 𝑋𝐵, independently for each 𝑢 ∈ 𝜏𝐵 such that 𝜎𝑢
𝐵 ≤ 𝑡 the processes 

𝑌(3,𝑢)  is an independent copy of (𝑌, �̃�𝑌𝑢𝛿
𝑥𝑢

𝐵(𝜎𝑢)

𝑅,𝐾 )  issued at space-time position 

(𝑥𝑢
𝐵(𝜎𝑢), 𝜎𝑢). At a branch point of 𝑢 with 𝑛 ≥ 2 offspring the initial mass 𝑌𝑢 is 

distributed according to 𝜌𝑛(𝑑𝑦, 𝑥𝑢
𝐵(𝜎𝑢)). 

Theorem (1.2.15) [1]: (Backbone decomposition) 

For 𝐾 > 𝐾0 and 𝜂 ∈ ℳ𝑓[0, 𝐾]. Let 𝑌𝑅 = (𝑌𝑡
𝑅 , 𝑡 ≥ 0) be an independent copy of 

(𝑌, �̃�𝜂
𝑅,𝐾). 

Suppose that 𝜈  is a Poisson random measure on (0, 𝐾)  with intensity 

𝑤𝐾(𝑥)𝜂(𝑑𝑥). Let (𝑌𝐷, �̃�𝜈
𝐷,𝐾) be the process constructed in Definition 

1. Define the process �̃� = (�̃�𝑡, 𝑡 ≥ 0) by 

�̃�𝑡 = 𝑌𝑡
𝑅 + 𝑌𝑡

𝐷,         𝑡 ≥ 0,                                     (55) 
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and denote its law by �̃�𝜂
𝐾. Then the process (�̃�, �̃�𝜂

𝐾) is Markovian and equal in law 

to (𝑌, �̃�𝜂
𝐾). 

Proof. In principle it should be possible to get the proof by using that (𝑌, �̃�𝜂
𝐾) 

conditioned on non-extinction arises from the martingale change of measure 

𝑑�̃�𝜈
𝐾

𝑑�̃�𝜈
𝐾

|
ℱ̃𝑡

=
1 − 𝑒−〈𝑤𝐾,𝑌𝑡〉

1 − 𝑒−〈𝑤𝐾,𝜈〉
,      𝑡 ≥ 0, 

and showing that (𝑌, �̃�𝜈
𝐾)  agrees in law with the process (𝑌𝐷, �̃�𝜈

𝐷,𝐾)  of    

Definition (1.2.14). 

The analogy between the 𝑃𝐾-branching diffusion and the �̃�𝐾-superdiffusion 

indicates that there is a quasi-stationary limit result equivalent to Theorem 

(1.2.10). Let us begin with constructing the analogue of the process (𝑋∗, 𝑃∗) in 

Theorem (1.2.10) for the superdiffusion setting. We introduce the family of ℕ-

measures now associated with the laws {�̃�𝛿𝑥

𝐾0 , 𝑥 ∈ [0, 𝐾0]}. Consider the family 

{ℕ𝑥
𝐾0 , 𝑥 ∈ [0, 𝐾0]} satisfying 

ℕ𝑥
𝐾0(1 − exp{−〈𝑓, 𝑌𝑡〉}) = − log �̃�𝛿𝑥

𝐾0(𝑒−〈𝑓,𝑌𝑡〉), 

for 𝑓 ∈ 𝐵+[0, 𝐾], 𝑡 ≥ 0. 

Let 𝜂 ∈ ℳ𝑓(0, 𝐾). Suppose 𝜉∗ = (𝜉𝑡
∗, 𝑡 ≥ 0) is a Brownian motion conditioned 

to stay in (0, 𝐾0) with initial position 𝑥 distributed according to 

sin(𝜋𝑥/𝐾0) 𝑒𝜇𝑥

∫ sin(𝜋𝑧/𝐾0) 𝑒𝜇𝑧𝜂(𝑑𝑧)
(0,𝐾0)

𝜂(𝑑𝑥),       𝑥 ∈ (0, 𝐾0).                     (56) 

Let 𝐼ℕ𝐾0
= (𝐼𝑡

ℕ𝐾0
, 𝑡 ≥ 0) and 𝐼�̃�𝐾0

= (𝐼𝑡
�̃�𝐾0

, 𝑡 ≥ 0) be two immigration processes 

(defined below) which, conditionally on 𝜉∗, are independent of each other. Then 

we define the process 𝑌𝑠 = (𝑌𝑡
𝑠, 𝑡 ≥ 0) by 

𝑌𝑡
𝑠 = 𝐼𝑡

ℕ𝐾0
+ 𝐼𝑡

�̃�𝐾0
,         𝑡 ≥ 0.                                         (57) 

The immigration processes 𝐼ℕ𝐾0
 and 𝐼�̃�𝐾0

 are defined pathwise as follows. 

(i) Continuous immigration: The process 𝐼ℕ𝐾0
= (𝐼𝑡

ℕ𝐾0
, 𝑡 ≥ 0) is defined as 
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𝐼𝑡
ℕ𝐾0

= ∑ 𝑌𝑡−𝑠
(ℕ,𝑠)

𝑠≤𝑡

,          𝑡 ≥ 0, 

where, given 𝜉∗, the processes 𝑌(ℕ,𝑠) are countable in number and correspond to 

Poissonian immigration along the space-time trajectory {(𝜉𝑠
∗, 𝑠): 𝑠 ≥ 0} with rate 

2𝛽𝑑𝑠 × 𝑑ℕ𝜉𝑠
∗

𝐾0 ; 

(ii) Discontinuous immigration: The process 𝐼�̃�𝐾0
= (𝐼𝑡

�̃�𝐾0
, 𝑡 ≥ 0) is defined as 

𝐼𝑡
�̃�𝐾0

= ∑ 𝑌𝑡−𝑠

(�̃�𝐾0 ,𝑠)

𝑠≤𝑡

,          𝑡 ≥ 0, 

where, given 𝜉∗, the processes 𝑌(�̃�𝐾0 ,𝑠) are countable in number and correspond to 

Poissonian immigration along the space-time trajectory {(𝜉𝑠
∗, 𝑠): 𝑠 ≥ 0} with 𝑑𝑠 ×

∫ 𝑦 ∏(𝑑𝑦)
∞

0
× �̃�𝑦𝛿𝜉𝑠

∗

𝐾0 . 

Then define the process 𝑌∗ = (𝑌𝑡
∗, 𝑡 ≥ 0) by setting 

𝑌𝑡
∗ = 𝑌𝑡

′ + 𝑌𝑡
𝑠,       𝑡 ≥ 0,                                     (58) 

where 𝑌′ is an independent copy of (𝑌, �̃�𝜂
𝐾0). We denote the law of 𝑌∗ by �̃�𝜂

∗. The 

evolution of 𝑌∗ under �̃�∗ can thus be seen as a path-wise description of Evans’ 

immortal particle picture for the critical width 𝐾0; for a similar construction of 

Evans’ immortal particle picture. 

Further, we note that (𝑌∗, �̃�𝜂
𝐾0) has the same law as 𝑌 under the measure which 

has martingale density �̃�𝐾0(𝑡) of (50) with respect to �̃�𝜂
𝐾0. 

Theorem (1.2.16) [1]: 

Let 𝐾 > 𝐾0  and 𝜂 ∈ ℳ𝑓[0, 𝐾]. For a fixed time 𝑡 ≥ 0, the law of 𝑌𝑡  under the 

measure lim
𝐾↓𝐾0

�̃�𝜂
𝐾 (∙ | lim

𝑡→∞
‖𝑌𝑡‖ > 0) is equal to 𝑌𝑡

∗ under �̃�𝜂
∗. 

Proof. By Theorem (1.2.15), (𝑌, �̃�𝜂
𝐾) is equal in law to (�̃�, �̃�𝜂

𝐾). The latter is 

equal in law to (𝑌, �̃�𝜂
𝐾) where 

𝑑�̃�𝜂
𝐾

𝑑�̃�𝜂
𝐾

|
ℱ̃𝑡

=
1 − 𝑒−〈𝑤𝐾,𝑌𝑡〉

1 − 𝑒−〈𝑤𝐾,𝜂〉
,      𝑡 ≥ 0. 
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The uniform asymptotics for 𝑤𝐾 in Theorem (1.2.12) let us conclude that 

lim
𝐾↓𝐾0

1 − 𝑒−〈𝑤𝐾,𝑌𝑡〉

1 − 𝑒−〈𝑤𝐾,𝜂〉
= lim

𝐾↓𝐾0

〈𝑤𝐾 , 𝑌𝑡〉

〈𝑤𝐾 , 𝜂〉
=

∫ sin(𝜋𝑥/𝐾0) 𝑒𝜇𝑥𝑌𝑡(𝑑𝑥)
𝐾0

0

∫ sin(𝜋𝑥/𝐾0) 𝑒𝜇𝑥𝜇(𝑑𝑥)
𝐾0

0

=
�̃�𝐾0(𝑡)

�̃�𝐾0(0)
, 

where �̃�𝐾0 is the martingale in (50). As mentioned before, the law of 𝑌 under a 

change of measure with �̃�𝐾0 is equal to (𝑌∗, �̃�𝜂
𝐾0).                      
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Chapter 2 

Critical Branching Brownian Motion with Absorption: Particle 

Configurations 

We consider critical branching Brownian motion with absorption, in which 

there is initially a single particle at 𝑥 > 0, particles move according to independent 

one-dimensional Brownian motions with the critical drift, and particles are 

absorbed when they reach zero. We obtain asymptotic results concerning the 

behavior of the process before the extinction time. We estimate the number of 

particles in the system at a given time. 

Section (2.1): Preliminary Estimates 

We consider branching Brownian motion with absorption. At time zero, 

there is a single particle at 𝑥 > 0. Each particle moves independently according to 

one-dimensional Brownian motion with a drift of −𝜇, and each particle 

independently splits into two at rate 1. Particles are absorbed when they reach the 

origin. With positive probability there are particles alive at all times if 𝜇 < √2, but 

all particles are eventually absorbed almost surely if 𝜇 ≥ √2. 

There has been a surge of renewed interest in this process. Some of this 

interest has been driven by connections between branching Brownian motion with 

absorption and the FKPP equation.  We used branching Brownian motion with 

absorption to establish existence and uniqueness results for the FKPP traveling-

wave equation. In other work, branching Brownian motion with absorption or a 

very similar process has been used to model a population undergoing selection. In 

this setting, particles represent individuals in a population, branching events 

correspond to births, the positions of the particles are the fitnesses of the 

individuals, and absorption at zero models the death of individuals whose fitness 

becomes too low. 

In this chapter, we consider branching Brownian motion with absorption in 

the critical case with 𝜇 = √2. This process is known to die out with probability 

one, but we are able to use techniques developed to obtain some new and rather 

precise results about the behavior of the process before the extinction time. We 

focus on asymptotic results about the number of particles, the position of the right-

most particle, and the configuration of particles as the position 𝑥 of the initial 

particle tends to infinity. Let 𝑁(𝑠) be the number of particles at time 𝑠, and let 

𝑋1(𝑠) ≥ 𝑋2(𝑠) ≥ ⋯ ≥ 𝑋𝑁(𝑠)(𝑠) denote the positions of the particles at time 𝑠. Let 

𝑌(𝑠) = ∑ 𝑒√2𝑋𝑖(𝑠)

𝑁(𝑠)

𝑖=1

.                                                      (1) 

Throughout the chapter, we will use the constants 
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𝜏 =
2√2

3𝜋2
,         𝑐 = 𝜏−1/3 = (

3𝜋2

2√2
)

1/3

.                              (2) 

 

Let 𝑡 = 𝜏𝑥3, which is approximately the extinction time of the process when 𝑥 is 

large. More precisely, it was shown that for all 𝜖 > 0, there is a positive constant 

𝛽 such that for sufficiently large 𝑥, the extinction time is between 𝑡 − 𝛽𝑥2 and 𝑡 +
𝛽𝑥2 with probability at least 1 − 𝜖. 

Our first result shows how the number of particles evolves over time. For times 𝑠 

between 𝐵𝑥2 and (1 − 𝛿)𝑡, where 𝐵 is a large constant and 𝛿 is a small constant, 

with high probability this result estimates the number of particles at time 𝑠 to 

within a constant factor. 

We now explain some of the contexts in which these result might be applied, and 

some related open problems that are raised by them. 

Yaglom limit laws. Let 𝑥 > 0 be fixed, and consider a branching Brownian 

motion with critical drift started from one particle at 𝑥. Then with high probability, 

the process dies out in finite time. But conditional on survival up to a large time 𝑡, 

what does the process look like? 

More precisely, what is the empirical distribution of particles at times 0 ≤ 𝑠 ≤ 𝑡? 

This problem is known as the Yaglom conditional limit law, in the case of 

ordinary branching processes.  

An interesting related question is the following: conditional upon survival 

up to time 𝑡, what is the actual number of particles at that time? Note that the 

results give sharp estimates, up to constants, for the probability of survival up to 

time 𝑡. 

Fleming-Viot processes. The process studied here (critical branching Brownian 

motion with absorption) shares several features with the Fleming-Viot process. 

In the case where the underlying motion is simple random walk with negative drift 

and absorption at 0. For that process the main question concerns the limiting 

behaviour of the empirical distribution of particles, which under fairly general 

conditions is believed to be the minimal quasi-stationary distribution of the 

underlying motion. For a recent verification of this in the case where the 

underlying motion is that of a subcritical branching process. We point out that the 

function 𝑒−√2𝑥 sin (𝜋𝑥 𝐿⁄ ) is precisely a Dirichlet eigen function of 

1

2
 

𝑑2

𝑑𝑥2
+ √2

𝑑

𝑑𝑥
, 

and corresponds to a quasi-stationary distribution of Brownian motion with drift 

−√2 in (0, ∞). It is in fact the minimal such distribution. 

Extreme configurations. Theorem (2.3.5) gives us information about the position 

of the rightmost particle at time 𝑠, and localises it to within 𝑂(1). A natural open 
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problem is to get a convergence in distribution for the position of the rightmost 

particle. More generally, one can ask about the distribution of the particle 

configuration as seen from the rightmost particle, or from the median of the 

rightmost particle. We point out that these questions also make sense in the nearly-

critical case, and that the proof of Theorem (2.3.5) can be adapted to that setting. 

Getting information about the extremal configurations particles is of interest, 

among other things, because of the role of these particles in the spin glass 

interpretation of these branching diffusions.  

In the following, we obtain or recall some preliminary estimates concerning 

branching Brownian motion in which particles are killed not only at the origin but 

also when they travel sufficiently far to the right. We will consider two cases. One 

is when the Brownian particles are killed at some level 𝐿 > 0. The other is when  

particles are killed when they reach 𝐿(𝑠) = 𝑐(𝑡 − 𝑠)1/3 for some 𝑠. 

As before, let 𝑁(𝑠) be the number of particles at time 𝑠, and denote the 

positions of the particles at time 𝑠 by  𝑋1(𝑠) ≥ 𝑋2(𝑠) ≥ ⋯ ≥ 𝑋𝑁(𝑠)(𝑠).  Define 

𝑌(𝑠) as in (1). Let (ℱ𝑠, 𝑠 ≥ 0) denote the natural filtration associated with the 

branching Brownian motion. Let 𝑞𝑠(𝑥, 𝑦) denote the density of the branching 

Brownian motion, meaning that if initially there is a single particle at 𝑥 and 𝐴 is a 

Borel subset of (0, ∞), then the expected number of particles in 𝐴 at time 𝑠 is  

∫ 𝑞𝑠(𝑥, 𝑦)
𝐴

𝑑𝑦. 

Let 𝐿 > 0, we consider here the case in which particles are killed upon reaching 

either 0 or 𝐿. The following result is Lemma (2.1.1). 

Lemma (2.1.1) [2]: 

For 𝑠 > 0 and , 𝑦 ∈ (0, 𝐿) ), let 

𝑝𝑠(𝑥, 𝑦) =
2

𝐿
𝑒−𝜋2𝑠/2𝐿2

𝑒√2𝑥 sin (
𝜋𝑥

𝐿
) 𝑒−√2𝑦 sin (

𝜋𝑦

𝐿
). 

and define 𝐷𝑠(𝑥, 𝑦) so that 𝑞𝑠(𝑥, 𝑦) = 𝑝𝑠(𝑥, 𝑦)(1 + 𝐷𝑠(𝑥, 𝑦)). 

Then for all 𝑥, 𝑦 ∈ (0, 𝐿), we have 

|𝐷𝑠(𝑥, 𝑦)| ≤ ∑ 𝑛2𝑒−𝜋2(𝑛2−1)𝑠/2𝐿2

∞

𝑛=2

                                   (3) 
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Lemma (2.1.1) allows us to approximate 𝑞𝑠(𝑥, 𝑦) by 𝑝𝑠(𝑥, 𝑦) when 𝑠 is 

sufficiently large. Lemma (2.1.2) below collects some further results about the 

density 𝑞𝑠(𝑥, 𝑦). 

Lemma (2.1.2) [2]: 

Fix a positive constant 𝑏 > 0. There exists a constant 𝐶 (depending on 𝑏) such that 

for all 𝑠 such that 𝑠 ≥ 𝑏𝐿2, we have 

𝑞𝑠(𝑥, 𝑦) ≤ 𝐶𝑝𝑠(𝑥, 𝑦) ,   ∀𝑥, 𝑦 ∈ [0, 𝐿]                              (4) 

and for all 𝑠 such that 𝑠 ≥ 𝑏𝐿2, we have 

𝑞𝑠(𝑥, 𝑦) ≤
𝐶𝐿3

𝑠3/2
𝑝𝑠(𝑥, 𝑦) ,   ∀𝑥, 𝑦 ∈ [0, 𝐿]                              (5) 

The following inequalities hold in general (for all 𝑠 > 0 and 𝑥, 𝑦 ∈ [0, 𝐿]): 

𝑞𝑠(𝑥, 𝑦) ≤
𝐶𝑒√2(𝑥−𝑦)𝑒−(𝑥−𝑦)2/2𝑠

𝑠1/2
                                     (6) 

∫ 𝑞𝑠(𝑥, 𝑦)

𝐿

0

𝑑𝑦 ≤ 𝑒𝑠                                                          (7) 

∫ 𝑞𝑠(𝑥, 𝑦)

∞

0

𝑑𝑠 ≤
2𝑒√2(𝑥−𝑦)𝑥(𝐿−𝑦)

𝐿
                                    (8) 

∫ 𝑒√2𝑦𝑞𝑠(𝑥, 𝑦)

𝐿

0

𝑑𝑦 ≤ 𝑒√2𝑥min {1,
𝐿−𝑥

𝑠1/2
}                      (9) 

Proof. Equation (4) holds because the right-hand side of (3) is bounded by a 

constant when 𝑠/𝐿2 ≥ 𝑏. The result (5) is established by breaking the sum on the 

right-hand side of (3) into blocks of size approximately 𝐿/√𝑠. Equation (6) is 

obtained by comparing 𝑞𝑠(𝑥, 𝑦) to the density of standard Brownian motion at 

time 𝑠. Equation (7) follows from the fact that the expected number of particles at 

time 𝑠 is at most 𝑒𝑠 because branching occurs at rate 1. Equation (8) is proved 

using Green's function estimates for Brownian motion in a strip. 

Finally, to prove (9), let 𝑣𝑠(𝑥, 𝑦) be the density of Brownian motion killed at 0 and 

𝐿, meaning that if 𝐴 is a Borel subset of (0, 𝐿), then the probability that a 
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Brownian motion started at 𝑥 is in 𝐴 at time 𝑠 and has not hit 0 or 𝐿 before time 𝑠 

is ∫ 𝑣𝑠(𝑥, 𝑦)
𝐴

𝑑𝑦. We have 

𝑞𝑠(𝑥, 𝑦) = 𝑒√2(𝑥−𝑦)𝑣𝑠(𝑥, 𝑦).                             (10) 

Let (𝐵(𝑡), 𝑡 ≥ 0) be standard Brownian motion with 𝐵(0) = 𝑥. Then, by the 

Reflection Principle, 

∫ 𝑣𝑠(𝑥, 𝑦)

𝐿

0

𝑑𝑦 = ℙ(𝐵(𝑡) ∈ (0, 𝐿)  for all  𝑡 ∈ [0, 𝑠]) 

≤ ℙ (max
0≤𝑡≤𝑠

𝐵(𝑡) ≤ 𝐿) 

= 2 ∫ 1

√2𝜋𝑠
𝑒−𝑦2/2𝑠𝑑𝑦

𝐿−𝑥

0

 

≤ min {1,
𝐿−𝑥

𝑠1/2
},                                                            (11) 

and (9) follows from (10) and (11).               

Let  

𝑍(𝑠) = ∑ 𝑒√2𝑋𝑖(𝑠)

𝑁(𝑠)

𝑖=1

sin (
𝜋𝑋𝑖(𝑠)

𝐿
). 

Lemma (2.1.3) [2]: 

For all initial configurations of particles at time zero, we have 

𝔼[𝑍(𝑠)] = 𝑒−𝜋2𝑠/2𝐿2
𝑍(0)                                                     (12) 

and 

𝔼[𝑌(𝑠)] =
4

𝜋
𝑒−𝜋2𝑠/2𝐿2

𝑍(0)(1 + 𝐷(𝑠)),                                      (13) 

where |𝐷(𝑠)| is bounded above by the right-hand side of (3). 
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Lemma (2.1.4) [2]: 

Fix a constant 𝑏 > 0. Suppose initially there is a single particle at 𝑥. Then there 

exists a positive constant 𝐶, depending on 𝑏 but not on 𝐿 or 𝑥, such that for all 𝑠 ≥

𝑏𝐿2, 

𝔼[𝑍(𝑠)2] ≤
𝐶𝑒√2𝑥𝑒√2𝐿 𝑠

𝐿4  . 

Lemma (2.1.5) [2]: 

Suppose 𝑓: (0, 𝐿) → [0, ∞) is a bounded measurable function. Suppose initially 

there is a single particle at 𝑥. Then 

𝔼 [∑ 𝑓(𝑋𝑖(𝑠))

𝑁(𝑠)

𝑖=1

] = ∫ 𝑓(𝑦)𝑞𝑠(𝑥, 𝑦)

𝐿

0

𝑑𝑦 

and 

𝔼 [(∑ 𝑓(𝑋𝑖(𝑠))

𝑁(𝑠)

𝑖=1

)

2

]

= ∫ 𝑓(𝑦)2𝑞𝑠(𝑥, 𝑦)

𝐿

0

𝑑𝑦 + 2 ∫ ∫ 𝑞𝑢(𝑥, 𝑧) (∫ 𝑓(𝑦)𝑞𝑠−𝑢(𝑧, 𝑦)

𝐿

0

𝑑𝑦)

2𝐿

0

𝑠

0

𝑑𝑧 𝑑𝑢. 

Fix any time 𝑡 > 0. for 𝑠 ∈ [0, 𝑡], let 

𝐿(𝑠) = 𝑐(𝑡 − 𝑠)1/3, 

where 𝑐 was defined in (2). Consider branching Brownian motion with drift 

−√2 in which particles are killed if they reach zero, or if they reach 𝐿(𝑠) at time 𝑠. 

Note that all particles must be killed by time 𝑡 because 𝐿(𝑡) = 0. We recall here 

some results, where they were proved. Let 

𝑍(𝑠) = ∑ 𝑒√2𝑋𝑖(𝑠)

𝑁(𝑠)

𝑖=1

sin (
𝜋𝑋𝑖(𝑠)

𝐿(𝑠)
), 

a quantity of crucial importance in what follows. The next result, we provide a 

precise estimate of 𝔼[𝑍(𝑠)]. 
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Lemma (2.1.6) [2]:  

For 0 < 𝑟 < 𝑠 < 𝑡, let  

𝐺𝑟(𝑠) = exp(−(3𝜋2)1/3((𝑡 − 𝑟)1/3 − (𝑡 − 𝑠)1/3)) (
𝑡−𝑠

𝑡−𝑟
)

1/6
.             (14) 

There exist positive constants 𝐶3 and 𝐶4 such that if 0 < 𝑠 < 𝑡, then 

𝑍(0)𝐺0(𝑠)exp(−𝐶3(𝑡 − 𝑠)1/3) ≤ 𝔼[𝑍(𝑠)] ≤ 𝑍(0)𝐺0(𝑠)exp(𝐶4(𝑡 − 𝑠)1/3) 

and, more generally, if 0 < 𝑟 < 𝑠 < 𝑡, then 

𝑍(𝑟)𝐺𝑟(𝑠)exp(−𝐶3(𝑡 − 𝑠)1/3) ≤ 𝔼[𝑍(𝑠)|ℱ𝑟] ≤ 𝑍(𝑟)𝐺𝑟(𝑠)exp(𝐶4(𝑡 − 𝑠)1/3). 

The following result, which is the 𝑟 = 0 case, establishes bounds on the density up 

to a constant factor. 

Lemma (2.1.7) [2]:  

For 𝑥, 𝑦 > 0 and 0 < 𝑠 < 𝑡, let 

𝜓𝑠(𝑥, 𝑦) =
1

𝐿(𝑠)
𝑒−(3𝜋2)1/3(𝑡1/3−(𝑡−𝑠)1/3) (

𝑡−𝑠

𝑡
)

1/6
𝑒√2𝑥 sin (

𝜋𝑥

𝐿(0)
) 𝑒−√2𝑦 sin (

𝜋𝑦

𝐿(𝑠)
). 

Fix a positive constant 𝑏. There exists a constant 𝐴 > 0 and positive constants 𝐶′ 

and 𝐶′′, with 𝐶′′ depending on 𝑏, such that if 𝐿(0)2 ≤ 𝑠 ≤ 𝑡 − 𝐴, then 

𝑞𝑠(𝑥, 𝑦) ≥ 𝐶′𝜓𝑠(𝑥, 𝑦) 

and if 𝑏𝐿(0)2 ≤ 𝑠 ≤ 𝑡 − 𝐴, then 𝑞𝑠(𝑥, 𝑦) ≤ 𝐶′′𝜓𝑠(𝑥, 𝑦). 

We will also require estimates on the number of particles killed at the right 

boundary. The result below is the 𝑠 = 0 case. 

Lemma (2.1.8) [2]:  

Suppose there is initially a single particle at 𝑥, where 0 < 𝑥 < 𝐿(0). Let 𝑅 be the 

number of particles killed at 𝐿(𝑠) for some 𝑠 ∈ [0, 𝑡]. Then there are positive 

constants 𝐶′ and 𝐶′′ such that 

𝐶′ℎ(𝑥) ≤ 𝔼[𝑅] ≤ 𝐶′′(ℎ(𝑥) + 𝑗(𝑥)), 

where 

ℎ(𝑥) = 𝑒√2𝑥 sin (
𝜋𝑥

𝑐𝑡1/3
) 𝑡1/3exp (−(3𝜋2𝑡)1/3) 
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and   𝑗(𝑥) = 𝑥𝑒√2𝑥𝑡1/3exp (−(3𝜋2𝑡)1/3). 

Finally, we will need the following bound on the second moment of 𝑍(𝑠). 

Proposition (2.1.9) [2]:  

Fix 𝜅 > 0 and 𝛿 > 0. Then there exists a positive constant 𝐶, depending on 𝜅 and 

𝛿 but not on 𝑡, such that for all 𝑡 ≥ 1 and all 𝑠 satisfying 𝜅𝑡2/3 ≤ 𝑠 ≤ (1 − 𝛿)𝑡, 

Var(𝑍(𝑠)) ≤ 𝐶𝔼[𝑍(𝑠)]2 (
𝑒√2𝐿(0)

𝐿(0)𝑍(0)
+

𝑒√2𝐿(0)𝑌(0)

𝐿(0)2𝑍(0)2
). 

Proof.  

Choose times 0 = 𝑠0 < 𝑠1 < ⋯ < 𝑠𝐾 = 𝑠 such that 𝜅𝑡2/3 ≤ 𝑠𝑖+1 − 𝑠𝑖 ≤ 2𝜅𝑡2/3 

for 𝑖 = 0,1, … , 𝐾 − 1. Note that 𝐾 ≤ 𝐶𝑡1/3.  

By Lemma (2.1.6), for 𝑖 = 0,1, … , 𝐾 − 1, 

𝔼[𝑍(𝑠𝑖+1)|ℱ𝑠𝑖
] 

= exp(−(3𝜋2)1/3((𝑡 − 𝑠𝑖)1/3 − (𝑡 − 𝑠𝑖+1)1/3)) (
𝑡−𝑠𝑖+1

𝑡−𝑠𝑖
)

1/6
𝑍(𝑠𝑖)𝐷𝑖 ,    (15) 

where 

exp(−𝐶3𝛿−1/3𝑡−1/3) ≤ 𝐷𝑖 ≤ exp(𝐶4𝛿−1/3𝑡−1/3).                  (16) 

Because the particles alive at time 𝑠𝑖+1 are a subset of the particles that would be 

alive at time 𝑠𝑖+1 if particles were killed at 𝐿(𝑠𝑖), rather than 𝐿(𝑠), for                

𝑠 ∈ [𝑠𝑖 , 𝑠𝑖+1], and the right-hand side of (3) is bounded by a constant when 𝑠 ≥

𝜅𝑡2/3 and 𝑙 ≤ 𝐶𝑡1/3, it follows from (13) that 

𝔼[𝑌(𝑠𝑖+1)|ℱ𝑠𝑖
] ≤ 𝐶𝑍(𝑠𝑖)                                           (17) 

for 𝑖 = 0,1, … , 𝐾 − 1, let 

𝑍′(𝑠𝑖+1) = ∑ 𝑒√2𝑋𝑖(𝑠𝑖+1)

𝑁(𝑠𝑖+1)

𝑖=1

sin (
𝜋𝑋𝑖(𝑠𝑖+1)

𝐿(𝑠𝑖)
), 

which is the same as 𝑍(𝑠𝑖+1) except 𝐿(𝑠𝑖) rather than 𝐿(𝑠𝑖+1) appears in the 

denominator. Because sin (𝜋𝑥 𝐿(𝑠𝑖+1)⁄ ) ≤ 𝐶 sin (𝜋𝑥 𝐿(𝑠𝑖)⁄ ) for all 𝑥 ∈ [0, 𝐿(𝑠𝑖+1)], we 

have 𝑍(𝑠𝑖+1) ≤ 𝐶𝑍′(𝑠𝑖+1).  
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By Lemma (2.1.4), if there is a single particle at 𝑥 at time 𝑠𝑖, then 

Var(𝑍(𝑠𝑖+1)|ℱ𝑠𝑖
) ≤ 𝔼[𝑍(𝑠𝑖+1)2|ℱ𝑠𝑖

] ≤ 𝐶𝔼[𝑍′(𝑠𝑖+1)2|ℱ𝑠𝑖
] ≤

𝐶𝑒√2𝑥𝑒√2𝐿(𝑠𝑖)(𝑠𝑖+1−𝑠𝑖)

𝐿(𝑠𝑖)4 . 

Because particles move and branch independently, it follows by summing over the 

particles at time 𝑠𝑖 that 

Var(𝑍(𝑠𝑖+1)|ℱ𝑠𝑖
) ≤

𝐶𝑌(𝑠𝑖)𝑒√2𝐿(𝑠𝑖)(𝑠𝑖+1−𝑠𝑖)

𝐿(𝑠𝑖)4 ≤ 𝐶𝑡−2/3𝑌(𝑠𝑖)𝑒√2𝐿(𝑠𝑖).       (18) 

Using the conditional variance formula, equations (15) and (18), and the fact that 

𝑠 < (1 − 𝛿)𝑡, 

Var(𝑍(𝑠𝑖+1)) = 𝔼[Var(𝑍(𝑠𝑖+1)|ℱ𝑠𝑖
)] + Var(𝔼[𝑍(𝑠𝑖+1)|ℱ𝑠𝑖

]) 

≤ 𝐶𝑡−2/3𝑒√2𝐿(𝑠𝑖)𝔼[𝑌(𝑠𝑖)] + 𝐷𝑖
2𝑒−2(3𝜋2)1/3((𝑡−𝑠𝑖)1/3−(𝑡−𝑠𝑖+1)1/3) (

𝑡−𝑠𝑖+1

𝑡−𝑠𝑖
)

1/3
Var(𝑍(𝑠𝑖)) 

  ≤ 𝐶𝑡−2/3𝑒√2𝐿(𝑠𝑖)𝔼[𝑌(𝑠𝑖)] + 𝐷𝑖
2𝑒−2(3𝜋2)1/3((𝑡−𝑠𝑖)1/3−(𝑡−𝑠𝑖+1)1/3)Var(𝑍(𝑠𝑖)). 

Therefore, by induction, 

Var(𝑍(𝑠)) ≤ 𝐶𝑡−2/3 ∑ 𝑒√2𝐿(𝑠𝑖)

𝐾−1

𝑖=0

( ∏ 𝐷𝑖
2𝑒−2(3𝜋2)1/3((𝑡−𝑠𝑖)1/3−(𝑡−𝑠𝑖+1)1/3)

𝐾−1

𝑗=𝑖+1

) 𝔼[𝑌(𝑠𝑖)] 

≤ 𝐶𝑡−2/3 ∑ 𝑒√2𝐿(𝑠𝑖)

𝐾−1

𝑖=0

( ∏ 𝐷𝑖
2

𝐾−1

𝑗=𝑖+1

) 𝑒−2(3𝜋2)1/3((𝑡−𝑠𝑖)1/3−(𝑡−𝑠𝑖+1)1/3)𝔼[𝑌(𝑠𝑖)]. 

By (2.19), for 𝑖 = 0,1, … , 𝐾 − 1, we have 

𝔼[𝑌(𝑠𝑖)] = 𝔼 [𝔼[𝑌(𝑠𝑖)|ℱ𝑠𝑖−1
]] ≤ 𝐶𝔼[𝑍(𝑠𝑖−1)]. 

By (2.18) and the fact that 𝐾 ≤ 𝐶𝑡1/3, for 𝑖 = 0,1, … , 𝐾 − 1 we have 

∏ 𝐷𝑖
2

𝐾−1

𝑗=𝑖+1

≤ ∏ exp(2𝐶4𝛿−1/3𝑡−1/3)

𝐾−1

𝑗=𝑖+1

≤ exp ( ∏ 2𝐶4𝛿−1/3𝑡−1/3

𝐾−1

𝑗=𝑖+1

) ≤ 𝐶. 

It follows that 
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Var(𝑍(𝑠)) ≤ 𝐶𝑡−2/3 ∑ 𝑒√2𝐿(𝑠𝑖)𝑒−2(3𝜋2)1/3((𝑡−𝑠𝑖+1)1/3−(𝑡−𝑠)1/3)

𝐾−1

𝑖=1

𝔼[𝑍(𝑠𝑖−1)] 

+𝐶𝑡−2/3𝑒√2𝐿(0)𝑒−2(3𝜋2)1/3((𝑡−𝑠1)1/3−(𝑡−𝑠)1/3)𝑌(0).                        (19) 

Denote the two terms on the right-hand side of (19) by 𝑇1 and 𝑇2. 

Because [(𝑡 − 𝑠)/𝑡]1/6 is bounded above and below by positive constants when 

0 ≤ 𝑠 ≤ (1 − 𝛿)𝑡, it follows from Lemma (2.1.6) that there are constants 𝐶′ and 

𝐶′′, depending on 𝛿, such that for 𝑖 = 0,1, … , 𝐾 , 

𝐶′𝑍(0)exp (−(3𝜋2)1/3(𝑡1/3 − (𝑡 − 𝑠𝑖)1/3)) ≤ 𝔼[𝑍(𝑠𝑖)] 

≤ 𝐶′𝑍(0)exp (−(3𝜋2)1/3(𝑡1/3 − (𝑡 − 𝑠𝑖)1/3)). 

Therefore, using that √2𝐶 = (3𝜋2)1/3, 

𝑇1 ≤ 𝐶𝑡−2/3 ∑ exp (√2𝐿(𝑠𝑖) − 2(3𝜋2)
1
3 ((𝑡 − 𝑠𝑖+1)

1
3 − (𝑡 − 𝑠)

1
3)

𝐾−1

𝑖=1

− 2(3𝜋2)1/3(𝑡1/3 − (𝑡 − 𝑠𝑖−1)1/3)) 𝑍(0) 

 = 𝐶𝑡−2/3 ∑ exp ((3𝜋2)1/3(𝑡 − 𝑠𝑖)1/3 − 2(3𝜋2)1/3((𝑡 − 𝑠𝑖+1)1/3 − (𝑡 − 𝑠)1/3)

𝐾−1

𝑖=1

− (3𝜋2)1/3(𝑡1/3 − (𝑡 − 𝑠𝑖−1)1/3)) 𝑍(0) 

 = 𝐶𝑡−2/3exp(2(3𝜋2)1/3(𝑡 − 𝑠)1/3 − (3𝜋2)1/3𝑡1/3)𝑍(0) 

× ∑ exp ((3𝜋2)1/3((𝑡 − 𝑠𝑖)1/3 − 2(𝑡 − 𝑠𝑖+1)1/3 + (𝑡 − 𝑠𝑖−1)1/3))

𝐾−1

𝑖=1

.   (20) 

For 𝑖 = 0,1, … , 𝐾 − 1, we have 𝑡 − 𝑠𝑖+1 ≥ 𝛿t, and so (𝑡 − 𝑠𝑖)1/3 − (𝑡 −
𝑠𝑖+1)1/3 ≤ 𝐶. Therefore, the sum on the right-hand side of (20) is bounded by 

𝐶(𝐾 − 1) ≤ 𝐶𝑡1/3. Thus, using 𝑡 > 1 and Lemma (2.1.6) again, 

𝑇1 ≤ 𝐶𝑡−1/3exp((3𝜋2)1/3𝑡1/3)exp(2(3𝜋2)1/3(𝑡 − 𝑠)1/3 − 𝑡1/3)
𝑍(0)2

𝑍(0)
 

               ≤ 𝐶𝑡−1/3exp((3𝜋2)1/3𝑡1/3)𝔼[𝑍(𝑠)]2

𝑍(0)
 

               ≤ 𝐶𝑒√2𝐿(0)𝔼[𝑍(𝑠)]2

𝐿(0)𝑍(0)
.                                                                                             (21) 
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Also, using that 𝑡1/3 − (𝑡 − 𝑠1)1/3 ≤ 𝐶, 

𝑇2 ≤ 𝐶𝑡−2/3𝑒√2𝐿(0)exp (−2(3𝜋2)1/3((𝑡 − 𝑠1)1/3 − (𝑡 − 𝑠)1/3)) 𝑌(0) 

               ≤ 𝐶𝑡−2/3𝑒√2𝐿(0)exp (−2(3𝜋2)1/3(𝑡1/3 − (𝑡 − 𝑠)1/3)) 𝑌(0) 

               ≤ 𝐶𝑒√2𝐿(0)𝑌(0)𝔼[𝑍(𝑠)]2

𝐿(0)2𝑍(0)2 .                                                                                        (22) 

The result now follows from (21), (23), and (24).            

Section (2.2): Number and Configuration of Particles 

We return to the model presented, in which there is initially a single particle 

at 𝑥 and we are concerned with the asymptotic behavior of the process as 𝑥 → ∞. 

We consider how the branching Brownian motion evolves during the initial period 

between time 0 and time 𝜅𝑥2, where 𝜅 > 0 is an arbitrary positive constant. We 

will use the following result. 

Lemma (2.2.1) [2]: 

Consider branching Brownian motion with drift −√2 and no absorption, started 

with a single particle at the origin. For each 𝑦 ≥ 0, let 𝐾(𝑦) be the number of 

particles that reach −𝑦 in a modified process in which particles are killed upon 

reaching −𝑦. Then there exists a random variable 𝑊, with 𝑃(0 < 𝑊 < ∞) = 1 

and 𝐸(𝑊) = ∞, such that 

lim
𝑦→∞

𝑦𝑒−√2𝑦𝐾(𝑦) = 𝑊     a. s. 

For our process which begins with a single particle at 𝑥, let 𝐾(𝑦) be the number of 

particles that would reach 𝑥 − 𝑦, if particles were killed upon reaching 𝑥 − 𝑦. 

Note that 𝐾(𝑦) < ∞ almost surely. The critical branching Brownian motion with 

absorption dies out. If 𝑦 is sufficiently large, then 𝑦𝑒−√2𝑦𝐾(𝑦) will have 

approximately the same distribution as the random variable 𝑊 in Lemma (2.2.1). 

Our strategy for studying the branching Brownian motion between time 0 and time 

𝜅𝑥2 will be to choose a sufficiently large constant 𝑦, wait for 𝐾(𝑦) particles to 

reach 𝑥 − 𝑦, and then consider 𝐾(𝑦) independent branching Brownian motions 

started from 𝑥 − 𝑦. 

Let 𝛼 ∈ ℝ, and let 
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𝑍𝛼 = ∑ 𝑒√2𝑋𝑖(𝜅𝑥2)

𝑁(𝜅𝑥2)

𝑖=1

sin (
𝜋𝑋𝑖(𝜅𝑥2)

𝑥+𝛼
) 𝟏{𝑋𝑖(𝜅𝑥2)≤𝑥+𝛼}.              (23) 

The following result describes the behavior of the configuration of particles at 

time 𝜅𝑥2. 

Definition (2.2.2) [6]: (Martingale) 

Given a probability space (Ω, ℱ, ℙ) a filtration is a collection of σ-algebras 

{ℱ𝛼: 𝛼 ∈ 𝐼 = ℕ0} with ℱ𝑛 ⊂ ℱ𝑛+1 and ⋃ ℱ𝑛
∞
𝑛=0 ⊂ ℱ. 

Suppose now {𝑋𝑛: 𝑛 = 0,1,2, … } is a stochastic process defined on the same 

probability space as {ℱ𝑛}. Then {𝑋𝑛} is a martingale with respect to {ℱ𝑛} if for all 

𝑛 = 0,1,2, …,  

 𝔼[|𝑋𝑛|] < ∞, 

 𝔼[𝑋𝑛+1|ℱ𝑛] = 𝑋𝑛. 

Lemma (2.2.3) [2]: 

For all 𝜖 > 0, there exists a positive constant 𝐶5, depending on 𝜅 and 𝜀 but not on 

𝑥, such that for sufficiently large 𝑥, 

ℙ(𝑌(𝜅𝑥2) ≤ 𝐶5𝑥−1𝑒√2𝑥) ≥ 1 − 𝜀.                           (24) 

Also, there exist positive constants 𝐶6 and 𝐶7, depending on 𝜅 and 𝜀 but not on 𝑥 

or 𝛼, such that for sufficiently large 𝑥, 

ℙ(𝐶6𝑥−1𝑒√2𝑥 ≤ 𝑍𝛼 ≤ 𝐶7𝑥−1𝑒√2𝑥) ≥ 1 − 𝜀.                           (25) 

Furthermore, 

lim
𝑥→∞

ℙ(𝑋1(𝜅𝑥2) ≤ 𝑥 + 𝛼) = 1.                                           (26) 

Proof. Choose 𝜂 > 0 sufficiently small and 𝐵 > 0 sufficiently large such that the 

random variable 𝑊 in Lemma (2.2.1) satisfies ℙ(𝑊 ≤ 2𝜂) ≤ 𝜀/8 and        

ℙ(𝑊 ≥ 𝐵 − 𝜂) < 𝜀/8. By Lemma (2.2.1), we can choose 𝑦 > 0 large enough 

that, for some random variable 𝑊 having the same distribution as the random 

variable 𝑊 in Lemma (2.2.1), 

ℙ (|𝑦𝑒−√2𝑦𝐾(𝑦) − 𝑊| ≥ 𝜂) <
𝜀

8
. 

These conditions imply that 
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ℙ(𝑦𝑒−√2𝑦𝐾(𝑦) ≤ 𝜂) <
𝜀

4
                                                     (27) 

and 

ℙ(𝑦𝑒−√2𝑦𝐾(𝑦) ≥ 𝐵) <
𝜀

4
.                                                    (28) 

We can also choose 𝑦 to be large enough that 𝑦 ≥ 2|𝛼| and 
𝐵𝑒−√2𝛼

𝑦
< 𝜀/8. 

 For 1 ≤ 𝑖 ≤ 𝑁(𝜅𝑥2) and 0 ≤ 𝑠 ≤ 𝜅𝑥2, let 𝑥𝑖(𝑠) be the position of the 

particle at time 𝑠 that is the ancestor of the particle at the location 𝑋𝑖(𝜅𝑥2) at time 

𝜅𝑥2. Let 𝑣𝑖 = inf {𝑠: 𝑥𝑖(𝑠) = 𝑥 − 𝑦}. Let 0 < 𝑢1 < ⋯ < 𝑢𝐾(𝑦) denote the times at 

which particles would hit 𝑥 − 𝑦, if particles were killed upon reaching 𝑥 − 𝑦. Note 

that {𝑣1, … , 𝑣𝑁(𝜅𝑥2)} ⊂ {𝑢1, … , 𝑢𝐾(𝑦)}. Let 𝒢 denote the 𝜎-field generated by the 

set of times {𝑢1, … , 𝑢𝐾(𝑦)}. We can choose a positive number 𝜌 > 0, depending on 

𝑦 but not on 𝑥, such that 

ℙ(𝑢𝐾(𝑦) ≤ 𝜌) > 1 −
𝜀

8
.                                                    (29) 

Throughout the proof, we will assume that 𝑥 is large enough that 𝑥 ≥ 𝑦, so that 

particles are not killed at the origin before reaching 𝑥 − 𝑦, and that 𝜅𝑥2/2 ≥ 𝜌, so 

that with high probability all particles will have reached 𝑥 − 𝑦 well before time 

𝜅𝑥2. Let  

𝑀(𝑠) = ∑ 𝑋𝑖(𝑠)𝑒√2𝑋𝑖(𝑠)

𝑁(𝑠)

𝑖=1

.                                            (30) 

It is well-known that the process (𝑀(𝑠), 𝑠 ≥ 0) is a martingale. If there is initially 

a single particle at 𝑥 − 𝑦, then by the Optional Sampling Theorem, the probability 

that some particle eventually reaches 𝑥 + 𝛼 is at most 

(𝑥−𝑦)𝑒√2(𝑥−𝑦)

(𝑥+𝛼)𝑒√2(𝑥+𝛼)
 . 

Therefore, conditional on 𝓖, the probability that some descendant of a particle that 

reaches 𝑥 − 𝑦 eventually reaches 𝑥 + 𝛼 is at most 

𝐾(𝑦)(𝑥−𝑦)𝑒√2(𝑥−𝑦)

(𝑥+𝛼)𝑒√2(𝑥+𝛼)
≤

𝑒−√2𝛼

𝑦
. 𝑦𝑒−√2𝑦𝐾(𝑦). 

Thus, the unconditional probability that some descendant of a particle that reaches 

𝑥 − 𝑦 eventually reaches 𝑥 + 𝛼 is at most 
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ℙ(𝑦𝑒−√2𝑦𝐾(𝑦) > 𝐵) +
𝐵𝑒−√2𝛼

𝑦
<

𝜀

4
+

𝜀

8
=

3𝜀

8
. 

In particular, ℙ(𝑋1(𝜅𝑥2) > 𝑥 + 𝛼) ≤ ℙ(𝑢𝐾(𝑦) > 𝜌) + 3𝜀/8 ≤
𝜀

2
 for sufficiently 

large 𝑥, which by letting 𝜀 → 0 implies (26). 

Let 𝑆(𝛼) = {𝑖: 𝑥𝑖(𝑠) < 𝑥 + 𝛼 for all s ∈ [𝑣𝑖 , 𝜅𝑥2]}. Then let 

𝑌𝛼
′ = ∑ 𝑒√2𝑋𝑖(𝜅𝑥2)

𝑁(𝜅𝑥2)

𝑖=1

𝟏{𝑖∈𝑆(𝛼)} 

and 

𝑍𝛼
′ = ∑ 𝑒√2𝑋𝑖(𝜅𝑥2)

𝑁(𝜅𝑥2)

𝑖=1

sin (
𝜋𝑋𝑖(𝜅𝑥2)

𝑥+𝛼
) 𝟏{𝑖∈𝑆(𝛼)}. 

The argument in the previous paragraph implies that 

ℙ(𝑌𝛼
′ = 𝑌(𝜅𝑥2) and  𝑍𝛼

′ = 𝑍𝛼) ≥ 1 −
𝜀

2
.                              (31) 

By the Strong Markov Property, the configuration of particles at time 𝜅𝑥2 has the 

same distribution as the configuration that we would get by starting with 𝐾(𝑦) 

particles at 𝑥 − 𝑦 and stopping their descendants at the times 𝜅𝑥2 − 𝑢𝑖. 

Furthermore, restricting to particles in 𝑆(𝛼) is equivalent to killing particles when 

they reach 𝑥 + 𝛼. Therefore, the tools with 𝐿 = 𝑥 + 𝛼, can be used to estimate the 

first and second moments of  𝑌𝛼
′ and 𝑍𝛼

′ . 

We first apply (13) with 𝑠 = 𝜅𝑥2 − 𝑢𝑖, which when 𝑢𝐾(𝑦) ≤ 𝜌u is at least  𝜅𝑥2/2. 

Because the right-hand side of (3) is bounded by a constant when 𝑠 is of the order 

𝐿2, it follows from (13) that there is a constant 𝐶, depending on 𝜅, such that on the 

event {𝑢𝐾(𝑦) ≤ 𝜌}, 

𝔼[𝑌𝛼
′|𝓖] ≤ 𝐶𝐾(𝑦)𝑒√2(𝑥−𝑦) sin (

𝜋(𝑥−𝑦)

𝑥+𝛼
). 

Using ~ to denote that the ratio of the two sides tends to one as 𝑥 → ∞, we have 

sin (
𝜋(𝑥−𝑦)

𝑥+𝛼
) ~

𝜋(𝑦 + 𝛼)

𝑥 + 𝛼
~

𝜋(𝑦 + 𝛼)

𝑥
.                              (32) 
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Because 𝑦 ≥ 2|𝛼|, it follows that there exists a constant 𝐶8 such that on the event 

{𝑢𝐾(𝑦) ≤ 𝜌}, for sufficiently large 𝑥, 

𝔼[𝑌𝛼
′|𝓖] ≤ 𝐶8𝑥−1𝑒√2𝑥. 𝑦𝑒−√2𝑦𝐾(𝑦). 

Therefore, choosing 𝐶5 = 8𝐶8𝐵/𝜀 and using (28), (29), and the conditional 

Markov's inequality, 

ℙ(𝑌𝛼
′ ≥ 𝐶5𝑥−1𝑒√2𝑥) ≤ ℙ(𝑢𝐾(𝑦) > 𝜌) + ℙ(𝑦𝑒−√2𝑦𝐾(𝑦) ≥ 𝐵) + ℙ (𝑌𝛼

′ ≥
8𝔼[𝑌𝛼

′|𝓖]

𝜀
) 

≤
𝜀

8
+

𝜀

4
+

𝜀

8
=

𝜀

2
.                                                              (33) 

The result (24) now follows from (33) and (32). 

By (12), on the event {𝑢𝐾(𝑦) ≤ 𝜌}, we have 

𝑒−𝜋2𝜅𝑥2/2(𝑥+𝛼)2
𝐾(𝑦)𝑒√2(𝑥−𝑦) sin (

𝜋(𝑥−𝑦)

𝑥+𝛼
) 

≤ 𝔼[𝑍𝛼|𝓖] ≤ 𝑒−𝜋2(𝜅𝑥2−𝜌)/2(𝑥+𝛼)2
𝐾(𝑦)𝑒√2(𝑥−𝑦) sin (

𝜋(𝑥−𝑦)

𝑥+𝛼
). 

Because (32) holds and 𝑒−𝜋2𝜅𝑥2/2(𝑥+𝛼)2
~𝑒−𝜋2𝜅/2~𝑒−𝜋2(𝜅𝑥2−𝜌)/2(𝑥+𝛼)2

, there are 

constants 𝐶9 and 𝐶10, depending on 𝜅, such that 

𝐶9𝑥−1𝑒√2𝑥. 𝑦𝑒−√2𝑦𝐾(𝑦) ≤ 𝔼[𝑍𝛼
′ |𝓖] ≤ 𝐶10𝑥−1𝑒√2𝑥. 𝑦𝑒−√2𝑦𝐾(𝑦)        (34) 

when 𝑢𝐾(𝑦) ≤ 𝜌 for sufficiently large 𝑥. Furthermore, by applying Lemma (2.1.4) 

to the configuration with a single particle at 𝑥 − 𝑦 at time zero and then summing 

over the particles, we get 

Var(𝑍𝛼
′ |𝓖) ≤

𝐶𝐾(𝑦)𝑒√2(𝑥−𝑦)𝑒√2(𝑥+𝛼)𝜅𝑥2

2(𝑥+𝛼)4 ≤
𝐶𝑒√2𝛼 . 𝑦𝑒−√2𝑦𝐾(𝑦)

𝑦
(𝑥−1𝑒√2𝑥)

2
 

for sufficiently large 𝑥. By the conditional Chebyshev's Inequality, on the event 

{𝑢𝐾(𝑦) ≤ 𝜌}, 

ℙ (|𝑍𝛼
′ − 𝔼(𝑍𝛼

′ |𝓖)| >
1

2
𝔼(𝑍𝛼

′ |𝓖)| 𝓖) ≤
4Var(𝑍𝛼

′ |𝓖)

(𝔼(𝑍𝛼
′ |𝓖))

2 ≤
𝐶𝑒√2𝛼

𝑦. 𝑦𝑒−√2𝑦𝐾(𝑦)
. 

In view of (27), it follows that for 𝑦 large enough that 𝐶𝑒√2𝛼/𝜂𝑦 < 𝜀/8 and 

sufficiently large 𝑥, 
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ℙ (|𝑍𝛼
′ − 𝔼(𝑍𝛼

′ |𝓖)| >
1

2
𝔼(𝑍𝛼

′ |𝓖)| 𝓖) ≤ ℙ(𝑢𝐾(𝑦) > 𝜌) + ℙ(𝑦𝑒−√2𝑦𝐾(𝑦) ≤ 𝜂) +
𝐶𝑒√2𝛼

𝜂𝑦
<

𝜀

2
. 

Combining this result with (34), we get that for sufficiently large 𝑥, the event 

𝐶9

2
. 𝑥−1𝑒√2𝑥. 𝑦𝑒−√2𝑦𝐾(𝑦) ≤ 𝑍𝛼

′ ≤
3𝐶10

2
. 𝑥−1𝑒√2𝑥. 𝑦𝑒−√2𝑦𝐾(𝑦) 

holds with probability at least 1 − 𝜀/2. Thus, using (27) and (28), for sufficiently 

large 𝑥 we have 

𝐶9𝜂

2
. 𝑥−1𝑒√2𝑥 ≤ 𝑍𝛼

′ ≤
3𝐵𝐶10

2
. 𝑥−1𝑒√2𝑥 

with probability at least 1 − 𝜀. The result (25) now follows by setting 𝐶6 = 𝐶9𝜂/2 

and 𝐶7 = 3𝐵𝐶10𝜂/2 and invoking (31).              

Let 𝑡 = 𝜏𝑥3 = 2√2𝑥3/(3𝜋2). For 0 < 𝑠 < 𝑡, recall that 

𝐿(𝑠) = 𝑥 (1 −
3𝜋2𝑠

2√2𝑥3
)

1/3

= 𝑐(𝑡 − 𝑠)1/3 

and let 

𝑍(𝑠) = ∑ 𝑒√2𝑋𝑖(𝑠)

𝑁(𝑠)

𝑖=1

sin (
𝜋𝑋𝑖(𝑠)

𝐿(𝑠)
) 𝟏{𝑋𝑖(𝑠)≤𝐿(𝑠)}. 

Our goal is to find a lower bound for 𝑍(𝑠). Such a bound will be provided by 

Proposition (2.2.3) below. 

To prove this result, we will consider the following new process, which will 

also be useful. Fix 𝛼 ∈ ℝ, and let 𝑡𝛼 = 𝜏(𝑥 + 𝛼)3, so that 𝑐𝑡𝛼
1/3

= 𝑥 + 𝛼, where 𝑐 

is defined in (2). For 0 < 𝑠 < 𝑡𝛼, let 𝐿𝛼(𝑠) = 𝑐(𝑡𝛼 − 𝑠)1/3. Note that 𝐿0(𝑠) =

𝐿(𝑠). Now suppose that, in addition to being killed at the origin, particles to the 

right of 𝑥 + 𝛼 are killed at time 𝜅𝑥2, and for 𝜅𝑥2 < 𝑠 < 𝑡𝛼 + 𝜅𝑥2, particles are 

killed at time 𝑠 if they reach 𝐿𝛼(𝑠 − 𝜅𝑥2). Let 𝑁𝛼(𝑠) be the number of particles 

alive at time 𝑠, and let 𝑋1,𝛼(𝑠) ≥ 𝑋2(𝑠) ≥ ⋯ ≥ 𝑋𝑁𝛼(𝑠),𝛼(𝑠) denote the positions of 

these particles at time 𝑠. Let 

𝑍𝛼(𝑠) = ∑ 𝑒√2𝑋𝑖,𝛼(𝑠)

𝑁𝛼(𝑠)

𝑖=1

sin (
𝜋𝑋𝑖,𝛼(𝑠)

𝐿𝛼(𝑠−𝜅𝑥2)
). 
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Note that 𝑍𝛼(𝜅𝑥2) is the same as 𝑍𝛼 defined in (23). Also, let 

𝑌𝛼(𝑠) = ∑ 𝑒√2𝑋𝑖,𝛼(𝑠)

𝑁𝛼(𝑠)

𝑖=1

.                                                    (36) 

Proposition (2.2.3) [2]: 

For all 𝜀 > 0, there exists a constant 𝐶 > 0, depending on 𝜅,𝛿 and 𝜀 such 

that for sufficiently large 𝑥, 

ℙ (𝑍(𝑠) ≥ 𝐶𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑠)1/3)) > 1 − 𝜀 

for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡]. 

Proof. We consider the process defined above. Recall that (ℱ𝑢)𝑢≥0 is the natural 

filtration associated with the branching Brownian motion. By Markov property, 

there exist positive constants 𝐶′ and 𝐶′′, depending on 𝜅 and 𝛿, such that for all 

𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿/2)𝑡𝛼] 

𝐶′𝑍𝛼𝐺0(𝑠 − 𝜅𝑥2) ≤ 𝔼[𝑍𝛼(𝑠)|ℱ𝜅𝑥2] ≤ 𝐶′′𝑍𝛼𝐺0(𝑠 − 𝜅𝑥2). 

Because (𝑡𝛼 − (𝑠 − 𝜅𝑥2))1/3 − (𝑡𝛼 − 𝑠)1/3 is bounded by a constant, it follows 

from (14) that  

𝐶′𝑍𝛼exp (−(3𝜋2)1/3(𝑡𝛼
1/3

− (𝑡𝛼 − 𝑠)1/3)) ≤ 𝔼[𝑍𝛼(𝑠)|ℱ𝜅𝑥2] 

≤ 𝐶′′𝑍𝛼exp (−(3𝜋2)1/3(𝑡𝛼
1/3

− (𝑡𝛼 − 𝑠)1/3)).    (36) 

Likewise, by Proposition (2.1.9), 

Var(𝑍𝛼(𝑠)|ℱ𝜅𝑥2) ≤ 𝐶𝔼[𝑍𝛼(𝑠)|ℱ𝜅𝑥2]2 (
𝑒√2𝐿𝛼(0)

𝐿𝛼(0)𝑍𝛼
+

𝑒√2𝐿𝛼(0)𝑌(𝜅𝑥2)

𝐿𝛼(0)2𝑍𝛼
2

) 

                   = 𝐶𝔼[𝑍𝛼(𝑠)|ℱ𝜅𝑥2]2 (
𝑒√2𝑥𝑒√2𝛼

(𝑥 + 𝛼)𝑍𝛼
+

𝑒√2𝑥𝑒√2𝛼𝑌(𝜅𝑥2)

(𝑥 + 𝛼)2𝑍𝛼
2

). 

Let 𝐴 be the event that 𝑌(𝜅𝑥2) ≤ 𝐶5𝑥−1𝑒√2𝑥 and 𝑍𝛼 ≥ 𝐶6𝑥−1𝑒√2𝑥, where 𝐶5 and 

𝐶6 are the constants from Lemma (2.2.2) applied with 𝜀/8 in place of 𝜀. Lemma 

(2.2.2) then gives ℙ(𝐴) > 1 − 𝜀/4 for sufficiently large 𝑥. On 𝐴, we have 



63 
 

Var(𝑍𝛼(𝑠)|ℱ𝜅𝑥2) ≤ 𝐶𝔼[𝑍𝛼(𝑠)|ℱ𝜅𝑥2]2𝑒√2𝛼 (
𝑥

𝐶6(𝑥 + 𝛼)
+

𝐶5𝑥

𝐶6
2(𝑥 + 𝛼)2

). 

Therefore, if 𝛼 is chosen to be a large enough negative number that       

𝐶𝑒√2𝛼𝐶6 < 𝜀/8, then Var(𝑍𝛼(𝑠)|ℱ𝜅𝑥2) ≤ (𝜀/8)𝔼[𝑍𝛼(𝑠)|ℱ𝜅𝑥2]2 on 𝐴 for 

sufficiently large 𝑥. It follows from the conditional Chebyshev's Inequality that for 

sufficiently large 𝑥, 

ℙ (𝑍𝛼(𝑠) <
1

2
𝔼[𝑍𝛼(𝑠)|ℱ𝜅𝑥2]) ≤ ℙ(𝐴𝑐) +

4𝜀

8
<

3𝜀

4
.                       (37) 

By (36), on 𝐴 we have 

𝔼[𝑍𝛼(𝑠)|ℱ𝜅𝑥2] ≥ 𝐶𝑥−1exp (√2𝑥 − (3𝜋2)1/3(𝑡𝛼
1/3

− (𝑡𝛼 − 𝑠)1/3)). 

Thus, using (37) and the fact that ℙ(𝐴𝑐) < 𝜀/4, there is a positive constant 𝐶 such 

that for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿/2)𝑡𝛼], 

ℙ (𝑍𝛼(𝑠) > 𝐶𝑥−1exp (√2𝑥 − (3𝜋2)1/3(𝑡𝛼
1/3

− (𝑡𝛼 − 𝑠)1/3))) ≥ 1 − 𝜀 

for sufficiently large 𝑥. Note that |𝑡𝛼
1/3

− 𝑡1/3| is bounded by a constant which 

depends on 𝛼, and thus on 𝜀. Likewise, 

sup
𝜅𝑥2≤𝑠≤(1−𝛿/2)𝑡𝛼

|(𝑡𝛼 − 𝑠)1/3 − (𝑡 − 𝑠)1/3|                                     (38) 

is bounded by a constant which depends on 𝛼 and 𝛿. Furthermore, we have √2𝑥 =
(3𝜋2)1/3𝑡1/3. Because (1 − 𝛿/2)𝑡𝛼 ≤ (1 − 𝛿)𝑡 for sufficiently large 𝑥, we obtain 

the result of the proposition with 𝑍𝛼(𝑠) in place of 𝑍(𝑠), provided that 𝛼 is a 

sufficiently large negative number. 

To complete the proof, recall that 𝐿(𝑠) = 𝑐(𝑡 − 𝑠)1/3 and 𝐿𝛼(𝑠 − 𝜅𝑥2) =

𝑐(𝑡𝛼 − 𝑠 + 𝜅𝑥2)1/3, where 𝑡 = 𝜏𝑥3 and 𝑡𝛼 = 𝜏(𝑥 + 𝛼)3. Therefore, there is a 

constant 𝛼0 < 0 such that if 𝛼 < 𝛼0, then 𝐿𝛼(𝑠 − 𝜅𝑥2) < 𝐿(𝑠) for sufficiently 

large 𝑥. Also, 𝐿(𝑠)/2 < 𝐿𝛼(𝑠 − 𝜅𝑥2) for sufficiently large 𝑥. Thus, if 𝛼 < 𝛼0, 

there exists a constant 𝐶 such that for sufficiently large 𝑥, 

sin (
𝜋𝑧

𝐿𝛼(𝑠−𝜅𝑥2)
) ≤ 𝐶 sin (

𝜋𝑧

𝐿(𝑠)
) 
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for all 𝑧 ∈ [0, 𝐿𝛼(𝑠 − 𝜅𝑥2)]. Because killing particles at a right boundary can only 

reduce the number of particles in the system, it follows that if 𝛼 < 𝛼0, then 

𝑍𝛼(𝑠) ≤ 𝐶𝑍(𝑠) for sufficiently large 𝑥. The result follows.           

Recall that 𝑡 = 𝜏𝑥3. The next lemma shows that it is unlikely for any particle ever 

to get far to the right of 𝐿(𝑠) for 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡]. 

Lemma (2.2.4) [2]: 

Let 𝜀 > 0. For all 𝛼 > 0, let 𝑡𝛼 = 𝜏(𝑥 + 𝛼)3, and let 𝐿𝛼(𝑠) = 𝑐(𝑡𝛼 − 𝑠)1/3 

for 0 ≤ 𝑠 ≤ 𝑡𝛼. Then there exists a positive constant 𝐶11, depending on 𝜅,𝛿 and 𝜀 

but not on 𝛼 or 𝑥, such that for sufficiently large 𝑥, 

ℙ(𝑋1(𝑠) ≤ 𝐿𝛼(𝑠 − 𝜅𝑥2) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ [𝜅𝑥2, (1 − 𝛿)𝑡]) ≥ 1 − 𝜀 − 𝐶11𝑒−√2𝛼 . 

Proof. Suppose there is a particle at the location 𝑧 ≤ 𝑐𝑡𝛼
1/3

= 𝑥 + 𝛼 at time 𝜅𝑥2. 

By Lemma (2.1.8) with 𝑡 = 𝑡𝛼, the probability that a descendant of this particle 

reaches 𝐿𝛼(𝑠 − 𝜅𝑥2) for some 𝑠 ∈ [𝜅𝑥2, (1 − 𝛿/2)𝑡𝛼] is at most 

𝐶𝑒−(3𝜋2𝑡𝛼)1/3
(𝑒√2𝑧 sin (

𝜋𝑧

𝐿𝛼(0)
) 𝑡𝛼

1/3
+ 𝑧𝑒√2𝑧𝑡𝛼

−1/3
). 

Therefore, using the bound 𝑧𝑡𝛼
−1/3

≤ 𝑐 and applying the Markov property, we get 

that the conditional probability, given ℱ𝜅𝑥2 , on the event 𝑋1(𝜅𝑥2) < 𝑥 + 𝛼, that a 

particle reaches 𝐿𝛼(𝑠 − 𝜅𝑥2) for 𝜅𝑥2 ≤ 𝑠 ≤ (1 − 𝛿/2)𝑡𝛼 is at most 

𝐶𝑒−√2(𝑥+𝛼)(𝑡𝛼
1/3

𝑍𝛼(𝜅𝑥2) + 𝑌(𝜅𝑥2)).                            (39) 

Let 𝐴 be the event that 𝑋1(𝜅𝑥2) < 𝑥 + 𝛼, 𝑌(𝜅𝑥2) ≤ 𝐶5𝑥−1𝑒√2𝑥 and     

𝑍𝛼(𝜅𝑥2) ≤ 𝐶7𝑥−1𝑒√2𝑥, where 𝐶5 and 𝐶7 are the constants from Lemma (2.2.2) 

with 𝜀/3 in place of 𝜀. On 𝐴, for sufficiently large 𝑥, the expression in (39) is at 

most 

𝐶𝑡𝛼
1/3

𝑥−1𝑒−√2𝛼 + 𝐶𝑥−1𝑒−√2𝛼 ≤ 𝐶11𝑒−√2𝛼 . 

Because ℙ(𝐴) > 1 − 𝜀 for sufficiently large 𝑥 by Lemma (2.2.2) and the fact that  

(1 − 𝛿/2)𝑡𝛼 ≥ (1 − 𝛿)𝑡 for sufficiently large 𝑥, the result follows.          

The next lemma shows that at any fixed time 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡], it is unlikely 

that there is any particle near or to the right of 𝐿(𝑠). 
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Lemma (2.2.5) [2]: 

Let 𝑎 > 0 be a positive constant. Let 𝜀 > 0. Then for sufficiently large 𝑥, 

we have 

ℙ(𝑋1(𝑠) > 𝐿(𝑠) − 𝑎) < 𝜀 

for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡]. 

Proof. We consider the process defined in which at time 𝜅𝑥2, particles to the right 

of 𝑥 + 𝛼 are killed, and for 𝜅𝑥2 < 𝑠 < 𝑡𝛼 + 𝜅𝑥2, particles are killed at time 𝑠 if 

they reach 𝐿𝛼(𝑠 − 𝜅𝑥2). By (26), for sufficiently large 𝑥, the probability that some 

particle is killed at time 𝜅𝑥2 is at most 𝜀/4. By applying Lemma (2.2.4) with 𝜀/4 

in place of 𝜀 and choosing 𝛼 > 0 large enough that 𝐶11𝑒−√2𝛼 < 𝜀/4, we get that 

the probability that a particle is killed between times 𝜅𝑥2 and (1 − 𝛿)𝑡 is at most 

𝜀/2. Thus, with probability at least 1 − 3𝜀/4, no particle is killed until at least 

time (1 − 𝛿)𝑡. 

Suppose 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡]. Let 𝐾𝛼(𝑠) be the number of particles at time 𝑠 

between 𝐿(𝑠) − 𝑎 and 𝐿𝛼(𝑠 − 𝜅𝑥2). By Lemma (2.1.7) with 𝑡𝛼 in place of 𝑡, we 

have 

𝔼[𝐾𝛼(𝑠)|ℱ𝜅𝑥2] ≤ 𝐶𝑡𝛼
−1/3

𝑒
−(3𝜋2)1/3(𝑡𝛼

1/3
−(𝑡𝛼−𝑠+𝜅𝑥2)1/3)

𝑍𝛼            

                                                   × ∫ 𝑒−√2𝑦

𝐿𝛼(𝑠−𝜅𝑥2)

𝐿(𝑠)−𝑎

sin (
𝜋𝑦

𝐿𝛼(𝑠−𝜅𝑥2)
) 𝑑𝑦. 

For sufficiently large 𝑥, the expression  

𝐿𝛼(𝑠 − 𝜅𝑥2) − (𝐿(𝑠) − 𝑎) = 𝑐(𝑡𝛼 − 𝑠 + 𝜅𝑥2)1/3 − 𝑐(𝑡 − 𝑠)1/3 + 𝑎 

is bounded above by a constant depending on 𝛼 and 𝑎, and thus 

∫ 𝑒−√2𝑦

𝐿𝛼(𝑠−𝜅𝑥2)

𝐿(𝑠)−𝑎

sin (
𝜋𝑦

𝐿𝛼(𝑠−𝜅𝑥2)
) 𝑑𝑦 ≤

𝐶𝑒−√2𝐿𝛼(𝑠−𝜅𝑥2)

𝐿𝛼(𝑠−𝜅𝑥2)
≤ 𝐶𝑡𝛼

−1/3
𝑒−√2𝐿𝛼(𝑠−𝜅𝑥2) 

Therefore, on the event that 𝑍𝛼 ≤ 𝐶7𝑥−1𝑒√2𝑥, where 𝐶7 is the constant from 

Lemma (2.2.2) with 𝜀/8 in place of 𝜀, for sufficiently large 𝑥, 

𝔼[𝐾𝛼(𝑠)|ℱ𝜅𝑥2] 
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≤ 𝐶𝑡𝛼
−2/3

𝑥−1𝑒𝑥𝑝 (√2𝑥 − (3𝜋2)1/3(𝑡𝛼
1/3

− (𝑡𝛼 − 𝑠 + 𝜅𝑥2)1/3) − √2𝐿𝛼(𝑠 − 𝜅𝑥2)) 

≤ 𝐶𝑥−3exp(√2𝑥 − √2(𝑥 + 𝛼) + (3𝜋2)1/3(𝑡𝛼 − 𝑠 + 𝜅𝑥2)1/3 − (3𝜋2)1/3(𝑡𝛼 − 𝑠 + 𝜅𝑥2)1/3) 

≤ 𝐶𝑥−3 

because the exponential is a constant which depends on 𝛼. Therefore, by the 

conditional Markov's Inequality and Lemma (2.2.2), for sufficiently large 𝑥, 

ℙ(𝐾𝛼(𝑠) > 0) ≤ ℙ(𝑍𝛼 > 𝐶7𝑥−1𝑒√2𝑥) + 𝐶𝑥−3 <
𝜀

8
+

𝜀

8
=

𝜀

4
. 

Because with probability at least 1 − 3𝜀/4, no particle is killed until at least time 

(1 − 𝛿)𝑡, it follows that for sufficiently large 𝑥, we have  

ℙ(𝑋1(𝑠) > 𝐿(𝑠) − 𝑎) < 𝜀 for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡].            

Proposition (2.2.6) [2]:  

For all 𝜀 > 0, there exists a constant 𝐶 > 0 depending on 𝜅,𝛿 and 𝜀 such 

that for sufficiently large 𝑥, 

ℙ (𝑍(𝑠) ≤ 𝐶𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑠)1/3)) > 1 − 𝜀 

for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡]. 

Proof. We again work with the process defined earlier. By (36) and the 

conditional Markov's Inequality, there is a constant 𝐶 depending on 𝜅,𝛿 and 𝜀 such 

that for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡], 

ℙ (𝑍𝛼(𝑠) ≤ 𝐶𝑍𝛼exp (−(3𝜋2)1/3(𝑡𝛼
1/3

− (𝑡𝛼 − 𝑠)1/3))) > 1 −
𝜀

4
. 

Therefore, by (2.27), for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡], 

ℙ (𝑍𝛼(𝑠) ≤ 𝐶𝑥−1exp (√2𝑥 − (3𝜋2)1/3(𝑡𝛼
1/3

− (𝑡𝛼 − 𝑠)1/3))) > 1 −
𝜀

2
 

for sufficiently large 𝑥. Because [𝑡𝛼
1/3

− 𝑡1/3] and the expression in (38) are 

bounded by constants depending on 𝛼 and √2𝑥 = (3𝜋2𝑡)1/3, it follows that 

ℙ (𝑍𝛼(𝑠) ≤ 𝐶𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑠)1/3)) > 1 −
𝜀

2
                 (40) 
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for sufficiently large 𝑥. 

From Lemma (2.2.4) with 𝜀/8 in place of 𝜀, we see that with probability at least 

1 − 𝜀/8 − 𝐶11𝑒−√2𝛼, no particles are killed between times 𝜅𝑥2 and (1 − 𝛿)𝑡. 

Therefore, if 𝛼 is chosen large enough that 𝐶11𝑒−√2𝛼 < 𝜀/8, then with probability 

at least 1 − 𝜀/4, we have 𝑁𝛼(𝑠) = 𝑁(𝑠) and 𝑋𝑖(𝑠) = 𝑋𝑖,𝛼(𝑠) for 𝑖 = 1, … , 𝑁(𝑠). 

Furthermore, provided 𝛼 is also large enough that 𝐿𝛼(𝑠 − 𝜅𝑥2) ≥ 𝐿(𝑠), for 

sufficiently large 𝑥 it holds that for 0 ≤ 𝑥 ≤ 𝐿(𝑠), we have 

sin (
𝜋𝑥

𝐿𝛼(𝑠−𝜅𝑥2)
) ≥ 𝐶 sin (

𝜋𝑥

𝐿(𝑠)
) 

for some positive constant 𝐶. By Lemma (2.2.5), for sufficiently large 𝑥 the 

probability that 𝑋1(𝑠) > 𝐿(𝑠) is less than 𝜀/4. It follows that for sufficiently large 

𝑥, we have 𝑍𝛼(𝑠) ≥ 𝐶𝑍(𝑠) with probability at least 1 − 𝜀/2. Combining this 

observation with (40) yields the result.              

Proposition (2.2.7) [2]:  

For all 𝜀 > 0, there exists a constant 𝐶 > 0 depending on 𝜅,𝛿 and 𝜀 such 

that for sufficiently large 𝑥, 

ℙ (𝑌(𝑠) ≤ 𝐶𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑠)1/3)) > 1 − 𝜀 

for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡]. 

Proof. We again work with the process defined earlier. Recall the definition of 

𝑌𝛼(𝑠) from (35). By Lemma (2.2.4), we can choose 𝛼 > 0 sufficiently large that 

with probability at least 1 − 𝜀/2, we have 𝑋1(𝑠) ≤ 𝑐(𝑡𝛼 − 𝑠 + 𝜅𝑥2)1/3 for all 𝑠 ∈

[𝜅𝑥2, (1 − 𝛿)𝑡𝛼]. Therefore, for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡], we have   ℙ(𝑌𝛼(𝑠) =

𝑌(𝑠)) > 1 − 𝜀/2. 

By Lemma (2.1.7) with 𝑡𝛼 in place of t, for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡], 

𝔼[𝑌𝛼(𝑠)|ℱ𝜅𝑥2]

≤
𝐶

𝐿𝛼(𝑠−𝜅𝑥2)
 𝑒

−(3𝜋2)1/3(𝑡𝛼
1/3

−(𝑡𝛼−𝑠+𝜅𝑥2)1/3)
𝑍𝛼 × ∫ sin (

𝜋𝑦

𝐿𝛼(𝑠−𝜅𝑥2)
)

𝐿𝛼(𝑠−𝜅𝑥2)

0

𝑑𝑦 

≤ 𝐶𝑒
−(3𝜋2)1/3(𝑡𝛼

1/3
−(𝑡𝛼−𝑠+𝜅𝑥2)1/3)

𝑍𝛼 . 
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By combining this result with the conditional Markov's inequality and (25), we get 

that there is a constant 𝐶 such that for sufficiently large 𝑥, 

ℙ (𝑌𝛼(𝑠) ≤ 𝐶𝑥−1𝑒√2𝑥𝑒
−(3𝜋2)1/3(𝑡𝛼

1/3
−(𝑡𝛼−𝑠+𝜅𝑥2)1/3)

) > 1 −
𝜀

2
 

for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡]. Because |(𝑡𝛼 − 𝑠 − 𝜅𝑥2)1/3 − (𝑡 − 𝑠)1/3| is bounded 

by a constant which depends on 𝛼, and (3𝜋2)1/3𝑡𝛼
1/3

= √2(𝑥 − 𝛼), there is a 

constant 𝐶 depending on 𝛼 such that 

ℙ (𝑌𝛼(𝑠) ≤ 𝐶𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑠)1/3)) > 1 −
𝜀

2
 

for all 𝑠 ∈ [2𝜅𝑥2, (1 − 𝛿)𝑡].  

The result follows because ℙ(𝑌𝛼(𝑠) = 𝑌(𝑠)) > 1 − 𝜀/2.            

Suppose 𝜅 > 0 and 𝛿 > 0. Let 𝜀 > 0. Choose a constant 𝐵 > 0 sufficiently large 

that if 𝑠 = 𝐵𝐿2, the right-hand side of (3) is at most 𝜀. Now fix a time 𝑠 such that 

(𝐵 + 3𝜅)𝑥2 ≤ 𝑠 ≤ (1 − 𝛿)𝑡. 

Let 𝑓: [0, ∞) → ℝ and 𝜙: [0,1] → ℝ be bounded continuous functions. Let ‖𝑓‖ =

sup
𝑥≥0

|𝑓(𝑥)| and ‖𝜙‖ = sup
0≤𝑥≤1

|𝜙(𝑥)|. We are interested here in the quantities 

∑ 𝑓(𝑋𝑖(𝑠))

𝑁(𝑠)

𝑖=1

.                                                     (41) 

and 

∑ 𝑒√2𝑋𝑖(𝑠)𝜙

𝑁(𝑠)

𝑖=1

(
𝑋𝑖(𝑠)

𝐿(𝑠)
) 𝟏{𝑋𝑖(𝑠)≤𝐿(𝑠)}.                                            (42) 

Let 𝑟 = 𝑠 − 𝐵𝑥2. Let 𝐴 be the event that 𝑋1(𝑢) ≤ 𝐿(𝑠) for all 𝑢 ∈ [𝑟, 𝑠]. By 

Proposition (2.2.7), there is a positive constant 𝐶 such that 

ℙ (𝑌(𝑟) ≤ 𝐶𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑟)1/3)) > 1 − 𝜀               (43) 

for sufficiently large 𝑥. Because 𝐿(𝑟) − 𝐿(𝑠) is bounded above by a constant, 

Lemma (2.2.5) implies that 

ℙ(𝑋1(𝑟) ≤ 𝐿(𝑠)) > 1 − 𝜀                                               (44) 
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for sufficiently large 𝑥. Because 𝑀(𝑟), as defined in (30), is bounded by 

𝑋1(𝑟)𝑌(𝑟), we have 

𝑀(𝑟) ≤ 𝐶𝐿(𝑠)𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑟)1/3) 

when the events in (43) and (44) both occur. By the Optional Sampling Theorem, 

the probability, conditional on ℱ𝑟, that some particle reaches 𝐿(𝑠) between times 𝑟 

and 𝑠 is at most 𝑀(𝑟)/(𝐿(𝑠)𝑒√2𝐿(𝑠)). Therefore, 

ℙ(𝐴𝑐) ≤ 2𝜀 + 𝐶𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑟)1/3 − √2𝐿(𝑠)).       (45) 

Because √2𝐿(𝑠) = (3𝜋2)1/3(𝑡 − 𝑠)1/3, the exponential on the right-hand side of 

(45) is bounded by a constant. Therefore, the second term on the right-hand side of 

(45) tends to zero as 𝑥 → ∞, and thus ℙ(𝐴𝑐) < 3𝜀 for sufficiently large 𝑥. 

Let 𝑆 be the set of all 𝑖 ∈ {1, … , 𝑁(𝑠)} such that for all 𝑢 ∈ [𝑟, 𝑠], the 

particle at time 𝑢 that is the ancestor of the particle at 𝑋𝑖(𝑠) at time 𝑠 is positioned 

to the left of 𝐿(𝑠). We will work with the quantities 

𝑋(𝑓) = ∑ 𝑓

N(s)

i=1

(Xi(s))1{𝑖∈𝑠} 

and 

𝑋′(𝜙) = ∑ 𝑒√2𝑋𝑖(𝑠)𝜙

𝑁(𝑠)

𝑖=1

(
𝑋𝑖(𝑠)

𝐿(𝑠)
) 𝟏{𝑖∈𝑠}. 

Note that 𝑋(𝑓) and 𝑋′(𝜙) equal the sums in (41) and (42) respectively on the 

event 𝐴, so we have the following result. 

Lemma (2.2.8) [2]: 

Suppose 𝜀, 𝐵, 𝑟, and 𝑠 are as defined above. Then for sufficiently large 𝑥, 

with probability greater than 1 − 3𝜀, the quantity 𝑋(𝑓) equals the sum in (41) and 

𝑋′(𝜙) equals the sum in (42) for all bounded continuous functions 𝑓: [0, ∞) → ℝ 

and 𝜙: [0,1] → ℝ. 

Because 𝑋(𝑓) and 𝑋′(𝜙) are the sums that would be obtained if particles were 

killed at 𝐿(𝑠) between times 𝑟 and 𝑠, we can compute conditional moments of 
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𝑋(𝑓) and 𝑋′(𝜙) by applying Lemma (2.1.5) with 𝐵𝑥2 in place of 𝑠 and 𝐿(𝑠) in 

place of 𝐿. We define 𝑞𝑢(𝑥, 𝑦) as in Lemma (2.1.1) with 𝐿(𝑠) in place of 𝐿. 

Define 

�̂� = ∑ 𝑒√2𝑋𝑖(𝑟)

𝑁(𝑟)

𝑖=1

sin (
𝜋𝑋𝑖(𝑟)

𝐿(𝑠)
) 𝟏{𝑋𝑖(𝑟)≤𝐿(𝑠)}.                                            (46) 

Note that �̂� is defined in the same way as 𝑍(𝑟), except that 𝐿(𝑠) is used instead of 

𝐿(𝑟) in the denominator of the sine function and in the indicator. Lemma (2.2.5) 

implies that with probability tending to one as 𝑥 → ∞, we have                   

𝑋1(𝑟) ≤ 𝐿(𝑟) − 2(𝐿(𝑟) − 𝐿(𝑠)). Therefore, there are positive constants 𝐶′ and 𝐶′′ 

such that for sufficiently large 𝑥, 

ℙ (𝐶′𝑍(𝑟) ≤ �̂� ≤ 𝐶′′𝑍(𝑟)) > 1 − 𝜀.                                               (47) 

Lemma (2.2.9) [2]: 

For sufficiently large 𝑥, we have 

|𝔼[𝑋(𝑓)|ℱ𝑟] − �̂�
𝜋

𝐿(𝑠)2𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2
∫ 𝑓(𝑦)𝑔(𝑦)𝑑𝑦

∞

0

| <
2𝜋‖𝑓‖𝜀

𝐿(𝑠)2 𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2
�̂�, 

where 𝑔(𝑦) = 2𝑦𝑒−√2𝑦 as in Theorem (2.2.15). 

Proof. Because the right-hand side of (3) is at most 𝜀 when 𝑠 = 𝐵𝑥2, it follows 

from Lemma (2.1.5) and Lemma (2.1.1) that 

𝔼[𝑋(𝑓)|ℱ𝑟] = ∑ ∫ 𝑓(𝑦)𝑞𝐵𝑥2(𝑋𝑖(𝑟), 𝑦)𝑑𝑦
𝐿(𝑠)

0

𝑁(𝑟)

𝑖=1

 

=
2(1 + 𝐷)

𝐿(𝑠)
𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2

�̂� ∫ 𝑓(𝑦)𝑒−√2𝑦 sin (
𝜋𝑦

𝐿(𝑠)
) 𝑑𝑦

𝐿(𝑠)

0

, 

where |𝐷| < 𝜀. Note that 

lim
𝑥→∞

𝐿(𝑠) ∫ 𝑓(𝑦)𝑒−√2𝑦 |
𝜋𝑦

𝐿(𝑠)
− sin (

𝜋𝑦

𝐿(𝑠)
)| 𝑑𝑦

𝐿(𝑠)

0

= 0 
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and 

lim
𝑥→∞

∫ 𝑓(𝑦)𝑒−√2𝑦 . 𝜋𝑦 𝑑𝑦
∞

𝐿(𝑠)

= 0. 

It follows that 

𝐿(𝑠) ∫ 𝑓(𝑦)𝑒−√2𝑦 sin (
𝜋𝑦

𝐿(𝑠)
) 𝑑𝑦

𝐿(𝑠)

0

= ∫ 𝑓(𝑦)𝑒−√2𝑦 . 𝜋𝑦 𝑑𝑦
∞

0

+ 𝛾(𝑥), 

where 𝛾(𝑥) → 0 as 𝑥 → ∞. Therefore, 

𝔼[𝑋(𝑓)|ℱ𝑟] = �̂�
𝜋(1 + 𝐷)

𝐿(𝑠)2
𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2

(∫ 𝑓(𝑦)𝑔(𝑦)𝑑𝑦
∞

0

+
2𝛾(𝑥)

𝜋
).    (48) 

To obtain the result from (48), first note that the error term involving 𝛾(𝑥) is 

bounded by 2(1 + 𝜀)𝐿(𝑠)−2𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2
�̂�𝛾(𝑥), and then bound the remaining 

error term involving 𝐷 by 𝜋𝜀𝐿(𝑠)−2𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2
‖𝑓‖�̂�.            

Lemma (2.2.10) [2]: 

There is a constant 𝐶 such that for sufficiently large 𝑥, 

Var(𝑋(𝑓)|ℱ𝑟) ≤
𝐶 𝑌(𝑟)𝑒√2𝐿(𝑠)

𝑥11/2
. 

Proof. By summing over the contributions of the particles at time 𝑟 and applying 

Lemma (2.1.5), we get 

Var(𝑋(𝑓)|ℱ𝑟) ≤ ∑ ∫ 𝑓(𝑦)2𝑞𝐵𝑥2(𝑋𝑖(𝑟), 𝑦)𝑑𝑦
𝐿(𝑠)

0

𝑁(𝑟)

𝑖=1

 

+2 ∑ ∫ ∫ 𝑞𝑢(𝑋𝑖(𝑟), 𝑧) (∫ 𝑓(𝑦)𝑞𝐵𝑥2−𝑢(𝑧, 𝑦)𝑑𝑦
𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2

0

𝑁(𝑟)

𝑖=1

.  (49) 

The first term on the right-hand side of (49) is bounded by ‖𝑓‖2𝔼[𝑋(1)|ℱ𝑟], 

where 𝑋(1) denotes the value of 𝑋(𝑓) when 𝑓(𝑥) = 1 for all 𝑥. Consequently, by 

Lemma (2.2.9), this term is bounded above by  

𝐶�̂�𝑥−2 ≤ 𝐶𝑌(𝑟)𝑥−2 ≤ 𝐶𝑌(𝑟)𝑒√2𝐿(𝑠)/𝑥11/2, 
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It remains to bound the second term. The strategy involves splitting the 

outer integral into four pieces. Suppose 0 < 𝑤 < 𝐿(𝑠). Using Lemma (2.1.1) and 

equations (4) and (8), 

               ∫ ∫ 𝑞𝑢(𝑤, 𝑧) (∫ 𝑓(𝑦)𝑞𝐵𝑥2−𝑢(𝑧, 𝑦)𝑑𝑦
𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2/2

0

 

≤ ∫ ∫ 𝑞𝑢(𝑤, 𝑧) (∫
𝐶

𝐿(𝑠)
𝑒√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
) 𝑒−√2𝑦 sin (

𝜋𝑦

𝐿(𝑠)
) 𝑑𝑦

𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2/2

0

 

≤
𝐶

𝐿(𝑠)2
∫ ∫ 𝑞𝑢(𝑤, 𝑧)𝑒2√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
)
2

(∫ 𝑒−√2𝑦 sin (
𝜋𝑦

𝐿(𝑠)
) 𝑑𝑦

𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2/2

0

 

   ≤
𝐶

𝐿(𝑠)4
∫ 𝑒2√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
)
2

(∫ 𝑞𝑢(𝑤, 𝑧)𝑑𝑢
𝐵𝑥2/2

0

) 𝑑𝑧
𝐿(𝑠)

0

. 

    ≤
𝐶𝑒√2𝑤

𝐿(𝑠)4
∫ 𝑒√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
)
2 𝑤(𝐿(𝑠) − 𝑧)

𝐿(𝑠)
𝑑𝑧

𝐿(𝑠)

0

 

    ≤
𝐶𝑒√2𝑤𝑒√2𝐿(𝑠)

𝐿(𝑠)6
.                                                                                                         (50) 

Using Lemma (2.1.1) and (5), 

∫ ∫ 𝑞𝑢(𝑤, 𝑧) (∫ 𝑓(𝑦)𝑞𝐵𝑥2−𝑢(𝑧, 𝑦)𝑑𝑦
𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2−𝐿(𝑠)7/4

𝐵𝑥2/2

 

   ≤ ∫ ∫
𝐶

𝐿(𝑠)
𝑒√2𝑤 sin (

𝜋𝑤

𝐿(𝑠)
) 𝑒−√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
)

𝐿(𝑠)

0

𝐵𝑥2−𝐿(𝑠)7/4

𝐵𝑥2/2

× (∫
𝐶

𝐿(𝑠)
𝑒√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
) 𝑒−√2𝑦 sin (

𝜋𝑦

𝐿(𝑠)
)

𝐿(𝑠)

0

.
𝐶𝐿(𝑠)3

(𝐵𝑥2−𝑢)3/2
𝑑𝑦)

2

𝑑𝑧 𝑑𝑢 

   ≤ 𝐶𝐿(𝑠)3𝑒√2𝑤 sin (
𝜋𝑤

𝐿(𝑠)
) (∫ 1

(𝐵𝑥2−𝑢)3𝑑𝑢

𝐵𝑥2−𝐿(𝑠)7/4

𝐵𝑥2/2

)

× (∫ 𝑒√2𝑧 sin (
𝜋𝑧

𝐿(𝑠)
)
3

𝑑𝑧
𝐿(𝑠)

0

) (∫ 𝑒−√2𝑦 sin (
𝜋𝑦

𝐿(𝑠)
) 𝑑𝑦

𝐿(𝑠)

0

)

2
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   ≤ 𝐶𝐿(𝑠)3𝑒√2𝑤 sin (
𝜋𝑤

𝐿(𝑠)
) .

1

𝐿(𝑠)7/2
.
𝑒√2𝐿(𝑠)

𝐿(𝑠)3
.

1

𝐿(𝑠)2
 

   =
𝐶𝑒√2𝑤𝑒√2𝐿(𝑠)

𝐿(𝑠)11/2
sin (

𝜋𝑤

𝐿(𝑠)
) .                                                                                    (51) 

Using (6), we get 

∫ ∫ 𝑞𝑢(𝑤, 𝑧) (∫ 𝑓(𝑦)𝑞𝐵𝑥2−𝑢(𝑧, 𝑦)𝑑𝑦
𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
2𝐿(𝑠)/3

0

𝐵𝑥2−1

𝐵𝑥2−𝐿(𝑠)7/4

 

   ≤ ∫ ∫
𝐶

𝐿(𝑠)
𝑒√2𝑤 sin (

𝜋𝑤

𝐿(𝑠)
)

2𝐿(𝑠)/3

0

𝐵𝑥2−1

𝐵𝑥2−𝐿(𝑠)7/4

× 𝑒−√2𝑧 sin (
𝜋𝑧

𝐿(𝑠)
) (∫

𝐶𝑒√2(𝑧−𝑦)

(𝐵𝑥2 − 𝑢)1/2

𝐿(𝑠)

0

𝑑𝑦)

2

𝑑𝑧 𝑑𝑢 

≤
𝐶

𝐿(𝑠)
𝑒√2𝑤 sin (

𝜋𝑤

𝐿(𝑠)
) (∫

1

𝐵𝑥2 − 𝑢

𝐵𝑥2−1

𝐵𝑥2−𝐿(𝑠)7/4

𝑑𝑢) (∫ 𝑒√2𝑧 sin (
𝜋𝑧

𝐿(𝑠)
)

2𝐿(𝑠)/3

0

𝑑𝑧) 

 ≤
𝐶𝑒√2𝑤𝑒2√2𝐿(𝑠)/3 log 𝐿(𝑠)

𝐿(𝑠)
sin (

𝜋𝑤

𝐿(𝑠)
) .                                                                 (52) 

and 

∫ ∫ 𝑞𝑢(𝑤, 𝑧) (∫ 𝑓(𝑦)𝑞𝐵𝑥2−𝑢(𝑧, 𝑦)𝑑𝑦
𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

2𝐿(𝑠)/3

𝐵𝑥2−1

𝐵𝑥2−𝐿(𝑠)7/4

 

   ≤ ∫ ∫
𝐶

𝐿(𝑠)
𝑒√2𝑤 sin (

𝜋𝑤

𝐿(𝑠)
)

𝐿(𝑠)

2𝐿(𝑠)/3

𝐵𝑥2−1

𝐵𝑥2−𝐿(𝑠)7/4

× 𝑒−√2𝑧 sin (
𝜋𝑧

𝐿(𝑠)
) (∫

𝐶𝑒√2(𝑧−𝑦)𝑒−(𝑧−𝑦)2/2(𝐵𝑥2−𝑢)

(𝐵𝑥2 − 𝑢)1/2
𝑑𝑦

𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢 

≤
𝐶

𝐿(𝑠)
𝑒√2𝑤 sin (

𝜋𝑤

𝐿(𝑠)
) (∫

1

𝐵𝑥2 − 𝑢

𝐵𝑥2−1

𝐵𝑥2−𝐿(𝑠)7/4

𝑑𝑢)

× ∫ 𝑒√2𝑧 sin (
𝜋𝑧

𝐿(𝑠)
)

𝐿(𝑠)

2𝐿(𝑠)/3

(∫ 𝑒−√2𝑦𝑒−(𝑧−𝑦)2/2𝐿(𝑠)7/4
𝑑𝑦

𝐿(𝑠)

0

)

2

𝑑𝑧 
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 ≤
𝐶 log 𝐿(𝑠)

𝐿(𝑠)
𝑒√2𝑤 sin (

𝜋𝑤

𝐿(𝑠)
) 

× ∫ 𝑒√2𝑧 (∫ 𝑒−√2𝑦𝑒−(𝐿(𝑠)/3)2/2𝐿(𝑠)7/4
𝑑𝑦

𝐿(𝑠)/3

0

+ ∫ 𝑒−√2𝑦 
𝐿(𝑠)

𝐿(𝑠)/3

𝑑𝑦)

2

𝑑𝑧 
𝐿(𝑠)

2𝐿(𝑠)/3

 

 ≤
𝐶 log 𝐿(𝑠)

𝐿(𝑠)
𝑒√2𝑤 sin (

𝜋𝑤

𝐿(𝑠)
) (∫ 𝑒√2𝑧𝑑𝑧 

𝐿(𝑠)

2𝐿(𝑠)/3

) (𝑒−𝐿(𝑠)1/4/18 + 𝑒−√2𝐿(𝑠)/3)
2
 

 

≤
𝐶 log 𝐿(𝑠)

𝐿(𝑠)
𝑒√2𝑤𝑒√2𝐿(𝑠)𝑒−𝐿(𝑠)1/4/9 sin (

𝜋𝑤

𝐿(𝑠)
) .                                                              (53) 

Finally, using (7), 

∫ ∫ 𝑞𝑢(𝑤, 𝑧) (∫ 𝑓(𝑦)𝑞𝐵𝑥2−𝑢(𝑧, 𝑦)𝑑𝑦
𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2

𝐵𝑥2−1

 

      ≤ ∫ ∫
𝐶

𝐿(𝑠)
𝑒√2𝑤 sin (

𝜋𝑤

𝐿(𝑠)
) 𝑒−√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
) (‖𝑓‖𝑒)2𝑑𝑧 𝑑𝑢

𝐿(𝑠)

0

𝐵𝑥2

𝐵𝑥2−1

 

      ≤
𝐶𝑒√2𝑤

𝐿(𝑠)2
sin (

𝜋𝑤

𝐿(𝑠)
) .                                                                                                      (54) 

The expressions in (50), (51), (52), (53), and (54) are all bounded by 

𝐶𝑒√2𝑤𝑒√2𝐿(𝑠)/𝐿(𝑠)11/2. Because 𝐿(𝑠) and 𝑥 are the same to within a constant 

factor, we get after summing over the positions of the particles at time 𝑟 that the 

second term on the right-hand side of (49) is bounded by 𝐶𝑌(𝑟)𝑒√2𝐿(𝑠)/𝑥11/2. The 

result follows.                 

Lemma (2.2.11) [2]: 

For sufficiently large 𝑥, we have 

 |𝔼[𝑋′(𝜙)|ℱ𝑟] − 4�̂�

𝜋
𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2

∫ 𝜙(𝑦)ℎ(𝑦)𝑑𝑦
1

0
| < 4‖𝜙‖𝜀

𝜋
𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2

�̂�, 

where ℎ(𝑦) = 𝜋

2
sin (𝜋𝑦) as in Theorem (2.2.17). 

Proof. Because the right-hand side of (3) is at most 𝜀 when 𝑠 = 𝐵𝑥2, it follows 

from Lemma (2.1.5) and Lemma (2.1.1) that 
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𝔼[𝑋′(𝜙)|ℱ𝑟] = ∑ ∫ 𝑒√2𝑦𝜙 (
𝑦

𝐿(𝑠)
) 𝑞𝐵𝑥2(𝑋𝑖(𝑟), 𝑦)𝑑𝑦

𝐿(𝑠)

0

𝑁(𝑟)

𝑖=1

   

=
2(1 + 𝐷)

𝐿(𝑠)
𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2

�̂� ∫ 𝜙 (
𝑦

𝐿(𝑠)
) sin (

𝜋𝑦

𝐿(𝑠)
) 𝑑𝑦

𝐿(𝑠)

0

 

      =
4(1 + 𝐷)

𝜋
𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2

�̂� ∫ 𝜙(𝑦)ℎ(𝑦)𝑑𝑦
1

0

 

where |𝐷| < 𝜀. Because ℎ is a probability density, the error term involving 𝐷 is 

bounded by (4‖𝜙‖𝜀/𝜋)𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2
�̂�, as claimed.            

Lemma (2.2.12) [2]: 

There is a constant 𝐶 such that for sufficiently large 𝑥, 

Var(𝑋′(𝜙)|ℱ𝑟) ≤
𝐶𝑌(𝑟)𝑒√2𝐿(𝑠) log 𝑥

𝑥2 . 

Proof. By summing over the contributions of the particles at time 𝑟 and applying 

Lemma (2.1.5), we get 

Var(𝑋′(𝜙)|ℱ𝑟) ≤ ∑ ∫ 𝑒2√2𝑦𝜙 (
𝑦

𝐿(𝑠)
)

2
𝑞𝐵𝑥2(𝑋𝑖(𝑟), 𝑦)𝑑𝑦

𝐿(𝑠)

0

𝑁(𝑟)

𝑖=1

 

  +2 ∑ ∫ 𝑞𝑢(𝑋𝑖(𝑟), 𝑧) (∫ 𝑒√2𝑦𝜙 (
𝑦

𝐿(𝑠)
) 𝑞𝐵𝑥2−𝑢(𝑧, 𝑦)𝑑𝑦

𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐵𝑥2

0

𝑁(𝑟)

𝑖=1

.   (55) 

To bound the first term on the right-hand side of (55), note that if 0 < 𝑤 < 𝐿(𝑠), 

then, by Lemma (2.1.1) and (4), 

∫ 𝑒2√2𝑦𝜙 (
𝑦

𝐿(𝑠)
)

2
𝑞𝐵𝑥2(𝑤, 𝑦)𝑑𝑦

𝐿(𝑠)

0

≤
𝐶𝑒√2𝑤

𝐿(𝑠)
sin (

𝜋𝑤

𝐿(𝑠)
) ∫ 𝑒√2𝑦 sin (

𝜋𝑦

𝐿(𝑠)
) 𝑑𝑤

𝐿(𝑠)

0

 

      ≤
𝐶𝑒√2𝑤𝑒√2𝐿(𝑠)

𝐿(𝑠)2
sin (

𝜋𝑤

𝐿(𝑠)
) .                        (56) 

We bound the second term on the right-hand side of (55) by breaking the outer 

integral into two pieces. Using (8), if 0 < 𝑤 < 𝐿(𝑠), then 
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∫ ∫ 𝑞𝑢(𝑤, 𝑧) (∫ 𝑒√2𝑦𝜙 (
𝑦

𝐿(𝑠)
) 𝑞𝐵𝑥2−𝑢(𝑧, 𝑦)𝑑𝑦

𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2/2

0

 

         ≤ ∫ ∫ 𝑞𝑢(𝑤, 𝑧) (∫
𝐶

𝐿(𝑠)
𝑒√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
) sin (

𝜋𝑦

𝐿(𝑠)
) 𝑑𝑦

𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2/2

0

 

         ≤ 𝐶 ∫ ∫ 𝑞𝑢(𝑤, 𝑧)𝑒2√2𝑧 sin (
𝜋𝑧

𝐿(𝑠)
)
2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2/2

0

 

         ≤ 𝐶 ∫ 𝑒√2𝑤𝑒√2𝑧 sin (
𝜋𝑧

𝐿(𝑠)
)
2 𝑤(𝐿(𝑠) − 𝑧)

𝐿(𝑠)
𝑑𝑧 

𝐿(𝑠)

0

 

         ≤
𝐶𝑒√2𝑤𝑒√2𝐿(𝑠)

𝐿(𝑠)2
.                                                                                                 (57) 

Furthermore, by using (9) in the third line, making the substitution 𝑣 = 𝐵𝑥2 − 𝑢 

in the fourth line, and breaking the inner integral into the piece from 0 to 1 and the 

piece from 1 to 𝐵𝑥2/2 in the fifth line, we get 

∫ ∫ 𝑞𝑢(𝑤, 𝑧) (∫ 𝑒√2𝑦𝜙 (
𝑦

𝐿(𝑠)
) 𝑞𝐵𝑥2−𝑢(𝑧, 𝑦)𝑑𝑦

𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2

𝐵𝑥2/2

 

      ≤ ∫ ∫
𝐶

𝐿(𝑠)
𝑒√2𝑤 sin (

𝜋𝑤

𝐿(𝑠)
) 𝑒−√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
) (∫ 𝑒√2𝑦𝑞𝐵𝑥2−𝑢(𝑧, 𝑦)𝑑𝑦

𝐿(𝑠)

0

)

2

𝑑𝑧 𝑑𝑢
𝐿(𝑠)

0

𝐵𝑥2

𝐵𝑥2/2

 

       ≤
𝐶𝑒√2𝑤

𝐿(𝑠)
sin (

𝜋𝑤

𝐿(𝑠)
) ∫ ∫ 𝑒√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
) min {1,

(𝐿(𝑠)−𝑧)2

𝐵𝑥2−𝑢
} 𝑑𝑧 𝑑𝑢

𝐿(𝑠)

0

𝐵𝑥2

𝐵𝑥2/2

 

        ≤
𝐶𝑒√2𝑤

𝐿(𝑠)
sin (

𝜋𝑤

𝐿(𝑠)
) ∫ 𝑒√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
) (∫ min {1,

(𝐿(𝑠)−𝑧)2

𝑣
}

𝐵𝑥2/2

0

𝑑𝑣) 𝑑𝑧
𝐿(𝑠)

0

 

        ≤
𝐶𝑒√2𝑤

𝐿(𝑠)
sin (

𝜋𝑤

𝐿(𝑠)
) ∫ 𝑒√2𝑧 sin (

𝜋𝑧

𝐿(𝑠)
) (1 + (𝐿(𝑠) − 𝑧)2 log 𝑥)𝑑𝑧

𝐿(𝑠)

0

 

        ≤
𝐶𝑒√2𝑤𝑒√2𝐿(𝑠) log 𝑥

𝐿(𝑠)2
sin (

𝜋𝑤

𝐿(𝑠)
) .                                                                             (58) 

The expressions in (56), (57), and (58) are all bounded by    

(𝐶𝑒√2𝑤𝑒√2𝐿(𝑠) log 𝑥)/𝐿(𝑠)2. By summing over the positions of the particles at 
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time 𝑟, we get that the right-hand side of (55) is bounded by 

(𝐶𝑌(𝑟)𝑒√2𝐿(𝑠) log 𝑥)/𝑥2, which implies the result.            

Theorem (2.2.13) [2]: 

Fix 𝜀 > 0 and 𝛿 > 0. Then there exists a positive constant 𝐵 depending on 𝜖 and 

positive constants 𝐶1 and 𝐶2 depending on 𝐵, 𝛿, and 𝜖 such that for sufficiently 

large 𝑥, we have 

𝐏 (
𝐶1

𝑥3𝑒√2(1−𝑠/𝑡)1/3𝑥 ≤ 𝑁(𝑠) ≤
𝐶2

𝑥3𝑒√2(1−𝑠/𝑡)1/3𝑥) > 1 − 𝜀 

for all 𝑠 ∈ [𝐵𝑥2, (1 − 𝛿)𝑡]. 
For 0 ≤ 𝑠 ≤ 𝑡, define 

𝐿(𝑠) = 𝑥(1 −
𝑠

𝑡
)1/3 = 𝑐(𝑡 − 𝑠)1/3.                                 (59) 

The next result shows that at time 𝑠, the right-most particle is usually slightly to 

the left of 𝐿(𝑠). 

Proof. Let 𝜅 = 1. Choose 𝐵 as at before. Choose 𝑠 ∈ [(𝐵 + 3𝜅)𝑥2, (1 − 𝛿)𝑡], and 

let 𝑟 = 𝑠 − 𝐵𝑥2. Throughout the proof, the constants 𝐶, 𝐶′, and 𝐶′′ will be 

allowed to depend on 𝐵, 𝛿 and 𝜀. Recall that 𝑋(1) denotes the value of 𝑋(𝑓) when 

𝑓(𝑥) = 1 for all 𝑥. By Lemma (2.2.8), 

ℙ(𝑋(1) = 𝑁(𝑠)) > 1 − 3𝜀                                               (60) 

for sufficiently large 𝑥. By Lemma (2.2.9), 

(1 − 2𝜀)�̂�
𝜋

𝐿(𝑠)2
𝑒−𝜋2𝐵𝑥2/2𝐿(𝑠)2

≤ 𝔼[𝑋(1)|ℱ𝑟] ≤ (1 + 2𝜀)�̂�
𝜋

𝐿(𝑠)2
𝑒

−
𝜋2𝐵𝑥2

2𝐿(𝑠)2 . (61) 

Using Lemma (2.2.10) and the conditional Chebyshev's Inequality, 

ℙ (|𝑋(1) − 𝔼[𝑋(1)|ℱ𝑟]| >
1

2
𝔼[𝑋(1)|ℱ𝑟]| ℱ𝑟) ≤

𝐶𝑌(𝑟)𝑒√2𝐿(𝑠)

𝑥11/2𝔼[𝑋(1)|ℱ𝑟]2
 

≤
𝐶𝑌(𝑟)𝑒√2𝐿(𝑠)

𝑥3/2�̂�2
.            (62) 

By (47), Proposition (2.2.3), Proposition (2.2.6), and Proposition (2.2.7), there are 

constants 𝐶, 𝐶′, and 𝐶′′ such that with probability at least 1 − 4𝜀, we have 

𝐶′𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑟)1/3) ≤ �̂� ≤ 𝐶′′𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑟)1/3)       (63) 
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and 

𝑌(𝑟) ≤ 𝐶𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑟)1/3).                            (64) 

Thus, on an event of probability at least 1 − 4𝜀, the quantity on the right-hand side 

of (62) is bounded above by 

𝐶𝑥−1/2exp(√2𝐿(𝑠) − (3𝜋2)1/3(𝑡 − 𝑟)1/3)

= 𝐶𝑥−1/2exp((3𝜋2)1/3(𝑡 − 𝑠)1/3 − (3𝜋2)1/3(𝑡 − 𝑟)1/3), 

which tends to zero as 𝑥 → ∞ because the exponential term is bounded by a 

constant. By (61), on this same event of probability 1 − 4𝜀, there are constants 𝐶′ 

and 𝐶′′ such that 

𝐶′𝑥−3exp((3𝜋2)1/3(𝑡 − 𝑠)1/3) ≤
1

2
𝔼[𝑋(1)|ℱ𝑟] 

≤
3

2
𝔼[𝑋(1)|ℱ𝑟] ≤ 𝐶′′𝑥−3exp((3𝜋2)1/3(𝑡 − 𝑠)1/3). 

Combining these results with (60), we get 

ℙ (𝐶′𝑥−3exp((3𝜋2)1/3(𝑡 − 𝑠)1/3) ≤ 𝑁(𝑠) ≤ 𝐶′′𝑥−3exp((3𝜋2)1/3(𝑡 − 𝑠)1/3)) 

> 1 − 7𝜀 

for sufficiently large 𝑥. Because the constants 𝐶′ and 𝐶′′ do not depend on 𝑠 and 

(3𝜋2)1/3(𝑡 − 𝑠)1/3 = √2 (1 −
𝑠

𝜏𝑥3)
1/3

𝑥, 

the result follows.                 

The following proposition implies Theorem (2.2.15). Here ~ means that the ratio 

of the two sides tends to one as 𝑛 → ∞. 

Proposition (2.2.14) [2]: 

Suppose 0 < 𝑢 < 𝜏. Consider a sequence of times (𝑠𝑛)𝑛=1
∞  such that 𝑠𝑛~𝑢𝑥𝑛

3. 

Let 

𝜒𝑛(𝑢) =
1

𝑁(𝑠𝑛)
∑ 𝛿𝑋𝑖(𝑠𝑛)

𝑁(𝑠𝑛)

𝑖=1
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Let 𝜇 be the probability measure on (0, ∞) with density 𝑔(𝑦) = 2𝑦𝑒−√2𝑦. Then 

𝜒𝑛(𝑢) ⟹ 𝜇 as 𝑛 → ∞. 

Proof. To show that 𝜒𝑛(𝑢) ⟹ 𝜇 as 𝑛 → ∞, it suffices to show that for all 

bounded continuous functions 𝑓: [0, ∞) → ℝ, we have 

1

𝑁(𝑠𝑛)
∑ 𝑓(𝑋𝑖(𝑠𝑛))

𝑁(𝑠𝑛)

𝑖=1

→𝑝 ∫ 𝑔(𝑦)𝑓(𝑦)𝑑𝑦
∞

0

,                    (65) 

where 𝑔(𝑦) = 2𝑦𝑒−√2𝑦 for 𝑦 ≥ 0 and →𝑝 denotes convergence in probability as 

𝑛 → ∞. 

Fix a bounded continuous function 𝑓: [0, ∞) → ℝ. Let 𝜀 > 0, and choose 𝐵 

as before. Let 𝑟𝑛 = 𝑠𝑛 − 𝐵𝑥2. By Lemma (2.2.8), for sufficiently large 𝑛, 

ℙ (
1

𝑁(𝑠𝑛)
∑ 𝑓(𝑋𝑖(𝑠𝑛))

𝑁(𝑠𝑛)

𝑖=1

=
𝑋(𝑓)

𝑋(1)
) > 1 − 3𝜀.                                 (66) 

By Lemma (2.2.10) and the conditional Chebyshev's Inequality, 

ℙ (|𝑋(𝑓) − 𝔼[𝑋(𝑓)|ℱ𝑟𝑛
]| > 𝑥𝑛

−19/6
𝑒√2𝐿(𝑠𝑛)|ℱ𝑟𝑛

) ≤
𝐶𝑌(𝑟𝑛)𝑒√2𝐿(𝑠𝑛)

𝑥𝑛
−11/2

.
𝑥𝑛

−19/3

𝑒2√2𝐿(𝑠𝑛)
 

≤
𝐶𝑌(𝑟𝑛)𝑥𝑛

5/6

𝑒√2𝐿(𝑠𝑛)
.                (67) 

Both (63) and (64) hold, with 𝑟𝑛 in place of 𝑟, with probability at least 1 − 4𝜀 for 

sufficiently large 𝑛. Because (𝑡 − 𝑟𝑛)1/3 − (𝑡 − 𝑠𝑛)1/3 is bounded by a constant, 

the expression obtained by replacing 𝑌(𝑟𝑛) on the right-hand side of (67) by the 

upper bound from (64) tends to zero as 𝑛 → ∞, and thus is less than 𝜀 for 

sufficiently large 𝑛. The same convergence holds with 𝑋(1) in place of 𝑋(𝑓) on 

the left-hand side of (67). Thus, for sufficiently large 𝑛, on an event of probability 

at least 1 − 5𝜀, we have 

𝔼[𝑋(𝑓)|ℱ𝑟𝑛
] − 𝑥𝑛

−19/6
𝑒√2𝐿(𝑠𝑛)

𝔼[𝑋(1)|ℱ𝑟𝑛
] + 𝑥𝑛

−19/6
𝑒√2𝐿(𝑠𝑛)

≤
𝑋(𝑓)

𝑋(1)
≤

𝔼[𝑋(𝑓)|ℱ𝑟𝑛
] + 𝑥𝑛

−19/6
𝑒√2𝐿(𝑠𝑛)

𝔼[𝑋(1)|ℱ𝑟𝑛
] − 𝑥𝑛

−19/6
𝑒√2𝐿(𝑠𝑛)

. 

This inequality, when combined with Lemma (2.2.9), becomes 
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�̂�𝜋𝐿(𝑠𝑛)−2𝑒−𝜋2𝐵𝑥𝑛
2/𝐿(𝑠𝑛)2

(∫ 𝑓(𝑦)𝑔(𝑦)𝑑𝑦
∞

0
− 2‖𝑓‖𝜀) − 𝑥𝑛

−19/6
𝑒√2𝐿(𝑠𝑛)

�̂�𝜋𝐿(𝑠𝑛)−2𝑒
−

𝜋2𝐵𝑥𝑛
2

𝐿(𝑠𝑛)2 (1 + 2𝜀) + 𝑥𝑛

−
19
6 𝑒√2𝐿(𝑠𝑛)

≤
𝑋(𝑓)

𝑋(1)

≤
�̂�𝜋𝐿(𝑠𝑛)−2𝑒−𝜋2𝐵𝑥𝑛

2/𝐿(𝑠𝑛)2
(∫ 𝑓(𝑦)𝑔(𝑦)𝑑𝑦

∞

0
+ 2‖𝑓‖𝜀) + 𝑥𝑛

−19/6
𝑒√2𝐿(𝑠𝑛)

�̂�𝜋𝐿(𝑠𝑛)−2𝑒−𝜋2𝐵𝑥𝑛
2/𝐿(𝑠𝑛)2(1 − 2𝜀) − 𝑥𝑛

−19/6
𝑒√2𝐿(𝑠𝑛)

. 

When (63) holds, we have 𝑥𝑛
−3𝑒√2𝐿(𝑠𝑛) ≤ 𝐶�̂�𝐿(𝑠𝑛)−2, and thus for sufficiently 

large 𝑛, 

𝑥𝑛
−19/6

𝑒√2𝐿(𝑠𝑛) ≤ �̂�𝜋𝐿(𝑠𝑛)−2𝑒−𝜋2𝐵𝑥𝑛
2/𝐿(𝑠𝑛)2

𝜀. 

Therefore, for sufficiently large 𝑛, 

1

1 + 3𝜀
(∫ 𝑓(𝑦)𝑔(𝑦)𝑑𝑦

∞

0

− 2‖𝑓‖𝜀 − 𝜀) ≤
𝑋(𝑓)

𝑋(1)

≤
1

1 − 3𝜀
(∫ 𝑓(𝑦)𝑔(𝑦)𝑑𝑦

∞

0

+ 2‖𝑓‖𝜀 + 𝜀) 

with probability at least 1 − 5𝜀. In view of (66), we can let 𝜀 → 0 to obtain (65).  

Theorem (2.2.15) [2]: 

Suppose 0 < 𝑢 < 𝜏, and let 𝑠 = 𝑢𝑥3. Define the probability measure 

𝜒(𝑢) =
1

𝑁(𝑠)
∑ 𝛿𝑋𝑖(𝑠)

𝑁(𝑠)

𝑖=1

. 

Define 𝜇 as in Proposition (2.2.14).Then 𝒳(𝑢) ⟹ 𝜇 as 𝑥 → ∞. 

Proposition (2.2.16) [2]: 

Suppose 0 < 𝑢 < 𝜏. Consider a sequence of times (𝑠𝑛)𝑛=1
∞  such that 𝑠𝑛~𝑢𝑥𝑛

3 as 

𝑛 → ∞. Let 

𝜂𝑛(𝑢) =
1

𝑌(𝑠𝑛)
∑ 𝑒√2𝑋𝑖(𝑠𝑛)𝛿𝑋𝑖(𝑠𝑛)/𝐿(𝑠𝑛)

𝑁(𝑠𝑛)

𝑖=1

. 

Let 𝑣 be the probability measure on (0,1) with density ℎ(𝑦) =
𝜋

2
sin (𝜋𝑦). Then 

𝜂𝑛(𝑢) ⟹ 𝜈 as 𝑛 → ∞. 
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Proof. The proof is very similar to the proof of Theorem (2.2.15). It suffices to 

show that we have ℙ(𝑋1(𝑠𝑛) < 𝐿(𝑠𝑛)) → 1 as 𝑛 → ∞, and that for all bounded 

continuous functions 𝜙: [0,1] → ℝ, 

1

𝑌(𝑠𝑛)
∑ 𝑒√2𝑋𝑖(𝑠𝑛)𝜙 (

𝑋𝑖(𝑠𝑛)

𝐿(𝑠𝑛)
)

𝑁(𝑠𝑛)

𝑖=1

→𝑝 ∫ 𝜙(𝑦)ℎ(𝑦)𝑑𝑦
1

0

,                    (68) 

That ℙ(𝑋1(𝑠𝑛) < 𝐿(𝑠𝑛)) → 1 as 𝑛 → ∞ follows immediately from Lemma (2.2.5) 

with 𝑎 = 0.  

Fix a bounded continuous function 𝜙: [0,1] → ℝ. Let 𝜀 > 0, and choose 𝐵 as 

before. Let 𝑟𝑛 = 𝑠𝑛 − 𝐵𝑥𝑛
2. Let 𝑋′(1) denote the value of 𝑋′(𝜙) when 𝜙(𝑥) = 1 

for all 𝑥 ∈ [0,1]. By Lemma (2.2.8), for sufficiently large 𝑥, 

ℙ (
1

𝑌(𝑠𝑛)
∑ 𝑒√2𝑋𝑖(𝑠𝑛)𝜙 (

𝑋𝑖(𝑠𝑛)

𝐿(𝑠𝑛)
)

𝑁(𝑠𝑛)

𝑖=1

=
𝑋′(𝜙)

𝑋′(1)
) > 1 − 3𝜀.                                 (69) 

By Lemma (2.2.12) and the conditional Chebyshev's Inequality, 

ℙ (|𝑋′(𝜙) − 𝔼[𝑋′(𝜙)|ℱ𝑟𝑛
]| > 𝑥𝑛

−4/3
𝑒√2𝐿(𝑠𝑛)|ℱ𝑟𝑛

) 

≤
𝐶𝑌(𝑟𝑛)𝑒√2𝐿(𝑠𝑛) log 𝑥𝑛

𝑥𝑛
2

.
𝑥𝑛

8/3

𝑒2√2𝐿(𝑠𝑛)
 

    ≤
𝐶𝑌(𝑟𝑛)𝑥𝑛

2/3
log 𝑥𝑛

𝑒√2𝐿(𝑠𝑛)
.                                                          (70) 

Recall that (63) and (64) both hold with probability at least 1 − 4𝜀 for sufficiently 

large 𝑛. The expression obtained by replacing 𝑌(𝑟𝑛) with the right-hand side of 

(64) on the right-hand side of (70) tends to zero as 𝑥𝑛 → ∞, and the same result 

holds when 𝑋′(𝜙) is replaced by 𝑋′(1) on the left-hand side. Thus, for sufficiently 

large 𝑛, on an event of probability at least 1 − 5𝜀, we have 

𝔼[𝑋′(𝜙)|ℱ𝑟𝑛
] − 𝑥𝑛

−4/3
𝑒√2𝐿(𝑠𝑛)

𝔼[𝑋′(1)|ℱ𝑟𝑛
] + 𝑥𝑛

−4/3
𝑒√2𝐿(𝑠𝑛)

≤
𝑋′(𝜙)

𝑋′(1)
≤

𝔼[𝑋′(𝜙)|ℱ𝑟𝑛
] + 𝑥𝑛

−4/3
𝑒√2𝐿(𝑠𝑛)

𝔼[𝑋′(1)|ℱ𝑟𝑛
] − 𝑥𝑛

−4/3
𝑒√2𝐿(𝑠𝑛)

. 

Combining this inequality with Lemma (2.2.11) gives 
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4𝜋−1�̂�𝜋𝑒−𝜋2𝐵𝑥𝑛
2/𝐿(𝑠𝑛)2

(∫ 𝜙(𝑦)ℎ(𝑦)𝑑𝑦
1

0
− ‖𝜙‖𝜀) − 𝑥𝑛

−4/3
𝑒√2𝐿(𝑠𝑛)

4𝜋−1�̂�𝜋𝑒−𝜋2𝐵𝑥𝑛
2/𝐿(𝑠𝑛)2(1 + 𝜀) + 𝑥𝑛

−4/3
𝑒√2𝐿(𝑠𝑛)

≤
𝑋′(𝜙)

𝑋′(1)

≤
4𝜋−1�̂�𝜋𝑒−𝜋2𝐵𝑥𝑛

2/𝐿(𝑠𝑛)2
(∫ 𝜙(𝑦)ℎ(𝑦)𝑑𝑦

1

0
+ ‖𝜙‖𝜀) + 𝑥𝑛

−4/3
𝑒√2𝐿(𝑠𝑛)

4𝜋−1�̂�𝜋𝑒−𝜋2𝐵𝑥𝑛
2/𝐿(𝑠𝑛)2(1 − 𝜀) − 𝑥𝑛

−4/3
𝑒√2𝐿(𝑠𝑛)

. 

Because 𝑥𝑛
−1𝑒√2𝐿(𝑠𝑛) ≤ 𝐶�̂� when (63) holds, we have 

𝑥𝑛
−4/3

𝑒√2𝐿(𝑠𝑛) ≤ 4𝜋−1�̂�𝜋𝑒−𝜋2𝐵𝑥𝑛
2/𝐿(𝑠𝑛)2

𝜀 

for sufficiently large 𝑛 when (63) holds. Therefore, for sufficiently large 𝑛, 

1

1 + 2𝜀
(∫ 𝜙(𝑦)ℎ(𝑦)𝑑𝑦

1

0

− ‖𝜙‖𝜀 − 𝜀) ≤
𝑋′(𝜙)

𝑋′(1)

≤
1

1 − 2𝜀
(∫ 𝜙(𝑦)ℎ(𝑦)𝑑𝑦

1

0

+ ‖𝜙‖𝜀 + 𝜀) 

with probability at least 1 − 5𝜀. In view of (69), we can let 𝜀 → 0 to obtain (68).  

Theorem (2.2.17) [2]: 

Suppose 0 < 𝑢 < 𝜏, and let 𝑠 = 𝑢𝑥3. Define the probability measure 

𝜂(𝑢) =
1

𝑌(𝑠)
∑ 𝑒√2𝑋𝑖(𝑠)𝛿𝑋𝑖(𝑠)/𝐿(𝑠)

𝑁(𝑠)

𝑖=1

. 

Let 𝜈 be defined as in Proposition (2.2.16). Then 𝜂(𝑢) ⟹ 𝑣 as 𝑥 → ∞. 
 

Section (2.3): Position of the Right-Most Particle 

Consider branching Brownian motion without killing and with a drift of 

−√2. Let 𝑢(𝑡, 𝑤) be the probability that if at time zero there is a single particle at 

the origin, then the position of the right-most particle at time 𝑡 will be greater than 

or equal to 𝑤. Define 𝑚(𝑡) = inf {𝑤: 𝑢(𝑡, 𝑤) ≥ 1/2}. There exist positive 

constants 𝑇, 𝐶′, 𝐶′′, and 𝐶12 such that if 𝑡 ≥ 𝑇, then 

𝑢(𝑡, 𝑤) ≤ 𝐶′′𝑒𝑡 ∫
𝑒−(𝑤+√2𝑡−𝑧)2/2𝑡

√2𝜋𝑡
(1 − 𝑒−2(𝑧+1)(𝑤−𝑚(𝑡))/𝑡)𝑑𝑧

0

−1

    (71) 

and  

𝑢(𝑡, 𝑤) ≥ 𝐶′𝑒𝑡 ∫
𝑒−(𝑤+√2𝑡−𝑧)2/2𝑡

√2𝜋𝑡
(1 − 𝑒−2(𝑧+1)(𝑤−𝑚(𝑡))/𝑡)𝑑𝑧

0

−1

    (72) 
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for all 𝑤 ≥ 𝑚(𝑡) + 1, where 

|𝑚(𝑡) +
3

2√2
log 𝑡| ≤ 𝐶12.                                        (73) 

Lemma (2.3.1) [2]: 

Suppose 0 < 𝛾 ≤ 1. Suppose that 𝑡 = 𝛾𝑥2 and that 𝑤 = −(3/2√2) log 𝑡 + 𝑦, 

where 1 + 𝐶12 ≤ 𝑦 ≤ 𝐶13𝑥 for some positive constant 𝐶13. Then there exists 𝑥0 >

0, depending on 𝛾, such that for 𝑥 ≥ 𝑥0, 

𝐶′𝑦𝑒√2𝑦𝑒−𝑦2/2𝑡 ≤ 𝑢(𝑡, 𝑤) ≤ 𝐶′′𝑦𝑒√2𝑦𝑒−𝑦2/2𝑡 , 

where 𝐶′and 𝐶′′ are positive constants that do not depend on 𝛾. 

Remark  (2.3.2) [2]: 

We note that similar bounds on 𝑢 may be obtained directly by PDE methods, and 

these have in fact been used to reprove Bramson's logarithmic correction result 

and to extend it to the setup of periodic branching rates. 

Proof. We may assume that 𝑥 is large enough that 𝑡 ≥ max {1, 𝑇}. If −1 ≤ 𝑧 ≤ 0, 

then using (73), 

2(𝑧 + 1)(𝑤 − 𝑚(𝑡))

𝑡
≤

2(𝑦 − (3/2√2) log 𝑡 − 𝑚(𝑡))

𝑡
≤

2(𝑦 + 𝐶12)

𝑡
≤

4𝑦

𝑡
. (74) 

It follows that 

1 − 𝑒−2(𝑧+1)(𝑤−𝑚(𝑡))/𝑡 ≤
4𝑦

𝑡
.                                      (75) 

Because 𝑦 ≤ 𝐶13𝑥 and 𝑡 = 𝛾𝑥2, the expression in (74) tends to zero as 𝑥 → ∞. 

Therefore, if −1/2 ≤ 𝑧 ≤ 0, we have, for sufficiently large 𝑥, 

1 − 𝑒−2(𝑧+1)(𝑤−𝑚(𝑡))/𝑡 ≥
1

2
∙

2(𝑧 + 1)(𝑤 − 𝑚(𝑡))

𝑡
≥

𝑦 − (3/2√2) log 𝑡 − 𝑚(𝑡)

2𝑡
 

≥
𝑦 − 𝐶12

2𝑡
≥

𝐶𝑦

𝑡
.                 (76) 

Next, observe that 

𝑒−(𝑤+√2𝑡−𝑧)2/2𝑡 = 𝑒−(𝑦−𝑧)2/2𝑡𝑒(3/2√2)(𝑦−𝑧) log 𝑡/𝑡𝑒−9(log 𝑡)2/16𝑡𝑒−√2(𝑦−𝑧)𝑒−𝑡𝑡3/2. 
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If −1 ≤ 𝑧 ≤ 0, then 𝑒−√2 ≤ 𝑒√2𝑧 ≤ 1. Also, 𝑒−9(log 𝑡)2/16𝑡 tends to one as 𝑥 → ∞. 

Furthermore, because 𝑡 = 𝛾𝑥2 and 𝑦 ≤ 𝐶13𝑥, we have 𝑒(3/2√2)(𝑦−𝑧) log 𝑡/𝑡 → 1 and 

𝑒−(𝑦−𝑧)2/2𝑡/𝑒−𝑦2/2𝑡 → 1 as 𝑥 → ∞. It follows that there exists 𝑥0 > 0, depending 

on 𝛾, and positive constants 𝐶′and 𝐶′′such that if 𝑥 ≥ 𝑥0, then 

𝐶′𝑒−𝑦2/2𝑡𝑒−√2𝑦𝑒−𝑡𝑡3/2 ≤ 𝑒−(𝑤+√2𝑡−𝑧)2/2𝑡 ≤ 𝐶′′𝑒−𝑦2/2𝑡𝑒−√2𝑦𝑒−𝑡𝑡3/2.    (77) 

Combining (71), (75), and (77), we get that for sufficiently large 𝑥, 

𝑢(𝑡, 𝑤) ≤ 𝐶𝑒𝑡 ∫
𝑒−(𝑤+√2𝑡−𝑧)2/2𝑡

√2𝜋𝑡
(1 − 𝑒−2(𝑧+1)(𝑤−𝑚(𝑡))/𝑡)𝑑𝑧

0

−1

 

≤ 𝐶𝑒𝑡 ∫
𝑒−𝑦2/2𝑡𝑒−√2𝑦𝑒−𝑡𝑡3/2

√2𝜋𝑡

𝑦

𝑡
𝑑𝑧

0

−1

 

≤ 𝐶𝑦𝑒−√2𝑦𝑒−𝑦2/2𝑡 .                                                            (78) 

By similar reasoning using (71), (76), and (77), we get that for sufficiently large 𝑥, 

𝑢(𝑡, 𝑤) ≥ 𝐶𝑒𝑡 ∫
𝑒−(𝑤+√2𝑡−𝑧)2/2𝑡

√2𝜋𝑡
(1 − 𝑒−2(𝑧+1)(𝑤−𝑚(𝑡))/𝑡)𝑑𝑧

0

−1/2

 

≥ 𝐶𝑒𝑡 ∫
𝑒−𝑦2/2𝑡𝑒−√2𝑦𝑒−𝑡𝑡3/2

√2𝜋𝑡

𝑦

𝑡
𝑑𝑧

0

−1/2

 

≥ 𝐶𝑦𝑒−√2𝑦𝑒−𝑦2/2𝑡 .                                                                (79) 

The result follows from (78) and (79).              

Lemma  (2.3.3) [2]: 

Suppose 0 < 𝛾 ≤ 1. Suppose 𝑡 ≤ 𝛾𝑥2 and 𝑤 ≥ 𝐶14𝑥 for some positive constant 

𝐶14. Then there exists 𝑥0 > 0, depending on 𝛾, such that for 𝑥 ≥ 𝑥0, 

𝑢(𝑡, 𝑤) ≤ 𝐶𝛾−3/2𝑥−3𝑤𝑒−√2𝑤𝑒−𝐶15/𝛾                                             (80) 

for some positive constants 𝐶 and 𝐶15 that do not depend on 𝛾. 

Proof. If −1 ≤ 𝑧 ≤ 0, then 

1 − 𝑒−2(𝑧+1)(𝑤−𝑚(𝑡))/𝑡 ≤
2(𝑧 + 1)(𝑤 − 𝑚(𝑡))

𝑡
≤

𝐶𝑤

𝑡
.                      (81) 

Also, for sufficiently large 𝑥, 
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𝑒−(𝑤+√2𝑡−𝑧)2/2𝑡 = 𝑒−𝑡𝑒−√2(𝑤−𝑧)𝑒−(𝑤−𝑧)2/2𝑡 ≤ 𝐶𝑒−𝑡𝑒−√2𝑤𝑒−𝐶14
2 𝑥2/𝑡 .     (82) 

By (71), (81), and (82), we get that when 𝑇 ≤ 𝑡 ≤ 𝛾𝑥2, 

𝑢(𝑡, 𝑤) ≤ 𝐶𝑤𝑒−√2𝑤𝑡−3/2𝑒−𝐶14
2 𝑥2/𝑡 . 

The function 𝑡 ↦ 𝑡−3/2𝑒−𝐶14
2 𝑥2/𝑡 is increasing when 𝑡 ≤ (2𝐶14

2 𝑥2)/3 which means 

that for 𝛾 ≤ 2𝐶14
2 /3, we have 

𝑢(𝑡, 𝑤) ≤ 𝐶𝛾−3/2𝑥−3𝑤𝑒−√2𝑤𝑒−𝐶14
2 /2𝛾 

whenever 𝑇 ≤ 𝑡 ≤ 𝛾𝑥2. This is enough to imply (80) except in the case when 𝑡 <

𝑇. However, when 𝑡 < 𝑇, by the Many-to-One Lemma and Markov's Inequality, 

𝑢(𝑡, 𝑤) is bounded above by 𝑒𝑡 times the probability that an individual Brownian 

particle started at the origin is to the right of 𝑤 by time 𝑡. For the purpose of 

obtaining an upper bound on 𝑢(𝑡, 𝑤), we may ignore the drift of −√2. Therefore, 

using that 

∫ 𝑒−𝑥2/2𝑑𝑥 ≤ 𝑧−1
∞

𝑧

𝑒−𝑧2/2, 

we have 

𝑢(𝑡, 𝑤) ≤ 𝑒𝑡 ∫
1

√2𝜋
𝑒−𝑥2/2𝑑𝑧

∞

𝑤/√𝑡

≤
𝑒𝑡√𝑡

√2𝜋𝑤
𝑒−𝑤2/2𝑡 ≤

𝑒𝑇𝑇

√2𝜋𝑤
𝑒−𝑤2/2𝑇 . 

Because 𝑤 ≥ 𝐶14𝑥, this expression is bounded above by the right-hand side of 

(80) for 𝑥 ≥ 𝑥0, where 𝑥0 depends on 𝛾.              

We now return to the setting of Theorem (2.3.5), in which there is initially a 

particle at 𝑥 and particles are killed when they reach the origin. 

Lemma  (2.3.4) [2]: 

Let 𝜀 > 0. Let 0 < 𝑢 < 𝜏, and let 𝑠 = 𝑢𝑥3. Let  𝛾 > 0. Let 𝐷 be the number of 

particles that are killed at the origin between times 𝑠 − 𝛾𝑥2 and 𝑠. Then there 

exists a positive constant 𝐶, depending on 𝑢 and 𝜀 but not on 𝛾, such that for 

sufficiently large 𝑥, 

ℙ (𝐷 > 𝐶𝛾𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑠)1/3)) ≤ 6𝜀. 
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Proof. Let 𝐴 = 2𝛾, and let 𝑟 = 𝑠 − 𝐴𝑥2. For 𝑢 ∈ [𝑠 − 𝛾𝑥2, 𝑠] define 𝑋𝑢(1) in the 

same way as 𝑋(1), but with 𝑢 playing the role of 𝑠. That is, 𝑋𝑢(1) consists of the 

number of particles at time 𝑢 whose ancestor was positioned to the left of 𝐿(𝑢) at 

time 𝑣 for all 𝑣 ∈ [𝑟, 𝑢]. By the argument leading to Lemma (2.2.8), 

ℙ(𝑁(𝑢) = 𝑋𝑢(1) forall  𝑢 ∈ [𝑠 − 𝛾𝑥2, 𝑠]) > 1 − 3𝜖            (83) 

for sufficiently large 𝑥. By Lemma (2.2.9), there is a positive constant 𝐶 such that 

𝔼[𝑋𝑢(1)|ℱ𝑟] ≤ 𝐶𝑥−2�̂� for sufficiently large 𝑥, where �̂� is defined as in (46) but 

with 𝑢 in place of 𝑠. The argument leading to (47) implies that on an event with 

probability greater than 1 − 𝜀, we have 𝔼[𝑋𝑢(1)|ℱ𝑟] ≤ 𝐶𝑥−2𝑍(𝑟) for all           

𝑢 ∈ [𝑠 − 𝛾𝑥2, 𝑠] for sufficiently large 𝑥, where 𝐶 is some other positive constant. 

Define times 𝑠 − 𝛾𝑥2 = 𝑢0 < 𝑢1 < ⋯ < 𝑢𝑗 = 𝑠, where the 𝑢𝑖 are chosen such 

that 1/2 ≤ 𝑢𝑖 − 𝑢𝑖−1 ≤ 1 for 𝑖 = 1,2, … , 𝑗. For 𝑖 = 0,1, … , 𝑗 − 1, let 𝐷𝑖 be the 

number of particles that are killed at the origin between times 𝑢𝑖 and 𝑢𝑖+1. Let 𝐷𝑖
′ 

be the number of such particles that are descended from particles at time 𝑢𝑖 that 

are counted in 𝑋𝑢𝑖
(1), meaning that their ancestor was positioned to the left of 

𝐿(𝑢𝑖) throughout the time period [𝑟, 𝑢𝑖]. Even in the absence of killing between 

times 𝑢𝑖 and 𝑢𝑖+1, the expected number of descendants at time 𝑢𝑖+1 produced by a 

given particle at time 𝑢𝑖 is at most 𝑒𝑢𝑖+1−𝑢𝑖 ≤ 𝑒. It follows that for sufficiently 

large 𝑥, 

𝔼[𝐷𝑖
′|ℱ𝑟] ≤ 𝑒𝔼[𝑋𝑢𝑖

(1)|ℱ𝑟] ≤ 𝐶𝑥−2𝑍(𝑟) 

for all 𝑖 on an event of probability at least 1 − 𝜀, and therefore, 

𝔼 [∑ 𝐷𝑖
′

𝑗−1

𝑖=0

| ℱ𝑟] ≤ 𝐶𝛾𝑍(𝑟) 

on an event of probability at least 1 − 𝜀. In view of Proposition (2.2.6), there is a 

positive constant 𝐶 such that for sufficiently large 𝑥, 

𝔼 [∑ 𝐷𝑖
′

𝑗−1

𝑖=0

| ℱ𝑟] ≤ 𝐶𝛾𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑟)1/3) 

on an event of probability at least 1 − 2𝜀. By Markov's Inequality, there is a 

positive constant 𝐶 such that for sufficiently large 𝑥, 
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ℙ (∑ 𝐷𝑖
′

𝑗−1

𝑖=0

> 𝐶𝛾𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑟)1/3)) ≤ 3𝜀. 

Because ℙ(𝐷 = ∑ 𝐷𝑖
′𝑗−1

𝑖=0 ) > 1 − 3𝜀 by (83) and 

exp((3𝜋2)1/3(𝑡 − 𝑟)1/3) ≤ 𝐶exp((3𝜋2)1/3(𝑡 − 𝑠)1/3), 

the result follows.                  

Theorem (2.3.5) [2]: 

Suppose 0 < 𝑢 < 𝜏, and let 𝑠 = 𝑢𝑥3. Let 𝜀 > 0. Then there exist 𝑑1 > 0 and 𝑑2 >
0, depending on 𝑢 and 𝜖, such that for sufficiently large 𝑥, 

𝐏 (𝐿(𝑠) −
3

√2
log 𝑥 − 𝑑1 ≤ 𝑋1(𝑠) ≤ 𝐿(𝑠) −

3

√2
log 𝑥 + 𝑑2) > 1 − 𝜀. 

We are also able to obtain results about the entire configuration of particles. 

The key idea is that at time 𝑠, the density of particles near 𝑦 ∈ (0, 𝐿(𝑠)) will be 

roughly proportional to 

𝑒−√2𝑦 sin (
𝜋𝑦

𝐿(𝑠)
) .                                                   (84) 

Establishing a rigorous version of this statement requires proving two theorems. In 

Theorem (2.2.15), we consider the probability measure in which a mass of 1/𝑁(𝑠) 

is placed at the position of each particle at time 𝑠. Because most particles are close 

to the origin and sin (𝜋𝑦 𝐿(𝑠)⁄ ) ≈ 𝜋𝑦 𝐿(𝑠)⁄  for small 𝑦, in the limit this probability 

measure has a density proportional to 𝑦𝑒−√2𝑦. In Theorem (2.2.17), we consider 

the probability measure in which a particle at position 𝑧 is assigned a mass 

proportional to 𝑒√2𝑧. In this case, particles over the entire interval from 0 to 𝐿(𝑠) 

contribute significantly even in the limit, and the sinusoidal shape is observed. 

For these results, we use ⟹ to denote convergence in distribution for 

random elements in the Polish space of locally finite measures on (0, ∞), endowed 

with the vague topology. We also use 𝛿𝑦 to denote a unit mass at 𝑦. 

Proof. Fix 𝑑 ∈ ℝ. Let 𝛾 ∈ (0,1]. Let 𝑟 = 𝑠 − 𝛾𝑥2. Let 

𝑝𝑖 = 𝑢 (𝛾𝑥2, 𝐿(𝑠) −
3

√2
log 𝑥 + 𝑑 − 𝑋𝑖(𝑟)). 

Let 𝑅(𝑠) be the position of the right-most particle at time 𝑠 for a modified process 

in which particles that reach the origin between times 𝑟 and 𝑠 are not killed. Then 
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ℙ (𝑅(𝑠) ≥ 𝐿(𝑠) −
3

√2
log 𝑥 + 𝑑| ℱ𝑟) = 1 − ∏(1 − 𝑝𝑖)

𝑁(𝑟)

𝑖=1

. 

Therefore, 

1 − exp (1 − ∑ 𝑝𝑖

𝑁(𝑟)

𝑖=1

) ≤ ℙ (𝑅(𝑠) ≥ 𝐿(𝑠) −
3

√2
log 𝑥 + 𝑑| ℱ𝑟) ≤ ∑ 𝑝𝑖

𝑁(𝑟)

𝑖=1

. (85) 

Consequently, the key to the proof will be obtaining a precise estimate of ∑ 𝑝𝑖
𝑁(𝑟)
𝑖=1 . 

Note that 

𝑝𝑖 = 𝑢 (𝛾𝑥2, 𝐿(𝑠) −
3

2√2
log 𝛾𝑥2 +

3

2√2
log 𝛾 + 𝑑 − 𝑋𝑖(𝑟)). 

Because 𝐿(𝑟) − 𝐿(𝑠) is bounded above by a constant depending on 𝑢, it follows 

from Lemma (2.2.5) that with probability tending to one as 𝑥 → ∞, we have 

𝑋1(𝑟) ≤  𝐿(𝑠) +
3

2√2
log 𝛾 + 𝑑 − 1 − 𝐶12,                   (86) 

where 𝐶12 is the constant from (73). By Lemma (2.3.1), on this event for 

sufficiently large 𝑥 we have 

𝐶′𝑅𝑖𝑆𝑖𝑇𝑖 ≤ 𝑝𝑖 ≤ 𝐶′′𝑅𝑖𝑆𝑖𝑇𝑖                                          (87) 

for all 𝑖, where 

𝑅𝑖 =  𝐿(𝑠) +
3

2√2
log 𝛾 + 𝑑 − 𝑋𝑖(𝑟), 

𝑆𝑖 = exp (−√2 (𝐿(𝑠) + 2/2√2 log 𝛾 + 𝑑 − 𝑋𝑖(𝑟))), 

𝑇𝑖 = exp (−
(𝐿(𝑠) + 2/2√2 log 𝛾 + 𝑑 − 𝑋𝑖(𝑟))

2

2𝛾𝑥2
). 

Let 

𝑎 = 𝐿(𝑠) − 𝐿(𝑟) +
3

2√2
log 𝛾 + 𝑑. 
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Then  

𝑅𝑖 =  𝐿(𝑟) (1 −
𝑋𝑖(𝑟)

𝐿(𝑟)
+

𝑎

𝐿(𝑟)
).                                                                   (88) 

Also, 

𝑆𝑖 =  𝛾−3/2𝑒−√2𝑑𝑒−√2𝐿(𝑠)𝑒√2𝑋𝑖(𝑟).                                                              (89) 

Finally, because 

𝐿(𝑠)2

2𝛾𝑥2
=

𝑐2(𝑡 − 𝑠)2/3

2𝛾𝑐2𝑡2/3
=

1

2𝛾
(1 −

𝑠

𝑡
)

2/3

=
1

2𝛾
(1 −

𝑢

𝜏
)

2/3

, 

we have 

𝑇𝑖 = exp (−
1

2𝛾𝑥2
((𝐿(𝑟) − 𝑋𝑖(𝑟))

2
+ 2𝑎(𝐿(𝑟) − 𝑋𝑖(𝑟)) + 𝑎2)) 

= exp (−
𝐿(𝑠)2(𝐿(𝑠)2 − 𝐿(𝑟)2)

2𝛾𝑥2
(1 −

𝑋𝑖(𝑟)

𝐿(𝑟)
)

2

−
2𝑎(𝐿(𝑟) − 𝑋𝑖(𝑟)) + 𝑎2

2𝛾𝑥2
) 

= exp (−
1

2𝛾
(1 −

𝑢

𝜏
)

2/3

(1 −
𝑋𝑖(𝑟)

𝐿(𝑟)
)

2

) 𝑈𝑖 ,                                                             (90) 

where 𝑈𝑖 → 1 as 𝑥 → ∞ uniformly in 𝑖 because 𝑎/𝑥 → 0 and (𝐿(𝑠)2 − 𝐿(𝑟)2)/

𝑥2 → 0 as 𝑥 → ∞. Therefore, by (88), (89), and (90), 

∑ 𝑅𝑖𝑆𝑖𝑇𝑖

𝑁(𝑟)

𝑖=1

= 𝛾−3/2𝑒−√2𝑑𝑒−√2𝐿(𝑠)𝐿(𝑟) ∑ 𝑈𝑖

𝑁(𝑟)

𝑖=1

𝑒√2𝑋𝑖(𝑟) (1 −
𝑋𝑖(𝑟)

𝐿(𝑟)
+

𝑎

𝐿(𝑟)
) 

× exp (−
1

2𝛾
(1 −

𝑢

𝜏
)

2/3

(1 −
𝑋𝑖(𝑟)

𝐿(𝑟)
)

2

).                            (91) 

Consider the function 𝜙: [0,1] → ℝ defined by 

𝜙(𝑧) = (1 − 𝑧)exp (−
1

2𝛾
(1 −

𝑢

𝜏
)

2/3

(1 − 𝑧)2). 

By (68), applied with 𝑠𝑛 = 𝑢𝑥𝑛
3 − 𝛾𝑥𝑛

2, where (𝑥𝑛)𝑛=1
∞  is a sequence tending to 

infinity, we have, 
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1

𝑌(𝑟)
∑ 𝑒√2𝑋𝑖(𝑟)𝜙 (

𝑋𝑖(𝑟)

𝐿(𝑟)
)

𝑁(𝑟)

𝑖=1

→𝑝 

𝜋

2
∫ (1 − 𝑧)exp (−

1

2𝛾
(1 −

𝑢

𝜏
)

2/3

(1 − 𝑧)2) sin(𝜋𝑧) 𝑑𝑧
1

0

, (92) 

Now let 𝛼 = (2𝛾)−1/2(1 − 𝑢/𝜏)1/3 and make the substitution 𝑦 = 𝛼(1 − 𝑧) to get 

that the right-hand side of (92) is 

𝜋

2
∫

𝑦

𝛼
𝑒−𝑦2

sin (
𝜋𝑦

𝛼
) ∙

1

𝛼
𝑑𝑦

𝛼

0

≍
1

𝛼3
≍ 𝛾3/2,                                 (93) 

where ≍ means that the ratio of the two sides is bounded above and below by 

positive constants. 

Furthermore, ∑ 𝑒√2𝑋𝑖(𝑟)𝑁(𝑟)
𝑖=1 = 𝑌(𝑟) and 𝑎/𝐿(𝑟) tends to zero as 𝑥 → ∞. It thus 

follows from (91), (92), and (93) that on the event (86), we have 

∑ 𝑅𝑖𝑆𝑖𝑇𝑖

𝑁(𝑟)

𝑖=1

= 𝑒−√2𝑑𝑒−√2𝐿(𝑠)𝐿(𝑟)𝑌(𝑟)𝐻(𝑢, 𝑥, 𝛾),                              (94) 

where 𝐻(𝑢, 𝑥, 𝛾) converges in probability as 𝑥 → ∞ to some number which is 

bounded between two positive constants that do not depend on 𝛾. Note that 

𝑒−√2𝐿(𝑠) = 𝑒−(3𝜋2)1/3(𝑡−𝑠)1/3
. Therefore, because 𝑍(𝑟) ≤ 𝑌(𝑟), we can use 

Propositions (2.2.3) and (2.2.7) to conclude that with probability at least 1 − 2𝜀, 

we have 𝐶′ ≤ 𝑒−√2𝐿(𝑠)𝐿(𝑟)𝑌(𝑟) ≤ 𝐶′′ for sufficiently large 𝑥. Combining this 

result with (87) and (94), we get that there are constants 𝐶16 and 𝐶17, not 

depending on 𝛾, such that for sufficiently large 𝑥, 

ℙ (𝐶16𝑒−√2𝑑 ≤ ∑ 𝑝𝑖

𝑁(𝑟)

𝑖=1

≤ 𝐶17𝑒−√2𝑑) > 1 − 3𝜀.                     (95) 

Now choose 𝑑2 > 0 large enough that 𝐶17𝑒−√2𝑑2 < 𝜀. By (85) and (95), 

ℙ (𝑋1(𝑠) ≥ 𝐿(𝑠) −
3

√2
log 𝑥 + 𝑑2) ≤ ℙ (𝑅(𝑠) ≥ 𝐿(𝑠) −

3

√2
log 𝑥 + 𝑑2) 

≤ 𝐶17𝑒−√2𝑑2 + 3𝜀 

≤ 4𝜀.                                                          (96) 

Likewise, we can choose 𝑑1 > 0 large enough that exp(−𝐶16𝑒−√2𝑑1) ≤ 𝜀. By 

(85) and (95), 
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ℙ (𝑅(𝑠) ≤ 𝐿(𝑠) −
3

√2
log 𝑥 − 𝑑1) ≤ exp(−𝐶16𝑒−√2𝑑1) + 3𝜀 ≤ 4𝜀.      (97) 

It remains to bound the probability that 𝑅(𝑠) > 𝐿(𝑠) − (3/√2) log 𝑥 − 𝑑1 but 

𝑋1(𝑠) ≤ 𝐿(𝑠) − (3/√2) log 𝑥 − 𝑑1. This could only happen if some particle 

reaches 0 between times 𝑟 and 𝑠 and then, for the modified process in which 

killing is suppressed during this time, some descendant particle is to the right of 

𝐿(𝑠) − (3/√2) log 𝑥 − 𝑑1 at time 𝑠. However, by Lemma (2.3.4), with probability 

at least 1 − 6𝜀, at most 𝐶𝛾𝑥−1exp((3𝜋2)1/3(𝑡 − 𝑠)1/3) = 𝐶𝛾𝑥−1𝑒√2𝐿(𝑠) particles 

reach the origin between times 𝑟 and 𝑠. Conditional on this event, by           

Lemma (2.3.3), the expected number of these particles with a descendant to the 

right of 𝐿(𝑠) − (3/√2) log 𝑥 + 𝑦 at time 𝑠 is at most 

𝐶𝛾𝑥−1𝑒√2𝐿(𝑠) ∙  𝛾−3/2𝑥−3𝐿(𝑠)𝑒−√2(𝐿(𝑠)−(3/√2) log 𝑥−𝑑1)𝑒−𝐶15/𝛾 

≤ 𝐶18𝛾−1/2𝑒−√2𝑑1𝑒−𝐶15/𝛾. 

Combining this result with (2.97) and Markov's Inequality, and choosing 𝛾 small 

enough that 𝐶18𝛾−1/2𝑒−√2𝑑1𝑒−𝐶15/𝛾 < 𝜀, we get, for sufficiently large 𝑥, 

ℙ (𝑋1(𝑠) ≤ 𝐿(𝑠) −
3

√2
log 𝑥 − 𝑑1) ≤ 4𝜀 + 6𝜀 + 𝐶18𝛾−1/2𝑒−√2𝑑1𝑒−𝐶15/𝛾 ≤ 11𝜀.  (98) 

The result follows from (96) and (98).              
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Chapter 3 

Large Deviations for the Branching Brownian Motion in Presence of 

Selection or Coalescence 

We estimate the large deviation function of the position of the rightmost 

particle for several such generalizations: the L-BBM, the N -BBM, and the CBRW 

(coalescing branching random walk) which is closely related to the noisy FKPP 

equation. Our approach allows us to obtain only upper bounds on these large 

deviation functions. One noticeable feature of our results is their non analytic 

dependence on the parameters (such as the coalescence rate in the CBRW). 

Section (3.1): The Physical Picture 

Branching Brownian motions (BBM) and branching random walks (BRW) are 

among the simplest stochastic models of a growing population in space and time. 

They describe particles which perform Brownian motions or random walks and 

branch independently at random times. If one starts with a single particle, the size 

of the region of space occupied by the particles grows linearly with time. Since the 

mid seventies, one has a precise understanding of the fluctuations of the size of 

this region. For example, in the one dimensional case one knows that the 

probability distribution of the position of the rightmost particle of a BBM can be 

obtained by solving an FKPP (Fisher-Kolmogorov-Petrovskii-Piskounov) 

equation: for a BBM starting at the origin, where particles diffuse according to 

〈[𝑋(𝑡) − 𝑋(0)]2〉 = 𝜎2𝑡 

and branch at rate 1, one can show that, at time 𝑡, the probability 𝑃(𝑥, 𝑡) that the 

rightmost particle is on the right of 𝑥 is the solution of the FKPP equation  

𝜕𝑃(𝑥,𝑡)

𝜕𝑡
=

𝜎2

2
 
𝜕2𝑃(𝑥,𝑡)

𝜕𝑥2 + 𝑃(𝑥, 𝑡) − 𝑃2(𝑥, 𝑡)                            (1) 

with a step initial condition 𝑃(𝑥, 0) = 1 − 𝜃(𝑥) (where 𝜃(𝑥) is the Heaviside 

function). In the long time limit, it is known that the probability −𝜕𝑃(𝑥, 𝑡)/𝜕𝑥 that 

the position of the rightmost particle 𝑋max(𝑡) = 𝑥 is concentrated around        

𝑋𝑡 ≃ √2𝜎𝑡 −
3𝜎

2√2
ln 𝑡. 

One can also show from (1) that the large deviation function 𝜓BBM of the 

position 𝑋max(𝑡) of the rightmost particle for 𝑣 > √2𝜎 

𝐏(𝑋max(𝑡) > 𝑣𝑡)~ exp[−𝑡 𝜓𝐵𝐵𝑀(𝑣)]                          (2) 

is given by 

𝜓𝐵𝐵𝑀(𝑣) =  
𝑣2

2𝜎2 − 1.                                           (3) 

In (2) and everywhere below the symbol ~ means that 
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lim
𝑡→∞

ln 𝐏(𝑋max(𝑡)>𝑣𝑡)

𝑡
= −𝜓𝐵𝐵𝑀(𝑣).                          (4) 

Over the last decade a number of generalizations of the branching Brownian 

motion have been considered where, due to some selection or coalescence 

mechanism, the density of particles generated by the BBM saturates. These 

extensions of the BBM are expected to be described by noisy versions of the 

FKPP equation. In these noisy versions, the main effect of the noise is to shift the 

velocity of the front and to make its position fluctuate. A phenomenological 

approach has been proposed which gives a prediction for the cumulates of this 

position. Our goal here is to understand the large positive deviations of this 

position. The case of large negative deviations (for branching random walks with 

coalescence) would require a rather different approach and will not be discussed in 

this chapter except for some comments in the conclusion; in particular the large 

deviation function may depend on the number of particles one starts with. 

Now we study how (3) is modified by these selection or coalescence 

mechanisms. We discuss three models: 

In the 𝐿-BBM, one starts at time t = 0 with a single particle at the origin. 

This particle branches and diffuses like a usual branching Brownian motion. The 

only difference with the usual BBM is that whenever a particle gets at a distance 

larger than 𝐿 from the rightmost particle, it is eliminated. Therefore at any given 

time 𝑡 the system consists of a random number 𝒩(𝑡) ≥ 1 of particles at positions 

𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝒩(𝑡) which all satisfy 𝑋max(𝑡) − 𝐿 ≤ 𝑋𝑖(𝑡) ≤ 𝑋max(𝑡) where 

𝑋max(𝑡) = max1≤𝑖≤𝒩(𝑡)𝑋𝑖(𝑡). 

This number of particles 𝒩(𝑡) fluctuates but one can show that the evolution of 

the 𝐿-BBM leads to a steady state where the event 𝒩(𝑡) = 1 is recurrent. 

For large 𝑡 one can also show that the probability distribution of the position 

𝑋max(𝑡) of the rightmost particle has a large deviation from  

𝐏𝐋𝐁𝐁𝐌(𝑋max(𝑡) > 𝑣𝑡)~ exp[−𝑡 𝜓𝐿𝐵𝐵𝑀(𝑣)].                            (5) 

One of our results is the following upper bound for 𝑣 > √2𝜎 and large 𝐿 

0 ≤ 𝜓𝐿𝐵𝐵𝑀(𝑣) − 𝜓𝐵𝐵𝑀(𝑣) ≾ 𝑒−𝛼(𝑣)𝐿/𝜎                       (6) 
with 

𝛼(𝑣) = {

2√2(𝑣−𝑣𝑐)

𝑣𝑐
     for 𝑣𝑐 < 𝑣 <

3

2
𝑣𝑐

𝑣+√𝑣2−2𝑣𝑐
2

√2𝑣𝑐
     for 𝑣>

3

2
𝑣𝑐          

                      (7) 

where 

𝑣𝑐 = √2𝜎.                                                          (8) 
 

In (6) and everywhere else in this chapter, the symbol ≾ “ means that 

lim
𝐿→∞

ln(𝜓𝐿𝐵𝐵𝑀(𝑣)−𝜓𝐵𝐵𝑀(𝑣))

𝐿/𝜎
≤ −𝛼(𝑣). 

In the 𝑁-BBM one starts as above with a single particle at 𝑡 = 0 which diffuses 

and branches but the size of the population cannot exceed a fixed value 𝑁. As long 
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as the number of particles 𝒩(𝑡) is less than 𝑁 the evolution is exactly the same as 

for the BBM. However, when 𝒩(𝑡) = 𝑁, as soon as a new branching event 

occurs, the left-most particle is eliminated so that the total number of particles 

remains subsequently equal to 𝑁. 

For the 𝑁-BBM we will obtain for the large deviation function 

 

𝐏𝐍𝐁𝐁𝐌(𝑋max(𝑡) > 𝑣𝑡)~ exp[−𝑡 𝜓𝑁𝐵𝐵𝑀(𝑣)].                            (9) 

 an upper bound 

0 ≤ 𝜓𝑁𝐵𝐵𝑀(𝑣) − 𝜓𝐵𝐵𝑀(𝑣) ≾ 𝑁−𝛽(𝑣)                      (10) 
 where  

𝛽(𝑣) = {

𝑣2

𝑣𝑐
2 − 1     for 𝑣𝑐 < 𝑣 ≤ √2𝑣𝑐

𝑣2

2𝑣𝑐
2           for 𝑣≥√2𝑣𝑐          

,                      (11) 

where 𝑣𝑐  is given by (8). In fact, as discussed in the conclusion, we believe that 

𝛽(𝑣) =
𝑣2

𝑣𝑐
2 remains valid even for 𝑣 > √2𝑣𝑐.  

An important motivation in the study of the CBRW is its dual relation with the 

noised FKPP equation. 

To explain how the CBRW is defined let us first consider a branching random 

walk BRW on a one dimensional lattice with lattice spacing 𝜎: a particle on site 𝑥 

jumps to site 𝑥 + 𝜎 at rate 1/2, to site 𝑥 − 𝜎 at rate 1/2 and branches at rate 𝑟 to 

give rise to two new particles on the same site. 

The trajectory of each particle is a random walk and in the long time limit the 

probability that such a random walk reaches a position 𝑥 = 𝑣𝑡 is of the form 

𝐏𝐑𝐖(𝑥 = 𝑣𝑡)~𝑒−𝑡𝑓(𝑣)                                                 (12) 
where 

𝑓(𝑣) = 1 − √1 +
𝑣2

𝜎2 +
𝑣

𝜎
ln (

𝑣

𝜎
+ √1 +

𝑣2

𝜎2).                   (13) 

Using the fact that 〈𝑒𝜆𝑥〉 = 𝑒𝑡𝑔(𝜆) with 

 𝑔(𝜆) = cosh(𝜆𝜎) − 1,                                                (14) 

the large deviation function (13) can be easily obtained from the parametric form as 

 𝑓(𝑣) = −𝑔(𝜆) + 𝜆𝑔′(𝜆);     𝑣 = 𝑔′(𝜆)                            (15) 

As the particles branch at rate 𝑟, the distribution of the position 𝑋max(𝑡) of the 

right- most particle of this BRW, (in absence of coalescence), is of the form 

𝐏𝐁𝐑𝐖(𝑋max(𝑡) > 𝑣𝑡)~ exp[−𝑡 𝜓𝐵𝑅𝑊(𝑣)].                             (16) 

with 

𝜓𝐵𝑅𝑊(𝑣) = 𝑓(𝑣) − 𝑟.                                                   (17) 

Now in the coalescing branching random walk (CBRW), in addition to the 

diffusion and the branching, we let each pair of particles on the same site coalesce 

at rate 𝜇. We will show   

𝐏𝐂𝐁𝐑𝐖(𝑋max(𝑡) > 𝑣𝑡)~ exp[−𝑡 𝜓𝐶𝐵𝑅𝑊(𝑣)].                         (18) 

and that for 𝜇 → 0 
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0 ≤ 𝜓𝐶𝐵𝑅𝑊(𝑣) − 𝜓𝐵𝑅𝑊(𝑣) ≾ 𝜇−𝛾(𝑣)                      (19) 
where 

𝛾(𝑣) = {
𝑓′(𝑣)

𝑓′(𝑦)
− 1     for 𝑣𝑐 < 𝑣 < 𝑣1

1                  for 𝑣 > 𝑣1          
                      (20) 

and, where for each 𝑣, 𝑦 is solution of 

𝑓(𝑦)−𝑟

𝑓′(𝑦)
− 𝑦 =

𝑓(𝑣)−𝑟

𝑓′(𝑣)
− 𝑣                                                    (21) 

with 𝑣𝑐  and 𝑣1 given by 

𝜓𝐵𝑅𝑊(𝑣𝑐) = 0   ;    𝛾(𝑣1) = 1,                                            (22) 

(i.e. 𝑣1 is the value of 𝑣 such that 𝑓′(𝑣) = 2𝑓′(𝑦)). 

The general expression (20) simplifies when 𝑟 ≪ 1. One then has 𝑣𝑐 ≃ √2𝑟𝜎 and 

in the whole range 𝑣𝑐 < 𝑣 ≪ 𝜎 

𝑓(𝑣) ≃
𝑣2

2𝜎2
 

instead of (14). All the other steps remain the same with 𝑦 =
2𝜎2

𝑣
, 𝑣1 = √2𝑣𝑐 and 

therefore 

𝜓𝐵𝑅𝑊(𝑣) =
𝑣2

𝑣𝑐
2 − 1 ;    𝛾(𝑣) = {

𝑣2

𝑣𝑐
2 − 1     for 𝑣𝑐 < 𝑣 < √2𝑣𝑐

1           for 𝑣 > √2𝑣𝑐          
,                      (23) 

If one would consider more general branching random walks, characterized by the 

rate 𝜌(𝑦) at which a particle jumps a distance 𝑦 from the site it occupies, 𝑔(𝜆) 

would be given by 

𝑔(𝜆) = ∑ 𝜌(𝑦)(𝑒𝜆𝑦 − 1)                                            (24)

𝑦

 

and all the rest (15-22) would remain unchanged with only (14) replaced by 

(24). 

Consider first all the possible trees of a BBM which, starting with a single particle 

at the origin, contain at least one particle which reaches, at time 𝑡, a position on 

the right of 𝑣𝑡 at time 𝑡. 

Here we focus on velocities 𝑣 > 𝑣𝑐 (for the BBM one knows that 𝑣𝑐 = √2𝜎. 

The probability that the tree has at time 𝑡 at least one particle on the right of 𝑣𝑡 is 

(2,3)  for 𝑣 > 𝑣𝑐 

𝑃~exp [𝑡 (1 −
𝑣2

2𝜎2)] = exp [𝑡 (1 −
𝑣2

𝑣𝑐
2)].                      (25) 

For each such tree event, we will call red particles all the particles which end up 

on the right of 𝑣𝑡. Given its position at time 𝑡, the trajectory of a red particle is, up 

to a shift (linear in time), a Brownian bridge (in fact it is more like a Brownian 

excursion but this has no incidence on the discussion below). 
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When one goes from the BBM to the 𝐿-BBM, a red particle will survive if 

between time 0 and time 𝑡 no other particle of the BBM overtakes it by                  

a distance 𝐿. Any tree of the BBM for which a red particle survives contributes to 

the event that the the rightmost particle of 𝐿-BBM is on the right of 𝑣𝑡. So the 

probability that a tree of the BBM reaches position 𝑣𝑡 and that at least one red 

particle is never overtaken by any other particle of the BBM by a distance 𝐿 is a 

lower bound for the probability that a 𝐿-BBM reaches position 𝑣𝑡. This is why in 

the following, by estimating the survival probability of a red particle of a BBM, 

we will get an upper bound on the large deviation function (5) of the 𝐿-BBM. 

As a red particle is moving on average faster than 𝑣𝑐 the only possibility for 

it to be killed is that for a relatively short time interval 𝑠, i.e. a time 𝑠 ≪ 𝑡, either 

this red particle moves slower than 𝑣, or one of the other particles of the tree 

moves sufficiently fast to overtake it by a distance 𝐿 or both. 

So the picture is the following. A red particle moves at velocity 𝑣. Along its 

trajectory, branching events occur which give rise to subtrees. This red particle is 

then killed if, shortly after one of these branching events, the red particle slows 

down and one of the particles of the subtree overtakes it by a distance 𝐿. 

Let us now be quantitative. The discussion below will hold for more general 

random walks, where the probability (25) would be replaced  by  

𝑃~𝑒𝑡(1−𝑓(𝑣))                                                 (26) 

where 𝑓(𝑣) is the large deviation function of the position of the random walk. In 

this general case 𝑣𝑐 is given by 

𝑓(𝑣𝑐) = 1.                                                                  (27) 

The case of the branching Brownian motion will then be recovered by taking 

𝑓(𝑣) =
𝑣2

2𝜎2
=

𝑣2

𝑣𝑐
2.                                                       (28) 

 

One can show that, conditioned on the fact that a red particle moves at 

velocity 𝑣, the probability 𝑃(𝑥, 𝑠) that during a relatively short time interval 

(𝜏, 𝜏 + 𝑠) (here 1 ≪ 𝑠 ≪ 𝑡) it moves a distance 𝑥 is 

𝑃(𝑥, 𝑠)~exp [−𝑠 (𝑓(
𝑥

𝑠
) − 𝑓(𝑣) − (

𝑥

𝑠
− 𝑣) 𝑓′(𝑣))].               (29) 

Now the probability 𝑄(𝑥, 𝑠) that at least one particle of the subtree created at time 

𝜏 moves a distance 𝑥 + 𝐿 during the time interval 𝑠 is given by 

𝑄(𝑥, 𝑠) ≲ min {1, exp [𝑠 (1 − 𝑓(
𝑥+𝐿

𝑠
))]}.                        (30) 

Therefore the probability 𝑝 that such a subtree will kill the red particle  is 

𝑝 ≲ max
𝑠,𝑥

{𝑃(𝑥, 𝑠)𝑄(𝑥, 𝑠)}.                                       (31) 

– If 1 dominates in (30) this means that the particle of the subtree moves at 

velocity 𝑣𝑐. In this case 𝑥 and 𝑠 are related by 

𝑥 + 𝐿 = 𝑣𝑐𝑠                                                    (32) 

because for 𝑥 < 𝐿 − 𝑣𝑐𝑠, 𝑄(𝑥, 𝑠) would remain ≤ 1 but 𝑃(𝑥, 𝑠) would get 

smaller. 



97 
 

One can then see that the value of 𝑠 which maximizes (31) is solution of 

𝑓(𝑣𝑐−
𝐿

𝑠
) − 𝑓(𝑣) − (𝑣𝑐 −

𝐿

𝑠
− 𝑣) 𝑓′(𝑣) +

𝐿

𝑠
𝑓′ (𝑣𝑐 −

𝐿

𝑠
) −

𝐿

𝑠
𝑓′(𝑣) = 0. 

This condition takes the form 

𝑓(𝑦) − 𝑦𝑓′(𝑦) + 𝑣𝑐𝑓′(𝑦) = 𝑓(𝑣) − 𝑣𝑓′(𝑣) + 𝑣𝑐𝑓′(𝑣)      (33) 

where 𝑦 = 𝑣𝑐 − 𝐿/𝑠 and this gives (31) 

𝑝~𝑒−𝐿(𝑓′(𝑣)−𝑓′(𝑦))                                                                  (34) 
Very much like in the remark at the end of the introduction, assuming as above 

that 𝑔(𝜆) → ∞ as 𝜆 → ±∞, one can show that (33) has always a solution. 

As the number 𝐵𝑡 of branching events along the red trajectory is of order 𝑡 (for 

a rigorous justification, the survival probability of the red particle is 

(1 − 𝑝)𝐵𝑡~𝑒−𝐵𝑡𝑝 
Therefore  

𝐏𝐋𝐁𝐁𝐌(𝑋max(𝑡) > 𝑣𝑡) ≳ 𝑒𝑡(1−𝑓(𝑣))−𝐵𝑡𝑝 
and this implies that 

𝜓𝐿𝐵𝐵𝑀 − 𝜓𝐵𝐵𝑀 ≾ 𝑝~𝑒−𝐿(𝑓′(𝑣)−𝑓′(𝑦))                          (35) 

In the particular case where 𝑓(𝑣) = 𝑣2/(√2𝜎) the solution of (33) is 

𝑦 = 2𝑣𝑐 − 𝑣 and this leads to the announced result (30, 31). 

      When the second alternative dominates in (30) one needs to find the maximum 

over 𝑠 and 𝑥 of 

𝑠 [−𝑓(
𝑥

𝑠
) + 𝑓(𝑣) + (

𝑥

𝑠
− 𝑣) 𝑓′(𝑣) + 1 − 𝑓 (

𝑥 + 𝐿

𝑠
)]. 

This implies that 𝑦 = 𝑥/𝑠 and 𝑠 are solutions of 

𝑓′(𝑣) = 𝑓′(𝑦) + 𝑓′ (𝑦 +
𝐿

𝑠
) 

−𝑓(𝑦) + 𝑓(𝑣) + (𝑦 − 𝑣)𝑓′(𝑣) + 1 − 𝑓 (𝑦 +
𝐿

𝑠
) +

𝐿

𝑠
𝑓′ (𝑦 +

𝐿

𝑠
) = 0.  (36) 

After some algebra which uses (36) one ends up with the same expression 

(35), the only difference being that 𝑦 is now solution of (36) instead of (33). 

As 𝑣𝑐 is solution of (3), one can check that the solution 𝑦 of (36) reduces to the 

solution of (33) when 𝑦 + 𝐿/𝑠 → 𝑣𝑐, meaning that the rightmost particle of the 

subtree moves at the velocity 𝑣𝑐. 

In the particular case where 𝑓(𝑣) = 𝑣2/(√2𝜎) the solution of (36) is 

𝑦 = (𝑣 − √𝑣2 − 2𝑣𝑐
2)/2 (where 𝑣𝑐 = 2𝜎) and this leads to the second line of 

(31). 

In the 𝑁-BBM, the picture is rather similar and one has to estimate the probability 

𝑝 that a subtree will kill a red particle. To do so one needs the red particle to slow 

down so that the subtree produces 𝑁 particles ahead of the red particle to eliminate 

it. 

The probability that the red particle moves a distance 𝑥 during time 𝑠 is still 

given by (29). We now need to estimate the probability 𝑄(𝑥, 𝑠) that the subtree 

produces, at time 𝑠, 𝑁 particles on the right of position 𝑥. We do not have an 
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expression for 𝑄(𝑥, 𝑠) (see the discussion in the conclusion for a conjecture). One 

can however obtain an easy upper bound (using the Markov inequality) 

𝑄(𝑥, 𝑠) <
〈𝑁(𝑥,𝑠)〉

𝑁
 

where 𝑁(𝑥, 𝑠) is the number of particles of a subtree (of age 𝑠) on the right of 
position 𝑥. One has 

〈𝑁(𝑥, 𝑠)〉~exp [𝑠 −
𝑥2

2𝜎2𝑠
] 

so that 

𝑄(𝑥, 𝑠) ≲ min [1, 𝑒
𝑠−ln 𝑁− 𝑥2

2𝜎2𝑠]                               (37) 

which, as for the 𝐿-BBM, we can write for more generality 

𝑄(𝑥, 𝑠) ≲ min [1, 𝑒𝑠−ln 𝑁−𝑠𝑓(𝑥
𝑠

)]                               (38) 

to treat the case of an arbitrary 𝑁-BBM. 

Now we need to find a bound for 𝑝 given by (27) and the discussion is very 

similar to what we did for the 𝐿-BBM: 

 If 1 dominates in (38), then 𝑥 = 𝑦𝑠 where 𝑠 and 𝑦 are related by 

𝑠 − ln 𝑁 − 𝑠𝑓(𝑦) = 0.                                              (39) 

The optimization of (31) under the constraint (39) leads to 

𝑝~𝑒𝑠[−𝑓(𝑦)+𝑓(𝑣)+(𝑦−𝑣)𝑓′(𝑣)] 

where 𝑦 is solution of 

1−𝑓(𝑦)+𝑦𝑓′(𝑦)

𝑓′(𝑦)
=

1−𝑓(𝑣)+𝑣𝑓′(𝑣)

𝑓′(𝑣)
                                                      (40) 

[A solution 𝑦 ≠ 𝑣 exists for 𝑣 > 𝑣𝑐 for the same reason as in (21).] One gets after 

some algebra 

𝑝~𝑁
−

𝑓′(𝑣)−𝑓′(𝑦)
𝑓′(𝑣) .                                                  (41) 

For the 𝑁-BBM, one has 𝑓(𝑣) = 𝑣2/(√2𝜎) the solution of (40) is 𝑦 = 2𝜎2/𝑣; so 
𝑓′(𝑣)−𝑓′(𝑦)

𝑓′(𝑣)
=

𝑣2

2𝜎2
− 1, 

and 

𝑝~𝑁
−(

𝑣2

2𝜎2−1)
.                                                        (42) 

This agrees with the first line of (11). 

In the second alternative of (38) 

𝑝 = max
𝑠,y

(exp[𝑠(1 − 𝑓(𝑦)) − ln 𝑁 + 𝑠(−𝑓(𝑦) + 𝑓(𝑣) + (𝑦 − 𝑣)𝑓′(𝑣))]) (43) 

given that 𝑠 − ln 𝑁 + 𝑠𝑓(𝑦) ≤ 0. There is also the natural condition ln 𝑁 < 𝑠 

(because it is highly unlikely to have more than 𝑒𝑠 particles in a time (1 − 𝜖)𝑠, 

∀𝜖 > 0) so that 

𝑠 − 𝑠𝑓(𝑦) ≤ ln 𝑁 ≤ 𝑠.                                            (44) 

The expression in the exponential (34) being linear in 𝑠, the maximum in 𝑠 is 

achieved at one of the two boundaries in (44). 
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If the maximum is realized by the condition 𝑠 − 𝑠𝑓(𝑦) = ln 𝑁, one recovers the 

results (41) and (42). On the other hand, if the maximum is realized by 𝑠 = ln 𝑁, the 

optimal value of 𝑦 in (43) is solution of 

2𝑓′(𝑦) = 𝑓′(𝑣)                                                         (45) 

and this leads to 

𝑝~𝑁𝑓(𝑣)−𝑣𝑓′(𝑣)−2𝑓(𝑦)+2𝑦𝑓′(𝑦).                                                        (46) 

One can check that the range of validity of (41) is 𝑣𝑐 < 𝑣 < 𝑣∗ and for (46) is 

𝑣 > 𝑣∗ where 𝑣∗ is the value of 𝑣 where (40) and (45) have a common solution 𝑦. It 

is remarkable to notice that for 𝑣 = 𝑣∗, both (41) and (46) coincide to give 𝑝~𝑁−1. 

For 𝑓(𝑣) = 𝑣2/(2𝜎2) the solution of (45) is 𝑦 = 𝑣/2, which leads to 

𝑝~𝑁
−

𝑣2

4𝜎2;                                                    (47) 

comparing (42) with (47), one can check that (42) holds for 𝑣𝑐 < 𝑣 < 𝑣∗ = √2𝑣𝑐 = 2𝜎, 

while (47) is valid for 𝑣 > √2𝑣𝑐, as announced in (3.11). 

For a branching random walk on a lattice, the probability that a red particle reaches 

the position 𝑣𝑡 with 𝑣 > 𝑣𝑐 at time 𝑡 is of the form 𝑒𝑡(𝑟−𝑓(𝑣)). 

For example, if the random walk is characterized by the probability 𝜌(𝑦) that the 

walker jumps a distance 𝑦 from the site it occupies, 𝑓(𝑣) is given in a parametric 

form as 

𝑓(𝑣) = −𝑔(𝜆) + 𝜆𝑔′(𝜆);     𝑣 = 𝑔′(𝜆)          (48) 

with 𝑔(𝜆) given by (24). Given that the red particle moves on average at velocity 𝑣 

during time 𝑡, the probability 𝑃(𝑥, 𝑠) that it moves a distance 𝑥 during a time interval 

1 ≪ 𝑠 ≪ 𝑡 is as before (29) by 

𝑃(𝑥, 𝑠)~exp [𝑠 (−𝑓(
𝑥

𝑠
) + 𝑓(𝑣) + (

𝑥

𝑠
− 𝑣) 𝑓′(𝑣))]. 

On the other hand the number of particles produced by the subtree at position 𝑥 at 

time 𝑠 is ≲ 𝑒𝑠(𝑟−𝑓(𝑥/𝑠)). Therefore the probability that the red particle is killed by a 

subtree of age 𝑠 is 

𝑄(𝑥, 𝑠) ≲ min [1, 𝜇𝑒
𝑠(𝑟−𝑓(

𝑥
𝑠

))
].                                    (49) 

As for the 𝐿-BBM, one needs to distinguish two cases: 

– If 1 dominates in (49) this means that 𝑥/𝑠 satisfies the relation 

𝑠 (𝑟 − 𝑓 (
𝑥

𝑠
)) + ln 𝜇 = 0                              (50) 

then one has to maximize 𝑃(𝑥, 𝑠) given by (29) over 𝑠 and 𝑥 given the 

constraint(50). 

This leads to the fact that 𝑥 = 𝑠𝑦 where 𝑦 is solution of 
𝑓(𝑦)−𝑟

𝑓′(𝑦)
− 𝑦 =

𝑓(𝑣)−𝑟

𝑓′(𝑣)
− 𝑣                                                      (51) 

and after some algebra to 𝑝~𝜇
𝑓′(𝑣)

𝑓′(𝑦)
−1

. This leads to (21). 

– The other case, when (49) is dominated by 𝜇𝑒𝑠(𝑟−𝑓(𝑥/𝑠)), is much easier. The 

optimum over 𝑠 gives 𝑠 = 0 and therefore 𝑝~𝜇. 
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Section (3.2): Existence and Bounds for the Large Deviation Function  

In this section we prove the existence of the large deviation functions (5,9,18). We 

first establish two elementary properties of the 𝐿-BBM if one starts at time 0 with 

𝑁 surviving particles. In view of the statement, we can assume 𝑁 ≥ 2. 

For any 𝑠 ≥ 0, let 𝒩(𝑠) be the number of surviving particles of the 𝐿-BBM at 

time 𝑠 (so that 𝒩(0) = 𝑁). 

Lemma (3.2.1) [3]: 

Let 

𝜏 =
𝑎𝐿2

2𝜎2 ln 𝑁
.                                                             (52) 

Then 

𝐏[∃𝑠 ∈ (0, 𝜏]: 𝒩(𝑠) < 𝑁𝜆] > 1 −
3

𝑁𝜇                             (53) 

where 𝑎, 𝑏, 𝜆 and 𝜇 are constants which satisfy some conditions (56). For example, 

𝑎 = 36, 𝑏 = 3, 𝜆 = 17/18 and 𝜇 = 1/18 will work. 

Proof. It suffices to establish the following upper bound 

𝐏[∀𝑠 ∈ (0, 𝜏]: 𝒩(𝑠) ≥ 𝑁𝜆] <
3

𝑁𝜇.                             (54) 

Let us write 

𝑀 = 𝑁𝜆. 

Without loss of generality, one can choose the origin to be the position of the 

rightmost particle of the 𝐿-BBM at time 0. So all the initial positions are in 

[−𝐿, 0]. 

If we assume that 𝒩(𝑠) ≥ 𝑀 at all times 𝑠 < 𝜏, we want to follow the 

trajectories 𝑥1(𝑠) … 𝑥𝑀(𝑠) of 𝑀 surviving particles between time 𝑠 = 0 and time 

𝜏. At time 𝑠 = 0 we choose any set of 𝑀 different particles among the 𝑁 present at 

time 0. Let 𝑥1(0) … 𝑥𝑀(0) be their positions at time 0. These particles move, 

branch and can get killed according to the rule of the 𝐿-BBM (they get killed as 

soon as their distance to the leading particle of the full 𝐿-BBM exceeds 𝐿). When 

one of these 𝑀 particles gets killed, one replaces it immediately by any of the 

remaining 𝒩(𝑠) − (𝑀 − 1). On the other hand, when one of them branches, one 

just keeps one of the two branches in our list of 𝑀 particles and ignore the other 

branch. We obtain this way 𝑀 trajectories. Let us denote 𝑥1(𝑠) … 𝑥𝑀(𝑠) the 

positions of these particles. These 𝑀 trajectories are those of Brownian particles, 

except that whenever one of these particles gets killed, it is replaced by one of the 

surviving 𝒩(𝑠) − 𝑀 + 1 particles of the 𝐿-BBM (i.e. the corresponding trajectory 

makes a jump to its right). 

Let us consider also 𝑀 regular Brownian motions which start at time 𝑠 = 0 

at the same positions as the above 𝑀 particles of the 𝐿-BBM. We denote by 

𝑦1(𝑠) … 𝑦𝑀(𝑠) the positions of these 𝑀 Brownian particles at time 𝑠.  

By a simple coupling argument it is clear that at any time 0 < 𝑠 < 𝜏 and for 

1 ≤ 𝑖 ≤ 𝑀, one has 𝑦𝑖(𝑠) ≤ 𝑥𝑖(𝑠) so that max
1≤𝑖≤𝑀

𝑦𝑖(𝑠) ≤ max
1≤𝑖≤𝑀

𝑥𝑖(𝑠). 
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Therefore the probability 𝑄 that there exists at least one surviving particle of the 

full 𝐿-BBM on the right of some fixed position 𝑏𝐿 is bound from below by 

𝑄 ≥ 𝐏 [ max
1≤𝑖≤𝑀

𝑥𝑖(𝑠) > 𝑏𝐿] 

≥ 𝐏 [ max
1≤𝑖≤𝑀

𝑦𝑖(𝑠) > 𝑏𝐿] ≥ 1 − [∫ 𝑒−𝑢2
𝑑𝑢

√𝜋

(𝑏+1)𝐿/√2𝜏𝜎2

−∞

]

𝑀

. 

Using the fact that for 𝑥 > 2 

∫ 𝑒−𝑢2
𝑑𝑢

√𝜋

𝑥

−∞

< 1 − 𝑒−2𝑥2
< exp[−𝑒−2𝑥2

] 

and that for 𝑦 > 0 

𝑒−𝑦 <
1

𝑦
 

one gets that 

𝑄 > 1 − 𝑁
2(𝑏+1)2

𝑎
−𝜆.                                               (55) 

To complete the proof of (54), we now show that there is a small probability that 

the number �̂� of particles of the 𝐿-BBM on the right of position (𝑏 − 1)𝐿 at time 

𝜏 exceeds 𝑀. To do so, we first notice that 

𝐏[𝒩 > 𝑀] < 𝐏[�̃� > 𝑀] 

where �̃� is the number of particles on the right of (𝑏 − 1)𝐿 at time 𝜏 generated by 

𝑁 independent BBM’s (with no selection) starting all at time 0 at position 𝐿. One 

can calculate the expectation �̃� 

𝐸[�̃�] = 𝑁𝑒𝜏 ∫ 𝑒−𝑢2
𝑑𝑢

√𝜋
<2

∞

(𝑏−1)𝐿

√2𝜎2𝜏

𝑁1−(𝑏−1)2

𝑎  

where we have used that for 𝑥 > 0 

∫ 𝑒−𝑢2
𝑑𝑢

√𝜋

∞

𝑥

< 𝑒−𝑥2
. 

Therefore by the Markov inequality one gets 

𝐏[�̂� > 𝑀] < 2𝑁1−𝜆−(𝑏−1)2

𝑎 . 
Now we know that, at time 𝜏, there is a probability 𝑄 close to 1 that there is at 

least one particle on the right of 𝑏𝐿 and a probability also close to 1 that �̂� < 𝑀. 

Therefore, because when there is at least one particle on the left of 𝑏𝐿 and no more 

than 𝑀 particles on the right of (𝑏 − 1)𝐿, one knows that the total number of 

surviving particles of the 𝐿-BBM does not exceed 𝑀. Consequently, 

𝐏[𝒩(𝜏) > 𝑀] < 1 − 𝑄 + 𝐏[�̂� > 𝑀] < 3𝑁−𝜇 

if we choose 

𝜇 = −1 + 𝜆 +
(𝑏−1)2

𝑎
= 𝜆 −

2(𝑏−1)2

𝑎
.                       (56) 

This completes the proof of (53).                        
 

Lemma (3.2.2) [3]:  

There exist constants 𝑐1 > 0 and 𝑐2 > 0, depending only on (𝐿, 𝜎), such that 

𝐏[∃𝑠 ∈ (0, 𝑐1]: 𝒩(𝑠) = 1] ≥ 𝑐2. 
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In words, Lemma (3.2.1) says that with a probability close to 1 when 𝑁 is large, 

the number of surviving particles 𝒩(𝜏) will be greatly reduced within a very short 

time 𝜏 (defined in (52)), whereas Lemma (3.2.2) ensures that no matter how 

large 𝑁 is, within a time independent of 𝑁 (but which may depend on 𝐿 for 

example 𝐿2), the total number of surviving particles will have become 1, at least 

once. In Lemma (3.2.2), it is possible to get moment estimates of the first time 

when the system has exactly a single particle. 

Proof. Let 𝐶 > 0 be a large constant independent of 𝑁. It suffices to prove that if 

one starts with an arbitrary number 𝑁 of particles of the 𝐿-BBM, there is, 

uniformly in 𝑁, a positive probability �̃� that the number of particles will be less 

than or equal to 𝐶 at least once before a time of order 1. 

To prove this statement, we use 𝑘 = 𝑘(𝐶, 𝑁) times the result (53): the 

number 𝑘 of steps needed is such that 

𝑁𝜆𝑘
< 𝐶 ≤ 𝑁𝜆𝑘−1

. 
According to (53), one has 

�̃� > (1 −
3

𝑁𝜇) … (1 −
3

𝑁𝜇𝜆𝑘−1
) ≥ ∏ (1 −

3

𝐶𝜇𝜆−𝑛)

∞

𝑛=0

> 0, 

if the constant 𝐶 is chosen sufficiently large such that 3

𝑁𝜇𝜆𝑘−1 < 1; on the other 

hand, the time needed (52) for this to happen will be less than 

𝑎𝐿2

2𝜎2
∑

𝜆𝑛

ln 𝐶
𝑛≥0

=
𝑎𝐿2

2𝜎2(1 − 𝜆) ln 𝐶
. 

This proves Lemma (3.2.2).  

Now that we have proved Lemmas (3.2.1) and (3.2.2), it is quite easy to deduce the 

existence of the large deviation function for the 𝐿-BBM. Let 𝑣 ∈ (−∞, ∞), and let 

𝐸𝑡: = {∃ particle in the 𝐿 − BBM whose position at time 𝑡 is in [𝑣𝑡, ∞)}. 

[Clearly, 𝐸𝑡 depends on 𝑣, 𝑡 and 𝑁.] The existence of the large deviation function 

we need to prove means the existence of lim
𝑡→∞

1
𝑡

ln 𝐏(𝐸𝑡). We prove this by 

considering 

𝐸𝑡
(1)

: = {𝒩(𝑡) = 1, and the unique particle at time 𝑡 lies in [𝑣𝑡, ∞)}, 

where 𝒩(𝑡) denotes as before the number of particles in the 𝐿-BBM at time 𝑡. 

Clearly, 

𝐏 (𝐸
𝑡+𝑡′
(1)

) ≥ 𝐏 (𝐸𝑡
(1)

) 𝐏 (𝐸
𝑡′
(1)

),      ∀𝑡 ≥ 0 , 𝑡′ ≥ 0. 

As such, the function 𝑡 ↦ ln 𝐏(𝐸𝑡
(1)

) is superadditive on (0, ∞), and as 𝑡 goes to 

infinity, 
1

𝑡
ln 𝐏(𝐸𝑡

(1)
) → sup

𝑠>0

1

𝑠
ln 𝐏(𝐸𝑠

(1)
) ∈ (−∞, 0]. 

The existence of lim
𝑡→∞

1
𝑡

ln 𝐏(𝐸𝑡
(1)

) implies the existence of lim
𝑡→∞

1
𝑡

ln 𝐏(𝐸𝑡); indeed, 

we trivially have 

𝐏(𝐸𝑡) ≥ 𝐏 (𝐸𝑡
(1)

),      ∀𝑡 > 0, 

because 𝐸𝑡 ⊃ 𝐸𝑡
(1)

. Conversely, by Lemma (3.2.2), 
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𝐏 (𝐸𝑡+𝑐1

(1)
) ≥ 𝑐2𝐏(𝐸𝑡),      ∀𝑡 > 0, 

The last two inequalities together yield the existence of lim
𝑡→∞

1
𝑡

ln 𝐏(𝐸𝑡), which 

equals lim
𝑡→∞

1
𝑡

ln 𝐏(𝐸𝑡
(1)

). 

For the N-BBM, we start with two simple but useful monotonicity properties. We 

include the elementary proof for the sake of self-containedness. We say that 

(𝑢𝑖)1≤𝑖≤𝑀 dominates (𝑣𝑖)1≤𝑖≤𝑁 if ∑ 1{𝑢𝑖≥𝑎}
𝑀
𝑖=1 ≥ ∑ 1{𝑣𝑖≥𝑎}

𝑁
𝑖=1  for all 𝑎 ∈ (−∞, ∞) 

(so in particular, 𝑀 ≥ 𝑁). 

Lemma (3.2.3) [3] (First Monotonicity Property for the 𝑵-BBM)  

Let 𝑥1 ≥ ⋯ ≥ 𝑥𝑁 and 𝑦1 ≥ ⋯ ≥ 𝑦𝑁 be such that 𝑥𝑖 ≥ 𝑦𝑖  for all 1 ≤ 𝑖 ≤ 𝑁. There 

exists a coupling for two 𝑁-BBM systems on a same probability space, starting at 

positions (𝑥𝑖)1≤𝑖≤𝑁 and (𝑦𝑖)1≤𝑖≤𝑁 respectively, such that the first system 

dominates the second at all time. 

Proof. Consider two 𝑁-BBM systems, the first starting at positions (𝑥𝑖)1≤𝑖≤𝑁, and 

the second at (𝑦𝑖)1≤𝑖≤𝑁. We attach the same Brownian motion to particles starting 

at 𝑥𝑖 and 𝑦𝑖  (for 1 ≤ 𝑖 ≤ 𝑁) respectively in the two systems, and also attach the 

same Poisson process which determines the branching times along the paths. As 

such, the first branching time is identical in the two systems, and before this time, 

the 𝑥-system obviously dominates the 𝑦-system. It is also easy to check that right 

after the first branching time, the 𝑥-system still dominates the 𝑦-system. Then by 

attaching as before the same Brownian motions and the same Poissonian clocks to 

the 𝑥- and the 𝑦-particles, the 𝑥-system will continue to dominate the 𝑦-system. 

And so on. The procedure leads to the desired coupling.                     

Lemma (3.2.4) [3] (Second Monotonicity Property for the 𝑵-BBM)  

Let 𝑁′ ≥ 𝑁. Let 𝑥1 ≥ ⋯ ≥ 𝑥𝑁′ and 𝑦1 ≥ ⋯ ≥ 𝑦𝑁 be such that 𝑥𝑖 ≥ 𝑦𝑖  for all 1 ≤
𝑖 ≤ 𝑁. There exists a coupling for an 𝑁′-BBM and an 𝑁-BBM on a same 

probability space, with initial positions (𝑥𝑖)1≤𝑖≤𝑁′ and (𝑦𝑖)1≤𝑖≤𝑁 respectively, such 

that the 𝑁′-BBM dominates the 𝑁-BBM all time. 

Proof.  If 𝑁′ = 𝑁, this amounts to the previous lemma. So let us assume 𝑁′ > 𝑁. 

Then, as in the proof of the previous lemma, if initially the 𝑁 rightmost 

particles of the system with 𝑁′ particles dominates the other system, this remains 

true subsequently. The remaining 𝑁′ − 𝑁 particles can only reinforce this 

domination.                  

Let us now turn to the proof of the existence of the large deviation function 

for the 𝑁-BBM. Let 𝑣 ∈ 𝑅. Consider the following event for the 𝑁-BBM: 

𝐸𝑡: = {∃ particle whose position at time 𝑡 lies in [𝑣𝑡, ∞)}. 

To prove the existence of the large deviation function, we need to show that the 

limit lim
𝑡→∞

1
𝑡

ln 𝐏(𝐸𝑡) exists. We prove this by an argument of superadditivity. By 
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removing all particles at time 𝑡 except the rightmost one, the second monotonicity 

property stated in Lemma (3.2.4) tells us that 

𝐏(𝐸𝑡+𝑡′) ≥ 𝐏(𝐸𝑡)𝐏(𝐸𝑡′),      ∀𝑡 ≥ 0 , 𝑡′ ≥ 0. 

So the function 𝑡 ↦ ln 𝐏(𝐸𝑡) is superadditive on (0, ∞). In particular, 

lim
𝑡→∞

1

𝑡
ln 𝐏(𝐸𝑡) = sup

𝑡>0

1

𝑡
ln 𝐏(𝐸𝑡) ∈ (−∞, 0], 

exists. 

The existence of the large deviation function of the CBRW is very similar. As in 

Lemma (3.2.4) for the 𝑁-BBM, the probability of the large deviation event 

increases with the number of initial particles. Consequently, by removing all 

particles except the rightmost one at time 𝑡, on sees that if 𝐸𝑡 denotes the event 

that in the CBRW, there exists a particle lying in [𝑣𝑡, ∞) at time 𝑡, 

𝐏(𝐸𝑡+𝑡′) ≥ 𝐏(𝐸𝑡)𝐏(𝐸𝑡′),      ∀𝑡 ≥ 0 , 𝑡′ ≥ 0, 
from which the existence of lim

𝑡→∞

1
𝑡

ln 𝐏(𝐸𝑡) follows immediately. 

We describe the strategy for the 𝐿-BBM. The strategy for the 𝑁-BBM will be 

along similar lines, with a few appropriate modifications indicated below.  

Let 𝐸𝑡
𝐿𝐵𝐵𝑀 denote as before the event that there exists at least one particle in the  

𝐿-BBM whose position at time 𝑡 lies in [𝑣𝑡, ∞). To bound from below 𝐏(𝐸𝑡
𝐿𝐵𝐵𝑀), 

we consider the following event of the BBM (without selection): 

�̃�𝑡
𝐿𝐵𝐵𝑀 ≔ ⋃ {the particle 𝑖 lies in [𝑣𝑡, ∞)at time 𝑡,

𝒩(𝑡)

𝑖=1

 

not 𝐿 − dominated, and leans to the left }.                          (57) 

Here, 𝒩(𝑡) denotes, as before, the number of particles at time 𝑡. Leaning to the 

left means that the path of the particle lies in (−∞, 𝑡′𝑣 + 𝑡2/3] for all 𝑡′ ∈ [0, 𝑡]2. 

We say that a particle with trajectory [𝑋𝑡′ , 𝑡′ ∈ [0, 𝑡]) is 𝐿-dominated if at some 

time 𝑡′ ∈ [0, 𝑡] there is a particle lying in [𝑋𝑡′ + 𝐿, ∞). 

Clearly, if �̃�𝑡
𝐿𝐵𝐵𝑀 is realized, then one can construct an 𝐿-BBM such that the 

large deviation event 𝐸𝑡
𝐿𝐵𝐵𝑀 is realized. Therefore, 

𝐏(�̃�𝑡
𝐿𝐵𝐵𝑀) ≤ 𝐏(𝐸𝑡

𝐿𝐵𝐵𝑀). 

We estimate 𝐏(�̃�𝑡
𝐿𝐵𝐵𝑀) which will serve as a lower bound for 𝐏(𝐸𝑡

𝐿𝐵𝐵𝑀). 

To bound 𝐏(�̃�𝑡
𝐿𝐵𝐵𝑀) from below, let us write 

#�̃�𝑡
𝐿𝐵𝐵𝑀 ≔ ∑ 1{the particle 𝑖 lies in [𝑣𝑡,∞) at time 𝑡,not 𝐿−dominated,and leans to the left}

𝒩(𝑡)

𝑖=1

. (58) 

By the Cauchy–Schwarz inequality, we have 

𝐏(�̃�𝑡
𝐿𝐵𝐵𝑀) ≥

[𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀)]

2

𝐄[(#�̃�𝑡
𝐿𝐵𝐵𝑀)

2
]
. 
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Therefore 

𝐏(𝐸𝑡
𝐿𝐵𝐵𝑀) ≥

[𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀)]

2

𝐄[(#�̃�𝑡
𝐿𝐵𝐵𝑀)

2
]
.                                        (59) 

We need to bound 𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) from below, and bound 𝐄 [(#�̃�𝑡

𝐿𝐵𝐵𝑀)
2

] from 

above. The main estimates for the 𝐿-BBM which we obtain below are as follows: 

𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) ≳ exp [− (

𝑣2

2𝜎2
− 1 + 𝑒−[𝛼(𝑣)+𝑜𝐿(1)]𝐿) 𝑡],       (60) 

𝐄 [(#�̃�𝑡
𝐿𝐵𝐵𝑀)

2
] ≳ exp [− (

𝑣2

2𝜎2
− 1) 𝑡],                                 (61) 

with the value of 𝛼(𝑣) given in (7). As before, the notation 𝑎(𝑡) ≳ 𝑏(𝑡) or 𝑏(𝑡) ≲

𝑎(𝑡) means that lim inf
𝑡→∞

1
𝑡

ln (𝑎(𝑡)

𝑏(𝑡)
), whereas 𝑜𝐿(1) denotes a term not depending on 

𝑡, such that lim
𝐿→∞

𝑜𝐿(1) = 0. In view of the Cauchy–Schwarz inequality (59), it is 

clear that (60) and (61) together will imply the upper bound stated in (6) for the 

large deviation function 𝜓𝐿𝐵𝐵𝑀  of the 𝐿-BBM. 

The next subsection is devoted to the proof of (60). The proof of (61), which is 

identical for all the three models. 

We write 𝑋 = (𝑋𝑢, 𝑢 ∈ [0, 𝑡]) for the trajectory of the particle 𝑖 in the definition of 

#�̃�𝑡
𝐿𝐵𝐵𝑀, and write 

𝐴𝑡: = {𝑋𝑢 ≤ 𝑢𝑣 + 𝑡
2
3, ∀𝑢 ∈ [0, 𝑡]},                                  (62) 

which stands for the event that the particle 𝑖 leans to the left. Then 

𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) = ∫ 𝑒

𝑡−
𝑦2

2𝜎2𝑡

(2𝜋𝜎2𝑡)
1/2

𝐄(1𝐴𝑡
∏ 1

𝐷𝑡
𝐿𝐵𝐵𝑀(𝜏𝑗)

𝑗:𝜏𝑗≤𝑡

|𝑋𝑡=𝑦)𝑑𝑦

∞

𝑡𝑣

,       (63) 

where, for all 𝑢 ∈ [0, 𝑡], 𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢) stands for the event that the subtree of BBM 

branched at time 𝑢 on the path of 𝑋 does not produce any descendant going 

beyond 𝑋 by distance ≥ 𝐿 at any time during [𝑢, 𝑡]. Here, (𝜏𝑗, 𝑗 ≥ 1) is                   

a rate-2 Poisson process. The identity above, which is intuitively clear (except, 

maybe, for the rate being 2 instead of 1 which is a property of the Poisson process; 

we mention that the rate of the Poisson process plays no role in the final result). 

It is easily guessed that the essential contribution to the integral ∫ … 𝑑𝑦
∞

𝑡𝑣
 on 

the right-hand side comes from the neighbourhood of 𝑦 = 𝑣𝑡. In any case, we can 

limit ourselves to the neighbourhood of 𝑦 = 𝑣𝑡 to pretend that it only gives a 

lower bound: 

𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) ≳ 𝑒

−( 𝑣2

2𝜎2−1)𝑡
𝐄 (1𝐴𝑡

∏ 1𝐷𝑡
𝐿𝐵𝐵𝑀(𝜏𝑗)

𝑗:𝜏𝑗≤𝑡

| 𝑋𝑡 = 𝑣𝑡). 

By conditioning upon 𝑋: = (𝑋𝑢, 𝑢 ∈ [0, 𝑡]) and 𝜏 ≔ (𝜏𝑗 , 𝑗 ≥ 1), we have 
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𝐄 (1𝐴𝑡
∏ 1𝐷𝑡

𝐿𝐵𝐵𝑀(𝜏𝑗)

𝑗:𝜏𝑗≤𝑡

| 𝑋, 𝜏) = 1𝐴𝑡
∏ 𝐏X(𝐷𝑡

𝐿𝐵𝐵𝑀(𝜏𝑗)|𝜏)

𝑗:𝜏𝑗≤𝑡

, 

where 𝐏X(⋅) ≔ 𝐏(⋅ |𝑋) denotes conditional probability given 𝑋. As such, writing 

𝐄Xfor expectation with respect to 𝐏X, we have 

𝐄X (1𝐴𝑡
∏ 1𝐷𝑡

𝐿𝐵𝐵𝑀(𝜏𝑗)

𝑗:𝜏𝑗≤𝑡

) = 1𝐴𝑡
𝐄X ( ∏ 𝐏X(𝐷𝑡

𝐿𝐵𝐵𝑀(𝜏𝑗)|𝜏)

𝑗:𝜏𝑗≤𝑡

) 

        = 1𝐴𝑡
𝑒

−2 ∫ [1−𝐏X(𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢))]𝑑𝑢

𝑡

0 , 

the second identity being a consequence of the fact that (𝜏𝑗 , 𝑗 ≥ 1) is                      

a rate-2 Poisson process. Accordingly, 

𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) ≳ 𝑒

−( 𝑣2

2𝜎2−1)𝑡
𝐄 {1𝐴𝑡

𝑒
−2 ∫ [1−𝐏X(𝐷𝑡

𝐿𝐵𝐵𝑀(𝑢))]𝑑𝑢
𝑡

0 | 𝑋𝑡 = 𝑣𝑡}. 

Given 𝑋𝑡 = 𝑣𝑡, the process (𝑋𝑢, 𝑢 ∈ [0, 𝑡]) is a Brownian bridge of length 𝑡; it can 

be realized as 𝑋𝑢 = 𝑣𝑢 + 𝜎(𝑊𝑢 − 𝑢

𝑡
𝑊𝑡), where 𝑊 is a standard Brownian motion 

(of variance 1). Thus 

𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) ≳ 𝑒

−( 𝑣2

2𝜎2−1)𝑡
𝐄 {1

𝐴𝑡
(𝑊)𝑒

−2 ∫ [1−𝐏X(𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢))]𝑑𝑢

𝑡

0 }.      (64) 

where 

𝐴𝑡
(𝑊)

: = {𝑊𝑢 −
𝑢

𝑡
𝑊𝑡 ≤

𝑡
2
3

𝜎
, ∀𝑢 ∈ [0, 𝑡]}. 

We will see that the indicator 1
𝐴𝑡

(𝑊) brings no significant difference to the 

expectation. Writing the conditional probability 

𝐏𝑡(⋅) ≔ 𝐏 (⋅ |𝐴𝑡
(𝑊)

), 

and 𝐄𝑡(⋅) for the associated expectation, we obtain: 

𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) ≳ 𝑒

−( 𝑣2

2𝜎2−1)𝑡
𝐏 (𝐴𝑡

(𝑊)
) 𝐄𝑡 (𝑒

−2 ∫ [1−𝐏X(𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢))]𝑑𝑢

𝑡

0 ). 

By scaling, 𝐏 (𝐴𝑡
(𝑊)

) = 𝐏 {𝑊𝑟 − 𝑟𝑊1 ≤ 𝑡
1
6

𝜎
, ∀𝑟 ∈ [0,1]}, which converges to 1 

when 𝑡 → ∞. So in our notation for “≳", we have 

           𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) ≳ 𝑒

−( 𝑣2

2𝜎2−1)𝑡
𝐄𝑡 (𝑒

−2 ∫ [1−𝐏X(𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢))]𝑑𝑢

𝑡

0 ) 

≥ exp {− (
𝑣2

2𝜎2 − 1) 𝑡 − 2 ∫ 𝐄𝑡[1 − 𝐏X(𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢))]𝑑𝑢

𝑡

0

}, 

the last line following from Jensen’s inequality. By definition, 

            𝐄𝑡[1 − 𝐏X(𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢))] =

𝐄{[1−𝐏X(𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢))]1

𝐴𝑡
(𝑊)}

𝐏(𝐴𝑡
(𝑊)

)
 

≤
𝐄[1−𝐏X(𝐷𝑡

𝐿𝐵𝐵𝑀(𝑢))]

𝐏(𝐴𝑡
(𝑊)

)
. 
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We have already seen that 𝐏 (𝐴𝑡
(𝑊)

) → 1, 𝑡 → ∞. So for all sufficiently large 𝑡  

(which will be taken for granted from now on), we have 
𝟐

𝐏(𝐴𝑡
(𝑊)

)
≤ 3. 

As such, 

𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) ≳ exp {− (

𝑣2

2𝜎2 − 1) 𝑡 − 3 ∫ 𝐄[1 − 𝐏X(𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢))]𝑑𝑢

𝑡

0

}.    (65) 

[So the presence of the indicator function 1
𝐴𝑡

(𝑊)in (64) indeed has no significant 

influence.] 

For all 𝑠 > 0, let us write 𝑀(𝑠) for the maximal position at time 𝑠 of a BBM 

independent of 𝑋. [This was denoted by 𝑋max(𝑠) in the introduction.] By 

definition of 𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢), 

1 − 𝐏X(𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢)) = 𝐏X(∃𝑠 ∈ (0, 𝑡 − 𝑢]: 𝑀(𝑠) ≥ 𝐿 + 𝑋𝑠+𝑢 − 𝑋𝑢) 

≤ ∫ 𝐏X(𝑀(𝑠) ≥ 𝐿 + 𝑋𝑠+𝑢 − 𝑋𝑢)𝑑𝑠
𝑡−𝑢

0

.                               (66) 

[The inequality in (66) is heuristic; it would be trivially true if s were an integer (in 

which case we would have a sum over s instead of an integral on the right-hand 

side). However, we can easily make it rigorous by arguing that  

𝐏X(∃𝑠 ∈ (0, 𝑡 − 𝑢]: 𝑀(𝑠) ≥ 𝐿 + 𝑋𝑠+𝑢 − 𝑋𝑢)

≤ ∑ 𝐏X ( sup
𝑠∈[𝑖−1,𝑖]

𝑀(𝑠) ≥ 𝐿 + inf
𝑠∈[𝑖−1,𝑖]

(𝑋𝑠+𝑢 − 𝑋𝑢))

[𝑡−𝑢]+1

𝑖=1

. 

The rest of the argument will go through, by noting that the tail probability of 

sup
𝑠∈[𝑖−1,𝑖]

𝑀(𝑠) behaves like the tail probability of 𝑀(𝑖) (in the sens of " ≲"), and 

that in the estimates of 𝑗𝑡
(1)

(𝑢, 𝑠) and 𝑗𝑡
(2)

(𝑢, 𝑠), instead of using the exact 

Gaussian distribution of 𝑊𝑠+𝑢 − 𝑊𝑢 − 𝑠

𝑡
𝑊𝑡, we can use the fact that the negative 

tail distribution of inf
𝑠∈[𝑖−1,𝑖]

(𝑊𝑠+𝑢 − 𝑊𝑢 − 𝑠

𝑡
𝑊𝑡) is bounded by the Gaussian tail. 

The same argument applies to the 𝑁-BBM. For the CBRW, the situation is slightly 

different due to the fact that the space is discrete, but some obvious modifications 

to the argument readily make it rigorous.] 

By the Markov inequality, 𝑷𝑋{𝑀(𝑠) ≥ 𝐿 + 𝑋𝑠+𝑢 − 𝑋𝑢} is bounded by the 

𝑷𝑋-expectation of the number of particles located beyond 𝐿 + 𝑋𝑠+𝑢 − 𝑋𝑢 at time 

𝑠; this 𝑷𝑋-expectation is bounded by exp(𝑠 − (𝐿+𝑋𝑠+𝑢−𝑋𝑢)2

2𝜎2𝑠
). Of course, this bound 

is interesting only when 𝐿 + 𝑋𝑠+𝑢 − 𝑋𝑢 ≥ (2𝜎2)1/2𝑠; otherwise, we use the trivial 

inequality 𝑷𝑋{𝑀(𝑠) ≥ 𝐿 + 𝑋𝑠+𝑢 − 𝑋𝑢} ≤ 1. As a consequence, 

1 − 𝑷𝑋(𝐷𝑡
𝐿𝐵𝐵𝑀(𝑢)) 

≤ ∫ [1
{𝐿+𝑋𝑠+𝑢−𝑋𝑢<(2𝜎2)

1
2𝑠}

+ 1{𝐿+𝑋𝑠+𝑢−𝑋𝑢≥(2𝜎2)1/2𝑠}exp (𝑠 −
(𝐿+𝑋𝑠+𝑢−𝑋𝑢)2

2𝜎2𝑠
)] 𝑑𝑢

𝑡−𝑢

0

. 
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With the notation 𝑋𝑢 = 𝑣𝑢 + 𝜎(𝑊𝑢 − 𝑠

𝑡
𝑊𝑡), we have 𝐿 + 𝑋𝑠+𝑢 − 𝑋𝑢 = 𝐿 + 𝑣𝑠 +

𝜎(𝑊𝑠+𝑢 − 𝑊𝑢 − 𝑠

𝑡
𝑊𝑡). Assembling these pieces yields that 

𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) ≳ exp {− (

𝑣2

2𝜎2 − 1) 𝑡 − 3 ∫ (∫ [𝑗𝑡
(1)(𝑢, 𝑠) + 𝑗𝑡

(2)
(𝑢, 𝑠)] 𝑑𝑠

𝑡−𝑢

0

) 𝑑𝑢
𝑡

0

}. 

where 

𝑗𝑡
(1)(𝑢, 𝑠) ≔ 𝐏 (𝐿 + 𝑣𝑠 + 𝜎 (𝑊𝑠+𝑢 − 𝑊𝑢 −

𝑠

𝑡
𝑊𝑡) < (2𝜎2)1/2𝑠), 

𝑗𝑡
(2)(𝑢, 𝑠) ≔ 𝐄 (1{𝐿+𝑣𝑠+𝜎(𝑊𝑠+𝑢−𝑊𝑢−𝑠

𝑡
𝑊𝑡)≥(2𝜎2)1/2𝑠} × exp (𝑠 −

[𝐿+𝑣𝑠+𝜎(𝑊𝑠+𝑢−𝑊𝑢−𝑠
𝑡
𝑊𝑡)]

2

2𝜎2𝑠
)). 

The random variable 𝑊𝑠+𝑢 − 𝑊𝑢 − 𝑠

𝑡
𝑊𝑡 has the Gaussian 𝒩 (0, 𝑠(1 − 𝑠

𝑡
)) law. 

Some elementary but tedious computations lead to the following conclusion: in 

case 𝑣 > (9𝜎2

2
)

1/2
, the subtrees move forward faster than the usual speed (2𝜎2)1/2 

(i.e., the integral of 𝑗𝑡
(2)(𝑢, 𝑠) dominates), whereas if (2𝜎2)1/2 < 𝑣 ≤ (9𝜎2

2
)

1/2
, 

these subtrees make no particular effort: they only need, in this case, to wait for 

the occasions when the red particle makes some fluctuations toward the left 

(which happens with some frequency). Letting 𝑡 → ∞ and then 𝐿 → ∞ (in this 

order), we obtain: 

𝐄(#�̃�𝑡
𝐿𝐵𝐵𝑀) ≥ exp [−(1 + 𝑜(1)) (

𝑣2

2𝜎2 − 1 + 𝑒−(1+𝑜𝐿(1))𝛼(𝑣)𝐿) 𝑡], 

where 𝛼(𝑣) is given in (7). This is the desired lower bound (60). 

The proof for the 𝑁-BBM is similar to the proof for the 𝐿-BBM, so we present 

only an outline, indicating the places where modifications are needed. We fix 0 <
𝜖 < 1, and write 𝑀 = 𝑀(𝜖) ≔ [𝑁1−𝜖]. Consider 

�̃�𝑡
𝑁𝐵𝐵𝑀 ≔ ⋃ {the particle 𝑖 lies in [𝑣𝑡, ∞), leans to the left,

𝒩(𝑡)

𝑖=1

 

does not split much, is not 𝑀 − dominated}. 
Let us explain the definition of �̃�𝑡

𝑁𝐵𝐵𝑀. The meaning of "leans to the left" is as for 

the 𝐿-BBM: the path of the particle lies in (−∞, 𝑡′𝑣 + 𝑡2/3] for all 𝑡′ ∈ [0, 𝑡]. By 

"does not split much", we mean that the number of branchings (from the path of 

the particle i) at each of the time intervals [(𝑘 − 1)(ln 𝑁)2, 𝑘(ln 𝑁)2], for         

1 ≤ 𝑘 ≤ 𝑡

(ln 𝑁)2 , is bounded by (ln 𝑁)3. By "𝑀-dominated", we mean the existence 

of a time 𝑢 ∈ [0, 𝑡] such that either there are at least 𝑀 particles branching at time 

𝑢 from the path of the particle 𝑖 lying in [𝑋𝑡′ , ∞) at some time                           

𝑡′ ∈ [𝑢, 𝑢 + (ln 𝑁)2], or there is a particle branching at time 𝑢 from the path of the 

particle 𝑖 lying in [𝑋𝑡′ , ∞) at some time 𝑡′ ∈ [𝑢 + (ln 𝑁)2, 𝑡] (if the interval is not 

empty). 

The event �̃�𝑡
𝑁𝐵𝐵𝑀 is the analogue, for the 𝑁-BBM, of the event �̃�𝑡

𝐿𝐵𝐵𝑀 in 

(57). The probability 𝐏(�̃�𝑡
𝑁𝐵𝐵𝑀) will serve as a lower bound for the probability of 

the large deviation event for the 𝑁-BBM, because by definition, �̃�𝑡
𝑁𝐵𝐵𝑀 implies 

the large deviation event for the 𝑁-BBM. 
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Write as before #�̃�𝑡
𝑁𝐵𝐵𝑀 for the number of 𝑖 satisfying the conditions in 

�̃�𝑡
𝑁𝐵𝐵𝑀. The main estimates for the 𝑁-BBM we are going to prove are: 

𝐄(#�̃�𝑡
𝑁𝐵𝐵𝑀) ≳ exp [− (

𝑣2

2𝜎2 − 1 + 𝑀−𝛽(𝑣)+𝑜𝐿(1)) 𝑡],            (67) 

𝐄 [(#�̃�𝑡
𝑁𝐵𝐵𝑀)

2
] ≲ exp [− (

𝑣2

2𝜎2 − 1) 𝑡],                                         (68) 

where 𝛽(𝑣) is defined in (11), and 𝑜𝐿(1) stands for a term not depending on 𝑡 

such that lim
𝐿→∞

𝑜𝐿(1) = 0. Since 𝜖 can be as small as possible, (67) and (68) 

together with the Cauchy–Schwarz inequality will yield the upper bound stated in 

(10) for the large deviation function for the 𝑁-BBM. 

The proof of (68), which is identical for all the three models. The rest of this 

discussion is devoted to the proof of (67). 

Writing 𝑋 = (𝑋𝑢, 𝑢 ∈ [0, 𝑡]) again for the trajectory of the red particle 𝑖, and 𝐴𝑡: =

{𝑋𝑢 ≤ 𝑢𝑣 + 𝑡
2
3, ∀𝑢 ∈ [0, 𝑡]} as in (62), we have 

𝐄(#�̃�𝑡
𝑁𝐵𝐵𝑀) = ∫ 𝑒

𝑡−
𝑦2

2𝜎2𝑡

(2𝜋𝜎2𝑡)
1/2

𝐄(1𝐴𝑡
( ∏ 1𝐺𝑘

𝑡/(ln 𝑁)2

𝑘=1

) ∏ 1
𝐷𝑡

𝑁𝐵𝐵𝑀(𝜏𝑗)
𝑗:𝜏𝑗≤𝑡

|𝑋𝑡=𝑦)𝑑𝑦

∞

𝑡𝑣

, 

where, for all 𝑢 ∈ [0, 𝑡], 𝐷𝑡
𝑁𝐵𝐵𝑀(𝑢) stands for the event that the subtree of BBM 

branched at time 𝑢 on the path of 𝑋 does not produce 𝑀 descendants going beyond 

𝑋 at any time during [𝑢, 𝑢 + (ln 𝑁)2] and does not produce any descendant going 

beyond 𝑋 at any time during [𝑢 + (ln 𝑁)2, 𝑡] (if the interval is non empty). Here, 

(𝜏𝑗 , 𝑗 ≥ 1) is as before the atoms of a rate-2 Poisson process, and for each 𝑘, 𝐺𝑘 is 

the event that the number of atoms (𝜏𝑗 , 𝑗 ≥ 1) lying in [(𝑘 − 1)(ln 𝑁)2, 𝑘(ln 𝑁)2] 

is bounded by (ln 𝑁)3. 

Once again, the essential contribution to the integral ∫ … 𝑑𝑦
∞

𝑡𝑣
 on the right-

hand side comes from the neighbourhood of 𝑦 = 𝑣𝑡; we write 

𝐄(#�̃�𝑡
𝑁𝐵𝐵𝑀) = 𝑒

−(
𝑣2

2𝜎2𝑡
−1)𝑡

𝐄 (1𝐴𝑡
( ∏ 1𝐺𝑘

𝑡/(ln 𝑁)2

𝑘=1

) ∏ 1𝐷𝑡
𝑁𝐵𝐵𝑀(𝜏𝑗)

𝑗:𝜏𝑗≤𝑡

| 𝑋𝑡 = 𝑣𝑡). 

Compared to the discussions for the 𝐿-BBM in the previous subsection, we have a 

new factor ∏ 1𝐺𝑘

𝑡/(ln 𝑁)2

𝑘=1 ; conditionally on the path of 𝑋, the probability of 

⋂ 𝐺𝑘
𝑡/(ln 𝑁)2

𝑘=1  is at least (1 − 𝑒−𝑐3(ln 𝑁)2
)𝑡/(ln 𝑁)2

 (for some constant 𝑐3 > 0), which 

is greater than or equal to 𝑒−𝑡𝑒−𝑡𝑐4(ln 𝑁)2

 (for some constant 𝑐4 > 0). As such, using 

again 𝑷𝑋 to denote the conditional probability given 𝑋, we have 

𝐄𝑋 (( ∏ 1𝐺𝑘

𝑡/(ln 𝑁)2

𝑘=1

) ∏ 1𝐷𝑡
𝑁𝐵𝐵𝑀(𝜏𝑗)

𝑗:𝜏𝑗≤𝑡

) 

≥ 𝑒−𝑡𝑒−𝑡𝑐4(ln 𝑁)2

𝐄𝑋 ( ∏ 𝐏𝑋(𝐷𝑡
𝑁𝐵𝐵𝑀(𝜏𝑗)|𝜏)

𝑗:𝜏𝑗≤𝑡

| ⋂ 𝐺𝑘

𝑡/(ln 𝑁)2

𝑘=1

). 

We have 
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𝐄𝑋 ( ∏ 𝐏𝑋(𝐷𝑡
𝑁𝐵𝐵𝑀(𝜏𝑗)|𝜏)

𝑗:𝜏𝑗≤𝑡

| ⋂ 𝐺𝑘

𝑡/(ln 𝑁)2

𝑘=1

) ≥ 𝐄𝑋 ( ∏ 𝐏𝑋(𝐷𝑡
𝑁𝐵𝐵𝑀(𝜏𝑗)|𝜏)

𝑗:𝜏𝑗≤𝑡

), 

which equals exp {−2 ∫ [1 − 𝐏X(𝐷𝑡
𝑁𝐵𝐵𝑀(𝑢))]𝑑𝑢

𝑡

0
}.We can now carry out the same 

computations as in the case of the 𝐿-BBM, to see that 

𝐄(#�̃�𝑡
𝑁𝐵𝐵𝑀) ≳ exp {− (

𝑣2

2𝜎2 − 1 + 𝑒−𝑐4(ln 𝑁)2
) 𝑡 − 3 ∫ 𝐄[1 − 𝐏X(𝐷𝑡

𝑁𝐵𝐵𝑀(𝑢))]𝑑𝑢
𝑡

0

}. 

[This is the analogue for the 𝑁-BBM, of the inequality in (65).] 

For all 𝑠 > 0 and 𝑥 ∈ (−∞, ∞), let us write 𝒩(𝑥, 𝑠) for the number of particles 

lying in [𝑥, ∞) at time 𝑠 in an BBM independent of 𝑋, and 𝑀(𝑠) the maximal 

position at time 𝑠 of the BBM. By definition of 𝐷𝑡
𝑁𝐵𝐵𝑀(𝑢), 

1 − 𝐏X(𝐷𝑡
𝑁𝐵𝐵𝑀(𝑢)) ≤ 𝐏X(∃𝑠 ∈ [(ln 𝑁)2, 𝑡 − 𝑢]: 𝑀(𝑠) ≥ 𝑋𝑠+𝑢 − 𝑋𝑢) 

                                  +𝐏X(∃𝑠 ∈ [0, 𝑡 − 𝑢]: 𝒩(𝑋𝑠+𝑢 − 𝑋𝑢, 𝑠) ≥ 𝑀). 
We argue that this implies 

1 − 𝐏X(𝐷𝑡
𝑁𝐵𝐵𝑀(𝑢)) ≤ ∫ 𝐏X(𝑀(𝑠) ≥ 𝑋𝑠+𝑢 − 𝑋𝑢)𝑑𝑠

𝑡−𝑢

(ln 𝑁)2

 

+ ∫ 𝐏X(𝒩(𝑋𝑠+𝑢 − 𝑋𝑢, 𝑠) ≥ 𝑀)𝑑𝑠
𝑡−𝑢

0

, 

even though the rigorous meaning of the inequality should be formulated as in the 

paragraph following (66). 

The first probability expression on the right-hand side 𝐏X(𝑀(𝑠) ≥ 𝑋𝑠+𝑢 − 𝑋𝑢) is 

bounded by min [1, 𝑒
𝑠− 

(𝑋𝑠+𝑢−𝑋𝑢)2

2𝜎2𝑠 ]. The probability 𝐏X(𝒩(𝑋𝑠+𝑢 − 𝑋𝑢, 𝑠) ≥ 𝑀) 

was denoted by 𝑄(𝑋𝑠+𝑢 − 𝑋𝑢, 𝑠) (with 𝑀 in place of 𝑁), and we have seen in (38) 

that 

𝐏X(𝒩(𝑋𝑠+𝑢 − 𝑋𝑢, 𝑠) ≥ 𝑀) ≤ min [1, 𝑒
𝑠−ln 𝑀− 

(𝑋𝑠+𝑢−𝑋𝑢)2

2𝜎2𝑠 ]. 

As such, 

1 − 𝐏X(𝐷𝑡
𝑁𝐵𝐵𝑀(𝑢)) 

≤ ∫ [1
{𝑋𝑠+𝑢−𝑋𝑢<(2𝜎2𝑠2)

1
2}

+ 1
{𝑋𝑠+𝑢−𝑋𝑢≥(2𝜎2𝑠2)

1
2}

exp (𝑠 −
(𝑋𝑠+𝑢−𝑋𝑢)2

2𝜎2𝑠
)] 𝑑𝑢

𝑡−𝑢

(ln 𝑁)2

 

 

+ ∫ [1
{𝑋𝑠+𝑢−𝑋𝑢<[2𝜎2𝑠)(𝑠−ln 𝑀)]

1
2}

+ 1
{𝑋𝑠+𝑢−𝑋𝑢≥[2𝜎2𝑠)(𝑠−ln 𝑀)]

1
2}

exp (𝑠 −
(𝑋𝑠+𝑢−𝑋𝑢)2

2𝜎2𝑠
)] 𝑑𝑢

𝑡−𝑢

ln 𝑀

. 

With the notation 𝑋𝑢 = 𝑣𝑢 + 𝜎(𝑊𝑢 − 𝑠

𝑡
𝑊𝑡) (where 𝑊 denotes again a standard 

Brownian motion with variance 1, we have 𝑋𝑠+𝑢 − 𝑋𝑢 = 𝑣𝑠 + 𝜎(𝑊𝑠+𝑢 − 𝑊𝑢 − 𝑠

𝑡
𝑊𝑡). 

The random variable 𝑊𝑠+𝑢 − 𝑊𝑢 − 𝑠

𝑡
𝑊𝑡 has the Gaussian 𝒩 (0, 𝑠(1 − 𝑠

𝑡
)) law. As for 

the 𝐿-BBM, some elementary computations yield that, in case 𝑣 > (4𝜎2)1/2, the 

subtrees move forward faster than the usual speed (2𝜎2)1/2, whereas if (2𝜎2)1/2 <
𝑣 ≤ (4𝜎2)1/2, these subtrees make no particular effort, and wait only for the occasions 
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when the red particle makes some fluctuations toward the left. Letting 𝑡 → ∞ and then 

𝑁 → ∞, we obtain: 

𝐄(#�̃�𝑡
𝑁𝐵𝐵𝑀) ≳ exp [− (

𝑣2

2𝜎2 − 1 + 𝑒−𝑐4(ln 𝑁)2
+ 𝑀−𝛽(𝑣)+𝑜𝑁(1)) 𝑡], 

where 𝛽(𝑣) is defined in (11), and 𝑜𝑁(1) stands for a term not depending on 𝑡 such that 

lim
𝑁→∞

𝑜𝑁(1) = 0. Note that 𝑒−𝑐4(ln 𝑁)2
 is negligible compared to 𝑀−𝛽(𝑣)+𝑜𝑁(1). This 

yields the desired lower bound (67). 

The proof for the CBRW is along the lines of the proof for the 𝐿-BBM and for the 𝑁-

BBM. Let 

�̃�𝑡
𝐶𝐵𝑅𝑊 ≔ ⋃ {the particle 𝑖 lies in [𝑣𝑡, ∞), leans to the left,

𝒩(𝑡)

𝑖=1

does not coalesce}. 

The meaning of "leans to the left" is as before: the path of the particle lies in 

(−∞, 𝑡′𝑣 + 𝑡2/3] for all 𝑡′ ∈ [0, 𝑡]. By "does not coalesce", we mean that at no time 

during [0, 𝑡] does the particle coalesce with any other particle. 

Let #�̃�𝑡
𝐶𝐵𝑅𝑊 denote the number of 𝑖 satisfying the conditions in �̃�𝑡

𝐶𝐵𝑅𝑊. The main 

estimates for the CBRW are: 

𝐄(#�̃�𝑡
CBRW) ≳ exp[−(𝑓(𝑣) − 𝑟 + 𝜇𝛾(𝑣)+𝑜𝜇(1))𝑡],               (69) 

𝐄 [(#�̃�𝑡
CBRW)

2
] ≳ exp[−(𝑓(𝑣) − 𝑟)𝑡],                                   (70) 

where 𝛾(𝑣) and 𝑓(𝑣) are defined in (20) and (15) respectively, and 𝑜𝜇(1) stands 

for a term not depending on 𝑡 such that lim
𝜇→∞

𝑜𝜇(1) = 0. Equations (69) and (70) 

together with the Cauchy–Schwarz inequality will yield the upper bound stated in 

(19) for the large deviation function for the CBRW. 

The proof of (70), which is identical for all the three models. The rest of this 

subsection is devoted to the proof of (69). 

Writing 𝑋 = (𝑋𝑢, 𝑢 ∈ [0, 𝑡]) again for the trajectory of the red particle 𝑖, 

and 𝐴𝑡: = {𝑋𝑢 ≤ 𝑢𝑣 + 𝑡
2

3, ∀𝑢 ∈ [0, 𝑡]} as in (62), we have 

𝐄(#�̃�𝑡
CBRW) = ∑ 𝑒𝑟𝑡𝑃(𝑘𝜎; 𝑡)𝐄 (1𝐴𝑡

∏ 1𝐷𝑡
CBRW(𝜏𝑗)

𝑗:𝜏𝑗≤𝑡

| 𝑋𝑡 = 𝑘𝜎)

𝑘:𝑣𝑡≤𝑘𝜎≤𝑣𝑡+𝑡2/3

, 

where 𝑃(𝑘𝜎; 𝑡) is the probability that a random walk is at position 𝑘𝜎 at time 𝑡, 

and for all 𝑢 ∈ [0, 𝑡], 𝐷𝑡
CBRW(𝑢) stands for the event that none of the particles in 

the subtree of BBM branched at time 𝑢 on the path of 𝑋 coalesces with the red 

particle. Here, (𝜏𝑗 , 𝑗 ≥ 1) is as before the atoms of a rate-2 Poisson process. 

For 𝑡 → ∞, 𝑃(𝑘𝜎; 𝑡)~𝑒−𝑡𝑓(𝑘𝜎/𝑡) where 𝑓 is as in (12), and the essential 

contribution to the sum on the right-hand side comes from 𝑘 ≈ 𝑣𝑡

𝜎
; we treat 

𝑣𝑡

𝜎
 as an 

integer, and write 

𝐄(#�̃�𝑡
CBRW) ≳ 𝑒−𝑡𝑓(𝑘𝜎/𝑡)𝐄 (1𝐴𝑡

∏ 1𝐷𝑡
CBRW(𝜏𝑗)

𝑗:𝜏𝑗≤𝑡

| 𝑋𝑡 = 𝑣𝑡). 

The same computations as for the 𝐿-BBM (see (65)) give that 
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𝐄(#�̃�𝑡
CBRW) ≳ exp {𝑡(𝑟 − 𝑓(𝑣)) − 3 ∫ 𝐄 [1 − 𝐏X(𝐷𝑡

𝐶𝐵𝑅𝑊(𝑢))] 𝑑𝑢
𝑡

0

}. 

As for the 𝐿-BBM, we argue that 

1 − 𝐏X(𝐷𝑡
𝐶𝐵𝑅𝑊(𝑢)) ≤ ∫ 𝐏X(𝐵𝑢,𝑠)𝑑𝑠

𝑡−𝑢

0

, 

where 𝐵𝑢,𝑠 denotes the event that there exists a particle branched at time 𝑢 that 

coalesces with the red particle at time 𝑢 + 𝑠. [For a rigorous meaning of this 

inequality, see the paragraph following (66).] By the Markov inequality, 𝐏X(𝐵𝑢,𝑠) 

is bounded by the 𝐏X-expected number of particles branched at time 𝑢 that 

coalesce with the red particle at time 𝑢 + 𝑠, and this 𝐏X-expected number is 

approximately 𝜇 exp [𝑠 (𝑟 − 𝑓(𝑋𝑠+𝑢−𝑋𝑢
𝑠

))]. 

On the other hand, 𝐏X(𝐵𝑢,𝑠) ≤ 1. So 

𝐏X(𝐵𝑢,𝑠) ≤ min [1, 𝜇 exp (𝑠 (𝑟 − 𝑓 (
𝑋𝑠+𝑢−𝑋𝑢

𝑠
)))]. 

Taking expectation with respect to the law of the red particle, we arrive that 

𝐄(#�̃�𝑡
CBRW) ≳ exp {𝑡 (𝑟 − 𝑓 (

𝑋𝑠+𝑢−𝑋𝑢

𝑠
))

− 3 ∫ 𝑑𝑢

𝑡

0

∫ 𝑑𝑠
𝑡−𝑢

0

𝐄min [1, 𝜇 exp (𝑠 (𝑟 − 𝑓 (
𝑋𝑠+𝑢−𝑋𝑢

𝑠
)))]}. 

From here, we can use the computations presented which leading to (50) and (51). 

This yields (69). 

We use a common proof for (61) and (68), for the 𝐿-BBM and the 𝑁-BBM, 

respectively. The proof of (70), for the CBRW, is along similar lines, and is 

omitted. 

It suffices to prove that 

𝐄(𝛬𝑡
2) ≲ 𝑒

−(
𝑣2

2𝜎2𝑡
−1)𝑡

, 
if 𝛬𝑡 = 𝛬𝑡(𝑣) denotes the number of particles in the BBM (without selection) at 

time 𝑡 lying in [𝑣𝑡, ∞) and leaning on the left (i.e., whose trajectories are in 

(−∞, 𝑡′𝑣 + 𝑡2/3] for all 𝑡′ ∈ [0, 𝑡]).  
By definition, 

𝐄(𝛬𝑡
2) ≤ 𝐄(𝛬𝑡) + ∫ 𝑑𝜏

𝑡

0

∫ 𝑑𝑦
𝑣𝜏+𝑡2/3

−∞

𝑒
𝜏−

𝑦2

2𝜎2𝜏

(2𝜋𝜎2𝜏)1/2
(∫ 𝑑𝑧

∞

𝑣𝜏

𝑒
(𝑡−𝜏)−

(𝑧−𝑦)2

2𝜎2(𝑡−𝜏)

(2𝜋𝜎2(𝑡 − 𝜏))1/2
)

2

. 

[It is an inequality because the trajectories are not required to lean on the left, but 

only lie in (−∞, 𝑣𝜏 + 𝑡2/3] at time 𝜏, when they split.] We have                 

𝐄(𝛬𝑡) ≤ 𝑒
−(

𝑣2

2𝜎2𝑡
−1)𝑡

. 

It is convenient to split ∫ 𝑑𝑦
𝑣𝜏+𝑡2/3

−∞
 into the sum of ∫ 𝑑𝑦

𝑣𝜏

−∞
 and ∫ 𝑑𝑦

𝑣𝜏+𝑡2/3

𝑣𝜏
. 
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Since 𝑦 ⟼
𝑦2

2𝜎2𝜏
+

(𝑧1−𝑦)2

2𝜎2(𝑡−𝜏)
+

(𝑧2−𝑦)2

2𝜎2(𝑡−𝜏)
 is non-decreasing on [0, 𝑣𝜏] (for all 𝑧1 ≥ 𝑣𝜏 

and 𝑧2 ≥ 𝑣𝜏), it follows for the first integral that 

∫ 𝑑𝜏

𝑡

0

∫ 𝑑𝑦
𝑣𝜏

−∞

𝑒
𝜏−

𝑦2

2𝜎2𝜏

(2𝜋𝜎2𝜏)
1
2

(∫ 𝑑𝑧
∞

𝑣𝜏

𝑒
(𝑡−𝜏)−

(𝑧−𝑦)2

2𝜎2(𝑡−𝜏)

(2𝜋𝜎2(𝑡 − 𝜏))
1
2

)

2

 

≤ ∫ 𝑑𝜏𝑒
𝜏−

𝑣2𝜏

2𝜎2

𝑡

0

(𝑒
(𝑡−𝜏)−

𝑣2(𝑡−𝜏)

2𝜎2 )
2

 

≤ ∫ 𝑑𝜏𝑒
−(

𝑣2

2𝜎2−1)(2𝑡−𝜏)

𝑡

0

 

 

≲ 𝑒
−(

𝑣2

2𝜎2−1)𝑡
, 

using again our notation 𝑎(𝑡) ≲ 𝑏(𝑡) means that lim sup
𝑡→∞

ln[𝑎(𝑡)/𝑏(𝑡)]
ln 𝑡

≤ 0. 

A few more lines of elementary computations show that the extra integral 

∫ 𝑑𝑦
𝑣𝜏+𝑡2/3

𝑣𝜏
 leads to an upper bound 𝑒

−(
𝑣2

2𝜎2−1)𝑡+𝑜(𝑡)
. Therefore, we get the claimed 

upper bound for 𝐄(𝛬𝑡
2).                          
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Chapter 4 

Branching Brownian Motion with Absorption and the All-Time 

Minimum of Branching Brownian Motion with Drift 

We study a dyadic branching Brownian motion on the real line with 

absorption at 0, drift 𝜇 ∈ ℝ and started from a single particle at position 𝑥 > 0. 

When 𝜇 is large enough so that the process has a positive probability of survival, 

we consider 𝐾(𝑡), the number of individuals absorbed at 0 by time 𝑡 and for 𝑠 ≥ 0 

the functions 𝑤𝑠(𝑥) ≔ 𝔼𝑥[𝑠𝐾(∞)]. We show that 𝑤𝑠 < ∞ if and only of             

𝑠 ∈ [0, 𝑠0]for some 𝑠0 > 1 and we study the properties of these functions. 

We give three descriptions of the family 𝑤𝑠, 𝑠 ∈ [0, 𝑠0] through a single 

pair of functions, as the two extremal solutions of the Kolmogorov-Petrovskii-

Piskunov (KPP) traveling wave equation on the half-line, through a martingale 

representation and as an explicit series expansion. 

Section (4.1): The Tail Behaviour of 𝑲(∞) and the All-Time 

Minimum in a Branching Brownian Motion 

Consider a branching Brownian motion in which particles move according 

to a Brownian motion with drift 𝜇 ∈ ℝ and split into two particles at rate 𝛽 

independently one from another. Call 𝒩𝑎𝑙𝑙(𝑡) the population of all particles at time 

t and call 𝑋𝑢(𝑡) the position of a given particle 𝑢 ∈ 𝒩𝑎𝑙𝑙(𝑡). When we start with a 

single particle at position x we write ℙ𝑥 for the law of this process. 

We considered the branching Brownian motion with absorption, i.e. the model just 

described with the additional property that particles entering the negative half-line 

(−∞, 0] are immediately absorbed and removed. We write 𝒩𝑙𝑖𝑣𝑒(𝑡) for the set of 

particles alive (not absorbed) in the branching Brownian motion with absorption 

and 𝐾(𝑡) the number of particles that have been absorbed up to time t. The system 

with absorption is said to become extinct if ∃𝑡 ≥ 0:𝒩𝑙𝑖𝑣𝑒(𝑡) = ∅ and to survive 

otherwise. We let 𝐾(∞):= lim
𝑡→∞

𝐾(𝑡) ∈ ℝ ∪ {∞}. 

Depending on the value of 𝜇 one has the following behaviours: 

Regime A: if 𝜇 ≤ −√2𝛽, the drift towards origin is so large that the system goes 

extinct almost surely. 𝐾(∞) is finite and non-zero  

Regime B: if −√2𝛽 ≤ 𝜇 ≤ √2𝛽 there is a non-zero probability of survival. On 

survival, there will always be particles near 0 and 𝐾(∞) = ∞ almost surely. 

Regime C: if 𝜇 ≥ √2𝛽 there is still a non-zero probability of survival, but the 

system is drifting so fast away from 0 that, on survival, 𝑚𝑖𝑛𝑢∈𝒩𝑎𝑙𝑙(𝑡)𝑋𝑢(𝑡) drifts to 

+∞ almost surely as 𝑡 → ∞;𝐾(∞) is thus almost surely finite. Furthermore, there 

is a non-zero probability that 𝐾(∞) = 0. 
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The behaviour of 𝐾(∞) in regime A (𝜇 ≤ −√2𝛽) has been the subject of 

very active research recently, including a conjecture by Aldous which was recently 

settled by P. Surprisingly, relatively little was known concerning the regimes B 

and C. Our main results at present concern the study of 𝐾(∞) and of certain 

related KPP-type equations. 

In regime A (𝜇 ≤ −√2𝛽), the variable 𝐾(∞) has a very fat tail. More 

precisely we shows that, as 𝑧 → ∞, there exists two constants c, c' which depend 

on x such that 

ℙ𝑥[𝐾(∞) > 𝑧]~

{
 
 

 
 

𝑐

𝑧 log(𝑧)2
     for 𝜇 = −√2𝛽,                                                     

𝑐′𝑧
−𝑎(𝜇)

       for 𝜇 < −√2𝛽 where 𝑎(𝜇) =
𝜇 + √𝜇2 − 2𝛽

𝜇 − √𝜇2 − 2𝛽
.
 

In regime B (−√2𝛽 < 𝜇 < √2𝛽) it is clear that 𝐾(∞) = ∞ on survival so one 

would essentially condition on extinction to study the tail behaviour of 𝐾(∞).  

In regime C (𝜇 ≥ √2𝛽), however, 𝐾(∞) is almost surely finite. We introduce for  

𝑠 ≥ 0 and 𝑥 ≥ 0, 

 𝑤𝑠(𝑥) ≔ 𝔼𝑥[𝑠𝐾(∞)] ,      𝑤𝑠(0) = 0.        (1) 

When 𝑠 ∈ [0,1] this quantity is the generating function of 𝐾(∞). We show that 

𝑤𝑠(𝑥) is finite for some values of 𝑠 larger than 1. 

The probability that 𝐾(∞) = 0 for a system started from 𝑥, is also the 

probability that the all-time minimum of a full branching Brownian motion with 

drift 𝜇 started from zero does not go below −𝑥: 

𝑤(𝑥) ≔ 𝑤0(𝑥) = ℙ
𝑥[𝐾(∞) = 0] = ℙ0 [min

𝑡≥0
min

𝑢∈𝒩𝑎𝑙𝑙(𝑡)
𝑋𝑢(𝑡) > −𝑥].      (2) 

This quantity, of course, is not trivial only in regime C (𝜇 ≥ √2𝛽). Then, since 

lim
𝑡→∞

min
𝑢∈𝒩𝑎𝑙𝑙(𝑡)

𝑋𝑢(𝑡) = +∞ 

almost surely, we see that there is a well defined all-time minimum for the 

branching Brownian motion and we conclude that lim
𝑥→∞

𝑋𝑢(𝑡) = 1. 

It is not hard to see by standard arguments that 𝑤 must satisfy a KPP-type 

differential equation with boundary conditions: 

 {
0 =

1

2
𝑤′′ + 𝜇𝑤′ + 𝛽(𝑤2 −𝑤),      𝑥 ≥ 0,

𝑤(0) = 0,            𝑤(∞) = 1.                         
       (3) 

In fact, 𝑤𝑠(𝑥) introduced in (1), if finite, is solution to the same equation with the 

boundary condition 𝑤(0) = 0 replaced by 𝑤𝑠(0) = 0: 
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 {
0 =

1

2
𝑤𝑠
′′ + 𝜇𝑤𝑠

′ + 𝛽(𝑤𝑠
2 −𝑤𝑠),      𝑥 ≥ 0,

𝑤𝑠(0) = 0,            𝑤𝑠(∞) = 1.                         
       (4) 

This is an example of the deep connection between branching Brownian motion 

and the KPP equation which noticed that one can represent solutions of the KPP 

equation as expectations of functionals of branching Brownian motions. 

Until now this is very classical, however there is one unexpected difficulty here: 

both (3) and (4) admit infinitely many solutions and are not sufficient to 

characterize 𝑤(𝑥).  

In this Chapter, we present three largely independent ways to characterize 𝑤(𝑥) 
which are laid out in the three following subsections. The first approach relies on 

partial differential equations, the second gives 𝑤(𝑥) as the expectation of a certain 

martingale and the third one gives 𝑤(𝑥) as a power series. One salient property of 

𝑤 is that it converges to 1 rather quickly. 

A first way to characterize 𝑤(𝑥) is to track the probability that no particle got 

absorbed up to time 𝑡. Define 

    𝑢(𝑡, 𝑥):= ℙ𝑥[𝐾(𝑡) = 0].          (5) 

The function 𝑢:ℝ+
2 ↦ [0,1] is increasing in 𝑥 and decreasing in 𝑡 and, clearly, for 

each 𝑥, 𝑢(𝑡, 𝑥) ↦ 𝑤(𝑥) as 𝑡 → ∞. Furthermore, 𝑢 satisfies the KPP equation with 

boundary conditions 

 {
𝜕𝑡𝑢 =

1

2
𝜕𝑥𝑥𝑢 + 𝜇𝜕𝑥𝑢 + 𝛽(𝑢

2 − 𝑢),                 

𝑢(𝑡, 0) = 0 (∀𝑡 ≥ 0),   𝑢(0, 𝑥) = 1 (∀𝑥 > 0),
             (6) 

which, by Cauchy’s Theorem has only one solution. 

Therefore, to obtain 𝑤(𝑥), one can in principle solve (6) and take the large time 

limit.  

There is an explicit probabilistic representation of the maximum standing wave 𝑤 

in regime C (𝜇 ≥ √2𝛽). Recall that 𝒩𝑎𝑙𝑙(𝑡) is the population of all the particles in 

the branching Brownian motion with no absorption and 𝒩𝑙𝑖𝑣𝑒(𝑡) is the population 

of particles alive at time 𝑡 when we kill at 0. We now define on the same 

probability space a third process based on the branching Brownian motion in 

which particles that hit 0 are stopped but not removed from the system (they 

neither move nor branch). We denote by 𝒩𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡) the set of particles alive at 

time 𝑡 in this model. With a slight abuse of notations we continue to write 𝑋𝑢(𝑡) 
for the positions of particles when 𝑢 ∈ 𝒩𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡). 
Let us define the following two processes: 

𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡) ≔ ∑ 𝑒−𝑟𝑋𝑢(𝑡)

𝑢∈𝒩𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡)

, 𝑍𝑎𝑙𝑙(𝑡) ≔ ∑ 𝑒−𝑟𝑋𝑢(𝑡)

𝑢∈𝒩𝑎𝑙𝑙(𝑡)

         (7) 
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where 𝑟 is the asymptotic decay of 𝑤(𝑥). Rewriting 𝑋𝑢(𝑡) = 𝑌𝑢(𝑡) + 𝜇𝑡 it is clear 

that {𝑌𝑢(𝑡), 𝑢 ∈ 𝒩𝑎𝑙𝑙(𝑡)} is simply a standard branching Brownian motion with no 

drift. 

Therefore 𝑍𝑎𝑙𝑙 is the usual exponential martingale with parameter 𝑟 associated 

with the branching Brownian motion 𝑌. The process 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. is the martingale 

𝑍𝑎𝑙𝑙 stopped on the line 𝑡⋀𝑇0 (i.e. particles are stopped at time 𝑡 or when they hit 0 

for the first time). It is therefore also a martingale. 

Lemma (4.1.1) [4]: 

In regime C (𝜇 ≥ √2𝛽) the martingale (𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡), 𝑡 ≥ 0) converges almost 

surely and in 𝐿1 to 𝐾(∞) and therefore 𝔼𝑥[𝐾(∞)] = 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(0) = 𝑒
−𝑟𝑥.  

We introduce a new probability measure ℚ𝑥 
𝑑ℚ𝑥

𝑑ℙ𝑥
= 𝑒𝑟𝑥𝐾(∞). 

Note that since 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. is a closed martingale we have that 

𝔼𝑥[𝐾(∞)|ℱ𝑡] = 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡). Thus  
𝑑ℚ𝑥

𝑑ℙ𝑥
|
ℱ𝑡

=
𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡)

𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(0)
. 

Under this tilted probability measure, the law of the process is the same as the 

original ℙ𝑥 law except for the movement and branching rate of a distinguished 

particle (the spine particle 𝜉). The spine moves according to a Brownian motion 

with drift −√𝜇2 − 2𝛽, branches at an accelerated rate of 2𝛽 and stops (i.e. sticks 

and stops reproducing) upon hitting 0. 

Proof. Recall that by (7) 

𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡) ≔ ∑ 𝑒−𝑟𝑋𝑢(𝑡)

𝑢∈𝒩𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡)

, 𝑍𝑎𝑙𝑙(𝑡) ≔ ∑ 𝑒−𝑟𝑋𝑢(𝑡)

𝑢∈𝒩𝑎𝑙𝑙(𝑡)

         (8) 

are positive martingales which therefore converge ℙ-almost surely to their 

respective limits 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. and  𝑍𝑎𝑙𝑙. Furthermore, as 𝑍𝑎𝑙𝑙(𝑡) is the usual additive 

martingale with parameter 𝑟 ≥ √2𝛽, one has 𝑍𝑎𝑙𝑙 = 0.  As the bounds 

𝐾(𝑡) ≤ 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡) ≤ 𝐾(𝑡) + 𝑍𝑎𝑙𝑙(𝑡) 

always hold, it is clear that 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. = 𝐾(∞). The only thing left is to show that 

the convergence also holds in 𝐿1. 

We start by recalling the description of the measure ℚ𝑥|ℱ𝑡 which is defined by 
𝑑ℚ𝑥

𝑑ℙ𝑥
|
ℱ𝑡

=
𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡)

𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(0)
. 

Standard arguments allow us to conclude that under ℚ𝑥 the process behaves as 

follows: for t ≥ 0, there is a distinguished line of descent (the spine ) denoted 

𝜉(𝑡) ∈ 𝒩𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡). Under ℚ𝑥 the particle 𝜉 moves according to a Brownian 

motion with drift −√𝜇2 − 2𝛽 and therefore almost surely hits 0 in finite time; we 
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call 𝜏𝜉 = inf {𝑡 ≥ 0: 𝑋𝜉(𝑡)(𝑡) = 0} the time at which it reaches 0. For 𝑡 < 𝜏𝜉, the 

spine branches at rate 2𝛽 creating non-spine particles which start new independent 

branching Brownian motion behaving according to the usual ℙ law. After 𝜏𝜉, the 

spine particle is frozen at zero (no motion, no branching). Observe that ℚ𝑥 is 

actually the projection of the measure just described since under ℚ𝑥 we do not 

know which is the spine particle 𝜉. 

To prove the 𝐿1 convergence of 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡) towards its limit    

𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. ≔ lim
𝑡
𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡),   it is sufficient to show that 

ℚ𝑥(𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. < ∞) = 1. 

As the time 𝜏𝜉 at which the spine is absorbed at 0 is ℚ-almost surely finite, 

there are only finitely many branching events from the spine ℚ-almost surely as 

well. At each of these events, a non-spine particle 𝑢 starts its own independent ℙ 

branching Brownian motion and we call 𝐾𝑢(∞) the total number of particles 

frozen at 0 that are descended from u.  Let us also call 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.
(𝑢)

 the analogue of 

the limit 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. (but we sum only on particles descended from 𝑢) and 𝑍𝑎𝑙𝑙
(𝑢)

 is 

the same as 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.
(𝑢)

but without any absorption or freezing at 0. It is clear as 

above that 

𝐾𝑢(∞) ≤ 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.
(𝑢)

≤ 𝐾𝑢(∞) + 𝑍𝑎𝑙𝑙
(𝑢)
. 

 

and that 𝑍𝑎𝑙𝑙
(𝑢)

= 0. We conclude that 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.
(𝑢)

= 𝐾𝑢(∞) < ∞, ℚ-almost surely, 

and finally 

𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. = 𝐾(∞) < ∞ ℚ-almost surely. 

Observe that since 𝐾(∞) ≥ 1 almost surely under ℚ, we have ℚ~ℙ. Thus we 

know that under ℙ 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡) → 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. = 𝐾(∞) in 𝐿1. Hence,    

𝔼𝑥[𝐾(∞)] = 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(0) = 𝑒
−𝑟𝑥. 

Lemma (4.1.2) [4]:  

Recall 𝑤(𝑥) = ℙ𝑥(𝐾(∞) = 0)  and 𝑤𝑠(𝑥) ≔ 𝔼𝑥[𝑠𝐾(∞)]  for 0 < 𝑠 ≤ 𝑠0 as 

usual. Then  

1 − 𝑤(𝑥) = ℚ𝑥 (
1

𝐾(∞)
) 𝑒−𝑟𝑥 

and 

1 − 𝑤𝑠(𝑥) = ℚ
𝑥 (
1 − 𝑠𝐾(∞)

𝐾(∞)
) 𝑒−𝑟𝑥. 

Proof. As 𝐾(∞) > 0 ℚ𝑥-almost surely, it is sufficient to prove the second 

assertion. Using that 𝐾(∞) = 𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. ℙ
𝑥-almost surely, 
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 1 − 𝑤𝑠(𝑥) = ℙ
𝑥[1 − 𝑠𝐾(∞)] = ℙ𝑥[(1 − 𝑠𝐾(∞))𝕝{𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.>0}] 

 = ℙ𝑥 [(1 − 𝑠𝐾(∞))𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.
(0)

𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.

𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.
𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(0)

𝕝{𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.>0}] 

 = ℚ𝑥 [𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(0)
𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.

(1 − 𝑠𝐾(∞))𝕝{𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.>0}] 

 = ℚ𝑥 (
1−𝑠𝐾(∞)

𝐾(∞)
) 𝑒−𝑟𝑥.                             

Since we already know that (1 − 𝑤𝑠(𝑥))𝑒
𝑟𝑥 tends to a constant 𝐵 > 0, it is now 

clear that the ℚ𝑥 expectations in Lemma (4.1.2) also converge to 𝐵 as 𝑥 → ∞. 

However, we are now going to define ℚ∞ as the law of the process under which 

we can couple all the ℚ𝑥 together and interpret the limit constant 𝐵 as the 

expectation of a limit variable under ℚ∞. Loosely speaking, we want ℚ∞ to be the 

law of the process where the spine particle starts at 𝑥 = +∞ before drifting to 0. In 

fact it is easier to reverse time and have the spine start at 0 and drift to +∞. 

The function 𝑤(𝑥) can be understood in terms of series expansion. Let {𝑎𝑛}𝑛≥1 be 

the sequence defined by 

𝑎1 = 1,    𝑎𝑛 =
𝛽

1
2
𝑛2𝑟2−𝑛𝜇𝑟+𝛽

∑ 𝑎𝑗𝑎𝑛−𝑗

𝑛−1

𝑗=1

 

=
1

(𝑛 − 1)(𝑟
2

2𝛽
𝑛 − 1)

1
2
𝑛2𝑟2 − 𝑛𝜇𝑟 + 𝛽

∑𝑎𝑗𝑎𝑛−𝑗

𝑛−1

𝑗=1

 , 𝑛 ≥ 2              (9) 

(recall that 𝑟 was defined in (8), that 
1

2
𝑟2 − 𝜇𝑟 + 𝛽 = 0 and that 𝑟 ≥ 𝜇 ≥ √2𝛽) 

and 𝛷 the function defined by the series 

𝛷(𝑧) =∑𝑎𝑛𝑧
𝑛

𝑛≥1

                                                      (10) 

The KPP partial differential equation, 

𝜕𝑡ℎ =
1

2
𝜕𝑥𝑥ℎ + 𝜇𝜕𝑥𝑢 + 𝛽(ℎ

2 − ℎ),                           (11) 

where 0 ≤ ℎ(𝑡, 𝑥) ≤ 1, ℎ(𝑡, −∞) = 0 and ℎ(𝑡, +∞) = 1, describes how a stable 

phase (ℎ = 0 on the left) invades an unstable phase (ℎ = 0  on the right). It is well 

known that it admits travelling wave solutions of the form 

ℎ(𝑡, 𝑥) = ℎ𝜇(𝑥 − 𝜇𝑡),        0 < ℎ𝜇 < 1,    ℎ𝜇(−∞) = 0,     ℎ𝜇(+∞) = 1, 

for any velocity 𝜇 greater or equal to √2𝛽. The travelling wave 𝑥 ⟼ ℎ𝜇(𝑥) is 

then solution to 
1

2
ℎ𝜇
′′ + 𝜇ℎ𝜇

′ + 𝛽(ℎ𝜇
2 − ℎ𝜇) = 0,    ℎ𝜇(−∞) = 0,     ℎ𝜇(+∞) = 1.           (12) 

The solution to (12) is unique up to translation. 
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Equation (12) for ℎ𝜇 is very similar to equation (3) for 𝑤(𝑥), but ℎ𝜇, surprisingly, 

does not have the same asymptotic behaviour as 𝑤 for large 𝑥, in the region where 

ℎ𝜇 and 𝑤 are close to 1. Indeed, linearising (12) around 1, one gets 

1

2
(1 − ℎ̃𝜇)

′′ + 𝜇(1 − ℎ̃𝜇)
′ + 𝛽(1 − ℎ̃𝜇) = 0,   [linearized]           (13) 

 (a term of order (1 − ℎ̃𝜇)
2 has been neglected) and the general solution to (13) is, 

for some constants A and B, 

1 − ℎ̃𝜇(𝑥) = {
𝐴𝑒

−(𝜇−√𝜇2−2𝛽)𝑥
+ 𝐵𝑒

−(𝜇+√𝜇2−2𝛽)𝑥
, 𝑓𝑜𝑟  𝜇 > √2𝛽

(𝐴𝑥 + 𝐵)𝑒−√2𝛽𝑥                                 , 𝑓𝑜𝑟 𝜇 = √2𝛽
 [linearized](14) 

For 𝑥 large, ℎ̃𝜇 is close to ℎ𝜇 with the meaning that for some constant A and B, 

1 − ℎ̃𝜇~1 − ℎ𝜇. Of course, if 𝐴 ≠ 0, the term in factor of B is negligible compared to 

the term in factor of A and the A term alone is an equivalent to 1 − ℎ𝜇. When solving 

(12), it turns out that the solution has a non-zero A term and that, therefore, 

1 − ℎ̃𝜇(𝑥) = {
𝐴𝑒

−(𝜇−√𝜇2−2𝛽)𝑥
 , 𝑓𝑜𝑟  𝜇 > √2𝛽

𝐴𝑥𝑒−√2𝛽𝑥            , 𝑓𝑜𝑟 𝜇 = √2𝛽
 [linearized]                (15) 

where A depends on 𝜇.  

We now consider equation (3) for 𝑤(𝑥). Of course, the boundary condition of (3) 

is not sufficient to determine a unique solution, and for a range of values of c there 

exists a solution to 

0 =
1

2
𝑣′′ + 𝜇𝑣′ + 𝛽(𝑣2 − 𝑣), 𝑣(−∞) = 0, 𝑣(+∞) = 1, 𝑣′(0) = 𝑐.           (16) 

(The difference with equation (3) for 𝑤(𝑥) is the added condition 𝑣′(0) = 𝑐. One 

can then do, as above, a large x analysis of v and, the partial differential equation 

being the same, one finds again that 1 − 𝑣~1 − ℎ̃𝜇 (x large) as given in (14) for 

some c and 𝜇 dependent values of A and B. Generically, A is non-zero and 1 − 𝑣 

decays as 1 − ℎ𝜇 in (15) (up to a multiplicative constant; the A is usually different 

and can even be negative). 

However, for a well chosen value of c (depending on 𝜇), one has 𝐴 = 0, and the 

asymptotic decay of 1 − 𝑣 is given by the B term (that is: it decays much faster). 

We will show that 𝑤(𝑥) is precisely that very special solution to (3) that decays 

unlike all the other ones and unlike the travelling wave ℎ𝜇. 

It is also interesting to remark that an equation very similar to (3) appears in the 

study of the the extinction probability of a branching Brownian motion with 

absorption and supercritical drift 𝜇 > −√2𝛽 (regimes B and C):  

let 𝜃(𝑥) = ℙ𝑥[𝒩𝑙𝑖𝑣𝑒(∞) = ∅] be the extinction probability when the system is 

started from x; then one has 
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{
0 =

1

2
𝜃′′ + 𝜇𝜃′ + 𝛽(𝜃2 − 𝜃) , 𝑥 ≥ 0,

𝜃(0) = 1, 𝜃(∞) = 0.                              
              (17) 

Equations (3) and (17) differ only by their boundary conditions; however (17) has 

a unique solution, whereas (3) has many. 

A possible way to understand the difference is that an asymptotic analysis of 𝜃(𝑥) 
for large x similar to (14) yields only one possible exponential decay: 

𝜃(𝑥)~𝐴exp[−(𝜇 + √𝜇2 + 2𝛽)𝑥] for some constant A, which means that, up to 

translations, there is only one solution which does converge to zero at infinity, 

whereas for 𝑤(𝑥) there were two possible exponential decays and infinitely many 

solutions. Otherwise said, if one were to impose 𝜃(0) = 1 and 𝜃′(0) = −𝑐, there 

would only be one value of c for which 𝜃 would converge to zero at infinity. 

In regimes A and B (𝜇 < √2𝛽) one has 𝑤(𝑥) = 0 because 𝐾(∞) > 0 almost 

surely, which is not very interesting. What is more interesting is the way that 

𝑢(𝑡, 𝑥), defined in (5) as ℙ𝑥[𝐾(𝑡) = 0], converges to zero: it does so by assuming 

the shape of the critical travelling wave of the KPP equation. Let us recall quickly 

the well known facts on this critical travelling wave. Consider the KPP equation 

(11) without drift on the whole line with Heaviside initial conditions: 

{
𝜕𝑡ℎ =

1

2
𝜕𝑥𝑥ℎ + 𝛽(𝑢

2 − ℎ),                                  

ℎ(0, 𝑥) = 0 (∀𝑥 < 0),   ℎ(0, 𝑥) = 1 (∀𝑥 > 0).
                          (18) 

It is well known that ℎ(𝑡, 𝑥) is the probability that the leftmost particle at time t of 

a branching Brownian motion started at x is to the right of zero. Furthermore, this 

probability converges to the critical travelling wave in the following sense: 

ℎ(𝑡,𝑚𝑡 + 𝑥) → ℎ∗(𝑥)  uniformly in 𝑥 as 𝑡 → ∞ 

with (Bramson’s displacement 𝑚𝑡 [8]) 

𝑚𝑡 ≔ √2𝛽𝑡 −
3

2√2𝛽
log 𝑡 + 𝐶𝑠𝑡𝑒                          (19) 

and where ℎ∗ ≔ ℎ
√2𝛽

 is the travelling wave moving at the minimal possible 

velocity √2𝛽, see (12). To fix the invariance by translation, we impose the further 

condition ℎ∗(0) =
1

2
: 

 {
0 =

1

2
ℎ∗
′′ +√2𝛽ℎ∗

′ + 𝛽(ℎ∗
2 − ℎ∗),            

ℎ𝑠(−∞) = 0, ℎ∗(0) =
1

2
, ℎ∗(+∞) = 1.

                               (20) 

and the solution to (20) is now unique. 

Adding a drift +𝜇𝜕𝑥ℎ to (18) would only shift the solutions by – 𝜇𝑡 and would 

make (18) very similar to (6): the only difference would be that u is defined on 𝑅+ 

and h on ℝ, but as both equations converge quickly to zero around the origin in 

regimes A and B (𝜇 < √2𝛽), this difference turns out to be minimal. 
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We consider exclusively regime C (𝜇 ≥ √2𝛽) and we focus on the problem 

of the exponential moments of 𝐾(∞). We first establish some properties of 

𝑤𝑠(𝑥) = 𝔼
𝑥[𝑠𝐾(∞)] as defined in (1) and proceed to prove Theorems (4.1.5) and 

Proposition (4.1.12). We then prove the asymptotic behaviour to complete the 

proof of Theorem (4.1.15).  

The first property we need is that for a given s, the quantity 𝑤𝑠(𝑥) is either 

finite for all 𝑥 > 0 or infinite for all 𝑥 > 0: 

Lemma (4.1.3) [4]: 

For a given s, (∃𝑥 > 0:𝑤𝑠(𝑥) < +∞) ⟺ (∀𝑥 > 0:𝑤𝑠(𝑥) < +∞). 

Proof. Fix 𝑠 > 0, 𝑥 > 0 and 𝑦 > 0. There is a positive probability, which we note 

𝜖(𝑥, 𝑦), that the initial particle starting from x reaches position y before any 

branching or killing happens. Then 

𝑤𝑠(𝑥) = 𝔼𝑥[𝑠𝐾(∞)] ≥ 𝜖(𝑥, 𝑦)𝔼𝑦[𝑠𝐾(∞)] = 𝜖(𝑥, 𝑦)𝑤𝑠(𝑦). 

Therefore, if 𝑤𝑠(𝑥) is finite, then 𝑤𝑠(𝑦) is also finite.                     

We write 𝑤𝑠 < ∞ when the conditions of the lemma (4.1.3) are met. 

Clearly, this is the case when 𝑠 ≤ 1 Furthermore, as 𝑠 ↦ 𝑤𝑠(𝑥) is obviously 

increasing, if 𝑤𝑠0 < ∞ for some 𝑠0, then 𝑤𝑠 < ∞ for all 𝑠 < 𝑠0. 

When 𝑤𝑠 < ∞, it is clear by standard arguments that 𝑤𝑠(𝑥) is solution to 

 {
0 =

1

2
𝑤𝑠
′′ + 𝜇𝑤𝑠

′ + 𝛽(𝑤𝑠
2 −𝑤𝑠),

𝑤𝑠(0) = 𝑠.                                      
                                      (21) 

 

Let us now prove Theorem (4.1.5). A slightly more general result is given 

by the following Lemma: 

Lemma (4.1.4) [4]: 

If 𝑤𝑠 < ∞  then, for any 𝑥 ≥ 0 and ℎ ≥ 0, 

𝑤𝑠(𝑥 + ℎ) = 𝑤𝑤𝑠(ℎ)(𝑥). 

Setting 𝑠 = 0 and renaming 𝑤0(ℎ) as 𝑠 gives the first line of the Theorem. Once 

we have proved that 𝑠0 exists, setting 𝑠 = 𝑠0 and renaming 𝑤𝑠0(ℎ) as s gives the 

second line of the Theorem. 

Proof. Instead of starting our branching process at position x and killing particles 

at 0, it is here more convenient to think of the process as started at 0 and particles 

being absorbed at −𝑥.  

This allows to couple different values of the killing position. In particular, if ℋ𝑥 

designates the particles stopped when they first hit −𝑥 and 𝐾𝑥(∞) is the number 

of particles in ℋ𝑥, we have that 
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𝑤𝑠(𝑥 + ℎ) = 𝔼 [∏ 𝑠𝐾ℎ
(𝑢)
(∞)

𝑢∈ℋ𝑥

] = 𝔼 [∏ 𝑤𝑠(ℎ)

𝑢∈ℋ𝑥

] = 𝔼[𝑤𝑠(ℎ)
𝐾𝑥(∞)] = 𝑤𝑤𝑠(ℎ)(𝑥), 

where 𝐾ℎ
(𝑢)(∞) is the total number of descendent of the particle u which are killed 

at −𝑥 − ℎ (which by translation invariance of the branching Brownian motion and 

the branching property is an independent copy of 𝐾ℎ(∞)). 
We now have a monotonicity result: 

Theorem (4.1.5) [4]:  

In regime C (𝜇 ≥ √2𝛽),  

i. For each 𝑠 ∈ [0,1),         𝑤𝑠(𝑥) = 𝑤0(𝑥 + 𝑤0
−1(𝑠)), 

ii. For each 𝑠 ∈ (1, 𝑠0],         𝑤𝑠(𝑥) = 𝑤𝑠0 (𝑥 + 𝑤𝑠0
−1(𝑠)). 

We do not have an explicit expression for 𝑠0 as a function of 
𝜇

√𝛽
, but we can 

evaluate it numerically with a good precision. In the critical case 𝜇 = √2𝛽, we 

obtain 𝑠0 = 1.3486… 

The prove follow from Lemma (4.1.4). 

Lemma (4.1.6) [4]: 

i. If 𝑠 < 1, 𝑥 ↦ 𝑤𝑠(𝑥) is increasing function converging to 1. 
ii. If 𝑠 > 1 and 𝑤𝑠 < ∞ 𝑥 ↦ 𝑤𝑠(𝑥)  is decreasing function converging to 1. 

 

Proof. Once the increasing/decreasing part is proved, the fact that the limit is 1 is 

obvious: from its definition, it is clear that 𝑤𝑠 < 1 if 𝑠 < 1 and 𝑤𝑠 > 1 if 𝑠 > 1. 

Assuming 𝑤𝑠 is increasing or decreasing (depending on s), it must have a limit, 

and from (21) that limit must be 1. 

From its interpretation as the distribution of the all-time minimum of a branching 

Brownian motion, see (2), it is furthermore clear that 𝑤0 = 𝑤 is an increasing 

function. Then, the coupling provided by Lemma (4.1.4) (or more simply Theorem 

(4.1.5)) implies that 𝑤𝑠 is an increasing function for all 𝑠 < 1. 

Therefore, it only remains to prove that for 𝑠 > 1,𝑤𝑠 is decreasing when it is 

finite. 

Assume 𝑠 > 1 and 𝑤𝑠 < ∞. We first show that 𝑤𝑠 is monotonous by considering 

two cases: 

 If 𝑤𝑠
′(0) > 0 then, for all ℎ > 0 small enough, 𝑤𝑠(ℎ) > 𝑠. But, for x fixed, 𝑠 ↦

𝑤𝑠(𝑥) is a strictly increasing function so 𝑤𝑤𝑠(ℎ)(𝑥) > 𝑤𝑠. Then by Lemma 

(4.1.4), 𝑤𝑠(𝑥 + ℎ) > 𝑤𝑠(𝑥) for all x and all ℎ > 0 small enough: 𝑤𝑠 is 

increasing. 

 If 𝑤𝑠
′(0) ≤ 0 then, for all ℎ > 0 small enough, 𝑤𝑠(ℎ) < 𝑠 because in the limit 

case 𝑤𝑠
′(0) = 0, one has 𝑤𝑠

′′(0) < 0 from (21). Then, as in previous case, 
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𝑤𝑠(𝑥 + ℎ) < 𝑤𝑤𝑠(ℎ)(𝑥) < 𝑤𝑠(𝑥) for all x and all ℎ > 0 small enough: 𝑤𝑠 is 

decreasing. 

It now remains to rule out the possibility that 𝑤𝑠 is increasing for 𝑠 > 1. Imagine 

that 𝑠 > 1 and 𝑤𝑠 increases. Then, from (21), 𝑤𝑠
′′(𝑥) ≤ −2𝛽(𝑤𝑠

2(𝑥) − 𝑤𝑠(𝑥)) ≤

−2𝛽(𝑠2 − 𝑠) and 𝑤𝑠
′(𝑥) ≤ 𝑤𝑠

′(0) − 2𝛽(𝑠2 − 𝑠)𝑥, which becomes negative for x 

large enough, in contradiction with the fact that 𝑤𝑠 increases. So 𝑤𝑠 must decrease 

for 𝑠 > 1.                   

We need now to characterize the values of s for which 𝑤𝑠 < ∞. 

Lemma (4.1.7) [4]: 

Assume 𝑠 > 1. If there exists a function v which solves 

{
0 =

1

2
𝑣′′ + 𝜇𝑣′ + 𝛽(𝑣2 − 𝑣) ,       

𝑣(0) = 𝑠, 𝑣(𝑥) ≥ 1(∀𝑥 > 0),
                                     (22) 

then 𝑤𝑠 < ∞. Define 

𝑠0 = sup{𝑠 ≥ 1:𝑤𝑠 < ∞} = sup{𝑠 ≥ 1: a solution to (22)exists}    (23) 
and because  𝑠 ↦ 𝑤𝑠(𝑥) increases, one has 𝑤𝑠 < ∞ for all 𝑠 < 𝑠0. 

Proof. We present two proofs: one probabilistic and one analytical. 

Choose 𝑠 > 1 such that (22) has a solution v. We introduce the process 

𝑀𝑡 ≔ ∏ 𝑣(𝑋𝑢(𝑡)),

𝑢∈𝒩𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡)

 

where we recall that 𝒩𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡) is the set of particles in the branching Brownian 

motion where particles are frozen at the origin. 

𝑀𝑡 is a positive local martingale and therefore a positive super-martingale which 

thus converges almost surely to 𝑀∞. Observe that under ℙ𝑥 

𝑣(𝑥) = 𝑀0 ≥ 𝔼
𝑥(𝑀𝑡) ≥ 𝔼

𝑥(𝑀∞). 
But since for all 𝑡 ≥ 0 one has 

𝑀𝑡 ≥ 𝑣(0)
𝐾(𝑡) = 𝑠𝐾(𝑡), 

we see that 𝑀∞ ≥ 𝑠
𝐾(∞) and  therefore 

𝑤𝑠(𝑥) = 𝔼
𝑥[𝑠𝐾(∞)] ≤ 𝑣(𝑥) < ∞. 

The same result can be proved analytically through the maximum principle. Let us 

introduce 

𝑢𝑠(𝑡, 𝑥) ≔ 𝔼𝑥[𝑠𝐾(∞)],                                                  (24) 
which is clearly solution to 

{
𝜕𝑡𝑢𝑠 =

1

2
𝜕𝑥𝑥𝑢𝑠 + 𝜇𝜕𝑥𝑢𝑠 + 𝛽(𝑢𝑠

2 − 𝑢𝑠),    𝑥 ≥ 0,

𝑢𝑠(𝑡, 0) = 𝑠 (∀𝑡 ≥ 0),   𝑢𝑠(0, 𝑥) = 1 (∀𝑥 > 0).
                          (25) 

(Compare to (5).) With v as above, one clearly has ∀𝑥 ≥ 0, 𝑢𝑠(0, 𝑥) ≤ 𝑣(𝑥).  
Therefore, by the maximum principle we have that 

𝑢𝑠(𝑡, 𝑥) ≤ 𝑣(𝑥),   ∀𝑡 ≥ 0, 𝑥 ≥ 0  
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and as 𝑢𝑠(𝑡, 𝑥) ↗ 𝑤𝑠(𝑥) as t → ∞ we see that 𝑤𝑠(𝑥) ≤ 𝑣(𝑥) < ∞.                  

It is obvious that 𝑠0 defined in (23) depends only on the ratio 
𝜇

√𝛽
 by a simple 

scaling argument: the branching Brownian motion with drift µ and branching rate 

𝛽 is transformed, when time is scaled by 𝜆 and space by √𝜆, into a branching 

Brownian  motion with drift 𝜇√𝜆 and branching rate 𝛽𝜆.  

In particular, 𝑤𝑠,𝛽,𝜇(𝑥) = 𝑤𝑠,𝛽𝜆,𝜇√𝜆(√𝜆𝑥) = 𝑤𝑠,1,𝜇 √𝛽⁄ (𝑥 √𝛽⁄ ) with the 

obvious new notation. What remains to be shown are the following properties of 

𝑤𝑠: 𝑠0 is finite, 𝑤𝑠0 is finite, 𝑤𝑠0
′ (0) = 0 and 𝑠0 > 1. 

Lemma (4.1.8) [4]: 

𝑠0 < ∞, that is: 𝐾(∞) does not have exponential moments of all orders.     

Proof. For the system started from 𝑥 > 0, consider the following family of events 

for 𝑛 ∈ ℕ: 

𝒜𝑛 = {

𝐾(∞) = 𝑛, and                                                                                                                                   
for all integers 𝑖 ≤ 𝑛, 𝐾(𝑖) = 𝑖, and                                                                                             

for all integers 𝑖 ≤ 𝑛, there is at time 𝑖 only one particle alive and it sits in [𝑥, 𝑥 + 1].

 

In words, for each 𝑖 ∈ {0,1, … , 𝑛 − 1} there is one particle alive at time i, it sits in 

[x, x + 1], and during a time interval one, this particle splits exactly once, one the 

offspring gets absorbed and the other is again in [x, x + 1] at time i + 1.  The one 

particle alive at time n generates a tree drifting to infinity with no more absorbed 

particles. 

Let 𝜖𝑦,𝑧d𝑧 be the probability that a particle sitting at y has, during a time  

interval  one, exactly one splitting event with one offspring being absorbed and the 

other one ending up in d𝑧. 

Define furthermore 

𝑞 = min
𝑦∈[𝑥,𝑥+1]

∫ 𝜖𝑦,𝑧d𝑧
𝑥+1

𝑥

. 

𝑞 is the minimal probability for a particle sitting somewhere in [x, x + 1] to have, 

during a time interval one, exactly one splitting event with one offspring being 

absorbed and the other one ending up in [x, x + 1].  It is clear that q > 0 and that, 

furthermore, 

ℙ𝑥[𝐾(∞) = 𝑛] > ℙ𝑥(𝒜𝑛) > 𝑞
𝑛ℙ𝑥(𝐾(∞) = 0). 

This implies that 𝔼𝑥[𝑞−𝐾(∞)] = ∞ and that 𝑠0 ≤
1
𝑞⁄ < ∞.                     

Lemma (4.1.9) [4]: 

𝑤𝑠0 < ∞. 
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Proof.  If 𝑠0 = 1, this is trivial as 𝑤1 = 1. Assume now 𝑠0 > 1 and let us fix 𝑥 >
0. For any 1 < 𝑠 < 𝑠0, as 𝑤𝑠 is decreasing, one has 𝑤𝑠(𝑥) < 𝑠 < 𝑠0. This implies 

that (using the monotone convergence Theorem) 𝑤𝑠0(𝑥) = lim
𝑠↗𝑠0

𝑤𝑠(𝑥) is finite 

which entails the result.                         

Lemma (4.1.10) [4]: 

𝑤𝑠0
′ (0) = 0. 

Proof. We already know that 𝑤𝑠0
′ (0) ≤ 0. Assuming 𝑤𝑠0

′ (0) < 0, one could 

continue the function  𝑤𝑠0  to negative arguments using (22) and one could find a 

𝑥0 < 0 such that 𝑤𝑠0(𝑥0) > 𝑠0; then the function 𝑥 ↦ 𝑤𝑠0(𝑥0 + 𝑥) satisfies (22) 

with 𝑠 > 𝑠0, which is a contradiction.                        

The proof that 𝑠0 > 1 for all 𝜇 ≥ √2𝛽 is divided into two steps. First, we show 

that 𝑠0 > 1 in the critical case  𝜇 = √2𝛽. Then we conclude by proving 

Proposition (4.1.12), which states that 𝑠0 is an increasing function of 𝜇 √𝛽⁄ . 

Lemma (4.1.11) [4]: 

In the critical case 𝜇 = √2𝛽, for 𝑠 > 1 small enough, there exists solutions to 

(22), that is s0 > 1. 

Proof.  Assume 𝜇 = √2𝛽.  After the change of variables ℓ(𝑥):= 𝑒𝜇𝑥(𝑣(𝑥) − 1), 
(22) reads 

1

2
ℓ′′ + 𝛽𝑒−𝜇𝑥ℓ2 = 0                                                         (26) 

Let us consider the solution to (26) with ℓ(0) = ℓ′(0) = 𝜖 for some 𝜖 > 0.  We 

want to prove that  ∀𝑥, ℓ(𝑥) > 0 if  𝜖 is small enough. Assume otherwise and call 

𝑥0 = inf {𝑥 ≥ 0: ℓ(𝑥) = 0}. Then, as ℓ′′(𝑥) ≤ 0, we have ℓ(𝑥 ≤ 𝜖 + 𝑥𝜖) and thus 

on [0, 𝑥0] (where ℓ(𝑥) ≥ 0), 

ℓ′′(𝑥) ≥ −2𝛽𝜖2(1 + 𝑥)2𝑒−𝜇𝑥. 

We conclude that 

ℓ′(𝑥0) ≥ 𝜖 − 2𝛽𝜖
2∫ (1 + 𝑥)2𝑒−𝜇𝑥d𝑥

𝑥0

0

≥ 𝜖 − 2𝛽𝜖2∫ (1 + 𝑥)2𝑒−𝜇𝑥d𝑥
∞

0

, 

which is strictly positive for 𝑠 small enough.  This contradicts the definition of 𝑥0 

and thus we have  found  a  solution  of  (26)  such  that  ℓ(𝑥) > 0  for  all  x ≥ 0.  

Then 𝑣(𝑥) = 1 + ℓ(𝑥)𝑒−𝜇𝑥 is  a solution to (22) started from 𝑠 = 1 + 𝜖; in other 

words 𝑠0 ≥ 1 + 𝜖 in the μ = √2β case.             

Proposition (4.1.12) [4]:   

𝑠0 is an increasing function of 
𝜇

√𝛽
 and furthermore 𝑠0~

𝑐𝜇2

𝛽
 for some constant 𝑐 as 

𝜇

√𝛽
→ ∞. 



127 

Proof. Let us fix μ ≥ √2β1 > √2β2. One can easily construct two branching 

Brownian motions with parameters (𝜇, β1) and (𝜇, β1) on the same probability 

space to realize a coupling so that the particles of the second one are a subset of 

the particles of the first one. It is then clear that for any 𝑠 > 1 one has 

𝑤𝑠,β1,𝜇(𝑥) ≥ 𝑤𝑠,β2,𝜇(𝑥)                                                        (27) 

(with the obvious extension of notation) so that 

𝑠0(𝜇 √β1⁄ ) ≤ 𝑠0(𝜇 √β2⁄ )                                                    (28) 

This already gives non-strict monotonicity and concludes the proof that 𝑠0 > 1 for 

all µ, β with μ ≥ √2β. 

We can now prove that the inequality (28) is strict. Assume otherwise; one would   

have 𝑤𝑠0,𝛽1,𝜇(0) = 𝑤𝑠0,𝛽2,𝜇(0) = 𝑠0 (where  𝑠0 > 1  would be the common value),  

𝑤𝑠0,𝛽1,𝜇
′ (0) = 𝑤𝑠0,𝛽2,𝜇

′ (0) = 0 (from Lemma (4.1.10)) and, from (21), 

𝑤𝑠0,𝛽1,𝜇
′′ (0) = −𝛽1(𝑠0

2 − 𝑠0) < 𝑤𝑠0,𝛽2,𝜇
′′ (0) = −𝛽2(𝑠0

2 − 𝑠0), which would imply 

by Taylor expansion that for 𝑥 > 0 small enough 𝑤𝑠0,𝛽1,𝜇(𝑥) < 𝑤𝑠0,𝛽2,𝜇(𝑥) in 

contradiction with (27).                         

Finally, the only remaining point to complete the proof of Theorem (4.1.15) 

is the asymptotic behaviour (40), i.e.  the assertion that for 𝑥 > 0 fixed 

𝑝𝑛(𝑥) ≔ ℙ𝑥[𝐾(∞) = 𝑛]~
−𝑤𝑠0

′ (𝑥)

2𝑠0
𝑛𝑛

3
2√𝜋𝛽(𝑠0−1)

  as 𝑛 → ∞.            (29) 

 

Write 𝐷(𝑧, 𝑟) for the open disc of the complex plane with center 𝑧 ∈ ℂ and radius 

r. We extend the definition of 𝑠 ⟼ 𝑤𝑠(𝑥) to 𝑠 ∈ ℂ: 

𝑤𝑠(𝑥) = 𝔼
𝑥[𝑠𝐾(∞)] =∑𝑠𝑛𝑝𝑛

𝑛≥0

,        ∀𝑠 ∈ ℂ                     (30) 

This quantity is analytical on 𝐷(0, 𝑠0) because the 𝑝𝑛 in (30) are positive and the 

first singularity on the real axis is at 𝑠0. Furthermore, it is finite on 𝐷(0, 𝑠0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  by 

uniform convergence because it is finite at 𝑠0. 

The key argument is an application of relying on the analysis of generating 

functions near their singular points. We need to show that 

Lemma (4.1.13) [4]: 

Fix 𝑥 > 0. There exists 𝑟𝑥 > 0 such that 𝑠 ⟼ 𝑤𝑠(𝑥) is analytical in 𝑉 =
𝐷(𝑠0, 𝑟𝑥)\[𝑠0,∞), and 

 𝜕𝑠𝑤𝑠(𝑥)~
−𝑤𝑠0

′ (𝑥)

2√𝛽(𝑠0−𝑠)(𝑠0
2−𝑠)

  as 𝑠 → 𝑠0, 𝑠 ∈ 𝑉,                                  (31) 
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. 

and that 

Proof. We know that 𝑤𝑠0
′ (0) = 0 and 𝑤𝑠0

′′(0) = −2𝛽(𝑠0
2 − 𝑠0) < 0. Since 

𝑤𝑠0solves the KPP traveling wave differential equation, for each 𝑥 ≥ 0 we can 

extend 𝑠 ⟼ 𝑤𝑠0(𝑥 + 𝑧) analytically on a neighborhood of zero in ℂ.  In particular 

for 𝑥 = 0 we have  the following  expansion: 

 

𝑤𝑠0(𝑧) = 𝑠0 +
𝑤𝑠0
′′(0)

2
𝑧2 + 𝑜(𝑧2)    as 𝑧 → 0                           (32) 

 

The function 𝑤𝑠0 is analytic and zero is a zero of order two of  𝑤𝑠0(𝑧) − 𝑠0, there 

exists 𝑟1 > 0 and a function 𝜓 analytic and invertible on 𝐷(0, 𝑟1) such that 

 

𝑤𝑠0(𝑧) = 𝑠0 +
𝑤𝑠0
′′(0)

2
𝜓(𝑧2)                                           (33) 

This means that 

𝑧 = 𝜓−1 (√
𝑤𝑠0(𝑧)−𝑠0

𝑤𝑠0
′′ (0) 2⁄

) = 𝜓−1 (√
𝑠0−𝑤𝑠0(𝑧)

𝛽(𝑠0
2−𝑠0)

)                 (34) 

 

for any 𝑧 in 𝐷(0, 𝑟1) such that  𝑤𝑠0(𝑧) ∉ (𝑠0, ∞) (so that the right-hand side is well 

defined and  is analytic on this domain when using the standard definition of the 

complex square root).  

Recall from Lemma (4.1.4) that for any non-negative real 𝑥 and 𝑧 one has 

 

𝑤𝑤𝑠0(𝑧)
(𝑥) = 𝑤𝑠0(𝑧 + 𝑥)                                                      (35) 

Replace the 𝑧 in the right-hand side by its expression (34) and write 𝑤𝑠0(𝑧) as 𝑠 to 

obtain 

𝑤𝑠(𝑥) = 𝑤𝑠0 (𝜓
−1 (√

𝑠−𝑠0

𝛽(𝑠0
2−𝑠0)

) + 𝑥)                                       (36) 

for 𝑠 ∈ 𝑤𝑠0([0, 𝑟1)) = (𝑠0 − 𝑟2, 𝑠0] for some 𝑟2 > 0. But (4.42) is an equality 

between analytical functions as long as 𝑠 ∈ 𝐷(𝑠0, 𝑟𝑥)\[𝑠0,∞) for some 𝑟𝑥 > 0 

small enough (one must have 𝐷(𝑠0, 𝑟𝑥) ⊂ 𝑤𝑠0(𝐷(0, 𝑟1))for 𝜓−1 to be analytical, 

which is possible by the open mapping Theorem, and one must have 𝜓−1(… ) 
small enough for 𝑤𝑠0  to be also analytical). From the analytical continuation 

principle, (36) must hold on the whole 𝐷(𝑠0, 𝑟𝑥)\[𝑠0,∞) domain. Now 

differentiate with respect to 𝑠 to get 

𝜕𝑠𝑤𝑠(𝑥) = −

(𝜓−1)′ (√
𝑠−𝑠0

𝛽(𝑠0
2−𝑠0)

)

2√𝛽(𝑠0 − 𝑠)(𝑠0
2 − 𝑠)

𝑤𝑠0
′ (𝜓−1 (√

𝑠−𝑠0

𝛽(𝑠0
2−𝑠0)

) + 𝑥),    (37) 
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yielding 

𝜕𝑠𝑤𝑠(𝑥)~ −
(𝜓−1)′(0)

2√𝛽(𝑠0 − 𝑠)(𝑠0
2 − 𝑠)

𝑤𝑠0
′ (𝑥)    as 𝑠 → 𝑠0 in 𝐷(𝑠0, 𝑟𝑥)\[𝑠0, ∞).  (38) 

A straightforward computation shows that (𝜓−1)′(0) = 1, which concludes the 

proof.                            

Lemma (4.1.14) [4]: 

Fix 𝑥 > 0. There exists 𝜖 > 0 such that 𝑠 ⟼ 𝑤𝑠(𝑥) is analytical on 

𝐷(0, 𝑠0 + 𝜖)\[𝑠0, ∞). 

Then, as 𝑠 ⟼ 𝜕𝑠𝑤𝑠(𝑥), Lemma (4.1.12) leads to 

 

(𝑛 + 1)𝑝𝑛+1(𝑥)~
−𝑤𝑠0

′ (𝑥)

2𝑠0
𝑛+1𝑛

1
2√𝜋𝛽(𝑠0−1)

 as 𝑛 → ∞,                          (39) 

which obviously implies (29). 

Theorem (4.1.15) [4]:  

In regime C (𝜇 ≥ √2𝛽), there exists a finite 𝑠0 > 1 depending only on 𝜇

√𝛽
 such 

that 

i. For 𝑠 ≤ 𝑠0 , 𝑤𝑠(𝑥) is finite for all 𝑥 ≥ 0, 
ii. For 𝑠 > 𝑠0 , 𝑤𝑠(𝑥) is finite for all 𝑥 > 0. 

The functions 𝑥 ↦ 𝑤𝑠(𝑥) are increasing for any 𝑠 ∈ [0,1) and decreasing for any 

𝑠 ∈ (1, 𝑠0],  converging to 1 when 𝑥 → ∞, and one has 𝑤′
𝑠0
(0) = 0. 

Furthermore, one has for 𝑛 large 

  ℙ𝑥[𝐾(∞) = 𝑛]~
−𝑤𝑠0

′ (𝑥)

2𝑠0
𝑛𝑛

3
2√𝜋𝛽(𝑠0−1)

.       (40) 

Using the branching structure and a simple coupling allows to relate the 𝑤𝑠(𝑥) 
with each others. 

Proof. 𝑤𝑠(𝑥) is already analytical on 𝐷(0, 𝑠0). To prove the Lemma it is sufficient 

to show that it can be analytically extended around any point 𝑠 ∈ 𝜕𝐷(0, 𝑠0)\{𝑠0}. 
Indeed, by the finite covering property of compacts one can then show analycity 

on an open containing the compact 𝜕𝐷(0, 𝑠0)\𝐷(𝑠0, 𝑟𝑥 2⁄ ) with 𝑟𝑥 defined in 

Lemma (4.1.12), and then we conclude with the help of Lemma (4.1.12). 

 So it now remains to see why 𝑠 ⟼ 𝑤𝑠(𝑥) can be analytically extended to 

neighborhoods of any 𝑠 ≠ 𝑠0  with  |𝑠| = 𝑠0. As we define 

𝑎(𝑠) ≔ 𝑤𝑠
′(0),                                                       (41) 

where we recall that the prime is a derivatice with respect to x. We first show 

analycity of 𝑎(𝑠) on 𝐷(0, 𝑠0) by writing an integral representation of 𝑎(𝑠):  

multiply (4) by exp[(𝜇 − √𝜇2 + 2𝛽)𝑥] and integrate on 𝑥 ∈ [0,∞). Integrate 

several times by part to get rid of the derivatives of 𝑤𝑠; one is left with 
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𝑎(𝑠) = (𝜇 − √𝜇2 + 2𝛽) 𝑠 + 2𝛽∫ d𝑥
∞

0

𝑤𝑠(𝑥)
2𝑒

(𝜇−√𝜇2+2𝛽)𝑥
.         (42) 

For any 𝑥 ≥ 0 and 𝑠 ∈ 𝐷(0, 𝑠0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  one has  |𝑤𝑠(𝑥)| ≤ 𝑤𝑠0 ≤ 𝑠0. This implies 

that the convergence for x close to infinity of the integral in (42) is uniform on the 

disk 𝑠 ∈ 𝐷(0, 𝑠0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  As 𝑠 ⟼ 𝑤𝑠(𝑥) is analytical on 𝐷(0, 𝑠0), this is sufficient to 

ensure that 𝑠 ⟼ 𝑎(𝑠) is also analytical on 𝐷(0, 𝑠0). Furthermore, notice that the 

series (4.35)  defining  𝑤𝑠(𝑥) converges  uniformly on  𝑠 ∈ 𝐷(0, 𝑠0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  because we 

know it converges absolutely (all the 𝑝𝑛(𝑥) are non-negative) at 𝑠 = 𝑠0. This 

implies that 𝑠 ⟼ 𝑤𝑠(𝑥) is continuous on 𝐷(0, 𝑠0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and, from the expression (42), 

so is 𝑠 ⟼ 𝑎(𝑠) (by dominated convergence Theorem since |𝑤𝑠(𝑥)| ≤ 𝑠0 on the 

closed disc). 

We proceed to show that 𝑎(𝑠) can be extended analytically around any 

point 𝑠 ≠ 𝑠0 with |𝑠| = 𝑠0 and show that the property extends to 𝑤𝑠(𝑥). 
In Lemma (4.1.4) we showed for any 𝑠 ∈ [0, 𝑠0] and any 𝑥 ≥ 0and ℎ ≥ 0 one had 

𝑤𝑠(𝑥 + ℎ) = 𝑤𝑤𝑠(ℎ)(𝑥).                                                (43) 

One can check that the proof of Lemma (4.1.4) extends to complex s so that (43) 

remains valid for   any 𝑠 ∈ 𝐶 such that 𝑤𝑠(𝑥) is finite.  

For fixed (complex) 𝑠, by deriving (4.47) with respect to ℎ and then setting 

ℎ = 0, one gets 

𝑤𝑠
′(𝑥) = 𝑎(𝑠)𝜕𝑠𝑤𝑠(𝑥).                                                 (45) 

Derive again with respect to 𝑥, and then set 𝑥 = 0: 

𝑤𝑠
′′(0) = 𝑎(𝑠)𝜕𝑠𝑎(𝑠),                                                  (46) 

so that the differential equation (21) on 𝑥 ⟼ 𝑤𝑠(𝑥) applied at 𝑥 = 0 gives 

0 =
1

2
𝑎(𝑠)𝜕𝑠𝑎(𝑠) + 𝜇𝑎(𝑠) + 𝛽(𝑠

2 − 𝑠),              (47) 

This equation is valid for all 𝑠 ∈ 𝐷(0, 𝑠0). 
We now use the Fact (*) which we produce here with some notation for 

clarity: 

Fact (*). Let 𝐻 be a region in ℂ and 𝑠 ⟼ 𝜙(𝑠) analytic in 𝐻.  Let 𝐺 be a region in 

ℂ2 such that (𝜙(𝑠), 𝑠) ∈ 𝐺 for each 𝑠 ∈ 𝐻 and suppose that there exists an analytic 

function 𝑓: 𝐺 → ℂ such that 

𝜙′(𝑠) = 𝑓(𝜙(𝑠), 𝑠),      ∀𝑠 ∈ 𝐻. 
Let 𝑠∗ ∈ 𝜕𝐻. Suppose 𝜙(𝑠) is continuous at 𝑠∗  and that (𝜙(𝑠∗), 𝑠∗) ∈ 𝐺. Then 𝑠∗ 
is a regular point of 𝜙(𝑠) i.e. 𝜙(𝑠) admits an analytic continuation at 𝑠∗. 

We  apply  to  our  case  with  𝜙 = 𝑎,𝐻 = 𝐷(0, 𝑠0)\{1} and 𝐺 = ℂ∗ × ℂ. From 

(47), the only candidate values of 𝑠 in 𝐷(0, 𝑠0) such that 𝑎(𝑠) = 0 are 0 and 1, and 
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we know that 𝑎(0) > 0, so the condition “(𝑎(𝑠), 𝑠) ∈ 𝐺 for each 𝑠 ∈ 𝐻” is 

verified.  

The function 𝑓(𝑎, 𝑠) is obtained from (4.50): 𝑓(𝑎, 𝑠) = −2𝜇 + 2(𝑠 − 𝑠2)/𝑎, and 

is obviously analytical on 𝐺; we have already shown that 𝑎(𝑠) is continuous on 

𝐷(0, 𝑠0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  Therefore, for any point 𝑠∗ ∈ 𝜕𝐷(0, 𝑠0) such that 𝑎(𝑠∗) ≠ 0 ( because 

we want (𝑎(𝑠∗), 𝑠∗) ∈ 𝐺 ), the function 𝑎(𝑠) admits an analytic continuation at 𝑠∗. 
We know that 𝑎(𝑠0) = 0, and we  prove  now that one has 𝑎(𝑠∗) ≠ 0 for any 𝑠∗ ∈
𝜕𝐷(0, 𝑠0)\{𝑠0}, which will conclude the proof that 𝑎(𝑠) can be analytically 

continued around any point in 𝜕𝐷(0, 𝑠0)\{𝑠0}. From (30) one can write 𝑎(𝑠) as a 

series: 

𝑎(𝑠) =∑𝑝𝑛
′ (0)𝑠𝑛

𝑛

.                                                  (48) 

We know that 𝑝1
′(0) ≤ 0 ( because 𝑝1(0) = 1 and 𝑝1(𝑥 > 0) < 1 ) and that for 

𝑛 ≠ 1,  𝑝𝑛
′ (0) ≥ 0 ( because 𝑝𝑛(0) = 0 and 𝑝𝑛(𝑥 > 0) > 0 ). Since 𝑎(𝑠0) = 0, 

we write 

∑𝑝𝑛
′ (0)𝑠0

𝑛

𝑛≠1

= −𝑝1
′ (0)𝑠0.                                       (49) 

All the terms on the left hand side are non-negative and infinitely many of them 

are non-zero since (47) does not have polynomial solutions. Thus, for any 𝑠∗ ∈
𝜕𝐷(0, 𝑠0)\{𝑠0} one has 

|∑𝑝𝑛
′ (0)(𝑠∗)𝑛

𝑛≠1

| < ∑𝑝𝑛
′ (0)𝑠0

𝑛

𝑛≠1

.                            (50) 

In particular, 𝑎(𝑠∗) ≠ 0 because it is the sum of two terms (the ∑𝑛=1  and the 

term 𝑛 = 1) with different moduli and 𝑠 ⟼ 𝑎(𝑠) can be extended analytically 

around 𝑠∗. 
We now show how the analycity of 𝑎(𝑠) translates into analycity of 𝑤𝑠(𝑥). First 

derive (43) again but this time with respect to 𝑥, then set 𝑥 = 0, and rename ℎ into 

𝑥 to obtain 

𝑤𝑠
′ = 𝑎[𝑤𝑠(𝑥)] = 𝑎(𝑠)𝜕𝑠𝑤𝑠(𝑥),                                         (51) 

where we used (45) for the second equality. 

For each given 𝑠∗ ∈ 𝜕𝐷(0, 𝑠0)\{𝑠0} we consider a neighborhood 𝑉 of 𝑠∗ where 

𝑎(𝑠) is analytical and we apply again Fact (*) to prove that 𝑠 ⟼ 𝑤𝑠(𝑥) is also 

analytical around 𝑠∗. This time, we take 𝜙(𝑠) = 𝑤𝑠(𝑥) and 𝑓(𝑤, 𝑠) = 𝑎(𝑤)/𝑎(𝑠) 
from (51). We pick 𝐻 = 𝜕𝐷(0, 𝑠0)\{1} and 𝐺 = 𝐷(0, 𝑠0) × (𝐻 ∪ 𝑉). For any 𝑠 ∈
𝐷(0, 𝑠0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ \{𝑠0} one has |𝑤𝑠(𝑥)| < 𝑤𝑠0 ≤ 𝑠0 so that the condition (𝜙(𝑠), 𝑠) ∈ 𝐺 for 

each 𝑠 ∈ 𝐻” is satisfied. We have already shown that 𝑠 ⟼ 𝑤𝑠(𝑥) is continuous on 

𝐷(0, 𝑠0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , so we conclude that 𝑠∗ is a regular point of 𝑠 ⟼ 𝑤𝑠(𝑥).                   
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Theorem (4.1.16) [1]:  

In regime C (𝜇 ≥ √2𝛽), the function 𝑤(𝑥) defined by (2) is the maximal solution 

of (3) such that 𝑤(𝑥) < 1 for all  𝑥 ≥ 0. 

More generally, 𝑤𝑠(𝑥) for 𝑠 < 1 is the maximal solution of (4) that stays below 1 

and 𝑤𝑠(𝑥) for 𝑠 ∈ (1, 𝑠0] is the minimal solution of (4) that stays above 1. 

Proof. We need to prove that 𝑤 is the maximal solution remaining below 1 of the 

differential equation (3). This is an elementary application of the maximum 

principle again. Suppose that 𝑣 is any solution of (3) which stays below 1.  Since 𝑣 

is a standing wave solution of (6), that is �̃�(𝑡, 𝑥) = 𝑣(𝑥) for all 𝑡 ≥ 0 is a solution 

of 

𝜕𝑡�̃� =
1

2
𝜕𝑥𝑥�̃� + 𝜇𝜕𝑥�̃� + 𝛽(�̃�

2 − �̃�),

and since 𝑣(𝑥) < 1 for all 𝑥 ≥ 0 we have that 

𝑣(𝑥) ≤ 𝑢(𝑡, 𝑥),     ∀𝑡 ≥ 0, ∀𝑥 ≥ 0 

where 𝑢 is the solution of (6). As for each 𝑥 we know that 𝑡 ⟼ 𝑢(𝑡, 𝑥) ↘ 𝑤(𝑥) we 

conclude that 𝑤(𝑥) ≥ 𝑣(𝑥) and therefore 𝑤 is the maximal solution of (3) 

bounded by 1. The same argument is easily generalized to the case of an arbitrary 

value of 𝑠 ∈ [0, 𝑠0]. 

Theorem (4.1.17) [4]:  

In regime C (𝜇 ≥ √2𝛽), 

1 − 𝑤(𝑥) = ℚ𝑥 (
1

𝐾(∞)
) 𝑒−𝑟𝑥 

Furthermore, ℚ𝑥 (
1

𝐾(∞)
) converges to a finite constant B > 0 when 𝑥 → ∞ and 

thus, as 𝑥 → ∞, 

1 − 𝑤(𝑥)~𝐵𝑒−𝑟𝑥. 
More generally, for any 𝑠 ∈[0, 𝑠0], one has 

1 − 𝑤𝑠(𝑥) = ℚ
𝑥 (
1 − 𝑠𝐾(∞)

𝐾(∞)
) 𝑒−𝑟𝑥 

and the expectation ℚ𝑥(∙) converges to a finite positive constant as 𝑥 → ∞. 

We will see in the proof that we can give an explicit representation of the constant 

B which appears as the expectation of 𝐾(∞)−1 under the measure ℚ∞ (similar to 

ℚ𝑥 but with the spine particle “started at infinity”). 

Proof. We start by proving Lemma (4.1.1), i.e. that the martingale 

(𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.(𝑡), 𝑡 ≥ 0) converges ℙ-almost surely and in 𝐿1 to 𝐾(∞) and therefore 

that 

𝔼𝑥[𝐾(∞)] = 𝑒−𝑟𝑥. 
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Lemma (4.1.18) [4]: 

Let (𝑌(𝑡), 𝑡 ≥ 0) be  a  Brownian  motion  with  drift +√𝜇2 − 2𝛽, started  from 0 

conditioned to never hit 0. Otherwise said, 𝑌 is solution of the following stochastic 

differential equation 

{
d𝑌(𝑡) = d𝐵𝑡 +√𝜇

2 − 2𝛽coth (√𝜇2 − 2𝛽𝑌(𝑡)) d𝑡   if  𝜇 > √2𝛽

d𝑌(𝑡) = d𝐵𝑡 +
1

𝑌(𝑡)
d𝑡      if 𝜇 = √2𝛽.                                                   

 

Let (𝑡𝑖) be a Poisson point process on ℝ+ with intensity 2𝛽. For each 𝑖 ≥ 0 start a 

branching Brownian motion with law ℙ𝑌(𝑡𝑖) and call �̃�𝑖 the total number of 

absorbed particles at 0 for this process. 

Fix 𝑥 > 0, then the distribution of the variable 𝐾(∞) under ℚ𝑥 is the same 

as that of 

𝐾𝑥(∞) ≔ 1 + ∑ �̃�𝑖
𝑖:𝑡𝑖≤𝜏𝑥

 

under ℚ∞ where 𝜏𝑥 ≔ supt≥0{𝑌(𝑡) = 𝑥}. 
This result should be clear once it is realized that the process 𝑌 is the 

reversed path of the spine 𝜉. 

Proof.  We only treat the case 𝜇 > √2𝛽 since the zero-drift case is similar. The 

only thing we need to prove here is that if (𝜉(𝑡), 𝑡 ≤ 𝜏𝜉) is a Brownian motion 

with drift −√𝜇2 − 2𝛽 started form 𝑥 and stopped at time 𝜏𝜉 ≔ inf {𝑡: 𝜉(𝑡) = 0}, 

then 

{(𝜉(𝑡), 𝑡 ≤ 𝜏𝜉), 𝜏𝜉}
ℒ
={(𝑌(𝜏𝑥 − 𝑡), 𝑡 ≤ 𝜏𝑥), 𝜏𝑥}. 

The upshot of Lemma (4.1.18) is that we can now construct the variables 

𝐾(∞) under ℚ𝑥 for all values of 𝑥 simultaneously. We write ℚ∞ for the joint law 

of the variables (𝑌(𝑡), 𝑡 ≥ 0), (𝑡𝑖)𝑖∈ℕ, �̃�𝑖) described above. Then under ℚ∞, 

clearly (𝐾𝑥(∞), 𝑥 ≥ 0) is an increasing process in 𝑥. We call 𝐾∞(∞) its limit 

which is also the total number of particles absorbed at 0 under ℚ∞. 
 

Definition (4.1.19) [7]: (Borel-Cantelli Lemma) 

If the sum of the probabilities of the 𝔼𝑛 is finite 

∑ 𝑃𝑟(𝔼𝑛)
∞

𝑛=1
< ∞, 

then the probability that infinitely many of them occur is 0, that is, 

𝑃𝑟 ( lim
𝑛∞→

sup𝔼𝑛) = 0. 

Lemma (4.1.20) [4]:   

We have that 𝐾∞(∞) ℚ∞-almost surely. 
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Proof.  We start with the 𝜇 > √2𝛽 case.  First observe that for 𝜖 > 0 fixed, there 

exists almost surely a random 𝑖0 ∈ ℕ such that 

∀𝑖 ≥ 𝑖0,    𝑌(𝑡𝑖) ≥ (
√𝜇2−2𝛽

2𝛽
− 𝜖) 𝑖. 

This simply comes from the fact that 𝑌(𝑡)/𝑡 → √𝜇2 − 2𝛽 and 𝑡𝑖/𝑖 → (2𝛽)−1 

almost surely. Now, 1 − 𝑤𝑠(𝑥) ≤ 𝑒
−(𝜇+√𝜇2−2𝛽)𝑥 because under ℚ𝑥 we have that 

𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠. ≥ 1 almost surely and therefore ℚ𝑥(1/𝑍𝑙𝑖𝑣𝑒+𝑎𝑏𝑠.) ≤ 1. Hence, for any 

𝑖 ≥ 𝑖0 we have that 

ℚ∞(�̃�𝑖 > 0) ≤ 1 − 𝑤 ([
√𝜇2−2𝛽

2𝛽
− 𝜖] 𝑖) ≤ 𝑒−𝑐𝑖 

for some positive constant 𝑐. Thus a straightforward application of Borel-Cantelli 

Lemma shows that almost surely, there exists 𝑗0 ∈ ℕ such that ∀𝑖 ≥ 𝑗0, �̃�𝑖 = 0, 

which yields the desired result. The zero-drift case is similar. One just needs to 

start the argument by observing that for 𝜖 > 0 fixed, there exists almost surely a 

random 𝑖0 ∈ ℕ such that 

∀𝑖 ≥ 𝑖0,    𝑌(𝑡𝑖) ≥ 𝑐𝑖
1/2−𝜖 

where 𝑐 is a constant. The proof then follows as before.                     

Lemma (4.1.20) [4]: 

For 𝑠 ∈ [0, 𝑠0] small enough, we have that 

 

ℚ𝑥 (
𝑠𝐾(∞)

𝐾(∞)
) → ℚ∞ (

𝑠𝐾
∞(∞)

𝐾∞(∞)
).                                        (52)

Proof. The  monotone  convergence  Theorem  applies  when 𝑠 ≤ 1 so we suppose 

1 < 𝑠 ≤ 𝑠0. Observe that the map 𝑡 ⟼ 𝑠𝑡/𝑡 is decreasing on [1,1/ log 𝑠] and 

increasing on [1/ log 𝑠 ,∞). Thus we write 

       ℚ𝑥 (
𝑠𝐾(∞)

𝐾(∞)
) = ℚ∞ (

𝑠𝐾
𝑥(∞)

𝐾𝑥(∞)
) 

 = ℚ∞ (
𝑠𝐾

𝑥(∞)

𝐾𝑥(∞)
; 𝐾𝑥(∞) ≤

1

log 𝑠
) + ℚ∞ (

𝑠𝐾
𝑥(∞)

𝐾𝑥(∞)
; 𝐾𝑥(∞) ≥

1

log 𝑠
) 

 → ℚ∞ (
𝑠𝐾

∞(∞)

𝐾∞(∞)
; 𝐾∞(∞) ≤

1

log 𝑠
) + ℚ∞ (

𝑠𝐾
∞(∞)

𝐾∞(∞)
; 𝐾∞(∞) ≥

1

log 𝑠
) 

 = ℚ∞ (
𝑠𝐾

∞(∞)

𝐾∞(∞)
) 

where the first convergence comes from the dominated convergence Theorem and 

the second from the monotone convergence Theorem.                      
 

 

Proposition (4.1.21) [4]:  

There exists 𝐵 >0 such that 

       1 − 𝑤(𝑥)~𝐵𝑒−(𝜇+√𝜇
2−2𝛽)𝑥    for large 𝑥.                 (53) 

Furthermore, 𝑤(𝑥) is the only solution of (3) which remains in [0,1) and 

converges that fast to 1. 

Similarly, for any 𝑠 ∈[0, 𝑠0), there exists 𝐵𝑠 ∈ ℝ such that 
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      1 − 𝑤𝑠(𝑥)~𝐵𝑠𝑒
−(𝜇+√𝜇2−2𝛽)𝑥     for large 𝑥.       (54) 

where 𝐵1 = 0, 𝐵𝑠 > 0 when 𝑠 < 1 and 𝐵𝑠 < 0 when 𝑠 > 1. 

To simplify notation, we call 𝑟 the exponential decay rate of 1 − 𝑤(𝑥) as given in 

(53): 

     𝑟:= 𝜇 + √𝜇2 − 2𝛽.           (55) 

It is the largest solution of 
1

2
𝑟2 − 𝜇𝑟 + 𝛽 = 0. 

Proof. We consider here all the solutions 𝑥 ⟼ 𝑣(𝑥) to (3) that remains in [0,1). 
By Cauchy’s theorem, a solution to (3) is entirely determined once the derivative 

at the origin is given. 

Let 𝑟 and 𝑅 < 𝑟 be the two roots of the polynomial 1
2
𝑋2−𝜇𝑋+𝛽: 

𝑟 = 𝜇 + √𝜇2 − 2𝛽 ,             𝑅 = 𝜇 − √𝜇2 − 2𝛽. 
 (See also (55).) From the general theory of differential equations, one has: 

Lemma (4.1.22) [4]: 

Let 𝑣 be a solution to 

0 =
1

2
𝑣′′ + 𝜇𝑣′ + 𝛽(𝑣2 − 𝑣)                                               (56) 

such that 𝑣(𝑥) converges to 1 as 𝑥 → ∞. Then, for some non-zero constant 𝐴 or 𝐵, 

• if 𝜇 > √2𝛽 one has either 1 − 𝑣(𝑥)~𝐴𝑒−𝑅𝑥 or 1 − 𝑣(𝑥)~𝐵𝑒−𝑟𝑥 as 𝑥 → ∞. 

• If 𝜇 = √2𝛽 = 𝑟 = 𝑅 one has either 1 − 𝑣(𝑥)~𝐴𝑥𝑒−𝜇𝑥 or 1 − 𝑣(𝑥)~𝐵𝑒−𝜇𝑥 

as 𝑥 → ∞. 

Furthermore, up to invariance by translation, there are exactly two solutions which 

converges to 1 in the fast way (as 𝐵𝑒−𝑟𝑥); one of them approaching 1 by above 

and the other from below. 

This lemma simply tells that the solutions to the non-linear equation (56) 

behave around 𝑣 = 1 as the solutions to the equation linearised around 1.  

Proof. This follows from a result that shows that if 

�̇� = Γ𝑋 + 𝐹(𝑋)                                                 (57) 

is a non-linear differential system of dimension 2 with Γ a hyperbolic (eigen 

values have a non-zero real part) matrix and 𝐹 is 𝐶1 with 𝐹(𝑥) = 𝑜(|𝑥|) as 𝑥 → 0  

(so 0 is a critical point), then there exists a 𝐶1 diffeomorphism 𝜙 with derivative 

the identity at the origin such that 𝑈(𝑡) = 𝜙(𝑋(𝑡)) solves 

�̇� = Γ𝑈.                                                              (58) 
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Otherwise said the solutions of the linearized system and the solutions of the non-

linear system are (locally around 0) in one-to-one correspondence through 𝜙. We 

apply this result to the following system where 𝑣 = 1 − 𝑢 is a solution of (56) 

𝑋(𝑡) = (
𝑥(𝑡)
𝑦(𝑡)

) = (
𝑢(𝑡)

𝑢′(𝑡)
) ; �̇� = (

𝑢′(𝑡)

𝑢′′(𝑡)
) = (

𝑦(𝑡)

−2𝜇𝑦(𝑡) − 2𝛽[𝑥(𝑡) − 𝑥2(𝑡)]
) , (59) 

which has a critical point at (𝑥, 𝑦) = (0,0).  In this case 

Γ = (
0 1
−2𝛽 −2𝜇

)                                                                 (60) 

with eigenvalues −𝑟 = −𝜇 − √𝜇2 − 2𝛽 and −𝑅 = −𝜇 + √𝜇2 − 2𝛽 for simplicity 

we only consider the case 𝑟 ≠ 𝑅 here) and corresponding eigenvectors (
1
−𝑟
) and 

(
1
−𝑅

). The solutions of �̇� = Γ𝑈 are of the form 

𝑈(𝑡) = (
𝑢1(𝑡)
𝑢2(𝑡)

) = 𝐵𝑒−𝑟𝑡 (
1
−𝑟
) + 𝐴𝑒−𝑅𝑡 (

1
−𝑅

).               (61) 

Thus the only solutions such that  𝑈(𝑡)~𝑐𝑒−𝑟𝑡 for some constant 𝑐 are those such 

that 𝐴 = 0. If 𝐵 > 0 then 𝑢1 approaches by above, if 𝐵 < 0 then 𝑢1 approaches by 

below. Hartman’s Theorem tells us that there exists 

 

𝜙(𝑋) = 𝑋 + 𝑓(𝑋), 𝑓(𝑋) = 𝑜(|𝑥|) when 𝑥 → 0          (62) 

such that the solutions 𝑋(𝑡) of the non-linear system are locally 

𝑋(𝑡) = 𝜙−1(𝑈(𝑡)).                                               (63) 
Thus, (after a shift in the argument, replacing 𝑥 by 𝑥 + ln|𝐵| /𝑟) there is exactly 

one solution 𝑋 to the non linear system such that |𝑋(𝑡)|𝑒𝑟𝑡 has a non degenerate 

limit and such that 𝑥(𝑡), the first coordinate of 𝑋(𝑡), is eventually positive (resp. 

eventually negative). 

Let 𝑠 < 1 be such that there is a solution 𝑣 of (56) with                       

𝑣(0) = 𝑠, 1 − 𝑣(𝑥)~𝑐𝑒−𝑟𝑡, and 𝑣(𝑥) < 1 for  all 𝑥 ≥ 0 (we  now  know  that  

such 𝑠 exists). Then 𝑤𝑠(𝑥) being the maximal solution of (3) that starts from 𝑠 and 

stays below 1, we must have 𝑤𝑠(𝑥) ≥ 𝑣(𝑥), ∀𝑥 ≥ 0. 
Since we also know that the only two possibilities for the asymptotic behavior of 

𝑤𝑠 are that either 𝑤𝑠(𝑥)𝑒
𝑟𝑥 → 𝑐 or 𝑤𝑠(𝑥)𝑒

𝑅𝑥 → 𝑐 we conclude that it is the  

former that holds. The same argument apply for 𝑤𝑠(𝑥) for any 𝑠 ≤ 𝑠0 and in the 

critical case. This concludes the proof of Proposition (4.1.21) for 𝑤(𝑥) 
Proposition (4.1.23) [4]: 

The radius of convergence R of 𝛷 is non-zero and there exists 𝐵 ∈ (0, 𝑅) such 

That  

𝑤(𝑥) = 1 − 𝛷(𝐵𝑒−𝑟𝑥). 
More generally, for any 0 ≤ 𝑠 ≤ 𝑠0, there exists a number 𝐵𝑠 such that 
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− 

0 

≤ 

𝑤𝑠(𝑥) = 1 − 𝛷(𝐵𝑠𝑒
−𝑟𝑥).    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ≥ 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝐵𝑠|𝑒

−𝑟𝑥 < 𝑅.     (64) 
𝑠 ⟼ 𝐵𝑠 is decreasing, positive for 𝑠 < 1, zero for 𝑠 = 1, and negative for 𝑠 > 1. 

In particular, for 𝑠 ≤ 1, the condition |𝐵𝑠|𝑒
−𝑟𝑥 < 𝑅 is automatically fulfilled. 

Numerically, it seems that R is large enough that |𝐵𝑠|𝑒
−𝑟𝑥 < 𝑅 for all 

𝑠 ∈[0, 𝑠0] and all 𝑥 ≥ 0, but we haven’t proved that point. The representation (64) 

makes it very easy to compute numerically 𝑤𝑠 by first computing 𝛷(𝑧), the value 

𝑠0 is then obtained as 1 minus the first minimum of 𝛷 for negative arguments. 

This follows easily from the facts that 𝑤𝑠0
′ = 0,𝑤𝑠0

′′ < 0 and that 𝑤𝑠0
′ < 0 for all 

𝑠 ∈ (1, 𝑠0). 

Proof. We consider the series Φ(𝑧) = ∑ 𝑎𝑛𝑧
𝑛

𝑛≥1  defined in (10) with the 

coefficients 𝑎𝑛 defined in (9). The function 𝑧 ↦ Φ(𝑧) is a well defined object 

because, by  induction on (9) one has easily 0 < 𝑎𝑛 ≤ 1 and, therefore, ℛ ≥ 1.  It 

is then very easy to check by  direct substitution that for any 𝐵 ∈ ℝ, the function 

𝑥 ↦ 𝑣(𝑥) = 1 − Φ(𝐵𝑒−𝑟𝑥) for 𝑥 such that |𝐵|𝑒−𝑟𝑥 < 𝑅,      (65) 

is solution to the partial differential equation 
1

2
𝑣′′ + 𝜇𝑣′ + 𝛽(𝑣2 − 𝑣) which 

appears in (3) (when discussing 𝑤) and in (21) (when discussing 𝑤𝑠). Recall that 

𝑟 = 𝜇 + √𝜇2 − 2𝛽 is the larger root of 
1

2
𝑋2 + 𝜇𝑋 + 𝛽. As the coefficients 𝑎𝑛 are 

positive, Φ(𝑧) is non-negative and increasing for 𝑧 ≥ 0. As 𝑎1 = 1 and 𝑎2 > 0, it 

is easy to find a 0 < 𝑧0 < 1 ≤ ℛ such that Φ(𝑧0) > 𝑎1𝑧0 + 𝑎2𝑧0
2 > 1. This 

implies that there must exists a 𝐵0 ∈ (0,ℛ) (smaller than 𝑧0) such that Φ(𝐵0) = 1. 

With 𝐵 = 𝐵0, the function 𝑣(𝑥) in (65) is smaller than 1 and converges to 1 for 

large 𝑥 as 𝑒−𝑟𝑥. Using Proposition (4.1.21), this implies that 𝑣(𝑥) = 𝑤(𝑥) = 1 −
Φ(𝐵0𝑒

−𝑟𝑥).  
Recall by Theorem (4.1.5) that 𝑤𝑠 for 𝑠 < 1 is simply equal to 𝑤 correctly 

shifted to have 𝑤𝑠(0) = 𝑠. This implies that, for 𝑠 < 1, 𝑤𝑠(𝑥) = 1 − Φ(𝐵𝑠𝑒
−𝑟𝑥) 

where 𝐵𝑆 ∈ (0, 𝐵0] is such that Φ(𝐵𝑠) = 1 − 𝑠. 
The case s = 1 is trivial, we now turn to 𝑠 > 1. As for 𝑠 = 0, we have the 

following points: 

• for 𝑠 > 1, 𝑤𝑠 is the smallest solution to (21) that remains above 1(Theorem  

(4.1.16)).  

• By Lemma (4.1.22), there is exactly one solution to (21) which remains above 1 

and decays to 1 as 𝑒−𝑟𝑥. Because of the previous point, this solution must be 𝑤𝑠. 

Now consider Φ(𝑧) for negative arguments.  Because Φ(0) = 0 and Φ′(0) = 1, 

there must exists 𝐵 ∈ (−ℛ, 0) such that Φ is negative on (𝐵, 0].  Then, the 

function 𝑥 ↦ 1 −Φ(𝐵𝑒−𝑟𝑥) is solution to (21) for 𝑠 = 1 − Φ(𝐵) > 1, remains 

above 1 for 𝑥 ≥ 0 and converges to 1 as 𝑒−𝑟𝑥.  Therefore, it must be 𝑤𝑠  for that 

particular 𝑠. 
But all the functions 𝑤𝑠 for 1 < 𝑠 < 𝑠0 are related through Theorem (4.1.5):  

they are all shifted versions of 𝑤𝑠0. Therefore, for any 𝑠 ∈ (1, 𝑠0], one  has  
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𝑤𝑠(𝑥) = 1 − Φ(𝐵𝑠𝑒
−𝑟𝑥) for  a well chosen negative 𝐵𝑠 (which represents the 

shift), at least for values of 𝑥 sufficiently large to have |𝐵𝑠|𝑒
−𝑟𝑥 < 𝑅. 

Lemma (4.1.24) [4]: 

  

‖𝑣𝑇(∙,∙) − 𝑢(∙,∙)‖∞ → 0  𝑎𝑠 𝑇 → ∞.                                  (66) 
In addition, there exists 𝐶 ∈ ℝ such that 𝐶𝑇 → 𝐶 𝑎𝑠 𝑇 → ∞. 

Indeed, assuming that Lemma (4.1.24) holds, we can conclude: 

Theorem (4.1.25) [4]: 

In regimes A and B (𝜇 < √2𝛽), there exists a constant C depending on 𝜇 and 𝛽 

such that 

𝑢(𝑡, 𝑥 + 𝑚𝑡 − 𝜇𝑡 + 𝐶) → ℎ∗(𝑥)  uniformly in 𝑥 as 𝑡 → ∞ 

where 𝑚𝑡 is given by (19) and ℎ∗ is the solution to (20). 

It is interesting to compare this result about the behaviour of                        

𝑢(𝑡, 𝑥) = ℙ𝑥[𝐾(𝑡) = 0] when 𝜇 < √2𝛽 to the behaviour of the extinction 

probability �̃�(𝑡, 𝑥) = ℙ𝑥[𝒩𝑙𝑖𝑣𝑒(𝑡) = ∅] when 𝜇 ≤ −√2𝛽. It is not hard to see that 

�̃� satisfies the same equation (6) as u with different boundary conditions, which is 

1 minus the boundary condition in (6); namely �̃� solves 

{
𝜕𝑡�̃� =

1

2
𝜕𝑥𝑥�̃� + 𝛽(�̃�

2 − �̃�),                                  

�̃�(𝑡, 0) = 1 (∀𝑡 ≥ 0),   �̃�(0, 𝑥) = 0 (∀𝑥 > 0).
                          (67) 

What is particularly striking is that in the critical case 𝜇 = −√2𝛽 it is known to 

survive up to time t one must start with an initial particle at position 𝑥 = 𝑐𝑡1 3⁄ . 

This means that if �̃�(𝑡, 𝑥 + �̃�𝑡) converges to some limit front shape then the 

centering term giving the position of the front �̃�𝑡 has to be of order 𝑐𝑡1 3⁄ . 

However the convergence of the solution of (67) to a travelling wave is at present 

an open problem. 

Proof. We assume to be in regime A or B (𝜇 < √2𝛽) and we want to show how 

𝑢(𝑡, 𝑥) = ℙ𝑥(𝐾(𝑡) = 0) converges to a KPP travelling wave. 

The proof is essentially analytic and relies on the maximum principle. The 

key step is to compare 𝑢(𝑡, 𝑥) to a new function 𝑣𝑇: [𝑇, +∞) × ℝ → ℝ (where 

𝑇 ≥ 0 is a  parameter) where 𝑣𝑇(𝑡, 𝑥) is defined as the probability, in the standard 

branching Brownian motion (without absorption nor stopping) with drift 𝜇 starting 

from 𝑥, that no particles are present in the negative half-line between times 𝑡 − 𝑇 

and 𝑡. In symbols 

𝑣𝑇(𝑡, 𝑥) ≔ ℙ𝑥(∀𝑟 ∈ [𝑡 − 𝑇, 𝑡], ∀𝑢 ∈ 𝒩𝑎𝑙𝑙(𝑟): 𝑋𝑢(𝑟) > 0),   (68) 
where we recall that 𝒩𝑎𝑙𝑙(𝑠) is the population of particles at time 𝑠 in a branching 

Brownian motion without absorption or stopping. The advantage of 𝑣𝑇 is that 

since it is defined on 𝒩𝑎𝑙𝑙 it satisfies a KPP equation on the whole real line: 
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{
 

 𝜕𝑥𝑣
𝑇 =

1

2
𝜕𝑥𝑥𝑣

𝑇 + 𝜇𝜕𝑥𝑣
𝑇 + 𝛽((𝑣𝑇)2 − 𝑣𝑇),    (𝑡, 𝑥) ∈ [𝑇,+∞) × ℝ

𝑣𝑇(𝑇, 𝑥) = 𝑢(𝑇, 𝑥),   for 𝑥 ≥ 0,                                                                  

𝑣𝑇(𝑇, 𝑥) = 0,              for 𝑥 < 0.                                                                  

 

Otherwise  said  the  function  �̃�𝑇(𝑡, 𝑥) = 𝑣𝑇(𝑇 + 𝑡, 𝑥)  solves  the  KPP  equation  

on  the  whole  line with  initial  condition �̃�𝑇(0, 𝑥) = 𝑢(𝑇, 𝑥)𝕝{𝑥>0}. Since for  

𝑇 > 0 fixed, 1 − 𝑢(𝑇, 𝑥) goes to 0 as 𝑥 → ∞ with a super exponential decay, 

ensures that there exists a constant �̃�𝑇 ∈ ℝ such that we have 

‖�̃�𝑇(𝑡,∙ +𝑚𝑡 − 𝜇𝑡 + �̃�𝑇) − ℎ∗(∙)‖∞ → 0  𝑎𝑠 𝑡 → ∞,     (69) 

where Bramson’s displacement 𝑚𝑡 is given in (19). The value �̃�𝑇 depends on 𝑇 

because for different T we plug different initial conditions in the KPP equation. 

Since 𝑚𝑡 −𝑚𝑡−𝑇 → √2𝛽𝑇 when 𝑡 → ∞, one obtains taking 𝐶𝑇 = �̃�𝑇 −√2𝛽𝑇 + 𝜇𝑇: 

‖�̃�𝑇(𝑡,∙ +𝑚𝑡 − 𝜇𝑡 + 𝐶𝑇) − ℎ∗(∙)‖∞ → 0  𝑎𝑠 𝑡 → ∞.     (70) 

Lemma (4.1.24) show that for 𝑡 large enough, 𝑢(𝑡, 𝑥) is close to 𝑣𝑇(𝑡, 𝑥). 

Fix 𝑠 > 0. Using (70) and (66), choose 𝑇 large enough that ‖𝑣𝑇(∙,∙) − 𝑢(∙,∙)‖∞ < 𝜖 

and then choose 𝑡 large enough so that ‖𝑣𝑇(𝑡,∙ +𝑚𝑡 − 𝜇𝑡 + 𝐶𝑇) − ℎ∗(∙)‖∞ < 𝜖. 

Then, we have that 

 ‖𝑢(𝑡,∙ +𝑚𝑡 − 𝜇𝑡) − ℎ∗(∙ −𝐶)‖∞ ≤ ‖𝑢(𝑡,∙ +𝑚𝑡 − 𝜇𝑡) − 𝑣
𝑇(𝑡,∙ +𝑚𝑡 − 𝜇𝑡)‖∞ 

          +‖𝑣𝑇(𝑡,∙ +𝑚𝑡 − 𝜇𝑡) − ℎ∗(∙ −𝐶𝑇)‖∞ 

         +‖ℎ∗(∙ −𝐶𝑇) − ℎ∗(∙ −𝐶)‖∞ 

         ≤ 2𝜖 + 𝑐|𝐶𝑇 − 𝐶| 
where 𝑐 = max𝑥∈ℝℎ∗

′(𝑥). As 𝐶𝑇 → 𝐶, for 𝑇 large enough independently of 𝑥 this 

can be made smaller than 3𝜖.Thus ‖𝑢(𝑡,∙ +𝑚𝑡 − 𝜇𝑡) − ℎ∗(∙ −𝐶)‖∞ → 0 as  𝑡 →
∞, which is the Theorem.  
 

Lemma (4.1.26) [4]: 

For any 𝜖 > 0 there exists 𝑇𝜖 such that for all 𝑡 ≥ 𝑇 ≥ 𝑇𝜖 one has 

𝑣𝑇(𝑡, 0) ≤ 𝜖/(1 + 𝜖). 
(The 1 + 𝜖 in the denominator makes the following easier.) 

Proof. We use the representation (68). Let 𝑡 ≥ 𝑇; obviously 

𝑣𝑇(𝑡, 0) ≤ ℙ0(min𝑢∈𝒩𝑎𝑙𝑙(t)𝑋𝑢(𝑡) > 0) = ℎ(𝑡, −𝜇𝑡), 

where ℎ is the solution of (18). ℎ(𝑡, −𝜇𝑡) is by definition the probability that the 

leftmost particle at time 𝑡 of a driftless branching Brownian motion is to the right 

of −𝜇𝑡; it is also the probability that the leftmost particle at time 𝑡 of a branching 
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Brownian motion with drift 𝜇 is to the right of zero. For 𝜇 < √2𝛽 (regimes A and 

B), this probability is known to tend to zero when 𝑡 → ∞.                     

Lemma (4.1.27) [4]:    

For any 𝜖 > 0 and any 𝑇 > 𝑇𝜖 one has 

(1 + 𝜖)𝑣𝑇(𝑡, 𝑥) − 𝜖 ≤ 𝑢(𝑡, 𝑥) ≤ 𝑣𝑇(𝑡, 𝑥),    (𝑡, 𝑥) ∈ [𝑇,∞) × ℝ+. 
 (The 𝑇𝜖  in Lemma (4.1.27) is the same as in Lemma (4.1.26).) 

Proof. 𝑢 ≤ 𝑣𝑇 follows immediately from their definitions as probabilities. Let us 

introduce  �̃�(𝑡, 𝑥) ≔ 𝑢(𝑡,𝑥)+𝜖

1+𝜖
 

We have that 

(1 + 𝜖)𝜕𝑡�̃� = (1 + 𝜖)
1

2
𝜕𝑥𝑥�̃� + (1 + 𝜖)𝜇𝜕𝑥�̃� + 𝛽 [((1 + 𝜖)�̃� − 𝜖)

2
− ((1 + 𝜖)�̃� − 𝜖)] 

Performing simple calculations we arrive at 

         𝜕𝑡�̃� =
1

2
𝜕𝑥𝑥�̃� + 𝜇𝜕𝑥�̃� + 𝛽(�̃� − 1)(�̃� − 𝜖 + 𝜖�̃�) 

≥
1

2
𝜕𝑥𝑥�̃� + 𝜇𝜕𝑥�̃� + 𝛽(�̃� − 1)�̃� 

Since �̃� ≤ 1 and  𝜖 > 0. 

Now, for any 𝑇 > 𝑇𝜖, we have with Lemma (4.1.26) 

𝑣𝑇(𝑡, 0) ≤
𝜖

(1+𝜖)
= �̃�(𝑡, 0),    𝑡 ≥ 𝑇. 

Moreover one checks directly that 

𝑣𝑇(𝑇, 𝑥) = 𝑢(𝑇, 𝑥) ≤ �̃�(𝑇, 𝑥),    𝑥 ≥ 0. 
By the parabolic maximum principle (and the unicity of solutions) we get that for 

any 𝑇 > 𝑇𝜖 

𝑣𝑇(𝑡, 𝑥) ≤ �̃�(𝑡, 𝑥),      ∀(𝑡, 𝑥) ∈ [𝑇,∞) × ℝ+. 

This proves the first inequality and thus concludes the proof of the lemma.      

Lemma (4.1.27) implies that |𝑢(𝑡, 𝑥) − 𝑣𝑇(𝑡, 𝑥)| ≤ 𝜖(1 − 𝑣𝑇(𝑡, 𝑥)) ≤ 𝜖 for 

each 𝑥 ∈ ℝ+ and each 𝑡 and 𝑇 with 𝑡 ≥ 𝑇 ≥ 𝑇(𝜖), which is the first assertion of 

Lemma (4.1.24).  

The last step is then to prove that 𝐶𝑇 has a limit 𝐶 for large 𝑇. 

As 𝑢(𝑡,∙) is strictly increasing and continuous, 𝑢(𝑡, 0) = 0 and lim
𝑥→∞

𝑢(𝑡, 𝑥) = 1, we 

may define 𝑚1
2
: (0, +∞) × ℝ+ by 𝑢(𝑡,𝑚1

2
(𝑡)) = 1/2. 

 

Fix 𝜖 > 0. We have that 

|
1

2
− ℎ∗ (𝑚1

2
(𝑡) − 𝑚𝑡 − 𝜇𝑡 − 𝐶𝑇)| ≤ |𝑢 (𝑡,𝑚1

2
(𝑡)) − 𝑣𝑇 (𝑡,𝑚1

2
(𝑡))| 

 +|𝑣𝑇 (𝑡,𝑚1
2
(𝑡)) − ℎ∗ (𝑚1

2
(𝑡) − 𝑚𝑡 − 𝜇𝑡 − 𝐶𝑇)| ≤ 2𝜖, 

 



141 

2 

0 

as long as 𝑇 and 𝑡 are large enough by (70) and (66). From this we  deduce 

𝑚1
2
(𝑡) − 𝑚𝑡 − 𝜇𝑡 − 𝐶𝑇 ∈ [ℎ∗

−1 (
1

2
− 2𝜖) , ℎ∗

−1 (
1

2
+ 2𝜖)].     (70) 

Consequently 

lim
𝑡→+∞

sup [𝑚1
2
(𝑡) − 𝑚𝑡 − 𝜇𝑡] − lim

𝑡→+∞
inf [𝑚1

2
(𝑡) − 𝑚𝑡 − 𝜇𝑡] 

≤ ℎ∗
−1 (

1

2
+ 2𝜖) − ℎ∗

−1 (
1

2
− 2𝜖). 

Since 𝜖 can be chosen arbitrarily small we have that lim
𝑡→+∞

[𝑚1
2
(𝑡) − 𝑚𝑡 − 𝜇𝑡] = 𝐶, for 

some constant 𝐶 ∈ ℝ. This and (70) immediately yields that 

lim
𝑇→+∞

𝐶𝑇 = 𝐶, 

where we used that ℎ∗
−1 (

1

2
).  This concludes the proof of Lemma (4.1.24). 

Section (4.2): Radius of Convergence and Asymptotic Behavior of 𝐬𝟎 

We related the 𝑤𝑠(𝑥) to a function 𝑥 ↦ 𝛷(𝑧)defined as a series of which the 

coefficients 𝑎𝑛 follows the recursive equation (16). We write here the same 

property in a slightly different but equivalent way. Let 𝑝 ∈ (0,1] be defined by 

𝑝 ≔
2𝛽

𝑟2
 , 

and introduce Ψ(𝑝)(𝑧) = 𝑝𝛷(𝑧/𝑝) and 𝑏𝑛
(𝑝)
= 𝑎𝑛/𝑝

𝑛−1. These quantities satisfy 

the relation 

Ψ(𝑝)(𝑧) =∑𝑏𝑛
(𝑝)
𝑧𝑝

𝑛≥1

, 𝑏1
(𝑝)
= 1, 𝑏𝑛

(𝑝)
=

1

(𝑛−1)(𝑛−𝑝)
∑𝑏𝑗

(𝑝)
𝑏𝑛−𝑗
(𝑝)

𝑛−1

𝑗=1

, 𝑛 ≥ 2.   (71) 

Let ℛ(𝑝) be the radius of convergence of Ψ(𝑝). We know that there exists a 𝐵𝑠0 

relating Ψ(𝑝) and 𝑤𝑠0 through 

𝑤𝑠0(𝑥) = 1 −
1

𝑝
Ψ(𝑝)(𝑝𝐵𝑠0𝑒

−𝑟𝑥). 

The  following  observation  will  be  useful. Since 𝑤𝑠0
′ (0) = 0 and 𝑤𝑠0

′′(0) < 0,  

the  function  𝑤𝑠0 (defined on a domain containing zero) has a local maximum in 

zero. This implies that for 𝑝 > 0 the  function Ψ(𝑝) has a local minimum in 

𝑚(𝑝) ≔ 𝑝𝐵𝑠0 < 0. In  fact 𝑚(𝑝) is the first local minimum (and indeed the first 

point where the first derivative cancels) one encounters left of  zero for Ψ(𝑝). 

The steps of the proof are the following: 

1. We show that ℛ(𝑝) ≥ 4 for small enough 𝑝 (including 𝑝 = 0).  

2. We prove that there exists 𝑚(0) ∈ (−3,0] which is the first minimum one 

encounters left of zero for Ψ(0) and that 

[Ψ(0)]
′
(x)<0, x∈[a,m(0)),    and    [Ψ(0)]

′
(x) > 0, 𝑥 ∈ (m(0), 0],     (72) 

for some a∈[ − 3,m(0)]. 
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3. We show that [Ψ(𝑝)]
′
 converges to [Ψ(0)]

′
 uniformly on (−3,0]. This 

implies that 

lim
𝑝↘0

𝑚(𝑝) = 𝑚(0) ∈ (−3,0).                                        (73) 

4. Since |𝑝𝐵𝑠0| ⟶ |𝑚(0)| < 4 we conclude that 𝐵𝑠0 is within the radius of 

convergence of 𝛷 for 𝑝 small enough. The identity 

𝑠0 = 𝑤𝑠0(0) = 1 − 𝛷(𝐵𝑠0) = 1 − Ψ
(𝑝)(𝑚(𝑝))/𝑝. 

shows that 

lim
𝑝↘0

𝑝𝑠0(𝑝) = Ψ
(0)(𝑚(0)), 

where we made the dependence of 𝑠0 on 𝑝 = 2𝛽/𝑟2 explicit. 

We now prove these points. 

1. The key remark is that if for a real 𝛼 > 0 and an integer 𝑛0, one has 𝑏𝑛
(𝑝)
≤

(𝑛0 − 𝑝)𝛼
−𝑛 for all 𝑛 ∈ {1,… , 𝑛0 − 1} then, as can be shown by a very 

simple recursion, the property 𝑏𝑛
(𝑝)
≤ (𝑛0 − 𝑝)𝛼

−𝑛 holds for all 𝑛 ≥ 1. 

Computing the first values of 𝑏𝑛
(0)

, one checks easily that the maximum of 

4𝑛𝑏𝑛
(0)

 for 𝑛 ∈ {1,… ,14} is around 14.14. For 𝑝 small enough, by 

continuity of 𝑝 ↦ 𝑏𝑛
(𝑝)

, the maximum of 𝑏𝑛
(𝑝)

 for 𝑛 ∈ {1,… ,14} will be no 

more than 15 − 𝑝 and hence one has 

𝑏𝑛
(𝑝)
≤ 15 × 4−𝑛,    (for 𝑝 small enough)   (74) 

As a consequence, ℛ(𝑝) ≥ 4 for 𝑝 small enough (including 𝑝 = 0). 

2. The bound (74) applies for 𝑝 = 0. Thus, for any 𝑧 ∈ [−3,3] using only the 

the fifty first terms of the expansion leads to an error of at most    

∑ 15 × (3/4)𝑛𝑛≥51 . In that way we computed Ψ(0)(−3) ≈ −0.8528 and 

Ψ(0)(−2.5) ≈ −0.8575. Therefore Ψ(0)(−2.5) is smaller than both 

Ψ(0)(−3) and Ψ(0)(0) = 0, and the function Ψ(0) must have a minimum in 

(−3,0). In other words we proved 𝑚(0) ∈ (−3,0). It is easy to check that 

∑ 𝑛(𝑛 − 1)𝑎𝑛𝑥
𝑛−250

𝑛=1 ≥ 0.7 for 𝑥 ∈ [−3,0]. Estimating an error by 

∑ 15𝑛(𝑛 − 1)(3/4)𝑛𝑛≥51 < 0.074 we conclude that [Ψ(0)]
′′
(𝑥) > 0 for 

𝑥 ∈ [−3,0]. In this way we get (72). 

3. By (74) there exist 𝑝0 > 0 and 𝐶 > 0 such that the functions [Ψ(𝑝)]
′
 are 

analytic in [−3,0] and sup𝑝∈[0,𝑝0],𝑥∈[−3,0]|Ψ
(𝑝)(𝑥)| < 𝐶. By continuity of 

𝑝 ↦ 𝑏𝑛
(𝑝)

, for any 𝑥 ∈ [−3,0] we have [Ψ(𝑝)]
′
(𝑥) → [Ψ(0)]

′
(𝑥). The Vitali-

Proter theorem strengthen this to uniform convergence. This together with 

(72) implies easily (73). 
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