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 استهلال/

 

 قال الله تعالى:

بْعُ  مَاوَاتُ  السَّ "تُسَبِّحُ لَهُ السَّ

وَالْْرَْضُ وَمَنْ فِيهِنَّ ۚ وَ إنِْ 

مِنْ شَيْءٍ إلََِّّ يُسَبِّحُ بِ حَمْدِهِ 

كِنْ لََّ تَفْقَهُونَ تَسْ بِيحَهُمْ ۗ  وَلََٰ

هُ كَانَ حَليِمًا غَفوُرً ا"  إنَِّ

 صدق الله العظيم

 الاسراء }44{
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Abstract 

      One of the most important problem in petroleum industry is to know the pressure 

distribution in the reservoir with realistic and applicable method, this study gives a 

pressure description with respect to time and distance. 

     A mathematical model is developed for a homogenous finite and infinite reservoir, 

radial and unsteady state flow. The model is written in a dimensionless form. 

    Numerical solution using the finite difference on implicit approach is applied, and 

the results are obtained by using Matlab. The results obtained are compared with the 

analytical solutions indicating the validity of the numerical solutions with an accepted 

error. 
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 التجريد

حقيقية و قابلة  بطريقةواحدة من أكثر المشاكل أهمية في الصناعة النفطية هي معرفة توزيع الضغط في المكمن       

 للتطبيق.

ر مستقر غينصف قطري و و السريان فيه   حدود وغير محدودم متجانس  قد تم تطوير نموذج رياضي لمكمنل      

 بصورة لا بعدية.

لحصول علي النتائج .و تم ابالمفاهيم الضمنية   تم الحصول علي حلول عددية باستخدام طريقة الفروقات المحدودة      

 ارن نها تقحيث أ صلاحية الحل العددي أوضحت النتائج التي تم الحصول عليهاو  باستخدام برنامج الماتلاب

مقبول.بالنتائج التحليلية المعروفة بخطأ   
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Nomenclature  

FDE Finite-difference equations. 

𝐫𝐞 Reservoir radius. (ft) 

𝐫𝐰 Wellbore radius.(ft) 

𝛒 Density. (Ib./𝑓𝑡3) 

∁ Compressibility. ( 𝑝𝑠𝑖−1) 

∅ Porosity. (Dimensionless) 

𝐁𝐠 Gas formation volume factor. ( 𝑓𝑡3/scf) 

𝛍 Viscosity. (cp) 

Z Gas deviation factor. (Dimensionless) 

𝐕𝐛 Bulk volume. (𝑓𝑡3). 

P Pressure. (psi) 

V Volume. (𝑓𝑡3) 

n Number of moles.  (moles) 

z Vertical direction in radial cylindrical flow geometry coordinates. 

𝛉 Tangential direction in radial cylindrical flow geometry 

coordinates. 
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V Apparent velocity. (ft/day) 

(x,y,z) Rectangular flow geometry (x,y,z) directions 

          r Radial direction in radial cylindrical flow geometry coordinates. 

A Total cross-sectional area of the rock in square centimeters. 

( 𝑓𝑡2) 

𝛛𝐩

𝛛𝐱
 

Pressure gradient in (x) direction for rectangular flow geometry. 

(psi/ft) 

𝐪𝐫 Volumetric flow rate at radius r. (𝑓𝑡3/𝑑𝑎𝑦) 

𝐀𝐫 Cross-sectional area for flow at radial system in radius r. (𝑓𝑡2). 

(
𝛛𝐩

𝛛𝐫
)
𝐫
 

Pressure gradient at radius r for radial cylindrical flow geometry 

coordinates. (psi/ft) 

𝒗𝒓 Apparent velocity at radius r. (ft/day) 

𝐯𝐬 Velocity component in s directions of a radial coordinate 

system.  (ft/day) 

𝐊𝐫 Permeability at (r) direction in radial cylindrical flow geometry 

coordinates.  (md) 

𝐊𝛉 Permeability at (𝜃) direction in radial cylindrical flow geometry 

coordinates.  (md) 

𝐊𝐳 Permeability at (z) direction in radial cylindrical flow geometry 

coordinates.  (md) 
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𝛛𝐏

𝛛𝐫
 

Pressure gradient in (r) direction in radial cylindrical flow 

geometry coordinates.  (psi/ft) 

𝛂 Hydraulic diffusivity constant for the reservoir fluid system. 

Δt Time interval.  (day) 

𝐂𝐭 Total compressibility.  (𝑝𝑠𝑖−1) 

𝐏𝐃 Dimensionless pressure drop.  (dimensionless) 

𝐫𝐞𝐃 Dimensionless external radius.  (dimensionless) 

𝐭𝐃 Dimensionless time.   (dimensionless)  

𝐫𝐃 Dimensionless radius.   (dimensionless) 

p (r, t) pressure at radius r and time t. 

U Logarithmic transformation. 

NOG Number of grids. 

𝒑𝒘𝒇𝑫 Dimensionless bottom hole pressure. 

𝑷𝒊𝑫  Dimensionless initial pressure. 
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Chapter 1 

       Introduction 

           Reliable information about in-situ reservoir conditions is important in many 

phases of petroleum engineering. 

         There are many ways for getting these information, no single method can give 

complete unique reservoir description. One of the powerful approaches to obtain values 

of reservoir properties is the pressure analysis techniques, which can be derived from 

numerical solution.  

1.1. Statement of The Problem 

        In order to understand the reservoir behavior, it must be expressed in terms of 

appropriate mathematical equations. These equations constituting the mathematical 

models of the reservoir are almost always too complex to be solved by analytical 

methods. Approximations must be made to put the equations in a form that is amenable 

to solution by digital computers. 

        Consider The reservoir is cylindrical with a radius (𝑟𝑒), homogenous and has 

uniform thickness. The mathematical model which describes this situation will be 

developed, and solved numerically.  

        As the reservoir considered to be cylindrical, the grid spacing in reservoir 

simulation based on radius, this makes grids irregular, this irregularity leads to error on 

estimating the grid properties. The study addressed this problem to be solved and as 

well as to reduce the error in calculations. 

1.2. Objectives 

        The main objective of this study is to obtained more representative mathematical 

discerption or a relationship for pressure in radial reservoir under any time and distance  

 



-2- 

The sub-objectives are: - 

 Best understanding of the mathematical radial homogenous infinite and finite 

reservoir model. 

 To solve the model numerically by using finite difference approach.  

 To design computer program by Matlab code for both infinite and finite 

reservoirs.  

 To compare the numerical solution of infinite and finite programs with the 

analytical solutions.   

 

1.3. Research Structure 

       Chapter one consists of research introduction; which contains state problem, 

objectives from the research, and research methodology, chapter two consists of 

theoretical background and literature review, chapter three consists of methodology 

which contains all the tools have been used in the solution, chapter four consists of 

results and discussion to our solution, finally chapter five conclusion and 

recommendations.  
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Chapter 2 

Literature Review and Theoretical Background 

2.1. Introduction 

         Compared to alternative investigation methods, the advantages of numerical 

method can be summarized as, the numerical results often can be obtained faster and at 

lower costs, parameter variations on the computer usually are easily realizable, a 

numerical simulation often gives more comprehensive information, the reliability of the 

computations and the possibility of obtaining approximatively solutions via the 

application of finite-difference methods to the partial differential equations. However, 

not only the advances in computer technology have had a crucial influence on the 

possibilities of numerical simulation methods, but also the continuous further 

development of the numerical algorithms has contributed significantly to this.   

        To illustrate the different aspects that play a role when employing numerical 

simulation techniques for the solution of engineering problems. The first step consists 

in the appropriate mathematical modeling of the processes to be investigated that result 

in systems of differential equations derived in the framework of continuum mechanics 

must then be suitably approximated by a discrete problem. the next step consists in the 

solution of the algebraic equation systems. Here, algorithmic questions and, of course, 

computers come into play. (Schäfer, 2006) 

       There are primarily three different approaches available for the solution procedure 

to obtain the numerical value of unknown parameters or quantities: -  

1- Finite-Volume Methods (FVM): Mainly employed for the numerical solution of 

problems in fluid mechanics, which are the basis for the mathematical modelling of 

continuum mechanical problems, per definition, also are fulfilled for the discrete 

equations(conservatively)(Schäfer, 2006).  

2- Finite-Element Methods (FEM): Is widely used primarily for numerical 

computations in solid mechanics and can be regarded as a standard tool there. 

(Schäfer, 2006) 
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3- Finite-Difference Methods (FDM): 

 Finite-difference equations are used to approximate a differential equation when an 

analytical solution is unknown, or if the known analytical solution is cumbersome in 

application. Because complex systems are normally encountered .(Mattax and Dalton, 

1990) 

2.2. Literature review 

         The first theoretical study of well equations was given by Peaceman (1977) for 

cell-centered finite difference methods on square grids for single phase flow. 

Peaceman’s study gave a proper interpretation of a well-block pressure, and indicated 

how it relates to the flowing bottom hole pressure. The importance of his study is that 

the computed block pressure is associated with the steady state pressure for the actual 

well at an equivalent radius re. For a square grid with a grid size h, Peaceman derived 

a formula for re by three different approaches:(Peaceman, 1978) 

(1) Analytically by assuming that the pressure in the blocks adjacent to the well block 

is computed exactly by the radial flow model, obtaining re = 0.208h, (Peaceman, 1978) 

(2) numerically by solving the pressure equation on a sequence of grids, deriving re = 

0.2h, and (3) by solving exactly the system of difference equations and using the 

equation for the pressure drop between the injector and producer in a repeated five-spot 

pattern problem, finding re = 0.1987h. From these approaches, he concluded that re ≈ 

0.2h.(Peaceman, 1978). 

         Peaceman’s finite difference well models on square grids have been extended in 

various directions, including to rectangular grids, anisotropic reservoirs, horizontal 

wells, and multiphase flows and to incorporating gravity force, skin, and non-Darcy 

effects. (Peaceman, 1978). 

Lee and Milliken (1993): Studied an arbitrary monobore well in a layered system of 

laterally infinite extent. They combined a semianalytical solution based on slender body 

theory with a finite difference pressure solution with lateral pressure boundary 

conditions described by the semianalytical solution.(Lee and Milliken, 1993). 
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Ding (1996):  Introduced a layer potential function to obtain a steady state pressure 

distribution in the vicinity of the well in three dimensions (3D). Furthermore, he 

adjusted well block transmissibilities to account for radial flow.(Ding, 1996). 

 

Ewing et al. and Garanzha et al. (1999): Studied the grid pressures obtained from the 

simulation of single phase flow through an isotropic porous medium using different 

numerical methods. Furthermore, (non-Darcy) flow well equations are developed for 

cell-centered finite difference, Galerkin finite element and mixed finite element 

techniques.(Ewing et al., 1999). 

 

Recently, Ding and Jeannin (2001): Developed a multipoint discretization in a 

curvilinear coordinate system and used the discretization coefficient of an elliptic 

equation as the well index. This method can reduce the calculation errors for the well 

dominating well flow. Consequently, good results are obtained with these new 

approach. This proposed approach can be used for any kind of flexible grid for the near-

well modeling.(Ding and Jeannin, 2001). 

 

Wolfsteiner et al (2003): Extended Peaceman’s well models to account for different 

well configurations in heterogeneous porous medium involving horizontal wells, where 

it is shown –Wolfsteiner's method when applied on horizontal wells- to be capable of 

approximating the effects of sub-grid heterogeneity in different finite difference 

models.(Wolfsteiner et al., 2003) 

 

Chen and Yue (2003): Studied steady flow transport through highly heterogeneous 

porous media driven by extraction wells, they derived a well model by introducing 

multiscale basis functions that resolve well singularity, they also derived a new 

homogenization results for green functions in their model, and made numerical 

experiments for flow transport in both periodic and randomly generated log-normal 

permeabilities to demonstrate the efficiency and accuracy of their proposed 

method.(Chen and Yue, 2003). 

 

And Aarnes (2004): Proposed a modified mixed multiscale finite element method that 

can account for radial flow near a well, by solving elliptic flow problems on porous 

media. The method incorporates the effect of small-scale heterogeneous structures in 
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the elliptic coefficients into the base functions and produces a detailed velocity field, 

that can be used to solve phase transport equations at a sub-grid scale.(Aarnes, 2004). 

 

Later ZHANGXIN CHEN AND YOUQIAN ZHANG (2009): Presented a 

systematical derivation of well models for several numerical methods such as: standard 

finite elements, control volume finite elements, and mixed finite element methods. 

Their well models have particular applications to groundwater hydrology and 

petroleum reservoirs.(Chen and Zhang, 2009). 

N. Natarajan and G. Suresh Kumar (2010): They proposed an alternative approach 

to the decomposition method for solving multispecies transport in porous media, 

coupled with first-order reactions has been proposed. Their numerical solution is based 

on implicit finite difference method. The task of decoupling the coupled partial 

differential equations has been overcome in this method. Their proposed approach is 

very much advantageous because of its simplicity and also can be adopted in situations 

where non-linear processes are coupled with multi-species transport 

problems.(Natarajan and Kumar, 2010). 

K. RAZMINIA, A. RAZMINIA, R. KHARRAT, D. BALEANU (2014): Solved the 

diffusivity equation models numerically by using differential quadrature method, their 

method provided computationally efficient and accurate in differential quadrature 

analysis of diffusivity equation to overcome the large computation times. This method 

overcame the difficulties in boundary conditions implementations of second order 

partial differential equations encountered in such problems.(Razminia et al., 2014). 

Finally, Azizollah Khormali, Seyyed Shahab Tabatabaee Moradi, Dmitry 

Petrakov (2014):  Determined the pressure distribution in a reservoir in the unsteady 

state regime of flow by applying Darcy’s equation and solving it numerically.  The 

numerical simulation of reservoirs is based on numerical solutions of different partial 

differential equations (PDEs) representing the multiphase flow of fluids. They obtained 

Pressure profile in a one dimensional system by solving Darcy’s equation explicitly. 

They investigated the changes in pressure profile in three situations. These situations 

include section length changes, step time changes and time approach to 

infinity.(Khormali et al., 2014). 

         

        As far as the authors know, however, most of these existing well models have been 

developed for finite difference methods.  
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2.3. Theoretical Background 

2.3.1. Introduction: - 

        The information we obtain from a newly discovered field is scanty at best. It is 

also disjointed to a certain extent, because bits and pieces of information are emanating 

from different parts of the field, so to integrate these pieces of information as accurately 

as possible in order to construct a global picture of the system, we need to do a reservoir 

simulation. As field development progresses, more information becomes available, 

enabling us to continually refine the reservoir description.                                      

        A reservoir simulation study is the only practical laboratory in which we can 

design and conduct tests to adequately address these questions. From this perspective, 

reservoir simulation is a powerful screening tool. 

       There are many factors dictating the choice of reservoir simulation approach they 

are: The complexity of the problem at hand, the amount of data available, and the 

study’s objectives. Broadly classified, there are two simulation approaches we can take: 

analytical and numerical. 

• The analytical approach, as is the case in classical well test analysis, involves a great 

deal of assumption in essence, it renders an exact solution to an approximate problem. 

• The numerical approach, on the other hand, attempts to solve the more realistic 

problem with less stringent assumptions—in other words, it provides an approximate 

solution to an exact problem.                          

         To do reservoir simulation there is some properties must be known like rock and 

fluid properties, flow geometry and dimension, number of phase flowing. 

2.3.2. Rock properties: - 

          Porosity, it’s a very important property in fluid flow throw reservoir porous, and 

in flow there is only an effective porosity effect. (Ahmed, 2006) 
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        Effective porosity is a dimensionless quantity, defined as the ratio of 

interconnected pore volume to the bulk volume. And in the flow equations used in 

reservoir simulation, porosity appears as one of the parameters that scales the volume 

of fluids present in the reservoir at any time.(Ahmed, 2006) 

        Another important property that affect fluid flow throw reservoir porous is 

permeability, it defines by measuring of a rock’s ability to transmit fluids. So a 

hydrocarbon reservoir to be commercial, it must not only be porous, but also permeable, 

permeability varies widely in naturally occurring reservoirs, from a fraction of a 

millidarcy to several darcies.(Mattax and Dalton, 1990)                                

         Also the homogeneity and heterogeneity of a reservoir system play a big role in 

the amount of difficulty of a model; homogeneous systems feature uniform spatial 

distribution (Formation with rock properties that do not change with location in the 

reservoir) This ideal never actually occurs, but many formations are close enough to 

this situation that they can be considered homogeneous. Most of the models used for 

pressure-transient analysis assume the reservoir is homogeneous, and The quality of 

variation in rock properties with location in a reservoir or formation, while 

heterogeneous systems exhibit non-uniform distribution (rock properties change with 

location in the reservoir). For simplicity’s sake, we often assume homogeneity in 

reservoir calculations, even though many reservoirs are heterogeneous. This is where 

numerical reservoir simulation becomes a very powerful tool, because it allows us to 

incorporate property variation in the system.     (Ahmed, 2006)                                       

          Some parameters used in reservoir simulation exhibit directional dependency. A 

reservoir exhibits isotropic property distribution if that property has the same value 

regardless of the direction in which we measure it. On the other hand, if a property’s 

value does vary with direction, then the reservoir is anisotropic with respect to that 

property.(Mattax and Dalton, 1990) 

 

2.3.3. Fluid properties: -                                                                                           

            Fluid properties, like rock properties, significantly affect fluid flow dynamics 

in porous media, it is often necessary in reservoir simulation to estimate these properties 

using correlations and/or equations of state. 

            For gasses the properties of interest in the gas flow equation are density, 

compressibility factor, compressibility, formation volume factor and viscosity, the 

http://www.glossary.oilfield.slb.com/en/Terms/f/formation.aspx
http://www.glossary.oilfield.slb.com/en/Terms/r/rock_properties.aspx
http://www.glossary.oilfield.slb.com/en/Terms/r/reservoir.aspx
http://www.glossary.oilfield.slb.com/en/Terms/h/homogeneous.aspx
http://www.glossary.oilfield.slb.com/en/Terms/p/pressure.aspx
http://www.glossary.oilfield.slb.com/en/Terms/r/rock_properties.aspx
http://www.glossary.oilfield.slb.com/en/Terms/r/reservoir.aspx
http://www.glossary.oilfield.slb.com/en/Terms/f/formation.aspx
http://www.glossary.oilfield.slb.com/en/Terms/r/rock_properties.aspx
http://www.glossary.oilfield.slb.com/en/Terms/r/reservoir.aspx
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compressibility factor introduces an important non-linearity, in that it appears in the 

formation volume factor. Gas viscosity is also strongly dependent on pressure, and 

needs to be calculated as pressure varies spatially and temporally. Table (2-1) below 

summarizes the equations and correlations necessary for determining gas 

properties(Mattax and Dalton, 1990) 

 

Real Gas Law 

 

PV=ZnRT 

Density 
𝝆 =

𝑷𝑴

𝒁𝑹𝑻
 

Compressibility 
∁=

𝟏

𝑷
−
𝟏

𝒁
(
𝝏𝒁

𝝏𝑷
) 

Gas Deviation  Factor Z=f(P,T) 

Formation Volume Factor 
𝑩𝒈 =

𝒁𝑻𝑷𝒔𝒄
𝑻𝒔𝒄𝑷

 

Viscosity 𝝁 = 𝒇(𝑷, 𝑻) 

 

Table 2-1 equations and correlations for real gases.(Mattax and Dalton, 1990) 

           Oil properties that appear in the governing flow equations for the oil phase are 

density, compressibility, formation volume factor, viscosity and solubility of gas in oil. 

In the absence of gas, these oil properties can be treated as constants, because the 

compressibility of gas-free oil is very small. However, the presence of dissolved gas in 

oil necessitates the use of appropriate correlations to determine the variation of these 

properties with pressure and temperature.(Mattax and Dalton, 1990) 

          Water properties that affecting flow equations for water phase are: density, 

compressibility, formation volume factor, viscosity and gas solubility. Since gas 
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solubility in water is very small compared to oil, for most practical cases, we assume 

constant values for these properties that come into play in the water flow 

equation.(Mattax and Dalton, 1990) 

2.3.4. Reservoir Rock/Fluid Interactions: - 

         The principal fluids in a petroleum reservoir are water, oil and gas. When they 

exist as free phases, they are generally immiscible. When these immiscible fluids co-

exist in the reservoir pore space, their interactions with one another and with the 

containing rock control their spatial distribution and movement. The two principal 

properties used to quantify these interactions are wettability, which pertains to rock-

fluid interactions, and interfacial tension, which relates to fluid-fluid 

interactions.(Mattax and Dalton, 1990) 

          When two immiscible fluids co-exist in the same pore space, one preferentially 

adheres to the rock surface. This phenomenon is known as wetting, and the fluid that 

is preferentially attracted is referred to as having a higher wettability index. The 

parameter which determines the wettability index is called adhesion tension, and it is 

directly related to interfacial tension. Interfacial tension is a measure of the surface 

energy per unit area of the interface between two immiscible fluids. The study of 

surface energy phenomena is very important in recovery processes, in that many EOR 

processes are based on altering the surface energy so as to favor oil recovery.(Mattax 

and Dalton, 1990) 

           Relative permeability also a property results from reservoir rock and fluid 

interactions, and defined as: When two or more immiscible fluids flow simultaneously 

through a porous medium, they compete and do not move at equal velocity. This results 

on the one hand from interactions between the fluids and the rock, and on the other 

from interactions among the fluids themselves. Although relative permeability is not a 

fundamental property of fluid dynamics, it is the accepted quantitative parameter used 

in reservoir engineering. Relative permeability appears prominently in the flow 

equations used in reservoir simulation.  (Ahmed, 2006) 
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2.3.5. Flow Geometries and Dimensions: - 

a) Rectangular flow geometry: -  in (x, y, z) directions, that shown in figure (2-1) 

below, in this 

case the streamlines are parallel to the three principal axes (x, y, and z), which are 

orthogonal. With smaller element of dimensions, (∆x, ∆y, ∆z) as a control volume to 

set up and discrete the governing equations.(Mattax and Dalton, 1990). 

b) Radial-cylindrical flow geometry: - 

The radial-cylindrical coordinate system is particularly appealing for describing single-

well problems. Figure (2-2) shows the principal directions of this flow geometry and 

its elemental volume.(Mattax and Dalton, 1990). 

 

Figure (2-1) Rectangular flow geometry in (x, y, z) directions(Mattax and Dalton, 

1990) 

 

Figure (2-2) the principal directions of radial flow geometry.(Mattax and Dalton, 

+1990) 
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        The three principal flow directions are radial (r), vertical (z) and tangential (𝜃). If 

we assume a reservoir of uniform thickness, then the system becomes two concentric 

cylinders of the same height. A particle moving in three-dimensional radial-cylindrical 

flow geometry can be illustrated as in Figure (2-3): 

 

Figure (2-3) moving in three-dimensional radial-cylindrical flow geometry(Mattax 

and Dalton, 1990) 

         But in our model we assume the wellbore is cylindrical, and the flow is in one 

dimension(r-dimension) like in figure (2-4): 

 

 

Figure (2-4) flow in one dimension(r-dimension), inside cylindrical wellbore.(Mattax 

and Dalton, 1990) 
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2.3.6. Number of flowing fluids in the reservoir: - 

          The mathematical expressions that are used to predict the volumetric 

performance and pressure behavior of the reservoir vary in forms and complexity 

depending upon the number of mobile fluids in the reservoir. There are generally three 

cases of flowing systems: Single-phase flow (oil, water, or gas), two-phase flow (oil-

water, oil-gas, or gas-water), and three-phase flow (oil, water, and gas). Here us discuss 

will focus on single phase flow, and we will discuss the equations that control this 

flow.(Mattax and Dalton, 1990) 

A. Single-Phase Flow Equations: - 

        Single-phase flow in petroleum reservoirs is rare in practice. There are only a 

limited number of cases dry gas reservoirs, for example where conditions exist for 

single-phase flow. But we do apply single-phase flow assumptions (predominantly in 

well test analysis) as a means of simplifying problems and rendering them analytically 

tractable. 

          In numerical reservoir simulation, we may relax these types of simplifying 

constraints because of the more versatile nature of numerical schemes over analytical 

methods.(Mattax and Dalton, 1990). 

Fluid flow equation (Darcy’s law): - 

               The fundamental law of fluid motion in porous media is Darcy’s Law. The 

mathematical expression developed by Henry Darcy in 1856 states the velocity of a 

homogeneous fluid in a porous medium is proportional to the pressure gradient and 

inversely proportional to the fluid viscosity.(Ahmed, 2006) 

For a horizontal linear system, this relationship is:  

𝝂 =
𝒒

𝑨
= −

𝒌

𝝁

𝝏𝒑

𝝏𝒙
                                              (2-1) 

(v) is the apparent velocity in centimeters per second, (A) is total cross-sectional area 

of the rock in square centimeters .(μ) is viscosity, and expressed in centipoise units(cp), 
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and the pressure gradient (
𝜕𝑝

𝜕𝑥
) is in atmospheres per centimeter(psi), The 

proportionality constant k is the permeability of the rock expressed in Darcy units. 

For a horizontal-radial system, this relationship is:  

                                          𝝊 =
𝒒𝒓

𝑨𝒓
=

𝒌

𝝁
(
𝝏𝒑

𝝏𝒓
)
𝒓
                                   (2-2) 

Where  𝑞𝑟 = volumetric flow rate at radius r 

           𝐴𝑟 = cross-sectional area to flow at radius  

     (
𝜕𝑝

𝜕𝑟
)
𝑟
  = pressure gradient at radius r 

             ν = apparent velocity at radius r 

Darcy’s Law applies only when the following conditions exist:  

Laminar (viscous) flow, steady-state flow, incompressible fluids, and homogeneous 

formation. 

       We usually formulate the differential equations governing fluid flow in porous 

media based on the continuum assumption, in which we consider a differential element 

of the system and take balances over a conserved quantity of interest. When the quantity 

is mass, the resulting equation is the mass balance equation or the continuity equation. 

Figure (2-5) shows a representative element (control volume) of the reservoir in radial 

coordinates. (Ahmed, 2006) 

Conservation of mass: - 

The conservation of mass principle simply says that over a fixed time period, 

[Mass in] - [Mass out] = [Net change in mass content] 

Applying this principle to the system in Figure (2-5), we obtain the continuity equation 

(2-3) shown below: 
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Figure (2-5): control volume of the reservoir in radial coordinates.(Razminia et al., 

2014)  

−𝜵(𝝆𝒗𝒔⃗⃗ ⃗⃗ ⃗⃗  ⃗) =
𝝏

𝝏𝒕
(∅𝝆)                                        (2-3) 

          In the equation above the left side-hand term is referred to as the mass flux term, 

while the right-side hand term is called the mass accumulation term. 

We can rewrite the equation in radial coordinates like: 

     −𝛁(𝝆𝒗𝒔⃗⃗ ⃗⃗ ⃗⃗  ⃗) = −
𝟏

𝒓

𝝏

𝝏𝒓
(𝒓𝝆𝒗𝒓) +

𝟏

𝒓

𝝏

𝝏𝜽
(𝝆𝒗𝜽) +

𝝏

𝝏𝒛
(𝝆𝒗𝒛)             (2-4) 

         Where: v is the velocity vector,𝜌 is the density,∅ is the porosity,𝑣𝑠 is the velocity 

component in s directions of a radial coordinate system. 

        The porosity term in the right-hand-side of the Equation, if treated as a constant, 

will come out of the differential operator. This is a reasonable assumption for a reservoir 

with low rock compressibility. 

        With appropriately defined terms and parameters, Equation (2-4) is general and 

can be used for any system. To specialize it to porous media, we must invoke Darcy’s 

law. Substituting Darcy’s law, written in terms of velocity as:(Mattax and Dalton, 1990) 
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𝝊 =
𝒒𝒓

𝑨𝒓
=

𝒌

𝝁
(
𝝏𝒑

𝝏𝒓
)
𝒓
                                                 (2-5) 

        We obtain the flow equation for porous media. In a radial coordinate system, this 

equation becomes:  

𝟏

𝒓

𝝏

𝝏𝒓
(𝝆

𝑲𝒓

𝝁

𝝏𝑷

𝝏𝒓
) +

𝝏

𝝏𝜽
(𝝆

𝑲𝜽

𝝁

𝝏𝑷

𝝏𝜽
) +

𝝏

𝝏𝒛
(𝝆

𝑲𝒛

𝝁

𝝏𝑷

𝝏𝒛
) =

𝝏

𝝏𝒕
(𝝆∅)      (2-6) 

Where: 

P: pressure                 𝝆: fluid density                (r,𝜽, z):radial coordinates. 

𝝁: Viscosity.            𝑲𝒓, 𝑲𝜽 ,𝑲𝒛: permeability at (r,𝜃.z)directions. 

        The above equation called (continuity equation), or flow equation that’s control 

flow in porous media, and that’s the general form of it. In the natural reservoirs this 

equation is controlled by fluids types. In general, reservoir fluids are classified into 

three groups: Incompressible fluids, slightly compressible fluids, and Compressible 

fluids.         

I. Incompressible fluids:  

 It’s defined as the fluids whose volume (or density) does not change with pressure: 

                       
𝝏𝑽

𝝏𝑷
= 𝟎                                                                      (2-7) 

                
𝝏𝝆

𝝏𝑷
= 𝟎                                                                        (2-8) 

          So at flow equation, for an incompressible fluid density and viscosity are constant, and 

if we assume that porosity does not vary with pressure, we obtain: 

  𝝆
𝑲

𝝁

𝟏

𝒓

𝝏

𝝏𝒓
(
𝝏𝑷

𝝏𝒓
) + 𝝆

𝑲

𝝁

𝝏

𝝏𝜽
(
𝝏𝑷

𝝏𝜽
) + 𝝆

𝑲

𝝁

𝝏

𝝏𝒛
(
𝝏𝑷

𝝏𝒛
) + 𝒒𝒔𝒄 = 𝟎                         (2-9) 
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      This equation is written for heterogeneous and anisotropic formations. For such a 

formation, and without injection or production, equation above can simplify to: 

                       
𝟏

𝒓
(
𝝏𝟐𝑷

𝝏𝒓𝟐
) +

𝝏𝟐𝑷

𝝏𝜽𝟐
+
𝝏𝟐𝑷

𝝏𝒛𝟐
= 𝟎                                             (2-10) 

Which known as Laplace equation in radial coordinates. 

II. Slightly compressible fluids:  

          This fluid exhibits small changes in volume, or density, with changes in pressure. 

And so at flow equation, for a slightly compressible fluid density and viscosity exhibit 

weak dependence on pressure, Furthermore, for a slightly compressible fluid, we 

usually assume that compressibility does not vary within the pressure range of 

interest(Ahmed, 2006).       

𝟏

𝒓

𝝏

𝝏𝒓
(𝝆

𝑲𝒓

𝝁

𝝏𝑷

𝝏𝒓
) +

𝝏

𝝏𝜽
(𝝆

𝑲𝜽

𝝁

𝝏𝑷

𝝏𝜽
) +

𝝏

𝝏𝒛
(𝝆

𝑲𝒛

𝝁

𝝏𝑷

𝝏𝒛
) = 𝑽𝒃∅𝑪(

𝝏𝑷

𝝏𝒕
)      

(2-11) 

         For slightly compressible fluids the changes in viscosity with pressure are 

negligible and they can be treated as constants. Furthermore, if we assume that we are 

dealing with homogeneous and isotropic porous media with no well, Equation above 

reduces to a simpler form, which is known as the diffusivity equation at radial form: 

                  
𝟏

𝒓
(
𝝏𝟐𝑷

𝝏𝒓𝟐
) +

𝝏𝟐𝑷

𝝏𝜽𝟐
+
𝝏𝟐𝑷

𝝏𝒛𝟐
=

∅𝝁𝑪

𝑲

𝝏𝑷

𝝏𝒕
                                      (2-12) 

∅𝝁𝑪

𝑲
 = 

𝟏

𝜶
  (𝛼 called hydraulic diffusivity constant for the reservoir fluid system) 

C: fluid compressibility (𝒑𝒔𝒊−𝟏).                     𝝁 : viscosity (cp).   

 ∅ : Porosity (dimensionless).                       𝑽𝒃: Bulk volume (𝒇𝒕𝟑). 

III. Compressible flow equation:  

         These are fluids that experience large changes in volume as a function of pressure. 

All gases are considered compressible fluids; compressible fluid flow involves 
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additional considerations. The highly compressible nature of gas makes certain gas 

properties (i.e., viscosity, density, and compressibility factor) strongly dependent on 

pressure. Since we cannot assume that these properties are constant, they introduce non-

linarites to the flow equations. The numerical handling of the flow equations becomes 

more challenging as the degree of non-linearity increases.  (Mattax and Dalton, 1990)                                       

B. Multiphase flow equations: - 

         Multi-phase flow equations are based on the same principles that govern single-

phase flow, except that they must account for interactions between simultaneously 

flowing phases in porous media. The main parameters that we use to characterize these 

interactions are relative permeability, saturations and solution gas-liquid ratios. (Mattax 

and Dalton, 1990). 

          In this research we will focus on single phase flow equations, with assuming our 

reservoir is only occupied by oil. 

2.4. Mathematical Model 

2.4.1. Introduction 

          Flow in porous media is a very complex phenomenon and as such cannot be 

described as explicitly as flow through pipes or conduits. in porous media, however, 

flow is different in that there are no clear-cut flow paths which lend themselves to 

measurement.  

         The forms of mathematical relationships that are designed to describe the flow 

behavior of the reservoir fluids will vary depending upon the characteristics of the 

reservoirs. 

        Reservoir properties which we talked about previously in this chapter make the 

mathematical discerption very hard, that we used assumptions to minimize the 

difficulty of discerption and solution.  

The mathematical model we discussed here fall under this assumptions: 

             1-Homogeneous and isotropic porous medium. 
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2-Uniform thickness. 

3-Single phase flow, in one dimension. 

4-Laminar flow. 

5-unsteady state flow. 

6-control volume and isothermal system. 

7-slithgly compressible fluid. 

8-radial flow system and the well in the center of geometry. 

9- finite and infinite reservoir. 

            10-full perforated interval. 

2.4.2. Reservoir Initial and Boundary Conditions: 

Initial Condition: At the start of production, the pressure in the reservoir is assumed 

to be at some uniform value, Pi. 

Boundary condition at infinity: Infinitely far from the well, the pressure will 

always remain at its initial value, Pi. 

Boundary condition at finite: The arrival of the pressure disturbance at the well 

drainage boundary marks the end of the transient flow period and the beginning of the 

semi (pseudo)-steady state. During this flow state, the reservoir boundaries and the 

shape of the drainage area influence the wellbore pressure response as well as the 

behavior of the pressure distribution throughout the reservoir. 

Boundary condition at the wellbore: At the wellbore, which is assumed to be 

infinitely small, the flux must be equal to Q (into the well) at all times t > 0.  

We can therefore formulate the problem in precise mathematical terms as follows: 
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Initial condition:             𝐏(𝐫. 𝐭 = 𝟎) = 𝐏𝐢                                                 (2-13) 

Boundary condition at wellbore:            𝐥𝐢𝐦
𝐫→∞

[
𝟐𝛑𝐤𝐡

𝛍
𝐫
𝛛𝐩

𝛛𝐫
] = 𝐐                    (2-14) 

Boundary condition at r = ∞ :             𝐥𝐢𝐦
𝐫→∞

𝐏(𝐫. 𝐭) = 𝐏𝐢                             (2-15) 

Boundary condition at r = re:                
𝝏𝒑

𝝏𝐫𝐞
= 𝟎                                      (2-16) 

2.4.3. Mathematical Model Derivation:  

         Consider the flow element shown in Figure 2-6 The element has a width of (dr) 

and is located at a distance of (r) from the center of the well. The porous element has a 

differential volume of dV. 

        According to the concept of the material-balance equation, the rate of mass flow 

into an element minus the rate of mass flow out of the element during a differential time 

=Δt must be equal to the mass rate of accumulation during that time interval, 

or:(Ahmed, 2006)   

            

                            __                                      = 

                                                                                                                               (2-17) 

                 

 

The mass 

leaving the 

volume 

element 

during Δt 

The mass 

entering the 

volume 

element 

during Δt 

 

the mass 

rate of 

accumulati

on during 

Δt                              
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Figure (2-6) Illustration of radial flow.(Ahmed, 2006) 

The individual terms of Equation (2-17) are described below: 

Mass entering the volume element during time interval Δt 

                       (𝒎𝒂𝒔𝒔)𝒊𝒏 = ∆𝒕 [𝚨𝝆𝝂]𝒓+𝐝𝒓                                 (2-18) 

  velocity of flowing fluid, ft/day. 

Ρ = fluid density at (r +dr), (lb./𝑓𝑡3). 

 = Area at (r +dr),( 𝑓𝑡2). 

Δt = time interval, (day). 

The area of element at the entering side is:  

                         𝚨𝒓+𝒅𝒓 = 𝟐𝝅 (𝒓 + 𝒅𝒓) 𝒉                                  (2-19) 

Combining Equation (2-18) with (2-19) gives: 

                   (𝒎𝒂𝒔𝒔)𝒊𝒏 = 𝟐𝝅 𝚫𝒕(𝒓 + 𝒅𝒓)𝒉 [𝝆𝝂]𝒓+𝒅𝒓        (2-20) 
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Mass leaving the volume element: - 

Adopting the same approach as that of the leaving mass gives: 

                   (𝒎𝒂𝒔𝒔)𝒐𝒖𝒕 = 𝟐𝝅 𝚫𝒕 𝒓𝒉 [𝝆𝝂]𝒓                                    (2-21) 

Total Accumulation of Mass: - 

The volume of some element with a radius of r is given by: 

                          𝑽 = 𝝅𝒓𝟐𝒉                                                     (2-22) 

Differentiating the above equation with respect to r gives: 

                                      
𝒅𝑽

𝒅𝒓
= 𝟐𝝅𝒓𝒉                                                   (2-23) 

                                  𝒅𝑽 = (𝟐𝝅𝒓𝒉) 𝒅𝒓                                         (2-24) 

Total mass accumulation during t       = 𝒅𝑽[(𝝆𝝓)𝒕+𝚫𝒕 − (𝝆𝝓)𝒕]       (2-25) 

Substituting for dV yields: 

Total mass accumulation = (𝟐𝝅𝒓𝒉)𝒅𝒓 [(𝝆𝝓)𝒕+𝚫𝒕 − (𝝆𝝓)𝒕]  (2-26) 

Replacing terms of Equation (2-25) with those of the calculated relationships gives: 

[𝟐𝛑 𝚫𝐭(𝐫 + 𝐝𝐫)𝐡 [𝛒𝛎]𝐫+𝐝𝐫] − [𝟐𝛑 𝚫𝐭 𝐫𝐡 [𝛒𝛎]𝐫] = [(𝟐𝛑𝐫𝐡)𝐝𝐫 [(𝛒𝛟)𝐭+𝚫𝐭 −  (𝛒𝛟)𝐭]                             

(2-27) 

Dividing the above equation by (2𝜋rh) dr t and simplifying, gives 

𝟏

𝒓 𝒅𝒓
[(𝒓 + 𝒅𝒓) [𝝆𝝂]𝒓+𝒅𝒓 − 𝒓[𝝆𝝂]𝒓] =

𝟏

𝚫𝒕
[(𝝆𝝓)𝒕+𝚫𝒕 − (𝝆𝝓)𝒕] 

    or                                  
𝟏

𝒓

𝝏

𝝏𝒓
(−𝒓𝝆𝝂) =

𝝏

𝝏𝒕
(𝝆𝝓)                              (2-28) 
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Where: 

 = porosity. 

 = density, (lb./𝑓𝑡3). 

= fluid velocity, (ft/day). 

        Equation (2-28) is called the continuity equation and it provides the principle of 

conservation of mass in radial coordinates. The transport equation must be introduced 

into the continuity equation to relate the fluid velocity to the pressure gradient within 

the control volume dV. Darcy’s Law is essentially the basic motion equation, which 

states that the velocity is proportional to the pressure gradient 
𝝏𝒑

𝝏𝒓
 : 

                                     = (𝟓. 𝟔𝟏𝟓) (𝟎. 𝟎𝟎𝟏𝟏𝟐𝟕)
𝒌

𝝁

𝝏𝒑

𝝏𝒓
  

                                      = 𝟎. 𝟎𝟎𝟔𝟑𝟐𝟖
𝒌

𝝁

𝝏𝒑

𝝏𝒓
                                           (2-29) 

Where: 

 K = permeability, (md). 

 =velocity, (ft/day). 

Combining Equation (2-28) with Equation (2-29) results in: 

                  
𝟎.𝟎𝟎𝟔𝟑𝟐𝟖

𝐫

𝛛

𝛛𝐫
[
𝐤

𝛍
(𝐫𝛒)

𝛛𝐩

𝛛𝐫
] =

𝛛

𝛛𝐭
(𝛒𝛟)                              (2-30) 

 

       Expanding the right-hand side by taking the indicated derivatives eliminates the 

porosity from the partial derivative term on the right-hand side: 

                       
𝝏(𝝆𝝓)

𝝏𝒕
= 𝝆

𝝏𝝓

𝝏𝒕
+𝝓

𝝏𝝆

𝝏𝒕
                                 (2-31) 
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Porosity is related to the formation compressibility by the following: 

                       𝑪𝒇 =
𝟏

𝝓

𝝏𝝓

𝝏𝒑
                                                (2-32) 

Applying the chain rule of differentiation to
𝝏𝝓

𝝏𝒕
: 

𝝏𝝓

𝝏𝒕
=

𝝏𝝓

𝝏𝒑

𝝏𝒑

𝝏𝒕
                                              (2-33) 

Substituting Equation (2-32) into equation (2-33): 

𝝏𝝓

𝝏𝒕
= 𝑪𝒇 𝝓

𝝏𝒑

𝝏𝒕
                                        (2-34) 

 Since                                         
𝝏𝝓

𝝏𝒑
= 𝑪𝒇𝝓                                                 (2-35) 

Density is related to the formation compressibility by the following: 

                              𝑪 =
𝟏

𝝆

𝝏𝝆

𝝏𝒑
                                                     (2-36) 

Applying the chain rule of differentiation to 
𝝏𝝆

𝝏𝒕
: 

                              
𝝏𝝆

𝝏𝒕
=

𝝏𝝆

𝝏𝒑

𝝏𝒑

𝝏𝒕
                                                  (2-37) 

Substituting Equation (2-36) into equation (2-37): 

                         
𝝏𝝆

𝝏𝒕
= 𝑪𝝆

𝝏𝒑

𝝏𝒕
                                               (2-38) 



-25- 

Since                                               
𝝏𝝆

𝝏𝑷
= ∁𝝆                                                 (2-39) 

Substituting Equations (2-30), (2-34) & (2-38) into equation (2-40): 

                     
𝟎.𝟎𝟎𝟔𝟑𝟐𝟖

𝒓

𝝏

𝝏𝒓
[
𝒌

𝝁
(𝒓𝝆)

𝝏𝒑

𝝏𝒓
] = 𝑪𝒇 𝝓

𝝏𝒑

𝝏𝒕
  + 𝑪𝝆

𝝏𝒑

𝝏𝒕
                (2-40)                                                       

Equation (2-40) is the general partial differential equation used to describe the flow of 

any fluid flowing in a radial direction in porous media. In addition to the initial 

assumptions, Darcy’s equation has been added, which implies that the flow is laminar. 

Otherwise, the equation is not restricted to any type of fluid and equally valid for gases 

or liquids. Compressible and slightly compressible fluids, however, must be treated 

separately in order to develop practical equations that can be used to describe the flow 

behavior of these two fluids. 

The treatments of the Radial Flow of Slightly Compressible Fluids:    

To simplify Equation (2-40), assume that the permeability and viscosity are constant 

over pressure, time, and distance ranges and assume that the system is homogenous. 

This leads to: 

      [
𝟎.𝟎𝟎𝟔𝟑𝟐𝟖 𝐤 𝛒

𝐫 𝛍
]
𝛛

𝛛𝐫
[(𝐫)

𝛛𝐩

𝛛𝐫
] = 𝐂𝐟 𝛒𝛟

𝛛𝐩

𝛛𝐭
  +  𝐂𝛒𝛟

𝛛𝐩

𝛛𝐭
             

(2-41) 

The RHS (Right Hand Side) of the above equation: 

                    𝑪𝒇 𝝓
𝝏𝒑

𝝏𝒕
  +  𝑪𝝆

𝝏𝒑

𝝏𝒕
= 𝝆𝝓(𝑪𝒇 + 𝑪)

𝝏𝒑

𝝏𝒕
                   (2-42) 

Define total compressibility 𝑪𝒕 

  𝑪𝒕 = 𝑪𝒇 + 𝑪                                              (2-43) 
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Combining Equations (2-41) with (2-42) & (2-43), and rearranging gives: 

                     
𝝏𝟐𝒑

𝝏𝒓𝟐
+
𝟏

𝒓

𝝏𝒑

𝝏𝒓
=

𝝓𝝁𝑪𝒕

𝟎 𝟎𝟎𝟎𝟐𝟔𝟒 𝐤

𝝏𝒑

𝝏𝒕
                             (2-44) 

k = permeability, (md). 

r = radial position, (ft). 

p = pressure, (Pisa). 

Ct = total compressibility, (𝑝𝑠𝑖−1). 

t = time, (Days). 

 = porosity (Dimensionless). 

 = viscosity, (cp). 

The term [
𝟎 𝟎𝟎𝟎𝟐𝟔𝟒 𝐤

𝝓𝝁𝑪𝒕
] (Equation 2-44) is called the diffusivity constant and is denoted 

by the symbol , or                 

 =
𝟎 𝟎𝟎𝟎𝟐𝟔𝟒 𝐤

𝝓𝝁𝑪𝒕
                                                (2-45) 

     The diffusivity equation can then be written in a more convenient form as: 

                     
𝛛𝟐𝐩

𝛛𝐫𝟐
+
𝟏

𝐫

𝛛𝐩

𝛛𝐫
=

𝟏



𝛛𝐩

𝛛𝐭
                                          (2-46) 

        The diffusivity equation as represented by Equation (2-44) is essentially designed 

to determine the pressure as a function of time t and position r. 
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Chapter 3 

Methodology 

3. 1. Dimensionless Variable Concept  

        In simulation and well test analysis often makes use of the concept of the 

dimensionless variables in solving the unsteady-state flow equation. The importance of 

dimensionless variables is that they simplify the diffusivity equation and its solution by 

combining the reservoir parameters (such as permeability, porosity, etc.) and thereby 

reduce the total number of unknowns. To introduce the concept of the dimensionless, 

consider for example Darcy’s equation in a radial form as:(Ahmed, 2006) 

𝑸 = 𝟎. 𝟎𝟎𝟕𝟎𝟖
𝒌𝒉(𝒑𝒆−𝒑𝒘𝒇)

µ𝒐𝑩𝒐𝐥𝐧 (
𝒓𝒆
𝒓𝒘
)

                                  (3-1) 

Rearrange the above equation to give: 

                     
(𝒑𝒆−𝒑𝒘𝒇)

(
𝑸𝒐𝑩𝒐𝝁𝒐
𝟎.𝟎𝟎𝟕𝟎𝟖 𝒌𝒉

)
= 𝐥𝐧 (

𝒓𝒆

𝒓𝒘
)                                    (3-2) 

         It is obvious that the right hand side of the above equation has no units (i.e., 

dimensionless) and, accordingly, the left-hand side must be dimensionless.  Since the 

left-hand side is dimensionless, and (pe - pwf) has the units of psi, it follows that the 

term [Qo Bo µo/(0.00708kh)] has units of pressure. In fact, any pressure difference 

divided by [Qo Bo µo/(0.00708kh)] is a dimensionless pressure. Therefore, Equation 

(2-46) can be written in a dimensionless form as:(Ahmed, 2006) 

                     𝑷𝑫 = 𝐥𝐧 (𝒓𝒆𝑫)                                       (3-3) 
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Where  

𝐏𝐃 =
(𝐩𝐢−𝐩(𝐫.𝐭))

(
𝐐𝐨𝐁𝐨𝛍𝐨
𝟎.𝟎𝟎𝟕𝟎𝟖 𝐤𝐡

)
                              (3-4) 

And:                                              𝒓𝒆𝑫 =
𝒓𝒆

𝒓𝒘
                                    (3-5) 

𝒓𝑫 =
𝒓

𝒓𝒘
                                       (3-6) 

𝒕𝑫 =
𝟎.𝟎𝟎𝟎𝟐𝟔𝟒𝟐 𝒌𝒕

𝝓𝝁𝒐𝒄𝒕𝒓𝒘
𝟐                          (3-7) 

Where: 

𝑃𝐷= dimensionless pressure drop. 

𝒓𝒆𝑫= dimensionless external radius. 

𝑡𝐷= dimensionless time. 

𝒓𝑫= dimensionless radius. 

t = time, (Days). 

p (r, t) = pressure at radius r and time t. 

k = permeability, (md). 

 µ= viscosity, (cp) 

3.2. Finite-Difference Approximation  

          The numerical method of finite differences will be used to approximate solutions 

to the mathematical model developed previously in chapter 2. Generally, finite-
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difference equations are used to approximate a differential equation when an analytical 

solution is unknown, or if the known analytical solution is cumbersome in application, 

because complex systems are normally encountered in reservoir modeling, analytical 

solutions are seldom available. Consequently, numerical methods are usually required. 

Inherent in the formulation of finite-difference equations are the process of 

discretization. There are several ways to discretize a given differential equation; 

however, the subsequent solution will be unique for the selected discretization 

technique. Therefore, suitable discretization choices must be made to insure accurate 

approximations. For reservoir modeling, this will include choices concerning grid type, 

node location, and others. Hydrocarbon reservoir simulation involves the process of 

obtaining finite-difference equations (FDE) that approximate a given differential 

equation. 

          The finite-difference approach gives us a great deal of flexibility in handling the 

non-linear partial differential equation, in addition to the property distribution in 

heterogeneous systems for which an analytical solution is not feasible. The governing 

equations, as well as the boundary conditions used for describing flow in porous media, 

have only first-order and second-order derivatives.(Hauss, 1988) 

the first-order derivative: - 

Forward-Difference Approximation: 

                        |
𝛛𝐩

𝛛𝐱
|
𝐢
=

𝐩𝐢+𝟏−𝐩𝐢

∆𝐱
                                         (3-8) 

 

Backward-Difference Approximation: 

|
𝛛𝐩

𝛛𝐱
|
𝐢
=

𝐩𝐢−𝐩𝐢−𝟏

∆𝐱
                                        (3-9) 
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Central-Difference Approximation: 

  |
𝛛𝐩

𝛛𝐱
|
𝐢
=

𝐩𝐢+𝟏−𝐩𝐢−𝟏

𝟐∆𝐱
                               (3-10) 

Second-order derivative: - 

           To approximate these second-order derivatives, we use central-difference 

approximation. 

                            |
𝛛𝟐𝐩

𝛛𝐱𝟐
|
𝐢
=

𝐩𝐢+𝟏−𝟐𝐩𝐢+𝐩𝐢−𝟏

∆𝐱𝟐
                                   (3-11) 

3.3. Constructing the Grid 

             The grid structure is comprised of concentric elemental cylinders of constant 

thickness (h), bounded at the wellbore by (rw) and the outer perimeter of the reservoir 

by (re) .The elemental cylinders will be referred to as blocks and will vary continuously 

in width from the wellbore to the external boundary of the model. The grid variation 

selected is logarithmic and is developed through a logarithmic transformation of 

coordinates. The purpose of the transformation is to systematically provide smaller 

nodal spacing in the vicinity of the wellbore where pressure gradients are higher while 

providing larger away from the wellbore where gradients are lower. This type of grid 

has been termed as an "irregular grid" and its primary application is in modeling radial 

and spherical flow systems; or in general, systems that require local grid refinements. 

(Hauss, 1988) 

                              𝐔 = 𝐥𝐧
𝐫

𝐫𝐰
                                                (3-12) 

          Since pressure is approximately a linear function of the logarithm of radius 

during unsteady state flow, equally spaced nodes within the U-coordinate system 

should produce approximately equal pressure drops between nodes in the original (r) 
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and transformed (U) systems Consequently , the uniform increment between nodes (∆u) 

will be chosen to satisfy.(Hauss, 1988) 

                        ∆𝐮 =
𝐮𝐞−𝐮𝐰

𝐦−𝟏
                                           (3-13)  

         Where the subscripts (e) and (w) are in reference to the perimeter of the reservoir 

and to the wellbore, respectively. The term M is the total number of grid block and grid 

points comprising the radial system. 

          The logarithmic transformation can be included in the reservoir FDE by 

transforming the equation from the r-coordinate system to the U-coordinate system. 

Expressing the reservoir equation in terms of the U-coordinate system will provide a 

systematic approach for developing a FDE with predominately constant spacing which 

will consequently(Hauss, 1988) 

 

Figure (3-1) constant node spacing, nodes located at 𝑢𝑒 and 𝑢𝑤  (Hauss, 1988) 

Schematic showing the constant node spacing chosen as a result, nodes are located at 

ue and uw 
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Figure (3-2) actual grid spacing in the cylindrical reservoir(Hauss, 1988) 

Figure (3-3) transformed grid by local grid refinements(Hauss, 1988) 

 

Illustration of the actual grid Figure (3-2) and the transformed grid Figure (3-3). 

 

Figure (3-4) adjacent node and interface boundary configuration for the (r) 

region(Hauss, 1988) 



-33- 

 

Figure (3-5) adjacent node interface boundary configuration for (U)(Hauss, 1988) 

3.4. MATLAB 

        MATLAB, which is short for Matrix Laboratory, incorporates numerical 

computation, symbolic computation, graphics, and programming. As the name 

suggests, it is particularly oriented towards matrix computations, and it provides both 

state-of-the-art algorithms and a simple, easy to learn interface for manipulating 

matrices 

3.5. Thomas Algorithm          

        The Thomas algorithm is an efficient way to solving tridiagonal matrix systems. 

It is a development of Gauss elimination method, used to solve a set of equations by 

convert them to a tridiagonal matrix system., More information about the general form 

of tridiagonal matrices is described in Appendix (A). 

and figure (3-6) represent the general algorithm in flow chart  
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Figure (3-6): the general flow chart of Thomas algorithm 

3.6. Analytical Solution 

         It involves a great deal of assumptions in essence, it renders an exact solution to 

an approximate problem, to obtain a solution to the diffusivity equation (Equation 2-

44), it is necessary to specify an initial condition and impose two boundary conditions. 

The initial condition simply states that the reservoir is at a uniform pressure (pi) when 

production begins. The two boundary conditions require that the well is producing at a 

constant production rate and that the reservoir behaves as if it were infinite in size.(Lee, 

1982)  

         One of the most basic and important problems in petroleum reservoir engineering, 

and the cornerstone of well-test analysis, is the problem of flow of a single-phase, 

slightly compressible fluid to a vertical well that is located in an infinite reservoir. This 

problem can be formulated precisely as follows: -(Lee, 1982) 

         Geometry: a vertical well that fully penetrates a reservoir which is of uniform 

thickness (h), and which extends infinitely far in all horizontal directions.(Lee, 1982) 
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           Reservoir Properties: the reservoir is assumed to be isotropic and homogeneous, 

with constant properties (i.e., permeability, etc.) that do not vary with pressure. 

           Initial and Boundary Conditions: the reservoir is initially at uniform pressure. 

Starting at t = 0, fluid is pumped out of the wellbore at a constant rate, Q. 

 

       Initial condition:         𝐏(𝐫. 𝐭 = 𝟎) = 𝐏𝐢                                                  (2-13) 

Boundary condition at wellbore:            𝐥𝐢𝐦
𝐫→∞

[
𝟐𝛑𝐤𝐡

𝛍
𝐫
𝛛𝐩

𝛛𝐫
] = 𝐐                   (2-14) 

  Boundary condition at r = ∞ :             𝐥𝐢𝐦
𝐫→∞

𝐏(𝐫. 𝐭) = 𝐏𝐢                           (2-15) 

 Boundary condition at r = re:                
𝝏𝒑

𝝏𝐫𝐞
= 𝟎                                    (2-16) 

         Wellbore diameter: it is assumed that the diameter of the wellbore is infinitely 

small; this leads to a much simpler problem than the more realistic finite-diameter case.   

          The basic governing equation for this problem is the diffusion equation in radial 

coordinates (as it represented in equation 2-41) 

𝟏

𝐫

𝛛

𝛛𝐫
[(𝐫)

𝛛𝐩

𝛛𝐫
] =

𝛟𝛍𝐂𝐭
 𝐤

𝛛𝐩

𝛛𝐭
 

           And by introducing the dimensionless concept "because the numerical model 

will be written on a dimensionless form as will be described in next chapter", and to 

compare the analytical solution with the numerical one; both must be written in a 

dimensionless form. 

The analytical model can be rewrite in a dimensionless form as follows: 

𝛛𝟐𝐏𝐃

𝛛𝐫𝐃
𝟐 +

𝟏

𝐫𝐃

𝛛𝐏𝐃

𝛛𝐫𝐃
=

𝛛𝐏𝐃

𝛛𝐭𝐃
                                   (3-14) 
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         Van Everdingen and Hurst (1949) proposed an analytical solution to the above 

equation by assuming: (Lee, 1982) 

 Perfectly radial reservoir system 

 The producing well is in the center and producing at a constant production rate  

 Uniform pressure pi throughout the reservoir before production  

 No flow across the external radius re 

         Van Everdingen and Hurst presented the solution to Equation (3-44) in a form of 

infinite series of exponential terms and Bessel functions. The authors evaluated this 

series for several values of 𝐫𝐞𝐃over a wide range of values fortD . Chatas (1953) and 

Lee (1982) conveniently tabulated these solutions for the following two cases: 

(A) Infinite-acting reservoir:  

i.e., 𝐫𝐞𝐃 = ∞, the dimensionless pressure drop function pD is strictly a function of the 

dimensionless time tD, or:       (Lee, 1982)          

𝐩𝐃 = f(𝐭𝐃) 

1-𝐩𝐃 = √𝐭𝐃/𝟐  at   𝐭𝐃 <0.01                                                        (3-15) 

2-𝐩𝐃 = 𝟎. 𝟓𝐥𝐧 (𝐥𝐧(𝐭𝐃)+. 𝟎𝟖𝟎𝟗𝟎𝟕) at   𝐭𝐃 >100                                (3-16) 

3-for 0.02<tD<1000: 

𝐩𝐃=𝐚𝟏+𝐚𝟐 𝐥𝐧(𝐭𝐃)+𝐚𝟑(𝐥𝐧 (𝐭_𝐃 ) )
𝟐+𝐚𝟒(𝐥𝐧 (𝐭_𝐃 ) )

𝟑+𝐚𝟓𝐭𝐃+𝐚𝟔(𝒕𝑫)
𝟐+𝐚𝟕(𝒕𝑫)

𝟑+𝐚𝟕/𝐭𝐃    

(3-17) 

Where: 

𝐚𝟏 = 0.8085064                 𝐚𝟐= 0.29302022                𝐚𝟑 = 3.5264177(10−2) 

𝐚𝟒= –1.4036304(10−3)    𝐚𝟓 = –4.7722225(10−4)      𝐚𝟔= 5.1240532(10−7) 

𝐚𝟕= –2.3033017(10−10)    𝐚𝟖= –2.6723117(10−3) 

Chatas and Lee tabulated the pD values for the infinite-acting reservoir  
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(B) Finite-radial reservoir: 

 

For a finite radial system, the pD-function is a function of both the dimensionless time 

and radius, or:(Lee, 1982) 

pD= f (𝒕𝑫, ,𝐫𝐞𝐃) 

1- For tD>25 and rD
2>>1 

𝐩𝐃=
𝟐𝒕𝑫

𝐫𝐞𝐃
𝟐+ln(𝐫𝐃) -0.75                                             (3-18) 

2-for 25<tDand 0.25 reD
2<tD 

𝐩𝐃 = 
𝟎.𝟓+𝟐𝒕𝑫

𝐫𝐞𝐃
𝟐−𝟏

 - 
𝐫𝐞𝐃

𝟒[𝟑−𝟒 𝐥𝐧(𝐫𝐞𝐃)]−𝟐𝐫𝐞𝐃
𝟐−𝟏

𝟒(𝐫𝐞𝐃
𝟐−𝟏)𝟐

                    (3-19) 
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Chapter 4 

Results and discussion 

4.1. The solution of the model 

         The model that discussed in chapter 2, we are going to solve it by using the tools 

that presented in chapter 3 as following: 

4.1.1. Dimensionless Variable Concept: 

By applying equations (3-4), (3-5), (3-6), (3-7): 

𝐏𝐃 =
(𝐩𝐢−𝐩(𝐫.𝐭))

(
𝐐𝐨𝐁𝐨𝛍𝐨
𝟎.𝟎𝟎𝟕𝟎𝟖 𝐤𝐡

)
                                    (3-4) 

𝒓𝒆𝑫 =
𝒓𝒆

𝒓𝒘
                                                     (3-5) 

𝒓𝑫 =
𝒓

𝒓𝒘
                                                       (3-6) 

     𝒕𝑫 =
𝟎.𝟎𝟎𝟎𝟐𝟔𝟒𝟐 𝒌𝒕

𝝓𝝁𝒐𝒄𝒕𝒓𝒘
𝟐                                      (3-7) 

 into the model on equation (2-44): 

𝝏𝟐𝒑

𝝏𝒓𝟐
+
𝟏

𝒓

𝝏𝒑

𝝏𝒓
=

𝝓𝝁𝑪𝒕

𝟎 𝟎𝟎𝟎𝟐𝟔𝟒 𝐤

𝝏𝒑

𝝏𝒕
                                 (2-44) 

we can rewrite the equation (2-44): 

                 
𝟏

𝒓

𝝏𝒑

𝝏𝒓
+
𝝏𝟐𝒑

𝝏𝒓𝟐
=

𝝓𝝁𝑪𝒕

 𝐤

𝝏𝒑

𝝏𝒕
                                                (4-1) 
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Multiplying and dividing both side by  
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 

             
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
(
𝝏𝟐𝒑

𝝏𝒓𝟐
+
𝟏

𝒓

𝝏𝒑

𝝏𝒓
) =

𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
(
𝝓𝝁𝑪𝒕

 𝐤

𝝏𝒑

𝝏𝒕
)                      (4-2) 

 

𝟏

𝒓

𝝏(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏𝒓
+ (

𝝏𝟐(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏𝒓𝟐
) =

𝝓𝝁𝑪𝒕

 𝐤

𝝏(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏𝒕
          (4-3) 

 

      
𝟏

(
𝒓𝒘
𝒓𝒘
)𝒓

𝝏(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

(
𝒓𝒘
𝒓𝒘
)𝝏𝒓

+ (
𝝏𝟐(

𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝒓𝒘𝟐

𝒓𝒘𝟐
𝝏𝒓𝟐

) =
𝝓𝝁𝑪𝒕

 𝐤

𝝏(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏𝒕
        (4-4) 

 

           (
𝟏

(
𝒓

𝒓𝒘
)

𝝏(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏(
𝒓

𝒓𝒘
)
+
𝝏𝟐(

𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝒓𝒘𝟐

𝒓𝒘𝟐
𝝏𝒓𝟐

) =
𝝓𝝁𝑪𝒕

 𝐤

𝝏(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏𝒕
          (4-5) 

 

(
𝟏

(
𝒓

𝒓𝒘
)

𝝏(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏(
𝒓

𝒓𝒘
)
+
𝝏𝟐(

𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏(
𝒓𝟐

𝒓𝒘𝟐
)
+) =

𝝓𝝁𝑪𝒕 𝒓𝒘
𝟐

 𝐤

𝝏(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏𝒕
     (4-6) 

  

    (
𝟏

(
𝒓

𝒓𝒘
)

𝝏(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏(
𝒓

𝒓𝒘
)
+
𝝏𝟐(

𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏(
𝒓𝟐

𝒓𝒘𝟐
)
) =

𝝏(
𝟐𝝅𝒌𝒉

𝒒𝜷𝝁
 𝒑)

𝝏(
𝒌𝒕

𝝓𝝁𝑪𝒕 𝒓𝒘
𝟐)

                       (4-7) 
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𝟏

𝒓𝑫

𝝏𝑷𝑫

𝝏𝒓𝑫
+
𝝏𝟐𝑷𝑫

𝝏𝒓𝑫
𝟐 =

𝝏𝑷𝑫

𝝏𝒕𝑫
                                             (4-8) 

          The above dimensionless groups (i.e., 𝑃𝐷, 𝑡𝐷, and 𝒓𝑫) can be introduced into the 

diffusivity equation  (Equation 2-44) to transform the equation into the following 

dimensionless form: 

                                  
𝝏𝟐𝑷𝑫

𝝏𝒓𝑫
𝟐 +

𝟏

𝒓𝑫

𝝏𝑷𝑫

𝝏𝒓𝑫
=

𝝏𝑷𝑫

𝝏𝒕𝑫
                                       (4-9) 

4.1.2. Finite-Difference Approximation and Constructing the Grid  

           The numerical solution of the dimensionless model (equation 4-9) by using the 

concepts of finite difference approximation and constructing the grids represented at 

the previous chapter, for finite and infinite reservoir with specific initial and boundary 

conditions 

𝛛𝟐𝐩𝐃

𝛛𝐫𝐃
𝟐  + 

𝟏

𝐫𝐃
 
𝛛𝐩𝐃

𝛛𝐫𝐃
 = 

𝛛𝐏𝐃

𝛛𝐭𝐃
                                     (4-10) 

But                                         u=ln 
𝐫

𝐫𝐰
 = ln 𝐫𝐃                                           (4-11) 

        𝛛𝐫𝐃= 𝛛𝐮𝐞
𝐮

                                                     (4-12) 

Rearrange the equation: 

                      
𝟏

𝐞𝐮
𝛛𝟐𝐩𝐃

𝛛𝐮𝟐
+ 

𝟏

𝐞𝟐𝐮
 
𝛛𝐏𝐃

𝛛𝐮
= 
𝛛𝐏𝐃

𝛛𝐭𝐃
                            (4-13) 

Using Finite-Difference Approximation: 

𝟏

𝐞𝐮∆𝐮𝟐 
[𝐩𝐢−𝟏

𝐧+𝟏 − 𝟐𝐩𝐢
𝐧+𝟏 + 𝐩𝐢+𝟏

𝐧+𝟏] + 
𝟏

𝟐𝐞𝟐𝐮∆𝐮 
[𝐩𝐢+𝟏

𝐧+𝟏 − 𝐩𝐢−𝟏
𝐧+𝟏 ] = 

𝟏

𝟐∆𝐭
[𝐩𝐢

𝐧+𝟏 − 𝐩𝐢
𝐧+𝟏]    

(4-14) 
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𝟐∆𝐭

𝐞𝐮∆𝐮𝟐
 [𝐩𝐢−𝟏

𝐧+𝟏 − 𝟐𝐩𝐢
𝐧+𝟏 + 𝐩𝐢+𝟏

𝐧+𝟏] +
∆𝐭

𝐞𝟐𝐮∆𝐮
 [𝐩𝐢+𝟏

𝐧+𝟏 − 𝐩𝐢−𝟏
𝐧+𝟏] − 𝐩𝐢

𝐧+𝟏 = −𝐩𝐢
𝐧+𝟏

        

(4-15) 

𝐚𝐢
𝐧𝐩𝐢−𝟏

𝐧+𝟏 + 𝐛𝐢
𝐧𝐩𝐢

𝐧+𝟏 + 𝐜𝐢
𝐧𝐩𝐢+𝟏

𝐧+𝟏 = 𝐝𝐢
𝐧

                                     (4-16) 

Where: 

a=
∆𝐮∆𝐭−𝟐𝐞𝐮∆𝐭

∆𝐮𝟐𝐞𝟐𝐮
                                   (4-17) 

              b=
∆𝐮∆𝐭

∆𝐮𝟐𝐞𝐮
+ 𝟏                                   (4-18) 

C=−(
𝟐𝐞𝐮∆𝐭+∆𝐮∆𝐭

∆𝐮𝟐𝐞𝟐𝐮
)                               (4-19) 

𝐝 = 𝐩𝐢
𝐧                                            (4-20) 

Based on initial and boundary conditions for both models: 

Initial condition:                                 𝐏(𝐫. 𝐭 = 𝟎) = 𝐏𝐢                                   (2-13) 

Boundary condition at wellbore:                𝐥𝐢𝐦
𝐫→∞

[
𝟐𝛑𝐤𝐡

𝛍
𝐫
𝛛𝐩

𝛛𝐫
] = 𝐐                     (2-14) 

Boundary condition at r = ∞(Infinity) :         𝐥𝐢𝐦
𝐫→∞

𝐏(𝐫. 𝐭) = 𝐏𝐢                    (2-15) 

Boundary condition at r = re(Finite):        
𝝏𝒑

𝝏𝐫𝐞
= 𝟎                                        (2-16) 

As shown in figure (4-1) and (4-2). 
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          By introducing the dimensionless concept, and finite difference approximation 

we can rewrite the reservoir condition as: 

Initial condition:          t = 0      →  𝐭𝐃 = 𝟎 

𝐩𝐃 =
𝐤 𝐡 ∆𝐩

𝟏𝟒𝟏. 𝟓 𝐪 𝛍 𝛃
 

𝐏𝐃(𝐫𝐃 . 𝟎) = 𝟎                                              (4-21) 

𝐩𝐢
𝐧 = 𝟎                                                           (4-22) 

By applying (4-16) on (4-14) we obtained:  

a=0                               b=0                                   c= 0                           d=𝟎 

Boundary condition at wellbore:   r = 0  →  
𝛛𝐏𝐃

𝛛𝐫𝐃
= 𝟏 

𝐩𝐢
𝐧 − 𝐩𝐢−𝟏

𝐧 = ∆𝐮𝐞𝐮                                           (4-23) 

By applying (4-17) on (4-14) we obtained:  

a=0                               b=1                                   c=-1                            d=∆𝐮𝐞𝐮 

 Outer Boundary condition 

A) Boundary condition at infinity:  

r = 𝐫𝐞   → 𝐏𝐃 (𝐫𝐃 . 𝐭𝐃) = 𝟎 

𝐩𝐢
𝐧 = 𝟎                                            (4-24) 

By applying (4-20) on (4-16) we obtained:  

a=0                               b=0                                   c= 0                           d=𝟎 
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Figure (4-1): inner and outer condition for infinite reservoir 

B) Boundary condition at finite:  

                                                  
𝝏𝒑

𝝏𝐫𝐞
= 𝟎  →  

𝝏𝒑𝑫

𝝏𝒓𝒆𝑫
   =0  

𝐩𝐢+𝟏
𝐧 − 𝐩𝐢

𝐧 = 𝟎                                 (4-25) 

 

By applying (4-21) on (4-16) we obtained:  

a=1                               b=-1                                   c= 0                           d=𝟎 
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Figure (4-2): inner and outer condition for finite reservoir 

        Now equation (4-16) has four cases of constants (a, b, c, and d), then can develop 

a series of equations depending on this cases. 

Initial condition:           

a=0                               b=0                                   c= 0                           d=𝟎 

Boundary condition at wellbore 

a=0                               b=1                                   c=-1                             d=∆𝐮𝐞𝐮 

Boundary condition at infinity 

a=0                               b=0                                   c= 0                           d=𝟎 

Boundary condition at finite:  

a=1                               b=-1                                   c= 0                           d=𝟎 
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4.2. Matlab programming  

           After solve differential equations numerically and replace the derivatives in the 

equation with finite difference approximations, this results in a number of algebraic 

equations that has been solved simultaneously (implicit methods), two self-designed 

programs (using Matlab codes) programmed by Matlab software are used to solve these 

sets of equations to obtain the results. The codes have been written for infinite and finite 

model, to solve difficult and complicated calculations, the first program code called 

"Infinite program", and the other called "Finite program". Each of this programs will 

be discussed carefully below:  

4.2.1. Infinite program  

4.2.1.1. Results of " Infinite program "  

         Based on boundary condition for Infinite reservoir on Equation (4-20) infinite 

program has been written based on Thomas algorithm, Image (4-1) shows the user 

interface of the program, the interface contained two parts; input part (dimensionless 

time, number of grids, time step, and the name of excel sheet where the output data will 

be saved on it). and output part (graphical representation of the output data, 

dimensionless bottom hole pressure, and the output data on excel sheet), The infinite 

program has been run many times to obtain the results which it’s represented in 

appendix D (table 1).    
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Image (4-1): infinite program user interface 

4.2.1.2. Validation of "Infinite program":  

           check the validity of the solution obtained by comparing with the analytical one 

-Van Everdingen and Hurst solution-which posted in ‘LEE, J. 1982. Well Testing (SPE 

Textbook Series). Society of Petroleum Engineers, Richardson, TX.’. As previously 

presented in chapter three in equations (3-14), (3-15), (3-16):  

1-𝐩𝐃 = √𝐭𝐃/𝟐  at   𝐭𝐃 <0.01                                                               (3-14) 

2-𝐩𝐃 = 𝟎. 𝟓𝐥𝐧 (𝐥𝐧(𝐭𝐃)+. 𝟎𝟖𝟎𝟗𝟎𝟕) at   𝐭𝐃 >100                               (3-15) 

3-for 0.02<tD<1000: 

𝐩𝐃=𝐚𝟏+𝐚𝟐 𝐥𝐧(𝐭𝐃)+𝐚𝟑(𝐥𝐧 (𝐭_𝐃 ) )
𝟐+𝐚𝟒(𝐥𝐧 (𝐭_𝐃 ) )

𝟑+𝐚𝟓𝐭𝐃+𝐚𝟔(𝒕𝑫)
𝟐+𝐚𝟕(𝒕𝑫)

𝟑+𝐚𝟕/𝐭𝐃    

(3-16) 
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        These equations have been tested and compared with the "infinite program" as 

flowing: 

1-equation (3-15) has been tested and have an error (4*10−3). 

2-equation (3-15)  at tD >100 has been tested and have an error (3*10−3).. 

3-equation (3-16)  at tD <100 has been tested and have an error (1∗ 10−3). 

4-The table (4-1) show an error (2.05*10−3) from the posted solation on (SPE Textbook 

Series). (Society of Petroleum Engineers, Richardson, TX) and Figure (4-3) represent 

the table data graphically "from appendix D table 1".  

 

 

 

 

 

 

Table (4-1): Comparison with John lee to infinite reservoir. 

Infinite Program John Lee 

tD pD tD  pD 

1 0.8015 1 0.8019 

2 1.0191 2 1.0195 
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Figure (4-3): Graphically comparison with John lee "from appendix D table 1" 

4.2.1.3. Discussion of "Infinite program" 

         The  infinite program has an average error (2.05*10−3) from analytical solution, 

Figure(4-4) shows an infinite reservoir for different dimensionless times, by increase 

(tD)the dimensionless bottom hole pressure (PwfD) increases due to depletion in the 

reservoir, and reservoir pressure at outer boundary is the initial reservoir  pressure 

(P𝑖𝐷=0) because it  is infinite acting reservoir. 

 

Figure (4-4): describe Infinite reservoir for varies time. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000 1200

P
-D

T-D

Validation

This study

John Lee



-49- 

4.2.2. Finite program  

4.2.2.1. Result of " Finite program "  

         Based on boundary condition for finite reservoir on Equation (4-21) finite 

program has been written based on Thomas algorithm, Image (4-2) shows the user 

interface of the program, the interface contained two part; input part (dimensionless 

time, dimensionless radius, number of grids, time step and the name of excel sheet of 

the output data) and output part (graphical representation of the output data 

,dimensionless bottom hole pressure, and the output data on excel sheet ) ,the "finite 

program" has been run many times to obtain the results in which it’s represented in 

"appendix D" (table 2). 

.   

Image (4-2): Finite program user interface. 

4.2.2.2. Validation of "Finite program": 

          check the validity of the solution obtained by comparing with the analytical one 

- Van Everdingen and Hurst -which posted in ‘LEE, J. 1982. Well Testing (SPE 
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Textbook Series). (Society of Petroleum Engineers, Richardson, TX.’ As previously 

presented in chapter three in equations (3-17), and (3-18): 

1- For tD>25 and rD
2>>1 

𝐩𝐃=
𝟐𝒕𝑫

𝐫𝐞𝐃
𝟐
+ln(𝐫𝐃) -0.75                                               (3-17) 

2-for 25<tDand 0.25 reD
2<tD 

𝐩𝐃 = 
𝟎.𝟓+𝟐𝒕𝑫

𝐫𝐞𝐃
𝟐−𝟏

 - 
𝐫𝐞𝐃

𝟒[𝟑−𝟒 𝐥𝐧(𝐫𝐞𝐃)]−𝟐𝐫𝐞𝐃
𝟐−𝟏

𝟒(𝐫𝐞𝐃
𝟐−𝟏)𝟐

                      (3-18) 

         These equations have been tested and compared with the "Finite program" as 

flowing: 

1-For tD>25 and rD
2>>1 

equation (3-52) has been tested and have an error 2*10−3. 

2-for 25<tDand 0.25 reD
2<tD 

equation (3-53) has been tested and have an error 2.96*10−3. 

3-The table (4-2) show an error (5.2*10−3) from posted solation on (SPE Textbook 

Series). Society of Petroleum Engineers, Richardson, TX) and Figure (4-5) represent 

the table data graphically "from appendix D table 2".  

John lee Finite Program 

 

𝑟𝑒𝐷 = 1.5 

 

TD PD TD PD Error 

0.06 0.251 0.06 0.2562 0.0052 

0.08 0.288 0.08 0.2892 0.0012 

Table (4-2): Comparison with John lee to finite reservoir 
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Figure (4-5): Graphically comparison with John lee "from appendix D table 2" 

4.2.2.3. Discussion of "Finite program" 

The finite program has  an average  error( 5.2*10−3) from analytical solution Figure 

(4-6) show an finite reservoir for different dimensionless time ,by increase (tD)the 

dimensionless bottom hole pressure (P𝑤𝑓𝐷) increase due depletion in the reservoir, and 

reservoir pressure at outer boundary is the initial (PiD=0) reservoir pressure because it 

behaved as infinite acting reservoir in large dimensionless Reduces and long time. 

 

Figure (4-6):  describe the finite reservoir for varies times. 
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Chapter 5 

Conclusion and Recommendation 

5.1. Conclusion: 

The model has been solved under two conditions based on dimensionless concept, and 

it has accepted error for the two types of reservoir -boundary condition -2.05*10−3for 

infinite boundary and 5.2*10−3 for finite boundary. 

in implicit method there is stabilizing in results and there isn't any problem with it. 

5.2. Recommendation: 

We recommended to develop this software by reducing the model assumption: 

1- it can be two phase model to be more representative to the reservoir reality 

(usually the reservoir contains more than one phase). 

2- or it can be heterogenic (two dimensions). 

3-  or even both. 

by applying this recommendations, it could be a quite big software based on a 

dimensionless concept, in next step it could resolved that model(finite&infinite) in 

two dimensions after rewrite the code in two phase and make the system 

heterogenic. 
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Appendixes 

Appendix A: 

The Thomas algorithm general form is: 

 

 

𝑐𝑖= {

𝑐𝑖
𝑏𝑖
     ;      𝑖 = 1

𝑐𝑖
𝑏𝑖 − 𝑎𝑖𝑐𝑖−1 

    ; 𝑖 = 1,2,3, … . 𝑛 − 1
 

And 

𝑑𝑖=

{
 

 
𝑑𝑖
𝑏𝑖
     ;      𝑖 = 1

𝑑𝑖 − 𝑎𝑖𝑑𝑖−1
𝑏𝑖 − 𝑎𝑖𝑐𝑖−1 

    ; 𝑖 = 1,2,3,… . 𝑛 − 1

 

The solution is then obtained by back substitution: 

𝑥𝑛 = 𝑑𝑛 

                    𝑥𝑖 = 𝑑𝑖 − 𝑐𝑖𝑥𝑖+1    i=n-1, n-2,,1 
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Appendix B 

The code of" infinite program " 

e=ceil(log(re));  

 du=ue/nog; 

for t=dt:dt:te 

z=length(a); 

end 

g(1)=d(1)/b(1); 

n=length(d); 

w(1)=c(1)/b(1); 

for i=2:n 

end 

x(n)=g(n); 

for i=n-1:-1:1 

    x(i)=g(i)-(w(i)*x(i+1)); 

end 

d=x'; 

d(1,1)=exp(u(1,1))*du; 

end 

gg=x'; 
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plot(u,x) 

xlabel('RD') 

ylabel('PD') 

pwf=x(1); 

set(handles.pwf,'string',pwf) 
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Appendix C 

 The code of "finite program" 

re =str2double(get(handles.re,'string')); 

te=str2double(get(handles.te,'string')); 

dt =str2double(get(handles.dt,'string')); 

nog =str2double(get(handles.nog,'string')); 

fn=(get(handles.fn,'string')); 

 ue=ceil(log(re));  

 du=ue/nog; 

 


