Chapter Four

Design of Project

26

4.1 Design

Modeling diagrams help to understand, clarify, and communicate ideas about the
code and the user requirements that a software system must support. For
example, to describe and communicate user requirements, we can use Unified
Modeling Language (UML) use case, activity, class, and sequence diagrams. To
describe and communicate the functionality of a system, we use UML component,
class, activity, and sequence diagrams.

4.2 Interface Design (Front End)

4.2.1 Design Techniques for Multimedia

Structure Charts is a diagram that describes the way content is organised within
an application.

Example of a Structure Chart:

Main

Strategy Training Learning Setting About

Simulation Presentation About Help

Structure Chart of the main screens in the project.

27

4.2.2 Storyboard

Storyboards are graphic organizers in the form of illustrations or images displayed

in sequence for the purpose of pre-visualizing a motion picture, animation,

motion graphic or interactive media sequence.

The storyboarding process, in the form it is known today, was developed at the

Walt Disney Studio during the early 1930s, after several years of similar processes

being in use at Walt Disney and other animation studios.

1-Main:

Project:
Author: Mazin

Screen Name: Main Screen

Links from: Main Screen Action: Click
strategy button for strategy screen, Click
setting for setting screen, Click about for
about screen, Click Tanning for Tanning
Screen ,Click Learning for Learning Screen.

Strategy Learning Tranning

Help About

. /

4 A

Interactivity:

None

Video/animation:

Camera move in 3d animation

Audio:

None

Colors:
Text:

The title for the other screen

Figure 4.1: Main Storyboard

28

2-Strategy:

Project:
Author: Mazin

Screen Name: Strategy

Links from: Main

Action: button the go to simulation screen
and one go to the presentation screen, back
button to back to the main screen

Links to: simulation, Presentation

- N

Simulation Presintation

N /

Interactivity:

None

Video/animation:

Camera movement and
selected item animation

Audio:

Sound of Click
Colors:

Text:

The title of the two screens
that are connected to this
screen

Figure 4.2: Strategy Storyboard

29

3-Presentation:

Project :
Author: Mazin

Screen Name: Presentation

Links from: strategy
Action:
Links to :
/ @ X «k\
® ® R
®
I back ” save ” draw I

.

/

Interactivity:

None

Video/animation:

Light, plan animation, map
movement

Audio:
Sound effect
Colors:

Text:

The arms name and position
information

Figure 4.3: Presentation Storyboard

30

4-Simulation:

Project:
Author: Mazin

Screen Name: Simulation

Links from: strategy

Action: add solder button, add Tank button, add
Plan button, add Target button, start/Pause

button, restart button, redpaint, green paint,

setting button

Links to:
/ / 2;. ¥ '\—)Conlrol the simulation Process \

Arm {|Soldier

Enemy (| Tank o

total Arm Winning is 200

Target ||Fighter total Enemy Winning is 200 f
- total Simulation is 400

e Success Rate is 50%

Setting || @

] the result of
kit || @ the simulation
Start ~ |[Save
Load
hestar 2 Painting Color

_/

Interactivity:

None

Video/animation:

Solder movement, Tank
movement,

Plan movement, camera
movement,

Light.

Audio:

Sound of click

Colors:

Colorfully map,red, green
Text:

The result of the simulation

Figure 4.4: Simulation Storyboard

31

5- Learning:

Project:
Author: Mazin

Screen Name: Learning

Links from: Main

Action: Drags and Drop Weapon Parts using
mouse, back button

Links to:
Rel.oad
—
— —
Weapon Info

Back /

Interactivity:

None

Video/animation:
Weapons Parts movement,
Camera Movement

Audio:

Sound of Attach or Connect
new Part

Colors:
Text:

Some information about the
weapon

Figure 4.5: Learning Storyboard

32

6-Training:

Project:
Author: Mazin

Screen Name: Tanning

Links from: Main
Action: motion capture using Kinect sensor

Links to:

5"

Interactivity:

None

Video/animation:

Solder animation, Kinect
Capute Image

Audio:

Sound of Complete Some Level

Colors:

Text:

The time for the current level
to end

Figure 4.6: Training Storyboard

33

7-About:

Project:
Author: Mazin

Screen Name: About

Links from: Main
Action:

Links to: Help/Reference, about us

-

Information about
the project

Name of Programmer in
the Project

/

Interactivity:

Video/animation:

Button click Animation

Audio:

Button click sound

Colors:

Text:

Figure 4.7: About Storyboard

34

4.3 Back End

4.3.1 Algorithm

A) File Browse algorithm:

=

Declare a variable called Path to store the current path for the directory.
Declare a variable called Root to store the previous path in case you want
to go back.

Declare a variable by name Selected File to handle files.

Declare a variable called Extension for purpose of presenting specific files.
For each folder in the current path assign to it its graphical icons.

For each file with the specific extension assign to it its graphical icons.

If the folder is clicked make Root=Path, and Path=Path + folder name.

If there’s no file selected Return to number 5.

9. End.

N

O NO U AW

B) Analysis algorithm:

It includes four algorithms, and they are:

1
2
3
4

Enemy movement algorithm.
Army movement algorithm.
Curve algorithm.

Combat algorithm.

B.1) Enemy movement algorithm:-

Declare a variable called target.

Declare a variable called army.

For each target in map add the target to an array.

Sort the array of targets depending on the distance between target and

enemy.

Assign the variable target to the first target in the array.

Check the distance between enemy and army.

7. If the distance of army is closer than the distance of target then attack the
army.

8. Else attack the target.

9. End.

PwnNe

A

35

B.2) Army movement algorithm:

O NOUAEWNPRE

9.

Declare a variable called enemy.

Declare a variable called select.

If mouse is clicked on an army object make variable Select=true.

If mouse is clicked on the map get the mouse position.

Convert mouse position from view port space to world space.

Tell the army to move to the new world space.

Set variable Select to false.

If the distance between army and enemy is less than the distance of
combat and the level of army weaponry is higher than or equal to enemy
weaponry begin attack.

End.

B.3) Curve algorithm:

w

Declare a variable called Position Y.

For each number in curve array (that is defined in Combat algorithm)
Position Y = Position Y + curve array item[i].

Position of x is incremented by one.

End.

B.4) Battle algorithm:

NouhkwNeE

Declare a static variable called rate.

Declare an array called curves.

Declare a static variable called total army.

Declare a static variable called total winning army.

Declare a static variable called total enemy.

Declare a static variable called total winning enemy.

If an army object is added to the map the variable total is incremented by
one.

If an enemy object is added to the map the variable total enemy is
incremented by one.

If army object is destroyed the variable enemy_total_winning is
incremented by one and add a value of one to the array of curves.

10.If enemy object is destroyed the variable enemy_total_winning is

incremented by one and add a value of one to the array of curves.

11. If simulation is running go to number 6.

12.Else Rate= (total_winning_army/ (enemy_total_winning +
total_winning_army))*100.
13.End.

C) Saving algorithm:

For each object in the scene get the position and tag of object.
Store it in a text file.

Encrypt the stored file.

End.

D PwnNpe

D) Kinect algorithm:

Declare a variable from type vector 3 called Timer.

Declare a variable from type vector 3 called head_Pos.

Declare a variable from type vector 3 called left_shoulder_pos

Declare a variable from type vector 3 called right_shoulder_pos.

Declare a variable from type vector 3 called left_elbow_pos.

Declare variable from type vector 3 called right_elbow_pos.

Declare a variable from type vector 3 called left_hand_pos.

Declare a variable from type vector 3 called right_hand_pos.

. Declare a variable from type vector 3 called heap_pos.

10 Declare a variable from type vector 3 called left_Knee_pos.

11.Declare a variable from type vector 3 called right_ Knee _pos.

12.Declare a variable from type vector 3 called left_foot_pos.

13.Declare a variable from type vector 3 called right_foot_pos.

14.1f Kinect is connected and powered on then start.

15.Capture depth image from Kinect.

16.Display the depth image.

17.For each joined skeleton get its position and assign it to its variable.

18.Check if the soldier in correct position then the timer will be incremented
by one else timer value=0.

19.1f timer / 60 > = 5 mints then go to next level.

20.Else Return to number 18 and change the position to the next level.

21.End.

OO NOUEWNPRE

37

4.4 Class diagram

Class Diagram provides an overview of the target system by describing the objects
and classes inside the system and the relationships between them. It provides a
wide variety of usages; from modeling the domain-specific data structure to
detailed design of the target system. With the share model facilities, you can
reuse your class model in the interaction diagram for modeling the detailed
design of the dynamic behavior. The Form Diagram allows you to generate
diagram automatically with user-defined scope.

GopgleMapLocation
GoogleMapPati
= Attributes
GoagleMapLocation _
v finat Iatitude Attributes GoagleMapPath
+ floak longiude + Bl il '%
+ shring aodress + GoalgeMapCalar color
b weight
= Operations o
o Dperabiors GoogkeMaptolor | 1
I I % semmerations
G-thEMaﬂiq*:tlEf-‘lap 1 1
GoogleMap =l Lilerals
A Ground Black
= Attribuies blue
+ boal autolocshonCenker GaogleMap Ground = Attributes hrnnn
+ bool douhleResoiution >+ static bool Gnlround oy
v boal LoadOnStart ! 1| = operations green
+ GoogleMaplacation centarLacation 1 vaid CmiMauseEnter() prange
+ GoogleMapMarker [marker + vaid OnMaiseExi } Puirpie
+ GoogleMapPalh [Jpath red
red
+ mt see
wihibe
+ mt raom Hh
¢ MapTyps mapType ! :
= Operatians 1
+ waid Refresh) GongkeMap
- waid Skart{) "'-:1
Goagletap ‘[* 1 A Izl Literals
GoogleMapMarker Heytanid
RoadMap
= Attributes Satellite
GoagleMapMarkar - GangleMapLocation[] Iocation Terrar
Y + GoogleMapMarkerSize size
+ GoolgeMapColor color
W
+ skring label GatgleMaptiarkar
= Operations 1

Figure 4.8: Google Map

38

Paint
E2 roumd
= Altributes. &
+ GameQbjed Brush = .
- WartoeS offest Paint Grourd | = At
- ertee3 Painl 3 ; + 'Stﬂh..' toal Onlround
- Wecord soreenPaint = Operatians
B Operstiors + vaid OriMauseEnLer()
A 4
+ vidd Draw(} + wiid OnMouseExil]
+ void GetPas(}
= void OnMouseDran!)
- vnid Skart()
- voird Updata(}
Figure 4.9: Paints
Arim
= Attributes Arm Anylasis | #% Anylasis
+ baal move ‘
+ bool select N 1 = Attributes
+ GameObject Bulit + static int Acount
+ GameObject Ground £l Bulit + static int Ecount
+ it MumberOfEkembs + static int totalfrm
+ LEVEL lavel Arm Bulie | = Attributes + static it totalEnemy
—:Uncl :nber ? = Operations + static int TotalSim
- float dt . -
- GamwObject anemy : - e KillBulit]) = Operations
- ik tamp = vaid OnCollisionEntes{Callision collision) - woid guilint WindowID)
- Vector? Mous=Pas - woid Updat=(} - woid InfoWindaw(int WindowID)
; - vaid ORGUIL)
= Operations Bulizdhn - void Update(}
+ woid KillMea()
- veld Attack() Arylasisiih 1
- void Status(} ’
- woid GetPosition])
- woid Mowe{)
= void OnMouseEnter() Arm rE-'Cf"""'d £ s
- waid OnMouseExit() M Enamry | 1 1
- void Selack{]) -
- void Start() Foy Enemy = P«ﬂnbu_les
- veid Updabe() En Bround + static bool OnGround
=1 Atkribubes T = Operations
Aren [N + bonl AttekEnany N 1 + weitd OnMeuseEnter])
+ GameObject Bulit + void OnMouseExit])
+ GameObject Target

+ Int NumberOfElemts

+ LEVEL level

- float distance

= float dt

- GameObject anemy
=l Dperations

+ vaid KillMe()

- wobd Attack{) M

- woid Status()

= woid Distace()
1 M = void Planningl)
- woid Start()
- woid Update()

LEVEL Enemy

Figure 4.10: Class object

39

ESrT

e o

- s o] e
=

+ bodl mave

+ boal salect + bool AttckEnemy = Attributes :l?m'-em]El:tEE:ﬁutIBr

+ Gamentject Buil + GameQbject Bulft + static boal dan + Gamebjest E_Trank

+ Gamediect Graund + GameQnject Target + static baal show + GameDbject Fighter

+ ink KumberCfElemes +$:':‘::Wﬂ“'* + stalic string SelectedFie + Gamedhject Ground

+ LEVEL lavel * slalic slring SekeledPalh Gamerhject Solder

- boal enter md‘:‘m’“‘* :mnm N

- foat ot - TestLre Fi B helght

- Gamenbject enemy - GameCbject enemy N . 2 = :::f‘paue

- ink Lemg = Operations 1 + ik widlth

- Wector3 MousePos + wond KilPel) + slrineg file

= Operations - woid Attack(] + sitrireg foldar

+ vaid KillMe(} - woid Status(} - WertoeZ serollPasition + strirg path

-t Alak() = wioid Diskace(} + Texture Graen

- unid Status(} EW: o+ Testure Fad

- weid GetPasitian) - = Oparations

- void Move) - vaid Updated) + woied Lo}

= yoid DnMouseEnter|} waid Windawaink WindowD) + v CIRGUEL)

ammﬂmxml + woid Reset])

:::sueﬁ{] - + vnid Savef]

id Starlf) - + voiel Setting()

- yrid Upcata() W + void Start_Butlan)
wond ArmiButton)
wonid ArmiEreme)
woid Drag)
woid Starti)
winid Lipoiate)

Figure 4.11: GUI

i~ e

= Artributes = Attributes
- shatie it Actuit + stabic bool st
+static Int Ecourt anvglasia Cures - fleat dt
+ static int totaldmm * = int count
+ static int totalEneny 1 =~ int i
+ slatic ink TolalSim - ink temg

= Oparations = Operabions
< i gui{ing WinoowID) = waid Stark)
- waid TnfavWindavelink WindowlD) - waid Update])
- waid OrGUIL)
- i Lpatated) Curve 1

Figure 4.12: Curve

