الآيه:

قال الله تعالى في محكم تنزيله:

بسم الله الرحمن الرحيم

(الذي جعل لكم الأرض مهداً وسلك لكم فيها سبلاً وأنزل من السماء ماءً فأخرجنا به أزواجاً من نباتٍ شتى)

صدق الله العظيم،،،

(سورة طه الآيه (53))

Dedication....

To my dear family:

Mother, Father, MYWIFE, MYSON, MY Brothers and Sisters

To all knowledge seekers and providers,

To all my teachers and instructors,

To my dear friends, colleaguesand classmates

With my love and respect....

ABDELBASET...

Abstract:

This research presents a transportation network analysis and design by using the capabilities of a Geographic Information System (GIS). Advancing the GIS basic technologies, we are using the network analyst in Arc GISto find out the best network schema, which fulfills the requirements of the Khartoum Metro Network and the services area.

The need of a Metro system in a city is generally considered necessary when population of the city exceeds one million. Khartoum State crossed this milestone in the early 1990"s (2.44) Millions and has now around 8 millions. In this study we deal with a map and all the processes using Arc GIS V10.2 & QGIS V2.14.1 software to get the final results and a geo-database for the study area (Khartoum state), which contains road network, the suggested Metro network schema with its stations and paths as well as producing a number of thematic maps like the metro services area, accessibility, closest facility and shortest path for Metro Stations.

The study recommends that by using a geo-database in Khartoum State will support decision-making processes reducing the risks of taking the wrong decisions based on incomplete information.

This research contains an Overview, Theoretical Framework, Research Community, and the Methodologies implemented. These are followed by System Requirements, System Analysis and Design which produce the final results with some discussions and recommendations.

المستخلص:

هذا البحث يتناول تصميم وتحليل شبكه مترو باستخدام نظم المعلومات الجغرافية وذلك من خلال تطبيقها في تحليل وتصميم افضل مسارات لشبكة مترو لولاية الخرطوم،وذلك باستخدام محلل الشبكاتNetwork Analyst.

إن الحاجة لنظام مترو في أي مدينة ضروريا عندما يتجاوز عدد سكانها المليون نسمة، ولاية الخرطوم تجاوزت هذا الرقم منذ أوائل التسعينيات (2.44 مليون نسمة) ، والآن حوالي 8 Arc GIS V10.2 & QGIS V2.14.1 وقد ملايين نسمة. إستخدمت الدراسة برنامجي أمنطقة الدراسة (ولاية الخرطوم) تشتمل على شبكة قامت الدراسة بتصميم قاعدة بيانات جغرافية لمنطقة الدراسة (ولاية الخرطوم) تشتمل على شبكة الطرق وشبكة المترو المقترح ومحطات ومسارات المترو وكذلك خرائط المنطقة المخدومة وإمكانية الوصول، خرائط أقرب خدمه وكذلك خرائط أقصر مسار لمحطات المترو.

أوصت الدراسة بضرورة استخدام قواعد بيانات جغرافية لولاية الخرطوم مما يدعم متخذي القرار في اتخاذ القرار الصائب ويقلل الأخطار الناجمه من اتخاذ قرار خاطئ مبني على معلومات غير مكتملة.

يتكون هذا البحث من مقدمة والإطار النظري ثم تفصيل لمجتمع الدراسة والتعريف بمنطقة الدراسة والمنهجيات ثم يليه تحديد متطلبات النظام والتحليل والتصميم ثم المناقشة وتحليل النتائج وأخيرا التوصيات.

Acknowledgements

First of all I thank Allah, who provides me with health and ability to fulfill this work. Words cannot express the especial appreciation and the deepest gratitude I feel for my thesis advisor and supervisor Prof. Dr. Dieter Fritsch, Director of the Institute for Photogrammetry, University of Stuttgart. He kept advising me and corrected my mistakes while doing the research and for his kind encouragement, close and valuable supervision as well as his precious advices.

I am deeply grateful to my professor s and Classmate in College of computer science and information Technology, Sudan University of Science and Technology, especially Mr. Prof. Dr. Izzeldin Mohammed Osman, as long as we turned to him and remained in a state of constant follow-up with Professor Dieter, and those who provide us with the information and data required.

Also, thanks are given to my colleagues and friends. Also thanks are extended to Mr. Mohamed Jafar for his valuable assistant.

Last but not least, my great gratitude to my family for their help, advice and continuous encouragement.

Acronyms

Acronym	Meaning
GIS	Geographical Information System
DSS	Decision Support Systems
GIS-T	GIS In Transportation
ITS	Intelligent Transportation Systems
AHP	Analytic Hierarchy Process
AHPNDGIS	AHP Network Design Using GIS
VATS	Victorian Activity and Travel Survey
WGS 84	World Geodetic System 1984
UTM	Universal Transverse Mercator
QGIS	Quantum GIS
TSP	Travelling Salesman Problem
SPP	Shortest Path Problem

Table of Contents

No	Title	Page No
Ι	الآيــــة	I
II	Dedication	II
III	Abstract in English	III
IV	Abstract in Arabic	IV
V	Acknowledgement	V
VI	Acronyms	VI
VII	Table of Contents	VII
IX	List of Tables	IX
X	List of Figures	X
1	Chapter (1): Introduction	1
1.1	Overview	2
1.2	Problem Statements	3
1.3	Research Hypothesis	4
1.4	Reserach Objectives	5
1.5	Research Significance	6
1.6	Purpose of Research	7
1.7	Scope	7
1.8	Expected Contribution	7
1.9	Research Organization	7
2	Chapter (2): Theoretical Framework and Related Work	8
2.1	Theoretical Framework	9
2.2	Related Works	17
2.3	System Description	23

3	Chapter (3): Research Community & Methodology	24
3.1	Introduction	25
3.2	Research Community	25
3.3	Methodoly	30
4	Chapter (4): System Requirements, Analysis & Design	33
4.1	System Requirements	34
4.2	System Analysis and Design	37
4.3	Output and Data Presentation	41
5	Chapter (5): Experiments and Results	53
5.1	Algorithms Implemented	54
5.2	Results and discussions	56
6	Chapter (6): Conclusions and Recommundations	66
6.1	Conclusions	67
6.2	Recommundations	67
7	Chapter (7): References and Resources	69

List of Tables

No	Title	Page No
1	Table 3.1: Featuring Details of Khartoum State	28
2	Table 5.1 Khartoum state geo database layers	56
3	Table 5.2 Khartoum Stations	57
4	Table 5.3 Bahri Stations	58
5	Table 5.4 Omdurman Stations	59-60

List of Figure

No	Title	Page No
1	Figure 3:1: Location of the Study Area	26
2	Figure 3.2 : Khartoum Satellite Map	26
3	Figure 3.3 : The Study Area in more detail	28
4	Figure 3.4: Project Flowchart	32
5	Figure 4.1: Overlay of several geographical data layers in vector and raster format.	36
	Figure 4.2 The Republic of SUDAN and the Study Area	41
6	Figure 4.3 Khartoum State, the Study Area	41
7	Figure 4.4 Khartoum State Main Streets	42
8	Figure 4.5 Streets Attribute Table	42
9	Figure 4.6 Khartoum State Roads	43
10	Figure 4.7 Roads Attribute Table	43
11	Figure 4.8 Waterways – Vectors	44
12	Figure 4.9 Waterways Attributes	44
13	Figure 4.10 Land Usage	45
14	Figure 4.11 Land Usage Attribute Table	45
15	Figure 4.12 Current Railways Path	46
16	Figure 4.13 Metro Stations with Road Layers	46
17	Figure 4.14 Metro Stations and lines	47
18	Figure 4.15 Abusaid Line	47
19	Figure 4.16 Karari Line	48
20	Figure 4.17 Garya Line	48
21	Figure 4.18 Kalakla Line	49

22	Figure 4.19 Soba Line	49
23	Figure 4.20 Haj Yousef Line	50
24	Figure 4.21 Bahri Line	50
25	Figure 4.22 Khartoum to Bahri Line	51
26	Figure 4.23 Soba west Line	51
27	Figure 4.24 All Metro Lines	52
28	Figure 4.25 All Metro Lines overlayed with Roads	52
29	Figure 5.1 Metro Stations	60
30	Figure 5.2 Metro Stations with Road Layers	60
31	Figure 5.3 All Pathways	61
32	Figure 5.4 All Pathways with Road layer	61
33	Figure 5.5Road graph setting	62
34	Figure 5.6 shortest path in QGIS 2.14.1	63
35	Figure 5.7 Buffer Zone factor Setting (2Km)	64
36	Figure 5.8 Khartoum Metro Services area using Buffer	64
	Zone (2Km)	