CHAPTER ONE

INTRODUCTION
1.1: Background

It was not until the end of eighteenth century that instruments and methods

attained a degree of refinement sufficient for the needs of figure
determination. Since then, much geodetic work has been accomplished in
Europe, America, Australia, India and Africa, and knowledge of the
dimensions of the earth has steadily grown.

What is this subject of geodesy? Is it just an esoteric area of science with
little modern practical application, or does it function quietly to the benefit
of all but receive little public attention? Is it a product of the age of
electronics, or does have a much longer history? In brief, what is it, how
has it developed, what areas of live does it impinge upon, and how it put to
the practical use? (Smith, J.R., 1997)

Definitions vary from the inevitable one line (Science of measuring the
earth, or surveying any large part to it).

Geodesy, literally, means dividing the earth, and as a first objective of the
practice of geodesy should provide an accurate framework for the control
of national topographical surveys (Mertikas, 2011). Thus geodesy is the
science that determines the figure of the earth and the interrelation of
selected points on its surface by either direct or indirect techniques. (Torge,
1996)

These characteristics further makes it a branch of applied mathematics, one
that must include observations that can be used to determine the size and
shape of the earth and the definition of coordinate systems for three
dimensional positioning, the variation of phenomena near to or on the
surface, such as gravity, tides, earth rotation, crustal movement, and
deflection of the plumb line (vertical); together with units of measurement,
and methods of representing the curved earth surface on a flat sheet of

paper.

Nowadays there is a trend today for the term geodesy to be applied in an
umbrella manner particularly in the European community, to describe all



activities from valuation, land management, soil testing, cartography,
boundary surveys, land information systems, and in fact every activity
except geodesy in its traditional definition! In addition we now are pressed
to use the term Geomatics to cover almost as wide a selection as the above
list. May be it will soon be possible to refer to geomatic and geodesy as
covering everything that is understood to be under the authority of a
surveying engineer. (Smith, 1997)

It is good to see that geodesy is one of the important subjects for endless
applications, by the wide range of uses now being found for the global
positioning system (GPS). It is an earth - centered system, relying on earth
— orbiting satellites, but it has recreational uses in addition to survey
applications and acceptable requirements from a few millimeters to many
meters depending on the use.

However, before venturing into the realms of artificial satellites it will be
instructive to trace the origins of geodesy from the first few centuries B.C.
up to the present day. From the times of a flat earth concept, through the
sphere and spheroid to the geoid; from the knotted rope for measurement to
suspended wires, electromagnetic systems, laser ranging to the moon, and
the use of orbiting satellites.

The results of geodetic measurements show that the earth very close
lyapproximates to an oblate spheroid, which is the solid generated by
rotation of an ellipse about its minor axis. The actual figure, considered as a
gravitational equipotential surface at mean sea level, deviates slightly and
irregularly from a true spheroid, and this is recognized by giving it the
name "geoid" since, however, geodetic computations can be made with
sufficient precision on the assumption of a spheroidal form; figure
determinations are directed to ascertaining the dimensions of the spheroid
which most nearly coincides with the actual figure. (Smith, 1997)

1.2 Objectives of the Thesis

1. To establish an optimum model for the densification of orthometric
heights.

2. To establish an adequate model for densification of geoidal heights.

3. To enable topographic maps of different scales and contour intervals
to be prepared using GPS / GIS techniques.



1.3 Thesis layout

The thesis consists of seven Chapters, including this introductory Chapter,
in addition to two appendices. The other Chapters are summarized as
below:-

Chapter two contains the different types of reference ellipsoids with
various types of vertical datum, and mean sea level presented.

In Chapter three details the digital terrain modeling, data collection,
measurements pattern, and modeling technique are presented.

Chapter four discusses the least squares collocation, the covariance
matrices, the signal, the noise, and the solution of parameters.

Chapter five details the modeling program, study area, data collection for
control work. It is also includes Instruments used and methodology, the
programming language, back ground, design goals, and applications.

Chapter six outlines the results of the tests carried out using the developed
program.

Chapter seven summarizes the conclusions and recommendations for future
work.



CHAPTER TWO

REFERENCE ELLIPSOIDS AND VERTICAL DATUMS
2.1 Background

Mapping involves determining geographic locations of features on the
earth, transforming these locations on flat maps through selected map
projections and graphically symbolizing these features. Geographic
locations are specified by geographic coordinates called latitude and
longitude. To establish a system of geographic coordinates, we first must
know the shape and size of the earth.

The earth is a very smooth geometrical figure. Much of the earth surface
appears rugged and rough to us, but even the heights peaks and deepest
ocean trenches are barely noticeable irregularities on the smoothly
curving surfaces. (Robinson, Arthur Howard, 1995)

We have to examine three ever more accurate approximations to the earth’s
shape: the sphere, the ellipsoid, and the geoid.

2.1.1 Spherical earth

More than 2000 years ago most educated people knew that, if we disregard
such features as hills and valleys, the earth is spherical in shape. This
understanding was due in part to the teaching of Pythagoras ( 6™ century
B.C.) that human must live on a body of the “ perfect shape - a perfect
sphere. More compelling, however, were Aristotle’s (4th century B.C.)
arguments for spherical earth. He noted that sailing ships always disappear
from view hull first, mast last, rather than becoming ever smaller dots on
the horizon of a flat earth. And the earth’s spherical shape becomes widely
accepted in ancient Greece and later civilizations with access to Greek
writings. (Martin, 2005)

Determining the spherical earth’s size was another matter. Again, the first
calculation was made by a Greek Scholar. About 250 B.C. Eratosthenes,
head of a great Egyptian library in Alexandria, came close to the figures for
the earth’s circumference we now accept.



2.1.2 Ellipsoidal earth

Until the late 1600s, the earth was thought to be perfectly spherical in
shape. The change came around 1670, when Isaac Newton proposed , as a
consequence of his theory of gravity, that there is a slight bulging of the
earth at the equator due to the greater centrifugal force generated by the
carth’s rotation. This equatorial bulging would produce a slight flattening at
the poles, predicted by Newton to be about 1/300™ of the equatorial radius.

Newton’s prediction was confirmed by measurements taken from 1735 to
1743 by expeditions sent to Ecuador and Finland to measure the ground
distance for one degree of angular change (one degree of latitude) in
equatorial and Polar Regions. The polar distance was found to be slightly
greater due to flattening.

From 1800 to the present date, at least 20 determinations of the earth’s radii
and flattening (oblateness) have been made from measurements taken at
widely different locations.

2.1.3 Geoidal Earth

An even more faithful figure of the earth, called the geoid (meaning earth
like), deviates, ever so slightly, from the ellipsoid in an irregular manner.
The geoid is the three dimensional shape that would be approximated by
mean sea level in the oceans and the surface of a series of hypothetical sea
level canals criss-crossing the continents. In more special terms, it is a sea
level equipotential surface, the surface on which gravity is everywhere
equal to its strength at mean sea level. If the earth were of uniform
geological composition and devoid of mountain ranges, ocean basins, and
other vertical irregularities, the geoid surface would match the ellipsoid
exactly. However, due primarily to variations in rock density and
topographic relief, the geoid surface deviates from the ellipsoid by up to
100m in certain locations. (Maximenko and Niiler, 2005).

Note that the “hills and valleys” on the geoid do not correspond with
continents and oceans.

Indeed the highest point on the geoid is 75 meters above the ellipsoid in
New Guinea and the lowest point is 104 meters below at the Southern tip of
India.



2.1.4 The World Geoidetic System

The World Geodetic System of 72 and 84 ellipsoids, determined from
satellite orbital data, are considered more accurate than the earlier ground
measurement determinations, but may not give the best fit for a particular
part of the earth. The Clarke 1866 ellipsoid, based on measurements taken
in Europe, India, Peru, Russia, and South Africa, is of special interest in the
United States, since it has been used for mapping in North America until
recently. North America cartographers are now rapidly switching to the
WGS 84 ellipsoid, which is a global standard.

2.2 Reference Ellipsoids

A reference ellipsoid, also called spheroid, is a simple mathematical model
of the Earth’s shape. An ellipsoid of revolution, or simply an “ellipsoid,” is
the shape that results from rotating an ellipse about one of its axes.

Oblate ellipsoids are used for geodetic purposes because the Earth’s polar
axis is shorter than its equatorial axis.

2.3 Local Reference Ellipsoids

Datums and cartographic coordinate systems depend on a mathematical
model of the Earth’s shape upon which to perform trigonometric
computations to calculate the coordinates of places on the Earth and in
order to transform between geocentric, geodetic, and cartographic
coordinates. The transformation between geodetic and cartographic
coordinates requires knowledge of the ellipsoid being used, (Bugayevskiy
& Snyder 1995, Qihe, Snyder & Tobler 2000, Snyder 1987).

The transformation from geodetic to geocentric Cartesian coordinates is
accomplished by Helmert’s projection, which also depends on an ellipsoid
(Heiskanen & Moritz (1967)) as does the inverse relationship; Meyer
(2002).

Measurements taken must be reduced to a common surface for geodetic
surveying, and a reference ellipsoid provides that surface. Therefore, all
geodetic horizontal datums depend on the availability of a suitable
reference ellipsoid.



Until recently, the shape and size of reference ellipsoids were established
from extensive, continentalsized triangulation networks and Gore, (1889),
Crandall (1914), Shalowitz,(1938), Schwarz (1989), Dracup (1995), Keay
(2000), although there were at least two different methods used to finally
arrive at an ellipsoid

» The “arc” method for Airy 1830, Everest 1830, Bessel 1841 and Clarke
1866.

* The “area” method for Hayford (1909).

The lengths of (at least) one starting and ending baseline were measured
with instruments such as rods, chains, wires, or tapes and the lengths of the
edges of the triangles were subsequently propagated through the network
mathematically by triangulation.

For early triangulation networks, vertical distances were used for
reductions and typically came from trigonometric heights or barometric
measurements the result of this was that each region in the world thus
measured had its own ellipsoid, and this gave rise to a large number of
them; (DMA (1995) and Meyer (2002)). It was impossible to create a
single, globally applicable reference ellipsoid with triangulation networks
due to the inability to observe stations separated by large bodies of water.
Local ellipsoids did not provide a vertical datum in the ordinary sense, nor
were they used as such.

Before GPS, all high-accuracy heights were measured with some form of
leveling, and determining an ellipsoid height from an orthometric height
requires knowledge of the deflection of the vertical, which is obtained
through gravity and astronomical measurements (Heiskanen & Moritz
(1967).

Deflections of the vertical, or high-accuracy estimations thereof, were not
widely available prior to the advent of high-accuracy geoid models.
Second, the location of a local ellipsoid was arbitrary in the sense that the
center of the ellipsoid need not coincide with the center of the Earth
(geometric or center of mass), so local ellipsoids did not necessarily
conform to mean sea level in any obvious way.



In summary, local ellipsoids are essential in geodetic coordinates
computation, geoidal determination, satellite orbit determination, and
cartographic coordinate systems .As reported by Fischer (2004).

2.4 Equipotential Ellipsoids

Global reference ellipsoids have been created using Very Long Baseline
Interferometry (VLBI) for GRS 80 (Moritz 2000)), satellite geodesy for the
World Geodetic System 1984 (WGS 84) (DMA 1995), along with various
astronomical and gravitational measurements. Very long baseline
interferometry and satellite geodesy permit high-accuracy baseline
measurement between stations separated by oceans. As a result, these
ellipsoids model the Earth globally; they are not fitted to a particular local
region.

Both WGS 84 and GRS 80 have size and shape such that they are a best-fit
model of the geoid in a least-squares sense. Quoting Moritz (2000), The
Geodetic Reference System 1980 has been adopted at the XVII General
Assembly of the International Union of Geodesy and Geophysics (IUGG)
in Canberra, December 1979, by declaring the following ( recognizing that
the Geodetic Reference System 1967 , no longer represents the size, shape,
and gravity field of the Earth to an accuracy adequate for many geodetic,
geophysical, astronomical and hydrographic applications and considering
that more appropriate values are now available, recommends that the
Geodetic Reference System 1967 be replaced by a new Geodetic Reference
System 1980, also based on the theory of the geocentric equipotential
ellipsoid, defined by the following constants)

« Equatorial radius of the Earth: a = 6378137 m;

« Geocentric gravitational constant of the Earth (including the
atmosphere):

GM = 3, 986, 005 x 10°m3s—2
» Dynamical form factor of the Earth, excluding the permanent tidal
deformation:
J2 =108, 263 x 1078; and

» Angular velocity of the Earth:



®=7292115 x 10~ 1rad s~ 1.

Equipotential ellipsoid models of the Earth constitute local ellipsoids,
which are purely geometric, whereas equipotential ellipsoids include the
geometric but also concern with gravity. Indeed, GRS 80 is called an
“equipotential ellipsoid” (Moritz 2000) and, using equipotential theory
together with the aforementioned listed above, one derives the flattening of
the ellipsoid rather than measuring it geometrically.

Datums that employ GRS 80 and WGS 84 (e.g., (North American Datum
(NAD) 83, International Terrestrial Reference System (ITRS), and WGS
84) are intended to be geocentric, meaning that they intend to place the
center of their ellipsoid at the Earth’s center of gravity. It is important to
note, however, that NAD 83 currently places the center of GRS 80 roughly
two meters away from the center of ITRS and that WGS 84 is currently
essentially identical to ITRS.

Equipotential ellipsoids are both models of the Earth’s shape and first-order
models of its gravity field. Somiglinana (1929) developed the first rigorous
formula for normal gravity ( Heiskanen & Moritz (1967)) and the first
internationally accepted equipotential ellipsoid was established in 1930. It
had the form: (Blakely 1995)

g0 = 9.78046(1 + 0.0052884 sin ¢ — 0.0000059 sin? 2 0) (2.1)
Where

g0 = acceleration due to gravity at a distance 6,378,137 m from the center
of the idealized Earth; and

¢ = geodetic latitude

The value g0 is called theoretical gravity or normal gravity. The
dependence of this formula on geodetic latitude will have consequences
when closure errors arise in long leveling lines that run mostly north-south
compared to those that run mostly east-west.

The most modern reference ellipsoids are GRS 80 and WGS 84. As given
by (Blakely, 1995).The closed-form formula for WGS 84 normal gravity is:

90=9.7803267714*(1+0.00193185138639sin° ¢ )/(1—-0.00669437999013
£ 2 Ya
sin® o) (2.2)



2.5 Equipotential Ellipsoids as Vertical Datums

Equipotential ellipsoids are more suitable to be used as vertical datums in
the ordinary sense than local ellipsoids and, in fact, they are used as such.
In particular, GPS-derived coordinates expressed as geodetic latitude and
longitude presents the third dimension as an ellipsoid height.

Equipotential ellipsoids are models of the gravity that would result from a
highly idealized model of the Earth; one whose mass is distributed
homogeneously but includes the Earth’s oblate shape, and spinning like the
Earth. The geoid is not a simple surface compared to an equipotential
ellipsoid, which can be completely described by just the four parameters
listed before. The geoid’s shape is strongly influenced by the topographic
surface of the Earth. The geoid is a convex surface by virtue of satisfying
the Laplace equation, and its apparent concavity is a consequence of how
the geoid is portrayed on a flat surface (Van'1"cek & Krakiwsky 1986).

Equipotential ellipsoids are useful as vertical datums, they are usually
unsuitable as a surrogate for the geoid when measuring orthometric heights.
Equipotential ellipsoids are “best fit” over the entire Earth and,
consequently, they typically do not match the geoid particularly well in any
specific place. (Meyer, T.H., Roman, D.R. and Zilkoski, D.B., 2006)

2.6 The World Geodetic System 1984 (WGS 84)

It is the reference frame used by the U.S. Department of Defense and is
defined by the National Geospatial-Intelligence Agency (NGA) to cover
the entire world in its scope. This is a great advantage over NAD 27 and
NAD 83, even though it is set up similarly to NAD 83. WGS 84 is used by
the Department of Defense for its mapping needs, including its GPS
"broadcast” and "precise" orbits.

In January 1987, it became the default standard datum for coordinates
stored in recreational and commercial GPS units. Since its inception, WGS
84 has been updated twice, most recently in 2008, to increase its operability
with GPS systems.
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2.6.1 Adindan Sudan local Datum

Adindan datum is the historical local datum of Sudan that all triangulation
and traverse network observations has subsequently been reduced to it, also
it has been used as Geodetic Datum in A Eritrea , Ethiopia Burkina Faso,
Cameroon, Mali and Senegal.

Adindan references the Clarke 1880 (RGS) ellipsoid of a semi major axis
of 6378249.145 m, and 293.465 reciprocal of the flattening (1/f ), and the
Greenwich prime meridian.

Adindan base terminal ZY was chosen as the origin of 22° 10" 7.1098"
latitude (North) and 31° 29' 21.6079" longitude (East), with azimuth of 58°
14" 28.45" from the north to YY.ZY is now about 10 meters below the
surface of Lake Nasser.

Adindan is a geodetic datum. The 12th parallel traverse of 1966-70 (Point
58 datum, code 6620) is connected to the Adindan network in western
Sudan. This has given rise to misconceptions that the Adindan network is
used in west Africa.

Since all existing maps and old survey information in Sudan are reduced to
adindan national datum. Informations about Adindan network is needed.
Relationship between the world geodetic system 1984 (WGS84) and the
local geodetic datum need to be established.

2.7 Mean Sea Level

Mean sea level was long considered a satisfactory approximation to the
geoid and therefore suitable for use as a reference surface. It is now known
that mean sea level can differ from the geoid by up to a meter or more, but
the exact difference is difficult to determine.

For heights, the most common datum is mean sea level. Using mean sea
level for a height datum is perfectly natural because most human activity
occurs at or above sea level. The NGS Glossary definition of mean sea
level is “The average location of the interface between ocean and
atmosphere, over a period of time sufficiently long so that all random and
periodic variations of short duration average to zero.”
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The National Oceanic and Atmospheric Administration’s (NOAA)
National Ocean Service (NOS) Center for Operational Oceanographic
Products and Services (CO-OPS) has set 19 years as the period suitable for
measurement of mean sea level at tide gauges (National Geodetic Survey
Reports 1986). The choice of 19 years was chosen because it is the smallest
integer number of years larger than the first major cycle of the moon’s orbit
around the Earth. This accounts for the largest of the periodic effects
mentioned in the definition. Bomford (1980) and Zilkoski (2001). Local
mean sea level is often measured using a tide gauge.

Figure 2.1 depicts a tide house, “a structure that houses instruments needed
to measure and record the instantaneous water level inside the tide gauge
and built at the edge of the body of water whose local mean level is to be
determined.”

By this time it was a known fact that not all mean sea-level stations have
the same height.

To begin with, all mean sea-level stations are at an elevation of zero by
definition. Second, water seeks its own level, and the oceans have no
visible constraints preventing free flow between the stations (apart from the
continents).

According to differences in temperature, chemistry, ocean currents, and the
water in the oceans is constantly moving at all depths. Seawater at different
temperatures contains different amounts of salt and, consequently, ocean
eddies, mean sea level is not at the same height everywhere.

12
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Figure 2.1: The design of a NOAA tide house and tide gauge used for
measuring mean sea level. Source: (NOAA 2007).

has density gradients. These density gradients give rise to immense deep-
ocean cataracts that constantly transport massive quantities of water from
the poles to the tropics and back (Broecker 1983, Ingle 2000, Whitehead
1989). The sun’s warming of surface waters causes the global-scale
currents that are well-known to mariners in addition to other more subtle
effects (Chelton, et al 2004). Geostrophic effects cause large scale,
persistent ocean eddies that push water against or away from the
continents, depending on the direction of the eddy’s circulation. These
effects can create sea surface topographic variations of more than 50
centimeters (Srinivasan 2004). As described by Zilkoski (2001), the
differences are due to currents, prevailing winds and barometric pressures,
water temperature and salinity differentials, topographic configuration of
the bottom in the area of the gauge site, and other Physical causes (Tide is
the major).

In essence, these factors push the water and hold it up shore or away-from-
shore further than would be the case under the influence of gravity alone.

2.7.1 Sudan Mean Sea Levels (MSL) Height
There are two Datum's for mean sea level in Sudan namely irrigation datum

13



and Sudan survey authority datum.
2.7.1.1 Irrigation Datum

The survey of bench-mark referred to this datum is made by survey of
Egypt and it is divided into two sections:
(1) North of Khartoum which is referred to Alexandria mean sea level,
and running a line of a precise leveling from Alexandria to
wadi Halfa. in 1906-and 1907 a second order leveling was run from Wadi
Halfa to a polt Bench-mark in Sudan ministry of irrigation.
(2) South of Khartoum assuming gauge height of 360. 000 meters as Zero
of Khartoum Gauge.
The bench mark monument referred to this datum (bolt and Pile) is similar
to that of the Sudan survey authority.

2.7.1.2 Sudan Survey Authority Datum

This is the official Sudan Mean Sea Level datum (M.S.L), it's refereed to
mean sea level at Alexandria Port. A precise leveling has been carried out
from Alexandria and the Bench mark is of permanent nature, either a pile
or a bolt. The bolt benchmark is the one chiseled into a wall, or that are
permanently attached to a stable foundation, such as concrete posts, bridge,
buildings, or a specifically constructed concrete block. These markers are
then used as starting control points by subsequent surveyors and other users
to establish the elevation of nearby points. Most of the Sudan survey
authority's benchmarks still exist but others are damaged. The description
of those Benchmarks is now misleading and needs to be updated to easily
be found.

2.8 Tidal Datums
2.8.1 Principal Tidal Datums

A vertical datum is called a tidal datum when it is defined by a certain
phase of the tide. Tidal datums are local datums and are referenced to
nearby monuments. Since a tidal datum is defined by a certain phase of the
tide there are many different types of tidal datums. Mean Higher High
Water (MHHW), Mean High Water (MHW), Mean Sea Level (MSL),
Mean Low Water (MLW), and Mean Lower Low Water (MLLW).
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A determination of the principal tidal datums is based on the average of
observations over a 19-year period,. A specific 19-year metonic cycle is
denoted as a National Tidal Datum Epoch (NTDE). Users need to know
which NTDE their data refer to.

e Mean Higher High Water (MHHW): MHHW is defined as the arithmetic
mean of the higher high water heights of the tide observed over a specific
19-year metonic cycle denoted as the NTDE. Only the higher high water of
each pair of high waters of a tidal day is included in the mean. For stations
with shorter series, a comparison of simultaneous observations is made
with a primary control tide station in order to derive the equivalent of the
19-year value (Marmer 1951).

« Mean High Water (MHW) is defined as the arithmetic mean of the high
water heights observed over a specific 19-year metonic cycle. For stations
with shorter series, a computation of simultaneous observations is made
with a primary control station in order to derive the equivalent of a 19-year
value. The survey carried out in 1958 to connect the two datum's show
there're three meters difference between the two systems. (Marmer 1951).

e Mean Sea Level (MSL) is defined as the arithmetic mean of hourly
heights observed over a specific 19-year metonic cycle. Shorter series are
specified in the name, such as monthly mean sea level or yearly mean sea
level (Marmer, 1951, Hicks, 1985).

e Mean Low Water (MLW) is defined as the arithmetic mean of the low
water heights observed over a specific 19-year metonic cycle. For stations
with shorter series, a comparison of simultaneous observations is made
with a primary control tide station in order to derive the equivalent of a 19-
year value (Marmer 1951).

e Mean Lower Low Water (MLLW) is defined as the arithmetic mean of
the lower low water heights of the tide observed over a specific 19-year
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Metonic cycle. Only the lower low water of each pair of low waters of a
tidal day is included in the mean.

2.8.2 Other Tidal Datums

Other tidal values typically computed include the Mean Tide Level (MTL),
Diurnal Tide Level (DTL), Mean Range (MR), Diurnal High Water
Inequality (DHQ), Diurnal Low Water Inequality (DLQ), and Great
Diurnal Range (GDR).

« Mean Tide Level (MTL) is a tidal datum which is the average of Mean
High Water and Mean Low Water.

* Diurnal Tide Level (DTL) is a tidal datum which is the average of Mean
Higher High Water and Mean Lower Low Water.

« Mean Range (MR) is the difference between Mean High Water and Mean
Low Water.

 Diurnal High Water Inequality (DHQ) is the difference between Mean
Higher High Water and Mean High Water.

 Diurnal Low Water Inequality (DLQ) is the difference between Mean
Low Water and Mean Lower Low Water.

« Great Diurnal Range (GDR) is the difference between Mean Higher High
Water and Mean Lower Low Water.

All of these tidal datums and differences have users that need a specific
datum or difference for their particular use. The important point for users is
to know which tidal datum their data are referred to. Like geodetic vertical
datums, local tidal datums are all different from one another, but they can
be related to each other.
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CHAPTER THREE
DIGITAL TERRAIN MODELING

3.1 Introduction

Digital terrain modeling is a particular form of computer surface modelling
that numerically represent the surface of the Earth. The initial concept of a
digital terrain model (DTM) originated in the USA during the late 1950s
(Miller and La Flarnme, 1958).

The term DTM originally referred to the use of cross-sectional height data
to describe the terrain. Other terms are Digital Elevation Model (DEM),
Digital Height Model (DHM), Digital Ground Model (DGM), and Digital
Terrain Elevation Model (DTEM), are also used to describe the same
process.

3.2 Sources of data:

The three main methods which can be used to acquire elevation data are:

(i)  Ground survey methods.
(i)  Photogrammetric methods.
(ili)  Graphics digitizing methods.

3.2.1 Ground survey methods

In ground survey method, elevation data can be acquired by using the total
stations , Global Positioning System (GPS), and digital levels.

3.2.2 Photogrammetric methods

In photogrammetric methods elevation data can be acquired by using
digital plotters.

3.2.3 Graphics digitizing methods

In this method the actual DTM spot height or elevation data is derived by
interpolation from the digitized contour lines contained in existing
topographic maps.
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3.3 Measurement patterns

The required terrain elevation information may be obtained in any one of
several sampling patterns.

3.3.1 Systematic sampling

The spot heights may be measured in a regular geometric (square,
rectangular, triangular) pattern (Fig. 3.1).

3.3.2 Progressive sampling

Originally proposed by Makarovic of the I.T.C., of the Netherlands
(Makarovic, 1973, 1975).The measurement of grid points is varied in
different parts of the grid, to matched the local roughness of the terrain
surface (Fig. 3.2), to automatically or semi automatically optimize the
relationship between specified accuracy, sampling density and terrain
characteristics.

ST . T
K rreeneneans e SR e S -+
...... e ++
o " o  — +. .......... . —— + .......... R 4
""" -+, Aoy ++++++
ereenenes + (TR :
I i N i S— B 4
Hexagonal Square

18



Jeren, B R + .................. +
B T, B . .+. .................. +

Rectangular Triangular

Figure 3.1 Regular grid patterns

3.3.3 Random sampling

It is widely used by field surveyors and photogrammetrists, to measure
heights selectively at significant points only-at the tops of hills, in hollows
and along breaks of slope, ridge lines and streams. The measured points
will be randomly located, that is, an irregular network of points during the
reconnaissance and interpretation of the terrain features.

3.3.4 Composite sampling

It combines the elements of both of the above approaches (Makarovic,
1977).The basic grid-measuring pattern will be supplemented by the
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measurements made at significant points in the terrain, e.g. on hill tops,
along break lines and streams, as, mentioned in 3.3.3.

3.3.5 Measured contours

To have the measurements in the form of digital coordinate data, contours
are measured in a stereo model or from an existing topographic map over
the whole area to be modeled.

3.4 Modelling techniques

Programs written for terrain modelling applications in surveying
engineering, basically follow one or another of two main approaches:

(1) They make use of height data which has been collected or
arranged in the form of a regular (rectangular or square) grid

(i)  They are based on a triangular network of irregular size, shape
and orientation, based on randomly-located height data,

As Fig. 3.3 shows, these two approaches can be conducted either wholly
independent of one another or they can be combined to give a composite or
hybrid approach to terrain modeling and contouring.

3.4.1 Grid-based terrain modelling

The data comprising the terrain model is measured or collected in the form
of a regular grid. Direct modelling of the grid can take place. A digital
terrain data will often have been collected at specific locations, either in the
field using GPS, or by photogrammetric methods. A preliminary random-
to-grid interpolation must be carried out which converts this measured data
to a suitably dimensioned regular grid.

Usually the following interpolation methods are distinguished:
(i) Point wise methods
(i) Global methods

(i) Patch wise methods
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\ Contours /

(Angular or curved)

Figure 3.3 Overall relationships between measured point data, networks
and contours in terrain modeling

3.4.1.1 Point wise methods

These involve the interpolation of the values of the terrain elevation at each
specific grid node from its neighboring randomly-located measured height
points. The determination of the height of each individual point are based
on a search for the set of nearest neighbors, followed by the averaging of
their heights weighted inversely by some function of their respective
distances d from the position of the grid node. This weight w= 1/d" where "
Is the power used, typically in the range 0.5 to 4.

If the measured terrain model data takes the form of contours,
another form of search may be implemented via the so-called
sequential steepest slope algorithm described by Leberl and Olsen
(1982) (Fig. 3.4). In this procedure, a search is made along each of the
four lines passing through the required grid node and oriented along the
grid directions (VV and HH) and their bisectors (U U and GG). The
intersection of each of the eight directions with the nearest contours is
established and the slope of each of the four lines calculated. The line with
the steepest slope is then selected, and the value of the elevation of the grid
node established by linear interpolation along this line-for instance, in the
example shown in Fig. 3.4, search line GG is the steepest, and the height of
the grid node P is derived from
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Hp: [Hl— H 5]/(1, 5)[(P, 5) + H 5

3.4.1.2 Global methods

These involve the fitting of a single three-dimensional surface defined by a
high-order polynomial through all of the measured randomly-located
terrain height points existing within the model points. (Fig. 3.5).

3.4.1.3 Patch wise methods

These lie in an intermediate position between the point wise method and
the global method. The whole area to be modeled is divided into a series of
equal-sized patches of identical shape.

The shape of each patch is in form, typically square or rectangular. The
elevation of all the grid points falling within each individual patch can be
interpolated using these parameters.

(1)  Exact-fit patches (Fig. 3.6a) may be defined in which each patch
abuts exactly on to its neighbors. The difficulty that may result
from the use of such patches is that they may result in sharp
discontinuities along their junctions, which show up markedly
when the isoclines or contours are finally produced.

(i)  The alternative is to use an arrangement of overlapping patches
(Fig. 3.6b), in which case there will be common points lying
within the overlap which will be used in the computation of the
parameters for each patch and, indeed, can be used to ensure a
smooth continuity or transition between adjacent patches.

The advantages of using patch wise methods over global methods are that
quite low order terms (parameters) can be used to satisfactorily describe
each patch. So only few unknowns need to be solved, via simultaneous
equations using least-squares method for each patch. Also, once the
unknown parameters have been solved for, it is easy to calculate the derived
points, that is, the grid nodes, by back-substitution in the functions or
equations describing the patch. However, there are also some disadvantages
of the patch wise method. In the first place, it needs much more
organization of its data and of its processing than point wise or global
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methods. Also, the subdivision of the model surface into patches needs to
be carried out with care.

Figure 3.4 Sequential steepest slope algorithm showing cross-sections HH,
VV, UU and GG. And the intersection points in the contours (Leberl and
Olsen, 1982).
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Figure 3.5 Global Interpolation
3.4.1.4 Polynomials used for surface representation

Polynomial equations are used to represent the terrain surfaces in the global
and patch wise methods of interpolation. The basic general polynomial
equation used is

Zi=a,t a X+ aY;+.,.

as shown in Table 5.1

where Z; is the height value of an individual point i
Xi, Y;are the rectangular coordinates of the point i

a,, a1, ay, etc., are the coefficients or parameters of the polynomial.
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Figure (3.6b) Patch wise Interpolation(overlapping patches)
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Individual terms Order of | Descriptive | No. of
term term terms
a, Zero Planar 1
+a X+a,Y First Linear 2
+ agX*+ agy’+ asXY Second | Quadratic 3
+ agX>+ azy° + agX’y + agXy’ Third Cubic 4
+ aX '+ ayy’ +apX’ Y + aXy+ auXy3 | Fourth | Quadratic 5
+ 3. X+ ...etc Fifth Quintic 6

Table 3.1 Polynomial equation used for surface representation

One such equation will be generated for each individual point i with
coordinates Xi, Y;, Z;, occurring in the terrain model. In the first step, the
values of X, Y and Z are known for each measured point present in the
overall data set or patch. Thus the values of the coefficients a;, a,, az- can
be determined from the set of simultaneous equations which have been set
up, one for each data point. Once the values of the coefficientsay, a,, as...
have been determined, then for any given grid node point with known
coordinates X, Y, the corresponding height value Z can be calculated.

To make a correct selection of the terms which will best represent or model
the terrain surface, the surveying engineer must keep in mind the shape
produced by each term in the polynomial equation (Fig. 3.7). Typical of the
simpler types of surface used to model individual grid cells or Patches are:

(i) The 4-term bilinear polynomial

Z = aot aX+ aY+az XY  (3.2)

(ii) The 10-term cubic polynomial

Z = gyt aX+a,Y+ agXY+a X+ asY+ agX’Y+ a;XY? +agX°+ agY®  (3.3)
(iii) The 16-term bicubic polynomial

Z = ap+ apX+a,Y+ agXY+a, X+ agY+ agX Y+ arXY? +agX’Y 2+ agX*+ ayY®

+ ai XY+ apX Y3+ aXPY*+ a XY+ asX?Y? (3.4)
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3.4.1.5 Contouring from grid data

For a single grid cell (Fig. 3.8), a simple linear interpolation is carried out
along each of the four sides in turn, based on the values at the nodes. The
positions of all the contour values are determined for each side.

Fig (3.7) Surface shapes produced by individual terms in the general
polynomial equation.

Taking the data points given in (Fig. 3.9), there are four possible solutions
which give quite different positions for the contour and also a fifth
(impossible) alternative.

27



39 E‘><it PtL. Exi-t Pt 55
/40
Entry pt. ¢
| Exit Pt
50
/60
45 Entry Pt. Entry Pt. 70

Figure 3.8 Grid contouring: linear contour interpolation in a single cell.

3.4.2 Triangle-based terrain modelling

Is being used to an ever-increasing extent in terrain modeling,when every
measured data point (vertices of the triangles) is used and honored directly,
to model the terrain, from which the height of additional points may be
determined by interpolation and the construction of contours undertaken.
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Figure 3.9 Grid contouring: ambiguity in contour threading in a single cell.
3.4.2.1 Contouring from triangulated data

As with contouring of regular gridded height points, so with randomly
located triangulated height data, there are two main options for the contour
threading.

(i) Simple linear interpolation of the contours.
(i1) Generation of curved smoothed contours using some type of function.

When the terrain model is based on triangulated data the use of direct linear
interpolation for the contour generation gives a simple and robust solution.
Ambiguities of directions can be resolved.
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Digital terrain modeling is now a commonly used technique both in
topographic mapping and civil engineering design. It is also used widely in
other fields such as landscape planning, flight simulation and
geological/geophysical exploration where generally the accuracy
requirements of the elevation data are lower than for surveying and
engineering applications .
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CHAPTER FOUR
LEAST SQUARES COLLOCATION

4.1 Introduction:

The classical least squares adjustment theory of Gauss has been generalized
and modified to include the theory of prediction and filtering of stochastic
processes with stationary covariance signals. The generalized theory has
been given the name “least squares collocation”. The mathematical
definition of collocation is given by Noritz (1980) as “the determination of
a function by fitting an analytical approximation to a given number of
linear functions.

Historically least squares collocation is developed from least squares
prediction of gravity anomalies . The technique is mainly used in surveying
and geodesy to determine the values of quantities at points other than those
at which measurements have been made (or at which information is not
known).

An essential feature of the method is that quantities which are by nature
deterministic are described in a statistical manner, particularly by the use of
covariance matrices. we would need to establish a function (known as a
covariance function) from which it would be possible to compute the
covariance of the heights at any two points, to predict the unknown height
of a point surrounded by a number of points of known height. This function
would be in terms of quantities such as position and distance between the
points.

4.2 Covariance matrices

Consider n points (Fig 4.1) at which we know the coordinate values of a
quantity (X, Y, and H) u, i.e. we know uj, U,.. u,. To determine a
covariance function. Assume that the correlation of the quantity between
any two points i and j is a function only of the distance, d;;, between them.
Then using all n; pairs of points separated by a distance of up to r; meters
we compute their covariance from

1

C,=— U 4.1
1 n, Uj Uy (4.1)

31



Fig 4.1 points with known heights

The process is then repeated using all n, pairs of points separated by a
distance greater than r, and less than r, meters etc. Generally we can write,
for the ny pairs of points separated by a distance greater than r,, and less
than r, meters.

1
Ck = —Z Uu; u]' (4‘2)

Ci1 Ci2 Cin
Cnl CTLZ CTLTL

Alternatively a mathematical function, e.g.

Cij = aexp(—br;j) (4.4)

Where a and b are constants, could be fitted to the data and subsequently
used to compute each element of C,.
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We now extend the concept of the covariance matrix to cover the situation
shown in Fig 4.2 where we have a quantity, u, known at points 1,2,3, etc.

Fig 4.2 points for prediction of the unknown height

but unknown at points a, b, c. In this case we find it convenient to partition
the complete vector u into two parts u; and u;

u= (u1|u2)T (4.5)

Where u; contains the values of the quantity at points 1,2,3, etc. (called
data points) and u, contains the values at points ab,c, etc. (called
computation points). Then the covariance matrix of u is correspondingly
partitioned

Cll ClZ]

c =[ 4.6
v\ G (4.6)

where the generally non—square matrices Cy, and Cy, (note that C,, = C1,)
are often termed the Cross covariance matrices between the data and
computation points.
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4.3 Least squares prediction

As a preliminary to least squares collocation we will consider the simple
case of least squares prediction. Referring to 4.1 and Fig.4.2, let u; be a
vector of known quantities at points 1,2,3, etc. and let u, be the unknown
values of the quantities at a, b, c, etc. Again it is emphasized that we are not
here concerned with measurement errors, i.e. u; is perfectly known, but it is
required to estimate u,. Any linear estimates of u,, say u;, must be of the
form

u; = Quy (4.7)
(PA Cross - 1983)

where Q is a linear transformation to be determined.

Let e* be the true error of the estimate u;, then
e =u;, —u, (4.8)
and substituting 4.7 in 4.8 we have

e* = Qu; —u, (4.9)

which can be rewritten as
e’ = (Ql-I[3 (4.10)
Then applying Gauss error propagation law

C, = RCy,RT (4.11)
to 4.10 and using 4.6 we obtain the covariance matrix of e”

Cor = (QI-1) [gi %2] [‘f—j] (4.12)
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and reorders to

Cer = Cyz + QC11QT — QCy, — C1,QT (4.13)

Now C,,Ci}C;, is subtracted and added to 4.13 to yield

Cor = Cyy — C21C1_11€12 + QC11QT —QCy; — C21QT
+ C,,C{1Cy (4.14)

Since C;,C;it = I (4.14) can be written in the following expanded form

Ce* = Cyp — C21C1_11€12 + QC11QT - C11C1_11C12QC12 - C21C1161_11 T
+ Cy1C11'C11C1' Cyy (4.15)

which, after putting C;, = CJ,, becomes

Cor = Cyp — C21C1_11C2T1
+(Q — €101 )C1(Q — G CD)T (4.16)

We can write (4.16) as a sum of two matrices viz.

Cor =F+G (4.17)

Where

F - sz - 62161_11651 (4‘18)

and
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G=(Q- Cz1C1_11)C11(Q - C21C1_11)T (4.19)

In fact any choice of Q will yield a matrix G with none—negative diagonal
elements.

This is because the ith diagonal element of C in (4.19) is given by the
quadratic form

Gy = 9C119T (4.20)

where g is the ith row of Q — C,,C{i* and Cy; is positive—definite. Hence
any choice of Q will make the variances of the error in each element of u;
equal to or larger than the diagonal elements of F. The minimum variance
estimate will therefore be obtained when G is a null matrix, i.e.

Q—CyC+=0 (4.21)

or
Q= Cz1C1_11 (4-22)

Substituting (4.22) in (4.7) gives the best (in the sense of minimum
variance) linear estimate of u, as

ﬁz == C21C1_11u1 (4‘23)

Which, because of its minimum variance property, is also termed the least
squares estimate. (4.23) is often written in the following manner for the
prediction of u at any particular computation point p:

Cii Ciz - Cil'[wa
Coy Cpp o C u

Uy = [Cp1Cpo - Con] | 5+ T i (4.24)
Chi Cnz o Cpnl U
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Where c,; represents the vector of covariance between point p and the ith
data point and all other symbols are as previously defined, i.e. uy, Uy, ..., Uy
are the values of the quantity at the data points and the square matrix to be
inverted is the covariance matrix of the quantities at the data points.

4.4 Collocation Mathematical Model

The model associated with ordinary least squares adjustment by parameters
is the general collocation model. This model is able to take into account
measurement errors at the data points and the possible requirement to
compute certain parameters during the prediction process.

Consider a set of data points at which we have made n observations. Let
there also be g computation points and m parameters to be recovered. As
usual we will denote the true values of the modeled observed quantities and
the parameters by the vectors £ and x respectively. We can write down n,
generally non—Ilinear, observation equations of the form.

F(x)—¢=0 (4.25)
and

t=7+e (4.26)

where e is the total “error” in the observations (i.e. the difference between
the observed and modeled quantities). In collocation this total error is
considered to be the sum of two independent errors usually called the
signal and noise, and denoted by the symbols S; and n respectively. Hence
(4.26) is written as

£=¢+S +n (4.27)
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£+s1+n
£+5,

Figure Fig 4.3 \

concept of collocation (afterseeber,1973) ¢

After linearising (4.25) using (4.27) we obtain
Ax—b+s;+n =0 (4.28)

4.4.1: The Signal

The signal represents the inability of the model to describe the exact
relationship between the measurements ¢ and the unknown parameters . In
addition, the signal may be considered to be external to the instrument and
related to the behavior of the observable in a particular medium
(Krakiwsky, 1975).

The signal may vary continuously and exists at points other than the
measuring points, thus interpolation is possible (Moritz, 1972). Another
property of the signal is that any one of its values is of an unpredictable,
arbitrary nature. Thus the signal may be considered to be stochastic
(za’voti, 1977).

The signal quantities are statistically dependent by nature; that is the signal
Is characterized by a full covariance matrix in the domain defined by the
observation and computation points. Thus; in collocation it is essential that
the signal has known second moments (variance—covariance matrix),
although the first moments (values of the signal) remain as unknowns to be
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determined. The vector s; is a random vector whose expectation or mean
value, is zero

E(s)= 0 (4.29)

4.4.2: The Noise

In collocation terms, the measurement ¢ consists of a systematic part, £, and
two random parts, s; and n. The noise is likely to resemble a measuring
error, and is internal to the instrument. The elements of the noise vector n
are considered discrete values for each observation while the elements of S
must be regarded as realizations of a continuous random quantity at the
measuring points. Moreover, the measurement errors are assumed to be
statistically independent from S and s; as they are peculiar to the
measuring instrument (Krakiwsky, 1975).

The vector n is random vector whose expectation or mean value, is zero

E(n)= 0 (4.30)

The problem of collocation is now to estimate simultaneously the
following:

(i)  the parameters x
(i)  The signal s; and noise n at the data points.

(ili)  The signal s, at the computation points. To apply the least squares
collocation we have to know the covariance matrices of both the
signal and the noise. The covariance matrix for the noise, cl is
obtained in the usual way (equivalent to C,) and Cs, the signal
covariance matrix for both the data and computation points, by a
study (equation (4.1)) of the variation of the signal where it is
known or can be estimated. Cn will often be diagonal but Cs will
invariably be a full matrix as the whole point of differentiating
between the signal and the noise is that the signal is highly
spatially (or possibly temporally) correlated and has completely
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different statistical properties to the noise. The derivation of the
collocation equations now proceeds as follows (PA Cross-1983).

Let s be a vector containing the signal at both the data and
computation points, i.e.

s = [sq]s,]7 (4.31)
Then (4.28) can be rewritten as
Ax—b+Bs+n =0 (4.32)
with
B = [I]0] (4.33)

Note that if we have g computation points then, B will have dimensions (n
+ @) x n with I, a unit matrix, being n x n and 0, a null matrix, being qxn.

We now wish to estimate x, s and n in (4.32) using the method of least
squares,i.e. minimizing

sTCls+nTCn

Hence, using Lagrange’s method of undetermined multipliers as in the
following equation

® =vTwv + 2kT(Ax + cv — b) (4.34)
we have

& =5s"C; s +n"C;'n+ 2kT(Ax — b + Bs + n) (4.35)

which is minimized by differentiating @ with respect to the unknowns and
equation to zero as follows

acI)—2,4T/?c—o 4.36
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=2C;'84+ 2Bk =0 (4.37)

=2C;'i+2k=0 (4.38)

Also the least squares estimates must satisfy (4.32),i.e.

AR —b+Bs+A=0 (4.39)

Now after dividing (4.36) to (4.38) by 2 and combining then with (4.39)
obtain the following least squares through hyper matrix.

c1 0 I 01[Aa 0
0 ¢t BT off$]-|0 4.40
I B 0 Allk b (4.40)
0 0 AT ollx 0
which, can be written as
ClA+k =0
A+BS§+A+AX =b (4.41)

ATk =0
The first two equations can be used to eliminate 7 as follows:-
i =—c,k
which when substituted in the second equation yields

—c, k+Bs+Ax =b

This equation and the last two equations of (4.41) can be written
as
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c;t BT 07[8 0
B —c, Al|lk|= [b] (4.42)
0 AT ollx 0

from (4.42) we can write the following equations
C;'+ BTk=0
Bs—c, k+A%x =b
ATk =0

From the first of the above three equations it is not difficult to see that
§= —c, BTk
Which when substituted in the second equation yields

—Bc, BTk — c, k+ A% =0

And when combined with the third equation, the result could be written as:-

—(C, + BC,BT) AH] H (4.43)

T

Substituting equation (4.33) into (4.43) gives

[-C,—[1 0]] [Csz; slsz] [0] A [k]_[ (4.44)
AT
[-C, —[1 0]] Cij; Cslsz] [(I)] (4.45)
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where Cs, and Cg, are the variance covariance matrices of the signal at the

data computation points respectively and Cs s, and Cs s, are their cross-
covariance matrices.

or

[T ] =[] (4.46)

4.4.3: Solution for the Parameters

From (4.46) we can write:
—(C, +Cs) k+ A = b and
ATk=0
From the first equation we obtain
k=(Co+Cs) A% —(Cp+Cy) (4.47)

Substituting this expression for k into the second equation we obtain

AT(Cy+C5) AR —AT(Cy+Cs,)  h=0
from which
- -1 -
£=(AT(Ca+Cs) A) AT(Co+Cs) b (4.48)
Substituting (4.48) into (4.47) results in
~ -1 ~
k=—-(C,+Cs) (b—AR) (4.49)

Then substituting (4.49) and rearranging leads to

From
§= —c, BTk
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developed, and substituting in (4.49) we get

$=CBT(Cy+Cs,) ' (b—AR) (4.50)

which is the least squares collocation expression for the signal at both the
data and computation points. The noise at the data points is obtained by
substituting 4.49 yield

from equation (4.41) ,
i=—c,k
And when equation k from (4.49) is substituted, we get

A= Co(Cp+Cs,) " (b— AR) (4.51)

To derive the corresponding covariance matrices we need an expression for
the covariance matrix of the vector b.

From

f1(x°%,6)
f2(x%, 1)
—b
(rx1) = (4.52)
£ (x9, 1)
in the special case of observation equations
b=Fx°) —¢ (4.53)
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substituting 4.27 gives

b=F(x°)—-f—-n—s, (4.54)

Then applying (4.11) to (4.54), whilst noting that F(x°) and £ are not
stochastic and that we have already assumed n and s; to be independent, we
have

Cp = Cp +Cs, (4.55)
substitute (4.55) in (4.48) to have
®=[ATc,tA) AT C, b (4.56)

Application of (4.11) to (4.56) gives the following expression for the
covariance matrix of the parameters:

Cy = [(ATC T A)TATCL MG [(ATC A AT C T (4.57)

which can be simplified to

Ce = (ATC;1A)! (4.58)

= [aT(Ca+ ) M) (from 4.55))  (4.59)
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For the covariance matrix of the least squares estimates of the signal, at
both the computation and data points, substitute (4.55) and (4.56) in (4.50)
to obtain

S ={CsBTC; 1[I — A(ATC, YA 1ATC,  ]3b (4.60)

Then substituting (4.58) and applying (4.11) to (4.60) leads to

C: = {CsBTC, M1
— ACzATC, ' 3Cp{C,BTC, I
— ACATC YT (4.61)

which can be simplified to
C: = CsBTCp'BC, — CsBTC tAC: AT CL ' BC, (4.62)

For the signal covariance matrix substitute (4.55) and (4.58) in (4.62) to
obtain

Cs = CsBT(C, + C5,) ™ BC,
— CsBT(Co+ Co,) A|AT(Co+ Csl)_lA]_l AT(C,
+C,,) " BC, (4.63)

A similar treatment of (4.51) leads to the covariance matrix for the least
squares estimates of the noise at the data points
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Ca=Co(Cp+Cs,) Cp
— Cu(Cu+ C,) A |AT(C, + Csl)_lA]_l AT(C,
+C,) G (4.64)

Equations (4.48), (4.50), (4.51), (4.59), (4.63) and (4.64) are the working
formulae for least squares collocation.

4.4.4 Special cases
The following three special cases can be identified.
(i)  Collocation without parameters

In cases when the elements of the matrix confidents are equal to zero. A =
0 and 4.50, 4.63, 4.51 and 4.64 simplify to

$=CBT(Cy+Cs,) b (4.65)

with
Cs = CsBT(Cp + Cs.) ™ BC, (4.66)

and
A= Cy(Co+Cs) b (4.67)

with
Ca = Co(Cr+Cs.) Cp (4.68)

(i)  Collocation without parameters and without noise

When random errors are insignificant or the statistics of the observations
are unknown, the least squares collocation equations for the signal (4.50)
and (4.63) can be simplified to

S =CBTCs,”'b (4.69)

with
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Cs = CsBTCs, ' BC; (4.70)

(ili)  Least squares prediction

When the observed (without noise) quantities and the signal are the same,
using the notation of (4.2), we have

s = [uglup]” (4.71)
b = ul (4‘.72)
Cs, = Cy,S (4.73)
and
CS CS S C C
C — [ 1 1 2] — 11 12] 4.74
T legs, CulTlCn ol WY
and, using (4.33) and (4.74), gives
C C I
T _ |11 L1z (L
CBT = | sz] [O] (4.75)
=[] = tealeat” (476)
21
Substituting (4.76) in (4.69) to obtain
§= [C111Co1]"Cii'b (4.77)
= b 4.78
€y CtD (4.78)

Finally, substituting (4.71) and (4.72) in the left and right hand sides
respectively of (4.78), we have

U u
[Tl] - [—11 ] (4.79)
Uy Cy1C11 Uy
I.e.
i, =u .
Uy =uy (4.80)
and
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i, = C21C1_11u1 (4.81)

with (4.81) being identical to (4.23). Hence we have shown least squares
prediction to be a special case of least squares collocation.
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CHAPTER FIVE

THE MODELING PROGRAM

5.1 Study area (Sudan)
In river Nile state, on the left bank of the River Nile and to the north west

of Shandi Town. The study area is bounded by the following coordinates
shown in table (5.1)

Between Latitude | N16° 35' 49" Latitude N17°00' 14"
And Longitude E32° 45' 55" Longitude E33° 14' 06"
Approximate 100000 hectares

area

Table 5.1-Study area coordinates

The maps below show the borders of the study area produced on the basis
of the above given coordinates (See figures 5.1&5.2).
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Figure 5.1(Study area location By Google)
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Figure 5.2 (Study area location - Map of Sudan (National Surveying
Authority(NSA)))

5.2 Data collection for control work

= Establishing and observing new control points to be distributed with
maximum distance of 4 kilometers between each two points within the
study area, and observed by GPS and an Automatic level.

= RTK technique (Real Time Kinematic GPS) to carry out the detail
survey and spot heights in grid lines which shall be at approximately
200X50m interval with more dense measurements on topographic
changes (e.g. water courses, mountains etc...) for the study area and
create a contour with the appropriate software. This is to be used later
to check the developed mathematical modeling programs.

5.3 Instruments used and methodology
The filed surveying activities were carried out according to the
following procedure and methodology:

The field work was started, by carrying out reconnaissance surveying
within the study area in order for the surveying engineers to be
acquainted with the study area environment and its physical and man-
made surroundings (villages, roads, land cover, reference control points)
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A cross check for the study area boundaries before commencing the
topographical survey works was made.

The surveying works commenced by establishing 66 new control points {K1,
K2, ..., K66} in grid of 4AKmx4Km covering 5 loops of 12KmX12K as shown
in the diagram 1(Fig.5.3).

The new control points (K1-K66) coordinates, were determined using GPS
receivers in static mode with a minimum 1 hour observations for control
points within 12Km distance apart and other control points were measured by

Figure 5.3(Loops Diagram)




observation points technique in RTK mode. These GPS observations were
tied to the given reference control point S2080 {Second order geodetic,
point, established by the National Surveying, Authority}.

The coordinates determined by GPS methods, were in the World Geodetic
System 1984 (WGS84), and were transformed to the Universal Transverse
Mercator (UTM) coordinates system. Also, the ellipsoid height was
converted to orthometric height {relative to mean sea level} by Earth
Gravitational Model 2008 {EGM 2008}. The site calibration method was
accomplished by using points having heights determined by automatic
levels.

Double run leveling was carried out between any two consecutive points as
shown in (Figure 5.3); thus the major leveling loop (5 in number) have
dimensions 12Kmx12 Km. and the dimensions of the other smaller ones
are not precisely measured. Therefore, the loop closures were checked by
two techniques:

1- Double Run Method.
2- Close to Known points.

5.4 The programming language

A program was written in C# (pronounced “See Sharp”) is a simple,
modern, object-oriented, and type-safe programming language.

J

EILE EDIT

File  Matrices LeastSquares  Help  About The Author
DEH ¥2@ae
INVESTIGATION OF MATHEMATICAL MODELS FOR DENSIFICATION OF (|

Calculate Calculate more

Y EQ L o ElE

BlgaSall s Juid Cx

il ¥

The text to display on the item.

Figure 5.4-Program main menu screen
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5.4.1 Back ground

During the .NET Framework development, a managed code compiler
system called Simple Managed C (SMC) used to write the original class
libraries. In January 1999, Anders Hejlsberg formed a team to build a
new language at the time called C-like Object Oriented Language
(COOl).

The .NET project was publicly announced in July 2000 and during the
Professional Developers Conference, the language had been renamed
C#, and the class libraries and ASP.NET runtime had been ported to C#.

o Least Squares - Untitled = =

File | Matrices LeastSquares Help  About The Author
New e

Open TIGATION OF MATHEMATICAL MODELS FOR DENSIFICATION OF ORTHOMETRIC HEIGHTS

— [ Ssave n

@ i | B C D E It G H

-1 & g L b3 e

o

10

11
b 12

13

14

15

16

-

18

19
€ o >
BhaiSall a2y il i - @busal aws G igh @S Ulell Slulyll &S zgleiSilly palell olygull dnsl>

Figure 5.5 —The main menu and file pull-down menu.

C#'s designer is Anders Hejlsberg, who was previously involved with the
design of Turbo Pascal, Embarcadero Delphi (formerly Code Gear Delphi,
Inprise Delphi and Borland Delphi), and Visual J++.

C# makes use of reification to provide "first-class" generic objects that can
be used like any other class, with code generation performed at class-load

time. ((C-sharp-(Programming-language)# Cite-note-25)
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Furthermore, C# has added several major features to accommodate
functional-style programming, culminating in the Language integrated
Query (LINQ) extensions released with C# 3.0 and its supporting
framework of lambda expressions, extension methods, and anonymous
types. These features enable C# programmers to wuse functional
programming techniques, such as closures, when it is advantageous to their
application.

The LINQ extensions and the functional imports help developers reduce
the amount of "boilerplate” code that is included in common tasks like
querying a database, parsing an xml file, or searching through a data
structure, shifting the emphasis onto the actual program logic to help
improve readability and  maintainability.((C-sharp-(Programming-
language)# Cite-note-28)

awlpl.docx - Microsoft Word
o DENSIFICATION OF ORTHOMETRIC HEIGHTS - O1.ibr - B
File ~Matrices LeastSquares Help  About The Author
DEH ¥R e

INVESTIGATION OF MATHEMATICAL MODELS FOR DENSIFICATION OF ORTHOMETRIC HEIGHTS 4
A B C D E F G H ~
1
2 s Open “
3 :(-:I - 1T <« |brahimPHD » Example 10112013 v & Search Exarnple 10112015 el
4
5 Organize v Mew folder =~ I @
6 A NZ ~ MName : Date modified Type
7 1M This PC P .
|| DEMSIFICATION OF ORTHOMETRIC HEL.. 11/10/2014 %57 PM  IBR File
8 i Desktop . . . .
| gpseastn01.ibr 10/ IBR. File
9 ‘| Decuments P . - .
|| OK-ellipsoid-geoid-gps01-29-10-2014.ibr IBR. File
10 4 Downloads 8 .
|| PhD8-11-2014.ibr IBR File
11 o Music
» 12 =| Pictures
13 & Videos
14 = wind ()
R e WinT T & & 2
15
16 File name: | OK-ellipsoid-geoid-gps01-29-10-2014.ibr v |ibrfiles (*.ibr) v
18
19
= v
< >

8yl 33 Jail iz dvlusall aws dwiigl a8 _ lilsll Olulyall 448 LrelaiSilly aalsll glygull dnals

Figure 5.6 Drive and Geoid —Ellipsoid File selection
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5.4.2 Design goals
The ECMA standard lists these design goals for C#

« The C# language is intended to be a simple, modern, general-purpose,
object-oriented programming language.

« The language, and implementations thereof, should provide support for
software engineering principles such as strong type checking, array
bounds checking, detection of attempts to use uninitialized variables, and
automatic garbage collection. Software robustness, durability, and
programmer productivity are important.

« The language is intended for use in developing software components
suitable for deployment in distributed environments.

= Source code portability is very important, as is programmer portability,
especially for those programmers already familiar with C and C++.

= Support for internationalization is very important.

« C# s intended to be suitable for writing applications for both hosted and
embedded systems, ranging from the very large that use sophisticated
operating systems, down to the very small having dedicated functions.

= Although C# applications are intended to be economical with regard to
memory and processing power requirements, the language was not
intended to compete directly on performance and size with C or
assembly language.

An exciting way to create versatile distributed applications. Using the same
simple syntax regardless of the language used to create a Web service or
the system on which it resides. For more advanced capabilities, you can
also create Windows Communication Foundation (WCF) services.

Any of these types may also require some form of database access, which
can be achieved using the Active Data Objects .NET (ADO.NET) section
of the .NET Framework, through the ADO.NET Entity Framework, or
through the Language Integrated Query (LINQ) capabilities of C#. Many
other resources can be drawn on, such as tools for creating networking
components, outputting graphics, performing complex mathematical tasks,
and so on
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5.5 About the Program

In this program, a worksheet is the file in which you work and store your
data .The work sheet is used to list and analyze the data which can be
entered, edited and perform required calculations needed to the entered
data.

A worksheet consists of cells organized into columns and rows.

Save a group of workbooks in a worksheet :you open a worksheet file by
using the Open command ( File menu), and you must continue to save
changes you make to the worksheet using Save command (File menu).

Enter numbers, text in the cells:
1. Click the cell where you want to enter data.
2. Type the data and press ENTER or TAB.

asl OK-ellipsoid-geoid-gps01-29-10-2014 -+++++.ibr = =
File  Matrices  Least Squares Help  About The Author
DEH & 2@ e
Qe saf bl fillall dlas ) S e e gEsal) Gl )
A B C D E F ~

1

2

3 Name Easting Northing Sig Noi

4 BMO2 466163639 1756765445 |1189.06 0

3 BMO3 479422551 1726192062 |1 0

(& BMOT 470226392 1777421264 (T771.6 0
r 7 BMOB 509311.104 |1748030.373 |1111.11 0

8 BMO14 509366380 1777559856 |657.44 0

9 BM023 489436730 1768122559 |771.6 0

10 BMO024 489244804 | 1747B17.735 | 1736.11 0

11 BMO025 489328.071 1728272552 |3906.25 0

12 BMO26 509434886 1728147238 |1371.74 0

13

14 v
< >
alygidll dzy Juil Gis - dsliall aws dwsigh 402 W=l Slwladl 405 . Leglgifilly aglzll laguwll dzalz

Figure 5.7 open Geoids — Ellipsoid data file
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delete an entry :

To delete a completed entry select the cells , rows, or columns you want to
delete , press del key

Copy and paste cells :

You can display, change, find, rearrange, analyze, relate, copy, paste and
print any data in your file.

The examples used here are based on field observations from real
established field points in two states (Khartoum State & River Nile State).

The program main menu:

A menu is a list of options from which you select the operation you want.
(Figure 5.5).

In this program the main menu contains the following:-

e File. (figure 5.6).
e Matrices. (Figure 5.8), (Figure 5.9).

o OK-ellipsoid-geoid-gps01-29-10-2014.ibr = =
File  Matrices  Least Squares  Help  About The Author
DEH 2R e
Q9B sas asb gl [l 32 ) i G e | gSa) Gl
u A

A | Matrices Operations “

Select Operation v o

Matrix 1

Matrix 2

O~ & U o W R e

=)

10
11
12
13
14
15
16
-
18
19
< o >
sl 2y il i - olasall wuh dursiglh Al Lall ELulyal 445 - LzglsiSilly aglall olagull inalz

oo o oo oo oo

OK Close

Figure 5.8 Select matrices operations form
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ol Least Squares - Untitled -
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2
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5 Multiplication
/ Inverse
8 Transpose
9

10
11
12
13
14
15
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i QK Close v
alygiSall iz Juil Caom - bl

Figure 5.9 Matrices pull-down menu screen

e Least Squares. (Figure 5.10), (Figure 5.11), (Figure 5.12), (Figure
5.13),(Figure 5.14).

e Help.

e About the Author.

e The assistant menu itself contains other, more specialized menus,
whose names appear across the top of your screen. In reality, only
one menu at a time can be opened.

e Opening Menus:-

e Right now, one of these menus, the file menu, is currently open . Its
options appear in a pull- down menu.

e 0 Press — once.
e Now the Matrices menu opens, revealing its pull-down menu.

e Select operation:-
= Addition.
= Subtraction.
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= Multiplication.

= Inverse.

= Transpose.

See Figure (Figure 5.9).

o Press — once.

Now the Least Squares menu opens, revealing its pull-down menu.
(Figure 5.10).

= Ordinary Least Squares. (Figure 5.11).

= Weighted Last Squares. (Figure 5.12).

= Collocated Least Squares— Undulations. (Figure 5.13).

= Orthometric Height. (Figure 5.14).

Selecting menu options :-

The current menu is highlighted on your screen. To select a menu
option, use T and | or mouse to position the highlight over that
option and then press - enter or click the mouse.

A drive selection sub menu appears.

o Press — once.

For Help.

o Press — once.

For Author C.V.

o Use — and < or a mouse to back or forth across the menu bar,
opening

Menus as you go.

o Reopen the file menu.
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B = = e Ordinary Least Squares
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Figure 5.10 Least Squares pull- down menu

Figure 5.11 Blank Ordinary Least Squares Entry form
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Figure 5.12 Blank Weighted Least Squares Entry form

Figure 5.13 Blank Geoidal Separation Entry form

62



Figure 5.14 Blank Densification of Orthometric Heights Entry form
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Figure 5.15 Completed Geoidal Separation Entry form before pressing OK
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Figure 5.16 Geoidal Separation Result after pressing OK
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Figure 5.17 Geoidal Separation Prediction Form
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yi=-23.15774 +-7E-06 x1 + 1.7E-05 %2

x1 x2
1756765.443
479422.351 1726192.062
470226.392 1777421. 264
509311.104 1748030.373
309366.380 1777559.856
439436.730 1768122,559
459244.804 1747817.755
459328.071 1728272.552
309434.5880 1728147. 238

Figure 5.18 Predicted Geoidal Separation

ANOVA Table
Model Sum of Squares df Mean Square F Sig

Regression -3.837507 2 -1.918754 -294 332566

Besidual 0039114 6 0.006319
Total -3.798393 8

Figure 5.19 ANOVA Table (Geoidal Separation)

65




1 -0.55414 -0.952899
-0.535414 1 0275704
-D.9532899 0275704 1

Figure 5.20 The Linear Correlation ( Geoidal Separation)

21651 23691 25651 2.7651

Figure 5.21 Graph for Minimum And Maximum ( Geoidal Separation)
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Figure 5.22 Drive and Densification of Orthometric Heights File selection
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Figure 5.23 Densification of Orthometric Heights Open Data File

67



5 DENSIFICATION OF ORTHOMETRIC HEIGHTS - O1.ibr = =
File  Matrices  Least Squares  Help  About The Author
DEH &R e
INVESTIGATION OF MATHEMATICAL MODELS FOR DENSIFICATION OF ORTHOMETRIC HEIGHTS

A B C D E F G H I ~

1

2 457.343 495099.407 |1852225837 1 0

3 457.544 495599407 |1852225.837 |3 0

4 457.746

5 458.088

G 458.430 o

= 458208 Dependent Noise

s 458,026

9 457.684
» 10 457.886 Independent Signal

12

13

14 Weight

15

16

17 OK || cancel

18

19

- I T I I I v
< >

e all iz Juil Cim - dvlusall g dutigh @€ sl Slulyall 38 Lrglgisilly aglall l3gull dmals

Figure 5.24 Completed Densification of Orthometric Heights Entry form
before pressing OK
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Figure 5.25 Densification of Orthometric Heights Results after pressing
OK
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¥y i=-1009.104349 + 0.000404 x1 + 0.000684 »x2

hi ¥l X2
1852225.837
495599,407 1852225.837
496099.407 1852225.837
496099.407 1852725.837
496099.407 1853225.837
495599,407 1853225.837
495099,407 1853225.837
495099,407 1852725.837
495599,407 1852725.837

Figure 5.26 Predicted Orthometric Heights

ANOVA Table
Model Sum of Squares df Mean Square B Sig

Repression -329.131418 2 -164.565709 223594713315

Residual -0.004414 6 -0.000736
Total -329.135832 8

Figure 5.27 ANOVA Table (Orthometric Heights)
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-1 0426794 0.965717
0426794 -1 -0.177395
0965717 -0.177395 -1

Figure 5.28 The Linear correlation coefficients (Orthometric Heights)

Figure 5.29 Graph for Minimum And Maximum (Orthometric Heights)
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CHAPTER SIX
TESTS AND RESULTS

6.1 Introduction

This chapter discusses the results of various tests that were carried out with
different selected real leveling networks.
The objectives of these tests are:-

(1) To investigate a mathematical model for densification of
orthometric heights.
(i)  To find out the parameters of the following polynomials:-

Hi = a;+ a X+ azY 6.1
Hi =a;+ ayX+ a3Y+a, XY 6.2
Hi = a+ a,X+a;Y+ a;XY+asX 6.3
Hi = a+ aX+a;Y+ aXY+ asY 6.4

Using the three dimensions of known existing points.

(ili)  Re compute the height (Hi) of the points using the parameters (ay,
ay, as, a4, as), and the two dimensions of points.

(iv) To obtain the residuals from the difference of (ii) and (iii) heights.

(v) To find out the height (Hi ) of the same points using the
mathematical least squares collocation model.

(vi) Compute the residuals of model predicted points.

(vii) Compare the residuals of (iv) and (vi).

(viil) To obtain the least number of height points.

(ix) To find the optimum distribution of height points.

Using the polynomials 6.1, 6.2, 6.3and 6.4

In each case the parameters of the above polynomials were obtained fitting
the polynomials to the observed data (The three dimensions of known
existing points).

(xX)  Re compute the height (Hi) of the points using the parameters (ay,
ay, as, a4, as), and the two dimensions of the same existing points.
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(xi)  Obtain the residuals from the difference of existing and computed
(predicted) heights.
(xii) The results are as in table 6.3

6.2 Computation and Methodology

The Trimble Business Center (TBC) software was used for computing the
coordinates of the newly established control points observed by RTK
technique. The surveying teams adhered to the following steps in their
computation methodology:

e GPS base line processing.

e Survey network adjustment.

e Quality assurance and quality control of data (QA/QC).
e Survey data import and export.

e Digital terrain modeling and contouring.

e Datum transformation and projection.

e Survey project management.

6.3 Mapping methodology

The following softwares were used as appropriate for producing the
deliverable products:

Arc GIS 10.

Land Development 2009.

Civil 3D 2012.

Trimble Business Center.

6.4 Map Datum

Coordinate System UTM
Zone 36N
Study area Datum Spheroid WGS84
Geoid Model EGM 2008
Coordinate Units Meters
Distance Units Meters
Height Units Meters
Origin North 500000
Origin East 0000

Table 6.1-Map Datum
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6.5 Adjustment report for GPS observations and leveling
6.5.1 Quality Assurance and Quality Control (QA/QC) of data and
result achievements
6.5.1.1 Quality Assurance

Quality Assurance aims to assure that quality survey and quality results
will be built in before survey is done.

6.5.1.2 Quality control

Quality control aims to determine that quality survey and quality results did
occur after survey was done.

In surveying the quality of a network is considered to be made up of three
factors: Economy, Precision, and Reliability (Teunissen, P.J.G. (1985).
Economy declares the total cost of designing, measuring, adjusting and
validating the survey network. Network precision, as described by the a
posteriori covariance matrix of the network coordinates (network’s
characteristics in propagating random errors). And reliability, as described
by the minimal detectable biases, expresses the ability of the redundant
observations to detect and identify specific modeling errors (internal
reliability, together with the networks characteristics in propagating these
modeling errors (external reliability).

From the given reference geodetic point S2080 to the first established
control point K01, for a distance of 50km for GPS observation and 100km
for double leveling method.( 50km from S2080 to KO1 + 50km from K01
to S2080).

For acceptance or rejection, a comparison was made between the obtained
GPS and the double leveling height .The difference between the two
heights is 6¢cm.

In addition to that the topographic surveying data (detail survey and spot
heights in grid lines) were within the following parameters:

HZ: + 10cm
V: +5cm
Where HZ is the horizontal error and V is the vertical error.
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And the control point’s data were within the following parameters:
HZ: + 3cm
V:+ 10K

Where HZ is the horizontal control misclosure , V is the allowable vertical
control misclosure and K is the length in km.

Finally all field survey works and results where within the required
accuracy tolerance (acceptance).

6.6 Least Squares surface fitting

To check my prediction model program and compare it with least squares
fitting | select the South West corner of loop 3, 4X4 KM controlled by
K46, K47, and K49&K50.
Four suggested cases were used to investigate the optimum distribution and
suitable location of data points (4, 5, 6 E and 6N). See table 6.2 and figures

(6.2a to 6.8d).

Test Block | Grid Cell | No. of Observed Heights

Area | Size (M) observed | Maximum | Minimum | Difference

Figure | (Km) points Height(m) | Height(m) | in
Height(m)

Fig6.2 | 1X1 |200X100 | 66 458.985 | 457.524 | 1.461

Fig6.3 | 1X2 |200X100 | 126 460.253 | 457.524 | 2.729

Fig6.4 | 2X1 |200X100 | 121 459581 | 457.524 | 2.057

Fig6.5 | 2X2 |200X100 | 231 460.253 | 457.524 | 2.729

Fig6.6 | 2X4 |200X100 | 451 463.398 | 457.524 | 5.874

Fig6.7 | 4X2 |200X100 | 441 462.200 | 457.524 | 4.676

Fig6.8 | 4X4 |200X100 | 861 463.398 | 455.033 | 8.365

Table 6.2-Gridded observed height
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6.7 Data points configuration:-
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Polynomial

Area | Grid |No.of | H=ay+ | H=a;+ | Hi=a+ Hi = a;+
Size | Figure | data | a,X+ azY X+ aX+asY+ aX+asY+
(km) points asY+a, XY | aXY+asX? | aXY+ agY?
Residual | Residual | Residual Residual
(m) (m) (m) (m)

6.2a 4 0.11553 | 0.1153
6.2b 5 0.16423 | 0.16423 | 0.16423 0.16423
1X1 | 6.2c 6 0.12344 | 0.12344 | 0.12344 0.12344
6.2d 6 0.18440 | 0.18440 | 0.18440 0.18440

6.3a 4 0.37347 | 0.37347
6.3b 5 0.39807 | 0.39807 | 0.39807 0.39807
1X2 | 6.3c 6 0.38730 | 0.38730 | 0.38730 0.38730
6 0.38730 | 0.38730 | 0.38730 0.38730

6.4a 4 0.47000 | 0.47000
6.4b 5 0.52843 | 0.52843 | 0.52843 0.52843

2X1 6.4c 6 0.51705 | 0.51705 | 0.51705
6

6.5a 4 2.05057 | 2.05057
6.5b 5 2.08791 | 2.08791 | 2.08791 2.08791
2X2 | 6.5¢ 6 2.05310 | 2.05310 | 2.05310 2.05310
6.5d 6 2.07506 | 2.07506 | 2.07506 2.07506

6.6a 4 3.08087 | 3.08087
6.6b 5 3.08356 | 3.08356 | 3.08356 3.08356
2X4 | 6.6C 6 3.09067 | 3.09067 | 3.09067 3.09067
6.7a 4 3.21617 | 3.21617 | 3.21617 3.21617
4X2 | 6.7b 5 3.22300 | 3.22300 | 3.22300 3.22300
6.7¢c 6 3.23397 | 3.23397 | 3.23397 3.23397

6.8a 4 5.31513 | 5.31513

6.8b 5 5.31597 | 5.31597
4X4 6.8C 6 5.31957 | 5.31957 5.31957

6.8d 6 5.32382 | 5.32382 | 5.32382

Table 6.3-Application of Polynomials in different areas
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6.8 The mathematical modeling program surface fitting

To find out the height (Hi) of the same points using the mathematical
least squares collocation.

Compute the residuals of predicted points using the program (fig 6.9)

fle  Matrices  Least Squares  Help  About The Author

Gl 4B e
i G B | A il 8 INVESTIGATION OF MATHEMATICAL MODELS FOR DENSIFICATION OF ORTHOMETRIC HEIGHTS Gaslh st al i jodlhl) A
A B G D E F G H 1 J K iz M
1
2 |1z 1x2
3 4pts 1-6-216-211 | 1-6-61-66 4pts 1-6-426-421  1-6-126-121
4
5 11 495099.407 |1852225.837 457332 1 0 1-1 495099.407  1832225.837 |437.332 1 0
6 66 496099.407 |1852225.837 457.757 1600 0 6-6 496099.407 | 1852225.837 |437.757 1600 0
7 216-66 496099.407 |1853225.837 458.419 1111 o2 DENSIFICATION OF ORTHOMETRIC HEIGHTS = @ §25.837 |459.787 730 0
8 |211-61 495099.407 |1833223.837 458.036 1600} $25.837 |460.001 816 0
J Dependent Noise
r D,16D,20
12
13 |1x1 Independent Signal
14 |5pts 1-6-216-211... | 1-6-61-66-33 B,16:C,20 E,16E20 G-121
15
16 1-1 495099.407 |1852225.837 457332 1 25837 457.332 1 0
17 |6-6 496099.407 1852 37 457757 1600) Weight WB25.837 |457.757 1600 0
18 |216-66 496099.407 1833 37 458419 1111 B25.837 |459.787 730 0
19 [211-61 495099.407 |1833225.837 458.036 1600} B25.837 |460.001 816 0
20 |108-33 493499407 1832725837 4573513 2500 OK Cancel If?iBS’ 458.059 1479 0

Fig 6.9 Enter the dependent by shading the height column.
Enter the dependent by shading the height column.
Enter the independent by shading the coordinates (E and N) columns.
Enter the signal columns.
Enter the noise column.

Press OK.
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Computer
No. of | Mathematical
Area Grid | ANOVA | data | Model
Size | Figure Figure points
(km)
Residual(m)
6.2a 6.12a 4 0.000159
6.2b 6.12b 5 0.069757
1X1 6 0.036254
6.2d 6.12¢c 6 0.034233
6.3a 6.13a 4 0.027454
6.3b 6.13b 5 0.440888
1X2 6.3c 6.13c 6 0.486649
6 0.490078
6.4a 6.14a 4 0.02525
6.4b 6.14b 5 0.276836
2X1 6.4c 6.14c 6 0.425709
6
6.5a 6.15a 4 0.317741
6.5b 6.15b 5 0.883924
2X2 6.5¢ 6.15¢C 6 1.471481
6.5d 6.15d 6 1.363111
6.6a 6.16a 4 1.325778
6.6b 6.16b 5 3.153142
2X4 6.6C 6.16¢ 6 3.567449
6.6d 6.16d 6 2.814597
6.7a 6.17a 4 0.089396
4X2 6.7b 6.17b 5 2.543554
6.7¢c 6.17¢ 6 1.981809
6.7d 6.17d 6 1.607955
6.8a 6.18a 4 0.656096
6.8b 6.18b 5 1.725409
4X4 6.8c 6.18c 6 5.608839
6.8d 6.18d 6 5.402513

Table 6.4-Comparison of residual according to no. of data points
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Area | Grid | ANOVA | No. of Computer
Size | Figure | Figure data | Polynomial Mathematical
(km) points Model
Residual(m) Residual(m)
6.2a 6.12a 4 0.12 0.00
6.2b 6.12b 5 0.16 0.07
1X1 | 6.2c 6.12¢c 6 0.12 0.04
6.2d 6.12d 6 0.18 0.03
6.3a 6.13a 4 0.37 0.03
6.3b 6.13b 5 0.40 0.44
1X2 | 6.3c 6.13c 6 0.39 0.49
6.3d 6.13d 6 0.39 0.49
6.4a 6.14a 4 0.47 0.03
6.4b 6.14b 5 0.53 0.28
2X1 | 6.4c 6.14c 6 0.52 0.43
6.14d 6
6.5a 6.15a 4 2.05 0.32
6.5b 6.15b 5 2.09 0.88
2X2 | 6.5¢ 6.15¢c 6 2.05 1.47
6.5d 6.15d 6 2.08 1.36
6.6a 6.16a 4 3.08 1.33
6.6b 6.16b 5 3.08 3.15
2X4 | 6.6C 6.16C 6 3.09 3.57
6.16d 6 2.81
6.7a 6.17a 4 3.22 0.09
4X2 | 6.7b 6.17b 5 3.22 2.54
6.7cC 6.17c 6 3.23 1.98
6.17d 6 1.61
6.8a 6.18a 4 5.32 0.66
6.8b 6.18b 5 5.32 1.73
4X4 | 6.8C 6.18c 6 5.32 5.61
6.8d 6.18d 6 5.32 5.40

Table 6.5-Comparison of residuals between polynomial and mathematical model.
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6.9 Comparison of Results

To compare between Least Squares surface fitting and the mathematical
modeling program surface fitting see Table 6.5

From Table (6.3), identical residuals were obtained by applying the
polynomials given by equations (6.1...6.4) for all test areas, which means
that there is no difference between the terms.

An area 1kmx1lkm of Figure 6.2a (4points) and Figure 6.2c (6points) is
suitable for prediction of heights and it gives reasonably accurate results.

For an area 1x2 km (extending North - South), 4points located at the
corners is the better configuration.

For an area 2x1 km (extending east - west), 4points located at corners is
preferred.

For area 2x2 2km towards east and 2km towards north 4points located at
corners and 5points (four points located at the corners and one point on the
middle of the area) 4 points is better than 5 points.

For an area 2x4 km (2km towards east and 4km towards north) all points
give bad results and so also for an area 4x4 km (4km towards east and 4km
towards west).

For an area 4x2 (4km towards east and 2km towards north) 4points located
at the corners is better to be used.

From the above results and for precise works, an area of 1x1km is the best.
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CHAPTER SEVEN

Conclusions and recommendations

7.1 Conclusions

For the future, the use of terrain modeling methods will undoubtedly
continue to develop and expand, particularly with continued improvements
in the price performance ratio of computer systems. National and regional
terrain databases based on (existing topographic maps, are now being
developed in many parts of the world, and these will play an increasingly
important role in terrain visualization during the preliminary planning
stages of engineering projects. For small site, however, the primary source
of terrain data is likely to continue to be directly measured spot heights.

For engineering work contouring is very important. To draw contour you
need a corrected orthometric height referenced to local main sea level
(Geoid).

| found that orthometric height costs more by direct leveling methods. To
avoid that costing and time consuming job, Global Positioning System
(GPS) ellipsoidal height should be done.

To convert the ellipsoidal height to orthometric height, we need many three
dimensional control points with corrected height and known datum.

Sometimes in the office work surveyors need height points and discover
that they have to go back field.

Till then Surveyors solve the problem in the field, when they come to the
office and need more points they have no choice without going to the field
again.

This mathematical model solved this problem, by picking out the height of
points, when entering the horizontal coordinates (X, Y) of the desired
point.

The surface fitting equation
H; = a;+ a,X+ a3Y

is adequate for production of heights in area 1kmX1km .
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The least squares prediction model, using a covariance matrix developed
from an empirical function, gives the best results (minimum errors at check
points).

The method predicts heights for drawing contour plans with acceptable
contour intervals.

From the test it was found that the least number of data points required to
model the area is four points located at the corners.

It was found that the shape of the area and the direction of the slope are
very important.

The east - west direction and vice versa is the better direction for running
the level line.

It gave results for control point’s data within the allowable error.

The final result is that the degree of perfection used with the field data is
equal to the degree of perfection obtained by the modeling program and
both are satisfying the solution in least squares surface fitting sense.

Finally the developed program satisfies the factors of quality, Economic,
accuracy, reliability (internal and external).

7.2 Recommendations:-

1- Information about the surface topography should be accounted for, in
addition to the distance and direction of the lines.

2- For GPS (RTK) it is important to build redundancy into a survey by, for
example, occupying stations more than once.

3- The starting coordinates used in processing should be very accurate,
avoiding the errors in the ephemeris that can affect the overall quality of
the base line stations.

4- Information such as, starting time, navigated position, point number,
antenna height are useful in processing.
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APPENDIX A
THE PROGRAM CODE

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace IbrahimPHD.Matrices

{

public class NzMatrix

{
private double[,] _matrix;
private int rowCount = 0;

private int columnCount = ©;

public Double this[int row, int column]

get { return _matrix[row,column]; }

set { _matrix[row,column] = value; }

public NzMatrix(double[,] values)
{
_matrix = values;
rowCount = _matrix.GetLength(0);

columnCount = _matrix.GetLength(1);
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}

public NzMatrix(int rows, int columns)

{
double[,] values = new Double[rows,columns] ;
_matrix = values;
rowCount = rows;
columnCount = columns;
}

public int ColumnCount { get { return columnCount ; } }

public int RowCount { get { return rowCount ; } }

public static implicit operator NzMatrix(Double[,] dataArray)

{

return new NzMatrix(dataArray);

public static NzMatrix operator +(NzMatrix matrixl, NzMatrix matrix2)

{

return NzMatrix.Addition(matrix1l, matrix2);

}

protected static NzMatrix Addition(NzMatrix matrix1l, NzMatrix
matrix2)

if ((matrixl1.ColumnCount != matrix2.ColumnCount) ||
(matrix1.RowCount != matrix2.RowCount))

{

throw new System.Exception("IbrMatrix dimensions donot
agree");

}

NzMatrix result = new
NzMatrix(matrixl.RowCount,matrixl.ColumnCount) ;
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for (int i = @; i < matrixl.RowCount ; i++)
for (int j = 0; j < matrixl.ColumnCount; j++)

result[i, j] = matrix1[i, j] + matrix2[i, j];

return result;

public static NzMatrix operator -(NzMatrix matrix1, NzMatrix matrix2)

{
return NzMatrix.Subtraction(matrixl, matrix2);
}
protected static NzMatrix Subtraction(NzMatrix matrix1, NzMatrix
matrix2)
{
if ((matrix1.ColumnCount != matrix2.ColumnCount) ||
(matrix1.RowCount != matrix2.RowCount))
{
throw new System.Exception("IbrMatrix dimensions donot
agree");

}

NzMatrix result = new NzMatrix(matrixl.RowCount,
matrixl.ColumnCount);

for (int i = @; i < matrixl.RowCount; i++)

for (int j = @; j < matrixl.ColumnCount; j++)

result[i, j] = matrix1[i, j] - matrix2[i, j];

return result;

public static NzMatrix operator /(NzMatrix matrix, Double scalar)

{
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return NzMatrix.Division(matrix, scalar);

}

protected static NzMatrix Division(NzMatrix matrix, Double scalar)

{

NzMatrix result = new NzMatrix(matrix.RowCount,
matrix.ColumnCount);

for (int i = @; i < matrix.RowCount; i++)
for (int j = @; j < matrix.ColumnCount; j++)

result[i, j] = matrix[i, j] / scalar;

return result;

public virtual NzMatrix StdDeviation { get { return
NzMatrix.StdDv(this); } }

protected static NzMatrix StdDv(NzMatrix matrix)

{

int n matrix.RowCount;

int k

matrix.ColumnCount;
Double[,] columnSum = new Double[1, k];
Double[,] columnMean = new Double[1, k];
Double[,] StD = new Double[1, k];
Double[,] sumOf_OminusM = new Double[1, k];
for (int j = 0; j < k; j++)
{

columnSum[@, j] = 0;

for (int 1 = @; i < n; i++)

{
columnSum[@, j] = columnSum[@, j] + matrix[i, j];

93



}

columnMean[@, j] = columnSum[@, j] / n;
sumOf_OminusM[@, j] = O;

for (int 1 = 0; i < n; i++)

{

sumOf_OminusM[@, j] = sumOf_OminusM[@, j] +
Math.Pow(matrix[i, j] - columnMean[@, j], 2);

}

StD[@, j] = Math.Sgrt(sumOf_OminusM[@, j] / (n - 1));
}
NzMatrix result = new NzMatrix(matrix.RowCount, 9);
result = StD;

return result;

public virtual NzMatrix Mean { get { return NzMatrix.mean(this); } }
protected static NzMatrix mean(NzMatrix matrix)
{

int n = matrix.RowCount;

int k

matrix.ColumnCount;
Double[,] columnSum = new Double[1, k];
Double[,] columnMean = new Double[1, k];
for (int j = 0; j < k; j++)
{

columnSum[@, j] = 0;

for (int i = 0; i < n; i++)

{

columnSum[@, j] = columnSum[@, j] + matrix[i, j];

}

columnMean[@, j] = columnSum[@, j] / n;
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}

NzMatrix result = new NzMatrix(matrix.RowCount, ©0);
result = columnMean;
return result;
}
public virtual NzMatrix CM { get { return NzMatrix.cm(this); } }

protected static NzMatrix cm(NzMatrix matrix)

{
NzMatrix result = new NzMatrix(matrix.RowCount, ©0);
/*
int n = matrix.RowCount;
int k = matrix.ColumnCount;
Double[,] columnSum = new Double[1, k];
Double[,] columnMean = new Double[1, k];
for (int j = 0; j < k; j++)
{
columnSum[@, j] = 0;
for (int 1 = 9; i < n; i++)
{
columnSum[@®, j] = columnSum[@, j] + matrix[i, j];
}
columnMean[@, j] = columnSum[@, j] / n;
}
result = columnMean;
*/
//////// CMArrayyy = VarYYY * (XX.Transposed * WW * XX).Inverse;
return result;
}
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public static double[,] Weight(NzMatrix weight)

{
double[,] result = new double[weight.RowCount, weight.RowCount];
Double sumW = ©;
for (int i = @; i < weight.RowCount; i++)
{
sumW = sumW + weight[i, 0];
}
for (int i = 0; i < weight.RowCount; i++)
{
for (int j = @; j < weight.RowCount; j++)
{
result[i, j] = ©;
}
result[i, i] = weight[i, @] * weight.RowCount / sumW;
}
return result;
}

public static Double[,] GetLinearCorCof(NzMatrix cm)

{

Double[,] lccArray = new Double[cm.ColumnCount, cm.ColumnCount];
// Linear correlation coefficients

for (int i = @; i < cm.ColumnCount; i++)
{
for (int j = @; j < cm.ColumnCount; Jj++)

{

lccArray[i, j] = cm[i, j] / Math.Sqrt(cm[i, i] * cm[],
ih;
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}

return lccArray;

public static NzMatrix operator *(NzMatrix matrixl, NzMatrix matrix2)

{

return NzMatrix.Multiplication(matrixl, matrix2);

}

public static NzMatrix operator *(double scalar, NzMatrix matrix)

{

return NzMatrix.Multiplication(matrix, scalar);

public static NzMatrix operator *(NzMatrix matrix, double scalar)

{

return NzMatrix.Multiplication(matrix, scalar);

protected static NzMatrix Multiplication(NzMatrix matrixl, NzMatrix
matrix2)

if (matrix1.ColumnCount != matrix2.RowCount)

throw new ArithmeticException("Number of columns in first
matrix does not equal number of rows in second matrix.");

NzMatrix result = new NzMatrix(matrixl.RowCount,
matrix2.ColumnCount);

for (int j = ©; j < result.RowCount; j++)

for (int i = @; i < result.ColumnCount; i++)
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Double value = 9;
for (int k = 0; k < matrix2.RowCount; k++)
value += matrix1[j, k] * matrix2[k, i];
result[j, i] = value;
}

return result;

}

protected static NzMatrix Multiplication(NzMatrix matrix, Double
scalar)

NzMatrix result = new NzMatrix(matrix.RowCount,
matrix.ColumnCount);

for (int i = @; i < matrix.RowCount; i++)
for (int j = @; j < matrix.ColumnCount; j++)
result[i, j] = matrix[i, j] * scalar;

return result;

public virtual NzMatrix Transposed { get { return
NzMatrix.Transpose(this); } }

protected static NzMatrix Transpose(NzMatrix matrix)

{

NzMatrix result = new NzMatrix(matrix.ColumnCount,
matrix.RowCount);

for (Int32 i = @; i < matrix.RowCount; i++)

{

for (Int32 j = @; j < matrix.ColumnCount; j++)

{

result[j, i] = matrix[i, j];
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}

return result;

public NzMatrix Inverse { get { return NzMatrix.Invert(this); } }

protected static NzMatrix Invert(NzMatrix matrix)

{

double[,] a = matrix._matrix;

int ro

a.GetLength(0);
int co = a.GetLength(1);
try

{

if (ro != co) { throw new System.Exception(); }

}

catch { Console.WriteLine("Cannot find inverse for an non square
matrix"); }

int q; double[,] b = new double[ro, co]; double[,] I = eyes(ro);

for (int p = 0; p < ro; p++) { for (q = 0; q < co; g++) { b[p, q]
= alp, ql; } }

int i; double det = 1;

if (a[@, @] == @)

while (i < ro)
{
if (a[i, o] !'= 0)
{
NzMatrix.interrow(a, 0, i);

NzMatrix.interrow(I, 0, i);
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det *= -1;

break;

i++;

}
det *= a[o, 0];
NzMatrix.rowdiv(I, @, a[@, 0]);
NzMatrix.rowdiv(a, @, a[@, 90]);
for (int p = 1; p < ro; p++)
{

q=0;

while (q < p)

{
NzMatrix.rowsub(I, p, q, a[p, ql);
NzMatrix.rowsub(a, p, q, a[p, ql);
q++;

}

if (alp, p] != @)

{
det *= a[p, pl;
NzMatrix.rowdiv(I, p, a[p, pl);
NzMatrix.rowdiv(a, p, a[p, pl);

}

if (a[p, p] == @)

{

for (int j = p + 1; j < co; j++)
{
if (a[p, j] !'= @)

{
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throw new System.Exception("Unable to deteremine
the Inverse");

}
}
}
}
for (int p=ro - 1; p > 0; p--)
{
for (q=p - 1; q >= 0; q--)
{
NzMatrix.rowsub(I, q, p, a[q, pl);
NzMatrix.rowsub(a, q, p, alq, pl);
}
}
for (int p = ©; p < ro; p++)
{
for (q = ©; q < co; q++)
{
alp, q] = b[p, q];
}
}

return (I);

}

static void rowdiv(double[,] a, int r, double s)

{

int co = a.GetLength(1);
for (int g = ©; q < co; qg++)

{
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alr, q] = a[r, q] / s;

}

static void rowsub(double[,] a, int i, int j, double s)

{
int co = a.GetLength(1);
for (int q = ©; q < co; qg++)
{
a[i, q] = a[i, q] - (s * a[3, al);
}
}

static double[,] interrow(double[,] a, int i, int j)

{
int ro = a.GetLength(9);
int co = a.GetLength(1);
double temp = 0;
for (int q = @; q < co; q++)
{
temp = a[i, q];
ali, q] = a[j, ql;
a[Jj, q] = temp;
}
return (a);
}

static double[,] eyes(int n)

{

double[,] a = new double[n, n];
for (int p = ©; p < n; p++)
{

for (int q = 9; g < n; g++)

102



if (p == q)
{

alp, q] = 1;
}
else
{

alp, q] = @;
}

}

return (a);

public override String ToString()

{

double[,] matrix = this._matrix;

int row = matrix.GetLength(0);

int col = matrix.GetLength(1);

String result = String.Empty;

if (matrix.Length == @) return "[empty]";
result += String.Format("{@} Rows x {1} Columns\n", row, col);
for (int i = @; i < row; i++)
{
String rowStr = String.Empty;

for (int j = @; j < col; j++)
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rowStr += String.Format(" {0} ", matrix[i,
j].ToString());

}

result += String.Format("[{0}]\n", rowStr);

}

return result;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

using System.Reflection;

using System.Windows.Forms;

using System.Runtime.CompilerServices;
using System.IO;

using IbrahimPHD.Matrices;

namespace IbrahimPHD

{

public static class General

{

private static bool fileChanged = false;
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private static string fullFileName = string.Empty;

public static NzMatrix Beta { get; set; }
public static NzMatrix XAxis { get; set; }
public static NzMatrix YAxis { get; set; }

public static bool FileChanged

get

return fileChanged;

set

fileChanged = value;

}

public static string FullFileName

{

get

return fullFileName;

set

fullFileName = value;

}

public static string FileName

{

get
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FileInfo file = new FileInfo(General.FullFileName);

return file.Name;

public static int GridRows

{
get
{
return 99;
}
}

public static int GridColumns

{
get
{
return 26;
}
}

/*******************************************************************/

public static void CopyToClipboard(DataGridvView dGView)

{
//Copy to clipboard
DataObject dataObj = dGView.GetClipboardContent();
if (dataObj != null)
Clipboard.SetDataObject(dataObj);
}
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public static void PasteClipboardValue(DataGridView dGView)

{

//Show Error if no cell is selected

if (dGView.SelectedCells.Count == @)

{
MessageBox.Show("Please select a cell”, "Paste",
MessageBoxButtons.OK, MessageBoxIcon.Warning);
return;

}

//Get the starting Cell

DataGridViewCell startCell = GetStartCell(dGView);
//Get the clipboard value in a dictionary
Dictionary<int, Dictionary<int, string>> cbValue =

ClipBoardValues(Clipboard.GetText());

int iRowIndex = startCell.RowIndex;
foreach (int rowKey in cbValue.Keys)
{
int iColIndex = startCell.ColumnIndex;
foreach (int cellKey in cbValue[rowKey].Keys)
{
//Check if the index is within the limit
if (iColIndex <= dGView.Columns.Count - 1
&& iRowIndex <= dGView.Rows.Count - 1)

{

DataGridViewCell cell = dGView[iColIndex, iRowIndex];

//Copy to selected cells if 'chkPasteToSelectedCells'
is checked
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111111117117 if
((chkPasteToSelectedCells.Checked && cell.Selected) ||
(!chkPasteToSelectedCells.Checked))

cell.Value = cbValue[rowKey][cellKey];

}
iColIndex++;
}
iRowIndex++;

private static DataGridViewCell GetStartCell(DataGridView dgView)

{

//get the smallest row,column index
if (dgView.SelectedCells.Count == 0)

return null;

int rowIndex = dgView.Rows.Count - 1;

int colIndex = dgView.Columns.Count - 1;

foreach (DataGridViewCell dgvCell in dgView.SelectedCells)

{

if (dgvCell.RowIndex < rowIndex)
rowIndex = dgvCell.RowIndex;
if (dgvCell.ColumnIndex < colIndex)

colIndex = dgvCell.ColumnIndex;

return dgView[colIndex, rowIndex];
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private static Dictionary<int, Dictionary<int, string>>
ClipBoardValues(string clipboardValue)

{
Dictionary<int, Dictionary<int, string>>

copyValues = new Dictionary<int, Dictionary<int, string>>();

String[] lines = clipboardValue.Split('\n');

for (int i = @; i <= lines.Length - 1; i++)
{
copyValues[i] = new Dictionary<int, string>();

String[] lineContent = lines[i].Split('\t');

//if an empty cell value copied, then set the dictionary with
an empty string

//else Set value to dictionary
if (lineContent.Length == 9)
copyValues[i][@] = string.Empty;
else
{
for (int j = 0; j <= lineContent.Length - 1; j++)

copyValues[i][j] = lineContent[j];

}

return copyValues;

}

/*******************************************************************/

}

public static class ExtensionMethods

{
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public static void DoubleBuffered(this DataGridvView dgv, bool
setting)

Type dgvType = dgv.GetType();

PropertyInfo pi = dgvType.GetProperty("DoubleBuffered"”,
BindingFlags.Instance | BindingFlags.NonPublic);

pi.SetValue(dgv, setting, null);

public class Range
{
int firstRow;
int firstColumn;
int lastRow;
int lastColumn;
public int FirstRow
{
get { return firstRow; }
set { firstRow = value; }

}

public int LastRow

{
get { return lastRow; }
set { lastRow = value; }

}

public int FirstColumn

{

get { return firstColumn; }

set { firstColumn = value; }
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}

public int LastColumn

{
get { return lastColumn; }
set { lastColumn = value; }

}

public int RowCount

{

get { return lastRow - firstRow + 1; ; }

}

public int ColumnCont

{

get { return lastColumn - firstColumn + 1; ; }

}
public Range(string txtRange)
{

string[] str;

string[] topLeftCell;

string[] buttomRightCell;

if (txtRange.Contains(':'))

{
str = txtRange.Split(':');
topLeftCell = str[0].Split(',");
buttomRightCell = str[1].Split(',");

}

else

{

topLeftCell = txtRange.Split(',');

buttomRightCell = txtRange.Split(',"');
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}

firstRow = int.Parse(topLeftCell[1]) - 1;
firstColumn = (int)char.Parse(topLeftCell[@]) - 65;
lastRow = int.Parse(buttomRightCell[1]) - 1;

lastColumn = (int)char.Parse(buttomRightCell[@]) - 65;

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

using IbrahimPHD.Matrices;

namespace IbrahimPHD

{

public partial class FrmInput : Form

{
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FrmGrid frmGrid;
Boolean validatedData = true;

public FrmInput(FrmGrid _frmGrid)

{

frmGrid = _frmGrid;

InitializeComponent();

private void FrmInput_Load(object sender, EventArgs e)

{

frmGrid.matrixToolStripMenuItem.Enabled = false;

private void FrmInput_FormClosed(object sender, FormClosedEventArgs

//NZ.IsVisibleFrmInput = false;

frmGrid.matrixToolStripMenuItem.Enabled = true;

private void txtBox_Enter(object sender, EventArgs e)
{
frmGrid.dGInput.ClearSelection();
txtDependent.Tag = string.Empty;
txtIndependent.Tag = string.Empty;
txtWeight.Tag = string.Empty;
txtNoise.Tag = string.Empty;

txtSignal.Tag = string.Empty;
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TextBox txtBox = (TextBox)sender;

txtBox.BackColor

SystemColors.HotTrack;

txtBox.ForeColor

SystemColors.Window;
txtBox.Tag = "Focused";
string txtRange = txtBox.Text;
if (txtRange != string.Empty)
{
Range selectionRange = new Range(txtRange);
frmGrid.dGInput.ClearSelection();

for (int i = selectionRange.FirstRow; i <=
selectionRange.LastRow; i++)

{

for (int j = selectionRange.FirstColumn; j <=
selectionRange.LastColumn; j++)

{

frmGrid.dGInput.Rows[i].Cells[j].Selected = true;

private double[,] selection(string txtRange)

{

double[,] dblArray = null ;
if (txtRange != string.Empty)

{

Range selectionRange = new Range(txtRange);

dblArray = new double[selectionRange.RowCount,
selectionRange.ColumnCont];

frmGrid.dGInput.ClearSelection();
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int row = 0;
int column = 9;

double number;

for (int i = selectionRange.FirstRow; i <=
selectionRange.LastRow; i++)

{

for (int j = selectionRange.FirstColumn; j <=
selectionRange.LastColumn; j++)

{

//frmGrid.dGInput.Rows[i].Cells[j].Selected = true;

//if
(double.TryParse(frmGrid.dGInput.Rows[i].Cells[j].Value.ToString())

//if
(Double.TryParse(string.IsNullOrEmpty (frmGrid.dGInput.Rows[i].Cells[j].Value.
ToString()).ToString(), out number))

if
(Double.TryParse(frmGrid.dGInput.Rows[i].Cells[j].Value.ToString(), out
number))

{
dblArray[row, column] = number;
}
else
{
frmGrid.dGInput.Rows[i].Cells[]j].Style.BackColor
= Color.Red ;
validatedData = false;
}

column = column + 1;

}
column = 0;

row = row + 1;
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}

return dblArray;

private void txtBox_Leave(object sender, EventArgs e)
{
frmGrid.dGInput.ClearSelection();
txtDependent.Tag = string.Empty;
txtIndependent.Tag = string.Empty;
txtWeight.Tag = string.Empty;
txtNoise.Tag = string.Empty;
txtSignal.Tag = string.Empty;
TextBox txtBox = (TextBox)sender;

txtBox.BackColor = SystemColors.Window;

txtBox.ForeColor = SystemColors.WindowText;

private void btnOk_Click(object sender, EventArgs e)

{

if (txtDependent.Text == string.Empty) { txtDependent.Focus();
return; }

if (txtIndependent.Text == string.Empty) {
txtIndependent.Focus(); return; }

switch(this.Tag.ToString())

{
case "OLS"
break;
case "WLS"
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if (txtWeight.Text == string.Empty) { txtWeight.Focus();

return; }
break;
case "WLSC"
if (txtNoise.Text == string.Empty) { txtNoise.Focus();
return; }
if (txtSignal.Text == string.Empty) { txtSignal.Focus();
return; }

break;

}

NzMatrix Dependent = null;
NzMatrix Independent = null;

NzMatrix Weight = null;

double[,] weight = null;

double[,] dependent = selection(txtDependent.Text);

Dependent = dependent;

double[,] _independent = selection(txtIndependent.Text);

int rMax = _independent.GetLength(9);

int cMax = _independent.GetLength(1);
double[,] independent = new double[rMax, cMax + 1];

// Fill the first column of independent with zeroes (for p = 0)
or ones (for p = 1), the rest with the data in the x-column(s)

for (int 1 = 0 ; i < rMax ; i++)
{

independent[i, @] = 1; // p;

for (int j =1 ; j <= cMax ; j++)

{
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for (int 1 =0 ; i < rMax ; i++)
{

independent[i, j] = _independent[i, j - 1];

}

Independent = independent;

if (txtWeight.Enabled == false)
{
if (txtSignal.Enabled == true && txtNoise.Enabled == true)
{
double[,] noise = null;
double[,] signal = null;
noise = selection(txtNoise.Text);
signal = selection(txtSignal.Text);
NzMatrix Noise = noise;
NzMatrix Signal = signal;

Weight

Noise + Signal;

weight = selection(txtWeight.Text);

else

weight = new double[rMax, 1];
for (int i = @; i < rMax; i++)
{

weight[i, @] = 1; // p;

}

Weight = weight;
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else

weight = selection(txtWeight.Text);

Weight

weight;

if (validatedData == true)

{
//Regress(dependent, independent, weight);
Regress(Dependent, Independent, Weight);
frmGrid.splitContainer.Panel2Collapsed = false;
frmGrid.splitContainerl.Panel2Collapsed = false;

}

else

{
frmGrid.splitContainer.Panel2Collapsed = true;
frmGrid.splitContainerl.Panel2Collapsed = false;
MessageBox.Show("Input values not corrected!");

}

this.Close();

//public void Regress(Double[,] Dependent, Double[,] Independent,
Double[,] Weight)

public void Regress(NzMatrix Dependent, NzMatrix Independent,
NzMatrix Weight)

{

NzMatrix Y = Dependent;
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NzMatrix X

Independent;

NzMatrix W = NzMatrix.Weight(Weight);

General.XAxis X;

General.YAxis

Y;

//int n

Dependent.Length;

~
1]

//int Independent.Length / n;
int n = Dependent.RowCount;

int k = Independent.ColumnCount;

NzMatrix XtWX = X.Transposed * W * X;

NzMatrix XtWXi = XtWX.Inverse;

NzMatrix XtWY

X.Transposed * W * Y;

NzMatrix YtWY

Y.Transposed * W * Y;

General.Beta = null;

NzMatrix B = XtWXi * XtWy; // B
var(b) = (X_WX)-1(X_WZOWX)(X_WX)-1

(X" WX)" X' WY —-mme--

General.Beta = B;

[ITT70777777777777777771777777777777777///Calculate The Regression
Equation///////11111111111171711711117171111717

string RegressionEquation = string.Empty ;

for (int i = @; i < B.RowCount; i++)

{
if (1 == 0)
{
RegressionEquation = "y i = " + Math.Round(B[@, 0],
6).ToString();
}
else
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RegressionEquation = RegressionEquation + " + " +
Math.Round(B[i, @], 6).ToString() + " x" + i.ToString();

}

[ITT1TTTT107 7707777777777 7 77777 77777777777777777777777777777771717711177177
IIT111777777777177771777111771717

double SSRnz = Math.Round((Y.Transposed * W * Y)[0, O] -
(B.Transposed * X.Transposed * W * Y)[0,0], 6);

double varY = SSRnz / (n - k); // The variance of y

NzMatrix CMArray = XtWXi * varY ; // The Covariance Matrix

NzMatrix LCC = NzMatrix.GetLinearCorCof(CMArray); // Linear
correlation coefficients

[IT11T7700 7777077777777 77777777777777777777777777777777777717771717717177177
IIT1177777077771777771771717777

[ITT170777777 777777 777777777777777777777777777/ANOVA
Table//////7777777777777777777777777777777771777777717777

double sumDependent = 0 ;
for (int i = 0; i < n; i++)
{
sumDependent = sumDependent + Dependent[i,0];
}
double Ybar = Math.Pow(sumDependent, 2) / n;

double SSE = Math.Round(YtWY[@, @] - (B.Transposed * XtWY)[@, O],
6); // SSE = Y'Y - B'X'Y -- Sum of squares due to error

double SSR = Math.Round( (B.Transposed * XtWY)[©, @] - Ybar,6);
// SSR = B' X" Y - sum(Y)*2 / N -- Sum of squares to due regression

double SST = Math.Round( YtWY[@, ©] - Ybar,6) ; // Y'Y -
sum(Y)~2 / N -- Total sum of squares of dependent variable.

121



double DF_Residuals = k - 1;
double DF_Error = n - k ;
double DF_Total = n - 1 ;

double MSR

Math.Round( SSR / (k - 1) , 6) ;

double MSE = Math.Round( SSE / (n - k),6) ;
double Fstat = Math.Round( MSR / MSE , 6); // F statistics

double R2 = Math.Round ( SSR / SST , 6); // Coefficient of
determination

double R2adj = Math.Round ( 1 - (1 - R2) * (n - 1) / (n - k) ,
6); // Adjusted value of R2

[11171777117717771777771777777777777/0ukPut/////77777771717171717117711177117171177
/17

string cMArray = string.Empty;

for (int i = @; i < CMArray.RowCount; i++)

{
for (int j = 0; j < CMArray.ColumnCount; j++)
{
cMArray = cMArray + "\t" + Math.Round(CMArray[i, j], 6);
}
cMArray = cMArray + "\r\n";
}

string lcc = string.Empty;

for (int i = @; i < LCC.RowCount; i++)

{
for (int j = @; j < LCC.ColumnCount; j++)
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lcc = lcc + "\t" + Math.Round(LCC[i, j], 6);

}

lcc = 1cc + "\r\n";

}
String result = string.Empty;

result = "Results:\r\n\r\nThe Fitted Model is: \r\n" +
RegressionEquation +

"\r\n\r\n\r\n\r\nThe coefficient of determination for the
above model is : " + R2 +

"\r\n\r\n\r\nThe Adjusted value of The coefficient of

determination is : " + R2adj +

"\r\n\r\n\r\n\r\nThe Covariance Matrix : \r\n" + cMArray
+ "\r\n\r\n" ;

String ANOVA = "\r\n\r\nANOVA Table\r\nModel\tSum of Squares\tdf
Mean Square\tF\tSig\r\n" +

———————————————————————————— \r\n" +

"Regression\t" + SSR + "\t\t" + DF_Residuals + " " 4+ MSR + "\t"
+ Fstat + "\r\n" +

"Residual\t" + SSE + "\t\t" + DF_Error + " " + MSE + "\r\n" +

"Total\t" + SST + "\t\t" + DF_Total + "\r\n" +

frmGrid.txtModel.Text = RegressionEquation;
//frmGrid.txtResult.Text = result + ANOVA;
frmGrid.txtResult.Text = result ;
frmGrid.btnANOVA.Tag = ANOVA;
frmGrid.btnLCC.Tag = lcc;

frmGrid.dGModel.Columns.Clear();
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frmGrid.dGModel.DoubleBuffered(true);

//frmGrid.dGModel.BackgroundColor =
System.Drawing.Color.Aquamarine;

//frmGrid.dGModel.Dock = System.Windows.Forms.DockStyle.Fill;
for (int i = @; i < B.RowCount; i++)
{

//char ¢ = (char)(i + 65);

frmGrid.dGModel.Columns.Add("x" + i, "x" + i );

frmGrid.dGModel.Columns[i].Tag = Math.Round(B[i, @],

6).ToString();

}

frmGrid.dGModel.Rows.Add(1);

frmGrid.dGModel.Columns[@].Visible

false;
frmGrid.dGModel.RowHeadersVisible = false;

frmGrid.dGModel.Rows[@0].Cells[@].Value = 1;

[IT111TT700 7777077777777 777777777777777777777777777777777777177717177171777177
/17

/*
ANOVAa, b

Model Sum of Squares df Mean Square F
Sig.

1Regression 545.885 2 272.943
3477.072 .000c

Residual .628 8 .078

Total 546.513 10

a Dependent Variable: y
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using
using
using
using
using
using

using

b Weighted Least Squares Regression - Weighted by weight

c Predictors: (Constant), x2, x1

*/

private void txtDependent_TextChanged(object sender, EventArgs e)

{

private void btnCancel Click(object sender, EventArgs e)

{
this.Close();
}
System;

System.Collections.Generic;
System.ComponentModel;
System.Data;
System.Drawing;
System.Ling;

System.Text;
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using System.Threading.Tasks;

using System.Windows.Forms;

using System.Xml;

using System.IO;

using IbrahimPHD;

namespace IbrahimPHD

{

public partial class FrmGrid : Form

{

FrmInput frmInput = null;

FrmMatricesOperations frmMatricesOperations = null ;
private int sRow = -1;

private int sColumn = -1;

private int eRow = -1;

private int eColumn = -1;

private int startrow = -1;

private int startcolumn = -1;

private int endrow = -1;

private int endcolumn = -1;

public FrmGrid()

{
InitializeComponent();
this.StartPosition = FormStartPosition.CenterScreen;
//tStripStatusLabelSelection.Text = string.Empty;

}

private void FrmGrid_Load(object sender, EventArgs e)

{

1blTitle.BackColor = toolStripl.BackColor;
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1blTitle.Left = this.Width / 2 - 1blTitle.Width / 2;

1blOwner.BackColor = toolStripl.BackColor;
1blSupervisor.BackColor = toolStripl.BackColor;
lblOwner.Left = this.Left - 1blOwner.Width;

lblSupervisor.Left = this.Width 5

dGInput.DoubleBuffered(true);
//dGModel.DoubleBuffered(true);
dGInput.BackgroundColor = System.Drawing.Color.White;
dGInput.Dock = System.Windows.Forms.DockStyle.Fill;
//dGModel.BackgroundColor = System.Drawing.Color.Aquamarine;
//dGModel.Dock = System.Windows.Forms.DockStyle.Fill;
for (int i = @; i < General.GridColumns; i++)
{
char ¢ = (char)(i + 65);
dGInput.Columns.Add(c.ToString(), c.ToString());

dGInput.Columns[c.ToString()].SortMode =
DataGridViewColumnSortMode.NotSortable;

//dGModel.Columns.Add(c.ToString(), c.ToString());

}

dGInput.SelectionMode =
DataGridViewSelectionMode.ColumnHeaderSelect;

dGInput.Rows.Add(General.GridRows);

//dGModel.Rows .Add(3);
//dGModel.ColumnHeadersVisible = false;

//dGModel.RowHeadersVisible = false;

for (int row = 1; row <= General.GridRows ; row++)
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dGInput.Rows[row - 1].HeaderCell.Value = row.ToString();

}

startNewFile();

}

private void startNewFile()
{
splitContainer.Panel2Collapsed = true;
splitContainerl.Panel2Collapsed = true;
this.Text = "Least Squares - Untitled";
General.FullFileName = string.Empty;
dGInput.EndEdit() ;
for (int i = @; i < General.GridRows; i++)
for (int j = @; j < General.GridColumns; j++)
{
dGInput.Rows[i].Cells[j].Value = string.Empty;

dGInput.Rows[i].Cells[]j].Style.BackColor = Color.White;

dGInput.ClearSelection();
General.FileChanged = false;

txtResult.Text = string.Empty;

}

private void newfile(object sender, EventArgs e)

{

dGInput.EndEdit();

if (General.FileChanged == true)
{
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DialogResult result = MessageBox.Show("Do you want to save
the changes you made to file?","", MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Exclamation);

switch (result)
{
case DialogResult.Yes
if (saveOperation(General.FullFileName) == true)

{

startNewFile();

else

return;
}
break;
case DialogResult.No:
startNewFile();
break;
case DialogResult.Cancel :

break;

else

startNewFile();

}

private void savefile(object sender, EventArgs e)

{

dGInput.EndEdit();

saveOperation(General.FullFileName);
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}

private bool saveOperation(string fullFileName)
{
General.FullFileName = fullFileName;
if (fullFileName == string.Empty)
{
SaveFileDialog saveFileDialog = new SaveFileDialog();
saveFileDialog.Filter = "ibr files (*.ibr)|*.ibr";
saveFileDialog.FilterIndex = 2;
saveFileDialog.RestoreDirectory = true;

DialogResult result = saveFileDialog.ShowDialog();

if (DialogResult.OK == result)

{

General.FullFileName = saveFileDialog.FileName;

}

else if (DialogResult.Cancel == result)

{

return false;

using (BinaryWriter bw = new
BinaryWriter(File.Open(General.FullFileName, FileMode.Create)))

{

bw.Write(dGInput.Columns.Count);
bw.Write(dGInput.Rows.Count);

foreach (DataGridViewRow dgvR in dGInput.Rows)

{

for (int j = @; j < dGInput.Columns.Count; ++3j)
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object val = dgvR.Cells[j].Value;

if (val == null)

{
bw.Write(false);
bw.Write(false);
}
else
{
bw.Write(true);
bw.Write(val.ToString());
}

}

this.Text = General.FileName;
General.FileChanged = false;
return true;

}

private void openfile(object sender, EventArgs e)
{
dGInput.EndEdit();

if (General.FileChanged == true)

{

DialogResult result = MessageBox.Show("Do you want to save

the changes you made to file?", » MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Exclamation);

switch (result)
{
case DialogResult.Yes:

if (saveOperation(General.FullFileName) == true)
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openOperation();

//splitContainer.Panel2Collapsed = true;

else

return;
}
break;
case DialogResult.No:
openOperation();
break;

case DialogResult.Cancel:

break;
}
}
else
{
openOperation();
}

}

private void openOperation()

{
OpenFileDialog openFileDialog = new OpenFileDialog();
openFileDialog.Filter = "ibr files (*.ibr)|*.ibr";
openFileDialog.FilterIndex = 2;
openFileDialog.RestoreDirectory = true;
if (openFileDialog.ShowDialog() == DialogResult.OK)

{

string fullFileName = openFileDialog.FileName;
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try

using (BinaryReader bw = new
BinaryReader(File.Open(fullFileName, FileMode.Open)))

{
int n = bw.ReadInt32();
int m = bw.ReadInt32();
for (int i = @; i < m; ++i)
{
for (int j = @; j < n; ++j)
{
dGInput.Rows[i].Cells[j].Value = null;
if (bw.ReadBoolean())
{
dGInput.Rows[i].Cells[j].Style.BackColor
= Color.White;
dGInput.Rows[i].Cells[j].Value =
bw.ReadString();
}
else bw.ReadBoolean();
}
}
}

General.FullFileName = fullFileName;
this.Text = General.FileName;
General.FileChanged = false;
dGInput.ClearSelection();
splitContainer.Panel2Collapsed = true;

splitContainerl.Panel2Collapsed = true;

txtResult.Text = string.Empty;
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//this.Text = "Least Squares - Untitled";

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

private void exitproject(object sender, EventArgs e)

{

this.Close();

private void dGInput_CellEnter(object sender,
DataGridViewCellEventArgs e)

{

if (dGInput.SelectedCells.Count == 1)

{
startrow = e.RowIndex;
startcolumn = e.ColumnIndex;
endrow = e.RowIndex;
endcolumn = e.ColumnIndex;

}

else

{
endrow = e.RowIndex;
endcolumn = e.ColumnIndex;

}
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sRow = Math.Min(startrow, endrow);
sColumn = Math.Min(startcolumn, endcolumn);
eRow = Math.Max(startrow, endrow);
eColumn = Math.Max(startcolumn, endcolumn);

string range = string.Empty;

[TT777777777777717777117777

// if (frmInput != null && frmInput.Visible ||
frmMatricesOperations != null && frmMatricesOperations.Visible)

if (frmInput != null && frmInput.Visible)

{

if (sRow == eRow && sColumn == eColumn)

{
//$C$4:$D$6

range = dGInput.Columns[sColumn].HeaderText + "," +
dGInput.Rows[sRow].HeaderCell.Value;

}

else

range = dGInput.Columns[sColumn].HeaderText + "," +
dGInput.Rows[sRow].HeaderCell.Value + ":" + dGInput.Columns[eColumn].Name +
"," + dGInput.Rows[eRow].HeaderCell.Value;

}

if ((string)frmInput.txtDependent.Tag == "Focused")
frmInput.txtDependent.Text = range;

if ((string)frmInput.txtIndependent.Tag == "Focused")

frmInput.txtIndependent.Text = (string)range;
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if ((string)frmInput.txtWeight.Tag == "Focused")
frmInput.txtWeight.Text = range;

if ((string)frmInput.txtSignal.Tag == "Focused")
frmInput.txtSignal.Text = range;

if ((string)frmInput.txtNoise.Tag == "Focused")

frmInput.txtNoise.Text = range;

if (frmMatricesOperations != null &&
frmMatricesOperations.Visible)

{

if (sRow == eRow && sColumn == eColumn)

{
//$C$4:$D$6

range = dGInput.Columns[sColumn].HeaderText + "," +
dGInput.Rows[sRow].HeaderCell.Value;

}

else

range = dGInput.Columns[sColumn].HeaderText + "," +
dGInput.Rows[sRow].HeaderCell.Value + ":" + dGInput.Columns[eColumn].Name +

," + dGInput.Rows[eRow].HeaderCell.Value;

}
if ((string)frmMatricesOperations.txtMatrixl.Tag ==
"Focused")
frmMatricesOperations.txtMatrixl.Text = range;
if ((string)frmMatricesOperations.txtMatrix2.Tag ==
"Focused")

frmMatricesOperations.txtMatrix2.Text = (string)range;
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//tStripStatusLabelSelection.Text = range;
}
private void FrmGrid_SizeChanged(object sender, EventArgs e)
{
switch (this.WindowState)
{
case FormWindowState.Maximized:

foreach (Form frm in Application.OpenForms)

{
if (frm.TopMost == true)
{
frm.Visible = true;
}
}
break;

case FormWindowState.Minimized:

foreach (Form frm in Application.OpenForms)

{
if (frm.TopMost == true)
{
frm.Visible = false;
}
}
break;

case FormWindowState.Normal:
break;

default:
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break;

private void dGInput_CellBeginEdit(object sender,
DataGridViewCellCancelEventArgs e)

{

General.FileChanged = true;

private void FrmGrid_FormClosing(object sender, FormClosingEventArgs

e)

if (General.FileChanged == true)

{

DialogResult result = MessageBox.Show("Do you want to save

the changes you made to file?", » MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Exclamation);

switch (result)

{

case DialogResult.Yes:

if (saveOperation(General.FullFileName) == true)
{
startNewFile();
}
else
{
return;
}
break;

case DialogResult.No:

break;
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case DialogResult.Cancel:
e.Cancel = true;

break;

private void dGInput_CellEndEdit(object sender,
DataGridViewCellEventArgs e)

{

if (dGInput.Rows[e.RowIndex].Cells[e.ColumnIndex].Style.BackColor
== Color.Red)

{

dGInput.Rows[e.RowIndex].Cells[e.ColumnIndex].Style.BackColor
= Color.White;

}

private void timerOwner_Tick(object sender, EventArgs e)

{

if (1blOwner.Left + lblOwner.Width == 1blTitle.Left)

{

1blTitle.Visible = false;

}

else if (lblOwner.Left == 1blTitle.Left + 1lblTitle.Width)

{

1blTitle.Visible = true;
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if (1lblOwner.Left > this.Width)

{

1blOwner.Left = this.Left - 1blOwner.Width;

if (1lblSupervisor.Left == this.Left - 1lblSupervisor.Width)

{

1blSupervisor.Left = this.Width;
}
lblOwner.Left = 1blOwner.Left + 1;

lblSupervisor.Left = 1lblSupervisor.Left - 1;

private void helpToolStripButtonl_Click(object sender, EventArgs e)

{

private void OLStsm_Click(object sender, EventArgs e)
{
splitContainer.Panel2Collapsed = true;
splitContainerl.Panel2Collapsed = true;
txtResult.Text = string.Empty;
if (((Form)Application.OpenForms["frmInput"] == null))
{
frmInput = new FrmInput(this);
frmInput.TopMost = true;

frmInput.Tag = "OLS";
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frmInput.Text = "Ordinary Least Squares”;

frmInput.txtNoise.Enabled = false;

frmInput.txtSignal.Enabled = false;

frmInput.txtWeight.Enabled = false;

frmInput.Show();
}
else
{
frmInput.BringToFront();
}

private void WLStsm_Click(object sender, EventArgs e)
{
splitContainer.Panel2Collapsed = true;
splitContainerl.Panel2Collapsed = true;
txtResult.Text = string.Empty;

if (((Form)Application.OpenForms["frmInput"] == null))

{
frmInput = new FrmInput(this);
frmInput.TopMost = true;
frmInput.Tag = "WLS";
frmInput.Text = "Weighted Least Squares”;
frmInput.txtNoise.Enabled = false;
frmInput.txtSignal.Enabled = false;
frmInput.txtWeight.Enabled = true;
frmInput.Show();

}

else

{
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frmInput.BringToFront();

private void CLStsm_Click(object sender, EventArgs e)

{

splitContainer.Panel2Collapsed = true;

splitContainerl.Panel2Collapsed = true;

txtResult.Text = string.Empty;

if (((Form)Application.OpenForms["frmInput"] == null))

{
frmInput = new FrmInput(this);
frmInput.Tag = "WLSC";
frmInput.Text = "Geoidal Separation : N = h - H";
frmInput.TopMost = true;
frmInput.txtNoise.Enabled = true;
frmInput.txtSignal.Enabled = true;
frmInput.txtWeight.Enabled = false;
frmInput.Show();

}

else

{
frmInput.BringToFront();

}

}

private void aboutTheAuthorToolStripMenuItem_Click(object sender,
EventArgs e)

{

AboutAuthor aboutAuthor = new AboutAuthor();
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aboutAuthor.ShowDialog();

private void FrmGrid_Resize(object sender, EventArgs e)

{
1blTitle.Left = this.Width / 2 - 1blTitle.Width / 2;
1blOwner.Left = this.Left - 1blOwner.Width;
lblSupervisor.Left = this.Width;

}

private void btnCalculateYi_Click(object sender, EventArgs e)
{

double number;

double summation = 0 ;

Boolean validatedData = true;

for (int i = @ ; i < dGModel.Columns.Count ; i++)

{

if (dGModel.Rows[@].Cells[i].Value == null)

{

dGModel.Rows[@].Cells[i].Value = 0@ ;

}

if
(Double.TryParse(dGModel.Rows[0].Cells[i].Value.ToString(), out number))

{
//dblArray[row, column] = number;

summation = summation + (number *
double.Parse(dGModel.Columns[i].Tag.ToString()));

}

else
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dGModel.Rows[0©].Cells[i].Style.BackColor = Color.Red;

validatedData = false;

}

if (validatedData == true)

{
txtYi.Text = summation.ToString();
}
else
{
txtYi.Text = "Correct the input data";
}

dGModel.ClearSelection();

private void dGModel CellEndEdit(object sender,
DataGridViewCellEventArgs e)

{

if (dGModel.Rows[e.RowIndex].Cells[e.ColumnIndex].Style.BackColor
== Color.Red)

{

dGModel.Rows[e.RowIndex].Cells[e.ColumnIndex].Style.BackColor
= Color.White;

}

private void matrixToolStripMenuItem Click(object sender, EventArgs

/*
splitContainer.Panel2Collapsed = true;
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splitContainerl.Panel2Collapsed = true;

txtResult.Text = string.Empty;

*/

if (((Form)Application.OpenForms["frmInput"] == null))

{

frmMatricesOperations = new FrmMatricesOperations(this);

frmMatricesOperations.TopMost = true;

frmMatricesOperations.Text = "Matrices Operations”;

frmMatricesOperations.Show();

else

frmMatricesOperations.BringToFront();

private void
EventArgs e)

{

FrmANOVA

frmANOVA.

private void

{
FrmANOVA
frmANOVA.
frmANOVA.
frmANOVA
}

aNOVATableToolStripMenuIltem_Click(object sender,

frmANOVA = new FrmANOVA();

ShowDialog();

btnANOVA Click(object sender, EventArgs e)

frmANOVA = new FrmANOVA();

Text = "ANOVA Table";

txtANOVA.Text = btnANOVA.Tag.ToString();

.ShowDialog();
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private void btnLCC_Click(object sender, EventArgs e)

{

FrmANOVA frmANOVA = new FrmANOVA();
frmANOVA.Text = "The Linear Correlation Coefficients";
frmANOVA. txtANOVA.Text = "\r\n\r\n\r\n" + btnLCC.Tag.ToString();

frmANOVA. ShowDialog();

private void orthometricHeightToolStripMenuIteml Click(object sender,

EventArgs e)

{

//FrmOrthometric frmOrthometric = new FrmOrthometric();
//frmOrthometric.ShowDialog();
splitContainer.Panel2Collapsed = true;
splitContainerl.Panel2Collapsed = true;

txtResult.Text = string.Empty;

if (((Form)Application.OpenForms["frmInput"] == null))

{
frmInput = new FrmInput(this);
frmInput.Tag = "WLSC";
frmInput.Text = "DENSIFICATION OF ORTHOMETRIC HEIGHTS";
frmInput.TopMost = true;
frmInput.txtNoise.Enabled = true;
frmInput.txtSignal.Enabled = true;
frmInput.txtWeight.Enabled = false;
frmInput.Show();

}

else

{
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frmInput.BringToFront();

private void btnYi_Click(object sender, EventArgs e)

{
FrmCalculateTable frmCalculateTable = new FrmCalculateTable();
frmCalculateTable.txtModel.Text = txtModel.Text;
frmCalculateTable.ShowDialog();

}

private void btnChart_Click(object sender, EventArgs e)

{

FrmChart frmChart = new FrmChart();

frmChart.ShowDialog();

private void cutToolStripMenuItem Click(object sender, EventArgs e)

{
//Copy to clipboard
General.CopyToClipboard(dGInput);
//Clear selected cells
foreach (DataGridViewCell dgvCell in dGInput.SelectedCells)
dgvCell.Value = string.Empty;
}

private void copyToolStripMenuItem_Click(object sender, EventArgs e)

{

General.CopyToClipboard(dGInput);
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private void pasteToolStripMenuItem Click(object sender, EventArgs e)

{
//Perform paste Operation
General.PasteClipboardValue(dGInput);
General.FileChanged = true;

}

private void dGInput_CellMouseClick(object sender,
DataGridViewCellMouseEventArgs e)

{
if (dGInput.SelectedCells.Count > 9)

dGInput.ContextMenuStrip = contextMenuStripl;

private void tsStandard_ItemClicked(object sender,
ToolStripItemClickedEventArgs e)

{

using System;
using System.Collections.Generic;
using System.ComponentModel;

using System.Data;
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using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace IbrahimPHD

{

public partial class FrmCalculateTable : Form

{

public FrmCalculateTable()

{

InitializeComponent();

private void FrmCalculateTable Load(object sender, EventArgs e)
{

dGModel.Columns.Clear();

dGModel.DoubleBuffered(true);

dGModel.Columns.Add("y" , "Y");

dGModel.Columns[@].DefaultCellStyle.BackColor = Color.LightGreen;

for (int i = 1; i < General.Beta.RowCount; i++)
{
dGModel.Columns.Add("x" + i, "x" + i);
dGModel.Columns[i].Width = 90 ;
}
dGModel.Rows.Add(1);

dGModel.Columns[@].ReadOnly = true;

//dGModel.RowHeadersVisible false;
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private void btnClose Click(object sender, EventArgs e)

{

this.Close();

private void dGModel CellEndEdit(object sender,
DataGridViewCellEventArgs e)

{
double number;
double summation = General.Beta[@, 0];
Boolean validatedData = true;
for (int i = 1; i < dGModel.Columns.Count; i++)

{

if (dGModel.Rows[e.RowIndex].Cells[i].Value == null)

{

dGModel.Rows[e.RowIndex].Cells[i].Value = O;

}

if
(Double.TryParse(dGModel.Rows[e.RowIndex].Cells[i].Value.ToString(), out
number))

{
//MessageBox.Show(General.Beta[i, 0].ToString());
summation = summation + (number * General.Beta[i, 0]);
}
else
{

dGModel.Rows[e.RowIndex].Cells[i].Style.BackColor =
Color.Red;

validatedData = false;
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}

if (validatedData == true)

{

dGModel.Rows[e.RowIndex].Cells[@].Value =
Math.Round(summation, 6);

}

else

dGModel.Rows[e.RowIndex].Cells[@].Value = "X";

}

//dGModel.ClearSelection();

private void dGModel CellMouseClick(object sender,
DataGridViewCellMouseEventArgs e)

{

if (dGModel.SelectedCells.Count > 9)

dGModel.ContextMenuStrip = contextMenuStripil;

private void cutToolStripMenulItem Click(object sender, EventArgs e)

{
//Copy to clipboard
General.CopyToClipboard(dGModel);
//Clear selected cells
foreach (DataGridViewCell dgvCell in dGModel.SelectedCells)
dgvCell.Value = string.Empty;
}
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private void copyToolStripMenuItem_Click(object sender, EventArgs e)

{

General.CopyToClipboard(dGModel);

private void pasteToolStripMenultem_ Click(object sender, EventArgs e)
{
//Perform paste Operation

General.PasteClipboardValue(dGModel);

[ITT117777777777777777717777177

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Linqg;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace IbrahimPHD
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public partial class FrmANOVA : Form

{
public FrmANOVA()
{
InitializeComponent();
}
private void FrmANOVA Load(object sender, EventArgs e)
{
txtANOVA.SelectionStart = 0 ;
}
private void buttonl_Click(object sender, EventArgs e)
{
this.Close();
}
}
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APPENDIX B
ANALYSES OF VARIANCE

Press ANOVA to obtain the analyses of variance for fitting regression see
fig (AppB.lato AppB.7d) and table 6.4.

The table summarizes the sum of squares, regression, residuals, the degree
of freedom (d.f.) and the mean squares which are sums of squares divided
by degrees of freedom.

The analysis of variance table is simply a convenient summary of the steps
involved in calculating an F-statistic.

4pts The Fitted Model 1s:
L vi=-976.262983 + 0.000391 x1 + 0.00067 x2
e ANOVA Table
bove model 15: 1
ANOVA Table
Model Sum of Squares df Mean Square F Sig
letermination 1s: 1
Regression 443.486832 2 221.743416 =
1394612.679245
Residual -0.000159 1 -0.000159
Total 443486673 3
4 0.000465
Close

T

Fig AppB.1a-1X1 4Pts-ANOVA Table (see fig 6.2a)

Spts The Fitted Model is:
| y1i=-1116.612345 + 0.000461 x1 + 0.000726 x2
' ANOVA Table
bove model 15 : 0.999874
ANQVA Table
Model Sum of Squares df Mean Square F Sig
letermination is : 0.99974¢
Regression 553.180461 2 276.59023 7930.220483
Residual  0.069757 2 0.034878
Total 553.250218 4
)5 -0.092182
Close

—

Fig AppB.1b-1X1 5Pts ANOVA Table (see fig 6.2b)
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L

L4

The Fitted Model is:
vi1=-1073.00329 + 0.000434 %1 + 0.00071 =2 .

=

| a5 ANOVA Table

hodel 15 : 0.999934

ANOVA Table
Model Sum of Squares df Mean Square FE Sig
pnation 1s : 0.99989
Regression 552.122507 2 276.061254 22843.297807
Residual 0.036254 3 0.012085
Total 552.158761 5
027532
Close
Fig AppB.1c-1X1 6Pts1 ANOVA Table (see fig 6.2¢)
6pts2 The Fitted Model is:
. . 71=-1072.858511 + 0.000448 =1 + 0.000706 x2
a) ANOVA Table e ]
bove model 15 : 1.999945
ANOVA Table
Model Sum of Squares df Mean Square E Sig
fetermination is : 0.999908
Repression 617.914753 2 308.957376 27075.398826
Residual 0.034233 3 0.011411
Total 617.948986 5
Vo -0.019897
Close

Fig AppB.1d-1X1 6Pts2 ANOVA Table (see fig 6.2d)

4pts

The Fitted Model 1s:
vi=-1531.282084 + -8.1E-05 x1 + 0.001095 x2

r

o) ANOVA Table

55=)

ANOVA Table
Model Sum of Squares

model is : 0.999988

I

df Mean Square Sig

fmination 1s : 0.999964

Regression 2327.232285
42384.211481

Residual 0.027454
Total 2327.259739

2 1163.616142

1 0.027454
3
£0.045353

Close

Fig AppB.2a-1X2 4ptS ANOVA Table
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5pts The Fitted Model 1s:
vi=-1832.39856 + 6E-05 x1 + 0.00122 x2

[ 4 ANOVA Table - |
e model 1s : 0.999825
ANOVA Table
Model Sum of Squares df Mean Square F Sig
trmination 1s: 0.99965
Regression 2525.020558 2 1262510279
5727124707
Residual 0.440888 2 0.220444
Total 2525461446 4

-0.329556

Close

b

Fig AppB.2.b-1X2 5Pts ANOVA Table

Gptsl The Fitted Model is:
vi=-1914.658211 + 9.5E-05 x1 + 0.001255 =2

o) ANOVA Table

odel is: 0.999813

ANOVA Table
Model Sum of Squares df Mean Square F Sig

ination 1s : 0.99968¢
Regression 2599.998022 2 1299999011
8013.99992
Residual 0.486649 3 0.162216
Total 2600.484671 5

D.171186
Close
Fig AppB.2c-1X2 6Pts1 ANOVA Table
Gpts2 ||| The Fitted Model is:
‘ yi=-1743.345145 + -4.6E-05 x1 + 0.0012 x2
o) ANOVA Table S

| odel 15 : 0.999812
ANOVA Table
Model Sum of Squares df Mean Square F Sig

ination 1s: 0.999687
Regression 2599.994593 2 1299.997296
7957.916589
Residual 0.490078 3 0.163359
Total 2600484671 5

247274

Close

_—
Fig AppB.2d-1X2 6Pts2 ANOVA Table
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The Fitted Model is:

4pts
. D yi=-31.558452 + 0.000761 x1 + 6.1E-05x2
| 82 ANOVA Table -
| el is : 0.999989
ANOVA Table
Model Sum of Squares df Mean Square IF Sig
tion is:0.999967
Regression 2366.277586 2 1183.138793
46856.981901
Residual 0.02525 1 0.02525
Total 2366.302836 3
1B5058

Close

g -

Fig AppB.3a-2X1 4Pts ANOVA Table

Spts 1-11-] ||| The Fitted Model is:
. . vi=-223.184753 + 0.000864 x1 + 0.000137 x2
) ANOVATable [
ANOVA Table
Model Sum of Squares df Mean Square F Sig

odel 15 : 0.999905

nation 1s : 0.99981

Regression 2902.390271 2 1451.195136
10484.150443

Residual  0.276836 2 0.138418

Total 2902.667106 4

265579
Close

Fig AppB.3b-2X1 5Pts ANOVA Table

vy

6pts2 The Fitted Model 1s:

y1=-577.968989 + 0.000932 x1 + 0.00031 =2

o) ANOVA Table

ANOVA Table
Model Sum of Squares

df Mean Square F Sig

Regression 5102.003049 2 1551.001524
10930.01222

Residual  0.425709 3 0.141903

Total 3102.428758 5

189174

i Close

—_—
Fig AppB.3c-2X1 6Pts1 ANOVA Table
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4pts The Fitted Model is:
y1= 390365206 + -0.000184 <1 + 8.6E-05 x2

s/ ANOVA Table [
|

ANOVA Table
Model Sum of Squares df Mean Square I3 Sig

-

model is : 0.999839

rmination 1s: 0.999517

Regression 1974.475281 2 987.23764
3107.051466

Residual 0317741 1 0.317741

Total 1974.793022 3

-0.227011

Close

A

Fig AppB.4a-2X2 4Pts ANOVA Table

Spts The Fitted Model is:
. . vi= 23656182 + -0.000118 x1 + 0.000152 x2
| 85 ANOVA Table ——
|
odel is : 0.999664
ANOVA Table
Model Sum of Squares df Mean Square F Sig
mnation 1s : 0.99932¢
Regression 2627.439787 2 1313.719894
2072472507
Residual 0.883924 2 0.441962
Total 2628.323711 4
).265897
Close
Fig AppB.4b-2X2 5Pts ANOVA Table
Gptsl The Fitted Model is:
. yi=-31.949841 + 7.8E-05 x1 + 0.000244 x2
s/ ANOVA Table S
1s : 0.999467
ANOVA Table
Model Sum of Squares df Mean Square E Sig
bn 1s:0.99911Z
Regression 2757.975105 2 1378.987552
2811.425934
Residual 1.471431 3 0490494
Total 2759.446587 5
9
Close

Fig AppB.4c-2X2 6Pts1 ANOVA Table
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6pts2

The Fitted Model is:
yi=-286.116455 + -1E-06 x1 + 0.000402 x2

|
-

o) ANOVA Table

=)

ANOVA Table
Model Sum of Squares

model 15 : 0.999532

df Mean Square F Sig

ination 1s : 0.99922

Regression 2911.771639
3204.185642

1.363111
2013.134771

Residual
Total

2 1455.88583

3 045437
5
213516

Fig AppB.4d-2X2 6Pts2 ANOVA Table

4pts

I

The Fitted Model is:

i

1=1191.35809 + -0.001883 x1 + 0.00011 x2

o' ANOVATable =~

===

ANOVA Table
Model Sum of Squares

odel 15 : 0.999748

df Mean Square I Sig

ation 1s: 0.999244

Regression 5251.245762
1980.43932
Residual
Total

1.325778
225257154

2 2625.622881

1 1.325778
3

343541

Close

\

Fig AppB.5a-2X4 4Pts ANOVA Table

opts

I

The Fitted Model 1s:
yvi= 5849571724 + -0.001744 x1 + 0.000257 x2

-

o) ANOVA Table

=)

ANOVA Table
Model Sum of Squares

model 1s : 0.999382

df Mean Square E Sig

Regression 5098.027889
1616.808849

Residual 3.133142
Total 5101.181031

mination is : 0.998764
2 2549.013944

2 1576571
4

376821

Close

Fig AppB.5b-2X4 5Pts ANOVA Table
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6pts \- The Fitted Model is:
| I r1=585.738175 + -0.001379 x1 + 0.000301 x2
o' ANOVA Table
odel 15 : 0.996812
ANOVA Table
Model Sum of Squares df Mean Square F Sig
nation is: 0.994687
Regression 1115.354867 2 557.077434
468.971479
Residual  3.567449 3 1.18915
Total 1118.922316 5
53913
Close f

Fig AppB.5c-2X4 6Pts1 ANOVA Table

6pts2 The Fitted Model is:
71 = 805.253053 + -0.00201 =1 + 0.000352 x2

o' ANOVA Table

odel 1s : 0.998769

ANOVA Table
Model Sum of Squares df Mean Square F Sig
ation 1s:0.997948
Regression 2284.045953 2 1142.022976
1217.250259
Residual  2.814597 3 0.938199
Total 2286.86055 5
2124
Close
—_———————m—————————
Fig AppB.5d-2X4 6Pts2 ANOVA Table
4pts The Fitted Model 1s:
. yi=3596.216975 + -0.000261 x1 + -0.001622 x2
s ANOVA Table S
999965
ANOWVA Table
Model Sum of Squares df Mean Square F Sig
: 0.99989:
Regression 2582.360811 2 1291.180406
14443.380084
Residual 0.089396 1 0.089396
Total 2582.450207 3
Close

Fig AppB.6a-4X2 4Pts ANOVA Table
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Spts The Fitted Model is:
. yi= 2734.74096 + -0.000154 x1 + -0.001186 x2
| % ANOVA Table oo
: 0.998805
ANOVA Table
Model Sum of Squares df Mean Square I Sig
is : 0.99761

Regression 2126.781883 2 1063390942

836.145757

Residual  2.543534 2 1211777

Total 2129.325437 4

Close
.t = - = aam .
Fig AppB.6b-4X2 5Pts ANOVA Table
6ptsl The Fitted Model is:
yvi=1529.959095 + 0.000672 x1 + -0.000758 x2

| 95 ANOVA Table [
| 999692
|| ANOVA Table

Model Sum of Squares df Mean Square F Sig }
1 : 0.999487
|| Regression 6428.617949 2 3214.308974
1| 4865.719614
1| Residual 1.981809 3 0.660603

Total 6430.599758 5

Close

Fig AppB.6c-4X2 6Ptsl

ANOVA Table
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Gpts2 The Fitted Model is:
. vi=2383.787511 + 0.000484 x1 + -8.9E-05 x2
[ & ANOVA Table - |
del 15 : 0.988914
ANOVA Table
Model Sum of Squares df Mean Square F Sig
ation 15 :(0.981522
Regression 143.433648 2 T1.716824 133.803789
Residual 1.607955 3 0.535985
Total 145.041603 5
8123
Close
Fig AppB.6d-4X2 6Pts2 ANOVA Table
4pts The Fitted Model is:
. . yi=4811.472167 + -0.002115 x1 + -0.001778 x2
l a-l ANOVA Table -
(
( ove model is : 0.999862
(| ANOVA Table
Model Sum of Squares df Mean Square IE! Sig
etermunation 1s : .99958¢
Regression 4739.076057 2 2369.538028
3611.57213
Residual 0.656096 1 0.656096
Total 4739732152 3
4 -0.142206
Close
Fig AppB.7a-4X4 4Pts ANOVA Table
Spts The Fitted Model is:
yi=4763.048679 + -0.002094 x1 + -0.001758 2
o) ANOVA Table S
el1s: 0.998926
ANOVA Table
Model Sum of Squares df Mean Square F Sig
tion 1s:(0.99785Z
Regression 1604.377036 2 802.188518
029.853713
Residual  1.725409 2 0.862704
Total 1606.102444 4
1672
Close
—

Fig AppB.7b-4X4 5Pts ANOVA Table
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Gptsl The Fitted Model is:
vi=4584.097919 + -0.00197 =1 + -0.001695 x2

| 82 ANOVA Table -

odel i5 : 0.996539
ANOVA Table
Model Sum of Squares df Mean Square IF Sig

ination is:(0.99423:
Regression 1615.100845 2 807.550422
431.934535
Residual 5.608839 3 1.869613
Total 1620.709684 5

1251615
Close

Fig AppB.7c-4X4 6Pts1 ANOVA Table

6pts2 The Fitted Model is:
yi=4511.774181 + -0.002032 x1 + -0.001639 x2
a-! ANOVA Table
| el 15 : 0.996984
ANOVA Table
Model Sum of Squares df Mean Square E Sig
tion 1s:0.994971
Regression 1785.919805 2 892959902
495.857985
Residual 5402513 3 1.800838
Total 1791.322318 5
478

Fig AppB.7d-4X4 6Pts2 ANOVA Table
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