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Abstract

The theory of direct integral decompositions of both bounded and unbounded
operators is further developed. We study Banach and C*-algebras generated by
Toeplitz operators acting on weighted Bergman Spaces over the complex unit ball.
We provide examples of ambient nuclear C*-algebras of non—nuclear C*-algebras
with no proper intermediate C*-algebras. We characterize the continuous quasi —

states on C*-algebras.
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Chapter 1
Brown Measure for Closed Unbounded Operators

Results about spectral projections, functional calculus and affiliation to von Neumann
algebras are shown. For operators belonging to or affiliated to a tracial von Neumann algebra
that is a direct integral von Neumann algebra, the Brown measure is shown to be given by
the corresponding integral of Brown measure.

Section (1.1): Spectral Projections and Functional Calculus for Bounded Operators

Reduction theory is a way of decomposing von Neumann algebras as direct integrals
(a generalization of direct sums) of other von Neumann algebras. It is commonly employed,
when the direct integral decomposition is done over the center of the von Neumann algebra,
to see that an arbitrary von Neumann algebra is a direct integral of factors. However, the
direct integral decomposition can be done over any von Neumann subalgebra of the center.

We show that, tracial von Neumann algebras and certain unbounded operators
affiliated to such von Neumann algebras, the Brown spectral distribution measure behaves
well with respect to direct integral decompositions. This result finds immediate application
that extends results about Schur upper-triangular forms to certain unbounded operators
affiliated to finite von Neumann algebras.

We will now describe some of the theory of Brown measure and the Fulgelde-Kadison
determinant, on which it depends. Given a tracial von Neumann algebra (M, T ), by which
we mean a von Neumann algebra M and a normal, faithful, tracial state t , the Fuglede-
Kadison determinant is the map A = A;: M — [0, o) defined by

A(T) = exp(r (log |T|)) P= lirgl+ exp(r (log |IT| + e)).
€—
Fulglede and Kadison proved that it is multiplicative: A(AB) = A(A)A(B). The
Brown measure v, was introduced by L.G. Brown. It is a sort of spectral distribution

measure for elements T € M (and for certain unbounded operators affiliated to M). It is
defined to be the Laplacian (in the sense of distributions in C) of the function f(1) =

% logA(T — A); Brown proved, among other properties, that it is a probability measure

whose support is contained in the spectrum of T.

Later, Haagerup and Schultz proved that the Fuglede-Kadison determinant and Brown
measure are defined and have nice properties for all closed, densely defined, possibly
unbounded operators T affiliated to M such that 7 (log*|T|) < oo, where log*(x) =
max(log(x),0). We will use exp(L,)(M,t) for this set. It is easy to see that
exp(L)(M,t) is an M-bimodule; it is, in fact, a *-algebra containing M as a *-
subalgebra. A characterization of the Brown measure vy of T € exp(LY)(M, T) is as the
unique probability measure on C satisfying

f log* |z|dvr (2) < = (1)
and "
j log |z — Aldvy(2) = logA(T — 1)(4 € C). (2)
C

Brown measure is naturally defined on elements of exp(£!); we will need reduction theory
also for unbounded operators in Hilbert space. Nussbaum introduced this theory and
developed several aspects of it. We will show and make use of some further results about
direct integral decompositions of unbounded operators, for example, about (a) functional



calculus for decomposable unbounded self-adjoint operators, (b) polar decompositions and
(c) affiliated operators.

We will recall elements of the reduction theory for von Neumann algebras as
expounded by Dixmier and some definitions and results from Nuss-baum on reduction
theory for unbounded operators. We let w be a fixed o-finite positive measure on a standard
Borel space Z, namely a Polish space endowed with the Borel o-algebra.

(A) Direct integrals of Hilbert spaces: A measurable field of Hilbert spaces is a function
{— H (), ({ € Z), where each H ({) is a Hilbert space, together with a set S of vector
fields (namely, functions { — x({) € H({)) that are said to be measurable and that satisfy
(i) that the function ¢ — (x({), y({)) is measurable for all x,y € S and

(i) if v is a vector field and the function ¢ — (x({), v({)) is measurable for each x € S,
thenv € S.

The direct integral Hilbert space

®
9 = j H () do(Q)
Z

consists of all measurable vector fields x € S for which the function ¢ — |Ix(D|I?
Is integrable with respect to w. The inner product on H is given by

(x,y) = f x(),y()) dw(Q).
Z

(B) Fields of Bounded Operators: A field { — T({) € B(H({)) ({ € Z) of bounded
operators is said to be measurable if for every measurable vector field x € S (asin (A)) the
field ¢ — T'({)x(Q) is measurable. In this case, the map ¢ — ||T'({)]| is measurable.
(C) Decomposable and Diagonal Bounded Operators: If T is a measurable field of bounded
operators as in (B) and if the map

¢ T 3)
is essentially bounded, where ||-|| is the operator norm, then T describes a bounded linear
operator, also denoted by T, on the direct integral Hilbert space H, by (Tx)({) =
T({)x({), and we write

®

= T@de. )
Z

The norm of T equals the essential supremum of the map (3). Such operators T on H

are said to be decomposable. The set of decomposable operators, which we will denote &,
is a subalgebra of B(#) and the *-algebra operations have the obvious almost-everywhere-
pointwise interpretation. In particular, T is self-adjoint if and only if T ({) is self-adjoint for
almost every ¢ and T = 0 if and only if T({) = 0 for almost every {. The diagonal
operators are the decomposable operators T for which each T'({) is a scalar multiple of the
identity operator on H ({).

The algebra of all diagonal operators, which we shall denote D, is a von Neumann algebra
isomorphic to £1(Z, w), and its commutant is the von Neumann algebra £ of decomposable
operators.

(D) Fields of von Neumann algebras: All of the von Neumann algebras considered will be
assumed to be countably generated. If A is a von Neumann algebra in B(H) that is
generated by the algebra D of diagonalizable operators to-gether with a countable set
{T; | i = 1} of decomposable operators, then A is said to be decomposable. Letting A ()
be the von Neumann algebra in B(#({)) generated by {T;(¢) |i = 1}, we have that

2



whenever T is a decomposable operator,then T € A ifandonly if T({) € A({) for almost
every (. We write

®
A= Ag do©)
Z
Note that the von Neumann algebra D of diagonal operators is contained in the center of A.

(E) Measurable fields of traces: Suppose A = ff A(Q) dw({) is a decomposable von
Neumann algebra and ¢ ~— 7, is a field of traces, each 7, being a trace on A({)" taking
values in [0,4+oo]. The field of traces is said to be measurable if for every T =

fe T({) dw({) € A, the function { — 17(T({)) is measurable. In this case

Z
o
T = f Tc dw({)
Z
denotes the trace on A* defined as follows. When T € A™*, writing T as in (4), we have

tM = [ w0@)do@)

Z

(F) Direct integral decomposition of a finite von Neumann algebra and trace. If A =
fz® A(Q) dw({) is adecomposable von Neumann algebra and t is a normal, faithful, tracial

state on A, then there is a measurable field { — 7, of normal, faithful, finite traces z, on
A({), so that

®

T = j 7¢ dw({).
Z

After redefining w, if necessary, we may without loss of generality assume each 7, is a

tracial state.
(G) Measurable fields of unbounded operators: We will denote the domain of a closed
(possibly unbounded) operator T on a Hilbert space by dom(T). Let { + T({) be a field of

closed operators on H'({). Let P({) = (Pij(()) - € M,(B(H (Q)) be the projection

1<i,j<
onto the graph of T (). Nussbaum introduced the following notion of measurability: the
field of operators is measurable if for all i and j, the field P;;({) of bounded operators is
measurable, in the sense of (B). It shows that in the case of an essentially bounded field of
bounded operators, measurablility in the above sense is equivalent to measurability as found
in (B). The field { — T({) is said to be weakly measurable if for every measurable vector
field ¢ +— x({) of vectors such that for all {, x({) € dom(T({)), the vector field { —
T(Q)x(Q) is measurable.

Nussbaum proves that every measurable field { — T'({) of closed operators is weakly
measurable, while the converse statement was shown to be false.

(H) Decomposable unbounded operators: Given a measurable field { — T(¢) of closed

operators as in (G) and letting H = ff H () dw(Q) be the direct integral Hilbert space,

define the operator T to have domain equal to the set of vectors x € H defined by square
integrable vector fields ¢ — x({) such that x(¢) € dom(T(¢)) for all { and such that the
vector field { — T ({)x({) is square integrable, and for such an x to have value Tx equal
to the vector field

(Tx)(§) = T()x(S)-



T is a closed operator. A closed operator that arises in this way from a measurable field of
closed operators is said to be decomposable. A closed operator in  is decomposable if and
only if it permutes with all the bounded diagonalizable operators, as described in (C).A
closed operator in H is decomposable if and only if it is affiliated with the von Neumann
algebra & of all bounded decomposable operators.

Suppose T = fzeB T(¢) dw(Q) is a decomposable closed operator. Hence
(@) T(Q) is densely defined in H (¢) for almost every ¢ if and only if T is densely defined in
H;
(b) T(Q) is self-adjoint for almost every ¢ if and only if T is self-adjoint;

We treat spectral projections and functional calculus of bounded decomposable
operators, with respect to a fixed direct integral decomposition of
Hilbert space

(&)
%=fﬂ«wm0
VA

We let o(+) denote the spectrum of an operator.

Lemma (1.1.1)[1]. Suppose
®

X = [ X©do©)
Z

Is @ bounded, decomposable operator. Then for almost every ¢, we have J(X(()) c o(X).
By appeal to the standard *-algebra operations, we have:
Lemma (1.1.2)[1]. Let X be abounded, decomposable operator. Then X is a normal operator
if and only if X(¢) is normal for almost all ¢.
We consider now the continuous functional calculus, which is quite straightforward to
prove, and must be well known.
Lemma (1.1.3)[1]. Let X be a bounded, normal, decomposable operator. Using Lemmas
(1.1.1) and (1.1.2), by redefining X () for ¢ in a null set, if necessary, we may suppose X ({)
iIs normal and has spectrum contained in o(X) for all . Suppose f: a(X) = C is a
continuous function. Then in the continuous functional calculus, we have

@
ﬂm=jf@@DwMO

Proof. Take a sequence (gx)r=, Of polynomials in z and z such that g, (z, 3) converges

uniformly to f(z) for all z € o(X). Letting €, = Zrér;zg)lf(z) — 9x(z, z)|, we have

lim €, = 0. But I (X) — gk (X, X))l = €, and for each {, since a(X({)) < o(X), we have
If (X () — g (X (), X())Il < €, and from this we get (see (C)),

52 57
[ 16 @) do® - [ 9ex @%@ do @ < &

Since the C*-algebra operations thread through decompositions, we have



@
Ge(X,X") = j 9(X(D, X)) dw(@).

Taking k — oo finishes the proof.

We next consider spectral projections. For a normal operator X and a Borel subset B of C,
we will denote by Ey(B) the corresponding spectral projection. The following result is a
special case.

Proposition (1.1.4)[1]. Suppose X = fZEBX(() dw({) is a bounded, normal, decomposable

operator and, as above, assume without loss of generality X ({) is normal and has spectrum

contained in a(X) for all {. Let B be a Borel subset of C. Then
®

Ey(B) = j Exo)(B) dar(0). )

Z
Proof. First suppose that B is a nonempty open, bounded rectangle in C. Let (f;,)n=1 be an
increasing sequence of continuous functions on C, each taking values in [0, 1] and vanishing
outside of B and such that f,, converges pointwise to 15 (the characteristic function of B) as
n — oo. By Lemma (1.1.3), we have

&)
10X = j £,XQ) do(@).

Z
Since f,, is increasing to 1, by the spectral theorem, f,,(X) converges in strong operator
topology to Ex(B). Similarly, for every ¢, f,,(X({)) converges in strong operator topology

to Ex(¢)(B), for all ¢. Thus, f,,(X) converges strongly to f;B Ex()(B) dw({). This yields

the equality (5) when B is an open rectangle.
We now show that the set 5 of Borel sets B with the property (5) is a o-algebra.

First, if B € 8, then
® ®

B(B) = 1= Ex(®) = 1 - [ Ey(B)da(®) = [ (1= Exipy(B)) do®)
@ VA VA
- j Exio(BY) dw(Q),

so B¢ € 5. Now let (B,,),=1 be a sequence of sets from . For any i,j € N we have
Ex(B; U B;) = Ex(B;) + Ex(B;) — Ex(B)Ex(B,))
@

- j (EX(O (B + Ex()(B;) — Ex(g)(BDEx(g) (Bj)) dw(Q)

z
S

= f Exy(Bi U B;) dw (D),
Z
So B; U B; € B. Hence g is closed under finite unions. Thus, for every n, we have



& n

E, (0 Bi> _ f Exo (U Bl-) dw(0).

i=1 VA i=1
But Ex(Ui~, B;) converges in strong operator topology to Ex(U;2, B;), and for each ¢,
Ex()(UiZ, B;) converges in strong operator topology to Ey)(Ui2; B;). We get
®

@0J&>=f@@ﬂj&)MM)
i=1 Z i=1

Thus g is a o-algebra.

Since g contains all of the bounded open rectangles, it is the whole Borel o-algebra of C.
From the above result, it is easy to show that an analogue of Lemma (1.1.3) holds for the

Borel functional calculus.

Proposition (1.1.5)[1]. Let X = ff(X(()) dw({) be a bounded, normal, decomposable

operator. Using Lemmas (1.1.1) and (1.1.2), by redefining X(¢) for ¢ in a null set, if
necessary, we may suppose X () is normal and has spectrum contained in o (X) for all ¢.
Suppose f : o(X) — C is a bounded Borel function. Then taking the Borel functional
calculus, we have

(&)
ﬂm=ff@«mm«)
VA

Proof. Let e > 0 and let g = }7_, a;lp, be a Borel measurable simple function such that
sup |f(z) — g(z)| < €. By Proposition (1.1.4), we have

z€0(X)
2]

mm=jg@@mmx)

But ||g(X) — f(X)|| < €. Moreover, forgll ¢ we have ||g(X () — fF(X(Q)]] < €, so we get

® ®
f g(X())dw() - j F(X()dw(@)|| <e.
Z Z

This yields

@
£ - [ @)@ < 26

Letting € — 0 finishes the proof.

Section (1.2): Affiliation for Unbounded Operators and Tracial von

Neumann Algebras with Brown Measure

We show a result about functional calculus for decomposable self-adjoint, possibly
unbounded operators, as well as a result about the polar decomposition of decomposable
unbounded operators and one about affiliation to decomposable von Neumann algebras.

Lemma (1.2.1)[1]. LetT = fZEB T({)dw({) be a closed, (possibly unbounded), self-adjoint,

decomposable operator. Then the Cayley transform (T + i)(T — i)~ of T is equal to the
direct integral



@
j T +DTQ) - D) dw(@) )

of Cayley transforms.
Proof. Note that the operator (6) is unitary. By evaluating at measurable vector fields { —
x(t) belonging to dom(T), we have

(&)
(T = i)x = f (T(Q) — Dx()dw(@)
VA

and

(&)
( f (T@Q) + D(TEQ) — ) dw(()) (T - Dx
VA

®
- [ 0@ + Dx@d0@) = 7+ x.

Thus, the two unitary operators (T + i)(T — i)~ t. and

D
j (T +DTQ) — ) dw(@),
VA

agree on a dense subset of H, so they must be equal, as required.

Now using the Cayley transform to go from unbounded self-adjoint operators to unitary
operators, we easily get the following analogues of Propositions (1.1.4) and (1.1.5). Here,
for a Borel set B, we denote the corresponding spectral projection of also an unbounded self-
adjoint operator T by E(B).

Proposition (1.2.2)[1]. Let T = fZEB T({)dw({) be a closed, (possibly unbounded), self-
adjoint, decomposable operator. For every Borel subset B c R, we have

®
Ee(B) = [ Bripy )0 (@), )
Moreover, for every (possibly unbounded) BoreZI measurable function f: R->R,
we have
@
F = [ Fr©)dw), ®)
Z

Proof. Consider the map h : R — T given by h(t) = ? Let U = (T +i)(T — i)~ be the

—i

Cayley transform of T and let U(¢) = (T({) + i)(T(¢) — i)~1. Then for all { we have
Er(B) =Ey(h(B)) and Erg)(B) = Eyy(h(B)).

Thus, applying Proposition (1.1.4) to U and h(B) yields (7). Now, by approximating f in
norm with simple Borel measurable functions, as was done for bounded operators in the
proof of Proposition (1.1.5), we obtain (8).

Nussbaum proved that given a densely defined, decomposable, (possibly unbounded) closed
operator

7



@
T = j TQ)dw(@),

Z
its absolute value is the direct integral of absolute values:

@
7| = j T@)ldw(@). )

Proposition (1.2.3)[1]. With T as above, let T = V|T| be the polar decomposition of T.

Then the polar part VV is decomposable and we have
®

V= f V(O dw(@), (10)

Z
where V() is the polar part in the polar decomposition
T(Q) =VOITl of T().
Proof. Let W be the bounded, decomposable operator defined by the right-hand-side of (10).
Then W is a partial isometry. By evaluating on vector fields x € H indom(T) = dom(|T|),
and using (9), we find

(&)
ITlx = j T dw(@)
VA

and
@ @
WIT)x = j VOITQXQdw(@) = j T(Q)x(@)dw(() = Tx.
Thus we have ’ ‘
WIT| =T. (11)

Moreover, V({)*V ({) is the range projection EIT(()I((O: oo))of |T({)|. Thus,
®

®
ww = [ VOV©d0©) = [ Fir(0,0))dw (@) = Biry((0,)

Z Z
where the last equality is provided by Proposition (1.2.2). This, together with (11), implies
that T = W|T| is the polar decomposition of T.
Recall that for a closed, densely defined operator T in ' and a von Neumann algebra M €
B(#H), we say that T is affiliated to M if, letting T = V|T| denote the polar decomposition
of T, we have V € M and E|r|(B) € M for every Borel subset B of R.
The following is the analogue for unbounded operators of the fundamental fact about
decompositions of von Neumann algebras stated in (D).
Proposition (1.2.4)[1]. Suppose

@
M = j MQ)do Q)

Z
Is decomposable von Neumann algebra (see (D)). Let T be a closed (possibly unbounded)
operator in H. Then T is affiliated to M if and only if (a)T is decomposable and (b) writing
out the 8ecomposition as



@
T= f TQ)dw(?), (12)

Z
we have that T'(¢) is affiliated to M (¢) for almost every ¢.
Proof. First we show <. Suppose T is decomposable and is written as in (12). Let T = V|T|
and T({) = V({)|T({)| be the polar decompositions. For almost every ¢ we have V({) €
M ({); using Proposition (1.2.3), we have IV € M. Similarly, for every Borel subset B € R,
we have Ejr)(B) € M({) for almost every ¢, so using Proposition (1.2.2), we find
Eir|(B) € M. Thus, T is affiliated to M.
To show =, we suppose T is affiliated to M. Let T = V|T| be the polar decom- position of
T. Since V € M and all spectral projections E|r|(B) are in M, they all commute with all the
diagonalizable operators; from this, we easily see that T permutes with all diagonalizable
operators. By Nussbaum, T is decomposable; we write it as in (12). Let T({) = V()T ({)]
be the polar decomposition. Since V' € M, using Proposition (1.2.3) we get V({) € M'({)
for almost every ¢.
Similarly, but using Proposition (1.2.2), for every Borel set B, since E|r|(B) € M, there is
a null set Ny such that for all { & Ng, we have Ejr¢)(B) € M({). Let N be the union of
the sets Ny as B ranges over the open intervals with rational endpoints in R.
Then N is a null set and for all { € N we have Ejr( ((a,b)) € M({) for all rational
numbers a < b. From this, we deduce Ery (B) € M ({) for all Borel subsets B < R.
Thus, we have that T(¢) is affiliated to M ({) for almost every (.

We will specialize to the case of operators in or affiliated to tracial von Neumann
algebras, by which we mean, pairs (M, t) consisting of a von Neumann algebra M and a
fixed normal, faithful, tracial state = on it. Recall that, given such a pair, we let exp
(LYH(M, 1) denote the bimodule of closed operators T affiliated to M such that
t(log*(IT)) < oo.

Here is a technical lemma that we will need later; it is convenient to prove it here.
Lemma (1.2.5)[1]. Let T € exp(£,) (M, 7). Then the mapping A » A (|]T — 2|> + 1)(1 €
C) is continuous.

Proof. By shifting T, it suffices to prove that our mapping is continuous at 0. To see this,
note that

A(IT - 217 + 1) = A(ITI* + 1)A((1 T E(T - A2 + (A + |T|2)‘%)

= AT + DA(1+ (1 + TP 207 - A2 = 1T + 171 2),
It will, thus, suffice to show
lima(1+(1+ TR 2T = A2 = [TA+TH)7) =1 (13)
It is immediate that

IT — 12 = |T|? = |A|? = AT* = AT = |A|?> = A|T|U* — AU|T|,
where T = U|T| is the polar decomposition. Thus,

(1+ [T Z(T = A2 = [T + |T[?) % =

=APA+ITIH™ -2 (#) ur (%)
(1+1T|?)2 (1+1T[?)2

9



() (o
(1 +IT[*)2/ N1 +|T[?)2

Thus, we have the estimate of operator norm

1 1
H(l T 2T — 212 — T + 171272 || < 2121 + 1412

1
So when |1] < UL have

1 1
log(1 = 2121 — 1212) < log A (1+ (1 + [T 2(IT = A = [T )1 + |T2)2)

<log(1 + 2|A| + |1/,
which proves (13). This concludes the proof.
We suppose M’ € B(H) is a von Neumann algebra equipped with a normal, faithful
tracial state t and that M < £ consists of decomposable operators. Using Dixmier’s
reduction theory (described in (F)), and by modifying the measure w to be a probability

measure, we may write
® ®

sz]\/[({)da)({), and r:fr{dw(f),

Z Z
for tracial von Neumann algebras (M ({),7;), with M (¢) < B(#({)). By Proposition
(1.2.4) if T is affiliated to M, then T is decomposable and may be written
@

T= j T@Q)dw(?), (14)

Z
with T'(¢) affiliated to M (¢) for almost every (.
For an element T € exp(LY) (M, T), we let v, denote the Brown measure of T. For any self-
adjoint, closed operator T affiliated to M, we let u, denote the distribution of T, namely, T
composed with spectral measure of T. In fact, when T € exp(£L)(M, 1) is self-adjoint, we
have v, = u; (this follows immediately from the characterization provided by Equations
(1) and (2)) so there would be no conflict in using the same notation for both; but for clarity
of meaning, we will distinguish them.
Proposition (1.2.2) yields the following formula for spectral distribu-tions of self-adjoint
(possibly unbounded) operators.
Proposition (1.2.6)[1]. Let T be self-adjoint and affiliated to M. Then for every Borel subset
B of R, the function ¢ » ury(B) is measurable and

ur(B) = f oy (B) do(©).

Z
We let L1 (M, 7) denote the set of all closed operators affiliated to M such that
T(IT]) < 0.
Lemma (1.2.7)[1]. Suppose T € L1(M, 1) and T = 0; use the decomposition (14). Then
T(() € [,1(]\/[((),15) for almost every ¢ and

o(T) = f 2o (TQ)) dw(). (15)

Z
Proof. We have T(¢) = 0 for almost every ¢. Since the decompositions of T and 7 are

measurable, the function ¢~ 7,(T({)) is measurable. Let (f,)n=; be an increasing
10



sequence of simple functions, each having finitely many values, that converges point-wise
to the identity function t — t on [0, o). Then t(f,,(T)) is increasing in n and converges to

7(T) while for every ¢ such that T({) = 0, the sequence 7, (fn(T(()) Is increasing in n and
convergest to 7;(7({)). Now fixing n and writing f, = X7, a; 15, for some a; > 0 and
some Borel sets By, using Proposition (1.2.6), we find

(fu) = Y air (B = Y ai [ B d0@) = [ (1)) dw @)
k k Z Z
Letting n — oo, the Monotone Convergence Theorem implies the equality (15). This, inturn,

impies 7;(T(¢)) < oo for almost every ¢.

Now we turn to the exp (£1) class and the Fuglede—Kadison determinant.

Lemma (1.2.8)[1]. Let T € exp(£LY) (M, t) and use the decomposition (14). Then T({) €
exp(LY) (M (¢), ;) for almost every ¢. Moreover, we have

&)
(log™(IT]) = j 2. (log* (T dw () (16)
VA
10g 8(7) = [ l0g A (T(©) dw (). (17)
Z

Proof. Equation (9) — We may without loss of generality assume T > 0, which entails
T(¢) = 0 for almost every ¢. Now using Proposition (1.2.2), we get

@
log*(T) = j log*(T())dw(?).

Z
Since T € exp(LY)(M, 1), we have log™ (T) € LY(M, 7). Now Lemma (1.2.7) yields (16)
and we deduce log*T({) € L*(M (), 7;), namely, T() € exp(LY) (M ({), 77 ), for almost
every ¢.

Now we show (17). Let € > 0. Using the function f.(t) = log(t + €) (t = 0) and using

Proposition (1.2.2) to apply the functional calculus to T, we get
®

log(T +¢€) = j log (T({) +e)dw(]). (18)

Z
Now Lemma (1.2.7) applies (if we first add —log ¢ to both sides of (18) to make the operators
positive) and we have

“(log(T + €)) = f 1. (0g(T@) + €)) dw(?).

Z
Letting € — 0 and using the Monotone Convergence Theorem, we get

109 8(T) = t(og() = [ 1 log(T©)) dw(@) = [ tog e (T@)) dwx(©),

. Z Z
as required.

Recall that, for T € exp(£L1) (M, 7), we let v, denote the Brown measure of T.
Lemma (1.2.9)[1]. Let T € exp(£L1) (M, T) and use the decomposition (14). Then for every
Borel subset B < C the mapping ¢ - vy (B) is measurable.
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Proof. By Lemma (1.2.8), T({) € exp(£L*)(M ({), 7, ) for almost all ¢, and we will confine
ourselves to such ¢. It will suffice to prove measurability when B is an open, bounded
rectangle in C, for the collection of such sets generates the Borel o-algebra. Fix a sequence
{f}ns0 OF Schwartz functions having support in B and increasing pointwise to the
characteristic function of B. Then by the Monotone Convergence Theorem, we have

vro(®) = lim [ Ldve R
C
By definition of the Brown measure, we have
1
| Ao =5 [ 70g(T@) - AT*H D,
C C

where dA means Lebesgue measure on C. Note that 7, (log(|T({) — A|) is bounded above

for A in compact subsets of C. Fixing n for the moment and writing V2f,,(1) = h; — h,,
where h; and h, are positive Schwartz functions, it follows that both of the integrals

j 7¢(log(IT(Q) = AD)h, (DdA and j 7 (log(IT({) — A))h,(D)dA
C C

are finite. It follows from the Monotone Convergence Theorem that

1 1
L 7¢(log(IT(§) = AD)hy (A = = lim J@ 7 (zog (Ir@ -2+ W)) h (DA,

jr (10g(IT(©) = 1)) hy()dA = = lim j 7. (10 (|T(c)—1|2+i) h,(A)dA
c 4 g 2 _Zm—mo c 4 g mz 2 .

Thus, we have

fr (Log(IT() — AD)VAS. ()L)dxl—llimfr lo (|T(c)—,1|2+i) V2, ()dA
c 4 9 n _Zm—>oo C 4 g m2 n

and, since each V2f, vanishes outside of the rectangle B,

1 , 1 5
vr(8) = 3 Jim Jim, | 7 {log (|T(()—/1| +W) V2£, ()dA.

7T n—> 00 m— oo

By Lemma (1.2.5), the mapping
1
A1 <log (lT({) —AP+ W)) V2£,(2)

Is continuous and, therefore, is Riemann integrable over B. Thus,

Lrg (log (IT(() A2+ %)) V2f, (1)dA

Slm > (log (IT@ - 217 + mi)> V2, (D),
A (ZHiT)
where the sum is actually finite. Thus,
1 ] 1 5 1 )
vr)(B) = Eﬂ‘; r}llfgo lll_fj)loﬁ Z ¢ <109 <|T(f) —A° + ﬁ)) Ve (D).

Aex(z+iz)
k
Because the decompositions of T and of T are measurable, for each fixed A the mapping

¢~ (zog (Ir@—ar+ mi)>

12



IS measurable. Since the pointwise limit of the sequence of measurable functions is again a
measurable function, the lemma is proved.
Here is the main theorem about decomposition of Brown measure.
Theorem (1.2.10)[1]. Let T € exp(£LY) (M, 7) and write
®

T= j T@Q)dw(?).

Z
Then the Brown measure v of T is given by

vp(B) = f vrey (B) doo(Q) (19)

Z
for every Borel subset B < C.

Proof. By Lemma (1.2.9), the right-hand-side of (19) defines a probability measure on C,
which we will denote by the symbol p. We will show that p satisfies

Jlog*lzl dp(z) < o (20)
C

j loglz — Al dp(z) =log A.(T—2) (A€ ). (21)
C

From the uniqueness property of Brown measure expressed with Equations (1) and (2), this
will imply p = vy.

To prove (20), let f,, be an increasing sequence of simple functions on C, each taking only
finitely many values, that converges pointwise to the function w - log*(w). For each
n, we have

J s apon) = [ [ fuwiavew) da@) (22)
Applying the Monotone Convergence Theorer%, we get
| 10g*1wl dpew) = [ [ tog* (wdureyw) du)
For each ¢, we have ‘
[ 109 (whavseyw) < ze(10g* (T@ID).
Since T € exp(LY) (v, ECc), using Lemma (1.2.8), we have

[ ze(tog*AT@)D) do) <o

This implies (20).

Now fix A € C and € > 0 and let (f;,)n=1 be an increasing sequence of simple Borel
measurable functions on C, each taking only finitely many values, that converges pointwise
to the function w - log(lw — 4| +€). Again we have (22). Using the Monotone
Convergence Theorem and taking n — oo we get

flog(lw —Al+¢€) dp(w) = j j log(lw — 4| + €) dvry(w) dw({).
C 72 7c

Using (20), we see that the left-hand-side above is not+oco Thus, letting e > 0 and using the
Monotone Convergence Theorem, we get

13



j log(lw — A1 + &) dp(w) = f f log(Iw — 2] + € dvre, W) da(Q)
C 4 C

= [ tog 8,7 ©) - 1 d®.

Z
From (17) of Lemma (1.2.8), we get (21).
Definition (1.2.11)[5]. [The Fuglede-kadison determinant]

We denote by M2 the set of operators T € M fulfilling the condition:
t(log™|T|) = foolong(t)dJ‘/ﬂﬂ(t) <
0
For T € M2, the integral
joologthVqﬂ(t) € R U {—o0}.
0

in well-define, and we define the Fuglede-kadison determinant of T,

A(T) € [0,0), by:

A(T) = exp <joolog t d]\/qﬂ(t)).
0

14



Chapter 2
Toeplitz Operators and their Representations

We discuss various examples. In the case of S = C(D) and S = C(D) ® L (0,1)
we characterize all irreducible representations of the resulting Toeplitz operator C*-algebras.
Their Calkin algebras are described and mdex formulas are provided.

Section (2.1): Bergman Space Representation and Action of Toeplitz
Operators with Commutative Algebras Generated by Toeplitz Operators

In the study of Toeplitz operators T, consists in selecting symbol subclasses S of L,
so that the properties of T, with a € S and of the algebra generated by them admit a
reasonable description. To study an algebra generated by Toeplitz operators (rather then just
Toeplitz operators themselves) lies, first, in a possibility to apply more tools, in particular
those coming from the algebraic toolbox. Secondly, the results obtained are applicable not
only for generating Toeplitz operators but for all elements of the algebra.

A fundamental result due to Coburn, describes the structure of the C*-algebra
generated by Toeplitz operators with C (B™)-symbols. This work initiated an extensive study
of algebras generated by Toeplitz operators with symbols from certain predefined classes.
The majority of the results obtained deal with Toeplitz operators that act on the Bergman
space on the unit disk. The multidimensional setting, even the case of the unit ball, is more
difficult as, beyond the class of continuous symbols, the symbol-functions may have more
sophisticated behavior then for the one-dimensional case of the unit disk.

We study algebras generated by Toeplitz operators which act on weighted Bergman
spaces over the complex two-dimensional unit ball B2 c C2. Here the dimensionn = 2 of
the underlying domain is minimal such that the proposed approach is meaningful.

Discussing this lowest dimensional case permits us to present the main ideas in a more
simple and transparent form. However, a similar approach can be applied in the higher
dimensional framework in which some new features are present.

It has been observed that Toeplitz operators, with symbols invariant under the action
of the (maximal Abelian) subgroup T2 of all biholomorphisms of B2, generate a
commutative C*-algebra on any weighted Bergman space A5 (B2). In this case there exists
a unitary operator R; that maps A5 (B2) onto the one-sided sequence space ¢, = ¢,(Z,)
(the direct sum of one-dimensional Hilbert spaces C). For Toeplitz operators T} with
bounded and group invariant symbols a = a(|z|,|z,|), these one-dimensional spaces C
are invariant for the operator R;T2R;. In particular, R, T2R; acts on each of these spaces as
multiplication by a constant operator, and the commutativity result trivially follows.

We consider symbols that are invariant under the action of the subgroup {1} x T = T
of T2. On the one hand replacing T? by a strict subgroup enlarges the class of admissible
symbols but on the other hand it destroys the commutativity property of Toeplitz operators.
At the same time, there still exists the unitary operator U, of the form (7) mapping A3 (B?)
onto the direct sum of the weighted Bergman spaces cflglzﬂﬂ(]])), a, € Z, of holomorphic

L,-functions on the unit disk D.
15



We consider various subclasses of symbols of the form

|z, |z, |
1), bl /—=), d )b | ——=),
e () e (FoE) o

where a € L,(D) and b € L, (0,1). Note that these functions are invariant under the
action of the group {1} x T. Again each space Jlizﬂﬂ(]]))) Is invariant for the operators

UT2U* where T2 is the Toeplitz operator on A2 (B?) with a symbol ¢ of one of the three
types in (1). Moreover precisely, the restrictions act as follows:
UTGU| 42

_ ar +A+1 Arr*
T2 and UTRU"

_ A A
PP y =Yb I,where y} € C.

2+2+1(D

Here Tfﬁ“l denotes the Toeplitz operator with symbol a acting on A2, ;.1 (D).

In summary, the invariance of the symbols under a certain subgroup of biholomorphisms of
the unit ball B2 permits us to diminish the dimension of the problem: the study of the algebra
generated by Toeplitz operators on A5 (B?) with such invariant symbols reduces to the
study of the algebras generated by Toeplitz operators on a countable number of differently
weighted Bergman spaces C’q?zz+)l+1(]D))’ a, € Z, over the unit disk D. Known results on
C*-algebras generated by Toeplitz operators acting on Bergman spaces over the unit disk D
can be successfully applied to describe algebras generated by Toeplitz operators on the two-
dimensional ball B2.

A unitary operator U between A2 (B?) and a countable sum of differently weighted
Bergman spaces over D is defined. Given a {1} x T-invariant symbol ¢ € L., (B?), each
space in this orthogonal decomposition is invariant under the action of UT2U*. Moreover,
this action is described in Corollaries (2.1.3) and (2.1.5).

We devoted to the description of the commutative algebras, both C* and Banach, that
are generated by various subclasses of the above invariant symbols. Among other cases we
show that the commutative C*-algebras in L(A7 (D)) generated by Toeplitz operators

induce commutative subalgebras in £(A%(B?)) of the corresponding type (quasi-elliptic,
quasi-parabolic, quasi-hyperbolic).

We study non-commutative Toeplitz C*-algebras in £(A5(B?)) that originate from
the construction. The first algebra corresponds to the classical Toeplitz C*-algebra and is
generated by operators {T2 : ¢(z,,2,) = a(z;)wherea € C(D)}. The second C*-algebra
under consideration is larger: it is generated by elements from the first algebra and Toeplitz
operators with the componentwise radial symbols b described in (1).

We give a complete list of irreducible representations of both algebras. Different from
the case of the classical Toeplitz algebra over the unit disk or ball, an additional series of
irreducible representations arise via a quantization effect. This effect is based on the
appearance of weighted Bergman spaces with weight parameter tending to infinity in the

16



orthogonal sum decomposition. An explicit expression of these representations involves
limits of the Berezin transforms for operators on each Bergman space A; (D) (as a weight

parameter tends to infinity) of the above direct sum decomposition of A3 (B?).

Finally, for both C*-algebras we give explicit direct sum expressions for their elements and
characterize their Fredholmness. It is shown that Fredholm operators in the first algebra
always have index zero; in case of the second algebra we provide an index formula.

We simultaneously use differently weighted Bergman spaces both on the unit ball B2
and the unit disk D, as well as various objects (functions, operators, etc) that correspond to
these two different settings (unit ball BZ and unit disk D). To distinguish them, we will write
in bold the objects that correspond to the unit ball setting.

Recall that, given a weight parameter A € (—1,), the weighted Bergman space
A3 (B?) is the closed subspace of L, (B2, dv,) which consists of functions that are complex
analytic in B2 . Here the standard weighted measure dv; is given by

ra+ 3)

W) = Zra T D

(1 = |z1)* dv(2),

where z = (z4,2z,) € B? and dv denotes the Lebesgue volume form on C? = R*
PutZ, := {0,1,2,- - - } and recall that the normalized monomials

._ I'(la]+ 2 + 3) -z
e (@ @) = e O a, + DI A+ 3) & 72 () € 13

form an orthonormal basis in A3 (B?).

We denote by B; the orthogonal (Bergman) projection from L, (B?,dv;) onto the
Bergman space A3 (B2). The Toeplitz operator T2 with a symbol a € Ly (B?) acts
on A3 (B?) by

Tif = Ba(af).

In what follows we will consider as well the weighted Bergman spaces A;(ID) on the unit
disk and Toeplitz operators acting on them. Recall that, given a weight parameter u €
(—1,),A;(D) is the closed subspace of L,(ID,dn,) consisting of complex analytic
functions in D.

Here the standard weighted measure dn,, is given by

u+1

dn,(w) == (1 — |w|»)* dxdy, w=x + iy € D.

Recall that the normalized monomials

e”(n):z\/ [n+ p+ 2) n nezZ, (2)

Tn+ DI (u+2)" "

form an orthonormal basis in A; (D).
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We will denote by (-, ), gz and (-, - ), p the inner products in A3(B?*) and
Jlﬁ(]]))), respectively. The corresponding norms will be writtenas || - |[; gz and || - [, p.

We denote by B, the orthogonal (Bergman) projection from L,(ID, dn,) onto the Bergman
space A; (D). Again, given a € L, (D), the Toeplitz operator T with symbol a acts on
A/ (D) by the formula

T, ¢ = B,(ay).
For each a, € Z, we denote by H,, the following (closed) subspace of Az (B?)
H,, = span{ey(ay,a;): a; € Z,,a; € Z,is fixed.

Then we can represent A3 (B2) as a countable orthogonal sum:

A2®) = (P He, . ©)

ar EZ+

Observe that

i) - \/ (F(lal + A + 3)) g

I'(a, + DI(a, + DI(A + 3)

I'(a; + DI(a, + 1+3) I'(a, + DI + 3) 2

_j (F(lal + 2 + 3)) Zaljr(a2+z+3) .

That is, the orthonormal basis in H,, has the form
{ea2+/‘t+1(“1) iz +1(“2)}a1ez+ )
and thus we have
Ho, =1{f(21) - [ea+1(a2)1(22): f € Ag, 4241 (D)} (4)

According to the direct sum decomposition (3) each function f € A5(B?) admits the
unique representation:

Fonz) = ) fa () fern(@)](2)

ar EZ+

where f,, € cﬂazﬂﬂ(]]))) foralla, € Z,,

and

2
g 0 = Yl o ®

a2€Z+

18



We introduce the mappingw : D X D - B2 by w({1,{,) := ({,+/1— |{112E,). Let the
unitary operator

ua’z : H“z - c’qczxz +A+1(1D)

be defined as

(e, ) (20): = j (b0 w)(G0 )
D

az A+ 2 -
— &) ’a2(+—)t-l?2 [ex(a2)]({2)dn;(32). (6)

By (4) each element ¢ € H,, has the form

A+ 2
b(22) = f(2) - [ (@)](2) = f(z) - jaz e CICAIICS!
f € Az iae1(D),
thus
a; A 2
()@ = | 1@ - 1l j“z o D) ()

| A+ 2
X (1 = [¢]*)72 /m[ez(“z)](fz)dm(fz)

= £ JD|[€)L(“2)](52)|2‘17])1((2) = F(%).

Introduce now the Hilbert space
H = @ C’qc2752+/1+1(]D)
a2€Z+
and the unitary operator
U= u, : @) = P Hay, >3 = P A2, 10D @)
a2€Z+ (azeZ+) a2€Z+

acting componentwise according to the direct sum decomposition. We summarize the above
observations in the following proposition.

Proposition (2.1.1)[2]. The unitary operator U, where each u,, is given by (6), gives an
iIsometric isomorphism between the spaces in (7).

Our next aim is to characterize Toeplitz operators which (after conjugation with U)
leave all spaces H,, in the decomposition (3) invariant. Hence such operators can expressed
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as a direct sum of operators acting componentwise on H'. We describe the componentwise
action.

In what follows we will express points z = (z;,z,) € B? in polar coordinates: z, =
rel®  k = 1,2.Givenafunction c € Lo (D X (0,1)), we consider the symbol

c(zl,r—22> € Lo(B?) (®)

and the corresponding Toeplitz operator T2 acting on AZ(B?). For any pair of multi-
indices a, B € Z2 we calculate the corresponding matrix element of

T : (T ex(@), e2(B)); g2

B I'(lal+ A2 + 3) rdpgl+ A2 + 3)
- I'(a; + DIl(a, + DI+ 3)TB, + DB, + DrA + 3)

aq
X {czy* z; 'Zfl 52)/1,1332

B 1 I'(lal]+ 2 + 3) r{qpel+ 1 + 3)
T +3) | I(ay + DI(a, + 1) I'(B; + DI(B, + 1)

ra+3) crotBr (@2 tB2) Li(a1—F1)8; ,i(az—F2)6;
— 2
ﬂZF(/l + 1) B2
X (1 — r)*dv(2)

1 j I'(a| + 2 +3)  T(B| + 1 + 3)

mlr(A+ 1) ([I'(ey + DI(ap, + DI(B, + DI(B, + 1)

2m 2m
j .[ .[ a1+ﬁ’1+1 a2+32+1
T(B2)

x (1 — r2)* ell@=Bbpi(@2=F2)92 gy, dr,d6,do,,
where the domain of the first integration is given by
t(B%):={r = (r,1n) € R:: ¥ + 1} < 1}

The integral over 6, vanishes whenever a, # B, andisequalsto 2w if a, = [,. That is,
each subspace H,, is invariant for the Toeplitz operator T2 . In the case of B, = a, we
have

(T? ex(a), €2(8)) ; g2

B 2 F'(le| + 2+ 3)rqp| + 1 + 3)
(A + DIl(a, + 1) I'(e; + DI, + 1)

21T
j f a1+[)’1+1 7”22@2'{‘1 ( _ ,r,Z )/1 ei(al—ﬁl)gl dT'ldT'zdel-
T(B2)

Changing variablestor; = s;,7, =1 — ss, gives
20



(Tt e (a), e, (B))s w2

B 2 F(al+ 2 + 3)r|pl+ 2 + 3)
T al'(A+ Dl(a, + 1) F(a; + DIB, + 1)

1 f2m [ el
X f f U c(s1e'%1,s;) 322a2+1 (1 — s3)* dSZ] Sfﬁﬁl“ (1
o Jo 0

B 2 F(al+ 2 + 3)r(pl+ 2 + 3)
T al'(A+ DI(a, + 1) F(a; + DIB, + 1)

1
xf U c(z1,8,)5: 2" (1 — s2)*ds,
p LJo
1

Zf1Z—131 (1— |21|2)a2+/1+1dv(zl)

B F(al+ 2+ 3)rJpl+ 2 + 3) 1
T+ DI(a, + 1) I'(e; + DI, + 1) a, + A + 2
a, g, %2 T A+ 2

1
xj U c(zl,\/s_z) S92 (1 — sy)* dszlz1 Z (1
D [Jo

T
- |Z1|2)0£2+)L+1 dv(z,)

_ 1 F'(lal+ A + 3)r{pl+ 2 + 3) 1
T+ Dr(a, + 1) I'(a; + DB, + 1) a, + A + 2

I'(ay + DI(ay + A + 3B + DI(a, + 1 + 3)
I'(lal+ A + 3) TABI+ 2 + 3)

X

1
j C(Zl,\/S—Z)SSZ (1 - 52)/1 dSZ
0

X ea2+l+1(“1) »€q, +2+1(B)) ay+A+1,D

= <C~a2 €a, +a+1(a), €a2+/1+1(.31)>a2+,1+1,u»

_ (az+1+1)
- <Tca22 ea2+/1+1(a1)» ea2+/1+1(ﬁl)>a2+)l+1,]])) ,

where
'a, + 1 + 2)
I'a, + DIr(A + 1)

Jl c(zl,\/s_z)sgz(l — S,)Ads,. (9)
0

We summarize the above calculation in the following lemma.

6052 (Zl) =

Lemma (2.1.2)[2]. Letc € Lo(D X (0,1)). Consider the Toeplitz operator T2 acting on
A% (B?) and having the symbol

c(z,

With a, B € Z32 we have:



(Tley(a), ex(B)) gz =
0, if ay # B,
a2+l+1 . _
(Tfaz ea2+l+1(a1)'ea2+/1+1(.31))a2+a+1,]])>»lf a, = B
where the function ¢,,(z,) is given in (9).

Corollary (2.1.3)[2]. Under the assumptions of the previous lemma, each subspace
Hg,, a, € Z,, is invariant for the operator T2, and its action on H,, is as follows

(T2 f el (z1,22) = (T2 F) ()leaa (@2)](z,) where f € A2, 5,4(D).
Moreover, with the operator U given in (7) one has:

UTC), U* — @ Tg;+2.+1 .

azeZ+
Remark (2.1.4)[2]. Let T* be a bounded operator on A2 (B?) which leaves all subspaces
H,,, a, € Z, invariant. Then there exists a sequence of bounded operators {T “2”“}0(2 €

L., where each T “2*4*1 acts on A%, 4, (D), and

[T)l f e,1+1](21,22) = (T “2+“1f)(21)[e,1+1(a2)](zz),Where f € C’qzaz+/’l+1(]D)-
Via the unitary operator U in (7) one has

UTAU* = @ T @2+A+1 (10)

A €Zy
In what follows we will abbreviate (10) by

T/l — @ T a,+A+1

a2€Z+
identifying thus the operator T4 with its direct sum representation.

In the next corollary we collect some symbols classes that induce Toeplitz operators on
A3 (B?) leaving the spaces H,, a, € Z, invariant.

Corollary (2.1.5)[2]. Leta € L,(D)and b € L,(0,1) and introduce the symbols

T2 T2
a(zy), b( > , and b( > (11D)
' J1—1f J1—1f
The corresponding Toeplitz operators T2, T2 and T7, acting on A2(B?) leave each
subspace H,,, @, € Z, invariant and their action on H,, is as follows

[T2 ferii](z1,22) = T2 F)(z0)[er +1(a)](22),
THH,, = vi(a)l,

[T2, fer](z1,22) = vi(a) (T2 ) (20)[er +1(a)](22),
where f € A% 13,1 (D) and

I'(a, + 1 + 2) 1
I(a, + DI + 1) J,
22

v (az) = b(J52)s2(1 — s;)Ads,.



Corollary (2.1.6)[2]. With the notation of Corollary (2.1.5) the operators T} and T2
commulte,

Tap = Td Ty = Ty T4,
and one has the identification:

A
Tay = @ vi(a)T, "

as EZ+

In the following we restrict our attention to generating symbols of the form (11). The results
suggest the following recipe.

We select a subclass S of L, (ID) such that the algebra (or C*-algebra) generated by Toeplitz
operators T, with a € S, acting on each weighted Bergman space A3 (D),A € (—1, ),
admits a reasonable description, and denote by 7 A(S,L.) the unital Banach algebra
generated by all Toeplitz operators T/ and T, acting on A2 (B?) with symbols

T2
J1—7f

Then the algebra 7, (S, L) is generated by two of its subalgebras sharing the same
identity: the C*-algebra T; (Loo) generated by all Toeplitz operators T;! and the unital Banach
algebra 7;(S) generated by all Toeplitz operators T} where a € S. Note that 73(S) isa C*-
algebra if S is closed under complex conjugation. The C*-algebra 7, (L) is isomorphic to
an algebra of sequences. This isomorphism is given by the following assignment of
generators of 73 (L)

a =a(z;)€E S and b< ) where b € L,(0,1).

i e yf = {yg(az)}%%. (12)
The corresponding sequence algebra is known to coincide with the algebra SO(Z,),
introduced by R. Schmidt and consisting of all £.,-sequences y that satisfy the condition

flinll lv(G) — v(k)| = 0.
. k+1 .
We may also interpret SO(Z,.) as the C*-algebra of bounded functions y : Z, — C that are

uniformly continuous with respect to the logarithmic metric

p(j, k)= |log(G + 1) —log(k + 1)|, Jj k €Z,.
More details on the isomorphism (12) in both the weighted and unweighted situation can be
found.

The algebra 7, (S) splits, according to the decomposition (3), into the direct sum of
the algebras T,,_,1.1(S) generated by all Toeplitz operators T,"2****,a € S, acting on the
weighted Bergman spaces 042(12+A+1(D)» a, € Z,. This is the place where the already
known
description of the algebras T;,, 341 (S) enters to the study.

Clearly, 75(S, L) will be a commutative C*-algebra if and only if S © L, (D) is
chosen such that all algebras 7;,,2+1(S) of operators acting on Aza2 +141(D) are C* and
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commutative.

The C*-algebras generated by Toeplitz operators which are commutative on each weighted
Bergman space A2 (D) and whose generating symbols contain the so-called 3-rich- symbols
are completely classified. Up to a unitary equivalence via Maobius transformations there are
only three model classes of such algebras: elliptic case — Toeplitz operators on the disk D
with radial symbols; parabolic case - Toeplitz operators on the upper-half plane IT with
symbols depending only on the imaginary part yof z = x + iy € II; and hyperbolic
case - Toeplitz operators on the upper half-plane IT with symbols depending only on the
polar angle 8 of z = |z|e® € II.

We explore now these three one-dimensional cases and show that they generate subalgebras
of the known commutative C*-algebras for the two-dimensional quasi-elliptic,
quasiparabolic, and quasi-hyperbolic cases, respectively.

Example (2.1.7)[2]. Elliptic case put S := {a = a(r;):a € L,(0,1)}. Then the C*-
algebra 7;,,241(5) is generated by Toeplitz operators Ta"‘ZJ”1+1 that are diagonal with

respect to the standard monomial basis (2) in cﬂzaz +1+1 (D). More precisely, Ta‘J‘ZJ”'l+1 acts
as follows:

ax+A+1
Ta ’ ea2+/1+1(a1)

Il +a; + 1+ 3)
CT(ay + DI(ay, + 4+ 2)
1

x [Calym)sitan = s dsy egynia(@)
0

Consider now a separately radial symbol

c(r, 1) = a(r) b(ﬁ)

of the form (11). Then forall « = (a,, a,) € Z% and with r = (ry,r,)we have

A+1
Tcl e (a) = T§b9a2+z+1(“1)‘ ers1(az) = Téaﬁ ) ea2+/1+1(0‘1)' Tél ey+1(az)
'a, + a, + 1 + 3)

“T(a, + Di(a, + 1 + 2)
1

X.f a(\/5_1)531(1 — 5,)% M s, ay+a+1(®1)
0

I'(a, + 1 + 2)r ?* ,
“ + DIG + D fo b(/52)s2" (1 = 520" ds; e (@2)
. I'(lal+ A + 3)

T'(a; + DI (a, + DI'GA + 1)

xf c(Jrr)r®(1 — [r|H*drdr, - ey(a).
0<|r|2«1

The last equality follows by a change of variables: s; = 74,5, = (1 - ;)" 1r,. Note
that this result recovers the formula for y, ; (a) in the quasi-elliptic case.
Example (2.1.8)[2]. Parabolic case
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This case corresponds to the algebra generated by Toeplitz operators on the weighted
Bergman space A5(I1) over the upper half-plane IT whose symbols depend only
onImw,w € II.Thatis,inthiscase S; = {a = a(Im):a € L,(R,)}. The C*-algebra
T,(Sp) is isomorphic to a certain subalgebra of C, (IR, )and this isomorphism is generated
by the following mapping:

_ A,—t
T3 e Vi) = mﬂ)] ) tretar, ¢ e,
The standard unitary operator defined by the MObIUS transformation
1 -7
wo=ig e (13)

of the unit disk I onto the upper half-plane IT maps A2 (IT) onto A% (ID) and provides the
unitary equivalence of the algebras 7;(S;) and 7, (Sp), where

Sp = la = a Sl : a € Loo(Ry),{ €D
’ 1+ +{+ (]2 mRT |
Then, by Corollary (2.1.6), the algebra 7,(Sp.L)is isomorphic to a subalgebra of

C, (R, x Z.) with the following assignment of its generators

Th = TiTE & vy (@) - v (ay) (14)
_ 1 i) L@ At -t gy IF'(a, +1+2)
I'(a,+ A2 + 2) 2§ F'(a,+D(A+1)

jl b(\/s_z)sgz(l — S,)Ads,,
0

where (§,a,) € R, X Z,.

Introduce the two-dimensional Siegel domain D, = {(w,w,) €
C%; Imwy - |wy]|? > 01}. The Cayley transformw = w(z), where
w(z) = (W (2),w (z)) ( —n i 22 ) :B%2 - D (15)
! 2 142z’ 1 +z,) 2

biholomorphically maps the unit ball B2 onto the Siegel domain D,. The unitary operator
defined by the inverse to the Cayley transform establishes the unitary equivalence between
the algebra 7, (Sp, L) and the corresponding Toeplitz operator algebra on D,. Under this
unitary equivalence each generator T2 € T; (Sp, Lo,) is mapped to the Toeplitz operator
on D, with symbol

|W2|

W) ) (W1:W2) € DZ) (16)

which in turn is mapped to its “spectral function” yZ under the isomorphic description of
the C* —algebra generated by Toeplitz operators as a function subalgebra of C, (R, X Z,).

c(wy,wy) = a(Imwy)b (
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In our notation the function y2 has the form
ar+A+2
Ve () = )
¢ I'(a, + HDr(a + 1)

x e (mwy + wol, Tl Dwgl2mw,)?
R

+
x e~ 28Umwitiwalgim w, d|w,|

= 1 C<v+r) I r®2pte=W+n) dydy
F(ay + DI + D Sy “\ 728 ) |28 '

where v = Imw; and r = |w,|. Replacing now c by its expression (16) and making a
change of variablest = v + r,s, = vT? gives

1 (v+r) r
A = as A —(U+T‘)
1

“T(ay + DI(A + 1) J j 25 b (s2)t%2 s;2(1 — s)*tte " edtds,

AL I'(a,+ 21 +2) 1 «,
F(a2+/1+2)j 25)t Nt e Dra D, PWs)s

2

— s)hds, = pENO - ri@), () €R, XL
A comparison with (14) shows that the algebra 73 (Sp, L) iS just unitary equivalent to a
subalgebra of the C*-algebra of the two-dimensional quasi-parabolic case.

Example (2.1.9)[2]. Hyperbolic case

This case corresponds to the algebra generated by Toeplitz operators on the weighted

Bergman  space A5 (IT) over the upper half-plane IT whose symbols depend only on the
angular variable 8 = argw,w € II, i.e.

Sqp ={a = a(0):a € L,(0,m)}.
The C*-algebra 7; (Sy) is isomorphic to a certain subalgebra of C,(R) and this

isomorphism is generated by the following mapping (see [20], for details):
-1

Vs s
T} vy (§) = <J e~2% sint 0 d@) f a(6) e=%%%sin* 6 do, §ER
0 0

We repeat now all the steps of the previous parabolic case. The Mobius transformation (13)
and the corresponding unitary operator from A2 (IT) onto A% (D) provide the description of
the corresponding class Sy, of symbols in D and the unitary equivalence of the algebras
T, (Sp) and T7;(Sp). As a consequence of Corollary (2.1.6), the algebra 7,(Sp, L) IS
isomorphic to a subalgebra of C, (R x Z.) with the following assignment of its generators
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A+1
T = TATE & v - v (@) 1

Vs Vs
= (f e 289 (sin 9)*2tA+1 d9> f a(0)e %9 (sin 9)*2*tA*1 4o
0 0
I'(a, + 2 + 2 1
(@ ) b(y/s2)s,2(1 — sy)* ds,

X
I(a, + Dr(2 + 1) J,

where (¢,a,) € R X Z,. Then the unitary operator, defined by the inverse to the Cayley

transform (15), establishes the unitary equivalence between the algebra 7; (Sp, L) and the

corresponding Toeplitz operator algebra on D,. Under this unitary equivalence each

generator T2 € T3(Sp,Lo,) is mapped to the Toeplitz operator on D, with symbol

a(argw;)b ( [we| >, (wy,w,) € D,. (17)

J Imw,

Such symbols, for all a € L,(0,7) and b € L,(0,1), are invariant under the action
1

R, xXT 3 (r,t):(w,w,) € D, » (rwl,ﬁth) € D,
of the quasi-hyperbolic group R, X T of biholomorphisms of D,. Thus the resulting C*-
algebra generated by Toeplitz operators with symbols of the form (17) is a subalgebra of the
C*-algebra of the two-dimensional quasi-hyperbolic case.

Example (2.1.10)[2]. More commutative C*-algebras

All others so far known algebras 7, that are commutative for each weighted Bergman space
A3(B?), 2 € (—1,), were Banach (not C*). Each of them was generated by two of its
subalgebras: the C*-algebra generated by Toeplitz operators with bounded radial symbols
(which is isomorphic to SO(Z..)) and a unital Banach algebra generated by a single Toeplitz
operator with a so-called (generalized) quasi-homogeneous symbol.

Now we can unhide many others, previously unexpected, similarly constructed
algebras that are both C* and commutative for each weighted Bergman space A2 (B2),1 €
(—1, ). All of them are generated by the C*-algebra 7; (L., ), being isomorphic to SO(Z..),
and the unital C*-algebra 7; (a) generated by a single Toeplitz operator T, where a(z,) can
be any real valued L,-functionon D .

Each such algebra admits the following description. We start with a fixed real valued L-
functiona = a(z;) on D, and denote by sp T~ the spectrum of the Toeplitz operator T}
acting onA;(D). Note that sp T!' may depend on the weight parameter u. Put

My, = U sp T;2+A+1’

€Ly
where [] denotes the disjoint union. Then the C*-algebra 7;(a, L) is isomorphic to a
subalgebra of C, (MZ+) under the following assignment of the generators of 7;(a, L):
ra, + 1 + 2) 1 o
b 2(1 = sp)*ds,,
X, +2+1 I'(a, + DIA + 1) . (\/5—2) Sy ( sp)" ds; Xa,+1+1

+A+1
€ sp sz ,

A
Tab =

where b € L (0,1).
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We note that, for any finite subset N of Z., the restriction of the subalgebra of
Cp (M, ), which is isomorphic to the C*-algebra 7 (a, Le,), onto My = [ ey sp To>
coincides with C(My) = ®gzen C(sp T2,

If a fixed symbol a = a(z,) € L, (D) is not real-valued, then the unital algebra 7; (a)
generated by the Toeplitz operator T is Banach, and the description of the algebra 73 (a, Lo,)
of Example (2.1.10) needs a certain adjustment.

The spectrum spy TY of the Toeplitz operator T, as an element of the unital algebra
7, (a) (generated by T, is a polynomially convex compact subset of C the set C spy T is
connected. Recall that under these conditions Mergelyan’s theorem states that any
continuous complex function on K = spy TX which is holomorphic in the interior of K can
be uniformly approximated by holomorphic polynomials restricted to K.

Hence, for each weight parameter y, the algebra J;,(a) is isomorphic to cﬂ(spf T(f)
the algebra of all functions that are continuous on spy T and analytic in the interior of
spy TL'. Moreover, this isomorphism is generated by the assignment

T » [ww w] € A(spr TY).
Consider again the set

Mz, = ]_[ Spr TgZMH-

a2€Z+
Then the Banach algebra 7;(a, L) is isomorphic to a subalgebra of Cb(MZ+) under the
following assignment of the generators of 7;(a, Lo, ):

IF'a, + 1 + 2) 1
Tap = Wars1t1 T Drar+ D J, DWW (A = st dse

Wa,+2+1 € SPTT;ZZMH» (18)
whereb € L, (0,1).

For any finite subset N of Z,, the restriction of the subalgebra of C,(My, ), which is

Ta

isomorphic to the algebra 7;(a, L), onto My = [lg,en SP7 coincides with the

algebra [[4,en A(spr T, :
Example (2.1.11)[2]. Case of a(z;) = z;

In this case T} is just the multiplication operator M,_, the so-called Bergman shift, and

spr TY =D independently on the weight parameter u € (—1,0). This implies that
My, =D X Z,, and formula (18) takes the form

Tﬁl.b = V)ZLrb = V/;1~b(W; a,)
B Fla, + 1 + 2) 1
YTl + DI + D J,

b(\/s_z)szaz(l — s,)*ds,,(w,a,) €D X Z,.
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Note that each function y’}l b € Ly(0,1), as well as each element y# of the function
algebra generated by them obey the following properties

- for each fixed a, € Z.:y*(-,a,) € A(D),
- for each fixed w € D:y*(w,") € SO(Z,).

We note that, apart from Tz’ll, the Banach algebra 7;(z;) contains more Toeplitz operators.
In fact, for each a(z;) € A(D), the Toeplitz operator T(f(Zl) = M, belongs to 7;(z,).
Thatis, 73(z1, L) = T3(S, Ls), With § = A(D).

Example (2.1.12)[2]. Case of S = H* (D)

A maximal extension of the algebra constructed in the previous example is achieved by the
replacement of S = A (D) by the maximally ample class H* (D) of all bounded analytic
functions in .

There are many other admissible sets S related to bounded analytic functions. Actually each
(closed) subalgebra of H*(ID) can serve as a class S. We give here just one example of such
an algebra having important connections with other function classes that often appear in the
operator theory in function spaces.

Example (2.1.13)[2]. Case of S = COP. We recall first the notion of Gleason parts. Let
M(H®) denote the compact set of maximal ideals of the algebra H* = H®(ID). On
M(H*) consider the pseudohyperbolic distance p(my,m,) = sup{|f(m,)|:f €
Hoo; ”f”oo = 1rf(m1) = 0}, mq, My € M(Hoo)

Clearly, p(my,m,) < 1 for allm;,m, and one obtains an equivalence relation on
M(H®) by

m; ~ m,:< p(m,m,) < L

The equivalence classes P(m) for m € M(H®) are called Gleason parts and form a
partition of M(H*). Each Gleason part P(m),m € M(H®) is either an analytic disc (i.e.
the range of a certain analytic map L,, : D - M(H™))or a single point set {m}.
Recall then that COP = COP(DD) is the algebra of all bounded functions analytic in
D which are constant on Gleason parts P(m) for all m € M(H*)\D.
It is known that COP = B, N H®, where B, is the little Bloch space, which consists of
all functions f analytic in D such that |/’ (w)|(1 — |w|?) » 0as |w| » 1 .ltisknown as
well that COP is an “analytic” part of the class Q, i.e., COP = Q n H™. Here Q is the
maximal C*-subalgebra of L., (ID) such that the semicommutators of Toeplitz operators with
symbols from this algebra are compact.

For each subset S ¢ H*(ID), the algebra 7;(S, L) is isomorphic to a subalgebra of
Cp(D % Z,). The isomorphism is generated by the following mapping: given f€ S and
b € L,(0,1),

Tf/l-b = V/}-b = V%-b(W; a;)

(a, + 1+ 2) (!
F(a, + D@2 + 1) J,

= f(w) b(\/s_z)s;xz(l — s,)*ds,,(w,a,) €D X Z,.
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In the case of S = COP each such function y},b, as well as each element y# of the function
algebra generated by them, obeys the following properties

- for each fixed a, € Z.:y*(-,a,) € COP,
- for each fixed w € D: y*(w,) € SO(Z.,).
In particular, sp Tf’l,b = clos{Range y}.b}.
Section (2.2): Non-Commutative C*-Algebras

The characterization of non-commutative C*-algebras consists in the description of its
irreducible representations (up to unitary equivalence). If a unital operator C*-algebra R
contains the ideal & of compact operators, then its identical representation is irreducible
and all other irreducible representations are obtained by composing the natural projection
onto the Calkin algebra ® = R/K with an irreducible representation of R. If the Calkin
algebra is commutative, then the non-identical irreducible representations of R are one-
dimensional and parametrized by the points of the compact set of maximal ideals of R.

Example (2.2.1)[2]. Case of S = C(DD). This is the C*-extension of the commutative
Banach algebra in Example (2.1.11). The C*-algebra T, +141(C(D)), of operators acting

on the weighted Bergman space Azaﬁ,1+1 (D), is generated by all Toeplitz operators

T2**1 with symbols @ € €(D). It is known, that each operator T from T, ., (C(D))

can be represented as a compact perturbation of an initial generator, i.e.,T = T, + K for
somea € C(D)and K € X.

We give a more detailed description of the algebra 7; (C (D)) generated by all Toeplitz
operators T, with a = a(z;) € C(D), acting on the Bergman space A%(B?). By
Corollary (2.1.6) operators T* € T;(C (D)) admit a decomposition into a countable direct

sum
T/l — ® Ta2+/1+1 ) (19)

O, €Zy
where, for each a, € Z,, the operator T “2*4*1 pelongs to the algebra Ty 4241 (C(D)).
Then (5), together with standard arguments, implies the following lemma.
LLemma (2.2.2)[2]. For each operator T* € 7;(C (D)),

IT*| = sup [T et
a2€Z+
Corollary (2.2.3)[2]. For initial generators T2, with a = a(z;) € C(D), of the algebra
T; (€(D))we have that || T2|| = sup |a(z)| = llall.. Denote by C., (D) the dense subset
z1€ED

in C(D) which consists of all smooth functions whose derivatives admit a continuous
extension to the boundary S* = 9dD. Let D; = D,;(C*(D))be the dense subalgebra of
7;(C (D)) that consists of finite sums of finite products of Toeplitz operators with symbols
from C* (D), i.e. elements T* € D, are of the form
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n Mg
A A S ¥an
=>4, e € co@®.
k=1 ji=1
Lemma (2.2.4)[2]. Each element T* € D,, in the direct sum representation (19), is of the

form
= P+ ke,

24/} EZ+

where a € C®(DD), each K% € L(AZQZMH(]D))) is compact, and K*2 —» 0 as a, — oo.
Proof. It is sufficient to prove the lemma for finite products of m Toeplitz operators and by
induction we can assume that m = 2. Thus, given a,b € C*(D), we consider

+A+1 +A+1
TAT) = @Ta"‘z Tt

ar EZ+

; 1 1 1 .
For each a, € Z,, we write T, 217224t = 7@t 4 par \where K92 is the

semicommutator of T,"2*** and T/2***! e, K@ = T, %2170+l _p G¥A+l Thig
operator is known to be compact. Finally, implies that K*2 — 0 asa, — oo,

Now we are ready to prove:

Theorem (2.2.5)[2]. Each operator T* € T3(C (D)), in the direct sum decomposition (19),
admits the following representation

TA = @(Taa2+l+1 + Kaz), (20)

_ a2€Z+
where a € C(D), each K% is compact, and K% —- 0 as a, — oo
Proof. Given T* € 7;(C (D)), there exists a fundamental sequence {T ’”‘}kEN of elements

from D, that converges in norm to T*. By the previous lemma, each T ** has the form
Ak — A+1,k : A+1k _ a,+A+1 a
T — @ T a,+A+ , Wlth T ar+A+ — Takz + Kk 2’

a2€Z+
where @, € C*(D) for each k € N and K,? is compact with K, - 0asa, — oo, for
fixed k . By Lemma (2.2.2), each sequence {T “2+’1+1"‘}REN is also fundamental in
L(A%,1241(D)).
In particular, for any € > 0 there exists N, € N such that for all n, m > N, we have
the following estimate (uniform in a,):

+A+in +A+1, An _ mA £
Jressioin — pasin| < fran - pan| < £

Observe now that T ®z*A+1n _ T az+i+im — T(Z‘iffl;; + (K, — K,%*). For any fixed

n,m > N, we pass to the limit as a, — oo. Then, taking into account Corollary (2.2.3)
together with the observation that K, and K,,? both tend to 0 as a, — oo, we have

: ar+A+1n _ g ar+A+iml|| — 13 052"‘/1"'1” — _ f
alzlgloo”T ’ T ” _alzlinoo ||T(an_am) - ”an am”oo SZ

Hence the function sequence {a;},ey IS fundamental, and thus converges to some a €
C(D). Then, || T4+t — T @24+ || < |lax — allo, implies that, for each a,, the sequence

(247 a
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{Té“ﬁ“”} converges in norm to the operator T,%2****.

keEN
sequence of compact operators {K

Thus, for each a,, the
, being the difference of two convergent
keN
sequences {T %2*4+1k}  and { “2”“} , converges in norm to a compact operator
keN G keN
K%,
This implies the desired representation

T/l — @ Ta2+).+1 — @ Taa2+/1+1 + Kaz).

OLZEZ.,. a2€Z+
It remains to prove that K2 — 0as a, — oo. To do this we use the standard %

trick. Using the representation

ar+A+1 a,+1+1,k az+A+1 a, _
T %2 — T* —T(aa) + K% K, *,

a2+/1+1}

we obtain:

”Kazll < ||Ta2+/1+1 _ Ta2+/1+1.k|| + |
Now, given any € > 0, there exists k € N such that
|T @22+l — T aztAtik|| < ||ITA — T Ak|| <§ and ||Taz+/1+1|| < lla = alle, <

Ta2+/1+1| n ”Kkazn .

(a—ag)

(a—ag)

§ , both uniformly in a,. With this fixed k and 2 , there exists N, € N such that for all
ay > Nowe have that [|K;?|| < = . The above implies that for all @, > N,

&
K| < 3= =
Ik < 35 = ¢

Further information on the structure of the algebra 7; (C (D)) is given by the
following two lemmas.
LLemma (2.2.6)[2]. The representation of T* € 7;(C (D)) in the form (20) is unique.
Proof. Assume that

T = @(Taj‘2”+1 +K2) = @(Tajﬁ“l +K;2),

. a2€Z+ a2€Z+
where a; € C(DD), each K;** is compact, and K,> — 0 asa, — o, forj = 1,2.Then

T2 L (K% — K,2) =0, foreacha, €Z,, (21)

a;—a;

and thus
= lim |20 + k2 - k)

a,€Z 4+
= |la; — azlle -
Thus a; = a,, and (21) implies that K,"> = K, forall a, € Z,.
For fixed a, € Z,, we denote by T, ., 1+1(C(D)) the set (algebra) of all operators
T AL T AL 4 K% that appear on the “a, level” in the representation (20) of
the operators T* € 73 (C(D)).

Lemma (2.2.7)[2]. For a, € Z,, the algebra T, .1 (C(D)) coincides with algebra

Ty, +2+1(C(D)), which is generated by all Toeplitz operators T,”>****, with a € C(D).
Proof. From the decomposition T} = @q, ¢z, T,>***" we observe that T, 241 (C(D))
contains all Toeplitz operators T,2**** with a € C(D). Then

. a,+A+1
| = Jim ||z
azeZ
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w

w, Wm> a,+A+1,D = (W ’ Wm) a,+A+1,D
'n+2)I'(a, + 1+ 3)

= Tm+a, +1+4)
0, otherwise,

, ifm=n+ 1,

ar+A+1
(T * w,w™) a+A+1,D = (W™, wm*) ar+A+1,D

'n+ DIl (a, + 1+ 3)
= Im+a, + 1+ 3)
0, otherwise,

, ifm=n-1,

2
(TszTwa2+ lwn ,w) a,+A+1,D — (whtl, wmtt) a,+A+1,D
F'n+2)I'(a, + 1+ 3)
= Tm+a, +1+4)
0, otherwise,

, ifm = n,

which implies that the operators from 1a2+,1+1(C(]]3))) do not have common non-trivial
invariant subspaces. Therefore the identical representation of the C*-algebra
T, +2+1(C(D))is irreducible.

The algebra SIaZMH(C(]E)) obviously contains non-trivial compact operators, and
thus by the above it contains the full ideal of compact operators. That is, Sza2+,—l+1(C(]]_)))

contains all operators of the form TOL“ZJ”1+1 + K, wherea € C(D) and K is compact, and
thus coincides with 7,4, (C(D)).

Next, we classify the irreducible representations of 7;(C(D)). Since each subspace in the
direct sum decomposition (3) is invariant under the action of operators in 7}1((](1]3))), each
irreducible representation of the algebra 73 (€ (D)) is formed by the restriction of elements
in 7}1(6(]]7))) onto an invariant subspace followed (according to the result of Lemma (2.2.7))
by an irreducible representation of the corresponding algebra T, . ,1+1(C(]]7)))). All
irreducible representations of the latter algebra are well known. They consist of the infinite

dimensional identical representation 1 and the one-dimensional representations m,,
parameterized by pointst € S' = 0. More precisely, 7, has the form

y Ta2+,1+1(C(]]3) )) 3 Taa2+/1+1 + K- a(t) eC.
We obtain the following (not yet complete) list of irreducible representations of the C*-
algebra 73 (C(D)):

- a countable family of infinite dimensional representations «,, induced by the identical
representations on the spaces Aza2 war1(D),a, EZ,:

la, : T* = @(Taﬁzﬂﬂ n KﬁZ) N Taa2+/1+1 + K%, (22)

B2€L4
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- an uncountable family of one-dimensional representations ., ,(t, a;) € St x
Z.., defined by

T, : Tl — @ (Taﬂ2+/1+1 + KBZ) N a(t) .

B2€Z4
Of course, for a fixed t, all one-dimensional representations m; , , (t, ;) € S* X Z,, are

unitary equivalent. Thus for each t € S we have in fact just one representation

T, Tl — @ (Taﬁz+/1+1 + Kﬁz) N a(t) (23)
B2€L+

which is of infinite multiplicity.

At the same time, the infinite dimensional representations ¢, a, € Z,, are not pairwise
unitary equivalent. To see this, let us consider

A _ az+A+1
ta (T ) = TS0
The Toeplitz operator on the right has a radial symbol and is unitary equivalent to a diagonal
operator with eigenvalue sequence

a+ A+1 _ { a,+A+1 }
V1|72 Vilze (K) kez,’

where
1
a'2+ /1+1(k) F(k +a; + A+ 3) _ J T'k+1(1 _ T)a2+/1+1 dr
Viclzp? T+ DI(a, +A+2)  J,
oyt A+2
k4 a,+A+3
Now,
a+A+1|| _ A+ +1 _aptA+2
[rzi]l = SUPVip,e () = o573
(12+A+1

and, as the norms ”T e || are different for different a,, the representations ¢, , for
different a,, cannot be unitary equivalent.

A rather unexpected additional series of one-dimensional irreducible representations
of the algebra 7; (C (D)) is induced by the Berezin quantization on the hyperbolic unit disk.

Recall that the Berezin transform of a bounded linear operator A acting on the weighted
Bergman space A; (D) is defined as follows

B,(A)() = (Ak¢, ke)yps
_1712\1+u2
where k;(w) = %_'?T))Hl; is the normalized Bergman kernel in cflﬁ([D)). In particular, if

A = T,,witha € L,(ID), then
Bu(Ta)(() = (Tak('kdu,m) = <ak('k()y,]]) = B”(a)(Z).

34



Lemma (2.2.8)[2]. The mapping p : T,(C(D)) — C(D), defined by

p: T)' = @ Ta2+A+1 — lim Ba2+,1+1(Ta2+l+1) (24)
Qp— 00
a2€Z+

Is a continuous *-homomaorphism of the C*-algebra 7}1(6(]]3))) onto C(D).

Proof. Recall that all operators T%2+4+1 are of the form ch‘z”ﬂ + K% with a common
function a € C(ID) and compact operators K%z obeying the property K% — 0 as a, —
0,
From the standard estimate

|Ba2+/1+1(Ka2+l+1)| < ||Ka2+ﬂ+1||

it follows that lim B, ,;4,(K%***1) = 0. Furthermore, by (a variant of the

a2—>00

correspondence principle for Berezin quantization), we have that

a
_ ay;—>00
uniformly on . Thus,

. A+ A+1\ — i az+A+1 a
az >0 oy, —0

= lim Ba2+,1+1(T“2+’1+1) = a € ¢(D),

a,—00 a

and (24) is well-defined. The mapping p is onto as for each a € C(D) we have that
p(TaA) = a. FOF T1a2+l+1 — Ta2+/'l+1 + Klaz and T2a2+/1+1 — T(Z2+A+1 + Kzaz we have

az az

a2+l+1 a—-2+A+1 __ a2+l+1 ar

T + T = TEL 4 ko2,
a2+/1+1 a2+l+1 _ a2+2.+1 ar
Tl X TZ - Tal‘az + KX )

+A+1 " +A+1 *
(Tlaz ) — T;llz + (Klaz ) )
which implies that p is a *-homomorphism.
The continuity follows from the inequality

lallo = sup la(z)| = lim |72
Z,€D @2=

Corollary (2.2.9)[2]. For each z, € D, the mapping p,, : T3 (C(ﬁ)) — C, defined by
Pz, T4 — p(T’l) =a — a(z;) € C,
is a one-dimensional representation of the C*-algebra 7; (C(ﬁ))

Remark (2.2.10)[2]. Given T = @,,¢z, T4 € T3(C(D)), the result of Lemma

(2.2.8) permits us to recover its unique (by Lemma (2.2.6)) representation (20). Indeed, all
necessary data for the representation (20) are given by

a = p(T*) = lim B, 141 (T%***1) € C(D)

aAp—> 0

Ta2+2,+1 + Kaz

a

= [l

< sup |
azeZ+

and

ay — Tay+A+1 a+A+1
K% = T% — Ta .

Our next aim is to show that the above described irreducible representations of 7, (C(ﬁ))
exhaust all its irreducible representations. Observe first that for each

Td = @ (12" + Kk2) € 73 (c(D)), (25)

ar EZ+
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the operator K = @g,ez, + K% is compact on A% (B?), being the norm-limit of the
compact operators K, = @4,ez, K asn — .

We denote by %, (C(ﬁ)) the closed two-sided ideal in 7; (C(ﬁ)) generated by all such
compact operators K. It is easy to see that &, (C(ﬁ)) Is just the set of all operators of the

fom K € T; (C(ﬁ)) Let K 42 (B?) stand for the closed two-sided ideal of all compact
operators on A3 (B,).

Lemma (2.2.11)[2]. We have that T} (C(ﬁ)) N XK z2(By) = X; (C(ﬁ))

Proof. Note that the operator T in (25) is compact on A% (B?) if and only if each operator

T2 4+ K% is compact on A2 . ;,, (D) foreach a, € Z,,and

lim T2 4 ke = o,

ay—00
T22***1 peing compact on Aj +1+1(D) foreach a, € Z,, and

lim T2 = |a|l, = 0.

a,—0

The last conditions are equivalentto T* = @,,e;, K% = K € K;(C(D)).
Observe now that the kernel of the mapping (24) coincides with the ideal ¢, (C(ﬁ))
This implies that the Calkin algebra ' 7} = T; (C(ﬁ)) /%, (C(ﬁ)) is isomorphic and

isometricto C(ﬁ), and that the one-dimensional representations p, of Corollary (2.2.9) as
well as the representations m, of (23) come from the one-dimensional representations of 7.
Recall, that if J is a closed two sided ideal of a C*-algebra A then each irreducible
representation of A is either induced by an irreducible representation of the quotient algebra
A /], or is an extension to A of an irreducible representation of .

That is, what is left, is a description of the representations being extensions to 7; (C (ﬁ))

which is equivalent to

of the irreducible representation of X, (C(ﬁ)) Recall that each summand in (3) is an

invariant subspace for X, (C (ﬁ)), whose restriction on “the level a,” coincides with the

ideal of all compact operators on Jliz +2+1(D). Thus its identical irreducible representation
induces the infinite dimensional irreducible representation ¢, of the form (22).

That is, we listed above all (up to unitary equivalence) irreducible representations of the
C*-algebra 7 (C(ﬁ)).

As a byproduct of the description of the Calkin algebra 73, we have the following
proposition.
Proposition (2.2.12)[2]. An operator T* = @, ¢z, (Tff”1+1 +K“2) € f}(C(ﬁ)) is

Fredholm if and only if a(z,) # 0 forall z; € D. In the case of Fredholmness, Ind T4 =
0. The essential spectrum of T* is given by ess-sp T* = Range(a).
The following clarifying observation seems to be useful here. In the case of Fredholmness

of the operator T* = @, ¢z, (T(f‘ZJ"‘“r1 + K“Z), its two sided regularizer can be taken in

A+1
the form RAT* = @, ¢z, (Tl‘)ﬁ:r * ) So that
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T*R* = @ (I + K;?) and R*T* = @ (I +K,7),

O.’ZEZ+ azeZ+
where both K2 and K, tend to 0 as a, tends to infinity. Thus the norms K, and K,
become less than 1 for all a, greater then some a2, which implies that the operators

To2t ML 4 ke with a, > a2, areall invertible. That is, in the direct sum decomposition

a
T = @y, ez, (ch‘ﬁ’1+1 + K“Z) of zero index Fredholm operators, only a finite number

of operators Tfﬁ’l“ + K% may not be invertible. This implies that dim ker T4 = dim
coker T is finite, as it should be.

Lemma (2.2.13)[2]. The intersection 73(C(D), Ls ) N X 4z (B*) consists of all operators of

the form K* = Dq,ez, K%, where each K2 is compact on ‘/qu2+/1+1(]]))' and K% - 0

asa, — oo.
Proof. As each subspace of the direct sum decomposition (3) is invariant for operators from

T,(C(D), L) N X 42(B?), each compact operator K* in 73(C(D), Ly,) is of the form
Do, ez, K%, where K% is compact on ﬂ§2+,1+1(]])), forall @, € Z,, and K% — 0 as
a,; — 00,

Take now any sequence {K %2}, ¢z, where K% is compact on c/lfzfr“l([[))) and K% —
0 as a, — oo. It remains to show that K* = @, ;, K* belongs to 7;(C(D), Lo,).
Observe that, for each fixed ad € Z., the sequence Yad(@2) = 849,, belongs to ¢, <
SO(Z.), and thus the projection P49 Onto the a2-level in the decomposition (3) belongs to
the algebra 73(L,,) © 7;(C(D),Ls). Then, by Lemma (2.2.7), the algebra
Py T (C(ﬁ)) Py c T,(C(D),L,) contains the compact operator Ko =

Oa,ez, 60, K a3 . and thus the operator
n

n
K* = @ K% = lim @ K% = lim Ko
n—>00 n—-oo 2
€Ly ad=0 a9=0
belongs to 73 (€ (D), L).

Below we frequently consider the tensor product A @ B of two commutative C*-algebras
A and B. Recall that as «#and B are commutative, and thus nuclear, the C*-norm on A ®
B is uniquely defined. In particular, if M, and My are the (locally) compact sets of maximal
ideals of A and B, respectively, then
The algebraic tensor product of A and B, which consists of all finite sums of the form
Ya, @ by,a, € Aandb, € B,wewill denote by A ®, B.

Corollary (2.2.14)[2]. All compact Toeplitz operators from the algebra 7; (C(D), L., ) are
of the form

@ T&ZZ;, where d = d(zy,a,) € C; (D) ® c,.

a2€Z+
Here C, (D) denotes the set of functions from ¢(ID) that vanish on the boundary dD = S*.
The next theorem gives the description of elements from 7, (C (D), Lo, )-
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Theorem (2.2.15)[2]. Each element T* € 7;(C(D),Ls,,) admits the following

representation
=P (el + x), 26)

a2EZ+
where ¢ = ¢(z,,a;) € C(D) ® SO(Z,),K% is compact for all a, € Z,, and K% —
0as a, — oo.
Proof. Observe first that the theorem is valid for elements of the dense subalgebra D formed

by all operators of the form
n my
RN

. k=1 jp=1
where a;, € ¢(D) and br,;, € Le(0,1).
To see this it is sufficient to consider, as in Lemma (2.2.4), just a product of two
operators:

A A
Tllbl b, = @ ybl(az)ybz(az)( 0-’2+ +1 + K(Zz )(T012+ +1 + Kzaz)

(Z2EZ+
@ Vbl(“z)ybz(az)( Cfflza+/1+1 N Ka2)= @ (Tcaz+/’l+1 + K“Z),
a2€Z+ CIZEZ+

where c = c(z,a,) = alaz(zl)y{}lyf}z(az) € C(ﬁ) ®, SO(Z,),and K% =
Vi vh (a)K(Z = 0 asa, — oo.

We show now that each operator of the form (26) belongs to the algebra 73 (C(D), Lo, ).
Indeed, givenany ¢ = c(zy,a,) € C(D) ® SO(Z,), there exists a sequence of functions
¢, € C(D) ®, SO(Z,) that converges uniformly to c. Thus the operator T} = lim T2,

belongs to 73(€(D), L, ), and Lemma (2.2.13) implies the conclusion.
Given T* € 7;(C(D), L, ), there is a sequence of operators

Tnl@ Tr‘l752+/'l+1 — @ (Tctflz+/1+1 + K-r?z) €D

a’ZEZ+ (Z2EZ+
that converges in norm to the operator T*. As the sequence {T,{l}nEN is fundamental, for each
e > 0thereis N, € N such that forall n,m > N, and aII a, € N we have that
||Ta2+l+1 _ Ta2+/1+1|| <=
n

Recall, that the compact set of maximal ideals (multlpllcatlve functionals) of the algebra
SO(Z,) hasthe form M(SO(Z,)) = Z, U M, where each a, € Z, isidentified with the
evaluation functional y € SO(Z,) — y(a,), and the fiber M, is closed, connected, and
consists of all functionals u obeying the property u(y) = 0 forall y € c¢,. The points of
M., are responsible for the partial limit values of sequences in SO(Z,.), none of the points
U € M, can be reached by subsequences of Z, ; its topological nature requires to use nets
(subnets of Z,). That is, for each pointu € M,, there is a net {a. }nEE, valued in Z.,

converging to u in the Gelfand topology of M(SO(Z.)).
Fix 4 € Mo, and let {ag}nEE be a net converging to u. Then,
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a2+A+1

hm B al+a+1 (T + K:g)

2

aZMH) —hm B al+a41 (T
2

—hm B al+a+1 (T

2

a, Tia+1 )

—lém Boniae (cn(zl, ;’) — Cn(zl,u)) +11m B n+l+1(cn(zl,,u))

2
= 0+ cnlz, ) = cn(zy, ). (27)
Thus, for the above €, Ny, and n,m > N, we have

lenCa ) = cnCaotlle =l [|Bgyzes (157 - TW“)”

[00)

< sup ||Ta2+/1+1 T$2+A+1|| _ ”T,{l . T,%” < E

The above estimate is uniform in u € M, thus the sequence {cn|ﬁxMw} converges

uniformly to a certain function c,, = oo (21, 1) € C(D X My, ).
Fix now any a, € Z,. Since each c, (-, a,) is continuous on D and K,.* is compact, for the
above &, Ny,n,m > Ny, andeacht € S = 0D, we have:

Baz+l+1(Ta2+/1+1 T$2+/‘L+1 )(21)| =
_ llm |Ba2+/1+1(Tciz—+ci1+1 )( D+ Ba2+/1+1(Ka2+A+1 K;cl2+/1+1 )(21)|

&E

= |(Cn - Cm)(t) + Ol < Suﬁ |(Cn - Cm)(t)l = ”T‘ril_ Tr;ll” <Z'
te

That is, for each a, € Z., the sequence of restrictions {Cnlc(sl)} converges uniformly to a

certain function ¢,, = ¢,,(z;) € C(S'). Moreover, the function

p ={ Co(z1, 1), for (z;, 1) € D X My,

Ca,(21), for(z;,a;) € S' X Z,

is continuous on the closed subset (D X M,,) U (S X Z,) of D x M(SO(Z,)). Thus,
by Tietze’s theorem, ¢ admits a continuous extension (which we will still denote by ¢) from
(D X My) U (S* X Z,)toD X M(SO(Z.,)), with

Héllc(ﬁxM(so(L))) = ||6||c((ﬁxM°o)u(sle+))'
We denote now by ¢ = c(z;,a,) the function from C(D) ® SO(Z,) whose Gelfand

transform coincides with ¢é.
For each n € N, the function

P {é<z1,u> = Cu(z,W),  for (z,p) € D X M,
" c(zy, ;) — cp(zy, @), for (zy,a;) € ST X Z,
where &, is the Gelfand transform of the function ¢, € C(D) & a SO(Z,), is continuous
on(D X M) U (S! x Z,).Thus, by Tietze’s theorem, d,, admits a continuous extension
preserving the norm, which we will keep denoting by d,,, from (D x My) U (S! x Z,)
onto D x M(SO(Z,)). We denote now by dn = dn(z1, o2) the function from C(D) ®
SO(Z+),
whose Gelfand transform coincides with d,,.
Observe that for the above ¢, Ny, and all n > N, we have both

llm
Z1—
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& ~ &
lld,.l <3 and  ||d,|| <3
With these data we introduce ¢}, = ¢ — d,, € C(D) ® SO(Z,), and observe that on
(D x M) U (St x Z,)
Ch =¢C—d, =¢C—¢C+ ¢, = Cp
that is ¢, — ¢, € Co(D) & c,, and thus (by Corollary (2.2.14)), the Toeplitz operators
TC’}L_Cn are compact for all n € N. Moreover the sequence of functions c;, converges

uniformlyto ¢ € €(D) ® SO(Z,).Foreachn € N, we have
=D (e e ) =D (e e 1)
a2EZ+ a2€Z+

where K32 = K 32 + T**! is compact for each a, € Z,, and K's> > 0as a, -
n

Cn

A

0,

The end of the proof now repeats literally the end of the proof of Theorem (2.2.5).
Remark (2.2.16)[2]. Theorem (2.2.15) ensures that any operator T?% €
7;(C(D), L., ) admits a representation of the form (26). Given an operator T*, there is a
simple procedure to recover this representation. First of all the operator T uniquely defines
a function continuous on (D X M) U (S* X Z,). Indeed, let u € M., and let {a;’}neE be

a net converging to u. Then, as in (27), we have

. M42 T al+1+1 a
l(lgl Ba;7+)l+1 (Ta2+ +1) = 1‘11971 Ba;7+/1+1 (Tc ’ + Kzn)
2 2
) T4a+1
= ligl Ba;’+a+1 (Tca2 ) = c(z1, W. (28)
2

Fix now any a, € Z,, then

. a2+l+1 a _
IZHE11_ Ba2+/‘t+1(Tc + K 2) - C|slx{a2}-

Having the function ¢ continuous on (D X M) U (S! X Z,) we extend it continuously
toD X (Z, U M,) (e.g. by Tietze’s theorem) and denote by the same letter ¢ the function
from C(D) ® SO(Z,) whose Gelfand transform coincides with this extension.

We note that any other extension of ¢ € C((ﬁ X M) U (ST X Z+)) defines a

function

¢' € C(D)® SO(Z,) with ¢ — ¢’ € Co(D) ® 0.
By Corollary (2.2.14), the difference T/ — Tc’l, = Tc’l_c, only affects the compact part of the
representation (26). Finally, with such ¢ € C(D) ® SO(Z,), put K% = T%+A+1 _

TS .

Next, we describe the irreducible representations of the C*-algebra 7;(C(D), Lo, ). By

Corollary (2.1.6) its generators T7,, where a € C(D) and b € L (0,1) split into the

following direct sum of operators

TS = @ +yi (az)szﬂﬂ,

as EZ
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according to the direct sum decomposition (3). Such a splitting implies the following list of
irreducible representations of 7; (C(D), L, ): according to the direct sum decomposition (3).
Such a splitting implies the following list of irreducible representations of 7 (C(D), Lo, )
- infinite dimensional (identical) representations ¢, on the spaces Jliz w+1(D),a, €
Z.., defined by

la, T = @(TCQZMH + K“Z) — TCOZZJ”H1 + K%,
(ZZEZ+
- one-dimensional representations m; , , (t, ;) € S x Z,, defined by

Mg, * T4 = @(TCaZMH n Kaz) — c(t, ay).

a,€E7Z
It is easy to see that these represeritat?ons are not pairwise unitary equivalent, and that the
ambiguity of the form (26), does not effect the action of the above representations.
As in the case of the algebra 7;(C (D)), there is a series of one-dimensional representations
of the C*-algebra 73(C(D), Ls,), induced by the Berezin quantization procedure on the
hyperbolic disk D.
For a fixed point 4 € M, let {a]} be a Z,-valued net that converges to u. Then, by
Theorem (2.2.15) and (28), we have the well-defined map

pu: T = @(Tcaﬁ“l + Kaz) = (e, 1),

a,€Z4
which is easily seen to be a *-homomorphism of 7;(C(D),L.) onto C(D). The map Py

induces a family of one-dimensional representations of 7;(C(D),L.), defined for each
(z,,u) €D x M, as follows

p(z, 1) T = @(Tcaﬁ“l + K“Z) e c(,n) € (D) — c(zy, 1) €C.
€Ly
Observe now that the difference of T{* = T4 + K{* and T4 = T2 + K3 is compact if and
only if T4 — T2 = T2__ is compact, or if and only if ¢; — ¢, € Co(D) ® co. This
implies that the Calkin algebra 73 (C(D), L.) = T;(C(D),L.)/7(C(D),L.) N (K 22 1S
isomorphic and isometric to
C(D X (Zy UMy))/Co(D) ® co=C((D XMy)U (ST x Z)).

The same arguments, as given for the case of the C*-algebra 7; (C(ID)), show that we listed
above all (up to unitary equivalence) irreducible representations of the C*-algebra

7,(C(D), Ls,). Again, as a byproduct of the description of the Calkin algebra 73 (C(D), Lo,),
we have the following proposition.
Proposition (2.2.17)[2]. An operator T# = @, ¢z, (TC"EZ’;:; + K“Z) € T,(C(D), Ly) is
Fredholm if and only if ¢ does not vanish at any point of (D x M) U (S! x Z.), where
¢ e_C(]E) X (Z, UM,y)) is the Gelfand transform of the unction ¢ = c(z;,a;) €
C(D) ® SO(Zy).
In the case of Fredholmness,
1
2
IndT* = Z Ind (Tjg;aj)l + K"‘Z) = Z {arg c(,a)}ep.  (29)
&a2€Z+ &a2€Z+
The essential spectrum of T# is given by ess-sp T* = Range (€ | pxm,,)u(sixz,))-
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We note that the right-hand side of (29) contained only a finite number of non-zero

summands. Indeed, as ¢ has no zeros on D X M., the functions Ca, = C(ay) € C(D) do
not vanish on D for all a,, starting from some a3. Furthermore, all operators T,2""\" +
K are invertible for all a,, starting from some a3, possibly greater than a2. That is, only
a finite number of the Fredholm operators Tcoé;:’,i;’)l + K% are not invertible, making thus
their generically non-zero contribution to the index formula. This implies, in particular, that

both ker T4 and coker T* are finite dimensional, as it should be.
Theorem (2.2.18)[6]. [Mergelyan’s theorem].

Let kK € C be compact and assume that ¢\k has only finitely many connected
components if f € c\k be analytic on the interior of k, then for any € > 0, there exists
arotional function r(z) such that:

i‘;,{"f(z) —r(2)| <e

Theorem (2.2.19)[7]. Extension of Tietze’ theorem:

Let X, Y be arbitrary space,and A c X, let f: A = Y be continuous F: X — Y is called
the extension of f if F(a) = f(a) for every a € A.

Definition (2.2.20)[8]. Cayley Transform:

Cayley’s transformation parameterizes a proper orthogonal matrix C as a function of
a skew-symmetric matrix Q.

It is therefore, a map ¥ = so(n) —» SO(n). The classical Tayley transform is given by:

C=9@Q=01-QQ+)7"'=0+0'A-0Q).
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Chapter 3
Minimal Nuclear C*-Algebras

We give the first examples of minimal ambient nuclear C*-algebras of non-nuclear
C*-algebras. For this purpose, we study generic Cantor systems of infinite free product
groups.

Section (3.1): Some Generic Properties of Cantor Systems

Choi constructed the first example of an ambient nuclear C*-algebra of a non-nuclear
C*-algebra. Kirchberg—Phillips show that any separable exact C*-algebra in fact has an
ambient nuclear C*-algebra. (In fact, one can choose it to be isomorphic to the Cuntz algebra
0,.) When we consider reduced group C*-algebras, thanks to Ozawa’s result, we have more
natural ambient nuclear C*-algebras, namely, the reduced crossed products of amenable
dynamical systems. Ambient nuclear C*-algebras play important roles in theory of both C*-
and von Neumann algebras.

We investigate how an ambient nuclear C*-algebra of a non-nuclear C*-algebra can
be tight. Based on (new) results on topological dynamical systems, we give the first example
of a minimal ambient nuclear C*-algebra of a non-nuclear C*-algebra.

In fact, we have a stronger result: our examples of minimal ambient nuclear C*-algebras
have no proper intermediate C*-algebras.

Note that as shown in contrast to injectivity of von Neumann algebras, nuclearity of C*-
algebras is not preserved under taking the decreasing intersection. We also note that the
increasing union of non-nuclear C*-algebras can be nuclear. Thus there is no obvious way
to provide a minimal ambient nuclear C*-algebra. We also remark that in the von Neumann
algebra case, thanks to the bicommutant theorem, for any von Neumann algebra, finding a
minimal ambient injective von Neumann algebra is equivalent to finding a maximal
injective von Neumann subalgebra. Popa provided the first concrete examples of maximal
injective von Neumann subalgebras.

Powers invented a celebrated method to study structures of the reduced group C*-
algebras. His idea has been applied to more general situations, particularly for reduced
crossed products, and to more general groups, by many hands. We combine his technique
with certain properties of dynamical systems to obtain the following main theorem of the

paper.

We say that a group is an infinite free product group if it is a free product of infinitely many
nontrivial groups. Groups are supposed to be countable.

Let I" be an infinite free product group with the AP (or equivalently, each free product
component has the AP). Then there is an amenable action of I' on the Cantor set X with the
following property. There is no proper intermediate C*-algebra of the inclusion C;:(T) c
C(X) =, T.

In particular C(X) x,. I is a minimal ambient nuclear C*-algebra of the non-nuclear C*-
algebra C; (I).
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We remark that it is not known if there is an ambient injective von Neumann algebra (or
equivalently, injective von Neumann subalgebra) of a non-injective von Neumann algebra
with no proper intermediate von Neumann algebra. Here we remark that the AP implies
exactness, while the converse is not true. We need the AP to determine when a given element
of the reduced crossed product sits in the reduced group C*-algebra.

In theory of both measurable and topological dynamical systems, the Baire category theorem
is a powerful tool to produce an example with a nice property. For further information on
this topic. We follow this strategy to construct dynamical systems as in Main Theorem. To
apply the Baire category theorem, we need a nice topology on the set of dynamical systems.
We deal with the following (well-known) space of topological dynamical systems.

Let X be a compact metric space with a metric dy. Then, on the homeomorphism group
Homeo(X) of X, define a metric d as follows.

d(p,¥): = max dy(e(x),P(x)) + max dy(p™*(x), ™" (x)).

Then d defines a complete metric on Homeo(X). The topology defined by d coincides with
the uniform convergence topology. In particular it does not depend on the choice of dy.

Next let T be a (countable) group and consider the set S(T', X) = Hom(T, Homeo(X)) of all
dynamical systems of ' on X. The set S(T, X) is naturally identified with a closed subset of
the product space [[ Homeo(X), where the latter space is equipped with the product
topology. Since I' is countable, this makes S(T', X) a complete metric space.

Finally, we recall some definitions from theory of topological dynamical systems. Let
a:T'~ Xand B : T ~ Y be actions of a group on compact metrizable spaces. The « is said
to be an extension of g if there is a I'-equivariant quotient map : X — Y . In this case S is
said to be a factor of a. The action a: T ~ X is said to be

(i) Freeifany s € I'\ {e} has no fixed points,

(i) Minimal if every I'-orbit is dense in X,

(iii) Prime if there is no nontrivial factor of «,

(iv) Amenable if for any € > 0 and any finite subset S of T, there is a continuous

map u: X — Prob(I) satisfying ||s.u* — u5*||; < eforalls € Sandx € X.

Here Prob(T") denotes the space of probability measures on I" equipped with the pointwise
convergence topology (which coincides with the ¢*-norm topology), and T acts on Prob(T’)
by the left translation. Obviously freeness and amenability pass to extensions and minimality
passes to factors. Anantharaman-Delaroche has characterized amenability of topological
dynamical systems by the nuclearity of the reduced crossed product.

We say that a property of topological dynamical systems is open, Gs, dense, Gs-dense,
respectively when the subset of S(I", X) consisting of actions with this property has the
corresponding property. We say that a property is generic when the corresponding set
contains a Gs-dense subset of S(I', X). Note that thanks to the Baire category theorem, the
intersection of countably many Gs-dense properties is again Gg-dense, and similarly for
genericity. Although some results (e.g., genericity of amenability, minimality, primeness,
for infinite free product groups) can be extended to more general spaces by minor
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modifications, we concentrate on the Cantor set. This is enough for Main Theorem. For
short, we call an action on the Cantor set a Cantor system.

(i) Foranaction a: ' ~ X, let C(X) x,4 I denote its algebraic crossed product, i.e., the
*-subalgebra of the reduced crossed product generated by C(X) and I'.

(ii)For the simplicity of notation, in the reduced crossed product A = C(X) %, ', we
denote the unitary of A corresponding to s € I" by the same symbol s.

(iii) Denote by e the unit element of a group.

(iv) LetE: C(X) %, ' =» C(X) denote the canonical conditional expectation on the
reduced crossed product. That is, the unital completely positive map defined by the
formula E(fs) := 8.5f for f € C(X)ands €T.

(v) For a unital C*-algebra, we denote by C the C*-subalgebra generated by the unit.

(vi) Denote by @ the minimal tensor product of C*-algebras. We use the same
notation for the minimal tensor product of completely positive maps.

(vii) For a subset S of a set, denote by y the characteristic function of S.

(viii) For a subset S of a group, denote by (S) the subgroup generated by S.

When the action a: T ~ X is clear from the context, we denote a (x) by s.x for short.
Similarly fors € TTand U < X, we denote a,(U) by sU when no confusion arises.

We summarize generic properties of Cantor systems. From now on we denote by X the
Cantor set. We recall that the Cantor set is the topological space characterized (up to
homeomorphism) by the following four properties: compactness, total disconnectedness,
metrizability, and perfectness (i.e., no isolated points).

Lemma (3.1.1)[3]. For any group I", the following properties are G in S(I’, X).
(i) Freeness.

(i) Amenability.

Proof. The first claim is well-known. For completeness, we include a proof.

(i) Fors e I'ysetVi:={a € S(I', X): as(x) # x for all x € X}. By the compactness of X,
each V; is open. The Gs-set Nseryrey Vs cONsists of all free Cantor systems.

(ii): For each finite subset S of I", we say that an action a: I" ™~ X has property as if it admits
a continuous map u: X — Prob(I") satisfying

ux = uSx||, < —

foralls e Sand x € X. Leta € S(I', X) be given and suppose we have a continuous map u
that witnesses A of a. Then, by the continuity of y, it guarantees A for any g sufficiently
close to a. This shows that A is open. Now obviously, the intersection Ag A is equivalent
to amenability, where S runs over finite subsets of I".

The following simple lemma is crucial to show the genericity of some properties.

Lemma (3.1.2)[3]. Let a: ' ™~ X be a given Cantor system. Then the set of extensions of «
Is dense in S(I, X).
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Proof. Let us regard the Cantor set X as the direct product of infinitely many copies Y of
the Cantor set: X = YN. We regard a as a dynamical system on Y via a homeomorphism =
Y . Foreach N € N, define amap gy: N - N by

n whenn < N,
n+1 whenn > N.

O'N(TL):={

Now let g € S(T', X) be given. Lety:T" ™~ Y X X be the diagonal action of a and . For each
N €N, define a homeomorphism @y:X - Y XX by @y(x):= (xy, (Xsyw)) Put

neN’

B = prt oy oy € S(T,X). Then for each N € N, the projection from X onto the Nth
coordinate gives a factor map of ™) onto a. Moreover the sequence (ﬁ(")):;lconverges
to 5. Since [ is arbitrary, this proves the claim.

The next lemma is well-known.

Lemma (3.1.3)[3]. Every group admits a free Cantor system. Also, every exact group admits
an amenable Cantor system.

Proof. Let I" be a group. We first show that the left translation action of I" on its Stone—Cech
compactification SI" is free. Let s € '\ {e} be given. Put A := (s). Take a A-equivariant
map I' —» A where A acts on both groups by the left multiplication. This extends to the A -
equivariant quotient map SI' — BA. By universality, g A factors onto every minimal
dynamical system of A (on a compact space). Since any cyclic group admits a minimal free
action on a compact space, this shows that s has no fixed points in ST.

Let (AM)MEM be the increasing net of I'-invariant unital C*-subalgebras of £*(I") = C(BT)

generated by countably many projections. Note that U ey A4, = £°(I'). Let X, denote the
spectrum of 4. Obviously, each X, is totally disconnected and metrizable. Let a,: I' ~ X,
be the action induced from the action I' y A,,. By the freeness of I' ~ ST, for sufficiently
large u, the a, must be free. When T is exact, for sufficiently large u, the a, must be
amenable. Hence for sufficiently large u, the diagonal action of «, and the trivial Cantor
system gives the desired action.

We now summarize the results.

Corollary (3.1.4)[3]. For any group I, freeness is a Gg-dense property in S(I', X). Moreover,
when T is exact, amenability is also a Gg-dense property in S(I',X).

Proof. Since both freeness and amenability are inherited to extensions, it follows from
Lemmas (3.1.1) Theorem (3.1.3).

Section (3.2): Construction of Dynamical Systems and Further Examples

We prove Main Theorem. Let (T;);2, be a sequence of nontrivial groups and let I":=
*fil I; be their free product. By replacing I; by I'=1 % T,; for all i if necessary, in the rest
of the paper, we assume that each free product component I; contains a torsionfree element.
We start with the following elementary lemmas. We remark that in the case that I" is the free
group ., we do not need these lemmas.
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Lemma (3.2.1)[3]. Let A be a group and Y be its subgroup. Then for any minimal dynamical
system a of Y on a compact metrizable space, there is a Cantor system of A whose restriction
on Y is an extension of «.

Proof. Let a: Y ™~ Y be an action as in the statement. Fix an element € Y . Then the map
Y — Y defined by s +— s.y extends to a factor map Y — Y . This induces an Y-equivariant
unital embedding of C(Y) into £*°(Y) . By the right coset decomposition of A with respect
to Y, we have an Y -equivariant unital embedding of £ (Y") into £ (A).

We identify C(Y) with a unital Y-invariant C*-subalgebra of £ (Y") via the composite of
these two embeddings. Take a Y-invariant C*-subalgebra A of £ (A) which contains C(Y)
and is generated by countably many projections. Let Z be the spectrum of A. Note that Z is
metrizable and totally disconnected. Let 8: A ™~ Z be the action induced from the action A ~~
A. Since A contains C(Y) as a unital C*-subalgebra, the restriction of § on Y is an extension
of a. Now the diagonal action of g with the trivial Cantor system gives the desired Cantor
system.

Lemma (3.2.2)[3]. Let A be a group. Let s be a torsion-free element of A. Then for any finite
family U = {U,, ..., U, } of pairwise disjoint proper clopen subsets of X, there is a Cantor
system a: A ~ X with sU; = U;,, for all i. (modn)

Proof. By Lemma (3.2.1), there is a Cantor system a: A ™~ X whose restriction on (s) factors
a transitive action on the set {1,...,n}. For such «, there is a partition {V;,...,V,} of X by
clopen subsets satisfying sV; = V;,, forall i. Set I: = {0, 1} if UL, U; # X. Otherwise we
set I: = {0}. Then define a new action S: A ~ X X I by

(a;(x),0) when j =0,
(x, 1) otherwise

pel ) = |

Since nonempty clopen subsets of the Cantor set are mutually homeomorphic, there is a
homeomorphism ¢: X X I — X which maps V; x {0} onto U; for each i. For such ¢, the
conjugate ¢ o B o @1 gives the desired Cantor system.

We next introduce a property of Cantor systems which is one of the key of the proof of Main
Theorem and show that this property is Gs-dense for infinite free product groups.

Proposition (3.2.3)[3]. Let I'= *zl r, be an infinite free product group. Then the
following property R of Cantor systems is Gg-dense in S (T, X).

(R): For any finite family u = {U,, ..., U,,} of mutually disjoint proper clopen subsets of X,
there are infinitely many i € N satisfying the following condition. The group I; contains a
torsion-free element s satisfying sU; = U;,, for all .

Here we put U, ;: = U; as before.

Proof. For any i € N and a family u as stated, we say that an element a € S(I', X) has
property R (i, U) if it satisfies the following condition. There are k > i and a torsion-free
element s € T, satisfying sU; = U, forall j. Then observe that for any two clopen subsets
U and V of X, the set
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{¢ € Homeo(X): o(U) =V}
is clopen in Homeo(X). This shows that property R(i, U) is open in §(T, X).

To show the density of R(i,U), for each m € N, take a Cantor system ¢,,: I}, ™~ X as in

Lemma (3.2.2). Let & € S(T, X) be given. Then, for each m € N, we define a™ € §(T, X)
as follows.

alr, fork < m,
a(m) |Fk:={ k

@ fork = m.
Then each a™ satisfies property R(i, W) and the sequence (a(m))(:l:l converges to a.

This proves the density of R(i, U).

Now observe that property R is equivalent to the intersection A; ; R(i, U). Since there are
only countably many clopen subsets in X, the intersection is taken over a countable family.
Now the Baire category theorem completes the proof.

Proposition (3.2.4)[3]. Assume a € §(T', X) satisfies R. Then there is no I'-invariant closed
subspace of C(X) other than 0, C, or C(X). In particular R implies primeness.

Proof. Let V be a closed I'-invariant subspace of C(X) other than 0 or C. We first show that
V contains C. Take a nonzero function. Then for any € > 0, there is a partition U: =
{U,,...,U,} of X by proper clopen sets and complex numbers c;, ..., c, wWith |c;| = ||f]|

such that with : = }I_; c;xy, , We have ||[f — gl < €. Putc: =% w1 G

By replacing U by dividing U; into sufficiently many clopen subsets and replacing the
sequence (c;); suitably, we may assume |c| = ||f]|/2. By property R, we can take s € T’
with sU; = U;,, forall i. We then have ¥, sigs™ = Y™ . c;. This yields the inequality
n

lz sifsTt— ¢
n

i=1

<eE€.

Since € > 0 is arbitrary and |c| = |[f]|/2, we obtainC c V .

From this, we can choose a nonzero function f € V with 0 € f(X). Forany € > 0, take
a partition U = {U,, U, ..., U,} of X by proper clopen sets and complex numbers c;, ..., c,

such that with : =Y, ¢;xU; , we have |[|f — g|| < e.Putc:= %Z}Ll c;. As before, we
may assume |c| = ||f]|/2. By using property R to the family {U,..., U,,}, we can take s €
I satisfying sU, = Uy and sU; = U, for 1 <i < n. Then we have, % n, sigsTi=
cxx\u, - Now let U be any proper clopen subset of X. Take ¢ € I with t(X \ Uy) = U. (To
find such t, use property R twice.) We then have
1 n
t(az SlgS_l> t_l = Ct(XX\UO)t_l == CXU'
i=1

This shows the inequality
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AN ifo—ip—1
Ez ts'fs™'t — G|l <€

i=1

Since € > 0 is arbitrary, this proves y, € V . Since U is arbitrary, we obtain  V = C(X).
We need the following restricted version of the Powers property for free product groups.
Although the proof is essentially contained, for completeness, we include a proof.

Lemma (3.2.5)[3]. Let A;,4, be groupsandset A: = A, * A,. Lets € A;,t € A, be torsion-
free elements. Then for any finite subset F of A \ {e}, there are a partition A = D U E of A
and elements u,, u,, u; € (s, t) with the following properties.

(i) fDND =@ forall f € F.
(i) wE nu, E = @ for any two distinct j, k € {1,2,3}.

Proof. Let F < A\{e} be given. Then for sufficiently large n € N, with z:=ts",
any element of zFz~1 is started with t and ended with t~1. Here for u € A;\{e}, we say an
element w of A is started with u if w = uw; ... w,, for some (possibly empty) sequence
Wi,..., W, With w; € Akj\{e} and i # k,; # k, # - -# k,. The word “ended with u” is

similarly defined. (Thus, in our terminology, the element w, is not started with wu.)

Let E’ be the subset of A consisting of all elements started with ¢. Put E := z71E’,D: =
A\E,and D": = A\E'. Thennotethat fD N D = @ forall f € Fifandonlyif f'D' nD" =
@ forall f’ € zFz~1. Since elements f' € zFz~1 are started with ¢t and ended with ¢t~ but
D’ consists of elements not started with t, we have f'D' n D' = @. Now for j € {1,2,3},
put u;: = s’/z. Obviously each v; is contained in (s, t). By definition, we have w;E = s/E’.
This shows that u; E consists of only elements started with s/ . Therefore u, E, u,E, and usE
are pairwise disjoint.

Now we prove Main Theorem. Before the proof, we remark that the AP is preserved under
taking free products. Hence I" has the AP if and only if each free product component I; has
it.

Theorem (3.2.6)[3]. Let I" be an infinite free product group with the AP. Then, for a €
S(T', X) with property R, there is no proper intermediate C*-algebra of the inclusion C;:(T) c

C(X) »,. . In particular, when additionally « is amenable, then C(X) .. T is a minimal
ambient nuclear C*-algebra of the non-nuclear C*-algebra C;(I').

Proof. Let A be an intermediate C*-algebra of the inclusion C; (I") € C(X) =, T'. We first
consider the case E(A) = C. In this case, we have the equality A = C; (I).

We next consider the case E (A) # C. In this case, by Proposition (3.2.4), E(A) is dense in
C(X). Let U be a proper clopen subset of X. Let € > 0 be given. Then take a self-adjoint
element x € A with E(x) — xy, < €. By property R, there are torsion-free elements s, €

[; and s, € I with i # j which fix y. Put A := (sq,s;). Take y € C(X) X, I satisfying
E(y) = yyand ||y — x|| < €. By Lemma (3.2.5), we can apply the Powers argument, , by
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elements of A. Iterating the Powers argument sufficiently many times, we obtain a sequence
ti,..., t, € A satisfying the inequality

1¢ .
EE t;(y —xu)ti || <e
i=1
Since yy is A -invariant, we have
n
1 -1
Ez tixt; - — xull < 2e.

i=1
Since € > 0 is arbitrary, this shows y; € A. Therefore A = C(X) %, T.

Proposition (3.2.7)[3]. Let A be asimple Cx-algebra. LetI" be an infinite free product group
with the AP. Let a: " ™~ X be a Cantor system with property R. Then the inclusion A ®
C; (T c A® (C(X) x,. I') has no proper intermediate C*-algebra.

Proof. Let B Dbe an intermediate C*-algebra of the inclusion AR C; (N CcAR
(C(X) =, I').Put d: = id4, ® E. Throughout the proof, we identify A witha C*-subalgebra
of A @ C(X) in the canonical way. Note that the image ®(B) contains A. When the equality
®(B) = A holds, we have B =A Q C; (I").

Suppose ®(B) + A. We observe first that for an element x € A Q C(X) satisfying
(¢ ® id¢x)) (x) € C for all pure states ¢ on A, we have x = (id, ® ) (x) € A for any
state ¥ on C(X). Hence we can choose a pure state ¢ on A and an element b € B satisfying
fi= (o ® idcy)(P(b)) € C(X)\C and [If]l = 1. Now let € > 0 be given.

By the Akemann—anderson—Pedersen excision theorem, there is a positive element a € A of
norm one satisfying ||®(aba) — a? @ f|| < e. By the simplicity of A4, for any € > 0 and
any positive contractive element ¢ € A, there is a finite sequence x4,..., x,, € A satisfying
the following conditions.

<eEe.

(i) <

x;ja°x; — ¢

L

n
2
=1
n
E XiX;
i=1

For such a sequence, we have

d (Z xiabax; ) —-c®f)

i=1

< 2

(ii)

< 3e.

This shows that the closure of ®(B) contains ¢ & f. Proposition (3.2.4) then shows that the
closure of ®(B) contains the subspace ¢ @ C(X). Now the proof of Theorem (3.2.6) shows
the equality B =4 ® (C(X) =, I).
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Chapter 4
Quasi-States on C*-Algebras

We show that an answer to a question that positive quasi-linear functionals in C*-
algebras are linear under certain given conditions.

Section (4.1): Decomposition of Quasi-States and C*-Algebras Generated by two
Projections

Let o»'be a C*-algebra. A positive quasi-linear functional on .7is a function p: 7= C such
that:

(i) p is a positive linear functional on each abelian C*-subalgebra of .o/
(ii) sup{p(A)|A € LA = 0, ||A]| < 1} < o,
(iii) p(A + iB) = p(A) + ip(B) if A and B are self-adjoint elements of .o/

A quasi-state on 27 is a positive quasi-linear functional p on o7 that satisfies the
normalization condition sup{p(4)|A € &/A = 0,||A|]| < 1} = 1. If &7is unital with unit
1, this is equivalent to the condition p(I) = 1.

We are concerned with the question of when positive quasilinear functionals on C*-
algebras are linear. In view of the condition (iii) and since positive quasi-linear functionals
are scalar multiples of quasistates, this reduces to the question of additivity of quasi-states
on the self-adjoint elements of a C*-algebra. This question and its various forms, depending
both on the nature of quasi-states and on the structure of the underlying algebra, substantial
progress had been made in a number of cases.

One of the most remarkable advances was the pioneering work of

which the question was settled in the allirmative for quasistates on Z{#), the algebra of
all bounded operators acting on a Hilbert space Z# with the property of being completely
additive on orthogonal projections, provided the dimension of # is different from 2. In the
two dimensional case the answer is, in general, negative-one can construct discontinuous
quasi-states by simple geometrical arguments; so that one cannot expect all quase-states to
be linear on C*-algebras that admit two-dimensional irreducible representations. Following
Gleason’s result, contributions to the problem were made, and in recent years the general
problem. Combined together their results provide an affirmative answer for quasi-states on
von Neumann algebras without central summands of type I,. One of the crucial points
underlying this solution is the norm-continuity of quasi-states on the set of projections. For
more general C*-algebras continuity of quasi-states still remains an open problem. More can
be said about additivity of continuous quasi-states. One finds, for example, that continuous
quasi-states are linear on AF C*-algebras, by applying Gleason’s result to a norm-dense
union of finite-dimensional subalgebras.

We study various classes of continuous quasi-states and the objective is to obtain
further information on the problem. Besides continuous and uniformly continuous quasi-
states we consider the so-called weakly subadditive quasi-states that satisfy p(A + B) =
p(A) + p(B) for all positive A and B in .27 and approximately additive quasi-states with
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the property that |p(4, + B,) — p(4,) — p(B,) —4 0, whenever {A,},ec4 and {B,},c4 are
bounded nets of self-adjoint elements in .o and ||[ A, B.]ll =4 0. Develops some of the
elementary properties of such quasi-states. We obtain a decomposition of uniformly
continuous quasi-states into atomic and diffuse parts on separable C*-algebras whose
irreducible representations are of dimension different from 2. This is used together with
Christensen’s result to show additivity of weakly subadditive quasi-states on certain
extensions of locally trivial fields of elemantary algebras by finite-dimensional C*-algebras,
and, in particular, on C*-subalgebras generated by two projections under suitable
multiplicity condition. We use the information and the techniques developed to obtain new
results about quasi-states on C*-algebras containing a dense set of elements with finite
spectrum. In particular, additivity is shown for arbitrary quasi-states on the Calkin algebra,
and for weakly subadditive and continuous quasistates on certain stable algebras.

The letters &% and & will denote C*-algebras with elements
A,B,C,D, ..., A, ", and 4 * are the symbols for the self-adjoint part of - ./ positive
part of .o7’and positive part of the unit ball of .27 respectively. If .27is unital, | will always
denote the identity of J&*. The C*-algebra of n X n matrices over .27is denoted by M,, (7).
We shall occasionally consider C*-algebra .27in its universal representation. In this case &~
will denote the weak closure of a subset @< .&7and C,; stands for the minimal central
projection in &7~ majorizing each minimal projection of .~ (the atomic projection of
7 7). For a linear functional p on .o/We shall sometimes use the same letter p to denote its
ultraweakly continuous extension to .o . The symbols 24 #") and #are reserved for the
algebra of all bounded operators on a Hilbert space #and the algebra of compact operators
on a separable Hilbert space, respectively.

If p is a positive quasi-linear functional on .o7'we use the notation |[p|| = sup{p(4)|A €
4 "} in analogy with positive linear functionals.

Similarly, for positive quasi-linear functionals p and w on .&7the expression w < p will
mean that w(4) < p(A) for all A € .7 (equivalently, p — w is a positive quasi-linear
functional on .27").

Definition (4.1.1)[4]. A positive quasi-linear functional p on a C*-algebra .&’is said to be
weakly subadditive if p(A + B).= p(A) + p(B) for all positive

A, B in Zp is said to be approximately additive if |p(4, + B,) — p(4,) — p(Bg) =, 0 for
each pair of bounded nets {A,}4e4 and {B;}qea IN 4, such that ||[[A,, Bg]ll =4 0.

Proposition (4.1.2)[4]. Let p be a positive quasi-linear functional on a
C*-algebra &/

(i) If p is weakly subadditive, then p is monotone on .27 If in addition, .27is unital, then p
is monotone on .24 ,, and uniformly continuous on .o

(ii) If p is approximately additive and {A,}qc, {Bs}qca are bounded nets in £ ,, such that
”Aa - Ba” ~a 0, then |p(Aa) _p(Ba)l ~a 0.

Proof. (i) Monotonicity of p on .7 * follows immediately from the definition, since p(4) —
p(B) = p(A —B)=>0when 0 < B <A. If &isunital and C < D for C,D € &£, then
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0<C+AU <D+ Al where I =max{||C]||,||D||]}. Consequently, p(C)+ Ap(l) <
p(D) + Ap(I), and p(C) < p(D). Finally, for A and B in .2Z,, we have, so that

B—||A-B|I<A<B+|A-BJ|I,
So that

p(B) = lA=Bllp() < p(4) < p(B) +lA — Bllp(D),

from the remark above. Thus |p(4) — p(B)| < p(I)||A — B||. For arbitrary A and B we
obtain |p(A) — p(B)| < 2p(I)||A — B||, by applying the preceding inequality to the real
and imaginary parts.

(ii) Since the nets {A4,},c4 and {B,},c4 are bounded, we have

IIAg Bl =4 0 and hence |p(A,) — p(B,) — p(A, — By)| =4 0 from the definition of
p. On the other hand, |p(4, — By)I| < llpll - l1A, — Bgll, since for each a € A the
restriction of p to the abelian C*-subalgebra generated by

A, — B, is a positive linear functional. Therefore p(4, — B,) —, 0, and the assertion
follows.

Let Q(27") denote the set of all positive quasi-linear functionals on .270f norm less
or equal to 1, and let SQ (") denote the subset of Q ("), consisting of weakly subadditive
positive quasi-linear functionals. It was shown that Q(.<”) is weak*-compact and convex.
The same property holds for the weak*-closed convex subset SQ(.2”). From the Krein-
Milman theorem the sets Q(.2”) and SQ(.%”) are weak*-closed convex hulls of their extreme
points. It is not hard to see that the zero functional is an extreme point of each of these sets,
while the nonzero extreme points are of norm 1, that is, are quasi-states of .27 Following this
observation we shall call the nonzero extreme points of Q(.%) (resp. Se(.27")) pure quasi-
states (resp. pure weakly subadditive quasi-states).

Where the following proposition.
Proposition (4.1.3)[4]. Let d be a unital C*-algebra.

(i) p is a pure quasi-state of .7if and only if each positive quasi-linear functional ¢ on .o~
such that o < p is a scalar multiple of p.

(i) If p is a pure weakly subadditive quasi-state of .o7and ¢, is a nonzero positive linear
functional on .o7’such that ¢, < p, then p = (1/||l@4]]) - ¢1-

Proof: We shall show (ii). The proof of (i) is analogous. Let ¢, = p — ¢,. Then ¢, is a
positive quasi-linear functional on .27and ¢, is weakly subadditive, because

@,(A+B)=p(A+B) —¢,(A+B) = p(A+B) — (¢:(4) + 91(B))
> p(A) + p(B) — (¢1(4) + ¢:1(B))

= ¢,(A) + ¢,(B), when ABe.w"
With 4, = [l, ]l and 2, = llg2ll = (¢, (1)), we have
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M+ =)+ () —r(D) =p() = 1.
1 1
IfA4, =0,thengp, =0,andp = ¢, = (II(p_II) @1, If A, # 0, then w, = (/1—) @, and w, =
1 1
(L) @, belong to SQ (), and p = A, w; + A, w,. Since p is pure, this implies w, = w, =
p. Consequently, p = ( )(p1

We obtain the natural decomposition of a uniformly continuous quasi-state on a
separable C*-algebra, whose irreducible representations are of dimension different from
two, into atomic and diffuse parts. Applications of this technique appear in the second part,
where we consider weakly subadditive quasi-states on certain separable type | C*-algebras.

Lemma (4.1.4)[4]. (i) The function p| U e &extends to the function p on U@E,\ @,
given by p(A) = w, | ¥ If A € & for some Y€ A p|F= w,|Z. (i) if Py, ..., P, |s a
finite family of mutually orthogonal minimal projections in .7 —, then P, ..., B, and Yieq

belongto Ugepn & ,and XL p(P) = pQie, P) < 1.

Proof. (i) We have to show that w, (4) = w, (4),ifA€ & n & forsome Zand Zin
Aand p| ZF= w,| &, p| €= w,| € Choose nets {B,}qep and {C,}4en contained in & and
%, respectively, and convergent to A in the weak-operator topology. Since 0 is the weak-
operator limit of the net {B, — C,}4ea, and bounded linear functionals on &7 are
weakoperator continuous, the Hahn-Banach separation theorem implies that O belongs to
the norm-closed convex hull of any cofinal subnet of {B, — C,},ea. Consequently, for any

g > 0 we can choose a, € 4 such that |w, (4) — w,(By)| < &, |w,(4) — w,(C,)| < & for
all a = a, and a convex combination Y’ ; A; (Baj - Caj) such that a; = a,, for all j and

|p (Z]-A-B ) — (ZM-C )| < g, from uniform continuity of p. Therefore |wx(A) —
Wy (D] < 5545 [0 (A) = e (Bay )| + [0 (214784,) = p (£546a, )| + 2140y (€ ) -
a)y(A)| < 3¢ and w,(4) = w, (4).

(i1) If P is a minimal projection in .27 ~, then P is the support projection of some pure state
w of &7, and I — P is the open right support projection for the left kernel &, of w. Since
Zw N Z,", is separable, it admits a strictly positive element A,, whose range projection is
I — P. Thus, P belongs to a weak-operator closure of a maximal abelian subalgebra of d
containing A,. If P, .... B,, is a finite family of mutually orthogonal minimal projections in
&/~, the corresponding pure states wg,..,w,, satisfy |w;— || =20 k€
{1,...,n}, j # k). From there is a maximal abelian C*-subalgebra & < & such that for
eachi € {1,....n}, w;| & is a pure state of &7, and w; is the unique extension of w;| & to
a state of .o7. Noting that w; also uniquely extends to a normal state of .7, we see that
P,e & foreachi = 1,..,n. Therefore };i, P, € &, and from the definition of g in

(i), X1 A(P) = p(EiL, P) < |pl = 1.

Now consider an arbitrary but fixed t in o7'the spectrum of .&7and fix (i, ) in t. Let C,
be the central cover of (i, #) in &7, and let @ denote a fixed isomorphism of &7~ C;, onto
B(#). With each unit vector e in &, we shall associate the minimal projection P, in
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7~ Cy, such that ®(P,) is the one-dimensional projection onto the subspace spanned by e.
This notation is implicit in the following lemma.

Lemma (4.1.5)[4]. If dim(&#) # 2, then there is a positive normal linear functional a;, on
&/ Cy, such that . (P) = p(P) for each minimal projection

Pe.«C,

Proof: Let y be the nonnegative function on the unit sphere of &, given by ¥(e) =
p(P,) (e € #, |le|l = 1). If Zis a finite-dimensional subspace

of Z; and{e;};_,, {gi}{1, are any two orthonormal bases of 5 then }I_; P,, = ¥iL, P,

that gi’
Z Yle) = Z p(R)=p (Z P) =p (2 Pgi> = Zﬁ(Pgi) = Z ¥(9:),

i

SO

from Lemma (4.1.4) (ii). Therefore, the restriction of y to a unit sphere of any finite-
dimensional subspace of & is a frame function. There is a positive operator T € B(#)
such that Y (e) = (Te, e) for each unit vector e € #, and T is of the trace class, because

sup(T%, p(Py,)) < 1 for any orthonormal basis {h;} of % (Lemma (4.1.4) (ii)).
m

Let o, be the positive normal linear functional on o7 C;, given by o;(A) =
Tr(®(A)T) (A € & C;, where Tr denotes the usual trace on B(#). If P is a minimal
projection of & C,, then P = P, for some unit vector u € #, and o;(P,) =

Tr(®(RIT) = (Tu,u) = pw) = p(P,).

Proposition (4.1.6)[4]. Let .« be a separable C*-algebra given in its universal
representation on a Hilbert space &#; and A be the set of all maximal abelian subalgebras of
7. Suppose p is a uniformly continuous quasi-state on .o7. Then:

(i) The set U zep & contains all finite orthogonal sums of minimal projections in &7 ™.

(i) The function p|Ugep & extends to a function p on Ugep &%, such that
Py P) =X, p(P;) or any finite orthogonal family P, , ..., B, of minimal projections
of &7

(iii) If .o~ does not admit irreducible representations of dimension 2, then there exists the
atomic positive linear functional p,; on .7’such that p,; < p and p,;(P) = p(P) for each
minimal projection P € &7 .

The proof of the proposition will be broken into several steps. Note first that if 7€ A, then
the restriction p| & of p to & extends to a positive linear functional on .27, so that p| &%=
w, | & for some vector x € #

Proof. Lemma (4.1.4) establishes parts (i) and {ii) of the proposition. It remains to show

part (iii).

Let {Pq0|(i, ) € I x 27} be any orthogonal family of minimal projections in .22 ~, such

that Y Pun =Cp, for each te.r For any finite subset F S1Ix .7 we
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haveY ;i pner P(Pin) <1, from Lemma (4.1.4)(i). Consequently, the series
Yeearier (P ), is (unconditionally) convergent, and

Z 2 P_(P(i,t)) = z 0 (Cp) (1)

teri€l tes

from Lemma (4.1.5). For each t € &7 let ¥, be the positive normal linear functional on
7, given by Y, (A) = 0,(AC;)(A € = 7). From (1) there are at most countably many t
for which i, # 0. Relabeling these as t;, t,, ..., we see that the series }.;2, 1, , is absolutely
convergent to a positive normal linear functional p,;. We have

pacd) = Y 0 (AC,) (A€, @)
i=1
so that ||paell = pat (Cat). Hence pat is an atomic positive linear functional on .2 From (2)
and Lemma (4.1.5), p,:(P) = p(P) for each minimal projection

Pe .

Given A € .7 *, we shall show that p,.(4) < p(A). For this it suffices to establish that
pat(E) < p(E) for each projection E of the form E = 23 ;1(4), where 23 ;1 is the
characteristic function of an interval (4,4'] € R. Furthermore, from inner regularity of the
measure induced on R by the restrictions of p,; and p to the abelian C*-subalgebra generated

by A, it suffices to consider E = 25-(A), where #”is a compact subset of R. By outer
regularity, for any € > 0 we can choose an open subset (7 containing %~ such that

p(24A)) — e < p(E), and continuous nonnegative functions f; and g, that are identically
1 on % vanish outside ¢ and satisfy f; g. = g.. We then have

p(f() — & < 5(E) < p(f.(4)). 3)

On the other hand, 72, EC, = Y.qe4 Py, for some orthogonal family {P,},c4 of minimal
projections of .7 ~, so that from (2)

(0.0]

pacB) = Y 0r (EC) = ) p(Fo). @

i—1 acA

From (3) and (4) it now follows that the inequality p,;(E) < p(E) will be established, once
we show that

> 6(R) < p(£:(0) (5)
j=1

for any finite subfamily {Pj};l:l of {P,}4ca. Let wq, ..., w, be the pure states of .7 with

support projections P;, ..., P,, respectively. Since }.7_, P; < g.(A4), the restriction of each
w;(j =1,...,n) to the hereditary C*-subalgebra 7= g.(4).«/g.(A) is a pure state of .7
There is a maximal abelian C*-subalgebra 2, of .7Such that w;| % is multiplicative and
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w;|.7Ts the unique extension of w;| &4 each j. Noting that f.(A) is a unit for .7t follows

that Py, ..., B, and f.(A) belong to the weak closure of some abelian C*-subalgebra &2
%,. Thus (5) follows from the definition of p. The proof is complete.

Following Proposition (4.1.6) we see that p; = p — p,; 1S @ positive quasilinear functional
on .'that satisfies p;(P) = 0 for each minimal projection P € .7~ Thus, it is natural to
call p,; and p, the afomic and diffuse parts of p.

Christensen established an affirmative solution to the general quasi-state problem for C*-
algebras with Hausdorff spectrum that are representable by locally trivial continuous fields
of elementary C*-algebras nonisomorphic to M,(C). This result is used in the following
proposition, where we consider weakly subadditive quasi-states on unital extensions of such
algebras by finite-dimensional C*-algebras.

Proposition (4.1.7)[4]. Let .27'be a separable unital C*-algebra containing a C*-algebra &
with Hausdorff spectrum as a closed ideal, such that Zis representable by a locally trivial

continuous field of elementary C*-algebras, &7/ &is finite dimensional, and .»70oes not

admit two-dimensional irreducible representations. Then weakly subadditive quasi-states on

7 are linear.

Proof. It suffices to consider the case of pure weakly subadditive quasistate p on .in its
universal representation. From Proposition (4.1.2)(i), p is uniformly continuous on <.
Following the notation of Proposition (4.1.6), p,: # 0 if p(P) # 0 for some minimal
projection P € o7 . Hence p = (1/llpaell) - pae from Proposition (4.1.3)(ii), and p is
linear in this case.

Otherwise, let C denote the open central support of & in &7 . Since AT —Cy) IS
isomorphic to the finite-dimensional C*-algebra .7/ &, we have [ — Cg5 = Y%, P; for
some finite orthogonal family of minimal projections Py, ..., B, in . From Lemma
(4.1.4)(i1), Py, ..., P,, belong to the weak closure of some maximal abelian C*-subalgebra
By spectral theory there is an increasing sequence {4, }in Z'suchthat4, =, [ — Y%, P; =
C & 1n the strong-operator topology. Since p(P;) = --- = p(B,) = 0, we have p(4,) —, 1.
In particular, ||p| @] = 1. p| & is a state of & Let {H,},ca & Z;" be an increasing
approximate unit of & which is quasi-central for .o7and let w be the state of .othat extends

p| @ via w(A) = limp(H,AH,) (A€ ). If A€ ", we have p (A%HSA%) < p(A) for
a
each a € A (Proposition (4.1.2) (i)). Therefore

11
w(A) =limp(H,AH,) = limp <A§H§A5> < p(4),
a a

from uniform continuity of p. Consequently, w < p, and from Proposition
(4.1.3)(ii), p = w is linear. This completes the proof.

Corollary (4.1.8)[4]. Let &be a unital C*-algebra containing projections P and Q, C*(P, Q)
be the C*-subalgebra generated by P, Q, and I, and p be a weakly subadditive quasi-state
on ¥ If the relative commutant of C*(P, Q) in .27tontains a unital copy of M,,(C) for some
n 2 3, then p is linear on C*(P, Q).
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Proof. It is well known that C*(P,Q) has at most two-dimensional irreducible
representations. The two-dimensional representations are characterized up to unitary
equivalence by Sp(PQP){0,1}, so that to each A € Sp(PQP){0,1} corresponds the
representation ,; given by

yl (/1_12)1/2
@A-a1)Y2  1-2

1 0

0 o ad m@=

m(P) = [

Let < denote the intersection of kernels of one-dimensional representations.

Then &= M,( €,(Sp(PQP)\{0,1})) and C*(P,Q)/ < = }.;P C for some integer [ such
that 0 < [ < 3, depending on the relative position of P and Q.

Consequently, if .94 denotes the separable C*-subalgebra generated by C*(P, Q) and some
commuting unital copy of M, (C) (n = 3), then o = M,,(C*(P,Q)), and .4 contains a
closed ideal & = M, (&) = M,,( %(Sp(PQP)\{0,1})), such that o4/% = >..P
M, (C).

From Proposition (4.1.7), p is linear on .24 and, in particular, on C*(P, Q).
Section (4.2): C*-Algebras Containing a Dense Set of Elements with Finite Spectrum

The following theorem is the crucial tool in our investigation of quasi-states on C*-
algebras containing a dense set of elements with finite spectrum. It is a slight generalization
established by Christensen for quasi-states on properly infinite von Neumann algebras.

Theorem (4.2.1)[4]. Let .27 be a unital C*-algebra, and p be a quasi-state on .7 which is
linear when restricted to each C*-subalgebra generated by two projections. Suppose that
there exists a sequence of projections {P,} in .7’such that

(i) p = B =4 0, and

(ii) for each n there are partial isometries U, V},, and W, in .o7'such that U, U,, = V)V, =
w)w, = P,,and B,, U, U, V,, V., W, W,* are mutually orthogonal.

Then there is a state on .27that coincides with p on the set of projections of .»ZIn particular,
iIf .o7contains a dense set of elements with finite spectrum and p is continuous, then p is
linear.

Proof. The key point in the proof is to show that p is “almost linear” on the algebras P,.&”
P, for all sufficiently large n. For this, the conditions (6) and (7) are used to construct, for

each n and any two positive elements A and B satisfying A, B < iPn, mutually orthogonal
projections Q and R in .27’such that

P.QP, =4, P,RP,=B
and
p(Q) = p(P,QF,), p(R)=p(PRP,), pQ@+R)=p(B(~Q+RAE)

when n is sufficiently large. Once this is achieved,
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p(A+B)=p(Q@+R)=p@Q)+pR)=p(A) + p(B).

From this it will follow that the sequence of functions {¢,}, given by ¢,(C) =
p(P,CR,) (C € ), is pointwise convergent on the linear span of projections to the positive
linear functional that coincides with p on each projection.

For a fixed n consider any two positive elements 4, B € B,.%/P,, such that

A B < an. From (ii) the elements
2

1 1 1
X, =A2+ U, Az + V,(P, — 24)2

and

1 1 1
Y, =B2-U,B2+ W, (P, — 2B)2

are partial isometries that satisfy
X:X,=YY, =P, and  X.Y,=0.

Thus, the projections Q = X, X;, and R = Y, Y, are mutually orthogonal, so that p(Q +
R) = p(Q) + p(R). In addition, P,QP, = A and P,RP, = B.

Since p is linear on the C*-subalgebra C*(Q,P,), generated by Q,P, and I, we have

1p(A) = p(@] = |p(PQR) = p(@)I < |p((B = DQR)| + |p(Q(B, = D)| < 2/n, from
the Cauchy-Schwarz inequality (where it is assumed that p(I — B,) < 1/n?). Similarly,

2 2
lp(B) —p(R)| < — and lp(A+B) —p(@+R)| < —.

Therefore

6 1
p(4+B) - p) - p(B) < (0<AB<ZR). 6)

If ¢ and D are arbitrary self-adjoint elements of &/ and a = max{||C||,||D]|}, b =
max{||P,CP, + aB,||, ||P,DP, + aP,||, then

0< (%) (P,CP, + aPy), (i) (P.DP, + aP,) < %Pn; so that from (6),

12b  24a
|p(Pn(C + D)Pn) - p(PnCPn) _p(PnDPn)lT < T

This, in its turn, implies that

Ip(Pn(A+B)Pn)_p(PnAPn)_p(PnBPn)l_n>0 for A;BEM(7)

Let {¢,,} be the sequence of functions of .o/ given by ¢,,(A) = p(P,AR,) (A€ &) . For

each projection E € .o&'we have |¢,,(E) — p(E)| = |p(P,EB,) — p(E)| < 2/n, as before.

Thus, lim ¢,, (E) = p(E), and we see from (7) that the sequence {@, }n=1 , cOnverges on
n

the linear span .& of projections of .27t the linear functional ¢. If A € &7, then p(A4) =
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lim p (B,AP,) = 0. Consequently, ¢ is a state on .57and ¢ extends to a state of .oZ’which
n—>00
satisfies the first assertion of the theorem.

Note that if . denotes the subset of .~“consisting of the elements with finite spectrum, then
p| F= p|Z Consequently, if s norm-dense in .27and p is continuous, then p is the unique
continuous extension of ¢|.%#

Therefore p is the unique extension of ¢ to a positive linear functional on &

Corollary (4.2.2)[4]. Let .27be a unital C*-algebra containing a dense set of elements with
finite spectrum, and _#a properly infinite von Neumann algebra. if p is a weakly subadditive
quasi-state on @, 4 then p is linear on &

Proof. Let 2denote a subalgebra of _Z which is the relative commutant of some unital type
15 subfactor of _Z Since & is a properly infinite von Neumann algebra, we can choose an
increasing sequence of projections {P,} in & such that p(P,) =1—-2"" and [ — P,
contains three mutually orthogonal subprojections each equivalent to B,. From Corollary
(4.1.8). p is linear when restricted to each C*-subalgebra of 2Q,,in Z(C X @min-#)
generated by two projections. Furthermore, p is continuous on &7@®,in 4 (Proposition
(4.1.2) (i)). Thus, Theorem (4.2.1) applies, and p is linear &Q.,in & In particular, p is
linear on &7

Corollary (4.2.3)[4]. If p is a quasi-state on the Calkin algebra = A #)/ #(#), then
p is linear.

Proof. Since each self-adjoint element of % belongs to some abelian C*-subalgebra
generated by projections, any bounded linear functional on & that agrees with p on the set
of projections must coincide with p. Hence it suffices to show that p satisfies the conditions
of Theorem (4.2.1). It is easy to see that p satisfies conditions (6) and (7). We shall show
that p is linear on each C*-subalgebra generated by two projections of &

Consider projections E and F in & There are projections E; and F; in 24 #) such that
¢(E;) = E and ¢(F;) = F, where ¢ denotes the quotient map. Indeed, if E = ¢(A) for
some A € @ (H)*, it suffices to choose E; equal to the spectral projection of A

corresponding to the interval (%, 00).

The W*-subalgebra of 24 #), generated by E; and F; is the direct sum of a type I, W*-
algebra &and an abelian W *-algebra ©. Thus, with C*(E, F)-the C*-algebra generated by
E and F-we have

C*(E,F) € ¢(@2)09(2)
If (&) = 0, then C*(E, F) is abelian, and p is linear on C*(E, F). Since s generated
andF, =F, — E;AN F, —(E, Vv F; — E;) A F;,we may assume that E, and F,, are infinite
projections of 24 #).

The algebra & may be identified with M,( (X)), where X is a compact hyperstonean
space-the spectrum of the abelian W *-algebra generated by E, F,E,. Let &, be the norm-
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dense *-subalgebra of Z7consisting of 2 x 2 matrices over continuous functions that take
finitely many values on X.

Then ¢ (%) is norm-dense in ¢(&). If A, and B, are two elements in ¢(%,), they
generate a common finite partition of the identity of ¢(Z) into nonzero projections
H,, ..., Hy in the center of ¢ (%), and we can find projections G, ..., G, in the center of &%’
such that ¢(G,) = H4, ..., $(Gy) = Hy.

Since G4, ..., G, are infinite projections of 24 #), each can be halved into two equivalent
subprojections; and we see that A, and B, are contained in the direct sum of k copies of
M,(C) inside & By Gleason’s theorem, p(A4,+ B,) = p(4,) + p(By). Therefore
plo (%) is a positive linear functional on ¢( %), and p|¢ (%) extends by continuity to
a positive linear functional ¢ on ¢(.2). p is continuous on the set of projections in ¢ ( %).
But the set of projections in ¢( %5,) is norm-dense in the set of projections in ¢(.&). Thus
p agrees with ¢ on the set of projections in ¢ (%), so that ¢ = p|¢p(Z). Consequently, p
is linear on (@)D P(2), and, in particular, on C*(E, F). This completes the proof.

Proposition (4.2.4)[4]. Let .7 be a unital C*-algebra containing a dense set of elements
with finite spectrum. If p is a weakly subadditive and continuous quasi-state on .2/Q.% then
p is linear.

Proof. /R %Contains a dense *-subalgebra that may be identified with the increasing union

Umen M, (), where M,,, (=) is viewed as embedded in M,,,, , (%7 via the map i,, given

by i,,(A) = [‘3 8] We shall adopt the proof of Theorem (4.2.1) to show that p is linear

on UmEN Mm(vg/)

Since .271s unital and p is continuous, p|CI®. %+ 0 (in fact, p|CI®. % is a state). Therefore
we can choose an increasing sequence of projections {B,} In Upey M (C) (S
Umen M, (92)) suchthat p(B,) = |lp|CIQF 1| — 1/n?. Inparticular, p(G — B,) < 1/n?if
G is a projection in U,eny M, (€) and G = P,. It is easy to see also that for a given n there
is a sufficiently large integer p, and partial isometries Uy, V,, W, in M,,(C), such that U U,, =
Vv, = W, W, = B, and B,, U,,U,, V,,V,; W,, W, are mutually orthogonal.

For each m € N let I,,,, denote the identify projection of M,, (). If P and Q are two
projections in U,,eny My, (27), then P, Q € M,, () for some k.

Let {Eij|i,j € {1,2,3}} be the system of matrix units coming from the equivalence of

projections I,.I,, — I, and I5,_,, in M5, (C). The C*-algebra C*(P, Q) generated by P, Q,
and I, is a hereditary subalgebra of the C*-algebra £ generated by C*(P,Q) and

{Eij|i,j € {1,2,3}}. From the proof of Corollary (4.1.8) it follows that & contains an

essential ideal 4 = My( % (Sp(PQP)\{0,1})) such that &/ <4 = ., ® M;(C) for some
integer .

From Proposition (4.1.7), p is linear on &and, in particular, on C*(P, Q).

The proof of Theorem (4.2.1) now applies almost verbatim (indeed, the only change is to
replace the estimate p(I — B,) < 1/n? by p(G — B,) < 1/n?, if G € Uyey M (€) and
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G = B,) and shows that p is linear on the normdense *-subalgebra U,,ey M, (7). Since p
IS continuous, it is linear on &/'Q.%

Guided by the example of pure states, it is natural to ask whether the conditions (6) and (7)
of Theorem (4.2.1) (or somewhat similar properties reflecting the size of a nullspace) hold
for pure quasi-states. We were not able to answer this question even for continuous pure
quasi-states on C*-algebras containing a dense set of elements with finite spectrum.

However, some additional evidence for a certain class of C*-algebras with finite trace may
be deduced by “approximate centralizer” techniques developed for finite von Neumann
algebras. In the following proposition we shall say that a C*-algebra .27 containing a dense
set of elements with finite spectrum, is strictly finite if there is a tracial state T on . 'such
that for each pair of projections P and Q in 27 the condition t(P) < 7(Q) implies P <
Q (" < " means “Murray-von Neumann subequivalent”).

Since the positive part of the unit ball of each hereditary C*-subalgebra of .27is a norm-
closed convex span of projections, it follows that .7is simple. In particular, any tracial state
of &7is faithful.

Obvious examples of strictly finite C*-algebras are finite von Neumann algebra factors and
UHF-algebras.

Proposition (4.2.5)[4]. If «7is a separable unital strictly finite C*-algebra and p is a
continuous pure quasi-state on .27 which is linear when restricted to each C*-subalgebra
generated by two projections, then p is linear.

Proof. Let 7 denote a tracial state of .o7and £? denote the set of projections of .« We may
assume that there is at least one projection G in SZsuch that 7(G) = a < % (otherwise is
isomorphic to M,,(C) for somen < 3.

If M(a) = sup{p(F)|F € &7(F) = a}, choose a sequence of projections {P,} such that
7(P,) = aforeachn,and p(B,) > M(a) — 1/2n*(n=1,2,...).

Which apply with only slight changes in the proof to the present case, for each projection
E € Zwe have

1
|p(E) = p(P.QP) — p((I = RIEU = P))| ~, (8)
p(BER) 2 A,t(BER) ©)
1
p(U = RIEU = P)) < Ayt(U = PYEU = P) + — (10)

for some sequence of nonnegative real numbers {1,,},—,. From (8) and (9)

1 1
P(E) 2 Mt(RER) — 55—~ (E€ Fn=12,..). (11)
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We claim that p(I — E,) —, 0 for some sequence of projections {E, } such that 7(E,) = «
for each k. Indeed, if inf{A,|n € N}, then from (10), applied for E =1, p(I — B,) <

A, t(I — B) + # < Anﬁ, so that a suitable subsequence of {P,},-; can be taken for
{Erc};ozl-
On the other hand, if 4,, > A1 > 0 for all n, consider the sequence of positive linear

functionals {¢,,} on .7 given by ¢, (4) = 1,7(P,AP,) (A € &). From (9), |l@,|l < % for

each n. By weak compactness, the sequence {¢,,} has a limit point ¢, and ¢ # 0, because
@, (1) = A,,t(P,) = Aa for each n. Furthermore, from (11), p(E) = @(FE) foreach E € &
Since p is continuous, and the elements with finite spectrum are dense in .7 this implies
p(E) = @(E) for each &7in .o ™. Therefore p = (1/||¢]]) - ¢ (Proposition (4.1.3) (i)), so
that p is a pure state. But then the maximal hereditary C*-subalgebra & n %" has an
increasing approximate identity consisting of projections. Consequently, since .27is strictly
finite, % N %" must contain projection P such that 7(P) = 1 — a, and we may set E,, =
I — P for each K. Thus, the claim follows, and p is linear by Theorem (4.2.1).

Proposition (4.2.6)[4]. Let p be an approximately additive quasi-state on a C*-algebra &/
in addition, p is either monotone on .o~ *, monotone on 2%, or weakly subadditive, then p
extends to a quasi-state with the same properties on the multiplier algebra . A ).

Proof. Suppose first that p is approximately additive and monotone on .27 *. Let {H, }gea S
4 ™ be an increasing approximate identity for .o which is quasi-central for .4.27). We
1

note that the net {Hf_l} Is also quasi-central for .A.%). For this consider the C*-algebra

acA

R=1"(MX),A)/ 7 where |°(.A),A) denotes the C*-algebra of all bounded nets
{M,}sca along A in A7) under the pointwise operations and the norm ||{M,| =
sup, ||IMg]l, and .# is the closed ideal in I°(.#Z (%), A), consisting of all the nets
converging to 0. If [{M,}] denotes the image of {M,},c4 in Z2under the quotient map, and
M=) denotes the image of A7) in 22under the canonical embedding of .A.%) into &2
then [{H,}] belongs to the relative commutant of .A.%) in & Hence [{Hi*}](=

[{H,}]"/?)a 1s 0 commutes with 7 (.»7'). This means that | HY*M — Mh(ll/zll — 0 for
each M € # ()

Given A € .2 (%), the net {p(A'/*H,A"/?)} _ is increasing, since p is monotone on
7, and bounded above by ||A||. Therefore lign p(AY?H,AY?) exists. Since
[[ca/2H,4Y2 — HY2AHY?|| > 0, we have |p(4"/?H,AY2) — p(Hy?AHY®)| -4 o,
(Proposition (4.1.2)(ii)).

Consequently, lim p(H?AHY?) exists, lim p(HéAHE) =lim p(A"/?H,A"?), and
we may define o(4) =lim p(H*AHY?) for each A€ .# (7)*. If A and B are

commuting elements in .# (27)* then [H;/ZAH;/Z H/? BH;/Z]” — 0, so that from

approximate additivity of p,
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o(A + B) =lim p(Hy*(A+B) Hy'*) =lim p(Hy*AH;"?) +1im p(H;/*BHL?)
a a a
=0(A) + o(B).
From this it follows that o extends to a positive linear functional on each maximal abelian
subalgebra of .#Z ("), and to a positive quasi-linear functional (again denoted by ) on .#
(). Itis clear that o is a quasi-state.
Furthermore, if C € .o7*, then o(C) = lim p(C'2H, C/?) = p(C), from Proposition
a
(4.1.2)(ii).
If p is either monotone on &7, or weakly subadditive, then, in particular, p is
monotone on .7*. From the arguments above, p extends to a quasi-state o on .#Z (7). In

either case, monotonicity, subadditivity, and approximate additivity of o are easily deduced
from the definition of o and the corresponding properties of p.
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List of Symbols

Symbol Page
max: maximum 1
®: Direet sum 2
dom: domain 8
Q: tensor product 15
Lo: Essential Lebesgue space 15
A7 weighted Bergman space 15
£, Hilbert sequences space 15
Ly: Hilbert space 17
Im: Imaginary 25
arg: argument 27
Sp: Spectrum 28
Sup: Supremum 30
Ind: Index 41
Hom: homeomorphism 44
Prob: Probability 44
£%: Essential Hilbert sequences space 47
dim Dimention 55
min Minimum 60
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