الآيـة

بِنْ اللَّهِ ٱلرَّحْمَٰنِ ٱلرَّحِيمِ

قَالَ تَعَالَىٰ: ﴿ وَأُوْحَىٰ رَبُّكَ إِلَى ٱلنَّعُلِ أَنِ ٱتَّخِذِى مِنَ ٱلِجْبَالِ بُيُوتًا وَمِنَ الشَّكِرِ وَمِمَّا يَعْرِشُونَ ﴿ مُ كُلِّى مِن كُلِّ ٱلثَّمَرَتِ فَٱسْلُكِى سُبُلَ الشَّكِرِ وَمِمَّا يَعْرِشُونَ ﴿ مُ كُلِّى مِن كُلِّ ٱلثَّمَرَتِ فَٱسْلُكِى سُبُلَ رَبِّكِ ذُلُلاً يَغْرُجُ مِنْ بُطُونِهَا شَرَابُ مُخْتَلِفُ ٱلْوَنْدُ, فِيهِ شِفَآءٌ لِلنَّاسِ وَرَبِّكِ ذُلُلاً يَغُرُجُ مِنْ بُطُونِهَا شَرَابُ مُخْتَلِفُ ٱلْوَنْدُ, فِيهِ شِفَآءٌ لِلنَّاسِ إِنَّ فِي ذَلِكَ لَايَةً لِقَوْمِ يَنَفَكَرُونَ ﴿ اللَّهُ ﴾

صدق الله العظيم سورة النحل

Dedication

All praise to Allah today we fold the day tiredness and the errand summing up between the cover of this humble work.

To the spring that never stops giving

To my mother.

To whom he strives to bless comfort and welfare and never-stints what he owns to push me in the success way who taught me to promote life stairs wisely and patiently

To my dearest father God mercy.

To whose love flows in my veins and my heart

To my brothers and sisters.

To those who taught us letters of gold and teach us their knowledge simply

To my teachers

Acknowledgements

I would like to express my appreciation to my supervisor Dr. Ali Abdel Rahman Saeed Marouf who has cheerfully answered my queries, provided me with materials, checked my examples, assisted me in a myriad ways with the writing and helpfully commented on earlier drafts of this project. Also I am also very grateful to my friends, family for their good humor and support through the production of this project.

Abstract

This research aimed to study the effect of laser irradiation on bee honey (Seder) physical and chemical properties.

Four honey samples were used in this study with 250 g of each; three of them were irradiated by He-Ne laser with output powers 1 mW, 1.5 mW and 2 mW for 5 minutes for each sample.

Analysis included measuring of some honey physical and chemical properties for the irradiated and no irradiated samples particularly electrical, conductivity, refractive index, density, viscosity, Moisture, Ashes, Wax, Monocular Sugars, Total sugars, Glucose, Fructose, Maltose, Sucrose and acidity, it also included estimation of some elements like Na, Ca, K, Fe, Mg.

The results show that irradiation by He-Ne lead to upward effect for some physical and chemical properties like electrical conductivity, Monocular Sugars and density, and it lead to downward effect for index, Ashes, Wax, Sucrose and density, while it lead to no significant changes on refractive index, viscosity, Moisture, Total sugars, Fructose, Maltose, acidity and elements.

مستخلص

يهدف هذا البحث إلى دراسة تأثير التشعيع بالليزر على الخواص الفيزيائية والكيميائية لعسل النحل (السدر).

استخدمت في هذه الدراسة أربع عينات من عسل السدر كتلة العينة الواحدة 250 جرام تم تشعيع ثلاث عينات منها بليزر الهيليوم نيون بقدرات 1 ملي وات و 1.5 ملي واط و 2 ملي واط لمدة 5 دقايق لكل.

شملت التحاليل قياس بعض الخواص الفيزيائية والكيميائية لعسل النحل (السدر) المشعع وغير المشعع مثل الموصلية الكهربية ومعامل الانكسار والكثافة واللزوجة والرطوبة والرماد والشمع والسكريات الكلية والأحادية والجلكوز والفركتوز والمالتوز والسكروز والحموضة كما شملت تقدير نسب بعض العناصر مثل الصوديوم والكالسيوم والبوتاسيوم والحديد والمغنسيوم.

أظهرت النتائج أن التشعيع بليزر الهليوم نيون أدى إلى التأثير على بعض الخواص الفيزيائية والكيميائية بالزيادة مثل التوصيل الكهربي و السكريات الأحادية و الجلكوز والكثافة، وأثر على خواص أخرى بالنقصان مثل الرماد و الشمع و السكروز و الكثافة. وخواص أخرى لم تتأثر (تغيرات طفيفة) مثل معامل الإنكسار واللزوجة و والرطوبة و السكريات الكلية و

الفركتوز والمالتوز والحموضة والمعادن

List of contents

Contents page

Ayah	I
Dedication	II
Acknowledgements	III
English abstract	IV
Arabic abstract	V
List of contents	VI
List of figures	IX
List of Tables	X I
CHAPTER ONE Introduction	1
1.1 Introduction	1
1.2 Research Problem	2
1.3 Literature review	2
1.4 The objective of this work:	8
1.5 Thesis Layout	8
Chapter Two Basic Concepts	9
2.1 Laser	9
2.1.1 Properties of laser	9
2.1.2Laser construction	10
2.1.3 Laser types	11
2.1.4 Laser applications	11
2.2 Honey	13
2.2.1 Composition of Honey	
2.2.2 Physical characteristics of honey	
2.2.2.1Viscosity	
2.2.2.2 Density	
2.2.2.3 Hygroscopicity	

2.2.2.4 Surface Tension	18
2.2.2.5 Electrical Conductivity	19
2.2.2.6 Refractive index	19
2.2.3 Chemical properties of bee honeys	19
2.2.3.1 Carbohydrates	20
2.2.3.2 Moisture Content	21
2.2.3.3 Protein Content	21
2.2.3.4 Amino Acids in Honey	22
2.2.3.5 Proline content	23
2.2.3.6 Ash and minerals content	23
2.2.3.7 Acidity and pH	24
2.2.3.8 Enzymes	25
2.2.3.9 Hydroxymethylfurfuraldehyde HMF	26
2.2.3.10 Vitamins	26
2.2.3.11 Phenolic Compounds of Honey	27
2.3 Laser Matter Interaction	27
Chapter Three Experimental part	29
3.1 Introduction	29
3.2 Materials	29
3.2.1 Honey	29
3.3 Devices	29
3.3.1Helium – Neon Laser	29
3.3.2 Viscometer	30
3.3.3Atomic Absorption	31
3.3.4 Refract meter	32
3.3.5 DiST4	32
3.3.6 CARBOLITE	33
2.3.7 ACCU- meter.	33
3.4 Method	.34

3.4.1 The irradiate	34
3.4.2 Viscosity	35
3.4.3 Density	35
3.4.4 Conductivity	35
3.4.5 Refractive index.	35
3.4.6 6 Wax	35
3.4.7 Ashes	36
3.4.8 Monocular Sugar	36
3.4.9 Total sugar	36
3.4.10 Sucrose	36
3.4.11 Fructose	37
3.4.12 Acidity	37
3.4.13 Metal	37
Chapter Four Results and discussion	38
4.1 Introduction	38
4.2 Results and Discussion	38
4.3 Conclusions	48
4.4	
Recommendation	49
REFRENCES	50

List of figures

Figure (2.1) Element of Laser	10
Figure (3.1) photo of jar of honey (250 gram)	
Figure (3.3) photo of the HAAKE Viscometer 6plus	
Figure (3.4) photo of the Atomic Absorption	31
Figure(3.5) photo of the Refract meter	32
Figure (3.6) photo of the DiST4	32
Figure (3.7) photo of CARBOLITE	33
Figure (3.8) photo of ACCU- meter	34
Figure (3.9) Experimental Setup	34
Figure (4.1) Variation of honey conductivity versus laser output irrad powers.	
Figure(4.2)Variation of honey refractive index versus laser output irradiated powers.	40
Figure (4.3) Variation of honey density versus laser output irradiated powers.	
Figure (4.4) Variation of honey viscosity versus laser output irradiate powers	
Figure (4.5) Variation of honey ashes versus laser output irradiated powers.	42
Figure (4.6) Variation of honey Moisture versus laser output irradiate	ed 42

Figure (4.7) Variation of honey wax versus laser output irradiated
powers
Figure (4.8) Variation of honey monocular sugars versus laser output
irradiated powers
Figure (4.9) Variation of honey total sugar versus laser output irradiated powers
Figure (4.10) Variation of honey glucose versus laser output irradiated powers
Figure (4.11) Variation of honey fructose versus laser output irradiated powers
Figure (4.12) Variation of honey sucrose versus laser output irradiated powers
Figure (4.13) Variation of honey maltose versus laser output irradiated power
Figure 4.14 Variation of honey elements versus laser output irradiated powers
Figure 4.15 Variation of honey Acidity versus laser output irradiation powers

List of tables

Table 2.1: Variation of the viscosity of honey at 25°C	16
Table 2.2: Variation of the viscosity of white clover honey at 25	
Table	16
2.3: Viscosity of sweet clover honey containing 16.1%	.17
Table 2.4 Approximate equilibrium between relative humidity (RH) of	
ambient air and water content of a clover honey	.18
Table 4.1 Results of physical and chemical properties of honey	38

Sudan University of Science and Technology College of Graduate Studies

Investigation of Irradiated Bee Honey by Pulsed He-Ne Laser (632.8nm)

تقصي عسل النحل المشعع بليزر الهليوم نيون (632.8nm) النبضي

A dissertation Submitted as Partial Fulfillment of the Requirements for the Degree of Master of Science in Physics.

By
Al humira Elseir Gorashe Ahmmed

Supervisor
Dr.Ali Abdel Rahman Saeed Marouf

May 2017