بسم الله الرحمن الرحيم (وَهُوَ الَّذِي أَنْشَا جَنَّاتٍ مَعْرُوشَاتٍ وَعْيْرَ مَعْرُوشَاتٍ وَالنَّحْلَ وَالزَّرْعَ مُحْتَلِفًا أَكُلُهُ وَالزَّيْتُونَ وَالرُّمَّانَ مُتَشَابِهًا وَعْيْرَ مُتَشَابِهٍ ۚ كُلُوا مِنْ تَمَرِهِ إِذَا أَتُمَرَ وَآتُوا حَقَّهُ يَوْمَ حَصَادِهِ ۖ وَلَا تُسْرِقُوا ۚ إِنَّهُ لَا يُحِبُّ الْمُسْرِفِينَ) (سورة الأنعام الأية (141)) ## **Dedication** To my Father, my mother, my aunt Hannan, my uncles, my brothers and my sister. ### Acknowledgment After thanks of Allah the most Gracious the most Merciful I am mostly indebted to my supervisor Dr.Elfateh Ahmed Hassan for guidance and advice. Also I would thank my father, my two mothers who helped me emotionally. Also I extend my thanks to everyone who helped me in completing this project. #### **Abstract** This study was conducted on seeds of *Acacia Seyal* (Fabaceae (Mimosoideae)) which were collected from *Alkawwa* in White Nile state Sudan during the season 2016. Solvent extraction technique was utilized to extract the oil from *A.seyal* seeds. The oil content of these seed was found to reach 2.909 3% (W/ W). The extracted oil was subjected to physico chemical evaluation and the results showed that its free fatty acid content was 5.75mg/l, Its Saponification value was 171.93ml/g, lodine value was 95.67ml/g, Ester value was 165.66ml/g, Peroxide value was 15ml/g, Its moisture content was 6.58%, Density was 0.891g/cm3, Refractive index 1.47, Color was 33.2/6.8 (red/yellow). The oil was subjected to IR and GC analysis. الجريت هذه الدراسة علي بذور شجرة الطلحه (عائلة Fabaceae) التي جمعت من منطقة الكوه ولاية النيل الأبيض في السودان في عام 2016م. تم إستخلاص زيت بذور الطلحه عن طريق الأستخلاص بالمذيب وكانت نسبة الأستخلاص $2.909 \approx 5\%$ (وزن/وزن). تم إجراء الأختبارات الفيزوكيميائيه علي الزيت المستخلص وكانت النتائج كالأتي: كمية الأحماض الدهنية 5.75 ملجم/لتر، قيمة التصبن 93.171 ملجم/لتر، قيمة البيروكسيد 15 ملجم/لتر، وكانت قيمة معامل الأستره 66.165 ملجم/لتر و رقم اليود 95.67 ملجم/لتر وكانت الرطوبه 58.6% واللون (أحمر/أصفر) 33.2/8.6، وقيمة معامل الإنكسار 47.1 والكثافة 91.0 جرام لكل سنتميتر مكعب. كذلك تم تحليل الزيت بجهاز الأشعه تحت الحمراء وكروماتو غرافيا الغاز. ## List of contents | Title | Page | |--|------| | الأية | I | | Dedication | II | | Acknowledgment | III | | Abstract (English) | IV | | مستخلص البحث | V | | List of contents | VI | | List of tables | XI | | List of figures | XI | | Chapter (1): Introduction | | | 1.10il | 1 | | 1.1.1 Types | 1 | | 1.1.2 Oils properties | 2 | | 1.1.3 Applications | 4 | | 1.2 Biodiesel | 6 | | 1.2.1 Advantages | 7 | | 1.2.2 limitations | 8 | | 1.2.3 Making Biodiesel | 8 | | 1.3 Methods of extraction | 10 | | 1.3.1 Maceration | 11 | | 1.3.2 Ultrasound-assisted solvent extraction | 11 | | 1.3.3 Percolation | 11 | | 1.3.4 Pressurized solvent extraction | 12 | | 1.3.5 Extraction under reflex and steam distillation | 13 | | |--|----|--| | 1.3.6 Extraction with supercritical fluids | 13 | | | 1.3.7 Countercurrent Extraction | 14 | | | 13.8 Soxhlet extraction | 14 | | | 1.4 Balanites Acacia Seyal | 15 | | | 1.4.1 Taxonomy and nomenclature | 16 | | | 1.4.2 Distribution and habitat | 17 | | | 1.4.3 Uses | 17 | | | 1.4.4 Botanical description | 18 | | | 1.4.5 Fruit and seed description | 19 | | | 1.4.6 Flowering and fruiting habit | 20 | | | 1.4.7 Harvest | 20 | | | 1.4.8 Processing and handling | 20 | | | 1.4.9 Storage and viability | 20 | | | 1.4.10 Dormancy and pretreatment | 20 | | | 1.4.11 Sowing and germination | 20 | | | 1.4.12 phytosanitary | 21 | | | 1.5 Objective of this study | 22 | | | Chapter (2): Materials and methods | | | | 2.1 Materials | 23 | | | 2.1.1 Sample | 23 | | | 2.2 Methods | 23 | | | 2.2.1 Oil extraction | 23 | | | 2.2.2 Oil percentage | 24 | | | 2.2.3 Acid value | 24 | | | 2.2.4 Determination Free fatty acid | 24 | | | 2.2.5 Saponification number | 25 | | |--------------------------------------|----|--| | 2.2.6 Ester value | 26 | | | 2.2.7 Iodine value | 26 | | | 2.2.8 Peroxide value | 27 | | | 2.2.9 Density | 28 | | | 2.2.10 Color | 28 | | | 2.2.11 Moisture content | 28 | | | 2.2.12 Refractive index | 28 | | | 2.3 Testing of oil | 29 | | | 2.3.1 Infra red analysis | 29 | | | 2.3.2 Gas chromatography analysis | 29 | | | Chapter (3): Results and discussions | | | | 3.1 Acacia Seyal seed oil analysis | 30 | | | 3.1.1 Physicochemical analysis | 30 | | | 3.1.2 IR analysis | 33 | | | 3.1.3 GC analysis | 35 | | | 3.2 Conclusion | 37 | | | 3.3 References | 38 | | ### List of tables | Title | Page | |---|------| | Table 1: Test of physicochemical properties of Acacia Seyal seeds oil | 31 | | Table 2: Comparison between physicochemical properties of Acacia | 32 | | Seyal seeds oil and Sunflower oil and Groundnut oil | | | Table 3: Comparison between physicochemical properties of Acacia | 32 | | Seyal seeds oil and Acacia Senegal seeds oil | | | Table 4: Component of Acacia Seyal oil | 35 | # List of figures | Title | Page | |---|------| | 1 Transesterification reaction | 9 | | 2 Reaction of FFAs and the catalysist NaOH | 10 | | 3 Soxhlet | 15 | | 4 Acacia Seyal trees | 18 | | 5 Acacia Seyal leaves | 19 | | 6 Acacia Seyal seeds | 19 | | 7 Acacia Seyal oil | 23 | | 8 FT-IR Spectrum of <i>Acacia Seyal</i> seeds oil | 34 | | 9 Chromatogram of <i>Acacia Seyal</i> seeds oil showing the major | 36 | | components | |