بسم الله الرحمن الرحيم

(وَهُوَ الَّذِي أَنْشَا جَنَّاتٍ مَعْرُوشَاتٍ وَعْيْرَ مَعْرُوشَاتٍ وَالنَّحْلَ وَالزَّرْعَ مُحْتَلِفًا أَكُلُهُ وَالزَّيْتُونَ وَالرُّمَّانَ مُتَشَابِهًا وَعْيْرَ مُتَشَابِهٍ ۚ كُلُوا مِنْ تَمَرِهِ إِذَا أَتُمَرَ وَآتُوا حَقَّهُ يَوْمَ حَصَادِهِ ۖ وَلَا تُسْرِقُوا ۚ إِنَّهُ لَا يُحِبُّ الْمُسْرِفِينَ)

(سورة الأنعام الأية (141))

Dedication

To my Father,

my mother,

my aunt Hannan,

my uncles,

my brothers and my sister.

Acknowledgment

After thanks of Allah the most Gracious the most Merciful

I am mostly indebted to my supervisor Dr.Elfateh Ahmed Hassan for guidance and advice.

Also I would thank my father, my two mothers who helped me emotionally.

Also I extend my thanks to everyone who helped me in completing this project.

Abstract

This study was conducted on seeds of *Acacia Seyal* (Fabaceae (Mimosoideae)) which were collected from *Alkawwa* in White Nile state Sudan during the season 2016.

Solvent extraction technique was utilized to extract the oil from *A.seyal* seeds. The oil content of these seed was found to reach 2.909 3% (W/ W). The extracted oil was subjected to physico chemical evaluation and the results showed that its free fatty acid content was 5.75mg/l, Its Saponification value was 171.93ml/g,

lodine value was 95.67ml/g, Ester value was 165.66ml/g, Peroxide value was 15ml/g, Its moisture content was 6.58%, Density was 0.891g/cm3, Refractive index 1.47, Color was 33.2/6.8 (red/yellow).

The oil was subjected to IR and GC analysis.

الجريت هذه الدراسة علي بذور شجرة الطلحه (عائلة Fabaceae) التي جمعت من منطقة الكوه ولاية النيل الأبيض في السودان في عام 2016م. تم إستخلاص زيت بذور الطلحه عن طريق الأستخلاص بالمذيب وكانت نسبة الأستخلاص $2.909 \approx 5\%$ (وزن/وزن).

تم إجراء الأختبارات الفيزوكيميائيه علي الزيت المستخلص وكانت النتائج كالأتي: كمية الأحماض الدهنية 5.75 ملجم/لتر، قيمة التصبن 93.171 ملجم/لتر، قيمة البيروكسيد 15 ملجم/لتر، وكانت قيمة معامل الأستره 66.165 ملجم/لتر و رقم اليود 95.67 ملجم/لتر وكانت الرطوبه 58.6% واللون (أحمر/أصفر) 33.2/8.6، وقيمة معامل الإنكسار 47.1 والكثافة 91.0 جرام لكل سنتميتر مكعب. كذلك تم تحليل الزيت بجهاز الأشعه تحت الحمراء وكروماتو غرافيا الغاز.

List of contents

Title	Page
الأية	I
Dedication	II
Acknowledgment	III
Abstract (English)	IV
مستخلص البحث	V
List of contents	VI
List of tables	XI
List of figures	XI
Chapter (1): Introduction	
1.10il	1
1.1.1 Types	1
1.1.2 Oils properties	2
1.1.3 Applications	4
1.2 Biodiesel	6
1.2.1 Advantages	7
1.2.2 limitations	8
1.2.3 Making Biodiesel	8
1.3 Methods of extraction	10
1.3.1 Maceration	11
1.3.2 Ultrasound-assisted solvent extraction	11
1.3.3 Percolation	11
1.3.4 Pressurized solvent extraction	12

1.3.5 Extraction under reflex and steam distillation	13	
1.3.6 Extraction with supercritical fluids	13	
1.3.7 Countercurrent Extraction	14	
13.8 Soxhlet extraction	14	
1.4 Balanites Acacia Seyal	15	
1.4.1 Taxonomy and nomenclature	16	
1.4.2 Distribution and habitat	17	
1.4.3 Uses	17	
1.4.4 Botanical description	18	
1.4.5 Fruit and seed description	19	
1.4.6 Flowering and fruiting habit	20	
1.4.7 Harvest	20	
1.4.8 Processing and handling	20	
1.4.9 Storage and viability	20	
1.4.10 Dormancy and pretreatment	20	
1.4.11 Sowing and germination	20	
1.4.12 phytosanitary	21	
1.5 Objective of this study	22	
Chapter (2): Materials and methods		
2.1 Materials	23	
2.1.1 Sample	23	
2.2 Methods	23	
2.2.1 Oil extraction	23	
2.2.2 Oil percentage	24	
2.2.3 Acid value	24	
2.2.4 Determination Free fatty acid	24	

2.2.5 Saponification number	25	
2.2.6 Ester value	26	
2.2.7 Iodine value	26	
2.2.8 Peroxide value	27	
2.2.9 Density	28	
2.2.10 Color	28	
2.2.11 Moisture content	28	
2.2.12 Refractive index	28	
2.3 Testing of oil	29	
2.3.1 Infra red analysis	29	
2.3.2 Gas chromatography analysis	29	
Chapter (3): Results and discussions		
3.1 Acacia Seyal seed oil analysis	30	
3.1.1 Physicochemical analysis	30	
3.1.2 IR analysis	33	
3.1.3 GC analysis	35	
3.2 Conclusion	37	
3.3 References	38	

List of tables

Title	Page
Table 1: Test of physicochemical properties of Acacia Seyal seeds oil	31
Table 2: Comparison between physicochemical properties of Acacia	32
Seyal seeds oil and Sunflower oil and Groundnut oil	
Table 3: Comparison between physicochemical properties of Acacia	32
Seyal seeds oil and Acacia Senegal seeds oil	
Table 4: Component of Acacia Seyal oil	35

List of figures

Title	Page
1 Transesterification reaction	9
2 Reaction of FFAs and the catalysist NaOH	10
3 Soxhlet	15
4 Acacia Seyal trees	18
5 Acacia Seyal leaves	19
6 Acacia Seyal seeds	19
7 Acacia Seyal oil	23
8 FT-IR Spectrum of <i>Acacia Seyal</i> seeds oil	34
9 Chromatogram of <i>Acacia Seyal</i> seeds oil showing the major	36
components	