CHAPTER ONE
INTRODUCTION AND SCOPE OF THESIS

1.1 Introduction

Modern power system can be characterized by wide spread system
interconnections. The interconnected power system is comprised of multiple
machines connected by the transmission network. The supply of reliable and
economic electric energy is a mgor determinant of industrial progress and
consequent rise in the standard of living. In practical terms this means that
both voltage and frequency must be held within allowable tolerances so that
the consumer's equipment can operate satisfactorily. Further, with
deregulation of power supply utilities, the power network has become a
highway for transmitting electric power from wherever it is available to
places where required, depending on the pricing that varies with time of the
day. In such scenario, the analysis of dynamic performance and stability of
power system has great importance. The stability problem is concerned with
the behavior of the synchronous machines under perturbed conditions. If the
perturbation does not involve any net change in power, the machines should
return to their original state and if an unbalance between the supply and
demand is created by perturbation, a new operating state should be achieved.
When the system changes its operating point from one stable point to the
other, it is mandatory that all interconnected synchronous machines should
remain in synchronism, they should all remain operating in parallel and at the
same speed[1].The increasing magnitude and complexity of interconnected
power systems due to competitive energy markets, economy and population
development have created the need to operate the power systems closeto their
capacity limits. This leads sometimes to stability problems or poor dynamic
behaviors like power oscillations. These oscillations can cause a reduction of
the system components lifetime, expensive operations of the electrical grids
and in the worst case, risks of partial system collapses. On the other hand, in
the synchronous generator, the damping that the field and damper windings
provide to the rotor oscillations is weakened due to excitation control system
action. The reason for this is that in the rotor circuits appear additiona
currents induced by the voltage regulation and those currents oppose to the
currents induced by the rotor speed deviations [2].



1.2Motivation

Power systems are usually large nonlinear systems, which are often subject to
low frequency electro-mechanical oscillations. Power system operation is
characterized by a wide range of operating conditions,random load changes
and various unpredictable disturbances .Power system stabilizers (PSS) are
often used as an effective and economic means of damping such oscillations.
In the past fixed gain controllers were effectively used for damping out the
low frequency oscillations. These stabilizers are designed based on linear zed
model of power systems for a particular operating and system condition. The
application shows non optimal results, for that use an adaptive power system
stabilizer to solve fixed gain controller problem, and the use of the adaptive
control is possible because the loading variation and consequently variation of
synchronous generator dynamic characteristic are in most essentially slower
than the adaptation mechanism, and adaptive stabilizers able to perform well

for al network and operating conditions.

1.3 Objectives
This research deals with design adaptive power system stabilizer for damping

low frequency oscillations in power system. The main objectives of thisthesis

are:

To develop mathematical model of single machine infinite bus and
multi machines power system in includes excitation system and power
system stabilizer

To evauation performance of power system in case single machine
and multi machine using Eigen values method

To design power system stabilizer using model reference adaptive
control.

To estimate power system parameters by estimation method

To achieve better performance with better accuracy, use MIT rules

model reference adaptive control methods and compare the results.
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In addition to the theoretical, investigate how the Adaptive Power
System Stabilizer behaves using Matlab/Simulink.

1.4 Contribution

In this thesis, it will introduce the structure of the power system stabilizer and
the mathematic model of the generator control system equipped with PSS.
Based on the mathematic model, it will explain how the PSS increases the
system damping. Due to the complexity of power system , and the lack of
system parameters in most cases. The thesis introduces a new way to design
PSS based on modd reference adaptive control , which does not need to

tuning parameters of the system off - line.
1.5 Organizations

The remainder of thisthesis consists of seven chapters.

Chapter One gives the introduction and general back round, objective and
scope of thesis

Chapter Two gives surveys of design power system stabilizer based on
conventional and intelligence methods.

Chapter Three describe dynamic model of Synchronous machine include
excitation and Power System.

Chapter Four describe dynamic model of Multi Machine Power System.The
detail description of eigenvalue analysis method used for evaluating small
signal performance of power system and time domain simulations.

Chapter Five introduces adaptive control and design of power system
stabilizer by MIT rule and model reference adaptive control.

Chapter Sx results and discussions.

Chapter Seven givesthe conclusion and future work.



CHAPTER TWO
GENERAL BACKROUND AND LITRETURE REVIEW

2.1 Power System Stability

Today’s power systems are large, complex and operated closer to security
l[imit.Furthermore,environmental constraints restrict the expansion of
transmission network and the need for long distance power transfers has
increased. As aresult, stability has become a major concern in power systems.
Accidents of power system blackouts caused by rotor angle instability,
voltage instability or frequency stability. Power system angle stability can be
categorized in to small-signal and transient stabilities. Small-signal stability is
the ability of the system to return to its normal operating state following a
small disturbance. Investigation of this kind of stability usually involves the
anaysis of the linearized state space equations that define the power system
dynamics. On the other hand, transient stability is the ability of the system to
return to a normal operating state following a severe disturbance, such as a
single-phase or multi-phase short-circuit or a generator lost. Under these
conditions, the linearized power system model is not sufficient and the
nonlinear equations must be used for the analysis [1]. For the convenience of

anaysis, power system stability is categorized shown as Figure (2.1).

Power system stability

Rotor angle stability Frequency stability Voltage stability
‘ Small-disturbance Transient stability ‘ Large disturbance ‘ Small disturbance
Short term ‘ Long term ‘ ‘ Short term ‘

Figure (2.1): Categorized of power system stability.
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2.2.1 Steady-State Stability

Steady-state stability analysis is the study of power system and its generators
in strictly steady state conditions and trying to answer the question of what is
the maximum possible generator load that can be transmitted without loss of
synchronism of any one generator. The maximum power is called the steady-
state stability limit [3].

2.2.2 Transient Stability

Transient stability is the ability of the power system to maintain synchronism
when subjected to a sudden and large disturbance within a small time such as
afault on transmission facilities, loss of generation or loss of alarge load. The
system response to such disturbances involves large excursions of generator
rotor angles, power flows, bus voltages [5].

2.2.3 Dynamic Stability

A system is said to be dynamically stable if the oscillations do not acquire
more than certain amplitude and die out quickly. Dynamic stability is a
concept used in the study of transient conditions in power systems. Any
electrical disturbances in a power system will cause electromechanica
transient processes. Besides the eectrical transient phenomena produced, the
power balance of the generating units is always disturbed, and thereby

mechanical oscillations of machine rotors follow the disturbance [4].
2.3 Nature of Oscillation

Oscillations in the power system have the following properties:

1. Oscillations are due to natural modes of the system and therefore cannot be
Completly eliminated.

2. With increase in complexity of the power system, the frequency and
damping of oscillations may increase and new ones may be added.

3. Automatic Voltage Regulator (AVR) control is the primary source of
introducing negative damping torque in the power system. With increase in

the number of controls, negative damping may further increase.
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4. Inter-area oscillations are associated with weak transmission lines and
larger line loadings.

5. Inter-area oscillations may involve more than one utility.
2.4 M odes of Oscillations

The disturbance is considered to be small, and therefore, the equations that
describe the resulting response of the system can be linearized. The

electromechanical oscillations are of two types[3].
2.4.1 L ocal M ode Oscillations

Local mode Oscillations which are associated with the swing of units at a
generating station with respect to the rest of the power systems. Typical range
of frequency of oscillations is 1-3 Hz.The term loca is used because the
oscillations are localized at one station or asmall part of the power system[3].
2.4.2 Inter-area Mode Oscillations
Inter-area mode oscillations, which are associated with the swing of many
machines in one part of the system against the machines in other parts of
area. Typical range of frequency of these types of oscillations is less than 1
Hz. They are caused by two or more groups of closely coupled machines

beings intercom.
2.4.3 Inter-unit Mode

Inter-unit mode will act between different generators in the same power plant
or between plants that are located near each other. This oscillation mode
occurs in a frequency range from 1.5 to 3 Hz, and by implementing a power
system stabilizer when having an inter-unit mode the oscillation may become
unstable. Thisis because the PSS is often tuned at a lower frequency than the
inter-unit mode, and the PSS settings are therefore critical. A complete
eigenvalue analysis must be executed in order to ensure that the damping of a

potential inter-unit mode not becomes troublesome [7].



2.5 Control Exciter Modes

The control exciter mode is directly related to the control equipment of the
generator and is a version of the local oscillation mode. These oscillations
could be a result of poorly coordinated regulators in the system such as
excitation systems, HVDC converters, and static VAR compensators. As a
result of these oscillations the generator shaft may be affected and the
torsional mode will then be more noticeable [6].

2.5.1 Local Machine Modes

In this mode of oscillation typically one or more generators swing against the
rest of the power system in a frequency range from 0.7 Hz to 2 Hz. This
oscillation may occur and become a problem if the generator is highly loaded
and connected to a weak grid. In an excitation system containing a high
transient gain and no PSS, these local machine oscillations may increase. A
correctly tuned PSS in such a system may decrease the loca machine
oscillations [7].

2.5.2 Inter-area Modes

The inter-area oscillation mode can be seen in alarge part of a network where
one part of the system oscillates against other parts at a frequency below 0.5
Hz. Since there is a large amount of generating units involved in these
oscillations, the network operators must cooperate, tune and implement
applications that will damp this mode of oscillations. A PSS is often a good
application to provide positive damping of the inter-area modes [7]. Also a
higher frequency inter-area oscillation can appear (from 0.4 to 0.7 Hz) when
side groups of generating units oscillate against each other [6].

2.5.3 Global Modes

This mode of oscillations is caused by a large amount of generating units in
one area that is oscillating against a large group in another area. The
oscillating frequency istypically in the range from 0.1 to 0.3 Hz and the mode
Isclosely related.



2.6 Power System Stabilizer

Traditionaly the excitation system regulates the generated voltage and there
by helps control the system voltage. The automatic voltage regulators (AVR)
are found extremely suitable (in comparison to, ammortisseur winding and
»governor controls ) for the regulation of generated voltage through excitation
control. But extensive use of AVR has detrimental effect on the dynamic
stability or steady state stability of the power system as oscillations of low
frequencies (typicaly in the range of 0.2 to 3 Hz) persist in the power system
for a long period and sometimes affect the power transfer capabilities of the
system [19]. The power system stabilizers (PSS) were developed to aid in
damping these oscillations by modulation of excitation system and by this
supplement stability to the system [9]. The basic operation of PSS is to apply
asignal to the excitation system that creates damping torque which isin phase
with the rotor oscillations.

2.7 PSS Input Signals

Till date numerous PSS designs have been suggested. Using various input
parameters such as speed, electrical power, rotor frequency severa PSS
models have been designed. Among those some are depicted below.

2.7.1 Speed I nput Signal

A power system stabilizer utilizing shaft speed as an input must compensate
for the lags in the transfer function to produce a component of torque in phase
with speed changes so as to increase damping of the rotor oscillations [23].
2.7. 2 Power |nput

The use of accelerating power as an input signa to the power system
stabilizer has received considerable attention due to its low level torsional
interaction. By utilizing heavily filtered speed signal the effects of mechanical
power changes can be minimized. The power as input is mostly suitable for
closed loop characteristic of electrical power feedback [23].



2.7.3 Frequency | nput

The sensitivity of the frequency signal to the rotor input increases in
comparison to speed as input as the external transmission system becomes
weaker which tend to offset the reduction in gain from stabilizer output to
electrical torque, that is apparent from the input signa sensitivity factor
concept[23].

2.8 Excitation System

The performance of the excitation system can have a great influence on the
stability of a power system. However, it depends mainly on parameter setting
of the excitation system. Proper parameter setting of the excitation system can
improve the stability and increase the damping of the power system. On the
contrary, improper parameter setting of the excitation system can deteriorate
the operation of the power system [11]. The IEEE Type-ST1 (1992) excitation
system shown in Figure (2.2) is considered in this study.

5T A+5Ty;  LowTs

K
1] ¥ STy L +sTy 1+ sTy;

PSS

Figure (2.2) Block diagram of atypical Excitation System
2.9 Power System Stabilizer

For many years PSSs have been used to add damping to electromechanical
oscillations. They were first introduced in the late 1960s to compensate for
the AVRs adverse effect on the damping torque by means of positive
feedback loop to provide additional damping in the system [12]. PSSs
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essentialy use the power amplification capability of the generators to
generate a damping torgue in phase with the speed change of the generator
rotor. This is achieved by injecting a stabilizing signal into the excitation
system voltage reference in such a way that a component of electrical torque
proportional to the rotor speed deviation is produced [13-14]. This stabilizing
signal is, in most cases, the deviations in generator rotor speed which fed
through a compensation circuit to compensate for the phase lag between the
exciter voltage reference and generator electrical torque [10].

2.9.1 Power System Stabilizer Structure

The basic objective of power system stabilizer is to modulate the generator’s
excitation in order to produce an electrica torque at the generator
proportional to the rotor speed [10-13]. In order to achieve that, the PSS uses
asimple lead-lag compensator circuit to adjust the input signal and correct the
phase |ag between the exciter input and the electrical torque. The PSS can use
various inputs, such as the speed deviation of the generator shaft, the change
in electrical power or accelerating power, or even the terminal bus frequency.
However in many instances the preferred signal input to the PSS is the speed
deviation. Figure (2.3) below illustrates the block diagram of a typica PSS.
The PSS structure generally consists of a washout, lead-lag networks, a gain

and alimiter stages. Each stage performs a specific function.

‘ﬂ(”i K. STW E 1+ ST-“ 1+ ST_J,'L d Ui
— ! » " —b > —
1+ T, v | 14+ 8Ty 1+sTy |
Gain Washout Phase compensation

Figure (2.3) Block diagram of atypical PSS
2.9.2 Washout

Block serves as a high-pass filter. Without it steady changes in speed would
modify the terminal voltage. It alows the PSS to respond only to changesin

speed. From the view point of the washout function, the value of washout
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time constant is not critical and may be in the range of 0.5 to 20 seconds. The
main consideration isthat it may be long enough to pass stabilizing signals at
the frequencies of interest unchanged, but not so long that it leads to
undesirable generator voltage excursions during system is landing conditions.
2.9.3 Input Signals

That have been identified as valuable include deviations in the rotor speed w,
the frequency | , the electrical power Pe and the accelerating power Pa. Since
the main action of the PSS is to control the rotor oscillations, the input signa
of rotor speed has been the most frequently advocated in the literature.
However, it had been found that frequency is highly sensitive to the strength
of the transmission system that is, more sensitive when the system is weaker -
which may offset the controller action on the eectrical torque of the machine.
Other limitations include the presence of sudden phase shifts following rapid
transients and large signal noise induced by industrial loads. On the other
hand, the frequency signal is more sensitive to inter-area oscillations than the
speed signa and may to better oscillation attenuation. In this thesis work a
speed signal is used as input signal.

2.10 Conventional Power System Stabilizer Design M ethod

For many years conventional control methods have been applied to design
PSSs. These approaches consist of first linearizing the system at the nominal
operating condition to be able to extract the dynamic characteristics of the
power system and its frequency response. Once the phase lag is identified, the
phase lead can be obtained by tuning the time constants of the lead-lag circuit.
Idedlly a phase lead, equal and opposite to the phase lag, is required to
produce an electrical torque with a component proportional to the speed.
However in practice this cannot be achieved but can be closely matched over
the frequency range [12].The gain on the other hand is obtained by applying
the root locus method. The gain must be carefully selected to stabilize the
electromechanical mode without adversely affecting the other modes such as
the exciter mode [12-16]. It is important to choose an appropriate value for
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the washout Tw. It would be adequate to choose the time constant between 1
and 2 seconds if the damping of the loca mode is the only concern. However
T,,of 10 seconds or higher when inter— area is considered [10-16-17].
Generally, determining the stabilizer’s parameters in systems with both local
and inter —area modes has a more complex approach. For the most case this
situation is encountered in a multi machine system. Therefore PSSs must be
tuned one a a time through off-line analysis, and tuned further during
commissioning. The validity of the model used in the off-line studies should
be checked on commissioning. Setting power system stabilizers to typical
values is particularly dangerous for systems in which inter — area modes are
of concern. It is very easy for the stabilizer to have a destabilizing effect at
low frequencies that cannot be observed during on-line commissioning test
[15-18].The performance of the CPSS often deteriorates over time due to
nonlinearity and changes of operating conditions. Over the years, severa
approaches of controllers design have been investigated and implemented to
overcome the shortcomings of the CPSSs. Some of these methods are

reviewed in the next section.

2.11 Phase Compensation Design Technique

Consists of adjusting the stabilizer parameters to compensate for the phase
lags through the generator excitation system, and power system such that the
torgue changes in phase with speed changes. This is the most straightforward
approach, easily understood and implemented. The phase lag depends on the
operating point and the system parameters. The algorithm for computing the
PSS parametersis as follows:

Step 1: Obtain w,, from the mechanical loop

The characteristic equation of the mechanical loop can be writtenas:

MS2 4+ DS + bK;, =0 (2.1)
Where,w,, is the system frequency in rad/sec. and w,, is the undammed natural

frequency of the mechanical mode andisgivenin (2.2)
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w, = [ 22)

Step 2: Compute phase lag G, between Um and Tm of the loop to be
compensated by PSS. G, is the transfer function.
Step 3: Design of phase lead lag compensator. The transfer function of phase

lead compensator G, is
G. = (14 ST)(1 + ST3))/((1 + STL)(1 + ST,)) (2.3)

For full compensation G, + G, = 180° (2.4)

The PSS parameters to be optimized are T;-T, and Ki Considering two
identical cascade lead-lag networks for PSS. T; = T; and T, = T, and hence
the problem reduces to that of optimization of Ki, T; and 3 oniy. T,, = 10s has
been chosen. One lead lag block is used for compensating about 500 of phase
lag and accordingly lead lag blocks are chosen. The PSS parameters T; and T,
are chosen so as to fully compensate the phase lag as follows: Let, is the
phase lag compensated by one block, then

1

TZ = an\/a (25)
__1-sinp

i 1+sin g (2.6)

T, = aT, (2.7)

The adjustable PSS parameters are the gain of the PSS, K and the time
constants, T,-T; . The lead-lag block present in the system provides phase
lead compensation for the phase lag that is introduced in the circuit between
the exciter input and the electrical torque. The required phase lead can be
derived from the lead-lag block even if the denominator portion consisting of
T, and T, givesafixed lag angle. Thus, to reduce the computational burden in
this study, the values of T; and T; are kept constant at a reasonable value of
0.05 sec and tuning of T, and T, are undertaken to achieve the net phase lead
required by the system.
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Step 4: Gain setting the amount of damping introduced depends on the gain
of PSS transfer function at that frequency. Ideally, the gain should be set at a
valuer corresponding to maximum damping. The desired PSS gain Ki is
computed from

K; = 2x M/(|G||G,|) (2.8)

Where, xn is the desired damping ratio

2.12 Adaptive Control

Adaptive control can be described as the changing of controller parameters
based on the changes in system operating conditions [19]. The idea is to
constantly update the controller parameters according to recent measurement
[3].Power systems are inherently nonlinear with varying operating conditions,
hence adaptive control technique is well suited to track the operating
conditions and changes in the system. The resulting adaptive stabilizer uses an
identification algorithm that tracks the actual system operating condition,
which then adjusts its parameters on-line according to the environment in
which it works. This method can provide good damping over a wide range of
operating condition [20-21-22]. Despite the good performance of the
stabilizer, adaptive controllers are difficult to design and susceptible to
problems like non-convergence of parameters and numerica instability. The
response time of the controller is the key factor to a good closed-loop
performance. The adaptive power system stabilizer (APSS) employs
complicated algorithms for parameter identification and optimization which
require significant amount of computing time. The higher the order of the
discrete model of the controlled system used in identification, the more
computing time is needed.
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2.9 Literature Review

Numerous works have been done and published on the damping of power
system low frequency oscillations. This section will review some of the
published work in this area.In1969 [8], De Mello and Concordia discussed the
phenomena of Stability of synchronous machines under small perturbations
by examining the case of a SMIB through external reactance. The analysis
developed insights into effects of thyristor-type excitation systems and
established understanding of the stabilizing requirements for such systems.
These stabilizing requirements included the voltage regulator gain parameters
as well as the transfer function characteristics for a machine speed derived
signal along with the voltage regulator reference for providing damping of
machine oscillations. The study had explored a variety of machine loadings,
machine inertias, and system external impedances with a determination of the
oscillation and damping characteristics of voltage or speed following a small
disturbance in mechanical torque. An attempt had been made to develop some
unifying concepts that explain the stability phenomena of concern, and to
predict desirable phase and magnitude characteristics of stabilizing functions.

In 1989 Kundur et al. [24] provided the analytical work and systematic
method to determine PSS parameters for large power generation in a practical
power system. The basic PSS design idea based on the stabilizer proposed in.
However, the phase characteristics were obtained using a multi-machine
eigenvalue program instead of a single machine model. This work
emphasized enhancement of overal system stability, and the authors
considered simultaneous damping of inter-area and local modes and discussed
the performance of the PSS under different system conditions. In addition to
small signa stability performance, the authors aso tested the transient
stability performance of the PSS and the performance during system is
landing. The authors a'so demonstrated the importance of appropriate choice
of washout time constant, stabilizer output limits and other excitation system

control parameters. The authors claimed that the frequency response method
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used to compensate the lag between the excitation input and the electrica
torque was fairly robust.

Chow and Sanchez-Gasc in[25], proposed four pole-placement techniques for
the design of power system stabilizers, with the emphasis on frequency
response characteristics of the controller. For controllers to exhibit desirable
frequency response characteristics, a simple procedure was proposed to obtain
controllers suitable for multiple operating conditions. The issue of robustness
of state space designed controllers was investigated.to select al the
parameters of the fuzzy controller. Abido [26] designed a hybrid rule based
PSS by incorporating GA to search for optimal settings of his proposed PSS
parameters. In [27], the simultaneous stabilization of a power system over a
wide range of operating conditions via a single-setting conventional power
system stabilizer using GA is investigated. The authors wanted to select a
single set of power system stabilizer parameters which can make the PSS
simultaneoudly stabilize the power system over a wide range of operating
conditions. They treated the power system operating at various loadings as a
finite set of plants. The problem was converted to a simple optimization
problem which is solved by a genetic agorithm and an eigenvalue based
objective function. Two objective functions were presented, allowing the
selection of the stabilizer parameters to shift al or some of the system
eigenvalues to the left-hand side of a vertical line and a wedge-shape sector in
the complex s-plane. The authors proposed in [28] a similar idea to design a
PSS. However, another optimization method, Tabu search was used to select
PSS parameters.Lu, Nehrir and Pierre [29] proposed a power system stabilizer
with a fuzzy logic based parameter tuner. Reduced order linear models for the
synchronous generator at a large number of operating points were obtained
and the optimal PSS at each operating point were designed by the traditiona
frequency domain method.AntalSoos in [14] discuss PSS design for damping
of inter-area power oscillation by coherency-based equivalent model in Japan,

low-frequency oscillations have been observed on trunk transmission systems,
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and have been the subject for studies in fields of operation, control, and
devices by many power system utilities. The method is based on the single-
machine-infinite-bus models derived from the multi-machine power system
by coherency-based reduction technique. Dynamic simulations using a 10-
machine power system model are presented in order to show the effectiveness
of the PSS.

P.L. Dandeno el a discuss installations of PSS were based on a variety of
methods to derive an input signal that was proportional to the small speed
deviations characteristic of electromechanical oscillations. After years of
experimentation the first practicalintegral-of-accelerating-power based PSS
units were placed in service. This design provided numerous advantages over
earlier speed-based units and forms the basis for the PSS implementation that
iIs used in most units installed in North America. This design is now a
requirement in many Reliability Regions within North America and has been
modeled in the IEEE standards as the PSS2A and PSS2B structures
Forsimplicity, the term PSS2A stabilizer will be used to refer to the integral-
of-accelerating power based design in genera throughout this paper. This
paper briefly describes some of the earlier structures inorder to explain the
advantages of the accelerating-power design. This design is then described
along with a detailedreview of the role of the “ramp-tracking” mechanica
filter and the basis for the present structure that is in wide use by many
manufacturers [30].AntalSoos et al, in [30]discuss anoptimal control
algorithm with adaptive system parameters and state variables estimation. The
optimal control algorithm is calculated by solving the algebraic Riccati
eguation of the linearized closedloop system model obtained by using an
adaptive recursive least squares identification algorithm. The feedback control
isachieved by recalculating the control sequence each sampling period. An
application of the algorithm asa power system stabilizer isillustrated.
P.HeY.B.Wei C.X.Yang et a is discuss Dynamic stability enhancement of
electro-mechanical modes of multi-machine power systems by means of an
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adaptive power system stabilizer. The proposed adaptive PSS is a varieta
configuration to self-adjusted tracking the system operation condition. The
parameter optimization program is used to obtain him optimal parameter of
every PSS under single operating conditions, the weighing coefficient is
employed to adapt the actual operating condition. The study is carried out in
details on a great of testing computation and analysis on a 8-machine testing
system. Obtained result is compared with that of the previous PSS [31].

Chun Liu discusses an adaptive optimal controller, which will improve a
power system’s overall stability in the face of system non-linearity and
external disturbances, is described in this thesis. The transfer function of the
plant is estimated in real time by the Recursive Least-Squares (RLS)
algorithm, and converted into its state equation. The plant states are estimated
by Kalman filter. Control output is calculated by solving the Riccati algebraic
equation. The applied structure enables improvement in performance from a
linear controller [32].

Fariborz Parandin , € a .[33] discuss Power System Stabilizer Design based
on Model Reference Adaptive System deals with a adaptive design method
for the stability enhancement of a single machine infinite bus power system
usng Model Reference Adaptive System. To show effectiveness of the
MRAS, this method is compared with the GA-PSS. Simulation results show
that the proposed method guarantees robust performance under a wide range
of operating conditions.

Fariborz Parandin, €l a also discuss Adaptive Multi Machine PSS Design for
Low Frequency Oscillations Damping, an adaptive method is presented to
design a multi machine PSS. The proposed adaptive method changes itself
structure according to power system operating conditions. This ability of
adaptive controller Leads to an adaptive performance proportionate with
different loading conditions. In order to show effectiveness of the proposed
method, it is compared with a conventional PSS tuned by using PSO (PSO-
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PSS). The nonlinear time domain Simulation results demonstrate the ability of
the proposed Adaptive method to deal with uncertainties [39].

D P SEN Gupta a €, discuss low frequency oscillation in power system a
physical account and adaptive stabilizer, briefly review some of adaptive or
gan scheduling stabilizers proposed, elaborating on decomposition of
damping torque and the PSS based on cancellation of negative damping the
multi frequencies of oscillation at generated may experience in multi machine
system are identified information is used in design of the PSS[40 ].

E.vlarsan and D.A swann discuss in their three part paper titled applying
power system stabilizer —I,11,I11,the history of power system stabilizer and its
role in a power system they recommended that the objectives of most
appropriate stabilizer tuning criterion is to provide an adequate amount of
damping local mode oscillation and inter area mode oscillation .the studies
and the field test conducting by authors indicate that a fast acting excitation
system offers best opportunity for increased damping than the use of auxiliary
signal into voltage regulator[37] .

Fariborz Parandin, € a . Discuss Power System Stabilizer Design based on
Model Reference Adaptive System deals with adaptive design method for
the stability enhancement of a single machine infinite bus power system using
Model Reference Adaptive System. To show effectiveness of the MRAS, this
method is compared with the GA-PSS. Simulation results show that the
proposed method guarantees robust performance under a wide range of
operating conditions [47].

Fariborz Parandin, € a aso discuss Adaptive Multi Machine PSS Design for
Low Frequency Oscillations Damping, an adaptive method is presented to
design a multi machine PSS. The proposed adaptive method changes itself
structure according to power system operating conditions. This ability of
adaptive controller Leads to an adaptive performance proportionate with
different loading conditions. In order to show effectiveness of the proposed
method, it is compared with a conventional PSS tuned by using PSO (PSO-
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PSS). The nonlinear time domain Simulation results demonstrate the ability of
the proposed Adaptive method to deal with uncertainties [39].

Kothari et a (1995) designed a self-tuning PSS using the pole shifting
technique. The controller used a state-feedback law, whose gains were
evaluated from the pole-shifting factor. The proposed method was simple and
computationally efficient. The dynamic performance of the proposed PSS was
quite satisfactory and the PSS adapted quickly to varying operating
conditions. The method used a model formulation which obviated the need for
state observers and the output was directly used to derive the feedback control
signal. It combined this with a simple pole-shifting control technique in this
framework to achieve quite satisfactory dynamic performances. The control
calculations are simple and require less computational effort [41].

Yuan-Yih Hsu et a discussed the identification and tuning of exciter
constants for a generating unit at the Second Nuclear Power Plant of Taiwan
Power Company. Field test was first performed on the excitation system with
the generator open-circuited. Since the field test results differed from the
computer simulation results using manufacturer's constants, he modified the
manufacturer's constants based on previous experience to reach a preliminary
set of parameters for the excitation system. Then a hybrid nonlinear
simulation-sensitivity matrix method was developed to further refine the
excitation system parameters. The exciter constants were tuned in order to
give better dynamic response. Field tests were conducted in order to compare
the dynamic response of the generator without and with PSS [42].

Simoes Costa et a proposed a method to design the power system controllers
in order to damp electromechanical oscillations. It could be applied to the
design of both PSS for synchronous generators and supplementary signals
associated to other damping sources. Some attractive features of the method
were: the parameters of all controllers were jointly determined, there was no
restriction on the type of supplementary signals to be used, and controller

structures were compatible with those nowadays employed in electric utilities.
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The control problem solution exploits sparsely, combining a system
description which preserves a sparse structure with an adequate mathematical
formulation of the optimal design approach. The results were validated by
using both eigenvalue analysis and nonlinear simulation. A method based on
structurally constrained optimal controller design for the determination of
controller settings in multimachine power systems was introduced. The
settings for all controllers in a multimachine system could be simultaneously
determined through an integrated procedure which takes into account all
dynamic interactions. The results, were given both in terms of eigenvalues
and nonlinear simulation curves illustrate the applicability of the method to
realistic power systems [43].

Choi and Jia discussed the inherent dynamical relationship between the under-
excitation limiter (UEL) and the PSS control loops in synchronous generators
using the frequency response technique. It was shown that the limiters should
be designed to affect much dower response characteristics as their main
function was to prevent excessive stator end-core heating. The analysis also
showed that a reduction in the values of the dope of the boundary curves,
which prescribe the operating region of the limiters, was accompanied by a
decrease in the damping level of the closed-loop excitation control systems. It
was shown that the tuning of the UEL and the PSS could be carried out
separately without considering the interaction between the two control loops.
Analysis of the power system model showed that the damping level due to the
UEL increased along with the slope of limiter boundary curve [44].

Soliman et a designed a simple robust PSS that could properly function over
a wide range of operating conditions. The lead compensator design was
achieved by drawing the root loci for afinite number of extreme characteristic
polynomials. Such polynomials were obtained, using the Kharitonov theorem,
to reflect wide loading conditions on characteristic equation coefficients. For
this purpose the explicit analytical forms for the coefficients of the system

transfer functions were derived. Simulation results illustrated the
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effectiveness of the proposed stabilizer as it was applied to the origina
nonlinear differential equations describing system dynamics under wide
loading conditions at lagging and leading power factors [45].

Milanovic investigated dynamic interactions among various Controllers used
for stabilizing a synchronous generator .The effectiveness of a PSS connected
to the exciter and/or governor in damping electromechanica oscillations of
isolated synchronous generator was examined. The interactions among PSSs
connected to the exciter and/or the governor loop, automatic voltage
regulator, governor and multi-stage double-reheat turbine and dynamic load
were considered. It was shown that depending on the type and number of
controllers used and dynamics modeled, interactions could result in unstable
operation of the system for arange of operating conditions. It was aso shown
that the PSS connected to the governor loop provides better damping of low-
frequency oscillations and better robustness of the generator 36 to a change in
operating conditions than the PSS connected to the exciter loop. The paper
further showed that a properly tuned PSS connected to governor loop could
provide better overall damping of the system oscillations [46].

Shaoru Zhang and Fang Lin Luo discuss a new improved SAC based on
quadratic performance index was proposed and adopted to the design of
power system stabilizer. This control algorithm can simplify the controller
structure and degrade the computing complexity. This approach can track the
reference model and decrease the control increment. It also can improve the
dynamic and static characteristic of the system because this law
simultaneoudly takes in the increment of the control quantity and the sampling
values of state error in k and k+1, and simulates the dynamic and transient
stability of a synchronous generator active power. The results show that this
stabilizer provides more effective damping than the conventional PSS,
suppress the low frequency oscillation and improve the stability of the power
system during its entire operating point[48].
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M.A. Abido, proposed three novel approaches to improve a conventional PSS
in a SMIB system. These improved stabilizers used the conventional PSS in
the usual manner plus modification of the terminal voltage feedback signal to
the excitation system as a function of the accelerating power on the unit. The
nonlinear action increased the power system stability greatly. It was
concluded that these three kinds of improved stabilizers can improve power
system stability much more than the conventional PSS which has been used
widely in power systems since thel970's. Compared to the three kinds of
improved stabilizers, the improved PSS is the best one since it is effective for
both small and large disturbances, and is aso effective to improve both
overshoot and settling time of rotor speed deviations [60].

Chen et a discussed a new self-optimizing pole shifting control strategy for
an adaptive PSS. Based on an identified model of the system, the control was
computed by an algorithm which shifted the closed loop poles of the system
to some optimal locations inside the unit circle in the z-domain to minimize a
given performance criterion. With the self-optimization property, outside
intervention in the controller design procedure was minimized and simplified
the tuning procedure during commissioning. Also, a new method of
calculating the variable forgetting factor in real-time parameter identification
was discussed. For real-time control, alow order system model could be used
to represent the controlled system. The proposed control strategy based on a
pole-shifting approach combined the advantages of pole assignment control
algorithm and minimum variance control algorithm. The closed loop pole
locations were optimally calculated by the control agorithm in order to
minimize the given performance index. The results for various conditions
showed that the proposed adaptive stabilizer could provide good damping
over awide frequency range and increased the dynamic and transient stability
margins [54].

Gupta et a designed PSS for a SMIB using periodic output feedback. The
non-linear model of a machine was linearized at different operating points and
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16 linear plant models were obtained. For each of these plants an output
injection gain was obtained using the LOQR technique. A robust periodic
output feedback gain which realized these output gains was obtained using an
LMI approach. This robust periodic output control was applied to a non-linear
plant model of the machine at different operating points. This method did not
require the complete set of states of the system for feedback and was easily
implementable. The dlip signal was taken as output and the periodic output
feedback control was applied at an appropriate sampling rate. This method
was more general in nature than the static output feedback method, and also
required small magnitudes of the control inputs for these plants. It was found
that the robust controller designed provided good damping enhancement for
various operating points of a single-machine system connected to an infinite
bus [59].Chow et a discussed the practical experience in assigning PSS
projects to provide the designer with a challenging design problem using three
different techniques. The design of PSS projects using root-locus, frequency
domain, and state-space methods were provided. The projects provided the
designer with some realistic and challenging design experience and exposed
them to awell-known power system design problem. A saturation block could
be added to the output of the PSS to limit its contribution in the voltage
regulator input.In [56] Hui Ni et alproposed a supervisory level PSS (SPSS)
using wide area measurement. The robustness of the proposed controller was
capable of compensating for the nonlinear dynamic operation of power
systems and uncertain disturbances. The coordination of the robust SPSSs and
local PSSs was implemented based on the principles of multi agent system
theory. This theory was an active branch of applications in distributed
artificial intelligence (DAI). The performance of the robust controller as a
power system stability agent was studied using a 29-machine 179-bus power
system. Using wide area measurements, the robust controller was a
supervisory level controller that could track system inter-area dynamics

online. An LMI-based method was applied to design controllers. Based on the
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concept of multi agent systems, the robust controllers were embedded into a
system-intelligent agent, which was coordinated with local agents to increase
system damping. Based on limited testing, the simulation results showed that
the proposed robust controller could effectively damp system oscillations
under wide range of operating conditions [55].Elices et a discussed a physical
interpretation of two state feedback controllers for damping power system
electromechanical oscillations. They had been developed by Electricité de
France (EDF). The first one was called the desensitized four loop regulator
(DFLR) and it was designed to damp local electromechanical oscillations. It
was a robust controller which offered good performance despite the variations
of the generator operating conditions. The second controller was called the
extended desensitized four loop regulator (EDFLR) and it was designed to
address both local and inter-area oscillations. The physical interpretation was
accomplished by converting the state feedback scheme to the standard
structure formed with an AVR plus a PSS. Two widely used PSS design
methods based on eigenvalue sensitivities and frequency response were
reviewed to obtain the interpretation. The DFLR could be interpreted
controller which provided the suitable phase compensation according to these
two PSS design methods over awider frequency range. The EDFLR could be
interpreted as a controller which maximized its robustness under uncertainties
at both PSS output and the input of the plant. The EDFLR achieved a better
compromise between the damping ratio of the local and inter-area modes, and
it was robust not only under uncertainties at the output of the PSS but also

under uncertainties at the input of the plan [57].
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CHAPTER THREE
DESIGN OF POWER SYSTEM STABILIZER IN
SIGLE MACHINE CONECTED INFINIT BUS

3.1 Introduction

Small-signal oscillations in a synchronous generator, particularly when it is
connected to the power system through a long transmission line, are a matter
of concern since before. As long transmission lines interconnect
geographically vast areas, it is becoming difficult to maintain synchronism
between different parts of the power system. Moreover, long lines reduce load
ability of the power system and make the system weak, which is associated
with inter-area oscillations during heavy loading. The phenomenon of small
signal or small disturbance stability of a synchronous machine connected to
an infinite bus through external reactance has been studied in by means of
block diagrams and frequency response analysis. The objective of this
anaysis is to develop insights into the effects of excitation systems, voltage
regulator gain, and stabilizing functions derived from generator speed and
working through the voltage reference of the voltage regulator. The analysis
based on linearization technique is ideally suitable for investigating problems
associated with the small-signa oscillations. In this technique, the
characteristics of a power system can be determined through a specific
operating point and the stability of the system is clearly examined by the
system eigenvalues. This chapter describes the linearized model of a single-
machine infinite bus (SMIB) system given by Heffron and Philips that
investigates the local mode of oscillations in the range of frequency 1-3 Hz.
Voltage stability or dynamic voltage stability can be analyzed by monitoring
the eigenvaues of the linearized power system with progressive loading.
Instability occurs when a pair of complex conjugate eigenvalues crosses the
right half of s-plane. This is referred to as dynamic voltage instability, and
mathematically, this phenomenon is called Heffron bifurcation. The following
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steps have been adopted sequentially to analyze the small-signa stability
performance of an SMIB system [10].
1. The differential equations of the flux-decay model of the synchronous
machine are linearized and a state-space model is constructed considering
exciter OUtputAE,;as input.
2. From the resuiting linearized model, certain constants known as the K
constants (K,—Kg) are derived. They are evaluated by small-perturbation
analysis on the fundamental synchronous machine equations and hence are
functions of machine and system impedances and operating point.
3. The model so obtained is put in a block diagram form and a fast-acting
exciter between terminal voltage AV, and exciter output AE4is introduced in
the block diagram.
4. The state-space model is then used to examine the eigenvalues and to
design supplementary controllers to ensure adequate damping of the dominant
modes. The real parts of the electromechanical modes are associated with the
damping torque and the imaginary parts contribute to the synchronizing
torque.
The following assumptions are generally made to analyze the small-signal
stability problem in an SMIB power system:

1- The mechanica power input remains constant during the period of

transient.

e

Stator resistance is equal to zero.

w
1

The synchronous machine can be represented by a constant voltage

source (electrically) behind the transient reactance.

+

The mechanical angle of the synchronous machine rotor coincides with
the electric phase angle of the voltage behind transient reactance.

5- No local load is assumed at the generator bus; if aloca load is fed at

the termina of the machine, it is to be represented by constant

impedance (or admittance)
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3.2 Dynamic Model of Synchronous Machine

The differential algebraic equations of the synchronous machine of the flux-
decay model with fast exciter .The Figure (3.1) configuration of Single
Machine connected infinite bus.

dE’ 1

q l; l;

i = " (Blat Xa—Xa)la— g (3-1)

doé
9T Do (3.2)
dw o
— == [Ty — (E'gIq + (Xq — X'a)lalq + D(w — w,)] (3.3)
dt 2H
dEgq Erg  Ka
ot Sy — 3.4

P,

v, = Ra X v, Vo

Xor —/\/\/\,—NW\—
Xin
e Y Y Y
Re2 Xe2

Figure (3.1) Configuration of single machine connected in finite bus

Where the state variables are

Eq' = direct axis component of voltage behind transient reactance

E, = quadrature axis component of voltage behind transient reactance
w = Angular velocity of rotor, 5 = Kotor anglein radians, and

T, = E'4lq + E’dlq - (Xq— X’q)lqld, (3.5)

T; = 4mfH (3.6)

28



Xq= direct axis synchronous reactance, X,= quadrature axis synchronous
reactance, X4 = direct axis transient reactance , X, = quadrature axis
transient reactance,t,,, = quadrature axis open circuit time constant, 74, =
direct axis open circuit time constant, Te= electrical torque of synchronous
machine ,T,,= mechanical torque of synchronous machine, D= damping
coefficient of synchronous machine, Erp = Equivaent stator emf
corresponding to field voltage I, = quadrature axis armature current,

l¢= direct axis armature current, H = inertia constant of synchronous
machinein sec,f = frequency in Hz.

3.3 Stator Equation

The synchronous stator equations is written as below

V;sin(8 — 8) + Rlg — Xl = 0 (3.7)

E'q —Vicos(6 —0) —RIg — X'yl =0 (3.8)

As it is assumed stator resistance Rs=0 and V, denote the magnitude of the

generator terminal voltage, the earlier-mentioned equations are reduced to

Xqlq = Vesin(8 —0) = 0 (3.9)

E'q —Vicos(6—0) —X'(Ig =0 (3.10)
Now

(Vg + qu)e(S_E) = Vel®, Vg +jV, = V,el®, e 1(573) (3.11)

Expansion of the right-hand side resultsin

Va+jVy =V, sin(6 — 0) + jV, cos(§ — 0)

Therefore

Vg = Vi sin(6 — 0)&V;, = V; cos(6 — 6)

Substitution of V;and Vin Equations (3.6) and (3.7) gives

Xolg—Vy =0 (3.12)
E'g—V,—X'glg =0 (3.13)
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3.4 Network Equation

The equation of the Power System Network is gives

(Ig +14)e i(5-3) = Vtélg ;;/;49 (3.14)
(14 +14)e/(672) = (Va + Zfe . ];e Ver 26 (3.15)
[4Re +jIgRe +jlaXe — IgXe = (Va +Vy) — Voo (3.16)
(IaRe — IgXe) +j(IqRe + [gXe) = (Vg — Voo sin 8 + j(Vy — Vo, cOS 8 (3.17)
(IqRe — IgXe) = Vg — Vo sin 8 (3.18)
(IqRe + 1gXe) = Vg — Vi, cos & (3.19)

3.5 Linearization Process and State-Space M odel

The linearization model of SMIB is obtained using the following steps:
Step I: The linearization of the stator algebraic equations (3.12)
and (3.13) gives

XA —AV; =0 (3.20)
AE'y — AV, — X'4Al; = 0 (3.21)
Rearranging Equations (2.18) and (2.19) gives

AV, = X Al (3.22)
AV, = =X'4Al; + AE', (3.23)

Writing Equations (2.20) and (2.21) in matrix form gives

AVd] [—X’ OHNd] [AE’] (2.24)

Step II: The linearization of the load-tlow equations (3.18) and (3.19) results

in
(AIR, — AL X,) = AV, — Vi, cos 5AS (3.25)
(AIR, + Al;X,) = AV, — V,,sinSAS (3.26)

Rearranging Equations (2.23) and (2.24) gives
AV, = AR, — Al X, + V,, cos 6AS (2.27)

AV, = AI4R, + AI,R, — Vi, sinSAS (3.28)
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Writing Equations (3.25) and (3.26) in matrix form gives

AVd Al V,, cOS 8
] [X R, ] [ ] [ Voo sm6 (3.29)
Step I'Il: Equating the right-hand side of Equations (3.24) and (3.29) gives
P
e Alg] | [V cosS Al 0
[ Xe ] [ ] [ Ve Sin8] As [—X' 0 ] Alq] + [AE’q] (3.30)
e —Xe Al V., cosé
([ ] [—X’ 0 ]) [ ] [AE’ ] v, sins| 20 (3:31)
e _(X + Xy) [Ald [Voo cos &
[(Xe +X'4) ] ] [AE ’ ] Voosin(S] As (3.32)
~(Xe +X)‘1 (Xe + X,)
Where

A= R+ (X, + Xy)(Xe + X'g)
Solving forAl; andAl, from Equation (3.32) resultsin

Ald] [ ] [ — (X + Xq)]_l
AE'q I (X, +X’d)
-V, cosd R, —(X, + Xq)]_l
[ Vosind '[(X + X'y) (3.34)
Ald] [ ] [ X, + Xq)]
A, AE (X ; X'y
% COS & R, X, + Xq)]
A V sm5 [_(Xe +X') (3.35)
Al X, + X )AE', 1 [—R.Vc086 + Voosind (X, + X,
[ d] ( ), L1 c0s8 + Vi,sind( ’ )] A5 (336)
A R.AE", A, LR V,sind + Vcosd(X, + X'y
Therefore:
Ald] [(X +X,) —R.Vicos8 + Vyosind (X, + X, )] [AE’ ] 337
A R V,sind + Vcosd (X, + X' 37)

Step 1V: The linearizations of the differential equations (3.1)—(3.4) are as
follows. Here, the frequency is hormelized as v = wﬂ throughout our study:
AE', = ! AE’
B T\do : T\do

AS = w AV (3.39)
31
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.2 2 2 (Xq—X'q) (Xq—X'g)
AV = ﬁATM — ﬁAE ol — ﬁ1~: ol — TAIqu — Tlqu
Do, AV 3.40
ZH ( . )
Ta AE'q = —AE'gq 4+ Ka(AVyer — AVY) (3.41
- 1 . ’
o1 =0 o], [-FeX 0
a| |Tao AE'q T'4o Al
AV I_q 0 D(JL)S AV Iq(X d — Xq) (X d — Xq) . E_ﬂ a
L 2H 2H 2H 2H 2H
7 o]
do AE
+l o ol Ade] (3.42)
o &
O -
2H

Step V: Obtain the linearized equations in terms of the K constants.

Expressions for Al; and Al obtained from Equation (3.37) are

1
Alg = 5= [(Xe = XQ)AE'q + {~ReVer 088 + (X — X ) VerSin8}A] (3.43)
e
1 . N
Alg = - [RAE' + {ReViosing + (Xe = X g)Veoc0s8}A3] (3.44)
e

On subdtitution of I; and I, in Equation (3.40), the resultant equations
relating the constants K;,K,, K5, and K, can be expressed as

K4

AE'q = ~ o OB = o 88 + o AFg (3.45)
A8 = w AV (3.46)
A= Xz pp DO g (3.47)

2H % a T 2H 2V T 2n

Step VL. The linearization of generator terminal voltage is as follows. The

magnitude of the generator terminal voltage is
Ve = /de + V%, V2 = V4 + V2 (3.48)

The linearization of Equation (3.46) gives
2V AV, = 2V4AVy + 2V, AV, (3.49)
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Therefore

v, v,
AV, =2 3.50
Ve=5 LAV, + 2 7 <Ay, (3.50)

Now, substituting Equation (3.37) into Equation (3.24),

Avd] [ ] [(X + Xq) —ReVeocosd + Vi sind (X, + Xq)] [AE’
A lXg O ReVesind + V,cos6 (X, + X'y)
+ [AE’q] (3.51)
AVd Xq(ReVeosind + Vo, (X + X'g)cos8) AE’,
] A, (X +Xq) —X'4(—ReVe 088 + Voo (X + X)sind) ] [AE' ]
Therefore
1 _ )
AVy = A [ReXqAE" | + XgReVosind + X Voo (X + X'g) cos8AS] (3.50)
AV, = [—X g(Xe + Xq)AE' | + (X qRe Vo088 + X'g Voo (Xe + Xo)sinSAS]
+ AE, (3.52)
Replacing and AVq from Equations (3.52) and (3.53) in Equation (3.50)
resultsin
AV, = KsAS + KGAE (3.53)

3.6 Derivation of K Constants
From Equation (3.36), the expression of AE’, on substitution of Al is [1]

. 1 .
AE'g = (- ” AE T d)(A_e [(Xe = XQ)AE' + {—RV,,c0s8 + (X,
1
~ X )Veosin8}A8]) + m— AEq) (3.54)
do
. 1 Xg — X)X + Xg) 1 Vo Xg+X'y)
'q= (= 1 AE' — X, — X, )sind
Ak 5 ( T\do " Ae 5 T\do Ae {( i q)Sln
1
— Ro.Ccos&}AS + AE¢) (3.55)
T do
. 1
AE', = — AE', — AEgq (3.56)

5 KsT'qo 4 Td T 4o
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1 (Xd i X\d)(xe + Xq)

—=1 3.57

K, + A, ( )

Voo Xqg —X'q)
Ae

Again from Equation (3.40), the expression of AV on substitution ofAl,; and

K, = [(Xe + Xg)sind — Recosd] (3.58)

AIq is

(Xq—X'a)lq 1
2H

—[(X + Xo)AE g + {—RVi,c0s8

(X'a —Xq) 1

1
+ [(Xe + Xo)VoosinS}AS] + < S ld 5 E )Ae[ReAEq

. 1
AV = (=5 AB ¢ Iq -

+ {RVysind + (X, + X

2H
1
taghi ) (3.59)
1
Av= (_ﬁA_ [Tq8e = 19(X'a = Xq)(Xe = Xq) — Rela(X'a = Xq) + ReE'qJAE'q
ZHA q)[(Xe + Xq)sind — ReCOSS]AS

Vo . ) . _ Dw
+ ™ [{1a(X'q — Xg) = E'(H(Xe + X g)cos8 + Rsind}| — ZHS

+ %ATM ) (3.60)
This can be written in terms of K constants as
AV = E—AE' K Do . (3.61)
2H 2H 2H 2H

1
K, = A_ [Iqu - Iq(X\d — Xq)(Xe - Xq) — ReId(X\d . Xq) + ReE,q] (3.62)

K, = ( [Voolq(X d— q)[(Xe + Xg)siné — ReCOSS]

+ Voo [(Xg = X)la — E'¢][(Xe + X' g)cos8 + Resind]] ) (3.63)
On substitution of AV, and AV, in Equation (3.46), it reduces to
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Var 1
AV, = \_/9 [Z_ {ReXqE'q + ReXqVeosind + X Voo (X g + Xq)COSSAS}]
q e

Varl . .. , \
+2a [—{—x a(Xe + Xg)AE  + ReX gV, c88
Vi LA,

+ Xq Voo (Xe + X )SINSAS} + AE’q] (3.64)
Or
[A { X (Xe +Xq)} —] AE',
+ [— {—QX (R V. sind + VOOCOSS(X‘d + X ))
Ae Vt q e q
Vq N N .
+7 X d(ReVocos8 — Vo, (Xq + xq)sma)}] A8 (3.65)
t
Therefore, Equation (3.65) can be written in terms of K constants as
AV, = KsA8 + KGAE' (3.66)
1 (Vq
Ks =3 {Vtx (R Voosind + Vi, cos8(X g +Xq))
Vt X'4(ReVo,c088 — Voo (X'g +xq)sm5)} (3.67)
1 (Vy Vy Vy
Kg = —1—R.X, — =X g(Xe + X — 3.68
i AQ{Vt efd Ty, alXe + ‘1)}+vt (3.68)

Now, the overdl linearized machine differentia equations (3.45)-(3.47) and

the linearized exciter equation (3.43) together can be put in a block diagram

shown in Figure (3.2) in this representation, the dynamic characteristics of the

system can be expressed in terms of the K constants. These constants (K 1—Kg)

and the block diagram representation were developed first by Heffron-

Phillips and later by de Mello to study the synchronous machine stability as

affected by local low-frequency oscillations and its control through excitation

system [10].
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AV,

G,.()

A Vr,_; i

AT,
Exciter & AVR =

Field circuit

K.-1 AE K;
1+5T, |C 1+ 5T,

2Hs + K,

Ao

1 AV, =
1+ 5T, =

Figure (3.2) Block diagram of the synchronous Machine model
The K constants; presented in the block diagram Figure 3.2 are defined as

follows:
K, = % E",Change in electric torque for a change in rotor angle with

constant flux linkages in the d-axis.

AT,

K =
2 AE

6 Change in electric torque for a change in d-axis flux linkages

q

with Constant rotor angle.

K; = ’;d:}f"‘ The case where the external impedance is a pure reactance X,.
d e
K, = El—Af—; Demagnetizing effect of change in rotor angle.
3
K: =% E",Change in terminal voltage with change in rotor angle for

constant E q

AV,
K, =—-

= & Changein terminal voltage with change in E" ; for constant rotor
q

angle.

It is evident that the K constants are dependent on various system parameters
such as system loading and the external network resistance (Re) and reactance
(Xe). Generally, the value of the K constants is greater than zero O, but under
heavy loading condition (high generator output) and for high value of external
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system reactance, Kz might be negative, contributing to negative damping and
causing system instability. This phenomenon has been discussed in the
following sections based on state space model [10].

The state-space representation of the synchronous machine can be obtained
when Equations (3.43) , (3.45) and (3.52) are written together in matrix form.
Assuming ATy, = 0, the state-space model of the SMIB system without

exciter is therefore

o 1
AE‘.q [ KaT'90 T'do } AE', =
Ad | = 0 0 Wg Ad |+ | dofAEgy (3.69)
AV l Ky Ky Dows|lav
2H 2H 2H
AE',
AV, = [Kg Ks O] A3 (3.70)
AV
TAAE (g = —AEgq + KA (AV,of + AV,) (3.71)
‘d 1 KaKs KaKs | Ka
= — —_ —_ + — )
AE ¢4 T AE¢q T, Ad T AE*, T AV, (3.72)
1 K, 0 1 1
{ K3T g0 T4 T 40 . 0
[AE,“ 0 0 w, 0 AEG] |,
e K, K, DwS A8 14| 0 |av., (3.73)
AV ~so T on = AV K
| A 24 2H 2H AE Ba
AEg KaKe _Kaks 1] 1T

3.7 Power System Stabilizer in State Matrix

Assume that the damping D in the torque loop is zero. The input to the
stabilizer isAV. An extra state equation will add. The washout filter stage is
omitted since its objective is to offset only the DC steady state error, henceis
dose not play any role in the design. The added stage equation due to PSSis

AVoco = ! AV —KPSSA SNy 3.74
PSS = T pss T T \Y% PSST_A (3.74)
2 2 2
K, K,
AV = — 22 A — 2 AB (3.75)

By substitute eq. (3.75) in (3.76) isgives
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: 1 I( PSS T1 K2 1“2
AVpss = ——AV, ——AV +K ( —AE Aé‘)
Therefore
: 1 K K,T, (K KT, (K
AVige = —— AVpss + Bpss oy _ 271 (ﬁ) AE, — 1_( PSS
T, T, T, \ 2H T, \ 2H
The state miatrix of the system modd is
1 -
S - 0 —— 0
I K;T'ao  Tao T a0 -0
AE, 0 0 s 0 0 |[AE, 0
AS K K DwS - 0
AV | = " 2H " 2H 2H AV | +| Ka
N _ KuKs _ KuKs 0 1 Ki |{DEga Ty
| AVpgs. T Ty Ty Ty |lAVpss] |Kpss
_ KT <KPSS> ki <KPSS> Kpss 0 1 L T
T, \ 2H T, \ 2H T, T,

(3.76)

)Aa (3.77)

AV,er (3.78)

3.8 Analysis of Power oscillationsin Single Machine
|nfinite Bus (SMB)

The small-signal stability response of this system has been examined further

by plotting the rotor speed deviation under different scenarios for a unit

change in mechanica step power input with a reasonable simulation time of

10 s.The Simulink block diagram of Synchronous Machine showing in Figure

(3.3)
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Figure (3.3) Simulink block diagram of single machine
3.8.1 Normal L oad (P=1.0, Q=0.015 p.u).

The Table (A.1) show the eigenvalue, nature frequency and damping ratio of
single machine connected in finite bus system. The result shows the damping
ratio increase after insert excitation system and power system stabilizer. The
Figure (3.4) shows time response of speed deviation without controller and
with controller, from the results the PSS having good settle time than the

excitation system.

— speed with excitation
- ‘T _____ R — speed without excitation | - - ]
—speed with PSS

p

Sy BTAVAvAYA

Figure (3.4) Speed deviation response in case of normal |oad
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3.8.2 Heavy Load

The Table (A.2) show the eigenvalue, nature frequency and damping ratio of
single machine connected in finite bus system. In case of heavy load (P=1.1,
Q=0.4) p.u The results shows the damping ratio decrease after insert
excitation system and power system stabilizer that cause system instability.
The figure (3.5) shows time response of speed deviation without controller
and with controller, from the results heavy load causes system to high
amplitude of oscillations than normal load.

I N
. ‘ F ‘ ‘ ‘ F — speed vith excitation

003 - —————— — Speed wihout excitation
‘ ‘ ‘ — speed ith PSS

002

,,,,,,

Figure (3.5) Speed deviation reﬁgrgense in case of heavy load
3.8.3 Light load
In case of light load (p=0.3,0=0.015) p.u the PSS settle the speed deviation
during first cycle. The figure (3.6) shows time response of speed deviation
with and without controller in case of light load and the table (A.3) show the
eigenvalue, nature frequency and damping ratio of single machine connected

in finite bus.

40



0015

:[ [ [ [ | | I —— speed with excitation
001 o o o | speed without exciaton | |
' | | | | | | — speed i PSS
g 0
0
0
o} |
00005 - -~ -+
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R e
Y% N S N TN N T NN S
0 ! 2 3 4 5 6 T 8 ! 10
time

Figure (3.6) speed deviation response in case of light load

3.8.4 Leading Power Factor

In case of leading power factor the system growth instability during
increasing time but after install the PSS settle the speed deviation during first
cycle. The figure (3.7) shows time response of speed deviation with and
without controller in case of leading power factor and the table ( A.4 ) show
the eigenvalue, nature frequency and damping ratio of single machine

connected in finite bus.
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time
Figure (3.7) speed deviation response in case of leading power factor

3.9 Effect of Excitation Gain

The gain of excitation the system effect stability in case of heavy load the
increasing of excitation gain effect the system stability during limit range The
figure(3.8) shows effect of excitation system gain on speed deviation with

and without controller in case of heavy load.

2.5

2

15 e __1___ — gain = 0.36

1

o
o

Rotor Speed

@)

-1.5

OpF----

10

)
Figure (3.8) Effect of excitation system gain on speed deviation
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CHAPTER FOUR
DYNAMIC STABILITY OF MULTIMACHINE POWER SYSTEM

4.1 Model of Multi machine Power System

In stability analysis of a multi-machine system, modeling of al the machines
in a more detailed manner is exceedingly complex in view of the large
number of synchronous machines to be simulated. Therefore simplifying
assumptions and approximations are usually made in modeling the system. In
this thesis two axis models is used for al machines in the sample system
taken for investigation. Models for power system components have to be
selected according to the purpose of the system study, and hence, one must be
aware of what models in terms of accuracy and complexity should be used for
a certain type of system studies, while keeping the computational burden as
low as possible. Selecting improper models for power system components
may lead to erroneous conclusions [58]. Also one is required to have
necessary background knowledge in order to understand the actual process
that takes place in the power system in order to design a power system
simulation as closely as possible. The mathematical models needed for small
signal analysis of synchronous machine, excitation system and the lead-lag
power system stabilizer are will need to model. To formulate multi machine
small-signal model, the following assumptions are made without loss of
generadlity

1. Mechanical power input is constant.

2. Constant-voltage behind transient- reactance model for the synchronous
machinesisvalid.

3. The mechanical rotor angle of a machine coincides with the angle of the
voltage behind transient- reactance.

4. Loads are represented by passive impedances.
4.2 Two-axis Model of Multi machine System

The asynchronous generator can be mathematically described by a set of
differential and algebraic equations [4].
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X=(XV,Ty,t) (4.1)

Where Xis a vector of state variables ,V is a vector of voltages, andT,,, is the
mechanical torque. The dimension of the vector x depends on the model used.
For convenience we will use a complex notation defined as follows. For

machine iwe define the phases ii and Vi

Vi=Vgi +iVaili= i + jlai (4.2)
Vi £ Vgi/V3 , Vai £ Vai/V3, lg £ 1qi/V3 | lai & (4.3)
Var + Va [\71 lgr + laa [L
valVe tde V2 (T2 |l + laz —['2 (4.4)
vqn i Vdn Vn an i Idn in

Using the block diagram reduction technique and with the simplifying

assumptions the state equations for the two-axis model in p.u. form

AE’d = {-E d‘(’fq_x a)lg} (4.5)
T qo
AE' = {Epp — E'q — (Xq = X' D1}/ do (4.6)
{Tm—Dw-Tk
peo = e (A7)
]
pd = w—1 (4.8)

4.3 Matrix Representation of a Passive Networ k

Consider the multi machine system shown in Figure (4:1). The network has n
machines and r loads, and, the terminal voltages V;, fori =1, 2, ..., n,
Instead of the internal EMF’S. Since the loads are represented by constant
impedances, the network has only n active sources. Note also that the
impedance equivalents of the loads are obtained from the pre transient

conditions in the system [4].
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Figure (4.1) Configuration of multi-machine power system

=YV
[ Vi
| 2 | 1217 2 | V2
LI, v

Vi = lkik + rkikk = I,2,...,b
Vabek = lkdabek + Tkiapekk = 1,2,...,0

PVabek = IkPlapek + kPlabek
0

I:)Iabck = iOdq —W|[Tlq
lq

0
Vodgk = Ik | fodgk = W | ~lak| | T rkipdqk
ldk

1
quk = lk (iqu + W[ (.lk

+ Ilggk
_ldk]) d

i
quk = rkiqu+xk I:_?:k] k = 1,2, vy b

ei = Wrt+ /2 +6i
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Wik = Tklgra) — Xkldk@) »Vdkd) = Trldka) T Xklgke) (4.19)
Vi) = Vaka) + iVake=(Tidqra) — Xidakay) + i (Tedaka) + Xkdgray) =
(re + i) (Ig +ilak) ) Vi) = Zulkgy k=12,...,b,] (4.20)
4.4 Converting to a common reference frame

To obtain general network relationships, it is desirable to express the various branch

quantities to the same reference.

(Vi +iVpi = (ticos 8; — Vgisin ;) + j(Vgisin 8; + Vgcos 5,),V; = Vield) (4.21)
Ve 8 =7, 0,e718 V. =70, k=12,..,b (4.22)
4.5 Converting Machine Coordinatesto System Reference

Consider a voltage v, at node | .We can apply Park's transformation to this
voltage to obtainV4;. From (4.2) this voltage can be expressed in phasor notation as
V, using the rotor of machine i as reference. It can also be expressed to the system

reference as V;, using the transformation (9.21)[4].

e 0 .. 0
1= 0O &% .. 0 (4.23)
0 0 .. el
Vo1 + Vb1 Va1 + Var
v=|Ver t o2y o |Vaz Ve (4.24)
Von + Vo Van + Ven
V=TV (4.25)

Thus T is atransformation that transforms the d and q quantities of all machinesto
the system frame, which a common frame is moving at synchronous speed. We can

easily show that the transformation T is orthogonal.

T-1= (4.26)
V=TV (4.27)
1 =T =T (4.28)
TI =YTV (4.29)
1= (T79T)V 2 MV (4.30)
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M= (T-YT) (4.31)

V= (T"YD)T = (T ZDI (4.32)
Y €011 y,e%2 Y, elfm

7= |Ya1e%2 Ypel%22 Y, el%n (4.33)
Yor@®m Yo,el®n Y eifm

Derive the expression for the matrix for an n-machine system.

ej81 e_j61
T = Tl = ] (4.34)
ejsn e_j8n
[Yllej(911+61) Y12e1(912+52) Ylnej(91n+6n)
YT = |Y21ei(921+51) Yzzej(622+82) YZnej(92n+5n) (4 35)
Ynlej(en1+81) YnZ ej(en2+62) Ynnej(enn+6n)
Yllejen leei(91z—512) Ylnei(91n—51n)
(T_lYT) 2 [\7[ _ YZlej(921—521) Yzzejezz YZnej(ezn—Szn) (4 36)
Y @Cnu=tu) Y i@t Yoo

Yikej(eik_Sik) = (GikCOS 6ik + BikSiI] 6ik) + j(BikSin 6ik - GikCOS 6ik)

Fc+B(8ik) = Fg4p = Gjicos djx + Bixsin djx

Fo—5(8ix) = Fg—p = Bikc0s 0j — Gjisin Oy (4.37)

M=H+jS (4.38)

hii = Giihik = Fg+s(ix) » Sii = BiiSik = Fg-p(dik) (4.39)

_ Vql + jvdl

| = (H +jS) (H+jS)(Vy +iVa) = (HV, = SVyg) +j(SVy + HVy) (4.40)
an + jvdn

4.6 linearized Model for the Networ k

I, = MV, + M,V (4.41)
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Yllejell leej(e12—51zo—812A)
M=
Ylnej(eln_6n10_6n1A )

my; = Yi].ei(eij—Sijo)e—i&jA),rﬁi]_ ~ Yijej(eij+51j0)(1 — ]"Si].A)

—_ ~ - 1 6_6
Miya = —jY;elCi=dio)g;;,

Yr12 e](9n2_5n20_5n2A Ynnelenn

Ylnei(91n—51no—51nA)

0 Ylnej(eln_61n0)81nA \_/10

MAVO . (_J Y21e1(921—5210)621A

lel ej(en1_6n10)8n1A

n

(0.1—6 —
ZYlke]( 1k 1k0)Vk081kA
k=1

n
=—j Z szej(ezk—Szko)vko(SzkA )
k=1

h
z Y, e Cnic—Bnk) G 5

_k=1 .

Yllejell Ylnej(91n—51no) le

— Y21ej(921—5210) Y2ne]'(62n—82n0) Vo

i(On1—6 o =
Ynle]( n1—%n10) Ynne] nn VnA
_n .

V4 j(01k—8
ZVkOYlke]( 1k 1ko)81kA
k=1

n
_J kaOYZkej(GZk_SZkO)SZkA )
k=1

n
7 j(Ohk—06
z VkOYnk e]( nk—8nko) 8nkA
L k=1 .
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(4.42)
(4.43)
(4.44)
YZnej(ezn_SZHO)SZrlA Vzo
0 Vno
(4.45)
(4.46)



Ta = jTobp

Op = diag(dsp - Ona) (4.47)
Ny = (T7)a = ~jNo8a == —jTy '8, (4.48)
My = ~j(To ' 8aYTy — Ty ' YT,5,) (4.49)
ej610 81A ej61081A
T06A = . ., = . . (4.50)
ej8n0 SnA e]5n0 8nA
- 6_1810 Yllejell Ylnejeln
TO_ Y=
e 8ol [V, el®n1 Y, el%n
Yllej(911_510) Ylnej(e1n_51o)
= (4.51)
Ynlej(enl_Sno) Ynnej(enn_Sno)
Y., . el(021=8210) v Y. oi(B2n—82n0)
(]2t 2n€ -
Ynle]-(e.nl_SnlO) Ynneienn J 61‘1A-
M8, ) (4.52)
[9_151081A
TO_16A =
{ e_j8n08nA
Y11e1(911+510) Ylnej(91n—81no)
Ynlej(en1+8n0) Ynnej(enn+6n0)
_ YllejenSlA Ylnej(eln_SmO)SlA B
Ty '8, YT, = = 3 M, ( 4.53)
Ynlej(enl_Snlo)SnA Ynnejenn8nA
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(4.54)
Ip = l\_/Io\_/A o ][BAMO . MOSA]VA (4.55)
— -1z . — —1. = 1o
Va =My Ty~ |8, — My '8, |V (4.56)
Q2 ik ' =T W1 (4.57)
Vo = Qols = j[8,Q0 —loSalTo (4.58)
j011 Y. j(612—6120)
o= |, T 2 (4.59)
lee]( 12+8120) Yzzelezz
5 0 — Vaia +1Va1a
5y=| A ] =, ] 4.60
A 0 Oz B Vaza 1 Vaza ( )
_ Y, . elf11§ Y., el(012=8120) §
Mo, = | - 0w TS e (4.61)
lee]( 12 120)51A Yzze] 228ZA
5 l\_/[ B [ Y-llejell(SlA leel'(91-2—5120)82A
A0 _Y12e1(912+5120)61A Y22e1922 82A
. B _ = [ 0 leej(912_6120)812A
J(6AM0 - MOSA)VO =] — leej(912+5120)8m 0 (462)
Vq10 + de1o] _ Y11ej61181A leei(91z—5120)82A (4.63)
Vq20 + V420 leej(612+6120)81A Yzzejezz 8,a 124 '

M,V

_ Yllej81161A(Vq1A +jVa1a) Y12ej(912_812°)52A(Vq2A +jVaza) (4.64)
Y, ej(612+812°)81A(Vq1A +jV41a) Y2 ej62252A(Vq2A + deZA) .

[IqlA + jldlA]
( [

qza + 1ldza

. [ Yllejeﬂéqum + Y1, 60118, Vs, YlZej(elz_6120)62AVq2A + Y610 7012005) v )
Ty

i(9,,+6 v i, +5 i io
1@Cut008, Vo, + j¥,,elCrato0)s, vy 0 Y20€"228,,Von + Y20€°228,,Vion

Y ej(012—8120) V + iV
_ ].12 - (qzo ]-dZA) ) (4.65)
=j lee]( 12t 120)(Vq10 +Jvd10)
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Al g;

n
= (BiiAVy — G;iAVy; + Z[Yijcos(eij — 84i0) AVyi]
=

#i

n
+ X[YIJSIH(BIJ — Sin)Ati]
j=1

#1
n

+ z[(Yll Sin(ei]‘ - 6in)AVdiO = COS(Gi]- - 6qi0) AtiO]ASi]' ) ) i
j=1
#i

= ]_, ...n (467)

The state space model for linearized system is obtained by linearizing the
differential and algebraic equations at an operating point While doing this
linearization process, additional terms involving terminal voltage components
(which are not state variables) remain in the differential equations. To express
the voltage components in terms of state variables, the machine currents are
also linearized and expressed in terms of state variables and voltage
components. Finally the current components are eliminated using the
interconnecting network algebraic equations. From the initial conditions,Ed'
10, Eqi0, 1qi0, 1diO, EFDIi0 and 6i0 are determined. Linearizing equation (4.5)
we get [4].
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_{=DE'g — (Xqi — X'gi)Alig) N

PAE’ y; = : N (4.68)
T qoi
PAI
{ATepi — (IgioAE' gi + 14i0AE  gi + E' gioAlgi + E gioAlgi) — Djwi}
PA(A)i = 31
T
=1,..n (4.70)
PAS; = Aw; ;i=1,..n (4.71)
PAE'

il
=—— [(Xqi = X'qi)Bii — 1]AE'g;
qoi

n
+ (Xgi = X'gi) E[Yik {sin(Bix — Biko) AE' qi] — (Xgi — X' i) GiiAE' g
k=1

#i

n
- (Xqi m X’qi) 2 [Yikcos(eik m 5ik0)AE,qk]
k=1

#i

n
— (Xgqi = X'qi) E[Yikcos(eik — diko) ] AE’ gkol
k=1

#i

+ sin(Bx — diko) AE,dkO]Aéik}; i

=12..n (4.72)
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PAE'; =

1 14 ! !
PAW; = — 4 [ATy; — DiAw; - [Taio + GAE'gip — BHAE 4jo ] AE' g
ji

— [Igio + BHAE gio — GHAE’ 0]
n
— E[Yikcos(eik — Biko)]AE gio — Yik SIn(Bji — Biko) AE’ i |AE ak
k=
¢i1
n
- E[YiRSin(eik — Biko) JAE' gio — Yik €05(Bixc — Biko) AE' gio | AE gic
k=
;ti1
n
— E[Yikcos(eik — diko)JAE 410
k=1
*1
— Yir cos(Bix — Bixo) (—E' qkoE’ dio + E' axoE’ qio)
+ Yiesin(O — 8ixo) (—E’ aroE gio

+ E,koE’in)Aéik]} ;o

=12..n (4.74)
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The above set of equations (4.72 to 4.75) gives the state space model of n-
machine system.

4.7 Exciter Representation
The state space equation of the exciter can be derived from the block

Diagram of the exciter shown in the Figure (2.2)

1 KA
AEgp = 15T, AV ... ... (4.76)

For n, number of exciters, the state equationsis as follows:

—Kaj 1
PAE; = _TA‘_*‘ (=AV,ep; + AV)) — ™ AEgi;i=1,..n (4.77)
1 1

Now the state vector of the n machine state model including exciter

Equation is as follows

X = [AE'4; AE' i Aw; AS; AEpg;[;i=1,....n (4.78)
4.8 Conventional Power System Stabilizer representation

The Conventional Power System Stabilizer (PSS) adds damping to the
generator rotor oscillations by controlling its excitation using auxiliary
stabilizing signals. To provide damping, the stabilizer must produce a

component of electrical torque in phase with the rotor speed deviations.

From the wash out block, we get

AV, = STw KpecA 4.79
2 — m( PSS w) (4.79)
PAV,; = KpssiPAw; — (1/Twi)AV, ;1=1,....n (4.80)
1+ ST,
AV, = AV, T st] (4.81)

54



Ty 1 1
21 21 21

The state vector of the complete system after the inclusion of power

System stabilizer is as follows

X{" = [AE' 4 AE' i Aw; AS; AEpg; AV AVgi];i=1,....n (4.83)
4.9 Dynamic Stability Evaluation

4.9.1 Techniques of Stability Evaluation

Stability can be evaluated by different methods, such as using Eigenvalues,
Damping Torques and Time-Domain Simulations. These methods are
techniques that are used to determine if the system is stable or unstable. The
following sections describes these techniques in details by taking different
operating points [1].

4.9.2 Stability Evaluation Using Eigen values Technique

Consider the following state-space equations:
Ax = AAX + BAu (4.84)
Ay = CAx + DAu (4.85)

Note that all the partial derivatives above are evaluated at which small
perturbation is being analyzed. Now we need to get the state Equations (4.84)-
(4.85)in the frequency domain. This is done by taking the Laplace transform

as follow

SAX(s) — AX(0) = AAX(s) + BAU(S) (4.86)
AY(s) = CAX(S) (4.87)
(SI — A)AX(S) = AX(0) + BAU(S) (4.88)
AX(s) = (SI — A)~1(AX(0) + BAU(s)) (4.89)

AY(s) = C[(SI = A)~1(AX(0) + BAU(S))] (4.90)
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Note that both Equations (4.86)-(4.87) have two components, one dependent
on the initial conditions and the other one dependent on the input [1]. The
poles of AX(s) and AY(s) are obtained from the roots of the characteristic

eguation of matrix A, whichis
det(SI — A) = zero (4.91)

Where sis the eigenvalue of matrix A.

The stability of any system is determined by its eigenvaues as follows:

1. Thereal eigenvalue corresponds to a non-oscillatory mode. If it is negative,
this represents the decaying mode, and it decays fast as long as the magnitude
of the eigenvalue is high. However if it is positive, this would represent an
aperiodic instability. Note that if there is at |east one positive real eigenvalue
in the system, this would lead the system to instability mode [1].

2. The complex eigenvalues appear in conjugate pairs, and each pair
corresponds to an oscillatory mode. The real component of the complex pair
represents the damping, while the imaginary component represents the
frequency of oscillations [1]. For acomplex pair of eigenvalue

| =0+ jw (4.92)

The damping ratio can be expressed as:

(o]

G (@)
w
f=— (4.94)

Where f the frequency of oscillationsin Hz is:

Equation (4.93) determines the rate of decay of the amplitude of the
oscillation. The stability of power system is related to position of the power
system eigenvalues in real-imaginary plane. The real component of the
eigenvalue presents the damping, where the imaginary component presents
the frequency of oscillations. If the real part of the eigenvalue is negative, the
response is represented as damped oscillations which tends the system to be
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stable, whereas if it is positive, the response is represented as increasing

amplitude oscillations, thus the system is instable.
4:10 Power System Representation for Dynamic Study

In the performance of a transient stability study, the following data are
needed:

1. A load-flow study of the pre-transient network to determine the mechanical
power Pm of the generators and to calculate the values of E, for al generators.
The equivalent impedances of the loads are obtained from the load bus data.

2. System data as follows, the inertia constant H and direct axis transient
reactance xd for all generators.

b. Transmission network impedances for the initial network conditions.

3. The type of location of disturbance, time of switching, and the maximum

time for which a solution is to be obtai ned.
4.11 Preliminary Calculations

To prepare the system data for a stability study, the following preliminary
calculations are made:

1. All system data are converted to a common base; a system base of
100MVA.

2. The loads are converted to equivalent impedances or admittances. The
necessary data for this step are obtained from the load-flow study. Thusif a
certain load bus has a voltage, power, reactive power, and current flowing
into aload admittance.

3. Theinternal voltages of the generators are calculated from the load-flow
data. These internal angles may be computed from the pre-transient terminal
voltages as follows.

4. The'Y matrix for each network condition is calculated. The following steps
are usually needed:

(@ The equivalent load impedances (or admittances) are connected between
the load buses and the reference node; additional nodes am provided for the

internal generator voltages (nodes|,2,..,n in Figure( 4.1 )and the appropriate
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values of Xd are connected between these nodes and the generator terminal
nodes

(b) All impedance elements are converted to admittances.

(c) Elements of the Y matrix are identified .

5. Finally, all the nodes except for the generator nodes are eliminated and the
Y matrix for the reduced network is obtained. The reduction can be achieved
by matrix operation considering zero injection currents at all the nodes except

for the internal generator nodes.

4.12 Smulation and Analysis

The method mention above for stability evaluation use in case of three
machine nine bus system the system data obtained in appendix(B). The case

study of three machine nine bus system uses different scenarios. For analysis
use Power System Toolbox (PSAT).The Figure (4.2) represent three machine

nine bus PSAT configuration.

Bus 1

Figure (4.2) Simulink diagram of three machine nine bus system
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4.12.1 Normal Case

The Simulation results shows in Table (A.5), Table (A.6) and Table (A.7)
power flow in buses, voltages, Eigen values report and participation factor for

al state . The Figure (4.3) show time domain of speed for three machines.
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The Figure (4.3) Time response of speed in three machine

4.12.2 Increasing load at Buses 8,6 and 5

The Simulation results shows in Table (A.8), Table (A.9) and Table (A.10)
power flow in buses, voltages , Eigen values and participation factor for all
state . The Figure (4.4) show time domain of speed deviation for three

machine in case of increasing load at buses 5,8 and 6.
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4.12.4 Short Circuit in Bus5 with PSS

The Simulation results shows in Table (A.13) ,Table (A.14) and Table( A.15)
power flow in buses,voltages,Eigenvalues report for all state and participation

factor. The Figure (4.6) shows the time domain of speed deviation for three

machine in case of short circuit but with PSS.

1007

o3t~ -H
1002~ -

poads 1010y

0998

)

time (S

Figure (4.6) Rotor speed in three machinesin case of short circuit at

bus 5 with PSS
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CHAPTER FIVE
DESIGN OF POWER SYSTEM BASED ONADAPTIVE
CONTROL
5.1 Introduction

The majority of processes met in industrial practice have stochastic character.
Traditional controllers with fixed parameters are often unsuited to such
processes because their parameters change. Parameter changes are caused by
changes in the manufacturing process, in the nature of the input materials,
fuel, machinery use (wear), power system etc. Fixed controllers cannot deal
with this. One possible alternative for improving the quality of control for
such processes is the use of adaptive control systems, which has been made
possible by the development of modern digital automation based on
microprocessor technology. Naturaly this must be taken together with the
development and improvement of adaptive control algorithms, and the
exploration of their potential, advantages and limitations[49].Adaptive control
is an area of feedback control theory that has recently received a great deal of
attention. Although there is no clear-cut definition of adaptive control, an
adaptive controller may be viewed as a regulator that can modify its behavior
according to changes in the dynamics of the process it is
controlling.[50]According to Webster's dictionary, to adapt means to "change
(oneself) so that one's behavior will conform to new or changed
circumstances." The words adaptive systems and adaptive control have been
used as early as 1950,[52].This generic definition of adaptive systems has
been used to label approaches and techniques in a variety of areas despite the
fact that the problems considered and approaches followed often have very
little in common. The specific definition of adaptive control, Adaptive control
iIs the combination of a parameter estimator, which generates parameter
estimates online, with a control law in order to control classes of plants whose

parameters are completely unknown and/or could change with time in an
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unpredictable manner. The choice of the parameter estimator, the choice of
the control law, and the way they are combined leads to different classes of

adaptive control schemes.
5.2 Adaptive Control

Adaptive Control covers a set of techniques which provide a systematic
approach for automatic adjustment of controllers in real time, in order to
achieve or to maintain adesired level of control system performance when the
parameters of the plant dynamic model are unknown and or change in time.
Consider the case when the parameters of the dynamic model of the plant to
be controlled are unknown but constant (at least in a certain region of
operation). In such cases, athough the structure of the controller will not
depend in genera upon the particular values of the plant model parameters,
the correct tuning of the controller parameters cannot be done without
knowledge of their values. Adaptive control techniques can provide an
automatic tuning procedure in closed loop for the controller parameters. In

such cases, the effect of the adaptation vanishes as time increases.

5.3 Development of Adaptive Control

The history of adaptive control goes back nearly 50 years [51].The
development of adaptive control started in the 1950°’s with the aim of
developing adaptive flight control systems, although that problem was
eventually solved by gain scheduling. Among the various solutions that were
proposed for the flight control problem, the one that would have the most
impact on the field was the so-called model-reference adaptive system
(MRAS). Adaptive controllers are generaly broken into two different types
direct and indirect with the direct adaptive controller, regulator parameters are
directly changed as the dynamics of the system change. This is demonstrated
in Figure(5:1). The closed-loop plant is forced to act like a model system; the
regulator parameters are adjusted until the error e in Figure (5.1) is driven to

zero. Direct adaptive control is often termed model -reference adaptive control

63



(MRAC). With an indirect adaptive controller the regulator parameters are
indirectly updated; an indirect controller is shown in Figure(5.2). The
controller's operation occurs in two distinct steps. First, the dynamics of the
system are identified at a particular instant in time; then the regulator is
adjusted according to the identified dynamics. The plant's input and output are
passed to a recursive identifier which identifies a linear model of the plant.
The linear model parameters are passed to a regulator design block. Here the
regulator parameters are calculated and passed to the regulator. With a
discrete-time adaptive controller, the whole process may be updated with each
time sample. Indirect adaptive controllers are aso termed self-tuning adaptive

controllers [53].

— | model I -
adaptali_ﬂn e
mechanism
—L» y
. regulator | plant ——P

Figure (5.1) Configuration of direct model reference adaptive control
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regulator
parameters
U
— u y
regulator | p| process | ——4—p

Figure (5.2) Configuration of indirect model reference adaptive control
5.4 model refer ence adaptive control

The basic MRAC system consists of four main components:
1) Plant to be controlled
i) Reference model to generate desired closed loop output response

i) Controller that is time-varying and whose coefficients are adjusted by

adaptive mechanism

Iv) Adaptive mechanism that uses ‘error’ (the difference between the plant
and the desired model output) to produce controller coefficient Regardless of
the actual process parameters, adaptation in MRAC takes the form of
adjustment of some or al of the controller coefficients so as to force the
response of the resulting closed-loop control system to that of the reference
model. Therefore, the actual parameter values of the controlled system do not
realy matter. Two types of MRAC design methods will be discussed in this
thesis. They are (i) Gradient Method/ MIT Rule.
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i) Lyapunov Method.
5.5 MRAC Design Using Gradient Method/MIT Rule

The Gradient Method of designing an MRAC controller is aso known as the
MIT Rule as it was first developed at the Massachusetts Institute of
Technology (MIT), USA. This s the origina method developed for adaptive
control design before other methods were introduced to overcome some of its
weaknesses. However, the Gradient method is relatively simple and easy to
use. In designing the MRAC controller, we would like the output of the

closed-loop system y(t) to follow the output of the reference mode Y,,(t).

Therefore, we aim to

minimize the error (€=Y- Y,,) by designing a controller that has one or more

adjustable parameters such that a certain cost function is minimized.
Controller Design M ethod
Consider a closed-loop system with a controller that has only one adjustable

parameter, 0 Let

r (t) = Reference input signal
u(t) = control signal

y(t) = Plant output, Y (t) = Reference model output
e(t) = y(t) - Yn(t)

The control objective is to adjust the controller parameter 6, so that e(t)is
minimized. To do this, a cost function, J(8) is chosen and minimized.
Possibility 1.
Adjust 6 such that the cost function

1
J(Q)=§e2 (5.2)

iISminimized. To do this, we need,
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— =0 — (5.3)

I.e. 0 is changed in the direction of negative gradient of J, where the negative

sign impliesthat 0 is changed such that J becomes small. From (5.1),

dg - 4 1J7e - _ge e (54)

dt Tefq 9

1? qe Is called the “sensitivity derivative’, which indicates how the error is
influenced
Possibility 2:

Adjust 8 such that the cost function d(@) =|g is minimized. We then have,

da_ Wi Wl Ty o (5.5)

a& 999 9%erq - Y7g

Where SiN(€) ={+1 ife =20,-1if e
<0
5.6 Design of model reference adaptive control based on
MIT

Consider first order differential equation transfer function

s) d
G(s) = % = = ay(®) +bu(y (5.6)
And Plant model:
Go(9) =22l = Yo = gy 11,0 (1)
m r(s) dt m (5.7)

Where y is the system output, u is the control input and parameter a is
unknown and time-varying. The system is controlled by a proportiona

controller
Controller:

u(t) =a,r (t) - 4, y(t) (5-8)
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_YeS Gy, _ _ b,
G9 S —E— sta. (5.9)
d b
&= %—Ey: a0) +hut) = (5.10)

But a ,b unknown and To do this, a cost function, J(6) is chosen and

minimized which is given by equation Cost function:

1 N,
Jg)==e"b —=¢
@) 5 o

(5.11)
We aim to find the adjustable parameter g ; and 2 which can be found

from Equation (5.2)
g _ 1Te
9=-9————=-g_-sng 5.12
q /M= 95 gﬂq nEe) (5.12)
. dg . Te : .
Tofind a we need to find W the expression of ein terms of (
e=-y-y = b u- 0, r
" s+a s+a_ (5.13)

b b
Notethat Y=——U= s+a(q1r (t)- g, y(t)

St+a
= b r
y S+a+bq2ql (5. 14)
e= b r- O r
s,+a+bq2ql s+a_ (5.15)
e _ b

= r
fa, s+a+baq, (516

Te — b2q1 r
o, (s+a+ba,)’ (17)

e _ by
fa,  (s+a+ba,) (5.18)
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a_ e Te . b

dt ﬂ_ql__ge[(s+a+bq2)r] 519
dg, e b
—EE e =g )]
dt Yo, (s+a+bg,) (520
dg, dg, .
However, a and b are unknown. Also, both——— and are a function of

dt dt

(CI), which we need for adaptation. In this case we need to do some
approximation: Assume that the input and output relation of the system and

the model are the samei.e. perfect model following,

Y = Yn
Andso € in(5.15) tendsto zero at steady state. We then have,
b b,
sta+bg, ' s+a, (5.21)

If we approximate S+a+bq, =s+a, and bq,r = b r

o, b -

— = r=- = €

” Qﬁ[(s+an) ] 93—lqﬂ Ym =9 Y (5.22)
@ . b o b by _ bR b

at _g{(s+am)y]_@[hnry’"]y_9%bﬂ'ry_gh“'s+am ye=g sta ye  (5.23)

5.7 MRAC Design using Lyapunov Method

The model reference adaptive controller designed using the Gradient
method/MIT rule has been described. It has also been shown that the method
does not guarantee stability to the resulting closed-loop system. However,
MRAC can also be designed such that the globally asymptotic stability of the
equilibrium point of the error difference equation is guaranteed. To do this,
we use the Lyapunov method (Popov, 1973). The first requires an appropriate
Lyapunov function to be chosen, which could be difficult, whereas the second
method is more systematic. This section looks at the MRAC system designed
using the Lyapunov Method.
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Controller Design Method

It has been seen in Section (5.5) that there is no guarantee that an adaptive
controller designed based on MIT Rule will give a stable adaptive system. On
the other hand, designing an MRAC using Lyapunov Method will ensure a
stable closed loop system. In designing an MRAC using Lyapunov Method,
the following steps should be Followed

1) Derive a differential equation for error, €=Y- Y, (i.e.e, e ) that contains
the adjustable parameter, 6.

i) Find a suitable Lyapunov function, V(0,€) usually in a quadratic form (to
ensure positive definiteness).

iii) Derive an adaptation mechanism based on V(d,€) such that e goes to zero.

5.7.1 Lyapunov M ethod

Consider an adaptive control system with the following plant, reference

model and controller:

Plant model:

Y- ay-+bu() (5.22)
Reference model:
Yoo~ - ay (1) + byr (1) 525
Controller:
u(t) =q,r(t)- q,y(t) (5.26)

It follows from equation (5.1) and (5.3), that

~ b
e quqlr (5.27)
Y = ooy

" s+a, (5.28)

Step 1. Derive differential equation for e that contains
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e=y -y, (5.29)

y'+(a+hba,)y=ho,r (5.30)
y'=-(ath)y-+oor (531)
y +ay =br (5.32)
Y. =-a.y,+hr (5.33)
e =y -y

=-(a+bg,)y+bgr+ay - br (5.34)
=-ay- bo,y+bor +a.y, - bm (5.35)
=-ay- ba,y+bayr +a,(y- €)- bmr (5:36)
=-8,e- (a+hq, - a,)y+(ba, - by)r (5.37)
=-g,e- [a'ba'“ +0,Jby+[q, - bt;“]br (5.38)
=-a,e- [X,Joy+[X,]br (5.39)

Step 2: Find the suitable Lyapunov function (usualy in quadratic form) ,The
Lyapunov function, V(e X,, X,) ischosen based on (5.39). Let

Ve, X, X,)=[e X, X,J|0 1, o0]X,
0 0 1,|X,

V(e X, X;) =8, +1,X," +1 ,X?(5.41)

Wherel 1,1 2> 0 sothat V is positive definite
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vV le, vV X, 1V X,

fe dt X, dt X, dt

V' =a 2ee +2 X, X, +2 ,X,X;
V' =g, 4-a.e- Xpy+Xbi+2 XX +2 ,X.X,
V' =23, - 23, Xbyer 23, X brer 2 X X, +2,X,X;

For stabilityV < O
-Y+Z<0b Z<Y

Therefore ,we can take Z=0

- 2a X byet2a X,bre+2 X X, +2 ,X, X, =0
For expression

X =12 1q] b X, =g, X, =l0, - 1P X, =g
- 2a_X,bye+2a X,bre+2  Xq, +2 ,X,q, =0
Derive an adaptation mechanism (for q , andq,)
- 2X[-abyerl g,]+2X[g pretl ]=0
Thisispossibleif

-a,bye+l g, =0

a,bre +1.,9, =0

_-abye

. b
g, = &

=g,yeb wherg, = |

l 1 1
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(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)
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(5.52)



. _-a,bre _ _a.b
a, = - glyep Whereg1 -7 (5_53)

|2 |2

6.8 Full-State M easur ement
Let us now consider the nth order plant

X =Ax+Buxi R’ (554)

where Al R"",BI R"%are unknown constant matrices and (A,B) is
controllable. The control objective is to choose the input vectoru 1 R such

that all signas in the closed-loop plant are bounded and the plant state x
followsthe state x T R"of areference model specified by the LTI system

X =AX,+BUX R (5.55)

whereA =l R""x_ is a stable matrix, B, =R"%rT R? is a bounded
reference input vector. The reference model and input r are chosen so that
X, (t) represents a desired trajectory that x has to follow. Control Law If the
matrices A;B were known, we could apply the control Law

u=-K'x+Lr (5.56)

and obtain the closed-loop plant

X =(A- BK)x+BLr (5.57)

Hence, if K'T R and L 1T RYY  are chosen to satisfy the agebraic
equations

A-BK =A BL=B, (5.58)

then the transfer matrix of the closed-loop plant is the same as that of the

reference model and X(t) ® X (t),exponentially fast for any bounded reference

input signal r(t). We should note that given the matrices A B, A, Bﬂ,nOK L

may exist to satisfy the matching condition (5.57) indicating that the control
law (5.56) may not have enough structural flexibility to meet the control
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objective. In some cases, if the structure of A,B is known, A ,B. may be

designed so that (5.57) has a solution forK™,L Let us assume that K',L in
(5.57) exist, i.e, that there is sufficient structural flexibility to meet the

control objective, and propose the control law

=- K(t)x+L(t)r
where K(t);L(t) are the estimates of K,L respectively, to be generated by an
appropriate adaptive law. Adaptive Law By adding and subtracting the
desired input term, namely, - B(K" X - L) in the plant equation and using
(5.57), we obtain
X =AX, +BI +BK x- L +U) (5.59)
e =Ae+Br+B(-Kx+Lr’) (5.60)

This also depends on the unknown matrix B. In the scalar case we manage to

get away with the unknown B by assuming that its sign is known. Let us
assumethat L™ is either positive definite or negative define and G* =L sin()
wherel = 1if L ispositive definiteand L =-1if L isnegative definite. Then

B =B,,,L "and (5:60) becomes

e =Ae+Br+B LK x+Lr) (5.61)
We propose the following Lyapunov function candidate
V(eK,L)e =€ PerBr +{K'&K+L'G] (5.62)

Where P=P" -0 satisfiesthe lyapunov eguation

PA_ + ATP =-Q(5.63)
For some Q = Q" - 0 then

V =-&Qe+E PBL - Kx+Lr]+2{K'&K +L'GA] (5.64)
Now

2e" PB, L "*Kx = tr[x" K GB,Pe]sin(l) = tr[K "GB" mPe]sin(l) (5.65)
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e"PB L 'Lr =tr[L' GB"mPer"]sin()

Therefor

K =K =B"mPexX sin(),L’ =L =B"nPer" sin() (5.66)
We have

V' =-e'Qe (5.67)
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CHAPTER SEX
RESULTSAND DISCUSSION

6.1 Introduction

This chapter presents the ssmulation results for the single machine connected
to the infinite bus system. The PSS design based on model reference adaptive
control using lyapunov and gradient method. The performance of the PSSsis
accessed via the modal analysis stated in chapter three and validated using
time domain simulations. The effectiveness of the resulting PSSs to damp the
low frequency oscillations is tested under various operating conditions. The
results are validated through simulations of the system’s response for three
different operating conditions. The comparison is carried out between the
system equipped with CPSS and adaptive PSS.

6.2 Adaptive Power System Stabilizer

Following the application of adaptive control to tune the PSS, the Simulink
diagram shown in Figure (6.1)obtain implementation of adaptive power
system stabilizer in single machine finite bus and Figure (6.2) show time
response of speed deviation of generator in case of norma load with
conventional and adaptive PSS. The adaptive PSS that would give the best

damping for the most dominant poles of the system.

I -
_ c -
f o G -
‘ ] U e ‘ )
\g—' r v am o m
T | |ogs T
= T < i
B = b Ml

Figure (6.1) Simulink model of APSSin SMIB
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Figure (6.2) Rotor Speed deviation with APSS

6.3 Effect of Conventional PSS on Different Operation

points

The figure (6.3) shows speed deviation response in different operation points,
normal load , heavy load and light load. It's clear from the figure the classic
power system stabilizer cannot damp out power system oscillation in different

operation points.
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Figure (6.3) Speed deviation response in different operation points

6.4 Effect of adaptive PSS on different operation points

The figure (6.4) shows speed deviation response in different operation point,

normal load ,heavy load and light load. It's clear from the figure the adaptive

power system stabilizer damp out most of oscillation in different operation

points. It's better than conventional power system stabilizer.
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Figure (6.5) model reference tracking based on MIT rules
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Figure (6.6) Simulink diagram based on MIT rules

X

6.6 Compar ative of Convergence of Theta based on MIT
and lyapunov

Figures (6.8),(6.8),(6.9) and (6.10) compares the time responses of same plant
controlled by MIT and Lyapunov rules for the same adaptation gain. The
characteristics show that there is midrate difference in responses for both the
models, though the complicacy is reduced to large extent in Lyapunov rule.
Figure (6.7) and (6.8) shows the variation of 81 and 62 with respect to time
for MIT rule. It can be observed that controller parameter 1 (61) converges to
1.5 and controller parameter 2 (62) convergesto -0.31. Similarly fig (6.9) and
(6.10) shows the variation of 681 and 62 with respect to time for Lyapunov
rule. Here 81 converges to 0.9 and 62 converges to -0.55.There is difference

in convergence, though it is faster with Lyapunov rule.
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Figure(6.10) Time response of theta2 based on lyapunov rule
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6.7 Model reference based on lyapunov method

The Model reference Adaptive Control Scheme is applied to plan describe in
equation(5.24) by using lyapunov method. The models are ssmulated in
Matlab which are shown in figure (6.11) and fig(6.12) show simulation

diagram .
b
fo M
> s + a
o [ 7. L e @ e
! o - ]
5 -~ +
oy v
& v
— w
T 2e(1) _ . v
17 | —T—/—/—/—/——
- 5 + o
91?
~(£) S T
<
r~ _ e

Figure (6.12) Shows Simulink diagram of system designed based on lyapunov
method

f f
- referene signal
=== model signal |--+

output signal

6 8 10
time (second)

Figure (6.11) Model reference based on lyapunov method

83



6.8 Effect of adaptation Gain on Model Tracking In case
of Gradient and lyapunov Method

Figure (6.13) and figure (6.14) show the effect of adaptation gain on time
response curves for MIT rule and Lyapunov rule respectively. There is
improvement in the performance of the system with the increment in
adaptation gain. Every system gives its best for the limited range of the
adaptation gain. In this design the range of adaptation gain is chosen from 0.2
to 5 for the system under consideration. Beyond this range the system
performance is going to high oscillatory. It has been seen that the response is
very slow with the bigger value of adaptation gain.

2.5

r T 1 L
! ! | | == model reference
| | m—gama = 0.4
7] n .......... S i-|=——gama=1
| I | ==gama=5
Ry — . .
2 ! : | |
n | | | |
5 \ | |
= Lb--g4--f1-Ffr------- T == .
: 1 1 1 1
o | | | \
O] S A A SR S oo .
. ; =, ; =,
0 5 10 15 20 25

time (second)

Figure (6.13) Effect of adaptation gain on model tracking In case of gradient
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CHAPTER SEVEN
CONCLUSION AND FUTURE WORK

7.1 Conclusion

We discussed power system stability, oscillation modes, mechanisms and
analysis methods to understand electromechanical oscillations phenomena.
We presented thesis motivations, and contribution of work. The design of
Power System Stabilizer (PSS) involves a deep understanding of the
dynamics model of the single machine infinite bus system and multi machine
power system. Design conventional Power System Stabilizer using linear
control principles and view the problem as a feedback control problem
concerned in fixed gain.

Next introduced adaptive control to design power system stabilizer by MIT
rule and lyapunov method, in two cases scalar and vectors. Finally evaluated
performance of controller which designed by MIT rules and Lyapunov
methods by time doman simulation in SMIB with different loading
conditions, normal, heavy and light load.

7.2 FutureWork

The results of this thesis open some interesting and challenging problems of
great importance. In what follows, we point out of possible future research

Use Model free Adaptive control (MFAC) for same work the model
reference adaptive control has some disadvantage it takes some time to
adapt desired performance of model reference.

For more accuracy of model reference combine adaptive fuzzy or
adaptive neural for same work.

combine power system stabilizer with UPFC or FACT devisesto more
damp for same work

Applied adaptive power stabilizer to multi machine power system.
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APPENDIX (A)

The appendix (A) obtain the eigenvalues, damping ratio and frequency
oscillations when applied PSS to single machine connected in finite bus and
multi machine example three machine nine bus system at different scenarios
Table (A.1) Eigenvalues of System In case of Normal load

The eigenvalues of System Without any controller in case of Normal load

Eigen values Fn(Hz) Zeta

-.2522 + 6.3580i 1.0127 1.0000
-0.2522 - 6.3580i | 0.5937 0.0396
-0.1783 0.0284 1.0000
-3.7305 1.0127 0.0396

The eigenvalues of System With included AVR

Eig Fn(Hz) Zeta

-18.8952 3.0073 1.0000
-0.1640 + 6.3555i 1.0118 0.0258
-0.1640 - 6.3555i 1.0118 0.0258
-1.3292 0.2115 1.0000
-3.8607 0.6145 1.0000

The Eigen values of System With included AVR+PSS

eg Fn(Hz) Zet
a
-27.8615 4.4343 1.0000
-6.4694 + 8.7779i 1.7355 0.5933
-6.4694 - 8.7779i 1.7355 0.5933
-2.8930 + 6.0794i 1.0715 0.4297
-2.8930 - 6.0794i 1.0715 0.4297
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-3.8707 0.6160 1.0000

-1.2401 0.1974 1.0000

-0.1012 0.0161 1.0000

Table (A.2) Eigenvalues of System In case of heavy |oad

The eigenvalues of System Without any Controllerin case heavy load

Eig Fn(Hz) Zeta

-0.1781 + 8.4194i 1.3403 0.0211

-0.1781 - 8.4194i 1.3403 0.0211

-0.2263 0.0360 1.0000
-3.8307 0.6097 1.0000
The eigenvalues of System With included AVR

Eig Fn(Hz) Zeta

-18.8258 2.9962 1.0000

-0.1213 + 8.4051i | 1.3379 0.0144

-0.1213 - 8.4051i | 1.3379 0.0144

-1.4690 0.2338 1.0000

-3.8757 0.6168 1.0000

The eigenvalues of System Withincluded AVR+PSS

Eig Fn(Hz) Zeta
-27.5475 4.3843 1.0000

-2.6503 + 9.8039i | 1.6163 0.2610

-2.6503 - 9.8039i | 1.6163 0.2610

-6.7727 + 6.5933i | 1.5043 0.7165

-6.7727 - 6.5933i | 1.5043 0.7165

-3.8821 0.6179 1.0000

-1.4221 0.2263 1.0000

-0.1006 0.0160 1.0000
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Table (A.3) Eigenvalues of System case of light load

The eigenvalues of System Without any Controller in case of light load

Eig Fn(Hz) Zeta
-0.5480 + 6.2334i | 0.9959 0.0876
-0.5480 - 6.2334i | 0.9959 0.0876
-0.2238 0.0356 1.0000
-3.0934 0.4923 1.0000

The eigenvalues of System With included AVR

Eig Fn(Hz) Zeta
-18.8667 3.0027 1.0000
-0.5181 + 6.24031 | 0.9966 0.0827
-0.5181 - 6.2403i | 0.9966 0.0827
-1.2711 0.2023 1.0000
-3.2391 0.5155 1.0000

The eigenvalues of System With included AVR+PSS

Eig Fn(Hz) Zeta

-26.2055 4.1707 1.0000
-8.3084 + 7.0857i | 1.7379 0.7609
-8.3084 - 7.0857i | 1.7379 0.7609
-2.2215 + 6.4503i | 1.0858 0.3256
-2.2215 - 6.4503i | 1.0858 0.3256
-3.2413 0.5159 1.0000
-1.1906 0.1895 1.0000
-0.1010 0.0161 1.0000
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Table (A.4) Eigenvalues of System in case of leading power factor load.

The eigenvalues of System Without any ControllerLeading power factor

Eig Fn(Hz) Zeta
0.0649 0.0103 -1.0000
-0.1733 + 3.8571i | 0.6145 0.0449
-0.1733 - 3.8571i 0.6145 0.0449
-4.1313 0.6575 1.0000

The eigenvalues of System With included AVR

EigFn(Hz) Zeta

-18.9791 3.0206 1.0000
0.2827 + 3.8814i 0.6194 -0.0726
0.2827 - 3.8814i 0.6194 -0.0726
-1.9032 0.3029 1.0000
-4.0962 0.6519 1.0000

The eigenvalues of System With included AVR+PSS

EigFn(Hz) Zeta

-28.7768 4.5800 1.0000
-7.0721 +10.1977i | 1.9751 0.5699
-7.0721-10.19771 | 1.9751 0.5699
-1.4662 + 3.2730i | 0.5708 0.4088
-1.4662 - 3.2730i | 0.5708 0.4088
-4.1011 0.6527 1.0000
-1.7411 0.2771 1.0000
-0.1025 0.0163 1.0000
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Table (A.5) Power flow and voltagesin case of in normal load

Bus Vv phase P gen Qgen P load Q load
[p.u.] [rad] [p.u.] [p.u.] [p.u.] [p.u.]
Busl | 1.04 0 0.36725 | 0.11017 0 0
Bus2 | 1.025 0.20499 | 1.63 -0.0427 0 0
Bus3 | 1.025 0.11956 | 0.85 -0.19705 | O 0
Bus4 | 1.0341 | -0.01967 | O 0 0 0
Bus5 | 1.0142 | -0.0285 0 0 1 0.35
Bus6 | 1.0256 | -0.03889 |0 0 0.9 0.2
Bus7 | 1.0324 | 0.10857 | O 0 0 0
Bus8 | 1.0247 | 0.05844 |0 0 0.9 0.3
Bus9 | 1.0374 | 0.0727 0 0 0 0

Table (A.6) Eigen value and frequency oscillation in case of normal |oad

Eigevalue | Most Associated States Real part | Imag. Pseudo- | Frequency
Part Freq.

EigAs#1 | vm_Exc_1 -1000 0 0 0

EigAs#2 | vm_Exc_1 -1000 0 0 0

EigAs#3 | vm_Exc_3 -1000 0 0 0

Eig As#4 | omega_Syn_3,delta_Syn_3 | -0.62989 11.6791 1.8588 1.8615

EigAs#5 | omega_Syn_3,delta_Syn 3 | -0.62989 | -11.6791 | 1.8588 1.8615

Eig As#6 | omega_Syn 2,delta Syn 2 | -0.14679 | 7.5514 1.2018 1.2021

Eig As#7 | omega_Syn_ 2,delta Syn 2 | -0.14679 | -7.5514 1.2018 1.2021

Eig As#8 | vrl_Exc_2,vf Exc_2 -5.4663 7.9496 1.2652 1.5355

EigAs#9 | vrl_Exc_2,vf Exc_2 -5.4663 -7.9496 1.2652 1.5355

Eig As #10 | vrl_Exc_1, vf Exc_1 -5.2251 7.8402 1.2478 1.4995

Eig As#11 | vrl_Exc_1, vf Exc_1 -5.2251 -7.8402 1.2478 1.4995

Eig As #12 | vr1l_Exc_3, vf Exc_3 -5.319 7.9288 1.2619 1.5196

Eig As #13 | vrl_Exc_3, vf Exc_3 -5.319 -7.9288 1.2619 1.5196

Eig As #14 | eld Syn 3 -5.3256 0 0 0

Eig As #15 | eld _Syn 2 -3.5386 0 0 0

Eig As #16 | elqg_Syn_1,vr2 Exc_ 1 -0.46492 1.1069 0.17617 | 0.19108

Eig As#17 | elqg_Syn_1,vr2 Exc_1 -0.46492 | -1.1069 0.17617 | 0.19108

Eig As elg Syn 2,elq Syn 1 -0.43485 | 0.72504 | 0.11539 | 0.13456

#18

EigAs elq Syn 2,elq Syn 1 -0.43485 | -0.72504 | 0.11539 | 0.13456

#19

Eig As elg Syn 3,vr2 Exc 3 -0.40349 | 0.47317 | 0.07531 | 0.09897

#20

Eig As elq Syn_3,vr2 Exc 3 -0.40349 | -0.47317 | 0.07531 | 0.09897

#21

Eig As delta Syn 1 0 0 0 0

#22

EigAs omega Syn 1 0 0 0 0

#23

Eig As eld Syn 1 -3.2258 0 0 0

#24
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Table (A.7) Participation factor of all state in case of normal |oad

delta_Syn_ | omega_Syn_ | elq_Syn_1 eld Syn 1 delta_Syn_2
1 1

EigAs#1 0 0 0 0 0

Eig As # 2 0 0 0 0 0

Eig As # 3 0 0 0 0 0
EigAs# 4 0.00417 0.00417 0 0 0.08722
Eig As#5 0.00417 0.00417 0 0 0.08722
Eig As# 6 0.14087 0.14087 0.00023 0 0.29858
EigAs#7 0.14087 0.14087 0.00023 0 0.29858
Eig As# 8 0.00017 0.00017 0.00012 0 0.00104
Eig As#9 0.00017 0.00017 0.00012 0 0.00104
Eig As #10 0.00017 0.00017 0.01732 0 0.00026
Eig As #11 0.00017 0.00017 0.01732 0 0.00026
Eig As #12 0.00017 0.00017 0.00056 0 7e-005
Eig As #13 0.00017 0.00017 0.00056 0 7e-005
Eig As #14 5e-005 5e-005 0 0 0.00581
Eig As #15 0.01902 0.01902 0.00058 0 0.00925
Eig As #16 0.01103 0.01103 0.25718 0 0.00743
Eig As #17 0.01103 0.01103 0.25718 0 0.00743
Eig As #18 0.00536 0.00536 0.21137 0 0.00371
Eig As #19 0.00536 0.00536 0.21137 0 0.00371
Eig As #20 0.00011 0.00011 0.00248 0 0.00227
Eig As #21 0.00011 0.00011 0.00248 0 0.00227
Eig As #22 0.34796 0.34796 0 0 0.1036
Eig As #23 0.34796 0.34796 0 0 0.1036
Eig As #24 0 0 0 1 0
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elqg_Syn_3 eld Syn 3 vm_Exc_1 | vrl Exc_1 vr2_Exc 1
EigAs#1 0 0 0.50254 0 0
Eig As # 2 0 0 0.49223 0 0
EigAs#3 0 0 0.00523 0 0
EigAs# 4 0.01513 0.02405 0 0 0
Eig As#5 0.01513 0.02405 0 0 0
Eig As#6 0.00272 0.00134 0 0.00017 5e-005
Eig As#7 0.00272 0.00134 0 0.00017 5e-005
Eig As# 8 0.00054 0.00041 0 0.00425 0.00121
Eig As#9 0.00054 0.00041 0 0.00425 0.00121
Eig As #10 0.00201 0.00044 0.00016 0.38354 0.11619
Eig As #11 0.00201 0.00044 0.00016 0.38354 0.11619
Eig As #12 0.01008 0.00288 1le-005 0.0364 0.01059
Eig As #13 0.01008 0.00288 1le-005 0.0364 0.01059
Eig As #14 0.01297 0.47689 0 0 0
Eig As #15 0.00429 0.4446 1le-005 0 0.00863
Eig As #16 0.07278 0.00416 0.0003 0.02554 0.19461
Eig As #17 0.07278 0.00416 0.0003 0.02554 0.19461
Eig As #18 0.05488 0.00471 0.00016 0.01926 0.16401
Eig As #19 0.05488 0.00471 0.00016 0.01926 0.16401
Eig As #20 0.33438 0.03586 0 0.00022 0.00192
Eig As #21 0.33438 0.03586 0 0.00022 0.00192
Eig As #22 0 0 0 0 0
Eig As #23 0 0 0 0 0
Eig As #24 0 0 0 0 0
continue
omega S | elg Syn_ | eld Syn 2 | delta_Sy | omega_Syn_3
yn_2 2 n_3

EigAs#1 0 0 0 0 0

Eig As # 2 0 0 0 0 0

Eig As # 3 0 0 0 0 0

Eig As# 4 0.08722 0.00519 0.00616 0.38232 | 0.38232

Eig As#5 0.08722 0.00519 0.00616 0.38232 | 0.38232

Eig As#6 0.29858 0.01675 0.00041 0.04766 | 0.04766

Eig As#7 0.29858 0.01675 0.00041 0.04766 | 0.04766

Eig As# 8 0.00104 0.01263 0.00152 0.00031 | 0.00031

Eig As#9 0.00104 0.01263 0.00152 0.00031 | 0.00031

Eig As #10 0.00026 0.0011 0.00084 0.00036 | 0.00036

Eig As #11 0.00026 0.0011 0.00084 0.00036 | 0.00036

Eig As #12 7e-005 0.00132 0.00055 0.00146 | 0.00146

Eig As #13 7e-005 0.00132 0.00055 0.00146 | 0.00146

Eig As #14 0.00581 0.00661 0.46114 0.01079 | 0.01079

Eig As #15 0.00925 0.00206 0.44857 0.0107 0.0107

Eig As #16 0.00743 0.14162 0.00799 0.00413 | 0.00413

Eig As #17 0.00743 0.14162 0.00799 0.00413 | 0.00413

Eig As #18 0.00371 0.2122 0.00987 0.00123 | 0.00123

Eig As #19 0.00371 0.2122 0.00987 0.00123 | 0.00123

Eig As #20 0.00227 0.12401 0.00789 0.00194 | 0.00194

Eig As #21 0.00227 0.12401 0.00789 0.00194 | 0.00194

Eig As #22 0.1036 0 0 0.04844 | 0.04844

Eig As #23 0.1036 0 0 0.04844 | 0.04844

Eig As #24 0 0 0 0 0
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Increasing load at buses 8,6,5

Table (A.8) power flow and voltagesin case of increasing load

Bus \% Phase P Q P [p.u] Qload
[p.u] [rad] [p.u] [p.u] [p.u]
gen gen load
Bus 1 1.04 0 1.2305 0.78725 0 0
Bus 2 1.025 0.10746 1.63 0.32838 0 0
Bus 3 1.025 0.01651 0.85 0.22516 0 0
Bus 4 0.99873 -0.06829 0 0 0 0
Bus 5 0.95986 -0.11003 0 0 1.25 0.7
Bus 6 0.94835 -0.1297 0 0 1.3 0.8
Bus 7 1.0099 0.00888 0 0 0 0
Bus 8 0.99085 -0.05249 0 0 1.1 05
Bus 9 1.0133 - 0.03147 0 0 0 0
Table (A.9) Eigenvalue of state matrix and the frequency of oscillation

Eigevalue | Most Associated Real Imag. Part | Pseudo- Frequency
StatesFreq. part

EigAs#1 | vm_Exc_1 -1000 0|0 0

Eig As#2 | vm_Exc_1 -1000 0|0 0

Eig As#3 | vm_Exc_3 -1000 0|0 0

Eig As#4 | omega_Syn_3, delta_Syn_3 | -0.87026 11.4437 | 1.8213 1.8266
Eig As#5 | omega_Syn_3, delta_Syn_3 | -0.87026 -11.4437 | 1.8213 1.8266
Eig As # 6 | delta_Syn_2, omega_Syn_2 | -0.21599 7.5571 | 1.2028 1.2032
Eig As #7 | delta_Syn_2, omega_Syn_2 | -0.21599 -7.5571 | 1.2028 1.2032
Eig As#8 | vrl_Exc_2, vf_Exc_2 -5.5904 7.9572 | 1.2664 1.5477
Eig As#9 | vrl_Exc_2, vf_Exc_2 -5.5904 -7.9572 | 1.2664 1.5477
Eig As #10 | vrl_Exc_1, vf_Exc_1 -5.2391 7.8091 | 1.2429 1.4967
Eig As #11 | vrl_Exc_1, vf_Exc_1 -5.2391 -7.8091 | 1.2429 1.4967
Eig As #12 | vrl_Exc_3, vf_Exc_3 -5.429 7.9033 | 1.2579 1.526
Eig As #13 | vrl_Exc_3, vf_Exc_3 -5.429 -7.9033 | 1.2579 1.526
Eig As #14 | eld_Syn_2 -4.8535 0|0 0

Eig As #15 | eld_Syn_3 3.3167 0|0 0
Eig As #16 | elq_Syn_1, elq_Syn_2 -0.45827 | 1.2809 0.20386 0.21652
Eig As #17 | elq_Syn_1, elq_Syn_2 -0.45827 -1.2809 | 0.20386 0.21652
Eig As #18 | elq_Syn_1, vr2_Exc_1 -0.46288 0.76046 | 0.12103 0.14169
Eig As #19 | elq_Syn_1, vr2_Exc_1 -0.46288 -0.76046 | 0.12103 0.14169
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Eig As #20 | elq_Syn_3, vr2_Exc_3 -0.50137 0.56304 | 0.08961 0.11999

Eig As #21 | elq_Syn_3, vr2_Exc_3 -0.50137 -0.56304 | 0.08961 0.11999

Eig As #22 | delta_Syn_1 0 0|0 0

Eig As #23 | omega_Syn_1 0 00 0

Eig As #24 eld_Syn_1 -3.2258 0 0 0

Table (A.10) Participation factor of all states
delta_Syn 1| omega_Syn 1 elg Syn_ 1 eld Syn 1 delta_Syn 2

EigAs#1 0 0 0 0 0
Eig As # 2 0 0 0 0 0
Eig As#3 0 0 0 0 0
Eig As#4 0.00451 0.00451 4e-005 0 0.08469
Eig As#5 0.00451 0.00451 4e-005 0 0.08469
Eig As#6 0.12995 .12995 0.00011 0 0.30595
Eig As#7 0.12995 0.12995 0.00011 0 0.30595
Eig As # 8 0.00014 0.00014 0.00023 0 0.00085
Eig As#9 0.00014 0.00014 0.00023 0 0.00085
Eig As #10 6e-005 6e-005 0.01964 0 6e-005
Eig As #11 6e-005 6e-005 0.01964 0 6e-005
Eig As #12 0.00021 0.00021 0.00112 0 6e-005
Eig As #13 0.00021 0.00021 0.00112 0 6e-005
Eig As #14 6e-005 6e-005 4 e-005 0 0.01081
Eig As #15 0.00208 0.00208 0.00173 0 0.00146
Eig As #16 0.00037 0.00037 0.21349 0 0.00085
Eig As #17 0.00037 0.00037 0.21349 0 0.00085
Eig As #18 0.00032 0.00032 0.26906 0 0.00059
Eig As #19 0.00032 0.00032 0.26906 0 0.00059
Eig As #20 1e-005 1le-005 0.00153 0 0.0009
Eig As #21 1e-005 1le-005 0.00153 0 0.0009
Eig As #22 0.36137 0.3613 0 0 0.09391
Eig As #23 0.36137 0.36137 0 0 0.09391
Eig As #24 0 0 0 1 0
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Continue

delta_ Syn 1 | omega Syn_ 1 | elq Syn 1 | eld Syn_ 1 delta_Syn 2
EigAs#1 0 0 0 0 0
Eig As # 2 0 0 0 0 0
Eig As# 3 0 0 0 0 0
Eig As#4 0.00451 0.00451 4e-005 0 0.08469
Eig As#5 0.00451 0.00451 4e-005 0 0.08469
Eig As#6 0.12995 0.12995 0.00011 0 0.30595
Eig As#7 0.12995 0.12995 0.00011 0 0.30595
Eig As # 8 0.00014 0.00014 0.00023 0 0.00085
Eig As#9 0.00014 0.00014 0.00023 0 0.00085
Eig As #10 | 6e-005 6e-005 0.01964 0 6e-005
Eig As#11 | 6e-005 6e-005 0.01964 0 6e-005
Eig As#12 | 0.00021 0.00021 0.00112 0 6e-005
Eig As #13 | 0.00021 0.00021 0.00112 0 6e-005
Eig As #14 | 6e-005 6e-005 4e-005 0 0.01081
Eig As #15 | 0.00208 0.00208 0.00173 0 0.00146
Eig As#16 | 0.00037 0.00037 0.21349 0 0.00085
Eig As #17 | 0.00037 0.00037 0.21349 0 0.00085
Eig As #18 | 0.00032 0.00032 0.26906 0 0.00059
Eig As #19 | 0.00032 0.00032 0.26906 0 0.00059
Eig As #20 | 1e-005 1e-005 0.00153 0 0.0009
Eig As#21 | 1e-005 1e-005 0.00153 0 0.0009
Eig As#22 | 0.36137 0.36137 0 0 0.09391
Eig As #23 | 0.36137 0.36137 0.09391
EigAs#24 | 0O 0 1 0
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Continue

omega_Syn | elq_Syn_2 eld Syn 2 delta_Syn_3 omega_Syn_

2 3
EigAs#1 0 0 0 0 0
Eig As #2 0 0 0 0 0
EigAs#3 0 0 0 0 0
EigAs#4 0.08469 0.00505 0.007 0.3747 0.3747
EigAs#5 0.08469 0.00505 0.007 0.3747 0.3747
EigAs#6 0.30595 0.01194 0.01135 0.04947 0.04947
EigAs#7 0.30595 0.01194 0.01135 .04947 0.04947
EigAs#38 0.00085 0.01395 0.0015 0.00053 0.00053
EigAs#9 0.00085 0.01395 0.0015 0.00053 0 .00053
Eig As #10 | 6e-005 0.00217 0.00102 0.00012 0.00012
Eig As #11 | 6e-005 0.00217 0.00102 0.00012 0.00012
Eig As #12 6e-005 0.0036 0.00082 0.00109 0.00109
Eig As #13 | 6e-005 0.0036 0.00082 0.00109 0.00109
Eig As#14 | 0.01081 0.00821 0.54972 0.01497 0.01497
Eig As #15 | 0.00146 0.00032 0.35454 0.01146 0.01146
Eig As #16 | 0.00085 0.15846 0.01148 0.00057 0.00057
Eig As #17 | 0.00085 0.15846 0.01148 0.00057 0.00057
Eig As #18 | 0.00059 0.15037 0.00779 0.0002 0.0002
Eig As #19 | 0.00059 0.15037 0.00779 0.0002 0.00

02

Eig As #20 | 0.0009 0.17657 0.01241 0.00133 0.00133
Eig As #21 | 0.0009 0.17657 0.01241 0.00133 0.00133
Eig As #22 | 0.09391 0 0 0.04472 0.04472
Eig As #23 | 0.09391 0 0 0.04472 0.04472
EigAs#24 | 0O 0 0 0 0

103



Continue

elg Syn 3 |eld Syn_ 3 |vm_Exc 1| vrl Exc 1 vr2_Exc_1

EigAs# 1 0 0 0.33795 0 0

Eig As # 2 0 0 0.65728 0 0
EigAs#3 0 0 0.00477 0 0
EigAs# 4 0.00835 0.04948 0 3e-005 0

Eig As#5 0.00835 0.04948 0 3e-005 0

Eig As#6 0.00124 0.00194 0 5e-005 2e-005
Eig As#7 0.00124 0.00194 0 5e-005 2e-005
Eig As# 8 0.00109 0.00055 0 0.0045 0.00126
Eig As#9 0.00109 0.00055 0 0.0045 0.00126
Eig As #10 0.00338 0.00035 0.00018 0.37393 0.11451
Eig As #11 0.00338 0.00035 0.00018 0.37393 0.11451
Eig As #12 0.01422 0.00214 1le-005 0.04438 0.0129
Eig As #13 0.01422 0.00214 1le-005 0.04438 0.0129
Eig As #14 0.01673 0.36374 0 0 0.00013
Eig As #15 0.00334 0.57784 1le-005 0 0.01227
Eig As #16 0.1185 0.00511 0.00029 0.0228 0.1575
Eig As #17 0.1185 0.00511 0.00029 0.0228 0.1575
Eig As #18 0.06743 0.00595 0.00022 0.02476 0.21204
Eig As #19 0.06743 0.00595 0.00022 0.02476 0.21204
Eig As #20 0.28437 0.03073 0 0.00014 0.0013
Eig As #21 0.28437 0.03073 0 0.00014 0.0013
Eig As #22 0 0 0 0 0

Eig As #23 0 0 0 0

Eig As #24 0 0 0 0 0
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Three short circuit in bus5 but without power system stabilizer

Table (A.11) Power flow and voltagesin case of short circuit

Bus Vv phase P gen Qgen P load Q load
[p.u.] [rad] [p.u.] [p.u.] p.u.] [p.u.]

Bus 1 1.04 0 0.71548 | 0.17938 | O 0

Bus 2 1.025 | 0.16152 1.63 0.0116 0 0

Bus 3 1.025 | 0.0818 0.85 0.13519 |0 0

Bus 4 1.0308 | 0.03845 0 0 0 0

Bus 5 1.009 | -0.06963 |0 0 1.25 0.35

Bus 6 1.0166 | 0.06377 0 0 0.9 0.3

Bus 7 1.0291 | 0.06479 0 0 0 0

Bus 8 1.0185 | 0.01302 0 0 1 0.35

Bus 9 1.0339 | 0.03478 0 0 0

Table (A.12) Eigenvalue of state matrix and the frequency oscillations
Eigevalue  Most Associated States Real part Imag. Part | Pseudo-Freq. Frequency
EigAs#1 vm_Exc_1 -1000 0 0 0
Eig As#2 vm_Exc_1 -1000 0 0 0
EigAs#3 vm_Exc_3 -1000 0 0 0
EigAs#4 delta_Syn 3, omega _Syn_3 -0.66944 11.6428 1.853 1.8561
Eig As#5 delta_Syn 3, omega _Syn_3 -0.66944 -11.6428 1.853 1.8561
Eig As#6 delta_Syn 2, omega Syn_2 -0.14765 7.5803 1.2064 1.2067
Eig As#7 delta_Syn 2, omega Syn_2 -0.14765 -7.5803 1.2064 1.2067
EigAs#8 vrl Exc 2, vf Exc 2 -5.4817 7.9494 1.2652 1.5368
EigAs#9 vrl Exc 2, vf Exc 2 -5.4817 -7.9494 1.2652 1.5368
Eig As #10 vrl Exc 1, vf Exc 1 -5.2297 7.8416 1.248 1.5001
Eig As #11 vrl Exc 1, vf Exc 1 -5.2297 -7.8416 1.248 1.5001
Eig As #12 vrl Exc 3, vf Exc 3 -5.3286 7.927 1.2616 1.5202
Eig As #13 vrl Exc 3, vf Exc 3 -5.3286 -7.927 1.261 1.5202
6

Eig As #14 eld Syn 2 5.2439 0 0 0
Eig As #15 eld Syn 3 -3.5526 0 0 0
Eig As #16 elq_Syn_1,vr2 Exc 1 -0.47219 1.0899 0.17347 0.18905
Eig As #17 elq_Syn_1,vr2 Exc 1 -0.47219 -1.0899 0.17347 0.18905
Eig As #18 elq_Syn_1,elq_Syn 2 -0.44056 0.72956 0.11611 0.13564
Eig As #19 elqg_Syn_1, elq_Syn_2 -0.44056 -0.72956 0.11611 0.13564
Eig As #20 | elqg_Syn_3, vr2_Exc_3 -0.4174 0.48718 0.07754 0.1021
Eig As #21 elqg_Syn_3,vr2_Exc_3 -0.4174 -0.48718 0.07754 0.1021
Eig As #22 omega_Syn_1 0 0 0 0
Eig As #23 delta_Syn 1 0 0 0
Eig As#24 | eld_Syn_1 3.2258 0
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Table (A.13) Participation factor of all states

delta_Syn_1 omega Syn_ 1 | elq Syn_1 | eld Syn_ 1 delta_Syn_2

EigAs#1 0 0 0 0 0

Eig As # 2 0 0 0 0 0

Eig As# 3 0 0 0 0 0

Eig As#4 0.00418 0.00418 0 0 0.08623
Eig As#5 0.00418 0.00418 0 0 0.08623
Eig As#6 0.13939 0.13939 0.0001 0 0.30087
Eig As#7 0.13939 0.13939 0.0001 0 0.30087
Eig As # 8 0.00016 0.00016 0.00013 0 0.00098
Eig As#9 0.00016 0.00016 0.00013 0 0.00098
Eig As #10 0.00013 0.00013 0.01723 0 0.00016
Eig As #11 0.00013 0.00013 0.01723 0 0.00016
Eig As #12 0.00016 0.00016 0.00053 0 6e-005
Eig As #13 0.00016 0.00016 0.00053 0 6e-005
Eig As #14 0.00012 0.00012 0 0 0.00573
Eig As #15 0.02326 0.02326 0.00036 0 0.01107
Eig As #16 0.01382 0.01382 0.25305 0 0.00849
Eig As #17 0.01382 0.01382 0.25305 0 0.00849
Eig As #18 0.006 0.006 0.21306 0 0.00417
Eig As #19 0.006 0.006 0.21306 0 0.00417
Eig As #20 0.00014 0.00014 0.00223 0 0.00218
Eig As #21 0.00014 0.00014 0.00223 0 0.00218
Eig As #22 0.34693 0.34693 0 0 0.10454
Eig As #23 0.34693 0.34693 0 0 0.10454
Eig As #24 0 0 0 1 0
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Continue

Omega_Syn_2 delta_Syn_3 omega_Syn_3 elqg_Syn 2 eld Syn 2

EigAs#1 0 0 0 0 0

EigAs #2 0 0 0 0 0
EigAs#3 0 0 0 0 0
EigAs#4 0.08623 0.00499 0.00661 0.38169 0.38169
EigAs#5 0.08623 0.00499 0.00661 0.38169 0.38169
EigAs#6 0.30087 0.01615 0.00099 0.04757 0.04757
EigAs#7 0.30087 0.01615 0.00099 0.04757 0.04757
EigAs#38 0.00098 0.01292 0.00152 0.00033 0.00033
EigAs#9 0.00098 0.01292 0.00152 0.00033 0.00033
Eig As #10 0.00016 0.00106 0.00075 0.00029 0.00029
Eig As #11 0.00016 0.00106 0.00075 0.00029 0.00029
Eig As #12 6e-005 0.00136 0.00056 0.00147 0.00147
Eig As #13 6e-005 0.00136 0.00056 0.00147 0.00147
Eig As #14 0.00573 0.00708 0.47607 0.0126 0.0126
Eig As #15 0.01107 0.00194 0.42317 0.01234 0.01234
Eig As #16 0.00849 0.13996 0.00666 0.00553 0.00553
Eig As #17 0.00849 0.13996 0.00666 0.00553 0.00553
Eig As #18 0.00417 0.20613 0.00985 0.00145 0.00145
Eig As #19 0.00417 0.20613 0.00985 0.00145 0.00145
Eig As #20 0.00218 0.1292 0.00845 0.00194 0.00194
Eig As #21 0.00218 0.1292 0.00845 0.00194 0.00194
Eig As #22 0.10454 0 0 0.04853 0.04853
Eig As #23 0.10454 0 0 0.04853 0.04853
Eig As #24 0 0 0 0 0
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Continue

elq_Syn_ 3 eld Syn 3 vm_Exc_1 vrl Exc_1 vr2_Exc_1

EigAs# 1 0 0 0.46326 0 0

Eig As # 2 0 0 0.53211 0 0

EigAs#3 0 0 0.00463 0 0

EigAs# 4 0.01422 0.02788 0 0 0

Eig As#5 0.01422 0.02788 0 0 0

Eig As#6 0.00243 0.00145 0 7e-005 2e-005

Eig As#7 0.00243 0.00145 0 7e-005 2e-005

Eig As# 8 0.00055 0.0004 0 0.00407 0.00116

Eig As#9 0.00055 0.0004 0 0.00407 0.00116

Eig As #10 0.00197 0.00037 0.00016 0.38638 0.11696

Eig As #11 0.00197 0.00037 0.00016 0.38638 0.11696

Eig As #12 0.01066 0.00291 1le-005 0.03452 0.01004

Eig As #13 0.01066 0.00291 1le-005 0.0345 0.01004
2

Eig As #14 0.01386 0.4567 0 0 0

Eig As #15 0.00543 0.45484 1le-005 0 0.0074

Eig As #16 0.07449 0.00269 0.00029 0.02494 0.19252

Eig As #17 0.07449 0.00269 0.00029 0.02 0.19252
494

Eig As #18 0.05771 0.00521 0.00016 0.0194 0.16605
3

Eig As #19 0.05771 0.00521 0.00016 0.01943 0.16605

Eig As #20 0.32846 0.03658 0 0.0002 0.00176

Eig As #21 0.32846 0.03658 0 0.0002 0.00176

Eig As #22 0 0 0 0 0

Eig As #23 0 0 0 0 0

Eig As #24 0 0 0 0 0

108



Case four short circuit in bus5 but with PSS

Table (A.14) Power flow and voltages in case of short circuit

Vv phase P gen Qgen P load Q load
Bus [p.u.] [rad] [p.u.] [p.u.] [p.u.] [p.u.]
Bus 1 1.04 0 0. 71548 0.17938 0
Bus 2 1.025 0.16152 1.63 0.0116 0 0
Bus 3 1.025 0.0818 0.85 -0.13519 0 0
Bus 4 1.0308 -0.03845 0 0 0 0
Bus 5 1.009 -0.06963 0 0 1.25 0.35
Bus 6 1.0166 -0.06377 0 0 0.9 0.3
Bus 7 1.0291 0.06479 0 0 0 0
Bus 8 1.0185 0.01302 0 0 1 0.35
Bus 9 1.0339 0.03478 0 0 0 0
Table (A.15) Eigenvaluesin case of short circuit with PSS
Eigenvalue Most Associated States Real part Imag. Part | Pseudo-Freq. Frequency
EigAs#1 vm_Exc_1 -1000 0 0 0
EigAs#2 vm_Exc_1 -1000 0 0 0
EigAs#3 vm_Exc_3 -1000 0 0 0
EigAs#4 v3_Pss_2,v2 _Pss_2 -50.1701 2.9273 0.46589 7.9984
Eig As#5 v2_Pss 2,v3 _Pss_2 -50.1701 -2.9273 0.46589 7.9984
Eig As#6 v2_Pss_1,v3 Pss_1 -50.3121 4.0392 0.64286 8.0332
Eig As#7 v3_Pss_1,v2 Pss_1 -50.3121 -4.0392 0.64286 8.0332
EigAs#38 omega_Syn_3, delta_Syn_3 -0.69099 12.4453 1.9807 1.9838
EigAs#9 omega_Syn_3, delta_Syn_3 -0.69099 -12.4453 1.9807 1.9838
Eig As #10 omega_Syn_2, delta_Syn_2 -0.42352 7.8534 1.2499 1.2517
Eig As #11 omega_Syn_2, delta_Syn_2 -0.42352 -7.8534 1.2499 12517
Eig As #12 vrl_Exc_1, vf_Exc_1 -5.2376 7.8688 1.2524 1.5044
Eig As #13 vrl _Exc_1, vf Exc_1 -5.2376 -7.8688 1.2524 1.5044
Eig As #14 vrl _Exc_2, vf Exc_2 -4.9566 7.8197 1.2445 1.4735
Eig As #15 vrl _Exc_2, vf Exc_2 -4.9566 -7.8197 1.2445 1.4735
Eig As #16 vrl_Exc_3, vf_Exc_3 -5.0217 7.4718 1.1892 1.4328
Eig As #17 vrl_Exc_3, vf_Exc_3 -5.0217 -7.4718 1.1892 1.4328
Eig As #18 eld_Syn_2 -5.2486 0 0 0
Eig As #19 eld_Syn_3 -3.5526 0 0 0
Eig As #20 elq_Syn_1,elq_Syn_2 -0.42261 1.1567 0.18409 0.19599
Eig As #21 elq_Syn_1,elq_Syn_2 -0.42261 -1.1567 0.18409 0.19599
Eig As #22 elq_Syn_1,vr2_Exc_1 -0.41399 0.74434 0.11847 0.13556
Eig As #23 elq_Syn_1,vr2_Exc_1 -0.41399 -0.74434 0.11847 0.13556
Eig As #24 elqg_Syn_3,vr2_Exc_3 -0.41842 0.47462 0.07554 0.1007
Eig As #25 elqg_Syn_3,vr2_Exc_3 -0.41842 -0.47462 0.07554 0.1007
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Eig As #26 omega_Syn_1 -0.33527 0 0 0
Eig As #27 vl Pss_1 -0.10078 0 0 0
Eig As #28 delta_Syn_2 0 0 0 0
Eig As #29 delta_Syn_2 0 0 0 C
Eig As #30 eld_Syn_1 -3.2258 0 0 0
Table (A.16) Participation factor of all states
delta_Syn_1 omega Syn_1 elg Syn 1 eld Syn 1 delta_Syn 2
EigAs#1 0 0 0 0 0
Eig As # 2 0 0 0 0 0
Eig As# 3 0 0 0 0 0
EigAs#4 7e-005 7e-005 0 0 0.00043
Eig As#5 7e-005 7e-005 0 0 0.00043
Eig As # 6 1e-005 1e-005 0 0 0.00025
EigAs#7 1e-005 1e-005 0 0 0.0002!
Eig As# 8 0.00287 0.00287 1e-005 0 0.06025
Eig As#9 0.00287 0.00287 1e-005 0 0.06025
Eig As #10 0.10476 0.10476 4e-005 0 0.23953
Eig As #11 0.10476 0.10476 4e-005 0 0.23953
Eig As #12 0.00051 0.00051 0.01562 0 0.00078
Eig As #13 0.00051 0.00051 0.01562 0 0.00078
Eig As #14 0.00361 0.00361 0.00171 0 0.02167
Eig As #15 0.00361 0.00361 0.00171 0 0.02167
Eig As #16 0.00027 0.00027 0.0002 0 0.01667
Eig As #17 0.00027 0.00027 0.0002 0 0.01667
Eig As #18 0.00011 0.00011 0 0 0.00585
Eig As #19 0.02326 0.02326 0.00036 0 0.01104
Eig As #20 0.04413 0.04413 0.17503 0 0.02206
Eig As #21 0.04413 0.04413 0.17503 0 0.02206
Eig As #22 0.02062 0.02062 0.24727 0 0.0119
Eig As #23 0.02062 0.02062 0.24727 0 0.0119
Eig As #24 0.00241 0.00241 0.00199 0 0.01932
Eig As #25 0.00241 0.00241 0.00199 0 0.01932
Eig As #26 0.20741 0.20741 0.00361 0 0.0964
Eig As #27 0 0 0 0 0.00:
Eig As #28 0.09454 0.09454 0 0 0.22883
Eig As #29 0.09454 0.09454 0 0 0.22883
Eig As #30 0 0 0 1 0
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continue

omega_Syn_2 elg_Syn 2 omega_Syn_3 eld Syn 2 delta_Syn_3

EigAs#1 | O 0 0 0
EigAs#2 | O 0 0 0 0
EigAs#3 | O 0 0 0 0

Eig As#4 | 0.02256 0.02319 0 1le-005 0.00317
Eig As#5 | 0.02256 0.02319 0 1le-005 0.00317
Eig As#6 | 0.00395 0.00429 7e-005 0.00159 0.02894
Eig As#7 | 0.00395 0.00429 7e-005 0.00159 0.02894
Eig As#8 | 0.06791 0.00886 0.00434 0.274 0.31325
Eig As#9 | 0.06791 0.00886 0.00434 0.274 0.31325
Eig As #10 | 0.26324 0.04426 0.00065 0.03661 0.04217
Eig As #11 | 0.26324 0.04426 0.00065 0.03661 0.04217
Eig As #12 | 0.00138 0.00173 0.00013 9e-005 0.00019
Eig As #13 | 0.00138 0.00173 0.00013 9e-005 0.00019
Eig As #14 | 0.03645 0.04372 0.00181 0.00225 0.0022
Eig As #15 | 0.03645 0.04372 0.00181 0.00225 0.0022
Eig As #16 | 0.01318 0.01453 0.00185 0.0375 0.01882
Eig As #17 | 0.01318 0.01453 0.00185 0.0375 0.01882
Eig As #18 | 0.00567 0.00718 0.47311 0.01295 0.01231
Eig As #19 | 0.01106 0.00192 0.42316 0.01235 0.01232
Eig As #20 | 0.01336 0.14875 0.00442 0.01776 0.00433
Eig As #21 | 0.01336 0.14875 0.00442 0.01776 0.00433
Eig As #22 | 0.00681 0.15577 0.0077 0.00556 0.00257
Eig As #23 | 0.00681 0.15577 0.0077 0.00556 0.00257
Eig As #24 | 0.00236 0.13483 0.0088 0.0114 0.0012
Eig As #25 | 0.00236 0.13483 0.0088 0.0114 0.0012
Eig As #26 | 0.06119 0.01651 8e-005 0.11489 0.02917
Eig As#27 | O 0.00042 3e-005 0.00419 0

Eig As #28 | 0.02849 0 0 0.17664 0.01323
Eig As #29 | 0.02849 0 0 0.17663 0.01323
Eig As#30 | O 0 0 0 0
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continue

elq_Syn_ 3 eld Syn 3 vm_Exc_1 vrl Exc_1 vr2_Exc_1

EigAs#1 0 0 0.46326 0 0

Eig As # 2 0 0 0.53211 0 0

Eig As # 3 0 0 0.00463 0 0

Eig As # 4 0.00318 4e-005 0 0 0

Eig As#5 0.00318 4e-005 0 0 0

Eig As#6 0.03091 9e-005 0 0 0

Eig As# 7 0.03091 9e-005 0 0 0

Eig As # 8 0.04173 0.01947 0 0 0

Eig As#9 0.04173 0.01947 0 0 0

Eig As #10 0.00941 0.00142 0 4e-005 1le-005
Eig As #11 0.00941 0.00142 0 4e-005 1le-005
Eig As #12 0.0002 0.0001 0.00015 0.40681 0.12186
Eig As #13 0.0002 0.0001 0.00015 0.40681 0.12186
Eig As #14 0.00774 9e-005 2e-005 0.01672 0.00524
Eig As #15 0.00774 9e-005 2e-005 0.01672 0.00524
Eig As #16 0.04294 0.00357 0 0.00129 0.00046
Eig As #17 0.04294 0.00357 0 0.00129 0.00046
Eig As #18 0.01436 0.4545 0 0 0

Eig As #19 0.00539 0.4548 1le-005 0 0.00739
Eig As #20 0.08083 0.00166 0.00021 0.01799 0.12853
Eig As #21 0.08083 0.00166 0.00021 0.01799 0.12853
Eig As #22 0.04795 0.0047 0.00019 0.02277 0.1882
Eig As #23 0.04795 0.0047 0.00019 0.02277 0.1882
Eig As #24 0.29664 0.03455 0 0.00018 0.00157
Eig As #25 0.29664 0.03455 0 0.00018 0.00157
Eig As #26 0.01714 0.00064 0 0.00013 0.00113
Eig As #27 0.0006 0.00011 0 0 0

Eig As #28 0 0 0 0 0

Eig As #29 0 0 0 0 0

Eig As #30 0 0 0 0 0
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Appendix (B)

The appendix (B) obtains data of single machine connected in finite bus and
data of three machine nine bus system.
Table (B1) Single machine data

Machine Parameters:

X‘,:tlh;ns(;._ p U ;;ngU ;'d=0_4245 pu M :2* H=60 S
':: =0.6p.u Si, - f;d::i

F=60.0 Hz o= 6.66 Fao—| . _puU H=3
o044 s = EO

Transmission Line:

Lr0,.835p.U o PU

Transformer:

g&ﬁm p.u

Load parameters:

Nominal Load Heavy Load Light Load Leading P.F

R =06 pu 012 pu |, =025pu | i, =608 pu
Ge-= 0.016 p.u <@ =05 pu |<*=0016pu |<>=-04p.u
Constants

;‘"_ 0055 f;f 10 |..—10s Y. =40

= 0.3373s |.7=-00733s| .. - 0.0733s |

Table (B2) Dataof three Generators

Generator H X'q
1 23.64 | 0.0608
2 6.4 |[0.1198
3 3.01 | 0.1813
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Table (B3) Line data

Bus No. Half line charging
From To Admittance(p.u.) | Feactance Hesistance
Bus | Bus (p.u.) (p-u.)

1 4 0.0 0.0576 0.0
4 6 0.079 0.092 0.017
3 g 0.0 0.0586 0.0
& g 0.179 0.17 0.039
5 7 0.153 0.161 0.032
7 8 0.0745 0.072 0.0085
2 7 0.0 0.0625 0.0
8 9 0.1045 0.1008 0.0119

Table (B4) Load data

Bus No. Pg Qg P QL Vapc

1 0.0 - 0.0 0.0 1.04

2 1.63 (0.0 | 0.0 0.0 | 1.025

3 0.85 (0.0 | 0.0 0.0 | 1.025

4 0.0 |00 | 0.0 0.0 -

5 0.0 |00 (125 0.5 -

& 0.0 |00 | 09 0.3 -

T 0.0 |00 | 0.0 0.0 -

8 0.0 |00 1.0 [0.35 -

9 0.0 |00 | 0.0 0.0 -
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(10OSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-
|SSN: 2278-1676,p-1SSN: 2320-3331, Volume 12, Issue 1 Ver. | (Jan. — Feb.
2017), PP 12-17 www.iosrjournals.org ).

(American Journal of Engineering Research (AJER) e-I SSN: 2320-0847
p-1SSN : 2320-0936 Volume-6, Issue-1, pp-194-199 www.aer.org ).
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