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CHAPTER ONE

INTRODUCTION AND SCOPE OF THESIS

1.1 Introduction

Modern power system can be characterized by wide spread system
interconnections. The interconnected power system is comprised of multiple
machines connected by the transmission network. The supply of reliable and
economic electric energy is a major determinant of industrial progress and
consequent rise in the standard of living. In practical terms this means that
both voltage and frequency must be held within allowable tolerances so that
the consumer's equipment can operate satisfactorily. Further, with
deregulation of power supply utilities, the power network has become a
highway for transmitting electric power from wherever it is available to
places where required, depending on the pricing that varies with time of the
day. In such scenario, the analysis of dynamic performance and stability of
power system has great importance. The stability problem is concerned with
the behavior of the synchronous machines under perturbed conditions. If the
perturbation does not involve any net change in power, the machines should
return to their original state and if an unbalance between the supply and
demand is created by perturbation, a new operating state should be achieved.
When the system changes its operating point from one stable point to the
other, it is mandatory that all interconnected synchronous machines should
remain in synchronism, they should all remain operating in parallel and at the
same speed[1].The increasing magnitude and complexity of interconnected
power systems due to competitive energy markets, economy and population
development have created the need to operate the power systems close to their
capacity limits. This leads sometimes to stability problems or poor dynamic
behaviors like power oscillations. These oscillations can cause a reduction of
the system components lifetime, expensive operations of the electrical grids
and in the worst case, risks of partial system collapses. On the other hand, in
the synchronous generator, the damping that the field and damper windings
provide to the rotor oscillations is weakened due to excitation control system
action. The reason for this is that in the rotor circuits appear additional
currents induced by the voltage regulation and those currents oppose to the
currents induced by the rotor speed deviations [2].
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1.2Motivation

Power systems are usually large nonlinear systems, which are often subject to

low frequency electro-mechanical oscillations. Power system operation is

characterized by a wide range of operating conditions,random load changes

and various unpredictable disturbances .Power system stabilizers (PSS) are

often used as an effective and economic means of damping such oscillations.

In the past fixed gain controllers were effectively used for damping out the

low frequency oscillations. These stabilizers are designed based on linear zed

model of power systems for a particular operating and system condition. The

application shows non optimal results, for that use an adaptive power system

stabilizer to solve fixed gain controller problem, and the use of the adaptive

control is possible because the loading variation and consequently variation of

synchronous generator dynamic characteristic are in most essentially slower

than the adaptation mechanism, and adaptive stabilizers able to perform well

for all network and operating conditions.

1.3 Objectives

This research deals with design adaptive power system stabilizer for damping

low frequency oscillations in power system. The main objectives of this thesis

are:

 To develop mathematical model of single machine infinite bus and

multi machines power system in includes excitation system and power

system stabilizer

 To evaluation performance of power system in case single machine

and multi machine  using Eigen values method

 To design power system stabilizer using model reference adaptive

control.

 To estimate power system parameters by estimation method

 To achieve better performance with better accuracy, use MIT rules

model reference adaptive control methods and compare the results.
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 In addition to the theoretical, investigate how the Adaptive Power

System Stabilizer behaves using Matlab/Simulink.

1.4 Contribution

In this thesis, it will introduce the structure of the power system stabilizer and

the mathematic model of the generator control system equipped with PSS.

Based on the mathematic model, it will explain how the PSS increases the

system damping. Due to the complexity of power system , and the lack of

system parameters in most cases. The thesis introduces a new way to design

PSS based on model reference adaptive control , which does not need to

tuning  parameters of the system off - line .

1.5 Organizations

The remainder of this thesis consists of seven chapters.

Chapter One gives the introduction and general back round, objective and

scope of thesis

Chapter Two gives surveys of design power system stabilizer based on

conventional and intelligence methods.

Chapter Three describe dynamic model of Synchronous machine include

excitation and Power System.

Chapter Four describe dynamic model of Multi Machine Power System.The

detail description of eigenvalue analysis method used for evaluating small

signal performance of power system and time domain simulations.

Chapter Five introduces adaptive control and design of power system

stabilizer by MIT rule and model reference adaptive control.

Chapter Six results and discussions.

Chapter Seven gives the conclusion and future work.
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CHAPTER TWO

GENERAL BACKROUND AND LITRETURE REVIEW

2.1 Power System Stability

Today’s power systems are large, complex and operated closer to security

limit.Furthermore,environmental constraints restrict the expansion of

transmission network and the need for long distance power transfers has

increased. As a result, stability has become a major concern in power systems.

Accidents of power system blackouts caused by rotor angle instability,

voltage instability or frequency stability. Power system angle stability can be

categorized in to small-signal and transient stabilities. Small-signal stability is

the ability of the system to return to its normal operating state following a

small disturbance. Investigation of this kind of stability usually involves the

analysis of the linearized state space equations that define the power system

dynamics. On the other hand, transient stability is the ability of the system to

return to a normal operating state following a severe disturbance, such as a

single-phase or multi-phase short-circuit or a generator lost. Under these

conditions, the linearized power system model is not sufficient and the

nonlinear equations must be used for the analysis [1]. For the convenience of

analysis, power system stability is categorized shown as Figure (2.1).

Figure (2.1): Categorized of power system stability.
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2.2.1 Steady-State Stability

Steady-state stability analysis is the study of power system and its generators

in strictly steady state conditions and trying to answer the question of what is

the maximum possible generator load that can be transmitted without loss of

synchronism of any one generator. The maximum power is called the steady-

state stability limit [3].

2.2.2 Transient Stability

Transient stability is the ability of the power system to maintain synchronism

when subjected to a sudden and large disturbance within a small time such as

a fault on transmission facilities, loss of generation or loss of a large load. The

system response to such disturbances involves large excursions of generator

rotor angles, power flows, bus voltages [5].

2.2.3 Dynamic Stability

A system is said to be dynamically stable if the oscillations do not acquire

more than certain amplitude and die out quickly. Dynamic stability is a

concept used in the study of transient conditions in power systems. Any

electrical disturbances in a power system will cause electromechanical

transient processes. Besides the electrical transient phenomena produced, the

power balance of the generating units is always disturbed, and thereby

mechanical oscillations of machine rotors follow the disturbance [4].

2.3 Nature of Oscillation

Oscillations in the power system have the following properties:

1. Oscillations are due to natural modes of the system and therefore cannot be

Completly eliminated.

2. With increase in complexity of the power system, the frequency and

damping of oscillations may increase and new ones may be added.

3. Automatic Voltage Regulator (AVR) control is the primary source of

introducing negative damping torque in the power system. With increase in

the number of controls, negative damping may further increase.
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4. Inter-area oscillations are associated with weak transmission lines and

larger line loadings.

5. Inter-area oscillations may involve more than one utility.

2.4 Modes of Oscillations

The disturbance is considered to be small, and therefore, the equations that

describe the resulting response of the system can be linearized.The

electromechanical oscillations are of two types [3].

2.4.1 Local Mode Oscillations

Local mode Oscillations which are associated with the swing of units at a

generating station with respect to the rest of the power systems. Typical range

of frequency of oscillations is 1-3 Hz.The term local is used because the

oscillations are localized at one station or a small part of the power system[3].

2.4.2  Inter-area Mode Oscillations

Inter-area mode oscillations, which are associated with the swing of many

machines in one part of the system against the machines in other parts of

area. Typical range of frequency of these types of oscillations is less than 1

Hz. They are caused by two or more groups of closely coupled machines

beings intercom.

2.4.3 Inter-unit Mode

Inter-unit mode will act between different generators in the same power plant

or between plants that are located near each other. This oscillation mode

occurs in a frequency range from 1.5 to 3 Hz, and by implementing a power

system stabilizer when having an inter-unit mode the oscillation may become

unstable. This is because the PSS is often tuned at a lower frequency than the

inter-unit mode, and the PSS settings are therefore critical. A complete

eigenvalue analysis must be executed in order to ensure that the damping of a

potential inter-unit mode not becomes troublesome [7].
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2.5 Control Exciter Modes

The control exciter mode is directly related to the control equipment of the

generator and is a version of the local oscillation mode. These oscillations

could be a result of poorly coordinated regulators in the system such as

excitation systems, HVDC converters, and static VAR compensators. As a

result of these oscillations the generator shaft may be affected and the

torsional mode will then be more noticeable [6].

2.5.1 Local Machine Modes

In this mode of oscillation typically one or more generators swing against the

rest of the power system in a frequency range from 0.7 Hz to 2 Hz. This

oscillation may occur and become a problem if the generator is highly loaded

and connected to a weak grid. In an excitation system containing a high

transient gain and no PSS, these local machine oscillations may increase. A

correctly tuned PSS in such a system may decrease the local machine

oscillations [7].

2.5.2 Inter-area Modes

The inter-area oscillation mode can be seen in a large part of a network where

one part of the system oscillates against other parts at a frequency below 0.5

Hz. Since there is a large amount of generating units involved in these

oscillations, the network operators must cooperate, tune and implement

applications that will damp this mode of oscillations. A PSS is often a good

application to provide positive damping of the inter-area modes [7]. Also a

higher frequency inter-area oscillation can appear (from 0.4 to 0.7 Hz) when

side groups of generating units oscillate against each other [6].

2.5.3 Global Modes

This mode of oscillations is caused by a large amount of generating units in

one area that is oscillating against a large group in another area. The

oscillating frequency is typically in the range from 0.1 to 0.3 Hz and the mode

is closely related.
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2.6 Power System Stabilizer

Traditionally the excitation system regulates the generated voltage and there

by helps control the system voltage. The automatic voltage regulators (AVR)

are found extremely suitable (in comparison to, ammortisseur winding and

„governor controls ) for the regulation of generated voltage through excitation

control. But extensive use of AVR has detrimental effect on the dynamic

stability or steady state stability of the power system as oscillations of low

frequencies (typically in the range of 0.2 to 3 Hz) persist in the power system

for a long period and sometimes affect the power transfer capabilities of the

system [19]. The power system stabilizers (PSS) were developed to aid in

damping these oscillations by modulation of excitation system and by this

supplement stability to the system [9]. The basic operation of PSS is to apply

a signal to the excitation system that creates damping torque which is in phase

with the rotor oscillations.

2.7 PSS Input Signals

Till date numerous PSS designs have been suggested. Using various input

parameters such as speed, electrical power, rotor frequency several PSS

models have been designed. Among those some are depicted below.

2.7.1 Speed Input Signal

A power system stabilizer utilizing shaft speed as an input must compensate

for the lags in the transfer function to produce a component of torque in phase

with speed changes so as to increase damping of the rotor oscillations [23].

2.7. 2 Power Input

The use of accelerating power as an input signal to the power system

stabilizer has received considerable attention due to its low level torsional

interaction. By utilizing heavily filtered speed signal the effects of mechanical

power changes can be minimized. The power as input is mostly suitable for

closed loop characteristic of electrical power feedback [23].
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2.7.3 Frequency Input

The sensitivity of the frequency signal to the rotor input increases in

comparison to speed as input as the external transmission system becomes

weaker which tend to offset the reduction in gain from stabilizer output to

electrical torque, that is apparent from the input signal sensitivity factor

concept[23].

2.8 Excitation System

The performance of the excitation system can have a great influence on the

stability of a power system. However, it depends mainly on parameter setting

of the excitation system. Proper parameter setting of the excitation system can

improve the stability and increase the damping of the power system. On the

contrary, improper parameter setting of the excitation system can deteriorate

the operation of the power system [11]. The IEEE Type-ST1 (1992) excitation

system shown in Figure (2.2) is considered in this study.

Figure (2.2) Block diagram of a typical Excitation System

2.9 Power System Stabilizer

For many years PSSs have been used to add damping to electromechanical

oscillations. They were first introduced in the late 1960s to compensate for

the AVRs adverse effect on the damping torque by means of positive

feedback loop to provide additional damping in the system [12]. PSSs
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essentially use the power amplification capability of the generators to

generate a damping torque in phase with the speed change of the generator

rotor. This is achieved by injecting a stabilizing signal into the excitation

system voltage reference in such a way that a component of electrical torque

proportional to the rotor speed deviation is produced [13-14]. This stabilizing

signal is, in most cases, the deviations in generator rotor speed which fed

through a compensation circuit to compensate for the phase lag between the

exciter voltage reference and generator electrical torque [10].

2.9.1 Power System Stabilizer Structure

The basic objective of power system stabilizer is to modulate the generator’s

excitation in order to produce an electrical torque at the generator

proportional to the rotor speed [10-13]. In order to achieve that, the PSS uses

a simple lead-lag compensator circuit to adjust the input signal and correct the

phase lag between the exciter input and the electrical torque. The PSS can use

various inputs, such as the speed deviation of the generator shaft, the change

in electrical power or accelerating power, or even the terminal bus frequency.

However in many instances the preferred signal input to the PSS is the speed

deviation.  Figure (2.3) below illustrates the block diagram of a typical PSS.

The PSS structure generally consists of a washout, lead-lag networks, a gain

and a limiter stages. Each stage performs a specific function.

Figure (2.3) Block diagram of a typical PSS

2.9.2 Washout

Block serves as a high-pass filter. Without it steady changes in speed would

modify the terminal voltage. It allows the PSS to respond only to changes in

speed. From the view point of the washout function, the value of washout
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time constant is not critical and may be in the range of 0.5 to 20 seconds. The

main consideration is that it may be long enough to pass stabilizing signals at

the frequencies of interest unchanged, but not so long that it leads to

undesirable generator voltage excursions during system is landing conditions.

2.9.3 Input Signals

That have been identified as valuable include deviations in the rotor speed ,

the frequency , the electrical power Pe and the accelerating power  Pa. Since

the main action of the PSS is to control the rotor oscillations, the input signal

of rotor speed has been the most frequently advocated in the literature.

However, it had been found that frequency is highly sensitive to the strength

of the transmission system that is, more sensitive when the system is weaker -

which may offset the controller action on the electrical torque of the machine.

Other limitations include the presence of sudden phase shifts following rapid

transients and large signal noise induced by industrial loads. On the other

hand, the frequency signal is more sensitive to inter-area oscillations than the

speed signal and may to better oscillation attenuation. In this thesis work a

speed signal is used as input signal.

2.10 Conventional Power System Stabilizer Design Method

For many years conventional control methods have been applied to design

PSSs. These approaches consist of first linearizing the system at the nominal

operating condition to be able to extract the dynamic characteristics of the

power system and its frequency response. Once the phase lag is identified, the

phase lead can be obtained by tuning the time constants of the lead-lag circuit.

Ideally a phase lead, equal and opposite to the phase lag, is required to

produce an electrical torque with a component proportional to the speed.

However in practice this cannot be achieved but can be closely matched over

the frequency range [12].The gain on the other hand is obtained by applying

the root locus method. The gain must be carefully selected to stabilize the

electromechanical mode without adversely affecting the other modes such as

the exciter mode [12-16]. It is important to choose an appropriate value for
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the washout Tw. It would be adequate to choose the time constant between 1

and 2 seconds if the damping of the local mode is the only concern. However

of 10 seconds or higher when inter– area is considered [10-16-17].

Generally, determining the stabilizer’s parameters in systems with both local

and inter –area modes has a more complex approach. For the most case this

situation is encountered in a multi machine system. Therefore PSSs must be

tuned one at a time through off-line analysis, and tuned further during

commissioning. The validity of the model used in the off-line studies should

be checked on commissioning. Setting power system stabilizers to typical

values is particularly dangerous for systems in which inter – area modes are

of concern. It is very easy for the stabilizer to have a destabilizing effect at

low frequencies that cannot be observed during on-line commissioning test

[15-18].The performance of the CPSS often deteriorates over time due to

nonlinearity and changes of operating conditions. Over the years, several

approaches of controllers design have been investigated and implemented to

overcome the shortcomings of the CPSSs. Some of these methods are

reviewed in the next section.

2.11 Phase Compensation Design Technique

Consists of adjusting the stabilizer parameters to compensate for the phase

lags through the generator excitation system, and power system such that the

torque changes in phase with speed changes. This is the most straightforward

approach, easily understood and implemented. The phase lag depends on the

operating point and the system parameters. The algorithm for computing the

PSS parameters is as follows:

Step 1: Obtain  from the mechanical loop

The characteristic equation of the mechanical loop can be writtenas:+ + = 0 (2.1)

Where, is the system frequency in rad/sec. and is the undammed natural

frequency of the mechanical mode and is given in (2.2)
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 = (2.2)

Step 2: Compute phase lag between Um and Tm of the loop to be

compensated by PSS. is the transfer function.

Step 3: Design of phase lead lag compensator. The transfer function of phase

lead compensator is

= (1 + )(1 + ) /((1 + )(1 + )) (2.3)
For full compensation + = 180° ( 2.4)

The PSS parameters to be optimized are - and Ki Considering two

identical cascade lead-lag networks for PSS. = and = and hence

the problem reduces to that of optimization of Ki, and 3 only. = 10s has

been chosen. One lead lag block is used for compensating about 50o of phase

lag and accordingly lead lag blocks are chosen. The PSS parameters and

are chosen so as to fully compensate the phase lag as follows: Let, is the

phase lag compensated by one block, then= √ (2.5)

= 


(2.6)

= (2.7)

The adjustable PSS parameters are the gain of the PSS, K and the time

constants, - . The lead–lag block present in the system provides phase

lead compensation for the phase lag that is introduced in the circuit between

the exciter input and the electrical torque. The required phase lead can be

derived from the lead–lag block even if the denominator portion consisting of

and gives a fixed lag angle. Thus, to reduce the computational burden in

this study, the values of and are kept constant at a reasonable value of

0.05 sec and tuning of and are undertaken to achieve the net phase lead

required by the system.
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Step 4: Gain setting the amount of damping introduced depends on the gain

of PSS transfer function at that frequency. Ideally, the gain should be set at a

value corresponding to maximum damping. The desired PSS gain Ki is

computed from= 2 /(| || |) (2.8)

Where, n is the desired damping ratio

2.12 Adaptive Control

Adaptive control can be described as the changing of controller parameters

based on the changes in system operating conditions [19]. The idea is to

constantly update the controller parameters according to recent measurement

[3].Power systems are inherently nonlinear with varying operating conditions,

hence adaptive control technique is well suited to track the operating

conditions and changes in the system. The resulting adaptive stabilizer uses an

identification algorithm that tracks the actual system operating condition,

which then adjusts its parameters on-line according to the environment in

which it works. This method can provide good damping over a wide range of

operating condition [20-21-22]. Despite the good performance of the

stabilizer, adaptive controllers are difficult to design and susceptible to

problems like non-convergence of parameters and numerical instability. The

response time of the controller is the key factor to a good closed-loop

performance. The adaptive power system stabilizer (APSS) employs

complicated algorithms for parameter identification and optimization which

require significant amount of computing time. The higher the order of the

discrete model of the controlled system used in identification, the more

computing time is needed.
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2.9 Literature Review

Numerous works have been done and published on the damping of power

system low frequency oscillations. This section will review some of the

published work in this area.In1969 [8], De Mello and Concordia discussed the

phenomena of Stability of synchronous machines under small perturbations

by examining the case of a SMIB through external reactance. The analysis

developed insights into effects of thyristor-type excitation systems and

established understanding of the stabilizing requirements for such systems.

These stabilizing requirements included the voltage regulator gain parameters

as well as the transfer function characteristics for a machine speed derived

signal along with the voltage regulator reference for providing damping of

machine oscillations. The study had explored a variety of machine loadings,

machine inertias, and system external impedances with a determination of the

oscillation and damping characteristics of voltage or speed following a small

disturbance in mechanical torque. An attempt had been made to develop some

unifying concepts that explain the stability phenomena of concern, and to

predict desirable phase and magnitude characteristics of stabilizing functions.

In 1989 Kundur et al. [24] provided the analytical work and systematic

method to determine PSS parameters for large power generation in a practical

power system. The basic PSS design idea based on the stabilizer proposed in.

However, the phase characteristics were obtained using a multi-machine

eigenvalue program instead of a single machine model. This work

emphasized enhancement of overall system stability, and the authors

considered simultaneous damping of inter-area and local modes and discussed

the performance of the PSS under different system conditions. In addition to

small signal stability performance, the authors also tested the transient

stability performance of the PSS and the performance during system is

landing. The authors also demonstrated the importance of appropriate choice

of washout time constant, stabilizer output limits and other excitation system

control parameters. The authors claimed that the frequency response method
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used to compensate the lag between the excitation input and the electrical

torque was fairly robust.

Chow and Sanchez-Gasc in[25], proposed four pole-placement techniques for

the design of power system stabilizers, with the emphasis on frequency

response characteristics of the controller. For controllers to exhibit desirable

frequency response characteristics, a simple procedure was proposed to obtain

controllers suitable for multiple operating conditions. The issue of robustness

of state space designed controllers was investigated.to select all the

parameters of the fuzzy controller. Abido [26] designed a hybrid rule based

PSS by incorporating GA to search for optimal settings of his proposed PSS

parameters. In [27], the simultaneous stabilization of a power system over a

wide range of operating conditions via a single-setting conventional power

system stabilizer using GA is investigated. The authors wanted to select a

single set of power system stabilizer parameters which can make the PSS

simultaneously stabilize the power system over a wide range of operating

conditions. They treated the power system operating at various loadings as a

finite set of plants. The problem was converted to a simple optimization

problem which is solved by a genetic algorithm and an eigenvalue based

objective function. Two objective functions were presented, allowing the

selection of the stabilizer parameters to shift all or some of the system

eigenvalues to the left-hand side of a vertical line and a wedge-shape sector in

the complex s-plane. The authors proposed in [28] a similar idea to design a

PSS. However, another optimization method, Tabu search was used to select

PSS parameters.Lu, Nehrir and Pierre [29] proposed a power system stabilizer

with a fuzzy logic based parameter tuner. Reduced order linear models for the

synchronous generator at a large number of operating points were obtained

and the optimal PSS at each operating point were designed by the traditional

frequency domain method.AntalSoos in [14] discuss PSS design for damping

of inter-area power oscillation by coherency-based equivalent model in Japan,

low-frequency oscillations have been observed on trunk transmission systems,
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and have been the subject for studies in fields of operation, control, and

devices by many power system utilities. The method is based on the single-

machine-infinite-bus models derived from the multi-machine power system

by coherency-based reduction technique. Dynamic simulations using a 10-

machine power system model are presented in order to show the effectiveness

of the PSS.

P.L. Dandeno el al discuss installations of PSS were based on a variety of

methods to derive an input signal that was proportional to the small speed

deviations characteristic of electromechanical oscillations. After years of

experimentation the first practicalintegral-of-accelerating-power based PSS

units were placed in service. This design provided numerous advantages over

earlier speed-based units and forms the basis for the PSS implementation that

is used in most units installed in North America.  This design is now a

requirement in many Reliability Regions within North America and has been

modeled in the IEEE standards as the PSS2A and PSS2B structures

Forsimplicity, the term PSS2A stabilizer will be used to refer to the integral-

of-accelerating power based design in general throughout this paper. This

paper briefly describes some of the earlier structures inorder to explain the

advantages of the accelerating-power design.  This design is then described

along with a detailedreview of the role of the “ramp-tracking” mechanical

filter and the basis for the present structure that is in wide use by many

manufacturers [30].Anta1Soos et al, in [30]discuss anoptimal control

algorithm with adaptive system parameters and state variables estimation. The

optimal control algorithm is calculated by solving the algebraic Riccati

equation of the linearized closedloop system model obtained by using an

adaptive recursive least squares identification algorithm. The feedback control

isachieved by recalculating the control sequence each sampling period. An

application of the algorithm asa power system stabilizer is illustrated.

P.HeY.B.Wei C.X.Yang et al is discuss Dynamic stability enhancement of

electro-mechanical modes of multi-machine power systems by means of an
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adaptive power system stabilizer. The proposed adaptive PSS is a varietal

configuration to self-adjusted tracking the system operation condition. The

parameter optimization program is used to obtain him optimal parameter of

every PSS under single operating conditions; the weighing coefficient is

employed to adapt the actual operating condition. The study is carried out in

details on a great of testing computation and analysis on a 8-machine testing

system. Obtained result is compared with that of the previous PSS [31].

Chun Liu discusses an adaptive optimal controller, which will improve a

power system’s overall stability in the face of system non-linearity and

external disturbances, is described in this thesis. The transfer function of the

plant is estimated in real time by the Recursive Least-Squares (RLS)

algorithm, and converted into its state equation. The plant states are estimated

by Kalman filter. Control output is calculated by solving the Riccati algebraic

equation. The applied structure enables improvement in performance from a

linear controller [32].

Fariborz Parandin , el al .[33] discuss Power System Stabilizer Design based

on Model Reference Adaptive System   deals with a adaptive design method

for the stability enhancement of a single machine infinite bus power system

using Model Reference Adaptive System. To show effectiveness of the

MRAS, this method is compared with the GA-PSS. Simulation results show

that the proposed method guarantees robust performance under a wide range

of operating conditions.

Fariborz Parandin, el al also discuss Adaptive Multi Machine PSS Design for

Low Frequency Oscillations Damping, an adaptive method is presented to

design a multi machine PSS. The proposed adaptive method changes itself

structure according to power system operating conditions. This ability of

adaptive controller Leads to an adaptive performance proportionate with

different loading conditions. In order to show effectiveness of the proposed

method, it is compared with a conventional PSS tuned by using PSO (PSO-
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PSS). The nonlinear time domain Simulation results demonstrate the ability of

the proposed Adaptive method to deal with uncertainties [39].

D P SEN Gupta al el, discuss low frequency oscillation in power system a

physical account and adaptive stabilizer, briefly review some of adaptive or

gain scheduling stabilizers proposed, elaborating on decomposition of

damping torque and the PSS based on cancellation of negative damping the

multi frequencies of oscillation at generated may experience in multi machine

system are identified information is used in design of the PSS [40 ].

E.vlarsan and D.A swann discuss in their three part paper titled applying

power system stabilizer –I,II,III,the history of power system stabilizer and its

role in a power system they recommended that the objectives of most

appropriate stabilizer tuning criterion is to provide an adequate amount of

damping  local mode oscillation and inter area mode oscillation .the studies

and the field test conducting by authors indicate that a fast acting excitation

system offers best opportunity for increased damping than the use of auxiliary

signal in to voltage regulator[37] .

Fariborz Parandin, el al . Discuss Power System Stabilizer Design based on

Model Reference Adaptive System   deals with adaptive design method for

the stability enhancement of a single machine infinite bus power system using

Model Reference Adaptive System. To show effectiveness of the MRAS, this

method is compared with the GA-PSS. Simulation results show that the

proposed method guarantees robust performance under a wide range of

operating conditions [47].

Fariborz Parandin, el al also discuss Adaptive Multi Machine PSS Design for

Low Frequency Oscillations Damping, an adaptive method is presented to

design a multi machine PSS. The proposed adaptive method changes itself

structure according to power system operating conditions. This ability of

adaptive controller Leads to an adaptive performance proportionate with

different loading conditions. In order to show effectiveness of the proposed

method, it is compared with a conventional PSS tuned by using PSO (PSO-
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PSS). The nonlinear time domain Simulation results demonstrate the ability of

the proposed Adaptive method to deal with uncertainties [39].

Kothari et al (1995) designed a self-tuning PSS using the pole shifting

technique. The controller used a state-feedback law, whose gains were

evaluated from the pole-shifting factor. The proposed method was simple and

computationally efficient. The dynamic performance of the proposed PSS was

quite satisfactory and the PSS adapted quickly to varying operating

conditions. The method used a model formulation which obviated the need for

state observers and the output was directly used to derive the feedback control

signal. It combined this with a simple pole-shifting control technique in this

framework to achieve quite satisfactory dynamic performances. The control

calculations are simple and require less computational effort [41].

Yuan-Yih Hsu et al discussed the identification and tuning of exciter

constants for a generating unit at the Second Nuclear Power Plant of Taiwan

Power Company. Field test was first performed on the excitation system with

the generator open-circuited. Since the field test results differed from the

computer simulation results using manufacturer's constants, he modified the

manufacturer's constants based on previous experience to reach a preliminary

set of parameters for the excitation system. Then a hybrid nonlinear

simulation-sensitivity matrix method was developed to further refine the

excitation system parameters. The exciter constants were tuned in order to

give better dynamic response. Field tests were conducted in order to compare

the dynamic response of the generator without and with PSS [42].

Simoes Costa et al proposed a method to design the power system controllers

in order to damp electromechanical oscillations. It could be applied to the

design of both PSS for synchronous generators and supplementary signals

associated to other damping sources. Some attractive features of the method

were: the parameters of all controllers were jointly determined, there was no

restriction on the type of supplementary signals to be used, and controller

structures were compatible with those nowadays employed in electric utilities.
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The control problem solution exploits sparsely, combining a system

description which preserves a sparse structure with an adequate mathematical

formulation of the optimal design approach. The results were validated by

using both eigenvalue analysis and nonlinear simulation. A method based on

structurally constrained optimal controller design for the determination of

controller settings in multimachine power systems was introduced. The

settings for all controllers in a multimachine system could be simultaneously

determined through an integrated procedure which takes into account all

dynamic interactions. The results, were given both in terms of eigenvalues

and nonlinear simulation curves illustrate the applicability of the method to

realistic power systems [43].

Choi and Jia discussed the inherent dynamical relationship between the under-

excitation limiter (UEL) and the PSS control loops in synchronous generators

using the frequency response technique. It was shown that the limiters should

be designed to affect much slower response characteristics as their main

function was to prevent excessive stator end-core heating. The analysis also

showed that a reduction in the values of the slope of the boundary curves,

which prescribe the operating region of the limiters, was accompanied by a

decrease in the damping level of the closed-loop excitation control systems. It

was shown that the tuning of the UEL and the PSS could be carried out

separately without considering the interaction between the two control loops.

Analysis of the power system model showed that the damping level due to the

UEL increased along with the slope of limiter boundary curve [44].

Soliman et al designed a simple robust PSS that could properly function over

a wide range of operating conditions. The lead compensator design was

achieved by drawing the root loci for a finite number of extreme characteristic

polynomials. Such polynomials were obtained, using the Kharitonov theorem,

to reflect wide loading conditions on characteristic equation coefficients. For

this purpose the explicit analytical forms for the coefficients of the system

transfer functions were derived. Simulation results illustrated the
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effectiveness of the proposed stabilizer as it was applied to the original

nonlinear differential equations describing system dynamics under wide

loading conditions at lagging and leading power factors [45].

Milanovic investigated dynamic interactions among various Controllers used

for stabilizing a synchronous generator .The effectiveness of a PSS connected

to the exciter and/or governor in damping electromechanical oscillations of

isolated synchronous generator was examined. The interactions among PSSs

connected to the exciter and/or the governor loop, automatic voltage

regulator, governor and multi-stage double-reheat turbine and dynamic load

were considered. It was shown that depending on the type and number of

controllers used and dynamics modeled, interactions could result in unstable

operation of the system for a range of operating conditions. It was also shown

that the PSS connected to the governor loop provides better damping of low-

frequency oscillations and better robustness of the generator 36 to a change in

operating conditions than the PSS connected to the exciter loop. The paper

further showed that a properly tuned PSS connected to governor loop could

provide better overall damping of the system oscillations [46].

Shaoru Zhang and Fang Lin Luo discuss a new improved SAC based on

quadratic performance index was proposed and adopted to the design of

power system stabilizer. This control algorithm can simplify the controller

structure and degrade the computing complexity. This approach can track the

reference model and decrease the control increment. It also can improve the

dynamic and static characteristic of the system because this law

simultaneously takes in the increment of the control quantity and the sampling

values of state error in k and k+1, and simulates the dynamic and transient

stability of a synchronous generator active power. The results show that this

stabilizer provides more effective damping than the conventional PSS,

suppress the low frequency oscillation and improve the stability of the power

system during its entire operating point[48].
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M.A. Abido, proposed three novel approaches to improve a conventional PSS

in a SMIB system. These improved stabilizers used the conventional PSS in

the usual manner plus modification of the terminal voltage feedback signal to

the excitation system as a function of the accelerating power on the unit. The

nonlinear action increased the power system stability greatly. It was

concluded that these three kinds of improved stabilizers can improve power

system stability much more than the conventional PSS which has been used

widely in power systems since the1970's. Compared to the three kinds of

improved stabilizers, the improved PSS is the best one since it is effective for

both small and large disturbances, and is also effective to improve both

overshoot and settling time of rotor speed deviations [60].

Chen et al discussed a new self-optimizing pole shifting control strategy for

an adaptive PSS. Based on an identified model of the system, the control was

computed by an algorithm which shifted the closed loop poles of the system

to some optimal locations inside the unit circle in the z-domain to minimize a

given performance criterion. With the self-optimization property, outside

intervention in the controller design procedure was minimized and simplified

the tuning procedure during commissioning. Also, a new method of

calculating the variable forgetting factor in real-time parameter identification

was discussed. For real-time control, a low order system model could be used

to represent the controlled system. The proposed control strategy based on a

pole-shifting approach combined the advantages of pole assignment control

algorithm and minimum variance control algorithm. The closed loop pole

locations were optimally calculated by the control algorithm in order to

minimize the given performance index. The results for various conditions

showed that the proposed adaptive stabilizer could provide good damping

over a wide frequency range and increased the dynamic and transient stability

margins [54].

Gupta et al designed PSS for a SMIB using periodic output feedback. The

non-linear model of a machine was linearized at different operating points and
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16 linear plant models were obtained. For each of these plants an output

injection gain was obtained using the LQR technique. A robust periodic

output feedback gain which realized these output gains was obtained using an

LMI approach. This robust periodic output control was applied to a non-linear

plant model of the machine at different operating points. This method did not

require the complete set of states of the system for feedback and was easily

implementable. The slip signal was taken as output and the periodic output

feedback control was applied at an appropriate sampling rate. This method

was more general in nature than the static output feedback method, and also

required small magnitudes of the control inputs for these plants. It was found

that the robust controller designed provided good damping enhancement for

various operating points of a single-machine system connected to an infinite

bus [59].Chow et al discussed the practical experience in assigning PSS

projects to provide the designer with a challenging design problem using three

different techniques. The design of PSS projects using root-locus, frequency

domain, and state-space methods were provided. The projects provided the

designer with some realistic and challenging design experience and exposed

them to a well-known power system design problem. A saturation block could

be added to the output of the PSS to limit its contribution in the voltage

regulator input.In [56] Hui Ni et alproposed a supervisory level PSS (SPSS)

using wide area measurement. The robustness of the proposed controller was

capable of compensating for the nonlinear dynamic operation of power

systems and uncertain disturbances. The coordination of the robust SPSSs and

local PSSs was implemented based on the principles of multi agent system

theory. This theory was an active branch of applications in distributed

artificial intelligence (DAI). The performance of the robust controller as a

power system stability agent was studied using a 29-machine 179-bus power

system. Using wide area measurements, the robust controller was a

supervisory level controller that could track system inter-area dynamics

online. An LMI-based method was applied to design controllers. Based on the
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concept of multi agent systems, the robust controllers were embedded into a

system-intelligent agent, which was coordinated with local agents to increase

system damping. Based on limited testing, the simulation results showed that

the proposed robust controller could effectively damp system oscillations

under wide range of operating conditions [55].Elices et al discussed a physical

interpretation of two state feedback controllers for damping power system

electromechanical oscillations. They had been developed by Electricité de

France (EDF). The first one was called the desensitized four loop regulator

(DFLR) and it was designed to damp local electromechanical oscillations. It

was a robust controller which offered good performance despite the variations

of the generator operating conditions. The second controller was called the

extended desensitized four loop regulator (EDFLR) and it was designed to

address both local and inter-area oscillations. The physical interpretation was

accomplished by converting the state feedback scheme to the standard

structure formed with an AVR plus a PSS. Two widely used PSS design

methods based on eigenvalue sensitivities and frequency response were

reviewed to obtain the interpretation. The DFLR could be interpreted

controller which provided the suitable phase compensation according to these

two PSS design methods over a wider frequency range. The EDFLR could be

interpreted as a controller which maximized its robustness under uncertainties

at both PSS output and the input of the plant. The EDFLR achieved a better

compromise between the damping ratio of the local and inter-area modes, and

it was robust not only under uncertainties at the output of the PSS but also

under uncertainties at the input of the plan [57].
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CHAPTER THREE

DESIGN OF POWER SYSTEM STABILIZER IN

SIGLE MACHINE CONECTED INFINIT BUS

3.1 Introduction

Small-signal oscillations in a synchronous generator, particularly when it is

connected to the power system through a long transmission line, are a matter

of concern since before. As long transmission lines interconnect

geographically vast areas, it is becoming difficult to maintain synchronism

between different parts of the power system. Moreover, long lines reduce load

ability of the power system and make the system weak, which is associated

with inter-area oscillations during heavy loading. The phenomenon of small

signal or small disturbance stability of a synchronous machine connected to

an infinite bus through external reactance has been studied in by means of

block diagrams and frequency response analysis. The objective of this

analysis is to develop insights into the effects of excitation systems, voltage

regulator gain, and stabilizing functions derived from generator speed and

working through the voltage reference of the voltage regulator. The analysis

based on linearization technique is ideally suitable for investigating problems

associated with the small-signal oscillations. In this technique, the

characteristics of a power system can be determined through a specific

operating point and the stability of the system is clearly examined by the

system eigenvalues. This chapter describes the linearized model of a single-

machine infinite bus (SMIB) system given by Heffron and Philips that

investigates the local mode of oscillations in the range of frequency 1-3 Hz.

Voltage stability or dynamic voltage stability can be analyzed by monitoring

the eigenvalues of the linearized power system with progressive loading.

Instability occurs when a pair of complex conjugate eigenvalues crosses the

right half of s-plane. This is referred to as dynamic voltage instability, and

mathematically, this phenomenon is called Heffron bifurcation. The following
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steps have been adopted sequentially to analyze the small-signal stability

performance of an SMIB system [10].

1. The differential equations of the flux-decay model of the synchronous

machine are linearized and a state-space model is constructed considering

exciter output∆ as input.

2. From the resulting linearized model, certain constants known as the K

constants (K1–K6) are derived. They are evaluated by small-perturbation

analysis on the fundamental synchronous machine equations and hence are

functions of machine and system impedances and operating point.

3. The model so obtained is put in a block diagram form and a fast-acting

exciter between terminal voltage ∆Vt and exciter output ∆ is introduced in

the block diagram.

4. The state-space model is then used to examine the eigenvalues and to

design supplementary controllers to ensure adequate damping of the dominant

modes. The real parts of the electromechanical modes are associated with the

damping torque and the imaginary parts contribute to the synchronizing

torque.

The following assumptions are generally made to analyze the small-signal

stability problem in an SMIB power system:

1- The mechanical power input remains constant during the period of

transient.

2- Stator resistance is equal to zero.

3- The synchronous machine can be represented by a constant voltage

source (electrically) behind the transient reactance.

4- The mechanical angle of the synchronous machine rotor coincides with

the electric phase angle of the voltage behind transient reactance.

5- No local load is assumed at the generator bus; if a local load is fed at

the terminal of the machine, it is to be represented by constant

impedance (or admittance)
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3.2 Dynamic Model of Synchronous Machine

The differential algebraic equations of the synchronous machine of the flux-

decay model with fast exciter .The Figure (3.1) configuration of Single

Machine connected infinite bus.dEdt = − 1T E + (X − X I − E (3.1)dδdt = ω − ω (3.2)ddt = ω2H [T − E I + (X − X I I + D(ω − ω ) (3.3)dEdt = −ET + KT (V − V ) (3.4)

Figure (3.1) Configuration of single machine connected in finite bus

Where the state variables are

Ed' ≡ direct axis component of voltage behind transient reactance

Eq' ≡ quadrature axis component of voltage behind transient reactanceω ≡ Angular velocity of rotor, δ ≡ Rotor angle in radians, andT = E I + E I − (X − X )I I , (3.5)τ = 4πfH (3.6)
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xd≡ direct axis synchronous reactance, xq≡ quadrature axis synchronous

reactance, xd' ≡ direct axis transient reactance , xq' ≡ quadrature axis

transient reactance,τqo' ≡ quadrature axis open circuit time constant, do' ≡
direct axis open circuit time constant, Te≡ electrical torque of synchronous

machine ,Tm≡mechanical torque of synchronous machine, D≡ damping

coefficient of synchronous machine, EFD ≡ Equivalent stator emf

corresponding to field voltage ,Iq≡ quadrature axis armature current,

Id≡ direct axis armature current, H ≡ inertia constant of synchronous

machine in sec, f ≡ frequency in Hz.

3.3 Stator Equation

The synchronous stator equations is written as belowV sin(δ − θ) + R I − X I = 0 (3.7)E − V cos(δ − θ) − R I − X I = 0 (3.8)
As it is assumed stator resistance Rs=0 and Vt denote the magnitude of the

generator terminal voltage, the earlier-mentioned equations are reduced toX I − V sin(δ − θ) = 0 (3.9)E − V cos(δ − θ) − X I = 0 (3.10)
NowV + jV e = V e , V + jV = V e . e (3.11)
Expansion of the right-hand side results in+ = sin( − ) + cos( − )
Therefore= sin( − )& = cos( − )
Substitution of and in Equations (3.6) and (3.7) gives− = 0 (3.12)− − = 0 (3.13)
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3.4 Network Equation

The equation of the Power System Network is givesI + I e = V ∠θ° − V ∠θ°R + jX (3.14)
I + I e = V + V e − V ∠θ°R + jX (3.15)I R + jI R + jI X − I X = V + jV − V (3.16)I R − I X + j I R + I X = (V − V sin δ + j(V − V cos δ (3.17)I R − I X = V − V sin δ (3.18)I R + I X = V − V cos δ (3.19)

3.5 Linearization Process and State-Space Model

The linearization model of SMIB is obtained using the following steps:

Step I: The linearization of the stator algebraic equations (3.12)

and (3.13) gives∆ − ∆ = 0 (3.20)∆ − ∆ − ∆ = 0 (3.21)
Rearranging Equations (2.18) and (2.19) gives∆ = ∆ (3.22)∆ = − ∆ + ∆ (3.23)
Writing Equations (2.20) and (2.21) in matrix form gives∆∆ = 0− 0 ∆∆ + 0∆ (2.24)
Step II: The linearization of the load-flow equations (3.18) and (3.19) results

in∆ − ∆ = ∆ − cos ∆ (3.25)∆ + ∆ = ∆ − ∆ (3.26)
Rearranging Equations (2.23) and (2.24) gives∆ = ∆ − ∆ + cos ∆ (2.27)∆ = ∆ + ∆ − ∆ (3.28)
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Writing Equations (3.25) and (3.26) in matrix form gives∆∆ = − ∆∆ + cos− ∆ (3.29)
Step III: Equating the right-hand side of Equations (3.24) and (3.29) gives− ∆∆ + cos− ∆ = 0− 0 ∆∆ + 0∆ (3.30)− + 0− 0 ∆∆ = 0∆ cos− ∆ (3.31)−( + )( + ) ∆∆ = 0∆ + cos− ∆ (3.32)−( + )( + ) = 1∆ ( + )−( + ) (3.33)
Where∆ = + + ( + )
Solving for∆ and∆ from Equation (3.32) results in∆∆ = 0∆ −( + )( + )+ − cos ∆ . −( + )( + ) (3.34)∆∆ = 1∆ 0∆ ( + )−( + )+ 1∆ − cos ∆ . ( + )−( + ) (3.35)
i.e.∆∆ = 1∆ ( + )∆∆ + 1∆ − + ( + )+ ( + ) ∆ (3.36)
Therefore:∆∆ = 1∆ ( + ) − + ( + )+ ( + ) ∆∆ (3.37)
Step IV: The linearizations of the differential equations (3.1)–(3.4) are as

follows. Here, the frequency is normalized as = throughout our study:

∆ ̇ = − 1̀ ∆ − 1̀ ( + )∆ + 1̀ ∆ (3.38)∆ ̇ = ∆ (3.39)
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∆V̇ = 2H∆T − 2H∆E . I − 2HE . I − X − X2H ∆I I − X − X2H I ∆I
− Dω2H ∆V (3.40)T ∆Ė = −∆E + K (∆V − ∆V ) (3.41

∆Ė∆δ̇∆V̇ = ⎣⎢⎢
⎢⎡ 1T` 0 00 0 ωI2H 0 Dω2H ⎦⎥⎥

⎥⎤ ∆E∆δ∆V + ⎣⎢⎢
⎢⎡− (X − X )T` 00 0I (X` − X )2H (X` − X )2H − E`2H⎦⎥⎥

⎥⎤ ∆I∆I
+ ⎣⎢⎢
⎢⎡ 1T` 00 00 12H⎦⎥⎥

⎥⎤ ∆E∆T (3.42)
Step V: Obtain the linearized equations in terms of the K constants.

Expressions for ∆ and ∆ obtained from Equation (3.37) are∆I = ∆ [(X − X )∆E` + {−R V cosδ + (X − X` )V sinδ}∆δ] (3.43)
∆I = 1∆ [R ∆E` + {R V sinδ + (X − X` )V cosδ}∆δ] (3.44)

On substitution of and in Equation (3.40), the resultant equations

relating the constants , , , and can be expressed as∆E = − 1K T` ∆E − KT` ∆δ + 1T` ∆E (3.45)∆δ̇ = ω ∆V (3.46)∆V̇ = − K2H ∆E − Dω2H ∆V + 12H∆T (3.47)
Step VI: The linearization of generator terminal voltage is as follows: The

magnitude of the generator terminal voltage isV = V + V , V = V + V (3.48)
The linearization of Equation (3.46) gives2V ∆V = 2V ∆V + 2V ∆V (3.49)
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Therefore∆ = ∆ + ∆ (3.50)
Now, substituting Equation (3.37) into Equation (3.24),∆V∆V = 1∆ 0 XX` 0 (X + X ) −R V cosδ + V sinδ(X + X )R R V sinδ + V cosδ(X + X ) ∆E∆δ+ 0∆E (3.51)
Or∆V∆V = 1∆ R X X (R V sinδ + V (X + X )cosδ)−(X + X ) −X` (−R V cosδ + V (X + X )sinδ) ∆E∆δ + 0∆E
Therefore∆V = 1∆ [R X ∆E + X R V sinδ + X V (X + X )cosδ∆δ] (3.50)∆V = −X` (X + X ∆E + (X` R V cosδ + X` V (X + X )sinδ∆δ]+ ∆E (3.52)
Replacing and ∆Vq from Equations (3.52) and (3.53) in Equation (3.50)

results in∆V = K ∆δ + K ∆E (3.53)
3.6 Derivation of K Constants

From Equation (3.36), the expression of ∆ on substitution of ∆ is [1]∆Ė = (− 1T` ∆E − 1T` (X + X )(∆ [(X − X )∆E` + {−R V cosδ + (X− X` )V sinδ}∆δ]) + 1T` ∆E ) (3.54)
∆Ė = (− 1T` 1 + (X − X` )(X + X )∆ ∆E − 1T` V (X + X )∆ (X − X sinδ

− R cosδ}∆δ + 1T` ∆E ) (3.55)
∆Ė = − 1K T` ∆E − KT` ∆δ + 1T` ∆E (3.56)
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1K = 1 + (X − X` )(X + X )∆ (3.57)
K = V (X − X` )∆ [(X + X )sinδ − R cosδ] (3.58)

Again from Equation (3.40), the expression of ∆ ̇ on substitution of∆ and∆ is∆V̇ = (− 12H∆E . I − X − X I2H 1∆ (X + X ∆E + {−R V cosδ
+ (X + X V sinδ}∆δ] + X` − X2H I − 12HE 1∆ [R ∆E+ {R V sinδ + (X + X )V cosδ}∆δ − Dω2H ∆V+ 12H∆T ) (3.59)

∆V̇ = (− 12H 1∆ I ∆ − I X` − X X − X − R I X` − X + R E ∆E
+ V I2H∆ X` − X (X + X )sinδ − R cosδ ∆δ
+ V∆ I X` − X − E {(X + X` )cosδ + R sinδ} − Dω2H ∆V+ 12H∆T ) (3.60)

This can be written in terms of K constants as∆V̇ = K2H∆E − K2H∆δ − Dω2H ∆V + 12H∆T (3.61)
K = 1∆ I ∆ − I X` − X X − X − R I X` − X + R E (3.62)
K = ( 1∆ V I X` − X (X + X )sinδ − R cosδ+ V X` − X I − E [(X + X` )cosδ + R sinδ] ) (3.63)

On substitution of ∆ and ∆ in Equation (3.46), it reduces to
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∆V = VV 1∆ R X E` + R X V sinδ + X V X` + X cosδ∆δ
+ VV 1∆ −X` X + X ∆E + R X` V cosδ
+ X` V X + X sinδ∆δ + ∆E (3.64 )

Or∆V = 1∆ VV R X − VV X` X + X + VV ∆E+ 1∆ VV X R V sinδ + V cosδ X` + X
+ VV X` R V cosδ − V X` + X sinδ ∆δ (3.65)

Therefore, Equation (3.65) can be written in terms of K constants as∆V = K ∆δ + K ∆E (3.66)K = 1∆ VV X R V sinδ + V cosδ X` + X
+ VV X` R V cosδ − V X` + X sinδ (3.67)

K = 1∆ VV R X − VV X` X + X + VV (3.68)
Now, the overall linearized machine differential equations (3.45)–(3.47) and

the linearized exciter equation (3.43) together can be put in a block diagram

shown in Figure (3.2) in this representation, the dynamic characteristics of the

system can be expressed in terms of the K constants. These constants (K1–K6)

and the block diagram representation were developed first by Heffron–

Phillips and later by de Mello to study the synchronous machine stability as

affected by local low-frequency oscillations and its control through excitation

system [10].
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Figure (3.2) Block diagram of the synchronous Machine model

The K constants presented in the block diagram Figure 3.2 are defined as

follows:= ∆∆ ` Change in electric torque for a change in rotor angle with

constant flux linkages in the d-axis.= ∆∆ ` Change in electric torque for a change in d-axis flux linkages

with constant rotor angle.= `
The case where the external impedance is a pure reactance .= ∆ `∆ Demagnetizing effect of change in rotor angle.= ∆∆ ` Change in terminal voltage with change in rotor angle for

constant `= ∆∆ ` Change in terminal voltage with change in ` for constant rotor

angle.

It is evident that the K constants are dependent on various system parameters

such as system loading and the external network resistance (Re) and reactance

(Xe). Generally, the value of the K constants is greater than zero 0, but under

heavy loading condition (high generator output) and for high value of external
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system reactance, might be negative, contributing to negative damping and

causing system instability. This phenomenon has been discussed in the

following sections based on state space model [10].

The state-space representation of the synchronous machine can be obtained

when Equations (3.43) , (3.45) and (3.52) are written together in matrix form.

Assuming ∆ = 0, the state-space model of the SMIB system without

exciter is therefore

∆E`∆δ̇∆V̇ = ⎣⎢⎢
⎢⎡− 1K T` − KT` 00 0 ω− K2H − K2H DωS2H ⎦⎥⎥

⎥⎤ ∆E`∆δ∆V + 1T0̀0 ∆E` (3.69)
∆V = [K K 0] ∆E`∆δ∆V (3.70)
T ∆E`̇ = −∆E + K (∆V + ∆V ) (3.71)∆E`̇ = 1T ∆E − K KT ∆δ − K KT ∆E` + KT ∆V (3.72)

⎣⎢⎢⎢
⎡∆E`̇∆δ̇∆V̇∆Ė ⎦⎥⎥⎥

⎤ =
⎣⎢⎢
⎢⎢⎢
⎢⎡− 1K T` − KT` 0 1T`0 0 ω 0− K2H − K2H DωS2H 0− K KT − K KT 0 − 1T ⎦⎥⎥

⎥⎥⎥
⎥⎤ ∆E`∆δ∆V∆E + ⎣⎢⎢

⎢⎡ 000KT ⎦⎥⎥
⎥⎤∆V (3.73)

3.7 Power System Stabilizer in State Matrix

Assume that the damping D in the torque loop is zero. The input to the

stabilizer is ∆ . An extra state equation will add. The washout filter stage is

omitted since its objective is to offset only the DC steady state error, hence is

dose not play any role in the design. The added stage equation due to PSS is∆V ̇ = − 1T ∆V + KT ∆V + K TT ∆V̇ (3.74)
∆V̇ = − K2H ∆E − K2H ∆δ (3.75)

By substitute eq. (3.75) in (3.76) is gives
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∆ ̇ = − 1 ∆ + ∆ + − 2 ∆ − 2 ∆ ( 3.76)
Therefore∆ ̇ = − 1 ∆ + ∆ − 2 ∆ − 2 ∆ (3.77)
The state matrix of the system model is

⎣⎢⎢
⎢⎢⎡ ∆ `̇∆ ̇∆ ̇∆ ̇∆ ̇ ⎦⎥⎥

⎥⎥⎤ =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ − 1` − `0 0− 2 − 2

0 1̀ 00 02 0 0− −− 2 − 2
0 − 1

0 − 1 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤
⎣⎢⎢
⎢⎡ ∆ `∆∆∆∆ ⎦⎥⎥

⎥⎤+
⎣⎢⎢
⎢⎢⎢
⎡ 000

⎦⎥⎥
⎥⎥⎥
⎤
∆ (3.78)

3.8 Analysis of Power oscillations in Single Machine

Infinite Bus (SMIB)

The small-signal stability response of this system has been examined further

by plotting the rotor speed deviation under different scenarios for a unit

change in mechanical step power input with a reasonable simulation time of

10 s.The Simulink block diagram of Synchronous Machine showing in Figure

(3.3)
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Figure (3.3) Simulink block diagram of single machine

3.8.1 Normal Load (P=1.0, Q=0.015 p.u ).

The Table (A.1) show the eigenvalue, nature frequency and damping ratio of

single machine connected in finite bus system. The result shows the damping

ratio increase after insert excitation system and power system stabilizer. The

Figure (3.4) shows time response of speed deviation without controller and

with controller, from the results the PSS having good settle time than the

excitation system.

Figure (3.4) Speed deviation response in case of normal load
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3.8.2 Heavy Load

The Table (A.2 ) show the eigenvalue, nature frequency and damping ratio of

single machine connected in finite bus system. In case of heavy load (P=1.1,

Q=0.4) p.u The results shows the damping ratio decrease after insert

excitation system and power system stabilizer that cause system instability.

The figure (3.5) shows time response of speed deviation without controller

and with controller, from the results heavy load causes system to high

amplitude of oscillations than normal load.

Figure (3.5) Speed deviation response in case of heavy load
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In case of light load (p=0.3,Q=0.015) p.u the PSS settle the  speed deviation

during first  cycle. The figure (3.6) shows time response of speed deviation

with and without controller in case of light load and the table (A.3 ) show the

eigenvalue, nature frequency and damping ratio of single machine connected

in finite bus.
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Figure (3.6) speed deviation response in case of light load

3.8.4 Leading Power Factor

In case of leading power factor the system growth instability during

increasing time but after install the PSS settle the speed deviation during first

cycle. The figure (3.7) shows time response of speed deviation with and

without controller in case of leading power factor and the table ( A.4 ) show

the eigenvalue, nature frequency and damping ratio of single machine

connected in finite bus.
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Figure (3.7) speed deviation response in case of leading power factor

3.9 Effect of Excitation Gain

The gain of excitation the system effect  stability in case of heavy load the

increasing of excitation gain effect the system stability during limit range The

figure(3.8) shows effect of excitation system  gain on  speed deviation with

and without controller in case of  heavy load.

Figure (3.8) Effect of excitation system gain on speed deviation
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CHAPTER FOUR

DYNAMIC STABILITY OF MULTIMACHINE POWER SYSTEM

4.1 Model of Multi machine Power System

In stability analysis of a multi-machine system, modeling of all the machines

in a more detailed manner is exceedingly complex in view of the large

number of synchronous machines to be simulated. Therefore simplifying

assumptions and approximations are usually made in modeling the system. In

this thesis two axis models is used for all machines in the sample system

taken for investigation. Models for power system components have to be

selected according to the purpose of the system study, and hence, one must be

aware of what models in terms of accuracy and complexity should be used for

a certain type of system studies, while keeping the computational burden as

low as possible. Selecting improper models for power system components

may lead to erroneous conclusions [58]. Also one is required to have

necessary background knowledge in order to understand the actual process

that takes place in the power system in order to design a power system

simulation as closely as possible. The mathematical models needed for small

signal analysis of synchronous machine, excitation system and the lead-lag

power system stabilizer are will need to model. To formulate multi machine

small-signal model, the following assumptions are made without loss of

generality

1. Mechanical power input is constant.

2. Constant-voltage behind transient- reactance model for the synchronous

machines is valid.

3. The mechanical rotor angle of a machine coincides with the angle of the

voltage behind transient- reactance.

4. Loads are represented by passive impedances.

4.2 Two-axis Model of Multi machine System

The asynchronous generator can be mathematically described by a set of

differential and algebraic equations [4].
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Ẋ = (X, V, T , t) (4.1)
Where Xis a vector of state variables , is a vector of voltages, andT , is the

mechanical torque. The dimension of the vector x depends on the model used.

For convenience we will use a complex notation defined as follows. For

machine we define the phases I̅ and ViV = V + jV I̅ = I + jI (4.2)V ≜ v /√3 , V ≜ v /√3 , I ≜ i /√3 , I ≜ √ (4.3)

V ≜ ⎣⎢⎢
⎡V + VV + V⋯V + V ⎦⎥⎥

⎤
=⎣⎢⎢
⎡VV⋯V ⎦⎥⎥
⎤ I̅ ≜ ⎣⎢⎢

⎡I + II + I⋯I + I ⎦⎥⎥
⎤
=⎣⎢⎢
⎡I̅I⋯̅I̅ ⎦⎥⎥
⎤
(4.4)

Using the block diagram reduction technique and with the simplifying

assumptions the state equations for the two-axis model in p.u. form

∆E = (4.5)

∆E = E − E − (X − X )I /τ (4.6)

pω = { }
(4.7)

pδ = ω − 1 ( 4.8)
4.3 Matrix Representation of a Passive Network

Consider the multi machine system shown in Figure (4:1). The network has n

machines and r loads, and, the terminal voltages V , for i = I , 2, . . . , n,

.instead of the internal EMF’S. Since the loads are represented by constant

impedances, the network has only n active sources. Note also that the

impedance equivalents of the loads are obtained from the pre transient

conditions in the system [4].
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Figure (4.1) Configuration of multi-machine power systemI=̅ YV (4.9)

I̅ ≜ ⎣⎢⎢
⎡I̅I⋯̅I̅ ⎦⎥⎥
⎤V ≜ ⎣⎢⎢

⎡VV⋯V ⎦⎥⎥
⎤

(4.10)

v = l i + r i k = 1,2,…,b (4.11)v = l i + r i k = 1,2,…,b (4.12)PV = l Pi + r Pi (4.13)Pi = i − w 0−ii (4.14)

V = l i − w 0−ii + r i (4.15)

V = l i + w i−i + r i (4.16)

V = r i +x i−i k = 1,2, … , b (4.17)θ = w t+ π/2 +δ (4.18)
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V ( ) = r i ( ) − x i ( ) ,V ( ) = r i ( ) + x i ( ) (4.19)([V ( ) = V ( ) + jV ( )= r i ( ) − x i ( ) + j r i ( ) + x i ( ) =(r + jx ) I + jI ) ,V ( ) = z I̅ ( ) k = 1,2, … , b, ] (4.20)

4.4 Converting to a common reference frame

To obtain general network relationships, it is desirable to express the various branch

quantities to the same reference.(V + jV = V cos δ − V sin δ + j V sin δ + V cos δ , V̇ = V e ) (4.21)V̇ e = z İ e , V̇ = z İ k = 1,2, … , b (4.22)

4.5 Converting Machine Coordinates to System Reference

Consider a voltage at node I .We can apply Park's transformation to this

voltage to obtainV . From (4.2) this voltage can be expressed in phasor notation asV, using the rotor of machine i as reference. It can also be expressed to the system

reference as V̇ , using the transformation (9.21)[4].

T=

e 0 … 00 e … 0… … … …0 0 … e (4.23)

V̇ = ++⋯+ V = ⎣⎢⎢
⎡V + VV + V⋯V + V ⎦⎥⎥

⎤
(4.24)

V̇ = TV (4.25)

Thus T is a transformation that transforms the d and q quantities of all machines to

the system frame, which a common frame is moving at synchronous speed. We can

easily show that the transformation T is orthogonal.T = T∗ (4.26)V = T∗V̇ (4.27)İ = TII̅̅ = T∗İ (4.28)TI̅ = YTV (4.29)I̅ = (T YT)V ≜ MV (4.30)
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M = (T YT) (4.31)V = (T YT) I̅ = (T ZT)I̅ (4.32)

Y = ⎣⎢⎢
⎡Y e Y e … Y eY e Y e … Y e… … … …Y e Y e … Y e ⎦⎥⎥

⎤
(4.33)

Derive the expression for the matrix for an n-machine system.

T = e ⋱ e ,T = e ⋱ e (4.34)

YT = ⎣⎢⎢
⎡Y e ( ) Y e ( ) … Y e ( )Y e ( ) Y e ( ) … Y e ( )… … … …Y e ( ) Y e ( ) … Y e ( )⎦⎥⎥

⎤
(4.35)

(T YT) ≜ M = ⎣⎢⎢
⎡ Y e Y e ( ) … Y e ( )Y e ( ) Y e … Y e ( )… … … …Y e ( ) Y e ( ) … Y e ⎦⎥⎥

⎤
(4.36)

Y e ( ) = (G cos δ + B sin δ ) + j(B sin δ − G cos δ )F (δ ) = F = G cos δ + B sin δF (δ ) = F = B cos δ − G sin δ (4.37)

M = H + jS (4.38)

h = G h = F (δ ) , s = B s = F (δ ) (4.39)

I̅ = (H + jS) V + jV⋮V + jV (H + jS) V + jV = HV − SV + j SV + HV (4.40)

4.6 linearized Model for the NetworkI∆̅ = M V∆ + M∆V (4.41)
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M = Y e Y e ( ∆) … Y e ( ∆)⋯ ⋯ ⋯ ⋯Y e ( ∆ ) Y e ( ∆ Y e (4.42)
m = Y e ( )e ∆)

,m ≅ Y e 1 − jδ ∆ ( 4.43)
m ∆ ≅ −jY e δ ∆ (4.44)

M∆V = (−j 0 … Y e ( )δ ∆Y e ( )δ ∆ … Y e ( )δ ∆…Y e ( )δ ∆ …… …0 ⎣⎢⎢
⎡VV…V ⎦⎥⎥
⎤

= −j
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ Y e ( )V δ ∆

Y e ( )V δ ∆…Y e ( )V δ ∆⎦⎥⎥
⎥⎥⎥
⎥⎥⎤ ) (4.45)

( I̅ ∆I̅ ∆…I̅ ∆
= Y e … Y e ( )Y e ( ) … Y e ( )…Y e ( ) …… …Y e ⎣⎢⎢

⎡V ∆V ∆…V ∆⎦⎥⎥
⎤

− j
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ V Y e ( )δ ∆

V Y e ( )δ ∆…V Y e ( )δ ∆⎦⎥⎥
⎥⎥⎥
⎥⎥⎤ ) (4.46)
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T∆ = jT δ∆ ,δ∆ ≜ diag(δ ∆ … . . δ ∆) ( 4.47)N∆ = (T )∆ = −jN δ∆ == −jT δ∆ ( 4.48)M∆ = −j T δ∆YT − T YT δ∆ (4.49)
T δ∆ = e ⋱ e δ ∆ ⋱ δ ∆ = e δ ∆ ⋱ e δ ∆ (4.50)
T Y = e ⋱ e Y e … Y e… … …Y e … Y e

= Y e ( ) … Y e ( )… … …Y e ( ) … Y e ( ) (4.51)
T YT δ∆ =
( ⎣⎢⎢
⎡ Y e … Y e ( )Y e ( )… …… Y e ( )…Y e ( ) … Y e ⎦⎥⎥

⎤ δ ∆ ⋱ ⋱ δ ∆
=

M δ∆ ) (4.52)

T δ∆ = ⎣⎢⎢
⎡e δ ∆ ⋱ ⋱ e δ ∆⎦⎥⎥

⎤
YT = Y e ( ) … Y e ( )… … …Y e ( ) … Y e ( )
T δ∆YT = Y e δ ∆ … Y e ( )δ ∆… … …Y e ( )δ ∆ … Y e δ ∆ = δ∆M ( 4.53)
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M = −j[δ∆M − M δ∆] (4.54)I∆̅ = M V∆ − j[δ∆M − M δ∆]V∆ ( 4.55 )V∆ = M I∆̅ − j δ∆ − M δ∆M V∆ (4.56)
Q ≜ M = T Y T (4.57)V∆ = Q I∆̅ − j[δ∆Q − Q δ∆]I̅ (4.58)
M = Y e Y e ( )Y e ( ) Y e (4.59)

δ∆ = δ ∆ 00 δ ∆ , V∆ = V ∆ + jV ∆V ∆ + jV ∆ (4.60)
M δ∆ = Y e δ ∆ Y e ( )δ ∆Y e ( )δ ∆ Y e δ ∆ (4.61)

δ∆M = Y e δ ∆ Y e ( )δ ∆Y e ( )δ ∆ Y e δ ∆
j(δ∆M − M δ∆)V = j 0 Y e ( )δ ∆− Y e ( )δ ∆ 0 (4.62)

V + jVV + jV = Y e δ ∆ Y e ( )δ ∆Y e ( )δ ∆ Y e δ ∆ δ ∆ (4.63)
M V∆= Y e δ ∆(V ∆ + jV ∆) Y e ( )δ ∆(V ∆ + jV ∆)Y e ( )δ ∆(V ∆ + jV ∆) Y e δ ∆ V ∆ + jV ∆ (4.64)
( I ∆ + jI ∆I ∆ + jI ∆= Y11ejθ11δ1∆Vq1∆ + jY11ejθ11δ1∆Vd1∆ Y12ej(θ12−δ120)δ2∆Vq2∆ + jY12ej(θ12−δ120)δ2∆Vd2∆Y12ej(θ12+δ120)δ1∆Vq1∆ + jY12ej(θ12+δ120)δ1∆Vd1∆ Y22ejθ22δ2∆Vq2∆ + Y22ejθ22δ2∆Vd2∆− j Y e ( ) V + jV ∆−j Y e ( ) V + jV ) (4.65)
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∆I = (C ∆V − B ∆V + Y cos(θ − δ )∆V
− Y sin(θ − δ )∆V
+ (Y sin θ − δ ∆V + cos θ − δ ∆V ∆δ ) ,i = 1, … . n (4.66)

∆I= ( B ∆V − G ∆V + Y cos(θ − δ )∆V
+ Y sin(θ − δ )∆V
+ (Y sin θ − δ ∆V − cos θ − δ ∆V ∆δ ) , i
= 1, … . n (4.67)
The state space model for linearized system is obtained by linearizing the

differential and algebraic equations at an operating point While doing this

linearization process, additional terms involving terminal voltage components

(which are not state variables) remain in the differential equations. To express

the voltage components in terms of state variables, the machine currents are

also linearized and expressed in terms of state variables and voltage

components. Finally the current components are eliminated using the

interconnecting network algebraic equations. From the initial conditions,Ed'

i0, Eq'i0, Iqi0, Idi0, EFDi0 and δi0 are determined. Linearizing equation (4.5)

we get [4].
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P∆E = −∆E − X − X ∆Iτ ; i = 1, … n (4.68)
P∆E = ∆E − E + (X − X )∆Iτ ; i = 1, … n (4.69)

P∆ω = ∆T − I ∆E + I ∆E + E ∆I + E ∆I − D ωτ ; i= 1, … . n (4.70)P∆δ = ∆ω ; i = 1, … n (4.71)P∆E
= 1τ X − X B − 1 ∆E
+ X − X [Y {sin(θ − δ ) ∆E ] − X − X G ∆E
− X − X Y cos(θ − δ )∆E
− X − X [Y cos(θ − δ )]∆E ]
+ sin(θ − δ ) ∆E ]∆δ ; i
= 1,2 … n (4.72)
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P∆E = ( 1τ [(X − X )B − 1]∆E
+ (X − X ) [Y {sin(θ − δ ) ∆E ]
+ (X − X )G ∆E+ (X − X ) Y sin(θ − δ )∆E
− (X − X ) Y cos(θ − δ )]∆E
+ Y sin(θ − δ ) ∆E ]∆δ + ∆E ); i
= 1,2 … n (4.73)

P∆ω = 1τ [∆T − D ∆ω − I + G ∆E − B ∆E ∆E
− I + B ∆E − G ∆E− Y cos(θ − δ )]∆E − Y sin(θ − δ ) ∆E ∆E
− Y sin(θ − δ )]∆E − Y cos(θ − δ ) ∆E ∆E
− Y cos(θ − δ )]∆E
− Y cos(θ − δ ) −E E + E E+ Y sin(θ − δ ) −E E+ E E )∆δ ; i
= 1,2 … n (4.74)
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P∆δ = ω − ω ( 4.75)i = 1,2 … n taking machine 1 as referrnce
5) gives the state space model of n-

machine system.

4.7 Exciter Representation

The state space equation of the exciter can be derived from the block

Diagram of the exciter shown in the Figure (2.2)∆E = ∆V … … (4.76)

For n, number of exciters, the state equations is as follows:

P∆E = −KT (−∆V + ∆V ) − 1T ∆E ; i = 1, … n (4.77)
Now the state vector of the n machine state model including exciter

Equation is as followsX = ∆E ∆E ∆ω ∆δ ∆E ; i = 1, … . n (4.78)
4.8 Conventional Power System Stabilizer representation

The Conventional Power System Stabilizer (PSS) adds damping to the

generator rotor oscillations by controlling its excitation using auxiliary

stabilizing signals. To provide damping, the stabilizer must produce a

component of electrical torque in phase with the rotor speed deviations.

From the wash out block, we get

∆V = sT1 + sT (K ∆ω) (4.79)
P∆V = K P∆ω − (1/T )∆V ; 1 = 1, … . . n (4.80)
∆V = ∆V 1 + sT1 + sT (4.81)
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P∆V = TT P∆V + 1T ∆V − 1T ∆V ; i = 1, … . . n ( 4.82)
The state vector of the complete system after the inclusion of power

System stabilizer is as followsX = ∆E ∆E ∆ω ∆δ ∆E ∆V ∆V ; i = 1, … . n (4.83)
4.9 Dynamic Stability Evaluation

4.9.1 Techniques of Stability Evaluation

Stability can be evaluated by different methods, such as using Eigenvalues,

Damping Torques and Time-Domain Simulations. These methods are

techniques that are used to determine if the system is stable or unstable. The

following sections describes these techniques in details by taking different

operating points [1].

4.9.2 Stability Evaluation Using Eigen values Technique

Consider the following state-space equations:∆x = A∆x + B∆u (4.84)∆y = C∆x + D∆u (4.85)
Note that all the partial derivatives above are evaluated at which small

perturbation is being analyzed. Now we need to get the state Equations (4.84)-

(4.85)in the frequency domain. This is done by taking the Laplace transform

as followS∆X(s) − ∆X(0) = A∆X(s) + B∆U(s) (4.86)∆Y(s) = C∆X(s) (4.87)(SI − A)∆X(s) = ∆X(0) + B∆U(s) (4.88)∆X(s) = (SI − A) ∆X(0) + B∆U(s) (4.89 )∆Y(s) = C (SI − A) ∆X(0) + B∆U(s) (4.90)
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Note that both Equations (4.86)-(4.87) have two components, one dependent

on the initial conditions and the other one dependent on the input [1]. The

poles of ∆X(s) and ∆Y(s) are obtained from the roots of the characteristic

equation of matrix A, which isdet(SI − A) = zero (4.91)
Where s is the eigenvalue of matrix A.

The stability of any system is determined by its eigenvalues as follows:

1. The real eigenvalue corresponds to a non-oscillatory mode. If it is negative,

this represents the decaying mode, and it decays fast as long as the magnitude

of the eigenvalue is high. However if it is positive, this would represent an

aperiodic instability. Note that if there is at least one positive real eigenvalue

in the system, this would lead the system to instability mode [1].

2. The complex eigenvalues appear in conjugate pairs, and each pair

corresponds to an oscillatory mode. The real component of the complex pair

represents the damping, while the imaginary component represents the

frequency of oscillations [1]. For a complex pair of eigenvalue

 = σ ± jω (4.92)
The damping ratio can be expressed as:

 = σ√σ + w (4.93)
f = w2π ( 4.94)

Where f the frequency of oscillations in Hz is:

Equation (4.93) determines the rate of decay of the amplitude of the

oscillation. The stability of power system is related to position of the power

system eigenvalues in real-imaginary plane. The real component of the

eigenvalue presents the damping, where the imaginary component presents

the frequency of oscillations. If the real part of the eigenvalue is negative, the

response is represented as damped oscillations which tends the system to be
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stable, whereas if it is positive, the response is represented as increasing

amplitude oscillations, thus the system is instable.

4:10 Power System Representation for Dynamic Study

In the performance of a transient stability study, the following data are

needed:

1. A load-flow study of the pre-transient network to determine the mechanical

power Pm of the generators and to calculate the values of E, for all generators.

The equivalent impedances of the loads are obtained from the load bus data.

2. System data as follows, the inertia constant H and direct axis transient

reactance xd for all generators.

b. Transmission network impedances for the initial network conditions.

3. The type of location of disturbance, time of switching, and the maximum

time for which a solution is to be obtained.

4.11 Preliminary Calculations

To prepare the system data for a stability study, the following preliminary

calculations are made:

1. All system data are converted to a common base; a system base of

100MVA.

2. The loads are converted to equivalent impedances or admittances. The

necessary data for this step are obtained from the load-flow study. Thus if a

certain load bus has a voltage, power, reactive power, and current flowing

into a load admittance.

3. The internal voltages of the generators are calculated from the load-flow

data. These internal angles may be computed from the pre-transient terminal

voltages as follows.

4. The Y matrix for each network condition is calculated. The following steps

are usually needed:

(a) The equivalent load impedances (or admittances) are connected between

the load buses and the reference node; additional nodes am provided for the

internal generator voltages (nodes l,2,..,n  in  Figure( 4.1 )and the appropriate
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values of Xd are connected between these nodes and the generator terminal

nodes

(b) All impedance elements are converted to admittances.

(c ) Elements of the Y matrix are identified .

5. Finally, all the nodes except for the generator nodes are eliminated and the

Ymatrix for the reduced network is obtained. The reduction can be achieved

by matrix operation considering zero injection currents at all the nodes except

for the internal generator nodes.

4.12 Simulation and Analysis

The method mention above for stability evaluation use in case of three

machine nine bus system  the  system data obtained in appendix(B). The case

study of three machine nine bus system uses different scenarios. For analysis

use Power System Toolbox (PSAT).The Figure (4.2) represent three machine

nine bus PSAT configuration.

Figure (4.2) Simulink diagram of three machine nine bus system



59

4.12.1 Normal Case

The Simulation results shows in Table (A.5), Table (A.6) and Table (A.7)

power flow in buses, voltages, Eigen values report and participation factor for

all state . The Figure (4.3) show time domain of speed for three machines.

The Figure (4.3) Time response of speed in three machine

4.12.2 Increasing load at Buses 8,6 and 5

The Simulation results shows in Table (A.8), Table (A.9) and Table (A.10)

power flow in buses, voltages , Eigen values and participation factor for all

state . The Figure (4.4) show time domain of speed deviation for three

machine in case of increasing load at buses 5,8 and 6.
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Figure (4.4) Speed in three machines in case of increasing load at buses

4.12.3 Short Circuit in Bus 5 but without Power System Stabilizer

The Simulation results shows in Table (A.11) ,Table (A.12) and Table (A.12)

power flow in buses , voltages , Eigen values and participation factor for all

state .The figure (4.5) shows the time domain of speed deviation for three

machine in case of short circuit at bus 5.

Figure (4.5) Rotor speed in three machine in case of  short circuit at bus 5
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4.12.4  Short Circuit in Bus 5 with PSS

The Simulation results shows in Table (A.13) ,Table (A.14) and Table( A.15)

power flow in buses,voltages,Eigenvalues report for all state and participation

factor. The Figure (4.6) shows the  time domain of speed deviation for three

machine in case of short circuit but with PSS.

Figure (4.6) Rotor speed in three machines in case of short circuit at
bus 5 with PSS
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CHAPTER FIVE

DESIGN OF POWER SYSTEM BASED ONADAPTIVE

CONTROL

5.1 Introduction

The majority of processes met in industrial practice have stochastic character.

Traditional controllers with fixed parameters are often unsuited to such

processes because their parameters change. Parameter changes are caused by

changes in the manufacturing process, in the nature of the input materials,

fuel, machinery use (wear), power system etc. Fixed controllers cannot deal

with this. One possible alternative for improving the quality of control for

such processes is the use of adaptive control systems, which has been made

possible by the development of modern digital automation based on

microprocessor technology. Naturally this must be taken together with the

development and improvement of adaptive control algorithms, and the

exploration of their potential, advantages and limitations[49].Adaptive control

is an area of feedback control theory that has recently received a great deal of

attention. Although there is no clear-cut definition of adaptive control, an

adaptive controller may be viewed as a regulator that can modify its behavior

according to changes in the dynamics of the process it is

controlling.[50]According to Webster's dictionary, to adapt means to "change

(oneself) so that one's behavior will conform to new or changed

circumstances." The words adaptive systems and adaptive control have been

used as early as 1950,[52].This generic definition of adaptive systems has

been used to label approaches and techniques in a variety of areas despite the

fact that the problems considered and approaches followed often have very

little in common. The specific definition of adaptive control, Adaptive control

is the combination of a parameter estimator, which generates parameter

estimates online, with a control law in order to control classes of plants whose

parameters are completely unknown and/or could change with time in an
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unpredictable manner. The choice of the parameter estimator, the choice of

the control law, and the way they are combined leads to different classes of

adaptive control schemes.

5.2 Adaptive Control

Adaptive Control covers a set of techniques which provide a systematic

approach for automatic adjustment of controllers in real time, in order to

achieve or to maintain a desired level of control system performance when the

parameters of the plant dynamic model are unknown and or change in time.

Consider the case when the parameters of the dynamic model of the plant to

be controlled are unknown but constant (at least in a certain region of

operation). In such cases, although the structure of the controller will not

depend in general upon the particular values of the plant model parameters,

the correct tuning of the controller parameters cannot be done without

knowledge of their values. Adaptive control techniques can provide an

automatic tuning procedure in closed loop for the controller parameters. In

such cases, the effect of the adaptation vanishes as time increases.

5.3 Development of Adaptive Control

The history of adaptive control goes back nearly 50 years [51].The

development of adaptive control started in the 1950’s with the aim of

developing adaptive flight control systems, although that problem was

eventually solved by gain scheduling. Among the various solutions that were

proposed for the flight control problem, the one that would have the most

impact on the field was the so-called model-reference adaptive system

(MRAS). Adaptive controllers are generally broken into two different types

direct and indirect with the direct adaptive controller, regulator parameters are

directly changed as the dynamics of the system change. This is demonstrated

in Figure(5:1). The closed-loop plant is forced to act like a model system; the

regulator parameters are adjusted until the error e in Figure (5.1) is driven to

zero. Direct adaptive control is often termed model-reference adaptive control



64

(MRAC). With an indirect adaptive controller the regulator parameters are

indirectly updated; an indirect controller is shown in Figure(5.2). The

controller's operation occurs in two distinct steps. First, the dynamics of the

system are identified at a particular instant in time; then the regulator is

adjusted according to the identified dynamics. The plant's input and output are

passed to a recursive identifier which identifies a linear model of the plant.

The linear model parameters are passed to a regulator design block. Here the

regulator parameters are calculated and passed to the regulator. With a

discrete-time adaptive controller, the whole process may be updated with each

time sample. Indirect adaptive controllers are also termed self-tuning adaptive

controllers [53].

Figure (5.1) Configuration of direct model reference adaptive control
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Figure (5.2) Configuration of indirect model reference adaptive control

5.4 model reference adaptive control

The basic MRAC system consists of four main components:

i) Plant to be controlled

ii) Reference model to generate desired closed loop output response

iii) Controller that is time-varying and whose coefficients are adjusted by

adaptive mechanism

iv) Adaptive mechanism that uses ‘error’ (the difference between the plant

and the desired model output) to produce controller coefficient Regardless of

the actual process parameters, adaptation in MRAC takes the form of

adjustment of some or all of the controller coefficients so as to force the

response of the resulting closed-loop control system to that of the reference

model. Therefore, the actual parameter values of the controlled system do not

really matter. Two types of MRAC design methods will be discussed in this

thesis. They are ( i) Gradient Method/ MIT Rule.
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ii) Lyapunov Method.

5.5 MRAC Design Using Gradient Method/MIT Rule

The Gradient Method of designing an MRAC controller is also known as the

MIT Rule as it was first developed at the Massachusetts Institute of

Technology (MIT), USA. This is the original method developed for adaptive

control design before other methods were introduced to overcome some of its

weaknesses. However, the Gradient method is relatively simple and easy to

use. In designing the MRAC controller, we would like the output of the

closed-loop system )(ty to follow the output of the reference model )(tym .

Therefore, we aim to

minimize the error ( myye  ) by designing a controller that has one or more

adjustable parameters such that a certain cost function is minimized.

Controller Design Method

Consider a closed-loop system with a controller that has only one adjustable

parameter, θ Let

)(tr = Reference input signal

)(tu = Control signal

)(ty = Plant output, )(tym = Reference model output

)()()( tytyte m

The control objective is to adjust the controller parameter θ, so that )(te is

minimized. To do this, a cost function, J(θ) is chosen and minimized.

Possibility 1:

Adjust θ such that the cost function

2

2

1
)( eJ  (5.2 )

is minimized. To do this, we need,
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







J

dt

d
(5.3)

i.e. θ is changed in the direction of negative gradient of J, where the negative

sign implies that θ is changed such that J becomes small. From (5.1),

(5.4)


 e

is called the ‘sensitivity derivative’, which indicates how the error is

influenced

Possibility 2:

Adjust θ such that the cost function ed )( is minimized. We then have,

(5.5)

Where )sin(e {+1  if e ≥ 0,-1 if e

< 0

5.6 Design of model reference adaptive control based on

MIT

Consider first order differential equation transfer function

)()(
)(

)(
)( tbutay

dt

dy

su

sy
sG  (5.6)

And Plant model:

)()(
)(

)(
)( trbtay

dt

dy

sr

sy
sG m

mm
m  (5.7)

Where y is the system output, u is the control input and parameter a is

unknown and time-varying. The system is controlled by a proportional

controller

Controller:

(5. 8)
















e

e
e

eJ

dt

d

)()()( 21 tytrtu  

)sin( e
e

e

eJj

dt

d























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(5.9)
m

m
m

mm
m as

b
trbtay

dt

dy
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sy
sG


 )()(

)(

)(
)(

as

b
tbutay

dt

dy

su

sy
sG


 )()(

)(

)(
)( (5.10)

But a ,b unknown and To do this, a cost function, J(θ) is chosen and

minimized which is given by equation Cost function:

e
J

eJ 






 2

2

1
)(

(5.11)

We aim to find the adjustable parameter 1 and 2 which can be found

from Equation (5.2)

)sin(/ e
e

e

eJ
J

dt

d















 (5.12)

To find
dt

d 
we need to find


 e

the expression of e in terms of 

r
as

b
u

as

b
yye

m

m
m 




 (5.13)

Note that ))()(( 21 tytr
as

b
u
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b
y  







r
bas

b
y 1

2




 (5. 14)
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m
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



 1

2


 (5.15)

r
bas

be

21  





(5.16)

r
bas

be
2

2

1
2

2 )( 


 





(5.17)

)( 22  bas

bye







(5.18)
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
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



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 (5.20)

However, a and b are unknown. Also, both
dt

d 1
and

dt

d 2
are a function of

  , which we need for adaptation. In this case we need to do some

approximation: Assume that the input and output relation of the system and

the model are the same i.e. perfect model following,

myy 

And so e in (5.15) tends to  zero at steady state. We then have,

r
as

b
r

bas

b

m

m




 1
2


 (5.21)

If we approximate masbas  2 and rbrb m1
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 (5.22)
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5.7 MRAC Design using Lyapunov Method

The model reference adaptive controller designed using the Gradient

method/MIT rule has been described. It has also been shown that the method

does not guarantee stability to the resulting closed-loop system. However,

MRAC can also be designed such that the globally asymptotic stability of the

equilibrium point of the error difference equation is guaranteed. To do this,

we use the Lyapunov method (Popov, 1973). The first requires an appropriate

Lyapunov function to be chosen, which could be difficult, whereas the second

method is more systematic. This section looks at the MRAC system designed

using the Lyapunov Method.
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Controller Design Method

It has been seen in Section (5.5) that there is no guarantee that an adaptive

controller designed based on MIT Rule will give a stable adaptive system. On

the other hand, designing an MRAC using Lyapunov Method will ensure a

stable closed loop system. In designing an MRAC using Lyapunov Method,

the following steps should be Followed

i) Derive a differential equation for error, myye  (i.e.  ee, ) that contains

the adjustable parameter, θ.

ii) Find a suitable Lyapunov function, ),( ev  usually in a quadratic form (to

ensure positive definiteness).

iii) Derive an adaptation mechanism based on ),( ev  such that e goes to zero.

5.7.1 Lyapunov Method

Consider an adaptive control system with the following plant, reference

model and controller:

Plant model:

)()( tbutay
dt

dy
 (5.24)

Reference model:

)()( trbtay
dt

dy
m

m  (5.25)

Controller:

)()()( 21 tytrtu   (5.26)

It follows from equation (5.1) and (5.3), that

r
bas

b
y 1

2




 (5.27)

(5.28)

Step 1: Derive differential equation for e that contains

r
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b
y

m

m
m 


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  myye (5.29)

rbybay 12)(  
(5.30)

rbybay 12)(  
(5.31)

rbyay mmm 1
(5.32)

rbyay mmm 1
(5.33)

  yye

rbyarbyba mm 112 )(   (5.34)

bmryarbybay mm  12  (5.35)

bmreyarbybay m  )(12  (5.36)

rbbyabaea mmm )()( 12   (5.37)
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b

b
by
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ea mm

m ][][ 12 


  (5.38)

brXbyXeam ][][ 21  (5.39)

Step 2: Find the suitable Lyapunov function (usually in quadratic form) ,The

Lyapunov function, ),,( 21 XXeV is chosen based on (5.39). Let

(5.40)

2
2

2
11

2
21 ),,( XXeaXXeV m   (5.41)

Where 1,2 > 0 so that V is positive definite
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dt
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
(5.42)

  222111 222 XXXXeeaV m  (5.43)

  22211121 22][2 XXXXbrXbyXeaeaV mm  (5.44)

  22211121
22 22222 XXXXbreXabyeXaaeV mmm  (5.45)

For stability 0V

YZZY   0

Therefore ,we can take Z=0

02222 22211121   XXXXbreXabyeXa mm  (5.46)

For expression

 


 22121121 ][,][  X
b

b
XX

b

aa
X mm

02222 22211121    XXbreXabyeXa mm (5.47)

Derive an adaptation mechanism (for 1 and 2 )

0][2][2 122211    breaXbyeaX mm (5.48)

This is possible if

021  byeam (5.49)

012  brea m (5.50)

1
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1
2 


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
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byea mm 




(5.52)
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


(5.53)

6.8 Full-State Measurement

Let us now consider the nth order plant

nRxBuAxx  , (5.54)

where
qnnn RBRA   , are unknown constant matrices and (A,B) is

controllable. The control objective is to choose the input vector q
m Ru  such

that all signals in the closed-loop plant are bounded and the plant state x

follows the state n
m Rx  of a reference model specified by the LTI system

n
mmmm RxuBxAx  , (5.55)

where m
nn

m xRA  is a stable matrix, qqn
m RrRB   , is a bounded

reference input vector. The reference model and input r are chosen so that

)(txm represents a desired trajectory that x has to follow. Control Law If the

matrices A;B were known, we could apply the control Law

rLxKu   (5.56)

and obtain the closed-loop plant

rBLxBKAx   )( (5.57)

Hence, if
qqRK   and

qqRL   are chosen to satisfy the algebraic

equations

mm BBLABKA   , (5.58)

then the transfer matrix of the closed-loop plant is the same as that of the

reference model and ),()( txtx m exponentially fast for any bounded reference

input signal r(t). We should note that given the matrices
 LnoKBABA mm ,,,,,

may exist to satisfy the matching condition (5.57) indicating that the control

law (5.56) may not have enough structural flexibility to meet the control
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objective. In some cases, if the structure of A,B is known, mA , mB may be

designed so that (5.57) has a solution for  LK , Let us assume that  LK , in

(5.57) exist, i.e., that there is sufficient structural flexibility to meet the

control objective, and propose the control law

rtLxtKu )()( 

where K(t);L(t) are the estimates of  LK , respectively, to be generated by an

appropriate adaptive law. Adaptive Law By adding and subtracting the

desired input term, namely, )( rLxKB   ,in the plant equation and using

(5.57), we obtain

)( uLxKBrBxAx mmmm  
(5.59)

)
~

(   rLxKBrBeAe mm


(5.60)

This also depends on the unknown matrix B. In the scalar case we manage to

get away with the unknown B by assuming that its sign is known. Let us

assume that L is either positive definite or negative define and )sin(1 lL 

where l = 1 if L is positive definite and L = -1 if L is negative definite. Then

1,  LBB m and (5:60) becomes

)
~

(, 1   rLxKLBrBeAe mmm


(5.61)

We propose the following Lyapunov function candidate

]
~~~~

[)
~

,
~

,( LLKKtrrBPeeeLKeV TT
m

T 
(5.62)

Where 0TPP  satisfies the lyapunov equation

QPAPA T
mm  (5.63)

For some 0TQQ  then

]
~~~~

[2]
~~

[2 1   LLKKtrrLxKLPBeQeeV TT
m

TT
(5.64)

Now

)sin(]
~

[)sin(]
~

[
~

2 1 lPeBKtrlPeBKxtrxKLPBe m
TT

m
TT

m
T  (5.65)
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)sin(]
~

[
~1 lPerBLtrrLLPBe T

m
TT

m
T 

There for

)sin(
~

),sin( lPerBLLlPexBKK T
m

TT
m

T   (5.66)

We have

QeeV T (5.67)
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CHAPTER SEX

RESULTS AND DISCUSSION

6.1 Introduction

This chapter presents the simulation results for the single machine connected

to the infinite bus system. The PSS design based on model reference adaptive

control using lyapunov and gradient method. The performance of the PSSs is

accessed via the modal analysis stated in chapter three and validated using

time domain simulations. The effectiveness of the resulting PSSs to damp the

low frequency oscillations is tested under various operating conditions. The

results are validated through simulations of the system’s response for three

different operating conditions. The comparison is carried out between the

system equipped with CPSS and adaptive PSS.

6.2 Adaptive Power System Stabilizer

Following the application of adaptive control to tune the PSS, the Simulink

diagram shown in Figure (6.1)obtain implementation of adaptive power

system  stabilizer in single machine finite bus and Figure (6.2) show time

response  of  speed deviation of generator in case of normal load with

conventional  and adaptive PSS. The adaptive PSS that would give the best

damping for the most dominant poles of the system.

Figure (6.1) Simulink model of APSS in SMIB



77

Figure (6.2) Rotor Speed deviation with APSS

6.3 Effect of Conventional PSS on Different Operation

points

The figure (6.3) shows speed deviation response in different operation points,

normal load , heavy load and light load. It's clear from the figure the classic

power system stabilizer cannot damp out power system oscillation in different

operation points.

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

time

s
ig

n
a

l 
v
a

lu
e

without pss

with classic pss

with adaptive pss



78

Figure (6.3) Speed deviation response in different operation points

6.4 Effect of adaptive PSS on different operation points

The figure (6.4) shows speed deviation response in different operation point,

normal load ,heavy load and light load. It's clear from the figure the adaptive

power system stabilizer damp out most of oscillation in different operation

points. It's better than conventional power system stabilizer.
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Figure (6.4) Speed deviation response in different operation in case of
adaptive PSS

6.5 Model Reference Adaptive Control Design Based on
Gradient Method

The Model reference Adaptive Control Scheme is applied to plan describe in

equation ( 5.6) by using MIT. The models are simulated in Matlab which are

shown in Figure (6.5) and Figure (6.6) shows simulation diagram.

Figure (6.5) model reference tracking based on MIT rules
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Figure (6.6) Simulink diagram based on MIT rules

6.6 Comparative of Convergence of Theta based on MIT
and lyapunov

Figures (6.8),(6.8),(6.9) and (6.10) compares the time responses of same plant

controlled by MIT and Lyapunov rules for the same adaptation gain. The

characteristics show that there is midrate difference in responses for both the

models, though the complicacy is reduced to large extent in Lyapunov rule.

Figure (6.7) and (6.8) shows the variation of θ1 and θ2 with respect to time

for MIT rule. It can be observed that controller parameter 1 (θ1) converges to

1.5 and controller parameter 2 (θ2) converges to -0.31. Similarly fig (6.9) and

(6.10) shows the variation of θ1 and θ2 with respect to time for Lyapunov

rule. Here θ1 converges to 0.9 and θ2 converges to -0.55.There is difference

in convergence, though it is faster with Lyapunov rule.
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Figure (6.7) shows time response of  theta 1 based on MIT rules

Figure (6.8)Time response of  theta 2 based on MIT rule

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time  (second )

T
h

e
ta

1

0 5 10 15 20 25
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

time (second)










82

Figure(6.9) Time response of  theta1 based on lyapunovmethod

Figure(6.10)Time response of  theta2 based on lyapunov rule
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6.7 Model reference based on lyapunov method

The Model reference Adaptive Control Scheme is applied to plan describe in

equation(5.24) by using lyapunov method. The models are simulated in

Matlab which are shown in figure (6.11) and fig(6.12) show simulation

diagram .

Figure (6.12) Shows Simulink diagram of system designed based on lyapunov
method

Figure (6.11) Model reference based on lyapunov method
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6.8 Effect of adaptation Gain on Model Tracking In case
of Gradient and lyapunov Method

Figure (6.13) and figure (6.14) show the effect of adaptation gain on time

response curves for MIT rule and Lyapunov rule respectively. There is

improvement in the performance of the system with the increment in

adaptation gain. Every system gives its best for the limited range of the

adaptation gain. In this design the range of adaptation gain is chosen from 0.2

to 5 for the system under consideration. Beyond this range the system

performance is going to high oscillatory. It has been seen that the response is

very slow with the bigger value of adaptation gain.

Figure (6.13) Effect of adaptation gain on model tracking In case of gradient
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Figure (6.14) Effect of adaptation gain on model tracking In case of lyapunov
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CHAPTER SEVEN

CONCLUSION AND FUTURE WORK

7.1 Conclusion

We discussed power system stability, oscillation modes, mechanisms and

analysis methods to understand electromechanical oscillations phenomena.

We presented thesis motivations, and contribution of work. The design of

Power System Stabilizer (PSS) involves a deep understanding of the

dynamics model of the single machine infinite bus system and multi machine

power system. Design conventional Power System Stabilizer using linear

control principles and view the problem as a feedback control problem

concerned in fixed gain.

Next introduced adaptive control to design power system stabilizer by MIT

rule and lyapunov method, in two cases scalar and vectors. Finally evaluated

performance of  controller which designed by MIT rules and Lyapunov

methods by time domain simulation  in SMIB with different loading

conditions, normal, heavy and light load.

7.2 Future Work

The results of this thesis open some interesting and challenging problems of
great importance. In what follows, we point out of possible future research

 Use Model free Adaptive control (MFAC) for same work the model

reference adaptive control has some disadvantage it takes some time to

adapt desired performance of model reference.

 For more accuracy of model reference combine adaptive fuzzy or

adaptive neural for same work.

 combine power system stabilizer with UPFC or FACT devises to more

damp for same work

 Applied adaptive power stabilizer to multi machine power system.
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APPENDIX (A)

The appendix (A) obtain the eigenvalues, damping ratio and frequency

oscillations when applied PSS to single machine connected in finite bus and

multi machine example three machine nine bus system at different scenarios'

Table (A.1) Eigenvalues of System In case of Normal load

The eigenvalues of System Without any controller in case of Normal load

Eigen values Fn(Hz) Zeta
-.2522 + 6.3580i 1.0127 1.0000
-0.2522 - 6.3580i 0.5937 0.0396

-0.1783 0.0284 1.0000

-3.7305 1.0127 0.0396

The eigenvalues of System With included AVR

Eig Fn(Hz) Zeta
-18.8952 3.0073 1.0000
-0.1640 + 6.3555i 1.0118 0.0258

-0.1640 - 6.3555i 1.0118 0.0258

-1.3292 0.2115 1.0000

-3.8607 0.6145 1.0000

The Eigen values of System With included AVR+PSS

eig Fn(Hz) Zet
a

-27.8615 4.4343 1.0000

-6.4694 + 8.7779i 1.7355 0.5933

-6.4694 - 8.7779i 1.7355 0.5933

-2.8930 + 6.0794i 1.0715 0.4297
-2.8930 - 6.0794i 1.0715 0.4297
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-3.8707 0.6160 1.0000
-1.2401 0.1974 1.0000

-0.1012 0.0161 1.0000

Table (A.2) Eigenvalues of System In case of heavy load

The eigenvalues of System Without any Controllerin case heavy load
Eig Fn(Hz) Zeta
-0.1781 + 8.4194i 1.3403 0.0211
-0.1781 - 8.4194i 1.3403 0.0211
-0.2263 0.0360 1.0000
-3.8307 0.6097 1.0000

The eigenvalues of System With included AVR
Eig Fn(Hz) Zeta
-18.8258 2.9962 1.0000
-0.1213 + 8.4051i 1.3379 0.0144
-0.1213 - 8.4051i 1.3379 0.0144
-1.4690 0.2338 1.0000
-3.8757 0.6168 1.0000

The eigenvalues of System With included AVR+PSS
Eig Fn(Hz) Zeta
-27.5475 4.3843 1.0000
-2.6503 + 9.8039i 1.6163 0.2610
-2.6503 - 9.8039i 1.6163 0.2610
-6.7727 + 6.5933i 1.5043 0.7165
-6.7727 - 6.5933i 1.5043 0.7165
-3.8821 0.6179 1.0000
-1.4221 0.2263 1.0000
-0.1006 0.0160 1.0000



95

Table (A.3) Eigenvalues of System case of light load

The eigenvalues of System Without any Controller in case of light load
Eig Fn(Hz) Zeta
-0.5480 + 6.2334i 0.9959 0.0876
-0.5480 - 6.2334i 0.9959 0.0876
-0.2238 0.0356 1.0000
-3.0934 0.4923 1.0000

The eigenvalues of System With included AVR
Eig Fn(Hz) Zeta
-18.8667 3.0027 1.0000
-0.5181 + 6.2403i 0.9966 0.0827
-0.5181 - 6.2403i 0.9966 0.0827
-1.2711 0.2023 1.0000
-3.2391 0.5155 1.0000

The eigenvalues of System With included AVR+PSS
Eig Fn(Hz) Zeta
-26.2055 4.1707 1.0000
-8.3084 + 7.0857i 1.7379 0.7609
-8.3084 - 7.0857i 1.7379 0.7609
-2.2215 + 6.4503i 1.0858 0.3256
-2.2215 - 6.4503i 1.0858 0.3256
-3.2413 0.5159 1.0000
-1.1906 0.1895 1.0000
-0.1010 0.0161 1.0000
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Table (A.4) Eigenvalues of System in case of leading power factor load.

The eigenvalues of System Without any ControllerLeading power factor
Eig Fn(Hz) Zeta

0.0649 0.0103 -1.0000
-0.1733 + 3.8571i 0.6145 0.0449
-0.1733 - 3.8571i 0.6145 0.0449
-4.1313 0.6575 1.0000

The eigenvalues of System With included AVR
EigFn(Hz)                Zeta

-18.9791 3.0206 1.0000
0.2827 + 3.8814i 0.6194 -0.0726
0.2827 - 3.8814i 0.6194 -0.0726
-1.9032 0.3029 1.0000
-4.0962 0.6519 1.0000

The eigenvalues of System With included AVR+PSS
EigFn(Hz) Zeta
-28.7768 4.5800 1.0000
-7.0721 +10.1977i 1.9751 0.5699
-7.0721 -10.1977i 1.9751 0.5699
-1.4662 + 3.2730i 0.5708 0.4088
-1.4662 - 3.2730i 0.5708 0.4088
-4.1011 0.6527 1.0000
-1.7411 0.2771 1.0000
-0.1025 0.0163 1.0000
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Table (A.5) Power flow and voltages in case of in normal load

Bus V phase P gen Q gen P load Q load
[p.u.] [rad] [p.u.] [p.u.] [p.u.] [p.u.]

Bus 1 1.04 0 0.36725 0.11017 0 0
Bus 2 1.025 0.20499 1.63 -0.0427 0 0
Bus 3 1.025 0.11956 0.85 -0.19705 0 0
Bus 4 1.0341 -0.01967 0 0 0 0
Bus 5 1.0142 -0.0285 0 0 1 0.35
Bus 6 1.0256 -0.03889 0 0 0.9 0.2
Bus 7 1.0324 0.10857 0 0 0 0
Bus 8 1.0247 0.05844 0 0 0.9 0.3
Bus 9 1.0374 0.0727 0 0 0 0

Table (A.6) Eigen value and frequency oscillation in case of normal load

Eigevalue Most Associated States Real part Imag.
Part

Pseudo-
Freq.

Frequency

Eig As # 1 vm_Exc_1 -1000 0 0 0
Eig As # 2 vm_Exc_1 -1000 0 0 0
Eig As # 3 vm_Exc_3 -1000 0 0 0
Eig As # 4 omega_Syn_3, delta_Syn_3 -0.62989 11.6791 1.8588 1.8615
Eig As # 5 omega_Syn_3, delta_Syn_3 -0.62989 -11.6791 1.8588 1.8615
Eig As # 6 omega_Syn_2, delta_Syn_2 -0.14679 7.5514 1.2018 1.2021
Eig As # 7 omega_Syn_2, delta_Syn_2 -0.14679 -7.5514 1.2018 1.2021
Eig As # 8 vr1_Exc_2, vf_Exc_2 -5.4663 7.9496 1.2652 1.5355
Eig As # 9 vr1_Exc_2, vf_Exc_2 -5.4663 -7.9496 1.2652 1.5355
Eig As #10 vr1_Exc_1, vf_Exc_1 -5.2251 7.8402 1.2478 1.4995
Eig As #11 vr1_Exc_1, vf_Exc_1 -5.2251 -7.8402 1.2478 1.4995
Eig As #12 vr1_Exc_3, vf_Exc_3 -5.319 7.9288 1.2619 1.5196
Eig As #13 vr1_Exc_3, vf_Exc_3 -5.319 -7.9288 1.2619 1.5196
Eig As #14 e1d_Syn_3 -5.3256 0 0 0
Eig As #15 e1d_Syn_2 -3.5386 0 0 0
Eig As #16 e1q_Syn_1, vr2_Exc_1 -0.46492 1.1069 0.17617 0.19108
Eig As #17 e1q_Syn_1, vr2_Exc_1 -0.46492 -1.1069 0.17617 0.19108
Eig As
#18

e1q_Syn_2, e1q_Syn_1 -0.43485 0.72504 0.11539 0.13456

Eig As
#19

e1q_Syn_2, e1q_Syn_1 -0.43485 -0.72504 0.11539 0.13456

Eig As
#20

e1q_Syn_3, vr2_Exc_3 -0.40349 0.47317 0.07531 0.09897

Eig As
#21

e1q_Syn_3, vr2_Exc_3 -0.40349 -0.47317 0.07531 0.09897

Eig As
#22

delta_Syn_1 0 0 0 0

Eig As
#23

omega_Syn_1 0 0 0 0

Eig As
#24

e1d_Syn_1 -3.2258 0 0 0
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Table (A.7) Participation factor of all state in case of normal load

delta_Syn_
1

omega_Syn_
1

e1q_Syn_1 e1d_Syn_1 delta_Syn_2

Eig As # 1 0 0 0 0 0
Eig As # 2 0 0 0 0 0
Eig As # 3 0 0 0 0 0
Eig As # 4 0.00417 0.00417 0 0 0.08722
Eig As # 5 0.00417 0.00417 0 0 0.08722
Eig As # 6 0.14087 0.14087 0.00023 0 0.29858
Eig As # 7 0.14087 0.14087 0.00023 0 0.29858
Eig As # 8 0.00017 0.00017 0.00012 0 0.00104
Eig As # 9 0.00017 0.00017 0.00012 0 0.00104
Eig As #10 0.00017 0.00017 0.01732 0 0.00026
Eig As #11 0.00017 0.00017 0.01732 0 0.00026
Eig As #12 0.00017 0.00017 0.00056 0 7e-005
Eig As #13 0.00017 0.00017 0.00056 0 7e-005
Eig As #14 5e-005 5e-005 0 0 0.00581
Eig As #15 0.01902 0.01902 0.00058 0 0.00925
Eig As #16 0.01103 0.01103 0.25718 0 0.00743
Eig As #17 0.01103 0.01103 0.25718 0 0.00743
Eig As #18 0.00536 0.00536 0.21137 0 0.00371
Eig As #19 0.00536 0.00536 0.21137 0 0.00371
Eig As #20 0.00011 0.00011 0.00248 0 0.00227
Eig As #21 0.00011 0.00011 0.00248 0 0.00227
Eig As #22 0.34796 0.34796 0 0 0.1036
Eig As #23 0.34796 0.34796 0 0 0.1036
Eig As #24 0 0 0 1 0
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continue

e1q_Syn_3 e1d_Syn_3 vm_Exc_1 vr1_Exc_1 vr2_Exc_1
Eig As # 1 0 0 0.50254 0 0
Eig As # 2 0 0 0.49223 0 0
Eig As # 3 0 0 0.00523 0 0
Eig As # 4 0.01513 0.02405 0 0 0
Eig As # 5 0.01513 0.02405 0 0 0
Eig As # 6 0.00272 0.00134 0 0.00017 5e-005
Eig As # 7 0.00272 0.00134 0 0.00017 5e-005
Eig As # 8 0.00054 0.00041 0 0.00425 0.00121
Eig As # 9 0.00054 0.00041 0 0.00425 0.00121
Eig As #10 0.00201 0.00044 0.00016 0.38354 0.11619
Eig As #11 0.00201 0.00044 0.00016 0.38354 0.11619
Eig As #12 0.01008 0.00288 1e-005 0.0364 0.01059
Eig As #13 0.01008 0.00288 1e-005 0.0364 0.01059
Eig As #14 0.01297 0.47689 0 0 0
Eig As #15 0.00429 0.4446 1e-005 0 0.00863
Eig As #16 0.07278 0.00416 0.0003 0.02554 0.19461
Eig As #17 0.07278 0.00416 0.0003 0.02554 0.19461
Eig As #18 0.05488 0.00471 0.00016 0.01926 0.16401
Eig As #19 0.05488 0.00471 0.00016 0.01926 0.16401
Eig As #20 0.33438 0.03586 0 0.00022 0.00192
Eig As #21 0.33438 0.03586 0 0.00022 0.00192
Eig As #22 0 0 0 0 0
Eig As #23 0 0 0 0 0
Eig As #24 0 0 0 0 0

omega_S
yn_2

e1q_Syn_
2

e1d_Syn_2 delta_Sy
n_3

omega_Syn_3

Eig As # 1 0 0 0 0 0
Eig As # 2 0 0 0 0 0
Eig As # 3 0 0 0 0 0
Eig As # 4 0.08722 0.00519 0.00616 0.38232 0.38232
Eig As # 5 0.08722 0.00519 0.00616 0.38232 0.38232
Eig As # 6 0.29858 0.01675 0.00041 0.04766 0.04766
Eig As # 7 0.29858 0.01675 0.00041 0.04766 0.04766
Eig As # 8 0.00104 0.01263 0.00152 0.00031 0.00031
Eig As # 9 0.00104 0.01263 0.00152 0.00031 0.00031
Eig As #10 0.00026 0.0011 0.00084 0.00036 0.00036
Eig As #11 0.00026 0.0011 0.00084 0.00036 0.00036
Eig As #12 7e-005 0.00132 0.00055 0.00146 0.00146
Eig As #13 7e-005 0.00132 0.00055 0.00146 0.00146
Eig As #14 0.00581 0.00661 0.46114 0.01079 0.01079
Eig As #15 0.00925 0.00206 0.44857 0.0107 0.0107
Eig As #16 0.00743 0.14162 0.00799 0.00413 0.00413
Eig As #17 0.00743 0.14162 0.00799 0.00413 0.00413
Eig As #18 0.00371 0.2122 0.00987 0.00123 0.00123
Eig As #19 0.00371 0.2122 0.00987 0.00123 0.00123
Eig As #20 0.00227 0.12401 0.00789 0.00194 0.00194
Eig As #21 0.00227 0.12401 0.00789 0.00194 0.00194
Eig As #22 0.1036 0 0 0.04844 0.04844
Eig As #23 0.1036 0 0 0.04844 0.04844
Eig As #24 0 0 0 0 0
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Increasing load at buses 8,6,5

Table (A.8) power flow and voltages in case of increasing load

Bus V
[p.u.]

Phase
[rad]

P
[p.u.]
gen

Q
[p.u.]
gen

P
[p.u.]
load

[p.u.]   Q load

Bus 1 1.04 0 1.2305 0.78725 0 0
Bus 2 1.025 0.10746 1.63 0.32838 0 0
Bus 3 1.025 0.01651 0.85 0.22516 0 0
Bus 4 0.99873 -0.06829 0 0 0 0
Bus 5 0.95986 -0.11003 0 0 1.25 0.7

Bus 6 0.94835 -0.1297 0 0 1.3 0.8

Bus 7 1.0099 0.00888 0 0 0 0
Bus 8 0.99085 -0.05249 0 0 1.1 0.5
Bus 9 1.0133 - 0.03147 0 0 0 0

Table (A.9) Eigenvalue of state matrix and the frequency of oscillation

Eigevalue Most Associated
StatesFreq.

Real
part

Imag. Part Pseudo- Frequency

Eig As # 1 vm_Exc_1 -1000 0 0 0
Eig As # 2 vm_Exc_1 -1000 0 0 0
Eig As # 3 vm_Exc_3 -1000 0 0 0
Eig As # 4 omega_Syn_3, delta_Syn_3 -0.87026 11.4437 1.8213 1.8266
Eig As # 5 omega_Syn_3, delta_Syn_3 -0.87026 -11.4437 1.8213 1.8266
Eig As # 6 delta_Syn_2, omega_Syn_2 -0.21599 7.5571 1.2028 1.2032
Eig As # 7 delta_Syn_2, omega_Syn_2 -0.21599 -7.5571 1.2028 1.2032
Eig As # 8 vr1_Exc_2, vf_Exc_2 -5.5904 7.9572 1.2664 1.5477
Eig As # 9 vr1_Exc_2, vf_Exc_2 -5.5904 -7.9572 1.2664 1.5477

Eig As #10 vr1_Exc_1, vf_Exc_1 -5.2391 7.8091 1.2429 1.4967
Eig As #11 vr1_Exc_1, vf_Exc_1 -5.2391 -7.8091 1.2429 1.4967
Eig As #12 vr1_Exc_3, vf_Exc_3 -5.429 7.9033 1.2579 1.526
Eig As #13 vr1_Exc_3, vf_Exc_3 -5.429 -7.9033 1.2579 1.526
Eig As #14 e1d_Syn_2 -4.8535 0 0 0
Eig As #15 e1d_Syn_3 3.3167 0 0 0

Eig As #16 e1q_Syn_1, e1q_Syn_2 -0.45827 1.2809 0.20386 0.21652

Eig As #17 e1q_Syn_1, e1q_Syn_2 -0.45827 -1.2809 0.20386 0.21652
Eig As #18 e1q_Syn_1, vr2_Exc_1 -0.46288 0.76046 0.12103 0.14169

Eig As #19 e1q_Syn_1, vr2_Exc_1 -0.46288 -0.76046 0.12103 0.14169
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Table (A.10) Participation factor of all states

delta_Syn_1 omega_Syn_1 e1q_Syn_1 e1d_Syn_1 delta_Syn_2

Eig As # 1 0 0 0 0 0
Eig As # 2 0 0 0 0 0
Eig As # 3 0 0 0 0 0
Eig As # 4 0.00451 0.00451 4e-005 0 0.08469
Eig As # 5 0.00451 0.00451 4e-005 0 0.08469
Eig As # 6 0.12995 .12995 0.00011 0 0.30595
Eig As # 7 0.12995 0.12995 0.00011 0 0.30595
Eig As # 8 0.00014 0.00014 0.00023 0 0.00085
Eig As # 9 0.00014 0.00014 0.00023 0 0.00085
Eig As #10 6e-005 6e-005 0.01964 0 6e-005
Eig As #11 6e-005 6e-005 0.01964 0 6e-005
Eig As #12 0.00021 0.00021 0.00112 0 6e-005
Eig As #13 0.00021 0.00021 0.00112 0 6e-005
Eig As #14 6e-005 6e-005 4 e-005 0 0.01081

Eig As #15 0.00208 0.00208 0.00173 0 0.00146
Eig As #16 0.00037 0.00037 0.21349 0 0.00085
Eig As #17 0.00037 0.00037 0.21349 0 0.00085

Eig As #18 0.00032 0.00032 0.26906 0 0.00059
Eig As #19 0.00032 0.00032 0.26906 0 0.00059
Eig As #20 1e-005 1e-005 0.00153 0 0.0009
Eig As #21 1e-005 1e-005 0.00153 0 0.0009

Eig As #22 0.36137 0.3613 0 0 0.09391
Eig As #23 0.36137 0.36137 0 0 0.09391
Eig As #24 0 0 0 1 0

Eig As #20 e1q_Syn_3, vr2_Exc_3 -0.50137 0.56304 0.08961 0.11999

Eig As #21 e1q_Syn_3, vr2_Exc_3 -0.50137 -0.56304 0.08961 0.11999

Eig As #22 delta_Syn_1 0 0 0 0

Eig As #23 omega_Syn_1 0 0 0 0

Eig As #24 e1d_Syn_1 -3.2258 0 0 0
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Continue

delta_Syn_1 omega_Syn_1 e1q_Syn_1 e1d_Syn_1 delta_Syn_2

Eig As # 1 0 0 0 0 0
Eig As # 2 0 0 0 0 0
Eig As # 3 0 0 0 0 0
Eig As # 4 0.00451 0.00451 4e-005 0 0.08469
Eig As # 5 0.00451 0.00451 4e-005 0 0.08469
Eig As # 6 0.12995 0.12995 0.00011 0 0.30595
Eig As # 7 0.12995 0.12995 0.00011 0 0.30595
Eig As # 8 0.00014 0.00014 0.00023 0 0.00085
Eig As # 9 0.00014 0.00014 0.00023 0 0.00085
Eig As #10 6e-005 6e-005 0.01964 0 6e-005
Eig As #11 6e-005 6e-005 0.01964 0 6e-005

Eig As #12 0.00021 0.00021 0.00112 0 6e-005
Eig As #13 0.00021 0.00021 0.00112 0 6e-005
Eig As #14 6e-005 6e-005 4e-005 0 0.01081
Eig As #15 0.00208 0.00208 0.00173 0 0.00146
Eig As #16 0.00037 0.00037 0.21349 0 0.00085
Eig As #17 0.00037 0.00037 0.21349 0 0.00085
Eig As #18 0.00032 0.00032 0.26906 0 0.00059
Eig As #19 0.00032 0.00032 0.26906 0 0.00059
Eig As #20 1e-005 1e-005 0.00153 0 0.0009
Eig As #21 1e-005 1e-005 0.00153 0 0.0009
Eig As #22 0.36137 0.36137 0 0 0.09391
Eig As #23 0.36137 0.36137 0 0.09391

Eig As #24 0 0 0 1 0
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Continue

omega_Syn
_2

e1q_Syn_2 e1d_Syn_2 delta_Syn_3 omega_Syn_
3

Eig As # 1 0 0 0 0 0
Eig As # 2 0 0 0 0 0
Eig As # 3 0 0 0 0 0
Eig As # 4 0.08469 0.00505 0.007 0.3747 0.3747
Eig As # 5 0.08469 0.00505 0.007 0.3747 0.3747

Eig As # 6 0.30595 0.01194 0.01135 0.04947 0.04947

Eig As # 7 0.30595 0.01194 0.01135 .04947 0.04947

Eig As # 8 0.00085 0.01395 0.0015 0.00053 0.00053
Eig As # 9 0.00085 0.01395 0.0015 0 .00053 0  .00053
Eig As #10 6e-005 0.00217 0.00102 0.00012 0.00012
Eig As #11 6e-005 0.00217 0.00102 0.00012 0.00012
Eig As #12 6e-005 0.0036 0.00082 0.00109 0.00109

Eig As #13 6e-005 0.0036 0.00082 0.00109 0.00109
Eig As #14 0.01081 0.00821 0.54972 0.01497 0.01497
Eig As #15 0.00146 0.00032 0.35454 0.01146 0.01146
Eig As #16 0.00085 0.15846 0.01148 0.00057 0.00057
Eig As #17 0.00085 0.15846 0.01148 0.00057 0.00057
Eig As #18 0.00059 0.15037 0.00779 0.0002 0.0002

Eig As #19 0.00059 0.15037 0.00779 0.0002 0.00
02

Eig As #20 0.0009 0.17657 0.01241 0.00133 0.00133

Eig As #21 0.0009 0.17657 0.01241 0.00133 0.00133

Eig As #22 0.09391 0 0 0.04472 0.04472

Eig As #23 0.09391 0 0 0.04472 0.04472

Eig As #24 0 0 0 0 0
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Continue

e1q_Syn_3 e1d_Syn_3 vm_Exc_1 vr1_Exc_1 vr2_Exc_1

Eig As # 1 0 0 0.33795 0 0
Eig As # 2 0 0 0.65728 0 0

Eig As # 3 0 0 0.00477 0 0
Eig As # 4 0.00835 0.04948 0 3e-005 0
Eig As # 5 0.00835 0.04948 0 3e-005 0
Eig As # 6 0.00124 0.00194 0 5e-005 2e-005
Eig As # 7 0.00124 0.00194 0 5e-005 2e-005
Eig As # 8 0.00109 0.00055 0 0.0045 0.00126
Eig As # 9 0.00109 0.00055 0 0.0045 0.00126
Eig As #10 0.00338 0.00035 0.00018 0.37393 0.11451
Eig As #11 0.00338 0.00035 0.00018 0.37393 0.11451
Eig As #12 0.01422 0.00214 1e-005 0 .04438 0.0129
Eig As #13 0.01422 0.00214 1e-005 0.04438 0.0129
Eig As #14 0.01673 0.36374 0 0 0.00013
Eig As #15 0.00334 0.57784 1e-005 0 0.01227
Eig As #16 0.1185 0.00511 0.00029 0.0228 0.1575
Eig As #17 0.1185 0.00511 0.00029 0.0228 0.1575
Eig As #18 0.06743 0.00595 0.00022 0.02476 0.21204
Eig As #19 0.06743 0.00595 0.00022 0.02476 0.21204
Eig As #20 0.28437 0.03073 0 0.00014 0.0013
Eig As #21 0.28437 0.03073 0 0.00014 0.0013
Eig As #22 0 0 0 0 0
Eig As #23 0 0 0 0

Eig As #24 0 0 0 0 0
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Three short circuit in bus5 but without power system stabilizer

Table (A.11) Power flow and voltages in case of short circuit

Bus V phase P  gen Q gen P load Q load
[p.u.] [rad] [ p.u.] [p.u.] p.u.] [p.u.]

Bus 1 1.04 0 0.71548 0.17938 0 0
Bus 2 1.025 0.16152 1.63 0.0116 0 0
Bus 3 1.025 0.0818 0.85 0.13519 0 0
Bus 4 1.0308 0.03845 0 0 0 0
Bus 5 1.009 -0.06963 0 0 1.25 0.35
Bus 6 1.0166 0.06377 0 0 0.9 0.3
Bus 7 1.0291 0.06479 0 0 0 0
Bus 8 1.0185 0.01302 0 0 1 0.35
Bus 9 1.0339 0.03478 0 0              0 0

Table (A.12) Eigenvalue of state matrix and the frequency oscillations

Eigevalue      Most Associated States Real part Imag. Part Pseudo-Freq. Frequency
Eig As # 1 vm_Exc_1 -1000 0 0 0
Eig As # 2 vm_Exc_1 -1000 0 0 0
Eig As # 3 vm_Exc_3 -1000 0 0 0
Eig As # 4 delta_Syn_3, omega_Syn_3 -0.66944 11.6428 1.853 1.8561

Eig As # 5 delta_Syn_3, omega_Syn_3 -0.66944 -11.6428 1.853 1.8561
Eig As # 6 delta_Syn_2, omega_Syn_2 -0.14765 7.5803 1.2064 1.2067
Eig As # 7 delta_Syn_2, omega_Syn_2 -0.14765 -7.5803 1.2064 1.2067
Eig As # 8 vr1_Exc_2, vf_Exc_2 -5.4817 7.9494 1.2652 1.5368
Eig As # 9 vr1_Exc_2, vf_Exc_2 -5.4817 -7.9494 1.2652 1.5368
Eig As #10 vr1_Exc_1, vf_Exc_1 -5.2297 7.8416 1.248 1.5001
Eig As #11 vr1_Exc_1, vf_Exc_1 -5.2297 -7.8416 1.248 1.5001
Eig As #12 vr1_Exc_3, vf_Exc_3 -5.3286 7.927 1.2616 1.5202
Eig As #13 vr1_Exc_3, vf_Exc_3 -5.3286 -7.927 1.261

6
1.5202

Eig As #14 e1d_Syn_2 5.2439 0 0 0
Eig As #15 e1d_Syn_3 -3.5526 0 0 0
Eig As #16 e1q_Syn_1, vr2_Exc_1 -0.47219 1.0899 0.17347 0.18905
Eig As #17 e1q_Syn_1, vr2_Exc_1 -0.47219 -1.0899 0.17347 0.18905
Eig As #18 e1q_Syn_1, e1q_Syn_2 -0.44056 0.72956 0.11611 0.13564
Eig As #19 e1q_Syn_1, e1q_Syn_2 -0.44056 -0.72956 0.11611 0.13564

Eig As #20 e1q_Syn_3, vr2_Exc_3 -0.4174 0.48718 0.07754 0.1021
Eig As #21 e1q_Syn_3, vr2_Exc_3 -0.4174 -0.48718 0.07754 0.1021

Eig As #22 omega_Syn_1 0 0 0 0

Eig As #23 delta_Syn_1 0 0 0

Eig As #24 e1d_Syn_1 3.2258 0 0 0
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Table (A.13) Participation factor of all states

delta_Syn_1 omega_Syn_1 e1q_Syn_1 e1d_Syn_1 delta_Syn_2

Eig As # 1 0 0 0 0 0
Eig As # 2 0 0 0 0 0
Eig As # 3 0 0 0 0 0
Eig As # 4 0.00418 0.00418 0 0 0.08623

Eig As # 5 0.00418 0.00418 0 0 0.08623

Eig As # 6 0.13939 0.13939 0.0001 0 0.30087
Eig As # 7 0.13939 0.13939 0.0001 0 0.30087
Eig As # 8 0.00016 0.00016 0.00013 0 0.00098
Eig As # 9 0.00016 0.00016 0.00013 0 0.00098
Eig As #10 0.00013 0.00013 0.01723 0 0.00016
Eig As #11 0.00013 0.00013 0.01723 0 0.00016
Eig As #12 0.00016 0.00016 0.00053 0 6e-005
Eig As #13 0.00016 0.00016 0.00053 0 6e-005
Eig As #14 0.00012 0.00012 0 0 0.00573
Eig As #15 0.02326 0.02326 0.00036 0 0.01107
Eig As #16 0.01382 0.01382 0.25305 0 0.00849
Eig As #17 0.01382 0.01382 0.25305 0 0.00849

Eig As #18 0.006 0.006 0.21306 0 0.00417
Eig As #19 0.006 0.006 0.21306 0 0.00417
Eig As #20 0.00014 0.00014 0.00223 0 0.00218

Eig As #21 0.00014 0.00014 0.00223 0 0.00218
Eig As #22 0.34693 0.34693 0 0 0.10454

Eig As #23 0.34693 0.34693 0 0 0.10454

Eig As #24 0 0 0 1 0
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Continue

Omega_Syn_2 delta_Syn_3 omega_Syn_3 e1q_Syn_2 e1d_Syn_2

Eig As # 1 0 0 0 0 0
Eig As # 2 0 0 0 0 0

Eig As # 3 0 0 0 0 0
Eig As # 4 0.08623 0.00499 0.00661 0.38169 0.38169
Eig As # 5 0.08623 0.00499 0.00661 0.38169 0.38169
Eig As # 6 0.30087 0.01615 0.00099 0.04757 0.04757
Eig As # 7 0.30087 0.01615 0.00099 0.04757 0.04757
Eig As # 8 0.00098 0.01292 0.00152 0.00033 0.00033
Eig As # 9 0.00098 0.01292 0.00152 0.00033 0.00033
Eig As #10 0.00016 0.00106 0.00075 0.00029 0.00029
Eig As #11 0.00016 0.00106 0.00075 0.00029 0.00029
Eig As #12 6e-005 0.00136 0.00056 0.00147 0.00147
Eig As #13 6e-005 0.00136 0.00056 0.00147 0.00147
Eig As #14 0.00573 0.00708 0.47607 0.0126 0.0126
Eig As #15 0.01107 0.00194 0.42317 0.01234 0.01234
Eig As #16 0.00849 0.13996 0.00666 0.00553 0.00553
Eig As #17 0.00849 0.13996 0.00666 0.00553 0.00553
Eig As #18 0.00417 0.20613 0.00985 0.00145 0.00145
Eig As #19 0.00417 0.20613 0.00985 0.00145 0.00145
Eig As #20 0.00218 0.1292 0.00845 0.00194 0.00194
Eig As #21 0.00218 0.1292 0.00845 0.00194 0.00194
Eig As #22 0.10454 0 0 0.04853 0.04853

Eig As #23 0.10454 0 0 0.04853 0.04853

Eig As #24 0 0 0 0 0
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Continue

e1q_Syn_3 e1d_Syn_3 vm_Exc_1 vr1_Exc_1 vr2_Exc_1

Eig As # 1 0 0 0.46326 0 0
Eig As # 2 0 0 0.53211 0 0
Eig As # 3 0 0 0.00463 0 0
Eig As # 4 0.01422 0.02788 0 0 0
Eig As # 5 0.01422 0.02788 0 0 0
Eig As # 6 0.00243 0.00145 0 7e-005 2e-005
Eig As # 7 0.00243 0.00145 0 7e-005 2e-005
Eig As # 8 0.00055 0.0004 0 0.00407 0.00116
Eig As # 9 0.00055 0.0004 0 0.00407 0.00116
Eig As #10 0.00197 0.00037 0.00016 0.38638 0.11696
Eig As #11 0.00197 0.00037 0.00016 0.38638 0.11696
Eig As #12 0.01066 0.00291 1e-005 0.03452 0.01004
Eig As #13 0.01066 0.00291 1e-005 0.0345

2
0.01004

Eig As #14 0.01386 0.4567 0 0 0
Eig As #15 0.00543 0.45484 1e-005 0 0.0074
Eig As #16 0.07449 0.00269 0.00029 0.02494 0.19252

Eig As #17 0.07449 0.00269 0.00029 0.02
494

0.19252

Eig As #18 0.05771 0.00521 0.00016 0.0194
3

0.16605

Eig As #19 0.05771 0.00521 0.00016 0.01943 0.16605

Eig As #20 0.32846 0.03658 0 0.0002 0.00176
Eig As #21 0.32846 0.03658 0 0.0002 0.00176
Eig As #22 0 0 0 0 0
Eig As #23 0 0 0 0 0
Eig As #24 0 0 0 0 0
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Case four short circuit in bus5 but with PSS

Table (A.14) Power flow and voltages in case of short circuit

Table (A.15) Eigenvalues in case of short circuit with PSS

V phase P gen Q gen P load Q load

Bus [p.u.] [rad] [p.u.] [p.u.] [p.u.] [p.u.]
Bus 1 1.04 0 0 . 71548 0.17938 0
Bus 2 1.025 0.16152 1.63 0.0116 0 0
Bus 3 1.025 0.0818 0.85 -0.13519 0 0

Bus 4 1.0308 -0.03845 0 0 0 0
Bus 5 1.009 -0.06963 0 0 1.25 0.35
Bus 6 1.0166 -0.06377 0 0 0.9 0.3
Bus 7 1.0291 0.06479 0 0 0 0
Bus 8 1.0185 0.01302 0 0 1 0.35
Bus 9 1.0339 0.03478 0 0 0 0

Eigenvalue Most Associated States Real part Imag. Part Pseudo-Freq. Frequency

Eig As # 1 vm_Exc_1 -1000 0 0 0
Eig As # 2 vm_Exc_1 -1000 0 0 0
Eig As # 3 vm_Exc_3 -1000 0 0 0
Eig As # 4 v3_Pss_2, v2_Pss_2 -50.1701 2.9273 0.46589 7.9984
Eig As # 5 v2_Pss_2, v3_Pss_2 -50.1701 -2.9273 0.46589 7.9984
Eig As # 6 v2_Pss_1, v3_Pss_1 -50.3121 4.0392 0.64286 8.0332
Eig As # 7 v3_Pss_1, v2_Pss_1 -50.3121 -4.0392 0.64286 8.0332
Eig As # 8 omega_Syn_3, delta_Syn_3 -0.69099 12.4453 1.9807 1.9838
Eig As # 9 omega_Syn_3, delta_Syn_3 -0.69099 -12.4453 1.9807 1.9838
Eig As #10 omega_Syn_2, delta_Syn_2 -0.42352 7.8534 1.2499 1.2517
Eig As #11 omega_Syn_2, delta_Syn_2 -0.42352 -7.8534 1.2499 1.2517
Eig As #12 vr1_Exc_1, vf_Exc_1 -5.2376 7.8688 1.2524 1.5044
Eig As #13 vr1_Exc_1, vf_Exc_1 -5.2376 -7.8688 1.2524 1.5044
Eig As #14 vr1_Exc_2, vf_Exc_2 -4.9566 7.8197 1.2445 1.4735
Eig As #15 vr1_Exc_2, vf_Exc_2 -4.9566 -7.8197 1.2445 1.4735
Eig As #16 vr1_Exc_3, vf_Exc_3 -5.0217 7.4718 1.1892 1.4328
Eig As #17 vr1_Exc_3, vf_Exc_3 -5.0217 -7.4718 1.1892 1.4328
Eig As #18 e1d_Syn_2 -5.2486 0 0 0
Eig As #19 e1d_Syn_3 -3.5526 0 0 0
Eig As #20 e1q_Syn_1, e1q_Syn_2 -0.42261 1.1567 0.18409 0.19599
Eig As #21 e1q_Syn_1, e1q_Syn_2 -0.42261 -1.1567 0.18409 0.19599
Eig As #22 e1q_Syn_1, vr2_Exc_1 -0.41399 0.74434 0.11847 0.13556
Eig As #23 e1q_Syn_1, vr2_Exc_1 -0.41399 -0.74434 0.11847 0.13556
Eig As #24 e1q_Syn_3, vr2_Exc_3 -0.41842 0.47462 0.07554 0.1007
Eig As #25 e1q_Syn_3, vr2_Exc_3 -0.41842 -0.47462 0.07554 0.1007
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Table (A.16) Participation factor of all states

delta_Syn_1 omega_Syn_1 e1q_Syn_1 e1d_Syn_1 delta_Syn_2

Eig As # 1 0 0 0 0 0
Eig As # 2 0 0 0 0 0
Eig As # 3 0 0 0 0 0

Eig As # 4 7e-005 7e-005 0 0 0.00043
Eig As # 5 7e-005 7e-005 0 0 0.00043
Eig As # 6 1e-005 1e-005 0 0 0.00025
Eig As # 7 1e-005 1e-005 0 0 0.00025
Eig As # 8 0.00287 0.00287 1e-005 0 0.06025
Eig As # 9 0.00287 0.00287 1e-005 0 0.06025
Eig As #10 0.10476 0.10476 4e-005 0 0.23953
Eig As #11 0.10476 0.10476 4e-005 0 0.23953
Eig As #12 0.00051 0.00051 0.01562 0 0.00078
Eig As #13 0.00051 0.00051 0.01562 0 0.00078
Eig As #14 0.00361 0.00361 0.00171 0 0.02167
Eig As #15 0.00361 0.00361 0.00171 0 0.02167
Eig As #16 0.00027 0.00027 0.0002 0 0.01667
Eig As #17 0.00027 0.00027 0.0002 0 0.01667
Eig As #18 0.00011 0.00011 0 0 0.00585
Eig As #19 0.02326 0.02326 0.00036 0 0.01104
Eig As #20 0.04413 0.04413 0.17503 0 0.02206
Eig As #21 0.04413 0.04413 0.17503 0 0.02206
Eig As #22 0.02062 0.02062 0.24727 0 0.0119
Eig As #23 0.02062 0.02062 0.24727 0 0.0119
Eig As #24 0.00241 0.00241 0.00199 0 0.01932
Eig As #25 0.00241 0.00241 0.00199 0 0.01932
Eig As #26 0.20741 0.20741 0.00361 0 0.0964

Eig As #27 0 0 0 0 0.00355

Eig As #28 0.09454 0.09454 0 0 0.22883
Eig As #29 0.09454 0.09454 0 0 0.22883
Eig As #30 0 0 0 1 0

Eig As #26 omega_Syn_1 -0.33527 0 0 0
Eig As #27 v1_Pss_1 -0.10078 0 0 0
Eig As #28 delta_Syn_2 0 0 0 0
Eig As #29 delta_Syn_2 0 0 0 0
Eig As #30 e1d_Syn_1 -3.2258 0 0 0
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continue

omega_Syn_2 e1q_Syn_2 omega_Syn_3 e1d_Syn_2 delta_Syn_3

Eig As # 1 0 0 0 0

Eig As # 2 0 0 0 0 0
Eig As # 3 0 0 0 0 0
Eig As # 4 0.02256 0.02319 0 1e-005 0.00317
Eig As # 5 0.02256 0.02319 0 1e-005 0.00317
Eig As # 6 0.00395 0.00429 7e-005 0.00159 0.02894
Eig As # 7 0.00395 0.00429 7e-005 0.00159 0.02894
Eig As # 8 0.06791 0.00886 0.00434 0.274 0.31325
Eig As # 9 0.06791 0.00886 0.00434 0.274 0.31325
Eig As #10 0.26324 0.04426 0.00065 0.03661 0.04217
Eig As #11 0.26324 0.04426 0.00065 0.03661 0.04217
Eig As #12 0.00138 0.00173 0.00013 9e-005 0.00019
Eig As #13 0.00138 0.00173 0.00013 9e-005 0.00019
Eig As #14 0.03645 0.04372 0.00181 0.00225 0.0022
Eig As #15 0.03645 0.04372 0.00181 0.00225 0.0022
Eig As #16 0.01318 0.01453 0.00185 0.0375 0.01882
Eig As #17 0.01318 0.01453 0.00185 0.0375 0.01882
Eig As #18 0.00567 0.00718 0.47311 0.01295 0.01231
Eig As #19 0.01106 0.00192 0.42316 0.01235 0.01232
Eig As #20 0.01336 0.14875 0.00442 0.01776 0.00433
Eig As #21 0.01336 0.14875 0.00442 0.01776 0.00433
Eig As #22 0.00681 0.15577 0.0077 0.00556 0.00257
Eig As #23 0.00681 0.15577 0.0077 0.00556 0.00257
Eig As #24 0.00236 0.13483 0.0088 0.0114 0.0012
Eig As #25 0.00236 0.13483 0.0088 0.0114 0.0012
Eig As #26 0.06119 0.01651 8e-005 0.11489 0.02917
Eig As #27 0 0.00042 3e-005 0.00419 0
Eig As #28 0.02849 0 0 0.17664 0.01323
Eig As #29 0.02849 0 0 0.17663 0.01323
Eig As #30 0 0 0 0 0
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continue

e1q_Syn_3 e1d_Syn_3 vm_Exc_1 vr1_Exc_1 vr2_Exc_1

Eig As # 1 0 0 0.46326 0 0
Eig As # 2 0 0 0.53211 0 0
Eig As # 3 0 0 0.00463 0 0
Eig As # 4 0.00318 4e-005 0 0 0
Eig As # 5 0.00318 4e-005 0 0 0
Eig As # 6 0.03091 9e-005 0 0 0
Eig As # 7 0.03091 9e-005 0 0 0
Eig As # 8 0.04173 0.01947 0 0 0
Eig As # 9 0.04173 0.01947 0 0 0
Eig As #10 0.00941 0.00142 0 4e-005 1e-005
Eig As #11 0.00941 0.00142 0 4e-005 1e-005
Eig As #12 0.0002 0.0001 0.00015 0.40681 0.12186
Eig As #13 0.0002 0.0001 0.00015 0.40681 0.12186
Eig As #14 0.00774 9e-005 2e-005 0.01672 0.00524
Eig As #15 0.00774 9e-005 2e-005 0.01672 0.00524
Eig As #16 0.04294 0.00357 0 0.00129 0.00046
Eig As #17 0.04294 0.00357 0 0.00129 0.00046
Eig As #18 0.01436 0.4545 0 0 0
Eig As #19 0.00539 0.4548 1e-005 0 0.00739
Eig As #20 0.08083 0.00166 0.00021 0.01799 0.12853
Eig As #21 0.08083 0.00166 0.00021 0.01799 0.12853
Eig As #22 0.04795 0.0047 0.00019 0.02277 0.1882
Eig As #23 0.04795 0.0047 0.00019 0.02277 0.1882

Eig As #24 0.29664 0.03455 0 0.00018 0.00157
Eig As #25 0.29664 0.03455 0 0.00018 0.00157
Eig As #26 0.01714 0.00064 0 0.00013 0.00113
Eig As #27 0.0006 0.00011 0 0 0
Eig As #28 0 0 0 0 0
Eig As #29 0 0 0 0 0
Eig As #30 0 0 0 0 0
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Appendix (B)

The appendix (B) obtains data of single machine connected in finite bus and
data of three machine nine bus system.

Table (B1) Single machine data

Machine Parameters:

=1.7572 p.u =0.6p.u =0.4245 p.u M=2*H=6.0 s

F=60.0 Hz
= 6.66 s =

0.44 s
=1.0 p.u H=3

Transmission Line:

= =0.835p.u =0 p.u

Transformer:

=0.0.364 p.u

Load parameters:

Nominal Load Heavy Load Light Load Leading P.FP = 0.6 p.uQ = 0.016 p.u
= 1.2 p.u= 0.5 p.u

= 0.25 p.u= 0.016p.u
= 0.8 p.u= −0.4 p.u

Constants= 0.05 s = 10 = 10 s = 40= 0.3373s = 0.3373 s = 0.0733 s = 0.0733s

Table (B2) Data of  three Generators
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Table (B3) Line data

Table (B4) Load data
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