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ABSTRAC

Power systems are subjected to low frequency disturbances that might cause
loss of synchronism and an eventual breakdown of entire system. The
oscillations, which are typically in the frequency range of 0.2 to 1.0 Hz, might be
excited by the disturbances in the system or, in some cases, might even build up
spontaneously. These oscillations limit the power transmission capability of a
network. For this purpose, Conventional Power System Stabilizers (CPSS) are
used to generate supplementary control signals for the excitation system in order
to damp these low frequency power system oscillations. The use of power
system stabilizers has become very common in operation of large electric power
systems. The conventional PSS which uses lead-lag compensation, where gain
settings designed for specific operating conditions, is giving poor performance
under different loading conditions. The constantly changing nature of power
system makes the design of CPSS a difficult task. Therefore, it is very difficult to
design a stabilizer that could present good performance in all operating points of
electric power systems. This thesis aims to propose a design of power system
stabilizer based on model reference adaptive control to overcome drawback of
conventional Power System Stabilizer. In this design, the existing controllers,
designed using gradient descent algorithm and lyapunov method. The Adaptive
Power System Stabilizer and Conventional Power System Stabilizer are
evaluated on a single machine infinite bus system and three machines nine bus
system by eigenvalue techniqgue and time domain simulation using
Matlab/Simulink. The simulation studies have been done to evaluate the
effectiveness of the proposed control design. The results show that, the proposed
adaptive power system stabilizer control scheme is able to stabilize power
system oscillations under the changeable operation conditions than the

Conventional Power System Stabilizer.
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