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Abstract 

We give a decomposition theorem for the Sobolev space of first 

order on the disc. Using this result, some characterizations for algebraic 

properties of Toeplitz or small Hankel operators with symbols in 𝐿∞,1 

are given. We consider Toeplitz and Hankel operators with piecewise 

continuous generating functions on 𝑙𝑝-spaces and the Banach algabra 

generated by them. We characterize the pairs of truncated Hankel 

operators on the model spaces, the asymptotic behavior of the singular 

values of a compact Hankel operator is determined by the behavior of 

the symbol in a neighbourhood of its singular support.  
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 الخلاصة

بإسرتداا   .علي القرر   أعطينا مبرهنه التفكيك لأجل فضاء سوبوليف من الرتبة الاولي

هذه النتيجة وبعض التشديصات للدصراص  الجبرةرة لثراترات تبروبليت  أو هااكرل الصرعيره مر  

اعتبراا ماترات تبوليت  و هااكل م  دوال التوليا الثستثرة متعراده التعرةرف  . L∞.1الرموز في 

مررراترات هااكرررل شدصرررنا أزوا   .و جبرررر باارررال الثولررراة بواسرررتط ثا  Lρ -علررري فضررراءات 

الاقتطاعيرره علرري الفضرراءات النثووجيررة  وسرراداا السررلول التقرراذبي للقرريا الشرراوة لثرراتر هااكررل 

 .الثترا  بواسطة السلول للرم  في جواذ دعامته الشاوة
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Chapter 1 

𝑳∞,𝟏  Symbols on Dirichlet Space 

We show that Toeplitz or small Hankel operators with symbols in 𝒍∞,𝟏 is 

ageneralization of the case with the harmonic symbol in  ℂ ⨁ 𝒟 , where  𝒟 is the 

Dirichet on 𝔻. 

  Let 𝔻 be the open unit disk in the complex plane ℂ and dA be the normalized area 

measure on 𝔻. The Sobolev space 𝐿2.𝑙  =  𝐿2.𝑙 (𝔻) is the completion of the space 

of smooth functions u such that 

‖𝑢‖1
2

= (|∫𝑢𝑑𝐴

 

𝔻

| + ∫ ⌈
𝜕𝑢

𝜕𝑧
⌉
2

+ ⌈
𝜕𝑢

𝜕𝑧̅
⌉
2

𝑑𝐴

 

𝔻

)

1

2

< ∞ 

𝐿2.𝑙 is a Hilbert space with the inner product 

〈𝑢, 𝑣〉1
2

= ∫𝑢𝑑𝐴

 

𝔻

∫ �̅�𝑑𝐴 +

 

𝔻

〈
𝜕𝑢

𝜕𝑧
,
𝜕𝑣

𝜕𝑧
〉𝐿2 + 〈

𝜕𝑢

𝜕𝑧̅
,
𝜕𝑣

𝜕𝑧
〉𝐿2  

Where the symbol 〈∙,∙〉𝐿2 means the inner product in the Hilbert space  𝐿2(𝔻, 𝑑𝐴) ∈

𝐿2.𝑙  with  𝑓(0) = 0. Let P be the orthogonal projection from 𝐿2.𝑙 onto  𝒟. Then 

𝑝(𝑢)(𝑤) = 〈𝑢, 𝑘𝑤〉1
2

, 𝑢 ∈ 𝐿2.𝑙 

Where 𝑘𝑤(𝑧) =  − log(1 − 𝑧�̅�) = ∑
𝑧𝑘�̅�𝑘

𝑘

∞
𝑘=1  is a reproducing kernel for 𝒟. P is 

an integral operator represented by 

𝑃(𝑢)(𝑤) = ∫
𝜕𝑢

𝜕𝑧
𝔻

𝜕𝑘𝑤(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑧
𝑑𝐴(𝑧), 𝑢 ∈ 𝐿2.𝑙 .                                  (1) 
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Given a function 𝜑 in 𝐿2.𝑙 , the Toeplitz operator 𝑇𝜑: 𝒟 → 𝒟 , the (big) Hankel 

operator 𝑇𝜑: 𝒟 → 𝒟⊥ and the small Hankel operator Γ𝜑: 𝒟 → 𝒟, with symbol 𝜑 are 

densely defined on 𝒟 respectively by 

𝑇𝜑𝑓 = (𝜑𝑓),   𝐻𝜑𝑓 = (1 − 𝑝)(𝜑𝑓),          Γ𝜑𝑓 = 𝑝(𝐽(𝜑𝑓),     

Where 𝐽 is the unitary 𝐿2.𝑙 → 𝐿2.𝑙 defined by 𝐽ℎ(𝑧)  = ℎ(𝑧̅) for ℎ ∈ 𝐿2.𝑙, and 𝒟⊥ is 

the orthogonal complement of 𝒟  in𝐿2.𝑙 . Let 𝐿∞(𝔻)   denote the algebra of all 

essentially bounded measurable functions on 𝔻  and 𝐻∞  denote the space of 

bounded analytic function on 𝔻. Define 

𝐿∞.1 = {𝜑 ∈ 𝐿2.𝑙: 𝜑,
𝜕𝜑

𝜕𝑧
,
𝜕𝜑

𝜕𝑧̅
∈ 𝐿∞(𝔻)} 

It is well known that Toeplitz operator or (small) Hankel operator with symbol 

𝜑 ∈ 𝐿∞.1is bounded on. 

 Toeplitz operators and Hankel operators studied on the classical Hardy space 𝐻2 

and Bergman space 𝐿𝑎
2 .  Toeplitz operators on the Dirichiet space have been 

studied intensively. G.F. Cao considered Fredholm properties of Toeplitz operators 

with 𝐶1(�̅�) symbols in. In case of bounded harmonic symbols in 𝐿∞.1, Y.J. Lee in  

studied the commutativity of two Toeplitz operators while  he studied the zero or 

compactness of finite sum Toeplitz products. Moreover, L.I<. Zhao investigated 

properties of Hankel  operator . We show that Toeplitz operators or small Hankel 

operators with symbol in 𝐿∞.1 , is just a generalization of the case with the 

harmonic symbol in 𝐿∞.1 . We show that if 𝑓 ∈ 𝐿∞.1 , then there is a harmonic 

function 𝑓 ∈ ℂ⨁ 𝒟⊕ �̅�  such that 𝑇𝐹 = 𝑇𝑓 𝑎𝑛𝑑 Γf = Γf  on 𝒟 . Finally, as a 

byproduct, based on the above-mentioned work of Lee and Zhao, we obtain 

algebraic properties of Toeplitz and small Hankel operator with symbols in 𝐿∞.1. 
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The derivative is taken in the distribution sense whereas  the derivative is 

defined in the classical mode, which in turn provides different properties than the 

properties presented here. We point out that there is a flaw  but the result is correct 

if the Sobolev space 𝐿2.1 is removed and the Toeplitz operator is directly defined 

by the  integral operator (1). 

We will write 𝑓′for 
𝜕𝑓

𝜕𝑧
, 𝑓̅′ 𝑓𝑜𝑟 

𝜕𝑓̅

𝜕𝑧
,  when 𝑓 ∈ 𝐿2.1 and ‖∙‖ℋ for the norm in 

a Hulbert  space ℋ. 

We first need the following result which is probably well known. 

Proposition (1.1)[1]. Let E: [0, 1) x [0, 1). Assume that 𝑢 ∈ 𝐿2.1(E). Then the 

following assertions hold. 

(i) For almost all 𝑥 ∈  [0, 1), 𝑢(𝑥, . )  is absolutely continuous on [0, 1) and 

lim
𝑦→1

𝑢 (𝑥, 𝑦)𝐸𝐿1[0. 1). 

(ii) For almost all 𝑦 ∈  [0, 1), 𝑢(. , 𝑦)  is absolutely continuous on [0, 1)  and 

lim
𝑥→1

𝑢 (𝑥, 𝑦)𝐸𝐿1[0. 1) 

Proof. Due to the lack of an explicit reference, we give a detailed proof. It suffices 

to prove (i) since (ii) can be treated analogously. Since  𝑢 ∈ 𝐿2.1(E), by Fubini’s 

Theorem for almost all 𝑥 ∈  [0, 1)  the function
𝜕𝑢

𝜕𝑦
(𝑥, . )  ∈  𝐿2[0, 1 ). Thus for 

almost  all  𝑥 ∈  [0, 1), the function 

�̂�(𝑥, 𝑦) ≔ ∫
𝜕𝑢

𝜕𝑦
(𝑥, 𝑡)𝑑𝑡

𝑦

0

 

is well defined. Moreover, 
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∫∫|�̂�(𝑥, 𝑦)|

1

0

1

0

𝑑𝑥𝑑𝑦 ≤ ∫∫|
𝜕𝑢

𝜕𝑦
(𝑥, 𝑡)|

1

0

1

0

𝑑𝑥𝑑𝑡 < ∞ 

This implies  that  �̂� ≔ 𝑢 − �̂� ∈ 𝐿1(𝐸). Next we claim that 
𝜕𝑢

𝜕𝑦
=
𝜕𝑢

𝜕𝑦
 in the sense of 

distributions. To see this, we let {𝑃𝑘}𝑘≥1 be a sequence of polynomials on ℝ2 such 

that  𝑃𝑘 →
𝜕𝑢

𝜕𝑦
𝑖𝑛 𝐿2(𝐸)   𝑎𝑠 𝐾 → ∞. Define 

𝑢𝑘(𝑥, 𝑦) = ∫𝑝𝑘(𝑥, 𝑡)𝑑𝑡

𝑦

0

 

Then 
𝜕𝑢𝑘

𝜕𝑦
(𝑥, 𝑦) = 𝑝𝑘(𝑥, 𝑦) in the classieal sense for every 𝑘 ∈ ℤ+. Since 𝑝𝑘 →

𝜕𝑢

𝜕𝑦
 

in  𝐿2(𝐸), using Fubini’s Theorem, after passing to a subsequence we may assume 

that 

lim
𝑘→∞

∫|𝑝𝑘(𝑥, 𝑡) −
𝜕𝑢

𝜕𝑦
(𝑥, 𝑡)| 𝑑𝑡

1

0

= 0 𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙 𝑥 ∈ [0,1). 

It follows that 𝑢𝑘 → �̂� 𝑖𝑛 𝐿1(𝐸) and the claim follows. There fore  
𝜕𝑢

𝜕𝑦
=  0, in the 

sense  of  distributions. Thus, we conclude that �̂�is a function  of  𝑥. Hence 𝑢(𝑥, . ) 

is absolutely continuous on [0,1) for almost all 𝑥. Moreover, since for almost all 

𝑥 ∈  [0, 1),
𝜕𝑢

𝜕𝑦
(𝑥, . )  ∈  𝐿2[0, 1) we have 

limu(x, y) = ũ(𝑥)
𝑦→1

∫
𝜕𝑢

𝜕𝑦
(𝑥, 𝑡)𝑑𝑡

1

0

     𝑓𝑜𝑟 𝑎. 𝑒. 𝑥 
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Since 
𝜕𝑢

𝜕𝑦
∈ 𝐿2(𝐸) and since �̃� ∈ 𝐿1[0, 1), using Fubini’s Theorem again we infer 

that the limit function lim
𝑦→1

 𝑢 (𝑥, 𝑦)  ∈ 𝐿1 [0, 1). The proof is complete.  

Given a function 𝑓 ∈ 𝐿2,1. In the polar coordinates 𝑧 = 𝑟𝑒𝑖𝜃, we have 

𝜕𝑓

𝜕𝑧
=
1

2
𝑒−𝑖𝜃 (

𝜕𝑓

𝜕𝑟
−
𝑖

𝑟

𝜕𝑓

𝜕𝜃
),     

𝜕𝑓

𝜕𝑧̅
=
1

2
𝑒𝑖𝜃 (

𝜕𝑓

𝜕𝑟
−
𝑖

𝑟

𝜕𝑓

𝜕𝜃
) 

It follows that 𝑓(𝑟𝑒𝑖𝜃) ∈ 𝐿2,1(𝐸), where 𝐸 [0, 1) x [0, 2𝜋). By Proposition 1, we 

see that 𝑓(𝑟𝑒𝑖𝜃)  is absolutely continuous in r for almost all 𝜃  and absolutely 

continuous in 𝜃 for almost all 𝑟. In particular, the radial limit 𝑓 |𝜕𝔻 ≔ lim
𝑟→1

𝑓(𝑟𝑒𝑖𝜃) 

exists for almost all 𝜃. Moreover, from the final conclusions of Proposition (1.1) 

we also have 𝑓|𝜕𝔻 ∈ 𝐿1(𝜕𝔻). Thus we can define for 𝑘 ∈ ℤ 

𝑓𝑘(1) =
1

2𝜋
∫ 𝑓|𝜕𝔻)𝑒𝑖𝜃)𝑒−𝑖𝑘𝜃𝑑𝜃

2𝜋

0

 

The result below roughly says that Toeplitz operators on 𝒟  depends only on 

boundary values of the symbols. 

Proposition (1.2)[1]. Let𝑓 ∈ 𝐿2,1 Then for each 𝑛 ∈ ℤ+, 

𝑇𝑓(𝑧
𝑛) = ∑ 𝑓𝑘−𝑛

𝑘∈ℤ+

(1)𝑧𝑘 

Proof. For 𝑛 ∈ ℤ+, we have 

𝑇𝑓(𝑧
𝑛)(𝑤)𝑃(𝑓𝑧𝑛)(𝑤) = 〈𝑓𝑧𝑛, 𝐾𝑤〉1

2

 = 〈
𝜕(𝑓𝑧𝑛)

𝜕𝑧
,
𝜕𝑘𝑤
𝜕𝑧
〉𝐿2 = ∑

1

𝑘
𝑘∈ℤ+

〈
𝜕(𝑓𝑧𝑛)

𝜕𝑧
,
𝜕𝑧𝑘

𝜕𝑧
〉𝐿2 𝑤

𝑘  
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Hence 

𝑇𝑓(𝑧
𝑛)(𝑤) = ∑

1

𝜋
𝑘∈ℤ+

[∫∫
𝜕𝑓

𝜕𝑧

2𝜋

0

1

0

(𝑟𝑒𝑖𝜃)𝑟𝑛+𝑘𝑒𝑖(𝑛−𝑘+1)𝜃𝑑𝑟 𝑑𝜃

+ 𝑛∫∫ 𝑓

2𝜋

0

1

0

(𝑟𝑒𝑖𝜃)𝑟𝑛+𝑘−1𝑒𝑖(𝑛−𝑘)𝜃𝑑𝑟 𝑑𝜃]𝑤𝑘  

Notice 
𝜕𝑓

𝜕𝑧
=
1

2
𝑒−𝑖𝜃(

𝜕𝑓

𝜕𝑟
−
𝑖

𝑟

𝜕𝑓

𝜕𝜃
) then by Fubini’s Theorem we obtain 

1

𝜋
∫∫ 𝑓

𝜕𝑓

𝜕𝑧

2𝜋

0

1

0

(𝑟𝑒𝑖𝜃)𝑟𝑛+𝑘𝑒𝑖(𝑛−𝑘+1)𝜃𝑑𝑟 𝑑𝜃

=
1

2𝜋
∫ 𝑒𝑖(𝑛−𝑘)𝜃  𝑑𝜃

2𝜋

0

∫
𝜕𝑓

𝜕𝑟

1

0

𝑟𝑛+𝑘𝑑𝑟

−
𝑖

2𝜋
∫𝑟𝑛+𝑘−1
1

0

𝑑𝑟∫
𝜕𝑓

𝜕𝜃
𝑒𝑖(𝑛−𝑘)𝜃 𝑑𝜃

2𝜋

0

 

 Using the absolute continuity of f on r and 𝜃, and integration by parts, we get the 

desired result. The proof is complete. 

The following proposition is a characterization for functions in 𝐿∞,1 . We 

claim no originality for this result. 

Proposition (1.3)[1]. Let f be a meosurable function on  𝔻. Then 𝑓 ∈  𝐿∞,1 if and 

only if there exists a continuous function 𝑓 𝑜𝑛 𝔻 such that 𝑓 =  𝑓 𝑎. 𝑒, on 𝔻 and 

that 

|𝑓(𝑧)—𝑓(𝑤)| ≤  𝑀|𝑧—𝑤| ∀𝑧,𝑤 ∈ 𝔻, 
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Where M > 0  is  a constant. 

Proof. First assume that  𝑓 ∈  𝐿∞,1. Fix a smooth radial nonnegative function 𝑝 on 

ℂ with compact support in 𝔻 such that ∫𝑓𝑝(𝑧)𝑑𝐴(𝑧)  =  1. 𝐹𝑜𝑟 𝛿 >  0, we define 

𝑝𝛿(𝑧) ∶=  𝛿
−2𝑝(|𝑧|/𝛿). The convolution of a locally integrable function f and 𝑝𝛿 is 

defined on 𝔻𝛿 ∶=  {𝑧 ∈ 𝔻: 𝑑(𝑧, 𝜕𝔻)  > 𝛿} as 

𝑓𝛿(𝑧)(𝑓 ∗ 𝑝𝛿)(𝑧) ≔ ∫  𝑓

|𝑤|<𝛿

 𝑓(𝑧—𝑤)𝑝𝛿(𝑤)𝑑𝐴(𝑤) ∀𝑧 ∈ 𝔻𝛿 . 

It is known that 𝑓𝛿 is 𝐶∞ smooth and that 𝑓𝛿, converges to 𝑓 in 𝐿𝑃(𝔻, 𝑑𝐴) 𝑎𝑠 𝛿 →

0 for 1 ≤ 𝑝 <  ∞ 𝑖𝑓 𝑓 ∈  𝐿𝑃(𝔻, 𝑑𝐴) . 

Since 𝑓 ∈  𝐿∞,1 and since 

𝜕𝑓𝛿
𝜕𝑧

=
𝜕𝑓

𝜕𝑧
∗ 𝑝𝛿 ,                

𝜕𝑓𝛿
𝜕𝑧

=
𝜕𝑓

𝜕𝑧̅
∗ 𝑝𝛿 

We deduce that for every 𝛿 >  0, all the partial derivatives of 𝑓𝛿 are bounded on 

Ca. Moreover, this bound does not depend on S. It follows that, there is a constant 

𝑀 >  0 satisfying 

|𝑓𝛿(𝑧) − 𝑓𝛿(𝑤)| ≤ 𝑀|𝑧 − 𝑤| ∀𝑧, 𝑤 ∈ 𝔻 

We then choose a sequence 𝛿𝑘 →. 0  such that 𝑓𝛿𝑘 → 𝑓  outside a set 𝐸 ⊂ 𝔻  of 

measure 0. Clearly 

|𝑓(𝑧) − 𝑓(𝑤)| ≤ 𝑀|𝑧 − 𝑤| ∀𝑧,𝑤 ∈ 𝔻\𝐸 

Since E has empty interior, we may extend 𝑓  to a continuous function 𝑓  on 𝔻 

satisfying  

|𝑓(𝑧) − 𝑓(𝑤)| ≤ 𝑀|𝑧 − 𝑤| ∀𝑧,𝑤 ∈ 𝔻 
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Conversely, suppose that f is a continuous function on 𝔻 such that 

|𝑓(𝑧) − 𝑓(𝑤)| ≤ 𝑀|𝑧 − 𝑤| ∀𝑧,𝑤 ∈ 𝔻 

Where 𝑀 >  0 is a constant. We have to show  𝑓 ∈  𝐿∞,1. For this, we note that by 

the Rademacher Theorem, 𝑔 ∶=  
𝜕𝑓

𝜕𝑧
 (in the classical sense) exists almost 

everywhere on 𝔻. Moreover  𝑔 ∈  𝐿∞,1.. We define 𝑓𝛿 as in the first part. By the 

Lebesgue dominated convergence Theorem, we verify that 

𝜕𝑓𝛿
𝜕𝑧
𝑔 ∗  𝑝𝛿 . 

Since the right-hand side converges to  𝑔 𝑖𝑛 𝐿1 (𝔻, 𝑑𝐴) 𝑎𝑠 𝛿 →  0, we infer that g 

is actually the distributional derivative of f. Thus  𝑓 ∈  𝐿∞,1 .. The proof is 

complete.  

Proposition (1.4)[1]. Let 𝑓 ∈  𝐿∞,1. and F be the Poisson extension of𝑓|𝜕𝔻. Then 

𝐹’, �̅�’ ∈  𝐻2 𝑎𝑛𝑑 𝐹 ∈  ℂ⨁𝒟 ⨁�̅�.  

Proof.  there exists a constant 𝑀 >  0 such that 𝑓|𝜕𝔻satisfying 

𝑓|𝜕𝔻(𝑒𝑖𝜃1) − 𝑓|𝜕𝔻(𝑒𝑖𝜃2)| ≤ 𝑀|𝑒𝑖𝜃1 − 𝑒𝑖𝜃2 | 

 

for every 𝜃1,𝜃2 ∈ [0,2𝜋. ] Let 𝑝(𝑟𝜃) =
1−𝑟2

1−2𝑟 cos𝜃+𝑟2
be the Poisson lcernel. Then 

𝐹(𝑧)
1

2𝜋
∫ 𝑃

2𝜋

0

(𝑟, 𝜃 —  𝑡)𝑓|𝜕𝔻(𝑒𝑖𝑡)𝑑𝑡   (𝑧 = 𝑟𝑒𝑖𝜃)      (2) 

is harmonic in 𝔻, continuous on the closed unit disk and 𝐹|𝜕𝔻 = 𝑓|𝜕𝔻. 
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Differentiating with respect to 𝜃 in both sides of (2), we obtain 

𝑖𝑧𝐹′(𝑧) + 𝑖𝑧�̅�′(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1

2𝜋
∫
𝜕𝑝

𝜕𝜃

2𝜋

0

(𝑟, 𝜃 − 𝑡)𝑓|𝜕𝔻(𝑒𝑖𝑡)𝑑𝑡 

Using integration by parts and the absolute continuity of 𝑓|𝜕𝔻(𝑒𝑖𝑡) we get 

𝑖𝑧𝐹′(𝑧) + 𝑖𝑧�̅�′(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1

2𝜋
∫ 𝑝

2𝜋

0

(𝑟, 𝜃 − 𝑡)𝑖𝑒𝑖𝑡(𝑓|𝜕𝔻)′(𝑒𝑖𝑡)𝑑𝑡 

Let 𝑓+
′  denote the analytic part of 𝑖𝑒𝑖𝑡(𝑓|𝜕𝔻)′and 𝑓−

′ = 𝑖𝑒𝑖𝑡(𝑓|𝜕𝔻)′ − 𝑓+
′ . Since 

(𝑓|𝜕𝔻)′  is bounded on 𝜕𝔻, we infer that 𝑓+
′  and 𝑓−

′  are in 𝐿2(𝜕𝔻) . Moreover, 

since F is harmonic we deduce that 

𝐹′
𝜕𝐹

𝜕𝑧
,     𝐹′ =

𝜕𝐹̅̅̅̅

𝜕𝑧̅
 

are analytic functions on 𝔻. It follows that 𝑖𝑧𝐹′(𝑧) and 𝑖𝑧�̅�′(𝑧) are analytic on 𝔻. 

Therefore, by comparing analytic and anti-analytic parts in both sides of the last 

identity we obtain 

𝑖𝑧𝐹′(𝑧) =
1

2𝜋
∫ 𝑝

2𝜋

0

(𝑟, 𝜃 − 𝑡)𝑓+^′ (𝑒
𝑖𝑡)𝑑𝑡,       𝑖𝑧�̅�′(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅

=
1

2𝜋
∫ 𝑝

2𝜋

0

(𝑟, 𝜃 − 𝑡)𝑓−^′ (𝑒
𝑖𝑡)𝑑𝑡  

Thus 𝑖𝑧𝐹′(𝑧)and 𝑖𝑧�̅�′(𝑧)in 𝐻2 . Since 𝐹′, �̅�′ are already analytic functions on 𝔻, 

we conclude that 𝐹′(𝑧) and �̅�′(𝑧) are in �̅�′(𝑧)as well. Hence  𝐹 ∈ ℂ𝒟⨁�̅�. The 

proof is complete.  
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Put 

𝐻1
∞ = {𝜑 ∈ 𝒟:𝜑′ ∈ 𝐻∞} 

Clearly ℂ⨁𝐻1
∞⨁𝐻1

∞̅̅ ̅̅̅ ⊂ 𝐿∞.1 . Moreover, 𝑓 ∈ 𝐿∞.1  is harmonic if and only if 𝑓 ∈

ℂ⨁𝐻1
∞⨁𝐻1

∞̅̅ ̅̅̅. Now the following natural que’stion arises: Given 𝑓 ∈ 𝐿∞.1 let F be 

the Poisson extension of  𝑓|𝜕𝔻. Does F belong to 𝐿∞.1? The example given at the 

end of the section provides a negative answer to the above question. Before 

describing the example, we remark without proof that, by following the same 

arguments as in Proposition (1.4), we can obtain the following characterization of 

the boundary function 𝑓|𝜕𝔻 in order that its harmonic extension F belongs to 𝐿∞.1. 

Proposition (1.5)[1]. Let 𝑓 ∈ 𝐿2.1 and F be the Poisson extension of 𝑓|𝜕𝔻 on 𝔻. 

Then 𝐹 ∈ 𝐿∞.1 if and only 𝑓|𝜕𝔻 is Lipschitz continuous and both 𝑓+
′  and 𝑓−

′ are in 

𝐿∞(𝜕𝔻). Here 𝑓+
′  denotes the analytic part of (𝑓|𝜕𝔻)′ 𝑎𝑛𝑑𝑓−

′ = (𝑓|𝜕𝔻)′ − 𝑓+
′ . 

Now we formulate the promised example. 

Example (1.6)[1]. Let 

𝑔(𝜃) ∑
1

𝑘2
𝑒𝑖𝑘𝜃

𝑘∈ℤ∗

 

Where ℤ∗  denotes the set of nonzero integers. Then it is easy to see that 𝑔 ∈

𝐶(𝜕𝔻). Note that the series 

∑
𝑒𝑖𝑘𝜃

𝑘
𝑘∈ℤ∗

= 2𝑖 ∑
sin (𝑘𝜃)

𝑘
𝑘∈ℤ+
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is the Fourier series of the function 𝑖(𝜋 − 𝜃). Thus 𝑔’ is uniformly bounded on 

(0, 2𝜋). Hence g is Lipschitz on [0, 2𝜋], i.e., there exists a constant 𝑀 >  0 such 

that 

|𝑔(𝜃1) − 𝑔(𝜃2)| ≤ 𝑀|𝜃1 − 𝜃2|∀𝜃1, 𝜃2 ∈ [0,2𝜋] 

Now we apply a result of Mc Shane  to  find a function f on �̅� such that 𝑓|𝜕𝔻 =  𝑔 

and that 𝑓  is Lipschitz with the same constant M. Using Proposition (1.3), we 

conclude 𝑓 ∈ 𝐿∞.1 

Next we prove that 

𝐹(𝑧) ∑
𝑧𝑘

𝑘2
𝑘∈ℤ∗

+ ∑
𝑧̅𝑘

𝑘2
𝑘∈ℤ+

 

the Poisson extension of g, is not in 𝐿∞.1. Indeed, 

𝑧𝐹′(𝑧) ∑
𝑧𝑘

𝑘2
𝑘∈ℤ∗

= −log (1 − 𝑧) 

Therefore 𝐹′ is not bounded on  𝔻. It follows that 𝐹 ∉ 𝐿∞.1 by Proposition (1.1) 

(this also follows from Proposition (1.3), since neither𝑔+
′ ≔ 𝑖 ∑

𝑒𝑖𝑘𝜃

𝑘𝑘∈ℤ∗ 𝑛𝑜𝑟 𝑔−
′ ≔

𝑔′ − 𝑔+
′  belongs to  𝐿∞.1(𝜕𝔻). 

Given a function f in  𝐿2(𝔻, 𝑑𝐴), we have the following polar decomposition 

𝑓(𝑟𝑒𝑖𝜃) = ∑ 𝑒𝑖𝑘𝜃𝑘∈ℤ∗ 𝑓𝑘(𝑟) 

For almost all 𝑟 ∈  [0, 1), where 𝑓𝑘(𝑟) =
1

2𝜋
∫ 𝑓(𝑟𝑒𝑖𝜃)
2𝜋

0
𝑑𝜃, and 

‖𝑓‖𝐿2
2 = 2 ∑ ∫|𝑓𝑘(𝑟)|

2

1

0𝑘∈ℤ∗

𝑟 𝑑𝑟 < ∞ 
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Here ‖∙‖𝐿2  denotes the 𝐿2(𝔻, 𝑑𝐴)-norm. Moreover, if 𝑓 ∈ 𝐿2,1, then by the same 

argument  as , using Proposition (1.1), we can check that ∑ 𝑒𝑖𝑘𝜃|𝑘|≤𝑁 𝑓𝑘(𝑟) 

converges to 𝑓 in 𝐿2,1 as N tends to infinity. 

We first give a decomposition of the Sobolev space𝐿2,1. Let Ω = Ω0  + ℂ, where 

Ω0 = {∑[𝑓𝑘(𝑟) − 𝑓𝑘(1)𝑟
|𝑘|]𝑒𝑖𝜃:

𝑘∈ℤ

𝑓(𝑟𝑒𝑖𝜃) =∑𝑒𝑖𝑘𝜃

𝑘∈ℤ

𝑓𝑘(𝑟) ∈ 𝐿
∞,1} 

Notice that the quantities 𝑓𝑘(1)  are well defined for all 𝑓 ∈ 𝐿2,1  in view of 

Proposition (1.1) (see the argument before Proposition (1.2). 

Theorem (1.7)[1]. Let ∆0 denote the closure of Ω0 in the space 𝐿2,1and ∆ = ∆0 +

ℂ. Then   𝐿2,1 = ∆⨁𝒟⨁�̅�. Moreover, 

∆0== {∑[𝑓𝑘(𝑟) − 𝑓𝑘(1)𝑟
|𝑘|]𝑒𝑖𝜃:

𝑘∈ℤ

𝑓(𝑟𝑒𝑖𝜃) =∑𝑒𝑖𝑘𝜃

𝑘∈ℤ

𝑓𝑘(𝑟) ∈ 𝐿
2,1} 

Proof . First we show that Ω0 ⊥ 𝒟 and  Ω0 ⊥ �̅�. For n e Z, we have 

〈∑𝑓𝑘(1)𝑟
|𝑘|

𝑘∈ℤ

𝑒𝑖𝑘𝜃, 𝑧𝑛〉1
2

= 𝑛𝑓𝑛(𝑖) 

Since
𝜕

𝜕𝑧
=
1

2
𝑒−𝑖𝜃 (

𝜕

𝜕𝑟
−
𝑖

𝑟

𝜕

𝜕𝜃
) = we get 

𝜕

𝜕𝑣
[𝑓𝑘(𝑟)𝑒

𝑖𝑘𝜃] =
1

2
𝑒𝑖(𝑘−1)𝜃 [𝑓𝑘

′(𝑟) +
𝑘

𝑟
𝑓𝑘(𝑟)] 

 

Observe that 𝑓𝑘 is absolutely continuous for every k by Proposition (1.3), so we 

have 
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〈∑𝑓𝑘(𝑟)

𝑘∈ℤ

𝑒𝑖𝑘𝜃 , 𝑧𝑛〉1
2

= 〈∑
𝜕

𝜕𝑧
(𝑓𝑘𝑒

𝑖𝑘𝜃)

𝑘∈ℤ

, 𝑛𝑧𝑛−1〉𝐿2

=∑〈
1

2
𝑒𝑖(𝑘−1)𝜃 [𝑓𝑘

′ +
𝑘

𝑟
𝑓𝑘] , 𝑛𝑟

𝑛−1𝑒𝑖(𝑛−1)𝜃〉𝐿2

𝑘∈ℤ

= 〈
1

2
𝑒𝑖(𝑛−1)𝜃 [𝑓𝑛

′ +
𝑘

𝑟
𝑓𝑛] , 𝑛𝑟

𝑛−1𝑒𝑖(𝑛−1)𝜃〉𝐿2

= ∫(𝑓𝑛
′ +

𝑘

𝑟
𝑓𝑛) 𝑛𝑟

𝑛𝑑𝑟 = 𝑛𝑓𝑛𝑟
𝑛| = 𝑛𝑓𝑛(𝑖)0
1

1

0

 

It follows that 

〈∑[𝑓𝑘(𝑟) − 𝑓𝑘(1)𝑟
|𝑘|]

𝑘∈ℤ

𝑒𝑖𝑘𝜃 , 𝑧𝑛〉1
2

= 0 

Since 
𝜕

𝜕𝑧
=
1

2
𝑒−𝑖𝜃 (

𝜕

𝜕𝑟
−
𝑖

𝑟

𝜕

𝜕𝜃
) by an analogous argument we can prove   Ω0 ⊥ �̅�. 

The details are omitted. 

By combining the last result with Proposition (1.4), we infer 𝐿∞,1 ⊂ Ω⊕𝒟⊕ �̅�. 

Since the set of smooth functions with compact support is dense  in   𝐿2,1 , we get 

the required decomposition for 𝐿2,1. 

Finally, by Proposition (1.2), 𝑇𝑓−𝐹(𝑧
𝑛) = 0 for every 𝑛 ∈ ℤ+𝑖𝑓 𝑓 ∈  𝐿

∞,1 and F is 

the Poisson extension of 𝑓|𝜕𝔻. Clearly, if 𝑓 ∈ ∆0, then for every 𝑛 ∈ ℤ+, 𝑇𝑓(𝑧
𝑛) =

0. It follows that for 𝑓 ∈ 𝐿2,1, there exists a harmonic function 𝐹 ∈ ℂ⨁𝒟⨁�̅� such 

that 𝑇𝑓(𝑧
𝑛) = 𝑇𝐹(𝑧

𝑛), 𝑛 ∈ ℤ+ . Moreor, Proposition (1.2) shows that F is the 

Poisson extension of 𝑓|𝜕𝔻 Hence the set in the right side of (2) equals to Δ0. The 

proof is complete.  
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The following Theorem asserts that Toeplitz operator or small Hankel operator 

with symbol in𝑓 ∈ 𝐿∞,1  is just a generalization with the harmonic symbol in 

ℂ⨁𝒟⨁�̅�. 

Theorem (1.7)[1]. Let  𝑓 ∈  𝐿∞,1  and F  be the Poisson extension of𝑓|𝜕𝔻. Then 

(i) 𝑇𝐹  is bounded on  𝒟 and  𝑇𝐹 = 𝑇𝑓; 

(ii) Γ𝐹  is  bounded  on  𝒟 and  Γ𝐹 = Γ𝑓. 

Proof. (i) By Proposition (1.2), it suffice to show 𝑇𝐹 is bounded on 𝒟. First we 

note that 𝐹 ∈ 𝐿∞,1(𝔻) and 𝐹’ ∈ 𝐻2by Proposition (1.4), 

For 𝑔, ℎ ∈ 𝒟, we have 

〈𝑇𝐹𝑔, ℎ〉1
2

= 〈𝐹𝑔, ℎ〉1
2

= 〈
𝜕(𝐹𝑔)

𝜕𝑧
,
𝜕ℎ

𝜕𝑧
〉𝐿2 = 〈𝐹

′𝑔, ℎ′〉𝐿2 + 〈𝐹𝑔
′, ℎ′〉𝐿2  

This implies 

|〈𝑇𝐹𝑔, ℎ〉1
2

| ≤ ‖𝐹′𝑔‖𝐿2‖𝐹𝑔
′‖𝐿2‖ℎ

′‖𝐿2 ≤ ‖𝐹
′𝑔‖𝐿2‖ℎ‖𝒟‖𝐹‖∞‖𝑔‖𝒟‖ℎ‖𝒟 

Let 𝑔(𝑧) = ∑ 𝑎𝑛𝑧
𝑛

𝑛∈ℤ+  and 𝐹’(𝑧) = ∑ 𝑏𝑛𝑛≥0 𝑧𝑛 . Then ‖𝑔‖𝒟
2 = ∑ 𝑛|𝑎𝑛|

2 <𝑛∈ℤ+

∞ and ‖𝐹′‖𝐻2
2 = ∑ 𝑛|𝑏𝑛|

2 < ∞𝑛≥0 . Observe that  

‖𝐹′𝑔‖𝐿2
2 = ∫|𝑔(𝑧)𝐹′(𝑧)|2

𝔻

𝑑𝐴(𝑧) = ∫ |∑ 𝑎𝑛𝑧
𝑛

𝑛∈ℤ+

∑𝑏𝑛𝑧
𝑛

𝑛≥0

|

2

𝑑𝐴(𝑧)

𝔻

 

∫|∑ (∑ 𝑎𝑛−𝑘𝑏𝑘

𝑛−1 

𝑘=0

) 𝑧𝑛

𝑛∈ℤ+

| 𝑑𝐴(𝑧)2 ∑
1

𝑛 + 1
𝑛∈ℤ+𝔻

|∑ 𝑎𝑛−𝑘𝑏𝑘

𝑛−1 

𝑘=0

|

2

 

Thus using the Cauchy-Schwartz inequality, we obtain 
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‖𝐹′𝑔‖𝐿2
2 ≤ ∑

1

𝑛 + 1
𝑛∈ℤ+

𝑛 ∑|𝑎𝑛−𝑘𝑏𝑘|
2

𝑛−1 

𝑘=0

 

∑
𝑛

𝑛 + 1
𝑛∈ℤ+

𝑛 ∑|𝑎𝑛−𝑘𝑏𝑘|
2

𝑛−1 

𝑘=0

|𝑏𝑘|
2 ≤ ∑ ∑|𝑎𝑛−𝑘|

2

𝑛−1 

𝑘=0𝑛∈ℤ+

|𝑏𝑘|
2 

∑|𝑎𝑛|
2

𝑛−1 

𝑛∈ℤ+

∑|𝑏𝑛|
2

𝑛≥0

≤ |𝑏𝑘|
2 ≤ ‖𝑔‖𝒟

2 ‖𝐹′‖𝐻2
2  

It follows that 

|(𝑇𝐹𝑔, ℎ)1
2

| ≤ (‖𝐹′‖𝐻2 + ‖𝐹‖∞‖𝑔‖𝒟‖ℎ‖𝒟) 

Therefore 𝑇𝐹 is bounded on 𝒟. 

(ii) Let 𝑔(𝑧)  = ∑ 𝑎𝑛𝑧
𝑛

𝑛∈ℤ+ ∈ 𝒟 and 𝐹(𝑧) =  ∑ 𝑏𝑛𝑧
𝑛

𝑛≥0 + ∑ 𝑏−𝑛𝑧̅
𝑛

𝑛∈ℤ+ . Since 

𝑃(𝑧̅𝑛𝑧𝑚) =  𝑇�̅�𝑛𝑧
𝑚 = 𝑧𝑚−𝑛 

When 𝑚 >  𝑛 >  0 and 

𝑃(𝑧̅𝑛𝑧𝑚) = 0 

When 𝑂 < 𝑚 ≤ 𝑛, thus 

Γ𝐹𝑔 𝑃(𝐽(𝐹𝑔)) 𝑃(𝐹(𝑧̅)𝑔(𝑧̅))  =  𝑝 (∑ 𝑎𝑛𝑧̅
𝑛

𝑛∈ℤ+

∑ 𝑏−𝑛𝑧
𝑛

𝑛∈ℤ+

) 

∑ 𝑎𝑛𝑏−𝑚𝑝(

𝑚,𝑛∈ℤ+

𝑧̅𝑛𝑧𝑚) = ∑ 𝑎𝑛𝑏−𝑚𝑧
𝑚−𝑛

𝑚>𝑛>0

 

Again using the Cauchy—Schwartz inequality, we have 



16 
 

‖𝑔‖𝒟
2 = ∑ ‖(∑ 𝑎𝑛𝑏−(𝑛+𝑘)

𝑛∈ℤ+

)𝑧𝑘‖

𝒟

2

𝑘∈ℤ+

∑ 𝑘|∑ 𝑎𝑛𝑏−(𝑛+𝑘)
𝑛∈ℤ+

|

𝑘∈ℤ+

2

 

∑ 𝑘

𝑘∈ℤ+

∑ 𝑛|𝑎𝑛|
2

𝑛∈ℤ+

∑
|𝑏−(𝑛+𝑘)|

2

𝑛
𝑛∈ℤ+

 

‖𝑔‖𝒟
2 ∑

1

𝑛
𝑛∈ℤ+

∑(𝑛 + 𝑘)2

𝑘∈ℤ+

|𝑏−(𝑛+𝑘)|
2 𝑘

(𝑛 + 𝑘)2
 

‖𝑔‖𝒟
2 ∑

1

𝑛2
𝑛∈ℤ+

∑(𝑛 + 𝑘)2

𝑘∈ℤ+

|𝑏−(𝑛+𝑘)|
2
 

Because  �̅�′  ∈ 𝐻2 𝑎𝑛𝑑 ‖�̅�′‖𝐻2
2  = ∑ 𝑛2𝑛≥0 |𝑏−𝑛|

2 < ∞, we have 

‖Γ𝐹𝑔‖𝒟
2 ≤ ‖𝑔‖𝒟

2 ∑
1

𝑛2
𝑛∈ℤ+

‖�̅�′‖𝐻2
2 < ∞ 

So Γ𝐹 is bounded on 𝒟. 

It remains to show Γ𝑓(𝑧
𝑛) = Γ𝐹(𝑧

𝑛) for evry  𝑛 ∈ ℤ+.  It is easy to see  𝐽Ω0 ⊂ Ω0, 

and 𝑧𝑛Ω0 ⊂ Ω0, 𝑧̅
𝑛Ω0 ⊂ Ω0 for 𝑛 ∈ ℤ+ ∪ {𝑂}. On the other hand, since 𝑓 − 𝐹 ∈

Ω0 and 𝑃|Ω0 = 0, we have 

Γ𝑓(𝑧
𝑛) 𝑃(𝐽(𝑓𝑧𝑛)) =  𝑃 (𝐽((𝑓 —  𝐹)𝑍𝑛)) + Γ𝐹(𝑧

𝑛)  =  Γ𝐹(𝑧
𝑛)   ∀𝑛 ∈ ℤ+. 

The proof is complete. 

Theorem (1.8)[1]. Let𝑓, 𝑔 ∈  𝐿∞,1.. Then the following assertions hold. 

(a) 𝑇𝑓𝑇𝑔 = 𝑇𝑔𝑇𝑓  if and only if 𝑓, 𝑔 ∈ Ω⊕𝒟 𝑜𝑟 𝑓, 𝑔 ∈ Ω⊕ �̅�  or a nontrivial 

linear combination off, g belongs to Ω. 
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(b) 𝑇𝑓𝑇𝑔 = 𝑇𝑓𝑔𝒟 𝑖𝑓 and only 𝑖𝑓𝑓 ∈ Ω⊕ �̅�or 𝑔 ∈ Ω⊕𝒟. 

Theorem (1.9)[1]. Let 𝑓, 𝑔 ∈  𝐿∞,1. Then Γ𝑓Γ𝑔 = Γ𝑔Γ𝑓 if and only if there exists a 

constant c such  that 𝑓 − 𝑐𝑔 ∈ Ω⊕𝒟⊕ ℂ. 𝑧̅.  
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Chapter 2 

 A Handy Formula                                                                

   The goal of this chapter is to provide a transparent symbol calculus for the 

Fredholm property and a handy formula for the Fredholm index for operators in 

this algebra.            

Section (2.1): Fredholm Index of Toeplitz Plus Hankel Operators 

Let 1 <  𝑝 <  ∞. For a non-empty subset 𝕀 of the set ℤ of the integers, let 

𝑙𝑝(𝕀) denote the complex Banach space of all sequences𝑥 = (𝑥𝑛)𝑛∈𝕀 of complex 

numbers with norm‖𝑥‖𝑝 = (∑ |𝑥𝑛|
𝑝

𝑛∈𝕀 )
1

𝑝 < ∞ . We consider 𝑙𝑝(𝕀)  as a closed 

subspace of 𝑙𝑝(ℤ) in the natural way and write 𝑃𝕀 for the canonical projection from 

𝑙𝑝(ℤ) onto 𝑙𝑝(𝕀). For 𝕀 = ℤ+, the set of the nonnegative integers, we write 𝑙𝑝 and 

𝑃  instead of 𝑙𝑝(𝕀)  and 𝑃𝕀 , respectively. By 𝐽  we denote the operator on 𝑙𝑝(ℤ) 

acting by (𝐽𝑥)𝑛 ∶=  𝑥−𝑛−1, and we set 𝑄 ∶=  𝐼 − 𝑃. 

For every Banach space 𝑋 , let 𝐿(𝑋) stand for the Banach algebra of all 

bounded linear operators on 𝑋, and write 𝐾(𝑋) for the closed ideal of 𝐿(𝑋) of all 

compact operators. The quotient algebra 𝐿(𝑋)/𝐾(𝑋)  is known as the Calkin 

algebra of 𝑋. Its importance stems from the fact that the invertibility of a coset 𝐴 +

𝐾(𝑋)  of an operator 𝐴 ∈ 𝐿(𝑋)  in this algebra is equivalent to the Fredholm 

property of 𝐴, i.e., to the finite dimensionality of the kernel ker𝐴 = {𝑥 ∈ 𝑋: 𝐴𝑥 =

0}and the cokernel coker𝐴 = 𝑋/im 𝐴 of 𝐴, withim 𝐴 = {𝐴𝑥: 𝑥 ∈ 𝑋} referring to 

the range of 𝐴 . If 𝐴  is a Fredholm operator then the difference ind 𝐴 ∶=

 dimker𝐴 − dim coker𝐴 is known as the Fredholm index of 𝐴. 
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 For the Fredholm property and a formula for the Fredholm index for operators in 

the smallest closed subalgebra of 𝐿(𝑙𝑝) which containsall Toeplitz and Hankel 

operators with piece wise continuous generating function. 

Let 𝕋 be the complex unit circle. For each function 𝑎 ∈ 𝐿∞(𝕋), let (𝑎𝑘)𝑘∈ℤ 

denote the sequence of its Fourier coefficients, 

𝑎𝑘 ∶=
1

2𝜋
∫ 𝑎(𝑒𝑖𝜃)𝑒−𝑖𝑘𝜃  𝑑𝜃.
2𝜋

0

 

The Laurent operator 𝐿(𝑎) associated with 𝑎 ∈ 𝐿∞(𝕋) acts on the space 𝑙0(ℤ) of 

all finitely supported sequences on ℤ  by (𝐿(𝑎)𝑥)𝑘 ∶= ∑ 𝑎𝑘−𝑚𝑥𝑚𝑚∈ℤ . (For 

every𝑘 ∈ ℤ, there are only finitely many non-vanishing summands in this sum.) 

We say that a is a multiplier on 𝑙𝑝(ℤ) if 𝐿(𝑎)𝑥 ∈ 𝑙
𝑝(ℤ) for every 𝑥 ∈ 𝑙0(ℤ) and if 

‖𝐿(𝑎)‖ ∶= sup{‖𝐿(𝑎)𝑥‖𝑝 ∶ 𝑥 ∈ 𝑙
0(ℤ), ‖𝑥‖𝑝 = 1} 

is finite. In this case, 𝐿(𝑎) extends to a bounded linear operator on 𝑙𝑝(ℤ) which we 

denote by 𝐿(𝑎) again. The set 𝑀𝑝 of all multipliers on𝑙𝑝(ℤ) is a Banach algebra 

under the norm ‖𝑎‖𝑀𝑝 ∶= ‖𝐿(𝑎)‖. We let 𝑀〈𝑝〉 stand for 𝑀2 if 𝑝 = 2and for the 

set of all 𝑎 ∈ 𝐿∞(𝕋) which belong to 𝑀𝑟 for all 𝑟 in a certain open neighborhood 

of 𝑝 if 𝑝 ≠ 2. 

It is well known that 𝑀2 = 𝐿∞(𝕋). Moreover, every function a with boundedtotal 

variation Var(𝑎) is in 𝑀𝑝 for every 𝑝, and the Stechkin inequality 

‖𝑎‖𝑀𝑝 ≤ 𝑐𝑝(‖𝑎‖∞ + Var(𝑎)) 

holds with a constant 𝑐𝑝  independent of 𝑎 . In particular, every trigonometric 

polynomial and every piecewise constant function on 𝕋 are multipliers for every 𝑝. 

We denote the closure in𝑀𝑝 of the algebra 𝒫 of all trigonometric polynomials and 
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of the algebra 𝑃ℂ  of all piecewise constant functions by 𝐶𝑝  and 𝑃𝐶𝑝 , 

respectively.Thus, 𝐶𝑝 and 𝑃𝐶𝑝 are closed subalgebras of 𝑀𝑝 for every 𝑝. Note that 

𝐶2 is just the algebra 𝐶(𝕋) of all continuous functions on 𝕋, and 𝑃𝐶2 is the algebra 

𝑃𝐶(𝕋)of all piecewise continuous functions on 𝕋. It is well known that 𝐶𝑝 ⊆

 𝐶(𝕋) and𝐶𝑝 ⊆ 𝑃𝐶𝑝 ⊆ 𝑃𝐶(𝕋) for every 𝑝. In particular, every multiplier 𝑎 ∈ 𝑃𝐶𝑝 

possesses one-sided limits at every point 𝑡 ∈ 𝑇 For definiteness, we agree that 𝕋 is 

oriented counter-clockwise, and we denote the one-sided limit of a at t when 

approaching t from below (from above) by 𝑎(𝑡−) (by 𝑎(𝑡+)). 

Let 𝑎 ∈ 𝑀𝑝. The operators 𝑇(𝑎):= 𝑃𝐿(𝑎)𝑃 and𝐻(𝑎) ∶= 𝑃𝐿(𝑎)𝑄𝐽, thought 

of as acting on im 𝑃 = 𝑙𝑝  are called the Toeplitz and Hankel operator with 

generating function a, respectively. It is well known that ‖𝑇(𝑎)‖ = ‖𝑎‖𝑀𝑝 

and‖𝐻(𝑎)‖ ≤ ‖𝑎‖𝑀𝑝 for every multiplier 𝑎 ∈ 𝑀𝑝. 

For a sub algebra 𝐴 of𝑀𝑝, we let T(𝐴) and TH(𝐴) stand for the smallest closed sub 

algebra of  𝐿(𝑙𝑝)  which contains all operators 𝑇(𝑎)  with 𝑎 ∈ 𝐴  and alloperators 

𝑇(𝑎) + 𝐻(𝑏) with 𝑎, 𝑏 ∈ 𝐴, respectively. We will be mainly concerned with the 

algebras 𝐶𝑝, 𝑃𝐶𝑝, and with their intersections with 𝑀〈𝑝〉, in place of 𝐴. we will state 

a criterion for the Fredholm property of operators in TH(𝑃𝐶𝑝) and derive a formula 

for the Fredholm index of operators 𝑇(𝑎) + 𝐻(𝑏) with 𝑎, 𝑏 ∈ 𝑃𝐶𝑝. 

The study of the Fredholm property of operators in TH(𝑃𝐶𝑝)  has a long and 

involved history. We are going to mention only some of its main stages. 

The Fredholm properties of operators in the algebra T(𝑃𝐶𝑝) are well understood .  

The structure of the algebras TH(𝑃𝐶𝑝) is much more involved than that ofT(𝑃𝐶𝑝). 

For instance, the Calkin image T𝜋(𝑃𝐶) ∶= T(𝑃𝐶)/𝐾(𝑙2)  of T(𝑃𝐶)  is 
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acommutative algebra, whereas that one of TH(𝑃𝐶) is not. The Calkin image of 

TH(𝑃𝐶)  was first described by Power. An alternative approach wasdeveloped 

where it was shown that the algebra TH𝜋(𝑃𝐶) ∶= TH(𝑃𝐶)/𝐾(𝑙2)  possesses a 

matrix-valued Fredholm symbol, We take up the approach in order to study the 

Fredholm properties of operators in TH(𝑃𝐶𝑝)for 𝑝 ≠  2. 

It should be mentioned that the algebras TH(𝑃𝐶𝑝) have close relatives which live 

on other spaces than 𝑙𝑝, such as the Hardy spaces 𝐻𝑝(ℝ) and the Lebesgue spaces 

𝐿𝑝(ℝ+) . The corresponding algebras were examined (with different methods) 

Despite these fairlycomplete results for the Fredholm property, a general, 

transparent and satisfying formula for the Fredholm index of operators in TH(𝑃𝐶𝑝) 

(or on related algebras) was not available until now. Among the particular results 

which hold under special assumptions we would like to emphasize the following 

there is derived an index formula for operators of the form 𝜆𝐼 + 𝐻  where 𝜆 ∈

ℂ and 𝐻 is a Hankel operator on 𝐻𝑝(ℝ). Already earlier, some classes of Wiener-

Hopf plus Hankel operators were studied in connection with diffraction problems. 

Note also that the (very hard) invertibility problem for Toeplitz plus Hankel 

operators is treated. 

Finally we would like to mention that algebras like TH(𝑃𝐶𝑝) can also be viewed of 

as sub algebras of algebras generated by convolution-type operators and Carleman 

shifts changing the orientation. First results in that direction were presented where 

in particular, a matrix-valued Fredholm symbol was constructed. 

We provide a transparent symbol calculus for the Fredholm property as well as a 

handy formula for the Fredholm index for operators in the algebra TH(𝑃𝐶𝑝). The 

techniques developed and used also allow to handle the corresponding questions 

for the related algebrason the spaces 𝐻𝑝(ℝ) and 𝐿𝑝(ℝ+). 
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Section (2.2): The Fredholm Property 

In what follows, we fix 𝑝 ∈ (1,∞)  and consider all operators as acting on 

𝑙𝑝unless stated otherwise. 

 We start with recalling the basic results of the Fredholm theory of operators in the 

algebra T(𝑃𝐶𝑝), which are due Gohberg/Krupnik and Duduchava. The functions 

𝑓±1(𝑡):= 𝑡
±1  are multipliers for every p. It is easy to check that the algebra 

generated by the Toeplitz operators 𝑇(𝑓±1)contains a dense subalgebra of 𝐾(𝑙𝑝). 

Thus, the ideal 𝐾(𝑙𝑝) is contained inT(𝐶𝑝), hence also in T(𝑃𝐶𝑝), and it makes 

sense to consider the quotient algebra T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝). Clearly, if 𝐴 ∈ T(𝑃𝐶𝑝) and 

if the coset 𝐴 + 𝐿(𝑙𝑝) is invertible in T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝), then it is also invertible in the 

Calkin algebra 𝐿(𝑙𝑝)/𝐾(𝑙𝑝), hence A is a Fredholm operator. The more interesting 

question is if the converse holds, i.e. if  the invertibility of 𝐴 + 𝐿(𝑙𝑝) in the Calkin 

algebra implies the invertibilityof 𝐴 + 𝐾(𝑙𝑝) in T(𝑃𝐶𝑝)/𝐾(𝑙𝑝). If this implication 

holds for every 𝐴 ∈ 𝑇(𝑃𝐶𝑝) , one says that T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝)  is inverse closed 

in 𝐿(𝑙𝑝)/𝐾(𝑙𝑝). 

Let ℝ̅ denote the two-point compactification of the real line by the points 

±∞(thus ℝ ̅̅̅is homeomorphic to a closed interval) and let the function 𝜇𝑝: ℝ →

ℂ be defined by 

𝜇𝑝(𝜆) ∶= (1 + coth(𝜋(𝜆 + 𝑖/𝑝)))/2 

if 𝜆 ∈ ℝ and by 𝜇𝑝(−∞) = 0 and 𝜇𝑝(+∞) = 1. Note that when 𝜆 runs from−∞ to 

∞ then 𝜇𝑝(𝜆) runs along a circular arc in ℂwhich joins 0 to 1 and passes through 

the point (1 − 𝑖 cot(𝜋/𝑝))/2 . An easy calculation gives 𝜇𝑝(−𝜆) = 1 − 𝜇𝑞(𝜆) , 

where 1/𝑝 + 1/𝑞 = 1. Thus, for fixed 𝑡 ∈ 𝕋, the values Γ(𝑇(𝑎) + 𝐾(𝑙𝑝))(𝑡, 𝜆) 
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defined in the following Theorem run from 𝑎(𝑡 − 0) to 𝑎(𝑡 + 0) along a circular 

arc when 𝜆 runs from −∞ to ∞. 

Theorem (2.2.1)[2] (a) T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) is a commutative unital Banach algebra. 

(b) The maximal ideal space of T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) is homeomorphic with the cylinder 

𝕋 × ℝ̅, provided with an exotic (non-Euclidean) topology. 

(c) The Gelfand transform Γ:T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝)  → ℂ(𝕋 × ℝ)  of the coset 𝑇(𝑎) +

𝐾(𝑙𝑝) with 𝑎 ∈ 𝑃𝐶𝑝 is 

(𝑇(𝑎) + 𝐾(𝑙𝑝))(𝑡, 𝜆) = 𝑎(𝑡 − 0) (1 − 𝜇𝑞(𝜆)) + 𝑎(𝑡 + 0)𝜇𝑞(𝜆). 

(d) T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) is inverse closed in 𝐿(𝑙𝑝)/𝐾(𝑙𝑝). 

The topology mentioned in assertion (b) will be explicitly described . Note that this 

topology is independent of 𝑝. Since the cosets 𝑇(𝑎) + 𝐾(𝑙𝑝)with 𝑎 ∈ 𝑃𝐶𝑝 generate 

the algebra T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝), the Gelfand transform onT(𝑃𝐶𝑝)/𝐾(𝑙

𝑝) is completely 

described by assertion (𝑐) .Thus, if 𝐴 ∈ T(𝑃𝐶𝑝) ,then the coset 𝐴 + 𝐾(𝑙𝑝)  is 

invertible in T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝)  if and only if the functionΓ(𝐴 + 𝐾(𝑙𝑝))  does not 

vanish on 𝕋 × ℝ̅. Together with assertion (d) this shows that 𝐴 ∈  𝑇(𝑃𝐶𝑝)is a 

Fredholm operator if and only if  Γ(𝐴 +  𝐾(𝑙𝑝)) does not vanish on 𝕋 × ℝ̅. It is 

therefore justified to call the function smb𝑝 𝐴:= Γ(𝐴 + 𝐾(𝑙
𝑝)) the Fredholm 

symbol of 𝐴. 

The index of a Fredholm operator in T(𝑃𝐶𝑝) can be determined my means of its 

Fredholm symbol. First suppose that 𝑎 ∈ 𝑃𝐶𝑝 is a piecewise smooth function with 

only finitely many jumps. Then the range of the function 

Γ(𝑇(𝑎)  +  𝐾(𝑙𝑝))(𝑡, 𝜆)  =  𝑎(𝑡−)(1 − 𝜇𝑞(𝜆)) + 𝑎(𝑡
+)𝜇𝑞)(𝜆) 
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is a closed curve with a natural orientation, which is obtained from the 

(essential)range of a by filling in the circular arcs 

𝐶𝑞(𝑎(𝑡
−), 𝑎(𝑡+)) ∶= {𝑎(𝑡−) (1 − 𝜇𝑞(𝜆)) + 𝑎(𝑡

+)𝜇𝑞)(𝜆) ∶ 𝜆 ∈ ℝ̅} 

at every point t ∈ 𝑇 where a has a jump. (If the function a is continuous at 𝑡,then 

𝐶𝑞(𝑎(𝑡
−), 𝑎(𝑡+))  reduces to the singleton {𝑎(𝑡)} .) If this curve does not pass 

through the origin, then we let wind Γ(𝑇(𝑎) + 𝐾(𝑙𝑝)) denote its winding number 

with respect to the origin, i.e., the integer 1/(2𝜋) times the growth of the argument 

of Γ(𝑇(𝑎) + 𝐾(𝑙𝑝))  when 𝑡  moves along 𝑇  in positive (= counter-

clockwise)direction. If this condition is satisfied then 𝑇(𝑎) is a Fredholm operator, 

and 

ind 𝑇(𝑎) = −windΓ(𝑇(𝑎) + 𝐾(𝑙𝑝)) 

one can extend both the definition of the winding number and the index identity to 

the case of an arbitrary Fredholm operator in T(𝑃𝐶𝑝). One has the following. 

Proposition (2.2.2)[2] Let 𝐴 ∈ T(𝑃𝐶𝑝) be a Fredholm operator. Then 

ind 𝐴 =  −windΓ(𝐴 + 𝐾(𝑙𝑝)). 

We would like to emphasize an important point. The algebra T(𝑃𝐶2)/𝐾(𝑙
2)is a 

commutative 𝐶∗ -algebra, hence the Gelfand transform is an isometric ∗-

isomorphism from T(𝑃𝐶2)/𝐾(𝑙
2)  onto 𝐶(𝕋 × ℝ̅) . In particular, the radical 

ofT(𝑃𝐶2)/𝐾(𝑙
2)  is trivial, and the equality smb2𝐴 = 0  for some operator 𝐴 ∈

𝑇(𝑃𝐶2) implies that A is compact. For general 𝑝 it is not known if the radical of 

T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) is still trivial; it is therefore not known if smb𝑝𝐴 = 0 implies the 

compactness of A. 
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In order to state results on the Fredholm property of operators in the Toeplitz-

Hankel algebra TH (𝑃𝐶𝑝)/ 𝐾(𝑙
𝑝). Let 𝕋+ be the set of all points in 𝕋 with non-

negative imaginary part and set 𝕋+
0 ∶= 𝕋+\{−1, 1}. 

Further let the function 𝜈𝑝 ∶ ℝ̅ → ℂ be defined by 

𝜈𝑝(𝜆) ∶= (2𝑖 sinh(𝜋(𝜆 +  𝑖/𝑝))) − 1 

if 𝜆 ∈ ℝ and by 𝜈𝑝(±∞) = 0. Recall that 1/𝑝 + 1/𝑞 = 1. 

Theorem (2.2.3)[2] (a) Let a, 𝑏 ∈ 𝑃𝐶𝑝 . Then the operator 𝑇(𝑎) + 𝐻(𝑏)  is 

Fredholm ifand only if the matrix 

𝑠𝑚𝑏𝑝 (𝑇(𝑎) + 𝐻(𝑏))(𝑡, 𝜆)

≔ (
𝑎(𝑡+)𝜇𝑞(𝜆) + 𝑎(𝑡

−) (1 − 𝜇𝑞(𝜆)) (𝑏(𝑡+)  − 𝑏(𝑡−))𝜈𝑞(𝜆)

(𝑏(𝑡̅−) − 𝑏(𝑡̅+))𝜈𝑞(𝜆) 𝑎(𝑡̅−) (1 − 𝜇𝑞(𝜆)) + 𝑎(𝑡̅
+)𝜇𝑞(𝜆)

)     (1) 

is invertible for every (𝑡, 𝜆) ∈ 𝕋+
0 × ℝ̅ and if the number 

smb𝑝(𝑇(𝑎) +  𝐻(𝑏))(𝑡, 𝜆 ∶

= 𝑎(𝑡+)𝜇𝑞(𝜆) + 𝑎(𝑡
−) (1 − 𝜇𝑞(𝜆)) + 𝑖𝑡 (𝑏(𝑡

+) − 𝑏(𝑡−))𝜈𝑞(𝜆)   (2) 

is not zero for every (𝑡, 𝜆) ∈ {±1} × ℝ̅. 

(b) The mapping smb𝑝  defined in assertion (a) extends to a continuous algebra 

homomorphism from TH(𝑃𝐶𝑝) to the algebra ℱ of all bounded functions on 𝕋+ ×

ℝ̅ with values in 𝐶2×2  on 𝕋+
0 × ℝ̅  and with values in ℂ  on {±1} × ℝ̅ . 

Moreover,there is a constant 𝑀 such that 

‖smb𝑝𝐴‖ ∶= sup
(𝑡,𝜆)∈𝕋+×ℝ

‖smb𝑝 𝐴(𝑡, 𝜆)‖∞ ≤ 𝑀 inf
𝐾∈𝐾

(𝑙𝑝) ‖𝐴 +  𝐾‖          (3) 
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for every operator 𝐴 ∈ TH(𝑃𝐶𝑝). Here, ‖𝐵‖∞ refers to the spectral norm of the 

matrix B. 

(c) An operator 𝐴 ∈ TH(𝑃𝐶𝑝) has the Fredholm property if and only if the function 

smb𝑝𝐴 is invertible in ℱ. 

(d) The algebra TH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) is inverse closed in 𝐿(𝑙𝑝)/𝐾(𝑙𝑝). 

Before going into the details of the proof, we remark two consequences of 

Theorem (2.2). 

Corollary (2.2.4)[2] Let 𝑎, 𝑏 ∈ 𝑃𝐶𝑝 and 𝑇(𝑎) + 𝐻(𝑏) a Fredholm operator on 𝑙𝑝. 

Then(a) the function a is invertible in 𝑃𝐶𝑝, and(b) if b is continuous at ±1, then 

𝑇(𝑎) − 𝐻(𝑏) is a Fredholm operator on 𝑙𝑝. 

Proof. If 𝑇(𝑎) + 𝐻(𝑏) is a Fredholm operator, then the diagonal matrices 

smbp(𝑇(𝑎) + 𝐻(𝑏))(𝑡, ±∞) = diag(𝑎(𝑡
±), 𝑎(𝑡±))are invertible for every 𝑡 ∈ 𝕋+

0  

and the numbers 𝑠𝑚𝑏𝑝  (𝑇(𝑎) +  𝐻(𝑏))(1,±∞) = 𝑎(1±) and smb𝑝(𝑇(𝑎) +

𝐻(𝑏))(−1,±∞) =  𝑎((−1)±)are not zero by assertion(a) of Theorem (2.2.3). 

Hence, a is invertible as an element of 𝑃𝐶. Since the algebra𝑃𝐶𝑝is inverse closed 

in 𝑃𝐶 by Proposition (2.2.2) in [2], assertion (a) follows. The proof of assertion (b) 

is also immediate from the form of the symbol described in Theorem (2.2.3) 

(a).We devoted to the proof of Theorem (2.2.3). We will need two auxiliary 

ingredients which we are going to recall first. Let 𝒜 be a unital Banach algebra. 

The center of 𝒜 is the set of all elements 𝑎 ∈ 𝒜 such that 𝑎𝑏 =  𝑏𝑎 for all 𝑏 ∈ 𝒜. 

A central subalgebra of 𝒜  is a closed subalgebra 𝒞  of the center ofA which 

contains the identity element. Thus, 𝒞 is a commutative Banach algebra with 

compact maximal ideal space 𝑀(𝒞). For each maximal ideal 𝑥 of 𝒞, consider the 



27 
 

smallest closed two-sided ideal I𝑥 of 𝒜 which contains 𝑥, and letΦ𝑥  refer to the 

canonical homomorphism from 𝒜 onto the quotient algebra 𝒜/ℐ𝑥. 

In contrast to the commutative setting, where 𝐶/𝑥 ≅ ℂ  for all 𝑥 ∈ 𝑀(𝐶) , the 

quotient algebras 𝒜/ℐ𝑥 will depend on 𝑥 ∈ 𝑀(𝐶) in general. In particular, it can 

happen that 𝐼𝑥 = 𝒜 for certain maximal ideals 𝑥. In this case we define thatΦ𝑥(𝑎) 

is invertible in 𝒜/ℐ𝑥 for every 𝑎 ∈ 𝒜. 

Theorem (2.2.5)[2] (Allan’s local principle) Let 𝒞 be a central subalgebra of the 

unital Banach algebra 𝒜. Then an element 𝑎 ∈ 𝒜 is invertible if and only if the 

cosets Φ𝑥(𝑎) are invertible in 𝒜/ℐ𝑥 for each 𝑥 ∈ 𝑀(𝐶). 

Here is the second ingredient. Recall that an idempotent is an element 𝑝 of an 

algebra such that 𝑝2 = 𝑝. 

Theorem (2.2.6)[2] (Two idempotents Theorem) Let 𝒜 be a Banach algebra with 

identity element 𝑒, let 𝑝 and 𝑞 be idempotents in 𝒜, and let ℬ denote the smallest 

closed sub algebra of 𝒜 which contains 𝑝, 𝑞 and 𝑒. Suppose that 0 and 1 belong to 

the spectrum 𝜎ℬ(𝑝𝑞𝑝)  of 𝑝𝑞𝑝  in ℬ  and that 0 and 1 are cluster points of that 

spectrum. Then 

(a) for each point 𝑥 ∈ 𝜎ℬ(𝑝𝑞𝑝), there is a continuous algebra homomorphism Φ𝑥 ∶

ℬ → ℂ2×2 which acts at the generators of ℬ by 

Φ𝑥(𝑒) = (
1 0
0 1

),   Φ𝑥(𝑝) = (
1 0
0 0

) , Φ𝑥(𝑞) = (
𝑥 √𝑥(1 − 𝑥)

√𝑥(1 − 𝑥) 1 − 𝑥
) 

Where √𝑥(1 −  𝑥) denotes any complex number with (√𝑥(1 −  𝑥))
2
=  𝑥(1 −

𝑥). 
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(b) an element 𝑎 ∈ ℬ  is invertible in ℬ  if and only if the matrices Φ𝑥(𝑎)  are 

invertible for every 𝑥 ∈ 𝜎ℬ(𝑝𝑞𝑝). 

(c) if 𝜎ℬ(𝑝𝑞𝑝) = 𝜎𝒜(𝑝𝑞𝑝), then ℬ is inverse closed in 𝒜. 

We proceed with the proof of Theorem (2.2.3), which we split into several steps. 

Step 1: Localization. For every operator  𝐴 ∈ 𝐿(𝑙𝑝), we denote its coset 

𝐴 + 𝐾(𝑙𝑝)  in the Calkin algebra by 𝐴𝜋 , and for every multiplier 𝑎 ∈ 𝑀𝑝 , we 

put�̃�(𝑡) ∶= 𝑎(1/𝑡). The identities 

𝑇(𝑎𝑏) = 𝑇(𝑎)𝑇(𝑏) + 𝐻(𝑎)𝐻(�̃�) and  𝐻(𝑎𝑏) =  𝑇(𝑎)𝐻(𝑏) + 𝐻(𝑎)𝑇(�̃�),          (4) 

Which hold for arbitrary 𝑎, 𝑏 ∈ 𝑀𝑝, together with the compactness of the Hankel 

operators 𝐻(𝑐)  for 𝑐 ∈ 𝐶𝑝  show that the set 𝐶𝑝  of all cosets 𝑇(𝑐)𝜋  with 𝑐 ∈ 𝐶𝑝 

and 𝑐 = �̃�  forms a central subalgebra of the algebra TH(𝑀𝑝)/𝐾(𝑙𝑝)  and, in 

particular,of the algebra TH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) . One can, thus, reify Allan’s local 

principle withTH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) and 𝐶𝑝 in place of 𝒜 and 𝒞, respectively. It is not 

hard tosee that the maximal ideal space of 𝐶𝑝  is homeomorphic to the arc 𝕋+ , 

with 𝑡 ∈ 𝕋+ corresponding to the maximal ideal {𝑐 ∈ 𝐶𝑝 ∶  𝑐(𝑡) = 0} of 𝐶𝑝. We let 

𝒥𝑡denote the smallest closed ideal of 𝑇𝐻(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) which contains the maximal 

ideal 𝑡  and write 𝐴𝑡
𝜋 for the coset 𝐴𝜋 + 𝒥𝑡of 𝐴 ∈ TH(𝑃𝐶𝑝). Instead of 𝑇(𝑎)𝑡

𝜋and 

𝐻(𝑏)𝑡
𝜋 we often write 𝑇𝑡

𝜋(𝑎)  and 𝐻𝑡
𝜋(𝑏) , respectively, and the local quotient 

algebra (TH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝)) /ℐ𝑡  is denoted by TH𝑡

𝜋(𝑃𝐶𝑝)  therefore. By Allan’s 

local principle, we then have 

𝜎TH = ∪𝑡∈𝕋+ 𝜎TH𝑡𝜋(𝑃𝐶𝑝)(𝐴𝑡
𝜋)                                 (5) 

for every 𝐴 ∈ TH(𝑃𝐶𝑝). 
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Step 2: Local equivalence of multipliers. Let 𝑎, 𝑏 ∈ 𝑃𝐶𝑝and 𝑡 ∈ 𝕋+. We show that 

if 𝑎(𝑡±) = 𝑏(𝑡±) and 𝑎(𝑡̅±)  = 𝑏(𝑡̅±), then 𝑇𝑡
𝜋(𝑎) =  𝑇𝑡

𝜋(𝑏) and 𝐻𝑡
𝜋(𝑎) = 𝐻𝑡

𝜋(𝑏). 

This fact will be used in what follows in order to replace multipliers by locally 

equivalent ones. It is clearly sufficient to prove that if 𝑎 ∈ 𝑃𝐶𝑝 satisfies𝑎(𝑡̅±) =

𝑎(𝑡̅±) = 0, then 𝑇𝜋(𝑎), 𝐻𝜋(𝑎) ∈ 𝒥𝑡. We will give this proof for𝑡 ∈ 𝕋0
+;the proof 

for for 𝑡 =  ±1 is similar. 

Given 𝜀 > 0, let 𝑓 ∈  𝑃ℂ such that ‖𝑎 − 𝑓‖𝑀𝑝 < 𝜀 . Then there is an open arc𝑈 ∶

= (𝑒−𝑖𝛿  𝑡, 𝑒𝑖𝛿𝑡) ⊂ 𝕋+  such that |𝑎(𝑠)| < 𝜀  almost everywhere on 𝑈 ∪ �̅�  and 

suchthat 𝑓 has at most one discontinuity in each of  𝑈 and  �̅�. Then |𝑓(𝑠)| < 2𝜀 

for ∈ 𝑈 ∪ �̅�. Now choose a real-valued function 𝜑0 ∈ 𝐶
∞(𝕋) such that  𝜑0(𝑡) =

1,the support of 𝜑0 is contained in 𝑈, and 𝜑0 is monotonously increasing on thearc 

(𝑒−𝑖𝛿𝑡, 𝑡) and monotonously decreasing on (𝑡, 𝑒𝑖𝛿𝑡). Set 𝜑 ∶= 𝜑0 + 𝜑0̃. Then 

𝜑 = �̃�, and 

𝑇𝜋(𝑓) − 𝑇𝜋(𝑓𝜑) = 𝑇𝜋(𝑓(1 −  𝜑)) = 𝑇𝜋(𝑓)𝑇𝜋(1 −  𝜑) ∈ 𝒥𝑡 , 

𝐻𝜋(𝑓) − 𝐻𝜋(𝑓𝜑) = 𝐻𝜋(𝑓(1 − 𝜑)) = 𝐻𝜋(𝑓)𝑇𝜋(1 − 𝜑) ∈ 𝒥𝑡 . 

Since ‖𝑓𝜑‖∞ < 2𝜀  andVar(𝑓𝜑) < 8ε, we conclude that ‖𝑓𝜑‖𝑀𝑝 < 10𝑐𝑝𝜀  from 

Stechkin’s inequality. Thus, ‖𝑇𝜋(𝑓′)‖𝑘 <  10𝑐𝑝𝜀 and ‖𝐻𝜋(𝑓𝜑)‖ < 10𝑐𝑝𝜀, with 

aconstant 𝑐𝑝 depending on 𝑝 only. Thus, 𝑇^𝜋(𝑎) differs from the element 𝑇𝜋(𝑓) −

𝑇𝜋(𝑓𝜑) ∈ 𝒥𝑡  by the element 𝑇𝜋(𝑎 − 𝑓) + 𝑇𝜋(𝑓𝜑) , which has a norm less 

than(1 + 10𝑐𝑝)𝜀. Since 𝜀 > 0 is arbitrary and 𝒥𝑡 is closed, this implies 𝑇𝜋(𝑎) ∈

𝒥𝑡. 

Analogously, 𝐻𝜋(𝑎) ∈ 𝒥𝑡. 



30 
 

Step 3: The local algebras at 𝑡 ∈ 𝕋0
+. We start with describing the local algebras 

TH𝑡
𝜋(𝑃𝐶𝑝) at point  𝑡 ∈ 𝕋0

+. Let 𝒳𝑡 denote the characteristic function of the arc in 

𝕋 which connects 𝑡 with 𝑡̅ and runs through the point -1. Clearly , 𝒳𝑡 ∈ 𝑃𝐶𝑝 . The 

crucial observation, which is a simple consequence of the identities(4), is that the 

operator 𝑇(𝒳𝑡) + 𝐻(𝒳𝑡) is an idempotent. Further, let 𝜑𝑡 ∈ 𝐶𝑝beany multiplier 

such that 0 ≤  𝜑𝑡 ≤  1 ,𝜑𝑡(𝑡) = 1, 𝜑(𝑡̅) = 0  and 𝜑𝑡 + �̃�𝑡 = 1.  Againby (4), the 

coset 𝑇𝑡
𝜋(𝜑𝑡) is an idempotent. 

We claim that the idempotents 𝑝𝑡: = 𝑇𝑡
𝜋(𝜑𝑡) and 𝑞𝑡: = 𝑇𝑡

𝜋(𝒳𝑡) + 𝐻𝑡
𝜋(𝒳𝑡)together 

with the identity element 𝑒:= 𝐼𝑡
𝜋 generate the local algebra TH𝑡

𝜋(𝑃𝐶𝑝). 

Let 𝑎, 𝑏 ∈ 𝑃𝐶𝑝. Then, using step 2, 

𝑇𝑡
𝜋(𝑎) = 𝑎(𝑡+)𝑇𝑡

𝜋 (𝒳𝑡𝜑𝑡) + 𝑎(𝑡
−)𝑇𝑡

𝜋((1 − 𝒳𝑡)𝜑𝑡) + 𝑎(𝑡̅
−)𝑇𝑡

𝜋(𝒳𝑡(1 − 𝜑𝑡))

+ 𝑎(𝑡̅+)𝑇𝑡
𝜋((1 − 𝒳𝑡)(1 − 𝜑𝑡)).                                                              (6) 

It is not hard to check that 

𝑇𝑡
𝜋(𝒳𝑡𝜑𝑡) = 𝑝𝑡𝑞𝑡𝑝𝑡 , 

𝑇𝑡
𝜋 ((1 − 𝒳𝑡)𝜑𝑡) = 𝑝𝑡(𝑒 − 𝑞𝑡)𝑝𝑡 , 

𝑇𝑡
𝜋(𝒳𝑡(1 − 𝜑𝑡)) = (𝑒 − 𝑝𝑡)𝑞𝑡(𝑒 − 𝑝𝑡), 

𝑇𝑡
𝜋((1 −  𝒳𝑡)(1 − 𝜑𝑡)) = (𝑒 − 𝑝𝑡)(𝑒 − 𝑞𝑡)(𝑒 − 𝑝𝑡).                      (7) 

Let us verify the first of these identities, for example. By definition, 

𝑝𝑡𝑞𝑡𝑝𝑡 = 𝑇𝑡
𝜋(𝜑𝑡)𝑇𝑡

𝜋(𝒳𝑡)𝑇𝑡
𝜋 (𝜑𝑡) + 𝑇𝑡

𝜋(𝜑𝑡)𝐻𝑡
𝜋(𝒳𝑡)𝑇𝑡

𝜋(𝜑𝑡). 

Since 𝑇(𝜑𝑡)  commutes with 𝑇(𝒳𝑡)  modulo compact operators and 𝐻(�̃�𝑡)  is 

compact, we can use the identities (4) to conclude 
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𝑇𝑡
𝜋(𝜑𝑡)𝑇𝑡

𝜋(𝒳𝑡)𝑇𝑡
𝜋(𝜑𝑡) = 𝑇𝑡

𝜋(𝒳𝑡)𝑇𝑡
𝜋(𝜑𝑡) = 𝑇𝑡

𝜋(𝒳𝑡𝜑𝑡). 

Further, due to the compactness of 𝐻(𝜑𝑡) and 𝐻(�̃�𝑡), 

𝑇𝑡
𝜋(𝜑𝑡)𝐻𝑡

𝜋(𝒳𝑡)𝑇𝑡
𝜋(𝜑𝑡) = 𝐻𝑡

𝜋(𝜑𝑡𝒳𝑡)𝑇𝑡
𝜋(𝜑𝑡) = 𝐻𝑡

𝜋(𝜑𝑡𝒳𝑡�̃�𝑡). 

Since 𝜑𝑡𝒳𝑡�̃�𝑡 is a continuous function, 𝐻𝑡
𝜋(𝜑𝑡𝒳𝑡�̃�𝑡) = 0. This gives the first of 

the identities (7). The others follow in a similar way. Thus, (6) and (7) imply that 

𝑇𝑡
𝜋(𝑎) belong to the algebra generated by 𝑒, 𝑝𝑡and 𝑞𝑡. Similarly, we write 

𝐻𝑡
𝜋(𝑏) = 𝑏(𝑡+)𝐻𝑡

𝜋(𝒳𝑡𝜑𝑡) + 𝑏(𝑡
−)𝐻𝑡

𝜋((1 − 𝒳𝑡)𝜑𝑡) +  𝑏(𝑡̅
−)𝐻𝑡

𝜋(𝒳𝑡(1 − 𝜑𝑡))

+  𝑏(𝑡̅+)𝐻𝑡
𝜋((1 − 𝒳𝑡)(1 − 𝜑𝑡))                                                              (8) 

and use the identities 

𝐻𝑡
𝜋(𝒳𝑡𝜑𝑡) = 𝑝𝑡𝑞𝑡(𝑒 − 𝑝𝑡), 

𝐻𝑡
𝜋((1 − 𝒳𝑡)𝜑𝑡) = −𝑝𝑡𝑞𝑡(𝑒 − 𝑝𝑡), 

𝐻𝑡
𝜋(𝒳𝑡(1 − 𝜑𝑡)) = (𝑒 − 𝑝𝑡)𝑞𝑡𝑝𝑡 , 

𝐻𝑡
𝜋((1 − 𝒳𝑡)(1 − 𝜑𝑡)) = −(𝑒 − 𝑝𝑡)𝑞𝑡𝑝𝑡                                  (9) 

to conclude that 𝐻𝑡
𝜋(𝑏) also belongs to the algebra generated by 𝑒, 𝑝𝑡 and 𝑞𝑡.Thus, 

the algebra TH𝑡
𝜋(𝑃𝐶𝑝) is subject to the two idempotent Theorem. 

In order to apply this Theorem we have to determine the spectrum of the coset 

 𝑝𝑡𝑞𝑡𝑝𝑡 = 𝑇𝑡
𝜋(𝒳𝑡𝜑𝑡) in that algebra. We claim that 

𝜎TH𝑡𝜋(𝑃𝐶𝑝)(𝑇𝑡
𝜋(𝒳𝑡𝜑𝑡)) = {𝜇𝑞(𝜆) ∶ 𝜆 ∈ ℝ̅}                              (10) 

with 1/𝑝 +  1/𝑞 =  1. Let 𝑎𝑡 ∈ 𝑃𝐶𝑝 be a multiplier with the following properties: 

(a) 𝑎𝑡is continuous on 𝕋 \ {𝑡} and has a jump at 𝑡 ∈  𝕋. 
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(b) 𝑎𝑡(𝑡
+) = 𝒳𝑡(𝑡

+) = 1 and 𝑎𝑡(𝑡
−) = 𝒳𝑡(𝑡

−) = 0. 

(c) 𝑎𝑡 takes values in {𝜇𝑞(𝜆) ∶ 𝜆 ∈ ℝ̅} only. 

(d) 𝑎𝑡 is zero on the arc joining −𝑡 to 𝑡 which contains the point 1. 

Then, by Theorem (2.2.1), the essential spectrum of the Toeplitz operator 𝑇(𝑎𝑡) in 

eachof the algebras 𝐿(𝑙𝑝)/𝐾(𝑙𝑝) and 𝑇(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) is equal to the arc {𝜇𝑞(𝜆) ∶

𝜆 ∈ ℝ̅}. 

Hence, the essential spectrum of 𝑇(𝑎𝑡) , now considered as an element of the 

algebra TH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝), is also equal to this arc. Hence, 

𝜎TH𝑡𝜋(𝑃𝐶𝑝)(𝑇𝑡
𝜋(𝑎𝑡)) ⊆ {𝜇𝑞(𝜆): 𝜆 ∈ ℝ̅} 

by Allan’s local principle. Since 𝑇𝑡
𝜋(𝑎𝑡) = 𝑇𝑡

𝜋(𝒳𝑡𝜑𝑡), this settles the inclusion ⊆ 

in (10). For the reverse inclusion, let 𝑏𝑡 ∈ 𝑃𝐶𝑝 be a multiplier with the following 

properties: 

(a) 𝑏𝑡 is continuous on 𝕋\{𝑡} and has a jump at 𝑡 ∈ 𝕋. 

(b) 𝑏𝑡(𝑡
±)  = 𝒳𝑡(𝑡

±). 

(c) 𝑏𝑡  takes values not in {𝜇𝑞(𝜆) ∶ 𝜆 ∈ ℝ̅}  on the arc joining −𝑡  to 𝑡  which 

contains the point −1. 

(d) 𝑏𝑡 is zero on the arc joining −𝑡 to 𝑡 which contains the point 1. 

Then, again by Theorem (2.2.1), the essential spectrum of the Toeplitz operator 

𝑇(𝑏𝑡)in each of the algebras 𝐿(𝑙𝑝)/𝐾(𝑙𝑝) and T(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) is equal to the union 

of the arc {𝜇𝑞(𝜆) ∶ 𝜆 ∈ ℝ̅} and the range of 𝑏𝑡. Hence, the essential spectrum of 
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 𝑇(𝑏𝑡), now considered as an element of the algebra  TH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝), is also equal 

to this union. Since 𝑏𝑡 is continuous on 𝕋 \ {𝑡} by property (a), we have 

𝜎TH𝑠𝜋(𝑃𝐶𝑝)(𝑇𝑠
𝜋(𝑏𝑡)) = {𝑏𝑡(𝑠), 𝑏𝑡(�̅�)} 

for 𝑠 ∈ 𝕋+
0  \{𝑡}. Since the points 𝑏𝑡(𝑠) and 𝑏𝑡(�̅�) do not belong to {𝜇𝑞(𝜆): 𝜆 ∈ ℝ} 

by property (c), we conclude that the open arc {𝜇𝑞(𝜆): 𝜆 ∈ ℝ} is contained inthe 

local spectrum of 𝑇(𝑏𝑡) at 𝑡. Since spectra are closed, this implies 

{𝜇𝑞(𝜆): 𝜆 ∈ ℝ̅} ⊆ 𝜎TH𝑡𝜋(𝑃𝐶𝑝)(𝑇𝑡
𝜋(𝑏𝑡)). 

Since  𝑇𝑡
𝜋(𝑏𝑡) = 𝑇𝑡

𝜋(𝒳𝑡𝜑𝑡) by property (b), this settles the inclusion ⊇ in (10). 

Since 𝜈𝑞(𝜆)
2 = 𝜇𝑞(𝜆) (1 − 𝜇𝑞(𝜆)) , we can choose √𝜇𝑞(𝜆) (1 − 𝜇𝑞(𝜆)) =

𝜈𝑞(𝜆). 

With this choice and identities (6) – (9) it becomes evident that the two 

idempotents Theorem associates with the coset 𝑇𝑡
𝜋(𝑎) + 𝐻𝑡

𝜋(𝑏) the matrix function 

𝜆 → (
𝑎(𝑡+)𝜇𝑞(𝜆) + 𝑎(𝑡

−)(1 − 𝜇𝑞(𝜆)) (𝑏(𝑡+) − 𝑏(𝑡−))𝜈𝑞(𝜆)

(𝑏(𝑡̅−) − 𝑏(𝑡̅+))𝜈𝑞(𝜆) 𝑎(𝑡̅−) (1 − 𝜇𝑞(𝜆)) + 𝑎(𝑡̅
+)𝜇𝑞(𝜆)

) 

on ℝ̅. 

Step 4: The local algebra at 1 ∈ 𝕋+ . Next we are going to consider the local 

algebra TH1
𝜋(𝑃𝐶𝑝) at the fixed point 1 of the mapping 𝑡 →  𝑡̅. Let 𝑓 ∶ 𝕋 → ℂdenote 

the function 𝑒𝑖𝑠 →  1 − 𝑠/𝜋 where 𝑠 ∈ [0, 2𝜋). This function belongs to𝑃𝐶𝑝, and it 

has its only jump at the point 1 ∈ 𝕋 where 𝑓(1±) = ±1. Using ideas, it was shown 

that the Hankel operator𝐻(𝑓)belongs to the Toeplitz algebra T(𝑃𝐶𝑝) and that its 

essential spectrum is given by 
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𝜎𝑒𝑠𝑠(𝐻(𝑓)) = {2𝑖 𝜈𝑞(𝜆): 𝜆 ∈ ℝ̅}.                                     (11) 

(in fact, this identity was derived  with p in place of q, which makes no difference 

since 𝜈𝑝(−𝜆) = 𝜈𝑞(𝜆) for every 𝜆.) Let 𝜒+ denote the characteristic function of the 

upper half-circle 𝕋+ . Since every coset 𝑇1
𝜋 (𝑎)  with 𝑎 ∈ 𝑃𝐶𝑝  is a linear 

combination of the cosets 𝐼1
𝜋  and 𝑇1

𝜋(𝒳+) and every coset 𝐻1
𝜋(𝑏) is amultiple of 

the coset 𝐻1
𝜋(𝑓) , the local algebra TH1

𝜋(𝑃𝐶𝑝)  is singly generated (as aunital 

algebra) by the coset 𝑇1
𝜋(𝒳+). In particular, TH1

𝜋(𝑃𝐶𝑝) is a commutative Banach 

algebra, and its maximal ideal space is homeomorphic to the spectrum of its 

generating element. Similar to the proof of (10) one can show that 

𝜎TH1𝜋(𝑃𝐶𝑝)(𝑇𝑡
𝜋(𝒳+)) = {𝜇𝑞(𝜆): 𝜆 ∈ ℝ̅}                             (12) 

 We identify the maximal ideal space of the algebraTH1
𝜋(𝑃𝐶𝑝)  with ℝ̅ . The 

Gelfand transform of 𝑇𝑡
𝜋(𝒳+)  is then given by 𝜆 →  𝜇𝑞(𝜆) due to (12). Let ℎ 

denote the Gelfand transform of 𝐻1
𝜋(𝑓). From (4) we obtain 

𝐻1
𝜋(𝑓)2 = 𝑇1

𝜋(𝑓 𝑓) − 𝑇1
𝜋(𝑓)𝑇1

𝜋(𝑓). 

The function 𝑓𝑓is continuous at 1 ∈ 𝕋 and has the value −1 there, and the function 

𝑓 + 𝑓 is continuous at 1 ∈ 𝕋 and has the value 0 there. Thus, 

𝐻1
𝜋(𝑓)2 = −𝐼1

𝜋 + 𝑇1
𝜋(𝑓)2. 

Since 𝑇1
𝜋(𝑓) = 𝑇1

𝜋(2𝒳+  − 1) = 2𝑇1
𝜋 (𝒳+) − 𝐼1

𝜋 we conclude that 

ℎ(𝜆)2 = (2𝜇𝑞(𝜆) − 1)
2
− 1 = (sinh(𝜋(𝜆 + 𝑖/𝑞))) − 2 

if 𝜆 ∈ ℝ and by ℎ(±∞) = 0. By (11), this equality necessarily implies that 

ℎ(𝜆)  =  (sinh(𝜋(𝜆 +  𝑖/𝑞))) − 1 =   2𝑖 𝜈𝑞(𝜆) 
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if 𝜆 ∈ ℝ  and ℎ(±∞) = 0 . Combining these results we find that the Gelfand 

transform of 𝑇1
𝜋(𝑎) + 𝐻1

𝜋(𝑏) is the function 

𝜆 →  𝑎(1+)𝜇𝑞(𝜆) + 𝑎(1
−) (1 − 𝜇𝑞(𝜆)) + 𝑖 (𝑏(1

+) − 𝑏(1−))𝜈𝑞(𝜆). 

Step 5: The local algebra at −1 ∈ 𝕋+ . It remains to examine the local 

algebra TH−1
𝜋 (𝑃𝐶𝑝)  at the point −1. Let Λ ∶ 𝑙2  →  𝑙2  denote the mapping 

(𝑥𝑛)𝑛≥0  → 1((−1)𝑛𝑥𝑛)𝑛≥0 . Clearly, Λ−1  = 𝛬 , and one easily checks (perhaps 

most easily onthe level of the matrix entries, which are Fourier coefficients) that 

Λ−1𝑇(𝑎)Λ =  𝑇(�̂�) andΛ−1𝐻(𝑎)Λ = −𝐻(�̂�) 

for 𝑎 ∈  𝑃𝐶𝑝 , where �̂�(𝑡) ∶= 𝑎(−𝑡) . Thus, the mapping 𝐴 → Λ−1𝐴Λ is an 

automorphism of the algebra TH(𝑃𝐶𝑝), which maps compact operators to compact 

operators and induces, thus, an automorphism of the algebra TH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝). The 

latter maps the local ideal at 1 to the local ideal at −1 and vice versa and 

induces,thus, an isomorphism between the local algebras TH1
𝜋(𝑃𝐶𝑝)  and 

TH−1
𝜋  (𝑃𝐶𝑝) ,which sends 𝑇1

𝜋(𝒳+) to 𝑇−1
𝜋 (1 − 𝒳+)  and 𝐻1

𝜋 (𝒳+)  to −𝐻−1
𝜋 (1 −

𝒳+) =  𝐻−1
𝜋 (𝒳_+),respectively. 

Step 6: From local to global invertibility. We have identified the right-handsides of 

(1) and (2) as the functions which are locally associated with the operator𝑇(𝑎)  +

 𝐻(𝑏) via the two idempotents Theorem and via Gelfand theory for commutative 

Banach algebras, respectively. It follows from the two idempotents Theorem and 

from Gelfand theory that the so-defined mappings smb𝑝(𝑡, 𝜆)  extendto a 

continuous homomorphism from TH(𝑃𝐶𝑝)  to ℂ2×2 or ℂ , respectively,which 

combine to a continuous homomorphism from TH(𝑃𝐶𝑝) to the algebra F. Allan’s 

local principle then implies that the coset 𝐴 +  𝐾(𝑙𝑝) of an operator𝐴 ∈ TH(𝑃𝐶𝑝) 
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is invertible in TH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) if and only if its symbol does notvanish. The proof 

of estimate (3) will base on Mellin homogenization arguments. 

Step 7: Inverse closedness. It remains to show that TH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) is an inverse 

closed subalgebra of the Calkin algebra 𝐿(𝑙𝑝)/𝐾(𝑙𝑝). We shall prove this fact by 

using a thin spectra argument as follows: If 𝒜 is a unital closed subalgebra of a 

unital Banach algebra ℬ, and if the spectrum in 𝒜 of every element in a dense 

subset of 𝒜 is thin, i.e. if its interior with respect to the topology of ℂ is empty,then 

𝒜 is inverse closed in ℬ.  

Let 𝒜0 be the set of all operators of the form 

𝐴 ∶=∑∏(𝑇(𝑎𝑖𝑗) + 𝐻(𝑏𝑖𝑗))with𝐴𝑖𝑗  , 𝑏𝑖𝑗 ∈ 𝑃ℂ

𝑘

𝑗=1

𝑙

𝑖=1

,                 (13) 

and write 𝜎𝑒𝑠𝑠
TH  (𝐴) for the spectrum of A in TH(𝑃𝐶𝑝)/𝐾(𝑙

𝑝 ). Then 𝒜0/𝐾(𝑙
𝑝) 

isdense in TH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝), and the assertion will follow once we have shown 

thatTH(𝑃𝐶𝑝)/𝐾(𝑙
𝑝) is thin for every 𝐴 ∈ 𝒜0. 

Given 𝐴 of the form (13), let Ω denote the set of all discontinuities of the 

functions 𝑎𝑖𝑗 and 𝑏𝑖𝑗  , and put Ω̃: =  (Ω ∪ Ω̅ )  ∩  𝕋+ . Clearly, �̃� is a finite set. 

Bywhat we have shown above, 

𝜎𝑒𝑠𝑠
𝑇𝐻(𝐴) = ∪(𝑡,𝜆)∈𝕋+×ℝ̅  𝜎 (smb𝑝(𝐴)(𝑡, 𝜆)) 

Where 𝜎(𝐵) stands for the spectrum (= set of the eigenvalues) of the matrix B.We 

write𝜎𝑒𝑠𝑠
𝑇𝐻(𝐴) as∑1 ∪ ∑2 ∪ ∑3  where 

Σ1 ∶= ∪(𝑡,𝜆)∈{−1,1}×ℝ̅  𝜎 (smb𝑝(𝐴)(𝑡, 𝜆)), 
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Σ2 ∶= ∪(𝑡,𝜆)∈(𝕋+0 /Ω̃)×ℝ̅  𝜎 (smb𝑝(𝐴)(𝑡, 𝜆)), 

Σ3 ∶= ∪(𝑡,𝜆)∈(Ω̃\{−1,1})×ℝ̅  𝜎 (smb𝑝(𝐴)(𝑡, 𝜆)). 

It is clear that Σ1 is a set of measure zero. It is also clear that each set 

Σ2,𝑡 ∶= ∪𝜆∈ℝ̅  𝜎(smb𝑝 (𝐴)(𝑡, 𝜆)) with 𝑡 ∈ 𝕋+
0  \Ω̃ 

has measure zero. Since the functions aij and bij are piecewise constant, the 

mapping 𝑡 →  Σ2,𝑡 is constant on each connected component of 𝕋+
0  \Ω ̃, and the 

number of components is finite. Thus, Σ2  is actually a finite union of sets of 

measure zero. Since �̃�is finite, it remains to show that each of the sets 

Σ3,𝑡 ∶= ∪ _(𝜆 ∈ ℝ̅) 𝜎(smb𝑝 (𝐴)(𝑡, 𝜆)) 𝑤𝑖𝑡ℎ 𝑡 ∈ Ω̃\ {−1, 1} 

has measure zero. For this goal it is clearly sufficient to show that each set 

Σ3,𝑡
0 ∶= ∪𝜆∈ℝ̅  𝜎(smb𝑝 (𝐴)(𝑡, 𝜆)) 𝑤𝑖𝑡ℎ 𝑡 ∈ �̃�\ {−1, 1} 

has measure zero. Let 𝑡 ∈ Ω̃\ {−1, 1} , and write smb𝑝 (𝐴)(𝑡, 𝜆)  as 

(𝑐𝑖𝑗(𝜆))
𝑖,𝑗=1

2
.The eigenvalues of this matrix are 𝑠±(𝜆) = (𝑐11(𝜆) + 𝑐22(𝜆))/2 ±

√𝑟(𝜆)where 

𝑟(𝜆)  =  (𝑎11(𝜆) + 𝑎22(𝜆))
2
/4 − (𝑎11(𝜆)𝑎22(𝜆) − 𝑎12(𝜆)𝑎21(𝜆)) 

and where√𝑟(𝜆) is any complex number the square of which is 𝑟(𝜆). Since𝑟 is 

composed by the meromorphic functions coth  and 1/ sinh , the set of zeros of 

r is discrete. Hence, ℝ \ {𝜆 ∈ ℝ ∶  𝑟(𝜆)  =  0} is an open set, which as the union of 

an at most countable family of open intervals. Let I be one of these intervals. Then 

I can be represented as the union of countably many compact subintervals In such 
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that the intersection 𝐼𝑛  ∩  𝐼𝑚consists of at most one pointwhenever 𝑛 ≠  𝑚 and 

each set 𝑟(𝐼𝑛) is contained in a domain where a continuousbranch, say 𝑓𝑛, of the 

function 𝑧 →  √𝑧  exists. Then ±𝑓𝑛 ∘ 𝑟 ∶  𝐼𝑛  → ℂ is a continuously differentiable 

function, which implies that (±𝑓𝑛  ∘ 𝑟)(𝐼𝑛) is a set of measure zero. Consequently, 

the associated sets 𝑠±(𝐼𝑛)  of eigenvalues have measure zero, too. Since the 

countable union of sets of measure zero has measure zero, we conclude that each 

setΣ 3,𝑡
0  has measure zero, which finally implies that 𝜎𝑒𝑠𝑠

𝑇𝐻 (𝐴) =  Σ1 ∪ Σ2 ∪ Σ3has 

measure zero and is, thus, thin. This settles the proof of the inverse closedness and 

concludes the proof of Theorem (2.2.3). 

We would like to mention that there is another proof of the inverse closedness 

assertion in the previous Theorem which is based on ideas  and which works also 

in other situations. 

Section (2.3): An extended Toeplitz algebra 

In the proof of the announced index formula for Toeplitz plus Hankel operators,we 

shall need an extension of the results  to certain matrix operators. For 𝑘 ∈ ℕ and 𝑋 

a linear space, we let 𝑋𝑘  and 𝑋𝑘×𝑘  stand for the linear spaces of all vectors of 

length k and of all k × k-matrices with entries in 𝑋, respectively. If 𝑋 is an algebra, 

then 𝑋𝑘×𝑘  becomes an algebra under the standard matrix operations. If 𝑋  is a 

Banach space, then 𝑋𝑘 and 𝑋𝑘×𝑘 become Banach spaces with respect to the norms 

‖(𝑥𝑗)𝑗=1
𝑘
‖  =∑‖𝑥𝑗‖

𝑘

𝑗=1

and‖(𝑎𝑖𝑗)𝑖,𝑗=1
𝑘

‖  =  𝑘 sup
1≤𝑖,𝑗≤𝑘

‖𝑎𝑖𝑗‖ .                (14) 

If, moreover, 𝑋 is a Banach algebra, then 𝑋𝑘×𝑘 is a Banach algebra with respect to 

the introduced norm. Actually, any other norm on  𝑋𝑘 and any other compatible 

matrix norm on  𝑋𝑘×𝑘 will do the same job. Note also that if 𝑋 is a 𝑐∗-algebrathere 
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is a unique norm (different from the above mentioned) which makes 𝑋𝑘×𝑘 to a 𝑐∗-

algebra. Since we will not employ a𝑐∗ − 𝑎𝑟guments, the choice (14) will be 

sufficient for our purposes. 

Let T0(𝑃𝐶𝑝)  denote the smallest closed subalgebra of 𝐿(𝑙𝑝(ℤ))  which 

contains the projection 𝑃  and all Laurent operators 𝐿(𝑎)  with 𝑎 ∈  𝑃𝐶𝑝 . The 

algebraT0(𝑃𝐶𝑝) contains T(𝑃𝐶𝑝) in the sense that the operator 𝑃𝐿(𝑎)𝑃 ∶  im 𝑃 →

 im 𝑃can be identified with the Toeplitz operator 𝑇(𝑎). For 𝑘 ∈  𝑁, the matrix 

algebraT0(𝑃𝐶𝑝)𝑘×𝑘will be also denoted by T𝑘×𝑘
0 (𝑃𝐶𝑝) . One can characterize 

T𝑘×𝑘
0 (𝑃𝐶𝑝)also as the smallest closed sub algebra of 𝐿(𝑙𝑝(ℤ)𝑘) which contains all 

operators of the form 𝐿(𝑎)diag 𝑃 + 𝐿(𝑏)diag𝑄 with 𝑎, 𝑏 ∈ (𝑃𝐶𝑝)𝑘×𝑘, where 𝑄 ∶

=  𝐼 − 𝑃, diag𝐴 stands for the operator on 𝐿(𝑙𝑝(ℤ)𝑘) which has 𝐴 ∈  𝐿(𝑙𝑝(ℤ)) at 

each entry of its main diagonal and zeros at all other entries, and where 𝐿(𝑎)  =

(𝐿(𝑎𝑖𝑗))
𝑖,𝑗=1

𝑘
 refers to the matrix Laurent operator with generating function 𝑎 =

(𝑎𝑖𝑗)𝑖,𝑗=1
𝑘

. Note   that  𝐾(𝑙𝑝(ℤ)𝑘) is  contained in 𝑇𝑘×𝑘
0 (𝑃𝐶𝑝). 

The Fredholm theory for operators in T𝑘×𝑘
0 (𝑃𝐶𝑝)is well known. We will present it 

in a form which is convenient for our purposes. Our main tools are againAllan’s 

local principle (Theorem (2.2.5)) and a matrix version of the two idempotents 

Theorem (Theorem (2.2.6)) . Here is the result. 

Theorem (2.3.1)[2]  Let 𝑎, 𝑏 ∈ (𝑃𝐶𝑝)𝑘×𝑘 . 

(a) The operator 𝐴 ∶=  𝐿(𝑎)diag 𝑃 + 𝐿(𝑏)diag𝑄  is Fredholm on 𝑙𝑝(ℤ)𝑘  if and 

onlyif the matrix 
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(smb𝑝 𝐴)(𝑡, 𝜆)  

= (
𝑎(𝑡−) + (𝑎(𝑡+) − 𝑎(𝑡−))diag𝜇𝑞(𝜆) (𝑏(𝑡+) −  𝑏(𝑡−))diag𝜈𝑞(𝜆)

𝑎(𝑡+)  −  𝑎(𝑡−)) diag𝜈𝑞(𝜆) ( 𝑏(𝑡+) − (𝑏(𝑡+)  −  𝑏(𝑡−))diag𝜇𝑞(𝜆)
) 

is invertible for every pair (𝑡, 𝜆)  ∈ 𝕋 × ℝ̅. 

(b) The mapping smbp defined in assertion (a) extends to a continuous algebra 

homomorphism from T𝑘×𝑘
0 (𝑃𝐶𝑝) to the algebra ℱ of all bounded functions on 𝕋 ×

ℝ̅ with values in 𝐶2𝑘×2𝑘. Moreover, there is a constant 𝑀 such that 

‖smb𝑝𝐴‖ ∶= sup
(𝑡,𝜆)∈𝕋+×ℝ̅

‖smb𝑝 𝐴(𝑡, 𝜆)‖∞ ≤  𝑀 inf
𝐾∈𝐾(𝑙𝑝(ℤ)𝑘)

‖𝐴 +  𝐾‖       (15) 

for every operator 𝐴 ∈ T𝑘×𝑘
0 (𝑃𝐶𝑝). 

(c) An operator 𝐴 ∈ T𝑘×𝑘
0 (𝑃𝐶𝑝) has the Fredholm property on 𝑙𝑝(ℤ)𝑘 if and only 

if the function smb𝑝 𝐴 is invertible in ℱ. 

(d) The algebra T𝑘×𝑘
0 (𝑃𝐶𝑝)/𝐾(𝑙

𝑝(ℤ)𝑘)  is inverse closed in the Calkin algebra 

𝐿(𝑙𝑝(ℤ)𝑘)/𝐾(𝑙
𝑝(ℤ)𝑘). 

(e) If 𝐴 ∈ T𝑘×𝑘
0 (𝑃𝐶𝑝) is a Fredholm operator, then 

ind 𝐴 =  −wind (det smb𝑝 𝐴(𝑡, 𝜆)/(det𝑎22(𝑡,∞) det𝑎22(𝑡, −∞))) 

Where  smb𝑝 𝐴 =  (𝑎𝑖𝑗)𝑖,𝑗=1
2

with 𝑘 ×  𝑘-matrix-valued functions  𝑎𝑖𝑗 . 

It is a non-trivial fact that the function  

𝑊 ∶ 𝕋 × ℝ̅, (𝑡, 𝜆) ⟼ det smb𝑝 𝐴(𝑡, 𝜆)/(det𝑎22(𝑡,∞) 𝑑𝑒𝑡 𝑎22(𝑡, −∞)) 
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forms a closed curve in the complex plane. Thus, the winding number of 𝑊 is well 

defined if 𝐴 is a Fredholm operator. 

 We devoted to the proof of Theorem (2.3.1).  

Step 1: Spline spaces. We start with recalling some facts about spline spaces and 

operators there on . Let 𝜒[0,1]  denote the characteristic function of the interval 

[0, 1]  ⊂ ℝ  and, for ∈ ℕ , let 𝑆𝑛  denote the smallest closed subspace of 𝐿𝑝(ℝ) 

which contains all functions 

𝜑𝑘,𝑛(𝑡) ∶= 𝜒[0,1](𝑛𝑡 −  𝑘), 𝑡 ∈ ℝ, 

where  𝑘 ∈ ℤ. The space 𝑙𝑝(ℤ) can be identified with each of the spaces 𝑆𝑛 in the 

sense that a sequence (𝑥𝑘) is in 𝑙𝑝(ℤ) if and only if the series 

∑ 𝑥𝑘𝜑𝑘,𝑛𝑘∈ℤ  converges  in 𝐿𝑝(ℝ) and that 

‖∑𝑥𝑘𝜑𝑘,𝑛‖
𝐿𝑝(ℝ)

= 𝑛−1 𝑝⁄ ‖(𝑥𝑘)‖𝑙𝑝(ℤ) 

in this case. Thus, the linear operator 

𝐸𝑛 ∶  𝑙
𝑝(ℤ)  →  𝑆𝑛 ⊂ 𝐿

𝑝(ℝ), (𝑥𝑘)  ⟼ 𝑛1 𝑝⁄ ∑𝑥𝑘𝜑𝑘,𝑛, 

and its inverse 𝐸−𝑛 ∶  𝐿
𝑝(ℝ)  ⊃ 𝑆𝑛  →  𝑙

𝑝(ℤ) are isometries for every 𝑛. Further we 

define operators 

𝐿𝑛 ∶  𝐿
𝑝(ℝ) →  𝑆𝑛, 𝑢 ⟼  𝑛∑〈𝑢, 𝜑𝑘,𝑛〉𝜑𝑘,𝑛

𝑘∈ℤ

 

with respect to the sesqui-linear form 〈𝑢, 𝑣〉 ∶= ∫ 𝑢�̅�𝑑𝑥
ℝ

, where 𝑢 ∈ 𝐿𝑝(ℝ) and 

𝑣 ∈ 𝐿𝑞(ℝ) with 1/𝑝 +  1/𝑞 =  1. It is easy to see that every 𝐿𝑛 is a projection 
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operator with norm 1 and that the 𝐿𝑛 converge strongly to the identity operator on 

𝐿𝑝(ℝ) as 𝑛 →  ∞. Finally we set 

𝑌𝑡 ∶  𝑙
𝑝(ℤ)  →  𝑙𝑝(ℤ), (𝑥𝑘)  ⟼ (𝑡−𝑘𝑥𝑘)for 𝑡 ∈ 𝕋. 

Clearly, 𝑌𝑡 is an isometry, and 𝑌𝑡
−1  =  𝑌𝑡−1 . One easily checks that 𝑌𝑡

−1𝐿(𝑎)𝑌𝑡 =

𝐿(𝑎𝑡)  with 𝑎𝑡(𝑠) =  𝑎(𝑡𝑠)  for every multiplier 𝑎 , which implies in particular 

that𝑌𝑡
−1T0(𝑃𝐶𝑝)𝑌𝑡  =  T

0(𝑃𝐶𝑝). 

Step 2: Some homomorphisms. It is shown that, for every 𝐴 ∈ T0(𝑃𝐶𝑝) and every 

𝑡 ∈ 𝕋, the strong limit 

smb𝑡𝐴 ∶=  𝑠 − lim
𝑛→∞

𝐸𝑛𝑌𝑡
−1 𝐴𝑌𝑡𝐸−𝑛𝐿𝑛 

exists and that the mapping smbt is a bounded unital algebra homomorphism. 

This homomorphism can be extended in a natural way to the matrix algebra 

T𝑘×𝑘
0 (𝑃𝐶𝑝). We denote this extension by smb𝑡𝐴 again. 

In order to characterize the range of the homomorphism smb𝑡 , we have to 

introduce some operators on 𝐿𝑝(ℝ). Let 𝜒+ stand for the characteristic function of 

the interval ℝ+  =  [0,∞) and 𝜒+𝐼 for the operator of multiplication by 𝜒+. 

Further, 𝑆ℝ refers to the singular integral operator 

(𝑆ℝ𝑓)(𝑡) ∶=
1

𝜋𝑖
∫

𝑓(𝑠)

𝑠 −  𝑡
𝑑𝑠

∞

−∞

, 

with the integral understood as a Cauchy principal value. Both 𝜒+𝐼  and 𝑆ℝare 

bounded on 𝐿𝑝(ℝ), and 𝑆ℝ
2  =  𝐼. Thus, the operators 𝑃ℝ ∶=  (𝐼 + 𝑆ℝ) 2⁄  and 𝑄ℝ ∶

=  𝐼 − 𝑃ℝ are bounded projections on 𝐿𝑝(ℝ). We let ∑ (ℝ)
𝑝
𝑘  stand for the smallest 
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closed subalgebra of 𝐿(𝐿𝑝(ℝ)𝑘) which contains the operators diag 𝜒+𝐼, diag𝑆ℝ , 

and all operators of multiplication by constant 𝑘 ×  𝑘-matrix valued functions. 

Theorem (2.3.2)[2]. Let 𝑡 ∈ 𝕋. Then 

(a) smb𝑡diag 𝑃 =  diag𝜒+𝐼. 

(b) smb𝑡 𝐿(𝑎) =  𝑎(𝑡
+)diag𝑄ℝ  +  𝑎(𝑡

−)diag𝑃ℝ for 𝑎 ∈ (𝑃𝐶𝑝)𝑘×𝑘. 

(c) smb𝑡𝐾 =  0 for every compact operator 𝐾. 

(d) smb𝑡 maps the algebra T𝑘×𝑘
0 (𝑃𝐶𝑝) onto ∑ (ℝ)

𝑝
𝑘 . 

(e) The algebra ∑ (ℝ)
𝑝
𝑘  is inverse closed in 𝐿(𝐿𝑝(ℝ)𝑘). 

Assertion (c) of the previous Theorem implies that every mapping smb𝑡 induces 

anatural quotient homomorphism from T0(𝑃𝐶𝑝) 𝐾(𝑙
𝑝(ℤ))⁄  to ∑ (ℝ)

𝑝
1 . We denote 

this quotient homomorphism by smb𝑡 again. It now easily seen that the estimate 

(15) holds for every 𝐴 ∈ T𝑘×𝑘
0 (𝑃𝐶𝑝) (with the constant 𝑀 =  1 for 𝑘 =  1). 

Step 3: The Fredholm property. Since the commutator 𝐿(𝑎)𝑃 −  𝑃𝐿(𝑎) is compact 

for every 𝑎 ∈ 𝐶𝑝 , the algebra 𝒞𝑝 ∶=  {diag 𝐿(𝑎): 𝑎 ∈ 𝐶𝑝} 𝐾(𝑙
𝑝(ℤ)𝑘)⁄  lies in the 

center of the algebra 𝒜 ∶= T𝑘×𝑘
0 (𝑃𝐶𝑝)/𝐾(𝑙

𝑝(ℤ)𝑘). It is not hard to see that𝒞𝑝 is 

isomorphic to 𝐶𝑝;hence the maximal ideal space of 𝒞𝑝 is homeomorphic to the unit 

circle 𝕋. In accordance with Allan’s local principle, we introduce the local ideals 

𝒥𝑡 and the local algebras 𝒜𝑡 ∶= 𝒜/𝒥𝑡 𝑎𝑡 𝑡 ∈ 𝕋. 

By Theorem (2.3.2) (b), the local ideal 𝒥𝑡 lies in the kernel of smbt. We denote the 

related quotient homomorphism by smb𝑡  again. Thus, smb𝑡  is an algebra 

homomorphism from 𝒜𝑡 onto ∑ (ℝ)
𝑝
𝑘 , which sends the local cosets containing the 
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operators diag 𝑃  and 𝐿(𝑎)  with 𝑎 ∈ (𝑃𝐶𝑝)𝑘×𝑘  to diag 𝜒+𝐼  and𝑎(𝑡+)diag𝑄ℝ  +

 𝑎(𝑡−)diag𝑃ℝ , respectively. this homomorphism is injective, i.e., it is an 

isomorphism between 𝒜𝑡 and ∑ (ℝ)
𝑝
𝑘 . 

Since 𝑃ℝ  and diag𝜒+𝐼  are projections, the algebra ∑ (ℝ)
𝑝
𝑘  is subject to the two 

projections Theorem with coefficients, as derived in [5]. Alternatively, this algebra 

can be described by means of the Mellin symbol calculus. In each case, the result is 

that an operator of the form 

(𝑎+diag𝜒+𝐼 + 𝑎
−diag𝜒−𝐼)diag𝑃ℝ

+ (𝑏 + diag𝜒+𝐼 +  𝑏 − diag𝜒−𝐼)diag𝑄ℝ                                          (16) 

Where 𝜒− ∶=  1 − 𝜒+  and 𝑎±, 𝑏± ∈ ℂ𝑘×𝑘  is invertible if and only if the (2𝑘) ×

(2𝑘)-matrix-valued function 

𝜆 ⟼ (
𝑎 + diag (1 − 𝜇𝑝(𝜆)) + 𝑎

−diag𝜇𝑝(𝜆) (𝑏+ − 𝑏−) 𝑑𝑖𝑎𝑔 𝑣𝑝(𝜆)

(𝑎+ − 𝑎−) diag𝑣𝑝(𝜆) 𝑏 + diag𝜇𝑝(𝜆) + 𝑏 − diag (1 − 𝜇𝑝(𝜆))
) 

is invertible at each point 𝜆 ∈ ℝ̅. Note that the function 

𝜆 ⟼ 𝑎+diag (1 − 𝜇𝑝(𝜆))  + 𝑎
−diag𝜇𝑝(𝜆) 

is continuous on ℝ̅ and that this function connects 𝑎+ with 𝑎− if 𝜆 runs from−∞ to 

+∞. For the sake of index computation, one would prefer to work with afunction 

which connects 𝑎−  with 𝑎+  if 𝜆  increases. Since 𝜇𝑝(−𝜆)  =  1 − 𝜇𝑞(𝜆) and 

𝑣𝑝(−𝜆)  =  𝑣𝑞(𝜆) with 𝑞 satisfying 1/𝑝 +  1/𝑞 =  1, we obtain that the operatorA 

in (16) is invertible if and only if the matrix function 

𝜆 ⟼ (
𝑎+diag𝜇𝑞(𝜆) + 𝑎

−diag (1 − 𝜇𝑞(𝜆)) (𝑏+ − 𝑏−) diag𝑣𝑞(𝜆)

(𝑎+ − 𝑎−) diag𝑣𝑞(𝜆) 𝑏+diag (1 − 𝜇𝑞(𝜆)) + 𝑏−diag𝜇𝑞(𝜆)
) 
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is invertible on ℝ̅. This observation, together with the local principle, implies that 

the coset 𝐿(𝑎)diag 𝑃 + 𝐿(𝑏)diag 𝑄 +  𝐾(𝑙𝑝(ℤ)𝑘)  is invertible in the quotient 

algebra T𝑘×𝑘
0 (𝑃𝐶𝑝)/𝐾(𝑙

𝑝(ℤ)𝑘) if and only if the matrix function in assertion (a) of 

Theorem (2.3.1) is invertible. In particular, this gives the “if”-part of assertion (a). 

The “only if”-part of this assertion follows from the inverse closedness assertion 

(d), which can be proved using ideas, where inverse closedness issues of two 

projections algebras with coefficients are studied. The proof of assertions (b)and 

(c) of Theorem  (2.3.1) is then standard. 

Step 4: The index formula. It remains to prove the index formula (e). First we have 

to equip the cylinder 𝕋 × ℝ̅ with a suitable topology, which will be different from 

the usual product topology. We provide 𝕋 with the counter-clockwise orientation 

and ℝ̅ with the natural orientation given by the order <. Then the desired topology 

is determined by the system of neighborhoods 𝑈(𝑡0, 𝜆0) of the point (𝑡0, 𝜆0) ∈

𝕋 × ℝ̅, defined by 

𝑈(𝑡0, −∞) = {(𝑡, 𝜆) ∈ 𝕋 × ℝ̅: |𝑡 − 𝑡0| < δ, 𝑡 ≺ 𝑡0} ∪ {(𝑡0, 𝜆) ∈ 𝕋 × ℝ̅ ∶ 𝜆 < 𝜀}, 

𝑈(𝑡0, +∞) =  {(𝑡, 𝜆) ∈ 𝕋 × ℝ̅: |𝑡 − 𝑡0| < 𝛿, 𝑡0 ≺ 𝑡} ∪ {(𝑡0, 𝜆) ∈ 𝕋 × ℝ̅ ∶ 𝜀 < 𝜆} 

if 𝜆0  =  ±∞ and by 

𝑈(𝑡0, 𝜆0) = {(𝑡0, 𝜆) ∈ 𝕋 × ℝ̅ ∶ 𝜆0  − 𝛿1 < 𝜆 < 𝜆0 + 𝛿2} 

if 𝜆0 ∈ ℝ, where 𝜀 ∈ ℝ and 𝛿, 𝛿1, 𝛿2 are sufficiently small positive numbers, and 

where 𝑡 ≺  𝑠 means that 𝑡 precedes s with respect to the chosen orientation of𝕋. 

Note that the cylinder 𝕋 × ℝ̅ , provided with the described topology, is just a 

homeomorphic image of the cylinder 𝕋 × [0, 1] , provided with the Gohberg-

Krupnik topology. The latter has been shown by Gohberg and Krupnik to be 

homeomorphic to the maximal ideal space of the commutative Banach 
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algebraT(𝑃𝐶𝑝)/𝐾(𝑙
𝑝). If one identifies 𝕋 × [0, 1] with𝕋 × ℝ̅, then the Gelfand 

transform of a coset 𝐴 +  𝐾(𝑙𝑝) of 𝐴 ∈ T(𝑃𝐶𝑝) is just the function Γ(𝐴) defined 

in Theorem (2.2.1). 

It is an important point to mention that while the function smb𝑝 𝐴  for 𝐴 ∈∈

T𝑘×𝑘
0 (𝑃𝐶𝑝)  is not continuous on 𝕋 × ℝ̅  (just consider the south-east entry 

ofsmb𝑝 (𝐿(𝑎)𝑃 +  𝐿(𝑏)𝑄)), the function 

(𝑡, 𝜆) ⟼ det smb𝑝 𝐴(𝑡, 𝜆)/(𝑑𝑒𝑡 𝑎22(𝑡,∞) det𝑎22(𝑡, −∞) 

is continuous on 𝕋 × ℝ̅ . This non-trivial fact was observed by Gohberg and 

Krupnik in a similar situation when studying the Fredholm theory for singular 

integral operators with piecewise continuous coefficients. We will establish the 

index formula by employing a method which also goes back to Gohberg and 

Krupnik and is known as linear extension. This method has found its first 

applications in the Fredholm theory of one-dimensional singular integral equations. 

We will use this method in the slightly different context of Toeplitz plus Hankel 

operators.  

Let ℬ  be a unital ring with identity element 𝑒 . With every ℎ ×  𝑟 -matrix 𝛽:=

 (𝑏𝑗𝑙)𝑗,𝑙=1
ℎ,𝑟

 with entries in ℬ, we associate the element 

𝑒𝑙(𝛽) =∑𝑏𝑗1 . . . 𝑏𝑗𝑟 ∈  𝐵

ℎ

𝑗=1

                                    (17) 

generated by 𝛽 and call the 𝑏𝑗𝑙 the generators of 𝑒𝑙(𝛽). For each element of this 

form, there is a canonical matrix ext(𝛽)  ∈ ℬ𝑠×𝑠  with 𝑠 = ℎ(𝑟 + +1) + 1  with 

entries in the set {0, 𝑒, 𝑏𝑗𝑘 ∶  1 ≤  𝑗 ≤  ℎ, 1 ≤  𝑘 ≤  𝑟} and with the property that 
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𝑒𝑙(𝛽) is invertible in ℬ  if and only if ext(𝛽)  is invertible in ℬ𝑠×𝑠 . Actually, a 

matrix with this property can be constructed as follows. Let 

ext(𝛽):= (
𝑍 𝑋
𝑌 0

) = (
𝑒ℎ(𝑟+1) 0

𝑊 𝑒
) (
𝑒ℎ(𝑟+1) 0

0 𝑒𝑙(𝛽)
) (
𝑍 𝑋
0 𝑒

)               (18) 

where 𝑒𝑙 denotes the unit element of ℬ𝑙×𝑙 , 

𝑍 ∶=  𝑒ℎ(𝑟+1)  +

(

 
 

0 𝐵1 0 ⋯ 0 0
0 0 𝐵2 ⋯ 0 0
⋮
0
0

⋮
0
0

⋱
0
0

⋱
⋯
⋯

⋮
0
0

⋮
𝐵𝑟
0 )

 
 

 

with 𝐵𝑗 ∶=  diag (𝑏1𝑗  , 𝑏2𝑗  , . . . , 𝑏ℎ𝑗), 𝑋  is the column −(0, . . . , 0, 𝑒, . . . , 𝑒)𝑇  withℎ𝑟 

zeros followed by ℎ  identity elements, 𝑌  is the row (𝑒, . . . , 𝑒, 0, . . . , 0)  with ℎ 

identity elements followed by ℎ𝑟  zeros, and 𝑊 ≔ (𝑀0, 𝑀1, . . . , 𝑀𝑟)  with𝑀0 ∶=

 (𝑒, . . . , 𝑒) consisting of ℎ identity elements and 

𝑀𝑗 ≔ (𝑏11𝑏12 . . . 𝑏1𝑗  , 𝑏21𝑏22 . . . 𝑏2𝑗  , . . . , 𝑏ℎ1𝑏ℎ2 . . . 𝑏ℎ𝑗) for 𝑗 =  1, . . . , 𝑟 . The 

matrix ext(𝛽) in (18) is called the linear extension of 𝑒𝑙(𝛽). 

Since the outer factors on the right-hand side of (18) are invertible, it follows 

indeed that 𝑒𝑙(𝛽)  is invertible in ℬ  if and only if its linear extension ext(𝛽) 

isinvertible in ℬ𝑠×𝑠. As a special case we obtain that if the 𝑏𝑗𝑙 are bounded linear 

operators on some Banach space 𝐵, then 𝑒𝑙(𝛽) is a Fredholm operator on 𝐵if and 

only if ext(𝛽)  is a Fredholm operator on 𝐿(𝐵)𝑠×𝑠  =  𝐿(𝐵𝑠) . 

Moreover,ind 𝑒𝑙(𝛽)  =  indext(𝛽) is this case. 

We shall apply this observation for 𝐵 =  𝑙𝑝(ℤ)𝑘 and for the generating operators 

𝑏𝑗𝑙 ≔ 𝐿(𝑐𝑗𝑙)diag 𝑃 +  𝐿(𝑑𝑗𝑙)diag 𝑄 𝑤𝑖𝑡ℎ 𝑐𝑗𝑙 , 𝑑𝑗𝑙 ∈ (𝑃𝐶𝑝)𝑘×𝑘.           (19) 
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Put 𝛽:=  (𝑏𝑗𝑙)𝑗,𝑙=1
ℎ,𝑟

, 𝛾 ≔  (𝐿(𝑐𝑗𝑙))
𝑗,𝑙=1

ℎ,𝑟
 𝑎𝑛𝑑 𝛿 ≔ (𝐿(𝑑𝑗𝑙))

𝑗,𝑙=1

ℎ,𝑟
. The linear 

extensions of 𝛾  and 𝛿  are Laurent operators again; thus ext(𝛾)  =  𝐿(𝑐)  and 

ext(𝛿)  =  𝐿(𝑑)with piecewise continuous multipliers 𝑐 and 𝑑. Moreover, 

𝑒𝑥𝑡(𝛽) =  𝐿(𝑐)diag 𝑃 +  𝐿(𝑑)diag 𝑄.                      (20) 

If 𝑒𝑙(𝛽) is a Fredholm operator then, by Theorem (2.3.1) (𝑎), the matrices 𝑐(𝑡±) 

and 𝑑(𝑡±)  are invertible for every 𝑡 ∈ 𝕋 . Hence, 𝑐  and 𝑑  are invertible in 

(𝑃𝐶𝑝)𝑘𝑠×𝑘𝑠. 

This fact together with the above observation implies that the operator 𝑒𝑙(𝛽)is 

Fredholm on 𝑙𝑝(ℤ)𝑘  if and only if its linear extension ext(𝛽)  is Fredholm 

on𝑙𝑝(ℤ)𝑘𝑠, which on its hand holds if and only if the Toeplitz operator 𝑇(𝑑−1𝑐) is 

Fredholm on 𝑙𝑘𝑠
𝑝

, and that the Fredholm indices of the operators 𝑒𝑙(𝛽), 𝑒𝑥𝑡(𝛽)and 

𝑇(𝑑−1𝑐) coincide in this case. The symbol of the Toeplitz operator 𝑇(𝑑−1𝑐)is the 

function 

smb𝑝 (𝑇(𝑑
−1𝑐))(𝑡, 𝜆) = (𝑑−1𝑐)(𝑡+)diag𝜇𝑞(𝜆) + (𝑑

−1𝑐)(𝑡−)diag (1 − 𝜇𝑞(𝜆)) 

(which stems from the matrix-version of Theorem (1.7)), and smb𝑝 (ext(𝛽)) =

: (𝑎𝑖𝑗)𝑖,𝑗=1
2

 is related with smb𝑝 (𝑇(𝑑
−1𝑐)) via 

det smb𝑝 (𝑇(𝑑
−1𝑐))(𝑡, 𝜆)

= det(smb𝑝ext(𝛽))(𝑡, 𝜆)/(det𝑎22(𝑡,∞) det𝑎22(𝑡, −∞)) 

as can be checked directly. This fact can finally be used to derive the index 

formula for Fredholm operators of the form 𝑒𝑙(𝛽) with the entries of 𝛽 given by 

(19). 
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Since the operators 𝑒𝑙(𝛽) lie dense in T𝑘×𝑘
0 (𝑃𝐶𝑝), the index formula for aFredholm 

operator in this algebra follows by a standard approximation argument. 

To carry out this argument one has to use the estimate  

‖smb𝑝 𝑒𝑙(𝛽)‖ ≤ 𝑀 inf
𝐾∈𝐾(𝑙𝑝(ℤ)𝑘)

‖𝑒𝑙(𝛽)  +  𝐾‖ 

With M independent of 𝛽, which is an immediate consequence of (15). 

Section (2.4): The index formula for 𝑻 +  𝑯-operators 

 We provide an index formula for Fredholm operators of the form 𝑇(𝑎)  +  𝐻(𝑏) 

on 𝑙𝑝 where 𝑎, 𝑏 are multipliers in 𝑃𝐶𝑝 with a finite set ofdiscontinuities. We start 

with a couple of Lemma. 

Lemma (2.4.1)[2] If a ∈𝐶(𝕋) ∩ 𝑀〈𝑝〉, then 𝐻(𝑎) is compact on 𝑙𝑝. 

Proof. It is shown  that 𝐶(𝕋) ∩ 𝑀〈𝑝〉 ⊆ 𝐶𝑝  (in fact It is shown there that the 

closure of 𝐶(𝕋) ∩ 𝑀〈𝑝〉  in the multiplier norm equals 𝐶𝑝 ) and  that 𝐻(𝑎)  is 

compact on 𝑙𝑝 if 𝑎 ∈ 𝐶𝑝. 

For a subset Ω  of 𝕋 , let 𝑃𝐶(Ω)  stand for the set of all piecewise 

continuousfunctions which are continuous on 𝑇 \Ω , and put 𝑃𝐶〈𝑝〉(Ω) ≔ 𝑃𝐶(Ω) ∩

𝑀〈𝑝〉. 

Thus, 𝐶〈𝑝〉 ≔ 𝑃𝐶〈𝑝〉(∅) = 𝐶(𝕋) ∩  𝑀
〈𝑝〉. We concludes that 𝑃𝐶〈𝑝〉(Ω)  ⊆  𝑃𝐶𝑝 if Ω 

is finite. 

In what follows, we specify Ω0 ∶=  {𝜏1, . . . , 𝜏𝑚} to be a finite subset of 𝕋\{±1} and 

put Ω ∶= Ω0 ∪ {±1}. Let 𝜑0 ∈ 𝐶〈𝑝〉 be a multiplier which satisfies 𝜑 = �̃�,takes its 

values in [0, 1] , and is identically 1  on a certain neighborhood of {−1, 1}and 
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identically 0 on a certain neighborhood of Ω0 ∪ Ω0̅̅̅̅ . Moreover, we suppose that 

𝜑0
2 + 𝜑1

2 = 1 where 𝜑1 ≔ 1− 𝜑0. 

Lemma (2.4.2)[2] Let 𝑐 ∈  𝑃𝐶〈𝑝〉({−1, 1})  and 𝑑 ∈  𝑃𝐶〈𝑝〉(Ω0) . Then the 

operators 𝐻(𝑐)𝑇(𝑑)  −  𝐻(𝑐𝑑𝜑0) and 𝑇(𝑐)𝐻(𝑑)  −  𝐻(𝑐𝑑𝜑1) are compact on 𝑙𝑝. 

Proof. We write 𝐻(𝑐)𝑇(𝑑)  =  𝐻(𝑐)𝑇(𝑑)𝑇(𝜑0)  +  𝐻(𝑐)𝑇(𝑑)𝑇(𝜑1) with 

𝐻(𝑐)𝑇(𝑑)𝑇(𝜑0)  =  𝐻(𝑐) (𝑇(𝑑𝜑0)  −  𝐻(𝑑)𝐻(𝜑0̃)) 

=  𝐻(𝑐𝑑𝜑0)  −  𝑇(𝑐)𝐻(𝑑𝜑0̃ ) −  𝐻(𝑐)𝐻(𝑑)𝐻(𝜑0), 

𝐻(𝑐)𝑇(𝑑)𝑇(𝜑1)  = 𝐻(𝑐)𝑇(𝜑1)𝑇(𝑑) + 𝐻(𝑐) (𝑇(𝑑)𝑇(𝜑1) − 𝑇(𝜑1)𝑇(𝑑)) 

= (𝐻(𝑐𝜑1)  −  𝑇(𝑐)𝐻(𝜑1̃)) 𝑇(𝑑) 

+ 𝐻(𝑐)𝐻(𝑑)𝐻(𝜑1̃)  −  𝐻(𝜑1)𝐻(�̃�). 

The operators 𝐻(𝑑𝜑0̃ ),𝐻(𝜑0̃),𝐻(𝑐𝜑1), 𝐻(𝜑1) 𝑎𝑛𝑑 𝐻(𝜑1̃) are compact by Lemma 

(2.4.1), which gives the first assertion. The proof of the second assertion proceeds 

similarly. 

Lemma (2.4.3)[2] Let 𝑎0, 𝑏0 ∈  𝑃𝐶〈𝑝〉({−1, 1}) and 𝑎1, 𝑏1 ∈  𝑃𝐶〈𝑝〉(0). Then the 

operator 

(𝑇(𝑎0) + 𝐻(𝑏0))(𝑇(𝑎1) + 𝐻(𝑏1)) − (𝑇(𝑎0𝑎1) + 𝐻(𝑎1𝑏0𝜑0) + 𝐻(𝑎0𝑏1𝜑1)) 

is compact on 𝑙𝑝. 

Proof. We write (𝑇(𝑎0) + 𝐻(𝑏0))(𝑇(𝑎1) + 𝐻(𝑏1)) as 

𝑇(𝑎0)𝑇(𝑎1)  +  𝑇(𝑎0)𝐻(𝑏1)  +  𝐻(𝑏0)𝑇(𝑎1)  +  𝐻(𝑏0)𝐻(𝑏1) 

= 𝑇(𝑎0𝑎1) + 𝐾1  +  𝐻(𝑎0𝑏_1𝜑1)  +  𝐾2  +  𝐻(𝑏0𝑎1𝜑0)  +  𝐾3  +  𝐾4 
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where 𝐾1 ∶=  𝑇(𝑎0)𝑇(𝑎1) − 𝑇(𝑎0𝑎1) and 𝐾4 ∶=  𝐻(𝑏0)𝐻(𝑏1)  =  𝑇(𝑏0)𝑇(𝑏1̃) −

𝑇(𝑏0𝑏1̃) are compact on 𝑙𝑝  , and 𝐾2 ∶=  𝑇(𝑎0)𝐻(𝑏1) − 𝐻(𝑎0𝑏1𝜑1) and 𝐾3 ≔

𝐻(𝑏0)𝑇(𝑎1) −  𝐻(𝑏0𝑎1𝜑0) are compact by Lemma (2.4.2). 

The following proposition provides us with a key observation; it will allow us to 

separate the discontinuities in Ω0 and {−1, 1}. 

Proposition (2.4.4)[2] Let 𝑎, 𝑏 ∈  𝑃𝐶〈𝑝〉(Ω) . If the operator 𝑇(𝑎)  +  𝐻(𝑏)  is 

Fredholm on 𝑙𝑝 , then there are functions 𝑎0, 𝑏0 ∈  𝑃𝐶〈𝑝〉({−1, 1})  and 𝑎1, 𝑏1 ∈

𝑃𝐶〈𝑝〉(Ω0)such that 𝑇(𝑎0) + 𝐻(𝑏0) and 𝑇(𝑎1) + 𝐻(𝑏1) are Fredholm operators on 

𝑙𝑝 and thedifference 

(𝑇(𝑎0)  +  𝐻(𝑏0))(𝑇(𝑎1)  +  𝐻(𝑏1))  − (𝑇(𝑎)  +  𝐻(𝑏)) 

is compact. 

Proof. If 𝑇(𝑎) + 𝐻(𝑏)  is Fredholm on 𝑙𝑝 , then a is invertible in 𝑃𝐶𝑝  by 

Corollary(2.2.4) (𝑎). Since the maximal ideal space of 𝑃𝐶𝑝  is independent on 𝑝 

and 𝑎 ∈  𝑃𝐶〈𝑝〉,one even has 𝑎 − 1 ∈  𝑃𝐶〈𝑝〉. 

Let 𝑈 and 𝑉 be open neighborhoods of {−1, 1} and Ω0 ∪ Ω0̅̅̅̅ , respectively, 

such that clos 𝑈 ∩ clos 𝑉 =  ∅. We will assume moreover that 𝑈 = 𝑈−1 ∪ 𝑈1 is 

the union of two open arcs such that  ±1 ∈ 𝑈±1 , and that 𝑉 =  𝑉+ ∪ 𝑉−  is the 

union oftwo open arcs such that 𝑉+ ⊆ 𝕋+
0  and 𝑉− ⊆ 𝕋 \ 𝕋+

0 . Note that these 

conditions imply that clos𝑈−1  ∩  clos𝑈1  =  ∅. 

Now we choose a continuous piecewise (with respect to a finite partition of (𝕋) 

linear function 𝑐 on 𝕋 which is identically 1 on clos  , coincides with a on 𝜕𝑈,and 

does not vanish on 𝕋 \ 𝑈. This function is of bounded total variation; thus𝑐 ∈
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 𝐶(𝕋)  ∩ 𝑀〈𝑝〉 , whence 𝑐 ∈ 𝐶𝑝  as mentioned in the proof of Lemma (2.4.1). 

Put𝑎0 ∶=  𝑎𝜒𝑈  +  𝑐𝜒𝑇\𝑈  . Then 𝑎0 ∈  𝑃𝐶〈𝑝〉  and 𝑎0
−1 ∈ 𝑃𝐶〈𝑝〉 . Further, set 𝑎1 ∶=

 𝑎0
−1𝑎. 

The function 𝑎1  is identically 1 on 𝑈 and coincides with a on 𝜕𝑈  . Since 𝑃𝐶〈𝑝〉 

isan algebra, 𝑎1  belongs to 𝑃𝐶〈𝑝〉 . Finally, set 𝑏0 ∶=  𝑏𝜑0  and 𝑏1 ∶=  𝑏𝜑1 , with 

𝜑0and 𝜑1 as in front of Lemma (2.4.2). 

The above construction guarantees that 𝑎0, 𝑏0 ∈  𝑃𝐶〈𝑝〉({−1, 1})  and 𝑎1, 𝑏1 ∈

 𝑃𝐶〈𝑝〉(Ω0), and the operator 

(𝑇(𝑎0) + 𝐻(𝑏0))(𝑇(𝑎1) + 𝐻(𝑏1)) − (𝑇(𝑎0𝑎1) + 𝐻(𝑎1𝑏0𝜑0) + 𝐻(𝑎0𝑏1𝜑1)) 

is compact on 𝑙𝑝  by Lemma (2.4.3). The functions (𝑎1  −  1)𝑏0𝜑0  and (𝑎0 −

1)𝑏1𝜑1vanish identically on a certain neighborhood of Ω by their construction. 

Hence,the Hankel operators 𝐻((𝑎1 − 1)𝑏0𝜑0) and 𝐻((𝑎0 − 1)𝑏1𝜑1) are compact 

by Lemma(2.4.1), which implies that the operator 

(𝑇(𝑎0) + 𝐻(𝑏0))(𝑇(𝑎1) + 𝐻(𝑏1)) − (𝑇(𝑎0𝑎1) + 𝐻(𝑏0𝜑0) + 𝐻(𝑏1𝜑1)) 

is compact. Since 𝑎0𝑎1  =  𝑎  and 𝑏0𝜑0 + 𝑏1𝜑1 = 𝑏(𝜑0
2 + 𝜑1

2) = 𝑏 , and 

since 𝑇(𝑎0)  +  𝐻(𝑏0) and 𝑇(𝑎1)  +  𝐻(𝑏1)  are Fredholm operators on 𝑙𝑝  by 

Theorem (2.2.3), the assertion follows. 

By the previous proposition, 

ind (𝑇(𝑎) + 𝐻(𝑏)) = ind (𝑇(𝑎0) + 𝐻(𝑏0)) + ind(𝑇(𝑎1) + 𝐻(𝑏1)). 

Since 𝐻(𝑏0)  ∈ T(𝑃𝐶𝑝)  as already mentioned, and since an index formula 

forFredholm operators in T(𝑃𝐶𝑝)  is known, the determination of ind(𝑇(𝑎0) +
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 𝐻(𝑏0)) is no serious problem. The following Theorem provides uswith a basic 

step on the way to compute the index of 𝑇(𝑎1)  +  𝐻(𝑏1). 

Theorem (2.4.5)[2] Let 𝑎, 𝑏 ∈  𝑃𝐶〈𝑝〉(Ω0). If one of the operators 𝑇(𝑎) ± 𝐻(𝑏) 

isFredholm on 𝑙𝑝, then the other one is Fredholm on 𝑙𝑝, too, and the Fredholm 

indices of these operators coincide. 

Proof. By Corollary (2.2.4) (𝑏), the operators 𝑇(𝑎) + 𝐻(𝑏) and 𝑇(𝑎) − 𝐻(𝑏) are 

Fredholm operators on 𝑙𝑝  only simultaneously. It remains to prove that their 

indices coincide. Recall from the introduction that 𝑇(𝑎) = 𝑃𝐿(𝑎)𝑃 𝑎𝑛𝑑 𝐻(𝑎)  =

𝑃𝐿(𝑎)𝑄𝐽 . Thus, the index equality will follow once we have constructed a 

Fredholm operator 𝐷 such that the difference 

𝐷(𝑃𝐿(𝑎)𝑃 + 𝑃𝐿(𝑏)𝑄𝐽 + 𝑄) − (𝑃𝐿(𝑎)𝑃 −  𝑃𝐿(𝑏)𝑄𝐽 +  𝑄)𝐷         (21) 

is compact. The following construction of D is a modification . 

(Note that the compactness of the operator (21) also provides an alternate proof of 

the simultaneous Fredholm property of the operators 𝑇(𝑎) ± 𝐻(𝑏).) 

A function 𝑐 ∈ 𝑀𝑝  is called even (resp. odd) if 𝑐 = �̃� (resp. 𝑐 =  −�̃�) or, 

equivalently, if 𝐽𝐿(𝑐)𝐽 =  𝐿(𝑐)  (resp. 𝐽𝐿(𝑐)𝐽 =  −𝐿(𝑐) ). Every function𝑐 ∈ 𝐶𝑝 

can be written as a sum of an even and an odd function in a unique way: 𝑐 = (𝑐 +

�̃�)/2 + (𝑐 − �̃�)/2 . Let 𝜃𝑜  and 𝜃𝑒  be an odd and an even function in 𝐶(𝕋) ∩

 𝑀〈𝑝〉 𝑖, respectively, and assume that 𝜃𝑒 vanishes at all points of Ω0 (and,hence, at 

all points of Ω0̅̅̅̅ ). Put 

𝐷 ∶=  𝑃𝐿(𝜃𝑜  + 𝜃𝑒)𝑃 +  𝑄𝐿(𝜃𝑜  − 𝜃𝑒)𝑄.                  (22) 

We will later specify the functions 𝜃𝑜  and 𝜃𝑒  such that 𝐷  becomes a Fredholm 

operator. First note that 
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𝐽𝑃𝐿(𝜃𝑜 + 𝜃𝑒)𝑃𝐽 = −𝑄𝐿(𝜃𝑜 − 𝜃𝑒)𝑄, 𝐽𝑄𝐿(𝜃𝑜 − 𝜃𝑒)𝑄𝐽 = −𝑃𝐿(𝜃𝑜 + 𝜃𝑒)𝑃, 

whence 𝐽𝐷𝐽 = −𝐷 and 𝐽𝐷 + 𝐷𝐽 = 0 . Next we show that 𝐷  commutes with the 

operator 𝑃𝐿(𝑎)𝑃 + 𝑃𝐿(𝑏)𝑄 + 𝑄  up to a compact operator. Since the Toeplitz 

operators 𝑃𝐿(𝜃𝑜 + 𝜃𝑒)𝑃  and 𝑃𝐿(𝑎)𝑃  commute modulo a compact operator, it 

remains to show that 𝐷  commutes with 𝑃𝐿(𝑏)𝑄  up to a compact operator. The 

latter fact follows easily from the identity 

𝐷𝑃𝐿(𝑏)𝑄 − 𝑃𝐿(𝑏)𝑄𝐷 = 𝑃𝐿(𝜃𝑜 + 𝜃𝑒)𝑃𝐿(𝑏)𝑄 − 𝑃𝐿(𝑏)𝑄𝐿(𝜃𝑜 − 𝜃𝑒)𝑄

= 𝑃𝐿(𝜃𝑜 + 𝜃𝑒)𝐿(𝑏)𝑄 − 𝑃𝐿(𝜃𝑜 + 𝜃𝑒)𝑄𝐿(𝑏)𝑄 −  𝑃𝐿(𝑏)𝐿(𝜃𝑜 − 𝜃𝑒)𝑄

+ 𝑃𝐿(𝑏)𝑃𝐿(𝜃𝑜 − 𝜃𝑒)𝑄

= 2𝑃𝐿(𝜃𝑒𝑏)𝑄 − 𝑃𝐿(𝜃𝑜 + 𝜃𝑒)𝑄𝐿(𝑏)𝑄 + 𝑃𝐿(𝑏)𝑃𝐿(𝜃𝑜 − 𝜃𝑒)𝑄 

and from the compactness of the operators 𝑃𝐿(𝜃𝑒𝑏)𝑄  and 𝑃𝐿(𝜃𝑜 ± 𝜃𝑒)𝑄  by 

Lemma (2.4.1) (note that 𝜃𝑒𝑏 ∈  𝐶(𝕋) ∩ 𝑀
〈𝑝〉). The compactness of the operator 

(21) is then aconsequence of the identity 

𝐷(𝑃𝐿(𝑎)𝑃 + 𝑃𝐿(𝑏)𝑄𝐽 + 𝑄) − (𝑃𝐿(𝑎)𝑃 − 𝑃𝐿(𝑏)𝑄𝐽 + 𝑄)𝐷

= 𝐷𝑃𝐿(𝑎)𝑃 − 𝑃𝐿(𝑎)𝑃𝐷 + 𝐷𝑃𝐿(𝑏)𝑄𝐽 + 𝑃𝐿(𝑏)𝑄𝐽𝐷

= 𝐷𝑃𝐿(𝑎)𝑃 − 𝑃𝐿(𝑎)𝑃𝐷 + (𝐷𝑃𝐿(𝑏)𝑄 − 𝑃𝐿(𝑏)𝑄𝐷)𝐽 

and of the compactness of the commutators [𝐷, 𝑃𝐿(𝑎)𝑃] and[𝐷, 𝑃𝐿(𝑏)𝑄]. 

Finally we show that the functions 𝜃𝑒  and 𝜃𝑜  can be specified such that the 

operator 𝐷 in (22) is a Fredholm operator on 𝑙𝑝. Set 𝜃𝑜(𝑡) ≔ |𝑡2  − 1|2 for 𝑡 ∈ 𝕋. 

Then 𝜃𝑜  is an even function in 𝐶∞(𝕋)  and 𝜃𝑜 ∶=  𝜒𝕋+𝜃𝑜 − 𝜒_𝕋−𝜃𝑜  is an odd 

function in 𝐶(𝕋) ∩ 𝑀〈𝑝〉. Further, 
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𝜃𝑒(𝑡): =  𝑖∏|𝑡 − 𝜏𝑗|
2
|𝑡 − 𝜏�̅�|

2
𝑚

𝑗=1

, 𝑡 ∈ 𝕋 

Defines an even function 𝜃𝑒 ∈  𝐶(𝕋) ∩  𝑀
〈𝑝〉 which vanishes at the points of Ω0. 

Since 𝜃𝑜 and 𝑖𝜃𝑒 are real-valued functions, we conclude that 𝜃𝑜  ± 𝜃𝑒 are invertible 

in 𝐶(𝕋) ∩ 𝑀〈𝑝〉, which implies that 𝐷 is a Fredholm operator as desired. 

Now we are in a position to derive an index formula for a Fredholm operator of the 

form 𝑇(𝑎)  +  𝐻(𝑏)  with 𝑎, 𝑏 ∈  𝑃𝐶〈𝑝〉(Ω0) . We make use of the well-known 

identity 

(
𝑃𝐿(𝑎)𝑃 + 𝑃𝐿(𝑏)𝑄𝐽 + 𝑄 0

0 𝑃𝐿(𝑎)𝑃 − 𝑃𝐿(𝑏)𝑄𝐽 + 𝑄
) 

=
1

2
(
𝐼 𝐽
𝐼 −𝐽

) (
𝑃𝐿(𝑎)𝑃 + 𝑄 𝑃𝐿(𝑏)𝑄
𝐽𝑃𝐿(𝑏)𝑄𝐽 𝐽(𝑃𝐿(𝑎)𝑃 + 𝑄)𝐽

) (
𝐼 𝐼
𝐽 −𝐽

),     (23) 

where the outer factors in (23) are the inverses of each other. Thus, if one of the 

operators 𝑇(𝑎)  ±  𝐻(𝑏)  =  𝑃𝐿(𝑎)𝑃 ±  𝑃𝐿(𝑏)𝑄𝐽 is a Fredholm operator, then so 

is the other, and the Fredholm indices of these operators coincide. Hence the 

middle factor 

(
𝑃𝐿(𝑎)𝑃 + 𝑄 𝑃𝐿(𝑏)𝑄
𝐽𝑃𝐿(𝑏)𝑄𝐽 𝐽(𝑃𝐿(𝑎)𝑃 + 𝑄)𝐽

) = (
𝑃𝐿(𝑎)𝑃 + 𝑄 𝑃𝐿(𝑏)𝑄

𝑄𝐿(�̃�)𝑃 𝑄𝐿(�̃�)𝑄 + 𝑃
) 

in (23) is a Fredholm operator, and 

ind(𝑇(𝑎) + 𝐻(𝑏)) =
1

2
ind (

𝑃𝐿(𝑎)𝑃 + 𝑄 𝑃𝐿(𝑏)𝑄

𝑄𝐿(�̃�)𝑃 𝑄𝐿(�̃�)𝑄 + 𝑃
) 

=
1

2
ind (

𝑃𝐿(𝑎)𝑃 𝑃𝐿(𝑏)𝑄

𝑄𝐿(�̃�)𝑃 𝑄𝐿(�̃�)𝑄
). 
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For the latter identity note that the operator 

𝐴 ∶= (
𝑃𝐿(𝑎)𝑃 + 𝑄 𝑃𝐿(𝑏)𝑄

𝑄𝐿(�̃�)𝑃 𝑄𝐿(�̃�)𝑄 + 𝑃
) ∈ 𝐿(𝑙𝑝(ℤ)2) 

has the complementary subspaces 𝐿1 ∶=  {(𝑄𝑥1, 𝑃𝑥2): (𝑥1, 𝑥2) ∈ 𝑙
𝑝(ℤ)2} and 𝐿2 ∶

=  {(𝑃𝑥1, 𝑄𝑥2) ∶  (𝑥1, 𝑥2)  ∈ 𝑙
𝑝(ℤ)2}  of 𝑙𝑝(ℤ)2  as invariant subspaces and that𝐴 

acts on 𝐿1 as the identity operator and on 𝐿2 as the operator 

𝐴0 ∶= (
𝑃𝐿(𝑎)𝑃 𝑃𝐿(𝑏)𝑄

𝑄𝐿(�̃�)𝑃 𝑄𝐿(�̃�)𝑄
) 

Let the function 𝑊 ∶ 𝕋 × ℝ̅  → ℂ be defined by 

𝑊(𝑡, 𝜆)  =  det smb𝑝 𝐴0(𝑡, 𝜆) (�̃�(𝑡,∞)�̃�(𝑡, −∞))⁄  . 

Since 𝑇(𝑎) + 𝐻(𝑏) is Fredholm, 𝑊 does not pass through the origin, and Theorem 

(2.3.1) entails that ind𝐴0  =  −wind 𝑊. Thus, 

ind(𝑇(𝑎) +  𝐻(𝑏)) =  −
1

2
wind 𝑊. 

We are going to show that actually 

ind (𝑇(𝑎)  +  𝐻(𝑏))  =  −wind 𝑇 +𝑊,                   (24) 

where the right-hand side is defined as follows. The compression of𝑊 onto 𝕋+ ×

ℝ̅is a continuous function the values of which form a closed oriented curve in 

𝒞which starts and ends at 1 ∈ ℂ and does not contain the origin. The winding 

number of this curve is denoted by wind𝕋+𝑊. Analogously, we define wind𝑇−𝑊. 

For the proof of (24) we suppose for simplicity that a and b have jumps only at the 

points 𝑡1 and 𝑡1̅ where 𝑡1 ∈ 𝕋+
0 . If t moves along 𝕋+ from 1 to 𝑡1 (resp.on 𝕋− from 

1 to 𝑡1̅), then the values of𝑊(𝑡, 𝜆) = 𝑎(𝑡) �̃�(𝑡)⁄ = 𝑎(𝑡) 𝑎(𝑡)⁄  move continuously 
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from 1 to 𝑎(𝑡1
− )/𝑎(𝑡1̅

+
) (resp. from 1 to 𝑎(𝑡1̅

+
)/𝑎(𝑡1

− )) . Using that 𝑊(𝑡, 𝜆) =

𝑊(𝑡̅, 𝜆)−1 for 𝑡 ∈ 𝕋 \ {−1, 1}, one easily concludes that 

[arg𝑊]1→𝑡1⊂𝕋+  =  [arg𝑊]𝑡1̅̅ ̅→1⊂𝑇− 

where the numbers on the left- and right-hand side stand for the increase of the 

argument of 𝑊 if 𝑡 moves in positive direction along the arc from 1 to 𝑡1 in 𝕋+and 

along the arc from 𝑡1̅ to 1 in 𝕋−, respectively. Analogously, 

[arg𝑊]−1→𝑡1̅̅ ̅⊂𝕋−  =  [arg𝑊]𝑡1→−1⊂𝕋+ . 

Consider 

𝑊(𝑡1, 𝜆) (𝑎(𝑡1̅
+
)𝑎(𝑡1̅

−
))⁄

= [𝑎(𝑡1
+)𝜇𝑞(𝜆)  +  𝑎(𝑡1

−)(1 − 𝜇𝑞(𝜆))] [𝑎(𝑡1̅
+
)𝜇𝑞(𝜆) + 𝑎(𝑡1̅

−
)(1

− 𝜇𝑞(𝜆))] − (𝑏(𝑡1
+) − 𝑏(𝑡1

−))(𝑏(𝑡1̅
+
) − 𝑏(𝑡1̅

−)) 𝜇𝑞(𝜆)(1 − 𝜇𝑞(𝜆)) 

and the related expression for 𝑊(𝑡1̅, 𝜆)/(𝑎(𝑡1
+)𝑎(𝑡1

− )). Then 

[arg𝑊]
𝒞𝑞(𝑎(𝑡1

−),𝑎(𝑡1
+))
 =  [arg𝑊]

𝒞𝑞(𝑎(𝑡1̅̅ ̅
−
),𝑎(𝑡1̅̅ ̅

+
))

 

Because 𝑊(𝑡1, 𝜆)/(𝑎(𝑡1̅
+
)𝑎(𝑡1̅

−
)) = 𝑊(𝑡1, 𝜆)/(𝑎(𝑡1

+)𝑎(𝑡1
− )). So we arrive at the 

equality wind𝕋+𝑊 = wind𝕋−𝑊, whence (24) follows. 

Now suppose that 𝑎, 𝑏 ∈  𝑃𝐶〈𝑝〉  are continuous on 𝕋\{−1, 1}. Then we definea 

function 𝑊 ∶  𝕋+  × ℝ̅ by 

𝑊(𝑡, 𝜆)  = (𝑎(𝑡+)𝜇𝑞(𝜆) + 𝑎(𝑡
−) (1 − 𝜇𝑞(𝜆))

+ 𝒾𝑡(𝑏(𝑡+) − 𝑏(𝑡−))𝑣𝑞(𝜆)) 𝑎
−1(±1∓) 
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if 𝑡 =  ±1 and by 𝑊(𝑡, 𝜆)  =  𝑎(𝑡)/𝑎(𝑡) if 𝑡 ∈ 𝕋+
0 . The function 𝑊 is continuous 

and determines a closed curve which starts and ends at 1 ∈ ℂ. If 𝑇(𝑎) +  𝐻(𝑏) is a 

Fredholm operator, then this curve does not  pass  through the origin and 

possesses, thus, a well defined winding   number. 

Since 𝑇(𝑎) + 𝐻(𝑏) is in T(𝑃𝐶𝑝) and the symbol 𝑉 ∶  𝕋 × ℝ̅  → ℂ of this operator 

relative to the algebra T(𝑃𝐶𝑝) is known (it is just given by 

𝑉(𝑡, 𝜆) = 𝑎(𝑡+)𝜇𝑞(𝜆) + 𝑎(𝑡
−)(1 − 𝜇𝑞(𝜆)) + 𝒾𝑡(𝑏(𝑡

+) − 𝑏(𝑡−))𝑣𝑞(𝜆) 

if 𝑡 =  ±1  and by 𝑉(𝑡, 𝜆) = 𝑎(𝑡) if  𝑡 ∈ 𝕋\{−1, 1})  and since ind 𝑇(𝑎)  =

 −wind𝕋𝑉  ,one can again prove that wind𝕋𝑉 = wind𝕋+𝑊  by comparing the 

increments of the arguments as above. 

Now we look at the factorization given by Proposition (2.4.4) and denote by 

𝑊0 and 𝑊1  the above defined function 𝑊 ∶  𝕋+  × ℝ̅ for the operators 𝑇(𝑎0)  +

 𝐻(𝑏0) and 𝑇(𝑎1)  +  𝐻(𝑏1), respectively. It is easy to see that 𝑊0𝑊1  coincides 

with the function 𝑊 for the operator 𝑇(𝑎) + 𝐻(𝑏). Summarizing, we get 

Theorem (2.4.6)[2] Let 𝑎, 𝑏 ∈  𝑃𝐶〈𝑝〉  and 𝑇(𝑎) + 𝐻(𝑏) a Fredholm operator on 

𝑙𝑝. Then 

ind(𝑇(𝑎) + 𝐻(𝑏)) = −wind𝕋+𝑊0 −wind𝕋+𝑊1 = −wind𝕋+𝑊 

with 𝑊,𝑊0 and 𝑊1 defined as above. 

  We want to sketch an approach to derive an index formula for an arbitrary 

Fredholm operator 𝐴 ∈ TH(𝑃𝐶𝑝) . With 𝐴 , we associate the function 𝑊(𝐴) ∶

 𝕋+  × ℝ̅  → ℂ defined by 
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𝑊(𝐴)(𝑡, 𝜆) = {
smb𝑝 𝐴(𝑡, 𝜆)/smb𝑝 𝐴(𝑡, ∓∞)                                if 𝑡 = ±1

det smb𝑝 𝐴(𝑡, 𝜆)/(𝑎22(𝑡,∞)𝑎22(𝑡, −∞))           if 𝑡 ≠ ±1
 

where we wrote 𝑠𝑚𝑏𝑝  𝐴(𝑡, 𝜆) = (𝑎𝑖𝑗(𝑡, 𝜆))
𝑖,𝑗=1

2
for 𝑡 ∈ 𝕋+

0 . For 𝐴 = 𝑇(𝑎) +

𝐻(𝑏),this definition coincides with that one from the previous section. 

Theorem (2.4.7)[2] If 𝐴 ∈ TH(𝑃𝐶𝑝) is a Fredholm operator, then 

ind 𝐴 = −wind𝕋+𝑊(𝐴).                                 (25) 

 We devoted to the proof of this Theorem. It will become evident from this proof 

that 𝑊(𝐴) traces out a closed oriented curve which does not pass through the 

origin; so the winding number of 𝑊(𝐴) is well defined. 

We start with the observation that Theorem (2.2.3) remains true for matrix-valued 

multipliers, 𝑏 ∈ (𝑃𝐶𝑝)𝑘×𝑘 : just replace 𝜇𝑞 , 1 − 𝜇𝑞  and 𝑣𝑞  by the 

corresponding 𝑘 ×  𝑘 -diagonal matrices diag𝜇𝑞 , diag(1 − 𝜇𝑞)  and diag𝑣𝑞 , 

respectively. Also Proposition (2.2.2) holds in the matrix setting: If 

𝑇(𝑎)  +  𝐻(𝑏) ∶=  (diag 𝑃)𝐿(𝑎)(diag 𝑃) + (diag 𝑃)𝐿(𝑏)(diag 𝑄𝐽) 

is a Fredholm operator, then the identity 

ind(𝑇(𝑎) +  𝐻(𝑏)) = −wind 𝑊(𝑇(𝑎)  +  𝐻(𝑏)) 

still holds if one replaces in the above definition of 𝑊  all scalars by the 

determinants of the corresponding matrices. These facts follow in a similar way as 

their scalar counterparts. 
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Now let 𝑎𝑗𝑙 , 𝑏𝑗𝑙 ∈ 𝑃𝐶𝑝, consider the ℎ × 𝑟-matrix 𝛽 ≔ (𝑇(𝑎𝑗𝑙) + 𝐻(𝑏𝑗𝑙))
𝑗,𝑙=1

ℎ,𝑟
,and 

associate with 𝛽 the operator 

𝐴 ≔ 𝑒𝑙(𝛽) =∑(𝑇(𝑎𝑗1) + 𝐻(𝑏𝑗1))⋯ (𝑇(𝑎𝑗𝑟) + 𝐻(𝑏𝑗𝑟))

ℎ

𝑗=1

∈ TH(𝑃𝐶𝑝) 

as in (17). Further set 𝛾 ≔ (𝐿(𝑎𝑗𝑙))
𝑗,𝑙=1

ℎ,𝑟
 and 𝛿 ≔ (𝐿(𝑏𝑗𝑙))

𝑗,𝑙=1

ℎ,𝑟
. The linear 

extensions of 𝛾  and 𝛿  are Laurent operators again; thus ext(𝛾) = 𝐿(𝑎) 

andext(𝛿) = 𝐿(𝑏) with certain multipliers 𝑎, 𝑏 ∈ (𝑃𝐶𝑝)𝑠×𝑠 with 𝑠 = ℎ(𝑟 +  1) +

1. 

Moreover, these extensions are related with the extension of 𝛽 by 

ext(𝛽) = 𝑇(ext(𝛾))  +  𝐻(ext(𝛿))  =  𝑇(𝑎)  +  𝐻(𝑏)  ∈  𝐿(𝑙𝑠
𝑝
) 

(note that 𝐻(1)  =  0). We noticed that if 𝑒𝑙(𝛽) is Fredholm, then(and only then) 

ext(𝛽) is Fredholm and ind 𝑒𝑙(𝛽)  =  ind ext(𝛽). Further, if 𝑒𝑙(𝛽)is a Fredholm 

operator, then the matrices 𝑎(𝑡±) are invertible for every 𝑡 ∈ 𝕋. 

Hence, 𝑎 is invertible in (𝑃𝐶𝑝)𝑠×𝑠. Now consider 

smb𝑝𝑒𝑙(𝛽) =∑smb𝑝(𝑇(𝑎𝑗1) + 𝐻(𝑏𝑗1))⋯ smb𝑝(𝑇(𝑎𝑗𝑟) + 𝐻(𝑏𝑗𝑟))

ℎ

𝑗=1

. 

Let 𝑡 ≠ ±1. Then smb𝑝(𝑇(𝑎) + 𝐻(𝑏))(𝑡, 𝜆) is a matrix of size 2𝑠 × 2𝑠. We put 

the rows and columns of this matrix in a new matrix according to the following 

rules: If 𝑗 ≤  ℎ(𝑟 + 1) + 1, then the 𝑗 th row of the old matrix becomes the 2𝑗 − 1 

th row of the new one, whereas if 𝑗 > ℎ(𝑟 + 1) + 1, the 𝑗 th row of the old matrix 
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becomes the 2(𝑗 − ℎ(𝑟 + 1) − 1)  th row of the new matrix. The columns of 

smb𝑝(𝑇(𝑎)  +  𝐻(𝑏))(𝑡, 𝜆) are rearranged in the same way. The matrix obtained 

in this way is just 𝑚𝑏𝑝 𝑒𝑙(𝛽)(𝑡, 𝜆). By these manipulations, 

smb𝑝𝑒𝑙(𝛽)(𝑡, 𝜆) = 𝒫smb𝑝(𝑇(𝑎) + 𝐻(𝑏))(𝑡, 𝜆)𝒫
𝑇 

with a certain permutation matrix 𝒫 and its transpose 𝒫𝑇 . Hence, 

det smb𝑝(𝑇(𝑎) + 𝐻(𝑏))(𝑡, 𝜆) = det smb𝑝(𝑒𝑙(𝛽))(𝑡, 𝜆) 

for 𝑡 ≠ ±1. For 𝑡 =  ±1 we do not change the matrix smb𝑝(𝑇(𝑎) + 𝐻(𝑏))(𝑡, 𝜆). 

For 𝑡 ≠ ±1, we write smb𝑝(𝑇(𝑎) + 𝐻(𝑏)(𝑡, 𝜆) = (𝑎𝑚𝑛(𝑡, 𝜆))𝑚,𝑛=1
2

 and 

smb𝑝(𝑇(𝑎𝑗𝑙) + 𝐻(𝑏𝑗𝑙))(𝑡, 𝜆)) = (𝑎𝑚𝑛
𝑗𝑙
(𝑡, 𝜆))𝑚,𝑛=1

2 . 

Then 

smb𝑝𝑒𝑙(𝛽)(𝑡, ±∞) =∑∏(
𝑎11
𝑗𝑙
(𝑡, ±∞) 0

0 𝑎22
𝑗𝑙
(𝑡, ±∞)

)

𝑟

𝑙=1

ℎ

𝑗=1

 

and it follows that 

det𝑎22(𝑡, ±∞) = det ext(𝜌(𝑡, ±∞)) 

Where  (𝑡, ±∞) ≔ (𝑎22
𝑗𝑙 (𝑡, ±∞))

𝑗,𝑙=1

ℎ𝑟
. It is now easy to see that 

𝑊(𝑒𝑙(𝛽))(𝑡, 𝜆)  =  𝑊(𝑇(𝑎) + 𝐻(𝑏))(𝑡, 𝜆) = 𝑊(ext(𝛽))(𝑡, 𝜆) 

for all (𝑡, 𝜆) ∈ 𝕋+  × ℝ̅, which implies that ind 𝑒𝑙(𝛽) = −wind𝕋+𝑊(𝑒𝑙(𝛽)) and, 

thus, settles the proof of the index formula (25) for a dense subset of Fredholm 

operators in TH(𝑃𝐶𝑝). 
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Finally, we are going to prove estimate (3), i.e., we will show that there is 

aconstant M such that 

‖smb𝑝𝐴‖∞ ≤ 𝑀 inf
{‖𝐴 + 𝐾‖:𝐾 compact}              (26) 

for every operator 𝐴 ∈ TH(𝑃𝐶𝑝). Once this estimate is shown, the validity of the 

index formula (25) for an arbitrary Fredholm operator in TH(𝑃𝐶𝑝) will follow by 

standard approximation arguments . 

To prove (26), we consider TH(𝑃𝐶𝑝) as a subalgebra of the smallest closed sub 

algebra T𝐽
0(𝑃𝐶𝑝) of 𝐿(𝑙𝑝(ℤ)) which contains all Laurent operators 𝐿(𝑎) with𝑎 ∈

 𝑃𝐶𝑝, the projection 𝑃, and the flip 𝐽. The homomorphism smbt defined  cannot be 

extended to the algebra T𝐽
0(𝑃𝐶𝑝) unless 𝑡 =  ±1. Instead, we are going to use 

ideas  and introduce a related family of homomorphisms smbt,t with 𝑡 ∈ 𝕋+
0  from 

T𝐽
0(𝑃𝐶𝑝) onto (∑ (ℝ)

𝑝
1 )

2×2
. 𝐴 crucial observation  is that the strong limit 

smb𝑡,𝑡̅ 𝐴 ≔ 𝑠 − lim
𝑛→∞ 

(
𝐴𝑡,𝑛.0,0 𝐴𝑡,𝑛,0,1
𝐴𝑡,𝑛,1,0 𝐴𝑡,𝑛,1,1

)                           (27) 

with 𝐴𝑡,𝑛,𝑖,𝑗 ≔ 𝐸𝑛𝑌𝑡
−1 𝐿(𝜒𝕋+)𝐽

𝑖𝐴𝐽𝑗𝐿(𝜒𝑇+)𝑌𝑡𝐸−𝑛𝐿𝑛 exists for every operator 𝐴 ∈

T𝐽
0(𝑃𝐶𝑝) and every 𝑡 ∈ 𝕋+

0 . 

Theorem (2.4.8)[2] Let 𝑡 ∈ 𝕋+
0 . Then the mapping smbt,t is a bounded 

homomorphism from T𝐽
0(𝑃𝐶𝑝) onto (∑ (ℝ)

𝑝
1 )

2×2
. In particular, 

(a) smb𝑡,𝑡̅ 𝑃 =  diag (𝜒+𝐼, 𝜒−𝐼) with 𝜒−  =  1 − 𝜒+, 

(b) smb𝑡,𝑡̅ 𝐿(𝑎) = diag(𝑎(𝑡
+)𝑄ℝ + 𝑎(𝑡

−)𝑃ℝ, 𝑎(𝑡̅
−)𝑄ℝ + 𝑎(𝑡̅

+)𝑃ℝ)for 𝑎 ∈  𝑃𝐶𝑝, 

(c) smb𝑡,𝑡̅ 𝐾 =  0 for every compact operator 𝐾, 
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(d) smb𝑡,𝑡̅ 𝐽 = (
0 𝐼
𝐼 0

). 

Sketch of the proof. The existence of the strong limits of the operators in 

(a) - (d) and their actual values follow by straightforward computation. Let us 

check assertion (a), for instance. For 𝐴 =  𝑃, the strong limits of the diagonal 

elements of the matrix (27) exist and are equal to 𝜒+𝐼 and 𝜒−𝐼 by Theorem (2.3.2) 

(a) and since 𝐽𝑃𝐽 =  𝑄 . Now consider the 01 -entry of that matrix. It 

is𝐿(𝜒𝕋+)𝑃𝐽 =  𝐽𝐿(𝜒𝕋−)𝑄 and thus 

𝐸𝑛𝑌𝑡
−1𝐿(𝜒𝕋+)𝑃𝐽𝐿(𝜒𝕋+)𝑌𝑡𝐸−𝑛𝐿𝑛

= (𝐸𝑛𝑌𝑡
−1𝐽𝑌𝑡𝐸−𝑛)(𝐸𝑛𝑌𝑡

−1𝐿(𝜒𝕋−)𝑄𝐿(𝜒𝕋+)𝑌𝑡𝐸−𝑛𝐿𝑛).                       (28) 

The first factor on the right-hand side is uniformly bounded with respect to 

n,whereas the second one tends strongly to 0  by Theorem (2.3.2) (note that 

𝜒𝕋−(𝑡) = 0 for 𝑡 ∈ 𝕋+
0 ). Thus, the sequence of the operators (28) tends strongly to 

zero. The strong convergence of the 10-entry to zero follows analogously. 

Another straightforward calculation shows that the mappings smb𝑡,𝑡̅  are algebra 

homomorphisms and that these mappings are uniformly bounded with respect to  

𝑡 ∈ 𝕋+
0 . Thus, the mappings smb𝑡,𝑡̅  are well-defined on a dense subalgebra 

of T𝐽
0(𝑃𝐶𝑝) , and they extend to (uniformly bounded with respect to 𝑡 ) 

homomorphisms on all of T𝐽
0(𝑃𝐶𝑝) by continuity. 

By assertion (c) of the previous Theorem, every mapping smb𝑡,𝑡̅ induces a quotient 

homomorphism on T𝐽
0(𝑃𝐶𝑝)/𝐾(𝑙

𝑝(ℤ))  in a natural way. We denote this 

homomorphism by smb𝑡,𝑡̅ again. 
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Now we are ready for the last step. Let 𝑡 ∈ 𝕋+
0  and 𝑎, 𝑏 ∈  𝑃𝐶𝑝. From Theorem 

(2.4.8) we conclude that then the operator smb𝑡,𝑡̅(𝑇(𝑎) + 𝐻(𝑏)) is given bythe 

matrix 

(
𝜒+(𝑎(𝑡

+)𝑄ℝ + 𝑎(𝑡
−)𝑃ℝ)𝜒+𝐼 𝜒+(𝑏(𝑡

+)𝑄ℝ + 𝑏(𝑡
−)𝑃ℝ)𝜒−𝐼

𝜒−(𝑏(𝑡̅
−)𝑄ℝ + 𝑏(𝑡̅

+)𝑃ℝ)𝜒+𝐼 𝜒−(𝑎(𝑡̅
−)𝑄ℝ + 𝑎(𝑡̅

+)𝑃ℝ)𝜒−𝐼
) 

acting on 𝐿𝑝(ℝ)2. This matrix operator has the complementary subspaces 

𝐿1 ≔ {(𝜒−𝑓1, 𝜒+𝑓2): 𝑓1, 𝑓2 ∈ 𝐿
𝑝(ℝ)}, 𝐿2 ≔ {(𝜒+𝑓1, 𝜒−𝑓2): 𝑓1, 𝑓2 ∈ 𝐿

𝑝(ℝ)} 

of 𝐿𝑝(ℝ)2 as invariant subspaces, and it acts as the zero operator on 𝐿1. So wecan 

identify smb𝑡,𝑡̅(𝑇(𝑎) + 𝐻(𝑏)) with its restriction to 𝐿2, which we denote by𝐴0 for 

brevity. 

The space 𝐿2  can be identified with 𝐿𝑝(ℝ)  in a natural way. Under this 

identification, the operator 𝐴0 can be identified with the operator 

𝐴1 ≔ 𝜒+(𝑎(𝑡
+)𝑄ℝ + 𝑎(𝑡

−)𝑃ℝ)𝜒+𝐼 + 𝜒+(𝑏(𝑡
+)𝑄ℝ + 𝑏(𝑡

−)𝑃ℝ)𝜒−𝐼 

+𝜒−(𝑏(𝑡̅
−)𝑄ℝ + 𝑏(𝑡̅

+)𝑃ℝ)𝜒+𝐼 + 𝜒−(𝑎(𝑡̅
−)𝑄ℝ + 𝑎(𝑡̅

+)𝑃ℝ)𝜒−𝐼 

which belongs to ∑ (ℝ)𝑝 . It is well known and not hard to check that the algebra 

∑ (ℝ)𝑝  is isomorphic to ∑ (ℝ+)
𝑝
2×2 , where the isomorphism𝜂 acts on the generating 

operators of ∑ (ℝ)𝑝  by 

𝜂(𝑆ℝ) = (
𝑆ℝ+ 𝐻𝜋
−𝐻𝜋 −𝑆ℝ+

)     𝑎𝑛𝑑      𝜂(𝜒+𝐼) = (
1 0
0 0

) , 

with 𝐻𝜋 referring to the Hankel operator 

(𝐻𝜋𝜑)(𝑠):=
1

𝜋𝑖
∫

𝜑(𝑡)

𝑡 + 𝑠ℝ+

𝑑𝑡 
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on 𝐿𝑝(ℝ+). The entries of the matrix 𝜂(𝐴1) are Mellin operators, and the value of 

the Mellin symbol of 𝜂(𝐴1) at (𝑡, 𝜆) ∈ 𝕋+
0  × ℝ̅ is the matrix 

(
𝑎(𝑡+)𝜇𝑞(𝜆) + 𝑎(𝑡

−) (1 − 𝜇𝑞(𝜆)) (𝑏(𝑡+) − 𝑏(𝑡−))𝑣𝑞(𝜆)

(𝑏(𝑡̅−) − 𝑏(𝑡̅+))𝑣𝑞(𝜆) 𝑎(𝑡̅−)(1 − 𝜇𝑞(𝜆)) + 𝑎(𝑡̅
+)𝜇𝑞(𝜆)

) , 

which evidently coincides with smb𝑝(𝑇(𝑎) + 𝐻(𝑏))(𝑡, 𝜆)  given in (1). 

Summarizing the above arguments we conclude that the homomorphisms 

𝐴 +  𝐾(𝑙𝑝) ⟼ (smb𝑝 𝐴)(𝑡, 𝜆) 

are uniformly bounded with respect to (𝑡, 𝜆) ∈ 𝕋+
0  × ℝ̅, which finally implies the 

estimate (26). 
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Chapter 3 

Hankel Operators 

 

The mode space whose products result in truncated Toeplitz operators when 

the inner function u a certain symmetric property. 

In 2007, D. Sarason defined truncated Toeplitz operators (TTO) as the 

compression of Toeplitz operators to invariant subspaces for the backward shift on 

the Hardy space 𝐻2 . Toeplitz matrices can be interpreted as truncated Toeplitz 

operators on finite dimensional model spaces. Recently, C. Cu defined truncated 

Hankel operators (𝑇𝐻O) as the compression of Hankel operators to invariant 

subspaces for the backward shift and proved a number of algebraic properties of 

them. Some of the properties  reveal the relation between the 𝑇𝐻O’s and TTO’s. 

We will consider when the product of’ two 𝑇𝐻O’s becomes a TTO. 

𝐿𝑒𝑡 𝐿2  =  𝐿2(𝕋)be the set of all square-integrable functions on the unit circle 1’ in 

the complex plane ℂ and 𝐻2  =  𝐻2(𝕋)  be the corresponding Hardy space, i.e., the 

closed linear span of the analytic polynomials in𝐿2. The space 𝐻∞ is defined by 

𝐻∞ ≔ 𝐻∞(𝕋) ∩ 𝐿∞(𝕋) . A function 𝜃 ∈ 𝐻∞  is called inner 𝑖𝑓 |𝜃(𝑧)|  =  almost 

everywhere on the unit circle 𝑇. 

For ∅ ∈ 𝐿∞ , the Toeplitz operator 𝑇∅ on𝐻2  is defined by 

𝑇∅𝑓 = 𝑝(∅𝑓), 

Where P is the orthogonal projection of 𝐿2onto 𝐻2. The Hankel operator 𝐻∅: 𝐻
2 →

𝐻2 with symbol ∅ ∈ 𝐿∞ is defined by 
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𝐻∅𝑓 = 𝐽(𝐼 − 𝑃)(∅𝑓), 

where J denotes the unitary map on 𝐿2 defined by (𝐽𝑓)(𝒵)  = �̅�𝑓(�̅�) 

For a non constant inner function u, define the model space 𝐾𝑢
2 by 

𝐾𝑢
2 ∶=  𝐻2  ⊝ 𝑢𝐻2. 

It is known that the dimension of 𝐾𝑢
2 is finite if and only if u is a finite Blaschke 

product and in that case, dim 𝐾𝑢
2  equals the number of zeros of 𝑢  counting 

multiplicity. The dimension of 𝐾𝑢
2 is also called the degree of the inner function u 

and is denoted by deg it. If it is not a finite Blaschke product, we say that the 

degree of it is infinite. The following set equality is easily verified 

𝐾𝑢
2 = 𝑢𝒵𝐾𝑢

2̅̅ ̅̅ ̅̅                                                           (1) 

For a function ∅ ∈ 𝐿2(𝕋), the truncated Toeplitz operator 𝐴∅ on 𝐾𝑢
2 is defined by  

𝐴∅𝑓 = 𝑃𝑢(∅𝑓), for 𝑓 ∈ 𝐾𝑢
2, 

Where 𝑃𝑢  denotes the orthogonal projection of 𝐿2onto 𝐾𝑢
2 . For a function ∅ ∈

𝐿2(𝕋), a truncated Hankel operator 𝐵∅ on 𝐾𝑢
2 is defined by 

𝐵∅𝑓 =  𝑃𝑢𝐽(𝐼 —  𝑃)∅𝑓, for each 𝑓 ∈ 𝐾𝑢
2. 

It is easy to see that 𝐵∅ , does not depend on the analytic part of the symbol 

function∅ . So, we often assume ∅ ∈ ∅𝐻2̅̅ ̅̅ when is the symbol function of a then 𝐵∅ 

or 𝐴∅ can be an unbounded operator. Since we are mainly concerned with bounded 

operators, we denote the set of all bounded truncated Toeplitz operators truncated 

Hankel operator. If ∅ ∈ 𝐿2(𝕋) is not an essentially bounded function, by ℌ(𝐾𝑢
2) 

and the set of all bounded truncated Hankel operators by 𝔗(𝐾𝑢
2). 
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If the inner function u is 𝑧𝑛, then {𝑙, 𝑧, 𝑧2, . . , 𝑧𝑛−1} forms an orthonormal basis for 

𝐾𝑢
2. With respect to this basis, 𝐴∅and 𝐵∅ can be represented as a Toeplitz matrix 

and a Hankel matrix, respectively: 

𝐴∅ =

(

 
 

𝑎0
𝑎1
𝑎2
⋮

𝑎𝑛−1

𝑎 − 1
𝑎0
𝑎1
⋱
⋯

𝑎 − 2
𝑎 − 1
𝑎0
⋱
𝑎2

⋯
⋱
⋱
⋱
𝑎1

𝑎−𝑛+1
⋮

𝑎 − 2
𝑎 − 1
𝑎0 )

 
 

 

and 

𝐵∅ =

(

 
 

𝑎 − 1
𝑎 − 2
𝑎 − 3
⋮
𝑎−𝑛

𝑎 − 2
𝑎 − 3
𝑎 − 4
⋱
⋯

𝑎 − 3
𝑎 − 4
𝑎 − 5
⋱
…

⋯
⋱
⋱
⋱

𝑎−2𝑛+2

𝑎−𝑛
⋮
⋮

𝑎−2𝑛+2
𝑎−2𝑛+1)

 
 

 

Where a1’s are the i-th Fourier coefficients of the symbol function ∅. 

The followings facts are easily verified: 

𝐴∅  =  𝑃𝑢𝑇∅|𝐾𝑢
2
  𝑎𝑛𝑑 𝐴∅− = 

𝐵∅  =  𝑃𝑢𝐻∅|𝐾𝑢
2
 𝑎𝑛𝑑 𝐵∅

∗  =  𝐵∅̂,                                        (2) 

where, the∅̂𝒵 ≔ ∅(𝒵)̅̅ ̅̅ ̅̅ ̅. 

The reproducing kernel for 𝐻2 is defined to be 𝑘𝜆 =
1

1−𝜆𝑧
and 𝑘𝜆, satisfies (𝑓, 𝑘𝜆) = 

𝑓(𝜆) for every function 𝑓 ∈ 𝐻2. The reproducing kernel for 𝐾𝑢
2 is defined to be 

𝐾𝜆
𝑢 = 𝑃𝑢𝑘𝜆 =

1−𝑢(𝜆)̅̅ ̅̅ ̅̅ 𝑢(𝑧)

1−𝜆𝑧
  Note that 𝐾𝜆

𝑢 ∈ 𝐾𝑢
2  and we have 〈𝑔(𝑧), 𝐾𝜆

𝑢(𝑧)〉 = 𝑔(𝜆) 

for every𝑔 ∈ 𝐾𝑢
2. A conjugation Con 𝐿2(𝕋) is defined by 

(𝐶𝑓)(𝑧)  =  𝑢(𝑧)𝑧𝑓(𝑧)̅̅ ̅̅ ̅̅ ̅ 𝑓𝑜𝑟 𝑓 ∈  𝐿2 
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and it is easy to verify that C is a conjugate linear map and an isometry on 𝐿2 

satisfying 𝐶2 = I. It is easy to verify that C maps 𝑢𝐻2 onto 𝑧̅𝐻2, 𝑧̅𝐻2 onto 𝑢𝐻2 

and 𝐾𝑢
2 onto itself. For convenience, 𝐶𝑓 will be denoted ly𝑓. One can verify 

𝑘𝜆
�̃�(𝑧) = 𝐶𝐾𝜆

𝑢(𝑧)
𝑢(𝑧) − 𝑢(𝜆)

𝑧 − 𝜆
 

The compressed shift 𝑆𝑢  on 𝐾𝑢
2  is defined by 𝑆𝑢 ≔ 𝐴𝑧 = 𝑃𝑢𝑆|𝐾𝑢

2
. For functions 

𝑓, 𝑔 ∈ 𝐿2, 𝑓 ⊗ 𝑔 denotes a rank one operator defined by (𝑓 ⊗  𝑔)ℎ =  〈ℎ, 𝑔〉𝑓, 

for ℎ ∈  𝐿2. The following properties can be verified: 

(𝑖)(𝑓 ⊗ 𝑔)∗ = 𝑔⊗ 𝑓 

(𝑖𝑖) 𝐴(𝑓⊗  𝑔)𝐵 =  (𝐴𝑓)⊗ (𝐵∗𝑔), 𝑓𝑜𝑟 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑙𝑖𝑛𝑒𝑎𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑜𝑛 𝐿2. (3) 

We have two Lemmas  

Lemma (3.1)[3]. 

(a) for, 𝜆 in 𝔻, 

𝑆𝑢
∗𝑘𝜆
𝑢  = �̅�𝐾𝑘𝜆

𝑢 − 𝑢(𝜆)̅̅ ̅̅ ̅̅ 𝑘0
�̃�, 𝑆𝑢𝑘𝜆

�̃� = 𝜆𝑘𝜆
�̃� −  𝑢(𝜆)𝑘0

𝑢. 

(b) For 𝜆 ∈ 𝔻\{𝑂}, 

𝑆𝑢𝑘𝜆
𝑢 =

1
=

𝜆
𝑘𝜆
𝑢 −

1
=

𝜆
, 𝑆𝑢
∗𝑘0
�̃�, =

1
=

𝜆
𝑘𝜆
�̃� −

1
=

𝜆
𝑘0
𝑢 

Lemma (3.2)[3]. 

 𝐼 − 𝑆𝑢𝑆𝑢
∗ = 𝐾0

𝑢⊗𝐾0
𝑢 𝑎𝑛𝑑 𝐼 − 𝑆𝑢𝑆𝑢

∗ = 𝑘0
�̃�⨂𝑘0

�̃� 

C. Gu gave a nice characterizatjon of truncated Hankel operators as D. Sarason did 

for truncated Toeplitz operators. 
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Theorem (3.3)[3].  A bounded operator B on 𝐾𝑢
2 is a truncated Hankel operator if 

and only if there eristfunctions 𝑓, 𝑔 ∈  𝐾𝑢
2, such that 

𝐵 − 𝑆𝑢
∗𝐵𝑆𝑢

∗ = 𝑔⨂𝐾0
𝑢 + 𝑘0

�̃�⨂𝑓 

For a complex number c, we define the modified compressed shift by 

𝑆𝑢,𝑐𝑏𝑦 𝑆𝑢,𝑐 = 𝑆𝑢 + 𝑐(𝐾0
𝑢⨂𝑘0

�̃�) . 

Lemma (3.4)[3].  If a bounded operator A on 𝐾𝑢
2 commutes with 𝑆𝑢,𝑐  for some 

complex number c, then A is a truncated Toeplitz operator. 

The analog of Lemma (3.4) for TTO’ is the following: 

Lemma (3.5)[3]. For complex numbers 𝛼and 𝛽, if 𝑆𝑢,𝛼
∗ 𝐵 =  𝐵𝑆𝑢,𝛽 , 𝑜𝑟 𝑆𝑢,𝛽 , 𝐵 =

𝐵𝑆𝑢,𝛽
∗ , then 𝐵 is a truncated Hankel operator. 

Proof. We will show that 𝑆𝑢,𝛼
∗ 𝐵 =  𝐵𝑆𝑢,𝛽  implies 𝐵  is a truncated Hankel 

operator. The proof of other case is similar. In view of the above Theorem, we will 

show that there exist 𝑓, 𝑔 ∈ 𝐾𝑢
2 such that 

𝐵 − 𝑆𝑢,𝛼
∗ 𝐵 =  𝐵𝑆𝑢,𝛽𝑔⨂𝐾0

𝑢 + 𝑘0
�̃�⨂𝑓 

By multiplying S, on the right side of equation 𝑆𝑢,𝛼
∗ 𝐵 =  𝐵𝑆𝑢,𝛽 we have 

𝑆𝑢
∗𝐵𝑆𝑢

∗ + (𝑘0
�̃�⨂𝛼𝑆𝑢𝐵

∗𝐾0
∗) = 𝐵𝑆𝑢𝑆𝑢

∗ + (𝛽𝐵𝐾0
𝑢⨂𝑆𝑢𝑘0

�̃�)              (4) 

Since 𝑆𝑢𝑆𝑢
∗ = 𝐼 − 𝐾0

𝑢⨂𝐾0
𝑢 𝑎𝑛𝑑 𝑆𝑢𝑘0

�̃� = −𝑢(0)𝑘0
𝑢by Lemma (3.1) reduces to 

𝐵 − 𝑆𝑢
∗𝐵𝑆𝑢

∗ = ((1 + 𝛽𝑢(0)̅̅ ̅̅ ̅̅ )𝐵𝐾0
𝑢⨂𝐾0

𝑢) + (𝑘0
�̃�⨂𝛼𝑆𝑢𝐵

∗𝐾0
𝑢). 

The proof is complete.  
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N. Sedlock gave a nice necessary and sufficient condition that the product of two 

truncated Toplitz operators is again a truncated Toeplitz operator. 

Theorem (3.6)[3]. Suppose  𝐴1, 𝐴2 ∈ 𝔗(𝐾𝑢
2)𝐼𝑓𝐴1𝐴2 ∈ 𝔗(𝐾𝑢

2), then one of two 

cases holds: 

(i) Either 𝐴1 𝑜𝑟 𝐴2 is equal to 𝜆𝐼 for some 𝜆 ∈ ℂ. 

(ii) Both 𝐴1 𝑎𝑛𝑑 𝐴2  commute with𝑆𝑢,𝑐  for some 𝑐 ∈  ℂ,𝑤ℎ𝑒𝑟𝑒𝑆𝑢,𝑐  is defined by 

𝑆𝑢,𝑐 = 𝑆𝑢 + 𝑐(𝐾0
𝑢⨂𝑘0

�̃�). 

The main purpose of this paper is to characterize the pairs of truncated 

Hankel operators whose products are truncated Toeplitz operators. Since it turns 

out that many of the algebraic properties of 𝑇𝐻O’s are more complicated than the 

case of TTO’s, we are going to give a partial answer to the above problem using 

some interesting results. Let a bounded operator D on 𝐾𝑢
2 be defined by 𝐷:=  𝐵𝑢. 

Lemma (3.7)[3]. 𝐹𝑜𝑟 𝜑 ∈ 𝑧𝐻2̅̅ ̅̅ ̅, 

𝐵𝜑𝑆𝑢 − 𝑆𝑢
∗𝐵𝜑 = 𝑘0

�̃�⨂𝑃𝑢𝐻𝜑
∗𝑢 − 𝑃𝑢𝐻𝜑𝑢⨂𝑘0

�̃� 

An inner function u is called real symmetric if 𝑢 =  �̂�. The following Lemma 

shows interesting relation between TTO’s and 𝑇𝐻O’s when n is real symmetric. 

Lemma (3.8)[3]. If 𝑢 =  �̂�and 𝐷 = 𝐵𝑢  ∈ ℌ (𝐾𝑢
2), then 

(a) 𝐷∗  =  𝐷 𝑎𝑛𝑑 𝐷2  =  𝐼. 

(𝑏)ℌ (𝐾𝑢
2) = ℌ (𝐾𝑢

2) = 𝔗 (𝐾𝑢
2). 𝐹𝑜𝑟 𝜓 ∈ 𝐾𝑢

2 + 𝐾𝑢
2𝐷𝐴𝜓 = 𝐵�̅�𝜓𝑎𝑛𝑑 𝐴𝜓𝐷 = 𝐵�̅�𝜓(�̅�) 

(c) 𝐷𝑘𝜆
𝑢 = 𝐾

𝑢

𝜆

̃  𝑎𝑛𝑑 𝐷𝑘𝜆
�̃�  =  𝑘

𝑢

𝜆
. 
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Theorem (3.9)[3]. If u — ii, the product of two truncated Hankel operators 

𝐵1, 𝐵2  ∈ ℌ (𝐾𝑢
2) becomes a truncated Toeplitz operator if and only if one of the 

following cases holds: 

(i) Either 𝐵1 𝑜𝑟 𝐵2 is equal to 𝜆𝐷 for some 𝜆 ∈ ℂ. 

(ii) There erists𝑐 ∈ ℂsuch that 

𝑆𝑢,𝑐 , 𝐵1  =  𝐵1𝑆𝑢,𝑐̅
∗  𝑎𝑛𝑑 𝑆𝑢,𝑐̅

∗ 𝐵2  = 𝐵2𝑆𝑢,𝑐  

Proof. If either 𝐵1 𝑜𝑟 𝐵2  is a constant multiple of D, then (b) of Lemma (3.8) 

shows 𝐵1𝐵2 is a TTO. Now observe 

𝑆𝑢,, 𝐵1𝐵2  =  𝐵1𝑆𝑢,𝑐̅
∗ 𝐵2 = 𝐵1𝐵2𝑆𝑢,𝑐 

Thus, by Lemma (3.3), we conclude that 𝐵1 𝐵2 is a TTO. The proof of sufficiency 

is complete. 

For the proof of necessity assume that neither 𝐵1 nor 𝐵2 is a constant multiple of 

the identity and 𝐵1𝐵2  = A for some TTO 𝐴 ∈ 𝔗(𝐾𝑢
2). 𝑃𝑢𝑡 𝐴1  = 𝐵1𝐷  and 𝐴2 =

𝐷𝐵2, 𝑡ℎ𝑒𝑛 𝐴1, 𝐴2 ∈  𝔗(𝐾𝑢
2) by Lemma (3.8). Note that 

𝐴1𝐴2  =  𝐵1𝐷𝐷𝐵2𝐵1𝐵2, 

by property (b) of Lemma (3.8), and 𝐴1, 𝐴2  =  𝐴 ∈ 𝔗(𝐾𝑢
2). By Theorem (3.2), if 

none of 𝐴1  and 𝐴2  is the multiple of identity, then 𝐴1, 𝐴2 𝑒 {𝑆𝑢,𝑐} ’ for some 

complex number c. First, we will show the second equation of (2). Then by 

Theorem (3.5), 𝐴2 commutes with some modified shift 𝑠𝑢,𝑐 .Thus we have 

𝑆𝑢,𝑐 , 𝐷𝐵2 =  𝐷𝐵2𝑆𝑢,𝑐  . 

Claim. 𝑆𝑢,𝑐̅
∗  = 𝐷𝑆𝑢,𝑐 
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By a straightforward calculation, we have 

𝑆𝑢,𝑐̅
∗  —  𝐷𝑆𝑢,𝑐

∗ = 𝑆𝑢
∗𝐷 —  𝐷𝑆𝑢  +  𝑐(𝑘0

�̃� ⨂ 𝐾0
𝑢)  −  𝑐(𝐷𝐾0

𝑢 ⨂ 𝑘0
�̃�). 

Since 𝑃𝑢𝐻𝑢
∗𝑢 =  𝑃𝑢𝐻𝑢𝑢 =  0 , by Lemma (2.2), 𝑆𝑢

∗𝐷 —  𝐷𝑆𝑢  =  0 . Also, by 

Lemma (3.8) (c), 𝐷𝑘0
𝑢  =  𝑘0

�̃�. 𝐻𝑒𝑛𝑐𝑒 𝑆𝑢,𝑐̅
∗ 𝐷 =  𝐷𝑆𝑢,𝑐 

By claim we have 

𝐷𝑆𝑢,𝑐𝐷 =  𝑆𝑢,𝑐̅
∗ ,                                                     (5) 

so that 

𝑆𝑢,𝑐̅
∗ 𝐵2 = 𝐷𝑆𝑢,𝑐𝐷𝐵2 = 𝐵2𝑆𝑢,𝑐 

By the same argument, we also have 𝑆𝑢,𝑐𝐵1  = 𝐵1𝑆𝑢,𝑐̅
∗  

In fact, the shape of the symbol functions of the 𝑇𝐻O’s 𝐵1, 𝐵2 and the resulting 

TTO 𝐵1𝐵2 can be concretely determined. 

Lemma (3.10)[3]. A bounded operator A on 𝐾𝑢
2 commutes with if and only if 𝐴 =

 𝐴𝜙 with = 𝑓 +
𝑐

1+𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝑢𝑓
̅̅ ̅̅ ̅’ for some 𝑓 ∈ 𝐾𝑢

2. Moreover, 𝑓 = (1 + 𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ )𝐴𝑘0
𝑢. 

Theorem (3.11)[3]. The product 𝐵1𝐵2 of two 𝑇𝐻O’s is a TTO, with none of 𝐵𝑖 a 

constant multiple of 𝐷 = 𝐵𝑢 , then there are complex number c and analytic 

functions 𝑓1, 𝑓2 ∈ 𝐾𝑢
2 such that 𝐵1  =  𝐵𝑢𝜙1(�̅�), where 𝜙1 = 𝑓1 +

𝑐

1+𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝑢𝑓1
̅̅ ̅̅ ̅̅  and 

𝐵2 = 𝐵𝑢𝜙2where 𝜙2 = 𝑓2 ++
𝑐

1+𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝑢𝑓2
̅̅ ̅̅ ̅̅  Moreover, the symbol of the resulting 

TTO is 𝐴𝜙1𝑓2, with𝜙1 and 𝑓2 as above, that is, 𝐵�̅�𝜙1(�̅�)𝐵�̅�𝜙2 = 𝐴𝐴𝜙1𝑓2. 

Proof. If 𝐵1𝐵2is a TTO, then by Theorem (3.9),we know 

𝑆𝑢,𝑐𝐵1  =  𝐵1𝑆𝑢,𝑐̅
∗   𝑎𝑛𝑑 𝑆𝑢,𝑐̅

∗ 𝐵2 = 𝐵2𝑆𝑢,𝑐                                    (6) 
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fbi some 𝑐 ∈ ℂ. Multiplying 𝐷 to the right side of the first equation of (6), we have 

𝑆𝑢,𝑐𝐵1𝐷 = 𝐵1𝐷𝐷𝑆𝑢𝑐̅
∗ 𝐷 = 𝐵1𝐷𝑆𝑢,𝑐 , where the second equality comes from (5). 

Therefore, Lemma 2.8 implies 𝐵1𝐷 = 𝐴𝜙1 = 𝑓1 +
𝑐

1+𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝑢𝑓1
̅̅ ̅̅ ̅̅  for some 𝐹1 ∈ 𝐾𝑢

2. 

Using (b) of Lemma (3.8) S, 𝐵1 = 𝐴𝜙1𝐷 = 𝐵𝑢𝜙1(�̅�) 

To get the symbol of the 𝑇𝐻O 𝐵2, note that the second equation of (6) implies 

𝑆𝑢,𝑐𝐷𝐵2 = 𝐷𝑆𝑢,𝑐̅
∗ 𝐷𝐷𝐵2 = 𝐷𝑆𝑢,𝑐̅

∗ 𝐵2 = 𝐷𝐵2𝑆𝑢,𝑐̅
∗  where we used (6) for the first 

equality. Thus 𝐷𝐵2 commutes with𝑆𝑢,𝑐 Again, by the use of (b) of Lemma (3.8) , 

we have 𝐷𝐵2 = 𝐴𝜙2 , 𝑖. 𝑒. , 𝐵2 = 𝐷𝐴𝜙2 = 𝐵�̅�𝜙2  where 𝜙2 = 𝑓2 ++
𝑐

1+𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝑢𝑓2
̅̅ ̅̅ ̅̅  for 

sonic 𝑓2 ∈ 𝐾𝑢
2. 

Now let 𝐵𝑢𝜙1(�̅�)𝐵�̅�𝜙2 = 𝐴𝜓.  commutes with  𝑆𝑢,𝑐  By Lemma (3.10), 𝜓 = 𝑔 +

𝑐

1+𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝑢�̃�
̅̅ ̅̅ ̅  where 𝑔 =  (1 + 𝑐𝑢(𝑂)̅̅ ̅̅ ̅̅ ̅̅ )𝐴𝜓, 𝑘0

𝑢 . Recall that 𝐴𝜓  =  𝐵𝑢Φ1(�̅�)𝐵𝑢Φ2  =

𝐵𝑢Φ1(�̅�)𝐷𝐷𝐵�̅�Φ2  =  𝐴Φ1 , 𝐴Φ1. Thus we have 𝐴𝜓𝑘0
𝑢 = 𝐴Φ1𝐴Φ2𝑘0

𝑢. Note that both 

𝐴Φ1 and 𝐴Φ2 commute with 𝑆𝑢,𝑐 and by Lemma (3.10), 𝐴Φ2𝑘0
𝑢 =

1

1+𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ 𝑓2 

So we have 𝑔 =  1 + 𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ 𝐴Φ1𝐴Φ2𝑘0
𝑢  =  1 + 𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ 𝐴Φ1

1

1+𝑐𝑢(0)̅̅ ̅̅ ̅̅ ̅̅ 𝑓2 = 𝐴Φ1𝑓2  as 

desired.  

Using the method we used before, we can also get some analogous results on the 

product of a TTO and a 𝑇𝐻O. The proof is skipped. 

Theorem (3.12)[3]. Let u be a real symmetric inner function, 𝐴 ∈

𝔗(𝐾𝑢
2) 𝑎𝑛𝑑 𝐵 ∈ ℌ(𝐾𝑢

2). Then AB is a truncated Hankel operator on 𝐾𝑢
2  if and 

only if one of the following conditions holds: 
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(a) Either A is a constant multiple of the identity or B is a constant multiple of 

𝐷 =  𝐵�̅�. 

(b) A commutes with and 𝑆𝑢,𝑐𝐵 = 𝐵𝑆𝑢,𝑐̅
∗  for some complex number c. 

Note that under the second condition, the resulting 𝑇𝐻O AB satisfies 𝑆𝑢,𝑐𝐵 =

𝐵𝑆𝑢,𝑐̅
∗ . 

Using Theorem (3.9), we can get an interesting condition that the product of two 

Hankel matrices be a Toeplitz matrix. To apply the Theorem to the matrix case, let 

𝑢 =  𝑧𝑁 . Obviously, u is a real symmetric function (𝑢 = �̂� ). 𝐿𝑒𝑡 𝐵1  =

 𝐵𝜑 𝑎𝑛𝑑 𝐵2  =  𝐵𝜓, where 𝜑 = 𝑎1𝑧̅ + 𝑎2𝑧̅
2 +⋯ ,𝜓 = 𝑏1𝑧̅ + 𝑏2𝑧̅

2 +⋯. Their with 

respect to the standard ordered basis of 𝐾𝑧𝑁
2 , 

𝐵1 = (

𝑎1 𝑎2 ⋯
𝑎2 𝑎3 ⋱
⋮
𝑎𝑁

⋱
⋯

⋱
𝑎2𝑁 − 2

𝑎𝑁
⋮

𝑎2𝑁 − 2
𝑎2𝑁 − 2

),   𝐵2 = (

𝑏1 𝑏2 ⋯
𝑏2 𝑏3 ⋱
⋮
𝑏𝑁

⋱
⋯

⋱
𝑏2𝑁 − 2

𝑏𝑁
⋮

𝑏2𝑁 − 2
𝑏2𝑁 − 2

) 

and 

𝑆𝑢,𝑐 = (

0 ⋯ 0
1 0
⋮
0

⋱
⋯

⋱
1

𝑐
0
⋮
0

) 

From the equation 𝑆𝑢,𝑐𝐵1 = 𝐵1𝑆𝑢,𝑐̅
∗  a direct comparison of the matrix 

multiplications gives 

𝐵1 =

(

  
 
𝑎1 𝑎2 ⋯
𝑎2 𝑎3 ⋱
⋮
𝑎𝑁

⋱
⋯

⋱
⋯

𝑎𝑁
1

𝑐
𝑎1

⋮
1

𝑐
𝑎𝑁 − 1)
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If𝑐 ≠ 0, or ,we have 𝑎1 = ⋯ = 𝑎𝑁−1 = 0 𝑖𝑓 𝑐 = 0. Therefore we have either 𝜑 =

𝑎1𝑧̅ + ⋯+ 𝑎𝑁𝑧̅
𝑁 +

1

𝑐
(𝑎1𝑧̅

𝑁+1 +⋯+ 𝑎𝑁−1𝑧̅
2𝑁−1depending on whether c = 0 or 

not. Similarly, 𝑆𝑢,𝑐̅
∗ 𝐵2 = 𝑆𝑢,𝑐𝐵2, gives 

(

𝑏1 𝑏2 ⋯
𝑏2 𝑏3 ⋱
⋮
𝑏𝑁

⋱
⋯

⋱
⋯

𝑏𝑁
𝑐𝑏1
⋮

𝑐𝑏𝑁−1

) 

So we have 𝜓 = 𝑏1𝑧̅ + 𝑏2𝑧̅
2 +⋯+ 𝑏𝑁𝑧̅

𝑁 + 𝑐(𝑏1𝑧̅
𝑁+1 + 𝑏2𝑧̅

𝑁+2 +⋯+

𝑏𝑁−1𝑧̅
2𝑁−1) 

Summarizing the above, we have the following Theorem that characterizes the 

condition that the product of two Hankel matrices become a Toeplitz matrix. 

Indeed, this result can also be worked out by an appropriate manipulation of 

Theorem (3.2). 

Theorem (3.13)[3]. Suppose 𝐵1, 𝐵2 𝑎𝑟𝑒 𝑁  Hankel matrices. If 𝐵1𝐵2is a Toeplitz 

matri:x, then one of two cases holds: 

(i) Either 𝐵1 𝑜𝑟 𝐵2 is of the form  

(

0 ⋯ 0
⋮
⋮ ⋱

⋯
⋱
⋯

0
⋮
0

) 

(ii) There exists 𝑐 ∈ ℂ such that 

𝐵1 =

(

  
 
𝑎1 𝑎2 ⋯
𝑎2 𝑎3 ⋱
⋮
𝑎𝑁

⋱
⋯

⋱
⋯

𝑎𝑁
1

𝑐
𝑎1

⋮
1

𝑐
𝑎𝑁−1)

  
 
 𝑎𝑛𝑑  𝐵2 = (

𝑏1 𝑏2 ⋯
𝑏2 𝑏3 ⋱
⋮
𝑏𝑁

⋱
𝑐𝑏1

⋱
⋯

𝑏𝑁
𝑐𝑏1
⋮

𝑐𝑏𝑁−1

) 
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or 

𝐵1 = (

0 ⋯ 0
⋮ 0 ⋱
0
𝑎𝑁

⋱
𝑎𝑁+1

⋱
⋯

𝑎𝑁
𝑎𝑁+1
⋮

𝑎2𝑁−1

)   𝑎𝑛𝑑     𝐵2 = (

𝑏1 𝑏2 ⋯
𝑏2 𝑏3 ⋱
⋮
𝑏𝑁

⋱
0

⋱
⋯

𝑏𝑁
0
⋮
0

) 

We conclude with anaturally arising questions.  
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Chapter 4 

Localization principle 

 We discuss the localization principle which says that the contributions of disjoint , 

parts of the singular support to this asymptotic behavior are independent of each 

other .We apply this principle to hankel integral operators and to infinite Hankel 

matrices. In both cases, we describe a wide class of Hankel operators with power-

like asymptotics of singular values .The leading term of this asymptotics is found 

explicitly. 

Section (4.1): Compact Hankel Operators 

   Hankel operators admit variousunitarily equivalent descriptions. We start by 

recalling the definition of Hanke loperators on the Hardy class 𝐻2(𝕋). Here 𝕋 is 

the unit circle in the complex plane,equipped with the normalized Lebesgue 

measure 𝑑𝑚(𝜇) =  (2𝜋𝑖𝜇)−1𝑑𝜇, 𝜇 ∈ 𝕋;  the Hardy class 𝐻2(𝕋) ⊂   𝐿2(𝕋)  is 

de_ned in the standard way as the subspace of 𝐿2(𝕋) spanned by the functions 

1𝜇, 𝜇2, …… . Let 𝑃+ ∶  𝐿
2(𝕋) →  𝐻2(𝕋) be the orthogonal projection onto 𝐻2(𝕋), 

and let W be the involution in 𝐿2(𝕋) defined by (𝑊𝑓)(𝜇)  =  𝑓(𝜇). For a function 

𝜔 ∈  𝐿∞(𝕋), which is called a symbol, the Hankel operator 𝐻(𝜔) is defined by the 

relation  

                                   𝐻(𝑤)𝑓 =  𝑃+(𝜔𝑊𝑓).                                           (1) 

Recall that the singular values of a compact operator 𝐻 are defined by the relation 

𝑠𝑛(𝐻)  =  𝜆𝑛(|𝐻|),  where {𝜆𝑛(|𝐻|)}𝑛=1
∞  is the non-increasing sequence of 

eigenvalues of the compact positive operator |𝐻|  = √𝐻∗𝐻  (enumerated with 

multiplicities taken into account). The study of singular values of compact Hankel 
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operators has a long history and is linked to rational approximation, control theory 

and other subjects, Singular values 𝑠𝑛(𝐻(𝜔)) of a Hankel operator with a symbol 

𝜔 ∈  𝐶∞(𝕋) decay faster than any power of 𝑛−1  as 𝑛 →  ∞.On the other hand, 

singularities of 𝜔generate a slower decay of singular values. Here we will be 

interested in the case when the singular values behave as some power of 𝑛−1 . 

Optimal upper estimates on singular values of Hankel operators are due to V. 

Peller . He found necessary and sufficient conditions on !for the estimate 

𝑠𝑛(𝐻(𝜔)) ≤  𝐶𝑛
−𝛼 

for some 𝛼 >  0.  These conditions are stated in terms of the Besov-Lorentz 

classes. 

It is natural to expect that the asymptotic behavior of singular values is determined 

by the behaviour of the symbol 𝜔 in a neighbourhood of its singular support. We 

justify this thesis and show that the contributions of the disjoint components of the 

singular support of 𝜔  to the asymptotics of the singular values of 𝐻(𝜔) are 

independent of each other. We use the term "localization principle" for this fact. 

This principle is well understood of the study of the essential spectrum and of the 

absolutely continuous spectrum of non-compact Hankel operators. Our aim here is 

to bring this principle to the fore in the question of the asymptotics of singular 

values of compact Hankel operators. 

We combine the localization principle to determine the asymptoticsof singular 

values of Hankel operators of various natural classes. In particular, for Hankel 

matrices with oscillating matrix elements we show that the contributions of 

different oscillating terms to the asymptotics of singular values are independent   of 

each other. We also establish similar results for Hankel integral operators whose 
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integral kernels have a singularity at some finite point 𝑡0 ≥ 0  and several 

oscillatingterms at infinity. 

Recall that the singular support sing supp𝜔 of a function 𝜔 ∈  𝐿∞(𝕋) is defined 

the smallest closed set 𝑋 ⊂ 𝑇 such that 𝜔 ∈ 𝐶∞ (𝑇 \ 𝑋). Localization principle is 

stated as follows. 

Theorem (4.1.1)[4]. Let 𝜔1, 𝜔2, … , 𝜔𝐿 be bounded functions on 𝑇 such that 

sing supp𝜔ℓ ∩   sing supp𝜔𝑗  =  ∅, ℓ =  𝑗.                                      (2) 

Set 𝜔 =  𝜔1 +⋯ + 𝜔𝐿 .Then for all 𝑝 >  0 we have the relations 

lim sup
𝑛→∞

𝑛𝑠𝑛(𝐻(𝜔))
𝑝
=∑limsup

𝑛→∞   
𝑛𝑠𝑛(𝐻(𝜔ℓ))

𝑝
,

𝐿

ℓ=1

                       (3) 

lim inf
𝑛→∞

𝑛𝑠𝑛(𝐻(𝜔))
𝑝
=∑lim inf

𝑛→∞   
𝑛𝑠𝑛(𝐻(𝜔ℓ))

𝑝
,

𝐿

ℓ=1

                        (4) 

The upper and lower limits in this Theorem usually coincide. However, we prefer 

to work with these limits separately both because it is more general and because it 

is technically more convenient. The limits in the right-hand sides of (3), (4) may be 

infinite; in such cases the left-hand sides of (3) or(4) are also infinite. It is not 

excluded in Theorem (4.1.1) that the singular support of each 𝜔ℓ consists of one 

point only. In fact, this is exactly this case that we will see in our applications. 

Theorem (4.1.1) can be equivalently stated in terms of the counting functions. For 

a compact operator H, the singular value counting function isdefined by 

𝑛(𝜀, 𝐻)  =  #{𝑛 ∶  𝑠𝑛(𝐻)  >  𝜀} , 𝜀 >  0.                    (5) 

We have 
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lim
𝑛→∞

sup𝑛𝑠𝑛 (𝐻)
𝑝  = lim

𝜀→0
sup 𝜀𝑝𝑛 (𝜀; 𝐻) 

and similarly for the lower limits. It follows that (3), (4) may be restated as 

lim
𝜀→0

sup 𝜀𝑝(𝜀; 𝐻(𝜔)) = lim
𝜀→0

sup 𝜀𝑝𝑛(𝜀; 𝐻) , 

lim
𝜀→0

inf 𝜀𝑝𝑛(𝜀; 𝐻(𝜔))   = ∑lim
𝜀→0

inf 𝜀𝑝𝑛(𝜀;𝐻(𝜔))

𝐿

ℓ=1

 

In particular, in the case when all upper limits in the right-hand sides coincide with 

the lower limits and are finite, we have 

𝑛(𝜀;𝐻(𝜔)) =∑𝑛

𝐿

ℓ=1

(𝜀; 𝐻(𝜔)) +  𝑜(𝜀−𝑝);  𝜀 →  0. 

Our proof of Theorem (4.1.1) consists of two steps. The first one is to check that 

under the assumption (2) the operators 𝐻(𝜔ℓ) are asymptotically orthogonal in the 

sense that for all 𝑗 ≠ ℓ and all 𝛼 >  0 we have 

𝑠𝑛 (𝐻(𝜔ℓ)
∗𝐻(𝜔𝑗)) =  𝑂(𝑛

−𝛼),

𝑠𝑛(𝐻(𝜔ℓ)𝐻(𝜔𝑗)
∗
)  =  𝑂(𝑛−𝛼);  𝑛 → ∞.                                                (6) 

This result follows from the reduction of the products of Hankel operators in (6) to 

integral operators in 𝐿2(𝕋) with smooth kernels. 

The second step is to show that (6) implies relations (3) and (4). This fact is not 

specific for Hankel operators. In order to get some intuition into its proof, let us 

suppose for a moment that the operators 𝐻(𝜔ℓ) are pairwise orthogonal in the 

sense that 

𝐻(𝜔𝑗)
∗
𝐻(𝜔ℓ) =  0 𝑎𝑛𝑑 𝐻(𝜔𝑗)𝐻(𝜔ℓ)

∗  =  0, ∀𝑗 ≠ ℓ,.            (7) 
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Then 

Ran𝐻(𝜔𝑗) ⊥  Ran𝐻(𝜔ℓ)𝑎𝑛𝑑 Ran𝐻(𝜔𝑗)
∗
⊥  Ran𝐻(𝜔ℓ)

∗;  ∀𝑗 ≠ ℓ. 

Thus, representing the sum 𝐻(𝜔) =  𝐻(𝜔1) + ⋯ +  𝐻(𝜔𝐿) as a "block-diagonal" 

operator acting from  ⊕ℓ=1
𝐿 Ran𝐻(𝜔ℓ)

∗ 𝑡𝑜 ⊕ℓ=1
𝐿 Ran𝐻(𝜔ℓ), we conclude that 

𝑛(𝜀;𝐻(𝜔))  =∑𝑛(𝜀;𝐻(𝜔ℓ)),

𝐿

ℓ=1

 ∀𝜀 >  0. 

The orthogonality condition (7) is too strong. In fact, an operator theoretic result, 

Theorem (4.1.2), shows that the asymptotic orthogonality (6) ensures the relations 

(3), (4) for 𝑝 =  1/𝛼. 

Representing Hankel operators in the basis {𝜇𝑗}
𝑗=0

∞
 𝑖𝑛 𝐻2(𝕋), one obtains the class 

of infinite Hankel matrices of the form {ℎ(𝑗 +  𝑘)}𝑗
∞ ; 𝑘 = 0 in the space ℓ2(ℤ+). 

We give an application of the localization principle to such Hankel matrices 

Although the localization principle in the form stated above (Theorem (4.1.1) is 

quite natural, this application looks far less obvious. 

Theorem (4.1.3) can be equivalently stated  in terms of Hankel operators 𝐻(𝜔) 

acting in the Hardy space 𝐻+
2(ℝ) of functions analytic in the upperhalf-plane. In 

this case the symbol 𝜔(𝑥) is a function of 𝑥 ∈  𝑅. This leads to new results for 

Hankel operators defined as integral operators in the space 𝐿2(ℝ+). 

We will refer to the Hankel operators in 𝐻2(𝕋) and in ℓ2(ℤ+) as to the discrete 

case, and to the Hankel operators in 𝐻+
2(ℝ) and in 𝐿2(ℝ+ ) as to the continuous 

case. We will use boldface font for objects associated with the continuous case. We 
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have tried to make exposition in the discrete and continuous cases parallel as much 

as possible. 

Recall that for a bounded operator H, the non-zero parts of the operators 

(−|𝐻|) ⊕ |𝐻|and      (
0 𝐻
𝐻∗ 0

) 

are unitarily equivalent. Therefore various spectral results for |𝐻(𝜔)|  are 

equivalent to those for the self-adjoint Hankel operator with the matrix valued 

symbol 

(
0 𝜔(𝜇)

𝜔(𝜇) 0
) 

Some forms of localization principle are known in the study of the continuous 

spectrum of |𝐻(𝜔)|. The idea of separation of singularities of the symbol goes 

back to the  S. R. Power on the essential spectrum specess of Hankel operators 

with piecewise continuous symbols 𝜔. Let 𝑎𝑗 ∈ 𝕋 be the points where 𝜔 has the 

jumps 

𝜅(𝑎𝑗) = lim
𝜀→+0

𝜔(𝑎𝑗𝑒
𝑖𝜀) lim

𝜀→+0
𝜔(𝑎𝑗𝑒

−𝑖𝜀) ≠ 0 

Although Power was interested in the essential spectrum of 𝐻(𝜔), it follows from 

the matrix version of his results that 

spec𝑒𝑠𝑠(|𝐻(𝜔)|)  =  [0,𝑀], 𝑀 =
1

2
sup
𝑎𝑗∈𝕋

| 𝜅 (𝑎𝑗)|,                        (8) 

Where the supremum is taken over all points 𝑎𝑗 where 𝜔 has a jump. 

A description of the absolutely continuous spectrum of |𝐻(𝜔)|  with piecewise 

continuous symbol 𝜔 follows from the matrix version of the results of Howland 
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where the trace class method of scattering theory was used. In both cases, under 

some mild additional assumptions, including the condition that 𝜔 has finitely many 

jumps, it can be shown that 

spec𝑎𝑐(|𝐻(𝜔)|) ⋃ [0 ,
1

2
|𝜅(𝑎𝑗)|]

𝑎𝑗∈𝕋

                              (9) 

Every term in the right-hand side of (9) gives its own band of the absolutely 

continuous spectrum of multiplicity one. Thus, formula (9) can be regarded asthe 

continuous spectrum analogue of the localisation principle discussed the 

contributions of different jumps of 𝜔 to spec𝑎𝑐(|𝐻(𝜔)|) are independent of each 

other.  Formulas (8) and (9) are consistent with each other. 

We prove the localization principle in the discrete case and also state and prove its 

analogue in the continuous case. We describe the applications of localization 

principle to the Hankel operators acting in ℓ2(ℤ+); We give applications to integral 

Hankel operators in 𝐿2(ℝ+); We consider integral Hanke loperators with kernels 

with local singularities in R+. 

For 𝜔 ∈  𝐿2(𝕋), the Fourier coefficients of 𝜔 are denoted as usual by 

�̂�(𝑗) = ∫𝜔(𝜇)𝜇−𝑗𝑑𝑚(𝜇),   

𝕋

   𝑗 ∈ ℤ 

We will consistently make use of the following constant, which appears in our 

asymptotic formulas: 

𝑣(𝜔) = 2−𝛼𝜋1−2𝛼 (𝐵 (
1

2𝛼
,
1

2
))

𝛼

, 𝛼 >  0,                       (10) 
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Here 𝐵(∙,∙) is the Beta function. We make a standing assumption that the exponents 

𝑝 >  0 and 𝛼 >  0 are related by 𝛼 =  1/𝑝. 

We prove Theorem (4.1.1). We also prove a similar statement, Theorem (4.1.2), 

for Hankel operators in the Hardy space 𝐻+
2(ℝ) of functions analytic in the upper 

half-plane. 

 Let B be the algebra of bounded operators in a Hilbert space H, and let 𝑆∞ be the 

ideal of compact operators in B. For 𝑝 >  0, the weak Schatten class 𝑆𝑝,∞ consists 

of all compact operators A such that 

sup
𝑛
𝑛𝑠𝑛(𝐴)

𝑝 < ∞. 

The subclass 𝑆𝑝,∞
0 ⊂ 𝑆𝑝,∞is defined by the condition 

lim
𝑛→∞

𝑛𝑠𝑛(𝐴)
𝑝 = 0 

It is well known that both 𝑆𝑝,∞  and 𝑆𝑝,∞
0  are ideals of B; in particular, they are 

linear spaces. 𝐴 ∈  𝑆𝑝,∞(or 𝐴 ∈  𝑆𝑝,∞
0 )  if and only if the same is true for its 

adjoint 𝐴∗.We set 𝑆0  = ∩𝑝>0 𝑆𝑝,∞, that is, 

𝐴 ∈ 𝑆0  ⇔   𝑠𝑛(𝐴) = 𝑂(𝑛
−𝛼), 𝑛 → ∞,∀𝛼 > 0                  (11) 

First we recall a classical result in perturbation theory  on the spectral stability of 

singular values. 

Lemma (4.1.2)[4]. Let 𝐴 ∈  𝑆∞ and 𝐵 ∈  𝑆𝑝,∞
0  for some 𝑝 >  0. Then 

lim
𝑛→∞ 

sup𝑛𝑠𝑛(𝐴 + 𝐵)
𝑝 = lim

𝑛→∞ 
sup𝑛𝑠𝑛(𝐴)

𝑝                    (12) 

lim
𝑛→∞ 

inf 𝑛𝑠𝑛(𝐴 + 𝐵)
𝑝 = lim

𝑛→∞ 
inf 𝑛𝑠𝑛(𝐴)

𝑃                       (13) 
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Lemma (4.1.2)  is stated in a slightly more general form than usual because we do 

not require that 𝐴 ∈  𝑆𝑝,∞ and hence the limits in(12) and (13) may be infinite; in 

this case Lemma(4.1.2)   means that both sides in (12) and (13) are infinite 

simultaneously. Note that if 𝐴 ∉  𝑆𝑝,∞, then the expression (12) is infinite, but the 

expression (13) may be finite. Lemma (4.1.2)   can also be equivalently stated in 

terms of the singular value counting functions 𝑛(𝜀, 𝐴)defined by (5). 

𝐴 ∈ 𝑆𝑝,∞, 𝐵 ∈ 𝑆𝑝,∞    ⇒ 𝐴∗𝐵 ∈ 𝑆𝑝
2
,∞, 𝐴𝐵∗𝑆𝑝

2
,∞                      (14) 

We say that the operators 𝐴  and 𝐵  in 𝑆𝑝,∞  are asymptotically orthogonal if the 

class 𝑆𝑝/2,∞
0  in the right side of (14) can be replaced by its subclass 𝑆𝑝/2,∞

0 . The 

following Theorem allows us to study singular values of sums of asymptotically 

orthogonal operators. This result is the key operator theoretic ingredient of our 

construction. 

Theorem (4.1.3)[4]. Let 𝑝 >  0. Assume that 𝐴1, … , 𝐴𝐿 ∈  𝑆∞ and 

𝐴ℓ
∗𝐴𝑗 ∈ 𝑆 𝑝/2,∞

0 , 𝐴ℓ𝐴𝑗
∗𝑆𝑝/2,∞                                        (15) 

Then for 𝐴 =  𝐴1  + ⋯ + 𝐴𝐿 , we have 

lim
𝑛→∞

sup𝑛𝑠𝑛(𝐴)
𝑝∑ lim

𝑛→∞
sup𝑛𝑠𝑛(𝐴ℓ)

𝑝

𝐿

ℓ=1

                              (16) 

lim
𝑛→∞

inf 𝑛𝑠𝑛(𝐴)
𝑝 =∑ lim

𝑛→∞
inf 𝑛𝑠𝑛(𝐴ℓ)

𝑝

𝐿

ℓ=1

                          (17) 

Proof. Let us prove the first relation (16); the second one is proven in the same 

way. We argue in terms of counting functions (5). For an operator 𝐴 ∈  𝑆∞, letus 

denote 
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Δp(𝐴) = lim
𝜀→0

sup 𝜀1/𝑝(𝜀; 𝐴) 

 ( this limit  may be infinite). Then our aim is to prove that 

Δp(𝐴) =∑Δp

𝐿

ℓ=1

(𝐴ℓ),                                             (18) 

which is (16) in different notation. Put 

𝐻𝐿 = 𝐻⊕…⊕𝐻⏟        
𝐿 𝑡𝑒𝑟𝑚𝑠

 

and let 𝐴0  =  diag{𝐴1, … , 𝐴𝐿} 𝑖𝑛 𝐻
𝐿 , 𝑖. 𝑒., 

𝐴0(𝑓1, … , 𝑓𝐿) = (𝐴1𝑓1, … , 𝐴𝐿𝑓𝐿) 

Since 

𝐴0
∗𝐴0 = diag{𝐴1

∗𝐴1, … , 𝐴𝐿
∗𝐴𝐿}                                       (19) 

we see that 

𝑛(𝜀; 𝐴0) =∑𝑛(𝜀, 𝐴ℓ)

𝐿

ℓ=1

 

and therefore 

Δ𝑝/2(𝐴0
∗𝐴0) =∑Δ𝑝/2

𝐿

ℓ=1

(𝐴ℓ
∗𝐴ℓ) =∑Δ𝑝

𝐿

ℓ=1

(𝐴ℓ)                     (20) 

Next, let 𝐽 ∶  𝐻𝐿 →  𝐻 be the operator given by 

𝐽(𝑓1, … , 𝑓𝐿) = 𝑓1 +⋯+ 𝑓𝐿so that𝐽
∗𝑓 = (𝑓, … , 𝑓). 

Then 
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𝐽𝐴0(𝑓1, … , 𝑓𝐿) =  𝐴1𝑓1 +⋯+ 𝐴𝐿𝑓𝐿 

and 

(𝐽𝐴0)
∗𝑓 =  (𝐴1

∗𝑓, … , 𝐴𝐿
∗𝑓). 

It follows that 

(𝐽𝐴0)(𝐽𝐴0)
∗𝑓 =  (𝐴1𝐴1

∗  + ⋯ + 𝐴𝐿𝐴𝐿
∗)𝑓                           (22) 

and the operator (𝐽𝐴0)
∗(𝐽𝐴0) is a "matrix" in 𝐻𝐿 given by 

(𝐽𝐴0)
∗(𝐽𝐴0) = (

𝐴1
∗𝐴1 𝐴1

∗𝐴2 …
𝐴2
∗𝐴1 𝐴2

∗𝐴2 …
⋮

𝐴𝐿
∗𝐴1

⋮
𝐴𝐿
∗𝐴2

⋱
…

𝐴1
∗𝐴𝐿
𝐴2
∗𝐴𝐿
⋮

𝐴𝐿
∗𝐴𝐿

)                             (23) 

According to (20) and (23) we have 

(𝐽𝐴0)
∗(𝐽𝐴0) − 𝐴0

∗𝐴0  ∈   𝑆𝑝/2,∞
0                            (24) 

Indeed, the "matrix" of the operator in (23) has zeros on the diagonal, and its off-

diagonal elements are given by 𝐴ℓ
∗𝐴𝑗  , ℓ ≠  𝑗 . Thus (24) follows from the first 

assumption (5). Therefore Lemma (4.1.5) implies that  

Δ𝑝 = ((𝐽𝐴0)
∗(𝐽𝐴0))  =  Δ𝑝 = (𝐴0

∗𝐴0) 

or 

Δ𝑝 = ((𝐽𝐴0)(𝐽𝐴0)
∗) =  Δ𝑝 = (𝐴0

∗𝐴0)                                  (25) 

Because for any compact operator 𝑇  the non-zero singular values of 𝑇∗𝑇  and 

𝑇𝑇∗coincide. 
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Further, since 𝐴𝐴∗  = ∑ 𝐴ℓ𝐴𝑗
∗𝐿

ℓ,𝑗=1 ; it follows from (11) and the second assumption 

(5) that 

𝐴𝐴∗ − (𝐽𝐴0)(𝐽𝐴0)
∗  =∑𝐴ℓ𝐴𝑗

∗

𝑗≠ℓ

∈  𝑆𝑝/2,∞
0  

Using again Lemma (4.1.2) from here we obtain 

Δ𝑝(𝐴) =  Δ𝑝
2

(𝐴𝐴∗) =  Δ𝑝
2
((𝐽𝐴0)(𝐽𝐴0)

∗). 

Combining the last equality with (24), we see that Δ𝑝(𝐴)  =  Δ𝑝/2(𝐴0
∗𝐴0). Thus (9) 

yields the relation (12).  

Corollary (4.1.4)[4]. Under the assumption (15) we have 

lim
𝑛→∞

𝑛𝑠𝑛(𝐴)
𝑝 =∑ lim

𝑛→∞
𝑛𝑠𝑛(𝐴ℓ)

𝑝

𝐿

ℓ=1

 

provided the limits in the right-hand side exist. 

Under slightly more restrictive assumptions Theorem (4.1.2) appeared first  

Our proof is quite different from that of (2). 

 First we state two well-known facts that will be needed below. We recall that the 

Hankeloperators 𝐻(𝜔) are defined by  the class 𝑆0 is defined by (10) 

Lemma (4.1.5)[4].(i) Let 𝐾 be an integral operator in 𝐿2(𝕋) with an integral kernel 

of the class 𝐶∞(𝕋 ×  𝕋).Then 𝐾 ∈  𝑆0. 

(ii) Let 𝜔 ∈  𝐶∞(𝕋); then 𝐻(𝜔) ∈  𝑆0. 



90 
 

Proof. Part (i) is a classical fact; it can be obtained, for example, by approximating 

the integral kernel of K by trigonometric polynomials. This yields a fast 

approximation of 𝐾 by finite rank operators. 

Part (ii) is also well-known; let us show that it follows from part (i). It will be 

convenient to consider the projection 𝑃+ here as an operator acting from 𝐿2(𝕋)to 

𝐿2(𝕋)  (rather than from 𝐿2(𝕋) to 𝐻2(𝕋)). Recall that 𝑃+  acts according to the 

formula 

(𝑃+𝑓)(𝜇) = lim
𝜖→+0

∫
𝑓(𝜇)

𝜇′ − (1 − 𝜖)𝜇
𝜇′𝑑𝑚(𝜇′)

𝕋

                        (26) 

and that 𝑊  is the involution (𝑊𝑓)(𝜇)  =  𝑓(𝜇).  We have to prove that the 

operator𝑃+𝜔𝑊𝑃+ 𝑖𝑛 𝐿
2(𝕋) belongs to the class 𝑆0 . Since 𝑃+𝑊𝑃+  is a rank one 

operator (projection onto constants), it suffices to check that 

𝑃+𝜔𝑊𝑃+ −  𝜔𝑃+𝑊𝑃+  =  [𝑃+, 𝜔]𝑊𝑃+  ∈  𝑆0.                      (27) 

It follows from (26) that the commutator [𝑃+, 𝜔] is an integral operator in 𝐿2(𝕋) 

with the kernel 

𝜔(𝜇′)𝜔(𝜇)

𝜇′ − 𝜇
𝜇′, 𝜇, 𝜇′ ∈  𝑇. 

This is a 𝐶∞ function, and so [𝑃+, 𝜔] ∈  𝑆0which implies (27).  

The following assertion allows us to separate the contributions of different 

singularities of the symbol. Essentially, this is a verywell known argument. 

Lemma (4.1.6)[4]. Let 𝜔1, 𝜔2 ∈  𝐿
∞(𝕋) be such that sing supp𝜔1 sing supp𝜔2 =

 ∅. 
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Then 

𝐻(𝜔1)
∗𝐻(𝜔2) ∈  𝑆0, 𝐻(𝜔1)𝐻(𝜔2)

∗  ∈  𝑆0. 

Proof. Let 𝜅1, 𝜅2 be functions in 𝐶∞(𝕋) with disjoint supports such that 

(1 − 𝜅𝑘)𝜔𝑘 ∈  𝐶
∞(𝕋), 𝑘 =  1, 2. 

By Lemma (4.1.5)(ii), we have 

𝐻((1 − 𝜅𝑘)𝜔𝑘) ∈  𝑆0, 

and hence it suffices to show that 

𝐻(𝜅1𝜔1)
∗𝐻(𝜅2𝜔2) ∈   𝑆0;  𝐻(𝜅1𝜔1)𝐻(𝜅2𝜔2)

∗ ∈  𝑆0.            (28) 

It follows that 

𝐻(𝜅1𝜔1)
∗𝐻(𝜅2𝜔2)𝑓 =  𝑃+𝑊𝜔1(𝜅1𝑃+𝜅2)𝜔2𝑊𝑓, 𝑓 ∈  𝐻

2(𝕋): 

Since the supports of 𝜅1 and 𝜅2 are disjoint, the operator 𝜅1𝑃+𝜅2 has a 𝐶∞-smooth 

integral kernel 

𝜅1(𝜇)𝜅2(𝜇
′)

𝜇′ − 𝜇
𝜇′, 𝜇, 𝜇′ ∈  𝑇; 

and so by Lemma (4.1.5) (i) it belongs to the class 𝑆0 . This ensures the first 

inclusionin (28). In view of the obvious identity 

𝐻(𝜔)∗  =  𝐻(𝜔∗) 𝑤ℎ𝑒𝑟𝑒 𝜔∗(𝜇)  =  𝜔(𝜇); 

the second inclusion (28) follows from the first one of Theorem(4.1.1). Proof. Let 

us apply the abstract Theorem (4.2.1) to the Hankel operators 𝐴ℓ  =  𝐻(𝜔ℓ), ℓ =

 1,… , 𝐿. Lemma (4.1.6) implies that the asymptotic orthog-onality condition (26) is 



92 
 

satisfied. Therefore the asymptotic relations (3) and (4) follow directly from (27) 

and (28).  

Hankel operators can also be defined in the Hardy space 𝐻+
2(ℝ)  of functions 

analytic in the upper half-plane. We denote by the unitary Fourier transform on 

𝐿2(ℝ), 

�̂�(𝑡)  =  (Φ𝑢)(𝑡)  =
1

√2𝜋
∫ 𝑢(𝑥)𝑒−𝑖𝑥𝑡𝑑𝑥.
∞

−∞

 

Let 𝐻+
2(ℝ) ⊂  𝐿2(ℝ) be the Hardy class, 

𝐻+
2(ℝ) = {𝑢 ∈  𝐿2(ℝ) ∶  �̂�(𝑡)  =  0 𝑓𝑜𝑟 𝑡 <  0}; 

and let 𝑃+ ∶  𝐿
2(ℝ) →  𝐻+

2(ℝ) be the corresponding orthogonal projection. Let 

W be the involution in𝐿2(ℝ), (Wf)(x) =  f(−x). For ω ∈  L∞ (ℝ), the operator 

𝐻(𝜔) 𝑖𝑛 𝐻+
2(ℝ)is defined by the formula 

               𝐻(𝜔)𝑓 =  𝑃+(𝜔𝑊𝑓), 𝑓 ∈  𝐻+
2(ℝ).                   (29) 

There is a unitary equivalence between the Hankel operators 𝐻(𝜔) defined in 

𝐻2(𝕋)by formula (1) and the Hankel operators 𝐻(𝜔) defined in 𝐻+
2(ℝ) by formula 

(29). Indeed, let 

𝑤 =
𝑧 − 𝑖/2

𝑧 + 𝑖/2
  , 𝑧 =

𝑖

2

1 + 𝑤

1 − 𝑤
                                  (30) 

be the standard conformal map sending the real line onto the unit circle, and let 

𝑈 ∶  𝐻2(𝕋) → 𝐻+
2(ℝ)be the corresponding unitary operator defined by 
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(𝑈𝑓)(𝑥) =
1

√2𝜋

1

𝑥 + 𝑖/2
  𝑓 (

𝑥 − 𝑖/2

𝑥 + 𝑖/2
)  ;  (𝑈∗𝑓 )(𝜇) =  𝑖√2𝜋

1

1 − 𝜇
𝑓 (

𝑖

2

1 + 𝜇

1 − 𝜇
) . 

Then 

𝑈𝐻(𝜔)𝑈∗  =  𝐻(𝜔), 𝑖𝑓 𝜔(𝑥) =  −
𝑥 −

𝑖

2

𝑥 +
𝑖

2

𝜔(
𝑥 −

𝑖

2

𝑥 +
𝑖

2

).                    (31) 

So the localization principle stated for 𝐻(𝜔)  can be automatically mapped to 

operators 𝐻(𝜔). This is discussed below. 

Symbols 𝜔(𝑥) of Hankel operators 𝐻(𝜔)have the exceptional points 𝑥 =  +∞ and 

𝑥 =  −∞; it will be convenient to identify these two points. The real line with such 

identification will be denoted ℝ∗.We write 𝜔 ∈  𝐶(ℝ∗) if 𝜔 ∈  𝐶(ℝ) and 

lim
𝑥→∞

𝑤(𝑥) = lim
𝑥→∞

𝑤(𝑥) 

where both limits are supposed to exist. Similarly, we write 𝜔 ∈ 𝐶∞(ℝ∗) if 𝜔 ∈

𝐶∞(ℝ) and, for all 𝑚 =  0, 1, …, 

lim
𝑥→∞

𝜔(𝑚)(𝑥) = lim
𝑥→∞

𝜔(𝑚)(𝑥)                                      (32) 

In particular, the point 𝑥 = ∞ belongs to the singular support of 𝜔 if for at least 

one 𝑚 ≥ 0 the relation (32) fails (i.e. if one of the limits does not exist or if the 

limits are not equal). 

Let us state the localization principle for Hankel operators in 𝐻+
2(ℝ). 

Theorem (4.1.7)[4]. Let 𝜔ℓ ∈  𝐿
∞(ℝ), ℓ =  1,… , 𝐿 <  1, be such that 

sing supp 𝜔ℓ  ∩  sing supp𝜔𝑗  =  ∅; ℓ ≠  𝑗. 
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Set 𝜔 =  𝜔1  + ⋯+ 𝜔𝐿 .Then for all 𝑝 >  0 we have the relations 

lim
𝑛→∞

sup 𝑛𝑠𝑛(𝐻(𝜔))
𝑝
=∑ lim

𝑛→∞
sup𝑛𝑠𝑛(𝐻(𝜔ℓ))

𝑝
,

𝐿

ℓ=1

 

lim
𝑛→∞

inf 𝑛𝑠𝑛(𝐻(𝜔))
𝑝
=∑ lim

𝑛→∞
inf 𝑛𝑠𝑛(𝐻(𝜔ℓ))

𝑝
.

𝐿

ℓ=1

 

Observe that formulas (30) establish a one-to-one correspondence between the unit 

circle 𝕋 and the real axis ℝ∗ with the points 𝑥 =  +∞ and 𝑥 =  −∞ identified. 

They yield also the one-to-one correspondence between the singular supports of 

the symbols 𝜔(𝜇 ) and 𝜔(𝑥) linked by equality (31). Thus, Theorem (4.1.7) is a 

direct consequence of Theorem (4.1.1). 

Section (4.2): Applications of Localization Principle and Local 

Singularities of the Kernel   

 For a sequence {ℎ(𝑗)}𝑗=0
∞  of complex numbers, the Hankel operator Γ(ℎ) in the 

space ℓ2(ℤ+) is formally defined by the “infinite matrix”{ℎ(𝑗 +  𝑘)}𝑗,𝑘=0
∞ : 

(Γ(ℎ)𝑢)(𝑗) = ∑ℎ(𝑗 + 𝑘)𝑢(𝑘),   𝑢 = {𝑢(𝑘)}𝑘=0
∞

∞

𝑘=0

             (33) 

The Hankel operators Γ(ℎ) in ℓ2(ℤ+) and 𝐻(𝜔) in 𝐻2(𝕋) are related as follows. 

Let 

𝐹 ∶  𝑓 ↦ {𝑓(𝑗)}
𝑗=0

∞
, 𝐹 ∶  𝐻2(𝕋)  ⟶ ℓ2(ℤ+); 
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be the discrete Fourier transform. Then the matrix elements of 𝐻(𝜔)  in the 

orthonormal basis {𝜇𝑗}
𝑗=0

∞
are 

(𝐻(𝜔)𝜇𝑗  , 𝜇𝑘)
𝐿2(𝕋)

 =  �̂�(𝑗 +  𝑘), 𝑗, 𝑘 ≥  0; 

so that 

(ℎ) =  𝐹𝐻(𝜔)𝐹∗ 𝑖𝑓 �̂�(𝑗) =  ℎ(𝑗), 𝑗 ≥  0.                      (34) 

Since (34) involves only the coefficients with 𝑗 ≥  0, for a given sequence ℎ the 

symbol 𝜔 is not uniquely defined. 

We considered compact self-adjoint Hankel operators, corresponding to sequences 

of real numbers of the type 

𝑞(𝑗) =  𝑗−1(log 𝑗)−𝛼  +  error term, 𝑗 → ∞ ,                      (35) 

Where 𝛼 >  0. Under the appropriate assumptions on the error term, we proved 

that the positive eigenvalues of the Hankel operator Γ(𝑞) have the asymptotics 

𝜆𝑛
+(Γ(𝑞)) =  𝑣(𝛼)𝑛−𝛼  +  𝑜(𝑛−𝛼), 𝑛 → ∞ , 

where the coefficient 𝑣(𝛼) is defined in (10). For negative eigenvalues, we have 

𝜆𝑛
−(Γ(𝑞)) =  𝑜(𝑛−𝛼)as 𝑛 → ∞. 

our analysis was based on the asymptotic form (35) and did not involve symbols 

directly. We check that if 𝑞(𝑗)  =  𝑗−1(log 𝑗)−𝛼 , then a symbol 𝜎 of Γ(𝑞) can be 

chosen such that singsupp 𝜎 = {1}. 

Theorem (4.1.1) allows us to find the asymptotics of singular values for more 

general “oscillating” sequences of the type 
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ℎ(𝑗) =∑𝑏ℓ𝑗
−1(log 𝑗)−𝛼𝜉ℓ

−𝑗
 + errorterm,   𝑗 → ∞

𝐿

ℓ=1

            (36) 

Where 𝜉1, … , 𝜉𝐿 ∈ 𝕋  are distinct points and  𝑏1, … , 𝑏𝐿 ∈  𝐶  are arbitrary 

coefficients. It is easy to see that the symbol corresponding to the ℓ′th term in 

(36)equals 𝑏ℓ𝜎 (𝜇 = 𝜉ℓ ). Hence its singular support consists of one point {𝜉ℓ}, and 

so we are in the situation described by the localization principle for 𝑝 = 1 𝛼⁄ .The 

error term in (36) is treated by using the estimates on singular values of Hankel 

operators. 

Notice that the operators 𝛤(ℎ) corresponding to sequences h of the class (36)are in 

general not self-adjoint. We have information about the asymptotics of their 

singular values, but not of their eigenvalues. 

In order to state our requirements on the error term in (36). Let 

𝑀(𝛼) = {
[𝛼] +  1, 𝑖𝑓 𝛼 ≥ 1 2⁄ ,

 0,                 𝑖𝑓 𝛼 ≥ 1 2⁄ ,
                                  (37) 

Where [𝛼] is the integer part of  𝛼 . For a sequence ℎ = {ℎ(𝑗)}𝑗=0
∞  ,we define 

iteratively the sequences ℎ(𝑚)  = {ℎ(𝑚)(𝑗)}
𝑗=0

∞
, 𝑚 =  0, 1, 2, … , by setting 

ℎ(0)(𝑗)  =  ℎ(𝑗) and 

ℎ(𝑚+1)(𝑗) =  ℎ(𝑚)(𝑗 +  1) − ℎ(𝑚)(𝑗), 𝑗 ≥  0.                 (38) 

Note that if ℎ(𝑗) =  𝑗−1(𝑙𝑜𝑔 𝑗)−𝛼  for sufficiently large j, then for all𝑚 ≥ 1 the 

sequences ℎ(𝑚) satisfy 

ℎ(𝑚)(𝑗) =  𝑂(𝑗−1−𝑚(𝑙𝑜𝑔 𝑗)−𝛼), 𝑗 → ∞.                      (39) 
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Now we are in a position to state precisely our result on Hankel operators with 

matrix elements (36). 

Theorem (4.2.1)[4]. Suppose that a sequence g satisfies 

                     g(m)(j)  =   o(j−1−m(log j)−α), j
 
→∞,                          (40) 

for some α >  0 and for all m =  0, 1,… ,M(α). Then 

sn(Γ(g)) =  o(n
−α), n

 
→∞                                 (41) 

We also have a result with O instead of oin both (40) and (41), but we do not use it 

in this paper. Observe that for α < 1 2⁄  we need only the estimate on g, whereas for 

α ≥ 1 2⁄  we also need estimates on the iterated differences g(m). 

Theorem (4.2.2)[4]. Let α >  0, and let the "model sequence" 𝑞 defined by 

q(j) =  j−1(log j)−α                                             (42) 

for all sufficiently large j (the values q(j) for any finite number of  j are 

unimportant). Then 

sn(Γ(q))  =  v(α)n
−α  +  o(n−α), n →∞, 

Where v(α) is given by (10). 

This result corresponds to a particular case of Theorem (4.2.6) with L =  1, ζ1 =

1, b1  =  1. 

In order to combine the contributions of different terms in (46), we use the 

localization principle To that end, we have to identify the singular support of the 

symbol corresponding to the model sequence q in Theorem (4.2.1). To be definite, 
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we put q(0)  =  q(1)  =  0 and define q(j) by formula (42) for all j ≥  2.We need 

to find a function σ such that its Fourier coefficients σ̂(j) =  q(j)for j ≥  0. The 

choice of σis not unique. We will choose σ corresponding to the odd extension of 

the sequence q(j) to the negative j. 

Lemma (4.2.3)[4]. Let α ≥  0, and let q be given by (41); set 

                          σ(μ) =∑q(j)(μj − μ−j),   

∞

j=2

     μ ϵ 𝕋 .                            (43) 

Then σ ϵ L∞(𝕋)andσ ϵ C∞(𝕋 \{1}) . 

Proof. Note that for all μ ϵ 𝕋, the series (43) converges absolutely if  α >  1 and 

conditionally if α ≤  1. 

First, we check that σ ϵ L∞(𝕋).We write μ =  eiθ, θ ϵ (−π , π ]. For θ ≠  0, we set 

N = [(2|θ|)−1] and write σ = σ1 + σ2, where 

σ1(μ) =∑q(j)(μj − μ−j)

N

j=2

, σ2(μ) = ∑ q(j)(μj − μ−j)

∞

j=N+1

. 

Using the bounds q(j) ≤  (log 2)−1j−1and 

|μj − μ−j|  =  2|sin(jθ)| ≤  2j|θ| 

For σ1, we obtain the estimate 

|σ1(μ)| ≤ 2|θ|∑jq(j) ≤ 2(log 2)−1|θ|N ≤ (log 2)−1.

N

j=2

 

In order to estimate σ2, let us use summation by parts: 
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(μ − 1) ∑ q(j)μj
∞

j=N+1

= ∑ q(j)(μj+1 − μj) = − ∑ q(1)(j)μj+1 − q(N + 1)μN+1
∞

j=N+1

∞

j=N+1

  (44) 

Where q(1)(j) is defined by (38). By (39), we haveq(1)(j) =  O(j−2), j → ∞, and 

hence 

|(μ − 1) ∑ q(j)μj
∞

j=N+1

| ≤ C1 ( ∑ j−2 + N−1
∞

j=N+1

) ≤ C2N
−1. 

It follows that 

|σ2(μ)| ≤ 2 | ∑ q(j)μj
∞

j=N+1

| ≤
2C2

N|μ − 1|
=

2C2
[(2|θ|)−1]|eiθ − 1|

≤ C. 

Thus σ2 ∈ L
∞(𝕋). 

It remains to prove that σ ∈ CM( 𝕋 \{1})  for any M ∈ ℕ. Choose μ ∈ 𝕋 and put 

a(j) = μj;  then, by (39), a(M+1)(j)  =  (μ −  1)M+1μj . Similarly to (44), by a 

repeated summation by parts procedure, we obtain the identity 

(μ − 1)m+1∑q(j)μj
∞

j=2

=∑q(j)a(M+1)(j)

∞

j=2

= (−1)M+1∑q(M+1)(j)a(j) + pM(μ)

∞

j=2

                                               (45) 
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With some polynomial 𝑝𝑀. Since, by (39), 𝑞(𝑀+1)(𝑗)  =  𝑂(𝑗−2−𝑀) as 𝑗 → ∞ and 

𝑎(𝑗)  =  𝜇𝑗  , the function of𝜇 in the right-hand side of (44) is in 𝐶𝑀(𝕋). It follows 

that 𝜎 ∈ 𝐶𝑀(𝕋 \{1}) and hence  𝜎 ∈ 𝐶∞(𝕋 \{1}). 

Theorem (4.2.4)[4]. Let the function σ(μ) be defined by formula (43) where 𝑞(𝑗) 

are given by (42) and α >  0. Then the asymptotic relation holds 

sn(H(σ)) =  v(σ)n
−α +  o(n−α), n →∞, 

where v(α) is given by (10). 

 For a parameter ζ ∈ 𝕋, let Rζ be the "rotation by ζ " operator: 

(Rζf)(μ)  =  f(μ/ζ). 

Obviously, Rζ is a unitary operator in L2(𝕋) and in H2(𝕋).Similarly, let Vζ be the 

multiplication by ζ−j ∶ 

(Vζu)(j) =  ζ
−j u(j) . 

Obviously, Vζ is a unitary operator inℓ2(Z+). 

Lemma (4.2.5)[4]. (i) For arbitrary ζ ∈ 𝕋 and ω ∈ L∞(𝕋), we have 

H(Rζω ) =  RζH(ω)Rζ . 

In particular, if H(ω) is compact, then 

sn (H(Rζω)) =  sn(H(ω)), ∀n ≥  1. 

(ii) For any sequence h such that Γ(h) is bounded, we have 

Γ(Vζh) =  VζΓ(h)Vζ . 
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In particular, if  Γ(h) is compact, then 

sn (Γ(Vζh)) = sn(Γ(h)), ∀n ≥  1. 

Proof. Since 

P + Rζ  =  RζP+             and        RζWRζ = W, 

the first assertion is a direct consequence of the definition (1) of the Hankel  

operator H(ω) in H2(𝕋). The second assertion immediately. 

Theorem (4.2.6)[4]. Let 𝛼 >  0, let 𝜁1, … , 𝜁𝐿 𝜖 𝕋 be distinct numbers, and let 

𝑏1, … , 𝑏𝐿 𝜖 ℂ. Let h be a sequence of complex numbers such that 

             ℎ(𝑗)  = ∑(𝑏ℓ𝑗
−1(𝑙𝑜𝑔 𝑗)−𝛼 + 𝑔ℓ(𝑗))𝜁ℓ

−𝑗
,        𝑗 ≥ 2,              

𝐿

ℓ=1

 (46) 

where the error terms 𝑔ℓ, ℓ =  1,… , 𝐿 ,satisfy the estimates 

𝑔ℓ
(𝑚)(𝑗) =  𝑜(𝑗−1−𝑚(𝑙𝑜𝑔 𝑗)−𝛼), 𝑗 → ∞,                (47) 

for all 𝑚 =  0, 1, … ,𝑀(𝛼) (𝑀(𝛼) is given by (37). Then the singular values of the 

Hankel operator𝛤(ℎ)  in ℓ2(ℤ+)defined by formula (33) satisfy the asymptotic 

relation 

                                𝑠𝑛(𝛤(ℎ)) = 𝑐 𝑛
−𝛼  +  𝑜(𝑛−𝛼), 𝑛 → ∞, (48) 

where 

                                                𝑐 =  𝑣(𝛼)(∑|𝑏ℓ|
1
𝛼⁄

𝐿

ℓ=1

)

𝛼

                           (49) 
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and the coefficient 𝑣(𝛼) is given by formula (10). 

This result means that asymptotically the singular value counting function of the 

operator Γ(h) is the sum of such functions for every term in the right-hand side of 

(46). 

Proof. Let the symbol σ(μ) be defined by relation (43) and let 

ωℓ(μ)  = ∑ωℓ(μ)       where        ωℓ(μ) = bℓσ(μ/ζℓ).                

L

ℓ=1

(50) 

According to Theorem (4.2.4) and Lemma (4.2.5)(i) we have 

                  sn(H(ωℓ)) =  |bℓ|v(α)n
−α + o(n−α),                               n →∞.            

It follows from Lemma (4.2.2) that ωℓ ∈ L
∞(𝕋)  and  ωℓ ∈ C

∞(𝕋 \ζℓ).  Since 

ζ1, … , ζL are distinct points, the localisation principle  is applicable to the sum (50). 

This yields 

lim
n→∞

nsn(H(ωℓ))
p
  = ∑ lim

n→∞

nsn(H(ωℓ))
p

L

ℓ=1

= v(α)p∑|bℓ|
p,

L

ℓ=1

   p = 1 α⁄ .   (51) 

Note that, by the definition (50), 

ωℓ̂(j)  =  bℓσ̂(j)ζ
−j 

and hence according to formula (43) 

ωℓ̂(j) =∑bℓj
−1(log j)−αζℓ

−j

L

ℓ=1

=: hℓ(j), j ≥ 2 
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Set hℓ(0)  =  hℓ(1)  =  0.  Since the operators  H(ωℓ)  and Γ(hℓ)  are unitarily 

equivalent, it follows from (51) that 

lim
n→∞

nsn(Γ(hℓ))
p
= v(α)p∑|bℓ|

p.                          

L

ℓ=1

 (52) 

Next, we consider the error term 

g(j)  =∑gℓ(j)ζℓ
−j

L

ℓ=1

 

in (47). According to condition (48) it follows from Theorem (4.2.3) that 

𝑠𝑛(Γ(𝑔ℓ))  = 𝑜(𝑛
−𝛼) as 𝑛 → ∞.  By Lemma (4.2.5)(ii), we also have 

𝑠𝑛(Γ(𝑉𝜁ℓ𝑔ℓ))   =  𝑜(𝑛
−𝛼) and hence 

                                              𝑠𝑛(Γ(𝑔))  =  𝑜(𝑛
−𝛼) 𝑎𝑠    𝑛 → ∞                         (53) 

Since 

Γ(ℎ) =  Γ(ℎℓ) +  Γ(𝑔), 

we can use Lemma (4.3.1) with 𝐴 =  Γ(ℎℓ) and 𝐵 =  Γ(𝑔). The required relations 

(49), (40) follow from (52) and (53).  

Integral Hankel operators 𝛤(ℎ) in the space 𝐿2(ℝ+) are defined by the relation 

(Γ(ℎ)𝑢)(𝑡) = ∫ h(𝑡 +  𝑠)u(𝑠)𝑑𝑠,
∞

0

u ∈ 𝐶0
∞(ℝ+), (54) 

where at least h ∈ 𝐿𝑙𝑜𝑐
1 (ℝ+); this function is called the kernel of the Hankel 

operator Γ(h). Under the assumptions on h below the operators Γ(h) are compact. 
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Similarly to the discrete case, Hankel operators in the Hardy space 𝐻+
2(ℝ) are 

unitarily equivalent to integral operators Γ(h) in the space 𝐿2(ℝ+): 

    ΦH(𝜔) Φ∗  = Γ(ℎ)      𝑖𝑓     h(𝑡) =
1

√2𝜋
�̂�(𝑡)     𝑓𝑜𝑟 𝑡 >  0.                  (55) 

The Fourier transform ω̂ of ω ∈  L∞(ℝ) should in general be understood in the 

sense of distributions (for example, on the Schwartz class S′(ℝ)) and the precise 

meaning of (55) is given by the equation  

(H(𝜔)Φ∗u,Φ∗u) =  (Γ(h)u, u), u ∈ 𝐶0
∞(ℝ+). 

 A function ω(x) satisfying (55) is known as a symbol of the Hankel operator 

Γ(h). 

In the discrete case, the spectral asymptotics of Γ(ℎ) is determined by the 

asymptotic behaviour of the sequence ℎ(𝑗)  𝑎𝑠  𝑗
 
→   ∞.In the continuous case, the 

behaviour of the kernel h(t) for  𝑡
 
→  ∞  and for 𝑡

 
→ 0  as well as the local 

singularities of ℎ(𝑡)at positive points 𝑡 contribute to the spectral asymptotics of 

Γ(ℎ). In the following result we exclude local singularities. We denote 〈𝑥〉  =

√1 + |𝑥|2. 

The proof of Theorem (4.1.4) follows the scheme of the proof of Theorem (4.1.3). 

The only new point is that now we have to additionally establish the 

correspondence between symbols singular at infinity and kernels singular at 𝑡 =

 0. 

Let us state the analogues of Theorems (4.1.4) and (4.2.3). 

Theorem (4.2.7)[4]. Let 𝛼 >  0,and let the number 𝑀 =  𝑀(𝛼) be given by (38). 

Suppose thatg ∈  𝐿𝑙𝑜𝑐
∞  (ℝ+)if 𝛼 <  1/2 and g ∈ 𝐶𝑀(ℝ+) if 𝛼 = 1/2. 
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Assume that 

                     g(𝑚)(𝑡)  =  𝑜(𝑡−1−𝑚〈𝑙𝑜𝑔𝑡〉−𝛼) 𝑎𝑠 𝑡 → 0  𝑎𝑛𝑑 𝑎𝑠 𝑡 → ∞            (56) 

for all 𝑚 = 0, 1,… ,𝑀.Then 

𝑠𝑛(Γ(g)) =  𝑜(𝑛
−𝛼), 𝑛 → ∞                                    (57) 

We also have a result with O instead of oin (56) and (57), although we will not 

need it here. Observe that for α <  1/2 we need only the estimate on g, whereas 

for 𝛼 ≥  1/2we also need estimates on the derivatives g(m).  Next, we define 

model kernels 𝑞0, 𝑞∞. Choose some non-negative functions 𝑥0, 𝑥∞ ∈ 𝐶
∞(ℝ)such 

that 

𝑥0(𝑥) = {
1 for|𝑥| ≤  𝑐1,

0 for|𝑥| ≥ 𝐶2,
𝑥∞(𝑥) = {

0 for|𝑥| ≤  𝐶1,

1 for |𝑥| ≥ 𝐶2,
 

for some 0 < 𝑐1 < 𝑐2 <  1 and 1 < 𝐶1 < 𝐶2. 

Theorem (4.2.8)[4]. For 𝛼 >  0,set 

𝑞0(𝑡) =  𝑥0(𝑡)𝑡
−1(log(1𝑡))

−𝛼
;  𝑞∞(𝑡) =  𝑥∞(𝑡)𝑡

−1(log 𝑡)−𝛼 , 𝑡 >  0. (58) 

Then 

sn(Γ(q0)) =  v(α)n
−α  +  o(n−α), sn(Γ(q∞)) =  v(α)n

−α  +  o(n−α), n → ∞, 

Where 𝑣(𝛼) given by (10). 

Of course, this result corresponds to particular cases of Theorem (4.2.8) 𝐿 =

 1, 𝑏0  =  1, 𝑏1  =  0 and 𝑏0  =  0, 𝑏1  =  1. 

In order to put together the contributions of different terms in (63) and (64), we use 

the localization principle in the form of Theorem (4.1.7). To that end, we need to 

determine the singular supports of the symbols corresponding to the model kernels 

𝑞0, 𝑞∞. Again, we will choose functions 𝜎0, 𝜎∞ whose Fourier transform coincides 
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with the odd extension of 𝑞0, 𝑞∞ to the real line. The proof below is very similar to 

that of Lemma (4.2.2). 

Lemma (4.2.9)[4]. Let 𝜎0, 𝜎∞ be defined by 

𝜎0(𝑥) =  2𝑖 ∫ 𝑞0

∞

0

(𝑡)sin(𝑥𝑡)𝑑𝑡, 𝜎∞(𝑥) =  2𝑖 ∫ 𝑞∞

∞

0

(𝑡)sin(𝑥𝑡)𝑑𝑡, 𝑥 ∈  𝑅, (59) 

Where 𝑞0(𝑡) and 𝑞∞(𝑡) are given by (58) with 𝛼 ≥  0. Then 𝜎0; 𝜎∞ ∈  𝐿
∞(ℝ) and 

𝜎0 ∈  𝐶
∞(ℝ), 𝜎∞ ∈  𝐶

∞(ℝ∗ \ {0}). 

Proof. Note that for all 𝑥 ∈ ℝ, the first integral in (59) converges absolutely while 

the second one converges absolutely for 𝛼 >  1 and conditionally for   𝛼 ≥  1. 

   Since the integral in (59) of 𝜎0 is taken over a finite interval, we can differentiate 

this integral with respect to 𝑥 arbitrary many times. Hence 

𝜎0 ∈  𝐶
∞(ℝ). To prove that 𝜎∞ ∈  𝐶

∞(ℝ∗ \ {0}), we integrate by parts 2𝑀 +  2 

times in the definition (59): 

𝜎∞(𝑥) =  2𝑖(−1)
𝑀+1𝑥−2𝑀−2∫ 𝑞∞

(2𝑀+2)

∞

0

(𝑡)sin(𝑥𝑡)𝑑𝑡. 

Since 𝑞∞
(2𝑀+2)(𝑡) =  𝑂(|𝑡|−2𝑀−3)𝑎𝑠 |𝑡| → ∞, we see that 𝜎∞ ∈  𝐶

𝑚(ℝ \ {0}) and 

𝜎∞
(𝑚)(𝑥) →  0 𝑓𝑜𝑟 𝑚 =  0, 1, …  , 2𝑀  as |𝑥| → ∞.  Finally, we use that 𝑀  is 

arbitrary. 

It remains to prove that the functions 𝜎0 and𝜎1 are bounded. Below 𝜅 =  0 or 

𝜅 = ∞. We may suppose that 𝑥 >  0. Write 𝜎𝜅  =  𝜎𝜅
(1)
 +  𝜎𝜅

(2)
 , where 

𝜎𝜅
(1)(𝑥) =  2𝑖 ∫ 𝑞𝜅

1/𝑥

0

(𝑡)sin(𝑥𝑡)𝑑𝑡, 𝜎𝜅
(2)(𝑥) =  2𝑖 ∫ 𝑞𝜅

∞

1/𝑥

(𝑡)sin(𝑥𝑡)𝑑𝑡. 

Since |sin(𝑥𝑡)| ≤  𝑥𝑡, for 𝜎1 we have the estimate 
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|𝜎𝜅
(1)(𝑥)| ≤  2𝑥 ∫ 𝑞𝜅

1/𝑥

0

(𝑡)𝑡𝑑𝑡 ≤  𝐶 

Because 𝑞𝜅(𝑡)𝑡 are bounded functions. For 𝜎𝜅
(2)
 , integrating by parts once, we get 

𝜎𝜅
(2)(𝑥) =  −

2𝑖

𝑥
∫ 𝑞𝜅

∞

1/𝑥

(𝑡)(cos(𝑥𝑡))
′
𝑑𝑡 

=
2𝑖

𝑥
𝑞𝜅(1/𝑥)cos 1 +

2𝑖

𝑥
∫ 𝑞𝜅

′

∞

1/𝑥

(𝑡)cos(𝑥𝑡)𝑑𝑡. 

The first term in the right-hand side is bounded because 𝑞𝜅(𝑡)𝑡  are bounded 

functions. The second term is also bounded because the functions 𝑞𝜅
′ (𝑡)𝑡2  are 

bounded. 

It easily follows from Lemma (4.2.9) that 

Φ𝐻(𝜎0)Φ
∗  =  Γ(𝑞0)𝑎𝑛𝑑 Φ𝐻(𝜎∞)Φ

∗  =  Γ(𝑞∞).       (60) 

Indeed, in view of relation (55), we only have to check that 

1

√2𝜋
�̃�0(𝑡) =  𝑞0(𝑡);

1

√2𝜋
�̃�∞(𝑡) =  𝑞∞(𝑡);  𝑡 >  0,                   (61) 

where the Fourier transform is understood, for example, in the class of 

distributions 𝑆(ℝ′). According to the first formula in (59), the function (2𝜋)−1/2𝜎0 

is the Fourier transform of the “extended” distribution 𝑞0
(𝑒𝑥𝑡)

 defined by the 

equation 

〈𝑞0
(𝑒𝑥𝑡)

, 𝜑〉   = ∫ 𝑞0

∞

0

(𝑡)(𝜑(𝑡) − 𝜑(−𝑡))𝑑𝑡. 

Thus (2𝜋)−1/2�̂�0(𝑡)  =  𝑞0
(𝑒𝑥𝑡)

(𝑡)  which coincides with 𝑞0(𝑡)  for 𝑡 >  0. The 

second equality (61) is obvious because 𝑞∞ ∈  𝑆(ℝ)
′. 
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The next assertion is a direct consequence of relations (60) and Theorem (4.2.1). 

Theorem (4.2.4). Let the functions 𝜎0 and 𝜎∞ be defined by formulas (59) where 

𝑞0(𝑡) and 𝑞∞(𝑡) are given by (58) and 𝛼 >  0. Then the asymptotic relations hold 

𝑠𝑛(𝐻(𝜎0)) =  𝑣(𝛼)𝑛
−𝛼  +  𝑜(𝑛−𝛼), 𝑠𝑛(𝐻(𝜎∞)) =  𝑣(𝛼)𝑛

−𝛼  +  𝑜(𝑛−𝛼), 𝑛 → ∞, 

Where 𝑣(𝛼) is given by (10) 

For a parameter 𝑎 ∈ ℝ, let 𝑅𝑎 be the shift 

(𝑅𝑎𝑓 )(𝑥) =  𝑓 (𝑥 −  𝑎). 

Obviously, 𝑅𝑎 is a unitary operator in 𝐿2(ℝ) and 𝐻+
2(ℝ). Of course, now 𝑅𝑎 is not 

a rotation, but we keep the letter 𝑅 in order to maintain the analogy between the 

discrete and continuous cases. 

Similarly, let 𝑉𝑎 be the multiplication operator 

(𝑉𝑎𝑢)(𝑡) =  𝑒
−𝑖𝑎𝑡𝑢(𝑡), 𝑡 >  0. 

Obviously, 𝑉𝑎 is a unitary operator in 𝐿2(ℝ+). 

Recall that the Hankel operators 𝐻(𝜔) in 𝐻2(ℝ) were defined by formula (21). 

Lemma (4.2.10)[4]. For arbitrary 𝑎 ∈ ℝ, we have the following statements: 

(i) For any 𝜔 ∈  𝐿∞(ℝ), we have 

𝐻(𝑅𝑎𝜔) =  𝑅𝑎𝐻(𝜔)𝑅𝑎. 

In particular, if 𝐻(𝜔) is compact, then 

𝑠𝑛(𝐻(𝑅𝑎𝜔)) =  𝑠𝑛(𝐻(𝜔)), ∀𝑛 ≥  1: 

(ii) Suppose that Γ(ℎ) is bounded; then 

Γ(𝑉𝑎ℎ) =  𝑉𝑎Γ(ℎ)𝑉𝑎. 

In particular, if Γ(ℎ) is compact, then 

𝑠𝑛(Γ(𝑉𝑎ℎ)) =  𝑠𝑛(Γ(ℎ)), ∀𝑛 ≥  1: 

Proof. Since 

𝑃+𝑅𝑎  =  𝑅𝑎𝑃+and 𝑅𝑎𝑊𝑅𝑎  = 𝑊,   
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the first assertion is a direct consequence of the Hankel operator 𝐻(𝜔) in 𝐻2(ℝ). 

The second assertion immediately. 

Theorem (4.2.11)[4]. Let  𝛼 >  0, let𝑎1, … , 𝑎𝐿 ∈  ℝ  be distinct numbers and let 

𝑏0, 𝑏1, … , 𝑏𝐿  ∈  ℂ. Let the number 𝑀 =  𝑀(𝛼) be given by (38). Suppose that ℎ ∈

 𝐿𝑙𝑜𝑐
∞ (ℝ)  𝑖𝑓  𝛼 <  1/2 and ℎ ∈  𝐶𝑀(ℝ+)    𝑖𝑓      1/ 2. Assume that 

h(𝑡) =∑(bℓ𝑡
−1(log 𝑡)−𝛼 + gℓ(𝑡)𝑒

−𝑖𝑎ℓ𝑡 ,

𝐿

ℓ=1

    𝑡 ≥ 2,                     (62) 

h(𝑡)  =  (b0𝑡
−1(log 1 𝑡⁄ )

−𝛼
+ g0(𝑡),              𝑡 ≤

1
2⁄ ,                 (63) 

where the error terms gℓ satisfy the estimates 

 gℓ
(𝑚)(𝑡) =  𝑜(𝑡−1−𝑚〈𝑙𝑜𝑔𝑡〉−𝛼), 𝑚 =  0,… ,𝑀(𝛼),               (64) 

As 𝑡 →∞ for ℓ =  1,… , 𝐿and as 𝑡 →0 for ℓ =  0. Then the singular values of the 

integral Hankel operatorΓ(ℎ) in 𝐿2(ℝ+)satisfy the asymptotic relation 

 𝑠𝑛(Γ(ℎ)) =  𝑐 𝑛
−𝛼  +  𝑜(𝑛−𝛼), 𝑛 →∞,                              (65) 

Where 

𝑐 =  𝑣(𝛼)(∑|bℓ|
1
𝛼⁄

𝐿

ℓ=0

)

𝛼

                                                (66) 

and the coefficient 𝑣(𝛼) is given by formula (10). 

The proof in the continuous case follows the same general outline as in the discrete 

case with the only difference that the singularity of the kernel h(t) at 𝑡 =  0 has to 
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be treated separately. It corresponds to the singularity of the symbol 𝜔(𝑥)  at 

infinity. 

We consider kernels h(t) that have a singularity at some positive point and 

admit representation (62) for large t. It turns out that, similarly to Theorem (4.1.5) 

the contributions of the singularities of these two types to the asymptotics of 

singular values are independent of each other. 

Proof. Let the symbols 𝜎0(𝑥) and 𝜎∞(𝑥) be defined by relations (59) and let 

𝜔ℓ(𝑥) = 𝜔0(𝑥) +∑𝜔0

𝐿

ℓ=1

(𝑥)𝑤ℎ𝑒𝑟𝑒 𝜔0(𝑥) =  𝑏0𝜎0(𝑥),𝜔ℓ(𝑥)

=  𝑏ℓ𝜎∞(𝑥 − 𝑎
ℓ).                                                                                      (67) 

According to Theorem (4.2.1) and Lemma (4.2.5) (i) we have 

𝑠𝑛(𝐻(𝜔ℓ)) = |𝑏ℓ|𝑣(𝛼)𝑛
−𝛼  +  𝑜(𝑛−𝛼), 𝑛 → ∞, for all ℓ =  0, 1, … , 𝐿.  It follows 

from Lemma (4.2.2) that 𝜔ℓ ∈  𝐿
∞(ℝ) for all ℓ = 

0, 1,… , 𝐿, 𝜔0 ∈  𝐶
∞(ℝ) 𝑍and 𝜔ℓ ∈  𝐶

∞(ℝ∗ \ 𝑎ℓ) for ℓ =  1,… , 𝐿. Since 𝑎1, … , 𝑎𝐿 

are distinct points, the localisation principle (Theorem (4.2.11)) is applicable to the 

sum (67). This yields 

lim
𝑛→∞ 

𝑛𝑠𝑛(𝐻(𝜔ℓ))
𝑝
=∑ lim

𝑛→∞ 
𝑛𝑠𝑛(𝐻(𝜔ℓ))

𝑝
𝐿

ℓ=1

=  𝑣(𝛼)𝑝∑|𝑏ℓ|
𝑝

𝐿

ℓ=1

, 𝑝 =
1

𝛼
.      (68) 

Note that, by its definition (67), �̂�0(𝑡) =  𝑏0�̂�0(𝑡), 

�̂�ℓ(𝑡) =  𝑏ℓ𝜎∞(𝑡)𝑒
−𝑖𝑎ℓ𝑡; ℓ =  1,… , 𝐿, 

and hence according to formula (61) 

𝜔ℓ(𝑡) =  𝑏0𝑥0(𝑡)𝑡
−1| 𝑙𝑜𝑔 𝑡|−𝛼  +∑𝑏ℓ𝑥∞(𝑡)𝑡

−1| 𝑙𝑜𝑔 𝑡|−𝛼𝑒𝑖𝑎ℓ𝑡
𝐿

ℓ=1

 = : ℎℓ(𝑡), 𝑡 

>  0. 
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In view of relation (55) it now follows from (68) that 

lim
𝑛→∞ 

𝑛𝑠𝑛(Γ(ℎℓ))
𝑝
 =  𝑣(𝛼)𝑝∑|𝑏ℓ|

𝑝.

𝐿

ℓ=0

 

Next, we consider the error term 

𝑔(𝑡) =  ℎ(𝑡) − ℎℓ (𝑡)  =  g0(𝑡)  +∑gℓ(𝑡)𝑒
−𝑖𝑎ℓ𝑡

𝐿

ℓ=1

 

where all functions gℓ(𝑡), ℓ =  0, 1, … , 𝐿, satisfy the condition (64) both for 𝑡 →

 0 and 𝑡 → ∞.  It follows from Theorem (4.2.6) and Lemma (4.2.5) (ii) 

that 𝑠𝑛(𝐻(gℓ))  = 𝑜(𝑛
−𝛼) and hence 

𝑠𝑛(𝐻(g)) =  𝑜(𝑛
−𝛼)𝑎𝑠 𝑛 → ∞.                             (69) 

Since 

𝐻(ℎ) =  𝐻(ℎℓ) +  𝐻(𝑔), 

we can use Lemma (4.1.1) with 𝐴 =  𝐻(ℎ_ℓ) and 𝐵 =  𝐻(g).  The required 

relations (65), (46) follow from (68) and (69). 

 The localization principle shows that the results on the asymptotics of singular 

values of different Hankel operators can be combined provided that the singular 

supports of their symbols are disjoint. This idea has already been illustrated by 

Theorems (4.1.1) and (4.2.6). Here we apply the same arguments to kernels ℎ(𝑡) 

satisfying condition (62) as 𝑡 → ∞  and singular at some point 𝑡0 >  0.  below 

1+  (𝑡) is the characteristic function of ℝ+. 

The effect of local singularities of ℎ(𝑡) on the asymptotics of singular values of the 

corresponding Hankel operator Γ(ℎ) was studied. We need the following result  

Lemma (4.2.12)[4]. Let 𝑡0 >  0,𝑚 ∈ ℤ+ and 

a𝑚(𝑡) =  (𝑡0 −  𝑡)
𝑚1 + (𝑡0 −  𝑡).                           (70) 

Then KerΓ(a𝑚)  =  𝐿
2(𝑡0, ∞) and 

Γ(a𝑚)|𝐿2(0,𝑡0)   =  𝑚!𝐴𝑚
−1 
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Where the self-adjoint operator 𝐴𝑚 in 𝐿2(0, 𝑡0)  is defined by the differential 

expression 

(𝐴𝑚𝑢)(𝑡)  =  (−1)
𝑚+1𝑢(𝑚+1)(𝑡0 −  𝑡) 

and  the  boundary conditions 

                  𝑢(𝑡0) = ⋯ =  𝑢(𝑚)(𝑡0) =  0.                                    (71) 

Note that the operator 𝐴𝑚
2  is given by the differential expression  

(𝐴𝑚
2 𝑢)(𝑡)  =  (−1)𝑚+1𝑢(2𝑚+2)(𝑡) 

and the boundary conditions (70) and 

𝑢(𝑚+1)(0) = ⋯ =  𝑢(2𝑚+1)(0)  =  0. 

Thus 𝐴𝑚
2  is a regular differential operator and the asymptotics of its eigenvalues is 

given by the Weyl formula. Therefore the following result is an immediate 

consequence of Lemma (4.2.12). 

Corollary (4.2.13)[4]. Let the function a𝑚(𝑡) be given by formula (70). Then 

𝑠𝑛(Γ(a𝑚)) =  𝑚! 𝑡0
𝑚+1(𝜋𝑛)−𝑚−1(1 +  𝑂(𝑛−1)), 𝑛 → ∞.               (72) 

Notice that formula (72) was obtained much earlier by a completely different 

method. 

We also note the explicit formula for the symbol 𝜏𝑚(𝑥) of the operator Γ(a𝑚): 

𝜏𝑚(𝑥) =  𝑚! (𝑖𝑥)
−𝑚−1 (𝑒𝑖𝑡0𝑥 −∑

1

𝑘!
(𝑖𝑡0𝑥)

𝑘

𝑚

𝑘=0

) , 𝑥 ∈ ℝ.                     (73) 

Obviously,𝜏𝑚 ∈  𝐶
∞(𝑅) 𝑎𝑛𝑑 𝜏𝑚(𝑥) is an oscillating function as|𝑥| → ∞. 

We are now in a position to consider the general case.  

Theorem (4.2.14)[4]. Let 𝑡0 >  0,𝑚 ∈ ℤ+and 𝛽 ∈  𝐶. Set 

ℎ𝑚(𝑡)  =  𝛽(𝑡0 −  𝑡)
𝑚1+(𝑡0 − 𝑡)  +  ℎ(𝑡) 

Where ℎ(𝑡) satisfies the assumptions of Theorem (4.2.10) with 𝑏0  =  0 and 𝛼 =

 𝑚 + 1.  Then the singular values of the operator Γ(ℎ𝑚)  satisfy the asymptotic 

relation 
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𝑠𝑛(Γ(ℎ𝑚))  =  𝑐𝑚𝑛
−𝑚−1  +  𝑜(𝑛−𝑚−1) 

with 

𝑐𝑚  = (𝜋
−1𝑡0(𝑚! |𝛽|)

1𝛼  +  𝑣(𝛼)1/𝛼∑|𝑏ℓ|
1/𝛼

𝐿

ℓ=1

)

𝛼

, 𝛼 =  𝑚 +  1, 

and  𝑣(𝛼) defined by (10). 

Proof . It is almost the same as that of Theorem (4.2.6). Let us use notation (70). 

The asymptotics of the singular values of the operator Γ(a𝑚) is given by formula 

(72). The operator Γ(ℎ) satisfies the assumptions of Theorem (4.2.6)  so that the 

asymptotics of its eigenvalues is given by formula (65). The symbol (73) of the 

operator Γ(a𝑚) is singular only at infinity. Neglecting the terms satisfying the 

assumptions of Theorem (4.2.1) and using Lemma (4.2.2), we see that the singular 

support of the symbol of the operator Γ(ℎ) consists of the points 𝑎1, … , 𝑎𝐿 ∈ ℝ. 

Therefore applying Theorem (4.2.11), we conclude the proof.   

        Observe that we have excluded the term (63) singular at 𝑡 =  0 in Theorem 

(4.2.12) cause the corresponding symbol is singular at the same point 𝑥 =  1 as the 

function (73). In this case one might expect that the contributions of singularities 

of h(t) at 𝑡 =  0 and 𝑡 =  𝑡0 >  0 are not independent of each other. In any case, 

our technique does not allow us to treat this situation. 

Let us discuss the operator Γ(a𝑚) in the representation ℓ2(ℤ+), that is, the operator 

𝐹𝑈∗𝐻(𝜏𝑚)𝑈𝐹
∗  =  Γ(g𝑚). 

Here g𝑚(𝑗) are the Fourier coefficients of the function 𝜏𝑚(𝜇) linked to 𝜏𝑚(𝑥) by 

formula (30). Making the change of variables (23) in (73), we see that 𝜏𝑚 (𝜇) is an 

oscillating function as 𝜇 →  1. Therefore the asymptotics of its Fourier coefficients 

g𝑚(𝑗) is determined by the stationary phase method which yields: 

g𝑚(𝑗)~ 𝑚! 𝜋
−122−(2𝑚+1)/4𝑗−(2𝑚+5)/4 cos(2√2𝑗 − 𝜋(2𝑚 +  1)/4). 
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Note that these sequences decay faster as 𝑗 → ∞ than the coefficients (39) where 

𝛼 =  𝑚 +  1. Never the less due to the oscillating factor their contribution to the 

asymptotics of singular values is of the same order.  
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List of Symbols 

Symbol page 

𝐿∞,1 Lebesgue space 1 

𝐿2.𝑙 Sobdev space 1 

𝐿2 Hilberl space 1 

⨁ Direct sum 1 

𝐻2 Hardy space 2 

𝐿𝑎
2  Bergman space 2 

𝑎. 𝑒 almost every where 6 

𝐿𝑝 Lebesgue space 7 

𝐻∞ Hardy space 10 

ℓ𝑝 Helbert space of sequences 18 

ker kernel 18 

im imaginary 18 

dim dimension  18 

ind index 18 

sup Supremum 19 

𝐻𝑝 Hardy space 21 

inf infimum 25 

diag diagonal 26 

ess essential 33 

det determinant 40 

ext extension 46 

arg argument 57 

TTO Truncated Toeplitz operators 66 

THO Truncated Hankel operators 66 

⊖ Direct difference 67 

⨂ Tensor product 69 

sn Singular values 79 

supp support 80 

spec Spectrum 83 

loc local 104 
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