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Abstract

We give a decomposition theorem for the Sobolev space of first
order on the disc. Using this result, some characterizations for algebraic
properties of Toeplitz or small Hankel operators with symbols in L1
are given. We consider Toeplitz and Hankel operators with piecewise
continuous generating functions on [P-spaces and the Banach algabra
generated by them. We characterize the pairs of truncated Hankel
operators on the model spaces, the asymptotic behavior of the singular
values of a compact Hankel operator is determined by the behavior of
the symbol in a neighbourhood of its singular support.
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Chapter 1

L>1 Symbols on Dirichlet Space

We show that Toeplitz or small Hankel operators with symbols in I*1 is
ageneralization of the case with the harmonic symbol in C@® D, where D is the
Dirichet on D.

Let D be the open unit disk in the complex plane C and dA be the normalized area
measure on . The Sobolev space L2t = L2! (D) is the completion of the space

of smooth functions u such that

||u||1_<fudA ”E] ] dA) <o

L% is a Hilbert space with the inner product

ov Ju dv

(u, v)1 = judAfvdA+( “ ) +(£,£)L2

Where the symbol (-,-);= means the inner product in the Hilbert space L?*(DD,dA) €
L*t with £(0) = 0. Let P be the orthogonal projection from L2 onto D. Then

pWW) = (w ky)1,u € L*

ksk
Where k,,(z) = —log(1 — zw) = Zle% is a reproducing kernel for D. P is

an integral operator represented by

ou akw(z)
P@W) = | ———=

D

dA(z),u € L*. (1D




Given a function @in L?!, the Toeplitz operator T,:D - D, the (big) Hankel
operator T,: D — D+ and the small Hankel operator [,:D — D, with symbol ¢ are

densely defined on D respectively by

Tof = (of), Hyof = (1 —p)(ef), Iof =pU(ef),

Where J is the unitary L?* — L?! defined by Jh(z) = h(2) for h € L?!, and D+ is
the orthogonal complement of D inL?!. Let L(D) denote the algebra of all
essentially bounded measurable functions on D and H* denote the space of

bounded analytic function on . Define

dp 0¢
L1 ={ €Lt p,—,—— € L®(D }
¢ 95779z €L D)
It is well known that Toeplitz operator or (small) Hankel operator with symbol

@ € L*is bounded on.

Toeplitz operators and Hankel operators studied on the classical Hardy space H?
and Bergman space L3. Toeplitz operators on the Dirichiet space have been
studied intensively. G.F. Cao considered Fredholm properties of Toeplitz operators
with C1(ID) symbols in. In case of bounded harmonic symbols in L*1, Y.J. Lee in
studied the commutativity of two Toeplitz operators while he studied the zero or
compactness of finite sum Toeplitz products. Moreover, L.I<. Zhao investigated
properties of Hankel operator . We show that Toeplitz operators or small Hankel
operators with symbol in L®1, is just a generalization of the case with the
harmonic symbol in L*1. We show that if f € L, then there is a harmonic
function f € C®D @ D such that Tr = Trand Iy =T; on D . Finally, as a
byproduct, based on the above-mentioned work of Lee and Zhao, we obtain

algebraic properties of Toeplitz and small Hankel operator with symbols in L*-1.



The derivative is taken in the distribution sense whereas the derivative is
defined in the classical mode, which in turn provides different properties than the
properties presented here. We point out that there is a flaw but the result is correct
if the Sobolev space L?1 is removed and the Toeplitz operator is directly defined

by the integral operator (1).

We will write f’for‘;—]zc,f’ for Z—]Zc, when f € L*1 and ||-||4 for the norm in

a Hulbert space H.

We first need the following result which is probably well known.

Proposition (1.1)[1]. Let E: [0, 1) x [0, 1). Assume that u € L?>1(E). Then the

following assertions hold.
(i) For almost all x € [0,1),u(x,.) is absolutely continuous on [0,1) and

lilri u (x,y)EL'[0.1).
y—)

(i) For almost all y € [0,1),u(.,y) is absolutely continuous on [0,1) and
lirr% u (x, y)EL*[0.1)
X—

Proof. Due to the lack of an explicit reference, we give a detailed proof. It suffices

to prove (i) since (ii) can be treated analogously. Since u € L*1(E), by Fubini’s

Theorem for almost all x € [0,1) the functiong—;(x,.) € L?[0,1). Thus for

almost all x € [0, 1), the function

y
R ou
a(x,y) = f@(x, t)dt
0

is well defined. Moreover,



11 11

ou
ffm(%}’)ldxdyﬁjj|E(x,t)|dxdt<oo
00 00

This implies that @i := u — @ € L'(E). Next we claim that g—z = Z—z in the sense of
distributions. To see this, we let {P, },>1 be a sequence of polynomials on R? such
that P, — Z—;‘in I2(E) as K — oo. Define
y
w(x,y) = JPk(X, t)dt

0

Then % (x,y) = px(x,y) in the classieal sense for every k € Z,. Since p;, — aaiy

in L?(E), using Fubini’s Theorem, after passing to a subsequence we may assume
that

1
ou
Ilim j pr(x, t) — @(x, t)|dt = 0 for almost all x € [0,1).
0

It follows that u;, — i in L(E) and the claim follows. There fore ‘;—;‘ = 0, in the

sense of distributions. Thus, we conclude that is a function of x. Hence u(x,.)

is absolutely continuous on [0,1) for almost all x. Moreover, since for almost all
x € [0, 1),2—;‘@,.) € 12[0,1) we have

1

ou
limu(x,y) =1l(x) | =—(x,t)dt fora.e.x
y-1 0 ay



Since Z—’y‘ € L?>(E) and since @ € L'[0,1), using Fubini’s Theorem again we infer

that the limit function lirr} u (x,y) € L' [0,1). The proof is complete.
y—)

Given a function £ € L. In the polar coordinates z = re‘?, we have

Lojen o) Y- -1

9z 2 ar rav) o0z 2

It follows that f(re'®) € L>*(E), where E [0,1) x [0, 2m). By Proposition 1, we

see that f(re'?) is absolutely continuous in r for almost all 8 and absolutely

continuous in @ for almost all r. In particular, the radial limit f |61D) = lirr% f(re')
-

exists for almost all 8. Moreover, from the final conclusions of Proposition (1.1)
we also have f|0D € L'(0D). Thus we can define for k € Z

2w

1 . .
fel) =5 | flomeedg

0

The result below roughly says that Toeplitz operators on D depends only on

boundary values of the symbols.

Proposition (1.2)[1]. Letf € L*! Then for eachn € Z,,,

@) = ) fe (D2F

k€EZ,
Proof. Forn € Z,., we have

a(fzn) ok, 1 a(fzn) 0z"
62>L ( " 0z

keZ+

2wk

Tr @) W)P(fz") (W) = (fz" Ky)1 =



Hence

1
1 0 . .
Tf(Zn)(W) — 2 E fj _]Zr(rele)rn+kel(n—k+1)9dr de
00

12m
+nj.j f (re®)rntk-1ein=k)0 gy 4o [ wk
00

of 1 _l-@(a_f laf

Notice - =€ ) then by Fubini’s Theorem we obtain

2T

1
%jj faf (T.ele)rn+k i(n— k+1)6d1‘ do
00

2T

1

27‘[
0

1

_L n+k—1 fﬁ i(n—k)6
ZnJr dr 696 do
0

0

l(n kK)o dgj f n+kd7‘

Using the absolute continuity of f on r and 8, and integration by parts, we get the

desired result. The proof is complete.

The following proposition is a characterization for functions in L®t. We

claim no originality for this result.

Proposition (1.3)[1]. Let f be a meosurable function on D. Then f € L1 if and

only if there exists a continuous function f on D such that f = f a.e, on D and

that

|f(z)—f(w)| < M|z—w|Vz,w €D,



Where M >0 Is a constant.

Proof. First assume that f € L*1. Fix a smooth radial nonnegative function p on
C with compact support in D such that [ fp(z)dA(z) = 1.For § > 0, we define
ps(z) := 87%p(|z|/8). The convolution of a locally integrable function f and pj is
defined on Ds := {z € D:d(z,0D) > §}as

@ * ps) (@) = j f f(z—w)psw)dA(w) ¥z € Dy,
lw|<é

It is known that f5 is C* smooth and that f5, converges to f in LF (D, dA) as § —
Oforl <p < wif f € LF(D,dA).

Since f € L*1 and since

s _9f s _9f

az:az*p‘“ az:&*p‘s

We deduce that for every § > 0, all the partial derivatives of f are bounded on
Ca. Moreover, this bound does not depend on S. It follows that, there is a constant
M > 0 satisfying

Ifs(2) — fs(W)| < M|z—w|Vz,w €D

We then choose a sequence 8, —.0 such that f5, — f outside a set E c D of

measure 0. Clearly
f(z2) —f(wW)| < M|z—w|Vz,w € D\E

Since E has empty interior, we may extend f to a continuous function f on I
satisfying

17 (2) = Fw)| < M|z —w|Vz,w e D

7



Conversely, suppose that f is a continuous function on D such that
If(2) — f(W)| < M|z —w|Vz,w €D

Where M > 0 is a constant. We have to show f € L. For this, we note that by
the Rademacher Theorem, g := ‘;—]Zc (in the classical sense) exists almost

everywhere on D. Moreover g € L®1.. We define f5 as in the first part. By the

Lebesgue dominated convergence Theorem, we verify that

%
aZ -g p6

Since the right-hand side converges to g in L' (D,dA) as § — 0, we infer that g

is actually the distributional derivative of f. Thus f € L*!.. The proof is

complete.

Proposition (1.4)[1]. Let f € L®1. and F be the Poisson extension of f|dID. Then
F,F' € H*and F € C®D &D.

Proof. there exists a constant M > 0 such that f|dDsatisfying

flop(eer) — floD(e'ez)| < Melos — e'ez |

2
for every 8,,0, € [0,27.] Let p(r6) = ———— e the Poisson Icernel. Then

1-27 cos 0+12

2w

F(z)%} P(r,6 — t)f|oD(e)dt (z=re') (2)

0

is harmonic in D, continuous on the closed unit disk and F|0D = f|0D.



Differentiating with respect to 8 in both sides of (2), we obtain
21
izF'(z) +1zF'(z) = ij a—p(r 6 —t)f|oD(e')dt
2w ) 00"’
0

Using integration by parts and the absolute continuity of flaID)(eit) we get

2T
_— 1 . .
izF'(z) +1zF'(z) = %f p (r,0 — t)ie (f|oD) (e')dt
0
Let £/ denote the analytic part of ie*(f|oD)’and £/ = iet(f|oD)’ — f{. Since
(f|0Dd)" is bounded on D, we infer that £} and £’ are in L?(dD) . Moreover,

since F is harmonic we deduce that

o OF , OF
0z’ 0z

are analytic functions on . It follows that izF’(z) and izF'(z) are analytic on D.
Therefore, by comparing analytic and anti-analytic parts in both sides of the last

identity we obtain

2T

izF'(z) = %f p(r,0 —t)f," (et)dt, 1zF'(z)

0

2T
1 o
=%j p(r,0 —0)f " (et)dt
0

Thus izF'(z)and izF'(z)in H?. Since F', F' are already analytic functions on I,
we conclude that F'(z) and F'(z) are in F'(z)as well. Hence F € CD®D. The

proof is complete.



Put
H? ={p €D:¢p’' € H*}

Clearly COH°@H> < L™*. Moreover, f € L™ is harmonic if and only if f €
COH@HZ. Now the following natural que’stion arises: Given f € L™ let F be
the Poisson extension of f|0D. Does F belong to L®-1? The example given at the
end of the section provides a negative answer to the above question. Before
describing the example, we remark without proof that, by following the same
arguments as in Proposition (1.4), we can obtain the following characterization of

the boundary function f|dD in order that its harmonic extension F belongs to L=,

Proposition (1.5)[1]. Let f € L1 and F be the Poisson extension of f|dD on D.
Then F € L*1 if and only f|dD is Lipschitz continuous and both £} and £’ are in
L (0D). Here f/ denotes the analytic part of (f|0D)’ andf’ = (f|0D)" — f,.

Now we formulate the promised example.

Example (1.6)[1]. Let

1 .
g(@) z ﬁelke

kEeZ*

Where Z* denotes the set of nonzero integers. Then it is easy to see that g €
C (0D). Note that the series

e iko

z - Y z sin?{k@)

kEL* KEZ.,

10



Is the Fourier series of the function i(r — 8). Thus g’ is uniformly bounded on
(0,2m). Hence g is Lipschitz on [0, 27], i.e., there exists a constant M > 0 such
that

lg(81) — g(62)| < M|6; — 0,|V04,0, € [0,27]

Now we apply a result of Mc Shane to find a function f on D such that f|0D = g
and that f is Lipschitz with the same constant M. Using Proposition (1.3), we

conclude f € L*1
Next we prove that
z¥ Z
F@) ) m )
keEZ* kEZ,
the Poisson extension of g, is not in L1, Indeed,

K
zF'(z) Z i—z = —log(1l —z)

keZ*

Therefore F' is not bounded on D. It follows that F ¢ L*! by Proposition (1.1)

ik6

(this also follows from Proposition (1.3), since neithergl, := i Y ez ——nor g~ =

k
g' — g4 belongsto L*1(0D).

Given a function f in L*(ID,dA), we have the following polar decomposition
f(’”eie) = Yrez €™ fi(r)
For almost all » € [0, 1), where f,(r) = %foznf(reie) do, and

1

I =2 jlfk(r)lzrdr <o

kEZ* o

11



Here |||,z denotes the L?(ID, dA)-norm. Moreover, if f € L?1, then by the same
argument as , using Proposition (1.1), we can check thatZ|k|SNe”‘9 fie(M)

converges to f in L** as N tends to infinity.

We first give a decomposition of the Sobolev spaceL*. Let O = Q, + C, where
Qp = {2 [fe@) = fiDrH]e®: f(rei®) = 3 e £, (1) € LM}
k€EZ k€EZ

Notice that the quantities f,(1) are well defined for all f € L' in view of

Proposition (1.1) (see the argument before Proposition (1.2).

Theorem (1.7)[1]. Let A, denote the closure of Q, in the space L>'and A = A, +
C. Then L?! = A@D@®D. Moreover,

o= {Z[fkm ~ ferMet®: fret®) = ) e £ (1) € L}

KEL KEZ
Proof . First we show that Q, L D and Q, L D. Forne Z, we have

Q) felrH e, 2y, = nf, ()

keZ

incel =1 —ie(i_ii)—
Smceaz—ze 5 " 738 = we get

9 . 1 . k
2 [fuei] = 28 [+ £ )

Observe that f; is absolutely continuous for every k by Proposition (1.3), so we

have

12



. d .
O fei,zm1 = () —(fielk?) ,nz")

kez k€zZ

1 ok |
— 2 (Eel(k—l)e [fk + ;fk] ’nrn—lel(n—1)9>L2

keZ

1 . k .
— <§el(n_1)6 [fn, + ;fn] ’ nrn—lel(n—1)6>L2
g k
= [ (5 + 25 mrndr = nfurli=nu®
0

It follows that

O Tfel) = frH]ei*?, 2, = 0

k€Z

9 1 _pp(0 i0d
Since = = -¢~0 (——i—
0z 2

P 9) by an analogous argument we can prove £, 1 D.

The details are omitted.

By combining the last result with Proposition (1.4), we infer L1 c Q @ D @ D.
Since the set of smooth functions with compact support is dense in L*! | we get

the required decomposition for L#*.

Finally, by Proposition (1.2), Ty_r(z™) = 0 for everyn € Z,if f € L' and F is
the Poisson extension of f|dD. Clearly, if f € Ay, then for every n € Z,, T¢(z") =

0. It follows that for f € L%, there exists a harmonic function F € C®D®D such
that Tr(z") = Tp(z™),n € Z, . Moreor, Proposition (1.2) shows that F is the

Poisson extension of f|dD Hence the set in the right side of (2) equals to A,. The
proof is complete.

13



The following Theorem asserts that Toeplitz operator or small Hankel operator
with symbol inf € L1 is just a generalization with the harmonic symbol in
CODDD.

Theorem (1.7)[1]. Let f € L™ and F be the Poisson extension of f|dID. Then
(1) Tr is bounded on D and Tr = Ty,
(ii) Iz is bounded on D and I}y = IF.

Proof. (i) By Proposition (1.2), it suffice to show Ty is bounded on D. First we
note that F € L*1(ID) and F’ € H?by Proposition (1.4),

For g, h € D, we have

d(Fg) 0 A -y
(TF.g; h>1 - (Fg; h)l = <— 5) = (F g)h )LZ + (F.g )h )LZ
This implies
‘(Tpg, h)g < WF'gllzllFg I zllh Nl 2 < (IF gllzllRllp I Fllo llgllp 1Rl o

Let g(z) = ZnEZ.,_ anzn and F,(Z) = ano bn z™. Then ”gllzz) = ZnEZ+n|an|2 <

oo and ||F'||%2 = Ynsonlby|? < oo. Observe that

2

19l = [19@F @ dA@) = [ | D ane™ Y ba| dAGz)
D

D |n€Z4 nz=0

n-1
Ay by

f z (ni an_kbk>z” dA(z)? z

D |n€Zy \k=0 NeZy

k=0

Thus using the Cauchy-Schwartz inequality, we obtain
14



n-1
/ 2 1 2
IF'gllZ < ) ——n > lan bl
k=0

NeZy
n-1 n-1
n 2 2 2 2
T |@n—rbi | by |* < |an—r | ||
n-1
2
D lanl? ) bal? < Ibel? < IgIBIF I3
neZy nz=0

It follows that

|(Tpg, )i < (IF g2 + IFllollglipliallp)
2

Therefore Tr is bounded on D.
(i) Let g(z) = Ynez, anz™ € Dand F(2) = Ypsobnz™ + Ynez, b_n2". Since
P(Z"z™) = Tyz™ =z™"
Whenm > n > 0and
P(z"z™) =0

When 0 < m < n, thus

g PUFD) PF(DG@D) = p| ) ans™ ) bpz"

neZy sy
E a,b_,p(z"z™) = E a,b_,z™ "
MNeEZy m>n>0

Again using the Cauchy—Schwartz inequality, we have

15



2 2

g1 = > I D anb-ueio | 24| D k[D anboiuany

kEZ+ nEZ+ D kEZ+ TLEZ.,_

2
b_
3,3t 3 et

k€Z, mneZ; nez,

1 2k
lglly ) 5 D (k7 ool Gz

nEZ+ kEZ+

1 2
gl > = > @+ 12 |-

ne€zZ, ke,

Because F' € H? and ||F'||%: = X012 |b_p|? < oo, we have
H n=0 n

2 2 1 o2
ITegl3 < lglp ). — I < o0

neZy
So I'z is bounded on D.

It remains to show Ix(z™) = I'x(z") forevry n € Z,. Itis easy to see JQ, C Q,,
and z"Q, c Q,,z"Q, € Q, forn € Z, U {0}. On the other hand, since f — F €
Qo and P|g, = 0, we have

") P((F2") = P(J((f — F)Z")) + Tp(z") = Tp(z") V€L,
The proof is complete.

Theorem (1.8)[1]. Letf,g € L*1.. Then the following assertions hold.

(@) TfT, = T,T; if and only iff,g eQ®Dorf,g €O @D or a nontrivial

linear combination off, g belongs to Q.

16



(b) T¢T, = T;,Dif andonly if f € A P Dor g € QA D D.

Theorem (1.9)[1]. Let f,g € L®*. Then [T, = I,I% if and only if there exists a
constantcsuch that f —cg e QP D P C.zZ.

17



Chapter 2

A Handy Formula

The goal of this chapter is to provide a transparent symbol calculus for the
Fredholm property and a handy formula for the Fredholm index for operators in

this algebra.
Section (2.1): Fredholm Index of Toeplitz Plus Hankel Operators

Let1l < p < oo. For a non-empty subset I of the set Z of the integers, let

[P (I) denote the complex Banach space of all sequencesx = (x;,),ep Of complex

1

numbers with norm [|x|[,, = Cherlxn|P)? < 0. We consider [P(I) as a closed
subspace of [P (Z) in the natural way and write P; for the canonical projection from
IP(Z) onto IP(I). For I = Z™*, the set of the nonnegative integers, we write [P and
P instead of [P(I) and Py, respectively. By J we denote the operator on [P (Z)
acting by (Jx),, := x_,,_;,andwesetQ := [ — P.

For every Banach space X, let L(X) stand for the Banach algebra of all
bounded linear operators on X, and write K(X) for the closed ideal of L(X) of all
compact operators. The quotient algebra L(X)/K(X) is known as the Calkin
algebra of X. Its importance stems from the fact that the invertibility of a coset A +
K(X) of an operator A € L(X) in this algebra is equivalent to the Fredholm
property of A, i.e., to the finite dimensionality of the kernel kerA = {x € X: Ax =
0}and the cokernel cokerA = X/im A of A, withim A = {Ax: x € X} referring to
the range of A. If A is a Fredholm operator then the difference ind A :=

dimkerA4 — dim cokerA is known as the Fredholm index of A.

18



For the Fredholm property and a formula for the Fredholm index for operators in
the smallest closed subalgebra of L(IP) which containsall Toeplitz and Hankel

operators with piece wise continuous generating function.

Let T be the complex unit circle. For each function a € L*(T), let (ay)kez

denote the sequence of its Fourier coefficients,

1 2T

Q= o 0 a(e®)e~? dg.

The Laurent operator L(a) associated with a € L®(T) acts on the space [°(Z) of
all finitely supported sequences on Z by (L(a)x)k := Ymez Qx—mXm - (FOr
everyk € Z, there are only finitely many non-vanishing summands in this sum.)
We say that a is a multiplier on [P (Z) if L(a), € IP(Z) for every x € 1°(Z) and if

IL(@)I == sup{lIL(@)xll, : x € 1°(Z), lIxll, = 1}

is finite. In this case, L(a) extends to a bounded linear operator on [P (Z) which we
denote by L(a) again. The set M? of all multipliers onlP(Z) is a Banach algebra
under the norm [lally,, = lIL(a)]l. We let M) stand for M? if p = 2and for the
set of all a € L*(T) which belong to M" for all r in a certain open neighborhood

of pifp # 2.

It is well known that M? = L*(T). Moreover, every function a with boundedtotal

variation Var(a) is in MP for every p, and the Stechkin inequality
llally, < cp(llalle + Var(a))

holds with a constant c,, independent of a. In particular, every trigonometric
polynomial and every piecewise constant function on T are multipliers for every p.

We denote the closure inMP of the algebra 2 of all trigonometric polynomials and
19



of the algebra PC of all piecewise constant functions by C, and PC, ,
respectively. Thus, C, and PC,, are closed subalgebras of MP for every p. Note that

C, is just the algebra C(T) of all continuous functions on T, and PC, is the algebra

PC(T)of all piecewise continuous functions on T. It is well known that C, <
C(T) andC, < PC, < PC(T) for every p. In particular, every multiplier a € PC,

possesses one-sided limits at every point t € T For definiteness, we agree that T is
oriented counter-clockwise, and we denote the one-sided limit of a at t when

approaching t from below (from above) by a(t™) (by a(t™)).

Let a € MP. The operators T(a): = PL(a)P andH (a) := PL(a)QJ, thought
of as acting on im P = [P are called the Toeplitz and Hankel operator with

generating function a, respectively. It is well known that [|T(a)| = ||a||Mp

and||H ()l < |lally, for every multiplier a € M,,.

For a sub algebra A ofMP?, we let T(A) and TH(A) stand for the smallest closed sub
algebra of L(IP) which contains all operators T(a) with a € A and alloperators

T(a) + H(b) with a, b € A, respectively. We will be mainly concerned with the
algebras C,, PC,, and with their intersections with M in place of A. we will state
a criterion for the Fredholm property of operators in TH(PC,) and derive a formula

for the Fredholm index of operators T'(a) + H(b) with a, b € PC,,.

The study of the Fredholm property of operators in TH(PC,) has a long and

involved history. We are going to mention only some of its main stages.
The Fredholm properties of operators in the algebra T(PC,) are well understood .

The structure of the algebras TH(PC,) is much more involved than that of T(PC,).
For instance, the Calkin image T™(PC):=T(PC)/K(l*) of T(PC) is
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acommutative algebra, whereas that one of TH(PC) is not. The Calkin image of
TH(PC) was first described by Power. An alternative approach wasdeveloped
where it was shown that the algebra TH™(PC) := TH(PC)/K(I?) possesses a
matrix-valued Fredholm symbol, We take up the approach in order to study the

Fredholm properties of operators in TH(PC, )forp # 2.

It should be mentioned that the algebras TH(PC,) have close relatives which live
on other spaces than [P, such as the Hardy spaces HP (R) and the Lebesgue spaces
LP(R*). The corresponding algebras were examined (with different methods)
Despite these fairlycomplete results for the Fredholm property, a general,
transparent and satisfying formula for the Fredholm index of operators in TH(PC,)
(or on related algebras) was not available until now. Among the particular results
which hold under special assumptions we would like to emphasize the following
there is derived an index formula for operators of the form Al + H where A €
Cand H is a Hankel operator on H? (R). Already earlier, some classes of Wiener-
Hopf plus Hankel operators were studied in connection with diffraction problems.
Note also that the (very hard) invertibility problem for Toeplitz plus Hankel

operators is treated.

Finally we would like to mention that algebras like TH(PC,,) can also be viewed of
as sub algebras of algebras generated by convolution-type operators and Carleman
shifts changing the orientation. First results in that direction were presented where

in particular, a matrix-valued Fredholm symbol was constructed.

We provide a transparent symbol calculus for the Fredholm property as well as a
handy formula for the Fredholm index for operators in the algebra TH(PC,). The
techniques developed and used also allow to handle the corresponding questions

for the related algebrason the spaces H? (R) and LP (R*).
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Section (2.2): The Fredholm Property

In what follows, we fix p € (1,0) and consider all operators as acting on

[Punless stated otherwise.

We start with recalling the basic results of the Fredholm theory of operators in the
algebra T(PC,), which are due Gohberg/Krupnik and Duduchava. The functions
fi1(®): =t are multipliers for every p. It is easy to check that the algebra
generated by the Toeplitz operators T (fy)contains a dense subalgebra of K (I7).
Thus, the ideal K(I?) is contained inT(C,), hence also in T(PC,), and it makes
sense to consider the quotient algebra T(PC,)/K(I?). Clearly, if A € T(PC,) and
if the coset A + L(IP) is invertible in T(PC,)/K(I?), then it is also invertible in the
Calkin algebra L(IP) /K (IP), hence A is a Fredholm operator. The more interesting
question is if the converse holds, i.e. if the invertibility of A + L(I?) in the Calkin
algebra implies the invertibilityof A + K(I?) in T(PC,)/K(l,). If this implication
holds for every A € T(PC,), one says that T(PC,)/K(IP) is inverse closed
in L(IP) /K (IP).

Let R denote the two-point compactification of the real line by the points
+oo(thus R is homeomorphic to a closed interval) and let the function tp: R -

C be defined by

1, (2) := (14 coth(m(A + i/p)))/2

if A € Rand by u,(—o) = 0 and u,(+c0) = 1. Note that when A runs from—oco to
oo then 1, (4) runs along a circular arc in Cwhich joins 0 to 1 and passes through
the point (1 —icot(r/p))/2. An easy calculation gives u,(—4) =1 — u, (1),
where 1/p + 1/q = 1. Thus, for fixed ¢ € T, the values I'(T(a) + K(IP))(¢, 1)
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defined in the following Theorem run from a(t — 0) to a(t + 0) along a circular

arc when A runs from —oo to co.
Theorem (2.2.1)[2] (a) T(PC,)/K(IP) is a commutative unital Banach algebra.

(b) The maximal ideal space of T(PC,)/K (I?) is homeomorphic with the cylinder

T X R, provided with an exotic (non-Euclidean) topology.

(c) The Gelfand transform I':T(PC,)/K(I?) — C(T x R) of the coset T'(a) +
K(IP) witha € PC, is

(T(a) + K(P))(t, D) = a(t — 0) (1 = pg (D) + alt + )y (D).
(d) T(PC,)/K(IP) is inverse closed in L(IP) /K (IP).

The topology mentioned in assertion (b) will be explicitly described . Note that this
topology is independent of p. Since the cosets T'(a) + K (I?)with a € PC, generate
the algebra T(PC,)/K(IP), the Gelfand transform onT(PC,)/K(I?) is completely
described by assertion (c) .Thus, if A € T(PC,) then the coset A + K(IP) is
invertible in T(PC,)/K(IP) if and only if the functionT'(A + K (IP)) does not
vanish on T x R. Together with assertion (d) this shows that A € T(PCp)is a
Fredholm operator if and only if T'(4 + K(IP)) does not vanish on T X R. It is
therefore justified to call the function smb, A:=T(4 + K(IP)) the Fredholm
symbol of A.

The index of a Fredholm operator in T(PC,) can be determined my means of its
Fredholm symbol. First suppose that a € PC, is a piecewise smooth function with

only finitely many jumps. Then the range of the function

F(T(a) + KIPH(E& D = at™)(1 = ug(D) + altHug) (D)
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IS a closed curve with a natural orientation, which is obtained from the

(essential)range of a by filling in the circular arcs

Co(at),ath) = {at™) (1 - uy() + altHu) () : A € R}

at every point t € T where a has a jump. (If the function a is continuous at t,then
Cq(a(t‘),a(t+)) reduces to the singleton {a(t)}.) If this curve does not pass
through the origin, then we let wind I'(T'(a) + K (I?)) denote its winding number
with respect to the origin, i.e., the integer 1/(2m) times the growth of the argument
of I'(T(a)+ K(P)) when ¢t moves along T in positive (= counter-
clockwise)direction. If this condition is satisfied then T'(a) is a Fredholm operator,

and
ind T(a) = —wind['(T(a) + K(IP))

one can extend both the definition of the winding number and the index identity to

the case of an arbitrary Fredholm operator in T(PC,). One has the following.
Proposition (2.2.2)[2] Let A € T(PC,) be a Fredholm operator. Then
ind A = —windI'(4 + K(IP)).

We would like to emphasize an important point. The algebra T(PC,)/K(1%)is a
commutative C* -algebra, hence the Gelfand transform is an isometric x*-
isomorphism from T(PC,)/K(1?) onto C(T x R) . In particular, the radical
of T(PC,)/K(1%) is trivial, and the equality smb,A = 0 for some operator A €
T(PC,) implies that A is compact. For general p it is not known if the radical of
T(PC,)/K(IP) is still trivial; it is therefore not known if smb,A = 0 implies the

compactness of A.
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In order to state results on the Fredholm property of operators in the Toeplitz-
Hankel algebra TH (PC,)/ K(I17). Let T, be the set of all points in T with non-

negative imaginary part and set T? := T, \{—1, 1}.
Further let the function v,, : R — C be defined by

Vp(A) := (2isinh(m(A + i/p))) —1
if A € Rand by v,,(£%) = 0. Recall that 1/p + 1/q = 1.

Theorem (2.2.3)[2] (a) Let a, b € PC,. Then the operator T(a) + H(b) is

Fredholm ifand only if the matrix
smb, (T(a) + H(b))(t, A)

[aHu ) +alt) (1 - ) (b(t*) = b(t7))vy() 0

(b(E) = b(EH)vg (D) a(E) (1 - 1) + a(F)u, ()
is invertible for every (¢,1) € T2 x R and if the number

smbp(T(a) + H(b))(t,/l :

= a(t"ug(A) + a(t™) (1 - pg) + it (bt = b(ED)v, (D) (2)
is not zero for every (t,1) € {+1} X R.

(b) The mapping smb,, defined in assertion (a) extends to a continuous algebra
homomorphism from TH(PC,) to the algebra F of all bounded functions on T, X
R with values in €%*? on T% xR and with values in C on {+1} xR .

Moreover,there is a constant M such that

||smpr|| 1= (t’l)sgﬁxn&”smbp A(t, A)”oo < M1i<relzf<(lp) 1A + K| (3)
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for every operator A € TH(PC,). Here, ||B||. refers to the spectral norm of the

matrix B.

(c) An operator A € TH(PC,) has the Fredholm property if and only if the function

smb, A is invertible in F.
(d) The algebra TH(PC,)/K(IP) is inverse closed in L(17) /K (IP).

Before going into the details of the proof, we remark two consequences of
Theorem (2.2).

Corollary (2.2.4)[2] Leta,b € PC, and T(a) + H(b) a Fredholm operator on [P.
Then(a) the function a is invertible in PC,, and(b) if b is continuous at +1, then

T(a) — H(b) is a Fredholm operator on [?.

Proof. If T(a) + H(b) is a Fredholm operator, then the diagonal matrices

smby, (T(a) + H(b))(t, o) = diag(a(ti), a(ti))are invertible for every t € T
and the numbers smb, (T(a)+ H(b))(1,+0)=a(1*) and smb,(T(a)+
H(b))(—l,ioo) = a((=1¥)are not zero by assertion(a) of Theorem (2.2.3).
Hence, a is invertible as an element of PC. Since the algebraPC,is inverse closed
in PC by Proposition (2.2.2) in [2], assertion (a) follows. The proof of assertion (b)
Is also immediate from the form of the symbol described in Theorem (2.2.3)
(a).We devoted to the proof of Theorem (2.2.3). We will need two auxiliary
ingredients which we are going to recall first. Let A be a unital Banach algebra.
The center of A is the set of all elements a € A such thatab = baforall b € A.
A central subalgebra of A is a closed subalgebra ¢ of the center ofA which
contains the identity element. Thus, C is a commutative Banach algebra with

compact maximal ideal space M(C). For each maximal ideal x of C, consider the
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smallest closed two-sided ideal I, of A which contains x, and letd, refer to the

canonical homomorphism from A onto the quotient algebra A /7.

In contrast to the commutative setting, where C/x = C for all x € M(C), the
quotient algebras A /7, will depend on x € M(C) in general. In particular, it can
happen that I,, = A for certain maximal ideals x. In this case we define that®,. (a)

is invertible in A /7, for every a € A.

Theorem (2.2.5)[2] (Allan’s local principle) Let C be a central subalgebra of the
unital Banach algebra 4. Then an element a € A is invertible if and only if the

cosets @, (a) are invertible in A /3, for each x € M(C).

Here is the second ingredient. Recall that an idempotent is an element p of an

algebra such that p? = p.

Theorem (2.2.6)[2] (Two idempotents Theorem) Let A be a Banach algebra with
identity element e, let p and g be idempotents in A, and let B denote the smallest
closed sub algebra of A which contains p, g and e. Suppose that 0 and 1 belong to
the spectrum az(pgqp) of pgp in B and that 0 and 1 are cluster points of that

spectrum. Then

(a) for each point x € oz(pqp), there is a continuous algebra homomorphism &, :

B — C?*2 which acts at the generators of B by

0= (3 O o =() 9. mw=( 2 )

2
Where \/x(1 — x) denotes any complex number with (w/x(l — x)) = x(1 -
X).
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(b) an element a € B is invertible in B if and only if the matrices ®,(a) are

invertible for every x € o5z(pqp).

(c) if og(pqp) = 0.4(pgp), then B is inverse closed in A.

We proceed with the proof of Theorem (2.2.3), which we split into several steps.
Step 1: Localization. For every operator A € L(I?), we denote its coset

A+ K(IP) in the Calkin algebra by A™, and for every multiplier a € MP, we
putda(t) := a(1/t). The identities

T(ab) = T(a)T(b) + H(a)H(b) and H(ab) = T(a)H(b) + H(a)T (b), (4)

Which hold for arbitrary a, b € MP, together with the compactness of the Hankel
operators H(c) for ¢ € C, show that the set C, of all cosets T'(c)™ with ¢ € C,
and c = ¢ forms a central subalgebra of the algebra TH(MP)/K(IP) and, in
particular,of the algebra TH(PC,)/K(IP). One can, thus, reify Allan’s local
principle withTH(PC,)/K(IP) and C, in place of A and C, respectively. It is not
hard tosee that the maximal ideal space of C, is homeomorphic to the arc T,
with t € T, corresponding to the maximal ideal {c € C, : c(t) = 0} of C,,. We let
Jrdenote the smallest closed ideal of TH(PC,)/K(IP) which contains the maximal
ideal t and write Af for the coset A™ + J.of A € TH(PC,). Instead of T(a)fand

H(b)T we often write T/*(a) and HJ(b), respectively, and the local quotient
algebra (TH(PC,)/K(I”)) /7, is denoted by THF(PC,) therefore. By Allan’s
local principle, we then have

oty = Uter, UTH?(PCp)(A?) (5)
for every A € TH(PC,).
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Step 2: Local equivalence of multipliers. Let a,b € PCpand t € T,. We show that
if a(t*) = b(t*) and a(t¥) = b(t?), then T (a) = TF(b) and HF (a) = HF(b).
This fact will be used in what follows in order to replace multipliers by locally

equivalent ones. It is clearly sufficient to prove that if a € PC,, satisfiesa(t*) =
a(t*) = 0, then T™(a), H®(a) € J,. We will give this proof fort € T{;the proof
for fort = +1 issimilar.

Givene > 0, let f € PCsuch that ||a —fIIMp < & . Then there is an open arcU :

= (e7¥t,e%t) c T, such that |a(s)| < e almost everywhere on Uu U and
suchthat f has at most one discontinuity in each of U and U. Then |f(s)| < 2¢
for € U U U. Now choose a real-valued function ¢, € C*(T) such that ¢, (t) =
1,the support of ¢, is contained in U, and ¢, is monotonously increasing on thearc

(e~¥¢,t) and monotonously decreasing on (t, e'®t). Set ¢ := ¢, + @5. Then
¢ =@, and
T*(f) =T*(fo) =T™(f(1 = ) =T"(NT*(1 — ¢) € Iy,
H™(f) = H*(fo) = H™(f (1 — @) = H"(f)T™(1 - ¢) € J..

Since ||follo < 2e andVar(fe) < 8¢, we conclude that ||fg0||Mp < 10c,e from

Stechkin’s inequality. Thus, [|T™(f")llk < 10c,e and [|[H™(f¢)|| < 10c,e, with
aconstant c,, depending on p only. Thus, T"*r(a) differs from the element T™(f) —
T™(fp) € J; by the element T"(a—f) + T™(f¢p), which has a norm less
than(1 + 10c,)e. Since ¢ > 0 is arbitrary and J, is closed, this implies T™(a) €

Jt-

Analogously, H™ (a) € J;.
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Step 3: The local algebras at t € Tg. We start with describing the local algebras
THF (PC,) at point t € Tg. Let X, denote the characteristic function of the arc in
T which connects t with £ and runs through the point -1. Clearly , X; € PC,, . The
crucial observation, which is a simple consequence of the identities(4), is that the

operator T(X;) + H(X,) is an idempotent. Further, let ¢, € C,beany multiplier
such that 0 < @, < 1,¢0.(t) =1,¢9(t) =0 and ¢, + @, = 1. Againby (4), the

coset T{* (pt) is an idempotent.

We claim that the idempotents p;: = T/ (¢;) and q;: = T (X;) + HF (X;)together
with the identity element e: = I* generate the local algebra THF (PCy,).

Leta,b € PC,. Then, using step 2,

T (a) = a(tT)TT (Xepe) + a(t‘)Tt”((l — xt)‘l)t) + a(f‘)Tt’T(Xt(l - €0t))
+ a(f+)’]‘tﬂ((1 - XA - ‘Pt))- (6)

It is not hard to check that
T (Xt pt) = DeqcPe
T (1 = X)) = pee = qpe
TF(X:(1 = ¢)) = (e = p)qc(e — po),
TF((1 = X)L = @) = (e — p)(e — ) (e — po). (7)
Let us verify the first of these identities, for example. By definition,
Pedepe = T (@)TE(XOTE (@) + TE (@) HE (X)TE (@)

Since T(¢p,) commutes with T(X;) modulo compact operators and H({,) is

compact, we can use the identities (4) to conclude
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T (@)TE(XOTE (@) = TE(XDTE (@) = T (X @)
Further, due to the compactness of H(¢;) and H(®;),
TE(@)HE(X)TE (@) = HE (@ X)TE (@) = HE (9 Xt @)

Since @ X @, is a continuous function, Hf (¢ X:®;) = 0. This gives the first of
the identities (7). The others follow in a similar way. Thus, (6) and (7) imply that

T[*(a) belong to the algebra generated by e, p,and g;. Similarly, we write

HI(b) = b(tHF (X)) + (e DHF((1 — XDee) + bEDHF (X (1 — ¢p))
+ b(EDHF((1 = XD (A — ¢p) (8)

and use the identities
H{ (Xt @e) = peqe(e — pe),
HE((1 = X)@r) = —peqe(e — pr),
HF (X:(1 = ) = (e = p)qepe,
HE((1=X) (1 - 9p)) = —(e — p)qepe 9)

to conclude that H (b) also belongs to the algebra generated by e, p; and q;.Thus,
the algebra TH (PC, ) is subject to the two idempotent Theorem.

In order to apply this Theorem we have to determine the spectrum of the coset

p:q:0: = T (X @,) in that algebra. We claim that
UTH?(pcp)(TgT(xtfpt)) ={u,(D) : 1€ R} (10)
with1/p + 1/q = 1. Leta, € PC, be a multiplier with the following properties:

(@) a;is continuous on T \ {t} and hasa jump att € T.
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(b) at(t+) = xt(t+) == 1 and at(t_) == Xt(t_) == O.
(c) a, takes values in {u, (1) : 2 € R} only.
(d) a; is zero on the arc joining —t to t which contains the point 1.

Then, by Theorem (2.2.1), the essential spectrum of the Toeplitz operator T(a;) in
eachof the algebras L(IP)/K(I?) and T(PC,)/K(IP) is equal to the arc {uq(A) :

A1 € R}.

Hence, the essential spectrum of T(a;), now considered as an element of the
algebra TH(PC,)/K (I?), is also equal to this arc. Hence,

orug (PCp) (T (ar)) S {uq(D: 1 € R}

by Allan’s local principle. Since T/ (a;) = T (X ¢;), this settles the inclusion <
in (10). For the reverse inclusion, let b, € PC, be a multiplier with the following

properties:
(@) b, is continuous on T\{t} and hasa jump att € T.
(b) b (t*) = X (t).

(c) b, takes values not in {u,(2): 1 € R} on the arc joining —t to t which

contains the point —1.
(d) b, is zero on the arc joining —t to t which contains the point 1.

Then, again by Theorem (2.2.1), the essential spectrum of the Toeplitz operator
T (by)in each of the algebras L(I7)/K(IP) and T(PC,)/K (I?) is equal to the union

of the arc {u,(4) : 2 € R} and the range of b,. Hence, the essential spectrum of
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T(b.), now considered as an element of the algebra TH(PC,,)/K (I?), is also equal

to this union. Since b; is continuous on T \ {t} by property (a), we have
OTHE(PCp) (TF (b)) = {(be(s), be(3)}

fors € T3 \{t}. Since the points b.(s) and b,(5) do not belong to {u,(1): 1 € R}
by property (c), we conclude that the open arc {uq(4): 4 € R} is contained inthe

local spectrum of T'(b,) at t. Since spectra are closed, this implies
{HgD):2 € R} € oqyp(pe ) (TE(BY))-

Since T (b;) = T (X:p.) by property (b), this settles the inclusion 2 in (10).

Since vq(/l)2 = ug (1) (1 —uq(A)) , we can choose \/,uq(l) (1 — /.tq(/l)) =
Vg (A).

With this choice and identities (6) — (9) it becomes evident that the two

idempotents Theorem associates with the coset T{* (a) + H{* (b) the matrix function

(a(muq M) +a(t)(1 - g(A)) (b(t*) = b(t))vy(A) )
(b(E) = bED)ve(D) a(t) (1 - g (D) + aEH) @

on R.

Step 4: The local algebra at 1 € T,. Next we are going to consider the local
algebra THT (PC,) at the fixed point 1 of the mapping t — t. Let f : T — Cdenote
the function e’ — 1 — s/m where s € [0, 2m). This function belongs toPC,, and it

has its only jump at the point 1 € T where f(1%) = +1. Using ideas, it was shown
that the Hankel operatorH (f)belongs to the Toeplitz algebra T(PC,) and that its

essential spectrum is given by
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0ess(H(f)) = {2i v,(1): 1 € R} (11)

(in fact, this identity was derived with p in place of g, which makes no difference

since v,(—4) = v, (1) for every 1.) Let y, denote the characteristic function of the
upper half-circle T, . Since every coset Ty* (a) with a € PC, is a linear

combination of the cosets IT and T;*(X,) and every coset H{' (b) is amultiple of
the coset H{'(f), the local algebra THT(PC,) is singly generated (as aunital
algebra) by the coset T7"(X). In particular, THT (PC,) is a commutative Banach

algebra, and its maximal ideal space is homeomorphic to the spectrum of its

generating element. Similar to the proof of (10) one can show that
rz(pe,) (TE (X)) = {#g(D): 2 € R} (12)

We identify the maximal ideal space of the algebra THT (PC,) with R. The
Gelfand transform of T;(X,) is then given by 4 —» u,(1) due to (12). Let h

denote the Gelfand transform of H{*(f). From (4) we obtain
HT(H? =TI (f f) = TFOTE).

The function £ fis continuous at 1 € T and has the value —1 there, and the function

f + f is continuous at 1 € T and has the value 0 there. Thus,
HY (f)* = =17 + T{" ()%
Since T*(f) = T (2X, — 1) = 2T (X,) — If we conclude that
h()? = (2u,(D) — 1)* =1 = (sinh(z(A + i/q))) — 2
if A € Rand by h(+o) = 0. By (11), this equality necessarily implies that

h(1) = (sinh(r(A + i/q)))—1 = 2ivy(d)
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if A€ R and h(+o) = 0. Combining these results we find that the Gelfand
transform of T{*(a) + HT (b) is the function

1= a(1Mpg@) +a(17) (1= ug() +i (b(1*) = b(17))vg(A).

Step 5: The local algebra at —1 € T, . It remains to examine the local
algebra TH™,(PC,) at the point —1. Let A:1*> — [* denote the mapping
() ns0 = 1((—1)™x,)50. Clearly, A™t = A, and one easily checks (perhaps

most easily onthe level of the matrix entries, which are Fourier coefficients) that
AT (a)A = T(a) andA"*H(a)A = —H(Q)

for a € PC

», Where a(t) :=a(—t). Thus, the mapping A —> A"'AAis an

automorphism of the algebra TH(PC,), which maps compact operators to compact
operators and induces, thus, an automorphism of the algebra TH(PC,)/K (I?). The

latter maps the local ideal at 1 to the local ideal at —1 and vice versa and

induces,thus, an isomorphism between the local algebras THT(PC,) and
THZ; (PC,) ,which sends T{*(X,) to TZ; (1 —X,) and HT (X,) to —HZ; (1 —
X,) = HF (X _+),respectively.

Step 6: From local to global invertibility. We have identified the right-handsides of
(1) and (2) as the functions which are locally associated with the operatorT (a) +
H(b) via the two idempotents Theorem and via Gelfand theory for commutative
Banach algebras, respectively. It follows from the two idempotents Theorem and
from Gelfand theory that the so-defined mappings smb,(t,A1) extendto a
continuous homomorphism from TH(PC,) to C***or C, respectively,which
combine to a continuous homomorphism from TH(PC,) to the algebra F. Allan’s

local principle then implies that the coset A + K (IP) of an operatorA € TH(PCp)
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is invertible in TH(PC,) /K (I?) if and only if its symbol does notvanish. The proof

of estimate (3) will base on Mellin homogenization arguments.

Step 7: Inverse closedness. It remains to show that TH(PC,)/K(IP) is an inverse

closed subalgebra of the Calkin algebra L(IP)/K(IP). We shall prove this fact by
using a thin spectra argument as follows: If A is a unital closed subalgebra of a
unital Banach algebra B, and if the spectrum in A of every element in a dense
subset of A is thin, i.e. if its interior with respect to the topology of C is empty,then

A is inverse closed in B.
Let A, be the set of all operators of the form
l k
a:=>"| |(1(ay) + H(by)) withay; by, € PC, (13)
i=1 j=1

and write gggs (A) for the spectrum of A in TH(PC,)/K(IP). Then A,/K(IP)
isdense in TH(PC,)/K(IP), and the assertion will follow once we have shown

thatTH(PC,) /K (IP) is thin for every A € A,.
Given A of the form (13), let Q denote the set of all discontinuities of the

functions a;;and b;; , and put Q:= (QUQ) n T,. Clearly, 2is a finite set.

j )
Bywhat we have shown above,

0T (A) = Uger,sm 0 (smby(A)(E D))

Where a(B) stands for the spectrum (= set of the eigenvalues) of the matrix B.We

writeol(A)as), UY, UYs; where

%1 1= Uger-11xk O (Smb,(A)(E D)),
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%2 = U 0e(re/a)xR O (smbp(A)(t, /1)),

T3 = U e(@-sa)<g o (Smby(4)(,2)).
It is clear that 2, is a set of measure zero. It is also clear that each set
2yt = Uyeg o(smb, (4)(t, 1)) witht € T \Q

has measure zero. Since the functions aij and bij are piecewise constant, the
mapping t - X, .is constant on each connected component of T9 \Q, and the
number of components is finite. Thus, X, is actually a finite union of sets of

measure zero. Since is finite, it remains to show that each of the sets
23 = U_(1 € R) o(smb, (4)(t, 1)) witht € O\ {—1,1}
has measure zero. For this goal it is clearly sufficient to show that each set
29t := Uzer o(smb, (A)(t, 1) witht € O\ {—1,1}
has measure zero. Let t € Q\{-1,1} , and write smb,, (A)(t,A) as

2
L, J

(cij(/l))l _=1.The eigenvalues of this matrix are sy (1) = (cn(/l) + czz(/l))/z +

Jr(A)where
r() = (a11() + a2 (D) /4 — (a1 M az () — a;z(Daz (D)

and wherem IS any complex number the square of which is r(4). Sincer is
composed by the meromorphic functions coth and 1/sinh , the set of zeros of
ris discrete. Hence, R\ {1 € R: (1) = 0} is an open set, which as the union of
an at most countable family of open intervals. Let | be one of these intervals. Then

| can be represented as the union of countably many compact subintervals In such
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that the intersection I,, N I, consists of at most one pointwhenever n # m and
each set r(I,,) is contained in a domain where a continuousbranch, say f,, of the
function z - /z exists. Then +f,or: I, — Cis a continuously differentiable
function, which implies that (£f,, o r)(1,,) is a set of measure zero. Consequently,
the associated sets s, (I,) of eigenvalues have measure zero, too. Since the
countable union of sets of measure zero has measure zero, we conclude that each
set2 , has measure zero, which finally implies that ol (A) = £, UZ, U Z3has
measure zero and is, thus, thin. This settles the proof of the inverse closedness and

concludes the proof of Theorem (2.2.3).

We would like to mention that there is another proof of the inverse closedness
assertion in the previous Theorem which is based on ideas and which works also

in other situations.
Section (2.3): An extended Toeplitz algebra

In the proof of the announced index formula for Toeplitz plus Hankel operators,we
shall need an extension of the results to certain matrix operators. For k € N and X
a linear space, we let X;, and X, stand for the linear spaces of all vectors of
length k and of all k x k-matrices with entries in X, respectively. If X is an algebra,
then X, . becomes an algebra under the standard matrix operations. If X is a

Banach space, then X;, and X, become Banach spaces with respect to the norms

k
G =;||x,||and [@)imll = * sop lagl - o

If, moreover, X is a Banach algebra, then X, ., is a Banach algebra with respect to
the introduced norm. Actually, any other norm on X, and any other compatible

matrix norm on X, Will do the same job. Note also that if X is a c*-algebrathere
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Is a unique norm (different from the above mentioned) which makes X;, ., to a c*-
algebra. Since we will not employ ac* — arguments, the choice (14) will be

sufficient for our purposes.

Let TO(PC,) denote the smallest closed subalgebra of L(IP(Z)) which
contains the projection P and all Laurent operators L(a) with a € PC,. The
algebraT®(PC,) contains T(PC,) in the sense that the operator PL(a)P : im P -
im Pcan be identified with the Toeplitz operator T(a). For k € N, the matrix
aIgebraTO(PCp)kkaill be also denoted by T,?Xk(PCp). One can characterize
T,?xk(PCp)also as the smallest closed sub algebra of L(IP(Z),) which contains all
operators of the form L(a)diag P + L(b)diagQ with a,b € (PCP)kxk’ where Q :
= | — P, diagA stands for the operator on L(IP(Z),) which has A € L(IP(Z)) at

each entry of its main diagonal and zeros at all other entries, and where L(a) =
(L(au))

(aij)f,jzl' Note that K(IP(Z);) is contained in T2, (PC,).

k
refers to the matrix Laurent operator with generating function a =
ij=1

The Fredholm theory for operators in Tg,(PC, )is well known. We will present it

in a form which is convenient for our purposes. Our main tools are againAllan’s
local principle (Theorem (2.2.5)) and a matrix version of the two idempotents
Theorem (Theorem (2.2.6)) . Here is the result.

Theorem (2.3.1)[2] Leta,b € (PCp)kxk.

(@) The operator A := L(a)diag P + L(b)diagQ is Fredholm on [P(Z), if and

onlyif the matrix
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(smb,, A)(t, 2)

_ (a(t—) + (a(t*) — a(t™))diagu, (1) (b(¢*) — b(t7))diagv, (1) >
a(t?) — a(t)) diagy, () (b(t") — (b(t*) — b(t™))diagu, (D)

is invertible for every pair (t,A) € T x R.

(b) The mapping smb,, defined in assertion (a) extends to a continuous algebra
homomorphism from T,ka(PCp) to the algebra F of all bounded functions on T X

R with values in C,j,. Moreover, there is a constant M such that

Jsmb,a] := (t,A)Sélrlixn—azusmbp AGD], < M eertb, 4 + Kl 3)

for every operator A € TP, (PC,).

(c) An operator A € T2, (PC,) has the Fredholm property on [P (Z), if and only

if the function smbp A is invertible in F.

(d) The algebra T, (PC,)/K(IP(Z),) is inverse closed in the Calkin algebra
L(P(Z)1) /K AP (Z) ).

(e) If A € T, (PC,) is a Fredholm operator, then

ind A = —wind (det smb,, A(t,1)/(deta,,(t, ) deta,,(t, —)))
Where smb, 4 = (aij)izj=1withk X k-matrix-valued functions a;; .

It is a non-trivial fact that the function

W:T xR,(t,A) — detsmb, A(t,1)/(deta,,(t, ) det a,,(t, —))
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forms a closed curve in the complex plane. Thus, the winding number of W is well

defined if A is a Fredholm operator.
We devoted to the proof of Theorem (2.3.1).

Step 1: Spline spaces. We start with recalling some facts about spline spaces and
operators there on . Let x4 denote the characteristic function of the interval

[0,1] € R and, for € N, let S,, denote the smallest closed subspace of L?(R)

which contains all functions

Orn(t) := Xpo1(nt — k), t ER,

where k € Z. The space [P (Z) can be identified with each of the spaces S,, in the

sense that a sequence (x;) is in [P (Z) if and only if the series

Ykez Xk Prn cONverges in LP(R) and that

1> xetin]| = nPIGONmG
LP(R)
in this case. Thus, the linear operator

E. : IP(Z) - S, C LP(R), (x) — nl/szkq)k,n,

and its inverse E_,, : LP(R) D2 S,, — [P(Z) are isometries for every n. Further we

define operators

Lyt PR = S U= 1) (@) i
keZ

with respect to the sesqui-linear form (u,v) := fRuﬁdx, where u € LP(R) and

v e LA(R)with1/p + 1/q = 1. It is easy to see that every L, is a projection
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operator with norm 1 and that the L,, converge strongly to the identity operator on

LP(R) asn — oo. Finally we set
Y, : IP(Z) - IP(Z), (x) — (t7*x;)fort €T.

Clearly, Y; is an isometry, and ¥,”* = Y,-1 . One easily checks that Y, 1L(a)Y; =
L(a;) with a,(s) = a(ts) for every multiplier a, which implies in particular

thaty; *T°(PC,)Y, = T°(PC,).

Step 2: Some homomorphisms. It is shown that, for every A € TO(PCp) and every

t € T, the strong limit

SmbtA = S — llm Enyt_l AYtE—nLn

n—oo

exists and that the mapping smbt is a bounded unital algebra homomorphism.

This homomorphism can be extended in a natural way to the matrix algebra

Texk (PC,). We denote this extension by smb,A again.

In order to characterize the range of the homomorphism smb;, we have to
introduce some operators on LP (R). Let y., stand for the characteristic function of

the interval R* = [0, o) and y,I for the operator of multiplication by y..

Further, Sk refers to the singular integral operator

f(s)

s —t

1 (00]
SeN© = [ s

with the integral understood as a Cauchy principal value. Both y.I and Siare
bounded on L?(R), and S = I. Thus, the operators Pg := (I + Sg)/2 and Qp :
= | — Py are bounded projections on L? (R). We let Zi(]R{) stand for the smallest

42



closed subalgebra of L(LP(R),) which contains the operators diag y.I, diagSg,

and all operators of multiplication by constant k x k-matrix valued functions.
Theorem (2.3.2)[2]. Lett € T. Then

(@) smb,diag P = diagy,I.

(b) smb, L(a) = a(t*)diagQr + a(t™)diagPg fora € (PCP)kxk'

(c) smb,K = 0 for every compact operator K.

(d) smb, maps the algebra T/, (PC,) onto Y7 (R).

(e) The algebra Zi(]R{) Is inverse closed in L(LP(R),).

Assertion (c) of the previous Theorem implies that every mapping smb, induces
anatural quotient homomorphism from T°(PC,)/K (1P (Z)) to X7 (R). We denote
this quotient homomorphism by smb, again. It now easily seen that the estimate

(15) holds for every A € T, (PC,) (with the constant M = 1fork = 1).

Step 3: The Fredholm property. Since the commutator L(a)P — PL(a) is compact
for every a € C,, the algebra €, := {diag L(a):a € C,}/K(IP(Z),) lies in the
center of the algebra A := T,ka(PCp)/K(lp(Z)k). It is not hard to see thatC, is
isomorphic to C,;hence the maximal ideal space of C,, is homeomorphic to the unit

circle T. In accordance with Allan’s local principle, we introduce the local ideals

J: and the local algebras A; := A/J; att € T.

By Theorem (2.3.2) (b), the local ideal J, lies in the kernel of smbt. We denote the
related quotient homomorphism by smb, again. Thus, smb, is an algebra

homomorphism from A, onto ZZ(R), which sends the local cosets containing the
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operators diag P and L(a) with a € (Pcp)kxk to diag y,/ and a(t*)diagQr +
a(t™)diagPg , respectively. this homomorphism is injective, i.e., it is an

iIsomorphism between A, and ZQ(R).

Since P and diagy, I are projections, the algebra Y7 (R) is subject to the two
projections Theorem with coefficients, as derived in [5]. Alternatively, this algebra
can be described by means of the Mellin symbol calculus. In each case, the result is

that an operator of the form

(a*diagy,l + a~diagy_I)diagPg
+ (b + diagy,I + b —diagy_I)diagQg (16)

Where y_ := 1 — y, and a*, b* € Cj» is invertible if and only if the (2k) x

(2k)-matrix-valued function

2 a + diag (1 — u, (1)) + a”diagu, (1) (b* = b7) diag v,(2)
'_) ( (a* — a™) diagv, (1) b + diagu, (1) + b — diag (1 — ,up(l)))

is invertible at each point 1 € R. Note that the function
A a*diag (1 — pp(2)) + a~diagu, (1)

is continuous on R and that this function connects a* with a™ if A runs from—oo to
+00. For the sake of index computation, one would prefer to work with afunction
which connects a~ with a® if A increases. Since u,(—4) = 1 — py(A) and
v,(—4) = v,(4) with g satisfying 1/p + 1/q = 1, we obtain that the operatorA
in (16) is invertible if and only if the matrix function

3 a*diagu, (1) + a~diag (1 — p(2)) (b* — b™) diagy, (1)
'_) ( (a* —a7) diagy, (1) b*diag (1 — u?(A)) + b~ diagu? (A))
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is invertible on R. This observation, together with the local principle, implies that
the coset L(a)diag P + L(b)diag Q + K(IP(Z);) is invertible in the quotient
algebra T,Sxk(PCp)/K(lp(Z)k) if and only if the matrix function in assertion (a) of

Theorem (2.3.1) is invertible. In particular, this gives the “if”’-part of assertion (a).

The “only if’-part of this assertion follows from the inverse closedness assertion
(d), which can be proved using ideas, where inverse closedness issues of two
projections algebras with coefficients are studied. The proof of assertions (b)and
(c) of Theorem (2.3.1) is then standard.

Step 4: The index formula. It remains to prove the index formula (e). First we have
to equip the cylinder T x R with a suitable topology, which will be different from
the usual product topology. We provide T with the counter-clockwise orientation
and R with the natural orientation given by the order <. Then the desired topology
Is determined by the system of neighborhoods U(t,, A,) of the point (ty, 4,) €
T X R, defined by

U(ty,—0) ={(t, ) ETXR: |t —ty] <5t <to}U{(ty,) ETXR: 1< ¢},
U(ty,+0) = {(t, ) ET X R: [t —ty] < 8,tg <t} U{(tx,A) ETXR: e < A}
if 1, = tooand by
U(tg,20) = {(te, ) ET X R: 2y —6; <A< g+ 85}

if 1, € R, where € € R and 6, §;, §, are sufficiently small positive numbers, and

where t < s means that t precedes s with respect to the chosen orientation ofT.

Note that the cylinder T x R, provided with the described topology, is just a

homeomorphic image of the cylinder T x [0,1], provided with the Gohberg-

Krupnik topology. The latter has been shown by Gohberg and Krupnik to be

homeomorphic to the maximal ideal space of the commutative Banach
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algebraT(PC,)/K(IP). If one identifies T x [0, 1] withT X R, then the Gelfand
transform of a coset A + K(I?) of A € T(PC,) is just the function I'(4) defined
in Theorem (2.2.1).

It is an important point to mention that while the function smb, A for A €€
fok(PCp) is not continuous on T X R (just consider the south-east entry

ofsmb,, (L(a)P + L(b)Q)), the function
(t,A) — det smb,, A(t,4)/(det a,,(t, ©) deta,,(t, —o)

is continuous on T x R. This non-trivial fact was observed by Gohberg and
Krupnik in a similar situation when studying the Fredholm theory for singular
integral operators with piecewise continuous coefficients. We will establish the
index formula by employing a method which also goes back to Gohberg and
Krupnik and is known as linear extension. This method has found its first
applications in the Fredholm theory of one-dimensional singular integral equations.
We will use this method in the slightly different context of Toeplitz plus Hankel

operators.

Let B be a unital ring with identity element e. With every h X r-matrix §: =

h, . .. .
(bjl)j ", with entries in B, we associate the element

h
el(B) = z by ...bjy € B (17)
j=1

generated by 8 and call the b;, the generators of el(f3). For each element of this
form, there is a canonical matrix ext(f) € Bsxs With s = h(r + +1) + 1 with
entries in the set{0,e,b;, : 1 < j < h,1 < k < r}and with the property that
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el(B) is invertible in B if and only if ext(B) is invertible in B,,,. Actually, a

matrix with this property can be constructed as follows. Let

ex@y= (LK) = (o (e NG ) as

where e; denotes the unit element of B,;,

0 B, 0 « 0 0
/ = Eh(r+1) +1| :

000---03r/
0 0 0 « 0 0

with B; := diag (by; ,by;,...,bp;), X is the column —(0,...,0,e,...,e)" withhr
zeros followed by h identity elements, Y is the row (e,...,e,0,...,0) with h
identity elements followed by hr zeros, and W = (My, M,4,...,M,) withM, :=

(e,...,e) consisting of h identity elements and

M] = (bllblz"'blj’b21b22"'ij""’bhlth"'bhj) fOI’ _] == 1,...,1' . The

matrix ext(f) in (18) is called the linear extension of el(f3).

Since the outer factors on the right-hand side of (18) are invertible, it follows
indeed that el(B) is invertible in B if and only if its linear extension ext(f)
isinvertible in B, . As a special case we obtain that if the b;; are bounded linear

operators on some Banach space B, then el(f) is a Fredholm operator on Bif and
only if ext(f) is a Fredholm operator on L(B)sxs = L(Bs)

Moreover,ind el() = indext(f) is this case.
We shall apply this observation for B = [P(Z), and for the generating operators

bji = L(c)diag P + L(d;;)diag Q with c;,, d;; € (PC,), .. (19)
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hr h,r h,r .
Put i = (bp)_pv¥ = (L(cﬂ))]_’l:1 and & = (L(dﬂ))j’l:l. The linear
extensions of y and § are Laurent operators again; thus ext(y) = L(c) and
ext(6) = L(d)with piecewise continuous multipliers ¢ and d. Moreover,

ext(B) = L(c)diag P + L(d)diag Q. (20)

If el(B) is a Fredholm operator then, by Theorem (2.3.1) (a), the matrices c(t*)

and d(t*) are invertible for every t € T. Hence, ¢ and d are invertible in

(PCp)ksxks'

This fact together with the above observation implies that the operator el(B)is
Fredholm on [P(Z), if and only if its linear extension ext(f) is Fredholm
onl?(Z),s, which on its hand holds if and only if the Toeplitz operator T(d~1c) is
Fredholm on l,’c’s, and that the Fredholm indices of the operators el(f), ext()and
T(d~1c) coincide in this case. The symbol of the Toeplitz operator T(d~1c¢)is the

function
smby, (T(d™1e))(t,A) = (d™ c)(t)diaguy (D) + (d~te)(t7)diag (1 — pq (D)
(which stems from the matrix-version of Theorem (1.7)), and smb,, (ext(8)) =
: (ai,-)f’j=1 is related with smb,, (T (d"'c)) via
detsmb, (T(d~1¢))(t,A)
= det(smb,ext(8))(t, 1) /(detay, (t, ) detay, (t, —o0))

as can be checked directly. This fact can finally be used to derive the index
formula for Fredholm operators of the form el(B) with the entries of 5 given by
(19).
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Since the operators el () lie dense in T,?X,((PCP), the index formula for aFredholm

operator in this algebra follows by a standard approximation argument.

To carry out this argument one has to use the estimate

|smb, el(B)|| < M inf [lel(8) + KI|

KeK(IP(Z)x)

With M independent of 3, which is an immediate consequence of (15).
Section (2.4): The index formula for T + H-operators

We provide an index formula for Fredholm operators of the form T(a) + H(b)
on [P where a, b are multipliers in PC,, with a finite set ofdiscontinuities. We start

with a couple of Lemma.
Lemma (2.4.1)[2] If a €C(T) n M‘P, then H(a) is compact on [?.

Proof. It is shown that C(T) n M?’ < C, (in fact It is shown there that the

closure of C(T) N M in the multiplier norm equals C,) and that H(a) is

compacton [P ifa € C,.

For a subset Q of T , let PC(Q) stand for the set of all piecewise

continuousfunctions which are continuous on 7' \Q , and put PC;,,(Q) := PC(2) N

MP)

Thus, Cipy i= PCpy (@) = C(T) n M‘P’. We concludes that PC,,, () S PC, if Q
is finite.

In what follows, we specify Q, := {t4,..., T} t0 be a finite subset of T\{+1} and

put Q := Qg U {+1}. Let ¢, € C,y be a multiplier which satisfies ¢ = @,takes its

values in [0,1], and is identically 1 on a certain neighborhood of {—1,1}and
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identically 0 on a certain neighborhood of Q, U Q,. Moreover, we suppose that

©Z + @? =1 where ¢, :=1— @,.

Lemma (2.4.2)[2] Let ¢ € PCypy({—1,1}) and d € PCp,y(Qy) . Then the
operators H(c)T(d) — H(cde,) and T(c)H(d) — H(cd¢,) are compact on [P.

Proof. We write H(c)T(d) = H(c)T(d)T(9,) + H(c)T(d)T (¢;) with
H(c)T(d)T(¢o) = H(c) (T(dg,) — H(d)H(Po))
= H(cdpo) — T(c)H(d@o) — H(c)H(d)H (po),
H()T(d)T(¢1) = H()T(9)T(d) + H(c) (T(d)T(91) — T(91)T(d))
= (H(cp1) — T(c)H(91)) T(d)
+ H(c)H()H (@1) — H(p)H(A).

The operators H(d¢,), H(@g), H(ce,), H(p,) and H(@;) are compact by Lemma
(2.4.1), which gives the first assertion. The proof of the second assertion proceeds
similarly.

Lemma (2.4.3)[2] Let ag, by € PCypy({—1,1}) and ay, by € PC,y(0). Then the

operator
(T(ao) + H(by))(T(ay) + H(by)) — (T(aoay) + H(aybopy) + H(agh,91))
is compact on [,
Proof. We write (T'(ao) + H(by))(T(ay) + H(by)) as
T(ag)T(ay) + T(ag)H(by) + H(by)T(a;) + H(bo)H (by)
=T(apa;) + Ky + H(apgh_1¢,) + K, + H(boa19o) + K + K,
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where K, := T(ay)T(a;) — T(apa;) and K, := H(by)H(b,) = T(by)T(h;) —
T(byb;) are compact on [P , and K, := T(a,)H(b;) — H(ayb,p,) and K; =
H(by)T(a,) — H(bga,¢p,) are compact by Lemma (2.4.2).

The following proposition provides us with a key observation; it will allow us to

separate the discontinuities in Q, and {—1, 1}.

Proposition (2.4.4)[2] Let a,b € PCy,y(Q). If the operator T(a) + H(b) is
Fredholm on [?, then there are functions ay, by € PC,y({—1,1}) and a,, b, €
PC,y(Q)such that T'(ay) + H(by) and T'(a,) + H(b,) are Fredholm operators on

[P and thedifference

(T'(ag) + H(bo))(T(ar) + H(by)) — (T(a) + H(b))
IS compact.

Proof. If T(a) + H(b) is Fredholm on [P, then a is invertible in PC, by
Corollary(2.2.4) (a). Since the maximal ideal space of PC, is independent on p

anda € PCyy,oneevenhasa —1 € PCp,.

Let U and V be open neighborhoods of {—1, 1} and Q, U Q,, respectively,

such that clos U NnclosV = @. We will assume moreover that U = U_, U U; is
the union of two open arcs such that +1 € U4, and thatV = V, UV_ is the
union oftwo open arcs such that V, € T% and V. € T\ T%. Note that these

conditions imply that closU_; N closU; = @.

Now we choose a continuous piecewise (with respect to a finite partition of (T)
linear function ¢ on T which is identically 1 on clos , coincides with a on dU,and

does not vanish on T \ U. This function is of bounded total variation; thusc €
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C(T) n M), whence ¢ € C, as mentioned in the proof of Lemma (2.4.1).
Putay := ayy + cxrw - Then ag € PCyp and ag* € PCy. Further, set a; :=

a;la.

The function a, is identically 1 on U and coincides with a on U . Since PC
isan algebra, a; belongs to PC,. Finally, set by := bg, and b1 := bg,, with
@poand ¢ as in front of Lemma (2.4.2).

The above construction guarantees that aq, by € PC,y({—1,1}) and ay, by €

PC,y(Qy), and the operator

(T(ao) + H(by))(T(ay) + H(by)) — (T(apay) + H(aybopo) + H(agh,1))

Is compact on [P by Lemma (2.4.3). The functions (a; — 1)byp, and (a, —
1)b, ¢, vanish identically on a certain neighborhood of Q by their construction.
Hence,the Hankel operators H((a; — 1)by¢@,) and H((a, — 1)b,¢,) are compact
by Lemma(2.4.1), which implies that the operator

(T(ao) + H(bo))(T(ar) + H(by)) — (T(aoay) + H(bopo) + H(by 1))

is compact. Since aga; = a and by@, + by, = b(@i + @) =b , and
since T(ay) + H(by) and T(a,) + H(b,) are Fredholm operators on [P by

Theorem (2.2.3), the assertion follows.
By the previous proposition,
ind (T(a) + H(b)) = ind (T (ay) + H(by)) + ind(T(al) + H(b,)).

Since H(by) € T(PC,) as already mentioned, and since an index formula

forFrednolm operators in T(PCp) is known, the determination of ind(T(aO) +

52



H(bo)) IS no serious problem. The following Theorem provides uswith a basic

step on the way to compute the index of T(a;) + H(b,).

Theorem (2.4.5)[2] Leta,b € PCy,) (). If one of the operators T'(a) + H(b)

isFredholm on [P, then the other one is Fredholm on [P, too, and the Fredholm

indices of these operators coincide.

Proof. By Corollary (2.2.4) (b), the operators T(a) + H(b) and T(a) — H(b) are
Fredholm operators on [P only simultaneously. It remains to prove that their
indices coincide. Recall from the introduction that T(a) = PL(a)P and H(a) =
PL(a)QJ. Thus, the index equality will follow once we have constructed a

Fredholm operator D such that the difference
D(PL(a)P + PL(b)Q] + Q) — (PL(a)P — PL(b)Q] + Q)D (21)
is compact. The following construction of D is a modification .

(Note that the compactness of the operator (21) also provides an alternate proof of

the simultaneous Fredholm property of the operators T(a) + H(b).)

A function ¢ € M, is called even (resp. odd) if ¢ =¢ (resp.c = —¢) or,
equivalently, if JL(c)] = L(c) (resp. JL(c)] = —L(c)). Every functionc € C,
can be written as a sum of an even and an odd function in a unique way: ¢ = (¢ +
¢)/2 + (c—¢)/2. Let 8, and 6, be an odd and an even function in C(T) N
M®) i, respectively, and assume that 6, vanishes at all points of Q, (and,hence, at

all points of Q). Put
D := PL(6, +6,)P + QL(6, —6,)Q. (22)

We will later specify the functions 6, and 8, such that D becomes a Fredholm
operator. First note that
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JPL(6, + 6.)P] = —QL(8, — 6,)Q,JQL(6, — 6.)Q] = —PL(6, + 6,)P,

whence /D] = —D and JD + D] = 0. Next we show that D commutes with the
operator PL(a)P + PL(b)Q + Q up to a compact operator. Since the Toeplitz
operators PL(8, + 6,)P and PL(a)P commute modulo a compact operator, it
remains to show that D commutes with PL(b)Q up to a compact operator. The

latter fact follows easily from the identity

DPL(b)Q — PL(b)QD = PL(8, + 6,)PL(b)Q — PL(b)QL(6, — 6.)Q
= PL(6, + 6.)L(b)Q — PL(6, + 0,)QL(b)Q — PL(D)L(6, — 0.)Q
+ PL(b)PL(6, — 6,)Q
= 2PL(6,b)Q — PL(6, + 6,)QL(b)Q + PL(b)PL(6, — 6,)Q

and from the compactness of the operators PL(6.b)Q and PL(6, + 6,)Q by
Lemma (2.4.1) (note that 8,b € C(T) n M‘P). The compactness of the operator

(21) is then aconsequence of the identity

D(PL(a)P + PL(b)QJ + Q) — (PL(a)P — PL(b)QJ + Q)D
= DPL(a)P — PL(a)PD + DPL(b)QJ + PL(b)QJD
= DPL(a)P — PL(a)PD + (DPL(b)Q — PL(b)QD)]

and of the compactness of the commutators [D, PL(a)P] and[D, PL(b)Q].

Finally we show that the functions 8, and 6, can be specified such that the

operator D in (22) is a Fredholm operator on IP. Set 8, (t) := |t? — 1|*fort € T.

Then 6, is an even function in C*(T) and 6, := x1,6, — x_T_6, is an odd

function in C(T) n M), Further,
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m
6, (8): = il_[|t—rj|2|t—r_]|2, t €T
j=1

Defines an even function 8, € C(T) n M‘P’ which vanishes at the points of Q.

Since 6, and if, are real-valued functions, we conclude that 8, + 6, are invertible

in C(T) n M which implies that D is a Fredholm operator as desired.

Now we are in a position to derive an index formula for a Fredholm operator of the
form T(a) + H(b) with a,b € PC,)(£). We make use of the well-known
identity

PL(a)P + PL(b)QJ + Q 0
( 0 PL(a)P — PL(b)QJ + Q)

=%(§ ) (Pﬁfiﬁfﬁﬁ ](pfiﬁg?f Q)])G 0) @

where the outer factors in (23) are the inverses of each other. Thus, if one of the
operators T(a) + H(b) = PL(a)P + PL(b)QJ is a Fredholm operator, then so
Is the other, and the Fredholm indices of these operators coincide. Hence the

middle factor

(PL(a)P +Q PL(b)Q )

_(PL(@P+Q  PL(b)Q >
JPL(D)Q]  J(PL(a)P + Q)]

- < QL(b)P  QL(&)Q +P
in (23) is a Fredholm operator, and

PL(@P+Q  PL(b)Q )

1
ind(T(a) + H(b)) = Eind< QL(E)P QL(@)Q + P

1 (PL(@)P PL(b)Q
- (QL(E)P QL(&)Q)'
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For the latter identity note that the operator

. (PL(a)P +Q PL(b)Q

QL(b)P  QL(@)Q + P) € LIP(2)2)

has the complementary subspaces L, := {(Qxq, Px,): (xq,x,) € [P(Z),}and L, :
= {(Px1,0x3) : (x1,x,) €1IP(Z),} of IP(Z), as invariant subspaces and thatA

acts on L, as the identity operator and on L., as the operator

4 o (PH@P PL(D)Q
0 <QL(B)P QL(&)Q)

Let the function W : T x R — C be defined by
W(t,A) = detsmb, Ay(t,4)/(@(t, )a(t, —o)).
Since T'(a) + H(b) is Fredholm, W does not pass through the origin, and Theorem

(2.3.1) entails that indA, = —wind W. Thus,

1
ind(T(a) + H(b)) = —Ewind w.

We are going to show that actually
ind (T(a) + H(b)) = —wind T + W, (24)

where the right-hand side is defined as follows. The compression of W onto T, X
Ris a continuous function the values of which form a closed oriented curve in
Cwhich starts and ends at 1 € C and does not contain the origin. The winding

number of this curve is denoted by wind T, W. Analogously, we define windT_W.

For the proof of (24) we suppose for simplicity that a and b have jumps only at the

points t; and £; where t; € T?. If t moves along T from 1 to t; (resp.on T_ from

1 to t;), then the values of W (t, 1) = a(t)/a(t) = a(t)/a(t) move continuously
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from 1 to a(t] )/a(& ") (resp. from 1 to a(f; ") /a(ty )) . Using that W(t, 1) =
W(E ) 1 fort € T\ {—1,1}, one easily concludes that

largW]ioe,er, = largWlgoier

where the numbers on the left- and right-hand side stand for the increase of the
argument of W if t moves in positive direction along the arc from 1 to t; in T and

along the arc from ¢; to 1 in T_, respectively. Analogously,

largW]_1ger. = [argWle, -1, -

Consider

W (ty, 2)/(a(E; MaE )
= [a(tDuD) + atD) A — pg)] [a(E Nug) + a(EH(A
— g1 = (&) = bED)BET) — b(EH ) pg(D(A — pg (D)

and the related expression for W (¢;,1)/(a(t;)a(t; )). Then

larg W] = [argW]

C’q(a(t;),a(tf)) Cq(a(ﬁ_),a(ﬁ+))

Because W (ty, 1)/(a(f; a(f; ")) = W(ty, 1) /(a(t])a(ts )). So we arrive at the

equality windy, W = windy_W, whence (24) follows.

Now suppose that a,b € PCy, are continuous on T\{—1,1}. Then we definea

function W : T, x R by

W(e,2) = (altDiug) +a(e) (1 -1y )

+4t(b(t*) — b(t7))v, (/'D) a~*(+1%)
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ift = +1and by W(t,A) = a(t)/a(t) ift € TY. The function W is continuous
and determines a closed curve which startsand endsat 1 € C. If T(a) + H(b) is a
Fredholm operator, then this curve does not pass through the origin and

possesses, thus, a well defined winding number.

Since T(a) + H(b) is in T(PC,) and the symbol V' : T X R - C of this operator

relative to the algebra T(PC,) is known (it is just given by

V(t,2) = a(tpg@) + a(t) (L = pg()) +it(b(t*) = b(t™))ve (D)

if ¢t = 41 and by V(t,A) =a(t) if teT\{-1,1}) and since indT(a) =
—windgV ,one can again prove that windyV = windy W by comparing the

increments of the arguments as above.

Now we look at the factorization given by Proposition (2.4.4) and denote by
Wyand W, the above defined function W : T, x Rfor the operators T(a,) +
H(by) and T(a,) + H(by), respectively. It is easy to see that W,W, coincides
with the function W for the operator T'(a) + H(b). Summarizing, we get

Theorem (2.4.6)[2] Leta,b € PCy,y and T(a) + H(b) a Fredholm operator on
[P. Then

ind(T (a) + H(b)) = —windy, Wy, — wind, W; = —windy, W
with W, W, and W, defined as above.

We want to sketch an approach to derive an index formula for an arbitrary
Fredholm operator A € TH(PC,). With A, we associate the function W(A) :

T, X R — C defined by
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_ (smb, A(t,4)/smb,, A(t, +0) ift =+1
WA 4) = {det smby, A(t, 1)/(az(t, ®)ag, (t,—0))  ift # +1

2
where we wrote smb, A(t,A) = (aij(t, /1)) for teTY%. For A=T(a) +
ij=1

H(b),this definition coincides with that one from the previous section.

Theorem (2.4.7)[2] If A € TH(PC,) is a Fredholm operator, then
ind A = —windy, W (4). (25)

We devoted to the proof of this Theorem. It will become evident from this proof
that W (A) traces out a closed oriented curve which does not pass through the

origin; so the winding number of W (A4) is well defined.

We start with the observation that Theorem (2.2.3) remains true for matrix-valued

multipliers, b e(PCp)kxk . just replace g1 — u, and v, by the

corresponding k X k -diagonal matrices diagu,, diag(1 — p,) and diagy, |

respectively. Also Proposition (2.2.2) holds in the matrix setting: If
T(a) + H(b) := (diag P)L(a)(diag P) + (diag P)L(b)(diag QJ)
is a Fredholm operator, then the identity
ind(T(a) + H(b)) = —wind W(T(a) + H(b))

still holds if one replaces in the above definition of W all scalars by the
determinants of the corresponding matrices. These facts follow in a similar way as

their scalar counterparts.
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h,r
Now let a;;, b;; € PC,, consider the h X r-matrix g := (T(aﬂ) + H(bjl))jl:1,and

associate with f the operator
h
A= el(B) = ) (T(a) + HB)) = (T(ay) + H(by)) € TH(PG,)
j=1

hr hr .
as in (17). Further set y := (L(aﬂ))j’l:1 and § = (L(bﬂ))j,l=1' The linear
extensions of y and & are Laurent operators again; thus ext(y) = L(a)
andext(8) = L(b) with certain multipliers a,b € (PC,) withs =h(r + 1) +

1.
Moreover, these extensions are related with the extension of g by
ext(f) =T(ext(y)) + H(ext(6)) = T(a) + H(b) € L(l?)

(note that H(1) = 0). We noticed that if el(B) is Fredholm, then(and only then)
ext(f) is Fredholm and ind el(8) = ind ext(B). Further, if el(#)is a Fredholm

operator, then the matrices a(t*) are invertible for every t € T.

Hence, a is invertible in (PCP)sxs' Now consider

h
smbyel(f) = Z smb,, (T'(aj;) + H(bj1)) ---smb, (T (a;,) + H(bj)).

J=1

Lett # 1. Then smb,(T(a) + H(b))(t, 1) is a matrix of size 2s X 2s. We put

the rows and columns of this matrix in a new matrix according to the following
rules: Ifj < h(r + 1) + 1, then the j th row of the old matrix becomes the 2j — 1

th row of the new one, whereas if j > h(r + 1) + 1, the j th row of the old matrix
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becomes the 2(j — h(r + 1) — 1) th row of the new matrix. The columns of

smb,,(T(a) + H(b))(t,A) are rearranged in the same way. The matrix obtained

in this way is just mb,, el(f)(t, 1). By these manipulations,
smbyel(B)(t, 1) = Psmb,(T(a) + H(b))(t, )PT
with a certain permutation matrix 2 and its transpose PT . Hence,
det smb,, (T (a) + H(b))(t, 1) = det smb,,(el())(t, 1)

fort # +1. Fort = %1 we do not change the matrix smb,, (T (a) + H(b))(t, A).

For ¢t # +1, we write smb, (T (a) + H(b)(t,2) = (ama(t, /1))

mnl

smb, (T(aj;) + H (b)) (6, 1) = (@ (t, 1))y s
Then

h r
smby,el(B)(t, £o0) = Z <a11(t +0) 0 >
=1

and it follows that

deta,, (t, £o0) = det ext(p(t, +))

Where (t, +o) = (a (t, +oo)) . It is now easy to see that
= 1

W(el(B)t,A) = W(T(a)+ H(b)(t,A) = W(ext(B))(t, 1)

for all (t,A) € T, X R, which implies that ind el(8) = —windy, W (el(B)) and,
thus, settles the proof of the index formula (25) for a dense subset of Fredholm

operators in TH(PC,).
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Finally, we are going to prove estimate (3), i.e., we will show that there is

aconstant M such that
||smpr||Oo < M inf{||A + K||: K compact} (26)

for every operator A € TH(PC,). Once this estimate is shown, the validity of the
index formula (25) for an arbitrary Fredholm operator in TH(PC,) will follow by

standard approximation arguments .

To prove (26), we consider TH(PC,) as a subalgebra of the smallest closed sub
algebra T,O(PC,,) of L(IP(Z)) which contains all Laurent operators L(a) witha €
PC,, the projection P, and the flip J. The homomorphism smbt defined cannot be
extended to the algebra TJO(PCP) unlesst = +1. Instead, we are going to use
ideas and introduce a related family of homomorphisms smbt,t with ¢t € T? from

T/ (PCp) onto (Z?(R))m. A crucial observation is that the strong limit

(At,n.O,O At,n,O,l)
Atnio Atnia

smb,; A :=s— lim (27)

n—oo

With A = EnYt LQxp+ )] " AJ L(x+) Y, E_, Ly exists for every operator A €
TP(PC,) and every t € T9.

Theorem (2.4.8)[2] Let t € T2 . Then the mapping smbtt is a bounded

homomorphism from TP (PC,,) onto (X7 (R)), . In particular,
(@) smbyz P = diag (x4, x-Dwithy_ = 1 — x,,
(b) smb, ¢ L(a) = diag(a(t™)Qr + a(t™)Pg,a(t")Qgr + a(t*)Pg)fora € PC,,

(c) smb, K = 0 for every compact operator K,
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_ (0 I
@ smbye] = (] )
Sketch of the proof. The existence of the strong limits of the operators in

(@) - (d) and their actual values follow by straightforward computation. Let us
check assertion (a), for instance. For A = P, the strong limits of the diagonal
elements of the matrix (27) exist and are equal to y, I and y_I by Theorem (2.3.2)
(@ and since JPJ] = @ . Now consider the 01 -entry of that matrix. It

ISL(xt+)P] = JL(x1-)Q and thus

EnYt_lL(X’]I‘+)P]L(X'ﬂ‘+)ytE—nLn
= (EnYt_ljytE—n) (EnYt_lL()(’II“)QL(XT+)YtE—nLn)- (28)

The first factor on the right-hand side is uniformly bounded with respect to
n,whereas the second one tends strongly to 0 by Theorem (2.3.2) (note that
xr-(t) = 0fort € T?). Thus, the sequence of the operators (28) tends strongly to

zero. The strong convergence of the 10-entry to zero follows analogously.

Another straightforward calculation shows that the mappings smb, ; are algebra
homomorphisms and that these mappings are uniformly bounded with respect to
t € TY. Thus, the mappings smb,; are well-defined on a dense subalgebra
of TJO(PCp) , and they extend to (uniformly bounded with respect to t)

homomorphisms on all of T]0 (PC,) by continuity.

By assertion (c) of the previous Theorem, every mapping smb, ¢ induces a quotient
homomorphism on T?(PC,)/K(IP(Z)) in a natural way. We denote this

homomorphism by smb, ; again.
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Now we are ready for the last step. Lett € T2 anda,b € PC,. From Theorem
(2.4.8) we conclude that then the operator smb, z(T'(a) + H(b)) is given bythe

matrix

(x+(a(t+)QR +a(t)PrR)x+!  x+(b(tF)Qr + bt )Pr)x-1 )
X-(b@E)Qr +b(E)PR)x+I x-(a(®")Qr +a(t™)Pr)x-I

acting on LP (R),. This matrix operator has the complementary subspaces
Ly ={(x-fux+f2): fu, f2 € LP(R)}, Ly == {(x+f1, x-f2): f1. f2 € LP(R)}

of LP(R), as invariant subspaces, and it acts as the zero operator on L,. So wecan
identify smb, (T (a) + H(b)) with its restriction to L,, which we denote byA, for
brevity.

The space L, can be identified with LP(R) in a natural way. Under this

identification, the operator A, can be identified with the operator
Ay = x4+ (a(tM)Qr + a(t)PRIX+I + x4+ (B(tT)Qr + b(tT)PRIX-!

+x-(b(E)Qr + b(EPRIX+] + x-(a(E)Qr + a(t™)Pr)x-1

which belongs to }P(R). It is well known and not hard to check that the algebra
>P(R) is isomorphic to Y. . (R, ), where the isomorphismn acts on the generating

operators of }:P(R) by

Sg, Hgp 1 0
n(SIR) - <_H7'[ _SR+> Cl'l’ld 77()(+I) - (0 O) ’

with H,; referring to the Hankel operator

1
(Ho)(s): = — jR o)

Tl t+s
+
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on LP(R,). The entries of the matrix n(A,) are Mellin operators, and the value of

the Mellin symbol of n(4,) at (t,A) € TS X R is the matrix

<a<t+>uq @) +a(t) (1 - p D) (b(t*) = b(t™))ve(A) )
(b(E) = b(E)) v, (D a(F)(1 — () + aE )

which evidently coincides with smb,(T(a) + H(b))(t,A) given in (1).

Summarizing the above arguments we conclude that the homomorphisms
A + K(IP) — (smb, A)(t, 1)

are uniformly bounded with respect to (t,4) € T2 x R, which finally implies the
estimate (26).
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Chapter 3

Hankel Operators

The mode space whose products result in truncated Toeplitz operators when

the inner function u a certain symmetric property.

In 2007, D. Sarason defined truncated Toeplitz operators (TTO) as the
compression of Toeplitz operators to invariant subspaces for the backward shift on
the Hardy space H2. Toeplitz matrices can be interpreted as truncated Toeplitz
operators on finite dimensional model spaces. Recently, C. Cu defined truncated
Hankel operators (THO) as the compression of Hankel operators to invariant
subspaces for the backward shift and proved a number of algebraic properties of
them. Some of the properties reveal the relation between the THO’s and TTO’s.

We will consider when the product of” two THO’s becomes a TTO.

Let L> = L*(T)be the set of all square-integrable functions on the unit circle 1” in
the complex plane C and H?2 = H?(T) be the corresponding Hardy space, i.e., the
closed linear span of the analytic polynomials inL?. The space H* is defined by
H® := H*(T) n L*(T). A function 8 € H* is called inner if |6(z)| = almost

everywhere on the unit circle T.
For @ € L™ , the Toeplitz operator Tz onH? is defined by

Tof = p(9f),

Where P is the orthogonal projection of L?onto H?. The Hankel operator Hy: H? —
H? with symbol @ € L* is defined by
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Hof =] — P)(@f),
where J denotes the unitary map on L? defined by (Jf)(2) = Zf(2)
For a non constant inner function u, define the model space K2 by
KZ:= H? O uH2.

It is known that the dimension of K2 is finite if and only if u is a finite Blaschke
product and in that case, dim K2 equals the number of zeros of u counting
multiplicity. The dimension of K2 is also called the degree of the inner function u
and is denoted by deg it. If it is not a finite Blaschke product, we say that the

degree of it is infinite. The following set equality is easily verified
K2 =uZK? (1)
For a function @ € L(T), the truncated Toeplitz operator Ay on K is defined by
Agf = P (®f),for f € K,

Where P, denotes the orthogonal projection of L?onto K2. For a function @ €

L?(T), a truncated Hankel operator By on K2 is defined by
Bsf = BJ(I — P)@f,foreach f € K2

It is easy to see that By, does not depend on the analytic part of the symbol
function@ . So, we often assume @ € @H2when is the symbol function of a then By
or Ay can be an unbounded operator. Since we are mainly concerned with bounded
operators, we denote the set of all bounded truncated Toeplitz operators truncated
Hankel operator. If @ € L2(T) is not an essentially bounded function, by $(K?)
and the set of all bounded truncated Hankel operators by T(K2).
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If the inner function u is z™, then {I, z, z%,.., z" 1} forms an orthonormal basis for
KZ. With respect to this basis, Agand B4 can be represented as a Toeplitz matrix

and a Hankel matrix, respectively:

Qo a—1a—20_n41
al aO a— 1: :
A@ ==

a, a, ayp “a—2

: woow ra-—1
a,_1 --- a; 4 ag

and
/a—la—Za—3 SRR - \
a—2q—-3a—4 ™ 5
Bg=|a-3a—4a-5 = :
: “ Q-2n+2
A_p = . a—2n+2a—2n+1)

Where al’s are the i-th Fourier coefficients of the symbol function @.

The followings facts are easily verified:
Ay = P, TylK: and Ag— =
By = P,HylK> and By = B, 2)
where, the@Z = 3(2).

The reproducing kernel for H? is defined to be k; = iand k,, satisfies (f,k;) =
f(A) for every function f € H%. The reproducing kernel for KZ is defined to be

Ky =Pk, = % Note that K}* € KZ and we have (g(z), K;*(2)) = g(1)

zZ

for everyg € KZ. A conjugation Con L?(T) is defined by

(€N (@) = u(2)zf(2) for f € L?
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and it is easy to verify that C is a conjugate linear map and an isometry on L?
satisfying C% = I. It is easy to verify that C maps uH? onto ZH?, ZH? onto uH?

and K7 onto itself. For convenience, Cf will be denoted lyf. One can verify

u(z) —u(d)

k() = CKf () ———

The compressed shift S, on K2 is defined by S, := A4, = PuS|Ki. For functions
f,g € L% f ® g denotes a rank one operator defined by (f ® g)h = (h,g)f,

for h € L2. The following properties can be verified:

DOF®I =g&f

(D) A(f Q g)B = (Af) ® (B*g), for bounded linear operators A and B on L?. (3)

We have two Lemmas
Lemma (3.1)[3].
(@) for, Ain D,
Spky = AKkY — u(DkE, S,k = kY — u(D)ky.
(b) For 1 € D\{0},

skt = spu — 2 g L L
u™a /‘ll /,l;uo, AA /10

Lemma (3.2)[3].
I—S,S; =K ®K{ and I — 5, = ki ®k

C. Gu gave a nice characterizatjon of truncated Hankel operators as D. Sarason did
for truncated Toeplitz operators.
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Theorem (3.3)[3]. A bounded operator B on K2 is a truncated Hankel operator if

and only if there eristfunctions f,g € K2, such that
B — S:BS; = g®K + ki ®f

For a complex number c, we define the modified compressed shift by

Suchy Suc =Sy + c(KF®KY) .

Lemma (3.4)[3]. If a bounded operator A on K commutes with S, . for some

complex number c, then A is a truncated Toeplitz operator.
The analog of Lemma (3.4) for TTO’ is the following:

Lemma (3.5)[3]. For complex numbers aand g, if Sy, ,B = BS, 5, or S,z B =

BS,, p,then B is a truncated Hankel operator.

Proof. We will show that S; ,B = BS, z implies B is a truncated Hankel
operator. The proof of other case is similar. In view of the above Theorem, we will

show that there exist f, g € K2 such that
B —S; 4B = BS,pg®K} + kiQf
By multiplying S, on the right side of equation S, ,B = BS,, sz we have
S:BS; + (k¥®aS,B*K;) = BS,S; + (BBKY®S,kY) (4)
Since 5,5y = I — K}QKY and S, k% = —u(0)k¥by Lemma (3.1) reduces to
B — 5.BS; = ((1+ pu(0))BKY®KY) + (ki®asS,B'KY).

The proof is complete.
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N. Sedlock gave a nice necessary and sufficient condition that the product of two

truncated Toplitz operators is again a truncated Toeplitz operator.

Theorem (3.6)[3]. Suppose A;,4, € T(K2)IfA,A, € I(K2), then one of two

cases holds:
(i) Either A; or A, is equal to Al for some A € C.

(if) Both A; and A, commute withS, . for some ¢ € C,whereS, . is defined by

Sue = Sy + c(KX®KkY).

The main purpose of this paper is to characterize the pairs of truncated
Hankel operators whose products are truncated Toeplitz operators. Since it turns
out that many of the algebraic properties of THO’s are more complicated than the
case of TTO’s, we are going to give a partial answer to the above problem using

some interesting results. Let a bounded operator D on K2 be defined by D: = Bj.
Lemma (3.7)[3]. For ¢ € zH?,

B,S, — S:B

” » = kEQP,Hyu — B, H, uQky

An inner function u is called real symmetric if u = . The following Lemma

shows interesting relation between TTO’s and THO’s when n is real symmetric.
Lemma (3.8)[3]. Ifu = fiand D = By € $ (K2), then

(@) D* = Dand D? = I

() (K2) =9 (KZ) = T (KZ).Fory € K7 + K;DAy, = Byyand AyD = Byyz)

u

(c) Dk = K% and Dk} = k™.
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Theorem (3.9)[3]. If u — i, the product of two truncated Hankel operators
B,,B, € % (K2) becomes a truncated Toeplitz operator if and only if one of the

following cases holds:
(i) Either B, or B, is equal to AD for some A € C.
(if) There eristsc € Csuch that
SucB1 = BiSycand S, B, = BySy.

Proof. If either B; or B, is a constant multiple of D, then (b) of Lemma (3.8)

shows B; B, isa TTO. Now observe
Su,B1B; = B15:L,CTB2 = B1B3Suc

Thus, by Lemma (3.3), we conclude that B; B, is a TTO. The proof of sufficiency

is complete.

For the proof of necessity assume that neither B, nor B, is a constant multiple of
the identity and B;B, = A for some TTO A € T(K?2).Put A, = B;D and 4, =
DB,,then A;,A, € T(K2) by Lemma (3.8). Note that

AlAZ = BlDDBzBle,

by property (b) of Lemma (3.8), and 4,4, = A € T(K?). By Theorem (3.2), if
none of A; and A, is the multiple of identity, then A,,A4, e {S, .}  for some
complex number c. First, we will show the second equation of (2). Then by

Theorem (3.5), A, commutes with some modified shift s, . .Thus we have
Swe) DB, = DB,S,, . .

Claim. S = DS, .
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By a straightforward calculation, we have
St s— DSi. = SiD— DS, + c(k¥ ® K¢) — c(DK¥ ® kY).

Since P,Hyu = P,Hzu = 0, by Lemma (2.2), S;D — DS, = 0. Also, by
Lemma (3.8) (c), Dk} = k& Hence S;;:D = DS,
By claim we have

DSuD = Sy (5)
so that

S;,C_BZ = DS, DB, = BSyc

By the same argument, we also have S, .B; = B4 S, +

In fact, the shape of the symbol functions of the THO’s B;, B, and the resulting

TTO B, B, can be concretely determined.

Lemma (3.10)[3]. A bounded operator A on K2 commutes with if and only if A =

c

e Suf T for some f € Kii. Moreover, f = (1 + cu(0)) Ak

Theorem (3.11)[3]. The product B, B, of two THO’s is a TTO, with none of B; a

constant multiple of D = B, then there are complex number ¢ and analytic

: e e
functions fi, f, € K such that B; = Bgy, (2, Where ¢, = f; + rmsuf1 and

Cc

rmsufz Moreover, the symbol of the resulting

B, = Byg,Where ¢, = f, + +
TTO is Ay, f2, Withey, and f, as above, that is, Byg. (z)Bag, = Aae,f,-
Proof. If B;B,is a TTO, then by Theorem (3.9),we know

SucB1 = B15:l,c‘ and S‘:L,C_BZ = BSu,c (6)
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fbi some ¢ € C. Multiplying D to the right side of the first equation of (6), we have
SuwcB1D = B1DDS;,:D = B,DS,, ., where the second equality comes from (5).

Cc

Therefore, Lemma 2.8 implies B;D = Ay, = f; + )Sufl for some F; € K2.

1+cu(0
Using (b) of Lemma (3.8) S, B; = Ay, D = Bug,
To get the symbol of the THO B,, note that the second equation of (6) implies
SucDBy = DS, :DDB, = DS, :B, = DB,S,, - where we used (6) for the first
equality. Thus DB, commutes withS,, . Again, by the use of (b) of Lemma (3.8) ,
we have DB, = Ay,,i.e.,B, = DAy, = By, Where ¢, = f, + t == (0) ufz for

sonic f, € K2.

Now let By, (2 Bag, = Ay. cOmmutes with S, - By Lemma (3.10), ¥ = g +

S.g where g = (1 + cu(0))Ay, k§. Recall that 4, = Buo,; Buw, =

1+cu(0)
Buw,,PDBao, = Ao, Ae,. Thus we have Ayky = Ag, Ao, k. Note that both
Ag, and Ag, commute with S, - and by Lemma (3.10), Ag kg = 1+—ct(0) f2

So we have g = 1+ cu(0)Aq, Ag, ki = 1+Cu(0)A¢1ﬁsz = Ag,f2 as

desired.

Using the method we used before, we can also get some analogous results on the
product of a TTO and a THO. The proof is skipped.

Theorem (3.12)[3]. Let u be a real symmetric inner function, A €
I(K2)and B € $(KZ). Then AB is a truncated Hankel operator on K?2 if and
only if one of the following conditions holds:
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(a) Either A is a constant multiple of the identity or B is a constant multiple of
D = Bﬁ.

(b) A commutes with and S,, .B = BS;, - for some complex number c.

Note that under the second condition, the resulting THO AB satisfies S, ;B =
BS, &

Using Theorem (3.9), we can get an interesting condition that the product of two
Hankel matrices be a Toeplitz matrix. To apply the Theorem to the matrix case, let
u = zV . Obviously, u is a real symmetric function (u=1).Let B; =
B, and B, = By,where ¢ = a,Z + a,z* + -+, = byZ + b,z* + ---. Their with

respect to the standard ordered basis of KZZN,

al az e aN b1 bZ cee bN
_ a’Z a’3 - E _ bz b3 . E
Bl - E -, ., aZN — 2 ) BZ - E -, . sz —_ 2
aN - ayN —2a,N —2 BN - b,N—2b,N—2
and

0O - Oc
1 O 0
Suc = Pl
0 - 10

From the equation S,.B; = B;S;: a direct comparison of the matrix

multiplications gives

aN
a, a, la
B, = a:2 as c 1
1
aN “aN —1
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Ifc # 0, or ,we havea; = - = ay_, = 0if ¢ = 0. Therefore we have either ¢ =
a,Z + -+ ayzV +%(alz"‘“rl + -+ ay_1Z*N~1depending on whether ¢ = 0 or

not. Similarly, S}, -B, = S, B, gives

b, b, - bN
bZ b3 ". Cbl
bN - ...ch_1

So we have Y =bzZ+byz%++byzVN +c(bZVt + byzZVNt2 4+ .+

bN_lZ_ZN_l)

Summarizing the above, we have the following Theorem that characterizes the
condition that the product of two Hankel matrices become a Toeplitz matrix.
Indeed, this result can also be worked out by an appropriate manipulation of
Theorem (3.2).

Theorem (3.13)[3]. Suppose B,, B, are N Hankel matrices. If B, B,is a Toeplitz

matri:x, then one of two cases holds:

(i) Either B, or B, is of the form

0 - 0
0
(ii) There exists ¢ € C such that
an
a; a, 1 b; b, by
a, a P!
B=| 72 ° ¢ and B, = b:z l,)_3 cby
ay 1 by ¢by --cby_4
~an-1
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or

0 0 ay b, b,

: . a
Bl = 0 -0 .. 1V:+1 and BZ = b:z b..3
ay Aan+1  Ayy—q by 0

We conclude with anaturally arising questions.

77



Chapter 4

Localization principle

We discuss the localization principle which says that the contributions of disjoint ,
parts of the singular support to this asymptotic behavior are independent of each
other .We apply this principle to hankel integral operators and to infinite Hankel
matrices. In both cases, we describe a wide class of Hankel operators with power-
like asymptotics of singular values .The leading term of this asymptotics is found

explicitly.
Section (4.1): Compact Hankel Operators

Hankel operators admit variousunitarily equivalent descriptions. We start by
recalling the definition of Hanke loperators on the Hardy class H?(T). Here T is
the unit circle in the complex plane,equipped with the normalized Lebesgue
measure dm(u) = (2mip)~*du,u € T; the Hardy class H?(T) c¢ L*(T) is
de_ned in the standard way as the subspace of L?(T) spanned by the functions
1w, u?, ....... Let P, : L>(T) » H?(T) be the orthogonal projection onto H?(T),
and let W be the involution in L2(T) defined by (Wf)(u) = f(w). For a function
w € L (T), which is called a symbol, the Hankel operator H(w) is defined by the

relation

Hw)f = P.(oWf). (1)

Recall that the singular values of a compact operator H are defined by the relation
s,(H) = A,,(|H|), where {1,,(|H|)}x_, is the non-increasing sequence of
eigenvalues of the compact positive operator |H| = vH*H (enumerated with

multiplicities taken into account). The study of singular values of compact Hankel
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operators has a long history and is linked to rational approximation, control theory
and other subjects, Singular values sn(H(w)) of a Hankel operator with a symbol
w € C*(T) decay faster than any power of n™! asn —» 0.0On the other hand,
singularities of wgenerate a slower decay of singular values. Here we will be
interested in the case when the singular values behave as some power of n™1.
Optimal upper estimates on singular values of Hankel operators are due to V.

Peller . He found necessary and sufficient conditions on !for the estimate
sp(H(w)) < Cn™®

for some a > 0. These conditions are stated in terms of the Besov-Lorentz

classes.

It is natural to expect that the asymptotic behavior of singular values is determined
by the behaviour of the symbol w in a neighbourhood of its singular support. We
justify this thesis and show that the contributions of the disjoint components of the
singular support of w to the asymptotics of the singular values of H(w) are
independent of each other. We use the term "localization principle"” for this fact.
This principle is well understood of the study of the essential spectrum and of the
absolutely continuous spectrum of non-compact Hankel operators. Our aim here is
to bring this principle to the fore in the question of the asymptotics of singular

values of compact Hankel operators.

We combine the localization principle to determine the asymptoticsof singular
values of Hankel operators of various natural classes. In particular, for Hankel
matrices with oscillating matrix elements we show that the contributions of
different oscillating terms to the asymptotics of singular values are independent of

each other. We also establish similar results for Hankel integral operators whose
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integral kernels have a singularity at some finite point t, = 0 and several

oscillatingterms at infinity.

Recall that the singular support sing supp w of a function w € L*(T) is defined
the smallest closed set X c T such that w € C* (T \ X). Localization principle is

stated as follows.
Theorem (4.1.1)[4]. Let w4, wo, ..., w; be bounded functions on T such that
singsupp w, N singsuppw; = @,f = j. (2)

Setw = w;+ - + w;.Thenforall p > 0 we have the relations

L
lim sup nsn(H(a)))p = Z lim sup ns, (H((Ug))p, (3)
n—-oo = n—-oo
L
lim infnsn(H(w))p = Z lim infnsn(H(w{;))p, (4)
n—oo e n—oo

The upper and lower limits in this Theorem usually coincide. However, we prefer
to work with these limits separately both because it is more general and because it
is technically more convenient. The limits in the right-hand sides of (3), (4) may be
infinite; in such cases the left-hand sides of (3) or(4) are also infinite. It is not
excluded in Theorem (4.1.1) that the singular support of each w, consists of one

point only. In fact, this is exactly this case that we will see in our applications.

Theorem (4.1.1) can be equivalently stated in terms of the counting functions. For

a compact operator H, the singular value counting function isdefined by
n(e,H) = #{n: s,(H) > ¢}, e > 0. (5)

We have
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lim supns, (H)? = lir% sup ePn (&; H)
n—>00 E—
and similarly for the lower limits. It follows that (3), (4) may be restated as

lir% sup eP(g; H(w)) = lir% sup ePn(e; H),
E— E—

L
lirr(} infePn(e; H(w)) = z lirr& infePn(e; H(w))
&> &>

t=1

In particular, in the case when all upper limits in the right-hand sides coincide with

the lower limits and are finite, we have

L
n(e H(w)) = Zn (e; H(w)) + o(e7P); e > 0.
=1

Our proof of Theorem (4.1.1) consists of two steps. The first one is to check that
under the assumption (2) the operators H (w,) are asymptotically orthogonal in the

sense that forall j # ¢ and all @ > 0 we have

sn (H(wp) H(wy)) = 0(n™®),
sa(Hwp)H(w;)) = 0(n™%); n > oo, (6)

This result follows from the reduction of the products of Hankel operators in (6) to

integral operators in L?(T) with smooth kernels.

The second step is to show that (6) implies relations (3) and (4). This fact is not
specific for Hankel operators. In order to get some intuition into its proof, let us
suppose for a moment that the operators H(w,) are pairwise orthogonal in the

sense that

H(w;) H(wg) = 0and H(w))H(wp)* = 0,  Vj # 4, (7)
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Then
RanH(a)j) 1 RanH(w,)and RanH(a)j)* 1 RanH(w,)"; Vj # 4.

Thus, representing the sum H(w) = H(w;) + -+ + H(w,) as a "block-diagonal”

operator acting from @%_, RanH (w,)* to @%_, RanH (w,), we conclude that

L

n(e; H(w)) =Zn(e;H(w3)), ve > 0.

£=1

The orthogonality condition (7) is too strong. In fact, an operator theoretic result,
Theorem (4.1.2), shows that the asymptotic orthogonality (6) ensures the relations
(3), (4) forp = 1/a.

Representing Hankel operators in the basis {uf};:o in H?(T), one obtains the class

of infinite Hankel matrices of the form {h(j + k)};"; k = 0 in the space £*(Z..).

We give an application of the localization principle to such Hankel matrices
Although the localization principle in the form stated above (Theorem (4.1.1) is

quite natural, this application looks far less obvious.

Theorem (4.1.3) can be equivalently stated in terms of Hankel operators H(w)
acting in the Hardy space HZ(R) of functions analytic in the upperhalf-plane. In
this case the symbol w(x) is a function of x € R. This leads to new results for

Hankel operators defined as integral operators in the space L?(R,).

We will refer to the Hankel operators in H?(T) and in £2(Z..) as to the discrete
case, and to the Hankel operators in H2(R) and in L?(R, ) as to the continuous

case. We will use boldface font for objects associated with the continuous case. We
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have tried to make exposition in the discrete and continuous cases parallel as much

as possible.
Recall that for a bounded operator H, the non-zero parts of the operators

OH)

(-IHD @ |Hland (7.

are unitarily equivalent. Therefore various spectral results for |H(w)| are

equivalent to those for the self-adjoint Hankel operator with the matrix valued

(L w(u))
o@ 0

Some forms of localization principle are known in the study of the continuous

symbol

spectrum of |H(w)|. The idea of separation of singularities of the symbol goes
back to the S. R. Power on the essential spectrum specess of Hankel operators

with piecewise continuous symbols w. Let a; € T be the points where w has the

jumps
)= 1j ol i o~ lE
K(a]) gl_lglow(a]e )811>r£10a)(a]e )+ 0
Although Power was interested in the essential spectrum of H(w), it follows from
the matrix version of his results that

1

specess(IH(w)]) = [0,M], M =§Csl}1€11)rlk(a,-)l, (8)

Where the supremum is taken over all points a; where w has a jump.

A description of the absolutely continuous spectrum of |H(w)| with piecewise

continuous symbol w follows from the matrix version of the results of Howland
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where the trace class method of scattering theory was used. In both cases, under
some mild additional assumptions, including the condition that w has finitely many

jumps, it can be shown that

1
specac (1@ | [0.31x(a)] ©)
ajET
Every term in the right-hand side of (9) gives its own band of the absolutely
continuous spectrum of multiplicity one. Thus, formula (9) can be regarded asthe
continuous spectrum analogue of the localisation principle discussed the
contributions of different jumps of w to spec,.(|H(w)|) are independent of each

other. Formulas (8) and (9) are consistent with each other.

We prove the localization principle in the discrete case and also state and prove its
analogue in the continuous case. We describe the applications of localization
principle to the Hankel operators acting in £2(Z..); We give applications to integral
Hankel operators in L?(R,); We consider integral Hanke loperators with kernels

with local singularities in R+.

For w € L*(T), the Fourier coefficients of w are denoted as usual by

am=jmeﬁmmm,jez

T

We will consistently make use of the following constant, which appears in our

asymptotic formulas:

v(w) = 2 %gl-2@ (B (%,%)) , a> 0, (10)
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Here B(:,") is the Beta function. We make a standing assumption that the exponents

p > 0anda > Oarerelatedby a = 1/p.

We prove Theorem (4.1.1). We also prove a similar statement, Theorem (4.1.2),
for Hankel operators in the Hardy space H2(R) of functions analytic in the upper

half-plane.

Let B be the algebra of bounded operators in a Hilbert space H, and let S, be the
ideal of compact operators in B. For p > 0, the weak Schatten class S, ., consists

of all compact operators A such that

sup ns, (A)P < co.
n

The subclass 58,00 C S,,.1s defined by the condition
lim ns, (A’ =0
n—oo
It is well known that both S, ., and S, are ideals of B; in particular, they are

linear spaces. A € S, ,(orA € S9,) if and only if the same is true for its

adjoint A*.We set 55 = Ny~ Sp 0, that is,
AeS, & s5,(A) =0n9), n—- oo, Va >0 (11)

First we recall a classical result in perturbation theory on the spectral stability of

singular values.

Lemma (4.1.2)[4]. Let A € S, and B € Sp, for some p > 0. Then

lim supns,(A + B)? = lim supns,(A)P (12)
n—oo n—oo
lim infns,, (A + B)? = lim infns,(4)F (13)
n—oo n—>0oo
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Lemma (4.1.2) is stated in a slightly more general form than usual because we do
not require that A € S, ., and hence the limits in(12) and (13) may be infinite; in
this case Lemma(4.1.2) means that both sides in (12) and (13) are infinite
simultaneously. Note that if A ¢ S, ., then the expression (12) is infinite, but the
expression (13) may be finite. Lemma (4.1.2) can also be equivalently stated in

terms of the singular value counting functions n(e, A)defined by (5).

AES

p,00

BeS

oo SA'BESy_,  AB'Sp_ (14)
2’ 2’

We say that the operators A and B in S, ., are asymptotically orthogonal if the
class SS/Z'OO in the right side of (14) can be replaced by its subclass SI‘,’/Z'OO. The

following Theorem allows us to study singular values of sums of asymptotically
orthogonal operators. This result is the key operator theoretic ingredient of our

construction.
Theorem (4.1.3)[4]. Letp > 0. Assume that A, ...,A;, € S, and

A A €SSy AdAiSpaem (15)

ThenforA = A; + -+ + A, we have

L
lim supns, (A)? z lim supns, (4,)? (16)
n = n
L
lim infns, (4A)? = Z lim infns, (4,)P (17)
n—oo n—oo
=1

Proof. Let us prove the first relation (16); the second one is proven in the same
way. We argue in terms of counting functions (5). For an operator A € S, letus

denote
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A, (A) = lim sup e'/? (¢; A)
£—-0

(this limit may be infinite). Then our aim is to prove that

By(4) = ) Ay (A,
£=1

which is (16) in different notation. Put

H:-=H® ..®OH

L terms

and let 4, = diag{A4,,.., A} in H: i.e,

Ao(f1, i fr) = (A fr, - ALSL)
Since
AsA, = diag{AiA,, ..., ALAL}
we see that

L

n(edg) = ) n(e A

£=1

and therefore

L L
B2 (AA0) = ) By (A340) = ) By (A))
£=1 £=1

Next, letJ : HL — H be the operator given by

J(fi s f) = fr + o+ fysothay* f = (£, ..., f).

Then
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JAo(fr,n f1) = Ati+ -+ ALfy
and
JA))'f = (Aif, ... ALf).
It follows that
UAUA)f = (A141 + - + ALADSf
and the operator (J4,)*(J4,) is a "matrix" in H* given by
ATA, ATA, LATA,
JAo) Gho) = | A2 Az A2
AA, Ad, LAA,
According to (20) and (23) we have

JAp)"JAp) — A4y € 53/2,00

(22)

(23)

(24)

Indeed, the "matrix" of the operator in (23) has zeros on the diagonal, and its off-

diagonal elements are given by AyA;,¢ # j. Thus (24) follows from the first

assumption (5). Therefore Lemma (4.1.5) implies that
A, = (JA0)"JAp)) = Ay = (AAo)

or

A, = (JADUAY™) = A, = (A34))

(25)

Because for any compact operator T the non-zero singular values of T*T and

TT*coincide.
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Further, since AA* = Zé’jzlA{)AT ; it follows from (11) and the second assumption

(5) that

AL = JAUAD" = ) Ak € SYps.
JE24

Using again Lemma (4.1.2) from here we obtain
Ap(A) = An(AA") = Ao((JA0) JAo)").

Combining the last equality with (24), we see that A,(4A) = A, ,,(A454). Thus (9)
yields the relation (12).

Corollary (4.1.4)[4]. Under the assumption (15) we have
L
lim ns,, (A)P =Z lim ns,, (4,)P
n—oo n—oo
£=1

provided the limits in the right-hand side exist.
Under slightly more restrictive assumptions Theorem (4.1.2) appeared first
Our proof is quite different from that of (2).

First we state two well-known facts that will be needed below. We recall that the

Hankeloperators H (w) are defined by the class S, is defined by (10)

Lemma (4.1.5)[4].(i) Let K be an integral operator in L?(T) with an integral kernel
of theclass C*(T x T).ThenK € S,.

(ii) Let w € C*(T); then H(w) € S,.
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Proof. Part (i) is a classical fact; it can be obtained, for example, by approximating
the integral kernel of K by trigonometric polynomials. This yields a fast

approximation of K by finite rank operators.

Part (ii) is also well-known; let us show that it follows from part (i). It will be
convenient to consider the projection P, here as an operator acting from L2(T)to
L*(T) (rather than from L?(T)to H?(T)). Recall that P, acts according to the

formula

PP = Jim [ i 26)

p—=([1-eu
T

and that W is the involution (Wf)(u) = f(u). We have to prove that the
operator P, ,W P, in L*(T) belongs to the class S,. Since P,WP, is a rank one

operator (projection onto constants), it suffices to check that
It follows from (26) that the commutator [P,, w] is an integral operator in L?(T)

with the kernel

w o) )
—y',  wyu €T
wo—p

This is a €™ function, and so [P, w] € Sywhich implies (27).

The following assertion allows us to separate the contributions of different
singularities of the symbol. Essentially, this is a verywell known argument.

Lemma (4.1.6)[4]. Let w;, w, € L*(T) be such that sing supp w, sing supp w, =
@.
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Then

H(w,)*H(w,) € S,, H(w,)H(w,)* € S,.
Proof. Let k4, k, be functions in C*(T) with disjoint supports such that

(1 —ky)w, € C*(T), k =1,2.
By Lemma (4.1.5)(ii), we have
H((l — }ck)a)k) € So,

and hence it suffices to show that

H(k,w,)"H(k,w,) € Sp; H(kyw,)H(k,w,)* € S,. (28)
It follows that

H(yw1)"H(pwp) f = PuWa (6 Pyrg)w, W, f € H?(T):

Since the supports of k, and ., are disjoint, the operator ¥, P, x, has a C*-smooth

integral kernel

k(i (u') | ,
—u, wu ET;
o=

and so by Lemma (4.1.5) (i) it belongs to the class S,. This ensures the first

inclusionin (28). In view of the obvious identity

H(w)* = H(w,) where w,(1) = m;

the second inclusion (28) follows from the first one of Theorem(4.1.1). Proof. Let
us apply the abstract Theorem (4.2.1) to the Hankel operators A, = H(w,),? =
1,...,L. Lemma (4.1.6) implies that the asymptotic orthog-onality condition (26) is
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satisfied. Therefore the asymptotic relations (3) and (4) follow directly from (27)
and (28).

Hankel operators can also be defined in the Hardy space HZ(R) of functions
analytic in the upper half-plane. We denote by the unitary Fourier transform on
L*(R),

u(x)e *tdx.

1 (o
2 = @u© ==
Let H2(R) c L?(R) be the Hardy class,
H2(R) ={u € L*(R): (t) = 0 fort < 0}

and let P, : L?(R) » HZ(R) be the corresponding orthogonal projection. Let
W be the involution inL?(R), (Wf)(x) = f(—x). For w € L® (R), the operator
H(w) in H2(R)is defined by the formula

Hw)f = P.(wWf), f€ Hi(R). (29)
There is a unitary equivalence between the Hankel operators H (w) defined in

H?(T)by formula (1) and the Hankel operators H(w) defined in HZ(R) by formula
(29). Indeed, let

_z—i/2 _i1l+w
Y2t T 21w

(30)

be the standard conformal map sending the real line onto the unit circle, and let

U: H?(T) - H%(R)be the corresponding unitary operator defined by
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1 1 x—1/2 R Iy 1 i1+pu
UNE) = =17 f(x+i/2> ACRRIOM lm1—uf <§1—y>'

Then

UH(w)U* = Hw),if o(x) = ——2w 2. (31)

So the localization principle stated for H(w) can be automatically mapped to

operators H(w). This is discussed below.

Symbols w(x) of Hankel operators H(w)have the exceptional points x = 4o and
x = —oo; it will be convenient to identify these two points. The real line with such
identification will be denoted R,.We write w € C(R,) if w € C(R) and

lim w(x) = lim w(x)
X—00 X—00
where both limits are supposed to exist. Similarly, we write w € C*(R,) if w €

C”(R) and, forallm = 0,1, ..,

lim 0™ (x) = lim w™ (x) (32)
X—00

X—00

In particular, the point x = oo belongs to the singular support of w if for at least
one m = 0 the relation (32) fails (i.e. if one of the limits does not exist or if the

limits are not equal).
Let us state the localization principle for Hankel operators in HZ(R).
Theorem (4.1.7)[4]. Let w, € L”(R),¢ = 1,...,L < 1, be such that

sing supp w, N sing suppw; = @; ¢ # j.
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Setw = w; + -+ w;.Thenforall p > 0 we have the relations

L

lim sup nsn(H(a)))p = z lim sup nsn(H(wg))p,
n—-oo = n—0oo

L
lim infnsn(H(a)))p = z lim infnsn(H(w{;))p.
n—oo v n—oo

Observe that formulas (30) establish a one-to-one correspondence between the unit

circle T and the real axis R, with the points x = +o0 and x = —oo identified.

They yield also the one-to-one correspondence between the singular supports of
the symbols w(u ) and w(x) linked by equality (31). Thus, Theorem (4.1.7) is a

direct consequence of Theorem (4.1.1).

Section (4.2): Applications of Localization Principle and Local

Singularities of the Kernel

For a sequence {h(j)};Z, of complex numbers, the Hankel operator I'(h) in the

space £*(Z.) is formally defined by the “infinite matrix”{h(j + k)}7%o:

TWO) = ) hG+ul), u=@hl, (3
k=0

The Hankel operators I'(h) in £2(Z.) and H(w) in H2(T) are related as follows.
Let

F:f H{f(,-)};:o,F: H(T) — ¢2(Z,);
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be the discrete Fourier transform. Then the matrix elements of H(w) in the

. iy 0
orthonormal basis {u/} _ are

(H@u! 1) oy = @G + k), jk = 0;
so that
(h) = FH(w)F*if &(j) = h(j), j= 0. (34)

Since (34) involves only the coefficients with j = 0, for a given sequence h the

symbol w is not uniquely defined.

We considered compact self-adjoint Hankel operators, corresponding to sequences

of real numbers of the type
q(j) = j~'(logj)~® + errorterm, j - oo, (35)

Where @ > 0. Under the appropriate assumptions on the error term, we proved

that the positive eigenvalues of the Hankel operator I'(q) have the asymptotics
4 (T(@) = vi@n™® + o(n™*), n- oo,
where the coefficient v(«a) is defined in (10). For negative eigenvalues, we have
A;(F(q)) = o(n™%)asn — oo.

our analysis was based on the asymptotic form (35) and did not involve symbols
directly. We check that if g(j) = j~1(logj)~%, then a symbol o of I'(q) can be

chosen such that singsupp o = {1}.

Theorem (4.1.1) allows us to find the asymptotics of singular values for more

general “oscillating” sequences of the type

95



L
h(j) = bgj‘l(logj)‘“fg_j + errorterm, j — oo (36)
=1

Where ¢&;,...,& € T are distinct points and by, ..,b, € C are arbitrary
coefficients. It is easy to see that the symbol corresponding to the £'th term in

(36)equals bya (u = &, ). Hence its singular support consists of one point {&,}, and

so we are in the situation described by the localization principle for p = 1/a.The
error term in (36) is treated by using the estimates on singular values of Hankel

operators.

Notice that the operators I'(h) corresponding to sequences h of the class (36)are in
general not self-adjoint. We have information about the asymptotics of their

singular values, but not of their eigenvalues.

In order to state our requirements on the error term in (36). Let

[+ 1, ifax=1/),

M(a)z 0, lfC(Z]‘/Z,

(37)

Where [a]is the integer part of a . For a sequence h = {h(j)}j%,,we define
iteratively the sequences h(™ ={h(m)(j)};°=0,m =0,1,2,.. , by setting

h©® () = h(j) and
A (G) = (G + 1) —hM(),  j=> 0. (38)

Note that if h(j) = j~1(log j)~¢ for sufficiently large j, then for allm > 1 the

sequences h(™) satisfy
WG = 0G " (log ™), j— . (39)
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Now we are in a position to state precisely our result on Hankel operators with

matrix elements (36).
Theorem (4.2.1)[4]. Suppose that a sequence g satisfies
g™(@) = o' ™Uog)™,  j- oo, (40)
forsome a > Oandforallm = 0,1,..., M(«). Then
sn(T(®) = o(n™®), n-o (41)

We also have a result with O instead of oin both (40) and (41), but we do not use it

in this paper. Observe that for a < 1/2 we need only the estimate on g, whereas for

o= 1/2 we also need estimates on the iterated differences g(™.
Theorem (4.2.2)[4]. Leta > 0, and let the "model sequence" q defined by

q(G) = j~*(ogj ™ (42)

for all sufficiently large j (the values q(j) for any finite number of | are

unimportant). Then

sn(T(Q) = v(@n™ + o(n™%), n— oo,
Where v(a) is given by (10).

This result corresponds to a particular case of Theorem (4.2.6) withL = 1, {; =
1, b1 = 1.

In order to combine the contributions of different terms in (46), we use the
localization principle To that end, we have to identify the singular support of the

symbol corresponding to the model sequence q in Theorem (4.2.1). To be definite,
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we put q(0) = q(1) = 0 and define q(j) by formula (42) for all j > 2.We need
to find a function o such that its Fourier coefficients G(j) = q(j)forj = 0. The
choice of ois not unique. We will choose o corresponding to the odd extension of

the sequence q(j) to the negative j.

Lemma (4.2.3)[4]. Leta = 0, and let q be given by (41); set
o(w) = Z q()(W — ),  peT. (43)
j=2

Then o e L (T)ando € C*(T \{1}) .

Proof. Note that for all u e T, the series (43) converges absolutely if a > 1 and

conditionally if a < 1.

First, we check that o € L*(T).We write u = e, 8 e (—m,m]. For 8 = 0, we set

N = [(2]8])71] and write 0 = 0, + o,, where
N oo
o1 (p) = Z AW —-ul),  ow= z a()(W —n7).
j=2 j=N+1
Using the bounds q(j) < (log 2)~*j~tand
W —u7| = 2Isin(®)| < 2j|6|
For o, we obtain the estimate
N
0,01 < 2181 ) ja() < 2(log )™ 6IN < (log2) "
j=2

In order to estimate o, let us use summation by parts:
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(u—1) 2 q()W
j=N+1

(00]

= z a() (W — W) = - 2 qPV W — q(N+ DpN (44)

j=N+1 j=N+1
Where g™ (j) is defined by (38). By (39), we haveq™(j) = 0(j2), j = o, and

hence

<C z 72+ N1 |<C,N"L
j=N+1

(n—1) z q()W

j=N+1

It follows that

0

> a0

j=N+1

2C, 2C,
< = 2 <C
Nlp—1[ [(2[6[)~]|e® — 1]

loz(W] < 2

Thus o, € L®(T).

It remains to prove that c € CM( T \{1}) for any M € N. Choose p € T and put
a(j) = w; then, by (39),a™*V() = (u— DM+ . Similarly to (44), by a

repeated summation by parts procedure, we obtain the identity

(k= D™ g = Y q(aM()
j=2 j=2

= (=DM qMGag) + puh) (45)

j=2
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With some polynomial p,,. Since, by (39), q™*D(j) = 0(j~> M) asj - o and
a(j) = p’, the function ofu in the right-hand side of (44) is in CM(T). It follows
that o € CM(T \{1}) and hence o € C*(T \{1}).

Theorem (4.2.4)[4]. Let the function o(u) be defined by formula (43) where q(j)
are given by (42) and o > 0. Then the asymptotic relation holds

Sn(H(O')) = v(io)n ™%+ o(n™%), n — oo,
where v(a) is given by (10).
For a parameter ¢ € T, let R, be the "rotation by ¢ " operator:
(ReH(W) = f(u/9).

Obviously, R¢ is a unitary operator in L?(T) and in H*(T).Similarly, let V; be the
multiplication by {7 :

(Vew)® = 7 u().
Obviously, V¢ is a unitary operator in€*(Z, ).
Lemma (4.2.5)[4]. (i) For arbitrary { € T and w € L*(T), we have
H(R;w ) = R;H(w)R;.
In particular, if H(w) is compact, then
Sy (H(Rzoo)) = sp(Hw)), Vvn= 1.
(i) For any sequence h such that I'(h) is bounded, we have

r(V¢h) = VI(h)V;.
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In particular, if T'(h) is compact, then

50 (T(Vih)) = so(T(W)),  vn> 1.
Proof. Since

the first assertion is a direct consequence of the definition (1) of the Hankel

operator H(w) in H2(T). The second assertion immediately.
Theorem (4.2.6)[4]. Leta > 0, let {3, ..., {; € T be distinct numbers, and let

by, ..., b, € C. Let h be a sequence of complex numbers such that

L

hG) = ) (b Uog N + g D) 22 (46)

£=1

where the error terms g,, £ = 1, ..., L ,satisfy the estimates

g () = o ™(log j)™®),  j-> oo, (47)

forallm = 0,1, ..., M(a@) (M(«) is given by (37). Then the singular values of the
Hankel operatorI"(h) in £2(Z.)defined by formula (33) satisfy the asymptotic

relation

sp(F(R) =cn™® + o(n™®), n > oo, (48)

where

a

¢ = v(a) (Zw%) (49)
£=1
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and the coefficient v(a) is given by formula (10).

This result means that asymptotically the singular value counting function of the
operator I'(h) is the sum of such functions for every term in the right-hand side of
(46).

Proof. Let the symbol o() be defined by relation (43) and let

L
wu) = ) 0p()  where @) = bro(h/3y) (50)
£=1

According to Theorem (4.2.4) and Lemma (4.2.5)(i) we have

sn(H(oo{;)) = |b,|v(e)n™* + o(n™%), n — oo,

It follows from Lemma (4.2.2) that w, € L*(T) and w, € C*(T \{,). Since
, ..., (1, are distinct points, the localisation principle is applicable to the sum (50).
This yields

L L
lim nsn(H(w{;))p = Z lim nsn(H(wg))p = v(a)P Z|b€|p, p= 1/0(- (51)

- =112 =1

Note that, by the definition (50),
@:() = b8

and hence according to formula (43)

L
&) = ) b og) G =i hy(), 22
£=1
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Set h,(0) = h,(1) = 0. Since the operators H(w,) and I'(h,) are unitarily

equivalent, it follows from (51) that

L
lim ns, ()" = V(P ) [beP. (52)
£=1

Next, we consider the error term

L
g(j) = z AO1%
£=1

in (47). According to condition (48) it follows from Theorem (4.2.3) that
sn(T(ge)) =o(n™*)asn—>o. By Lemma (4.25)(ii), we also have
sn(T(Vz,9¢0)) = o(n™%)and hence

sn(T(9)) = o(n™®)as n— o (53)
Since

F(h) = T(hy) + T(g),

we can use Lemma (4.3.1) with A = T'(h,) and B = T'(g). The required relations
(49), (40) follow from (52) and (53).

Integral Hankel operators I' (h) in the space L?(R,) are defined by the relation

(0.0)

(T(WW(E) = j h(t + s)u(s)ds,u € CC(R,),  (54)
0

where at least h € L},.(R,);this function is called the kernel of the Hankel

operator I'(h). Under the assumptions on h below the operators I'(h) are compact.
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Similarly to the discrete case, Hankel operators in the Hardy space HZ(R) are

unitarily equivalent to integral operators I'(h) in the space L, (R,):

®H(w) ®* =T(h) if h(t) =\/%_n6)\(t) fort > 0. (55)

The Fourier transform @ of w € L*(R) should in general be understood in the
sense of distributions (for example, on the Schwartz class S'(R)) and the precise

meaning of (55) is given by the equation
(Hw)®*u,®*u) = (I'(h)u,u), u € Cy°(R,).

A function w(x) satisfying (55) is known as a symbol of the Hankel operator
I'(h).

In the discrete case, the spectral asymptotics of I'(h) is determined by the
asymptotic behaviour of the sequence h(j) as j— oo.In the continuous case, the
behaviour of the kernel h(t) for t - o and for t - 0 as well as the local
singularities of h(t)at positive points t contribute to the spectral asymptotics of

['(h).In the following result we exclude local singularities. We denote (x) =
V14 |x|?

The proof of Theorem (4.1.4) follows the scheme of the proof of Theorem (4.1.3).
The only new point is that now we have to additionally establish the
correspondence between symbols singular at infinity and kernels singular at t =
0.

Let us state the analogues of Theorems (4.1.4) and (4.2.3).

Theorem (4.2.7)[4]. Leta > 0,and let the number M = M(«) be given by (38).
Suppose thatg € LY. (R)ifa < 1/2and g € CM(R,) ifa = 1/2.

104



Assume that
g™M(t) = o(t "1 "™(logt) ) ast—> 0 and ast — o (56)

forallm =20,1,...,M.Then

so(F(®) = o(n™), n - o (57)

We also have a result with O instead of oin (56) and (57), although we will not
need it here. Observe that for a < 1/2 we need only the estimate on g, whereas
for « = 1/2we also need estimates on the derivatives g(m). Next, we define
model kernels gy, q.. Choose some non-negative functions x,, x,, € C* (R)such
that

1 for|x| < C1r (x) = {0 for|x| < Cj,
0 for|x| = C,, "7~ 1 for x| = C,,

xo(x) = {

forsome0 <c¢; <c, < land1l < (; <C,.

Theorem (4.2.8)[4]. For « > 0,set

qo(t) = %Ot (log(16))™"; quo(t) = Xt 1(logt)~%,t > 0.(58)

Then
sn(F(qO)) = v(o)n™* + o(n‘“),sn(F(qoo)) = v(o)n™® 4+ o(n™%),n - oo,

Where v(a) given by (10).

Of course, this result corresponds to particular cases of Theorem (4.2.8) L =

1,bp = 1,b; = 0Oand b, = 0,b; = 1.

In order to put together the contributions of different terms in (63) and (64), we use

the localization principle in the form of Theorem (4.1.7). To that end, we need to

determine the singular supports of the symbols corresponding to the model kernels

q0, 9- Again, we will choose functions oy, g, whose Fourier transform coincides
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with the odd extension of g, g, to the real line. The proof below is very similar to
that of Lemma (4.2.2).
Lemma (4.2.9)[4]. Let 0,, 0, be defined by

oo (0e]

oo(x) = ZiJ qo (t)sin(xt)dt, Os(x) = 2if qw (t)sin(xt)dt,x € R, (59)
0 0

Where g, (t) and g (t) are given by (58) with « = 0. Then gy; 0, € L (R) and

g, € C*(R),0, € C*(R, \ {0}).

Proof. Note that for all x € R, the first integral in (59) converges absolutely while

the second one converges absolutely for « > 1 and conditionally for a > 1.
Since the integral in (59) of g, is taken over a finite interval, we can differentiate

this integral with respect to x arbitrary many times. Hence

g, € C*(R). To prove that o, € C*(R, \ {0}), we integrate by parts 2M + 2

times in the definition (59):

0o (x) = 2i(—1)MH+1x—2M-2 j g M+ (£)sin(xt)dt.
0

since g@M*2(t) = 0(|t]|"2M~3)as |t| » o, we see that 6., € C™(R \ {0}) and

ao(om)(x) - 0 form = 0,1,... ,2M as |x| - c. Finally, we use that M is
arbitrary.

It remains to prove that the functions o, andg; are bounded. Below k = 0 or

Kk = oo. We may suppose that x > 0.Write o, = o + ¢, where

1/x 1o9)
aél)(x) = 2ij q, (t)sin(xt)dt, aéz)(x) = 2i f q, (t)sin(xt)dt.
0 1/x

Since |sin(xt)| < xt, for o; we have the estimate
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1/x

aﬁl)(x)| < ZxJ q, (tdt < C
0

Because g, (t)t are bounded functions. For 0,52) , Integrating by parts once, we get

20 ‘ /
aéz)(x) = - j qx (t)(cos(xt)) dt
1/x
21
X

20 [
qx(1/x)cos 1 +; fq,’c (t)cos(xt)dt.

1/x
The first term in the right-hand side is bounded because g, (t)t are bounded
functions. The second term is also bounded because the functions g, (t)t? are
bounded.
It easily follows from Lemma (4.2.9) that

®H(0,)P* = I'(qy)and PH(0,)P" = I'(ge). (60)
Indeed, in view of relation (55), we only have to check that

1 1
——365(t) = qo(t);—=—=06x(t) = q.(t); t > 0, (61)
V21 V2T

where the Fourier transform is understood, for example, in the class of

distributions S(R”). According to the first formula in (59), the function (2)~1/?g,

is the Fourier transform of the “extended” distribution qgext) defined by the

equation

oo}

@, p) = f q0 (O)(@() — P(—0))dt.

0
Thus (2m)~Y/26,(t) = ¢ (¢) which coincides with g,(t) for ¢ > 0. The

second equality (61) is obvious because g, € S(R)’.
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The next assertion is a direct consequence of relations (60) and Theorem (4.2.1).
Theorem (4.2.4). Let the functions ¢, and o, be defined by formulas (59) where
qo(t) and g (t) are given by (58) and « > 0. Then the asymptotic relations hold
sn(H(0g)) = v(@)n™® + 0(n™9),s,(H(0w)) = v(a)n™® + o(n"*),n > o,
Where v(a) is given by (10)
For a parameter a € R, let R, be the shift
(Raf )x) = f (x — a).
Obviously, R, is a unitary operator in L?(R) and HZ(R). Of course, now R, is not
a rotation, but we keep the letter R in order to maintain the analogy between the
discrete and continuous cases.
Similarly, let V, be the multiplication operator
(V,u)(t) = e “u(t),t > 0.
Obviously, V is a unitary operator in L2(R,).
Recall that the Hankel operators H(w) in H?(R) were defined by formula (21).
Lemma (4.2.10)[4]. For arbitrary a € R, we have the following statements:
(i) Forany w € L”(R), we have
H(R,w) = R,H(w)R,.
In particular, if H(w) is compact, then
sn(HRyw)) = sp(H(w)),vn = 1
(if) Suppose that I'(h) is bounded; then
r'(V,h) = V,I'(WV,.
In particular, if I'(h) is compact, then
sp(T(V,h)) = s,(T(h),vn = 1:
Proof. Since

P,R, = R,P,and R,WR, =W,
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the first assertion is a direct consequence of the Hankel operator H(w) in H%(R).
The second assertion immediately.

Theorem (4.2.11)[4]. Let « > 0,leta,,...,a; € R be distinct numbers and let
by, by, ...,b;, € C.Let the number M = M(a) be given by (38). Suppose that h €
L. (R) if a< 1/2andh e CM(R,) if 1/ 2.Assume that

L
h(t) = z(bgt_l(log )% + g (et t>2, (62)
=1
h(t) = (bt~ (log /)" + go(0), t<1/,, (63)

where the error terms g, satisfy the estimates

g™(t) = o(t™"™(logt)™®), m = 0,...,M(a), (64)

Ast -oofor? = 1,..,Land ast — 0 for £ = 0. Then the singular values of the

integral Hankel operatorT'(h) in L2 (R )satisfy the asymptotic relation

sn(F(h)) =cn %+ o(n™%), n — oo, (65)

Where

¢ = v(a) (Zw%) (66)
£=0

and the coefficient v(«) is given by formula (10).

The proof in the continuous case follows the same general outline as in the discrete

case with the only difference that the singularity of the kernel h(t) att = 0 has to
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be treated separately. It corresponds to the singularity of the symbol w(x) at
infinity.

We consider kernels h(t) that have a singularity at some positive point and
admit representation (62) for large t. It turns out that, similarly to Theorem (4.1.5)

the contributions of the singularities of these two types to the asymptotics of

singular values are independent of each other.

Proof. Let the symbols g, (x) and o,, (x) be defined by relations (59) and let

L
W) = o) + ) o (IWhere wo(x) = booy(x), we(®)
£=1

= b0 (x — a{)). (67)
According to Theorem (4.2.1) and Lemma (4.2.5) (i) we have
sn(H(wp)) = |bplv(@)n™® + o(n™%), n - oo, for all £ = 0,1, ..., L. It follows
from Lemma (4.2.2) that w, € L*(R) forall £ =
0,1,..,L,wyg € C*°(R) Zand w, € C* (R, \ a,) forY = 1,...,L. Since a4, ..., q,
are distinct points, the localisation principle (Theorem (4.2.11)) is applicable to the
sum (67). This yields

L L
1

lim nsn(H(w{;))p =Z lim nsn(H(a)g))p = v(a)? Z|b{;|p,p = (68)

n—oo n—oo

=1 =1

Note that, by its definition (67), &, (t) = byb,(t),
@{)(t) = b{)O'oo(t)e_ia"”t,"g = 1, ...,L,

and hence according to formula (61)

L
wy(t) = byxo()t~1] log ]~ +Zngoo(t)t‘1| log t|=%eitet =: h,(t),t
=1

> 0.

110



In view of relation (55) it now follows from (68) that

L
lim nsn(F(hf))p = v(a)P Zlbglp.

Next, we consider the error term

L
gt) = h(t) —h, (t) = go(t) + z g,(t)eiact
=1

where all functions g,(t),¢ = 0,1, ..., L, satisfy the condition (64) both for t —
0and t - oo. It follows from Theorem (4.2.6) and Lemma (4.2.5) (ii)
that sn(H(g,)) = o(n™%) and hence
sn(H(g)) = o(n™%)asn - oo. (69)

Since

H(h) = H(h,) + H(g),
we can use Lemma (4.1.1) with A = H(h_¢)and B = H(g). The required
relations (65), (46) follow from (68) and (69).
The localization principle shows that the results on the asymptotics of singular
values of different Hankel operators can be combined provided that the singular
supports of their symbols are disjoint. This idea has already been illustrated by
Theorems (4.1.1) and (4.2.6). Here we apply the same arguments to kernels h(t)
satisfying condition (62) as t — oo and singular at some point t, > 0. below
1, (¢t) is the characteristic function of R, .
The effect of local singularities of h(t) on the asymptotics of singular values of the
corresponding Hankel operator I'(h) was studied. We need the following result
Lemma (4.2.12)[4]. Lett, > 0,m € Z, and

am(t) = (tg — OO™1+ (ty — ). (70)
Then KerT'(a,,) = L?(t,, o) and

Famlizot,) = m! Ay
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Where the self-adjoint operator A,, in L?(0,t,) is defined by the differential
expression
Apw)(®) = (=)™ ulm (g — 1)
and the boundary conditions
u(ty) = - = u(m)(t,) = 0. (71)
Note that the operator A2, is given by the differential expression
(AZuw) (1) = (=)™ ulm2 (1)
and the boundary conditions (70) and
um ) =... = u(2m+1)(0) = 0.
Thus A2, is a regular differential operator and the asymptotics of its eigenvalues is
given by the Weyl formula. Therefore the following result is an immediate
consequence of Lemma (4.2.12).
Corollary (4.2.13)[4]. Let the function a,, (t) be given by formula (70). Then
sn(C(ay) = m et (mEn) ™ 1(1 + 0(n™1)),n - oo. (72)
Notice that formula (72) was obtained much earlier by a completely different
method.

We also note the explicit formula for the symbol z,,,(x) of the operator I'(a,,;):

m

T,,(x) = m! (ix) ™1 (eitox - %(itox)k)x € R. (73)

k=0
Obviously,t,, € C*(R) and t,,(x) is an oscillating function as|x| — oo.
We are now in a position to consider the general case.
Theorem (4.2.14)[4]. Lett, > O,m € Z,and € C. Set

hin(8) = B(to — )™ 14(to —t) + h(t)
Where h(t) satisfies the assumptions of Theorem (4.2.10) withb, = Oand a =
m + 1. Then the singular values of the operator I'(h,,) satisfy the asymptotic

relation
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sn(T(hp)) = cpn™™ ™ + o(n™™ 1)

with

L a
m = (n-1t0<m! B + v(a)l/aiwﬂlfa)  a=m4,

£=1

and v(a) defined by (10).

Proof . It is almost the same as that of Theorem (4.2.6). Let us use notation (70).
The asymptotics of the singular values of the operator I'(a,,,) is given by formula
(72). The operator I'(h) satisfies the assumptions of Theorem (4.2.6) so that the
asymptotics of its eigenvalues is given by formula (65). The symbol (73) of the
operator I'(a,,) is singular only at infinity. Neglecting the terms satisfying the
assumptions of Theorem (4.2.1) and using Lemma (4.2.2), we see that the singular
support of the symbol of the operator I'(h) consists of the points a;, ...,a; € R.
Therefore applying Theorem (4.2.11), we conclude the proof.

Observe that we have excluded the term (63) singular att = 0 in Theorem
(4.2.12) cause the corresponding symbol is singular at the same point x = 1 as the
function (73). In this case one might expect that the contributions of singularities
of h(t) att = 0Oandt = t, > 0 are not independent of each other. In any case,
our technique does not allow us to treat this situation.

Let us discuss the operator I'(a,,) in the representation £2(Z,), that is, the operator
FU*H(t,,)UF* = T(g,).

Here g,,,(j) are the Fourier coefficients of the function z,,(u) linked to t,,(x) by

formula (30). Making the change of variables (23) in (73), we see that 7,,, (1) is an

oscillating function as 4 — 1. Therefore the asymptotics of its Fourier coefficients

g, (j) is determined by the stationary phase method which yields:
gm(])N m! 7.[—122—(2m+1)/4j—(2m+5)/4 COS(Z\/T _ ﬂ(Zm + 1)/4)
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Note that these sequences decay faster as j — oo than the coefficients (39) where
a = m + 1. Never the less due to the oscillating factor their contribution to the
asymptotics of singular values is of the same order.
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List of Symbols

Symbol page
L®1 | Lebesgue space 1
>t | Sobdev space 1

L? Hilberl space 1
@ Direct sum 1
H? | Hardy space 2
12 | Bergman space 2
a.e | almost every where 6
LP Lebesgue space 7
H* | Hardy space 10
£P Helbert space of sequences 18
ker | kernel 18
im imaginary 18
dim | dimension 18
ind | index 18
sup | Supremum 19
HP Hardy space 21
inf | infimum 25
diag | diagonal 26
ess | essential 33
det | determinant 40
ext | extension 46
arg | argument 57
TTO | Truncated Toeplitz operators 66
THO | Truncated Hankel operators 66
) Direct difference 67
® Tensor product 69
sn Singular values 79
supp | support 80
spec | Spectrum 83
loc | local 104
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