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ABSTRACT

In this research, a simplified numerical method of static and dynamic, linear and
nonlinear analysis of tall buildings is presented. The method is a development and
generalization of the moment distribution methods. The first version named the
moment transformation method (MT) was based on the rotations as the only degrees
of freedom with lateral translations permitted. A computer program named MTProg
was developed based on the method. The method is used for the analysis of tall
buildings with axial deformations in the vertical members ignored. The method has
then been developed to the moment-force transformation method (MFT), which
incorporates the axial deformations in the vertical members in order to enable the
analysis of super-tall buildings. The programs MFTProg and MFTProgV2 (Nonlinear
version) were developed based on MTProg. The global and local second order P-
Delta analysis of tall buildings subjected to vertical and horizontal loads were also
incorporated by coupling the axial force and the bending moments in each of the
vertical members with large lateral displacements at floor levels. Accordingly
buckling cases have also been studied. The method was further developed to extract
the dynamic properties of tall buildings. Displacements and different structural
responses due to dynamic loadings are computed using the proposed method with the
response spectrum and the time-history methods for both linear and second order
analyses. Validity of the method was established by comparing the results of 2D and
3D buildings with those resulting from reliable finite element packages. The
comparisons show that, the results are in good agreement thus verifying the accuracy
of the proposed method. The MFT method shows the ability to analyze adequately
and very fast tall buildings composed of hundreds of floors that can not be analyzed
accurately using the established methods of analysis. The saving in computer storage
and computing time provided by MFTProgV2 allow rapid re-analysis of the building
to be accomplished in the preliminary analysis and design stages, and in the cases of
repeated analysis types such as buckling and dynamic analyses of building. The ease
in data preparation and interpretation of final results, compared with finite element
packages is one of the main advantages of the method. For all these reasons the
developed program MFTProgV2 is recommended to be used for the linear/nonlinear,

static/dynamic and stability analyses of tall buildings.



: paldliud)
Al 3 adlly adl ¢ Saaliaally (o) Jabasll Aados Loase Al ) 138 e
Craxdind ledy cagial) J& Ayl A (V) Dl Lagiall ais Gyll amsdy ki o4 Akl
el sty aseaty Wi Cady dalal) GG Fledl g B cla Li il
& Al Slaly) dalas oSe A ) ddas G Lgelatin) oS ARkl o35 .(MTProg)
yaall sl Hlaey) b 3l gl 5 agiell Jis ddpll ) dasall cysla By Aauf)) Lgiload
Ol gk 5 slad) Amls Sl st alanuy) e LeSe e Al slacll
o b Lad camedl MTProg e &by (i:bad ia.l) MFTProgV2 s MFTProg
Gals el agns A Al slaeY) e IS 8 Agall sl 5 agiall g D) Ge Aasll (Julal
oalsal)l Claay GLall Zalall gl & L Glaleadl LU cV Ay o @l e sl gy
Aalal) allal) 6 ASaliall JleaBU Aabad) il clblaialy laly) Glas 5 LS il 38ualial
Llaauy) il Aa)hS Al 3Sulall ddsill Byl aeluayy dajiaall Aol aladiul (Al
saasall jualiall maly aladiuly lede doas il lple Jeasiall golil) ey L el o)l Ak
g il oy Tam Tailg lllin of cliladl cadl 85 L ola) 2808 ATy slol) 28ls sl doulal
Shall mpadls il Jdanll b Aol lgaladin Al Aaphall eyl LS LAa i) dapkll a8
aaa b Ldly Al Grlall leblat ay o Jaatow lly Gkl Cilie (e &35S lall AaLs
lasaad dalye (A Gaall )Saally aopud) Jibaill e S0 malipall Latjign ualll dall (105 (& 5 351
S clabay) ddas Vs (8 WS dall Jaeasll Sl il ) mlias ) sl 3 Ly 2059)
Al ) ey zhatuls ilosbeal JAds Saead Asen el Al palidl) Claa vie
s Sl o U1 Akl ) el e Gl Falidl) saasdll jealiall (3 ae A)lie
Ao Ay ¢ Sualially Kol ls ¢ Sy sl ddaill & (MFTProgV2) gelll slasiuly

Al bl



DEDICATION

To the cherished memory of my father.
To my mother, whose prayers supplication gave me support and confidence.

To my patient family, whose forbearance has been incentive to work hard on this
research.

To the new generation my kids, Rayyan, Mahmoud, Baddory, Riham and

Mohamed, I hope for them good future.



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to:
Prof. Abdel Rahman Elzubeir Mohamed

For his guidance and supervision, patience, encouragement, support and
friendly approach towards me throughout the lengthy process of this work.

I wish to thank my wife Eng. Manabhil for all the patience and support she has
provided.

I am thankful to my dear brother, Automation Engineer Osama, who put me

in the right track.

Thanks a lot to my brothers Engineers Aymen, Ahmed Saeed, Amro, Elhadi,

Ahmed Norein, for their continuous help and support.

Lastly but not least the individuals whose names are over looked and not

mentioned above for every kind of support, help and cooperation in this work.



TABLE OF CONTENTS

ABSTRACT

ARABIC ABSTRACT
DEDICATION
ACKNOWLEDGMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES

CHAPTER ONE:

General Introduction

1.1 Introduction

1.2 Problem Statement

1.3 Objectives

1.4 Methodology of Research
1.5 Outlines of thesis

CHAPTER TWO:

Literature Review

2.1 Introduction

2.2 Simple Manual Arithmetical Methods

2.3 Differential Equations and Continuum Methods of Analysis

2.4 Simplified Finite Element and Matrix Methods of Analysis

2.5 Methods of Simplifying the Models and Reduction Techniques

2.6 Miscellaneous Researches Conducted to Study and Improve the
Structural Systems of the Tall Buildings

2.7 Review to the Moment Transformation Method

2.8 Summary

CHAPTER THREE:

The Moment-Force Transformation Method Theory

3.1 Introduction
3.2 Reduction of Total Degrees of Freedom by Considering Rotations Only

XVII

~N o o o1 O A A WODN P

=
U N

[EY
»

21
21

23
23

23
23



3.3 Analysis of Structural Systems using rotational degrees of freedom

3.4 Sway Fixed-End Moments

3.5 The Moment Transformation method

3.5.1 Column of two members

3.5.2 Generalization of the Method to Two and Three Dimensional Multi-
storey buildings

3.5.3 Equivalent stiffness matrix and moment transformation factors
matrix

3.5.4 Total Transformation Factors matrix from one level to a far level
3.5.5 Transformation of the moments from level # j to level # i

3.5.6 The joints rotations and the final moments at each level

3.5.7 The condensed Stiffness and the Carryover Moment for single
member

3.5.8 The condensed Stiffness and the Carryover Moments matrices for
two members

3.6 The Moment-Force Transformation Method

3.6.1 Consideration of the axial deformations in the vertical members

3.6.2 Multi-Bay Multi-Storey Buildings

3.6.3 Condensed Stiffness and Carryover Matrix for Multiple Vertical
Members including axial deformations

3.7 Second order P-Delta analysis of tall buildings

3.7.1 Condensed Stiffness and Carryover Matrices for Multiple Vertical
Members, including P-Delta effects

3.7.2 Linear-displacement assumptions

3.7.3 Cubic-displacement assumptions

3.7.4 Euler Stability Functions

3.8 The level rotation-translation stiffness

3.9 The Lateral Joints Displacements and the Shear Forces in the Vertical
Members

3.10 Concluding Remarks on the transformation methods

3.11 Modal Analysis using the Transformation Methods

3.11.1 Introduction

3.11.2 Fundamental Mode Analysis

Vi

24
25
26
26

26

27

28
28
28

29

32

34
34
37

37

38

38

40
40
42
44

45

47
48
48
48



3.11.3 Analysis of Higher Modes

3.11.4 Inverse Iteration (Stodola Concept) using the Transformation
Method

3.12 Buckling Analysis by Matrix Iteration (Vianello Method)

3.13 The Improved Vianello Method

3.14 The conventional buckling incremental method

3.15 Buckling Analysis using the transformation method

3.16 Buckling Analysis using the transformation method with the aid of the
bisection method

3.17 Review to the earthquake design response spectra

3.17.1 Modal analysis procedure

3.17.2 Design response spectrum analysis

3.17.3 SRSS Modal Combination Method

3.17.4 CQC Modal Combination Method

3.18 The time history analysis method

3.18.1 Time history problem, the proposed numerical solution

3.18.2 Time history problem, the proposed closed-form solution

3.18.3 The normal coordinates system

3.18.4 Response of structures to ground motion

3.18.5 Structural response history using the transformation method

3.19 Response spectrum analysis using the transformation method

3.20 The Mass matrix

3.21 Column Shortening Calculations for Reinforced and Composite
Concrete Structures

CHAPTER FOUR:
Computer Program MFTProgV?2

4.1 Introduction
4.2 Description of the Program MFTProgV2
4.2.1 The two Dimensional analysis

4.2.2 The Three Dimensional analysis

CHAPTER FIVE:

Program Applications and Verification of Results

Vil

50
52

54
57
57
58

60

60
62
63
65
65
66
67
69
70
71
72
78
78

79

80

80

80
80
80
91

98
98



5.1 Introduction

5.2 Numerical Examples

5.2.1 Two Floor One-bay Portal Frame
5.2.2 Two Floor Two-bay Portal Frame

5.2.3 Model of a hypothetical fifteen storey building subjected to

unsymmetrical lateral loading
5.2.3.1 Verification of Results
5.3 Summary

CHAPTER SIX:
Cases Study and Analysis of Results

6.1 Introduction

6.2 Dynamic Analysis using the transformation method

6.2.1 The vibration Modes

6.2.2 Participating Mass Ratios

6.2.3 The top floor lateral displacement

6.2.4 The Base Reactions

6.2.5 Response Spectrum Analysis

6.2.6 Time History Analysis

6.3 The fifteen floors 2D building Model

6.3.1 Static Linear and second order Analysis of the 2D building model
6.3.2 Buckling Analysis of the 2D building model

6.3.3 Dynamic analysis of the 2D model

6.3.4 Response spectra Analysis for the 2D model

6.3.5 P-Delta response spectra analysis

6.3.6 Time History Analysis for the 2D model

6.3.7 P-Delta Time History Analysis

6.4 The twenty five floors 3D building Model

6.4.1 Static Linear and second order Analysis of the 3D building model
6.4.1.1 Effect of Finite Element Formulation Accuracy

6.4.1.2 Comparison of Numbers of Unknowns

6.4.1.3 Analysis of a 150 floors Building using MFTProg

6.4.1.4 Running time and numbers of unknowns for N numbers of floors
6.4.2 Buckling Analysis of the 3D building model

VI

98
98
98
99

100

101
114

115

115
115
115
116
116
116
116
116
117
118
118
121
125
128
133
136
143
149
150
159
163
163
168
171



6.4.3 Dynamic analysis for the 3D model

6.4.4 Response spectra Analysis for the 3D model
6.4.5 P-Delta response spectra analysis

6.4.6 Time History Analysis for the 3D model

6.4.7 P-Delta time history analysis for the 3D model

CHAPTER SEVEN:

Conclusions and Recommendations

7.1 General Conclusions

7.2 Results Conclusion

7.3 Recommendations Drawn from Results Obtained
7.4 Recommendations for Future Research

References

APPENDICES:
Appendix Al:

A Three Segments Cantilever Example
Appendix A2:
The Moment Distribution Procedure
Appendix A3:
The Moment Transformation Procedure
Appendix A4:
A Three Segments Column Example
Appendix A5:
Further Optimization of the Transformation Procedure
Appendix B:
Flow Chart of the Conventional Buckling Incremental Method
Appendix C:
Buckling of Column Subjected to Axial Load P
Appendix D:
StaadPro Buckling Analysis, the basic solver
Appendix E:
Buckling Analysis — the advanced Solver in STAAD package

173
175
181
186
196

204

204

204
205
212
213

214
230

231
231
232
232
234
234
236
236
238
238
239
239
241
241
242
242
243
243



Appendix F:

Column shortening calculations for reinforced and composite concrete

structures (Proposed future study)
APPENDIX G:
Manual Check for the Results of the Square Building

244

244

248
248



LIST OF FIGURES

Figure 3.1: Single post model

Figure 3.2: Intermediate storey of a multistory frame

Figure 3.3: Transformation of Moment

Figure 3.4: Multi-Storey 2D or 3D Building

Figure 3.5: Moments of the Concerned Level

Figure 3.6: Rotation and Translation DOF s of a Single Member

Figure 3.7: Condensed rotation Stiffness with Translation Permitted

Figure 3.8: Carryover Moment for a Single Member

Figure 3.9: Rotations and Translation DOF s of a two Members System

Figure 3.10: Condensed Stiffness Coefficient Corresponding To Displacement D1
Figure 3.11: Condensed Stiffness Coefficient Corresponding to Displacement D2
Figure 3.12: Carryover Moment Coefficient t";

Figure 3.13: Column of two segments

Figure 3.14: Rotations and Translations DOF s of a Two Vertical Members System
Figure 3.15: Rotations and Translations DOFs of Two Vertical Members System,
(with large displacements)

Figure 3.16: Translational Stiffness of a member including P-Delta effect

Figure 3.17: Carryover moment including P-Delta effect

Figure 3.18: End-rotational stiffness and carryover moment for a prismatic member
subjected to axial force

Figure 3.19: Degrees of Freedom of the Two Ends of Member # |

Figure 3.20: Physical interpretation of Stodola iteration sequence.

Figure 3.21: Transformation of coordinates for oriented column

Figure 3.22: Flow chart for elastic critical loads of plane frame

Figure 3.23: Response spectra. El Centro earthquake, N-S direction

Figure 3.24: Idealized design response spectrum, Cheng (2001)

Figure 3.25: General force-time relation

Figure 3.26: Numerical Solution of time history linear loadings between ordinates
Figure 3.27: Total structural response due to displacements at time t,

Figure 3.28: Partial structural response due to unit displacement at level k

Figure 4.1-a: Flow chart of the moment-force transformation main solver-Part 1

Xl

24
25
26
27
28
29
30
31
32
33
33
34
35
37

39

39
39

42

45
49
57
59
61
62
66
68
73
76
81



Figure 4.1-b: Flow chart of the moment-force transformation main solver-Part2
Figure 4.1-c: Flow chart of the moment-force transformation main solver-Part3
Figure 4.2-a: Flow chart of dynamic properties extraction of 2D frames-Part 1
Figure 4.2-b: Flow chart of dynamic properties extraction of 2D frames-Part 2
Figure 4.3-a: Flow Chart of the proposed buckling analysis solver

Figure 4.3-b: Flow Chart of the bisection subroutine

Figure 4.3-c: Flow Chart of the determinant subroutine

Figure 4.4: The program MFTProgV2 Layout (3D mode)

Figure 4.5: The multi-page data input of the two dimensional analyses mode
Figure 4.6: The results page of the two dimensional analysis mode

Figure 4.7: Local and global equilibrium checks

Figure 4.8: The building floor dimensions form

Figure 4.9: Main form of the three dimensional analysis

Figure 4.10: Walls and columns properties entering

Figure 4.11: Floors heights and lateral loading entering

Figure 4.12: Global equilibrium check at the different floors levels

Figure 4.13: Global deformed shape

Figure 4.14: StaadPro Floor stiffness and Fixing Moments form

Figure 4.15: Exaggerated deformed shape of a concerned floor

Figure 4.16: Moment contour of a concerned floor

Figure 5.1: One-bay Frame properties and loading

Figure 5.2: Two-bay Frame properties and loading

Figure 5.3: 12m x 12m floor plan for 15 Storey, Square Building

Figure 5.4: Displacements of the origin (Column # 5) in x-direction.

Figure 5.5: Displacements of the origin (Column # 5) in y-direction.

Figure 5.6: Twist rotations of the floor at the different levels.

Figure 5.7: MFTProg shear force diagram for shear wall #1

Figure 5.8: MFTProg bending moment diagram for shear wall #1

Figure 5.9: MFTProg shear force diagram for shear wall #2

Figure 5.10: MFTProg bending moment diagram for shear wall #2

Figure 5.11: MFTProg shear force diagram for shear wall #3

Figure 5.12: MFTProg bending moment diagram for shear wall #3

Figure 5.13: MFTProg shear force diagram for shear wall #4

Xl

82
83
84
85
86
87
88
89
89
91
91
92
93
93
94
95
96
96
97
97
98
99
100
101
102
102
103
103
104
104
105
105
106



Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:
Figure 5.25:

MFTProg bending moment diagram for shear wall #4
Comparisons of displacements of column #5 in x-direction
Comparisons of displacements of column#5 in y-direction
Comparisons of twist rotations of the floors in radians
Comparisons of S.F.D. for shear wall #1

Comparisons of B.M.D. for shear wall #1

Comparisons of S.F.D. for shear wall #2

Comparisons of B.M.D. for shear wall #2

Comparisons of S.F.D. for shear wall #3

Comparisons of B.M.D. for shear wall #3

Comparisons of S.F.D. for shear wall #4

Comparisons of B.M.D. for shear wall #4

Figure 6.1: UBC-1997 Design Response Spectra

Figure 6.2: N-S component of El Centro Earthquake records, 18 May 1940

(www.vibrat

iondata.com)

Figure 6.3: Fifteen floors 2D Frame, properties and loading
Figure 6.4: MFTProgV2, Buckling mode shape No. 1

Figure 6.5: MFTProgV2, Buckling mode shape No.
Figure 6.6: MFTProgV2, Buckling mode shape No.
Figure 6.7: MFTProgV2, Buckling mode shape No.
Figure 6.8: MFTProgV2, Buckling mode shape No.
Figure 6.9: MFTProgV2, Buckling mode shape No.

Figure 6.10:
Figure 6.11:
Figure 6.12:

Figure 6.13: History of displacement in x-direction at the top floor level using

MFTProgV?2

Figure 6.14: History of displacement in x-direction at the top floor level using the

o o1 A WD

First Mode Shape (Linear)
Second Mode Shape (Linear)
Third Mode Shape (Linear)

StaadPro2004

Figure 6.15:History of displacement in x-direction at the top floor level using

ETABS

Figure 6.16: History of displacement in x-direction at the top floor level using

SAP2000V16

X1

106
107
108
108
109
109
110
110
111
111
112
112
117

118

119
122
123
123
124
124
125
126
127
127

137

137

138

138



Figure 6.17:
Figure 6.18:
Figure 6.19:
Figure 6.20:
MFTProgV2

Figure 6.21: History of base overturning moment about y-direction using ETABS

Figure 6.22:

History of base Shear in x-direction using MFTProgV2
History of base Shear in x-direction using ETABS

History of base Shear in x-direction using SAP2000V16
History of Base overturning moment about y-direction using

History of base overturning moment about y-direction using

SAP2000V16

Figure 6.23: History of P-Delta displacement in x-direction at the top level using

MFTProgV2

Figure 6.24: History of P-Delta displacement in x-direction at the top floor level

using StaadP

Figure 6.25: History of P-Delta displacement in x-direction at the top floor level

roVsai

using ETABS

Figure 6.26: History of P-Delta base Shear in x-direction using MFTProgV2

Figure 6.27:

Figure 6.28: History of P-Delta base overturning moment about y-direction using

MFTProgV2

Figure 6.29: History of P-Delta base overturning moment about y-direction using

ETABS

Figure 6.30:
Figure 6.31:
Figure 6.32:
Figure 6.33:
Figure 6.34:
Figure 6.35:
Figure 6.36:
Figure 6.37:
Figure 6.38:
Figure 6.39:
Figure 6.40:
Figure 6.41:
Figure 6.42:

History of P-Delta base Shear in x-direction using ETABS

24 m x 12 m floor plan for 25 Storey Building
P-Delta Analysis, Displacements in y-direction
P-Delta Analysis, Rotations in radians

P-Delta Analysis, Rotations in radians (torsion released)
Linear Analysis, B.M.D. for U-Shaped Core
Linear Analysis, S.F.D. for U-Shaped Core
Linear Analysis, B.M.D. for edge shear wall
Linear Analysis, S.F.D. for edge shear wall
P-Delta Analysis, B.M.D. for U-Shaped Core
P-Delta Analysis, S.F.D. for U-Shaped Core
P-Delta Analysis, B.M.D. for edge shear wall
P-Delta Analysis, S.F.D. for edge shear wall

MFTProg moment My contour in kN.m/m for bottom floor slab

XV

139
140
140

141

142

142

143

144

144

145
146

147

147

149
150
151
151
152
152
153
153
154
154
155
155
157



Figure 6.43: StaadPro moment My contour in KN.m/m for bottom floor slab

Figure 6.44: MFTProg P-Delta analysis moment My contour in kN.m/m for bottom
floor slab

Figure 6.45: StaadPro P-Delta analysis moment My contour in KN.m/m for bottom
floor slab

Figure 6.46: MFTProg + StaadPro one floor model moment My contour in kN.m/m
for bottom floor slab

Figure 6.47: StaadPro (Full model) moment My contour in KN.m/m for bottom floor
slab

Figure 6.48: MFTProg + StaadPro one floor model P-Delta analysis moment My
contour in KN.m/m for bottom floor slab

Figure 6.49: StaadPro (Full model) P-Delta analysis moment My contour in KN.m/m
for bottom floor slab

Figure 6.50: 150 Floors Building, Bending Moment Diagram for U-Shaped Core
(KN.m).

Figure 6.51: 150 Floors Building, Shear Force Diagram for U-Shaped Core (kN).
Figure 6.52: 150 Floors Building, Bending Moment Diagram for Edge shear wall
(KN.m).

Figure 6.53: 150 Floors Building, Shear Force Diagram for Edge shear wall (kN).
Figure 6.54: 150 Floors Building, Displacements in y-direction (m).

Figure 6.55: 150 Floors Building, Axial Displacements in column #10 (m).

Figure 6.56: 150 Floors Building, Floors Twist Rotations in radians.

Figure 6.57: Perspective view for the deformed shape of the 150 Floors Building.
Figure 6.58: Elapsed running time in seconds using MFTProg

Figure 6.59: Comparisons of the numbers of unknowns

Figure 6.60: Buckling modes 1 to 6

Figure 6.61: Mass polar inertia for 4 lumped masses, (Proposal 1)

Figure 6.62: Mass polar inertia for uniformly distributed mass, (Proposal 2)

Figure 6.63: History of displacement in y-direction at the top floor level using
MFTProgV2

Figure 6.64: History of displacement in y-direction at the top floor level using
StaadProV8i

Figure 6.65: History of displacement in y-direction at the top floor level using

XV

157

158

158

161

161

162

162

164

164

165

165
166
166
167
167
169
170
172
173
174

187

187

188



ETABS (thin plate)

Figure 6.66: History of displacement in y-direction at the top floor level using
ETABS (thick plate)

Figure 6.67: History of displacement in y-direction at the top floor level using
SAP2000V16 (thin plate)

Figure 6.68: History of displacement in y-direction at the top floor level using
SAP2000V16 (thick plate).

Figure 6.69: History of base Shear in y-direction using MFTProgV2

Figure 6.70: History of base Shear in y-direction using ETABS (thin plate)
Figure 6.71: History of base Shear in y-direction using ETABS (thick plate)
Figure 6.72: History of base Shear in y-direction using SAP2000V16 (thin plate)
Figure 6.73: History of base Shear in y-direction using SAP2000V 16 (thick plate)
Figure 6.74: History of base overturning moment about x-direction using
MFTProgV?2

Figure 6.75: History of base overturning moment about x-direction using ETABS
(thin plate)

Figure 6.76: History of base overturning moment about x-direction using ETABS
(thick plate)

Figure 6.77: History of base overturning moment about x-direction using
SAP2000V16 (thin plate)

Figure 6.78: History of base overturning moment about x-direction using
SAP2000V16 (thick plate)

Figure 6.79: History of P-Delta displacement in y-direction at the top floor level
using MFTProgV2

Figure 6.80: History of P-Delta displacement in y-direction at the top floor level
using StaadProV8i

Figure 6.81: History of P-Delta displacement in y-direction at the top floor level
using ETABS (thin plate)

Figure 6.82: History of P-Delta displacement in y-direction at the top floor level
using ETABS (thick plate)

Figure 6.83: History of P-Delta base Shear history in y-direction using MFTProgV2
Figure 6.84: History of P-Delta base Shear in y-direction using ETABS (thin plate)
Figure 6.85: History of P-Delta base Shear in y-direction using ETABS (thick plate)

XVI

188

189

189

190
191
191
192
192

193

194

194

195

195

197

197

198

198

199
200
200



Figure 6.86: History of P-Delta base overturning moment about x-direction using

MFTProgV2 201
Figure 6.87: History of P-Delta base overturning moment about x-direction using 202
ETABS (thin plate)

Figure 6.88: History of P-Delta base overturning moment about x-direction using 202
ETABS (thick plate)

Figure Al.1: Single post example 231
Figure A2.1: Ordinary rotational stiffness of a member 232
Figure A2.2: No-shear rotational stiffness with translation permitted 232
Figure A2.3: No-shear moment distribution between two members 233
Figure A2.4: Continuous beam model 233
Figure A3.1: Moment transformation of continuous beam 234
Figure A3.2: Moment transformation from joint 1 to 2 in a single post frame 235
Figure A3.3: Moment transformation from joint 2 to 3 in a single post frame 235
Figure A4.1: Three segments column 236
Figure C.1: The condensed translational and rotational stiffnesses 241
Figure F.1: The proposed analysis two models 247
Figure G.1: Simplified sketch of the Square building 248

XVII



LIST OF TABLES

Table 5.1: Comparison of moments and forces at joints 3, 6 and 4 (2 Floor 1 bay
Frame)

Table 5.2: Comparison of moments at joints 1, 3 and 6 (2 Floor 2 bay Frame)

Table 5.3: Comparisons of the maximum shear force (kN) and bending moment
(KN.m)

Table 5.4: Displacements of the origin (column 5), in mm and radians

Table 6.1: Displacements in the top floor level (mm), (2D Frame), Linear Analysis
Table 6.2: Maximum bending moment in columns (kN.m), (2D Frame), Linear
Analysis

Table 6.3: Displacements in the top floor level (mm), (2D Frame), P-Delta
Analysis

Table 6.4: Maximum bending moment in columns (KN.m), (2D Frame), P-Delta
Analysis

Table 6.5: Minimum Buckling factor using the different packages

Table 6.6: Buckling factors of the first six modes using the different packages

Table 6.7: Floor Masses of the 2D Building (Mass in kg)

Table 6.8: Comparisons of the first six Natural frequencies of 2D Building
(cycles/second)

Table 6.9: Comparisons of the first three modes shape ordinates

Table 6.10: Comparison of the modal masses participating ratios

Table 6.11: Comparison of the accumulated modal masses participating ratios
Table 6.12: MFTProgV2 Response acceleration using the UBC response spectra
curve

Table 6.13: Modal Cross-correlation Coefficients method and the other packages.
Table 6.14: Comparison of the lateral displacement response at the top floor (m),
Proposal 1

Table 6.15: Comparison of the lateral displacement response at the top floor (m),
Proposal 2

Table 6.16: Comparisons of the Response Spectrum Base Shear force

Table 6.17: Comparisons of the Response Spectrum Base Overturning Moment
Table 6.18: Comparisons of the first six P-Delta natural frequencies (cycle/second)

XVIII

99

99

113

113
119

119

120

120

121
121
125

126

128
129
129

129

130

130

130

131
132
133



Table 6.19: Comparisons of percentage P-Delta modal Mass Participating ratios 133

Table 6.20: Comparison of percentage accumulated P-Delta modal Mass

Participating ratios 134
Table 6.21: Comparison of the P-Delta lateral displacement response at the top 134
floor (m), MFTProgV2 Proposal 1

Table 6.22: Comparison of the P-Delta lateral displacement response at the top 134

floor (m), MFTProgV2 Proposal 2
Table 6.23: Comparison of Response Spectrum P-Delta Base Shear Reactions (kN) 135

Table 6.24: Comparison of Response Spectrum P-Delta Base overturning moment 136

Table 6.25: Minimum and maximum displacements at the top floor (mm) 139
Table 6.26: Minimum and maximum base shear (kN) 141
Table 6.27: Minimum and maximum base overturning moment (kN.m) 142
Table 6.28: Minimum and maximum P-Delta displacements at the top floor (mm) 145
Table 6.29: Minimum and maximum P-Delta base shear (KN) 146
Table 6.30: Minimum and maximum P-Delta base overturning moment (kN.m) 148
Table 6.31: Displacements and rotation in the top floor level (mm, rad), (3D 156
Frame).

Table 6.32: Maximum bending moment in U-Shaped Core (KkN.m), (3D Frame). 156

Table 6.33: Maximum bending moment in Edge Shear Wall (kN.m), (3D Frame). 156
Table 6.34: Displacements and rotation in the top floor level (mm, rad), (3D

Frame), (Borrowed StaadPro Floor) 160
Table 6.35: Maximum bending moment in U-Shaped Core (kN.m), (3D Frame), 160
(Borrowed StaadPro Floor)

Table 6.36: Maximum bending moment in Edge Shear Wall (kN.m), (3D Frame), 160
(Borrowed StaadPro Floor)

Table 6.37: Displacements and rotation in the top floor level (mm, rad), (150 Floor 168
model)

Table 6.38: Maximum bending moment (kN.m) and Shear Force (kN), in U-Shaped 168
Core, (150 Floor model)

Table 6.39: Maximum bending moment (KN.m) and Shear Force (kN), in Edge 168
Shear Wall, (150 Floor model)

Table 6.40: Elapsed running time in seconds using MFTProg 168
Table 6.41: Comparison of numbers of unknowns 169

XIX



Table 6.42: Minimum Buckling factor using the different packages

Table 6.43: Buckling factors of the first six modes using the different packages
Table 6.44: Floor Masses and Moments of Inertia of the 3D Building (Mass in kg
and Moment of Inertia in kg.m?)

Table 6.45: Comparisons of the first nine Natural frequencies of 3D Building
(cycles/second)

Table 6.46: Comparison of the modal masses participating ratios in x-direction
Table 6.47: Comparison of the accumulated modal masses participating ratios in x-
direction

Table 6.48: Comparison of the modal masses participating ratios in y-direction
Table 6.49: Comparison of the accumulated modal masses participating ratios in y-
direction

Table 6.50: Comparison of the lateral displacement response at the top floor (m),
Proposal 1

Table 6.51: Comparison of the lateral displacement response at the top floor (m),
Proposal 2

Table 6.52: Comparisons of the Response Spectrum Base Shear force (kN):

Table 6.53: Comparisons of the Response Spectrum Base Overturning Moment
(kN.m)

Table 6.54: Comparisons of the first nine P-Delta natural frequencies
(cycle/second)

Table 6.55: Comparison of the P-Delta modal masses participating ratios in x-
direction

Table 6.56: Comparison of the accumulated P-Delta modal masses participating
ratios in x-direction

Table 6.57: Comparison of the P-Delta modal masses participating ratios in y-
direction

Table 6.58: Comparison of the accumulated P-Delta modal masses participating
ratios in y-direction

Table 6.59: Comparison of the P-Delta lateral displacement response at the top
floor (m), Proposal 1

Table 6.60: Comparison of the P-Delta lateral displacement response at the top

floor (m), Proposal 2

XX

171
171

175

175

176

176

177

177

178

178

179

180

181

182

182

183

183

184

184



Table 6.61.: Comparisons of the Response Spectrum P-Delta Base Shear force (kN) 185

Table 6.62: Comparisons of the Response Spectrum P-Delta Base Overturning

Moment (kN.m) 160
Table 6.63: Minimum and maximum displacements at the top floor (mm) 190
Table 6.64: Minimum and maximum base shear (kN) 193
Table 6.65: Minimum and maximum base overturning moment (kN.m) 196

Table 6.66: Minimum and maximum P-Delta displacements at the top floor (mm) 199

Table 6.67: Minimum and maximum P-Delta base shear (kN) 201
Table 6.68: Minimum and maximum P-Delta base overturning moment (kN.m) 203
Table Al.1: Displacements of the original structure 231
Table Al.2: Displacements of the split systems 231

Table A4.1: Equivalent Stiffness and Transformation Factors from Top to Bottom. 236

Table A4.2: Equivalent Stiffness and Transformation Factors from Bottom to Top. 236

XXI



CHAPTER ONE

General Introduction

1.1 Introduction

Tall buildings are highly affected by lateral loadings such as wind and earthquake
loads. The effects of these lateral forces may be resisted by lateral stiff elements such as
shear walls available around elevator shafts and staircases. The unsymmetrical
arrangement of the vertical members in the building plan cause twist deformations in the
level of the floors plans. In this case the problem becomes more complex and a three
dimensional analysis should be carried out instead of the simplified two dimensional
analysis. In practice, a full three-dimensional finite element analysis of tall buildings is
not simple because of the computer storage problem and the computing time cost factors
especially in the design stage when the structure has to be modified several times.

A lot of researches have been conducted in the field of computerized solution of large
scale problems with huge numbers of unknowns as the case of three dimensional full
finite element model of tall building. Research is also ongoing for the simplification of
analyses of tall buildings so as to be carried out with minimum cost. For all these reasons
accurate simplified methods of analysis of tall buildings are required.

In most of the simplified methods of analysis, there exist assumptions that lead to
wrong results in some of the practical cases. For example methods based on the
continuum theory or the equivalent column theory which should always be applied for
buildings of equal floor heights, buildings with no set back, cases of contra flexure (zero
moments) in the mid of the members, sometimes neglecting the flexural stiffness of the
floors, or for very regular structures where the geometric and stiffness characteristics of
structural elements are constant throughout the building’s height, Bozdogan and Ozturk
(2010), Parv and Nicoreac (2012).

A good simplified method must be reliable and supported by physical reality. It must be
able to include a wide range of design parameters, such as the positions of a structural
member as well as its orientation and dimensions. It should not require large computer
storage or long computing time so that a preliminary analysis can be carried out and

modified several times before the final design stage.



1.2 Problem Statement

The importance of performing the nonlinear analysis for tall buildings has been pointed
out by various researchers, Moghadam and Aziminejad (2004) and Ikago Kohju (2012). If
the building to be analyzed is very tall and slender and the axial forces are large or the
individual columns are slender, then the lateral displacements become very large and
affect the building geometry. This problem results in extra increase of the displacements
and stresses, and second order or P-Delta analysis should be carried out, Smith and Coull
(1991), Dobson and Arnott (2002).

In some of the available commercial analysis packages, the considerations of the
nonlinearity in the static and the dynamic analysis of tall buildings are subjected to
several limitations. Examples of these are incorporation of the global geometric stiffness
while neglecting the local stress stiffening of the members due to the effects of the axial
loads, Dobson and Arnott (2002). Sometimes in some commercial packages there is no
possibility to include the effects of geometric nonlinearity during the dynamic analysis
mode. In the iterative methods of P-Delta analysis used by most of the analysis packages,
the results tend to diverge when the vertical loads tend to reach the critical buckling load
at any of the vertical members. Since the critical forces are not known before performing
the analysis, the convergence of the results to the correct answers will not be ensured.
Also in the design codes, the effects of the nonlinearity are incorporated approximately
by modifying some of the design parameters, e.g. amplified moments, as in UBC-97 and
ACI 318-14, and, extended effective lengths as in BS8110 (1997). In methods of analysis
of tall buildings and in order to include the P-Delta effects, some authors suggest the
introduction of an equivalent fictitious member of negative properties, Wilson and
Habibullah (1987), Smith and Coull (1991), and this is not acceptable in most of the
analysis packages.

As stated above, the analysis of tall buildings needs some simplifications especially in
the preliminary analysis and design stages, in order to reduce the large amount of
unknowns when using the conventional exact methods of analysis. The problem becomes
more severe in the nonlinear analyses (e.g. P-Delta, Buckling, dynamic, time dependant
columns shortening), which need extra storage and extra time because most of these

methods require several iterations for the results to be converged to final values.



With all these requirements, this work presents development of a simplified method
used to analyze two dimensional and three dimensional tall buildings and suitable for the
analysis of framed shear walls buildings and for super tall buildings such as tube and
outrigger buildings subjected to both vertical and horizontal loading. The proposed
method has been developed to incorporate linear and nonlinear static and dynamic
analyses. Due to its simplicity, the method greatly saves the effort faced from the
difficulties of the data entry and the interpretation of the vast amount of the output results
when using the conventional finite elements methods of analysis. The saving in computer
storage and computing time provided by the developed program that based on the
proposed method, allow rapid re-analysis of the building to be accomplished in the
preliminary analysis and design stages, and in the cases of repeated analysis types such as
in the buckling and vibration problems. The future use of the proposed simplified method
on the more compacted very low memory today's devices (e.g. handhelds, pocket

computers and even mobile phones) is also a possibility.
1.3 Objectives

1) To carry out a comprehensive literature review in the field of the linear and
nonlinear static and dynamic analysis and elastic stability of tall buildings.

2) To develop a simplified theoretical approach for the linear and nonlinear, static
and dynamic analysis of tall buildings.

3) To develop computer programs to be used for advanced analysis of tall buildings
easily, both in the data entering and in the interpretation of the output results.

4) To develop an optimized theory, such as a development based on generalization
of the simple moment distribution methods, and optimized algorithms used for
analysis of tall buildings that can be implemented in very low memory devices,
such as pocket PCs and smart phones devices.

5) To verify the accuracy of the results obtained by comparisons with results from
known solvers.

6) To demonstrate the capability of the developed theory and programs to analyze
accurately tall buildings that are impossible or very difficult to be analyzed by

established accurate methods.



1.4 Methodology of Research

The research has been carried out as follows:

1- Literature Review and study of theoretical background.

2- Formulation of the proposed theory.

3- Development of the computer programs based on the formulated theory.

4- Application of the programs for different structures, analysis and verifications of
results, and the comments and conclusions.

5- Drawing recommendations for tall buildings analysis and recommendations for future
studies.

1.5 Outlines of thesis

The thesis includes the following:

1- Chapter one presents a general introduction.

2- Chapter two presents a literature review of the methods of analysis of tall buildings.

3- Chapter three presents the proposed theory.

4- Chapter four presents the developed computer program.

5- Chapter five presents the program applications and solution of some problems.

6- Chapter six presents two cases study, the results obtained and the analysis and

discussion of the results.

7- Chapter seven includes the conclusions and recommendations.



CHAPTER TWO

Literature Review

2.1 Introduction

Simplified methods of static and dynamic analysis for the effects of vertical and
horizontal loads on tall building are required, especially in the preliminary design stage
when the proposed structural system has to be analyzed several times before the final

agreement.

Due to the huge gravity loads and the possible large lateral displacements, the nonlinear

analysis should be carried out to adequately design the tall buildings.

In the analysis of large structural systems such as the tall buildings which include huge

numbers of unknowns, there arise a lot of difficulties such as:
e The capability of the hardware of the computing machine.
e The machine running time which is proportional to the total number of unknowns.
e The interpretation of the vast amount of the analysis results.

e The need that may arise for new rearrangements or changing of the structural

system.

In literature, there are lots of conducted researches, which can be classified into

different types of problems formulation and solution methods, such as:
e Simple manual arithmetical methods, e.g. Portal and Cantilever methods.
e Differential equations and Continuum methods of analysis.
e Simplified finite element and matrix methods of analysis.
e Methods of Simplifying the models and Reduction Techniques.

Each one of the mentioned methods is used with limitations and sometimes tailored for

a certain type of structural system.



In the following sections the available simplified analysis methods are reviewed and

classified.
2.2 Simple Manual Arithmetical Methods

For preliminary design of tall frames, as information regarding stress resultants due to
lateral loads is required even before member dimensions are known, the cantilever and
portal methods are sought in practice for the specific reason that they do not require cross
sectional areas for the analysis. When using these methods of analysis for lateral loads,
the analysis for vertical loads can be made in the same way as for the braced frames by
using any of the sub-frame methods.

According to Manicka and Bindhu (2011), there are two versions of the portal method.

One is the simplified portal method and the other is the improved portal method.

In the simplified portal method, the storey shear is distributed among the columns
considering that each of the outer columns resists half the shear resisted by any of the
internal columns, and in the improved portal method, the storey shear is distributed
among the columns in proportion to the tributary length of the spans between the
columns. Manicka et al, proposed an alternative analysis method which they called the
Split frame method. The method splits vertically the whole frames into separated simple
frames each of one containing only one bay subjected to lateral loads calculated from the
dimensions of all the bays. The method gives almost the same answer as that of the
improved portal method.

As a conclusion, the cantilever and the simplified and improved portal methods of
analysis together with the Split method proposed by Manicka et al, can be used only for
analysis of relatively short un-braced portal frames subjected to lateral wind loads or
equivalent static seismic loads, also they can’t be used to calculate the dynamic properties
of the frames (e.g. natural frequencies and mode shapes), and have no ability to calculate
the lateral stiffness of the building frame and therefore the drift and the lateral

displacements of the frame.



2.3 Differential Equations and Continuum Methods of Analysis

Based on the continuum theory, the researchers developed and solved approximately
miscellaneous types of problems, ranging from a very simple problem used to distribute
the lateral loads between the vertical members in a relatively short building, up to the
analysis of a more complicated tube and outrigger structural systems used in the ultra tall
buildings. The type of the problems also can be classified ranging from a simple static
problem up to a more complicated dynamic one, used to calculate the dynamic properties
of the building such as the vibration frequencies and their corresponding mode shapes.

Following are some researches and developments based on these types of analyses:

Jaeger, Mufti and Mamet (1973), proposed an analytical theory for the analysis of tall
three dimensional multiple shear wall buildings. The basis of their theory was the
continuum approach in which the floors of the building are replaced by an equivalent
continuous medium. Their results were compared with data obtained by the finite element
method and experiments conducted on a seven storey multiple, shear wall model.

A Simplified method was presented by Coull, Bose and Abdulla Khogali (1982), used
for the analysis of bundled tube structures subjected to lateral loads. In the method, the
rigidly-jointed perimeter and interior web frame panels were replaced by equivalent
orthotropic plates. The force and stress distributions in the substitute panels were
assumed to be represented by polynomial series in the horizontal coordinates, the
coefficients of the series being functions of the height only. The unknown functions were
determined from the principle of the least work. By incorporating simplifying
assumptions regarding the form of stress distribution in the frame panels, the structural
behavior was reduced to the solution of a single second-order linear differential equation,
enabling closed-form solutions to be obtained for the standard load cases, and solutions

were obtained from design curves.

A simplified approximate analysis of lateral load distribution in structures composed of
different assemblies was presented by Coull and Tag Eldeen Husein (1983). The load
distribution on each assembly was assumed to be represented by a polynomial in the
height coordinate, together with a concentrated interactive force at the top. A set of



flexibility influence coefficients, relating the deflection at any level to any particular load
component, was established for each assembly, the continuum approach was used to
analyze individual assemblies. By making use of the equilibrium and compatibility
equations at any desired set of reference levels, the load distribution on each assembly
was determined. Good results were achieved for regular structures by using no more than
about six reference levels.

As an alternative a simplified analysis of shear-lag in framed-tube structures with
multiple internal tubes was presented by Lee, Guan and Loo (2000). In their work a
simple numerical modeling technique was proposed for estimating the shear-lag behavior
of framed-tube systems with multiple internal tubes. The system was analyzed using an
orthotropic box beam analogy approach in which each tube is individually modeled by a
box beam that accounts for the flexural and shear deformations, as well as the shear-lag
effects. The method idealizes the tube(s)-in-tube structure as a system of equivalent
multiple tubes, each composed of four equivalent orthotropic plates capable of carrying
loads and shear forces. The numerical analysis so developed was based on the minimum
potential energy principle in conjunction with the variational approach. The shear-lag
phenomenon of such structures was studied taking into account the additional bending
stresses in the tubes. Structural parameters governing the shear-lag behavior in tube(s)-in-
tube structures were also investigated through a series of numerical examples. The
method results were verified through the comparisons with a 3-D frame analysis

program.

An approximate hand-method for seismic analysis of asymmetric building structure
having constant properties along its height was presented by Meftah, Tounsi and El
Abbas (2007). The method used the continuum technique and D’ Alembert’s principle to
derive the governing equations of free vibration and the corresponding eigenvalue
problem. By applying the Galerkin technique, a generalized method was proposed for the
free vibration analysis. Simplified formulae were given to calculate the circular
frequencies and internal forces of a building structure subjected to earthquakes. The
accuracy of the method was demonstrated by a numerical example, in which the results

obtained were compared with finite element package.



A method for lateral stability analysis of wall-frame buildings including shear
deformations of walls was presented by Bozdogan and Ozturk (2010). Their study
presented an approximate method based on the continuum approach and transfer matrix
method. In the method, the whole structure was idealized as an equivalent sandwich
beam which includes all deformations. The effect of shear deformations of walls was
taken into consideration and incorporated in the formulation of the governing equations.
Initially the stability differential equation of this equivalent sandwich beam was
presented, and then shape function for each storey was obtained by the solution of the
differential equations. By using boundary conditions and stability storey transfer matrices
obtained by shape functions, system buckling load were calculated. To verify the
presented method, four numerical examples were solved. The results of the samples
demonstrated the comparison between the presented method and the other methods given

in the literature.

Also Bozdogan and Ozturk (2010), presented a Vibration analysis method of asymmetric
shear wall structures using the transfer matrix method. In the method the whole structure
was assumed as an equivalent bending-warping torsion beam. The governing differential
equations of equivalent bending-warping torsion beam were formulated using the
continuum approach and were posed in the form of a simple storey transfer matrix. By
using the storey transfer matrices and point transfer matrices, which take into account the
inertial forces, the system transfer matrix was obtained. Natural frequencies were
calculated by applying the boundary conditions. The structural properties of the building
may change in the proposed method. A numerical example were solved and presented by
means of a program written in MATLAB to verify the proposed method. The results

obtained were compared with other valid method given in the literature.

Bozdogan (2011), developed a differential quadrature method (DQM). In his work, free
vibration analysis of wall-frame structures were studied. A wall-frame structure was
modeled as a cantilever beam and the governing differential equations were solved using
the (DQM). At the end of the study, a sample taken from literature was solved and the

results were evaluated in order to test the convenience of the method.



A simplified method for high-rise buildings was developed by Takabatake (2012). In his
work an analytical theory for doubly symmetric frame-tube structures was established by
applying ordinary finite difference method to the governing equations proposed by the
one-dimensional extended rod theory. Takabatake, claims that his theory can be usable in
the preliminary design stages of the static and dynamic analyses for a doubly symmetric
single or double frame-tube with braces in practical use, and it would be applicable to
hyper high-rise buildings, e.g. over 600m in the total height, because the calculation is
very simple and very fast. Also the approximate method for natural frequencies of high-
rise buildings was presented in the closed-form solutions and it was stated to be necessary
for seismic retrofitting of existing high-rise buildings subject to earthquake wave

included relatively long period.

Another simplified method for nonlinear dynamic analysis of shear-critical frames is
developed by Guner and Vecchio (2012). In their work, an approach was presented by
which a static analysis method can be modified for a dynamic load analysis capability in
a total-load secant-stiffness formulation, and a nonlinear static analysis method was
developed for the performance assessment of plane frames. The primary advantage of the
method is its ability to represent shear effects coupled with axial and flexural behaviors
through a simple modeling approach. In the study, the method was further developed to
enable a dynamic load analysis. Among the developed and implemented formulations
there are an explicit three-parameter time-step integration method, based on a total-load
secant-stiffness formulation, and dynamic increase factor formulations for the
consideration of strain rates. The method was applied to eleven previously tested
specimens, subjected to impact and seismic loads, to examine its accuracy, reliability, and
practicality. The method was found to simulate the overall experimental behaviors.
Strengths, peak displacements, stiffness, damage, and failure modes and vibrational
characteristics were calculated.

An approach to static analysis of tall buildings with a combined tube-in-tube and
outrigger-belt truss system subjected to lateral loading was presented by Jahanshahi,
Rahgozar and Malekinejad (2012). The method was presented a technique for static

analysis of the system while considering shear lag effects. In the process of replacing the
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discrete structure with an elastically equivalent continuous one, the structure was
modeled as two parallel cantilevered flexural-shear beams that are constrained at the
outrigger-belt truss location by a rotational spring. Based on the principle of minimum
total potential energy, simple closed form solutions were derived for stress and
displacement distributions. Standard load cases were considered. The formulas proposed
in the method were compared to a finite element computer package. Results obtained
from the proposed method for 50 and 60 storey tall buildings were compared to those
obtained using SAP2000.

A “Global structural analysis of central cores supported tall buildings compared with
FEM” was presented by Prav and Nicoreac (2012). The focus of their article was to
present an approximate method of calculation based on the equivalent column theory. By
applying the geometrical and stiffness characteristics of the structure the displacements in
the two directions, the rotation of the structure, critical load, shear forces, bending
moments for each resisting element and the torsional moment of the structure may be
determined. The results obtained using the approximate method was compared with the
results obtained using an exact calculation based on Autodesk Robot Structural Analysis
and ANSYS 12.1. The equivalent column theory is an approximate method used for

comparing and checking the results obtained by the Finite Element Method (FEM).
2.4 Simplified Finite Element and Matrix Methods of Analysis

Simplified methods of solution for the two and three dimensional frames based on the

matrix and finite element methods of analysis were developed.

In Macginely and Choo (1990) and Ghali et al (2009), a two dimensional analysis based
on building composed of parallel assemblies and on the shear wall frame interaction
system were presented. A three dimensional analysis of shear walls structures was
proposed by Ghali et al. In their method, the total degrees of freedom were reduced to
three per each floor. The global stiffness matrix was constructed from all shear walls,
with the assumptions of the rigid diaphragm and neglection of the floor out of plane
stiffness. The external lateral loads were applied at the assumed origin, the global

11



displacements were obtained and the local displacements and stresses were calculated

accordingly.

A two-level finite element technique of constructing a frame super-element was created
by Leung and Cheung (1981), to reduce the computational effort for solving large scale
frame problems. The ordinary finite element method was used first to yield matrices for
the beam members. Then the nodal displacements of all the nodes were related to those of
a small number of selected joints (master nodes) in the frame by means of global finite
element interpolating functions. Thus the frame was considered as a super-element
connected to other elements by means of the master nodes. The accuracy of solution may
be improved either with finer subdivision or by taking more master nodes inside each

super-element.

Also Leung (1983) presented another method, for the analysis of plane frames by
microcomputer. The method was based on the assumptions that, the distribution of the
vertical and rotational displacements at the nodes of a story is characterized by the
concept of distribution factors which are relative nodal displacements. The distribution
factors were allowed to vary from floor to floor and were determined by using three
floors at a time. These are calculated once only for floors having identical members. By
means of the distribution factors, the number of degrees of freedom was reduced to three
at any one floor. Therefore, it was possible for a micro-computer to handle a large
number of stories without difficulty. The resulting displacements and internal forces were
compared with full finite element analyses for a number of cases even with sudden

changes of stiffness.

The two dimensional method was further generalized by Leung (1985) to solve three
dimensional frames. It was also based on the fact that the deformation pattern at the
nodes of a particular floor may be predetermined before loading. These relative
displacements were called distribution factors which govern the distribution of
displacements. A number of free parameters were determined in the global analysis from
the applied loading. These parameters were called mixing factors. The linear
combinations of the distribution factors with mixing factors as weighting factors give the

actual displacements at the nodes. Structural idealizations of coupled shear walls by
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beams and columns were recommended. In order to improve the results another three
additional sets of global distribution factors were introduced by Leung (1988) to account
for the uneven elongation (shortening) of the columns having unevenly distributed
stiffness along the height and across the floor plane. The total number of unknowns per
floor was reduced. Using the concept of the two-level finite-element method, the global
distribution factors of the building frame were obtained. The global and local distribution
factors together predicted the lateral and torsion deflections and internal nodal

displacements accurately.

In a similar manner, Wong and Lau (1989), presented a simplified finite element for
analysis of tall buildings. It was based on the assumption that the warping displacement
modes of a floor and the differences between neighboring floors are mainly determined
by the local structural characteristics. Once the warping modes are determined, these
modes are taken as the basis of generalized coordinates. Then, the problem can be
reduced to a formulation in which only the rigid body displacements and the warping
generalized coordinates of each floor are unknown. Results obtained from the examples
show that the simplified analysis method was satisfactory in displacements as well as in
internal forces when suitable warping modes from a multi-storey sub-model are chosen.
The authors claimed that the proposed simplified finite element method using a multi-
storey sub-model one-floor-unknown scheme is inexpensive and is able to vyield
sufficiently good results for practical design purposes. The method can also be

generalized to solve dynamic problems.

A finite strip analysis method was developed by Swaddiwudhipong, Lim and Lee
(1988). The method was presented for the analysis of coupled frame-shear wall buildings
subjected to lateral loads. Appropriate displacement functions of admissible class were
adopted such that the problem is uncoupled and can be conveniently solved term by term.
Although this uncoupling property is valid only when the building is uniform throughout
its height, the method was extended to buildings with non-uniform section by employing
the concept of equivalent uniform section. Several numerical examples were presented to

show the accuracy and validity of the proposed scheme. The method required a small
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core storage and short computing time and suitable for implementation on any of the

personal computers commonly available in most engineering design offices.

Giovanni (2009), in his PhD thesis dissertation showed the different types of the
structural condensations which can be used in the structures simplification, and these
were, the static condensation, the dynamic condensation (Guyan’s reduction method) and
the exact dynamic condensation method developed by Leung (1978). Leung method
efficiently reduces the order of dynamic matrices without introducing further
approximation by representing the passive co-ordinates in terms of the active ones
exactly. The resulting frequency dependent eigenvalue problem is solved by a combined
technique of Sturm sequence and subspace iteration. The method is a condensation
method in dynamic economization and dynamic substructure analysis and it converges to
the natural modes of interest always, even for the extreme case that the natural modes of
the overall structure are multiple and very close to the partial modes of its substructures, a

case when the normal methods fail.

A method for lateral static and dynamic analyses was presented by Bozdogan (2011).
The study presented an approximate method which was based on the continuum approach
and one dimensional finite element method to be used for lateral static and dynamic
analyses of wall-frame buildings. In the method, the whole structure was idealized as an
equivalent sandwich beam which includes all deformations. The effect of shear
deformations of walls was considered and incorporated in the formulation of the
governing equations. Initially the differential equations of the equivalent sandwich beam
were written and the shape functions and stiffness matrix were obtained by solving the
differential equations. For static and dynamic analysis the lateral forces and masses were
applied on the storey levels. Angular frequency and modes were obtained by using
system mass and system stiffness matrices. Numerical examples were solved using
MATLAB to verify the presented method.

2.5 Methods of Simplifying the Models and Reduction Techniques

The simplification of the modeling can be treated in the structural analysis stage in order
to reduce and simplify the problem solution. The reduction technique can be classified in

the following types:
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. Symmetry and anti-symmetry of the building plan

. Two-dimensional model of non-twisting structures.

. Two-dimensional models of structures that translate and twist.

. Lumping Techniques which can be classified into lateral lumping and vertical lumping

g B~ W N

. Wide-column and deep-beam analogies.

In the work of Akis (2004), the main purpose of the study was to model and analyze
the non-planar shear wall assemblies of shear wall-frame structures. Two types of three
dimensional models, for open and closed section shear wall assemblies, were developed.
Those models were based on conventional wide column analogy, in which a planar shear
wall was replaced by an idealized frame structure consisting of a column and rigid beams
located at floor levels. The rigid diaphragm floor assumption was also taken into
consideration. The connections of the rigid beams were released against torsion in the
model proposed for open section shear walls. For modeling closed section shear walls, in
addition to that the torsional stiffness of the wide columns were adjusted by using a series
of equations. Several shear wall-frame systems having different shapes of non-planar
shear wall assemblies were analyzed by static lateral load, response spectrum and time
history methods where the proposed methods were used. The results of those analyses
were compared with the results obtained by using common shear wall modeling
techniques.

A simplified finite element modeling of multi-storey buildings was proposed by Li,
Duffield and Hutchinson (2008). The study discussed how to substructure different parts
of a multi-storey building with cubes having equivalent stiffness properties. As a result,
the mesh density of the whole building is reduced significantly and the computational
time and memory normally consumed by such complex structural dimensions and
material properties will also be reduced. The simplified analysis results of a high-rise
frame structure with a concrete core were used to explore the reliability of the proposed
method. In the study a typical 32-storey high-rise building was modeled with one storey
blocks. Force-Displacement relationship calibration was carried out to find the proper
simplified cubic model. According to the study, the equivalent cubic method was not

suitable for dynamic analysis. Further investigation focusing on the overall behavior of
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the structural model built using the equivalent cubic method needs to be conducted to

ensure the connection properties between floors work correctly.

2.6 Miscellaneous Researches Conducted to Study and Improve the

Structural Systems of the Tall Buildings

Otani (1979), showed that, the nonlinear analysis of a reinforced concrete building is
difficult because inelastic deformation is not confined at critical sections, but spreads
throughout the structure and because stiffness of the reinforced concrete is dependent on
a strain history. The paper reviewed the behavior of reinforced concrete members and
their sub-assemblies observed during laboratory tests. Then different hysteresis and
analytical models of reinforced concrete members were reviewed, and their application to
the simulation of building model behavior was discussed. In the paper the behavior of
reinforced concrete buildings, especially under earthquake motion, was briefly reviewed.
Otani concluded that, his method is useful and reliable, when a structure can be idealized
as plane structures, but more research required to understand the effect of slabs, gravity
loads, and biaxial ground motion on nonlinear behavior of a three-dimensional reinforced
concrete structure.

A study conducted by Moghadam and Aziminejad (2004), for the interaction of torsion
and P-Delta effects in tall buildings”, evaluated the importance of asymmetry of building
on the P-Delta effects in elastic and inelastic ranges of behavior. The contributions of
lateral load resisting system, number of stories, degree of asymmetry, and sensitivity to
ground motion characteristics were assessed. In the study four buildings with 7, 14, 20
and 30 story were designed based on typical design procedures, and then their elastic and
inelastic static and dynamic behavior, with and without considering P-Delta effects, were
investigated. Each building was considered for 0%, 10%, 20% and 30% eccentricity
levels. The results indicated that the type of lateral load resisting system played an
important role in degree that torsion modifies the P-Delta effects. It was also shown that
although in the elastic static analyses, torsion always magnified the P-Delta effects, but
the same not always true for dynamic analyses. The results of dynamic analyses also

showed high level of sensitivity to ground motion characteristics.
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The main results of the study were as follows:

1. In the elastic static analyses, effect of P-Delta always is increasing, as number of
stories of buildings or their eccentricity increased.

2. In the elastic or inelastic dynamic analyses, the effects of P-Delta sometimes increased
the response and sometimes decreased the responses.

3. “Importance of interaction of torsion and P-Delta effect” mainly depends on the type
of lateral load resisting system of building. The results indicated that the type of lateral
load resisting system played an important role in degree that torsion modifies the P-Delta
effects. It was concluded that the characteristics of lateral load resisting system had far
more importance compared with the number of stories in building.

4. It was seen that the effects of P-Delta is quite sensitive to ground motion
characteristics such as the frequency content of earthquake. In inelastic analyses, the
sensitivity is still important but less than the elastic dynamic cases. In general, the
sensitivity to ground motion increased, as the eccentricity increased.

5. In elastic or inelastic dynamic analyses, increase in eccentricity caused change in the
effect of P-Delta. The change is very important in elastic analyses and is somewhat less
important in inelastic analyses. However, the variation is not have a constant increasing
or decreasing trend. One of the reasons is the fact that with increase in the eccentricity,
the mass moment of inertia has not increased in all cases.

A nonlinear finite element analysis of tall buildings was presented by Marsono and Wee
(2006). The structural behaviors and mode of failure of reinforced concrete tube in tube
tall building via application of computer program namely COSMOS/M were presented.
Three dimensional quarter model was carried out and the method used for the study was
based on non-linearity of material. A substantial improvement in accuracy was achieved
by modifying a quarter model leading deformed shape of overall tube in tube tall building
to double curvature. The ultimate structural behaviors of reinforced concrete tube in tube
tall building were achieved by concrete failed in cracking and crushing. The model
presented in the paper put an additional recommendation to practicing engineers in
conducting non-linear finite element analysis (NLFEA) quarter model of tube in tube
type of tall building structures.

The findings of the study were summarizing as follow:
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1. The quarter model was capable to perform non-linearity behavior up to ultimate limit
state.
2. Modified boundary condition by assigning restraint at X-direction at all slab edges,
fully restraint at wall bottom ends was considered appropriate in generating a double
curvature profile as expected in tube in tube model.
3. NLFEA in tube in tube building performed well using non-linear concrete stress-strain
curve up to 32 steps of non-linearity and yields the ultimate behavior of tall building.
4. Modified quarter model, which included the full configuration of shear wall, was found
to be appropriate in modeling the tube in tube tall building as quarter section. Thus, the
behavior of coupling beams was successfully presented out.
A study conducted by Bayati, Mahdikhani and Rahaei (2008) presented to optimize the
use of multi-outriggers system to stiffen tall buildings. They stated that “in modern tall
buildings, lateral loads induced by wind or earthquake forces are often resisted by a
system of multi-outriggers”. An outrigger is a stiff beam that connects the shear walls to
exterior columns. When the structure is subjected to lateral forces, the outrigger and the
columns resist the rotation of the core and thus significantly reduce the lateral deflection
and base moment, which would have arisen in a free core. During the last decades,
numerous studies have been carried out on the analysis and behavior of outrigger
structures. But the question remained that how many outriggers system are needed in tall
buildings? The paper presented the results of an investigation on drift reduction in
uniform belted structures with rigid outriggers, through the analysis of a sample structure
built in Tehran’s Vanak Park. Results showed that using optimized multi-outriggers
system can effectively reduce the seismic response of the building. In addition, the results
showed that a multi-outriggers system can decrease elements and foundation dimensions.
Jameel et al (2012), were carried a research to optimize structural modeling for tall
buildings. They were concluded that it is a common practice to model multi-storey tall
buildings as frame structures where the loads for structural design are supported by
beams and columns. Intrinsically, the structural strength provided by the walls and slabs
are neglected. The consideration of walls and slabs in addition to the frame structure
modeling shall theoretically lead to improved lateral stiffness. Thus, a more economic

structural design of multi-storey buildings can be achieved. In their research, modeling
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and structural analysis of a 61-storey building were performed to investigate the effect of

considering the walls, slabs and wall openings in addition to frame structure modeling.

Sophisticated finite element approach was adopted to configure the models, and various

analyses were performed. Parameters, such as maximum roof displacement and natural

frequencies, were chosen to evaluate the structural performance. It was observed that the

consideration of slabs alone with the frame modeling may have negligible improvement

on structural performance. However, when the slabs are combined with walls in addition

to frame modeling, significant improvement in structural performance can be achieved.

In the research, different combinations of structural components of multi-storey buildings

were modeled to investigate the optimum design solution. Static as well as free vibration

analyses were carried out aiming at evaluating the structural performance and responses.
The following conclusions were drawn from the research:

1. Among the applied modeling concepts, (frame, wall, slab) is recommended for

economical design.

2. (Frame, wall, slab) modeling provides higher lateral stiffness and lower shear and

moment as compared with conventional frame and (frame, slab) modeling, which is an

expected trend.

3. The size of the structural member or the steel reinforcement in (frame, wall, slab)

modeling can be reduced, while satisfying the safety and serviceability requirement.

4. Wall openings, which would reduce lateral stiffness of a structure, should be taken into

consideration in structural analysis.

5. To fully understand the significance of walls and slabs in modeling and analysis of

multi-storey buildings, more modeling with a different plan view arrangement (such as

anti-symmetrical, non-symmetrical or more complex building shapes) were

recommended.

6. Further extensive study can be performed to generalize the effect of wall openings, by

modeling with different percentages of wall openings.

7. In the research, besides eigenvector analysis, only equivalent static analysis was

performed.
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Static pushover analysis and response spectrum analysis could also be performed to
further investigation of the response of multi-storey buildings under seismic loading
conditions.

A seismic analysis of building with and without shear wall was studied by Chandurkar
and Pajgade (2013). They were concluded that, in the seismic design of buildings,
reinforced concrete structural walls, or shear walls, act as major earthquake resisting
members, providing an efficient bracing system and offer great potential for lateral load
resistance. The properties of these seismic shear walls dominate the response of the
buildings, and therefore, it is important to evaluate the seismic response of the walls
appropriately. In their study, main focus was to determine the solution for shear wall
location in multi-storey building. Effectiveness of shear wall has been studied with the
help of four different models. One model was bare frame structural system and other
three models are dual type structural system. An earthquake load was applied to a
building of ten stories located in zone Il, zone IlI, zone IV and zone V. Parameters like
Lateral displacement, story drift and total cost required for ground floor were calculated
in both the cases replacing column with shear wall.

The conclusions of the paper were:

From all the conducted analyses, they observed that in 10 story building, constructing
building with shear wall in short span at corner was economical as compared with other
models. From this it can be concluded that large dimension of shear wall is not effective
in 10 stories or below 10 stories buildings. It was observed that the shear wall was
economical and effective in high rise building. Also observed that:

1. Changing the position of shear wall will affect the attraction of forces, so that wall
must be in proper position.

2. If the dimensions of shear wall are large then major amount of horizontal forces are
taken by shear wall.

3. Providing shear walls at adequate locations substantially reduces the displacements due
to earthquake.
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2.7 Review to the Moment Transformation Method

The Moment Transformation method (MT) was presented by lIbrahim (2013), and
Ibrahim and Mohamed (2013). The method was used firstly to simplify the analysis of
the continuous beams and sub frames connected by a single or double upper and lower
columns at the joints, same as the direct moment distribution procedure but with different
formulation.

The no-shear moment distribution (sometimes also known as the cantilever moment
distribution), is based on the concept of distribution of the sway fixed end moments
without changing the sway-moment equation during the distribution procedure, Ghali and
Neville (1978).

The concept of the direct moment distribution was suggested by Lin, [Williams
(2009)], as a means of eliminating the iteration required in the standard moment
distribution procedure. Several alternative methods have also been developed for the
direct distribution of moments, e.g. the precise moment distribution (some times called
the coefficient of restraints), Reynolds and Steedman (1999).

Then the method was used to solve the problems of the single post connected by
horizontal members and subjected to lateral forces, and permitted to sway freely such as
in the substitute frame method. In this type of analysis, the concept of the no-shear
moment distribution is applied.

The method has then been developed and generalized to solve the wall-frame interaction
problems, and also developed to solve the more complex two dimensional, and three
dimensional multi-bay multi-floor buildings with irregular arrangement and orientation of
the vertical members and subjected to both vertical and horizontal loads.

A computer program (MTProg) has been developed based on Visual Basic Environment
and implemented for the method.

2.8 Summary

The exact solution for tall buildings is very expensive in terms of time and computer
storage. For this reason the need for simplified methods of analysis is arise.

The simplified methods of analysis always require some assumptions e.g.

(a) Neglection of the axial deformations.

(b) The in-plane rigid body movement.
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(c) Assumption of the contra-flexural points in the middle of the columns and the beams.
(d) Assumption of equal floor heights.
(e) Assumption of uniform properties throughout the building height.

This is mainly shown in the continuum methods of analysis. The results obtained by the
continuum methods are less accurate when compared with the solutions obtained by the
simplified matrix based methods, especially if the walls are not symmetrical or the
members stiffnesses are largely different from each other, or if there is a setback in the
building as this affects the locations of the contra-flexure points. Analysis methods based
on simplified matrix and finite elements analysis give relatively accurate solutions.

Simplifications of the models, such as the optimized modeling schemes proposed by
Akis (2004), assist in analyzing the tall buildings with a lesser cost and effort.

Therefore, a simplified method of analysis that is based on reasonable assumptions is
required, in order to reach a more simple and accurate solution when compared with the

exact methods. In this research, such a simplified method is proposed and verified.
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CHAPTER THREE
The Moment-Force Transformation
Method Theory

3.1 Introduction

In simplified analysis methods of tall buildings, the following assumptions are widely
used and are found to be reasonable for the majority of building structures:
(1) The floors are rigid in their own plane. The whole structural assembly in each floor
moves as a rigid body in the horizontal direction. The structural stiffness matrix is formed
under the assumption that all frames are connected at each floor level by a diaphragm,
which is rigid in its own plane. Due to the high in-plane stiffness, the lateral loads are
transferred to the columns and shear walls through these diaphragms.
(2) The out-of-plane stiffness of the floor can either be neglected or incorporated
approximately into corresponding equivalent beams.

In three dimensional analyses, there are some factors that influence how fast
results can be obtained and how accurate they are. The most important factors are the
amount of required data, computer running time and the vast output results that should be
interpreted. These should be optimized in such a way that sufficient results can be
obtained by entering lesser data and having a relatively short computing time. The
computer running time is mostly affected by the total number of degrees of freedom in
the system. Generally it may be decreased by:

(@) A reduction in the total number of elements used in the analysis and,
(b) The use of elements having the least degrees of freedom.

3.2 Reduction of Total Degrees of Freedom by Considering Rotations

Only

Instead of considering the whole degrees of freedom and applying all the forces
directly in the joints, the problem can be reduced to a system that includes only the
rotational degrees of freedom and fixed end moments. The known methods using such
assumptions are the slope deflection method, the ordinary moment distribution method,

the no-shear moment distribution and the successive sway correction method.
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3.3 Analysis of Structural Systems using rotational degrees of freedom
Any structural system subjected to both vertical and/or horizontal loads can be split into
two loading systems (a) and (b), as shown in Figure 3.1. This simplifies the problem and
reduces the total degrees of freedom to only rotational degrees of freedom. System (a) is
a system in which the lateral degrees of freedom are released and the rotations are
completely restrained by the fixed moments for all the joints in the structure. The system
is used to calculate the fixed-end moments due to the external loading, the fixed moments
produced from the carryover moments and the transformed moments. System (b) is a
system with all the translational and rotational degrees of freedom released and used for

the released moments (the balancing moments).

| s
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\
Pl —e Pl —e— | gy MrT,
|

{ ML, Mr2 and Mr3

are restrainng Moments

- P2 —e-fi | Mr2 Mz /|
|

P3—w py —wl—s | Mr3 M3

System (a) . Rotatons rest d System (b) . Rotatons released

Figure 3.1: Single post model
The released or the balancing moments, which are the reverse of the restraining
moments of the structural system (a), will be applied as concentrated moments in the
joints of the structural system (b). The induced moments e.g. the carryover moments and
the transformed moments are considered as fixed moments and should be applied again
in the structural system (a).
Appendix Al shows an example illustrates the use of the two loading systems.

The example yields the following two important notes:
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(1) The joints rotations can be that obtained only from the structural system (b), as the
structural system (a) has no rotations at the joints.

(2) The total translations of the joints are produced from the two structural systems by
superimposing the translations obtained from each system.

Based on the illustrated two structural systems concept, the moment distribution and the
moment transformation procedures are illustrated as shown in Appendix A2 and A3.
3.4 Sway Fixed-End Moments

In order to obtain the sway fixed end moments in the vertical members, let us consider

the structure shown in Figure 3.2, which shows an intermediate storey in a multi-bay
plane frame subjected to horizontal loads at floor levels. Assume that the frame is
allowed to sway without joint rotation. Neglecting the axial deformations in the
horizontal members, the top ends of all the columns in one storey translate relative to
their bottom ends by the same amount D. This sway induces end-moments and shearing
forces in all the columns. For equilibrium, the sum of the shearing forces in the columns
of one storey must be equal to the sum P of the horizontal forces acting on all the higher

floors; thus P and the column end-moments are related by:
1
=M .(3.1)
h
Where the summation is for the end-moments M at top and bottom of all the columns in

the given storey, and h is the floor height, Ghali and Neville (1978).

F'= Sum of horizontal forces
ol the lloors above the
storey considered

Figure 3.2: Intermediate storey of a multistory frame
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3.5 The Moment Transformation method

3.5.1 Column of two members

TF
e
2
4\/ Transformation from
@ ! joint 1 to joint 2
Unit Moment\;-ﬁ\ ' g§
1
7

Figure 3.3: Transformation of Moment
Referring to Figure 3.3, and using the displacement method of analysis, the equivalent
rotational stiffness Se of the two members 1 and 2 at joint 2, and the transformation factor
TF for the moment transformed from joint 1 to joint 2, are given as follows:

2

t
s, :{82 —2—}
(5,+5,) .(32)

_tz

TF=—2 _
(8,+5,)

...(3.3)
where:
Si is the rotational stiffness of member # i.

ti is the carryover moment of the member # i.
3.5.2 Generalization of the Method to Two and Three Dimensional

Multi-storey buildings

Instead of transformation from joint to joint through members, as in the case of the
two columns, Figure 3.3, the system now is composed of multiple bays and multiple
floors as in Figure 3.4, and the transformation will be carried out through the floors from
top to bottom and from bottom to top.

Instead of the joints, the transformation in this case will be carried out from one level
to another level, Ibrahim (2013).
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Figure 3.4: Multi-Storey 2D or 3D Building
The transformation procedure is generalized and given in a matrix form as shown in the

following sections.
3.5.3 Equivalent stiffness matrix and moment transformation factors
matrix

Moments Transformation procedure from top to bottom,

[SRI=[NN]i , (ifi=1) ...(3.4)
[SRI=[NN]i+[GG]i1 , (ifi#1) ...(3.4b)
[AA] = [A]i + [SR] ...(3.5)
[FF1i=-[BC]"i [AA]* ...(3.6)
[GCIi = [Ali + [FF]i [BC]i ..(3.7)
where;

[NNT]i ,isthe Over All Rotation Stiffness Matrix of the Level #1i .

[GG] i1 , is the Equivalent Rotation Stiffness Matrix of The Floor #i-1 .

[A]i , is the Condensed Rotation Stiffness Matrix of The Floor # i .

[ FF]i , isthe Transformation Factors Matrix of The Floor #1i .

[BC]i , is the Carryover Moments Matrix of The Floor #1 .

[BC]'i , is the Transpose of The Carryover Moments Matrix of The Floor #i .
[GG] i , is the Equivalent Rotation Stiffness Matrix of The Floor #1i .
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The same procedure can be carried out for transformation from bottom to top.

3.5.4 Total Transformation Factors matrix from one level to a far level

The total transformation factors matrix is calculated as follows:

[FT lk—x+2=[FT lxsx+1 [ FF Jg+1—k+2 ...(3.8)

where:

[ FT Jx—«+1 , is the total transformation factors matrix used to transform the moments at

level # K toward the level # K+1 .

[ FT Jk—k+2 , is the total transformation factors matrix used to transform the moments at

level # K toward the level # K+2 .

[ FF ]x+1—k-+2, is the Transformation Factors Matrix of Floor between level #K+1

and level K+2 .

3.5.5 Transformation of the moments from level # j to level #1i

Transformation of the moment vectors from level j to level i can be carried out as shown

in Equation 3.9.

{MT}i={MT}+[FT],—{MT+MB+MS} ...(3.9)
Figure 3.5, shows the arrangement of the fixed ends moments at the level # i.
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L \</ (a ™2 m-1 m

Figure 3.5: Moments of the Concerned Level
3.5.6 The joints rotations and the final moments at each level
The rotations and the moments at the joints of the level # i are calculated as shown
below:
The rotation of all the joints of level # i is given as follows:
{ROT }i=-[KT]i* { MTOT }i ...(3.10)
[KT]i=[KT]i+[KB]i+[KS]i ...(3.11)
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{MTOT}={MT}i+{MB}i+{MS} ...(3.12)

Final moments of the level #i:

{MTf}i={MT }i+ [ KT ]i{ROT }i ...(3.13a)
{MBf}i={MB }i + [KB]i{ROT }i ...(3.13b)
{MSf}i= {MS}+[KS]i{ROT h ..(3.130)
where:

[KTT]i ,is the total stiffness matrix at the level #1 .

{ MTOT }i , is the total moments vector at level #1i .

{ ROT }i, is the rotations of the joints vector at the level #1i .

{ MT }i, is the original and the transformed moments vector just above the level #1i .
{ MB }i,is the original and the transformed moments vector just below the level #i .
{ MS }i, is the original moments vector at the beams ends of the level #1i .

{ MTf }i, is the final moments vector just above the level #i .

{ MBf }i, is the final moments vector just below the level #i .

{ MSf }i, is the final moments vector at the beams ends of the level #i .
3.5.7 The condensed Stiffness and the Carryover Moment for single
member

The rotation stiffness for single post subjected to side sway with no shear produced can

be obtained as follows:

T
Ralalian & Translalion
Megrees: OF Coeedin

ot a single memnber
Figure 3.6: Rotation and Translation DOF s of a Single Member

The two DOFs are shown in Figure 3.6 and the corresponding system matrix equation is

as follows:
Si1 Si2 D1 F1
— ...(3.14)
So1 Sa D> F2
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In order to obtain the condensed stiffness matrix, substitute for F1=S", F, =0, D; =1,

D2 = D in equation 3.14, yields

S11 Si2 1 S
= ...(3.15)
So1 S D 0

Figure 3.7: Condensed rotation Stiffness with Translation Permitted
where S” is the condensed stiffness or rotation stiffness with translation not prevented.

The matrix Equation 3.15 contains the following two equations:

Su+ S2.D = § ...(3.16a)
S;i+ S».D = 0 ...(3.16b)
From equation (3.16b)

D=-S»t.Sn ..(3.17)
Substitute equation (3.17) into equation (3.16a), gives:

S"=S11—S12. 52" . St ...(3.18)

These relations can be formulated in a general matrix form as shown below:

[Su] [ Si2] [1] [S7]
= ...(3.19)
[Sa1a]  [S22] [D] [0]
where:

[1] :ldentity matrix .

[0] : Null matrix .

[ D] : Displacement matrix corresponding to the condensed stiffness matrix .
[Sij] : Sub-Matrices of the main matrix .

[ S] : The condensed rotation stiffness matrix .
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Equation (3.17) and (3.18) becomes as follows:
[D]=-[S22]". [S2] ...(3.20)
[S117] =[Su1] —[S12]. [S22]™? . [S21] ...(3.21)
For a single member, shown in Figure 3.6, the stiffness matrix of the two degrees of
freedom in the general form, is as follows:
S (S+t)/L

(S+t)L 2*%(S +1)/L?

Considering bending deformation and neglecting shear deformations, the stiffness matrix
will be as shown below:

4 EI/L 6 El/L2
[S] =
6 EI/L2 12EIL®
Using equation (3.17) and equation (3.18):
D =-(6EI/L?2)/(12EI/L®) =-05L
S" =4EIl/L-(6EI/NL?2)?/(12EI/L® ) =4EI/L-3EI/L= EIL
where:

S” is the condensed rotation stiffness with the lateral sway permitted.

Sx

q

@

”
Carry Over Moment
Figure 3.8: Carryover Moment for a Single Member
For equilibrium of the post:
=-S5 ..3.22
Where: t* is the carryover moment corresponding to the condensed rotation stiffness S”.
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The lateral loads are applied in terms of side sway fixed moments with no rotation of the
joints permitted.

The final moments and the rotation at each joint is obtained directly by the
transformation method from which we can get the joint lateral displacements and the

shear forces in all members.

3.5.8 The condensed Stiffness and the Carryover Moments matrices for

two members
The previous procedure that used to obtain the condensed stiffness for a single member
subjected to side sway is now generalized to a bundle of members. To simplify the

presentation we consider a system of two vertical members (columns or walls),

Inextensible rigid
truss memhber
o | 7y
(1% | | Z».

mamher | mambar 2

Rotatien & Transiation
Degress Of Freedom
of a two members system

Figure 3.9: Rotations and Translation DOF s of a two Members System
The system equation corresponding to the three degrees of freedom shown in Figure 3.9
including the condensed rotation stiffness matrix with the translation of the joints

permitted is as shown below:

S11 S12 S13 1 0 Si1” | Si2”
So1 S22 So3 0 1 = Sat” | S22
Sa1 S32 | Ss3 [D1 'D2] [0 0 ]

...(3.23)

Applying equation (3.20) shown in the previous illustration, we get the displacements
corresponding to the condensed stiffness matrix:
[Di D2]=-[Sss]*[Sa1 Sa2] =-[(Ss1/Sss) (Ss2f Sas)]
= [-(Ss1/ Ss3) -(Ss2/ Ss3) ] ...(3.24)
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Figure 3.10: Condensed Stiffness Coefficient Corresponding To Displacement D1
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Figure 3.11: Condensed Stiffness Coefficient Corresponding to Displacement D2

From equation (3.21) the condensed rotation stiffness matrix is:

* *

S11- S13. S337t .Sa1 S12- S13. S337t .S32
= ...(3.25)
S21- S23. S337t .Sa1 S22- S23. S33t .S32

S11 S12

* *

So1 S22

The internal interaction force is obtained from the local stiffness matrix of the member
that free in one end and fixed in the other end, the considered degrees of freedom are the

rotation and the translation of the free end, as shown below:

S (si+t)/L | [1 S
(Si+ti)/L 2(Si+t)/L? Dj (Fi)oj
and,
Si (Si+ti)/L 0 S
1 (= (Fori#j) ...(3.27)
(Si+ti)/L 2(Si+t)/L? | Di | (Fi)oj
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where:
Si & tj are the ordinary rotation and carryover moment of member # i respectively.

D;j is the displacements corresponding to the stiffness configuration #j.

_Sj

(Fiuj kit '

Carry Over Momenl
element

Figure 3.12: Carryover Moment Coefficient t';
For equilibrium of the member shown in Figure 3.12, the carryover moment matrix
element t7j can be calculated as follows:
tij = - ST+ (Fioi* L ...(3.28)
3.6 The Moment-Force Transformation Method

The moment transformation (MT) method was developed to analyze moderate tall
buildings neglecting the axial deformations in the vertical members. In this research the
MT method has been further developed to the Moment-Force Transformation (MFT)
method, which included the axial deformation in the vertical members in the analysis.
The two methods are used for linear static analysis of tall buildings. The algorithm of the
moment transformation program MTProg has been further developed to the moment-
force transformation program MFTProg.

In the moment distribution methods, the moments are distributed between the end joints
of each individual member. In the moment transformation (MT) method the distributions
are carried out for a coupled group of moments at the same time from one level toward
the next level. Using this stream or bundle of distribution, permits the axial deformation

(shortening/elongation) of the vertical members to be incorporated in the analysis.
3.6.1 Consideration of the axial deformations in the vertical members

In this part, the axial deformation in the vertical members is incorporated in the

analysis. The procedure start using a single post composed of different members and then
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generalized to any system composed of multiple vertical members. To simplify the
presentation a post composed of two elements is considered as shown in Figure 3.13.

The stiffness matrix for each individual member is as follows:
K - K t
[— K K [t K J

F2 F'2

Figure 3.13: Column of two segments
Where: K is the axial stiffness (K= EA/L) and t=-K = carryover force (Similar to the
carryover moment). The carryover moment or force, actually are the moment or the force
reactions of the restrained far end of the member.

The matrix equation of the structural system shown in Figure 3.13 is as follows:

Kl1+K2 —-K2 D1 F1
= ...(3.29)
-K2 K2 D2 F2
Where:
K1 and K2 are the axial stiffnesses of the members 1 and 2 respectively.

F1 and F2 are forces acting at joints 1 and 2 respectively.
D1 and D2 are the axial displacements of the joints 1 and 2 respectively.

From which:
(K1+K2) D1-K2 D2 = F1 ...(3.30)
-K2 D1+K2 D2 =F2 ...(3.31)
From equation 3.30

K2 F1

D1= D2+ ...(3.32)
K1+ K2 K1+ K2
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Substituting from equation 3.32 into 3.31 and rearranging, yields:

K1.K2 K2

D2=F2+ F1 ...(3.33
(K1+ K2) (K1+ K2) ( )
or
K2 .D2=F2+TF.F1 ...(3.33a)
where
K1.K2
K2* = (———— ...(3.34
(K1+ K2) ( )
F =L ...(3.35)
K1+ K2

K2*: is the equivalent axial stiffness replacing the two members 1 and 2, in the place of
member 2.

TF: is the factor used to transform the axial force from joint 1 to joint 2.

The form of the produced equation is similar to the moment transformation equations, so
that the axial stiffness can be introduced in the transformation procedure together with
the rotational stiffness.

For multiple vertical members, the axial stiffnesses of the vertical members are coupled
with the transverse stiffness of the beams in the case of the two dimensional analyses and
by the whole transverse (out of plane) stiffness of the floor slab in the case of the three
dimensional analyses.

The transformation of the moment and the force from joint (1) to joint (2) is carried out
as shown in the following steps:

(1) Restraining of joint (2).

(2) Application of the force (F1) at joint (1).

(3) Finding the force reaction (R) at joint (2).

(4) Reversing the reaction (R) to get active force (F°21=-R).
The reaction (F’21) is part of the force (F1) , and is given by:
F=a.Fy ...(3.36)

Where: a=TF
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The equivalent stiffness of the two members is match with the equation used to
calculate the equivalent axial stiffness of (n) members. The equivalent stiffness of (n)
members is obtained from:

For axial force, F, acting at the top of a vertical cantilever composed of members
connected in series, the total displacement is equal to the summation of all the
member’s displacements:

Diot= DI+D2+...+Dn

F F F F
—_— =t — .+ —
Ke k1 k2 Kn
Or;

1 1 1 1

—_— =gt —et ...+ — (337)
Ke k1 k2 Kn

The axial displacements for a three segments column were calculated using the force
transformation method is presented in Appendix A4.
3.6.2 Multi-Bay Multi-Storey Buildings

By combining the moments and the forces transformation procedures, the moment-
force transformation procedure can be generalized to calculate the equivalent stiffness
matrix and the transformation factors matrix of tall building.

3.6.3 Condensed Stiffness and Carryover Matrix for Multiple Vertical

Members including axial deformations

Considering a system of two vertical members, Figure 3.14, the stiffness matrix
equation corresponding to the three degrees of freedom 1,2 and 3, as before, is
condensed into degrees of freedom 1 and 2, as follows:

9 2
. .

Inextensiote rigd
truss member

mamher 1 mamber 2

Figure 3.14: Rotations and Translations DOF s of a Two Vertical Members System
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* . *

Sll SlZ E S13 l 0 Sll SlZ
Su Sz iSu[ 0 17=15a Sar ..(39)

Su Sw !Sx)(Dy D) [0 0
As in the moment transformation method, the internal interaction force, (Fi)pj is
obtained from the different rotational stiffness configurations and hence the elements of

the carryover moments matrix, t"jj, are calculated from equation 3.39:
t; =—=S; +(F)y-L ...(3.39)

Where; L is the floor height.

Since the axial stiffness of the vertical members are uncoupled with each other and also
uncoupled with the rotational and the lateral translation stiffness of the members, then the
axial stiffness of each member can be added to the condensed rotational stiffness, S¥j, of
the members after the condensation procedure. Similarly, the axial force carryover
elements are also added to the carryover matrix.

3.7 Second order P-Delta analysis of tall buildings

By coupling of the moments and the axial forces in each of the vertical members for
large lateral displacements at the floors levels during the moment-force transformation
procedure, the second order P-Delta effects are directly included in the analysis and
structural instability with reference to overall buckling or failure of individual members is

also studied.

3.7.1 Condensed Stiffness and Carryover Matrices for Multiple Vertical

Members, including P-Delta effects

Considering a system of two vertical members, Figure 3.15, the stiffness matrix
equation 3.38, corresponding to the three degrees of freedom 1, 2 and 3, are condensed
into 1 and 2, as follows:

The translational stiffness Sz (Equation 3.38), is a summation of the translational
stiffness (St) of each vertical member including its global P-Delta effect (i.e. -P/L, where
P is the axial force in the vertical member), as shown in Figure 3.16. The effect of the
local p-delta in any member may be incorporated by using the Euler stability functions

where the rotational stiffness, S, and the carryover moment, t, of the member, are
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trigonometric functions of axial compression forces for positive P values, or hyperbolic
functions of axial tension forces for negative P values, Ghali et al. (2009).
o -

Inextensibie ngd
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1** and 2** xe axial DOFs
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————— e ey

Figure 3.15: Rotations and Translations DOFs of Two Vertical Members System,
(with large displacements)
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Figure 3.16: Translational Stiffness of a member including P-Delta effect
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Figure 3.17: Carryover moment including P-Delta effect
The lateral displacement, D, and the internal interaction force, F, Figure 3.17, are
obtained from the different rotational stiffness configurations and hence the elements of

the carryover moment matrix, including the P-Delta effects, are calculated from equation
3.40:

t;=-S;+F.L+PD ... (3.40)
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3.7.2 Linear-displacement assumptions

In the case of the linear-displacement assumption, the end rotational stiffness S and the
carryover moment t of a beam element are assumed not to be affected by the axial load.
The affected term is the lateral stiffness St, as shown in equation 3.41:

_2S+t) P 341)
T 3.

For beam element with shear deformations considered, the ordinary end rotational

St

stiffness and the carryover moment are given, as follows:

g @ra) El .(3.42)
(l+a) L
, and (= 2= El ...(3.43)
(l+a) L
Where
_12EI
Ga, L’

And, for members with shear deformations neglected stiffness factors are:

=E, and tzg
L L

S

The term (—%) is the linear geometric stiffness of the beam element affecting the lateral

stiffness.

The term geometric stiffness is introduced so that the stiffness matrix has a different
name from the mechanical stiffness matrix, which is based on the physical properties of
the element. The geometric stiffness exists in all structures but it becomes important only
if it is large compared to the mechanical stiffness of the structural system, Wilson (2000).
3.7.3 Cubic-displacement assumptions

In the case of a beam element with bending properties in which the deformed shape is
assumed to be a cubic function caused by the rotations ¢i and ¢j at the beam ends,
additional moments Mi and Mj are developed. Considering the cubic function, the force-

displacement relationship is given by Equation 3.44, Wilson (2000):
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3L : : s
M, | p| 3L ~3L I’ |4,
"= P F or. F, =kgv
i 3 = al

...(3.44)
The well-known elastic force deformation relationship for a prismatic beam neglecting

shear deformations is:

F, 12 6L —12 6L |v,
M, _EH 6L —6L -2I*| ¢,
or. Fr =Kkzv
F |"p2|-12 —6L 12 —6L |v,
M, 6L —6L 4% |4, |
...(3.45)
Therefore, the total stiffness matrix, kT, of the beam element is as follows:
kT = kE + kG ...(3.46)
where;

KE is the elastic (mechanical) stiffness matrix, and kG, is the geometric stiffness matrix.
So, to account for the cubic displacement function, it is only required to incorporate the
total rotational stiffness and the carryover moment including the terms shown circled in

the geometric and the mechanical stiffness matrices, therefore:

JAELAPL g
L 30

, and t:£+& ...(3.48)
L 30

If shear deformations are considered in both the geometric and mechanical stiffness

matrices, the rotational stiffness and the carryover moment become as follows:

_(4+a)El P(2L/15+Lal/6+La’/12)
(l+a) L (1+a)?

...(3.49)

, and
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‘(o (2—0;)&+ P(L/30+La/6+La?/12)
(l+a) L 1+ a)?

...(3.50)

The translational stiffness Sr, can directly be obtained by maintaining the equilibrium of
the element.

2(S+t) P
S. =8S.. = - ...(351
T 33 L2 L ( )
Considering bending deformations only,
S:E_ﬂ,and t:E_F&
L 30 L 30

_12El 6P P 12El 36P

> 30L L L° 30L

St is the summation of the elements shown squared in the geometric and mechanical

stiffness matrices.
3.7.4 Euler Stability Functions

The rotational stiffness and the carryover moment for a member subjected to an axial
force P, are shown in Figure 3.18.

s

i
_ "
SR LA
A
et N
P = absolute value of the axial force (tension or compression)
w = NPAET

Compressive
axial force

§ or tin terms of {EI/)

Compressive axial force

-6 |

-5 L

Figure 3.18: End-rotational stiffness and carryover moment for a prismatic member
subjected to an axial force
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For member subjected to axial compression, S and t are given as follows, Ghali and
Neville (1978):

= Mﬂ ... (3.52)
(2—2c—us) |
,and
__ulu=s) EI ...(353)
(2—2c—us) |
Where:

s=sinu, c=cosu,u=I,/P/(El)

For member subjected to axial tension, S and t are given as follows:
iu=I1y=P/(El),i=+-1
sinh u =—isin iu, coshu =cosiu

__U(ucoshu-—sinh u) EI
(2—2coshu+usinh u) |
, and

...(3.54)

u(sinh u—u) El

= ...(3.55
(2—2coshu+usinh u) 1 (355)

Where:
u=I,/PI/(EI) , P: the absolute value of the axial tension force

If shear deformation is considered, the rotational stiffness and the carryover moment are

adjusted as follows:

S:[(4+oc)] u(ucoshu—sinr_] u) El .(3.56)
41+ a) (2—2coshu+usinh u) |
, and
I (2—a)] u(sinh u—u) El .(357)

2(1+a) (2—2coshu+usinh u) |
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3.8 The level rotation-translation stiffness

The level rotation and rotation-translation stiffness matrices used in all the
transformation methods presented in Ibrahim (2013), and in this research is calculated
using the four node rectangular plate finite element presented by Ghali and Neville
(1978), and beams members used to represent the different floor beams and also the rigid
parts of the slabs or beams intersecting with the wide shear walls.

The displacement function used in the formulation was a polynomial with twelve
generalized coordinates as shown below:

W= A1+ Ao X + Asy + Asx? + As.X.y + As.y? + Ar.x3 + Ag.x2y

+ Ag.x.y? + Aro.y? + Ay + App.xy® ...(3.58)

The rotation or the rotation-translation stiffness matrices are calculated after
constructing the whole stiffness matrix of the floor and assigning the different shear
walls, by applying a unit rotation in each of the two principal directions and unit
translation of each shear wall with all the other directions restrained. The corresponding
calculated support reactions are then arranged systematically to form the required level
stiffness matrix. At the same time during the construction of the level stiffness matrix,
another three matrices corresponding to the translation and the two rotations of all the
floor joints are constructed. The elements of these matrices are constructed from the same
applied unit rotations and translation that are used in the level stiffness matrix
construction. After finalizing the transformation procedure, the vertical translation and
rotations of all the joints in any floor level can be obtained directly by multiplying each
of the three matrices by the rotation and translation vector of the corresponding level. By
using the calculated translation and rotations of all the floor joints, the deformed shape of

the floor can be plotted, and the stress contour can be calculated and plotted.
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3.9 The Lateral Joints Displacements and the Shear Forces in the
Vertical Members

By using the calculated rotations and the final moments in any member calculated using
the transformation methods. The shear forces and the joint transverse displacements can,
then, be calculated by using the following procedure;

RN 1

D) 2_m

MR(])

R(I*+1) |3 ML{1+1)

pen) %))

4

Mewber [+1

PN
Figure 3.19: Degrees of Freedom of the Two Ends of Member # |
The system equation 3.59, corresponding to the member with the degrees of freedom,

shown in Figure 3.19 is as follows:

- 3 e N s N

S (S+t)/L t (S+t)/L R(1) MR(1)

(S+)/L  2(s+1)/L2  (s+t)/L 2x(s+)/L2 | [ D) | JVRO)

t (S+t)/L S -(S+t)/L R(1+1) ML(I+1)

[ (S+t)/L -2%(S+t)/L2  ~(S+t)/L 2%(S+t)/L? | | D(I+1)) VL(I+1)
..(3.59)

Where

S =[(4+a)/(1+a)] (EI/L) and t=[(2-a)/(1+a)].(EI/L), o =(12ED/(G.ar.L?)
From the first row:
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R()*S+(S+t)/L*D(1)+t*R(1+1)-(S+t)/L*D(I+1)=MR(I)
D(l) is obtained as:
D(D=[(MR(1)-R(1)*S-t*R(I1+1)+(S+t)/L*D(I+1)]L/(S+t)

D(D=[MR(D)-R(D)*S-t*R(I+1)]*L/(S+T)+D(I+1) ...(3.60)

The numbering sequence is from top to bottom, and the displacement at the bottom is
fixed, i.e. the displacement D(N+1) =0, where N is the number of floors.

The other displacements are obtained by reverse order from bottom to top, i.e. from
floor number N up to floor number 1.

The shear force is calculated directly from the calculated moments MR(I) and ML(1+1)
, and also can be cross checked as follows :

After calculating the whole displacements D(1) to D(N), the shear forces at the two ends

can be calculated from the second and fourth rows of the matrix equation 3.59 as follows:

VR(I) = (S+)/L*R(D)+ 2*(S+t)/LZ*D(1)+(S+t)/L*R(I+1)-2*(S+t)/L>*D(I1+1)

and;

VL(14+1) = -(S+t)/L*R(I)- 2*(S+t)/LZ*D(1)-(S+t)/L*R(1+1)+2*(S+t)/L>*D(1+1) ...(3.61)
=-VR(I)
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3.10 Concluding Remarks on the transformation methods
The transformation methods simplify the 2D and 3D analysis of tall buildings in three

ways, summarized as follows:

e The typical floors are analyzed only once, by condensation of the floor degrees of
freedom (DOFs) into only the supported DOFs with all the other remaining DOFs
translating and rotating freely.

e In 3D analyses, the considered DOFs in the vertical members are only two principal
rotations in each floor level, as manipulated in the (MT) method, which can be
reasonably used for moderate tall buildings or shear wall structures with negligible
axial deformations in the vertical members. But for super tall buildings with the axial
deformation in the vertical members dominant (e.g. tube and outrigger systems),
(MFT) method can be used with one translational DOF added to each of the vertical
members in each floor level, to represent their axial deformations. Hence, with some
modifications in stiffness and carryover moment, the second order analysis can be
incorporated with no extra cost.

e The solution for the unknowns are carried out in each floor level separately by use of
the calculated equivalent rotational-translational stiffness matrices and balancing the
fixed and the transformed moments and forces in the concerned level.

Appendix A5, presents a further optimization of the transformation procedure and a new

faster subroutine developed and implemented in the program MFTProgV2.
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3.11 Modal Analysis using the Transformation Methods

3.11.1 Introduction

As described by Clough and Penzien (1995), the mode displacement super-position
method provides an efficient means of evaluating the dynamic response of structures. The
response analysis for the individual modal equations requires very little computational
effort, and in most cases only a relatively small number of the lowest modes of vibration
need be included in the superposition. The mathematical models developed to solve
practical problems in structural dynamics range from very simplified systems having only
a few degrees of freedom (e.g. determinant method) to highly sophisticated finite element
models including hundreds or even thousands of degrees of freedom in which as many as
a relatively very few modes may contribute significantly to the response. To deal
effectively with these practical problems, much more efficient means of vibration
analysis are needed than the determinant solution procedure.

The basic concept is explained first with reference to the simplest application, the
evaluation of the fundamental (or first mode) shape and frequency of an N degree of
freedom system. Using the original dynamic matrix force, iteration will converge to the
first mode properties.

3.11.2 Fundamental Mode Analysis

The use of iteration to evaluate the fundamental vibration mode of a structure is a very
old concept that was originally called the Stodola method. The starting point of this
formulation is the statement of the un-damped free vibration equations of motion given
by equation 3.62:
kv, = w?mv, ...(3.62)

Equation 3.62 expresses the fact that in an un-damped free vibration, the inertial forces
induced by the motion of the masses, m, must be equilibrated by the elastic forces
resulting from the system deformations.

This equilibrium will be satisfied only if the displacements vn are in the shape of the n®"
mode of vibration and are varying harmonically at the n'"-mode frequency wn.

The inertial forces are that shown in the right hand side of Equation 3.62. Expressing the

inertial forces as:
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f, =w?mv, ...(3.63)
The displacements resulting from these forces may be calculated by solving the

following static deflection problem:

v, =kf, ...(3.64)
Or,
v, =w’k'my, ...(3.65)

The matrix product in this expression summarizes the dynamic properties of the
structure. It is called the dynamic matrix, and denoted as:

D=k™"m ...(3.66)

Therefore, Equation 3.65, becomes:
vV, = w?Dv, ...(3.67)

In the conventional methods, the flexibility matrix of the structure could be obtained
easily by inversion of the stiffness matrix (i.e. k'), it will also be derived by applying a
unit load to each degree of freedom successively and the deflections resulting from these
unit loads represent the flexibility influence coefficients. In the transformation methods,
the first option is not possible because the method has no direct lateral degrees of
freedom, and the unit load option is used to calculate the flexibility matrix. Therefore,
multiplying the flexibility matrix by the mass matrix yields the dynamic matrix.

The Stodola method can be demonstrated as follows: first computing the inertial forces
corresponding to any assumed shape, then computing the deflections resulting from those
forces, computing again the inertial forces due to the computed deflections. Repeating the
procedure yields the correct shape vector and the corresponding vibration frequency.

. The concept is well illustrated in Figure 3.20.

d1 dr’ .
7 f 7 f
{ | /
| /
d2/ d2'/ .
F-,vf = 2 = ﬁ*f — —f2
I ]
| /
/ I
Assumed shape Resulting inertial forces Computed shape Resulting inertial forces

Figure 3.20: Physical interpretation of Stodola iteration sequence.
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Using the original dynamic matrix (D=k'm), the Stodola iteration process must
converge to the first mode shape. The contributions of the higher modes to the
displacements vector can be made as small as desired by iterating for a sufficient number
of cycles; thus the procedure converges to the first mode shape.

3.11.3 Analysis of Higher Modes
I- Second Mode Analysis

In the vibration theory, the proof of the convergence of the matrix iteration procedure to
the first mode of vibration also suggests the manner in which matrix iteration can be used
to evaluate higher modes as well.

The way of obtaining the second mode properties is by introducing a matrix called the
sweeping matrix (Si) used to purify the current shape vector from any first mode

contribution, Clough and Penzien (1995):
1

S,=l—-—¢g¢'m ..(3.68)
Ml

Where:

M is the first mode generalized mass = @1'm @
@1 is the shape vector of the first mode.

m is the mass matrix.

Thus, if this component is removed from the assumed shape, the vector which remains
may be said to be purified: This purified vector will now converge toward the second
mode shape in the iteration process. The matrix iteration procedure can now be
formulated with this sweeping matrix so that it converges toward the second mode of
vibration. In this case, the equations used in the iteration procedures can be written which
state that a second mode trial shape which contains no first mode components will
converge toward the second mode.

Multiplying the dynamic matrix by the sweeping matrix yields a new dynamic matrix,
(D2=DS:), which eliminates the first mode component from any trial shape and thus
automatically converges toward the second mode. When D- is used, the second mode
analysis is entirely equivalent to the first mode analysis procedures.

It is clear that the first mode must be evaluated before the second mode can be

determined by this method.
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Instead of modifying the dynamic matrix by using the sweeping matrix, the alternative
procedure used in the Transformation methods is to modify the mass matrix using the
sweeping matrix to get a new purified mass matrix (m2=mSi:) (which may not be a
diagonal matrix as m). Instead of using the flexibility matrix, the solver of the
transformation method is used here by receiving the inertial applied loads produced from
the trial shape vector and producing a new corrected shape vector. This approach (based
on Stodola method) is better compared with the direct iteration method where the
flexibility matrix should by constructed by applying unit loads at all the directions of the
degrees of freedom (i.e. N loading conditions). Using this modified approach yields a fast
solution because the needed mode shapes are very few compared with the large amount
of the whole degrees of freedom, especially in the very large systems such as the super-
tall buildings.

The approach can be used also for the coupled mass matrices (e.g. consistent mass
matrix or purified mass matrix), because the applied inertial forces are a vector produced
from the multiplication of the vibration frequency, the mass matrix and the trial
displacements vector. These multiplications result in an inertial load vector containing
only one column.

I1- Analysis of Third and Higher Modes

The same sweeping process can be extended to purify a trial vector of both the first and
second mode components, with the result that the iteration procedure will converge
toward the third mode. Hence this modified dynamic matrix D3, or the modified mass
matrix ms, performs the function of sweeping out first and second mode components
from the recent trial vector, and thus produces convergence toward the third mode shape.
The process can be extended successively to the analysis of higher modes of the system
in turn. The most important limitation of this procedure is that all the lower mode shapes
must be calculated before any given higher mode can be evaluated.

The general form of the sweeping matrix is as follows:

S zsn_l—Mi¢n¢Tm ...(3.69)

n n
n

Where:

M is the n™ mode generalized mass = @n'm @
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@n is the shape vector of the nth mode.

m is the mass matrix.
3.11.4 Inverse Iteration (Stodola Concept) using the Transformation
Method

In the previous discussions of matrix iteration, the improvement in calculated shape
achieved during each cycle of iteration is obtained by simply multiplying the vector for
the preceding cycle by the dynamic matrix D=km. For this reason the procedure is
called direct iteration. Because the method is based on the flexibility version of the
dynamic matrix, it converges toward the shape of the lowest vibration mode, as is
necessary as a general tool for structural dynamics. The major disadvantage of this
procedure is that the flexibility matrix is fully populated, and this leads to computational
inefficiency in comparison with what can be achieved by operating with the narrowly
banded stiffness matrix. But direct iteration with the stiffness based dynamic matrix
E=m-k is not appropriate because it will converge to the highest mode shape. Also the
dynamic matrix E is not narrowly banded even though both k and m are. For these
reasons another alternative technique is considered.

Inverse iteration is the preferred method for taking advantage of the narrow banding of
the stiffness matrix. Because it is applied inversely, it converges toward the lowest mode
shape. In order to retain the narrow banding of k, the dynamic matrix E is never formed.
Instead, the mass matrix is combined with the assumed displacement vector to obtain an
inertial load vector. Then the stiffness based simultaneous equations of equilibrium are
solved to obtain the improved displacement vector. As in the direct iteration method, the
initial displacement vector will be assumed then the inertial forces due to harmonic
motions with this shape are calculated. However, noting that the effect of the frequency
will be removed subsequently by the normalization step, in this formulation the
frequency is assumed to be unity and the resulting inertial forces are formed. Now the
improved displacement vector resulting from the action of these forces is obtained by
solving the equilibrium equations of the structure subjected to these forces. One way to
solve these equations would be to calculate the flexibility matrix by inversion of the
stiffness matrix (f = k) and to multiply the inertial forces by the produced flexibility

matrix. This procedure actually would be entirely equivalent to the direct iteration
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analysis and would be inefficient because of the need to invert and then multiply by a
fully populated flexibility matrix. In the inverse iteration procedure, the equilibrium
equations are solved after first using Gauss elimination method to decompose the
stiffness matrix to the Lower (L) and Upper (U) triangular matrices. The simultaneous
solution then is carried out in two fast direct and backward substitution steps.

As was described, this derived vector then is normalized by dividing by its largest
element to obtain the improved first mode shape that is the final result of the first
iteration cycle. It is important to note that the narrow banded character of the stiffness
matrix K is retained in the triangular matrices L and U. Consequently the efficiency of
this inverse displacement analysis is greatly enhanced relative to the flexibility matrix
formulation used with direct iteration. Because the only difference between this inverse
iteration procedure and the previously described direct iteration lies in the more efficient
Gauss decomposition technique used to calculate the derived displacement vector, the
entire earlier description of direct matrix iteration is equally applicable to inverse
iteration if the equation that was used previously to calculate the displacements vector is
replaced by the simultaneous equation solution described above. However, even though
this difference may appear to be minor, the tremendous computational advantage of
inverse iteration must not be overlooked, especially when the system being analyzed has
a large number of degrees of freedom.

In principle, the inverse iteration procedure can be combined with sweeping matrix
concept to obtain a more efficient method for calculating the second and higher modes of
vibration, as discussed before.

Repeated calculation of the displacements is very fast using the Transformation method,
thus the method is proposed to be used as a simple alternative of the inverse iteration
method.

As a conclusion, the un-damped free vibration equation that expresses the equilibrium
between the vibration inertial forces and the elastic resisting forces will be adopted here
as the basic eigenproblem. Because the dynamic matrix D contains both the flexibility
and the mass properties of the structure, each cycle of the iteration solution for the mode
shapes involves merely multiplication by D as in the direct iteration method or solving

for the displacements as in the inverse iteration method, followed by normalization
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(scaling) which is accomplished by dividing the improved displacement vector by its
largest element in order to isolate the vibration frequency and obtain the new trial vector.
This iteration procedure converges toward the lowest mode shape because the eigenvalue
is in the denominator of the eigenproblem equation.
3.12 Buckling Analysis by Matrix Iteration (Vianello Method)

As for the vibration problem, the matrix iteration procedure for evaluating eigenvalues
and eigenvectors is applicable also when axial forces act in the members of the structure,
Clough and Penzien (1995). For any specified condition of axial loading, a similar

equation may be formulated as:

v® = w? DV ...(3.70)
In which
_ _—1
D=k m ..(3.71)

Where k =k —kg,is the combined stiffness matrix, taking account of the geometric

stiffness effect keo. The vibration mode shapes and frequencies can be determined by
iteration, as if they are without axial loads. The effect of compressive axial forces is to
reduce the stiffnesses of the members of the structure, thus tending to reduce the
frequencies of vibration. In the limiting (buckling) case, the vibration frequency goes to

zero, and the static eigenvalue equation takes the form
(k —Agkgo)v=0 ...(3.72)

Pre-multiplying equation 3.72 by (1/4;) f gives

iv:Gv ...(3.73)
G

In which

G = f kg, ...(3.74)

Where, f is the flexibility matrix of the syatem.

Equation 3.74 has the same form as the vibration eigenvalue equations and may be solved

by the same type of iterative procedure. The eigenvalues which permit nonzero values of
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v to be developed are the buckling loads, which are represented by the values of the load
parameter . Thus, if a trial shape for the first buckling mode is designatedv?, the

iterative process is indicated by
ﬂ—iovf) =Gv? ...(3.75)

When the iterative procedure is used to evaluate buckling modes in this way, it is named
the Vianello method, Clough and Penzien (1995). The matrix iteration analysis of
buckling is identical in principle and technique to the iteration analysis of vibration. Even
the orthogonality conditions can also be used in evaluating the higher buckling modes but
generally only the lowest mode of buckling is of interest, and there is little need to
consider procedures for evaluating higher buckling modes.

The influence of geometric stiffness on the vibration frequency of the structure can also
be calculated by matrix iteration, but if the critical load value is reached, the vibration
frequency will be zero. However, for any value of a smaller portion of critical loads, a
corresponding frequency can be determined. Then the geometric stiffness is given by
substituting this value into the expression for kco. The elastic stiffness of the column is
obtained and the combined stiffness matrix which takes account of the axial force effects
is formulated by subtracting the geometric stiffness from the elastic stiffness. Finally, the
vibration analyses could be carried out by iterating with a modified dynamic matrix
calculated from the flexibility matrix produced from the inverse of the combined stiffness
matrix.

Vianello method can also be formulated using the transformation method in order to
calculate the buckling loads of buildings. By applying the transformation method, the
linear displacement approximation can be directly used in the formulation of the
geometric stiffness matrix. This approach can be directly applied in the case of two
dimensional problems, because the geometric stiffness can be easily formulated using the
total loads at each floor. The problem becomes more complicated in the case of three
dimensional analysis of a buildings subjected to lateral loads producing twist rotations in
the floor levels, because some of the terms in the geometric stiffness matrix depend on
the axial loads in the individual vertical members. This can be solved with continuous

corrections of the axial forces in the geometric stiffness matrix during the iterations
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procedure. As for the vibration analysis, inverse iteration or Stodola concept can also be
modified and incorporated in the Vianello buckling analysis.

In the two dimensional analysis, a parabolic shape is taken as a reasonable first guess for
the first mode buckled shape.

To illustrate the analysis using Vianello method, assume a cantilevered column with 3
concentrated weights of magnitudes from top to bottom equal to Ni, N> and Na
respectively, and segments lengths 11, 12 and 13. When the linear-displacement

approximation is used, the geometric stiffness of this cantilevered column is given as:

N =Ny
I1 I1
ko= =N N N, =N, ... (3.76)
60 | , [
1 1 2 2
o Ne NN,
L |2 |2 |3_

For the torsional effects, the analysis is carried out as for the fictitious column illustrated
by Smith and Coull (1991), which is located at the centroid of the total gravity loading
above the concerned story. As illustrated by Smith and Coull, this column should be
incorporated in the model to cater for the torsional P-Delta effect. The column has a

negative torsional constant calculated from:

1 1 ~GJ,
h—iZ[Pij(d;j +dfij)]=HPiri2 = ...(3.77)

In which Pj; is the gravity load in column or wall j in story i, dyijj and d;j are its Y and X
distances from the center of gravity loading in story i, and r; is the radius of inertia of the
total load P; about the center.

Using same concept as in Equation 3.77, the coordinate origin of the proposed program
MFTProgV2 is located at the center of the total gravity loadings. The inertias are
calculated approximately for each column or wall from the axial forces in column or wall
computed from linear elastic analysis of the whole frame.

In MFTProgV2, if the column or wall is oriented in the building plane, the column or
wall coordinates should be transformed to the coordinates corresponding to the principal

axes of the column or wall as shown in Figure 3.21.
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Figure 3.21: Transformation of coordinates for orient column
With reference to Figure 3.21, the new coordinates considered in the inertia calculations

are obtained using the following transformation matrix equation:

' cos sin X
{X‘.’}{ > a}{ 0} (3.78)
Yo —sina cosa ||Y,
The inertia part in the 3D building geometric stiffness matrix is constructed using the

same arrangement as the loads parts, as shown in equation 3.76.
3.13 The Improved Vianello Method

Buckling analysis using Vianello method and the transformation method uses the linear-
displacement function. The method can be improved by adjusting the end rotational
stiffness and the carryover moment of the member by incorporating the axial load
multiplied by the calculated buckling factor, using the Euler stability functions or the
cubic shape function. The procedure is repeated until reaching a negligible difference
between the last two buckling factors. The procedure should be carried out for each
buckling mode after sweeping out the buckling matrix. The results converge towards the
exact value faster than in the cases of the incremental and the bisection methods.

In this research, the proposed improved Vianello method is used in MFTProgV2
instead of the conventional eign solution as that used in the advanced buckling analysis
solver of STAAD shown in Appendix E.

3.14 The conventional buckling incremental method

The elastic critical loads of plane frame can be obtained using the flow chart shown in
Figure 3.22 which is based on the method described by Coates et al (1990). lllustration of
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the method is shown in Appendix B. The method involves repeated stiffness method
analysis of the structure at progressively increasing load factors. As shown by Coates et
al (1990), the stiffness matrix Ks of a stable structure has the property of positive-
definiteness, and a test for this property can be performed at each load level. As soon as a
load factor is used for which Ks ceases to be positive-definite and becomes singular it is
known that the critical load has been reached. The test applied is to the determinant of
the matrix which should be positive until singularity when it becomes zero, but in
practice exact singularity cannot be obtained and the sign becomes negative
corresponding to a state of unstable equilibrium.

The determinant is used here as a convenient quantity for which a standard computer
library routine is likely to be developed, but an alternative is presented in the end of this
section.

An alternative to the use of eignvalues in checking singularity in a stability analysis if a
Choleski solution is used, is to observe the sign in the square-rooting operation required
for the calculation of diagonal terms in the decomposed matrix. For a positive-definite
matrix these signs should all be positive, but one term will become negative as soon as
the singular condition is passed. The method has the advantage that, apart from
examining terms as they are calculated, no additional operations are required, but has the
disadvantage that it provides no information from which mode shapes can be calculated.
3.15 Buckling Analysis using the transformation method
The incremental subroutine described in section 3.14 above is modified to be
incorporated in the transformation method. The transformation method uses the rotational
degrees of freedom in place of the lateral translational one. For this reason, the rotational
stiffness is used to examine the singularity, as illustrated in Appendix C.

As shown in Appendix C, the condensed translation and rotation DOFs produce the
same results. This fact, results in a generalized rule used in the buckling analysis by using
the transformation method. In this case the minimum determinant of all the floors
rotational stiffness matrices is used to examine the singularity.

I. Because in structural analysis the determinate of the stiffness matrix can be very

large or very small (in stability analysis), the natural logarithm of the determinate is
calculated and used instead of the determinant.
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I. Although the algorithm is originally designed for plane frame, it is developed and

used in both the 2D and 3D analyses.
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Figure 3.22: Flow chart for elastic critical loads of plane frame
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3.16 Buckling Analysis using the transformation method with the aid of

the bisection method

The sequence of the basic Solver in STAAD, shown in Appendix D, was followed
partially in the proposed program MFTProgV2. The procedure followed in MFTProgV2
is as follows: 1) Linear static analysis based on the provided external loading is carried
out. 2) Calculate member axial forces. These forces are used to calculate the rotational
stiffness and the carryover moments, and are adjusted at each trial. Both the large delta
effects and the small delta effects are calculated. 3) MFTProgV2 starts an iterative
procedure with a buckling factor (LF) estimate of 1.0. If that LF causes buckling, then a
new, lower LF estimate (new LF = previous LF/2) is used in the next trial. If the LF does
not cause buckling, then a higher LF estimate (new LF = previous LF*2) is used. 4) After
a few iterations, MFTProgV2 will have the largest LF that did not cause buckling (lower
bound) and the lowest LF that did cause buckling (upper bound). Then each trial will use
a LF estimate that is halfway between the current upper and lower bounds for LF
(bisection method). 5) After the default iteration limit is reached or the maximum
iteration limit is reached or when two consecutive LF estimates are within 0.1% of each
other; then the iteration is terminated. 6) Result for this analysis is based on the average
of the two values.
3.17 Review to the earthquake design response spectra

Earthquake is irregular ground motion and time-dependant acceleration function. The
response spectrum can simplify the analysis by providing a graphic representation of the
maximum response of a damped single-degree-of-freedom (SDOF) mass-spring system
with continuously varying natural periods to a given ground excitation. By solving the
equation of motion of the system, the relative displacement can be obtained. For any
input acceleration, the solution will yield the maximum absolute value of the relative
displacement u, termed the spectral displacement Sq, which will be a function of natural

frequency, w (or period) and damping factor, Smith and Coull (1991).
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Figure 3.23: Response spectra. El Centro earthquake, N-S direction, Smith and Coull
(1991)

The maximum pseudo relative velocity Sy, and maximum absolute pseudo acceleration
Sa are then given by:

Sv=w Sq ...(3.79)
Sa= w?Sq ...(3.80)

The pseudo acceleration is identical to the maximum acceleration when there is no
damping, which, for normal levels of structural damping, is practically the same as the
maximum acceleration, Smith and Coull (1991).

As a result of the relationships described in the equations, the complete response
spectrum may be represented on a plot of the form shown in Figure 3.23. The response
spectra shown refer to the El Centro earthquake of May 1940. N-S direction, Smith and
Coull (1991), and are for different damping factors. Although the actual response spectra
for earthquake motions are quite irregular, they have the general shape of a trapezoid
when plotted in tripartite logarithmic form as shown in Figure 3.24. For design purposes,
the actual response spectrum is normally smoothed to produce a curve that consists only

of straight line portions, as shown in Figure 3.24, Cheng (2001).
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Figure 3.24: Idealized design response spectrum, Cheng (2001)

With the response spectra method, if the natural frequency of a structure is calculated,
and the damping ratio is estimated, the important design parameters such as the
maximum displacement and maximum acceleration can be obtained directly from the
response spectrum diagram. Using the modal method of analysis, the peak response of
any building to the design earthquake can be easily obtained.
3.17.1 Modal analysis procedure

To avoid solving the coupled dynamic equations of motion simultaneously, the modal

methods of analysis can be used to determine all displacements that define the motions of
the structure. The method employs the superposition of a limited number of modal peak
responses, as determined from a prescribed response spectrum, and with appropriate
modal combination rules it will yield results that compare closely with those from a time-
history analysis, Smith and Coull (1991).

This method of analysis is based on the fact that for certain forms of damping that are

reasonable approximations for many buildings, the equations of motion can be uncoupled
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so that the response in each natural mode of vibration can be calculated independently of
the others.

The advantage of this method is that an independent analysis can be made of a single-
degree-of-freedom system for each natural mode of vibration. The response generally
needs to be determined for only the first few modes since the total response to earthquake
is primarily due to the lowest modes of vibration. Sufficiently accurate design values of
forces and deformations in tall buildings could be achieved by combining no more than
about six modes in each component direction. Three would probably be sufficient for
medium-rise buildings, Smith and Coull (1991).

The earthquake response is obtained by combining the contributions of all the modes of
vibration involved. And this can be used to give a complete time-history of the structural
actions. However, only the evaluation of the peak response is of importance in design,
and this may be derived directly from the design response spectrum.

3.17.2 Design response spectrum analysis

Since in the modal analysis the response of the structure in each mode of vibration is
derived from a single-degree-of-freedom system, the maximum response in that mode
can be obtained directly from the earthquake design response spectrum.

The maximum response in the N'" mode can be expressed in terms of the ordinates of
the displacement Sq, Pseudo velocity Sy and pseudo acceleration Sa, which correspond to
the frequency wnand damping ratio Sn. The three quantities are related by:

Sa= Sy = w?Sq ...(3.81)
Expressed in terms of the modal participation factor y, the maximum values of the modal
response quantities then become:

Maximum modal displacement:
Yo=75, ...(3.82)
Maximum displacement at jth floor:
Ujn =7, S4®jn ...(3.83)

on is the ™ modes of vibration and gy; is the ordinate of the n'" at the floor j.

Maximum value of equivalent lateral force at j™ floor P:
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Pin= ;/nSanmjgojn ...(3.84)
Where, mj is the mass at the level j.

The modal participation factor y, is given by:

=" ...(3.85
"= (3.85)

n
N N
Where, L, => m;¢,, and the modal mass M, = > m,p?
i=1 i=1
In the equations, a bar above a particular variable is used to denote the maximum value of
the quantity concerned.

The maximum values of the internal forces in the building, particularly the story shear
and moments, are then obtained by a static analysis of the structure.

The maximum modal response can thus be expressed in terms of the displacements or
accelerations, evaluated for the particular frequency and damping ratio for the mode,
from the design response spectrum.

The total response R of the building to earthquake motions is the sum of the individual
responses r of the natural modes. However, the maximum total response R is not
generally equal to the absolute sum of the maximum modal responses, r, since they will
not normally occur simultaneously. Such a sum would, however, give an upper bound to
the maximum likely total response.

A more realistic design estimate of the maximum response is to combine the modal
maxima according to the square root of the sum of squares (SRSS) method, Smith and
Coull (1991).

R=y(Xr) ..(386)

The maximum values of displacements, inter-story drifts, story shears, and moments
may all be evaluated using the SRSS method.

This formula will generally give realistic estimates of peak response for structures in
which the natural frequencies of vibration are well separated, a property that is usually
valid for idealized building structures in which lateral displacements in one plane are
considered (2D analysis). If this is not the case, and some natural frequencies are so close

that the motions may be coupled together, a more realistic combination, such as the
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complete quadratic combination method (CQC), should be undertaken, Smith and Coull
(1991).

It is necessary to consider only the modes that contribute most to the response of the
structure. Since most of the energy of vibration is contained in the lower modes of
vibration. A convenient rule is to include a sufficient number of modes, r, so that an
effective modal mass, e, of at least 90% of the total mass of the building is represented by
the modes chosen, Smith and Coull (1991), that is,

> 7,L, 1100
e="t —>90 ...(3.87)

3.17.3 SRSS Modal Combination Method
The SRSS method can be expressed as

xk=/EX%ﬁ; ...(3.88)

N = number of modes considered

In which superscript k represents the k™" degree of freedom of the structural system.
This method of combination is known to give a good approximation of the response for
frequencies distinctly separated in neighboring modes, Cheng (2000).
3.17.4 CQC Modal Combination Method

In general, the CQC method may offer a significant improvement in estimating

maximum structural response. The CQC combination is expressed as:

X" = ixik“in? :|:ZN:(Xik)2+ i ixi"aijx'j‘ ...(3.89)
i=1 j=1 i=1

j=1(j=i) i=1

ij=1-N

Where: ojj is called the cross-correlation coefficient, indicating the cross-correlation
between modes i and j. aij is a function of model frequency and damping ratio of a

structure, and can be expressed as:

2 3/2
%1@+qp 2 ..(3.90)
(t-a?) +4pq(t+q)

ij
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q=Pj/Pi
The correlation coefficient diminishes when g is small, i.e. pi and p; are distinctly
separate natural frequencies, particularly when damping is small, such as p = 0.05 or less.
The CQC method is significant only for a narrow range of g. Note that when aij is small,
the second term of equation 3.89 can be neglected; consequently CQC is reduced to
SRSS, Cheng (2000).
3.18 The time history analysis method
The dynamic loading resulting from blast, gusts of wind, or seismic forces is generally
irregular. In such case the equation of motion has to be solved numerically, and a solution
in exact form can be obtained only if some idealized loading is used to represent the true
loading. Analysis for a general dynamic loading resulting from time-dependant effect is
accomplished by considering the loading as a sequence of impulse loads, and integrating
for the effect of these impulses to obtain the system response. This integration can either
be carried out in closed form, if the load function is fairly simple, or numerically, if the

function is complex.

Arca=impulsc=Pdr

Figure 3.25: General force-time relation
For a damped single-degree-of-freedom system subjected to a randomly varying time-
dependant force, P(t), as shown in Figure 3.25, the response to the total force can be
evaluated as the cumulative action of the individual increases.
When initial displacement and velocity are zero, the final displacement at time z caused

by the impulse applied at earlier time t is equal to:

D, =——[Pe " Vsin(w,r ot ...(3.9Y)
,m?
C

p= 2m
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Where
¢ = damping coefficient

m = lumped mass
2
Wy =w\1-&

(B

w
¢ =damping ratio, wq = damped natural frequency

This integration represents the displacement response of a single-degree-of-freedom
system subjected to a regular or irregular time-dependant force.

This type of integration is named Duhamel’s superposition integral (or convolution
integral). It can be easily evaluated numerically using step-by-step methods of integration
to give the required displacement, Ghali et al (2009).

In this research, numerical and analytical methods are developed. The numerical
method was developed first and verified using simple problems. It was seen that the
numerical method is not efficient in the analysis using real problems such as in the case
of solving for seismic time-dependant forces e.g. EI Centro earthquake
(www.vibrationdata.com). With 31.2 seconds duration of the earthquake and 0.02
seconds time step, the total segments of linear problem is about 1560 segments. The
need for a more efficient method arises, and a close form solution was developed and
used in all the verification works.

3.18.1 Time history problem, the proposed numerical solution

Figure 3.26, shows a linear relation between two ordinates of time-dependant loading
with multiple of segments. Each segment start and end times are measured from a
reference time 0. The numerical integration is carried out for each segment by division to
a number of sub-segments. The effects are summed starting from the earlier segment, to
give the total displacement at the end of the time duration.

With reference to Figure 3.26, the total displacement is given using equation 3.91 as

follows:
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Figure 3.26: Numerical Solution of time history linear loadings between ordinates

N n
D, =L 3> Pe Vs o,r— o)A ...(3.92)
oM T3

Where:

t1i Is the start time of the loading segment number i.

toi is the end time of the loading segment number i.

Pai is the loading at the start of the loading segment number i.

Pai is the loading at the end of the loading segment number i.

At = =) ...(3.93)
n
t=t, +% For j=1 .(3.94)
t=t+At For j>1 ...(3.95)
P, =P, SR mPu) ...(3.96)
(t2i _tli)

N = No. of segments between any two readings.

n = number of sub-segments in each segment (can be increased for more accurate
solution).

Where;

t is the time at the mid of the sub-segment j within the loading segment number i.
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P;j is the loading ordinate at the mid of the sub-segment j within the loading segment

number i at time t.
3.18.2 Time history problem, the proposed closed-form solution

The linear relation between the two forces of any two adjacent points is introduced in
equation 3.91 as follows. The integration is carried out for each segment and the total
displacement is obtained by the summation as shown in the following equations:

1 & .
D, = _[Pe‘ﬁ("” sin( @, 7 — e, t)dt
WM+

D, = lm j Pe""e” [sin( w, 7) cos(w,t) —sin( @,t) cos(w, r)]dt
! i{?(Pﬂt + P, )e e [sin( w,7) cos(w,t) — sin( w,t) cos(w, 7)]dt}

i=l 1

D =

T

@ym

_&” i{?(Pﬁt + Py )e” [sin( o, 7) cos( @, t) — sin( w,t) cos(w, 7)]dt}

i=l 1

@yM

-pr N t2i t2i
> {sin( o, 7)P, j te” cos(w,t)dt + cos(w,7)P; j te sin( e, t)dt

d i=1 tli tli

D =&

T

t2i t2i
+sin( @, 7)P, j e’ cos(w,t)dt +cos(w,7)P, j e” sin( w,t)dt } ...(3.97)

tli t1i
Where: N is the number of segments.
t is the time within the loading segment number i.
P is the loading ordinate within the loading segment number i at time t.
Equation 3.97, includes the following forms of integrations, which are carried out and
used to formulate the closed-form solution for the total displacement due to the time

history applied loads or, acceleration acting in the building base.

| = J'xebX cos gx.dx ...(3.98)

| ,= Ixebx sin gx.dx ...(3.99)
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| = _|.e”x cos gx.dx ...(3.100)

I ,= | e™sin gx.dx ...(3.101)
4

The integrations are carried out for equations 3.98 to 3.101 using integration by parts and

are as shown below:

_ [e™(gsin gx +bcos gx)]

I, 07 +b? ...(3.102)
bx H _

|, :[e (bsin %x gcos gx)] ..(3.103)

g°-+b

bx : _ _

I1=[e (xgsin gx+x2bcoszgx) bl, —al,] ..(3.104)

g-+b

bx ¢ H _

I, = [e™ (—xgcos gx + xbsin gx) —bl, +gl,] ..(3.105)

g% +Db?
The final displacement is related to a single-degree-of-freedom system, and for multi-
degrees-of-freedom systems, the coupled differential equations of motion need
uncoupling using the modal methods as shown in the following sections.
3.18.3 The normal coordinates system

In derivation of the equation of motion of a forced un-damped system in coordinates
{D}, the stiffness matrix [S] in the equation is generally not a diagonal matrix. The
equations become uncoupled if both the mass matrix [m] and the stiffness matrix [S] are
diagonal matrices.

Transformation of the n coordinates {D} into another system with the same number of
coordinates {»}, is given by:
{D} = [@Kn} ...(3.106)
Where [@] is the transformation matrix. This gives an equation of motion in which both
[m] and [S] are transformed into [M] and [K] which are generally diagonal matrices and
hence the equations of motion become uncoupled.
The coordinates {#} are called normal coordinates, Ghali et al (2009).
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The generalized [M] and [K] matrices transformed to the normal coordinates, and the

transformed force, {L}, are:

[M]=[2]" [m] [2] ...(3.107)
[K]= [2]" [S] [2] ...(3.108)
{L}=[2]" {P} ...(3.109)

Using the orthogonality relationships, the transformation matrix [&] can be formed by
the eign vectors of the considered modes.

The uncoupled form of the equation of motion is useful when considering response to
time-dependent forces. It makes it possible to determine the response in each normal
mode separately as an independent system with one degree of freedom, The displacement
{n} are then transformed to the displacement {D}. Equation 3.106 superimposes the
modes to obtain the total displacement.

3.18.4 Response of structures to ground motion

In an analysis of seismic effects, the response of structures is determined due to a given
motion of the supports rather than due to the application of external forces. The support
motion may be described by an acceleration-time curve obtained from records of

previous earthquakes, as in El Centro earthquake.

The effect of the support motion is the same as that a force (—ljs m)acting on the

building. The equations of motion are solved for the normal displacements {#}, and the

final displacements {D} are obtained using equation 3.106.
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3.18.5 Structural response history using the transformation method

The previous sections determine time history displacements in the directions of the
respective degrees of freedom. In this section a procedure is adopted for the calculations
of the different structural responses due to the already obtained displacements, by using
the transformation method. In the conventional methods the calculated time history
displacements are applied as prescribed displacements in the directions of the lateral
degrees of freedom and the structural responses are obtained accordingly. In the
transformation method these lateral degrees of freedom do not exist and the adopted
procedure to calculate the structural responses is based on distributing the fixed-end
moments produced from the time history displacements. The responses include the
internal stresses in the different members, the local displacements and the supports
reactions.

Calculation of the time history responses of the structure, in the existence of the given
displacements, can be carried out using one of two different ways based on the following
cases:

Case (1): If the time history records are less than the structure total degrees of freedom,
the structural responses can be obtained by applying the known displacements in the
structure and calculating the induced fixed-end moments in the vertical members, then
the structure analyzed, and the structural responses can be directly obtained for each time

ordinate.

Case (2): If the time history records are much greater than the total degrees of freedom,
as in the El Centro earthquake records, it is more efficient to construct a structural
response matrix built from successively applying unit displacements at the different
degrees of freedom and obtaining the partial different structural responses due to the unit
displacements. Thus, the final responses can be obtained by multiplying the structural

responses matrix by the known displacements vector at the concerned time.

The theory is illustrated firstly for 2D analysis and then generalized to the 3D analysis.
In the 2D analysis, calculation of the structural responses using the transformation

methods can be carried out using the following procedure:
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Figure 3.27: Total structural response due to displacements at time to
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For Case (1), with reference to Figure 3.27:
(1) Apply all the displacements set at any time to, at the respective DOFs, keep all the

rotations of the DOFs restrained.

(2) Calculate the fixed-end moments in all the vertical members produced from the

displacements set at time to, using the following equations:

Mb, =+£50, 1) - D, 1)) (3110)
Mt., = Mb, ..(3.111)
Where:

Di(to) = Displacement of joint i, at time to.

Di+1(to) = Displacement of joint i+1, at time to.

S = Rotational stiffness.

t = Carryover moment.

Mbi = Fixed Moment in member i, just below joint i.

Mti+1 = Fixed Moment in member i, just above joint i+1.

(3) Analyze the frame by distributing the calculated fixed-end moments using the
moment-force transformation method with the axial deformation of the vertical members
considered. Use in the analysis, the ordinary rotational stiffnesses and the carryover
moments of the members, with the joints laterally restrained to be prevented from extra
translations, using the matrices shown below (shear deformations considered in the

elements):
Assuming 5 vertical members:

The condensed rotational stiffness matrix of the group is a diagonal uncoupled matrix
composed of the rotational stiffness of the individual vertical members and is given as

follows:
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[ (4+a) EI

[ _]1 0 0 0 0
(l+a) L
[(4+a) El B 0 0 0
. l+a) L
[S]= 0 (A+a) EI Ely 0 0 ...(3.112)
Q+a) L
0 0 0 [(4+a) EI]4
(l+a) L

0 0 0 0 [(4+a) El ]5

L l+a) L

And the carryover moment matrix of the group is also a diagonal uncoupled matrix

composed of the carryover moment of the individual vertical members and is given as

follows:
[(2 @) Ely 0 0 0 o |
(l+a) L
0 [(2 a) El El, 0 0 0
) l+a) L
[t]= 0 0 (2-2) EI]3 0 0 ...(3.113)
l+a) L
0 0 0 [(2_“)5]4
(l+a) L
0 0 0 0 ((2=a) Ely
L (I+a) L7 |
Where: o 12E|
GarL2

(4) Obtain from the analysis results, the total responses for any action (e.g. shear,
moment, axial force), due to the applied displacements set at the concerned time.

In the analysis, it is worthwhile to note that:

A- The equivalent stiffness and the transformation factors matrices may be calculated
only once and used several times for the different displacements sets, in order to
accelerate and optimize the calculations.

B- The response matrix can include many responses at the same time (e.g. base shear,
overturning moment, moment in one column, rotation in the member end or axial

deformation.)
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Figure 3.28: Partial structural response due to unit displacement at level k
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For Case (2), with reference to Figure 3.28:
(1) Apply unit displacement at the first DOF with all the joints in the other levels remain

in positions. The rotations of all the joints should be restrained.

(2) Calculate the fixed-end moments in the vertical members produced from the unit
displacement, at joint i, for the affected members i and i-1 as follows:

For unit displacement at joint i, the affected members are member i and member i-1
And the induced fixed-end moments are:

For member i-1:

Mb,_, = —[S%t)]i_1 , (i#1) ...(3.114)
Mt, = Mb,_, ...(3.115)
For member i:

Mb, = +[ tt)]i ..(3.116)
Mt,,, = Mb, ...(3.117)

(3) Analyze the frame by distributing the calculated fixed-end moments using the
moment-force transformation method with the axial deformation of the vertical members
considered. Use in the analysis, the ordinary rotational stiffnesses and the carryover
moments of the members, with the joints laterally restrained to be prevented from extra

translations, using the same matrices as in case (1).

(4) Obtain from the analysis results, the partial response due to the applied unit

displacement.

(5) Repeat steps 1 to 3 with the next degree of freedom, until finishing all the degrees of

freedom.

(6) Use the constructed structural response matrix, that contains all the required
responses, and multiply the matrix by the displacements set vector at any concerned time

to, to get the complete response at that time.

In the analysis, the notes presented for Case (1) are also apply for Case (2).
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In the 3D analysis, for the two cases, the displacement sets in case (1) or the unit
displacements in case (2), will be applied in the building global coordinates directions.
The global displacements are then transformed to obtain the local displacements of the
vertical members using equation 3.118 as follows:

u, cosa sina  X,sina—Y,cosa || X
v, p=|—-Sina cosa X,cosa+Y,Sina |{Yy ...(3.118)
rw 0 0 1 rz

And the same steps used in the 2D analysis to obtain the structural responses are carried
out also in the 3D analysis.
3.19 Response spectrum analysis using the transformation method

The illustrated procedure discussed in section 3.17 is directly used in the proposed

program MFTProgV2. The lateral response forces obtained using the spectra curve, are
calculated for each mode and applied directly on the structure. The transformation
procedure is carried out and the required response for each mode is calculated. The total
responses are calculated using the methods of combinations (namely SRSS and CQC).
3.20 The Mass matrix

The mass matrix for any lumped mass in any floor of 3D model, considering the
responses in the two horizontal coordinates x and y and neglecting the vertical inertia
force and the rotary inertias about axes x and y which are very small and can be

eliminated, is given as follows:

m, 0 - mems
[M]= m, M,y X ...(3.119)
symm m,Y o +m, X2

And for the i" floor with L lumped masses. The mass matrix is:
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- ) -
mej 0 Z(_mijmsj)
=1 j=1
L L
[M,]= Zlmyj Zl(myj X ) ...(3.120)
J= J=
L
symm DMy +m,X2)
L i1 i

If the coordinate origin is chosen to coincide with the total masses center, then the mass
matrix becomes a diagonal matrix, which will simplify the problem solution, and the final

simplified mass matrix becomes:

ZL:ij 0 0

=

[M;]= >'m, 0 ..(3.121)

L
symm Do(mygYZE +m,X2)
i1 ]

3.21 Column Shortening Calculations for Reinforced and Composite
Concrete Structures

A procedure for calculation of time dependent column shortening in tall building by
using the transformation method is proposed as a future study. A brief illustration shows

the efficiency of the procedure is presented in Appendix F.
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CHAPTER FOUR
Computer Program MFTProgV2

4.1 Introduction

In this chapter the program MFTProgV2 (Nonlinear version) developed on the basis of
the proposed theory and presented in this research, is described briefly.
4.2 Description of the Program MFTProgV2

The computer programs have been written in Visual Basic 6 and are developed based
on the transformation methods presented in chapter three and in Ibrahim (2013), and can
be used in any personal computer. The program utilizes graphical user interface (GUI)
both in the data input and output modes.

Flow charts illustrate the general algorithm of the moment-force transformation
procedure, extraction of the dynamic properties of the building and the buckling analysis
using the bisection method described in section 3.16, are shown in Figures 4.1-a to 4.3-c.

Same as the previous versions, MTProg and MFTProg, the program MFTProgV2
includes two modes of analysis:

1- Two dimensional analyses. 2- Three dimensional analyses.

The layout of the program is shown in Figure 4.4. The two and three dimensional
analysis modes buttons are shown in the figure, with different buttons used in the two
analysis modes.

4.2.1 The two Dimensional analysis

This type of analysis is used to solve problems of portal frames, coupled shear walls
(Walls with openings), symmetrical frames subjected to symmetrical loadings with
absence of floors twist rotations.

Pressing the two dimensional button results in showing the multi-page form shown in
the Figure 4.5
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) 1- Input the number of floors, Nf, and
CStart 2D analy5|s> the total number of the vertical
members (Columns and walls) in the
building plan, Nw.

I Vo

2- Input Data of all the horizontal
members of the typical floor (for all
members: L, I, ar, ...).

3- Input Data of the floor applied
+vertical loading.

4- Calculate the rotational-translational
stiffness matrix of the floor supported
DOFs with all the other DOFs rotating
and translating freely.

5- At all the supported DOFs of the
floor, calculate the vector of the fixed
moments and the fixed forces due to the
applied vertical loading.

-
6- Input Data of all the vertical members
(Columns or walls), (I, ax, ar,...), of all

the floors, from top to bottom.
-

\ 4

-

7- Input Data of the horizontal loads at
all the floors levels.

A 4

8- For all vertical members at all floors, Calculate the ordinary
rotational stiffness, S, and the carryover moment, t, (S =4EI/L and
t=2EI/L, if considering bending deformation only).

Figure 4.1-a: Flow chart of the moment-force transformation main solver
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9- For each floor, use S and t of the entire vertical members in the
floor to construct the rotational-lateral translational stiffness
matrix of the floor. For nonlinear analysis the rotational stiffness,
S, and the carryover moment, t, and the lateral translational
stiffness of the vertical members should be modified using the
member axial force calculated from a previous analysis.

A 4

10- Condense the calculated rotational-lateral translational
stiffness matrix into a rotational stiffness matrix with the lateral
translations permitted.

11- Construct the axial stiffness diagonal matrix of all the vertical
members of the concerned floor, (K=E.ax/L for each member).

12- Combine the condensed rotational stiffness matrix and the
axial stiffness matrix in one stiffness matrix considering the axial
stiffness of the vertical members.

A 4

13- Calculate the carryover moment-forces matrix. For nonlinear
analysis the part of the carryover moment will be modified using
the member axial force.

A 4

14- Calculate the sway fixed moments in all the vertical members
at all floors levels due to the applied horizontal loads, and
construct the vectors of the fixed moments just above and below
the concerned level. For nonlinear analysis these fixed moments
will be modified using the member axial force.

A 4

15- For all floors calculate the equivalent stiffness matrix and the
transformation matrix from top to bottom and from bottom to top.

Figure 4.1-b: Flow chart of the moment-force transformation main solver
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16- Use the transformation matrices of the floors from top
to bottom and from bottom to top, to transform the total
vector of the moments and forces to the concerned level.

A 4

17- Use the fixed and the transformed moments and forces
vectors of the level and the total equivalent stiffness matrix
composed of the floor level stiffness and the equivalent
stiffness matrices of the floors above and below the
concerned level, to calculate the vector of the rotations and
the axial displacements of all the vertical members at the
concerned level.

A 4

18- Use the calculated vector of the rotations and the axial
displacements at the concerned level to calculate the level
final moments and axial forces in all the vertical members.

A 4

19- Use the calculated rotations and moments to calculate
the lateral translations of all the levels in reverse order from
bottom to top.

A 4

Figure 4.1-c: Flow chart of the moment-force transformation main solver

20- Use the calculated vector of the rotations and the axial
displacements at the concerned level to calculate the final
moments and shear forces in the horizontal members of the
typical floor.

A 4

[ Print the results ]

A 4

End
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(Start )—" Data Input ]—' Set J=1

v

A 4

Calculate the lateral
displacements, Do(J), produced
from the applied vertical and
lateral loads.

< Set J=J+1

No

Yes

Set 1I=1

A 4

A 4

P(1)=1 (Unit Lateral Load)

A 4

Go To the main solver of the Transformation Metho
the lateral displacements due to the applied unit load.

d. Calculate

A 4

Set J=1

A 4

A 4

Construct the flexibility matrix
coefficients from the lateral
displacements at the different
levels; fji = D(J,1)- Do(J)

No

< Set J=J+1

Yes

A

Set I=1+1

No Yes @

Figure 4.2-a: Flow chart of dynamic properties extraction of 2D frames
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Construct the Dynamic matrix =
[Flexibility matrix].[Mass matrix], or D=f m

A 4

Set So =1: Set I1=1

[
»

Yes . No
isl=17?

A

- » Di=DSi1

A 4
Use the Direct Iteration Method
to calculate the Vibration
frequency of the mode # | and the
corresponding mode shape.

No

Is

Set I=1+1
I=Nmodes?

A

[ Print the results ]

Figure 4.2-b: Flow chart of dynamic properties extraction of 2D frames
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A 4

RT1=DETSGN

A 4

LF1=LF: LF=LF*2:
LF2=LF

DETERMINANT
SUBROUTINE

A 4

RT2=DETSGN

!

NO IS
DETSGN
=-1?

A

CNT=0

LF=

DETERMINANT
SUBROUTINE

YES

YES

NO

YES

RT2=DETSGN

A 4

A

LF2=LF: LF=LF/2:
LF1=LF

DETERMINANT
SUBROUTINE

A 4

RT1=DETSGN

A\ 4
A

BISECTION
SUBROUTINE

A 4

PRINT THE RESULTS

v
END

!

IS
DETSGN
= +17

Figure 4.3-a: Flow Chart of the proposed buckling analysis solver
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INPUT

A 4
LF3=(LF1+LF2)/2

»
>
Y

v
LF=LF3

DETERMINANT
SUBROUTINE

v
RT3=DETSGN

A

A\ 4

YES YES

LF1=LF3 LF2=LF3

A

A\ 4

y

A

NO 1S
ABS(LF1-LF2)
<=

ACCURACY?

A

v

OUTPUT

Figure 4.3-b: Flow Chart of the bisection subroutine
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INPUT

v
ICNT=ICNT+1

A 4

\ 4

GENERAL SOLVER: CALCULATE THE
MINIMUM DETERMINANT OF ALL THE
LEVELS ROTATIONAL STIFFNESS MATRICES

IS
DELTA_AXIAL>1?
AND
ICNT<=5?

YES

NO

OUTPUT

Figure 4.3-c: Flow Chart of the determinant subroutine
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The Two Dimensional multi-page form includes the following pages:

A) General page used to input the following data: The members Elasticity and Poisson's
ratio, Number of floors, Number of shear walls.

B) Level stiffness page. This page contains a flex-grid used to enter the rotational and
translational stiffness of the different levels. There are also three radio buttons used
for the selection of the different support conditions; fixed bases, pinned bases or other
spring rotational and translational stiffness.

C) Beams information page. This page includes a flex-grid used to input the different
data of portal frame beams e.g. length, inertia, shear area and U.D. loads, from which
the level stiffness and the fixed moments and forces will be calculated and
automatically send to the level stiffness and loads information pages.

D) Loads information page, which includes a flex-grid used to enter the level fixed
moments and forces and the lateral forces acting at the different levels.

E) Walls properties page, which includes a flex-grid used to enter the different floors
heights and the properties of the different walls or columns, inertias and shear areas.

There are two buttons in the bottom of the form one used for analyzing the frame and
the other is used to quit the analysis mode. There is a check box used to select the type of
the analysis: Linear or P-Delta analyses, global and local.

Pressing the analyze button results in performing the analysis and showing the results
page, see the Figure 4.6.

The results page includes a picture box used for plotting the bending moment and the
shear force diagrams and the deformed shape of the frame. There are also two flex-grids
used to show the different output results in a tabulated form.

The tabulated outputs are the rotations and translations of the different joints and the
bending moments and shear forces in the different levels and floors. A global equilibrium
check can be ensured by comparing the applied shear with the calculated shear and a
local equilibrium check can be insured by checking the summation of the moments at the

different levels as shown in Figure 4.7.
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Figure 4.6: The results page of the two dimensional analysis mode

Joints Digplacements & Bending Moments Shear Forces
Level # |Rot [Trans. [Mtop  [Mmid. [M Bot Floor # |Vl [w2
1 -21.353 -0.915 -31.983 1
2 -10.342 2.494« -25 691 36.289 2

1] 0 -4_b4Y 4 bt

Summation
equal zero

Check Summation of shear at floor
level and compare with
the applied shear

Figure 4.7: Local and global equilibrium checks

4.2.2 The Three Dimensional analysis

Pressing the three dimensional button results in showing the building dimensions
form, Figure 4.8. The form includes text boxes for entering the overall building

dimensions in both x and y directions and the number of segments or plates in each
direction.
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3 Building Dimensions

Plate # 1

Dimensions in X [ m)

12 oK |
Cancel

Segments [ NX ]

.
Dimensions in Y [ m ] IT
=

Segments [ NY ]

Figure 4.8: The building floor dimensions form

The finite elements constructed in this way can be modified and adjusted for
dimensions; also one can add or reduce rows and/or columns of elements. After preparing
the floor data, one has the option to add shear walls, beams and columns graphically by
selecting the appropriate joints.

The materials and properties of plates, beams and added columns can be entered by
using the related buttons and forms.

The plate loads can also be entered. At this stage only uniformly distributed loads can
be added.

After finishing entering all the floor information, then one can go to the program menu
and select from the file menu the item: "Calculate Level Stiffness..."

By clicking this item, the stiffness of the floor will be calculated and incorporated in the
analysis as a floor level stiffness, the fixed end moments are also calculated if there are
any applied vertical loads.

The building and material information e.g. number of floors, number of shear walls,
Elasticity and Poisson's ratio of shear walls , and number of the different building parts
can be entered in one page, Figure 4.9.

The shear walls properties, i.e. widths, depths, inertias shear areas, the location
coordinates in the plan and the orientation of the principal axes are all entered in flex-grid
available in shear walls information page, Figure 4.10.

The plate number and the floor heights and the global forces and moments in the
different levels are entered in one page as shown in Figure 4.11.
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Figure 4.9: Main form of the three dimensional analysis

Part Wall wasth  [Depth [ I I |arv = Jdo JED 1Yo Jang -
1 3 ©.25/ 000090525 0.5625 0525 0425 0.75 10630796652 5 4
2 3 025 0.00390825 0.5625 0625 0425 075 890796652 75 3
3 028 4 DI33333333 53IIINEH3 (3IINII]I 133ITNIIN. 1 T2 6 6
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5 04 04333333303 133ITFIE03 133333 3IINIINT 0.16 133330203 0 4
B 04 0.4 330332603 131IIIIE-03 (2333II3IT 1333NIIA3 016 1333333603 0 3
1 7 04 0.4 331333303 133I31E03 (3333333393 13333133333 0.6 1332333¢.63 0 2
8 04 0.4 3303333603 333IIVE03 (3313313 1IN 0.96 13333603 1 0
0 04 04 1333333L.03 333333IL03 3I33IIIIII 13333333339 0.46 1333331203 6 ”
0 04 0.4/ 3303333603 )3333]IE-03 333333313 12333333333 016 133232603 2 0
" 0.4 0.4 3333I1E03 3IIINVELI 3IIIIINT 1IINIIII 096 333335883 12 4
5 04 0.4 3333333603 33333306-03 13333333133 13333333333 0.15 133332603 2 a
[} 04 04 333333303 1333333L-03 13333IIINIT 13IIIINI 046 1333333203 12 12 J:]
. I I »
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| Second Order Analysis
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Figure 4.10: Walls and columns properties entering
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Figure 4.11: Floors heights and lateral loading entering
After finish entering all the required data and pressing the "Analyze" button, the
analysis is performed and the output result form appears. This form includes a picture
box that presents the different diagrams (e.g. Bending moments, Shear forces, Twist
moments, Axial force diagrams), for each selected shear walls. Also a flex-grid is
available to tabulate the moments and forces at each level for each shear wall as shown in
Figure 4.12. The same flex-grid presents a complete global equilibrium check.

The deformed shape for each shear wall can be shown in the same picture box.

The moments per unit width My, My and Myy and shear stress Qx and Qy contours for
each floor can also be calculated and plotted from the resulting rotations and vertical
displacements for all shear walls of the concerned floor level, Figures 4.15 and 4.13.

A global perspective deformed shape of the whole building can also be shown, as in
Figure 4.13.

Instead of using the finite elements floor of the program, the MFTProgV2 has a feature
of importing and calculating floor stiffness from a StaadPro one floor fixed supported
model to be incorporated in the analysis, Figure 4.14. This procedure is performed by
sending unit displacements to the StaadPro package model in different load conditions.
After running the StaadPro model, the support reactions are retrieved in a form of

rotational-translational floor stiffness and can be used in the transformation procedure.
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Figure 4.12: Global equilibrium check at the different floors levels
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14 -33.498 6042627 1] 1646.4 19756.8 -392238 870912 -T2576
-35.471 6445.239
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CHAPTER FIVE

Program Applications and Verification of Results

5.1 Introduction

In order to demonstrate the effectiveness of the program, several different two
dimensional and three dimensional problems are analyzed. The results obtained are
compared with published results and with results obtained using commercial packages:
StaaPro2004, StaadProV8i and ETABS.

In the following sections, several examples analyzed using MFTProg are presented.
Some examples are chosen from published references and analyzed by using the two
dimensional option of the program.

5.2 Numerical Examples

Using MFTProg, two simple portal frames examples were studied. A model of a fifteen
floors symmetric building with non-symmetrical lateral loadings was also carried out.
The results were compared with those obtained by MTProg (with axial deformations in
the vertical members neglected, lbrahim, 2013), and with those obtained using
StaadPro2004 and ETABS.

5.2.1 Two Floor One-bay Portal Frame
The bending moments and support reactions were obtained using the simplified method

for a two storey frame under the vertical and horizontal loading shown in the Figure 5.1.

1.2 kipift
20Kk LI 1ITYINY L11Y —o
: : :
4 5 201t
2.4 kipift All members
LLLditilld] i =1675 in’
ok K _ e 4 §in ;
7 3 Ax=16.2In
20 ft
1 2
5 42—
7 20 ft i
RS —_——

Figure 5.1: One-bay Frame properties and loading
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The results obtained are compared with the results from McCormac and Elling (1988)
and StaadPro2004 results as shown in Table 5.1.

Table 5.1: Comparison of moments and forces at joints 3, 6 and 4 (2 Floor 1 bay Frame)

Results M3, Kip-ft M6, kip-ft H4, kip
Reference 141.90 206.30 31.16
StaadPro2004 145.79 (2.74) 209.03 (1.32) 31.18 (0.06)
MFTProg? 145.98 (2.88) 208.84 (1.23) 31.21 (0.16)
MFTProg? 142.06 (0.11) 206.06 (-0.12) 31.20 (0.13)

1 Considering shear deformation. ? Neglecting shear deformation. (%diff.)

The comparison of the results shows very close agreement.
5.2.2 Two Floor Two-bay Portal Frame
The bending moments were obtained using the simplified method for a two storey

and horizontal the Figure 5.2

1.2 kipint

frame under the vertical loading shown in

10k «!

1.2 kipit

+

*
1

200

24 kipit

Jon

Al members
E = 29000 ksi
| =500 In'

Ax= 30 in’

Figure 5.2: Two-bay Frame properties and loading

The bending moments results obtained were compared with the results from McCormac
and Elling (1988), and StaadPro2004 as shown in Table 5.2.

Table 5.2: Comparison of moments at joints 1, 3 and 6 (2 Floor 2 bay Frame)

Results M1, Kip-in M3, kip-in M6, kip-in
Reference 1147.00 1462.00 1750.00
StaadPro2004 1150.30 (0.29) 1461.85 (-0.01) 1748.63 (-0.08)
MFTProg! 1145.71 (-0.11) 1463.50 (0.10) 1750.87 (0.05)
MFTProg? 1142.05 (-0.43) 1463.70 (0.12) 1752.24 (0.13)

! Considering shear deformation. 2 Neglecting shear deformation. (%diff.)
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Comparison of the published results and the results obtained using StaadPro2004 with

those obtained by MFTProg, show very close agreement.
5.2.3 Model of a hypothetical fifteen storey building subjected to

unsymmetrical lateral loading

The plan shown in Figure 5.3 is for a 12m x 12m floor slab of thickness = 0.25 m. The
hypothetical building is composed of 15 floors of floor height = 3.5 m for all floors
except the lower floor which is of height = 5.5 m.
All building members are concrete of elasticity, E = 21718500 kN/m?,
and Poisson's ratio, v = 0.17

S0KN
_____ X:....@...:::::::@. T

) IREEESHEERE- SRARRRCEEARY
woV——g W et
D eiiissaasee iecaataci M

i

&
5.00m T 5.00m

ol

Figure 5.3: 12m x 12m floor plan for 15 Storey, Square Building
The section properties of the vertical elements (in meters) are:
Columns: Corners: 0.60 x 0.60 and Interior: 0.85 x 0.85
Shear walls: The lower 7 floors: 0.30 x 3.00 and The upper 8 floors: 0.25 x 3.00
The building is subjected to the lateral loads shown in Figure 5.3, (30 kN and 50 kN) at
all floor levels.
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5.2.3.1 Verification of Results
The building has been analyzed by using MFTProg with the axial deformation in the
vertical members considered. The accuracy of the results is verified by using MTProg,

Ibrahim (2013), and the structural analysis packages StaadPro2004 and ETABS.

The MFTProg displacements, shear forces and bending moment results are shown in
Figures 5.4 to 5.14.

Comparison of the top displacements of the origin (Column #5) as a bench mark,
obtained using MFTProg and the different packages is shown in Figures 5.15, 5.16 and
5.17 and Table 5.4. Comparison of the maximum shear force and maximum bending
moment of shear walls 1 to 4 are shown in Figures 5.18 to 5.25 and Table 5.3.
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Figure 5.4: Displacements of Column # 5 in x-direction.
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Figure 5.8: MFTProg bending moment diagram for shear wall #1
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Figure 5.9: MFTProg shear force diagram for shear wall #2
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Figure 5.10: MFTProg bending moment diagram for shear wall #2
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Figure 5.12: MFTProg bending moment diagram for shear wall #3
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Figure 5.14: MFTProg bending moment diagram for shear wall #4
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Figure 5.15: Comparisons of displacements of Column #5 in x-direction
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Figure 5.16: Comparisons of displacements of Column #5 in y-direction
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Figure 5.17: Comparisons of twist rotations of the floors in radians
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Shear Force Diagram

60
VU
------- MTProg
— — — - ETABS thick —
£
------- ETABS thin =
=y
—-— - - StaadPro -%
T
M_F_T_Prog
i|
L
i
| fa)
T T T O
200 150 100 50 0 -50

Shear Force (KN)

Figure 5.18: Comparisons of S.F.D. for shear wall #1

Bending Moment Diagram _

------- MTProg €
— — — - ETABS Thick =
=
------- ETABS thin 2
—-— - - StaadPro
M_F_T_Prog

\
D

2000 1500 1000 500 0 -500
Bending Moment (KN.m)

Figure 5.19: Comparisons of B.M.D. for shear wall #1
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Shear Force Diagram
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Figure 5.20: Comparisons of S.F.D. for shear wall #2
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Figure 5.21: Comparisons of B.M.D. for shear wall #2
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Shear Force Diagram
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Figure 5.22: Comparisons of S.F.D. for shear wall #3
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Figure 5.23: Comparisons of B.M.D. for shear wall #3
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Shear Force Diagram
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Figure 5.24: Comparisons of S.F.D. for shear wall #4
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Figure 5.25: Comparisons of B.M.D. for shear wall #4
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Table 5.3: Comparisons of the maximum shear force (kN) and bending moment (kN.m)

Wall # Wall 1 Wall 2
Package Shear | % Diff. | Moment | % Diff. Shear | % Diff. | Moment | % Diff.
MFTProg 1554 0 1656.1 0 500.3 0 5618.9 0
MTProg? 155.4 0.00 1583.7 -4.37 500.3 0.00 5546.6 -1.29
StaadPro2004 | 157.8 1.54 1651.4 -0.28 497.1 -0.64 5741.2 2.18
ETABS! 155.7 0.19 1604.8 -3.10 494.6 -1.14 5424.3 -3.46
ETABS? 157.7 1.48 1697.9 2.52 497.2 -0.62 5727.2 1.93
Table 5.3 (continued)
Wall # Wall 3 Wall 4
Package Shear | % Diff. | Moment | % Diff. | Shear | % Diff. | Moment | % Diff.
MFTProg 369.2 0 4163.9 0 24.2 0 201.1 0
MTProg? 369.1| -0.03 4120.5 -1.04 24.2 0.00 157.7 -21.58
StaadPro2004 | 365.6 [ -0.98 4261 2.33 27.3 12.81 174.5 -13.23
ETABS! 364.1| -1.38 4016.9 -3.53 26.1 7.85 200.7 -0.20
ETABS? 365.8| -0.92 4240.5 1.84 27.2 12.40 214.6 6.71
! Thick Slab. 2 Thin Slab. ®Ibrahim (2013).
Table 5.4: Displacements of the origin (column 5), in mm and radians
Package X(mm) % Diff. Y(mm) % Diff. | Twist(rad) | % Diff.
MFTProg 85.53 0 32.92 0 0.00685 0
MTProg® 82.21 -3.88 27.38 -16.83 0.00685 0.00
StaadPro2004 | 90.86 6.23 31.7 -3.71 0.00669 -2.34
ETABS! 80 -6.47 30.7 -6.74 0.00591 -13.72
ETABS? 89.7 4.88 33.9 2.98 0.00662 -3.36

In all the comparisons, the differences were found to be very small for large stress values
(shear forces and bending moments in shear walls 1, 2 & 3). The largest percentage
difference is found in shear wall #4, but this resists very small stresses compared with its
section. Appendix G, presents more discussion of the results.

As shown in Figures 5.15 to 5.25, and Tables 5.3 and 5.4, consideration of the axial
deformations in the vertical members has affected the bending moments in all shear

walls, and also the displacements in x and y directions.
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5.3 Summary:

In this chapter, verification for the program MFTProg has been carried out by solving
different two and three dimensional examples, using linear static analysis. The results
obtained for the two portal frames were compared with published results and with
StaadPro2014 results. The obtained results of the hypothetical square building was
compared with results obtained using the commercial computer analysis packages
StaadPro2004 and ETABS.
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CHAPTER SIX
Cases Study and Analysis of Results

6.1 Introduction

In this chapter two case studies were considered. A case of a 2D frame of 15 floors
subjected to vertical and lateral loads, and a case of a 3D asymmetrical 25 floors building
subjected to vertical and wind loads. In the 3D problem, the floor stiffness was modeled
by using rectangular plate bending finite element incorporated in the program to account
for the out of plane stiffness of the level's floor slabs. The degrees of freedom, DOFs, are
corresponding to the two rotations about the principal axes and one translation in the
vertical direction of the system.

The results obtained were compared with those obtained using StaadPro2004,
StaadProV8i, SAP200V16 and ETABS. In StaadPro packages, the second order P-Delta
results were obtained from 10 iterations, and in ETABS, the results were obtained from
displacements relative tolerance of 1x10 and maximum 10 iterations.

The performed analyses using the proposed transformation methods, for the 2D and 3D
models were:

(1) Static analysis considering the axial deformations in the vertical members.
(2) Nonlinear second order P-Delta analysis.
(3) Dynamic analysis considering linear effects.
(4) Dynamic analysis considering the nonlinear second order effects.
(5) Elastic stability and buckling analysis.
6.2 Dynamic Analysis using the transformation method

As shown in chapter three, the dynamic properties of the building, the natural
frequencies and the corresponding mode shapes, are obtained from the un-damped free
vibrated system using the direct iteration method or the inverse iteration method (Stodola
concept). Using these dynamic properties, the dynamic analyses were performed. The
dynamic analyses performed for the two buildings were the response spectra method and

the time history method.
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6.2.1 The vibration Modes

The first natural frequencies and their modes are important in the dynamic analyses. In
these two models analyses, the first 6 vibration modes of the 2D building and the first 9
modes of the 3D building were obtained and used in the dynamic analysis. For the 3D
model, these are the minimum number of the modes required to capture at least 90
percent of the total building mass in the two directions separately. Although, more than
90% is captured in two modes in the case of the 2D model, 6 modes were considered in
the analysis to capture more than 99%, (refer to section 3.17).
6.2.2 Participating Mass Ratios

In the response spectrum analysis, enough number of modes should be included in the
calculations as it is a measure of accuracy of the analysis. Most of the design codes of
practice require that the computations of the responses should include enough modes to
capture at least 90 percent of the total building mass. In the analyses, the number of
modes required to capture 90 percent of the total masses are determined for each
direction separately.
6.2.3 The top floor lateral displacement
The lateral translation of the building top floor was obtained using the MFT method and
compared with the results obtained from the other packages. The lateral displacement is
important response affecting the building performance.
6.2.4 The Base Reactions

The base reactions (base shear and overturning moment), were obtained using the MFT
method and compared with the results from the other packages. The base reactions are
measure of the total effect of the lateral inertial forces acting on the structure.
6.2.5 Response Spectrum Analysis

In response spectrum analysis it is necessary to find out the natural frequencies, the
mode shapes and the lumped masses, from which the participation factors are calculated
and used with the acceleration period curve (the response spectrum curve) to calculate the
responses of the structure for each vibration mode.

The response spectrum used in the proposed analyses was taken from the UBC code,
Figure 6.1, with assumed seismic zone of factor Z = 0.075 and soil profile Sg. The

corresponding seismic coefficients Ca and Cy were 0.19 and 0.26 respectively.
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A damping ratio of 5 % was assumed in the analyses and the SRSS (The square root of
the sum of squares) and the CQC (complete quadratic combination) methods were used
in combining the individual modal contributions.

The results of the proposed response spectrum analysis of the two 2D and 3D models
were compared with those obtained from StaadProVi8, SAP2000V16 and ETABS and

are shown in the following sections.

- CONTROL PERIODS

2-5CFJ -'rs = C\,J'Z.E\C“
B i T,=02T,
B kY

SPECTRAL ACCELERATION (g's)

o

PERIOD (SECONDS)
Figure 6.1: UBC-1997 Design Response Spectra

6.2.6 Time History Analysis

The time history analysis was performed for the two models using the proposed method
and the obtained results were compared with the results obtained from the different
structural packages. The results of the two 2D and 3D models are presented as shown in
this section. The same mass and inertia values used in the response spectrum analyses
were also used in the time history analyses.

The acceleration-time record of N-S component of El Centro Earthquake, 18 May 1940
shown in Figure 6.2, was directly applied to the base of the building models in x-direction
for the case of 2D model and in y-direction for the case of 3D model. The record of the

first 31.2 seconds of the earthquake, having a step-size of 0.02 seconds, was used in the
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two analyses. A damping ratio of 5 % was used in the analyses of the 2D and 3D models.
The modal superposition method which provides a highly efficient and accurate
procedure for performing time-history analysis was used in this study. Closed-form
integration of the modal equations was used to compute the response, assuming linear
variation of the time functions between the input data time points. The following time
history responses were computed and plotted for each model:

1. Lateral displacement at the top floor.

2. Induced total base shear force.

3. Induced total base overturning moment.
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Figure 6.2: N-S component of El Centro Earthquake records, 18 May 1940

(www.vibrationdata.com)

6.3 The fifteen floors 2D building Model

The displacements and bending moments were obtained using the proposed method for
a fifteen multi-storey 2D frame under the vertical and horizontal loading shown in Figure
6.3. All building members are concrete of elasticity, E = 29x10°% kN/m?,
and Poisson’'s ratio, v =10.2
6.3.1 Static Linear and second order Analysis of the 2D building model

Linear and second-order (P-Delta) analyses were carried out, and comparisons of the

results with exact results are shown in Tables 6.1 to 6.4.
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The displacements and the bending moments results obtained using the proposed method
compared with results obtained using StaadPro2004, are shown in Tables 6.1 to 6.4.

Table 6.1: Displacements in the top floor level (mm), (2D Frame), Linear Analysis:

Result Columns (1) Columns (2) Columns (3) Columns (4)
esults
Lateral Axial Lateral Axial Lateral Axial Lateral Axial
MFTProgvV2 | ggog -14.82 88.28 -23.43 88.28 -28.83 88.28 -25.12
StaadPro2004 88.45 -14.81 88.39 -23.44 88.15 -28.84 88.04 -25.11
% Diff. -0.19 0.07 -0.12 -0.04 0.15 -0.03 0.27 0.04

Table 6.2: Maximum bending moment in the lower floor, (kN.m), (2D Frame), Linear

Analysis:
Results Columns (1) Columns (2) Columns (3) Columns (4)
MFTProgV?2 122.26 280.55 307.13 152.87
StaadPro2004 121.76 279.21 307.86 153.89

% Diff. 0.41 0.48 -0.24 -0.66
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Table 6.3: Displacements in the top floor level (mm), (2D Frame), P-Delta Analysis:

Results Columns (1) Columns (2) Columns (3) Columns (4)
Lateral | Axial Lateral Axial Lateral Axial Lateral Axial
MFTProgv2 (1) | 97.03 -14.59 97.03 -23.41 97.03 -28.85 97.03 -25.34
MFTProgv2 (2) | 97.47 | -1458 | 97.47 | -23.42 | 9747 | -2886 | 97.47 | -25.34
StaadPro2004 | 97,19 | -1457 | 97.13 | -2342 | 96.89 | -2886 | 96.78 | -25.33
% Diff.(1) -0.16 0.14 -0.10 -0.04 0.14 -0.03 0.26 0.04

(1) Including only Global P-Delta. (2) Including Global and local P-Deltas.

Table 6.4: Maximum bending moment in the lower floor (kN.m), (2D Frame), P-Delta

Analysis:
Results Columns (1) Columns (2) Columns (3) Columns (4)
MFTProgV2 (1) 143.01 328.30 354.00 172.95
MFTProgV2 (2) 143.16 325.69 350.28 171.13
StaadPro2004 142.51 326.95 354.72 173.99

% Diff.(1) 0.35 0.41 -0.20 -0.60

The comparison of the results shows very close agreement and some times the results are

identical, both in the linear and second-order analysis.

As shown in Tables 6.1 to 6.4, the lateral displacements which are calculated including

the P-Delta effects are greater than those calculated using ordinary linear analysis. In

general, the second order analysis values may be increased with the increase of the

vertical loads and/or increase in the building height. Including the local p-delta effects in

the analysis, results in extra increase in the lateral displacements.
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6.3.2 Buckling Analysis of the 2D building model

The buckling analysis for the 2D building model was carried out, using the incremental

method described by Coates et al (1990), the eign solution (Vianello method), described

by Clough and Penzien (2003), and the

proposed improved Vianello method.

Comparisons between the results assuming linear shape, cubic shape and Euler buckling

using the stability functions were also studied.

Table 6.5 shows the results of the fundamental buckling factor calculated using the

proposed program with the aid of the incremental subroutine of Coates et al. The results

are compared with those obtained using StaadPro2014 (Stardyne Advanced Engine),

StaadProV8i and ETABS 2013.

Table 6.5: Minimum Buckling factor using the different packages

Buckling Analysis Package

Minimum buckling factor

MFTProgV2, Linear Shape 7.9764
MFTProgV2, Cubic Shape 7.1040
MFTProgV2, Euler stability functions 7.0281
StaadPro2014 (Stardyne Advanced Engine) 7.1061
StaadProV8i 7.1016
ETABS2013 7.1360

The buckling analysis was carried out using the eign solution. The Vianello method and

the proposed improved Vianello method were carried out for the first six buckling modes,

for the linear and the cubic deformed shape functions and the Euler stability functions.

The results obtained are compared with those obtained from ETABS2013. The results are

shown in Table 6.6 and the buckling mode shapes are shown in Figures 6.4 to 6.9.

Table 6.6: Buckling factors of the first six modes using the different packages

Buckling Analysis Model | Mode2

Mode3 Moded Modeb5 Modeb6

MFTProgV2 (Linear) 7.976 10.569

12.934 | 15195 | 17.612 | 20.067

MFTProgV2 (Cubic) | 7.100 | 9.982

12.005 | 13.879 | 15.829 | 17.800

MFTProgV2 (Euler) 7.049 9.960

11.955 | 13.805 | 15.712 | 17.675

ETABS2013 7.136 10.037

12.069 | 13.957 | 15.931 | 17.925
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In Table 6.5, the MFTProgV2 cubic shape give results that are very close to the results
of StaadPro2014 (Stardyne advanced Engine), the percentage difference is -0.03%.

The MFTProgV2 (Euler stability functions) gives the exact solution and shows lesser
buckling factor.

The results of the proposed program linear deformed shape show greater values of the
buckling factors than the cubic shape values and the results of the cubic shape show
greater values than the Euler buckling values. This can be seen in Table 6.6, for all
buckling modes. These differences are very small. The explanation of greater buckling
load of the linear shape compared with the cubic shape and the cubic shape greater than
the Euler exact solution lies in the fact that an assumed deflected shape implies the
application of constraints in order to force the column to take up an artificial shape. This,
as has been seen, has the effect of stiffening the column with a consequent increase in
critical load.

& Height (m)

1] 0z 04 (1] 0.8 1. o1z
Eelative Value

Figure 6.4: MFTProgV2, Buckling mode shape No. 1
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124

Figure 6.8: MFTProgV2, Buckling mode shape No. 5
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Figure 6.9: MFTProgV2, Buckling mode shape No. 6

6.3.3 Dynamic analysis of the 2D model
The dynamic analysis was performed for the 2D building model, Figure 6.3. The
response spectra method was performed first with linear effects and then the method was
performed including the P-Delta second order effects. The time history was then
performed including the linear and second order effects.
Mass Source

The lumped mass for the 2D model in any floor level was calculated as follows and
shown in Table 6.7:
Miot = 75*(4+7+6)/9.80665 = 130.0138 kg

Table 6.7: Floor Masses of the 2D Building (Mass in kg)

Floor Mass (kg)

1to 15 130.0138
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Table 6.8: Comparisons of the first six Natural frequencies of 2D Building

(cycles/second)

Mode MFTProgV2 | StaadPro(%Diff) | ETABS(%Diff) | SAP2000V16(%Diff)
1 0.27 0.27 (0) 0.27 (0) 0.27 (0)
2 0.825 0.825 (0) 0.825 (0) 0.823 (-0.24)
3 1.467 1.468 (0.07) 1.467 (0) 1.466 (-0.07)
4 2.112 2.112 (0) 2.111 (-0.05) 2.109 (-0.14)
S 2.793 2.793 (0) 2.792 (-0.04) 2.789 (-0.14)
6 3.5 3.5 (0) 3.499 (-0.03) 3.461 (-1.11)

Table 6.8, shows the comparison between the natural frequencies using the proposed
method and the different analysis packages. The table shows negligible differences and

identical results. Some slight deviations in comparing the results with those obtained

from SAP2000V16 are noticed.

T
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Figure 6.10: First Mode Shape (Linear Analysis)
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Figure 6.12: Third Mode Shape (Linear Analysis)
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Table 6.9: Comparisons of the first three modes shape ordinates (Linear Analysis)

Mode 1 Mode 2 Mode 3

Floor MF\WZFOQ StaadPro ETABS MF\';ZrOQ StaadPro ETABS MF\'I;ZrOQ StaadPro ETABS
1 1 1 1 1 1 1 1 1 1
2 0975 | 0975 0975 | 0868 | 0868 0868 | 0721 | 0720 | 0.720
3 0942 | 0942 0942 | 0675 | 0675 0675 | 0289 | 0288 | 0.288
4 0902 | 0902 0902 | 0434 | 0433 0433 | 0204 | -0204 | -0.204
> 0855 | 0.855 0855 | 0162 | o0.162 0.162 | -0.646 | -0.645 | -0.645
6 0801 | o801 0801 | -0119 | 0119 | -0119 | -0935 | -0934 | -0.935
! 0741 | 0740 0741 | -0388 | -0388 | -0388 | -1.006 | -1.005 | -1.006
8 0675 | 0675 0675 | -0624 | 0624 | -0624 | -0.843 | 0842 | -0842
o 0604 | 0604 | 0604 | -0809 | 0809 | -0809 | -0.483 | -0483 | -0.483
10 0530 | 0530 0530 | 0929 | 0928 | 0928 | -0.009 | -0.009 | -0.009
1 0452 | 0452 0452 | -0974 | 0974 | -0974 | 0470 | 0470 | 0470
12 0372 | o037 0372 | 0942 | 0942 | 0941 | 0845 | 0844 | 0844
13 0201 | 0201 0201 | 0835 | 0834 | -0.8%4 | 1028 | 1028 1.028
14 0210 | 0210 0210 | 0661 | -0.660 | -0.660 | 0978 | 0978 | 0978
15 0.127 0.127 0127 | -0426 | -0426 | -0426 | 0695 | 0695 0.695

The comparison between the first three mode shapes using MFTProgV2, StaadProV8i

and ETABS packages shows almost identical modes shapes as shown in Table 6.9.

6.3.4 Response spectra Analysis for the 2D model

Response spectra analysis was performed for the 2D model. The excited response

acceleration was taken from the UBC design code with assumed damping ratio of 5%.

The considered modal combination methods used in this analysis were the SRSS and the

CQC methods. Comparison of the modal masses participating ratios and their

accumulations are shown in Tables 6.10 and 6.11. Comparisons of the lateral

displacement at the top floor, the base shear and the base overturning moment for
MFTProgV2 and the different packages are shown in Tables 6.14 to 6.17.

128




Table 6.10: Comparison of the modal masses participating ratios:

Mode | MFTProgV2 | StaadProV8i(%Diff) | ETABS(%Diff) | SAP2000V16(%Diff)
1 83.603 83.603 (0) 83.604 (0) 83.559 (-0.05)
2 11.101 11.102 (0.01) 11.101 (0) 11.137 (0.32)
3 2.893 2.893 (0) 2.893 (0) 2.896 (0.1)
4 1.166 1.165 (-0.09) 1.166 (0) 1.168 (0.17)
S 0.55 0.549 (-0.18) 0.55 (0) 0.55 (0)
6 0.291 0.291 (0) 0.291 (0) 0.092 (-68.38)
Table 6.11: Comparison of the accumulated modal masses participating ratios:
Mode | MFTProgV2 | StaadProV8i(%Diff) | ETABS(%Diff) | SAP2000V16(%Diff)
! 83.603 83.603 (0) 83.604 (0) 83.559 (-0.05)
2 94.704 94.705 (0) 94.704 (0) 94.696 (-0.01)
3 97.597 97.598 (0) 97.597 (0) 97.592 (-0.01)
4 98.763 98.763 (0) 98.762 (0) 98.759 (0)
> 99.312 99.312 (0) 99.312 (0) 99.309 (0)
6 99.603 99.603 (0) 99.603 (0) 99.401 (-0.2)

The comparisons between modal masses participating ratios using MFTProgV2,

StaadProV8i and ETABS packages show almost identical results. Some difference
between the results of SAP2000V16 and the other packages is noticed.

The response spectra acceleration obtained using the UBC curve was calculated and is

shown in Table 6.12. The modal cross-correlation coefficients used in the CQC

combination method were calculated and are shown in Table 6.13.

Table 6.12: MFTProgV2 Response acceleration using the UBC response spectra curve

Mode Natural frequency Hz | Period (seconds) Response
Acceleration m/s?
1 0.270 3.704 0.691
2 0.825 1.212 2.106
3 1.467 0.681 3.877
4 2.112 0.474 4.658
5 2.793 0.358 4.658
6 3.500 0.286 4.658
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Table 6.13: Modal Cross-correlation Coefficients

Mode 1 2 3 4 5 6
1 1 0.0062 0.0020 0.0011 0.0007 0.0005
2 0.0062 1 0.0273 0.0094 0.0050 0.0032
3 0.0020 0.0273 1 0.0683 0.0217 0.0112
4 0.0011 0.0094 0.0683 1 0.1117 0.0358
5 0.0007 0.0050 0.0217 0.1117 1 0.1623
6 0.0005 0.0032 0.0112 0.0358 0.1623 1

I- Lateral Displacement at the top floor of the 2D building model

Tables 6.14 and 6.15, show the lateral displacement response at the top floor of the
building model due to the UBC design code acceleration response curve, obtained by
response spectra analysis in Xx-direction using MFTProgV2 method and the other
packages.

Table 6.14: Comparison of the lateral displacement response at the top floor (m),
Proposal 1

Response | MFTProgV2 | StaadProV8i(%Diff) | ETABS(%Diff) | SAP2000V16(%Diff)

ALL

sRss | 0320198 | 0.320157 (-0.01) 0.320213 (0) 0.3202 (0)
ALL
coc 0.319952 0.320115 (0.05) 0.319967 (0) 0.31987 (-0.03)

Table 6.15: Comparison of the lateral displacement response at the top floor (m),
Proposal 2

Response | MFTProgV2 | StaadProV8i(%Diff) | ETABS (%Diff) | SAP2000V16(%Diff)

ALL

SRSS 0.33953 0.320157 (-5.71) | 0.320213 (-5.69) 0.3202 (-5.69)

ALL

coc 0.33989 0.320115 (-5.82) | 0.319967 (-5.86) 0.31987 (-5.89)

Proposal 1 used the displacements responses calculated from the acceleration response
(Su = So/w?), and the participation factor of the mode, while Proposal 2 used the
displacement obtained from a full frame analysis using the equivalent static forces

obtained from the acceleration responses.
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According to Ghali et al. (2009), the equivalent static forces should be applied on the
structure to calculate the displacements, internal forces, or reactions (as required) for the
concerned mode (Proposal 2).

In Table 6.14, the lateral displacement results obtained by performing response
spectrum analysis are presented for proposal 1. The table gives the total lateral
displacement at the top floor of the building structures. For the SRSS, the closest result to
the MFTProgV2 result is obtained from SAP2000V16 which is of 0.0006 % difference,
and for the CQC, the closest results is obtained from ETABS which is of 0.0047 %
difference.

And in Table 6.15, the lateral displacement results obtained by performing response
spectrum analysis are presented for proposal 2. The table gives the total lateral
displacement at the top floor of the building structures. For the SRSS, the closest result to
MFTProgV2 result is obtained from ETABS and SAP2000V16 which is of -5.69 %
difference, and for the CQC, the closest results is obtained from StaadProV8i which is of
-5.82 % difference. MFTProgV2 proposal 1 gives closer results than proposal 2.

I1- Resultant Shear Force at the Base of the 2D building model

Table 6.16, shows the resultant shear force response at the base of the building due to
the UBC design code acceleration response curve, obtained by response spectra analysis
in x-direction using MFTProgV2 and the other packages.

Table 6.16: Comparisons of the Response Spectrum Base Shear force:

Mode | MFTProgV2 | StaadProV8i(%Diff) | ETABS(%Diff) | SAP2000V16(%Diff)
1 1122.43 1127.73 (0.47) | 1127.26 (0.43) -
2 455.32 456.18 (0.19) 455.93 (0.13) -
3 211.09 218.78 (3.64) 218.71 (3.61) -
4 105.89 105.85 (-0.04) 105.88 (-0.01) -
5 49.93 49.91 (-0.04) 49.93 (0) -
6 26.43 26.42 (-0.04) 26.43 (0) -
ALL
SRSS 1235.37 1241.83 (0.52) 1241.3 (0.48) 1240.624 (0.43)
ALL
cac 1243.25 1246.26 (0.24) | 1249.31 (0.49) | 1248.417 (0.42)
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In Table 6.16, the base shear results obtained by performing response spectrum analysis
are presented. The table gives the total shear forces at the base of the building structures.
For the SRSS, the closest result to MFTProgV2 result is obtained from SAP2000V16
which is of 0.43 % difference, and for the CQC, the closest results is obtained from
StaadProV8i which is of 0.24 % difference.

I11- Resultant overturning moment at the Base of the 2D building model

Table 6.17, shows the resultant overturning moment response at the base of the building
due to the UBC design code acceleration response curve, obtained by response spectra
analysis in x-direction using MFTProgV2 and the other packages.

Table 6.17: Comparisons of the Response Spectrum Base Overturning Moment:

Mode | MFTProgV2 | StaadProV8i(%Diff) | ETABS(%Diff) | SAP2000V16(%Diff)
1 40737.25 40748.97 (0.03) 40732.05 (-0.01) -
2 -3390.03 -3390.4 (0.01) -3389.47 (-0.02) -
3 1205.56 1205.35 (-0.02) 1205.365 (-0.02) -
4 -472.95 -472.99 (0.01) -473.038 (0.02) -
5 158.36 158.32 (-0.03) 158.449 (0.06) -
6 -92.71 -92.76 (0.05) -92.774 (0.07) -
ALL
SRSS 40898.98 40910.68 (0.03) 40893.75 (-0.01) 41047.3189 (0.36)
ALL
cac 40876.52 40888.2 (0.03) 40871.29 (-0.01) | 41025.7514 (0.37)

In Table 6.17, the base overturning moment results obtained by performing response
spectrum analysis are presented. The table gives the total overturning moment at the base
of the building structures. For the SRSS, the closest results to MFTProgV2 is obtained
from ETABS which is of -0.01 % difference, and for the CQC, the closest results is
obtained from ETABS which is of -0.01 % difference.

For the base overturning moment in all packages, the CQC results are less than the
SRSS results due to the effect of the reverse response, i.e. some responses in the different

modes have different signs as shown in Table 6.17.

132



6.3.5 P-Delta response spectra analysis

The P-Delta second order analysis was incorporated in the dynamic analysis using the
direct iteration method and the inverse iteration method (Stodola concept), and using the
cubic-displacement shape. As for the linear dynamic analysis, the first six natural
frequencies together with the corresponding mode shapes were computed.
Table 6.18: Comparisons of the first six P-Delta natural frequencies (cycle/second):

Mode MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff)
1 0.255 0.255 (0) 0.255 (0)
2 0.791 0.791 (0) 0.791 (0)
3 1.415 1.416 (0.07) 1.415 (0)
4 2,043 2,044 (0.05) 2,043 (0)
> 2710 2710 (0) 2709 (-0.04)
6 3.404 3.404 (0) 3.404 (0)

From Table 6.18, the comparison between the natural frequencies using the proposed

method and the different analysis packages shows negligible differences and mostly

identical results.

Table 6.19: Comparisons of percentage P-Delta modal Mass Participating ratios:

Mode MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff)
! 84.332 84.330 (0) 84.329 (0)
2 10.752 10.770 (0.17) 10.773 (0.2)
3 2725 2710 (-0.55) 2713 (-0.44)
4 1.064 1.070 (0.56) 1.069 (0.47)
> 0.499 0.500 (0.2) 0.498 (-0.2)
6 0.259 0.260 (0.39) 0.262 (1.16)
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Table 6.20: Comparison of percentage accumulated P-Delta modal Mass Participating

ratios:
Mode MFTProgV2(%Diff) | StaadProV8i(%Diff) ETABS(%Diff)

1 84.332 84.333 (0) 84.329 (0)

2 95.084 95.105 (0.02) 95.102 (0.02)
3 97.809 97.816 (0.01) 97.814 (0.01)
4 98.873 98.885 (0.01) 98.883 (0.01)
5 99.372 99.382 (0.01) 99.381 (0.01)
6 99.631 99.644 (0.01) 99.643 (0.01)

Comparisons of percentage modal Mass Participating ratios and their accumulations
show good agreement between MFTProgV2 and the other packages, as can be seen from
Tables 6.19 and 6.20.

I- Lateral Displacement at the top floor of the 2D building model

Tables 6.21 and 6.22, show the lateral displacement response at the top floor of the
building model due to the UBC design code acceleration response curve, obtained by
response spectra analysis in x-direction using MFTProgV2 and the other packages, for
proposals 1 and 2 respectively.
Table 6.21: Comparison of the P-Delta lateral displacement response at the top floor (m),
MFTProgV2 Proposal 1

Response MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff)
ALL SRSS 0.335827 0.335779 (-0.01) 0.335823 (0)
ALL CQC 0.335586 0.335739 (0.05) 0.335581 (0)

Table 6.22: Comparison of the P-Delta lateral displacement response at the top floor (m),
MFTProgV2 Proposal 2

Response MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff)
ALL SRSS 0.35664 0.335779 (-5.85) 0.335823 (-5.84)
ALL CQC 0.35705 0.335739 (-5.97) 0.335581 (-6.01)

Proposal 1 used the displacements responses calculated from the acceleration response
(S¢ = Sa/w?), and the participation factor of the mode, while Proposal 2 used the
displacement obtained from a full frame analysis using the equivalent static forces

obtained from the acceleration responses.
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Table 6.21 gives the total lateral displacement at the top floor of the building structures,
proposal 1. For the SRSS, the closest results to MFTProgV2 result is obtained from
ETABS which is of -0.00119 % difference, and for the CQC, the closest results is
obtained from ETABS which is of -0.00149 % difference. Table 6.22 gives the total
lateral displacement at the top floor of the building structures, proposal 2. For the SRSS,
the closest results to MFTProgV2 result is obtained from ETABS which is of -5.84 %
difference, and for the CQC, the closest results is obtained from StaadProV8i which is of
-5.97 % difference.

MFTProgV2 proposal 1 gives closer results to the different packages than proposal 2.
I1- Resultant Shear Force at the Base of the 2D building model

Table 6.23, shows the resultant shear force response at the base of the building due to
the UBC design code acceleration response curve, obtained by response spectra analysis
in x-direction using MFTProgV2 and the other packages.

Table 6.23: Comparison of Response Spectrum P-Delta Base Shear Reactions (KN):

Mode MFTProgV?2 StaadProV8i(%Diff) ETABS(%Diff)
1 1073.43 1073.86 (0.04) 1073.57 (0.01)

2 425.12 426.05 (0.22) 425.95 (0.2)

3 198.29 197.36 (-0.47) 197.39 (-0.45)

4 96.67 97.06 (0.4) 97.13 (0.48)

S 45.29 45.17 (-0.26) 45.22 (-0.15)

6 23.51 23.79 (1.19) 23.82 (1.32)
ALL SRSS 1176.54 1177.15 (0.05) 1176.86 (0.03)
ALL CQC 1183.59 1180.98 (-0.22) 1183.91 (0.03)

Table 6.23 gives the total shear forces at the base of the building structures. For the
SRSS, the closest results to MFTProgV2 result is obtained from ETABS which is of 0.03
% difference, and for the CQC, the closest result is obtained from ETABS which is of
0.03 % difference.

I11- Resultant overturning moment at the Base of the 2D building model
Table 6.24, shows the resultant overturning moment response at the base of the building
due to the UBC design code acceleration response curve, obtained by response spectra

analysis in x-direction using MFTProgV2 and the other packages.

135




Table 6.24: Comparison of Response Spectrum P-Delta Base overturning moment:

Mode MFTProgV?2 StaadProV8i(%Diff) ETABS(%Diff)

1 38585.55 38600.94 (0.04) 38591.43 (0.02)

2 -3666.84 -3656.84 (-0.27) -3654.23 (-0.34)
3 1166.4 1141.68 (-2.12) 1142.244 (-2.07)

4 -500.53 -494.63 (-1.18) -494.515 (-1.2)

S 156.68 153.27 (-2.18) 153.502 (-2.03)

6 -99.1 -94.63 (-4.51) -94.622 (-4.52)
ALL SRSS 38780.61 38794.14 (0.03) 38784.45 (0.01)
ALL CQC 38756.73 38770.4 (0.04) 38760.7 (0.01)

Table 6.24 gives the total overturning moment at the base of the building structures. For
the SRSS, the closest result to the MFTProgV2 is obtained from ETABS which is of 0.01
% difference, and for the CQC, the closest results is obtained from ETABS which is of
0.01 % difference.
6.3.6 Time History Analysis for the 2D model

Time history analysis was performed for the 2D model. The natural frequencies and

the corresponding mode shapes calculated in the previous section and used in the
response spectra method were used together with the El Centro earthquake time history
acceleration records assumed applied at the base of the building. The assumed damping
ratio is 5%. Comparisons of the lateral displacement at the top floor level, the base shear
and the base overturning moment for the proposed method and the different packages are
shown in the following sections.
I- Lateral Displacement at the top floor of the 2D building model

Figures 6.13 to 6.16, give the graphs for the lateral displacement history at the top floor
of the building model due to EI Centro earthquake, obtained by time history analysis in x-
direction using MFTProgV2 and the other packages. The minimum and the maximum
responses are shown in Table 6.25.
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Table 6.25: Minimum and maximum displacements at the top floor (mm):

Response | MFTProgV2 | StaadProV8i(%Diff) | SAP2000V16(%Diff) | ETABS(%Diff)
Minimum | _321 26 -321 (-0.08) -321 (-0.08) -321.3 (0.01)
At time 35 3.49 4.8 3.5
Maximum 398.5 399 (0.13) 397.7 (-0.2) 398.6 (0.03)
Attime 5.08 5.08 5.08 5.08

The diagrams shown in Figures 6.13 to 6.16 are similar and show very good agreement.
Table 6.25 gives the maximum and minimum response values together with the
corresponding time. For the minimum response, the closest result to MFTProgV2 is
obtained from ETABS which is of 0.01 % difference, and for the maximum response, the
closest result is obtained also from ETABS which is of 0.03 % difference.

I1- Resultant Shear Force at the Base of the 2D building model
Figures 6.17 to 6.19 give the graphs for the resultant shear force history at the base of the
building obtained by time history analysis in x-direction using MFTProgV2 and the other

packages. The minimum and the maximum responses are shown in Table 6.26.

1500 g RESPONSE CURVE
S,
600 n
I A
’ [W IV A AR
_300.% 4 f 2 U” Ulew \ 2 v 24“% 28 \/’J 3 36
-600 fA'I : ! V TIME

Figure 6.17: History of base Shear in x-direction using MFTProgV2
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Table 6.26: Minimum and maximum base shear (kN):

Response MFTProgV?2 StaadProV8i(*) | SAP2000V16 ETABS
Minimum -1477.73 -1481.713 (0.27) | -1478 (0.02) | -1478(0.02)
At time 4.92 4.927778 4.94 4.92
Maximum 1310.39 N.A. 1316 (0.43) 1311 (0.05)
Attime 6.64 N.A. 6.64 6.64

(*): Obtained from output results.

The diagrams in Figures 6.17 to 6.19 are similar and show very good agreement. Table
6.26 gives the maximum and minimum total shear forces at the base of the building
structure with the corresponding time. For the minimum response, the closest results to
MFTProgV2 result is obtained from ETABS and SAP2000V16 which is of 0.02 %
difference, and for the maximum response, the closest result is obtained from ETABS
which is of 0.05 % difference.

I11- Resultant overturning moment at the Base of the 2D building model

Figures 6.20 to 6.22 give the graphs for the resultant overturning moment history at the
base of the building obtained by time history analysis in x-direction using the proposed
method and the other packages. The minimum and the maximum responses are shown in
Table 6.27
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Figure 6.20: History of Base overturning moment about y-direction using MFTProgV2
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Figure 6.22: History of base overturning moment about y-direction using SAP2000V16

Table 6.27: Minimum and maximum base overturning moment (kKN.m):

Response MFTProgV2 ETABS(%Diff) | SAP2000V16(%Diff)
Minimum -50587 -50590 (0.01) -49870 (-1.42)

At time 5.08 5.08 5.14
Maximum 40026.94 40030 (0.01) 42380 (5.88)

At time 3.48 3.48 3.44
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The diagrams in Figures 6.20 to 6.22 are similar and show very good agreement. Table
6.27 gives the maximum and minimum response values together with the corresponding
time. For the minimum response, the closest result to MFTProgV2 result is obtained from
ETABS which is of 0.01 % difference, and for the maximum response, the closest result
is obtained from ETABS which is of 0.01 % difference.

6.3.7 P-Delta Time History Analysis

P-Delta second order time history analysis was incorporated in the dynamic time
history analysis using the direct iteration method and the inverse iteration method
(Stodola concept), and using the cubic-displacement shape. As for the linear dynamic
analysis, the first six natural frequencies together with the corresponding mode shapes
were computed and used in the analysis.

I- Lateral Displacement at the top floor of the 2D building model

Figures 6.23 to 6.25 give the graphs for the lateral displacement at the top floor of the
building model obtained by time history analysis in x-direction using the proposed
method and the other packages. The minimum and the maximum responses are shown in
Table 6.28.
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Table 6.28: Minimum and maximum P-Delta displacements at the top floor (mm):

Response MFTProgVv2 | StaadProV8i(%Diff) | ETABS(%Diff)
Minimum -325.6 -326 (0.12) -325.7 (0.03)
At time 3.6 3.6 3.6
Maximum 366.272 366 (-0.07) 366.4 (0.03)
At time 5.12 5.13 5.12

The diagrams in Figures 6.23 to 6.25 are similar and show very good agreement. Table
6.28 gives the maximum and minimum response values together with the corresponding
time. For the minimum response, the closest result to MFTProgV2 result is obtained from
ETABS which is of 0.03 % difference, and for the maximum response, the closest result
is obtained from ETABS which is of 0.03 % difference.

I1- Resultant Shear Force at the Base of the 2D building model
Figures 6.26 and 6.27 give the graphs for the resultant shear force history at the base of
the building obtained by time history analysis in x-direction using MFTProgV2 and the

other packages. The minimum and the maximum responses are shown in Table 6.29.
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Figure 6.26: History of P-Delta base Shear in x-direction using MFTProgV2
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Figure 6.27: History of P-Delta base Shear in x-direction using ETABS

Table 6.29: Minimum and maximum P-Delta Base Shear (KN):

Response MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff)
Minimum -1223.9 -1215.244 (-0.71) -1225 (0.09)
Attime 4.96 4.945834 4.96
Maximum 1110.844 N.A. 1111 (0.01)
Attime 3.24 N.A. 3.24

The diagrams in Figures 6.26 and 6.27 are similar and show very good agreement. Table
6.29 gives the maximum and minimum total shear forces at the base of the building
structure with the corresponding time. For the minimum response, the closest result to
MFTProgV2 is obtained from ETABS which is of 0.09 % difference, and for the
maximum response, the closest result is obtained from ETABS which is of 0.01 %

difference.
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I11- Resultant overturning moment at the Base of the 2D building model

Figures 6.28 and 6.29 give the graphs for the resultant overturning moment history at the

base of the building obtained by time history analysis in x-direction using MFTProgV2

and the other packages. The minimum and the maximum responses are shown in Table

6.30.
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Figure 6.29: History of P-Delta base overturning moment about y-direction using ETABS
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Table 6.30: Minimum and maximum P-Delta base overturning moment (KN.m):

Response MFTProgVv2 | StaadProV8i(%Diff) ETABS(%Diff)
Minimum -46412.4 N.A. -46590 (0.38)
At time 5.12 N.A. 5.12
Maximum 40579.84 N.A. 40680 (0.25)
At time 3.6 N.A. 3.6

The diagrams in Figures 6.28 and 6.29 are similar and show very good agreement.
Table 6.30 gives the maximum and minimum response values together with the
corresponding time. For the minimum response, the closest result to MFTProgV2 result is
obtained from ETABS which is of 0.38 % difference, and for the maximum response, the

closest result is obtained from ETABS which is of 0.25 % difference.
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6.4 The twenty five floors 3D building Model

The building plan area, shown in Figure 6.30 is: 24 m x 12 m. The floor slab is of
thickness = 0.2 m. The building is composed of 25 floors of floor height = 3.5 m for all
floors except the lower floor which is of height = 5.5 m.
All building members are concrete of elasticity, E = 29x10° KN/m?,
and Poisson's ratio, v = 0.2
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Figure 6.30: 24 m x 12 m floor plan for 25 Storey Building

The section properties of the vertical elements (in meters) are:
All Columns: 0.60 m x 0.60 m for the 10 lower floors, 0.50 m x 0.50 m for the 10 middle
floors, and 0.40 m x 0.40 m for the 5 upper floors
The Shear walls are of lengths 3.0 m (walls 1, 2 and 20), and 4.0 m (wall 3), and
thicknesses are: 0.30 m for the 10 lower floors and 0.25 m for the 15 upper floors.

The building is subjected to vertical area load of 18 kN/m? at all floors, and to lateral
loads (F, in Y-direction and in the location shown in Figure 6.30, at column 13), of 151.2
kN at the lower floor level, and 117.6 kN at all other floors levels.

The slab was modeled by finite plate elements presented by Ghali and Neville (1978), of

meshes size 0.5 m x 0.5 m. The columns and walls were modeled by frame members. The
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edge shear wall and the U-shaped core were connected at the floor levels with torsion

released rigid beams represent the rigid parts of the walls, Akis (2004).

6.4.1 Static Linear and second order Analysis of the 3D building model
Linear and second-order (P-Delta) analyses were carried out, and comparisons of the

obtained results with exact results from different packages, ETABS and StaadPro2004,

based on FEM, are shown in Tables 6.31 to 6.33 and Figures 6.31 to 6.41.

Analysis using ETABS, were performed for two options. The first option was based on
thin-plate (Kirchhoff) formulation, which neglects the transverse shearing deformations,
and the second option used thick-plate (Mindline/Reissner) formulation which includes
the effects of transverse shearing deformations, (CSI Analysis Reference Manual).

Comparison of displacements in Y-direction and the twist rotation of the floors at the
building center (Column 10), obtained using MFTProg and the different packages is
shown in Table 6.31 and Figures 6.31 to 6.33. Comparisons of the bending moments and
shear forces of the U-shaped core (assembly of walls 1, 2 and 3) and the edge shear wall
(wall 20) are shown in Tables 6.32 and 6.33, and Figures 6.34 and 6.41.

Comparisons of the moment My contour in the bottom floor using MFTProg and
StaadPro2014 for both linear and second order P-Delta analyses are also plotted in
Figures 6.42 to 6.45.
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Figure 6.31: P-Delta Analysis, Displacements in y-direction
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Twist Rotation
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Figure 6.32: P-Delta Analysis, Rotations in radians
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Figure 6.33: P-Delta Analysis, Rotations in radians (torsion released)
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Bending Moment Diagram
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Figure 6.34: Linear Analysis, B.M.D. for U-Shaped Core
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Figure 6.36: Linear Analysis, B.M.D. for edge shear wall
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Figure 6.38: P-Delta Analysis, B.M.D. for U-Shaped Core
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Table 6.31: Displacements

and rotation in the top floor level (mm, rad), (3D

Frame):
Package Linear Second order (P-Delta)
Trans. & Rot. | Y-Dir Axial Twist | Y-Dir | Axial Twist
MFTProg 319.60 | 36.21 | 0.0120 | 396.36 | 37.73 | 0.0172
StaadPro2004 | 331.20 | 36.04 | 0.0130 | 415.61 | 37.60 | 0.0189
%Diff. -3.50 0.47 -7.69 -4.63 0.35 -8.99

Table 6.32: Maximum bending moment in U-Shaped Core (kN.m), (3D Frame):

Package Linear Second order
MFTProg 43505.86 49183.91
StaadPro2004 44108.82 50071.03
%Diff. -1.37 -1.77

Table 6.33:

Maximum bending moment in Edge

Package Linear Second order
MFTProg 13130.94 15985.60
StaadPro2004 13431.23 16541.75
%Diff. -2.24 -3.36

Shear Wall (kN.m), (3D Frame):

In all the comparisons of the displacements and the bending moments, for both linear
and second order analysis, the differences are found to be very small.
The differences in the models displacements are proportional to the building height.
ETABS (thick-plate) model has more rigid floor and less displacements and twist
rotations than the other exact models, Figures 6.31 and 6.32. The assumption of the rigid
diaphragm in MFTProg is further resisting and reducing the twist rotations in the lower
levels of the building compared with StaadPro2004 and ETABS (thin-plate) models,
Figure 6.32. This is due to the fact that, the torsion stiffness of the vertical members in
the lower levels are very large compared with that in the upper levels, and the twist
rotations in the vertical members are constrained to follow the rigid diaphragms twist
rotations. This effect may be illustrated by comparing the results of the models with all
the vertical members released for torsion, Figure 6.33. In this case the differences in the

models twist rotations are almost proportional to the building height.
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6.4.1.1 Effect of Finite Element Formulation Accuracy

The differences in the results of the different programs models may be due to the
following factors:

1- The differences in the finite element formulation accuracy of the different programs,
which affect the floor rotational-translational stiffness, and accordingly the building
deformations and stresses.

2- The small deformations in the floor slab of the exact models due to the induced in-
plane stresses, compared with the non-deformable rigid diaphragm of the proposed
model. These deformations proofed to be negligible, as the differences in the twist
rotations of the different models were not much affected by releasing the torsional
stiffness of the vertical members, (Figures 6.32 and 6.33).

In order to examine the effects of the finite element formulation accuracy on the results
of the different models, a special subroutine was created and implemented in the
developed program. The subroutine was designed to calculate the floor rotational-
translational stiffness from StaadPro one floor model. Therefore it enabled MFTProg to
use the Finite elements formulation of StaadPro program. By using this subroutine, the
floor stiffness of StaadPro was borrowed and used in the proposed method instead of the
embedded one.

The subroutine has been created using the capabilities of OpenStaad, the Application
Programming Interface (API), of StaadPro package, and executed by constructing a one
floor StaadPro model supported by fully enforced supports in the locations of the
columns and walls. A unit rotation or translation was exerted in each support in the
directions of the different DOFs, and the corresponding reactions in all supports were
retrieved and arranged systematically to construct the rotational-translational stiffness of
the floor. Comparison of the results of the proposed model including the borrowed floor,
with the results obtained using StaadPro2004 exact model, show zero or very small
differences, as shown in Tables 6.34 to 6.36. Comparisons of the moment My contour in
the bottom floor using MFTProg with borrowed StaadPro floor and Full StaadPro2014
model for both linear and second order P-Delta analyses are also plotted in Figures 6.46
to 6.49.
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Table 6.34: Displacements and rotation in the top floor level (mm, rad), (3D Frame),

(Borrowed StaadPro Floor):

Package Linear Second order (P-Delta)
Trans. & Rot. | Y-Dir Axial Twist | Y-Dir | Axial Twist
MFTProg 331.02 | 36.04 | 0.0130 | 415.09 | 37.60 | 0.0189
StaadPro2004 | 331.20 | 36.04 | 0.0130 | 415.61 | 37.60 | 0.0189
%Diff. -0.05 0.00 0.00 -0.13 0.00 0.00

Table 6.35: Maximum bending moment in U-Shaped Core (kKN.m), (3D Frame),

(Borrowed StaadPro Floor):

Package Linear Second order
MFTProg 44106.59 50074.39
StaadPro2004 44108.82 50071.03
%Diff. -0.01 0.01

Table 6.36: Maximum bending moment in Edge Shear Wall (kN.m), (3D Frame),

(Borrowed StaadPro Floor):

Package Linear Second order
MFTProg 13467.59 16571.60
StaadPro2004 13431.23 16541.75
%Diff. 0.27 0.18
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6.4.1.2 Comparison of Numbers of Unknowns

The floor slab idealized by 48 x 24 finite elements with 20 vertical members (columns
and walls) shown in Figure 6.30, was used to compare the proposed method with the
conventional matrix methods of analysis. The total number of unknowns for a building
with same floor and of total N floors is:
(a) Conventional matrix methods (6 DOFs/joint):
S1 = [(49%25%xN+20) x6]
(b) Proposed Method:
The unknowns in the proposed method are composed of two parts:
1-Coupled unknowns for one floor with 3 DOFs/joint, solved simultaneously and used to
obtain the floors level stiffness.
2-Two Rotations plus one axial translation for each column/wall at all levels including
the supports level. The unknowns solved separately, each (20x3) unknowns per each
level.
S2 = [49%25x%3] + [20x3] . (N+1)
Note: coupled unknowns are in square brackets [ ].
For N= 150 floors: S1= 1,102,620 Coupled unknowns and, S2 = 12,735 unknowns
(partially coupled), Ratio = S1/S2 = 86 times.
6.4.1.3 Analysis of a hypothetical 150 floors Building using MFTProg

To evaluate the program running time, the floor, Figure 6.30, was used in a 150 floors
hypothetical building, but with slab thickness of 0.25 m, and all floors height = 3.0 m.
The building members are of elasticity, E = 40x108 kN/m? and Poisson's ratio, v = 0.2
The section properties of the vertical elements are:

All Columns: 1.00 m x 1.00 m
All shear walls are of thicknesses 0.5 m.

The building is subjected to lateral loads (F = 1.0 kN).

The problem was solved for elastic linear analysis using MFTProg. The elapsed running
time was 83 seconds only. The displacement and twist rotation of the floors at the
location of column#10, the bending moment and the shear force diagrams for the U-
Shaped core and the edge shear wall are shown in Figures 6.50 to 6.56 and Tables 6.37 to
6.39. The global deformed shape of the building is shown in Figure 6.57.
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Figure 6.57: Perspective view for the deformed shape of the 150 Floors Building.
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Table 6.37: Displacements and rotation in the top floor level (mm, rad), (150 Floor

model):

Package Y-Dir Axial (col.#10) Twist
MFTProg 135.873 1.958 0.000528

Table 6.38: Maximum bending moment (kN.m) and Shear Force (kN), in U-Shaped Core,
(150 Floor model):

Package Shear Moment
MFTProg 80.973(*) 3290.189
(*) Maximum value: at level 149.

Table 6.39: Maximum bending moment (kN.m) and Shear Force (kN), in Edge Shear
Wall, (150 Floor model):

Package Shear Moment
MFTProg 32.313(*) 578.573
(*) Maximum value: at level 149.

6.4.1.4 Running time and numbers of unknowns for N numbers of floors
The same floor, Figure 6.30, was analyzed for different assumed numbers of floors.
The elapsed running time and the comparison of the numbers of unknowns are shown in
Figures 6.58 and 6.59 respectively, and in Tables 6.40 and 6.41.
Table 6.40: Elapsed running time in seconds using MFTProg

No. of Floors Running time (sec.)
150 82.9
300 119.7
600 193.4
900 267.4
1000 292.1
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MFTProg Running Time
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Figure 6.58: Elapsed running time in seconds using MFTProg
Table 6.41: Comparison of numbers of unknowns
No. of Floors Conventional (S1) | MFTProg (S2) Ratio= S1/S2
150 1,102,620 12,735 86.6
300 2,205,120 21,735 101.5
600 4,410,120 39,735 111.0
900 6,615,120 57,735 114.6
1000 7,350,120 63,735 115.3
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Comparison of Number of Unknowns
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Figure 6.59: Comparisons of the numbers of unknowns

From the above presentation, it is clearly seen that the analysis of super tall buildings
can be easily performed and with very low cost by using MFTProg.

These comparisons have been carried out by using computer: Dell Inspiron, Intel(R)
Core™;3-2350M CPU @ 2.30 GHz, 4.00 GB of RAM.
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6.4.2 Buckling Analysis of the 3D building model

The buckling analysis for the 3D building model was carried out, using the proposed

bisection method and by using the eign solution (Vianello method). Comparisons

between the results assuming linear shape, cubic shape and Euler buckling with stability

functions were also studied.

Table 6.42 shows the results of the fundamental buckling factor calculated using

MFTProgV2 with the proposed bisection subroutine. The results are compared with those

obtained using StaadProV8i and ETABS 2013.

Table 6.42: Minimum Buckling factor using the different packages

Buckling Analysis Package

Minimum buckling factor

MFTProgV2, Linear Shape 4.181
MFTProgV2, Cubic Shape 4.165
MFTProgV2, Euler stability functions 4.157
StaadProV8i 4.152
ETABS2013 (thin) 3.983
ETABS2013 (thick) 4.731

The analysis was also carried out using the eign solution. The Vianello method was

carried out for the first six buckling modes for the linear shape function. The results
obtained were compared with those obtained from ETABS2013 thin and thick plate. The

results are shown in Table 6.43, and the buckling mode shapes are shown in Figure 6.60.

Table 6.43: Buckling factors of the first six modes using the different packages

Buckling Analysis Model | Mode2 | Mode3 | Mode4 | Mode5 | Mode6
MFTProgV2 (Linear) 4.373 5.167 8.184 9.883 9.945 13.832
ETABS2013 (thin) 3.983 4.832 7.724 9.129 9.375 12.943
ETABS2013 (thick) 4.731 5.815 8.739 9.991 10.673 | 14.060

In Table 6.42, the MFTProgV2 Euler buckling analysis give very close result to the

result of StaadProV8i, the percentage difference is 0.11%.

The MFTProgV2 (Euler stability functions) is exact solution and gives less buckling

factor compared to the cubic and the linear shapes buckling values.
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In Table 6.42, the results of MFTProgV2 linear deformed shape show greater values of

the buckling factors than the cubic shape values and the results of the cubic shape show

greater values than the Euler buckling values. The reason for these cases was already

explained in the 2D model case. In Table 6.43, the buckling factors for all modes of

MFTProgV2 (Linear)

fall in-between the values of ETABS (thin) and ETABS (thick)

and show good agreement.

Mode 3
h=E8184

Mode 1
h=4373

KSR

.‘1‘
/KK

&

=
S

2

Mode 6
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Figure 6.60: Buckling modes 1 to 6

The following cross check for the proposed bisection subroutine was carried out:
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The calculated buckling factor found for the cubic shape was (4.165), which is greater
than 1. Because the starting buckling factor is 1, this is means that the load factor is
increased until the correct buckling factor is reached. The total load was multiplied by 10
to keep the applied load greater than the building buckling load. By running MFTProgV?2
for the new applied loads, the load factor starts with 1.0 and then decreases until the
correct buckling factor is reached. The calculated new buckling factor obtained was
(0.41656) which is match with the value (4.165/10), and proves the efficiency of the
proposed subroutine.
6.4.3 Dynamic analysis for the 3D model

The dynamic analysis was performed for the 3D model. The response spectra method
was performed first with linear effects and then the spectra was also performed including
the P-Delta second order effects. The time history was then performed including the
linear and also the second order effects.

The lumped mass and the mass polar inertia for the 3D model in any floor level were

calculated as follows:

my my

my my
my my

ILES my

! !

ﬁﬁ

Figure 6.61: Mass polar inertia for 4 lumped masses, (Proposal 1)
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mass per
unit area

Figure 6.62: Mass polar inertia for uniformly distributed mass, (Proposal 2)

In the three dimensional model, the total mass in any floor was calculated for the two
proposals shown in Figures 6.61 and 6.62, as follows:
MXtot = MYt = 18*12*24/9.80665 = 528.62 kg

The lumped masses in the x and y directions and the polar inertia for the 4 lumped
masses in Proposal 1, were calculated as follows:
For,a=b=55m:
The lumped masses in the x and y directions were:
MXjumped = MYiumped = 18*12*24/4/9.80665 = 132.155 kg
and the polar inertia was:
Mro = 18*(12*24/4)*5.52*8/9.80665 = 31981.56 kg.m?
The polar inertia for the uniform mass in Proposal 2, was calculated as follows:
Mro = 18*(12*243/12+24*123/12)/9.80665

=31717.25 kg.m?

The lumped masses in Proposal 1, is an approximation used in some packages to
simplify and accelerate the eign solution. The relative percentage difference between the
two proposals is:
=(31981.56-31717.25)/31717.25*100
=0.83%
The masses and moments of inertias for all floors of the two illustrated proposals of the

3D building model are shown in Table 6.44.
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Table 6.44: Floor Masses and Moments of Inertia of the 3D Building (Mass in kg and

Moment of Inertia in kg.m?)

Inertia mro Inertia mro
Mass, MXtot Mass, mytot .
Floor (4 lumped (distributed)
(kg) (kg) , )
masses)(kg.m<) (kg.m?)
lto25 528.62 528.62 31981.56 31717.25

Table 6.45: Comparisons of the first nine Natural frequencies of 3D Building

(cycles/second)

Mode | StaadProV8i'(%Diff) MFTProgV2 MFTProgV22 ETABS(thin)" ETABS|thick)”
(%Diff) (%Diff) (%Diff)
1 0.141 (0) 0.141 (0) 0.141 0.136 (-3.55) | 0.149 (5.67)
2 0.151 (0.67) 0.15 (0) 0.150 0.145 (-3.33) 0.159 (6)
3 0.213 (0.95) 0.21 (-0.47) 0.211 0.206 (-2.37) | 0.218 (3.32)
4 0.494 (2.49) 0.481 (-0.21) 0.482 0.468 (-2.9) | 0.505 (4.77)
5 0.532 (3.3) 0.515 (0) 0.515 0.503 (-2.33) | 0.541 (5.05)
6 0.828 (3.5) 0.798 (-0.25) 0.800 0.789 (-1.38) | 0.822(2.75)
7 1.033 (3.3) 0.998 (-0.2) 1.000 0.979 (-2.1) 1.031 (3.1)
8 1.112 (4.02) 1.069 (0) 1.069 1.052 (-1.59) | 1.106 (3.46)
9 1.785 (4.32) 1.708 (-0.18) 1711 1.683 (-1.64) | 1.743(1.87)

The superscripts 1 and 2 refer to Proposal 1 and Proposal 2 respectively.

As shown in table 6.45, the difference is very small and therefore, the two proposed
cases were assumed identical. In all the comparisons StaadPro2004 and StaadProV8i
packages used proposal 1 and all the other packages include MFTProgV2 are using the
Proposal 2. The comparisons between the natural frequencies obtained using

MFTProgV22 and the different analysis packages, show good agreement.
6.4.4 Response spectra Analysis for the 3D model

The response spectra analysis was performed for the 3D model. As for the 2D model,
the excited response acceleration was taken from the UBC design code with assumed
damping ratio of 5%. The considered modal combination methods used in this analysis

were the SRSS and the CQC methods. Comparisons of the lateral displacement, the base
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shear and the base overturning moment for MFTProgV2 and the different packages are
shown in Tables 6.50 to 6.53.
Table 6.46: Comparison of the modal masses participating ratios in x-direction:

ETABS(thin)

ETABS(thick)

Mode MFTProgV2 | StaadProV8i(%Diff) ) )
(%Diff) (%Diff)
1 0 0 0 0
2 73.147 73.48 (0.46) 72.864 (-0.39) | 73.488 (0.47)
3 0 0 0 0
4 0 0 0 0
5 12.983 13.13 (1.13) 13.105 (0.94) | 12.845 (-1.06)
6 0 0 0 0
/ 0 0 0 0
8 5.405 5.28 (-2.31) 5.463 (1.07) | 5.292 (-2.09)
9 0 0 0 0
Table 6.47: Comparison of the accumulated modal masses participating ratios in x-
direction:
- ETABS(thin) | ETABS(thick)
Mode MFTProgV2 | StaadProV8i(%Diff) ) )
(%Diff) (%Diff)
1 0 0 0 0
2 73.147 73.477 (0.45) 72.864 (-0.39) | 73.488(0.47)
3 73.147 73.477 (0.45) 72.864 (-0.39) | 73.488(0.47)
4 73.147 73.477 (0.45) 72.864 (-0.39) | 73.488(0.47)
S 86.13 86.609 (0.56) 85.969 (-0.19) | 86.334 (0.24)
6 86.13 86.609 (0.56) 85.969 (-0.19) | 86.334 (0.24)
7 86.13 86.609 (0.56) 85.969 (-0.19) | 86.334 (0.24)
8 91.535 91.891 (0.39) 91.432 (-0.11) | 91.626 (0.1)
9 91.535 91.891 (0.39) 91.432 (-0.11) | 91.626 (0.1)
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Table 6.48: Comparison of the modal masses participating ratios in y-direction:

ETABS(thin)

ETABS(thick)

Mode MFTProgV2 | StaadProV8i(%Diff) ) )
(%Diff) (%Diff)

1 48.499 49.21 (1.47) 47.754 (-1.54) | 48.675 (0.36)
2 0 0 0 0
3 22.148 21.74 (-1.84) 22.679 (2.4) | 22.081(-0.3)
4 8.095 8.22 (1.54) 8.048 (-0.58) | 8.045 (-0.62)
S 0 0 0 0
6 6.994 7.01 (0.23) 7.115(1.73) | 7.052(0.83)
7 3.062 3.05 (-0.39) 3.087 (0.82) | 2.982(-2.61)
8 0 0 0 0
9 2.231 2.09 (-6.32) 2.097 (-6.01) | 1.935 (-13.27)

Table 6.49: Comparison of the accumulated modal masses participating ratios in y-

direction:
ETABS(thin) | ETABS(thick)
Mode MFTProgV2 | StaadProV8i(%Diff) ) )
(%Diff) (%Diff)

1 48.499 49.212 (1.47) 47.754 (-1.54) | 48.675 (0.36)
2 48.499 49.212 (1.47) 47.754 (-1.54) | 48.675 (0.36)
3 70.646 70.952 (0.43) 70.433 (-0.3) | 70.756 (0.16)
4 78.742 79.167 (0.54) 78.481 (-0.33) | 78.801 (0.07)
5 78.742 79.167 (0.54) 78.481 (-0.33) | 78.801 (0.07)
6 85.736 86.18 (0.52) 85.596 (-0.16) | 85.853 (0.14)
7 88.799 89.228 (0.48) 88.682 (-0.13) | 88.835 (0.04)
8 88.799 89.228 (0.48) 88.682 (-0.13) | 88.835 (0.04)
9 91.029 91.321 (0.32) 90.78 (-0.27) | 90.77 (-0.28)

The comparisons between the modal masse participating ratios and their accumulations

in the x and y directions using the proposed method, StaadProV8i and ETABS thin and

thick plates show a very small differences, as shown in Tables.
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I- Lateral Displacement at the top floor of the 3D building model

Tables 6.50 and 6.51 show the lateral displacement response at the top floor of the
building model due to the UBC design code acceleration response curve, obtained by
response spectra analysis in y-direction using MFTProgV2 and the other packages for
proposal 1 and 2 respectively.

Table 6.50: Comparison of the lateral displacement response at the top floor (m),

Proposal 1
R MFTProg | staadProvsi EI;BDS_(:;) ET(OA/B;(.t:;k) S?t:?o)o ° S(At:.zi(;o
esponse oL oDi oDi in ic
\ (%Diff) (%Diff) | (%Diff)
ALL SRSS | 0.46146 | 0.463041 | 0.474174 | 0.436886 | 0.46662 | 0.43056
(0.34) (2.76) (-5.33) (1.12) (-6.7)
ALL CQC | 0.468434 | 0.470168 | 0.481418 | 0.445146 | 0.47289 | 0.43792
(0.37) (2.77) (-4.97) (0.95) (-6.51)
Table 6.51: Comparison of the lateral displacement response at the top floor (m),
Proposal 2
i METProg | swove | & 8560 RSO S <o
esponse . oDi ) (%Di in ic
V2 (%Diff) (%Diff) | (%Diff)
ALL SRSS | 0.44462 | 0.463041 | 0.474174 | 0.436886 | 0.46662 | 0.43056
(4.14) (6.65) (-1.74) (4.95) (-3.16)
ALL CQC 0.45571 | 0.470168 | 0.481418 | 0.445146 | 0.47289 | 0.43792
(3.17) (5.64) (-2.32) (3.77) (-3.9)

Proposal 1 used the displacements responses calculated from the acceleration response
(Su = Sa/w?), and the participation factor of the mode, while Proposal 2 used the
displacement obtained from a full frame analysis using the equivalent static forces
obtained from the acceleration responses.

Table 6.50 gives the total lateral displacement at the top floor of the building structures,
proposal 1. For the SRSS, the closest results to MFTProgV2 result is obtained from
StaadProV8i which is of 0.34 % difference, and for the CQC, the closest result is also
obtained from StaadProV8i which is of 0.37 % difference.

Table 6.51 gives the total lateral displacement at the top floor of the building structures,
proposal 2. For the SRSS, the closest result to MFTProgV2 result is obtained from
ETABS (thick) which is of -1.74 % difference, and for the CQC, the closest result is also
obtained from ETABS (thick) which is of -2.32 % difference.
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MFTProgV2 proposal 1 gives closer results to the different packages than proposal 2.
I1- Resultant Shear Force at the Base of the 3D building model

Table 6.52, shows the resultant shear force response at the base of the building due to

the UBC design code acceleration response curve, obtained by response spectra analysis

in y-direction using the proposed method and the other packages.

Table 6.52: Comparisons of the Response Spectrum Base Shear force (kN):

ETABS ETABS | SAP2000 | SAP2000
MFTProg | StaadProV ) ) ] _
Mode _ ) (thin) (thick) (thin) (thick)
V2 8i(%Diff) ) ) _ _
(%Diff) (%Diff) (%Diff) (%Diff)
1 2305.62 | 2333.19 | 219159 | 2454.66 ] ]
(1.2) (-4.95) (6.46)
2 0 0 0 0 - -
3 1572.23 1564.77 1580.22 1622.56 ] ]
(-0.47) (0.51) (3.2)
4 1314.65 1370.1 1280.28 | 1367.77 ] ]
(4.22) (-2.61) (4.04)
S 0 0 0 0 - -
6 1884.42 1958.62 1897.17 1951.38 ] ]
(3.94) (0.68) (3.55)
7 1032.11 1067.59 | 1020.79 | 1041.16 ] ]
(3.44) (-1.1) (0.88)
8 0 0 0 0 - -
9 1286.22 1267.96 | 1213.97 1150.01 ] ]
(-1.42) (-5.62) (-10.59)
ALL 3973.26 | 4043.87 | 3879.98 | 4091.85 | 3871.973 | 4092.598
SRSS (1.78) (-2.35) (2.98) (-2.55) (3.00)
ALL 1 416821 | 422881 | 407339 | 429829 | 4140134 | 4346.12
cQC (1.45) (-2.27) (3.12) (-0.67) (4.27)

Table 6.52 gives the total shear forces at the base of the building structure in y-direction.
For the SRSS, the closest result to MFTProgV2 is obtained from StaadProV8i which is of
1.78 % difference, and for the CQC, the closest result is obtained from SAP2000V16

(thin) which is of -0.67 % difference.
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I11- Resultant overturning moment at the Base of the 3D building model

Table 6.53, shows the resultant overturning moment response at the base of the building

due to the UBC design code acceleration response curve, obtained by response spectra

analysis in y-direction using the proposed method and the other packages.

Table 6.53: Comparisons of the Response Spectrum Base Overturning Moment (KN.m):

StaadProvs | ETABS | ETABS | SAP2000 | SAP2000
Mode | MFTProgV2 | i(%Diff) (thin) (thick) (thin) (thick)
(%Diff) | (%Diff) | (%Diff) | (%Diff)
1 145366.59 | -146700.0 | -138438 | -154679 _ _
(0.92) -477) | (6.41)
2 0 0 0 0 - -
3 10251518 | -102117.5 | -103282 | -106080 _ _
(-0.39) (0.75) (3.48)
A 022124 | -9097.35 | -0143.45 | -8846.03 _ _
(-1.34) (-0.84) | (-4.07)
5 0 0 0 0 - -
5 20382.84 | 2181911 | -22445 | -22616.1 _ _
(-2.52) (0.28) (1.04)
= 126268 | -13035.05 | -12716.9 | -12760.3 _ _
(3.23) (0.71) (1.06)
8 0 0 0 0 - -
o 868640 | -8260.81 | -7851.48 | -6884.64 _ _
(-4.9) (-061) | (-20.74)
ALL | 18017137 | 180958.9 | 175051.4 | 189680.1 | 160393.43 | 173203.79
SRSS (0.44) (-284) | (528) | (-10.98) | (-3.87)
ALL | 18535762 | 185888.57 | 179882.5 | 195681.3 | 164315.07 | 178126.49
cac (0.29) (-295) | (557) | (-11.35 | (-3.9)

Table 6.53 gives the total overturning moment at the base of the building structure

about x-axis. For the SRSS, the closest result to MFTProgV2 result is obtained from
StaadProV8i which is of 0.44 % difference, and for the CQC, the closest result is
obtained from StaadProV8i which is of 0.29 % difference.
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6.4.5 P-Delta response spectra analysis

The P-Delta second order analysis was incorporated in the dynamic analysis using the

direct iteration method and the inverse iteration method (Stodola concept), and using the

cubic-displacement shape. As for the linear dynamic analysis, the natural first nine

natural frequencies together with the corresponding mode shapes were computed.

Table 6.54: Comparisons of the first nine P-Delta natural frequencies (cycle/second):

StaadProV8i! | MFTProgv2! ETABS(thin)? | ETABS(thick)?
Mode _ _ MFTProgV22 _ _

(%Diff) (%Diff) (%Diff) (%Diff)
1 0.124 (0) 0.124 (0) 0.124 0.118 (-4.84) | 0.133(7.26)
2 0.136 (0.74) | 0.135(0) 0.135 0.129 (-4.44) | 0.145 (7.41)
3 0.202 (1) | 0.199 (-0.5) 0.200 0.195 (-2.5) 0.206 (3)
4 0.466 (2.64) | 0.453 (-0.22) 0.454 0.438 (-3.52) | 0.477 (5.07)
5 0.507 (3.47) 0.49 (0) 0.490 0.476 (-2.86) | 0.516 (5.31)
6 0.812 (3.7) | 0.782 (-0.13) 0.783 0.771 (-1.53) | 0.803 (2.55)
7 0.996 (3.43) | 0.961 (-0.21) 0.963 0.941 (-2.28) | 0.994 (3.22)
8 1.08 (4.25) 1.036 (0) 1.036 1.016 (-1.93) | 1.072 (3.47)
9 1.745 (4.62) | 1.665 (-0.18) 1.668 1.637 (-1.86) | 1.697 (1.74)

The superscripts 1 and 2 refer to Proposal 1 and Proposal 2 respectively.

As shown in Table 6.54, the comparison between the natural frequencies using

MFTProgV2 and the different analysis packages shows good agreement.
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Table 6.55: Comparison of the P-Delta modal masses participating ratios in x-direction:

ETABS(thin)

ETABS(thick)

Mode MFTProgV2 | StaadProV8i(%Diff) ) )
(%Diff) (%Diff)
1 0 0 0 0
2 73.313 73.65 (0.46) 73.025 (-0.39) | 73.656 (0.47)
3 0 0 0 0
4 0 0 0 0
S 12.802 12.96 (1.23) 12.925 (0.96) | 12.673 (-1.01)
6 0 0 0 0
! 0 0 0 0
8 5.398 5.26 (-2.56) 5.458 (1.11) 5.28 (-2.19)
9 0 0 0 0
Table 6.56: Comparison of the accumulated P-Delta modal masses participating ratios in
x-direction:
) ) ETABS(thin) | ETABS(thick)
Mode MFTProgV2 | StaadProV8i(%Diff) ] )
(%Diff) (%Diff)
1 0 0 0 0
2 73.313 73.647 (0.46) 73.025 (-0.39) | 73.656 (0.47)
3 73.313 73.647 (0.46) 73.025 (-0.39) | 73.656 (0.47)
4 73.313 73.647 (0.46) 73.025 (-0.39) | 73.656 (0.47)
5 86.116 86.611 (0.57) 85.95 (-0.19) | 86.328 (0.25)
6 86.116 86.611 (0.57) 85.95 (-0.19) | 86.328 (0.25)
7 86.116 86.611 (0.57) 85.95 (-0.19) | 86.328 (0.25)
8 91.513 91.875 (0.4) 91.408 (-0.11) | 91.608 (0.1)
9 91.513 91.875 (0.4) 91.408 (-0.11) | 91.608 (0.1)
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Table 6.57: Comparison of the P-Delta modal masses participating ratios in y-direction:

ETABS(thin)

ETABS(thick)

Mode MFTProgV2 | StaadProV8i(%Diff) ) )
(%Diff) (%Diff)

1 47.881 48.63 (1.56) 46.719 (-2.43) | 47.473 (-0.85)
2 0 0 0 0
3 22.784 22.34 (-1.95) 23.733 (4.17) | 23.312(2.32)
4 7.979 8.12 (1.77) 7.917 (-0.78) | 7.91 (-0.86)
S 0 0 0 0
6 7.04 7.04 (0) 7.173 (1.89) 7.118 (1.11)
7 3.082 3.07 (-0.39) 3.105 (0.75) | 2.991 (-2.95)
8 0 0 0 0
9 2.016 1.86 (-7.74) 1.954 (-3.08) | 1.813(-10.07)

Table 6.58: Comparison of the accumulated P-Delta modal masses participating ratios in

y-direction:
ETABS(thin) | ETABS(thick)
Mode MFTProgV2 | StaadProV8i(%Diff) ) )
(%Diff) (%Diff)

1 47.881 48.633 (1.57) 46.719 (-2.43) | 47.473 (-0.85)
2 47.881 48.633 (1.57) 46.719 (-2.43) | 47.473 (-0.85)
3 70.666 70.972 (0.43) 70.452 (-0.3) | 70.785 (0.17)
4 78.645 79.091 (0.57) 78.369 (-0.35) | 78.695 (0.06)
5 78.645 79.091 (0.57) 78.369 (-0.35) | 78.695 (0.06)
6 85.685 86.135 (0.53) 85.542 (-0.17) | 85.813 (0.15)
7 88.767 89.204 (0.49) 88.647 (-0.14) | 88.804 (0.04)
8 88.767 89.204 (0.49) 88.647 (-0.14) | 88.804 (0.04)
9 90.783 91.064 (0.31) 90.601 (-0.2) | 90.616 (-0.18)

The comparisons between the modal mass participating ratios and their accumulations in
the x and y directions using MFTProgV2, StaadProV8i and ETABS thin and thick plates

show very small differences, as shown in Tables 6.55 to 6.58.
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I- Lateral Displacement at the top floor of the 3D building model

Tables 6.59 and 6.60, show the lateral displacement response at the top floor of the
building model due to the UBC design code acceleration response curve, obtained by
response spectra analysis in y-direction using MFTProgV2 and the other packages for
proposals 1 and 2 respectively.

Table 6.59: Comparison of the P-Delta lateral displacement response at the top floor (m),

Proposal 1
- ETABS(thin) ETABS(thick)
Response MFTProgV2 | StaadProV8i(%Diff) ) _
(%Diff) (%Diff)
ALL SRSS 0.510297 0.512864 (0.5) 0.527419 (3.36) | 0.474082 (-7.1)
ALL CQC 0.515622 0.518369 (0.53) | 0.532894 (3.35) | 0.480804 (-6.75)
Table 6.60: Comparison of the P-Delta lateral displacement response at the top floor (m),
Proposal 2
- ETABS(thin) ETABS(thick)
Response MFTProgV2 | StaadProV8i(%Diff) ) _
(%Diff) (%Diff)
ALL SRSS 0.49683 0.512864 (3.23) | 0.527419 (6.16) | 0.474082 (-4.58)
ALL CQC 0.50595 0.518369 (2.45) | 0.532894 (5.33) | 0.480804 (-4.97)

Proposal 1 used the displacements responses calculated from the acceleration response
(S¢ = Sa/w?), and the participation factor of the mode, while Proposal 2 used the
displacement obtained from a full frame analysis using the equivalent static forces
obtained from the acceleration responses.

Table 6.59 gives the total lateral displacement at the top floor of the building structure
for proposal 1. For the SRSS, the closest results to MFTProgV2 result is obtained from
StaadProV8i which is of 0.50 % difference, and for the CQC, the closest result is
obtained from StaadProV8i which is of 0.53 % difference.

Table 6.60 gives the total lateral displacement at the top floor of the building structure
for proposal 2. For the SRSS, the closest result to MFTProgV2 is obtained from
StaadProV8i which is of 3.23 % difference, and for the CQC, the closest result is
obtained from StaadProV8i which is of 2.45 % difference.

MFTProgV2 proposal 1 gives closer results to the different packages than proposal 2.
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I1- Resultant Shear Force at the Base of the 3D building model

Table 6.61, shows the resultant shear force response at the base of the building due to

the UBC design code acceleration response curve, obtained by response spectra analysis

in y-direction using MFTProgV2 and the other packages.

Table 6.61.: Comparisons of the Response Spectrum P-Delta Base Shear force (KN):

ETABS(thin)

ETABS(thick)

Mode MFTProgVv2 | StaadProV8i(%Diff) ) _
(%Diff) (%Diff)
1 2005.87 2030.48 (1.23) 1860.32 (-7.26) | 2130.75 (6.23)
2 0 0 0 0
3 1533.88 1523.34 (-0.69) 1559.43 (1.67) | 1625.35 (5.96)
4 1234.13 1287.42 (4.32) 1183.01 (-4.14) | 1280.35 (3.75)
5 0 0 0 0
6 1868.76 1933.81 (3.48) 1873.58 (0.26) | 1935.15 (3.55)
7 1005.49 1030.98 (2.54) 991.11 (-1.43) | 1002.33 (-0.31)
8 0 0 0 0
9 1160.49 1107.51 (-4.57) 1107.15 (-4.6) | 1057.38 (-8.89)
ALL SRSS 3708.017 3758.99 (1.37) 3607.01 (-2.72) | 3832.58 (3.36)
ALL CQC 3892.608 3936.16 (1.12) 3791.92 (-2.59) | 4024.72 (3.39)

Table 6.61 gives the total shear forces at the base of the building structure in y-

direction. For the SRSS, the closest result to MFTProgV2 result is obtained from
StaadProV8i which is of 1.37 % difference, and for the CQC, the closest result is
obtained from StaadProV8i which is of 1.12 % difference.

I11- Resultant overturning moment at the Base of the 3D building model

Table 6.62, shows the resultant overturning moment response at the base of the building

due to the UBC design code acceleration response curve, obtained by response spectra

analysis in y-direction using MFTProgV2 and the other packages.
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Table 6.62: Comparisons of the Response Spectrum P-Delta Base Overturning Moment:

N ETABS(thin) | ETABS(thick)
Mode MFTProgV2 | StaadProV8i(%Diff) _ )
(%Diff) (%Diff)
1 126256.2 127431.8 (0.93) 117317 (-7.08) | 134041 (6.17)
2 0 0 0 0
3 100202.5 99637.42 (-0.56) 102035 (1.83) | 106332 (6.12)
4 8114.251 8042.87 (-0.88) 7886.82 (-2.8) | 7688.28 (-5.25)
S 0 0 0 0
6 22219.54 21529.95 (-3.1) 22205.3 (-0.06) | 22448.3 (1.03)
7 12864.73 13152.42 (2.24) 12925.8 (0.47) | 12812.3 (-0.41)
8 0 0 0 0
9 7775.739 7106.545 (-8.61) | 7166.84 (-7.83) | 6317.45 (-18.75)
ALLSRSS | 163605.25 164067.6 (0.28) | 157949.6 (-3.46) | 173322.3 (5.94)
ALLCQC | 167270.83 167570.2 (0.18) | 161333.1 (-3.55) | 177753 (6.27)

Table 6.62 gives the total overturning moment (in kN.m), at the base of the building
structure about x-axis. For the SRSS, the closest result to MFTProgV2 result is obtained
from StaadProV8i which is of 0.28 % difference, and for the CQC, the closest result is
also obtained from StaadProV8i which is of 0.18 % difference.

6.4.6 Time History Analysis for the 3D model

Time history analysis was performed for the 3D model. The natural frequencies and
the corresponding mode shapes calculated in the previous section and used in the
response spectra method were used with the ElI Centro earthquake time history
acceleration records assumed applied at the base of the building. The assumed damping
ratio is 5%. Comparisons of the lateral displacement at the top floor level, the base shear
and the base overturning moment for MFTProgV2 and the different packages are
presented.
I- Lateral Displacement at the top floor of the 3D building model

Figures 6.63 to 6.68 give the graphs for the lateral displacement history at the top floor
of the building model due to El Centro earthquake, obtained by time history analysis in y-
direction using MFTProgV2 and the other packages. The minimum and the maximum

responses are shown in Table 6.63.

186



TOP DISPLACEMENT CURVE

A / i\ N\
\ / aN

N IFANNFWARN S /

014 l‘{ I | ‘\lﬂf A ?/

f \
i \
Y v

]
—_—
o,
(s}

%}

L3
&

Tllll E

Figure 6.63: History of displacement in y-direction at the top floor level using
MFTProgV2

Z-Disp.(mm) - Node: 30033
400 - 394 r400
200 4 200
i 122 /\
— 1 T T
U 10 158 20 32
200 200
400 - -400
Time - Displacement -398

Figure 6.64: History of displacement in y-direction at the top floor level using
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Figure 6.65: History of displacement in y-direction at the top floor level using ETABS
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Figure 6.66: History of displacement in y-direction at the top floor level using ETABS
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Table 6.63: Minimum and maximum displacements at the top floor (mm):

Response StaadProV8i | ETABS(thin) | ETABS(thick) | SAP(thin) | SAP(thick)
MFTProgV2
| (wDiff) | (%Diff) (%Diff) | (%Diff) | (%Diff)
Minimum | -390.3 -398 -388.5 -381.9 -403.9 -355.8
(1.97) (-0.46) (-2.15) (3.48) (-8.84)
Attime 12.3 12.2 12.7 18.1 12.7 3.86
Maximum | 399.3 394 411 382.8 413.4 360.2
(-1.33) (2.93) (-4.13) (3.53) (-9.79)
Attime 15.64 15.6 15.84 15 15.76 1.492

The diagrams shown in Figures 6.63 to 6.68 are similar and show very good agreement.
Table 6.63 gives the maximum and minimum response values together with the
corresponding time. For the minimum response, the closest result to MFTProgV2 result is
obtained from ETABS (thin) which is of -0.46 % difference, and for the maximum
response, the closest result is obtained from StaadProV8i which is of -1.33 % difference.
I1- Resultant Shear Force at the Base of the 3D building model
Figures 6.69 to 6.73 give the graphs for the resultant shear force history in kN at the base
of the building obtained by time history analysis in y-direction using MFTProgV2 and the
other packages. The minimum and the maximum responses are shown in Table
6.64.
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Figure 6.69: History of base Shear in y-direction using MFTProgV2
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Figure 6.70: History of base Shear in y-direction using ETABS (thin plate)
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Table 6.64: Minimum and maximum base shear (kN):

Response StaadProVv8i( | ETABS(thin) | ETABS(thick) | SAP(thin) SAP(thick)
MFTProgV2 ol . AR .
%Diff) (%Diff) (%Diff) (%Diff) (%Diff)
Minimum -4055 -5152 -3478 -4276
-4640 N-A (1261) | (11.03) | (-25.04) | (-7.84)
Attime 6.14 N.A 6.18 6.1 4.44 6.04
Maximum 4931.9 5190.859 4758 4982 5187 5259
' (5.25) (-3.53) (1.02) (5.17) (6.63)
At time 3 2.951389 3.02 2.98 2.98 2.96

The diagrams shown in Figures 6.69 to 6.73 are similar and show very good agreement.

Table 6.64 gives the maximum and minimum total shear forces at the base of the building

structure with the corresponding time. For the minimum response, the closest result to
MFTProgV2 result is obtained from SAP2000V16 (thick) which is of -7.84 % difference,
and for the maximum response, the closest result is obtained from ETABS (thick) which
is of 1.02 % difference.

I11- Resultant overturning moment at the Base of the 3D building model

Figures 6.74 to 6.78 give the graphs for the resultant overturning moment history in kN.m

at the base of the building about x-axis obtained by time history analysis in y-direction

using MFTProgV2 and the other packages. The minimum and the maximum responses

are shown in Table 6.65.
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Table 6.65

: Minimum and maximum base overturning moment (KN.m):

Response StaadProV8i | ETABS(thin) ETABS(thick) SAP(thin) SAP(thick)
MFTProgV?2
09 (%Diff) | (%Diff) (%Diff) (%Diff) | (%Diff)
Minimum -143900 -177500 -151700 | -176500
1542889 | N.A. (-6.73) (15.04) (-1.68) (14.4)
Attime 3.96 N.A. 3.94 3.94 3.94 3.92
Maximum 150500 163500 134100 146000
1622253 | NA (-7.23) (0.79) (17.34) |  (-10)
Attime 15.48 N.A. 15.5 15.44 15.46 15.08

The diagrams shown in Figures 6.74 to 6.78 are similar and show very good agreement.
Table 6.65 gives the maximum and minimum response values together with the
corresponding time. For the minimum response, the closest result to MFTProgV2 result is
obtained from SAP2000V16(thin) which is of -1.68 % difference, and for the maximum
response, the closest result is obtained from ETABS (thick) which is of 0.79 %
difference.

6.4.7 P-Delta time history analysis for the 3D model

The P-Delta second order analysis for the 3D model was incorporated in the dynamic
time history analysis using the direct iteration method and the inverse iteration method
(Stodola concept) and using the cubic-displacement shape. As for the linear dynamic
analysis, the first nine natural frequencies together with the corresponding mode shapes
were computed and used in the analysis.

I- Lateral Displacement at the top floor of the 3D building model

Figures 6.79 to 6.82 give the graphs for the lateral displacement at the top floor of the
building model obtained by time history analysis in y-direction using MFTProgV2 and
the other packages. The minimum and the maximum responses are shown in Table 6.66.
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Table 6.66: Minimum and maximum P-Delta displacements at the top floor (mm):

Response StaadProV8i ETABS(thin) ETABS(thick)
MFTProgV?2 i ) .
(%Diff) (%Diff) (%Diff)
Minimum -404.6 -410 (1.33) -363.4 (-10.18) | -390.9 (-3.39)
Attime 12.84 12.8 12.92 12.7
Maximum 380.411 368 (-3.26) 314.6 (-17.3) 399.4 (4.99)
Attime 16.26 16.2 16.38 15.92

The diagrams shown in Figures 6.79 to 6.82 are similar and show very good agreement.
Table 6.66 gives the maximum and minimum response values together with the
corresponding time. For the minimum response, the closest result to MFTProgV2 result is
obtained from StaadProV8i which is of 1.33 % difference, and for the maximum
response, the closest result is also obtained from StaadProV8i which is of -3.26 %
difference.

I1- Resultant Shear Force at the Base of the 3D building model
Figures 6.83 to 6.85 give the graphs for the resultant shear force history in kN at the base
of the building obtained by time history analysis in y-direction using MFTProgV2 and the

other packages. The minimum and the maximum responses are shown in Table 6.67.
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Figure 6.83: History of P-Delta base Shear history in y-direction using MFTProgV2
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Table 6.67: Minimum and maximum P-Delta base shear (kN):

Response StaadProV8i ETABS(thin) | ETABS(thick)
MFTProgV?2 . ) .
(%Diff) (%Diff) (%Diff)
Minimum -3398.81 N.A. -3135 (-7.76) | -4205 (23.72)
Attime 6.2 N.A. 1.62 6.14
Maximum 4547.363 4888.243 (7.5) | 4432 (-2.54) | 4713 (3.64)
Attime 3.02 2.973611 3.04 3

The diagrams shown in Figures 6.83 to 6.85 are similar and show very good agreement.
Table 6.67 gives the maximum and minimum total shear forces at the base of the building
structure with the corresponding time. For the minimum response, the closest result to
MFTProgV2 result is obtained from ETABS (thin) which is of -7.76 % difference, and
for the maximum response, the closest result is also obtained from ETABS (thin) which
is of -2.54 % difference.

I11- Resultant overturning moment at the Base of the 3D building model

Figures 6.86 to 6.88 give the graphs for the resultant overturning moment history in KN.m
at the base of the building about x-axis obtained by time history analysis in y-direction
using MFTProgV2 and the other packages. The minimum and the maximum responses
are shown in Table 6.68.
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Figure 6.86: History of P-Delta base overturning moment about x-direction using
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Table 6.68: Minimum and maximum P-Delta base overturning moment (KN.m):

Response StaadProV8i ETABS(thin) | ETABS(thick)
MFTProgV2 ) ) i
(%Diff) (%Diff) (%Diff)
Minimum -149895 N.A. -137600 (-8.2) | -166500 (11.08)
At time 28.78 N.A. 28.88 3.96
Maximum 117620.2 N.A. 118200 (0.49) | 165200 (40.45)
Attime 15.6 N.A. 26.2 15.54

The diagrams shown in Figures 6.86 to 6.88 are similar and show very good agreement.

Table 6.68 gives the maximum and minimum response values together with the

corresponding time. For the minimum response, the closest result to MFTProgV2 result is

obtained from ETABS (thin) which is of -8.2 % difference, and for the maximum

response, the closest result is also obtained from ETABS (thin) which is of 0.49 %

difference.
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CHAPTER SEVEN

Conclusions and Recommendations

7.1 General Conclusions

1. A comprehensive review and study of the linear and nonlinear, static and dynamic, and
stability analyses of tall buildings have been carried out. The study clearly shows the
need for and importance of simplifying these complicated analyses methods.

2. Based on the moment transformation method (MT), the moment-force transformation
method (MFT) has been developed to incorporate the axial deformations in the vertical
members so as to be used in the analysis of super-tall buildings such as the tube and
outrigger structures.

3. The moment-force transformation method (MFT) has been further developed to solve
instability problems, nonlinear static, and linear and nonlinear dynamic analysis of tall
buildings using the response spectra and the time-history analysis methods.

4. The computer program MFTProg has been developed and used in the static linear 2D
and 3D analysis of tall buildings neglecting and/or including the axial deformations in the
vertical members.

5. The computer program MFTProgV2 has been developed and used in the buckling
analysis and the static and dynamic, linear and nonlinear 2D and 3D analysis of tall
buildings.

6. The developed programs allow the use of different plates to represent slabs of different
shapes or thicknesses in one model.

7. The accuracy of the results obtained using the developed programs were verified by
comparison with results from known finite elements solvers.

8. The saving in computer storage and computing time provided by the proposed
programs allow rapid re-analysis of the building to be accomplished in the preliminary
analysis and design stages, and in the cases of repeated analysis types such as in the
buckling and vibration problems.

9. The ease in data preparation and interpretation of final results, compared with finite
element packages, is one of the main advantages of the method.

10. The simplicity in programming the method is an added advantage.
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7.2 Results Conclusion

1- The maximum differences in the results obtained using MFTProg to analyze a two
floor one-bay portal frame subjected to both vertical and horizontal loads compared with
the published results were found to be -0.12 % for the bending moments and 0.13 % for
the horizontal support reaction (neglecting shear deformations).

2- The maximum difference in the obtained moments results using MFTProg in the
analysis of a two floor two-bay portal frame with setback subjected to both vertical and
horizontal loads compared with the published results was found to be -0.11 %
(considering shear deformations).

3- A fifteen floors multistory square building including four shear walls and subjected to
unsymmetrical lateral loads was analyzed using MFTProg. The closest differences in the
maximum shear forces and the bending moments and the displacements and rotations
measured in the upper left corner of the building plan compared with the results obtained
using the structural analysis packages ETABS and STAADPro2004, were as follows:
4.88 % for displacement in x-direction.

2.98 % for displacement in y-direction.

-2.34 % floor twist rotation.

The percentage difference of 7.85 % in the shear force was noticed in shear wall #4 with
a difference of -0.2 % in bending moment. Shear wall #4 resists very small values of
stresses compared with its section.

The differences in results of the other walls were:

0.19 % and -0.28 % for shear force and bending moment respectively, in shear wall #1.
-0.62 % and 1.93 % for shear force and bending moment respectively, in shear wall #2.
-0.92 % and 1.84 % for shear force and bending moment respectively, in shear wall #3.
4- As case study 1, the analysis of a 2D frame of 15 floors Building model subjected to
vertical and lateral loads was carried out. The results obtained using MFTProgVV2 were
compared with those obtained using StaadPro2004, StaadProV8i, SAP200V16 and
ETABS, for different analysis types as follows:

A-Static Linear and second order Analysis

In Static Linear and second order Analysis of the building model the maximum

differences in the results with exact results were as follows:
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0.27 % for lateral displacement at the top floor level in linear analysis.

0.07 % for axial displacement at the top floor level in linear analysis.

-0.66 % for maximum bending moment in the lower level of the columns in linear
analysis.

0.26 % for lateral displacement at the top floor level in P-Delta analysis.

0.14 % for axial displacement at the top floor level in P-Delta analysis.

-0.60 % for maximum bending moment in the lower level of the columns in P-Delta
analysis.

B-Buckling Analysis of the building model

The MFTProgV2 cubic shape results show very close critical buckling result compared to
the values of StaadPro2014 (Stardyne advanced Engine), with a percentage difference of
-0.03%.

C-Dynamic analysis of the building model

In a linear and second order dynamic analysis of the model, comparison between the
natural frequencies, the mode shapes and the mass participation ratios show almost
identical results.

D-Response Spectra Linear Analysis:

The lateral displacement results obtained by performing response spectrum analysis were
calculated. For the SRSS method, very close results were obtained by the proposed
method and SAP2000V16 with a maximum of 0.0006 % difference. For the CQC
method, very close results were obtained from the proposed method and ETABS with a
maximum of 0.0047 % difference.

The base shear results obtained by performing response spectrum analysis were
calculated. For the SRSS method, the closest results to the proposed method results were
obtained from SAP2000V16 with a maximum of 0.43 % difference, and for the CQC
method, the closest results to the proposed method were obtained from StaadProV8i with
0.24 % maximum difference.

The base overturning moment results obtained by performing response spectrum analysis
were calculated. For the SRSS method, the closest results to the proposed method results
were obtained from ETABS with -0.01 % maximum difference, and for the CQC method,
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the closest results to the proposed method results were obtained from ETABS which is of
-0.01 % difference.

E-Response Spectra P-Delta Analysis

The lateral displacement results obtained by performing response spectrum P-Delta
analysis were calculated. For the SRSS method, the closest results to the proposed
method results were obtained from ETABS with a maximum of -0.00119 % difference,
and for the CQC method, the closest results to the proposed method were obtained from
ETABS with -0.00149 % maximum difference.

The base shear results obtained by performing response spectrum P-Delta analysis were
calculated. For the SRSS method, the closest results to the proposed method results were
obtained from ETABS with a maximum of 0.03 % difference, and for the CQC method,
the closest results to the proposed method results were obtained from ETABS with 0.03%
maximum difference.

For the SRSS method, the closest results for the base overturning moment results
obtained by performing response spectrum P-Delta analysis to the proposed method
results were obtained from ETABS with 0.01 % maximum difference, and for the CQC
method, the closest results to the proposed method results were obtained from ETABS
with 0.01 % maximum difference.

F-Time History Linear Analysis

The top floor lateral displacement results obtained by performing the time history
analysis using the proposed method were calculated and compared with the results
obtained from different analysis packages. The results variation curves were similar and
show very close agreement. For the minimum response, the closest results to the
proposed method results were obtained from ETABS with 0.01 % maximum difference,
and for the maximum response, the closest results to the proposed method results were
obtained also from ETABS with a maximum of 0.03 % difference.

The base shear results obtained by performing the time history analysis were calculated.
The results variation curves were similar and show a very close agreement. For the
minimum response, the closest results to the proposed method results were obtained from
ETABS and SAP2000V16 with a maximum of 0.02 % difference, and for the maximum
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response, the closest results to the proposed method results were obtained from ETABS
with 0.05 % maximum difference.

The base overturning moment results obtained by performing the time history analysis
were calculated. The results variation curves were similar and show a very close
agreement. For the minimum response, the closest results to the proposed method were
obtained from ETABS with a maximum of 0.01 % difference, and for the maximum
response, the closest results to the proposed method results were obtained from ETABS
with 0.01 % maximum difference.

G-Time History P-Delta Analysis

The top floor lateral displacement results obtained by performing the time history P-Delta
analysis using the proposed method were calculated and compared with the results
obtained from different analysis packages. The results variation curves were similar and
show very close agreement. For the minimum response, the closest results to the
proposed method results were obtained from ETABS with 0.03 % maximum difference,
and for the maximum response, the closest results to the proposed method results were
obtained also from ETABS with a maximum of 0.03 % difference.

The base shear results obtained by performing the time history P-Delta analysis were
calculated. The results variation curves were similar and show a very close agreement.
For the minimum response, the closest results to the proposed method results were
obtained from ETABS with a maximum of 0.09 % difference, and for the maximum
response, the closest results to the proposed method results were obtained from ETABS
with 0.01 % maximum difference.

The base overturning moment results obtained by performing the time history P-Delta
analysis were calculated. The results variation curves were similar and show a very close
agreement. For the minimum response, the closest results to the proposed method were
obtained from ETABS with a maximum of 0.38 % difference, and for the maximum
response, the closest results to the proposed method results were obtained from ETABS
with 0.25 % maximum difference.

5- As case study 2, the analysis of a 3D frame of 25 floors Building model subjected to

vertical and wind loads was carried out. The results obtained using MFTProgV2 were
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compared with those obtained using StaadPro2004, StaadProV8i, SAP200V16 and
ETABS, for different analysis types as follows:

A-Static Linear and second order Analysis

In Static Linear and second order Analysis of the building model the maximum
differences in the results with exact results in the building center (column#10), were as
follows:

-3.5 % for lateral displacement in y-direction in linear analysis.

0.47 % for axial deformation in linear analysis.

-7.69 % floor twist rotation, in linear analysis.

-4.63 % for lateral displacement in y-direction in P-Delta analysis.

0.35% for axial deformation in P-Delta analysis.

-8.99 % floor twist rotation in P-Delta analysis.

-1.37 % for maximum bending moment in U-Shaped Core, in linear analysis.

-1.77 % for maximum bending moment in U-Shaped Core, in P-Delta analysis.

-2.24 % for maximum bending moment in Edge Shear Wall, in linear analysis.

-3.36 % for maximum bending moment in Edge Shear Wall, in P-Delta analysis.

In additional discussion of the results, an alternative analysis has been carried out using a
borrowed StaadPro Floor stiffness. The analysis yields the following results:
Displacements and rotation in the top floor level in the building center (column #10):
-0.05 % for lateral displacement in y-direction in linear analysis.

0.00 % for axial deformation in linear analysis.

0.00 % floor twist rotation, in linear analysis.

-0.13 % for lateral displacement in y-direction in P-Delta analysis.

0.00 % for axial deformation in P-Delta analysis.

-0.00 % floor twist rotation in P-Delta analysis.

-0.01 % for maximum bending moment in U-Shaped Core, in linear analysis.

0.01 % for maximum bending moment in U-Shaped Core, in P-Delta analysis.

0.27 % for maximum bending moment in Edge Shear Wall, in linear analysis.

0.18 % for maximum bending moment in Edge Shear Wall, in P-Delta analysis.

The elapsed running time by MFTProg used in solving a 150 floor model was 83 seconds

only. Comparison between the number of unknowns using MFTProg and the
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conventional matrix methods for the 150 floors model showed that there were 1,102,620
coupled unknowns in the case of conventional matrix methods compared to 12,735
partially coupled unknowns when using MFTProg which is a ratio of 86 times.
B-Buckling Analysis of the building model

The MFTProgV2 Euler functions results show very close critical buckling result
compared to the value of StaadProV8i, with a percentage difference of 0.11%.
C-Dynamic analysis of the building model

In a linear and second order dynamic analysis of the model, comparison between the
natural frequencies and the mass participation ratios in the two directions show very close
agreement.
D-Response Spectra Linear Analysis:

The lateral displacement results obtained by performing response spectrum analysis were
calculated. For the SRSS method, very close results were obtained by the proposed
method and StaadProV8i with a maximum of 0.34 % difference. For the CQC method,
very close results were obtained from the proposed method and StaadProV8i with a
maximum of 0.37 % difference.
The base shear results obtained by performing response spectrum analysis were
calculated. For the SRSS method, the closest results to the proposed method results were
obtained from StaadProV8i with a maximum of 1.78 % difference, and for the CQC
method, the closest results to the proposed method were obtained from SAP2000V16
with -0.67 % maximum difference.
The base overturning moment results obtained by performing response spectrum analysis
were calculated. For the SRSS method, the closest results to the proposed method results
were obtained from StaadProV8i with 0.44 % maximum difference, and for the CQC
method, the closest results to the proposed method results were obtained from
StaadProV8i which is of 0.29 % difference.

E-Response Spectra P-Delta Analysis
The lateral displacement results obtained by performing response spectrum P-Delta
analysis were calculated. For the SRSS method, the closest results to the proposed

method results were obtained from StaadProV8i with a maximum of 0.50 % difference,
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and for the CQC method, the closest results to the proposed method were obtained from
StaadProV8i with 0.53 % maximum difference.

The base shear results obtained by performing response spectrum P-Delta analysis were
calculated. For the SRSS method, the closest results to the proposed method results were
obtained from StaadProV8i with a maximum of 1.37 % difference, and for the CQC
method, the closest results to the proposed method results were obtained from
StaadProV8i with 1.12 % maximum difference.

For the SRSS method, the closest results for the base overturning moment results
obtained by performing response spectrum P-Delta analysis to the proposed method
results were obtained from StaadProV8i with 0.28 % maximum difference, and for the
CQC method, the closest results to the proposed method results were obtained from
StaadProV8i with 0.18 % maximum difference.

F-Time History Linear Analysis

The top floor lateral displacement results obtained by performing the time history
analysis using the proposed method were calculated and compared with the results
obtained from different analysis packages. The results variation curves were similar and
show very close agreement. For the minimum response, the closest results to the
proposed method results were obtained from ETABS (thin) with -0.46 % maximum
difference, and for the maximum response, the closest results to the proposed method
results were obtained also from StaadProV8i with a maximum of -1.33 % difference.

The base shear results obtained by performing the time history analysis were calculated.
The results variation curves were similar and show a very close agreement. For the
minimum response, the closest results to the proposed method results were obtained from
SAP2000V16 (thick) with a maximum of -7.84 % difference, and for the maximum
response, the closest results to the proposed method results were obtained from ETABS
(thick) with 1.02 % maximum difference.

The base overturning moment results obtained by performing the time history analysis
were calculated. The results variation curves were similar and show a very close
agreement. For the minimum response, the closest results to the proposed method were
obtained from SAP2000V16 (thin) with a maximum of -1.68 % difference, and for the
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maximum response, the closest results to the proposed method results were obtained from
ETABS (thick) with 0.79 % maximum difference.
G-Time History P-Delta Analysis
The top floor lateral displacement results obtained by performing the time history P-Delta
analysis using the proposed method were calculated and compared with the results
obtained from different analysis packages. The results variation curves were similar and
show very close agreement. For the minimum response, the closest results to the
proposed method results were obtained from StaadProV8i with 1.33 % maximum
difference, and for the maximum response, the closest results to the proposed method
results were obtained also from StaadProV8i with a maximum of -3.26 % difference.
The base shear results obtained by performing the time history P-Delta analysis were
calculated. The results variation curves were similar and show a very close agreement.
For the minimum response, the closest results to the proposed method results were
obtained from ETABS (thin) with a maximum of -7.76 % difference, and for the
maximum response, the closest results to the proposed method results were obtained from
ETABS (thin) with -2.54 % maximum difference.
The base overturning moment results obtained by performing the time history P-Delta
analysis were calculated. The results variation curves were similar and show a very close
agreement. For the minimum response, the closest results to the proposed method were
obtained from ETABS (thin) with a maximum of -8.2 % difference, and for the maximum
response, the closest results to the proposed method results were also obtained from
ETABS (thin) with 0.49 % maximum difference.
7.3 Recommendations Drawn from Results Obtained

It is recommended to use the nonlinear version of the moment-force transformation
method in the static and dynamic, linear and nonlinear analysis of tall buildings together
with the buckling analysis for the following:
1. Static and dynamic, linear and nonlinear analyses of super-tall buildings in which the
axial deformation of the vertical members is dominant and should be considered.
2. Static and dynamic, linear and nonlinear analyses of ordinary portal frames and shear

wall-frame interaction problem.
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3. Static and dynamic, linear and nonlinear 2D analysis of shear walls with openings, by
considering the beams stiffness including also the infinite stiffness of the rigid parts of
the walls.
4. Static and dynamic, linear and nonlinear three dimensional analyses of buildings with
vertical members irregularly arranged and oriented in the building plan and with different
sections in the different levels and with different floor heights.
5. Elastic instability analysis of 2D and 3D tall buildings.
7.4 Recommendations for Future Research

For future research it is recommended to:
1- Develop method to take into account elastic-plastic analysis incorporating both elastic
instability and plastic yielding in members.

2- Further develop the program to incorporate the elastic-plastic responses, by
formulating the stiffness and the carryover moment matrices using the various Hysteresis
models, e.g. elasto-plastic, bilinear and curvilinear models.
3. For more simplification of the problem solution, columns or vertical members not
contributing to the resistance of the lateral loads can be included in the floor rotation
stiffness and the problem solution will include only the walls or the vertical members that
actually contribute to the resistance of the lateral loads.
4. For more optimization of the analysis, the stiffness of the floor can be calculated by
using simplified rules instead of calculations by finite elements, e.g. for slabs with beams
construction considering the properties of the equivalent T and L sections.
5. For flexible supports, the rotational and axial stiffness of the supports may also be
incorporated in the analysis.
6. Columns shortening in reinforced concrete and composite tall buildings due to time-

dependant creep, shrinkage and elastic modulus could be also analyzed.
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Appendix Al

A Three Segments Cantilever Example

The translations and the rotations of the joint of a cantilever of unit elasticity consists of

three segments and subjected to lateral forces as shown in Figure Al.1, were obtained.

5
Mrl= 7.5
S—e 4 Pl=s

I=0.5

System (a) . Fotabens restinmad Systam (L) . Fotakom sesased

Figure Al.1: Single post example
The translations and rotations of the three free joints of the cantilever are given in
shown Tables Al1.1 and Al.2. From the two tables, the translations and the rotations of
the original structure are equal to the summations of the systems (a) and (b).

Table Al.1: Displacements of the original structure

JOINT# | TRANSLATION ROTATION
1 9754 940.5
2 6955 918
3 1744 792
Table Al.2: Displacements of the split systems:
System System(a) System(b) System(a) + System(b)
Joint # TRANSLATION ROTATION TRANSLATION ROTATION TRANSLATION | ROTATION
1 252.25 0 9501.75 940.5 9754 940.5
2 241 0 6714 918 6955 018
3 160 0 1584 792 1744 792
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Appendix A2

The Moment Distribution Procedure

The moment distribution procedure (ordinary or no-shear Figures A2.1 and A2.2) uses
the two loading systems (a) and (b) illustrated previously as follows. The first step in the
procedure is by obtaining from the system (a), the fixed-end moments produced from the
applied loads and from which the restraining moments at the joints are obtained, then the
balancing moments are applied in system (b), the induced carryover moments at the far
end of the members are then considered as a fixed moments and are again applied in
system (a). This procedure is repeated until the carryover moments become negligible.
Then the summations of all the resulting moments in the two systems are obtained and
represent the final end moments.

From this illustration it is seen that, the moment distribution procedure is actually
equivalent to the two systems (a) and (b) when separately analyzed and the resulting

joints moments are superimposed.

Figure A2.2: No-shear rotational stiffness with translation permitted
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Figure A2.3: No-shear moment distribution between two members
Figure A2.4 shows the split of a continuous beam into the two loading systems (a) and

(b):
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Figure A2.4: Continuous beam model
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Appendix A3

The Moment Transformation Procedure

The moment transformation procedure (ordinary or no-shear) can be carried out by
considering the two loading systems (a) and (b) described before and also shown in
Figure A2.4. In system (a), the fixed-end moments induced from the external applied
loads and the restraining moments are obtained then in the system (b) the balancing
moment (the reverse of the restraining moment) are applied with special sequence. For
example, in joint (1) from which the transformation procedure will be carried out to joint
(2), due to the applied moment at joint (1) there will be an induced moment at joint (2).
Superimposing the two systems (a) and (b) will eliminate the moment at joint (1) and
produce the equivalent moment at joint (2), then joint (1) will be relieved and will never
be considered in the analysis again. Same procedure will be carried out to the next joint
(3) until reaching the concerned joint. The transformation will be carried out in the other
direction until also reaching the concerned joint. By releasing and balancing the fixed
moments at the concerned joint, the rotation of the joint and the final moments in the
extremities to the left and to the right of the concerned joint can be calculated using the
equivalent stiffness of the connected members. The procedure will be carried out for all

the joints of the continuous frame.

_Tramstomotion
from 1 %0 2

System (a) . Rotations restrained .

N » The system used for fced ends

| 7 - 2 moments . cary over moments and
- trangtormed moments
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- ? moment (-Mr1)

Transformation

Relieved Joint ryey
\ M'ZsMe? Mg from 203

V2 = oudl 32 1
-
Mr2«M'2eM""2+Mp2
Me? - The transtormed moment or the tixed

moment induced @ joint # 2 lrom the application
of the balancing moment (-Mrl) @ joint # 1

Figure A3.1: Moment transformation of continuous beam
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The Figures A3.2 and A3.3 show the moment transformation procedure for structural
system subjected to horizontal loads and permitted to side sway at the floor levels. The

sway fixed-end moments induced in the vertical members, due to the applied horizontal

loads are shown in Figure A3.2.
The illustrated transformation procedure is in the direction from top to bottom. Figure

A3.2 shows the transformation from joint (1) to joint (2), and Figure A3.3 shows the

transformation from joint (2) to joint (3).
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Figure A3.3: Moment transformation from joint 2 to 3 in a single post frame
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Appendix A4

A Three Segments Column Example

50 kN
E=1000
- 1
80 kN
2.5 (:) A=1
N 2
6
40 <:> A=2
403

5.0 @ A=

N 4

-

L
Figure A4.1: Three segments column

The axial translations of the joints are calculated using the force transformation
procedure for the shown three columns structural system, with material elasticity,
E=1000 kN/m?, Figure A4.1.

Using equations 3.34 and 3.35, the transformation factors and the axial equivalent
stiffness from top to bottom and from bottom to top, are calculated and shown in Tables
A4.1 and A4.2:

Table A4.1: Equivalent Stiffness and Transformation Factors from Top to Bottom.

Member 1 2 3
Equivalent Stiffness 0 0 0
Transformation Factors 1 1 1

Table A4.2: Equivalent Stiffness and Transformation Factors from Bottom to Top.

Member 3 2 1
Equivalent Stiffness 800 307.7 173.9
Transformation Factors 0 0.3846 0.5652
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By using the transformation procedure illustrated in section 3.6, the axial displacements
at the joints are calculated as follows:
Displacement at joint 1:

»
»

Total force = [(60%0.3848) + 80]*0.5652+50 = 108.2586 kN
Equivalent Stiffness = (173.9+0) = 173.9 KN/m
D1=108.2586/173.9 = 0.6225 m

Displacement at joint 2:

Total force =50*1 + 80 + 60* 0.3846 = 153.076 kN
Equivalent Stiffness = (307.7+0) = 307.7 KN/m
D2=153.076/307.7 = 0.4975 m

Displacement at joint 3:

Total force =W1’+W1’+ 60 =190 kN

Equivalent Stiffness = (800 +0) = 800 kN/m

D3=190/800 = 0.2375 m

The displacement in the concerned level can also be calculated using the following
equation, Taranath (1988):

Where:

N= total numbers of levels.

n=number of the concerned level.

Displacement at joint 1:

D1= (2.5/1/1000)*(50)+(4/2/1000)*(50+80)+(5/4/1000)*(50+80+60) = 0.6225 m
Displacement at joint 2:

D2= (4/2/1000)*(50+80)+(5/4/1000)*(50+80+60) = 0.4975 m

Displacement at joint 3:

D3= (5/4/1000)*(50+80+60) = 0.2375 m
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Appendix A5

Further Optimization of the Transformation Procedure

Based on the subroutines of the transformation procedure presented by Ibrahim (2013),
a new faster subroutine was developed and implemented in MFTProgV2. The new
subroutine is based on two modifications:

(1) Introducing new indexed variable to store the inverse of the equivalent stiffness of the
concerned level.

The equivalent stiffness matrix of the level is calculated as follows:

Ktot = KT+KB+KF

Where:
Ktot: the total Stiffness of the level.
KT: the equivalent stiffness of the structure part above the floor.
KB: the equivalent stiffness of the structure part below the floor.
KF: the stiffness of the floor.

This modification is very useful and optimizing the computer running time especially in
the cases of repeated analysis as in the construction of the global flexibility matrix where
the structure is solved for applied unit loads several times, and in the inverse iteration
method used in the dynamic analysis.

(2) Introducing new indexed variables used to store the fixed-end moments plus the
transformed moments during the transformation procedure in the two directions.

The indexed variable may be calculated as follows:

MD1(i)=M1(i)+FT*MDtot(i-1)
Where:
MD1(i):the resultant moment vector below level i.
MZ1(i):the fixed moment vector below level i.
FT*MDtot(i-1): the transformed moment from level i-1.
These indexed variables are calculated only once and may be used several times during

the program execution.
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Appendix B

Flow Chart of the Conventional Buckling Incremental Method
Based on Figure 3.22, the following notes are made as illustrated by Coates et al (1990):

(1) The input data is very similar to that required by a stiffness analysis, the only
difference is the use of the stability functions. The preliminary data must include
an initial value for the load factor (LF), the increment to be applied to it (INC),
and the required accuracy in the final result (ACC).

(2) N is used to count the number of loading cycles and DET1, DET2, DET3 are
values of the determinant of the stiffness matrix. The axial forces in the members
of the structure are not generally known before the analysis begins, and this is
unlikely to provide much overall saving in computing time.

(3) A check on N might be inserted to limit the number of load cycles in the event of
any ill-conditioning preventing convergence.

(4) As the axial forces at each load level are initially only known approximately, a
number of solutions (counted by | ) are performed.

(5) The structure stiffness matrix is set up, but the member stiffness matrices used are
those involving the stability functions. The functions are calculated as required
using the current estimates of the axial forces.

(6) The repetition of the analysis performed at each load level should be terminated
when the terms of the stiffness matrix converge to a steady state at successive
cycles. The determinant (DET2) is used here as a convenient quantity whose
value depends on the stiffness matrix terms- if its values have reach a steady state,
it is also likely that the terms of the matrix have done so. The alternative is to
check the convergence of the individual displacements.

(7) The repeated analysis is terminated when the proportionate change in determinant
is less than 0.1%. This limit is quite arbitrary, but seems to be reasonable in
practice. The final value of determinant obtained is stored in DET3 and its sign is
used as the test of positive-definiteness.

(8) When the loading approaches the critical level, the stiffness matrix becomes
increasingly ill-conditioned and successive values of the determinant are found to

vary widely. In this case there is no virtue in continuing with repeated analyses,
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and the chart shows their termination at 1=6. If this termination is found necessary
on the first load level attempted (N=1) then obviously the initial loading is too
near the critical level for any satisfactory analysis to be performed. In this case the
analysis is stopped and must be repeated with a smaller set of loads. Otherwise
the load factor can be increased, the axial forces increased by the same ratio as a
good initial guess of their new values, and a further load level examined.

(9) When satisfactory convergence is achieved at any load level as described in Step
7 the value of the determinant obtained is compared with that from the previous
load cycle. If no sign change is found then the load factor and axial forces are
increased by one step and a new load level studied. At the first load level this
comparison is impossible, and is bypassed.

(10) If a sign change is found in Step 9, i.e. a change from positive to negative, then
the critical value of load factor has been passed. The load factor is then
decreased to its previous value, and increased again by smaller steps. If the
reduced increment is below some prescribed accuracy and great accuracy is not
warranted, then the analysis is ended.

(11) Although output is shown only at this final stage it is generally desirable to trace

the progress of the iterations by printing frequent intermediate results.
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Appendix C
Buckling of Column Subjected to Axial Load P

Axid Load, P Axind Load, ¥
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Figure C.1: The condensed translational and rotational stiffnesses
The buckling load for a column subjected to axial load P, Figure C.1, is obtained. With
linear-deformed shape assumption, the stiffness matrix of the system is as follows:

12El P -G6El

-l L e
] _6El 4EI

L L

Condensation of the matrix in the translation direction with the rotation of the free joint
permitted, yields:

*

S =35, — S1282721821
« JA2EI P 6El 4El
S =(C—— ) (—)?(—
11(L3 L)(LZ)(L)
If P is the critical buckling load, then, S, =0
3El

ritical — 3
L

From which the buckling load P,

Same results can be obtained by condensation of the stiffness matrix in the rotational

direction with the translation of the free joint permitted:

*

S22 = S22 - S2181_11812

- 4EI| 6El
S22:( L )—( 12

12El

)15

P
— I)
For S,, =0, The buckling load can also be obtained as:

3El

ritical — 3
L

Pe
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Appendix D

StaadPro Buckling Analysis, the basic solver

In StaadPro, a simple procedure has been adopted to incorporate the calculation of the
Buckling Factor for any number of primary load cases. The buckling factor is the amount
by which all of the loadings in a load case must be factored to cause global buckling of
the structure. The procedure followed is: 1) First, the primary deflections are calculated
by linear static analysis based on the provided external loading. 2) Primary deflections
are used to calculate member axial forces and plate center membrane stresses. These
forces and stresses are used to calculate geometric stiffness terms. Both the large delta
effects and the small delta effects are calculated. These terms are the terms of the Kg
matrix which are multiplied by the estimated LF (buckling factor) and then added to the
global stiffness matrix K. For compressive cases, the Kg matrix is negative definite. If the
buckling factor is large enough, then [ [K]+LF*[Kg] ] will also be negative definite which
indicates that LF times the applied loads is greater than the loading necessary to cause
buckling. 4) STAAD starts an iterative procedure with a LF estimate of 1.0. If that LF
causes buckling, then a new, lower LF estimate is used in the next trial. If the LF does not
cause buckling, then a higher LF estimate is used. In STAAD, on the first iteration, if the
determinant of the K matrix is positive and lower than the determinant of the K+Kg
matrix, then the loads are in the wrong direction to cause buckling; and STAAD will stop
the buckling calculation for that case. 5) After a few iterations, STAAD will have the
largest LF that did not cause buckling (lower bound) and the lowest LF that did cause
buckling (upper bound). Then each trial will use a LF estimate that is halfway between
the current upper and lower bounds for LF (bisection method). 6) After the default
iteration limit is reached or the user specified iteration limit, MAXSTEPS, is reached or
when two consecutive LF estimates are within 0.1% of each other; then the iteration is

terminated. 7) Results for this load case are based on the last lower bound LF calculated.
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Appendix E
Buckling Analysis — the advanced Solver in STAAD package

In STAAD, a second procedure has been adopted to incorporate the calculation of the
Buckling Factor for one primary load case. This procedure is an eigenvalue calculation to
get buckling factors and buckling shapes.

1) First, the primary deflections are calculated by linear static analysis based on the
provided external loading.

2) Primary deflections are used to calculate member axial forces and plate center
membrane stresses. These forces and stresses are used to calculate geometric stiffness
terms. Both the large delta effects and the small delta effects for members are calculated.
These terms are the terms of the Kg matrix.

3) An eigenvalue problem is formed. | [ K ] - LFi*[ Kg ] | = 0 There will be up to 4
buckling factors (LF) and associated buckling mode shapes calculated. LF less than 1.0
means that the load causes buckling; LF greater than 1.0 means buckling has not
occurred. If LF is negative, then the static loads are in the opposite direction of the
buckling load.
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Appendix F

Column shortening calculations for reinforced and composite concrete

structures (Proposed future study)

This section illustrates briefly a proposal for computing column shortening using the
transformation method. The main concept of the calculations is taken from the,
Reinforced Concrete Council, Spreadsheet to EC2 Axial Column Shortening to EN 1992-
1: 2003

The proposed subroutine is based on the Euro Code, EC2 (prEN 1992-1: 2001) clauses
3.1.3 Elastic deformation (1) and (3) and Annex B (Creep and Shrinkage Strain). It works
from the roof down and assumes that time “0” equates to construction of the lowest
column. A detailed construction history is input so that time-dependent creep and
shrinkage factors may be computed. The proposed program is feed by the materials and
dimensional data. Then loads are calculated using the proposed program.

The following physical quantities are used in the proposed analysis:
A- Shortenings between Floors

These are the amounts by which individual column lifts may be reduced in length
following construction of the floor immediately above, Figure F.1 (b).

B- Floor Displacements

These are long-term net displacements of floors from the level at which they were
constructed; the particular shape of the curve being defined by effects of incremental
loading and the assumption that any shortening occurring prior to a floor's construction is
compensated for, Figure F.2 (a).

Any differential shortening between connected vertical members will generate a transfer
of vertical load. If connecting slabs or beams are stiff and/or short, such load transfer can
be substantial and in tall buildings, may even be critical at ultimate limit state.

C- Creep and shrinkage

Creep and shrinkage of the concrete depend on the ambient humidity, the dimensions of
the element and the composition of the concrete. Creep is also influenced by the maturity
of the concrete when the load is first applied and depends on the duration and magnitude
of the loading.
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Creep and Shrinkage are time-dependent properties of concrete. Their effects should
generally be taken into account for the verification of serviceability limit states. The
effects of shrinkage and creep should be considered at ultimate limit states only where
their effects are significant, for example in the verification of ultimate limit states of
stability where second order effects are of importance.

The total shrinkage strain is composed of two components, the drying shrinkage strain
and the autogenous shrinkage strain. The drying shrinkage strain develops slowly, since it
is a function of the migration of the water through the hardened concrete. The autogenous
shrinkage strain develops during hardening of the concrete: the major part therefore
develops in the early days after casting. Autogenous shrinkage is a linear function of the
concrete strength. It should be considered specifically when new concrete is cast against
hardened concrete.

D- Elastic deformation

The elastic deformations of concrete largely depend on its composition (especially the
aggregates). The modulus of elasticity of a concrete with quartzite aggregates, are
tabulated in the code and for limestone and sandstone aggregates the value should be
reduced by some amount. For basalt aggregates the value should be increased by some
amount. The Modulus of elasticity is also varying with time.

Column shortening using the transformation method

In this part, the steps of performing the column shortening in tall buildings are
described briefly. The proposed analysis procedure can be summarized in the following
steps:

1- For all loaded floors, firstly, with zero prescribed displacements, calculate the
supports fixed moments with no rotations permitted.

2- Analyze the frame by distributing the moments only using the moment
transformation method, with the axial deformations in the vertical members
ignored, Figure F.1, Model (a). The elasticity of the members should be the time-
dependant long term elasticity at the time concerned, after the required
adjustments. The output results are joints rotations and supports vertical reactions.
Use the no-shear rotational stiffness and the corresponding carryover moment

matrices to permit for possible lateral translations. Use the following equations:

245



Assuming, m =5 vertical members:

Si S, Si Su Sps
- SZl S22 S23 S24 S25
[S*1=|s; s;, si Si Sw
S41 S42 S43 S44 S45
_S*l S*Z 8*3 S*4 S*S_
Where
(S+1) 0 2(S +1)
Djz_[ ]j/Z[ 2 ]k
L =" L
. (S+1) .
S; =I[S]i +[ C IiD; fori=j
« (S+1) .
Sij:[ i ]iDj for i#j
And
th b by G, U
t21 t22 t23 t24 t25
*x1 — * * * * *
[t ]_ t31 t32 t33 t34 t35
t41 t42 t43 t44 t45
_t51 t52 t53 t54 t55_
Where

t = _Sij + (Fi)Dj L
(F)o; : The interaction force acting on the member i due to displacement Dj

3- Use the vertical reactions obtained to calculate the time dependent displacements
due to the elasticity, creep and shrinkage.

4- Deduct the displacements compensating by the construction of the floor
immediately above, using Model (b), Figure F.1. The reactions are calculated by
iterations or approximately using the short term Elasticity, but using the force-
moment transformation method with the axial deformation in the vertical members
considered (no prescribed displacements are applied in this model), use these
reactions to calculate the displacements due to creep, shrinkage and elasticity.

5- Again, for all loaded floors and with the prescribed net displacements obtained

from 3 and 4, calculate the supports fixed moments with no rotations permitted, the
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7-

fixed moments due to the prescribed displacements can be obtained using the
matrix equation, {F} = [S]{D}, where {F} is the fixed moments and forces, [S] is
the floor stiffness matrix and {D} is the displacements vector which is contains two
parts, one part is zero rotations and the other part is the prescribed displacements.
Analyze the frame by distributing the moments as in 2, using the moment
transformation method, with the axial deformations in the vertical members
ignored. The elasticity of the members should be the time-dependant elasticity at
the time concerned, after the required adjustments. Use the no-shear rotational
stiffness and the corresponding carryover moment matrices to permit for lateral
translations. Obtain the resulting supports vertical reactions, using the new
rotations and the prescribed displacements.

Repeat the procedures from 3 to 6 until a balance is reached (i.e. residual transfer is

close to zero).

NOTE: transfer of loads from the floors to the columns should be damped by a

constant factor.

o) Full model wsed for the total & splacemn ent L) Partial tnoddd wsed for the &gl ncement

ag term d sste moduly bef are constructon of the concerned flooe

Figure F.1: The proposed analysis two models
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APPENDIX G
Manual Check for the Results of the Square Building

A simple manual check for the forces resisted by the four shear walls for the hypothesis
square building in Figure 5.3, was carried out, by considering a sample of one floor with
the in-plane resistance of the walls considered and the out of plane ignored, and
neglecting the effects of the frame action (the flexural rigidity of the floor and the
columns lateral stiffnesses). As shown in Figure G.1, the external forces acting on the
structure are 50 kN in the y-direction at 6 meter eccentricity from the center of the
building, and 30 kN in the x-direction coincide with the center of the building.

With these assumptions, the twist moment produced from the eccentricity of the force

50 kN, is resisted equally by the four shear walls.

50 kN
L 6m !
. i
—— v
— N
Wall3 =7
f=300/12/2 = 12.5kN
g
30KN == == = f |ﬁ ﬁ;l \fv o A=30/2=15kN
Wall 1 fr=50/2=25 kN
Wall 2
f
— Wall4
E— AL
—p
£
L 12m L
4l 4l

Figure G.1: Simplified sketch of the Square building
The force resisted by each shear wall can be calculated from the following relations:
2(ftW)=F.e
or fi=F.e/(2W)
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Where

W is the width of the square building.

fi=50*6/(12*2) = 12.5 kKN

Therefore, the forces resisted by the shear walls are calculated as follows:
Shear wall 1, F1 =f, - fy =25-12.5 =12.5kN

Shear wall 2, F2 = fy + ft = 25+12.5=37.5 kN

Shear wall 3, F3 = fy + fy =15+12.5 =27.5 kN

Shear wall 4, F4 = fx - ft =15-125=2.5kN

The calculated forces resisted by the different shear walls show that shear wall #4 is
resist very small force compared with the other walls. If considering the effects of the
frame action, the force resisted by the wall will be even smaller.

The effect of the different finite elements formulation of the different packages results
in small differences in the forces resisted by the different shear walls. The small
difference resulted from the different packages may produce a large percentage
difference in shear wall 4 due to the already small force resisted by the wall.

In other words, in all the comparisons, the differences are found to be very small for
large stresses values (shear forces and bending moments in shear walls 1, 2 & 3), and the
largest percentage difference is found in shear wall #4, which resists very small stresses
compared with its section. The variations are noticed in the results of all packages as
shown in the shear force and the bending moment diagrams of shear wall 4, Figures 5.24
and 5.25.
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