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 ABSTRACT 

       In this research, a simplified numerical method of static and dynamic, linear and 

nonlinear analysis of tall buildings is presented. The method is a development and 

generalization of the moment distribution methods. The first version named the 

moment transformation method (MT) was based on the rotations as the only degrees 

of freedom with lateral translations permitted. A computer program named MTProg 

was developed based on the method. The method is used for the analysis of tall 

buildings with axial deformations in the vertical members ignored. The method has 

then been developed to the moment-force transformation method (MFT), which 

incorporates the axial deformations in the vertical members in order to enable the 

analysis of super-tall buildings. The programs MFTProg and MFTProgV2 (Nonlinear 

version) were developed based on MTProg. The global and local second order P-

Delta analysis of tall buildings subjected to vertical and horizontal loads were also 

incorporated by coupling the axial force and the bending moments in each of the 

vertical members with large lateral displacements at floor levels. Accordingly 

buckling cases have also been studied. The method was further developed to extract 

the dynamic properties of tall buildings. Displacements and different structural 

responses due to dynamic loadings are computed using the proposed method with the 

response spectrum and the time-history methods for both linear and second order 

analyses. Validity of the method was established by comparing the results of 2D and 

3D buildings with those resulting from reliable finite element packages. The 

comparisons show that, the results are in good agreement thus verifying the accuracy 

of the proposed method. The MFT method shows the ability to analyze adequately 

and very fast tall buildings composed of hundreds of floors that can not be analyzed 

accurately using the established methods of analysis. The saving in computer storage 

and computing time provided by MFTProgV2 allow rapid re-analysis of the building 

to be accomplished in the preliminary analysis and design stages, and in the cases of 

repeated analysis types such as buckling and dynamic analyses of building. The ease 

in data preparation and interpretation of final results, compared with finite element 

packages is one of the main advantages of the method. For all these reasons the 

developed program MFTProgV2 is recommended to be used for the linear/nonlinear, 

static/dynamic and stability analyses of tall buildings.  
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 :مستخلصال

طة  عدديةطريقة بحث هذا اليعرض     ة العالية. لأبنيالخطي واللاخطي ل ،الإستاتيكي والديناميكي لتحليللمُبَسَّ

 نقل العزوم، وفيها استخدمتطريقة الأولى هي   صيغةالطريقة هي تطوير وتعميم لطرق توزيع العزوم. ال

البرنامج طوير تو  بتصميمتها تمت حوسبو  ،انبيةكدرجات حرية مع السماح بالتحركات الج الدورانات فقط

(MTProg.)  ستخدامها في تحليل المباني التي يمكن تجاهل الإزاحات المحورية في إيمكن هذه الطريقة و

لمحورية الطريقة نقل العزوم و القوى لتأخذ في الإعتبار التشوهات صيغة الأولى طورت ال. وقد الرأسية أعضائها

 ينالبرنامجتطوير تم  ستخدام في تحليل المباني شاهقة العلو.مما يمكنها من الإالأعضاء الرأسية في 

MFTProg و MFTProgV2  النسخة اللاخطية( بناءً على(MTProg . اللاخطية في  أيضاً  دمجتا

ة يات جانبالأعضاء الرأسية في وجود إزاح كل من العلاقة بين العزوم و القوى المحورية في الناتجة عنالتحليل، 

خواص تم تطوير الطريقة للقيام بحساب ال . بعاجاتبناءً على ذلك تمت دراسة الحالات اللازمة للإنو  ،كبيرة

ستجاباتنىالديناميكية للمب لخطية لتين افي الحا للأحمال الديناميكية المختلفةالمبنى  ، كما تم حساب الإزاحات وا 

ستجابة التحليل الديناميكية المختلفة كطريقة طيف الإوبمساعدة طرق  المقترحة واللاخطية، بإستخدام الطريقة

حددة العناصر الم برامجستخدام المتحصل عليها بنتائج حصل عليها بإوطريقة التاريخ الزمني. قورنت النتائج 

كد يؤ  لنتائجاً بين اأن هنالك توافقاً جيد ات. وقد أثبتت المقارنثلاثية الأبعاد وأخرى ثنائية الأبعاد القياسية لمباني 

لمباني لالطريقة إمكانية إستخدامها بفاعلية في التحليل الدقيق والسريع  أوضحتكما  الطريقة المقترحة.  دقة

 جمح التوفير فيو  يستحيل أو يصعب تحليلها بالطرق القياسية. شاهقة العلو المكونة من مئات الطوابق والتي

 اتهمتصمي احلان من التحليل السريع والمتكرر للمبنى في مر يوفرهما البرنامج يمكن  ن يذزمن الحل اللفي  الذاكرة و

 وأات اجبعفي الحالات التي تحتاج إلى التحليل المتكرر للوصول للحل كما في حالات تحليل الإنة وأيضاً الأولي

ستخراج وعرض النتائج النهائعند  دخال المعلومات وا  ية حساب الخواص الديناميكية للمبنى. سهولة تجهيز وا 

 يوصي لكل هذه الأسباب  يعتبران من المميزات الأساسية للطريقة. طرق العناصر المحددة القياسيةرنة مع مقا

 راريةودراسة إستق ،والإستاتيكي والديناميكي ،في التحليل الخطي واللاخطي (MFTProgV2) بإستخدام البرنامج

 لمباني العالية.ا
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                                     CHAPTER ONE 

                              General Introduction 

1.1  Introduction   

     Tall buildings are highly affected by lateral loadings such as wind and earthquake 

loads. The effects of these lateral forces may be resisted by lateral stiff elements such as 

shear walls available around elevator shafts and staircases. The unsymmetrical 

arrangement of the vertical members in the building plan cause twist deformations in the 

level of the floors plans. In this case the problem becomes more complex and a three 

dimensional analysis should be carried out instead of the simplified two dimensional 

analysis. In practice, a full three-dimensional finite element analysis of tall buildings is 

not simple because of the computer storage problem and the computing time cost factors 

especially in the design stage when the structure has to be modified several times. 

  A lot of researches have been conducted in the field of computerized solution of large 

scale problems with huge numbers of unknowns as the case of three dimensional full 

finite element model of tall building. Research is also ongoing for the simplification of 

analyses of tall buildings so as to be carried out with minimum cost. For all these reasons 

accurate simplified methods of analysis of tall buildings are required. 

   In most of the simplified methods of analysis, there exist assumptions that lead to 

wrong results in some of the practical cases. For example methods based on the 

continuum theory or the equivalent column theory which should always be applied for 

buildings of equal floor heights, buildings with no set back, cases of contra flexure (zero 

moments) in the mid of the members, sometimes neglecting the flexural stiffness of the 

floors, or for very regular structures where the geometric and stiffness characteristics of 

structural elements are constant throughout the building’s height, Bozdogan and Ozturk 

(2010), Parv and Nicoreac (2012).  

   A good simplified method must be reliable and supported by physical reality. It must be 

able to include a wide range of design parameters, such as the positions of a structural 

member as well as its orientation and dimensions. It should not require large computer 

storage or long computing time so that a preliminary analysis can be carried out and 

modified several times before the final design stage.  
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1.2   Problem Statement 

  The importance of performing the nonlinear analysis for tall buildings has been pointed 

out by various researchers, Moghadam and Aziminejad (2004) and Ikago Kohju (2012). If 

the building to be analyzed is very tall and slender and the axial forces are large or the 

individual columns are slender, then the lateral displacements become very large and 

affect the building geometry. This problem results in extra increase of the displacements 

and stresses, and second order or P-Delta analysis should be carried out, Smith and Coull 

(1991), Dobson and Arnott (2002).  

   In some of the available commercial analysis packages, the considerations of the 

nonlinearity in the static and the dynamic analysis of tall buildings are subjected to 

several limitations. Examples of these are incorporation of the global geometric stiffness 

while neglecting the local stress stiffening of the members due to the effects of the axial 

loads, Dobson and Arnott (2002). Sometimes in some commercial packages there is no 

possibility to include the effects of geometric nonlinearity during the dynamic analysis 

mode. In the iterative methods of P-Delta analysis used by most of the analysis packages, 

the results tend to diverge when the vertical loads tend to reach the critical buckling load 

at any of the vertical members. Since the critical forces are not known before performing 

the analysis, the convergence of the results to the correct answers will not be ensured. 

Also in the design codes, the effects of the nonlinearity are incorporated approximately 

by modifying some of the design parameters, e.g. amplified moments, as in UBC-97 and 

ACI 318-14, and, extended effective lengths as in BS8110 (1997). In methods of analysis 

of tall buildings and in order to include the P-Delta effects, some authors suggest the 

introduction of an equivalent fictitious member of negative properties, Wilson and 

Habibullah (1987), Smith and Coull (1991), and this is not acceptable in most of the 

analysis packages.   

  As stated above, the analysis of tall buildings needs some simplifications especially in 

the preliminary analysis and design stages, in order to reduce the large amount of 

unknowns when using the conventional exact methods of analysis. The problem becomes 

more severe in the nonlinear analyses (e.g. P-Delta, Buckling, dynamic, time dependant 

columns shortening), which need extra storage and extra time because most of these 

methods require several iterations for the results to be converged to final values.  
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   With all these requirements, this work presents development of a simplified method 

used to analyze two dimensional and three dimensional tall buildings and suitable for the 

analysis of framed shear walls buildings and for super tall buildings such as tube and 

outrigger buildings subjected to both vertical and horizontal loading. The proposed 

method has been developed to incorporate linear and nonlinear static and dynamic 

analyses. Due to its simplicity, the method greatly saves the effort faced from the 

difficulties of the data entry and the interpretation of the vast amount of the output results 

when using the conventional finite elements methods of analysis. The saving in computer 

storage and computing time provided by the developed program that based on the 

proposed method, allow rapid re-analysis of the building to be accomplished in the 

preliminary analysis and design stages, and in the cases of repeated analysis types such as 

in the buckling and vibration problems. The future use of the proposed simplified method 

on the more compacted very low memory today's devices (e.g. handhelds, pocket 

computers and even mobile phones) is also a possibility. 

1.3 Objectives 

1) To carry out a comprehensive literature review in the field of the linear and 

nonlinear static and dynamic analysis and elastic stability of tall buildings. 

2) To develop a simplified theoretical approach for the linear and nonlinear, static 

and dynamic analysis of tall buildings. 

3) To develop computer programs to be used for advanced analysis of tall buildings 

easily, both in the data entering and in the interpretation of the output results. 

4) To develop an optimized theory, such as a development based on generalization 

of the simple moment distribution methods, and optimized algorithms used for 

analysis of tall buildings that can be implemented in very low memory devices, 

such as pocket PCs and smart phones devices. 

5) To verify the accuracy of the results obtained by comparisons with results from 

known solvers. 

6) To demonstrate the capability of the developed theory and programs to analyze 

accurately tall buildings that are impossible or very difficult to be analyzed by 

established accurate methods. 
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1.4 Methodology of Research 

The research has been carried out as follows: 

1- Literature Review and study of theoretical background. 

2- Formulation of the proposed theory. 

3- Development of the computer programs based on the formulated theory. 

4- Application of the programs for different structures, analysis and verifications of 

results, and the comments and conclusions. 

5- Drawing recommendations for tall buildings analysis and recommendations for future 

studies. 

1.5 Outlines of thesis 

   The thesis includes the following: 

1- Chapter one presents a general introduction. 

2- Chapter two presents a literature review of the methods of analysis of tall buildings. 

3- Chapter three presents the proposed theory. 

4- Chapter four presents the developed computer program. 

5- Chapter five presents the program applications and solution of some problems. 

6- Chapter six presents two cases study, the results obtained and the analysis and 

discussion of the results.  

7- Chapter seven includes the conclusions and recommendations. 
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                                   CHAPTER TWO 

                                  Literature Review 

2.1 Introduction 

  Simplified methods of static and dynamic analysis for the effects of vertical and 

horizontal loads on tall building are required, especially in the preliminary design stage 

when the proposed structural system has to be analyzed several times before the final 

agreement. 

  Due to the huge gravity loads and the possible large lateral displacements, the nonlinear 

analysis should be carried out to adequately design the tall buildings.  

  In the analysis of large structural systems such as the tall buildings which include huge 

numbers of unknowns, there arise a lot of difficulties such as: 

 The capability of the hardware of the computing machine. 

 The machine running time which is proportional to the total number of unknowns. 

 The interpretation of the vast amount of the analysis results. 

 The need that may arise for new rearrangements or changing of the structural 

system. 

  In literature, there are lots of conducted researches, which can be classified into 

different types of problems formulation and solution methods, such as: 

 Simple manual arithmetical methods, e.g. Portal and Cantilever methods.  

 Differential equations and Continuum methods of analysis. 

 Simplified finite element and matrix methods of analysis. 

 Methods of Simplifying the models and Reduction Techniques. 

  Each one of the mentioned methods is used with limitations and sometimes tailored for 

a certain type of structural system.  
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  In the following sections the available simplified analysis methods are reviewed and 

classified. 

2.2 Simple Manual Arithmetical Methods 

  For preliminary design of tall frames, as information regarding stress resultants due to 

lateral loads is required even before member dimensions are known, the cantilever and 

portal methods are sought in practice for the specific reason that they do not require cross 

sectional areas for the analysis. When using these methods of analysis for lateral loads, 

the analysis for vertical loads can be made in the same way as for the braced frames by 

using any of the sub-frame methods. 

  According to Manicka and Bindhu (2011), there are two versions of the portal method. 

One is the simplified portal method and the other is the improved portal method. 

  In the simplified portal method, the storey shear is distributed among the columns 

considering that each of the outer columns resists half the shear resisted by any of the 

internal columns, and in the improved portal method, the storey shear is distributed 

among the columns in proportion to the tributary length of the spans between the 

columns. Manicka et al, proposed an alternative analysis method which they called the 

Split frame method. The method splits vertically the whole frames into separated simple 

frames each of one containing only one bay subjected to lateral loads calculated from the 

dimensions of all the bays. The method gives almost the same answer as that of the 

improved portal method. 

  As a conclusion, the cantilever and the simplified and improved portal methods of 

analysis together with the Split method proposed by Manicka et al, can be used only for 

analysis of relatively short un-braced portal frames subjected to lateral wind loads or 

equivalent static seismic loads, also they can’t be used to calculate the dynamic properties 

of the frames (e.g. natural frequencies and mode shapes), and have no ability to calculate 

the lateral stiffness of the building frame and therefore the drift and the lateral 

displacements of the frame. 
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 2.3 Differential Equations and Continuum Methods of Analysis 

  Based on the continuum theory, the researchers developed and solved approximately 

miscellaneous types of problems, ranging from a very simple problem used to distribute 

the lateral loads between the vertical members in a relatively short building, up to the 

analysis of a more complicated tube and outrigger structural systems used in the ultra tall 

buildings. The type of the problems also can be classified ranging from a simple static 

problem up to a more complicated dynamic one, used to calculate the dynamic properties 

of the building such as the vibration frequencies and their corresponding mode shapes.   

  Following are some researches and developments based on these types of analyses: 

  Jaeger, Mufti and Mamet (1973), proposed an analytical theory for the analysis of tall 

three dimensional multiple shear wall buildings. The basis of their theory was the 

continuum approach in which the floors of the building are replaced by an equivalent 

continuous medium. Their results were compared with data obtained by the finite element 

method and experiments conducted on a seven storey multiple, shear wall model.  

  A Simplified method was presented by Coull, Bose and Abdulla Khogali (1982), used 

for the analysis of bundled tube structures subjected to lateral loads. In the method, the 

rigidly-jointed perimeter and interior web frame panels were replaced by equivalent 

orthotropic plates. The force and stress distributions in the substitute panels were 

assumed to be represented by polynomial series in the horizontal coordinates, the 

coefficients of the series being functions of the height only. The unknown functions were 

determined from the principle of the least work. By incorporating simplifying 

assumptions regarding the form of stress distribution in the frame panels, the structural 

behavior was reduced to the solution of a single second-order linear differential equation, 

enabling closed-form solutions to be obtained for the standard load cases, and solutions 

were obtained from design curves. 

  A simplified approximate analysis of lateral load distribution in structures composed of 

different assemblies was presented by Coull and Tag Eldeen Husein (1983). The load 

distribution on each assembly was assumed to be represented by a polynomial in the 

height coordinate, together with a concentrated interactive force at the top. A set of 
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flexibility influence coefficients, relating the deflection at any level to any particular load 

component, was established for each assembly, the continuum approach was used to 

analyze individual assemblies. By making use of the equilibrium and compatibility 

equations at any desired set of reference levels, the load distribution on each assembly 

was determined. Good results were achieved for regular structures by using no more than 

about six reference levels. 

  As an alternative a simplified analysis of shear-lag in framed-tube structures with 

multiple internal tubes was presented by Lee, Guan and Loo (2000). In their work a 

simple numerical modeling technique was proposed for estimating the shear-lag behavior 

of framed-tube systems with multiple internal tubes. The system was analyzed using an 

orthotropic box beam analogy approach in which each tube is individually modeled by a 

box beam that accounts for the flexural and shear deformations, as well as the shear-lag 

effects. The method idealizes the tube(s)-in-tube structure as a system of equivalent 

multiple tubes, each composed of four equivalent orthotropic plates capable of carrying 

loads and shear forces. The numerical analysis so developed was based on the minimum 

potential energy principle in conjunction with the variational approach. The shear-lag 

phenomenon of such structures was studied taking into account the additional bending 

stresses in the tubes. Structural parameters governing the shear-lag behavior in tube(s)-in-

tube structures were also investigated through a series of numerical examples. The 

method results were verified through the comparisons with a 3-D frame analysis 

program.   

  An approximate hand-method for seismic analysis of asymmetric building structure 

having constant properties along its height was presented by Meftah, Tounsi and El 

Abbas (2007). The method used the continuum technique and D’Alembert’s principle to 

derive the governing equations of free vibration and the corresponding eigenvalue 

problem. By applying the Galerkin technique, a generalized method was proposed for the 

free vibration analysis. Simplified formulae were given to calculate the circular 

frequencies and internal forces of a building structure subjected to earthquakes. The 

accuracy of the method was demonstrated by a numerical example, in which the results 

obtained were compared with finite element package.   
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  A method for lateral stability analysis of wall-frame buildings including shear 

deformations of walls was presented by Bozdogan and Ozturk (2010). Their study 

presented an approximate method based on the continuum approach and transfer matrix 

method. In the method, the whole structure was idealized as an equivalent sandwich 

beam which includes all deformations. The effect of shear deformations of walls was 

taken into consideration and incorporated in the formulation of the governing equations. 

Initially the stability differential equation of this equivalent sandwich beam was 

presented, and then shape function for each storey was obtained by the solution of the 

differential equations. By using boundary conditions and stability storey transfer matrices 

obtained by shape functions, system buckling load were calculated. To verify the 

presented method, four numerical examples were solved. The results of the samples 

demonstrated the comparison between the presented method and the other methods given 

in the literature. 

 Also Bozdogan and Ozturk (2010), presented a Vibration analysis method of asymmetric 

shear wall structures using the transfer matrix method. In the method the whole structure 

was assumed as an equivalent bending-warping torsion beam. The governing differential 

equations of equivalent bending-warping torsion beam were formulated using the 

continuum approach and were posed in the form of a simple storey transfer matrix. By 

using the storey transfer matrices and point transfer matrices, which take into account the 

inertial forces, the system transfer matrix was obtained. Natural frequencies were 

calculated by applying the boundary conditions. The structural properties of the building 

may change in the proposed method. A numerical example were solved and presented by 

means of a program written in MATLAB to verify the proposed method. The results 

obtained were compared with other valid method given in the literature.  

   Bozdogan (2011), developed a differential quadrature method (DQM). In his work, free 

vibration analysis of wall-frame structures were studied. A wall-frame structure was 

modeled as a cantilever beam and the governing differential equations were solved using 

the (DQM). At the end of the study, a sample taken from literature was solved and the 

results were evaluated in order to test the convenience of the method. 
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 A simplified method for high-rise buildings was developed by Takabatake (2012). In his 

work an analytical theory for doubly symmetric frame-tube structures was established by 

applying ordinary finite difference method to the governing equations proposed by the 

one-dimensional extended rod theory. Takabatake, claims that his theory can be usable in 

the preliminary design stages of the static and dynamic analyses for a doubly symmetric 

single or double frame-tube with braces in practical use, and it would be applicable to 

hyper high-rise buildings, e.g. over 600m in the total height, because the calculation is 

very simple and very fast. Also the approximate method for natural frequencies of high-

rise buildings was presented in the closed-form solutions and it was stated to be necessary 

for seismic retrofitting of existing high-rise buildings subject to earthquake wave 

included relatively long period. 

  Another simplified method for nonlinear dynamic analysis of shear-critical frames is 

developed by Guner and Vecchio (2012). In their work, an approach was presented by 

which a static analysis method can be modified for a dynamic load analysis capability in 

a total-load secant-stiffness formulation, and a nonlinear static analysis method was 

developed for the performance assessment of plane frames. The primary advantage of the 

method is its ability to represent shear effects coupled with axial and flexural behaviors 

through a simple modeling approach. In the study, the method was further developed to 

enable a dynamic load analysis. Among the developed and implemented formulations 

there are an explicit three-parameter time-step integration method, based on a total-load 

secant-stiffness formulation, and dynamic increase factor formulations for the 

consideration of strain rates. The method was applied to eleven previously tested 

specimens, subjected to impact and seismic loads, to examine its accuracy, reliability, and 

practicality. The method was found to simulate the overall experimental behaviors. 

Strengths, peak displacements, stiffness, damage, and failure modes and vibrational 

characteristics were calculated.  

 An approach to static analysis of tall buildings with a combined tube-in-tube and 

outrigger-belt truss system subjected to lateral loading was presented by Jahanshahi, 

Rahgozar and Malekinejad (2012). The method was presented a technique for static 

analysis of the system while considering shear lag effects. In the process of replacing the 
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discrete structure with an elastically equivalent continuous one, the structure was 

modeled as two parallel cantilevered flexural-shear beams that are constrained at the 

outrigger-belt truss location by a rotational spring. Based on the principle of minimum 

total potential energy, simple closed form solutions were derived for stress and 

displacement distributions. Standard load cases were considered. The formulas proposed 

in the method were compared to a finite element computer package. Results obtained 

from the proposed method for 50 and 60 storey tall buildings were compared to those 

obtained using SAP2000.   

A “Global structural analysis of central cores supported tall buildings compared with 

FEM” was presented by Prav and Nicoreac (2012). The focus of their article was to 

present an approximate method of calculation based on the equivalent column theory. By 

applying the geometrical and stiffness characteristics of the structure the displacements in 

the two directions, the rotation of the structure, critical load, shear forces, bending 

moments for each resisting element and the torsional moment of the structure may be 

determined. The results obtained using the approximate method was compared with the 

results obtained using an exact calculation based on Autodesk Robot Structural Analysis 

and ANSYS 12.1. The equivalent column theory is an approximate method used for 

comparing and checking the results obtained by the Finite Element Method (FEM).  

2.4 Simplified Finite Element and Matrix Methods of Analysis 

   Simplified methods of solution for the two and three dimensional frames based on the 

matrix and finite element methods of analysis were developed.  

  In Macginely and Choo (1990) and Ghali et al (2009), a two dimensional analysis based 

on building composed of parallel assemblies and on the shear wall frame interaction 

system were presented. A three dimensional analysis of shear walls structures was 

proposed by Ghali et al. In their method, the total degrees of freedom were reduced to 

three per each floor. The global stiffness matrix was constructed from all shear walls, 

with the assumptions of the rigid diaphragm and neglection of the floor out of plane 

stiffness. The external lateral loads were applied at the assumed origin, the global 



 12 

displacements were obtained and the local displacements and stresses were calculated 

accordingly. 

   A two-level finite element technique of constructing a frame super-element was created 

by Leung and Cheung (1981), to reduce the computational effort for solving large scale 

frame problems. The ordinary finite element method was used first to yield matrices for 

the beam members. Then the nodal displacements of all the nodes were related to those of 

a small number of selected joints (master nodes) in the frame by means of global finite 

element interpolating functions. Thus the frame was considered as a super-element 

connected to other elements by means of the master nodes. The accuracy of solution may 

be improved either with finer subdivision or by taking more master nodes inside each 

super-element. 

  Also Leung (1983) presented another method, for the analysis of plane frames by 

microcomputer. The method was based on the assumptions that, the distribution of the 

vertical and rotational displacements at the nodes of a story is characterized by the 

concept of distribution factors which are relative nodal displacements. The distribution 

factors were allowed to vary from floor to floor and were determined by using three 

floors at a time. These are calculated once only for floors having identical members. By 

means of the distribution factors, the number of degrees of freedom was reduced to three 

at any one floor. Therefore, it was possible for a micro-computer to handle a large 

number of stories without difficulty. The resulting displacements and internal forces were 

compared with full finite element analyses for a number of cases even with sudden 

changes of stiffness.  

  The two dimensional method was further generalized by Leung (1985) to solve three 

dimensional frames. It was also based on the fact that the deformation pattern at the 

nodes of a particular floor may be predetermined before loading. These relative 

displacements were called distribution factors which govern the distribution of 

displacements. A number of free parameters were determined in the global analysis from 

the applied loading. These parameters were called mixing factors. The linear 

combinations of the distribution factors with mixing factors as weighting factors give the 

actual displacements at the nodes. Structural idealizations of coupled shear walls by 
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beams and columns were recommended. In order to improve the results another three 

additional sets of global distribution factors were introduced by Leung (1988) to account 

for the uneven elongation (shortening) of the columns having unevenly distributed 

stiffness along the height and across the floor plane. The total number of unknowns per 

floor was reduced. Using the concept of the two-level finite-element method, the global 

distribution factors of the building frame were obtained. The global and local distribution 

factors together predicted the lateral and torsion deflections and internal nodal 

displacements accurately.  

   In a similar manner, Wong and Lau (1989), presented a simplified finite element for 

analysis of tall buildings. It was based on the assumption that the warping displacement 

modes of a floor and the differences between neighboring floors are mainly determined 

by the local structural characteristics. Once the warping modes are determined, these 

modes are taken as the basis of generalized coordinates. Then, the problem can be 

reduced to a formulation in which only the rigid body displacements and the warping 

generalized coordinates of each floor are unknown. Results obtained from the examples 

show that the simplified analysis method was satisfactory in displacements as well as in 

internal forces when suitable warping modes from a multi-storey sub-model are chosen. 

The authors claimed that the proposed simplified finite element method using a multi-

storey sub-model one-floor-unknown scheme is inexpensive and is able to yield 

sufficiently good results for practical design purposes. The method can also be 

generalized to solve dynamic problems. 

   A finite strip analysis method was developed by Swaddiwudhipong, Lim and Lee 

(1988). The method was presented for the analysis of coupled frame-shear wall buildings 

subjected to lateral loads. Appropriate displacement functions of admissible class were 

adopted such that the problem is uncoupled and can be conveniently solved term by term. 

Although this uncoupling property is valid only when the building is uniform throughout 

its height, the method was extended to buildings with non-uniform section by employing 

the concept of equivalent uniform section. Several numerical examples were presented to 

show the accuracy and validity of the proposed scheme. The method required a small 
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core storage and short computing time and suitable for implementation on any of the 

personal computers commonly available in most engineering design offices.  

  Giovanni (2009), in his PhD thesis dissertation showed the different types of the 

structural condensations which can be used in the structures simplification, and these 

were, the static condensation, the dynamic condensation (Guyan’s reduction method) and 

the exact dynamic condensation method developed by Leung (1978). Leung method 

efficiently reduces the order of dynamic matrices without introducing further 

approximation by representing the passive co-ordinates in terms of the active ones 

exactly. The resulting frequency dependent eigenvalue problem is solved by a combined 

technique of Sturm sequence and subspace iteration. The method is a condensation 

method in dynamic economization and dynamic substructure analysis and it converges to 

the natural modes of interest always, even for the extreme case that the natural modes of 

the overall structure are multiple and very close to the partial modes of its substructures, a 

case when the normal methods fail.  

   A method for lateral static and dynamic analyses was presented by Bozdogan (2011). 

The study presented an approximate method which was based on the continuum approach 

and one dimensional finite element method to be used for lateral static and dynamic 

analyses of wall-frame buildings. In the method, the whole structure was idealized as an 

equivalent sandwich beam which includes all deformations. The effect of shear 

deformations of walls was considered and incorporated in the formulation of the 

governing equations. Initially the differential equations of the equivalent sandwich beam 

were written and the shape functions and stiffness matrix were obtained by solving the 

differential equations. For static and dynamic analysis the lateral forces and masses were 

applied on the storey levels. Angular frequency and modes were obtained by using 

system mass and system stiffness matrices. Numerical examples were solved using 

MATLAB to verify the presented method.  

2.5 Methods of Simplifying the Models and Reduction Techniques 

  The simplification of the modeling can be treated in the structural analysis stage in order 

to reduce and simplify the problem solution. The reduction technique can be classified in 

the following types: 
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1.  Symmetry and anti-symmetry of the building plan 

2.  Two-dimensional model of non-twisting structures.  

3.  Two-dimensional models of structures that translate and twist. 

4.  Lumping Techniques which can be classified into lateral lumping and vertical lumping 

5.  Wide-column and deep-beam analogies. 

    In the work of Akis (2004), the main purpose of the study was to model and analyze 

the non-planar shear wall assemblies of shear wall-frame structures. Two types of three 

dimensional models, for open and closed section shear wall assemblies, were developed. 

Those models were based on conventional wide column analogy, in which a planar shear 

wall was replaced by an idealized frame structure consisting of a column and rigid beams 

located at floor levels. The rigid diaphragm floor assumption was also taken into 

consideration. The connections of the rigid beams were released against torsion in the 

model proposed for open section shear walls. For modeling closed section shear walls, in 

addition to that the torsional stiffness of the wide columns were adjusted by using a series 

of equations. Several shear wall-frame systems having different shapes of non-planar 

shear wall assemblies were analyzed by static lateral load, response spectrum and time 

history methods where the proposed methods were used. The results of those analyses 

were compared with the results obtained by using common shear wall modeling 

techniques.  

  A simplified finite element modeling of multi-storey buildings was proposed by Li, 

Duffield and Hutchinson (2008). The study discussed how to substructure different parts 

of a multi-storey building with cubes having equivalent stiffness properties. As a result, 

the mesh density of the whole building is reduced significantly and the computational 

time and memory normally consumed by such complex structural dimensions and 

material properties will also be reduced. The simplified analysis results of a high-rise 

frame structure with a concrete core were used to explore the reliability of the proposed 

method. In the study a typical 32-storey high-rise building was modeled with one storey 

blocks. Force-Displacement relationship calibration was carried out to find the proper 

simplified cubic model. According to the study, the equivalent cubic method was not 

suitable for dynamic analysis. Further investigation focusing on the overall behavior of 
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the structural model built using the equivalent cubic method needs to be conducted to 

ensure the connection properties between floors work correctly.  

 

2.6 Miscellaneous Researches Conducted to Study and Improve the 

Structural Systems of the Tall Buildings 

   Otani (1979), showed that, the nonlinear analysis of a reinforced concrete building is 

difficult because inelastic deformation is not confined at critical sections, but spreads 

throughout the structure and because stiffness of the reinforced concrete is dependent on 

a strain history. The paper reviewed the behavior of reinforced concrete members and 

their sub-assemblies observed during laboratory tests. Then different hysteresis and 

analytical models of reinforced concrete members were reviewed, and their application to 

the simulation of building model behavior was discussed. In the paper the behavior of 

reinforced concrete buildings, especially under earthquake motion, was briefly reviewed.     

Otani concluded that, his method is useful and reliable, when a structure can be idealized 

as plane structures, but more research required to understand the effect of slabs, gravity 

loads, and biaxial ground motion on nonlinear behavior of a three-dimensional reinforced 

concrete structure. 

  A study conducted by Moghadam and Aziminejad (2004), for the interaction of torsion 

and P-Delta effects in tall buildings”, evaluated the importance of asymmetry of building 

on the P-Delta effects in elastic and inelastic ranges of behavior. The contributions of 

lateral load resisting system, number of stories, degree of asymmetry, and sensitivity to 

ground motion characteristics were assessed. In the study four buildings with 7, 14, 20 

and 30 story were designed based on typical design procedures, and then their elastic and 

inelastic static and dynamic behavior, with and without considering P-Delta effects, were 

investigated. Each building was considered for 0%, 10%, 20% and 30% eccentricity 

levels. The results indicated that the type of lateral load resisting system played an 

important role in degree that torsion modifies the P-Delta effects. It was also shown that 

although in the elastic static analyses, torsion always magnified the P-Delta effects, but 

the same not always true for dynamic analyses. The results of dynamic analyses also 

showed high level of sensitivity to ground motion characteristics. 
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   The main results of the study were as follows: 

1. In the elastic static analyses, effect of P-Delta always is increasing, as number of 

stories of buildings or their eccentricity increased. 

2. In the elastic or inelastic dynamic analyses, the effects of P-Delta sometimes increased 

the response and sometimes decreased the responses.  

3. “Importance of interaction of torsion and P-Delta effect” mainly depends on the type 

of lateral load resisting system of building. The results indicated that the type of lateral 

load resisting system played an important role in degree that torsion modifies the P-Delta 

effects. It was concluded that the characteristics of lateral load resisting system had far 

more importance compared with the number of stories in building. 

4. It was seen that the effects of P-Delta is quite sensitive to ground motion 

characteristics such as the frequency content of earthquake. In inelastic analyses, the 

sensitivity is still important but less than the elastic dynamic cases. In general, the 

sensitivity to ground motion increased, as the eccentricity increased. 

5. In elastic or inelastic dynamic analyses, increase in eccentricity caused change in the 

effect of P-Delta. The change is very important in elastic analyses and is somewhat less 

important in inelastic analyses. However, the variation is not have a constant increasing 

or decreasing trend. One of the reasons is the fact that with increase in the eccentricity, 

the mass moment of inertia has not increased in all cases. 

  A nonlinear finite element analysis of tall buildings was presented by Marsono and Wee 

(2006). The structural behaviors and mode of failure of reinforced concrete tube in tube 

tall building via application of computer program namely COSMOS/M were presented. 

Three dimensional quarter model was carried out and the method used for the study was 

based on non-linearity of material. A substantial improvement in accuracy was achieved 

by modifying a quarter model leading deformed shape of overall tube in tube tall building 

to double curvature. The ultimate structural behaviors of reinforced concrete tube in tube 

tall building were achieved by concrete failed in cracking and crushing. The model 

presented in the paper put an additional recommendation to practicing engineers in 

conducting non-linear finite element analysis (NLFEA) quarter model of tube in tube 

type of tall building structures.  

  The findings of the study were summarizing as follow:  
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1. The quarter model was capable to perform non-linearity behavior up to ultimate limit 

state. 

2. Modified boundary condition by assigning restraint at X-direction at all slab edges, 

fully restraint at wall bottom ends was considered appropriate in generating a double 

curvature profile as expected in tube in tube model. 

3. NLFEA in tube in tube building performed well using non-linear concrete stress-strain 

curve up to 32 steps of non-linearity and yields the ultimate behavior of tall building. 

4. Modified quarter model, which included the full configuration of shear wall, was found 

to be appropriate in modeling the tube in tube tall building as quarter section. Thus, the 

behavior of coupling beams was successfully presented out. 

A study conducted by Bayati, Mahdikhani and Rahaei (2008) presented to optimize the 

use of multi-outriggers system to stiffen tall buildings. They stated that “in modern tall 

buildings, lateral loads induced by wind or earthquake forces are often resisted by a 

system of multi-outriggers”. An outrigger is a stiff beam that connects the shear walls to 

exterior columns. When the structure is subjected to lateral forces, the outrigger and the 

columns resist the rotation of the core and thus significantly reduce the lateral deflection 

and base moment, which would have arisen in a free core. During the last decades, 

numerous studies have been carried out on the analysis and behavior of outrigger 

structures. But the question remained that how many outriggers system are needed in tall 

buildings? The paper presented the results of an investigation on drift reduction in 

uniform belted structures with rigid outriggers, through the analysis of a sample structure 

built in Tehran’s Vanak Park. Results showed that using optimized multi-outriggers 

system can effectively reduce the seismic response of the building. In addition, the results 

showed that a multi-outriggers system can decrease elements and foundation dimensions. 

   Jameel et al (2012), were carried a research to optimize structural modeling for tall 

buildings. They were concluded that it is a common practice to model multi-storey tall 

buildings as frame structures where the loads for structural design are supported by 

beams and columns. Intrinsically, the structural strength provided by the walls and slabs 

are neglected. The consideration of walls and slabs in addition to the frame structure 

modeling shall theoretically lead to improved lateral stiffness. Thus, a more economic 

structural design of multi-storey buildings can be achieved. In their research, modeling 
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and structural analysis of a 61-storey building were performed to investigate the effect of 

considering the walls, slabs and wall openings in addition to frame structure modeling. 

Sophisticated finite element approach was adopted to configure the models, and various 

analyses were performed. Parameters, such as maximum roof displacement and natural 

frequencies, were chosen to evaluate the structural performance. It was observed that the 

consideration of slabs alone with the frame modeling may have negligible improvement 

on structural performance. However, when the slabs are combined with walls in addition 

to frame modeling, significant improvement in structural performance can be achieved. 

In the research, different combinations of structural components of multi-storey buildings 

were modeled to investigate the optimum design solution. Static as well as free vibration 

analyses were carried out aiming at evaluating the structural performance and responses. 

  The following conclusions were drawn from the research: 

1. Among the applied modeling concepts, (frame, wall, slab) is recommended for 

economical design. 

2. (Frame, wall, slab) modeling provides higher lateral stiffness and lower shear and 

moment as compared with conventional frame and (frame, slab) modeling, which is an 

expected trend. 

3. The size of the structural member or the steel reinforcement in (frame, wall, slab) 

modeling can be reduced, while satisfying the safety and serviceability requirement. 

4. Wall openings, which would reduce lateral stiffness of a structure, should be taken into 

consideration in structural analysis.  

5. To fully understand the significance of walls and slabs in modeling and analysis of 

multi-storey buildings, more modeling with a different plan view arrangement (such as 

anti-symmetrical, non-symmetrical or more complex building shapes) were 

recommended.  

6. Further extensive study can be performed to generalize the effect of wall openings, by 

modeling with different percentages of wall openings. 

7. In the research, besides eigenvector analysis, only equivalent static analysis was 

performed.  



 20 

Static pushover analysis and response spectrum analysis could also be performed to 

further investigation of the response of multi-storey buildings under seismic loading 

conditions. 

    A seismic analysis of building with and without shear wall was studied by Chandurkar 

and Pajgade (2013). They were concluded that, in the seismic design of buildings, 

reinforced concrete structural walls, or shear walls, act as major earthquake resisting 

members, providing an efficient bracing system and offer great potential for lateral load 

resistance. The properties of these seismic shear walls dominate the response of the 

buildings, and therefore, it is important to evaluate the seismic response of the walls 

appropriately. In their study, main focus was to determine the solution for shear wall 

location in multi-storey building. Effectiveness of shear wall has been studied with the 

help of four different models. One model was bare frame structural system and other 

three models are dual type structural system. An earthquake load was applied to a 

building of ten stories located in zone II, zone III, zone IV and zone V. Parameters like 

Lateral displacement, story drift and total cost required for ground floor were calculated 

in both the cases replacing column with shear wall.  

The conclusions of the paper were: 

From all the conducted analyses, they observed that in 10 story building, constructing 

building with shear wall in short span at corner was economical as compared with other 

models. From this it can be concluded that large dimension of shear wall is not effective 

in 10 stories or below 10 stories buildings. It was observed that the shear wall was 

economical and effective in high rise building. Also observed that: 

1. Changing the position of shear wall will affect the attraction of forces, so that wall 

must be in proper position. 

2. If the dimensions of shear wall are large then major amount of horizontal forces are 

taken by shear wall. 

3. Providing shear walls at adequate locations substantially reduces the displacements due 

to earthquake.  
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2.7 Review to the Moment Transformation Method 

  The Moment Transformation method (MT) was presented by Ibrahim (2013), and 

Ibrahim and Mohamed (2013). The method was used firstly to simplify the analysis of 

the continuous beams and sub frames connected by a single or double upper and lower 

columns at the joints, same as the direct moment distribution procedure but with different 

formulation. 

   The no-shear moment distribution (sometimes also known as the cantilever moment 

distribution), is based on the concept of distribution of the sway fixed end moments 

without changing the sway-moment equation during the distribution procedure, Ghali and 

Neville (1978). 

    The concept of the direct moment distribution was suggested by Lin, [Williams 

(2009)], as a means of eliminating the iteration required in the standard moment 

distribution procedure. Several alternative methods have also been developed for the 

direct distribution of moments, e.g. the precise moment distribution (some times called 

the coefficient of restraints), Reynolds and Steedman (1999).  

   Then the method was used to solve the problems of the single post connected by 

horizontal members and subjected to lateral forces, and permitted to sway freely such as 

in the substitute frame method. In this type of analysis, the concept of the no-shear 

moment distribution is applied. 

  The method has then been developed and generalized to solve the wall-frame interaction 

problems, and also developed to solve the more complex two dimensional, and three 

dimensional multi-bay multi-floor buildings with irregular arrangement and orientation of 

the vertical members and subjected to both vertical and horizontal loads.  

  A computer program (MTProg) has been developed based on Visual Basic Environment 

and implemented for the method.     

2.8 Summary 

  The exact solution for tall buildings is very expensive in terms of time and computer 

storage.  For this reason the need for simplified methods of analysis is arise. 

    The simplified methods of analysis always require some assumptions e.g.  

(a) Neglection of the axial deformations. 

(b) The in-plane rigid body movement. 
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(c) Assumption of the contra-flexural points in the middle of the columns and the beams. 

(d) Assumption of equal floor heights. 

(e) Assumption of uniform properties throughout the building height.  

  This is mainly shown in the continuum methods of analysis. The results obtained by the 

continuum methods are less accurate when compared with the solutions obtained by the 

simplified matrix based methods, especially if the walls are not symmetrical or the 

members stiffnesses are largely different from each other, or if there is a setback in the 

building as this affects the locations of the contra-flexure points. Analysis methods based 

on simplified matrix and finite elements analysis give relatively accurate solutions.  

  Simplifications of the models, such as the optimized modeling schemes proposed by 

Akis (2004), assist in analyzing the tall buildings with a lesser cost and effort.  

   Therefore, a simplified method of analysis that is based on reasonable assumptions is 

required, in order to reach a more simple and accurate solution when compared with the 

exact methods. In this research, such a simplified method is proposed and verified. 
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                                     CHAPTER THREE 

The Moment-Force Transformation  

Method Theory 

3.1 Introduction  

     In simplified analysis methods of tall buildings, the following assumptions are widely 

used and are found to be reasonable for the majority of building structures: 

(1) The floors are rigid in their own plane. The whole structural assembly in each floor 

moves as a rigid body in the horizontal direction. The structural stiffness matrix is formed 

under the assumption that all frames are connected at each floor level by a diaphragm, 

which is rigid in its own plane. Due to the high in-plane stiffness, the lateral loads are 

transferred to the columns and shear walls through these diaphragms. 

 (2) The out-of-plane stiffness of the floor can either be neglected or incorporated 

approximately into corresponding equivalent beams. 

   In three dimensional analyses, there are some factors that influence how fast          

results can be obtained and how accurate they are. The most important factors are the 

amount of required data, computer running time and the vast output results that should be 

interpreted. These should be optimized in such a way that sufficient results can be 

obtained by entering lesser data and having a relatively short computing time. The 

computer running time is mostly affected by the total number of degrees of freedom in 

the system. Generally it may be decreased by: 

 (a) A reduction in the total number of elements used in the analysis and, 

 (b) The use of elements having the least degrees of freedom. 

3.2 Reduction of Total Degrees of Freedom by Considering Rotations 

Only 

     Instead of considering the whole degrees of freedom and applying all the forces 

directly in the joints, the problem can be reduced to a system that includes only the 

rotational degrees of freedom and fixed end moments. The known methods using such 

assumptions are the slope deflection method, the ordinary moment distribution method, 

the no-shear moment distribution and the successive sway correction method. 
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3.3 Analysis of Structural Systems using rotational degrees of freedom 

  Any structural system subjected to both vertical and/or horizontal loads can be split into 

two loading systems (a) and (b), as shown in Figure 3.1. This simplifies the problem and 

reduces the total degrees of freedom to only rotational degrees of freedom. System (a) is 

a system in which the lateral degrees of freedom are released and the rotations are 

completely restrained by the fixed moments for all the joints in the structure. The system 

is used to calculate the fixed-end moments due to the external loading, the fixed moments 

produced from the carryover moments and the transformed moments. System (b) is a 

system with all the translational and rotational degrees of freedom released and used for 

the released moments (the balancing moments).                     

           

                                                Figure 3.1: Single post model 

  The released or the balancing moments, which are the reverse of the restraining 

moments of the structural system (a), will be applied as concentrated moments in the 

joints of the structural system (b). The induced moments e.g. the carryover moments and 

the transformed moments are considered as fixed moments and should be applied again 

in the structural system (a). 

   Appendix A1 shows an example illustrates the use of the two loading systems. 

The example yields the following two important notes:  
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(1) The joints rotations can be that obtained only from the structural system (b), as the 

structural system (a) has no rotations at the joints. 

 (2) The total translations of the joints are produced from the two structural systems by 

superimposing the translations obtained from each system. 

  Based on the illustrated two structural systems concept, the moment distribution and the 

moment transformation procedures are illustrated as shown in Appendix A2 and A3.  

3.4 Sway Fixed-End Moments 

    In order to obtain the sway fixed end moments in the vertical members, let us consider 

the structure shown in Figure 3.2, which shows an intermediate storey in a multi-bay 

plane frame subjected to horizontal loads at floor levels. Assume that the frame is 

allowed to sway without joint rotation. Neglecting the axial deformations in the 

horizontal members, the top ends of all the columns in one storey translate relative to 

their bottom ends by the same amount D. This sway induces end-moments and shearing 

forces in all the columns. For equilibrium, the sum of the shearing forces in the columns 

of one storey must be equal to the sum P of the horizontal forces acting on all the higher 

floors; thus P and the column end-moments are related by:  

                                           P = 
h

1
∑ M                                                               ...(3.1) 

Where the summation is for the end-moments M at top and bottom of all the columns in 

the given storey, and h is the floor height, Ghali and Neville (1978).  

            

                      Figure 3.2: Intermediate storey of a multistory frame 
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3.5 The Moment Transformation method 

3.5.1 Column of two members                                                                    

                                                  

                              Figure 3.3: Transformation of Moment 

   Referring to Figure 3.3, and using the displacement method of analysis, the equivalent 

rotational stiffness Se of the two members 1 and 2 at joint 2, and the transformation factor 

TF for the moment transformed from joint 1 to joint 2, are given as follows: 
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where: 

Si is the rotational stiffness of member # i. 

ti is the carryover moment of the member # i. 

3.5.2 Generalization of the Method to Two and Three Dimensional 

Multi-storey buildings 

     Instead of transformation from joint to joint through members, as in the case of the 

two columns, Figure 3.3, the system now is composed of multiple bays and multiple 

floors as in Figure 3.4, and the transformation will be carried out through the floors from 

top to bottom and from bottom to top. 

    Instead of the joints, the transformation in this case will be carried out from one level 

to another level, Ibrahim (2013). 
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                                   Figure 3.4: Multi-Storey 2D or 3D Building 

The transformation procedure is generalized and given in a matrix form as shown in the 

following sections. 

3.5.3 Equivalent stiffness matrix and moment transformation factors 

matrix 

Moments Transformation procedure from top to bottom,  

 [SR] = [ NN ] i       ,  ( if  i = 1 )                                                                       …(3.4a) 

[SR] = [ NN ] i + [GG] i-1   ,  (  if  i ≠ 1 )                                                         …(3.4b) 

[AA] = [A] i + [SR]                                                                                            …(3.5) 

[FF] i = -[ BC ]T i  [AA]-1                                                                                   …(3.6) 

[GG] i  =  [A] i + [FF] i  [BC] i                                                                          …(3.7) 

where; 

[ NN ] i   , is the Over All Rotation Stiffness Matrix of the Level # i .       

[GG] i-1  , is the Equivalent Rotation Stiffness Matrix of The Floor # i-1 . 

[A] i  , is the Condensed Rotation Stiffness Matrix of The Floor # i .     

[ FF ] i  , is the Transformation Factors Matrix of The Floor # i .     

[BC] i  , is the Carryover Moments Matrix of The Floor # i . 

[BC]T
i  , is the Transpose of The Carryover Moments Matrix of The Floor # i . 

[GG] i  , is the Equivalent Rotation Stiffness Matrix of The Floor # i . 
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The same procedure can be carried out for transformation from bottom to top. 

3.5.4 Total Transformation Factors matrix from one level to a far level 

The total transformation factors matrix is calculated as follows: 

[ FT ]K→K+2 = [ FT ]K→K+1  [ FF ]K+1→K+2                                                         …(3.8) 

where: 

[ FT ]K→K+1 , is the total transformation factors matrix used to transform the moments at 

level # K toward the level # K+1 .     

[ FT ]K→K+2 , is the total transformation factors matrix used to transform the moments at 

level # K toward the level # K+2 .       

[ FF ]K+1→K+2, is the Transformation Factors Matrix of Floor between level #K+1  

and level K+2 .     

3.5.5 Transformation of the moments from level # j to level # i 

Transformation of the moment vectors from level j to level i can be carried out as shown 

in Equation 3.9. 

{ MT }i = { MT }i + [ FT ] j→i { MT + MB + MS }j                                         …(3.9) 

   Figure 3.5, shows the arrangement of the fixed ends moments at the level # i. 

     

                                Figure 3.5: Moments of the Concerned Level  

3.5.6 The joints rotations and the final moments at each level 

The rotations and the moments at the joints of the level # i are calculated as shown 

below: 

The rotation of all the joints of level # i is given as follows: 

{ ROT } i = -[KT] i
 -1 { MTOT } i                                                                      …(3.10) 

[ KT ] i = [ KT ] i + [ KB ] i + [ KS ] i                                                                …(3.11) 
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{ MTOT }i = { MT } i + { MB } i + { MS } i                                                     …(3.12)  

Final moments of the level # i: 

{ MTf }i = { MT }i + [ KT ] i { ROT }i                                                            …(3.13a) 

{ MBf }i = { MB }i + [ KB ] i { ROT }i                                                            …(3.13b) 

{ MSf }i =  { MS }i + [ KS ] i { ROT }i                                                            …(3.13c) 

where: 

[ KT ] i   , is the total stiffness matrix at the level # i .       

{ MTOT } i  , is the total moments vector at level # i . 

{ ROT } i , is the rotations of the joints vector at the level # i . 

{ MT } i , is the original and the transformed moments vector just above the level # i  . 

{ MB } i , is the original and the transformed moments vector just below the level # i  . 

{ MS } i , is the original moments vector at the beams ends of the level # i  . 

{ MTf } i , is the final moments vector just above the level # i  . 

{ MBf } i , is the final moments vector just below the level # i  . 

{ MSf } i , is the final moments vector at the beams ends of the level # i  . 

3.5.7 The condensed Stiffness and the Carryover Moment for single 

member 

  The rotation stiffness for single post subjected to side sway with no shear produced can 

be obtained as follows:  

     

               Figure 3.6: Rotation and Translation DOF s of  a Single Member 

The two DOFs are shown in Figure 3.6 and the corresponding system matrix equation is 

as follows: 

 

         S11      S12       D1               F1 

                                          =                                                                                …(3.14) 

         S21      S22       D2               F2 



 30 

In order to obtain the condensed stiffness matrix, substitute for F1= S*, F2 = 0,   D1 = 1, 

D2 = D in equation 3.14, yields 

 

        S11      S12         1                S* 

                                        =                                                                                  …(3.15) 

        S21      S22         D               0 

  

                                       
                  Figure 3.7: Condensed rotation Stiffness with Translation Permitted 

where S* is the condensed stiffness or rotation stiffness with translation not prevented. 

The matrix Equation 3.15 contains the following two equations: 

S11 +   S12 .  D    =    S*                                                                                     …(3.16a) 

S21 +   S22 .  D    =    0                                                                                      …(3.16b) 

From equation (3.16b)  

D = - S22
-1 . S21                                                                                                  …(3.17)  

Substitute equation (3.17) into equation (3.16a), gives: 

S* = S11 – S12 . S22
-1 . S21                                                                                  …(3.18)       

These relations can be formulated in a general matrix form as shown below:  

 

      [S11]     [ S12]          [ I ]                 [ S
*] 

                                                    =                                                                     …(3.19) 

      [S21]      [S22]          [ D ]                [ 0 ] 

 

where: 

[ I ]   : Identity matrix .  

[ 0 ]    : Null matrix . 

[ D ]  : Displacement matrix corresponding to the condensed stiffness matrix . 

[Sij]  : Sub-Matrices of the main matrix . 

[ S*]  : The condensed rotation stiffness matrix . 
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Equation (3.17) and (3.18) becomes as follows: 

[ D ] = - [S22 ]
-1 . [S21 ]                                                                                      …(3.20)  

[S11
*]  = [ S11] – [S12 ] . [S22]

-1 . [S21]                                                                …(3.21)       

  For a single member, shown in Figure 3.6, the stiffness matrix of the two degrees of 

freedom in the general form, is as follows: 

                 S                        ( S + t )/L             

                         

               ( S + t )/L            2*( S + t )/L2         

 

 Considering bending deformation and neglecting shear deformations, the stiffness matrix 

will be as shown below: 

              4 EI/L        6 EI/L2 

[S ]  =  

               6 EI/L2     12 EI/L3 

 

Using equation (3.17) and equation (3.18): 

D   = - ( 6 EI/L2  ) / ( 12 EI/L3  )  = -0.5 L 

S*  = 4 EI/L - ( 6 EI/L2  )2 / ( 12 EI/L3  )  = 4 EI/L - 3 EI/L =  EI/L 

where: 

S* is the condensed rotation stiffness with the lateral sway permitted. 

  

                          Figure 3.8: Carryover Moment for a Single Member 

For equilibrium of the post: 

t* =  - S*       …(3.22) 

Where: t* is the carryover moment corresponding to the condensed rotation stiffness S*. 
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  The lateral loads are applied in terms of side sway fixed moments with no rotation of the 

joints permitted. 

  The final moments and the rotation at each joint is obtained directly by the 

transformation method from which we can get the joint lateral displacements and the 

shear forces in all members. 

  3.5.8 The condensed Stiffness and the Carryover Moments matrices for 

two members 

   The previous procedure that used to obtain the condensed stiffness for a single member 

subjected to side sway is now generalized to a bundle of members. To simplify the 

presentation we consider a system of two vertical members (columns or walls),  

                                        

               Figure 3.9: Rotations and Translation DOF s of a two Members System 

   The system equation corresponding to the three degrees of freedom shown in Figure 3.9 

including the condensed rotation stiffness matrix with the translation of the joints 

permitted is as shown below: 

 

    S11            S12            S13                     1        0                          S11
*

         S12
* 

                                                                                                                                                                          

    S21            S22            S23                     0        1          =              S21
*

        S22
*                    

      

    S31            S32            S33                  [ D1     D2 ]                   [  0               0     ]        

                                                                                                                                  …(3.23)  

 

  Applying equation (3.20) shown in the previous illustration, we get the displacements 

corresponding to the condensed stiffness matrix: 

 [ D1  D2 ] = - [ S33]
-1 [ S31    S32 ]  = - [ (S31/ S33)    (S32/ S33) ]   

                 =   [ -(S31/ S33)    -(S32/ S33) ]                                        …(3.24) 
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    Figure 3.10: Condensed Stiffness Coefficient Corresponding To Displacement D1 

                                   

  Figure 3.11: Condensed Stiffness Coefficient Corresponding to Displacement D2 

From equation (3.21) the condensed rotation stiffness matrix is: 

 

      S11
*

           S12
*                S11- S13. S33

-1 .S31       S12- S13. S33
-1 .S32   

                                =                                                                                      …(3.25) 

      S21
*

           S22
*                S21- S23. S33

-1 .S31       S22- S23. S33
-1 .S32 

  

  The internal interaction force is obtained from the local stiffness matrix of the member 

that free in one end and fixed in the other end, the considered degrees of freedom are the 

rotation and the translation of the free end, as shown below:    

        Si                ( Si + ti ) / L                 1                       S*
ij 

                                                                        =                         ( For i = j )       …(3.26) 

    ( Si + ti ) / L     2 ( Si + ti ) / L
2           Dj                   (Fi)Dj 

 

and,  

   

       Si                ( Si + ti ) / L                  0                     S*
ij 

                                                                       =                         ( For i ≠ j )       …(3.27) 

    ( Si + ti ) / L     2 ( Si + ti ) / L
2           Dj                   (Fi)Dj 
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where: 

Si & ti are the ordinary rotation and carryover moment of member # i respectively. 

Dj is the displacements corresponding to the stiffness configuration #j. 

 

                                Figure 3.12: Carryover Moment Coefficient t*
ij  

For equilibrium of the member shown in Figure 3.12, the carryover moment matrix 

element t*
ij can be calculated as follows: 

t*
ij = - S*

ij+(Fi)Dj* L                                                                                            …(3.28) 

3.6 The Moment-Force Transformation Method 

   The moment transformation (MT) method was developed to analyze moderate tall 

buildings neglecting the axial deformations in the vertical members. In this research the 

MT method has been further developed to the Moment-Force Transformation (MFT) 

method, which included the axial deformation in the vertical members in the analysis. 

The two methods are used for linear static analysis of tall buildings. The algorithm of the 

moment transformation program MTProg has been further developed to the moment-

force transformation program MFTProg.  

   In the moment distribution methods, the moments are distributed between the end joints 

of each individual member. In the moment transformation (MT) method the distributions 

are carried out for a coupled group of moments at the same time from one level toward 

the next level. Using this stream or bundle of distribution, permits the axial deformation 

(shortening/elongation) of the vertical members to be incorporated in the analysis.  

3.6.1 Consideration of the axial deformations in the vertical members 

    In this part, the axial deformation in the vertical members is incorporated in the 

analysis. The procedure start using a single post composed of different members and then 
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generalized to any system composed of multiple vertical members. To simplify the 

presentation a post composed of two elements is considered as shown in Figure 3.13.  

The stiffness matrix for each individual member is as follows: 

KK

KK




       or      

Kt

tK
      

 

                                   

                                      Figure 3.13: Column of two segments               

Where: K is the axial stiffness (K= EA/L) and t=-K = carryover force (Similar to the 

carryover moment). The carryover moment or force, actually are the moment or the force 

reactions of the restrained far end of the member. 

The matrix equation of the structural system shown in Figure 3.13 is as follows:  

 

22

221

KK

KKK




        

2

1

D

D
      =       

2

1

F

F
           …(3.29)   

Where: 

K1 and K2 are the axial stiffnesses of the members 1 and 2 respectively. 

F1 and F2 are forces acting at joints 1 and 2 respectively. 

D1 and D2 are the axial displacements of the joints 1 and 2 respectively. 

From which: 

(K1+K2) D1-K2 D2 = F1                                …(3.30) 

-K2 D1+K2 D2 = F2                                       …(3.31) 

From equation 3.30  

21

1
2

21

2
1

KK

F
D

KK

K
D





                           …(3.32) 
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Substituting from equation 3.32 into 3.31 and rearranging, yields: 

1)
21

2
(22)

21

2.1
( F

KK

K
FD

KK

KK





                 …(3.33) 

or 

1.22.2* FTFFDK                                        …(3.33a) 

where 

 )
21

2.1
(*2

KK

KK
K


                                               …(3.34)    

21

2

KK

K
TF


                                                      …(3.35) 

K2*: is the equivalent axial stiffness replacing the two members 1 and 2, in the place of 

member 2. 

TF: is the factor used to transform the axial force from joint 1 to joint 2. 

The form of the produced equation is similar to the moment transformation equations, so 

that  the axial stiffness can be introduced in the transformation procedure together with 

the rotational stiffness. 

  For multiple vertical members, the axial stiffnesses of the vertical members are coupled 

with the transverse stiffness of the beams in the case of the two dimensional analyses and 

by the whole transverse (out of plane) stiffness of the floor slab in the case of the three 

dimensional analyses. 

 The transformation of the moment and the force from joint (1) to joint (2) is carried out 

as shown in the following steps: 

(1) Restraining of joint (2). 

(2) Application of the force (F1) at joint (1). 

(3) Finding the force reaction (R) at joint (2). 

(4) Reversing the reaction (R) to get active force (F’21=-R). 

The reaction (F’21) is part of the force (F1) , and is given by: 

F’21=a.F1              …(3.36) 

Where: a = TF 
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 The equivalent stiffness of the two members is match with the equation used to 

calculate the equivalent axial stiffness of (n) members. The equivalent stiffness of (n) 

members is obtained from: 

  For axial force, F, acting at the top of a vertical cantilever composed of members 

connected in series, the total displacement is equal to the summation of all the 

member’s displacements: 

Dtot= D1+D2+…+Dn 

Kn

F

k

F

k

F

Ke

F
 ...

21
 

Or; 

     
KnkkKe

1
...

2

1

1

11
        …(3.37)           

The axial displacements for a three segments column were calculated using the force 

transformation method is presented in Appendix A4.              

3.6.2 Multi-Bay Multi-Storey Buildings 

   By combining the moments and the forces transformation procedures, the moment-

force transformation procedure can be generalized to calculate the equivalent stiffness 

matrix and the transformation factors matrix of tall building.  

3.6.3 Condensed Stiffness and Carryover Matrix for Multiple Vertical 

Members including axial deformations 

  Considering a system of two vertical members, Figure 3.14, the stiffness matrix 

equation corresponding to the three degrees of freedom 1,2 and 3,  as before, is 

condensed into degrees of freedom 1 and 2, as follows: 

                                                

         Figure 3.14:  Rotations and Translations DOF s of a Two Vertical Members System 
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     … (3.38) 

  As in the moment transformation method, the internal interaction force, (Fi)Dj is 

obtained from the different rotational stiffness configurations and hence the elements of 

the carryover moments matrix, t*ij, are calculated from equation 3.39: 

  LFSt
Djiijij .**                                                                                …(3.39) 

Where; L is the floor height. 

   Since the axial stiffness of the vertical members are uncoupled with each other and also 

uncoupled with the rotational and the lateral translation stiffness of the members, then the 

axial stiffness of each member can be added to the condensed rotational stiffness, S*
ij, of 

the members after the condensation procedure. Similarly, the axial force carryover 

elements are also added to the carryover matrix.  

3.7 Second order P-Delta analysis of tall buildings 

  By coupling of the moments and the axial forces in each of the vertical members for 

large lateral displacements at the floors levels during the moment-force transformation 

procedure, the second order P-Delta effects are directly included in the analysis and 

structural instability with reference to overall buckling or failure of individual members is 

also studied. 

3.7.1 Condensed Stiffness and Carryover Matrices for Multiple Vertical 

Members, including P-Delta effects 

  Considering a system of two vertical members, Figure 3.15, the stiffness matrix 

equation 3.38, corresponding to the three degrees of freedom 1, 2 and 3, are condensed 

into 1 and 2, as follows:  

  The translational stiffness S33 (Equation 3.38), is a summation of the translational 

stiffness (ST) of each vertical member including its global P-Delta effect (i.e. -P/L, where 

P is the axial force in the vertical member), as shown in Figure 3.16. The effect of the 

local p-delta in any member may be incorporated by using the Euler stability functions 

where the rotational stiffness, S, and the carryover moment, t, of the member, are 
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trigonometric functions of axial compression forces for positive P values, or hyperbolic 

functions of axial tension forces for negative P values, Ghali et al. (2009).                                               

                                           

         Figure 3.15:  Rotations and Translations DOFs of Two Vertical Members System, 

(with large displacements) 

                                             

           Figure 3.16:  Translational Stiffness of a member including P-Delta effect  

                                                        

                            Figure 3.17: Carryover moment including P-Delta effect  

 The lateral displacement, D, and the internal interaction force, F, Figure 3.17, are 

obtained from the different rotational stiffness configurations and hence the elements of 

the carryover moment matrix, including the P-Delta effects, are calculated from equation 

3.40: 

DPLFSt jiji ..**                         … (3.40) 
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3.7.2 Linear-displacement assumptions 

  In the case of the linear-displacement assumption, the end rotational stiffness S and the 

carryover moment t of a beam element are assumed not to be affected by the axial load. 

The affected term is the lateral stiffness ST, as shown in equation 3.41: 

L

P

L

tS
ST 




2

)(2
                               …(3.41 ) 

 For beam element with shear deformations considered, the ordinary end rotational 

stiffness and the carryover moment are given, as follows: 

          
L

EI
S

)1(

)4(








                            …(3.42 ) 

,   and   
L

EI
t

)1(

)2(








                           …(3.43 ) 

Where  

2

12

LGa

EI

r

  

And, for members with shear deformations neglected stiffness factors are: 

L

EI
S

4
 ,      and      

L

EI
t

2
  

 The term )(
L

P
  is the linear geometric stiffness of the beam element affecting the lateral 

stiffness.  

  The term geometric stiffness is introduced so that the stiffness matrix has a different 

name from the mechanical stiffness matrix, which is based on the physical properties of 

the element. The geometric stiffness exists in all structures but it becomes important only 

if it is large compared to the mechanical stiffness of the structural system, Wilson (2000). 

3.7.3 Cubic-displacement assumptions 

  In the case of a beam element with bending properties in which the deformed shape is 

assumed to be a cubic function caused by the rotations φi and φj at the beam ends, 

additional moments Mi and Mj are developed. Considering the cubic function, the force-

displacement relationship is given by Equation 3.44, Wilson (2000): 
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                                                                                                      …(3.44) 

  The well-known elastic force deformation relationship for a prismatic beam neglecting 

shear deformations is: 

    

                                                                                                   …(3.45) 

Therefore, the total stiffness matrix, kT, of the beam element is as follows: 

kT = kE + kG                                  …(3.46) 

  where; 

 kE is the elastic (mechanical) stiffness matrix, and kG, is the geometric stiffness matrix.  

So, to account for the cubic displacement function, it is only required to incorporate the 

total rotational stiffness and the carryover moment including the terms shown circled in 

the geometric and the mechanical stiffness matrices, therefore:  

 

                   
30

44 PL

L

EI
S              …(3.47) 

,       and         
30

2 PL

L

EI
t              …(3.48) 

If shear deformations are considered in both the geometric and mechanical stiffness 

matrices, the rotational stiffness and the carryover moment become as follows: 

2

2

)1(

)12/6/15/2(

)1(

)4(



















LLLP

L

EI
S      …(3.49) 

, and 
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2

2

)1(

)12/6/30/(

)1(

)2(



















LLLP

L

EI
t         …(3.50) 

The translational stiffness ST, can directly be obtained by maintaining the equilibrium of 

the element. 

L

P

L

tS
SST 




233

)(2
                                           …(3.51) 

Considering bending deformations only,  

30

44 PL

L

EI
S  , and     

30

2 PL

L

EI
t   

 
L

P

L

P

L

EI
ST 

30

612
3

 
L

P

L

EI

30

3612
3

  

     ST is the summation of the elements shown squared in the geometric and mechanical 

stiffness matrices. 

3.7.4 Euler Stability Functions 

  The rotational stiffness and the carryover moment for a member subjected to an axial 

force P, are shown in Figure 3.18. 

                                  

Figure 3.18: End-rotational stiffness and carryover moment for a prismatic member 

subjected to an axial force 
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  For member subjected to axial compression, S and t are given as follows, Ghali and 

Neville (1978): 

 

l

EI

usc

ucsu
S

)22(

)(




                              … (3.52) 

, and     

l

EI

usc

suu
t

)22(

)(




                                 …(3.53) 

 

Where: 

us sin , uc cos  , )/(EIPlu   

 

For member subjected to axial tension, S and t are given as follows: 

)/(EIPliu  , 1i  

 

iuiu sinsinh  , iuu coscosh   

 

l

EI

uuu

uuuu
S

)sinhcosh22(

)sinhcosh(




                 …(3.54) 

, and    

l

EI

uuu

uuu
t

)sinhcosh22(

)(sinh




                  …(3.55) 

 

Where: 

)/(EIPlu     , P: the absolute value of the axial tension force 

 

If shear deformation is considered, the rotational stiffness and the carryover moment are 

adjusted as follows: 

l

EI

uuu

uuuu
S

)sinhcosh22(

)sinhcosh(
]

)1(4

)4(
[













         …(3.56) 

, and 
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EI

uuu

uuu
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)sinhcosh22(

)(sinh
]

)1(2

)2(
[
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




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


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3.8 The level rotation-translation stiffness 

   The level rotation and rotation-translation stiffness matrices used in all the 

transformation methods presented in Ibrahim (2013), and in this research is calculated 

using the four node  rectangular plate finite element presented by Ghali and Neville 

(1978), and beams members used to represent the different floor beams and also the rigid 

parts of the slabs or beams intersecting with the wide shear walls. 

  The displacement function used in the formulation was a polynomial with twelve 

generalized coordinates as shown below: 

  w = A1 + A2.x + A3.y + A4.x
2 + A5.x.y + A6.y

2 + A7.x
3 + A8.x

2.y 

                 + A9.x.y2 + A10.y
3 + A11.x

3.y + A12.x.y3                 …(3.58) 

   The rotation or the rotation-translation stiffness matrices are calculated after 

constructing the whole stiffness matrix of the floor and assigning the different shear 

walls, by applying a unit rotation in each of the two principal directions and unit 

translation of each shear wall with all the other directions restrained. The corresponding 

calculated support reactions are then arranged systematically to form the required level 

stiffness matrix. At the same time during the construction of the level stiffness matrix, 

another three matrices corresponding to the translation and the two rotations of all the 

floor joints are constructed. The elements of these matrices are constructed from the same 

applied unit rotations and translation that are used in the level stiffness matrix 

construction. After finalizing the transformation procedure, the vertical translation and 

rotations of all the joints in any floor level can be obtained directly by multiplying each 

of the three matrices by the rotation and translation vector of the corresponding level. By 

using the calculated translation and rotations of all the floor joints, the deformed shape of 

the floor can be plotted, and the stress contour can be calculated and plotted.  
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3.9 The Lateral Joints Displacements and the Shear Forces in the 

Vertical Members  

   By using the calculated rotations and the final moments in any member calculated using 

the transformation methods. The shear forces and the joint transverse displacements can, 

then, be calculated by using the following procedure; 

                                          

                    Figure 3.19: Degrees of Freedom of the Two Ends of Member # I 

 The system equation 3.59, corresponding to the member with the degrees of freedom, 

shown in Figure 3.19 is as follows:  

 

   S                       ( S + t ) / L                      t                   -( S + t ) / L                R(I)                  MR(I)   

 

   ( S + t ) / L        2*( S + t ) / L2          ( S + t ) / L        -2*( S + t ) / L2           D(I)                 VR(I) 

                                                                                                                                            = 

     t                      ( S + t ) / L                       S                -( S + t ) / L                R(I+1)              ML(I+1) 

 

   -( S + t ) / L     -2*( S + t ) / L2       -( S + t ) / L           2*( S + t ) / L2           D(I+1)             VL(I+1) 

                                                                                                                                                              …(3.59) 

Where 

 

S = [(4+α)/(1+α)].(EI/L)   and    t = [(2-α)/(1+α)].(EI/L),   α =(12EI)/(G.ar.L
2) 

From the first row: 



 46 

R(I)*S+(S+t)/L*D(I)+t*R(I+1)-(S+t)/L*D(I+1)=MR(I)  

D(I) is obtained as: 

D(I)=[(MR(I)-R(I)*S-t*R(I+1)+(S+t)/L*D(I+1)]L/(S+t) 

 

D(I)=[MR(I)-R(I)*S-t*R(I+1)]*L/(S+T)+D(I+1)             …(3.60) 

  The numbering sequence is from top to bottom, and the displacement at the bottom is 

fixed, i.e. the displacement D(N+1) =0, where N is the number of floors. 

  The other displacements are obtained by reverse order from bottom to top, i.e. from 

floor number N up to floor number 1. 

  The shear force is calculated directly from the calculated moments  MR(I)  and ML(I+1) 

, and also can be cross checked as follows : 

  After calculating the whole displacements D(1) to D(N), the shear forces at the two ends 

can be calculated from the second and fourth rows of the matrix equation 3.59 as follows:  

 

VR(I) = (S+t)/L*R(I)+ 2*(S+t)/L2*D(I)+(S+t)/L*R(I+1)-2*(S+t)/L2*D(I+1) 

and; 

VL(I+1) = -(S+t)/L*R(I)- 2*(S+t)/L2*D(I)-(S+t)/L*R(I+1)+2*(S+t)/L2*D(I+1)  …(3.61) 

              = -VR(I) 
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3.10 Concluding Remarks on the transformation methods 

   The transformation methods simplify the 2D and 3D analysis of tall buildings in three 

ways, summarized as follows: 

 The typical floors are analyzed only once, by condensation of the floor degrees of 

freedom (DOFs) into only the supported DOFs with all the other remaining DOFs 

translating and rotating freely.  

 In 3D analyses, the considered DOFs in the vertical members are only two principal 

rotations in each floor level, as manipulated in the (MT) method, which can be     

reasonably used for moderate tall buildings or shear wall structures with negligible 

axial deformations in the vertical members. But for super tall buildings with the axial 

deformation in the vertical members dominant (e.g. tube and outrigger systems), 

(MFT) method can be used with one translational DOF added to each of the vertical 

members in each floor level, to represent their axial deformations. Hence, with some 

modifications in stiffness and carryover moment, the second order analysis can be 

incorporated with no extra cost. 

 The solution for the unknowns are carried out in each floor level separately by use of 

the calculated equivalent rotational-translational stiffness matrices and balancing the 

fixed and the transformed moments and forces in the concerned level. 

Appendix A5, presents a further optimization of the transformation procedure and a new 

faster subroutine developed and implemented in the program MFTProgV2.  
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3.11 Modal Analysis using the Transformation Methods 

3.11.1 Introduction  

  As described by Clough and Penzien (1995), the mode displacement super­position 

method provides an efficient means of evaluating the dynamic response of structures. The 

response analysis for the individual modal equations requires very little computational 

effort, and in most cases only a relatively small number of the lowest modes of vibration 

need be included in the superposition. The mathematical models developed to solve 

practical problems in structural dynamics range from very simplified systems having only 

a few degrees of freedom (e.g. determinant method) to highly sophisticated finite element 

models including hundreds or even thousands of degrees of freedom in which as many as 

a relatively very few modes may contribute significantly to the response. To deal 

effectively with these practical problems, much more efficient means of vibration 

analysis are needed than the determinant solution procedure.  

 The basic concept is explained first with reference to the simplest application, the 

evaluation of the fundamental (or first mode) shape and frequency of an N degree of 

freedom system. Using the original dynamic matrix force, iteration will converge to the 

first mode properties.  

3.11.2 Fundamental Mode Analysis 

   The use of iteration to evaluate the fundamental vibration mode of a structure is a very 

old concept that was originally called the Stodola method. The starting point of this 

formulation is the statement of the un-damped free vibration equations of motion given 

by equation 3.62: 

nnn mvkv 2                                  …(3.62)  

  Equation 3.62 expresses the fact that in an un-damped free vibration, the inertial forces 

induced by the motion of the masses, m, must be equilibrated by the elastic forces 

resulting from the system deformations.  

 This equilibrium will be satisfied only if the displacements vn are in the shape of the nth 

mode of vibration and are varying harmonically at the nth­mode frequency ωn.  

The inertial forces are that shown in the right hand side of Equation 3.62. Expressing the 

inertial forces as:  
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                          …(3.63) 

 The displacements resulting from these forces may be calculated by solving the 

following static deflection problem: 

Inn fkv 1                                  …(3.64) 

Or, 

nnn mvkv 12                             …(3.65)  

 The matrix product in this expression summarizes the dynamic properties of the 

structure. It is called the dynamic matrix, and denoted as: 

mkD 1                                   …(3.66) 

Therefore, Equation 3.65, becomes:  

                          …(3.67)  

   In the conventional methods, the flexibility matrix of the structure could be obtained 

easily by inversion of the stiffness matrix (i.e. k-1), it will also be derived by applying a 

unit load to each degree of freedom successively and the deflections resulting from these 

unit loads represent the flexibility influence coefficients. In the transformation methods, 

the first option is not possible because the method has no direct lateral degrees of 

freedom, and the unit load option is used to calculate the flexibility matrix. Therefore, 

multiplying the flexibility matrix by the mass matrix yields the dynamic matrix.  

  The Stodola method can be demonstrated as follows: first computing the inertial forces 

corresponding to any assumed shape, then computing the deflections resulting from those 

forces, computing again the inertial forces due to the computed deflections. Repeating the 

procedure yields the correct shape vector and the corresponding vibration frequency. 

. The concept is well illustrated in Figure 3.20. 

            

                Figure 3.20: Physical interpretation of Stodola iteration sequence. 

 

nnIn mvf 2

nnn Dvv 2
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  Using the original dynamic matrix (D=k-1m), the Stodola iteration process must 

converge to the first mode shape. The contributions of the higher modes to the 

displacements vector can be made as small as desired by iterating for a sufficient number 

of cycles; thus the procedure converges to the first mode shape. 

3.11.3 Analysis of Higher Modes 

I- Second Mode Analysis 

  In the vibration theory, the proof of the convergence of the matrix iteration procedure to 

the first mode of vibration also suggests the manner in which matrix iteration can be used 

to evaluate higher modes as well.  

  The way of obtaining the second mode properties is by introducing a matrix called the 

sweeping matrix (S1) used to purify the current shape vector from any first mode 

contribution, Clough and Penzien (1995):  

m
M

IS T

11

1

1

1
       …(3.68) 

Where: 

M1 is the first mode generalized mass = Ø1
Tm Ø1 

Ø1 is the shape vector of the first mode. 

m is the mass matrix. 

 Thus, if this component is removed from the assumed shape, the vector which remains 

may be said to be purified: This purified vector will now converge toward the second 

mode shape in the iteration process. The matrix iteration procedure can now be 

formulated with this sweeping matrix so that it converges toward the second mode of 

vibration. In this case, the equations used in the iteration procedures can be written which 

state that a second mode trial shape which contains no first mode components will 

converge toward the second mode. 

  Multiplying the dynamic matrix by the sweeping matrix yields a new dynamic matrix, 

(D2=DS1), which eliminates the first mode component from any trial shape and thus 

automatically converges toward the second mode. When D2 is used, the second mode 

analysis is entirely equivalent to the first mode analysis procedures.  

  It is clear that the first mode must be evaluated before the second mode can be 

determined by this method.  
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  Instead of modifying the dynamic matrix by using the sweeping matrix, the alternative 

procedure used in the Transformation methods is to modify the mass matrix using the 

sweeping matrix to get a new purified mass matrix (m2=mS1) (which may not be a 

diagonal matrix as m). Instead of using the flexibility matrix, the solver of the 

transformation method is used here by receiving the inertial applied loads produced from 

the trial shape vector and producing a new corrected shape vector. This approach (based 

on Stodola method) is better compared with the direct iteration method where the 

flexibility matrix should by constructed by applying unit loads at all the directions of the 

degrees of freedom (i.e. N loading conditions). Using this modified approach yields a fast 

solution because the needed mode shapes are very few compared with the large amount 

of the whole degrees of freedom, especially in the very large systems such as the super- 

tall buildings. 

  The approach can be used also for the coupled mass matrices (e.g. consistent mass 

matrix or purified mass matrix), because the applied inertial forces are a vector produced 

from the multiplication of the vibration frequency, the mass matrix and the trial 

displacements vector. These multiplications result in an inertial load vector containing 

only one column. 

II- Analysis of Third and Higher Modes 

  The same sweeping process can be extended to purify a trial vector of both the first and 

second mode components, with the result that the iteration procedure will converge 

toward the third mode. Hence this modified dynamic matrix D3, or the modified mass 

matrix m3, performs the function of sweeping out first and second mode components 

from the recent trial vector, and thus produces convergence toward the third mode shape. 

The process can be extended successively to the analysis of higher modes of the system 

in turn. The most important limitation of this procedure is that all the lower mode shapes 

must be calculated before any given higher mode can be evaluated.  

The general form of the sweeping matrix is as follows: 

m
M

SS T

nn

n

nn 
1

1        …(3.69) 

Where: 

Mn is the nth mode generalized mass = Øn
Tm Øn 
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Øn is the shape vector of the nth mode. 

m is the mass matrix. 

3.11.4 Inverse Iteration (Stodola Concept) using the Transformation 

Method 

   In the previous discussions of matrix iteration, the improvement in calculated shape 

achieved during each cycle of iteration is obtained by simply multiplying the vector for 

the preceding cycle by the dynamic matrix D=k-1m.  For this reason the procedure is 

called direct iteration. Because the method is based on the flexibility version of the 

dynamic matrix, it converges toward the shape of the lowest vibration mode, as is 

necessary as a general tool for structural dynamics. The major disadvantage of this 

procedure is that the flexibility matrix is fully populated, and this leads to computational 

inefficiency in comparison with what can be achieved by operating with the narrowly 

banded stiffness matrix. But direct iteration with the stiffness based dynamic matrix  

E=m-1k is not appropriate because it will converge to the highest mode shape. Also the 

dynamic matrix E is not narrowly banded even though both k and m are. For these 

reasons another alternative technique is considered. 

   Inverse iteration is the preferred method for taking advantage of the narrow banding of 

the stiffness matrix. Because it is applied inversely, it converges toward the lowest mode 

shape. In order to retain the narrow banding of k, the dynamic matrix E is never formed. 

Instead, the mass matrix is combined with the assumed displacement vector to obtain an 

inertial load vector. Then the stiffness based simultaneous equations of equilibrium are 

solved to obtain the improved displacement vector. As in the direct iteration method, the 

initial displacement vector will be assumed then the inertial forces due to harmonic 

motions with this shape are calculated. However, noting that the effect of the frequency 

will be removed subsequently by the normalization step, in this formulation the 

frequency is assumed to be unity and the resulting inertial forces are formed. Now the 

improved displacement vector resulting from the action of these forces is obtained by 

solving the equilibrium equations of the structure subjected to these forces. One way to 

solve these equations would be to calculate the flexibility matrix by inversion of the 

stiffness matrix (f = k-1) and to multiply the inertial forces by the produced flexibility 

matrix. This procedure actually would be entirely equivalent to the direct iteration 
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analysis and would be inefficient because of the need to invert and then multiply by a 

fully populated flexibility matrix. In the inverse iteration procedure, the equilibrium 

equations are solved after first using Gauss elimination method to decompose the 

stiffness matrix to the Lower (L) and Upper (U) triangular matrices. The simultaneous 

solution then is carried out in two fast direct and backward substitution steps. 

  As was described, this derived vector then is normalized by dividing by its largest 

element to obtain the improved first mode shape that is the final result of the first 

iteration cycle. It is important to note that the narrow banded character of the stiffness 

matrix k is retained in the triangular matrices L and U. Consequently the efficiency of 

this inverse displacement analysis is greatly enhanced relative to the flexibility matrix 

formulation used with direct iteration. Because the only difference between this inverse 

iteration procedure and the previously described direct iteration lies in the more efficient 

Gauss decomposition technique used to calculate the derived displacement vector, the 

entire earlier description of direct matrix iteration is equally applicable to inverse 

iteration if the equation that was used previously to calculate the displacements vector is 

replaced by the simultaneous equation solution described above. However, even though 

this difference may appear to be minor, the tremendous computational advantage of 

inverse iteration must not be overlooked, especially when the system being analyzed has 

a large number of degrees of freedom. 

  In principle, the inverse iteration procedure can be combined with sweeping matrix 

concept to obtain a more efficient method for calculating the second and higher modes of 

vibration, as discussed before.  

  Repeated calculation of the displacements is very fast using the Transformation method, 

thus the method is proposed to be used as a simple alternative of the inverse iteration 

method.    

 As a conclusion, the un-damped free vibration equation that expresses the equilibrium 

between the vibration inertial forces and the elastic resisting forces will be adopted here 

as the basic eigenproblem. Because the dynamic matrix D contains both the flexibility 

and the mass properties of the structure, each cycle of the iteration solution for the mode 

shapes involves merely multiplication by D as in the direct iteration method or solving 

for the displacements as in the inverse iteration method, followed by normalization 
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(scaling) which is accomplished by dividing the improved displacement vector by its 

largest element in order to isolate the vibration frequency and obtain the new trial vector. 

This iteration procedure converges toward the lowest mode shape because the eigenvalue 

is in the denominator of the eigenproblem equation.  

3.12 Buckling Analysis by Matrix Iteration (Vianello Method) 

  As for the vibration problem, the matrix iteration procedure for evaluating eigenvalues 

and eigenvectors is applicable also when axial forces act in the members of the structure, 

Clough and Penzien (1995). For any specified condition of axial loading, a similar 

equation may be formulated as: 

)0(
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)1(

1 vDv                 …(3.70) 

In which 

mkD

1__ 

                       …(3.71) 

Where 0

_

Gkkk  is the combined stiffness matrix, taking account of the geometric 

stiffness effect kG0. The vibration mode shapes and frequencies can be determined by 

iteration, as if they are without axial loads. The effect of compressive axial forces is to 

reduce the stiffnesses of the members of the structure, thus tending to reduce the 

frequencies of vibration. In the limiting (buckling) case, the vibration frequency goes to 

zero, and the static eigenvalue equation takes the form 

0)(
^

0  vkk GG            …(3.72) 

Pre-multiplying equation 3.72 by 
_

)/1( fG  gives 
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                    …( 3.73) 

In which 

0

_

GkfG                      …(3.74) 

Where, 
_

f  is the flexibility matrix of the syatem. 

Equation 3.74 has the same form as the vibration eigenvalue equations and may be solved 

by the same type of iterative procedure. The eigenvalues which permit nonzero values of 
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^

v  to be developed are the buckling loads, which are represented by the values of the load 

parameter λG. Thus, if a trial shape for the first buckling mode is designated )0(

1v , the 

iterative process is indicated by 
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          …(3.75) 

  When the iterative procedure is used to evaluate buckling modes in this way, it is named 

the Vianello method, Clough and Penzien (1995). The matrix iteration analysis of 

buckling is identical in principle and technique to the iteration analysis of vibration. Even 

the orthogonality conditions can also be used in evaluating the higher buckling modes but 

generally only the lowest mode of buckling is of interest, and there is little need to 

consider procedures for evaluating higher buckling modes. 

  The influence of geometric stiffness on the vibration frequency of the structure can also 

be calculated by matrix iteration, but if the critical load value is reached, the vibration 

frequency will be zero. However, for any value of a smaller portion of critical loads, a 

corresponding frequency can be determined. Then the geometric stiffness is given by 

substituting this value into the expression for kGo. The elastic stiffness of the column is 

obtained and the combined stiffness matrix which takes account of the axial force effects 

is formulated by subtracting the geometric stiffness from the elastic stiffness. Finally, the 

vibration analyses could be carried out by iterating with a modified dynamic matrix 

calculated from the flexibility matrix produced from the inverse of the combined stiffness 

matrix. 

  Vianello method can also be formulated using the transformation method in order to 

calculate the buckling loads of buildings. By applying the transformation method, the 

linear displacement approximation can be directly used in the formulation of the 

geometric stiffness matrix. This approach can be directly applied in the case of two 

dimensional problems, because the geometric stiffness can be easily formulated using the 

total loads at each floor. The problem becomes more complicated in the case of three 

dimensional analysis of a buildings subjected to lateral loads producing twist rotations in 

the floor levels, because some of the terms in the geometric stiffness matrix depend on 

the axial loads in the individual vertical members. This can be solved with continuous 

corrections of the axial forces in the geometric stiffness matrix during the iterations 
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procedure. As for the vibration analysis, inverse iteration or Stodola concept can also be 

modified and incorporated in the Vianello buckling analysis. 

  In the two dimensional analysis, a parabolic shape is taken as a reasonable first guess for 

the first mode buckled shape. 

   To illustrate the analysis using Vianello method, assume a cantilevered column with 3 

concentrated weights of magnitudes from top to bottom equal to N1, N2 and N3 

respectively, and segments lengths l1, l2 and l3. When the linear-displacement 

approximation is used, the geometric stiffness of this cantilevered column is given as: 
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  For the torsional effects, the analysis is carried out as for the fictitious column illustrated 

by Smith and Coull (1991), which is located at the centroid of the total gravity loading 

above the concerned story. As illustrated by Smith and Coull, this column should be 

incorporated in the model to cater for the torsional P-Delta effect. The column has a 

negative torsional constant calculated from: 
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  In which Pij is the gravity load in column or wall j in story i, dyij and dxij are its Y and X 

distances from the center of gravity loading in story i, and ri is the radius of inertia of the 

total load Pi about the center. 

 Using same concept as in Equation 3.77, the coordinate origin of the proposed program 

MFTProgV2 is located at the center of the total gravity loadings. The inertias are 

calculated approximately for each column or wall from the axial forces in column or wall 

computed from linear elastic analysis of the whole frame. 

  In MFTProgV2, if the column or wall is oriented in the building plane, the column or 

wall coordinates should be transformed to the coordinates corresponding to the principal 

axes of the column or wall as shown in Figure 3.21.  
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                   Figure 3.21: Transformation of coordinates for orient column 

With reference to Figure 3.21, the new coordinates considered in the inertia calculations 

are obtained using the following transformation matrix equation: 
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 The inertia part in the 3D building geometric stiffness matrix is constructed using the 

same arrangement as the loads parts, as shown in equation 3.76.  

3.13 The Improved Vianello Method 

  Buckling analysis using Vianello method and the transformation method uses the linear-

displacement function. The method can be improved by adjusting the end rotational 

stiffness and the carryover moment of the member by incorporating the axial load 

multiplied by the calculated buckling factor, using the Euler stability functions or the 

cubic shape function. The procedure is repeated until reaching a negligible difference 

between the last two buckling factors. The procedure should be carried out for each 

buckling mode after sweeping out the buckling matrix. The results converge towards the 

exact value faster than in the cases of the incremental and the bisection methods. 

   In this research, the proposed improved Vianello method is used in MFTProgV2 

instead of the conventional eign solution as that used in the advanced buckling analysis 

solver of STAAD shown in Appendix E.     

3.14 The conventional buckling incremental method 

  The elastic critical loads of plane frame can be obtained using the flow chart shown in 

Figure 3.22 which is based on the method described by Coates et al (1990). Illustration of 
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the method is shown in Appendix B. The method involves repeated stiffness method 

analysis of the structure at progressively increasing load factors. As shown by Coates et 

al (1990), the stiffness matrix Ks of a stable structure has the property of positive-

definiteness, and a test for this property can be performed at each load level. As soon as a 

load factor is used for which Ks ceases to be positive-definite and becomes singular it is 

known that the critical load has been reached.  The test applied is to the determinant of 

the matrix which should be positive until singularity when it becomes zero, but in 

practice exact singularity cannot be obtained and the sign becomes negative 

corresponding to a state of unstable equilibrium. 

  The determinant is used here as a convenient quantity for which a standard computer 

library routine is likely to be developed, but an alternative is presented in the end of this 

section.  

   An alternative to the use of eignvalues in checking singularity in a stability analysis if a 

Choleski solution is used, is to observe the sign in the square-rooting operation required 

for the calculation of diagonal terms in the decomposed matrix. For a positive-definite 

matrix these signs should all be positive, but one term will become negative as soon as 

the singular condition is passed. The method has the advantage that, apart from 

examining terms as they are calculated, no additional operations are required, but has the 

disadvantage that it provides no information from which mode shapes can be calculated.  

3.15  Buckling Analysis using the transformation method 

The incremental subroutine described in section 3.14 above is modified to be 

incorporated in the transformation method. The transformation method uses the rotational 

degrees of freedom in place of the lateral translational one. For this reason, the rotational 

stiffness is used to examine the singularity, as illustrated in Appendix C.  

  As shown in Appendix C, the condensed translation and rotation DOFs produce the 

same results. This fact, results in a generalized rule used in the buckling analysis by using 

the transformation method. In this case the minimum determinant of all the floors 

rotational stiffness matrices is used to examine the singularity.  

I. Because in structural analysis the determinate of the stiffness matrix can be very 

large or very small (in stability analysis), the natural logarithm of the determinate is 

calculated and used instead of the determinant. 
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II. Although the algorithm is originally designed for plane frame, it is developed and 

used in both the 2D and 3D analyses. 

 
                 Figure 3.22:  Flow chart for elastic critical loads of plane frame 
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 3.16 Buckling Analysis using the transformation method with the aid of 

the bisection method 

 The sequence of the basic Solver in STAAD, shown in Appendix D, was followed 

partially in the proposed program MFTProgV2.  The procedure followed in MFTProgV2 

is as follows: 1) Linear static analysis based on the provided external loading is carried 

out. 2) Calculate member axial forces. These forces are used to calculate the rotational 

stiffness and the carryover moments, and are adjusted at each trial. Both the large delta 

effects and the small delta effects are calculated. 3) MFTProgV2 starts an iterative 

procedure with a buckling factor (LF) estimate of 1.0. If that LF causes buckling, then a 

new, lower LF estimate (new LF = previous LF/2) is used in the next trial. If the LF does 

not cause buckling, then a higher LF estimate (new LF = previous LF*2) is used. 4) After 

a few iterations, MFTProgV2 will have the largest LF that did not cause buckling (lower 

bound) and the lowest LF that did cause buckling (upper bound). Then each trial will use 

a LF estimate that is halfway between the current upper and lower bounds for LF 

(bisection method). 5) After the default iteration limit is reached or the maximum 

iteration limit is reached or when two consecutive LF estimates are within 0.1% of each 

other; then the iteration is terminated. 6) Result for this analysis is based on the average 

of the two values.   

3.17 Review to the earthquake design response spectra 

  Earthquake is irregular ground motion and time-dependant acceleration function. The 

response spectrum can simplify the analysis by providing a graphic representation of the 

maximum response of a damped single-degree-of-freedom (SDOF) mass-spring system 

with continuously varying natural periods to a given ground excitation. By solving the 

equation of motion of the system, the relative displacement can be obtained. For any 

input acceleration, the solution will yield the maximum absolute value of the relative 

displacement u, termed the spectral displacement Sd, which will be a function of natural 

frequency, ω (or period) and damping factor, Smith and Coull (1991).  
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Figure 3.23: Response spectra. El Centro earthquake, N-S direction, Smith and Coull 

(1991) 

  The maximum pseudo relative velocity Sv, and maximum absolute pseudo acceleration 

Sa are then given by: 

Sv = ω Sd                  …(3.79) 

Sa = ω2 Sd                         …(3.80) 

  The pseudo acceleration is identical to the maximum acceleration when there is no 

damping, which, for normal levels of structural damping, is practically the same as the 

maximum acceleration, Smith and Coull (1991). 

      As a result of the relationships described in the equations, the complete response 

spectrum may be represented on a plot of the form shown in Figure 3.23. The response 

spectra shown refer to the El Centro earthquake of May 1940. N-S direction, Smith and 

Coull (1991), and are for different damping factors. Although the actual response spectra 

for earthquake motions are quite irregular, they have the general shape of a trapezoid 

when plotted in tripartite logarithmic form as shown in Figure 3.24. For design purposes, 

the actual response spectrum is normally smoothed to produce a curve that consists only 

of straight line portions, as shown in Figure 3.24, Cheng (2001).  
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                       Figure 3.24: Idealized design response spectrum, Cheng (2001) 

     With the response spectra method, if the natural frequency of a structure is calculated, 

and the damping ratio is estimated, the important design parameters such as the 

maximum displacement and maximum acceleration can be obtained directly from the 

response spectrum diagram. Using the modal method of analysis, the peak response of 

any building to the design earthquake can be easily obtained. 

3.17.1 Modal analysis procedure 

  To avoid solving the coupled dynamic equations of motion simultaneously, the modal 

methods of analysis can be used to determine all displacements that define the motions of 

the structure. The method employs the superposition of a limited number of modal peak 

responses, as determined from a prescribed response spectrum, and with appropriate 

modal combination rules it will yield results that compare closely with those from a time-

history analysis, Smith and Coull (1991). 

     This method of analysis is based on the fact that for certain forms of damping that are 

reasonable approximations for many buildings, the equations of motion can be uncoupled 
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so that the response in each natural mode of vibration can be calculated independently of 

the others.  

  The advantage of this method is that an independent analysis can be made of a single-

degree-of-freedom system for each natural mode of vibration. The response generally 

needs to be determined for only the first few modes since the total response to earthquake 

is primarily due to the lowest modes of vibration. Sufficiently accurate design values of 

forces and deformations in tall buildings could be achieved by combining no more than 

about six modes in each component direction. Three would probably be sufficient for 

medium-rise buildings, Smith and Coull (1991). 

   The earthquake response is obtained by combining the contributions of all the modes of 

vibration involved. And this can be used to give a complete time-history of the structural 

actions. However, only the evaluation of the peak response is of importance in design, 

and this may be derived directly from the design response spectrum. 

3.17.2 Design response spectrum analysis 

   Since in the modal analysis the response of the structure in each mode of vibration is 

derived from a single-degree-of-freedom system, the maximum response in that mode 

can be obtained directly from the earthquake design response spectrum.  

  The maximum response in the Nth mode can be expressed in terms of the ordinates of 

the displacement Sd, Pseudo velocity Sv and pseudo acceleration Sa, which correspond to 

the frequency ωn and damping ratio βn. The three quantities are related by:  

Sa = ω Sv  = ω2 Sd                      …(3.81) 

Expressed in terms of the modal participation factor γn the maximum values of the modal 

response quantities then become:      

Maximum modal displacement: 

dnnn SY 


                   …(3.82) 

Maximum displacement at jth floor: 

jndnnjn Su 


              …(3.83) 

φn is the nth modes of vibration and φnj is the ordinate of the nth at the floor j. 

Maximum value of equivalent lateral force at jth floor P: 
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jnjannjn mSP 


          …(3.84) 

Where, mj is the mass at the level j. 

The modal participation factor γn is given by: 
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In the equations, a bar above a particular variable is used to denote the maximum value of 

the quantity concerned. 

  The maximum values of the internal forces in the building, particularly the story shear 

and moments, are then obtained by a static analysis of the structure.  

  The maximum modal response can thus be expressed in terms of the displacements or 

accelerations, evaluated for the particular frequency and damping ratio for the mode, 

from the design response spectrum. 

   The total response R of the building to earthquake motions is the sum of the individual 

responses r of the natural modes. However, the maximum total response R is not 

generally equal to the absolute sum of the maximum modal responses, r, since they will 

not normally occur simultaneously. Such a sum would, however, give an upper bound to 

the maximum likely total response. 

  A more realistic design estimate of the maximum response is to combine the modal 

maxima according to the square root of the sum of squares (SRSS) method, Smith and 

Coull (1991). 
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  The maximum values of displacements, inter-story drifts, story shears, and moments 

may all be evaluated using the SRSS method. 

  This formula will generally give realistic estimates of peak response for structures in 

which the natural frequencies of vibration are well separated, a property that is usually 

valid for idealized building structures in which lateral displacements in one plane are 

considered (2D analysis). If this is not the case, and some natural frequencies are so close 

that the motions may be coupled together, a more realistic combination, such as the 
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complete quadratic combination method (CQC), should be undertaken, Smith and Coull 

(1991). 

  It is necessary to consider only the modes that contribute most to the response of the 

structure. Since most of the energy of vibration is contained in the lower modes of 

vibration. A convenient rule is to include a sufficient number of modes, r, so that an 

effective modal mass, e, of at least 90% of the total mass of the building is represented by 

the modes chosen, Smith and Coull (1991), that is, 
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3.17.3 SRSS Modal Combination Method 

The SRSS method can be expressed as 
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N = number of modes considered 

   In which superscript k represents the kth degree of freedom of the structural system. 

This method of combination is known to give a good approximation of the response for 

frequencies distinctly separated in neighboring modes, Cheng (2000).  

3.17.4 CQC Modal Combination Method 

  In general, the CQC method may offer a significant improvement in estimating 

maximum structural response. The CQC combination is expressed as: 
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                                i,j = 1 – N 

 

Where: αij is called the cross-correlation coefficient, indicating the cross-correlation 

between modes i and j. αij is a function of model frequency and damping ratio of a 

structure, and can be expressed as: 
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                                  q=Pj/Pi 

  The correlation coefficient diminishes when q is small, i.e. pi and pj are distinctly 

separate natural frequencies, particularly when damping is small, such as ρ = 0.05 or less. 

The CQC method is significant only for a narrow range of q. Note that when αij is small, 

the second term of equation 3.89 can be neglected; consequently CQC is reduced to 

SRSS, Cheng (2000).  

3.18 The time history analysis method 

    The dynamic loading resulting from blast, gusts of wind, or seismic forces is generally 

irregular. In such case the equation of motion has to be solved numerically, and a solution 

in exact form can be obtained only if some idealized loading is used to represent the true 

loading. Analysis for a general dynamic loading resulting from time-dependant effect is 

accomplished by considering the loading as a sequence of impulse loads, and integrating 

for the effect of these impulses to obtain the system response. This integration can either 

be carried out in closed form, if the load function is fairly simple, or numerically, if the 

function is complex. 

                                        

                                       Figure 3.25: General force-time relation 

 For a damped single-degree-of-freedom system subjected to a randomly varying time-

dependant force, P(t), as shown in Figure 3.25, the response to the total force can be 

evaluated as the cumulative action of the individual increases.  

When initial displacement and velocity are zero, the final displacement at time τ caused 

by the impulse applied at earlier time t is equal to: 

  




 


0

)( )sin(
1

dttPe
m

D dd

t

d

          …(3.91)          

m

c

2
  



 67 

Where  

c = damping coefficient 

m = lumped mass 

21  d  




   

ζ = damping ratio,     ωd = damped natural frequency 

  This integration represents the displacement response of a single-degree-of-freedom 

system subjected to a regular or irregular time-dependant force. 

 This type of integration is named Duhamel’s superposition integral (or convolution 

integral). It can be easily evaluated numerically using step-by-step methods of integration 

to give the required displacement, Ghali et al (2009).  

   In this research, numerical and analytical methods are developed. The numerical 

method was developed first and verified using simple problems. It was seen that the 

numerical method is not efficient in the analysis using real problems such as in the case 

of solving for seismic time-dependant forces e.g. El Centro earthquake 

(www.vibrationdata.com). With 31.2 seconds duration of the earthquake and 0.02 

seconds time step, the total segments of linear problem is about 1560 segments.  The 

need for a more efficient method arises, and a close form solution was developed and 

used in all the verification works. 

3.18.1 Time history problem, the proposed numerical solution  

    Figure 3.26, shows a linear relation between two ordinates of time-dependant loading 

with multiple of segments. Each segment start and end times are measured from a 

reference time 0. The numerical integration is carried out for each segment by division to 

a number of sub-segments. The effects are summed starting from the earlier segment, to 

give the total displacement at the end of the time duration.  

   With reference to Figure 3.26, the total displacement is given using equation 3.91 as 

follows: 
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        Figure 3.26: Numerical Solution of time history linear loadings between ordinates 
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Where: 

t1i is the start time of the loading segment number i. 

 t2i is the end time of the loading segment number i. 

P1i is the loading at the start of the loading segment number i. 

 P2i is the loading at the end of the loading segment number i. 
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N = No. of segments between any two readings.  

n = number of sub-segments in each segment (can be increased for more accurate 

solution). 

Where; 

t is the time at the mid of the sub-segment j within the loading segment number i. 



 69 

Pj is the loading ordinate at the mid of the sub-segment j within the loading segment 

number i at time t.  

 3.18.2 Time history problem, the proposed closed-form solution  

   The linear relation between the two forces of any two adjacent points is introduced in 

equation 3.91 as follows. The integration is carried out for each segment and the total 

displacement is obtained by the summation as shown in the following equations:  
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Where: N is the number of segments. 

t  is the time within the loading segment number i. 

P is the loading ordinate within the loading segment number i at time t. 

Equation 3.97, includes the following forms of integrations, which are carried out and 

used to formulate the closed-form solution for the total displacement due to the time 

history applied loads or, acceleration acting in the building base.  

 dxgxxeI bx .cos1                                          …(3.98) 

 dxgxxeI bx .sin2                                           …(3.99) 
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 dxgxeI bx .cos3                                                   …(3.100) 

 dxgxeI bx .sin4                                                     …(3.101) 

The integrations are carried out for equations 3.98 to 3.101 using integration by parts and 

are as shown below:   
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 The final displacement is related to a single-degree-of-freedom system, and for multi-

degrees-of-freedom systems, the coupled differential equations of motion need 

uncoupling using the modal methods as shown in the following sections.  

3.18.3 The normal coordinates system 

  In derivation of the equation of motion of a forced un-damped system in coordinates 

{D}, the stiffness matrix [S] in the equation is generally not a diagonal matrix. The 

equations become uncoupled if both the mass matrix [m] and the stiffness matrix [S] are 

diagonal matrices. 

 Transformation of the n coordinates {D} into another system with the same number of 

coordinates {η}, is given by: 

{D} = [Ø]{η}                                 …(3.106) 

Where [Ø] is the transformation matrix. This gives an equation of motion in which both 

[m] and [S] are transformed into [M] and [K] which are generally diagonal matrices and 

hence the equations of motion become uncoupled.  

The coordinates {η} are called normal coordinates, Ghali et al (2009). 
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The generalized [M] and [K] matrices transformed to the normal coordinates, and the 

transformed force, {L}, are: 

[M]= [Ø]T [m] [Ø]                                 …(3.107) 

[K]= [Ø]T [S] [Ø]                                   …(3.108) 

{L}= [Ø]T {P}                                       …(3.109) 

 Using the orthogonality relationships, the transformation matrix [Ø] can be formed by 

the eign vectors of the considered modes. 

  The uncoupled form of the equation of motion is useful when considering response to 

time-dependent forces. It makes it possible to determine the response in each normal 

mode separately as an independent system with one degree of freedom, The displacement 

{η} are then transformed to the displacement {D}. Equation 3.106 superimposes the 

modes to obtain the total displacement. 

3.18.4 Response of structures to ground motion 

  In an analysis of seismic effects, the response of structures is determined due to a given 

motion of the supports rather than due to the application of external forces. The support 

motion may be described by an acceleration-time curve obtained from records of 

previous earthquakes, as in El Centro earthquake. 

 The effect of the support motion is the same as that a force )(
..

mu s acting on the 

building. The equations of motion are solved for the normal displacements {η}, and the 

final displacements {D} are obtained using equation 3.106. 
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3.18.5 Structural response history using the transformation method 

  The previous sections determine time history displacements in the directions of the 

respective degrees of freedom. In this section a procedure is adopted for the calculations 

of the different structural responses due to the already obtained displacements, by using 

the transformation method. In the conventional methods the calculated time history 

displacements are applied as prescribed displacements in the directions of the lateral 

degrees of freedom and the structural responses are obtained accordingly. In the 

transformation method these lateral degrees of freedom do not exist and the adopted 

procedure to calculate the structural responses is based on distributing the fixed-end 

moments produced from the time history displacements. The responses include the 

internal stresses in the different members, the local displacements and the supports 

reactions.  

  Calculation of the time history responses of the structure, in the existence of the given 

displacements, can be carried out using one of two different ways based on the following 

cases: 

Case (1): If the time history records are less than the structure total degrees of freedom, 

the structural responses can be obtained by applying the known displacements in the 

structure and calculating the induced fixed-end moments in the vertical members, then 

the structure analyzed, and the structural responses can be directly obtained for each time 

ordinate. 

Case (2): If the time history records are much greater than the total degrees of freedom, 

as in the El Centro earthquake records, it is more efficient to construct a structural 

response matrix built from successively applying unit displacements at the different 

degrees of freedom and obtaining the partial different structural responses due to the unit 

displacements. Thus, the final responses can be obtained by multiplying the structural 

responses matrix by the known displacements vector at the concerned time. 

  The theory is illustrated firstly for 2D analysis and then generalized to the 3D analysis.   

In the 2D analysis, calculation of the structural responses using the transformation 

methods can be carried out using the following procedure:  
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Figure 3.27: Total structural response due to displacements at time to 



 74 

For Case (1), with reference to Figure 3.27: 

(1) Apply all the displacements set at any time to, at the respective DOFs, keep all the 

rotations of the DOFs restrained. 

(2) Calculate the fixed-end moments in all the vertical members produced from the 

displacements set at time to, using the following equations: 

)]()([]
)(

[ 1 oioiii tDtD
L

tS
Mb 


                …(3.110) 

ii MbMt 1
                                                     …(3.111) 

Where:  

Di(to) = Displacement of joint i, at time to. 

Di+1(to) = Displacement of joint i+1, at time to. 

S = Rotational stiffness. 

t = Carryover moment. 

Mbi = Fixed Moment in member i, just below joint i. 

Mti+1 = Fixed Moment in member i, just above joint i+1. 

(3) Analyze the frame by distributing the calculated fixed-end moments using the 

moment-force transformation method with the axial deformation of the vertical members 

considered. Use in the analysis, the ordinary rotational stiffnesses and the carryover 

moments of the members, with the joints laterally restrained to be prevented from extra 

translations, using the matrices shown below (shear deformations considered in the 

elements): 

Assuming 5 vertical members: 

 The condensed rotational stiffness matrix of the group is a diagonal uncoupled matrix 

composed of the rotational stiffness of the individual vertical members and is given as 

follows:   
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  And the carryover moment matrix of the group is also a diagonal uncoupled matrix 

composed of the carryover moment of the individual vertical members and is given as 

follows:         
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Where: 
2
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(4) Obtain from the analysis results, the total responses for any action (e.g. shear, 

moment, axial force), due to the applied displacements set at the concerned time.  

In the analysis, it is worthwhile to note that:  

A- The equivalent stiffness and the transformation factors matrices may be calculated 

only once and used several times for the different displacements sets, in order to 

accelerate and optimize the calculations. 

B- The response matrix can include many responses at the same time (e.g. base shear, 

overturning moment, moment in one column, rotation in the member end or axial 

deformation.) 
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Figure 3.28: Partial structural response due to unit displacement at level k 
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For Case (2), with reference to Figure 3.28: 

(1) Apply unit displacement at the first DOF with all the joints in the other levels remain 

in positions. The rotations of all the joints should be restrained. 

(2) Calculate the fixed-end moments in the vertical members produced from the unit 

displacement, at joint i, for the affected members i and i-1 as follows: 

 For unit displacement at joint i, the affected members are member i and member i-1 

And the induced fixed-end moments are: 

For member i-1: 
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(3) Analyze the frame by distributing the calculated fixed-end moments using the 

moment-force transformation method with the axial deformation of the vertical members 

considered. Use in the analysis, the ordinary rotational stiffnesses and the carryover 

moments of the members, with the joints laterally restrained to be prevented from extra 

translations, using the same matrices as in case (1).  

(4) Obtain from the analysis results, the partial response due to the applied unit 

displacement.  

(5) Repeat steps 1 to 3 with the next degree of freedom, until finishing all the degrees of 

freedom. 

(6) Use the constructed structural response matrix, that contains all the required 

responses, and multiply the matrix by the displacements set vector at any concerned time 

to, to get the complete response at that time.  

In the analysis, the notes presented for Case (1) are also apply for Case (2). 
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    In the 3D analysis, for the two cases, the displacement sets in case (1) or the unit 

displacements in case (2), will be applied in the building global coordinates directions. 

The global displacements are then transformed to obtain the local displacements of the 

vertical members using equation 3.118 as follows: 
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     …(3.118) 

 

  And the same steps used in the 2D analysis to obtain the structural responses are carried 

out also in the 3D analysis.      

3.19 Response spectrum analysis using the transformation method 

    The illustrated procedure discussed in section 3.17 is directly used in the proposed 

program MFTProgV2. The lateral response forces obtained using the spectra curve, are 

calculated for each mode and applied directly on the structure. The transformation 

procedure is carried out and the required response for each mode is calculated. The total 

responses are calculated using the methods of combinations (namely SRSS and CQC). 

3.20 The Mass matrix 

  The mass matrix for any lumped mass in any floor of 3D model, considering the 

responses in the two horizontal coordinates x and y and neglecting the vertical inertia 

force and the rotary inertias about axes x and y which are very small and can be 

eliminated, is given as follows:  
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And for the ith floor with L lumped masses. The mass matrix is: 
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  If the coordinate origin is chosen to coincide with the total masses center, then the mass 

matrix becomes a diagonal matrix, which will simplify the problem solution, and the final 

simplified mass matrix becomes: 
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3.21 Column Shortening Calculations for Reinforced and Composite 

Concrete Structures 

   A procedure for calculation of time dependent column shortening in tall building by 

using the transformation method is proposed as a future study. A brief illustration shows 

the efficiency of the procedure is presented in Appendix F.    

 

 

 

 

 

 

 

 



 80 

                              CHAPTER FOUR                   

                    Computer Program MFTProgV2  

4.1 Introduction 

   In this chapter the program MFTProgV2 (Nonlinear version) developed on the basis of 

the proposed theory and presented in this research, is described briefly.  

4.2 Description of the Program MFTProgV2  

   The computer programs have been written in Visual Basic 6 and are developed based 

on the transformation methods presented in chapter three and in Ibrahim (2013), and can 

be used in any personal computer. The program utilizes graphical user interface (GUI) 

both in the data input and output modes.  

   Flow charts illustrate the general algorithm of the moment-force transformation 

procedure, extraction of the dynamic properties of the building and the buckling analysis 

using the bisection method described in section 3.16, are shown in Figures 4.1-a to 4.3-c. 

    Same as the previous versions, MTProg and MFTProg, the program MFTProgV2 

includes two modes of analysis: 

1- Two dimensional analyses.        2- Three dimensional analyses. 

  The layout of the program is shown in Figure 4.4. The two and three dimensional 

analysis modes buttons are shown in the figure, with different buttons used in the two 

analysis modes. 

4.2.1 The two Dimensional analysis 

   This type of analysis is used to solve problems of portal frames, coupled shear walls 

(Walls with openings), symmetrical frames subjected to symmetrical loadings with 

absence of floors twist rotations. 

   Pressing the two dimensional button results in showing the multi-page form shown in 

the Figure 4.5 
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                 Figure 4.1-a: Flow chart of the moment-force transformation main solver  

A 

Start 2D analysis 

4- Calculate the rotational-translational 

stiffness matrix of the floor supported 

DOFs with all the other DOFs rotating 

and translating freely. 

 

 
5- At all the supported DOFs of the 

floor, calculate the vector of the fixed 

moments and the fixed forces due to the 

applied vertical loading.  

 

 

8- For all vertical members at all floors, Calculate the ordinary 

rotational stiffness, S, and the carryover moment, t, (S =4EI/L and 

t=2EI/L, if considering bending deformation only). 

 

 

2- Input Data of all the horizontal 

members of the typical floor (for all 

members: L, I, ar, …). 

 

 

3- Input Data of the floor applied 

vertical loading. 

 

 

1- Input the number of floors, Nf, and 

the total number of the vertical 

members (Columns and walls) in the 

building plan, Nw.   

 

 

7- Input Data of the horizontal loads at 

all the floors levels. 

 

6- Input Data of all the vertical members 

(Columns or walls), (I, ax, ar,…), of all 

the floors, from top to bottom. 
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                   Figure 4.1-b: Flow chart of the moment-force transformation main solver  

 

 

 

10- Condense the calculated rotational-lateral translational 

stiffness matrix into a rotational stiffness matrix with the lateral 

translations permitted. 

A 

11- Construct the axial stiffness diagonal matrix of all the vertical 

members of the concerned floor, (K=E.ax/L for each member). 

 

13- Calculate the carryover moment-forces matrix. For nonlinear 

analysis the part of the carryover moment will be modified using 

the member axial force. 

 

12- Combine the condensed rotational stiffness matrix and the 

axial stiffness matrix in one stiffness matrix considering the axial 

stiffness of the vertical members. 

 

14- Calculate the sway fixed moments in all the vertical members 

at all floors levels due to the applied horizontal loads, and 

construct the vectors of the fixed moments just above and below 

the concerned level. For nonlinear analysis these fixed moments 

will be modified using the member axial force. 

 

B 

15- For all floors calculate the equivalent stiffness matrix and the 

transformation matrix from top to bottom and from bottom to top. 

 

9- For each floor, use S and t of the entire vertical members in the 

floor to construct the rotational-lateral translational stiffness 

matrix of the floor. For nonlinear analysis the rotational stiffness, 

S, and the carryover moment, t, and the lateral translational 

stiffness of the vertical members should be modified using the 

member axial force calculated from a previous analysis. 
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                   Figure 4.1-c: Flow chart of the moment-force transformation main solver  

 

 

 

B 
16- Use the transformation matrices of the floors from top 

to bottom and from bottom to top, to transform the total 

vector of the moments and forces to the concerned level. 

18- Use the calculated vector of the rotations and the axial 

displacements at the concerned level to calculate the level 

final moments and axial forces in all the vertical members. 

 

17- Use the fixed and the transformed moments and forces 

vectors of the level and the total equivalent stiffness matrix 

composed of the floor level stiffness and the equivalent 

stiffness matrices of the floors above and below the 

concerned level, to calculate the vector of the rotations and 

the axial displacements of all the vertical members at the 

concerned level.  

 

20- Use the calculated vector of the rotations and the axial 

displacements at the concerned level to calculate the final 

moments and shear forces in the horizontal members of the 

typical floor.  

 

19- Use the calculated rotations and moments to calculate 

the lateral translations of all the levels in reverse order from 

bottom to top. 

 

End 

Print the results 
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              Figure 4.2-a: Flow chart of dynamic properties extraction of 2D frames 

   Set I=1 

  P(I)=1 (Unit Lateral Load) 

Go To the main solver of the Transformation Method. Calculate 

the lateral displacements due to the applied unit load. 

   Set J=1 

Construct the flexibility matrix 

coefficients from the lateral 

displacements at the different 

levels;  fji = D(J,I)- D0(J) 

   is 

J=N?    Set J=J+1 

   is I=N? 
   Set I=I+1 

D 

Calculate the lateral 

displacements, D0(J), produced 

from the applied vertical and 

lateral loads. 

   is 

J=N?    Set J=J+1 

Yes 

   Set J=1 Start 

No 

Yes 

Yes 

No 

No 

Data Input 
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              Figure 4.2-b: Flow chart of dynamic properties extraction of 2D frames  

 

 

 

   Set S0 =1 : Set I=1 

  Construct the Dynamic matrix = 

 [Flexibility matrix].[Mass matrix], or D=f m  

() 

Di = D Si-1  

Use the Direct Iteration Method 

to calculate the Vibration 

frequency of the mode # I and the 

corresponding mode shape. 

  is I=1 ? 

    Is 

I=Nmodes?  

 

   Set I=I+1 

D 

m
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ii

i

ii 
1

1  
 

End 

m
M

IS T

11

1

1

1
  

Yes 

Yes 

No 

No 

Print the results 

 



 86 

 

                    Figure 4.3-a:  Flow Chart of the proposed buckling analysis solver  
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                                       Figure 4.3-b:  Flow Chart of the bisection subroutine  
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                              Figure 4.3-c: Flow Chart of the determinant subroutine  
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                             Figure 4.4: The program MFTProgV2 Layout (3D mode) 

 

         Figure 4.5: The multi-page data input of the two dimensional analyses mode 
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 The Two Dimensional multi-page form includes the following pages: 

A) General page used to input the following data: The members Elasticity and Poisson's 

ratio, Number of floors, Number of shear walls. 

B) Level stiffness page. This page contains a flex-grid used to enter the rotational and 

translational stiffness of the different levels. There are also three radio buttons used 

for the selection of the different support conditions; fixed bases, pinned bases or other 

spring rotational and translational stiffness. 

C) Beams information page. This page includes a flex-grid used to input the different 

data of portal frame beams e.g. length, inertia, shear area and U.D. loads, from which 

the level stiffness and the fixed moments and forces will be calculated and 

automatically send to the level stiffness and loads information pages. 

D) Loads information page, which includes a flex-grid used to enter the level fixed 

moments and forces and the lateral forces acting at the different levels. 

E) Walls properties page, which includes a flex-grid used to enter the different floors 

heights and the properties of the different walls or columns, inertias and shear areas. 

   There are two buttons in the bottom of the form one used for analyzing the frame and 

the other is used to quit the analysis mode. There is a check box used to select the type of 

the analysis: Linear or P-Delta analyses, global and local. 

    Pressing the analyze button results in performing the analysis and showing the results 

page, see the Figure 4.6.  

  The results page includes a picture box used for plotting the bending moment and the 

shear force diagrams and the deformed shape of the frame.   There are also two flex-grids 

used to show the different output results in a tabulated form. 

   The tabulated outputs are the rotations and translations of the different joints and the 

bending moments and shear forces in the different levels and floors. A global equilibrium 

check can be ensured by comparing the applied shear with the calculated shear and a 

local equilibrium check can be insured by checking the summation of the moments at the 

different levels as shown in Figure 4.7. 
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                    Figure 4.6: The results page of the two dimensional analysis mode    

   

 

                            Figure 4.7: Local and global equilibrium checks 

 

4.2.2 The Three Dimensional analysis 

Pressing the three dimensional button results in showing the building dimensions 

form, Figure 4.8. The form includes text boxes for entering the overall building 

dimensions in both x and y directions and the number of segments or plates in each 

direction. 
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               Figure 4.8: The building floor dimensions form  

   The finite elements constructed in this way can be modified and adjusted for 

dimensions; also one can add or reduce rows and/or columns of elements. After preparing 

the floor data, one has the option to add shear walls, beams and columns graphically by 

selecting the appropriate joints. 

    The materials and properties of plates, beams and added columns can be entered by 

using the related buttons and forms. 

   The plate loads can also be entered. At this stage only uniformly distributed loads can 

be added. 

    After finishing entering all the floor information, then one can go to the program menu 

and select from the file menu the item: "Calculate Level Stiffness…" 

   By clicking this item, the stiffness of the floor will be calculated and incorporated in the 

analysis as a floor level stiffness, the fixed end moments are also calculated if there are 

any applied vertical loads. 

    The building and material information e.g. number of floors, number of shear walls, 

Elasticity and Poisson's ratio of shear walls , and number of the different building parts 

can be entered in one page, Figure 4.9. 

  The shear walls properties, i.e. widths, depths, inertias shear areas, the location 

coordinates in the plan and the orientation of the principal axes are all entered in flex-grid 

available in shear walls information page, Figure 4.10. 

    The plate number and the floor heights and the global forces and moments in the 

different levels are entered in one page as shown in Figure 4.11. 
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                 Figure 4.9: Main form of the three dimensional analysis 

  

 

                 Figure 4.10: Walls and columns properties entering  
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                 Figure 4.11: Floors heights and lateral loading entering 

      After finish entering all the required data and pressing the "Analyze" button, the 

analysis is performed and the output result form appears. This form includes a picture 

box that presents the different diagrams (e.g. Bending moments, Shear forces, Twist 

moments, Axial force diagrams), for each selected shear walls. Also a flex-grid is 

available to tabulate the moments and forces at each level for each shear wall as shown in 

Figure 4.12. The same flex-grid presents a complete global equilibrium check. 

   The deformed shape for each shear wall can be shown in the same picture box. 

   The moments per unit width Mx, My and Mxy and shear stress Qx and Qy contours for 

each floor can also be calculated and plotted from the resulting rotations and vertical 

displacements for all shear walls of the concerned floor level, Figures 4.15 and 4.13. 

    A global perspective deformed shape of the whole building can also be shown, as in 

Figure 4.13. 

   Instead of using the finite elements floor of the program, the MFTProgV2 has a feature 

of importing and calculating floor stiffness from a StaadPro one floor fixed supported 

model to be incorporated in the analysis, Figure 4.14. This procedure is performed by 

sending unit displacements to the StaadPro package model in different load conditions. 

After running the StaadPro model, the support reactions are retrieved in a form of 

rotational-translational floor stiffness and can be used in the transformation procedure. 



 95 

 

                 Figure 4.12: Global equilibrium check at the different floors levels 
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                                       Figure 4.13: Global deformed shape 

                                              

              Figure 4.14: StaadPro Floor stiffness and Fixing Moments form 
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            Figure 4.15: Deformed shape of a concerned floor 

                       Figure 4.16: Moment contour of a concerned floor 
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                                CHAPTER FIVE 

Program Applications and Verification of Results 

5.1 Introduction 

    In order to demonstrate the effectiveness of the program, several different two 

dimensional and three dimensional problems are analyzed. The results obtained are 

compared with published results and with results obtained using commercial packages: 

StaaPro2004, StaadProV8i and ETABS. 

   In the following sections, several examples analyzed using MFTProg are presented. 

Some examples are chosen from published references and analyzed by using the two 

dimensional option of the program.  

 5.2 Numerical Examples 

  Using MFTProg, two simple portal frames examples were studied. A model of a fifteen 

floors symmetric building with non-symmetrical lateral loadings was also carried out. 

The results were compared with those obtained by MTProg (with axial deformations in 

the vertical members neglected, Ibrahim, 2013), and with those obtained using 

StaadPro2004 and ETABS.  

5.2.1 Two Floor One-bay Portal Frame 

   The bending moments and support reactions were obtained using the simplified method 

for a two storey frame under the vertical and horizontal loading shown in the Figure 5.1.  

                                   

                             Figure 5.1:  One-bay Frame properties and loading 
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  The results obtained are compared with the results from McCormac and Elling (1988) 

and StaadPro2004 results as shown in Table 5.1. 

Table 5.1: Comparison of moments and forces at joints 3, 6 and 4 (2 Floor 1 bay Frame) 

Results M3, kip-ft M6, kip-ft H4, kip 

Reference 141.90  206.30  31.16  

StaadPro2004 145.79 (2.74)  209.03 (1.32) 31.18 (0.06) 

MFTProg1 145.98 (2.88) 208.84 (1.23) 31.21 (0.16) 

MFTProg2 142.06 (0.11) 206.06 (-0.12) 31.20 (0.13) 

  1 Considering shear deformation. 2 Neglecting shear deformation. (%diff.) 

The comparison of the results shows very close agreement. 

5.2.2 Two Floor Two-bay Portal Frame 

   The bending moments were obtained using the simplified method for a two storey 

frame under the vertical and horizontal loading shown in the Figure 5.2.                                                                                                                              

 

                                Figure 5.2:  Two-bay Frame properties and loading 

  The bending moments results obtained were compared with the results from McCormac 

and Elling (1988), and StaadPro2004 as shown in Table 5.2. 

Table 5.2:  Comparison of moments at joints 1, 3 and 6 (2 Floor 2 bay Frame) 

Results M1, kip-in M3, kip-in M6, kip-in 

Reference 1147.00 1462.00 1750.00 

StaadPro2004 1150.30 (0.29) 1461.85 (-0.01) 1748.63 (-0.08) 

MFTProg1 1145.71 (-0.11) 1463.50 (0.10) 1750.87 (0.05) 

MFTProg2 1142.05 (-0.43) 1463.70 (0.12) 1752.24 (0.13) 

  1 Considering shear deformation. 2 Neglecting shear deformation. (%diff.) 
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Comparison of the published results and the results obtained using StaadPro2004 with 

those obtained by MFTProg, show very close agreement. 

 5.2.3 Model of a hypothetical fifteen storey building subjected to 

unsymmetrical lateral loading 

   The plan shown in Figure 5.3 is for a 12m x 12m floor slab of thickness = 0.25 m. The 

hypothetical building is composed of 15 floors of floor height = 3.5 m for all floors 

except the lower floor which is of height = 5.5 m. 

All building members are concrete of elasticity, E = 21718500 kN/m2, 

and Poisson's ratio, v = 0.17 

 

               Figure 5.3: 12m x 12m floor plan for 15 Storey, Square Building 

  The section properties of the vertical elements (in meters) are: 

Columns: Corners: 0.60 x 0.60 and Interior: 0.85 x 0.85 

Shear walls: The lower 7 floors:  0.30 x 3.00 and The upper 8 floors: 0.25 x 3.00  

   The building is subjected to the lateral loads shown in Figure 5.3, (30 kN and 50 kN) at 

all floor levels. 
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5.2.3.1 Verification of Results 

    The building has been analyzed by using MFTProg with the axial deformation in the 

vertical members considered. The accuracy of the results is verified by using MTProg, 

Ibrahim (2013), and the structural analysis packages StaadPro2004 and ETABS.   

  The MFTProg displacements, shear forces and bending moment results are shown in 

Figures 5.4 to 5.14.   

  Comparison of the top displacements of the origin (Column #5) as a bench mark, 

obtained using MFTProg and the different packages is shown in Figures 5.15, 5.16 and 

5.17 and Table 5.4. Comparison of the maximum shear force and maximum bending 

moment of shear walls 1 to 4 are shown in Figures 5.18 to 5.25 and Table 5.3.  

 

 

  Figure 5.4: Displacements of Column # 5 in x-direction.   
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  Figure 5.5: Displacements of Column # 5 in y-direction.   

 

                          Figure 5.6: Twist rotations of the floor at the different levels.   
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                    Figure 5.7: MFTProg shear force diagram for shear wall  #1 

 

                    Figure 5.8: MFTProg bending moment diagram for shear wall #1 
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                    Figure 5.9: MFTProg shear force diagram for shear wall #2 

 

                    Figure 5.10: MFTProg bending moment diagram for shear wall #2 
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                    Figure 5.11: MFTProg shear force diagram for shear wall #3 

 

                    Figure 5.12: MFTProg bending moment diagram for shear wall #3 
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             Figure 5.13: MFTProg shear force diagram for shear wall #4 

 

                    Figure 5.14: MFTProg bending moment diagram for shear wall #4 
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                         Figure 5.15: Comparisons of displacements of Column #5 in x-direction      



 108 

                                             

Y-Direction

0

10

20

30

40

50

60

0.00E+00 1.00E-02 2.00E-02 3.00E-02 4.00E-02

Displacement (m)

H
e
ig

h
t 

(m
)

MTProg

ETABS thick

ETABS thin

StaadPro

M_F_T_Prog

 

                     Figure 5.16: Comparisons of displacements of Column #5 in y-direction  
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                          Figure 5.17: Comparisons of twist rotations of the floors in radians  



 109 
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                                  Figure 5.18: Comparisons of S.F.D. for shear wall #1              
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                               Figure 5.19: Comparisons of B.M.D. for shear wall #1 
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                           Figure 5.20: Comparisons of S.F.D. for shear wall #2              
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                          Figure 5.21: Comparisons of B.M.D. for shear wall #2   
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                            Figure 5.22: Comparisons of S.F.D. for shear wall #3   
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                       Figure 5.23: Comparisons of B.M.D. for shear wall #3 
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                        Figure 5.24: Comparisons of S.F.D. for shear wall #4   
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                          Figure 5.25: Comparisons of B.M.D. for shear wall #4   
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 Table 5.3: Comparisons of the maximum shear force (kN) and bending moment (kN.m) 

Table 5.3 (continued) 

Wall # Wall 3 Wall 4 

Package Shear % Diff. Moment % Diff. Shear % Diff. Moment % Diff. 

MFTProg 369.2 0 4163.9 0 24.2 0 201.1 0 

MTProg3 369.1 -0.03 4120.5 -1.04 24.2 0.00 157.7 -21.58 

StaadPro2004 365.6 -0.98 4261 2.33 27.3 12.81 174.5 -13.23 

ETABS1 364.1 -1.38 4016.9 -3.53 26.1 7.85 200.7 -0.20 

ETABS2 365.8 -0.92 4240.5 1.84 27.2 12.40 214.6 6.71 

 1 Thick Slab.    2 Thin Slab. 3Ibrahim (2013).   

 

Table 5.4: Displacements of the origin (column 5), in mm and radians 

Package X(mm) % Diff. Y(mm) % Diff. Twist(rad) % Diff. 

MFTProg 85.53 0 32.92 0 0.00685 0 

MTProg3 82.21 -3.88 27.38 -16.83 0.00685 0.00 

StaadPro2004 90.86 6.23 31.7 -3.71 0.00669 -2.34 

ETABS1 80 -6.47 30.7 -6.74 0.00591 -13.72 

ETABS2 89.7 4.88 33.9 2.98 0.00662 -3.36 

 In all the comparisons, the differences were found to be very small for large stress values 

(shear forces and bending moments in shear walls 1, 2 & 3). The largest percentage 

difference is found in shear wall #4, but this resists very small stresses compared with its 

section. Appendix G, presents more discussion of the results. 

  As shown in Figures 5.15 to 5.25, and Tables 5.3 and 5.4, consideration of the axial 

deformations in the vertical members has affected the bending moments in all shear 

walls, and also the displacements in x and y directions. 

 

Wall # Wall 1 Wall 2 

Package Shear % Diff. Moment % Diff. Shear % Diff. Moment % Diff. 

MFTProg 155.4 0 1656.1 0 500.3 0 5618.9 0 

MTProg3 155.4 0.00 1583.7 -4.37 500.3 0.00 5546.6 -1.29 

StaadPro2004 157.8 1.54 1651.4 -0.28 497.1 -0.64 5741.2 2.18 

ETABS1 155.7 0.19 1604.8 -3.10 494.6 -1.14 5424.3 -3.46 

ETABS2 157.7 1.48 1697.9 2.52 497.2 -0.62 5727.2 1.93 
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5.3 Summary: 

    In this chapter, verification for the program MFTProg has been carried out by solving 

different two and three dimensional examples, using linear static analysis. The results 

obtained for the two portal frames were compared with published results and with 

StaadPro2014 results. The obtained results of the hypothetical square building was 

compared with results obtained using the commercial computer analysis packages 

StaadPro2004 and ETABS.  
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                                   CHAPTER SIX 

                  Cases Study and Analysis of Results 

6.1 Introduction 

   In this chapter two case studies were considered. A case of a 2D frame of 15 floors 

subjected to vertical and lateral loads, and a case of a 3D asymmetrical 25 floors building 

subjected to vertical and wind loads. In the 3D problem, the floor stiffness was modeled 

by using rectangular plate bending finite element incorporated in the program to account 

for the out of plane stiffness of the level's floor slabs. The degrees of freedom, DOFs, are 

corresponding to the two rotations about the principal axes and one translation in the 

vertical direction of the system. 

  The results obtained were compared with those obtained using StaadPro2004, 

StaadProV8i, SAP200V16 and ETABS. In StaadPro packages, the second order P-Delta 

results were obtained from 10 iterations, and in ETABS, the results were obtained from 

displacements relative tolerance of 1x10-3 and maximum 10 iterations.    

   The performed analyses using the proposed transformation methods, for the 2D and 3D 

models were:  

(1) Static analysis considering the axial deformations in the vertical members. 

(2)  Nonlinear second order P-Delta analysis. 

(3) Dynamic analysis considering linear effects. 

(4) Dynamic analysis considering the nonlinear second order effects. 

(5) Elastic stability and buckling analysis.  

6.2 Dynamic Analysis using the transformation method 

   As shown in chapter three, the dynamic properties of the building, the natural 

frequencies and the corresponding mode shapes, are obtained from the un-damped free 

vibrated system using the direct iteration method or the inverse iteration method (Stodola 

concept). Using these dynamic properties, the dynamic analyses were performed. The 

dynamic analyses performed for the two buildings were the response spectra method and 

the time history method.   
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6.2.1 The vibration Modes 

  The first natural frequencies and their modes are important in the dynamic analyses. In 

these two models analyses, the first 6 vibration modes of the 2D building and the first 9 

modes of the 3D building were obtained and used in the dynamic analysis. For the 3D 

model, these are the minimum number of the modes required to capture at least 90 

percent of the total building mass in the two directions separately. Although, more than 

90% is captured in two modes in the case of the 2D model, 6 modes were considered in 

the analysis to capture more than 99%, (refer to section 3.17).  

6.2.2 Participating Mass Ratios 

  In the response spectrum analysis, enough number of modes should be included in the 

calculations as it is a measure of accuracy of the analysis. Most of the design codes of 

practice require that the computations of the responses should include enough modes to 

capture at least 90 percent of the total building mass. In the analyses, the number of 

modes required to capture 90 percent of the total masses are determined for each 

direction separately.  

6.2.3 The top floor lateral displacement 

The lateral translation of the building top floor was obtained using the MFT method and 

compared with the results obtained from the other packages. The lateral displacement is 

important response affecting the building performance.  

6.2.4 The Base Reactions 

 The base reactions (base shear and overturning moment), were obtained using the MFT 

method and compared with the results from the other packages. The base reactions are 

measure of the total effect of the lateral inertial forces acting on the structure.  

6.2.5 Response Spectrum Analysis 

  In response spectrum analysis it is necessary to find out the natural frequencies, the 

mode shapes and the lumped masses, from which the participation factors are calculated 

and used with the acceleration period curve (the response spectrum curve) to calculate the 

responses of the structure for each vibration mode. 

 The response spectrum used in the proposed analyses was taken from the UBC code, 

Figure 6.1, with assumed seismic zone of factor Z = 0.075 and soil profile SE. The 

corresponding seismic coefficients Ca and Cv were 0.19 and 0.26 respectively. 
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 A damping ratio of 5 % was assumed in the analyses and the SRSS (The square root of 

the sum of squares) and the CQC (complete quadratic combination) methods were used 

in combining the individual modal contributions.  

  The results of the proposed response spectrum analysis of the two 2D and 3D models 

were compared with those obtained from StaadProVi8, SAP2000V16 and ETABS and 

are shown in the following sections. 

   

                              Figure 6.1: UBC-1997 Design Response Spectra 

6.2.6 Time History Analysis 

  The time history analysis was performed for the two models using the proposed method 

and the obtained results were compared with the results obtained from the different 

structural packages. The results of the two 2D and 3D models are presented as shown in 

this section. The same mass and inertia values used in the response spectrum analyses 

were also used in the time history analyses. 

 The acceleration-time record of N-S component of El Centro Earthquake, 18 May 1940 

shown in Figure 6.2, was directly applied to the base of the building models in x-direction 

for the case of 2D model and in y-direction for the case of 3D model. The record of the 

first 31.2 seconds of the earthquake, having a step-size of 0.02 seconds, was used in the 
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two analyses. A damping ratio of 5 % was used in the analyses of the 2D and 3D models. 

The modal superposition method which provides a highly efficient and accurate 

procedure for performing time-history analysis was used in this study. Closed-form 

integration of the modal equations was used to compute the response, assuming linear 

variation of the time functions between the input data time points. The following time 

history responses were computed and plotted for each model: 

1. Lateral displacement at the top floor. 

2. Induced total base shear force.  

3. Induced total base overturning moment. 

 

Figure 6.2: N-S component of El Centro Earthquake records, 18 May 1940     

(www.vibrationdata.com) 

 

6.3 The fifteen floors 2D building Model 

   The displacements and bending moments were obtained using the proposed method for 

a fifteen multi-storey 2D frame under the vertical and horizontal loading shown in Figure 

6.3. All building members are concrete of elasticity, E = 29x106 kN/m2, 

and Poisson's ratio, v = 0.2 

6.3.1 Static Linear and second order Analysis of the 2D building model  

  Linear and second-order (P-Delta) analyses were carried out, and comparisons of the 

results with exact results are shown in Tables 6.1 to 6.4. 
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                       Figure 6.3:  Fifteen floors 2D Frame, properties and loading 

The displacements and the bending moments results obtained using the proposed method 

compared with results obtained using StaadPro2004, are shown in Tables 6.1 to 6.4. 

Table 6.1: Displacements in the top floor level (mm), (2D Frame), Linear Analysis: 

Results 
Columns (1) Columns (2) Columns (3) Columns (4) 

Lateral Axial Lateral Axial Lateral Axial Lateral Axial 

MFTProgV2 88.28 -14.82 88.28 -23.43 88.28 -28.83 88.28 -25.12 

StaadPro2004 88.45 -14.81 88.39 -23.44 88.15 -28.84 88.04 -25.11 

% Diff. -0.19 0.07 -0.12 -0.04 0.15 -0.03 0.27 0.04 

 

Table 6.2: Maximum bending moment in the lower floor, (kN.m), (2D Frame), Linear 

Analysis: 

Results Columns (1) Columns (2) Columns (3) Columns (4) 

MFTProgV2 122.26 280.55 307.13 152.87 

StaadPro2004 121.76 279.21 307.86 153.89 

% Diff. 0.41 0.48 -0.24 -0.66 
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Table 6.3:  Displacements in the top floor level (mm), (2D Frame), P-Delta Analysis: 

Results 
Columns (1) Columns (2) Columns (3) Columns (4) 

Lateral Axial Lateral Axial Lateral Axial Lateral Axial 

MFTProgV2 (1) 97.03 -14.59 97.03 -23.41 97.03 -28.85 97.03 -25.34 

MFTProgV2 (2) 97.47 -14.58 97.47 -23.42 97.47 -28.86 97.47 -25.34 

StaadPro2004 97.19 -14.57 97.13 -23.42 96.89 -28.86 96.78 -25.33 

% Diff.(1) -0.16 0.14 -0.10 -0.04 0.14 -0.03 0.26 0.04 

(1) Including only Global P-Delta. (2) Including Global and local P-Deltas. 

 

Table 6.4: Maximum bending moment in the lower floor (kN.m), (2D Frame), P-Delta 

Analysis: 

Results Columns (1) Columns (2) Columns (3) Columns (4) 

MFTProgV2 (1) 143.01 328.30 354.00 172.95 

MFTProgV2 (2) 143.16 325.69 350.28 171.13 

StaadPro2004 142.51 326.95 354.72 173.99 

% Diff.(1) 0.35 0.41 -0.20 -0.60 

 The comparison of the results shows very close agreement and some times the results are 

identical, both in the linear and second-order analysis. 

  As shown in Tables 6.1 to 6.4, the lateral displacements which are calculated including 

the P-Delta effects are greater than those calculated using ordinary linear analysis. In 

general, the second order analysis values may be increased with the increase of the 

vertical loads and/or increase in the building height. Including the local p-delta effects in 

the analysis, results in extra increase in the lateral displacements. 
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6.3.2 Buckling Analysis of the 2D building model  

  The buckling analysis for the 2D building model was carried out, using the incremental 

method described by Coates et al (1990), the eign solution (Vianello method), described 

by Clough and Penzien (2003), and the proposed improved Vianello method. 

Comparisons between the results assuming linear shape, cubic shape and Euler buckling 

using the stability functions were also studied.  

  Table 6.5 shows the results of the fundamental buckling factor calculated using the 

proposed program with the aid of the incremental subroutine of Coates et al. The results 

are compared with those obtained using StaadPro2014 (Stardyne Advanced Engine), 

StaadProV8i and ETABS 2013. 

Table 6.5: Minimum Buckling factor using the different packages 

Buckling Analysis Package Minimum buckling factor 

MFTProgV2, Linear Shape 7.9764 

MFTProgV2, Cubic Shape 7.1040 

MFTProgV2, Euler stability functions 7.0281 

StaadPro2014 (Stardyne Advanced Engine) 7.1061 

StaadProV8i 7.1016 

ETABS2013 7.1360 

 The buckling analysis was carried out using the eign solution. The Vianello method and 

the proposed improved Vianello method were carried out for the first six buckling modes, 

for the linear and the cubic deformed shape functions and the Euler stability functions. 

The results obtained are compared with those obtained from ETABS2013. The results are 

shown in Table 6.6 and the buckling mode shapes are shown in Figures 6.4 to 6.9. 

Table 6.6: Buckling factors of the first six modes using the different packages 

Buckling Analysis Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 

MFTProgV2 (Linear) 7.976 10.569 12.934 15.195 17.612 20.067 

MFTProgV2  (Cubic) 7.100 9.982 12.005 13.879 15.829 17.800 

MFTProgV2 (Euler) 7.049 9.960 11.955 13.805 15.712 17.675 

ETABS2013 7.136 10.037 12.069 13.957 15.931 17.925 
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 In Table 6.5, the MFTProgV2 cubic shape give results that are very close to the results 

of StaadPro2014 (Stardyne advanced Engine), the percentage difference is -0.03%. 

The MFTProgV2 (Euler stability functions) gives the exact solution and shows lesser 

buckling factor. 

  The results of the proposed program linear deformed shape show greater values of the 

buckling factors than the cubic shape values and the results of the cubic shape show 

greater values than the Euler buckling values. This can be seen in Table 6.6, for all 

buckling modes. These differences are very small. The explanation of greater buckling 

load of the linear shape compared with the cubic shape and the cubic shape greater than 

the Euler exact solution lies in the fact that an assumed deflected shape implies the 

application of constraints in order to force the column to take up an artificial shape. This, 

as has been seen, has the effect of stiffening the column with a consequent increase in 

critical load. 

                          

                                Figure 6.4: MFTProgV2, Buckling mode shape No. 1 
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                               Figure 6.5: MFTProgV2, Buckling mode shape No. 2  

                           

                           Figure 6.6: MFTProgV2, Buckling mode shape No. 3 
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                           Figure 6.7: MFTProgV2, Buckling mode shape No. 4 

                         

                         Figure 6.8: MFTProgV2, Buckling mode shape No. 5 
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                         Figure 6.9: MFTProgV2, Buckling mode shape No. 6 

 

  6.3.3 Dynamic analysis of the 2D model 

  The dynamic analysis was performed for the 2D building model, Figure 6.3. The 

response spectra method was performed first with linear effects and then the method was 

performed including the P-Delta second order effects. The time history was then 

performed including the linear and second order effects. 

Mass Source 

  The lumped mass for the 2D model in any floor level was calculated as follows and 

shown in Table 6.7: 

mtot = 75*(4+7+6)/9.80665 = 130.0138 kg    

                       Table 6.7: Floor Masses of the 2D Building (Mass in kg)  

Floor Mass (kg) 

1 to 15 130.0138 
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Table 6.8: Comparisons of the first six Natural frequencies of 2D Building 

(cycles/second)  

Mode MFTProgV2 StaadPro(%Diff) ETABS(%Diff) SAP2000V16(%Diff) 

1 
0.27 0.27 (0) 0.27 (0) 0.27 (0) 

2 
0.825 0.825 (0) 0.825 (0) 0.823 (-0.24) 

3 
1.467 1.468 (0.07) 1.467 (0) 1.466 (-0.07) 

4 
2.112 2.112 (0) 2.111 (-0.05) 2.109 (-0.14) 

5 
2.793 2.793 (0) 2.792 (-0.04) 2.789 (-0.14) 

6 
3.5 3.5 (0) 3.499 (-0.03) 3.461 (-1.11) 

     Table 6.8, shows the comparison between the natural frequencies using the proposed 

method and the different analysis packages. The table shows negligible differences and 

identical results. Some slight deviations in comparing the results with those obtained 

from SAP2000V16 are noticed.  

  

                                       Figure 6.10: First Mode Shape (Linear Analysis) 
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                                     Figure 6.11: Second Mode Shape (Linear Analysis) 

             

                                     Figure 6.12: Third Mode Shape (Linear Analysis) 
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Table 6.9: Comparisons of the first three modes shape ordinates (Linear Analysis) 

 Mode 1 Mode 2 Mode 3 

Floor 
MFTProg

V2 

StaadPro 
ETABS 

MFTProg

V2 

StaadPro 
ETABS 

MFTProg

V2 

StaadPro 
ETABS 

1 1 1 1 1 1 1 1 1 1 

2 
0.975 0.975 0.975 0.868 0.868 0.868 0.721 0.720 0.720 

3 
0.942 0.942 0.942 0.675 0.675 0.675 0.289 0.288 0.288 

4 
0.902 0.902 0.902 0.434 0.433 0.433 -0.204 -0.204 -0.204 

5 
0.855 0.855 0.855 0.162 0.162 0.162 -0.646 -0.645 -0.645 

6 
0.801 0.801 0.801 -0.119 -0.119 -0.119 -0.935 -0.934 -0.935 

7 
0.741 0.740 0.741 -0.388 -0.388 -0.388 -1.006 -1.005 -1.006 

8 
0.675 0.675 0.675 -0.624 -0.624 -0.624 -0.843 -0.842 -0.842 

9 
0.604 0.604 0.604 -0.809 -0.809 -0.809 -0.483 -0.483 -0.483 

10 
0.530 0.530 0.530 -0.929 -0.928 -0.928 -0.009 -0.009 -0.009 

11 
0.452 0.452 0.452 -0.974 -0.974 -0.974 0.470 0.470 0.470 

12 
0.372 0.372 0.372 -0.942 -0.942 -0.941 0.845 0.844 0.844 

13 
0.291 0.291 0.291 -0.835 -0.834 -0.834 1.028 1.028 1.028 

14 
0.210 0.210 0.210 -0.661 -0.660 -0.660 0.978 0.978 0.978 

15 
0.127 0.127 0.127 -0.426 -0.426 -0.426 0.695 0.695 0.695 

     The comparison between the first three mode shapes using MFTProgV2, StaadProV8i 

and ETABS packages shows almost identical modes shapes as shown in Table 6.9.   

6.3.4 Response spectra Analysis for the 2D model 

    Response spectra analysis was performed for the 2D model. The excited response 

acceleration was taken from the UBC design code with assumed damping ratio of 5%. 

The considered modal combination methods used in this analysis were the SRSS and the 

CQC methods. Comparison of the modal masses participating ratios and their 

accumulations are shown in Tables 6.10 and 6.11. Comparisons of the lateral 

displacement at the top floor, the base shear and the base overturning moment for 

MFTProgV2 and the different packages are shown in Tables 6.14 to 6.17. 
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Table 6.10: Comparison of the modal masses participating ratios: 

Mode MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) SAP2000V16(%Diff) 

1 
83.603 83.603 (0) 83.604 (0) 83.559 (-0.05) 

2 
11.101 11.102 (0.01) 11.101 (0) 11.137 (0.32) 

3 
2.893 2.893 (0) 2.893 (0) 2.896 (0.1) 

4 
1.166 1.165 (-0.09) 1.166 (0) 1.168 (0.17) 

5 
0.55 0.549 (-0.18) 0.55 (0) 0.55 (0) 

6 
0.291 0.291 (0) 0.291 (0) 0.092 (-68.38) 

Table 6.11: Comparison of the accumulated modal masses participating ratios: 

Mode MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) SAP2000V16(%Diff) 

1 
83.603 83.603 (0) 83.604 (0) 83.559 (-0.05) 

2 
94.704 94.705 (0) 94.704 (0) 94.696 (-0.01) 

3 
97.597 97.598 (0) 97.597 (0) 97.592 (-0.01) 

4 
98.763 98.763 (0) 98.762 (0) 98.759 (0) 

5 
99.312 99.312 (0) 99.312 (0) 99.309 (0) 

6 
99.603 99.603 (0) 99.603 (0) 99.401 (-0.2) 

  The comparisons between modal masses participating ratios using MFTProgV2, 

StaadProV8i and ETABS packages show almost identical results. Some difference 

between the results of SAP2000V16 and the other packages is noticed. 

  The response spectra acceleration obtained using the UBC curve was calculated and is 

shown in Table 6.12. The modal cross-correlation coefficients used in the CQC 

combination method were calculated and are shown in Table 6.13. 

Table 6.12: MFTProgV2 Response acceleration using the UBC response spectra curve 

Mode Natural frequency Hz Period (seconds)       Response 

Acceleration m/s2  

1 0.270 3.704 0.691 

2 0.825 1.212 2.106 

3 1.467 0.681 3.877 

4 2.112 0.474 4.658 

5 2.793 0.358 4.658 

6 3.500 0.286 4.658 
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Table 6.13: Modal Cross-correlation Coefficients 

Mode 1 2 3 4 5 6 

1 1 0.0062 0.0020 0.0011 0.0007 0.0005 

2 0.0062 1 0.0273 0.0094 0.0050 0.0032 

3 0.0020 0.0273 1 0.0683 0.0217 0.0112 

4 0.0011 0.0094 0.0683 1 0.1117 0.0358 

5 0.0007 0.0050 0.0217 0.1117 1 0.1623 

6 0.0005 0.0032 0.0112 0.0358 0.1623 1 

I- Lateral Displacement at the top floor of the 2D building model 

  Tables 6.14 and 6.15, show the lateral displacement response at the top floor of the 

building model due to the UBC design code acceleration response curve, obtained by 

response spectra analysis in x-direction using MFTProgV2 method and the other 

packages. 

Table 6.14: Comparison of the lateral displacement response at the top floor (m), 

Proposal 1 

Response MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) SAP2000V16(%Diff) 

ALL 

SRSS 
0.320198 0.320157 (-0.01) 0.320213 (0) 0.3202 (0) 

ALL 

CQC 
0.319952 0.320115 (0.05) 0.319967 (0) 0.31987 (-0.03) 

 Table 6.15: Comparison of the lateral displacement response at the top floor (m), 

Proposal 2  

Response MFTProgV2 StaadProV8i(%Diff) ETABS  (%Diff) SAP2000V16(%Diff) 

ALL 

SRSS 
0.33953 0.320157 (-5.71) 0.320213 (-5.69) 0.3202 (-5.69) 

ALL 

CQC 
0.33989 0.320115 (-5.82) 0.319967 (-5.86) 0.31987 (-5.89) 

 Proposal 1 used the displacements responses calculated from the acceleration response 

(Sd = Sa/ω
2), and the participation factor of the mode, while Proposal 2 used the 

displacement obtained from a full frame analysis using the equivalent static forces 

obtained from the acceleration responses. 
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  According to Ghali et al. (2009), the equivalent static forces should be applied on the 

structure to calculate the displacements, internal forces, or reactions (as required) for the 

concerned mode (Proposal 2). 

  In Table 6.14, the lateral displacement results obtained by performing response 

spectrum analysis are presented for proposal 1. The table gives the total lateral 

displacement at the top floor of the building structures. For the SRSS, the closest result to 

the MFTProgV2 result is obtained from SAP2000V16 which is of 0.0006 % difference, 

and for the CQC, the closest results is obtained from ETABS which is of 0.0047 % 

difference.  

And in Table 6.15, the lateral displacement results obtained by performing response 

spectrum analysis are presented for proposal 2. The table gives the total lateral 

displacement at the top floor of the building structures. For the SRSS, the closest result to 

MFTProgV2 result is obtained from ETABS and SAP2000V16 which is of -5.69 % 

difference, and for the CQC, the closest results is obtained from StaadProV8i which is of 

-5.82 % difference. MFTProgV2 proposal 1 gives closer results than proposal 2.   

II- Resultant Shear Force at the Base of the 2D building model 

  Table 6.16, shows the resultant shear force response at the base of the building due to 

the UBC design code acceleration response curve, obtained by response spectra analysis 

in x-direction using MFTProgV2 and the other packages. 

Table 6.16: Comparisons of the Response Spectrum Base Shear force: 

Mode MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) SAP2000V16(%Diff) 

1 1122.43 1127.73 (0.47) 1127.26 (0.43) -  

2 455.32 456.18 (0.19) 455.93 (0.13) -  

3 211.09 218.78 (3.64) 218.71 (3.61) -  

4 105.89 105.85 (-0.04) 105.88 (-0.01) -  

5 49.93 49.91 (-0.04) 49.93 (0) -  

6 26.43 26.42 (-0.04) 26.43 (0) - 

ALL 

SRSS 
1235.37 1241.83 (0.52) 1241.3 (0.48) 1240.624 (0.43) 

ALL 

CQC 
1243.25 1246.26 (0.24) 1249.31 (0.49) 1248.417 (0.42) 
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  In Table 6.16, the base shear results obtained by performing response spectrum analysis 

are presented. The table gives the total shear forces at the base of the building structures. 

For the SRSS, the closest result to MFTProgV2 result is obtained from SAP2000V16 

which is of 0.43 % difference, and for the CQC, the closest results is obtained from 

StaadProV8i which is of 0.24 % difference.  

III- Resultant overturning moment at the Base of the 2D building model 

Table 6.17, shows the resultant overturning moment response at the base of the building 

due to the UBC design code acceleration response curve, obtained by response spectra 

analysis in x-direction using MFTProgV2 and the other packages. 

Table 6.17: Comparisons of the Response Spectrum Base Overturning Moment: 

Mode MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) SAP2000V16(%Diff) 

1 40737.25 40748.97 (0.03) 40732.05 (-0.01) -  

2 -3390.03 -3390.4 (0.01) -3389.47 (-0.02) -  

3 1205.56 1205.35 (-0.02) 1205.365 (-0.02) -  

4 -472.95 -472.99 (0.01) -473.038 (0.02) -  

5 158.36 158.32 (-0.03) 158.449 (0.06) - 

6 -92.71 -92.76 (0.05) -92.774 (0.07) -  

ALL 

SRSS 
40898.98 40910.68 (0.03) 40893.75 (-0.01) 41047.3189 (0.36) 

ALL 

CQC 
40876.52 40888.2 (0.03) 40871.29 (-0.01) 41025.7514 (0.37) 

  In Table 6.17, the base overturning moment results obtained by performing response 

spectrum analysis are presented. The table gives the total overturning moment at the base 

of the building structures. For the SRSS, the closest results to MFTProgV2 is obtained 

from ETABS which is of -0.01 % difference, and for the CQC, the closest results is 

obtained from ETABS which is of -0.01 % difference.  

   For the base overturning moment in all packages, the CQC results are less than the 

SRSS results due to the effect of the reverse response, i.e. some responses in the different 

modes have different signs as shown in Table 6.17. 
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6.3.5 P-Delta response spectra analysis 

   The P-Delta second order analysis was incorporated in the dynamic analysis using the 

direct iteration method and the inverse iteration method (Stodola concept), and using the 

cubic-displacement shape. As for the linear dynamic analysis, the first six natural 

frequencies together with the corresponding mode shapes were computed.  

 Table 6.18: Comparisons of the first six P-Delta natural frequencies (cycle/second): 

Mode MFTProgV2 StaadProV8i(%Diff)  ETABS(%Diff) 

1 
0.255 0.255 (0) 0.255 (0) 

2 
0.791 0.791 (0) 0.791 (0) 

3 
1.415 1.416 (0.07) 1.415 (0) 

4 
2.043 2.044 (0.05) 2.043 (0) 

5 
2.710 2.710 (0) 2.709 (-0.04) 

6 
3.404 3.404 (0) 3.404 (0) 

     From Table 6.18, the comparison between the natural frequencies using the proposed 

method and the different analysis packages shows negligible differences and mostly 

identical results. 

Table 6.19: Comparisons of percentage P-Delta modal Mass Participating ratios: 

Mode MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) 

1 
84.332 84.330 (0) 84.329 (0) 

2 
10.752 10.770 (0.17) 10.773 (0.2) 

3 
2.725 2.710 (-0.55) 2.713 (-0.44) 

4 
1.064 1.070 (0.56) 1.069 (0.47) 

5 
0.499 0.500 (0.2) 0.498 (-0.2) 

6 
0.259 0.260 (0.39) 0.262 (1.16) 
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Table 6.20: Comparison of percentage accumulated P-Delta modal Mass Participating 

ratios: 

Mode MFTProgV2(%Diff) StaadProV8i(%Diff) ETABS(%Diff) 

1 84.332 84.333 (0) 84.329 (0) 

2 95.084 95.105 (0.02) 95.102 (0.02) 

3 97.809 97.816 (0.01) 97.814 (0.01) 

4 98.873 98.885 (0.01) 98.883 (0.01) 

5 99.372 99.382 (0.01) 99.381 (0.01) 

6 99.631 99.644 (0.01) 99.643 (0.01) 

 Comparisons of percentage modal Mass Participating ratios and their accumulations 

show good agreement between MFTProgV2 and the other packages, as can be seen from 

Tables 6.19 and 6.20. 

I- Lateral Displacement at the top floor of the 2D building model 

  Tables 6.21 and 6.22, show the lateral displacement response at the top floor of the 

building model due to the UBC design code acceleration response curve, obtained by 

response spectra analysis in x-direction using MFTProgV2 and the other packages, for 

proposals 1 and 2 respectively. 

Table 6.21: Comparison of the P-Delta lateral displacement response at the top floor (m), 

MFTProgV2 Proposal 1 

Response MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) 

ALL SRSS 0.335827 0.335779 (-0.01) 0.335823 (0) 

ALL CQC 0.335586 0.335739 (0.05) 0.335581 (0) 

 Table 6.22: Comparison of the P-Delta lateral displacement response at the top floor (m), 

MFTProgV2 Proposal 2 

Response MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) 

ALL SRSS 0.35664 0.335779 (-5.85) 0.335823 (-5.84) 

ALL CQC 0.35705 0.335739 (-5.97) 0.335581 (-6.01) 

 Proposal 1 used the displacements responses calculated from the acceleration response 

(Sd = Sa/ω
2), and the participation factor of the mode, while Proposal 2 used the 

displacement obtained from a full frame analysis using the equivalent static forces 

obtained from the acceleration responses. 
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   Table 6.21 gives the total lateral displacement at the top floor of the building structures, 

proposal 1. For the SRSS, the closest results to MFTProgV2 result is obtained from 

ETABS which is of -0.00119 % difference, and for the CQC, the closest results is 

obtained from ETABS which is of -0.00149  % difference. Table 6.22 gives the total 

lateral displacement at the top floor of the building structures, proposal 2. For the SRSS, 

the closest results to MFTProgV2 result is obtained from ETABS which is of -5.84 % 

difference, and for the CQC, the closest results is obtained from StaadProV8i which is of 

-5.97 % difference. 

MFTProgV2 proposal 1 gives closer results to the different packages than proposal 2.   

II- Resultant Shear Force at the Base of the 2D building model 

  Table 6.23, shows the resultant shear force response at the base of the building due to 

the UBC design code acceleration response curve, obtained by response spectra analysis 

in x-direction using MFTProgV2 and the other packages. 

Table 6.23: Comparison of Response Spectrum P-Delta Base Shear Reactions (kN): 

Mode MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) 

1 1073.43 1073.86 (0.04) 1073.57 (0.01) 

2 425.12 426.05 (0.22) 425.95 (0.2) 

3 198.29 197.36 (-0.47) 197.39 (-0.45) 

4 96.67 97.06 (0.4) 97.13 (0.48) 

5 45.29 45.17 (-0.26) 45.22 (-0.15) 

6 23.51 23.79 (1.19) 23.82 (1.32) 

ALL SRSS 1176.54 1177.15 (0.05) 1176.86 (0.03) 

ALL CQC 1183.59 1180.98 (-0.22) 1183.91 (0.03) 

  Table 6.23 gives the total shear forces at the base of the building structures. For the 

SRSS, the closest results to MFTProgV2 result is obtained from ETABS which is of 0.03 

% difference, and for the CQC, the closest result is obtained from ETABS which is of 

0.03 % difference. 

III- Resultant overturning moment at the Base of the 2D building model 

Table 6.24, shows the resultant overturning moment response at the base of the building 

due to the UBC design code acceleration response curve, obtained by response spectra 

analysis in x-direction using MFTProgV2 and the other packages. 



 136 

Table 6.24: Comparison of Response Spectrum P-Delta Base overturning moment: 

Mode MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) 

1 38585.55 38600.94 (0.04) 38591.43 (0.02) 

2 -3666.84 -3656.84 (-0.27) -3654.23 (-0.34) 

3 1166.4 1141.68 (-2.12) 1142.244 (-2.07) 

4 -500.53 -494.63 (-1.18) -494.515 (-1.2) 

5 156.68 153.27 (-2.18) 153.502 (-2.03) 

6 -99.1 -94.63 (-4.51) -94.622 (-4.52) 

ALL SRSS 38780.61 38794.14 (0.03) 38784.45 (0.01) 

ALL CQC 38756.73 38770.4 (0.04) 38760.7 (0.01) 

 Table 6.24 gives the total overturning moment at the base of the building structures. For 

the SRSS, the closest result to the MFTProgV2 is obtained from ETABS which is of 0.01 

% difference, and for the CQC, the closest results is obtained from ETABS which is of 

0.01 % difference. 

6.3.6 Time History Analysis for the 2D model 

    Time history analysis was performed for the 2D model. The natural frequencies and 

the corresponding mode shapes calculated in the previous section and used in the 

response spectra method were used together with the El Centro earthquake time history 

acceleration records assumed applied at the base of the building. The assumed damping 

ratio is 5%. Comparisons of the lateral displacement at the top floor level, the base shear 

and the base overturning moment for the proposed method and the different packages are 

shown in the following sections. 

I- Lateral Displacement at the top floor of the 2D building model 

  Figures 6.13 to 6.16, give the graphs for the lateral displacement history at the top floor 

of the building model due to El Centro earthquake, obtained by time history analysis in x-

direction using MFTProgV2 and the other packages. The minimum and the maximum 

responses are shown in Table 6.25. 
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Figure 6.13: History of displacement in x-direction at the top floor level using 

MFTProgV2 

              

 

Figure 6.14: History of displacement in x-direction at the top floor level using the 

StaadPro2004 
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Figure 6.15: History of displacement in x-direction at the top floor level using ETABS  

 

Figure 6.16: History of displacement in x-direction at the top floor level using 

SAP2000V16 
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Table 6.25: Minimum and maximum displacements at the top floor (mm): 

Response MFTProgV2 StaadProV8i(%Diff) SAP2000V16(%Diff) ETABS(%Diff) 

Minimum  -321.26 -321 (-0.08) -321 (-0.08) -321.3 (0.01) 

At time 3.5 3.49 4.8 3.5 

Maximum  398.5 399 (0.13) 397.7 (-0.2) 398.6 (0.03) 

At time 5.08 5.08 5.08 5.08 

   The diagrams shown in Figures 6.13 to 6.16 are similar and show very good agreement. 

Table 6.25 gives the maximum and minimum response values together with the 

corresponding time. For the minimum response, the closest result to MFTProgV2 is 

obtained from ETABS which is of 0.01 % difference, and for the maximum response, the 

closest result is obtained also from ETABS which is of 0.03 % difference.  

II- Resultant Shear Force at the Base of the 2D building model 

Figures 6.17 to 6.19 give the graphs for the resultant shear force history at the base of the 

building obtained by time history analysis in x-direction using MFTProgV2 and the other 

packages. The minimum and the maximum responses are shown in Table 6.26. 
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Figure 6.17: History of base Shear in x-direction using MFTProgV2 
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Figure 6.18: History of base Shear in x-direction using ETABS 

 

Figure 6.19: History of base Shear in x-direction using SAP2000V16 
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Table 6.26: Minimum and maximum base shear (kN): 

Response MFTProgV2 StaadProV8i(*) SAP2000V16 ETABS 

Minimum  -1477.73 -1481.713 (0.27) -1478 (0.02) -1478 (0.02) 

At time 4.92 4.927778 4.94  4.92 

Maximum  1310.39 N.A. 1316 (0.43) 1311 (0.05) 

At time 6.64 N.A. 6.64 6.64 

(*): Obtained from output results.   

  The diagrams in Figures 6.17 to 6.19 are similar and show very good agreement. Table 

6.26 gives the maximum and minimum total shear forces at the base of the building 

structure with the corresponding time. For the minimum response, the closest results to 

MFTProgV2 result is obtained from ETABS and SAP2000V16 which is of 0.02 % 

difference, and for the maximum response, the closest result is obtained from ETABS 

which is of 0.05 % difference.  

III- Resultant overturning moment at the Base of the 2D building model 

Figures 6.20 to 6.22 give the graphs for the resultant overturning moment history at the 

base of the building obtained by time history analysis in x-direction using the proposed 

method and the other packages. The minimum and the maximum responses are shown in 

Table 6.27 
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Figure 6.20: History of Base overturning moment about y-direction using MFTProgV2 
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Figure 6.21: History of base overturning moment about y-direction using ETABS 

 

Figure 6.22: History of base overturning moment about y-direction using SAP2000V16 

Table 6.27: Minimum and maximum base overturning moment (kN.m): 

Response MFTProgV2 ETABS(%Diff) SAP2000V16(%Diff) 

Minimum  -50587 -50590 (0.01) -49870 (-1.42) 

At time 5.08 5.08 5.14 

Maximum  40026.94 40030 (0.01) 42380 (5.88) 

At time 3.48 3.48 3.44 
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  The diagrams in Figures 6.20 to 6.22 are similar and show very good agreement. Table 

6.27 gives the maximum and minimum response values together with the corresponding 

time. For the minimum response, the closest result to MFTProgV2 result is obtained from 

ETABS which is of 0.01 % difference, and for the maximum response, the closest result 

is obtained from ETABS which is of 0.01 % difference.  

6.3.7 P-Delta Time History Analysis 

   P-Delta second order time history analysis was incorporated in the dynamic time 

history analysis using the direct iteration method and the inverse iteration method 

(Stodola concept), and using the cubic-displacement shape. As for the linear dynamic 

analysis, the first six natural frequencies together with the corresponding mode shapes 

were computed and used in the analysis.  

I- Lateral Displacement at the top floor of the 2D building model 

  Figures 6.23 to 6.25 give the graphs for the lateral displacement at the top floor of the 

building model obtained by time history analysis in x-direction using the proposed 

method and the other packages. The minimum and the maximum responses are shown in 

Table 6.28. 

Figure 6.23: History of P-Delta displacement in x-dir. at the top level using MFTProgV2   
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Figure 6.24: History of P-Delta displacement in x-direction at the top floor level using 

StaadProV8i 

 

Figure 6.25: History of P-Delta displacement in x-direction at the top floor level using 

ETABS 
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Table 6.28: Minimum and maximum P-Delta displacements at the top floor (mm): 

Response MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) 

Minimum  -325.6 -326 (0.12) -325.7 (0.03) 

At time 3.6 3.6 3.6 

Maximum  366.272 366 (-0.07) 366.4 (0.03) 

At time 5.12 5.13 5.12 

    The diagrams in Figures 6.23 to 6.25 are similar and show very good agreement. Table 

6.28 gives the maximum and minimum response values together with the corresponding 

time. For the minimum response, the closest result to MFTProgV2 result is obtained from 

ETABS which is of 0.03 % difference, and for the maximum response, the closest result 

is obtained from ETABS which is of 0.03 % difference.  

II- Resultant Shear Force at the Base of the 2D building model 

Figures 6.26 and 6.27 give the graphs for the resultant shear force history at the base of 

the building obtained by time history analysis in x-direction using MFTProgV2 and the 

other packages. The minimum and the maximum responses are shown in Table 6.29. 

 

Figure 6.26: History of P-Delta base Shear in x-direction using MFTProgV2 
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Figure 6.27: History of P-Delta base Shear in x-direction using ETABS 

Table 6.29: Minimum and maximum P-Delta Base Shear (kN): 

Response MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) 

Minimum  -1223.9 -1215.244 (-0.71) -1225 (0.09) 

At time 4.96 4.945834  4.96  

Maximum  1110.844 N.A. 1111 (0.01) 

At time 3.24 N.A. 3.24  

   

  The diagrams in Figures 6.26 and 6.27 are similar and show very good agreement. Table 

6.29 gives the maximum and minimum total shear forces at the base of the building 

structure with the corresponding time. For the minimum response, the closest result to 

MFTProgV2 is obtained from ETABS which is of 0.09 % difference, and for the 

maximum response, the closest result is obtained from ETABS which is of 0.01 % 

difference.  
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III- Resultant overturning moment at the Base of the 2D building model 

Figures 6.28 and 6.29 give the graphs for the resultant overturning moment history at the 

base of the building obtained by time history analysis in x-direction using MFTProgV2 

and the other packages. The minimum and the maximum responses are shown in Table 

6.30. 

 

Figure 6.28: History of P-Delta base overturning moment about y-direction using 

MFTProgV2 

 

Figure 6.29: History of P-Delta base overturning moment about y-direction using ETABS 
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Table 6.30: Minimum and maximum P-Delta base overturning moment (kN.m): 

Response MFTProgV2 StaadProV8i(%Diff) ETABS(%Diff) 

Minimum  -46412.4 N.A. -46590 (0.38) 

At time 5.12 N.A. 5.12  

Maximum  40579.84 N.A. 40680 (0.25) 

At time 3.6 N.A. 3.6 

   The diagrams in Figures 6.28 and 6.29 are similar and show very good agreement. 

Table 6.30 gives the maximum and minimum response values together with the 

corresponding time. For the minimum response, the closest result to MFTProgV2 result is 

obtained from ETABS which is of 0.38 % difference, and for the maximum response, the 

closest result is obtained from ETABS which is of 0.25 % difference.  
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6.4 The twenty five floors 3D building Model 

   The building plan area, shown in Figure 6.30 is: 24 m x 12 m. The floor slab is of 

thickness = 0.2 m. The building is composed of 25 floors of floor height = 3.5 m for all 

floors except the lower floor which is of height = 5.5 m. 

All building members are concrete of elasticity, E = 29x106 kN/m2, 

and Poisson's ratio, v = 0.2 

        

 

                           Figure 6.30: 24 m x 12 m floor plan for 25 Storey Building 

  The section properties of the vertical elements (in meters) are: 

All Columns: 0.60 m x 0.60 m for the 10 lower floors, 0.50 m x 0.50 m for the 10 middle 

floors, and 0.40 m x 0.40 m for the 5 upper floors 

The Shear walls are of lengths 3.0 m (walls 1, 2 and 20), and 4.0 m (wall 3), and 

thicknesses are: 0.30 m for the 10 lower floors and 0.25 m for the 15 upper floors. 

 The building is subjected to vertical area load of 18 kN/m2 at all floors, and to lateral 

loads (F, in Y-direction and in the location shown in Figure 6.30, at column 13), of 151.2 

kN at the lower floor level, and 117.6 kN at all other floors levels. 

  The slab was modeled by finite plate elements presented by Ghali and Neville (1978), of 

meshes size 0.5 m x 0.5 m. The columns and walls were modeled by frame members. The 
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edge shear wall and the U-shaped core were connected at the floor levels with torsion 

released rigid beams represent the rigid parts of the walls, Akis (2004).   

6.4.1 Static Linear and second order Analysis of the 3D building model  

     Linear and second-order (P-Delta) analyses were carried out, and comparisons of the 

obtained results with exact results from different packages, ETABS and StaadPro2004, 

based on FEM, are shown in Tables 6.31 to 6.33 and Figures 6.31 to 6.41.  

   Analysis using ETABS, were performed for two options. The first option was based on 

thin-plate (Kirchhoff) formulation, which neglects the transverse shearing deformations, 

and the second option used thick-plate (Mindline/Reissner) formulation which includes 

the effects of transverse shearing deformations, (CSI Analysis Reference Manual).   

  Comparison of displacements in Y-direction and the twist rotation of the floors at the 

building center (Column 10), obtained using MFTProg and the different packages is 

shown in Table 6.31 and Figures 6.31 to 6.33. Comparisons of the bending moments and 

shear forces of the U-shaped core (assembly of walls 1, 2 and 3) and the edge shear wall 

(wall 20) are shown in Tables 6.32 and 6.33, and Figures 6.34 and 6.41. 

Comparisons of the moment My contour in the bottom floor using MFTProg and 

StaadPro2014 for both linear and second order P-Delta analyses are also plotted in 

Figures 6.42 to 6.45. 
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                   Figure 6.31: P-Delta Analysis, Displacements in y-direction     
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                             Figure 6.32: P-Delta Analysis, Rotations in radians         

                                       

                                  

Twist Rotation

0

10

20

30

40

50

60

70

80

90

100

0 0.01 0.02 0.03

Rotation (Rad)

H
e
ig

h
t 

(m
) Proposed

ETABS thick

ETABS thin

StaadPro2004

                          

                              Figure 6.33: P-Delta Analysis, Rotations in radians (torsion released) 
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                      Figure 6.34: Linear Analysis, B.M.D. for U-Shaped Core 
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                      Figure 6.35: Linear Analysis, S.F.D. for U-Shaped Core    
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                            Figure 6.36: Linear Analysis, B.M.D. for edge shear wall 
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                             Figure 6.37: Linear Analysis, S.F.D. for edge shear wall 
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                        Figure 6.38: P-Delta Analysis, B.M.D. for U-Shaped Core   
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                        Figure 6.39: P-Delta Analysis, S.F.D. for U-Shaped Core    
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                   Figure 6.40: P-Delta Analysis, B.M.D. for edge shear wall  
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                Figure 6.41: P-Delta Analysis, S.F.D. for edge shear wall 
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         Table 6.31: Displacements and rotation in the top floor level (mm, rad), (3D 

Frame): 

         

Table 6.32: Maximum bending moment in U-Shaped Core (kN.m), (3D Frame): 

Package Linear Second order 

MFTProg 43505.86 49183.91 

StaadPro2004 44108.82 50071.03 

%Diff. -1.37 -1.77 

         Table 6.33: Maximum bending moment in Edge Shear Wall (kN.m), (3D Frame): 

Package Linear Second order 

MFTProg 13130.94 15985.60 

StaadPro2004 13431.23 16541.75 

%Diff. -2.24 -3.36 

  In all the comparisons of the displacements and the bending moments, for both linear 

and second order analysis, the differences are found to be very small.  

The differences in the models displacements are proportional to the building height. 

ETABS (thick-plate) model has more rigid floor and less displacements and twist 

rotations than the other exact models, Figures 6.31 and 6.32. The assumption of the rigid 

diaphragm in MFTProg is further resisting and reducing the twist rotations in the lower 

levels of the building compared with StaadPro2004 and ETABS (thin-plate) models, 

Figure 6.32. This is due to the fact that, the torsion stiffness of the vertical members in 

the lower levels are very large compared with that in the upper levels, and the twist 

rotations in the vertical members are constrained to follow the rigid diaphragms twist 

rotations. This effect may be illustrated by comparing the results of the models with all 

the vertical members released for torsion, Figure 6.33. In this case the differences in the 

models twist rotations are almost proportional to the building height. 

 

 

 

 

Package Linear Second order (P-Delta) 

Trans. & Rot. Y-Dir Axial  Twist Y-Dir Axial  Twist 

MFTProg 319.60 36.21 0.0120 396.36 37.73 0.0172 

StaadPro2004 331.20 36.04 0.0130 415.61 37.60 0.0189 

%Diff. -3.50 0.47 -7.69 -4.63 0.35 -8.99 
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Figure 6.42: MFTProg moment My contour in kN.m/m for bottom floor slab 

Figure 6.43: StaadPro moment My contour in kN.m/m for bottom floor slab 
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Figure 6.44: MFTProg P-Delta analysis moment My contour in kN.m/m for bottom floor slab 

Figure 6.45: StaadPro P-Delta analysis moment My contour in kN.m/m for bottom floor slab 
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6.4.1.1 Effect of Finite Element Formulation Accuracy 

   The differences in the results of the different programs models may be due to the 

following factors: 

1- The differences in the finite element formulation accuracy of the different programs, 

which affect the floor rotational-translational stiffness, and accordingly the building 

deformations and stresses.  

2- The small deformations in the floor slab of the exact models due to the induced in-

plane stresses, compared with the non-deformable rigid diaphragm of the proposed 

model. These deformations proofed to be negligible, as the differences in the twist 

rotations of the different models were not much affected by releasing the torsional 

stiffness of the vertical members, (Figures 6.32 and 6.33). 

  In order to examine the effects of the finite element formulation accuracy on the results 

of the different models, a special subroutine was created and implemented in the 

developed program. The subroutine was designed to calculate the floor rotational-

translational stiffness from StaadPro one floor model. Therefore it enabled MFTProg to 

use the Finite elements formulation of StaadPro program. By using this subroutine, the 

floor stiffness of StaadPro was borrowed and used in the proposed method instead of the 

embedded one.  

  The subroutine has been created using the capabilities of OpenStaad, the Application 

Programming Interface (API), of StaadPro package, and executed by constructing a one 

floor StaadPro model supported by fully enforced supports in the locations of the 

columns and walls. A unit rotation or translation was exerted in each support in the 

directions of the different DOFs, and the corresponding reactions in all supports were 

retrieved and arranged systematically to construct the rotational-translational stiffness of 

the floor. Comparison of the results of the proposed model including the borrowed floor, 

with the results obtained using StaadPro2004 exact model, show zero or very small 

differences, as shown in Tables 6.34 to 6.36. Comparisons of the moment My contour in 

the bottom floor using MFTProg with borrowed StaadPro floor and Full StaadPro2014 

model for both linear and second order P-Delta analyses are also plotted in Figures 6.46 

to 6.49. 
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Table 6.34: Displacements and rotation in the top floor level (mm, rad), (3D Frame), 

(Borrowed StaadPro Floor): 

         

Table 6.35: Maximum bending moment in U-Shaped Core (kN.m), (3D Frame), 

(Borrowed StaadPro Floor): 

Package Linear Second order 

MFTProg 44106.59 50074.39 

StaadPro2004 44108.82 50071.03 

%Diff. -0.01 0.01 

         Table 6.36: Maximum bending moment in Edge Shear Wall (kN.m), (3D Frame), 

(Borrowed StaadPro Floor): 

Package Linear Second order 

MFTProg 13467.59 16571.60 

StaadPro2004 13431.23 16541.75 

%Diff. 0.27 0.18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Package Linear Second order (P-Delta) 

Trans. & Rot. Y-Dir Axial  Twist Y-Dir Axial  Twist 

MFTProg 331.02 36.04 0.0130 415.09 37.60 0.0189 

StaadPro2004 331.20 36.04 0.0130 415.61 37.60 0.0189 

%Diff. -0.05 0.00 0.00 -0.13 0.00 0.00 
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Figure 6.46: MFTProg+StaadPro one floor model moment My contour for bottom floor slab 

Figure 6.47: StaadPro (Full model) moment My contour for bottom floor slab 
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Figure 6.48: MFTProg + StaadPro one floor model P-Delta analysis moment My for bottom slab 

 

Figure 6.49: StaadPro (Full model) P-Delta analysis moment My contour for bottom slab 
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             6.4.1.2 Comparison of Numbers of Unknowns 

    The floor slab idealized by 48 x 24 finite elements with 20 vertical members (columns 

and walls) shown in Figure 6.30, was used to compare the proposed method with the 

conventional matrix methods of analysis. The total number of unknowns for a building 

with same floor and of total N floors is: 

(a) Conventional matrix methods (6 DOFs/joint): 

S1 = [(49×25×N+20) ×6]             

(b) Proposed Method: 

The unknowns in the proposed method are composed of two parts: 

1-Coupled unknowns for one floor with 3 DOFs/joint, solved simultaneously and used to 

obtain the floors level stiffness. 

2-Two Rotations plus one axial translation for each column/wall at all levels including 

the supports level. The unknowns solved separately, each (20x3) unknowns per each 

level. 

S2 = [49×25×3] + [20×3] . (N+1) 

Note: coupled unknowns are in square brackets [ ]. 

For N= 150 floors: S1= 1,102,620 Coupled unknowns and, S2 = 12,735 unknowns 

(partially coupled), Ratio = S1/S2 = 86 times. 

6.4.1.3 Analysis of a hypothetical 150 floors Building using MFTProg 

   To evaluate the program running time, the floor, Figure 6.30, was used in a 150 floors 

hypothetical building, but with slab thickness of 0.25 m, and all floors height = 3.0 m. 

The building members are of elasticity, E = 40x106 kN/m2 and Poisson's ratio, v = 0.2 

The section properties of the vertical elements are: 

All Columns: 1.00 m x 1.00 m 

All shear walls are of thicknesses 0.5 m. 

  The building is subjected to lateral loads (F = 1.0 kN).  

  The problem was solved for elastic linear analysis using MFTProg. The elapsed running 

time was 83 seconds only. The displacement and twist rotation of the floors at the 

location of column#10, the bending moment and the shear force diagrams for the U-

Shaped core and the edge shear wall are shown in Figures 6.50 to 6.56 and Tables 6.37 to 

6.39. The global deformed shape of the building is shown in Figure 6.57.    
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Figure 6.50: 150 Floors Building, Bending Moment Diagram for U-Shaped Core (kN.m).   

Figure 6.51: 150 Floors Building, Shear Force Diagram for U-Shaped Core (kN).       
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Figure 6.52: 150 Floors Building, Bending Moment Diagram for Edge shear wall (kN.m).  

 

Figure 6.53: 150 Floors Building, Shear Force Diagram for Edge shear wall (kN).    
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Figure 6.54: 150 Floors Building, Displacements in y-direction (m).     

Figure 6.55: 150 Floors Building, Axial Displacements in column #10 (m).     
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Figure 6.56: 150 Floors Building, Floors Twist Rotations in radians. 

Figure 6.57: Perspective view for the deformed shape of the 150 Floors Building. 
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Table 6.37: Displacements and rotation in the top floor level (mm, rad), (150 Floor 

model): 

         

 

 

Table 6.38: Maximum bending moment (kN.m) and Shear Force (kN), in U-Shaped Core, 

(150 Floor model): 

Package Shear Moment 

MFTProg 80.973(*) 3290.189 

                              (*) Maximum value: at level 149. 

          

Table 6.39: Maximum bending moment (kN.m) and Shear Force (kN), in Edge Shear 

Wall, (150 Floor model): 

Package Shear Moment 

MFTProg 32.313(*) 578.573 

                              (*) Maximum value: at level 149. 

 

  6.4.1.4 Running time and numbers of unknowns for N numbers of floors  

     The same floor, Figure 6.30, was analyzed for different assumed numbers of floors. 

The elapsed running time and the comparison of the numbers of unknowns are shown in 

Figures 6.58 and 6.59 respectively, and in Tables 6.40 and 6.41.              

                     Table 6.40: Elapsed running time in seconds using MFTProg  

No. of Floors Running time (sec.) 

150 82.9 

300 119.7 

600 193.4 

900 267.4 

1000 292.1 

                                 

Package Y-Dir Axial (col.#10) Twist 

MFTProg 135.873 1.958 0.000528 
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                           Figure 6.58: Elapsed running time in seconds using MFTProg  

 

     Table 6.41: Comparison of numbers of unknowns 

No. of Floors Conventional (S1) MFTProg (S2) Ratio= S1/S2 

150 1,102,620 12,735 86.6 

300 2,205,120 21,735 101.5 

600 4,410,120 39,735 111.0 

900 6,615,120 57,735 114.6 

1000 7,350,120 63,735 115.3 
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                   Figure 6.59: Comparisons of the numbers of unknowns 

 

   From the above presentation, it is clearly seen that the analysis of super tall buildings 

can be easily performed and with very low cost by using MFTProg.  

   These comparisons have been carried out by using computer: Dell Inspiron, Intel(R) 

Core™i3-2350M CPU @ 2.30 GHz, 4.00 GB of RAM. 
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6.4.2 Buckling Analysis of the 3D building model  

  The buckling analysis for the 3D building model was carried out, using the proposed 

bisection method and by using the eign solution (Vianello method). Comparisons 

between the results assuming linear shape, cubic shape and Euler buckling with stability 

functions were also studied.  

  Table 6.42 shows the results of the fundamental buckling factor calculated using 

MFTProgV2 with the proposed bisection subroutine. The results are compared with those 

obtained using StaadProV8i and ETABS 2013. 

Table 6.42: Minimum Buckling factor using the different packages 

Buckling Analysis Package Minimum buckling factor 

MFTProgV2, Linear Shape 4.181 

MFTProgV2, Cubic Shape 4.165 

MFTProgV2, Euler stability functions 4.157 

StaadProV8i 4.152 

ETABS2013 (thin) 3.983 

ETABS2013 (thick) 4.731 

  The analysis was also carried out using the eign solution. The Vianello method was 

carried out for the first six buckling modes for the linear shape function. The results 

obtained were compared with those obtained from ETABS2013 thin and thick plate. The 

results are shown in Table 6.43, and the buckling mode shapes are shown in Figure 6.60. 

  

Table 6.43: Buckling factors of the first six modes using the different packages 

Buckling Analysis Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 

MFTProgV2 (Linear) 4.373 5.167 8.184 9.883 9.945 13.832 

ETABS2013 (thin) 3.983 4.832 7.724 9.129 9.375 12.943 

ETABS2013 (thick) 4.731 5.815 8.739 9.991 10.673 14.060 

        In Table 6.42, the MFTProgV2 Euler buckling analysis give very close result to the 

result of StaadProV8i, the percentage difference is 0.11%. 

The MFTProgV2 (Euler stability functions) is exact solution and gives less buckling 

factor compared to the cubic and the linear shapes buckling values. 
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  In Table 6.42, the results of MFTProgV2 linear deformed shape show greater values of 

the buckling factors than the cubic shape values and the results of the cubic shape show 

greater values than the Euler buckling values. The reason for these cases was already 

explained in the 2D model case. In Table 6.43, the buckling factors for all modes of 

MFTProgV2 (Linear), fall in-between the values of ETABS (thin) and ETABS (thick) 

and show good agreement.      

                               

                                 

                                               Figure 6.60: Buckling modes 1 to 6 

  The following cross check for the proposed bisection subroutine was carried out:  
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The calculated buckling factor found for the cubic shape was (4.165), which is greater 

than 1. Because the starting buckling factor is 1, this is means that the load factor is 

increased until the correct buckling factor is reached. The total load was multiplied by 10 

to keep the applied load greater than the building buckling load. By running MFTProgV2 

for the new applied loads, the load factor starts with 1.0 and then decreases until the 

correct buckling factor is reached. The calculated new buckling factor obtained was 

(0.41656) which is match with the value (4.165/10), and proves the efficiency of the 

proposed subroutine.  

6.4.3 Dynamic analysis for the 3D model 

  The dynamic analysis was performed for the 3D model. The response spectra method 

was performed first with linear effects and then the spectra was also performed including 

the P-Delta second order effects. The time history was then performed including the 

linear and also the second order effects. 

  The lumped mass and the mass polar inertia for the 3D model in any floor level were 

calculated as follows: 

 

                 Figure 6.61: Mass polar inertia for 4 lumped masses, (Proposal 1) 
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              Figure 6.62: Mass polar inertia for uniformly distributed mass, (Proposal 2) 

  In the three dimensional model, the total mass in any floor was calculated for the two 

proposals shown in Figures 6.61 and 6.62, as follows: 

mxtot = mytot =  18*12*24/9.80665 =  528.62 kg 

   The lumped masses in the x and y directions and the polar inertia for the 4 lumped 

masses in Proposal 1, were calculated as follows: 

For, a = b = 5.5 m: 

 The lumped masses in the x and y directions were: 

mxlumped = mylumped =  18*12*24/4/9.80665 = 132.155 kg 

and the polar inertia was: 

mro = 18*(12*24/4)*5.52*8/9.80665 = 31981.56 kg.m2 

 The polar inertia for the uniform mass in Proposal 2, was calculated as follows: 

mro = 18*(12*243/12+24*123/12)/9.80665 

       = 31717.25 kg.m2 

 The lumped masses in Proposal 1, is an approximation used in some packages to 

simplify and accelerate the eign solution. The relative percentage difference between the 

two proposals is: 

= (31981.56-31717.25)/31717.25*100 

= 0.83 % 

 The masses and moments of inertias for all floors of the two illustrated proposals of the 

3D building model are shown in Table 6.44. 
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Table 6.44: Floor Masses and Moments of Inertia of the 3D Building (Mass in kg and 

Moment of Inertia in kg.m2) 

Floor 
Mass, mxtot 

(kg) 

Mass, mytot 

(kg) 

Inertia mro 

(4 lumped 

masses)(kg.m2) 

Inertia mro 

(distributed)  

(kg.m2) 

1 to 25 528.62 528.62 31981.56 31717.25 

 

Table 6.45: Comparisons of the first nine Natural frequencies of 3D Building 

(cycles/second)  

Mode StaadProV8i1(%Diff) 
MFTProgV21 

(%Diff) 
MFTProgV22 

ETABS(thin)2 

(%Diff) 

ETABS(thick)2 

(%Diff) 

1 0.141 (0) 0.141 (0) 0.141 0.136 (-3.55) 0.149 (5.67) 

2 0.151 (0.67) 0.15 (0) 0.150 0.145 (-3.33) 0.159 (6) 

3 0.213 (0.95) 0.21 (-0.47) 0.211 0.206 (-2.37) 0.218 (3.32) 

4 0.494 (2.49) 0.481 (-0.21) 0.482 0.468 (-2.9) 0.505 (4.77) 

5 0.532 (3.3) 0.515 (0) 0.515 0.503 (-2.33) 0.541 (5.05) 

6 0.828 (3.5) 0.798 (-0.25) 0.800 0.789 (-1.38) 0.822 (2.75) 

7 1.033 (3.3) 0.998 (-0.2) 1.000 0.979 (-2.1) 1.031 (3.1) 

8 1.112 (4.02) 1.069 (0) 1.069 1.052 (-1.59) 1.106 (3.46) 

9 1.785 (4.32) 1.708 (-0.18) 1.711 1.683 (-1.64) 1.743 (1.87) 

     The superscripts 1 and 2 refer to Proposal 1 and Proposal 2 respectively. 

  As shown in table 6.45, the difference is very small and therefore, the two proposed 

cases were assumed identical. In all the comparisons StaadPro2004 and StaadProV8i 

packages used proposal 1 and all the other packages include MFTProgV2 are using the 

Proposal 2. The comparisons between the natural frequencies obtained using 

MFTProgV22 and the different analysis packages, show good agreement.    

6.4.4 Response spectra Analysis for the 3D model 

    The response spectra analysis was performed for the 3D model. As for the 2D model, 

the excited response acceleration was taken from the UBC design code with assumed 

damping ratio of 5%. The considered modal combination methods used in this analysis 

were the SRSS and the CQC methods. Comparisons of the lateral displacement, the base 
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shear and the base overturning moment for MFTProgV2 and the different packages are 

shown in Tables 6.50 to 6.53. 

Table 6.46: Comparison of the modal masses participating ratios in x-direction: 

Mode MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

1 0 0  0  0  

2 73.147 73.48 (0.46) 72.864 (-0.39) 73.488 (0.47) 

3 0 0  0  0  

4 0 0  0  0  

5 12.983 13.13 (1.13) 13.105 (0.94) 12.845 (-1.06) 

6 0 0  0  0  

7 0 0  0  0  

8 5.405 5.28 (-2.31) 5.463 (1.07) 5.292 (-2.09) 

9 0 0  0  0  

Table 6.47: Comparison of the accumulated modal masses participating ratios in x-

direction: 

Mode MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

1 0 0  0  0  

2 73.147 73.477 (0.45) 72.864 (-0.39) 73.488 (0.47) 

3 73.147 73.477 (0.45) 72.864 (-0.39) 73.488 (0.47) 

4 73.147 73.477 (0.45) 72.864 (-0.39) 73.488 (0.47) 

5 86.13 86.609 (0.56) 85.969 (-0.19) 86.334 (0.24) 

6 86.13 86.609 (0.56) 85.969 (-0.19) 86.334 (0.24) 

7 86.13 86.609 (0.56) 85.969 (-0.19) 86.334 (0.24) 

8 91.535 91.891 (0.39) 91.432 (-0.11) 91.626 (0.1) 

9 91.535 91.891 (0.39) 91.432 (-0.11) 91.626 (0.1) 
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Table 6.48: Comparison of the modal masses participating ratios in y-direction: 

Mode MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

1 48.499 49.21 (1.47) 47.754 (-1.54) 48.675 (0.36) 

2 0 0  0  0  

3 22.148 21.74 (-1.84) 22.679 (2.4) 22.081 (-0.3) 

4 8.095 8.22 (1.54) 8.048 (-0.58) 8.045 (-0.62) 

5 0 0  0  0  

6 6.994 7.01 (0.23) 7.115 (1.73) 7.052 (0.83) 

7 3.062 3.05 (-0.39) 3.087 (0.82) 2.982 (-2.61) 

8 0 0  0  0  

9 2.231 2.09 (-6.32) 2.097 (-6.01) 1.935 (-13.27) 

 

Table 6.49: Comparison of the accumulated modal masses participating ratios in y-

direction: 

Mode MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

1 48.499 49.212 (1.47) 47.754 (-1.54) 48.675 (0.36) 

2 48.499 49.212 (1.47) 47.754 (-1.54) 48.675 (0.36) 

3 70.646 70.952 (0.43) 70.433 (-0.3) 70.756 (0.16) 

4 78.742 79.167 (0.54) 78.481 (-0.33) 78.801 (0.07) 

5 78.742 79.167 (0.54) 78.481 (-0.33) 78.801 (0.07) 

6 85.736 86.18 (0.52) 85.596 (-0.16) 85.853 (0.14) 

7 88.799 89.228 (0.48) 88.682 (-0.13) 88.835 (0.04) 

8 88.799 89.228 (0.48) 88.682 (-0.13) 88.835 (0.04) 

9 91.029 91.321 (0.32) 90.78 (-0.27) 90.77 (-0.28) 

  The comparisons between the modal masse participating ratios and their accumulations 

in the x and y directions using the proposed method, StaadProV8i and ETABS thin and 

thick plates show a very small differences, as shown in Tables.  
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I- Lateral Displacement at the top floor of the 3D building model 

  Tables 6.50 and 6.51  show the lateral displacement response at the top floor of the 

building model due to the UBC design code acceleration response curve, obtained by 

response spectra analysis in y-direction using MFTProgV2 and the other packages for 

proposal 1 and 2 respectively. 

Table 6.50: Comparison of the lateral displacement response at the top floor (m), 

Proposal 1 

Response 
MFTProg

V2 

StaadProV8i 

(%Diff) 

ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

SAP2000 

(thin) 

(%Diff) 

SAP2000 

(thick) 

(%Diff) 

ALL SRSS 0.46146 0.463041 

(0.34) 

0.474174 

(2.76) 

0.436886 

(-5.33) 

0.46662 

(1.12) 

0.43056  

(-6.7) 

ALL CQC 0.468434 0.470168 

(0.37) 

0.481418 

(2.77) 

0.445146 

(-4.97) 

0.47289 

(0.95) 

0.43792  

(-6.51) 

Table 6.51: Comparison of the lateral displacement response at the top floor (m), 

Proposal 2 

Response 
MFTProg

V2 

StaadProV8i 

(%Diff) 

ETABS(thin) 

(%Diff) 

ETABS(thick

) (%Diff) 

SAP2000 

(thin) 

(%Diff) 

SAP2000 

(thick) 

(%Diff) 

ALL SRSS 0.44462 0.463041 

(4.14) 

0.474174 

(6.65) 

0.436886 

(-1.74) 

0.46662 

(4.95) 

0.43056  

(-3.16) 

ALL CQC 0.45571 0.470168 

(3.17) 

0.481418 

(5.64) 

0.445146 

(-2.32) 

0.47289 

(3.77) 

0.43792  

(-3.9) 

Proposal 1 used the displacements responses calculated from the acceleration response 

(Sd = Sa/ω
2), and the participation factor of the mode, while Proposal 2 used the 

displacement obtained from a full frame analysis using the equivalent static forces 

obtained from the acceleration responses. 

  Table 6.50 gives the total lateral displacement at the top floor of the building structures, 

proposal 1. For the SRSS, the closest results to MFTProgV2 result is obtained from 

StaadProV8i which is of 0.34 % difference, and for the CQC, the closest result is also 

obtained from StaadProV8i which is of 0.37 % difference.  

  Table 6.51 gives the total lateral displacement at the top floor of the building structures, 

proposal 2. For the SRSS, the closest result to MFTProgV2 result is obtained from 

ETABS (thick) which is of -1.74 % difference, and for the CQC, the closest result is also 

obtained from ETABS (thick) which is of -2.32 % difference. 



 179 

MFTProgV2 proposal 1 gives closer results to the different packages than proposal 2.   

II- Resultant Shear Force at the Base of the 3D building model 

  Table 6.52, shows the resultant shear force response at the base of the building due to 

the UBC design code acceleration response curve, obtained by response spectra analysis 

in y-direction using the proposed method and the other packages. 

Table 6.52: Comparisons of the Response Spectrum Base Shear force (kN): 

Mode 
MFTProg

V2 

StaadProV

8i(%Diff) 

ETABS 

(thin) 

(%Diff) 

ETABS 

(thick) 

(%Diff) 

SAP2000 

(thin) 

(%Diff) 

SAP2000 

(thick) 

(%Diff) 

1 2305.62 2333.19 

(1.2) 

2191.59  

(-4.95) 

2454.66 

(6.46) 
-  -  

2 0 0  0  0  -  -  

3 1572.23 1564.77  

(-0.47) 

1580.22 

(0.51) 

1622.56 

(3.2) 
-  -  

4 1314.65 1370.1 

(4.22) 

1280.28  

(-2.61) 

1367.77 

(4.04) 
-  -  

5 0 0  0  0  -  -  

6 1884.42 1958.62 

(3.94) 

1897.17 

(0.68) 

1951.38 

(3.55) 
-  -  

7 1032.11 1067.59 

(3.44) 

1020.79  

(-1.1) 

1041.16 

(0.88) 
-  -  

8 0 0  0  0  -  -  

9 1286.22 1267.96  

(-1.42) 

1213.97   

(-5.62) 

1150.01  

(-10.59) 
-  -  

ALL 

SRSS 

3973.26 

  

4043.87 

(1.78) 

3879.98  

(-2.35) 

4091.85 

(2.98) 

3871.973 

(-2.55) 

4092.598 

(3.00) 

ALL 

CQC 

4168.21 

 

4228.81 

(1.45) 

4073.39  

(-2.27) 

4298.29 

(3.12) 

4140.134 

(-0.67) 

4346.12 

(4.27) 

  Table 6.52 gives the total shear forces at the base of the building structure in y-direction. 

For the SRSS, the closest result to MFTProgV2 is obtained from StaadProV8i which is of 

1.78 % difference, and for the CQC, the closest result is obtained from SAP2000V16 

(thin) which is of -0.67 % difference.  
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III- Resultant overturning moment at the Base of the 3D building model 

Table 6.53, shows the resultant overturning moment response at the base of the building 

due to the UBC design code acceleration response curve, obtained by response spectra 

analysis in y-direction using the proposed method and the other packages. 

Table 6.53: Comparisons of the Response Spectrum Base Overturning Moment (kN.m): 

Mode MFTProgV2 

StaadProV8

i(%Diff) 

ETABS 

(thin) 

(%Diff) 

ETABS 

(thick) 

(%Diff) 

SAP2000 

(thin) 

(%Diff) 

SAP2000 

(thick) 

(%Diff) 

1 -145366.59 -146700.9 

(0.92) 

-138438  

(-4.77) 

-154679 

(6.41) 
-  -  

2 0 0  0  0  -  -  

3 -102515.18 

 

-102117.5  

(-0.39) 

-103282 

(0.75) 

-106080 

(3.48) 
-  -  

4 -9221.24 

 

-9097.35  

(-1.34) 

-9143.45 

(-0.84) 

-8846.03 

(-4.07) 
-  -  

5 0 0  0  0  -  -  

6 -22382.84 

 

-21819.11  

(-2.52) 

-22445 

(0.28) 

-22616.1 

(1.04) 
-  -  

7 -12626.8 

 

-13035.05 

(3.23) 

-12716.9 

(0.71) 

-12760.3 

(1.06) 
-  -  

8 0 0  0  0  -  -  

9 -8686.49 

 

-8260.81  

(-4.9) 

-7851.48 

(-9.61) 

-6884.64 

(-20.74) 
-  -  

ALL 

SRSS 

180171.37 

 

180958.9 

(0.44) 

175051.4 

(-2.84) 

189680.1 

(5.28) 

160393.43 

(-10.98) 

173203.79 

(-3.87) 

ALL 

CQC 

185357.62 

 

185888.57 

(0.29) 

179882.5 

(-2.95) 

195681.3 

(5.57) 

164315.07 

(-11.35) 

178126.49 

(-3.9) 

   Table 6.53 gives the total overturning moment at the base of the building structure 

about x-axis. For the SRSS, the closest result to MFTProgV2 result is obtained from 

StaadProV8i which is of 0.44 % difference, and for the CQC, the closest result is 

obtained from StaadProV8i which is of 0.29 % difference.  
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6.4.5 P-Delta response spectra analysis 

   The P-Delta second order analysis was incorporated in the dynamic analysis using the 

direct iteration method and the inverse iteration method (Stodola concept), and using the 

cubic-displacement shape. As for the linear dynamic analysis, the natural first nine 

natural frequencies together with the corresponding mode shapes were computed.  

Table 6.54: Comparisons of the first nine P-Delta natural frequencies (cycle/second): 

Mode 
StaadProV8i1 

(%Diff) 

MFTProgV21 

(%Diff) 
MFTProgV22 

ETABS(thin)2 

(%Diff) 

ETABS(thick)2 

(%Diff) 

1 0.124 (0) 0.124 (0) 0.124 0.118 (-4.84) 0.133 (7.26) 

2 0.136 (0.74) 0.135 (0) 0.135 0.129 (-4.44) 0.145 (7.41) 

3 0.202 (1) 0.199 (-0.5) 0.200 0.195 (-2.5) 0.206 (3) 

4 0.466 (2.64) 0.453 (-0.22) 0.454 0.438 (-3.52) 0.477 (5.07) 

5 0.507 (3.47) 0.49 (0) 0.490 0.476 (-2.86) 0.516 (5.31) 

6 0.812 (3.7) 0.782 (-0.13) 0.783 0.771 (-1.53) 0.803 (2.55) 

7 0.996 (3.43) 0.961 (-0.21) 0.963 0.941 (-2.28) 0.994 (3.22) 

8 1.08 (4.25) 1.036 (0) 1.036 1.016 (-1.93) 1.072 (3.47) 

9 1.745 (4.62) 1.665 (-0.18) 1.668 1.637 (-1.86) 1.697 (1.74) 

         The superscripts 1 and 2 refer to Proposal 1 and Proposal 2 respectively. 

 

 As shown in Table 6.54, the comparison between the natural frequencies using 

MFTProgV2 and the different analysis packages shows good agreement.  
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Table 6.55: Comparison of the P-Delta modal masses participating ratios in x-direction: 

Mode MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

1 0 0  0  0  

2 73.313 73.65 (0.46) 73.025 (-0.39) 73.656 (0.47) 

3 0 0  0  0  

4 0 0  0  0  

5 12.802 12.96 (1.23) 12.925 (0.96) 12.673 (-1.01) 

6 0 0  0  0  

7 0 0  0  0  

8 5.398 5.26 (-2.56) 5.458 (1.11) 5.28 (-2.19) 

9 0 0  0  0  

Table 6.56: Comparison of the accumulated P-Delta modal masses participating ratios in 

x-direction: 

Mode MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

1 0 0  0  0  

2 73.313 73.647 (0.46) 73.025 (-0.39) 73.656 (0.47) 

3 73.313 73.647 (0.46) 73.025 (-0.39) 73.656 (0.47) 

4 73.313 73.647 (0.46) 73.025 (-0.39) 73.656 (0.47) 

5 86.116 86.611 (0.57) 85.95 (-0.19) 86.328 (0.25) 

6 86.116 86.611 (0.57) 85.95 (-0.19) 86.328 (0.25) 

7 86.116 86.611 (0.57) 85.95 (-0.19) 86.328 (0.25) 

8 91.513 91.875 (0.4) 91.408 (-0.11) 91.608 (0.1) 

9 91.513 91.875 (0.4) 91.408 (-0.11) 91.608 (0.1) 
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Table 6.57: Comparison of the P-Delta modal masses participating ratios in y-direction: 

Mode MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

1 47.881 48.63 (1.56) 46.719 (-2.43) 47.473 (-0.85) 

2 0 0  0  0  

3 22.784 22.34 (-1.95) 23.733 (4.17) 23.312 (2.32) 

4 7.979 8.12 (1.77) 7.917 (-0.78) 7.91 (-0.86) 

5 0 0  0  0  

6 7.04 7.04 (0) 7.173 (1.89) 7.118 (1.11) 

7 3.082 3.07 (-0.39) 3.105 (0.75) 2.991 (-2.95) 

8 0 0  0  0  

9 2.016 1.86 (-7.74) 1.954 (-3.08) 1.813 (-10.07) 

 

Table 6.58: Comparison of the accumulated P-Delta modal masses participating ratios in 

y-direction: 

Mode MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

1 47.881 48.633 (1.57) 46.719 (-2.43) 47.473 (-0.85) 

2 47.881 48.633 (1.57) 46.719 (-2.43) 47.473 (-0.85) 

3 70.666 70.972 (0.43) 70.452 (-0.3) 70.785 (0.17) 

4 78.645 79.091 (0.57) 78.369 (-0.35) 78.695 (0.06) 

5 78.645 79.091 (0.57) 78.369 (-0.35) 78.695 (0.06) 

6 85.685 86.135 (0.53) 85.542 (-0.17) 85.813 (0.15) 

7 88.767 89.204 (0.49) 88.647 (-0.14) 88.804 (0.04) 

8 88.767 89.204 (0.49) 88.647 (-0.14) 88.804 (0.04) 

9 90.783 91.064 (0.31) 90.601 (-0.2) 90.616 (-0.18) 

The comparisons between the modal mass participating ratios and their accumulations in 

the x and y directions using MFTProgV2, StaadProV8i and ETABS thin and thick plates 

show very small differences, as shown in Tables 6.55 to 6.58. 
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I- Lateral Displacement at the top floor of the 3D building model 

  Tables 6.59 and 6.60, show the lateral displacement response at the top floor of the 

building model due to the UBC design code acceleration response curve, obtained by 

response spectra analysis in y-direction using MFTProgV2 and the other packages for 

proposals 1 and 2 respectively. 

Table 6.59: Comparison of the P-Delta lateral displacement response at the top floor (m), 

Proposal 1 

Response MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

ALL SRSS 0.510297 0.512864 (0.5) 0.527419 (3.36) 0.474082 (-7.1) 

ALL CQC 0.515622 0.518369 (0.53) 0.532894 (3.35) 0.480804 (-6.75) 

Table 6.60: Comparison of the P-Delta lateral displacement response at the top floor (m), 

Proposal 2 

Response MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

ALL SRSS 0.49683 0.512864 (3.23) 0.527419 (6.16) 0.474082 (-4.58) 

ALL CQC 0.50595 0.518369 (2.45) 0.532894 (5.33) 0.480804 (-4.97) 

Proposal 1 used the displacements responses calculated from the acceleration response 

(Sd = Sa/ω
2), and the participation factor of the mode, while Proposal 2 used the 

displacement obtained from a full frame analysis using the equivalent static forces 

obtained from the acceleration responses. 

   Table 6.59 gives the total lateral displacement at the top floor of the building structure 

for proposal 1. For the SRSS, the closest results to MFTProgV2 result is obtained from 

StaadProV8i which is of 0.50 % difference, and for the CQC, the closest result is 

obtained from StaadProV8i which is of 0.53 % difference.  

   Table 6.60 gives the total lateral displacement at the top floor of the building structure 

for proposal 2. For the SRSS, the closest result to MFTProgV2 is obtained from 

StaadProV8i which is of 3.23 % difference, and for the CQC, the closest result is 

obtained from StaadProV8i which is of 2.45 % difference. 

MFTProgV2 proposal 1 gives closer results to the different packages than proposal 2.   
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II- Resultant Shear Force at the Base of the 3D building model 

  Table 6.61, shows the resultant shear force response at the base of the building due to 

the UBC design code acceleration response curve, obtained by response spectra analysis 

in y-direction using MFTProgV2 and the other packages. 

Table 6.61.: Comparisons of the Response Spectrum P-Delta Base Shear force (kN): 

Mode MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

1 2005.87 2030.48 (1.23) 1860.32 (-7.26) 2130.75 (6.23) 

2 0 0  0  0  

3 1533.88 1523.34 (-0.69) 1559.43 (1.67) 1625.35 (5.96) 

4 1234.13 1287.42 (4.32) 1183.01 (-4.14) 1280.35 (3.75) 

5 0 0  0  0  

6 1868.76 1933.81 (3.48) 1873.58 (0.26) 1935.15 (3.55) 

7 1005.49 1030.98 (2.54) 991.11 (-1.43) 1002.33 (-0.31) 

8 0 0  0  0  

9 1160.49 1107.51 (-4.57) 1107.15 (-4.6) 1057.38 (-8.89) 

ALL SRSS 3708.017 3758.99 (1.37) 3607.01 (-2.72) 3832.58 (3.36) 

ALL CQC 3892.608 3936.16 (1.12) 3791.92 (-2.59) 4024.72 (3.39) 

   Table 6.61 gives the total shear forces at the base of the building structure in y- 

direction. For the SRSS, the closest result to MFTProgV2 result is obtained from 

StaadProV8i which is of 1.37 % difference, and for the CQC, the closest result is 

obtained from StaadProV8i which is of 1.12 % difference. 

III- Resultant overturning moment at the Base of the 3D building model 

Table 6.62, shows the resultant overturning moment response at the base of the building 

due to the UBC design code acceleration response curve, obtained by response spectra 

analysis in y-direction using MFTProgV2 and the other packages. 
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Table 6.62: Comparisons of the Response Spectrum P-Delta Base Overturning Moment: 

Mode MFTProgV2 StaadProV8i(%Diff) 
ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

1 126256.2 127431.8 (0.93) 117317 (-7.08) 134041 (6.17) 

2 0 0 0 0 

3 100202.5 99637.42 (-0.56) 102035 (1.83) 106332 (6.12) 

4 8114.251 8042.87 (-0.88) 7886.82 (-2.8) 7688.28 (-5.25) 

5 0 0 0 0 

6 22219.54 21529.95 (-3.1) 22205.3 (-0.06) 22448.3 (1.03) 

7 12864.73 13152.42 (2.24) 12925.8 (0.47) 12812.3 (-0.41) 

8 0 0 0 0 

9 7775.739 7106.545 (-8.61) 7166.84 (-7.83) 6317.45 (-18.75) 

ALL SRSS 163605.25 164067.6 (0.28) 157949.6 (-3.46) 173322.3 (5.94) 

ALL CQC 167270.83 167570.2 (0.18) 161333.1 (-3.55) 177753 (6.27) 

  Table 6.62 gives the total overturning moment (in kN.m), at the base of the building 

structure about x-axis. For the SRSS, the closest result to MFTProgV2 result is obtained 

from StaadProV8i which is of 0.28 % difference, and for the CQC, the closest result is 

also obtained from StaadProV8i which is of 0.18 % difference.  

6.4.6 Time History Analysis for the 3D model 

    Time history analysis was performed for the 3D model. The natural frequencies and 

the corresponding mode shapes calculated in the previous section and used in the 

response spectra method were used with the El Centro earthquake time history 

acceleration records assumed applied at the base of the building. The assumed damping 

ratio is 5%. Comparisons of the lateral displacement at the top floor level, the base shear 

and the base overturning moment for MFTProgV2 and the different packages are 

presented.  

I- Lateral Displacement at the top floor of the 3D building model 

  Figures 6.63 to 6.68 give the graphs for the lateral displacement history at the top floor 

of the building model due to El Centro earthquake, obtained by time history analysis in y-

direction using MFTProgV2 and the other packages. The minimum and the maximum 

responses are shown in Table 6.63. 
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Figure 6.63: History of displacement in y-direction at the top floor level using 

MFTProgV2 

   

 

Figure 6.64: History of displacement in y-direction at the top floor level using 

StaadProV8i 
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Figure 6.65: History of displacement in y-direction at the top floor level using ETABS 

(thin plate) 

 

 

Figure 6.66: History of displacement in y-direction at the top floor level using ETABS 

(thick plate) 
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Figure 6.67: History of displacement in y-direction at the top floor level using 

SAP2000V16 (thin plate) 

 

Figure 6.68: History of displacement in y-direction at the top floor level using 

SAP2000V16 (thick plate). 
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Table 6.63: Minimum and maximum displacements at the top floor (mm): 

Response 
MFTProgV2 

StaadProV8i

(%Diff) 

ETABS(thin) 

(%Diff) 

ETABS(thick)

(%Diff) 

SAP(thin) 

(%Diff) 

SAP(thick) 

(%Diff) 

Minimum  -390.3 

 

-398  

(1.97) 

-388.5  

(-0.46) 

-381.9  

(-2.15) 

-403.9 

(3.48) 

-355.8  

(-8.84) 

At time 12.3 12.2 12.7 18.1 12.7 3.86 

Maximum  399.3 

 

394  

(-1.33) 

411  

(2.93) 

382.8  

(-4.13) 

413.4  

(3.53) 

360.2 

(-9.79) 

At time 15.64 15.6 15.84 15 15.76 1.492 

   The diagrams shown in Figures 6.63 to 6.68 are similar and show very good agreement. 

Table 6.63 gives the maximum and minimum response values together with the 

corresponding time. For the minimum response, the closest result to MFTProgV2 result is 

obtained from ETABS (thin) which is of -0.46 % difference, and for the maximum 

response, the closest result is obtained from StaadProV8i which is of -1.33 % difference.  

II- Resultant Shear Force at the Base of the 3D building model 

Figures 6.69 to 6.73 give the graphs for the resultant shear force history in kN at the base 

of the building obtained by time history analysis in y-direction using MFTProgV2 and the 

other packages. The minimum and the maximum responses are shown in Table 

6.64.

           Figure 6.69: History of base Shear in y-direction using MFTProgV2 
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Figure 6.70: History of base Shear in y-direction using ETABS (thin plate) 

 

 

Figure 6.71: History of base Shear in y-direction using ETABS (thick plate) 
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Figure 6.72:  History of base Shear in y-direction using SAP2000V16 (thin plate) 

 

Figure 6.73: History of base Shear in y-direction using SAP2000V16 (thick plate) 
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Table 6.64: Minimum and maximum base shear (kN): 

Response 
MFTProgV2 

StaadProV8i(

%Diff) 

ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

SAP(thin) 

(%Diff) 

SAP(thick) 

(%Diff) 

Minimum  
-4640 N.A 

-4055 

(-12.61) 

-5152 

(11.03) 

-3478  

(-25.04) 

-4276  

(-7.84) 

At time 6.14 N.A 6.18 6.1 4.44 6.04 

Maximum  
4931.9 

5190.859 

(5.25) 

4758  

(-3.53) 

4982  

(1.02) 

5187  

(5.17) 

5259   

(6.63) 

At time 3 2.951389 3.02 2.98 2.98 2.96 

  The diagrams shown in Figures 6.69 to 6.73 are similar and show very good agreement. 

Table 6.64 gives the maximum and minimum total shear forces at the base of the building 

structure with the corresponding time. For the minimum response, the closest result to 

MFTProgV2 result is obtained from SAP2000V16 (thick) which is of -7.84 % difference, 

and for the maximum response, the closest result is obtained from ETABS (thick)  which 

is of 1.02 % difference.  

III- Resultant overturning moment at the Base of the 3D building model 

Figures 6.74 to 6.78 give the graphs for the resultant overturning moment history in kN.m 

at the base of the building about x-axis obtained by time history analysis in y-direction 

using MFTProgV2 and the other packages. The minimum and the maximum responses 

are shown in Table 6.65. 

 

 

Figure 6.74: History of base overturning moment about x-direction using MFTProgV2 
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Figure 6.75: History of base overturning moment about x-direction using ETABS (thin 

plate) 

 

 

Figure 6.76: History of base overturning moment about x-direction using ETABS (thick 

plate) 
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Figure 6.77: History of base overturning moment about x-direction using SAP2000V16 

(thin plate) 

 

 

 

Figure 6.78: History of base overturning moment about x-direction using SAP2000V16 

(thick plate) 
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Table 6.65: Minimum and maximum base overturning moment (kN.m): 

Response 
MFTProgV2 

StaadProV8i

(%Diff) 

ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

SAP(thin) 

(%Diff) 

SAP(thick) 

(%Diff) 

Minimum  
-154288.9 N.A. 

-143900     

(-6.73) 

-177500 

 (15.04) 

-151700  

(-1.68) 

-176500 

(14.4) 

At time 3.96 N.A. 3.94 3.94 3.94 3.92 

Maximum  
162225.3 N.A.  

150500      

(-7.23) 

163500 

(0.79) 

134100  

(-17.34) 

146000 

 (-10) 

At time 15.48 N.A. 15.5 15.44 15.46 15.08 

  The diagrams shown in Figures 6.74 to 6.78 are similar and show very good agreement. 

Table 6.65 gives the maximum and minimum response values together with the 

corresponding time. For the minimum response, the closest result to MFTProgV2 result is 

obtained from SAP2000V16(thin) which is of -1.68 % difference, and for the maximum 

response, the closest result is obtained from ETABS (thick)  which is of 0.79 % 

difference.  

6.4.7 P-Delta time history analysis for the 3D model 

   The P-Delta second order analysis for the 3D model was incorporated in the dynamic 

time history analysis using the direct iteration method and the inverse iteration method 

(Stodola concept) and using the cubic-displacement shape. As for the linear dynamic 

analysis, the first nine natural frequencies together with the corresponding mode shapes 

were computed and used in the analysis.  

I- Lateral Displacement at the top floor of the 3D building model 

  Figures 6.79 to 6.82 give the graphs for the lateral displacement at the top floor of the 

building model obtained by time history analysis in y-direction using MFTProgV2 and 

the other packages. The minimum and the maximum responses are shown in Table 6.66. 



 197 

 

Figure 6.79: History of P-Delta displacement in y-direction at the top floor level using 

MFTProgV2 

 

 

Figure 6.80: History of P-Delta displacement in y-direction at the top floor level using 

StaadProV8i 
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Figure 6.81: History of P-Delta displacement in y-direction at the top floor level using 

ETABS (thin plate) 

 

 

Figure 6.82: History of P-Delta displacement in y-direction at the top floor level using 

ETABS (thick plate) 
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Table 6.66: Minimum and maximum P-Delta displacements at the top floor (mm): 

Response 
MFTProgV2 

StaadProV8i 

(%Diff) 

ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

Minimum  -404.6 -410 (1.33) -363.4 (-10.18) -390.9 (-3.39) 

At time 12.84 12.8 12.92 12.7 

Maximum  380.411 368 (-3.26) 314.6 (-17.3) 399.4 (4.99) 

At time 16.26 16.2 16.38 15.92 

  The diagrams shown in Figures 6.79 to 6.82 are similar and show very good agreement. 

Table 6.66 gives the maximum and minimum response values together with the 

corresponding time. For the minimum response, the closest result to MFTProgV2 result is 

obtained from StaadProV8i which is of 1.33 % difference, and for the maximum 

response, the closest result is also obtained from StaadProV8i which is of -3.26 % 

difference.  

II- Resultant Shear Force at the Base of the 3D building model 

Figures 6.83 to 6.85 give the graphs for the resultant shear force history in kN at the base 

of the building obtained by time history analysis in y-direction using MFTProgV2 and the 

other packages. The minimum and the maximum responses are shown in Table 6.67. 

 

        Figure 6.83: History of P-Delta base Shear history in y-direction using MFTProgV2 
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Figure 6.84: History of P-Delta base Shear in y-direction using ETABS (thin plate) 

 

 

Figure 6.85: History of P-Delta base Shear in y-direction using ETABS (thick plate) 
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Table 6.67: Minimum and maximum P-Delta base shear (kN): 

Response 
MFTProgV2 

StaadProV8i 

(%Diff) 

ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

Minimum  -3398.81 N.A. -3135 (-7.76) -4205 (23.72) 

At time 6.2 N.A. 1.62 6.14 

Maximum  4547.363 4888.243 (7.5) 4432 (-2.54) 4713 (3.64) 

At time 3.02 2.973611 3.04 3 

   The diagrams shown in Figures 6.83 to 6.85 are similar and show very good agreement. 

Table 6.67 gives the maximum and minimum total shear forces at the base of the building 

structure with the corresponding time. For the minimum response, the closest result to 

MFTProgV2 result is obtained from ETABS (thin) which is of -7.76 % difference, and 

for the maximum response, the closest result is also obtained from ETABS (thin) which 

is of -2.54 % difference.  

III- Resultant overturning moment at the Base of the 3D building model 

Figures 6.86 to 6.88 give the graphs for the resultant overturning moment history in kN.m  

at the base of the building about x-axis obtained by time history analysis in y-direction 

using MFTProgV2 and the other packages. The minimum and the maximum responses 

are shown in Table 6.68. 

 

Figure 6.86: History of P-Delta base overturning moment about x-direction using 

MFTProgV2 
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Figure 6.87: History of P-Delta base overturning moment about x-direction using ETABS 

(thin plate) 

 

 

Figure 6.88: History of P-Delta base overturning moment about x-direction using ETABS 

(thick plate) 
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Table 6.68: Minimum and maximum P-Delta base overturning moment (kN.m): 

Response 
MFTProgV2 

StaadProV8i 

(%Diff) 

ETABS(thin) 

(%Diff) 

ETABS(thick) 

(%Diff) 

Minimum  -149895 N.A.  -137600 (-8.2) -166500 (11.08) 

At time 28.78 N.A. 28.88 3.96 

Maximum  117620.2 N.A. 118200 (0.49) 165200 (40.45) 

At time 15.6 N.A.  26.2 15.54 

  The diagrams shown in Figures 6.86 to 6.88 are similar and show very good agreement. 

Table 6.68 gives the maximum and minimum response values together with the 

corresponding time. For the minimum response, the closest result to MFTProgV2 result is 

obtained from ETABS (thin) which is of -8.2 % difference, and for the maximum 

response, the closest result is also obtained from ETABS (thin) which is of 0.49 % 

difference.  
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                               CHAPTER SEVEN 

                  Conclusions and Recommendations 

7.1 General Conclusions 

1. A comprehensive review and study of the linear and nonlinear, static and dynamic, and 

stability analyses of tall buildings have been carried out. The study clearly shows the 

need for and importance of simplifying these complicated analyses methods. 

2. Based on the moment transformation method (MT), the moment-force transformation 

method (MFT) has been developed to incorporate the axial deformations in the vertical 

members so as to be used in the analysis of super-tall buildings such as the tube and 

outrigger structures.  

3. The moment-force transformation method (MFT) has been further developed to solve 

instability problems, nonlinear static, and linear and nonlinear dynamic analysis of tall 

buildings using the response spectra and the time-history analysis methods.  

4. The computer program MFTProg has been developed and used in the static linear 2D 

and 3D analysis of tall buildings neglecting and/or including the axial deformations in the 

vertical members.  

5. The computer program MFTProgV2 has been developed and used in the buckling 

analysis and the static and dynamic, linear and nonlinear 2D and 3D analysis of tall 

buildings.  

6. The developed programs allow the use of different plates to represent slabs of different 

shapes or thicknesses in one model. 

7. The accuracy of the results obtained using the developed programs were verified by 

comparison with results from known finite elements solvers. 

8. The saving in computer storage and computing time provided by the proposed 

programs allow rapid re-analysis of the building to be accomplished in the preliminary 

analysis and design stages, and in the cases of repeated analysis types such as in the 

buckling and vibration problems. 

9. The ease in data preparation and interpretation of final results, compared with finite 

element packages, is one of the main advantages of the method. 

10. The simplicity in programming the method is an added advantage. 
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7.2 Results Conclusion 

1- The maximum differences in the results obtained using MFTProg to analyze a two 

floor one-bay portal frame subjected to both vertical and horizontal loads compared with 

the published results were found to be -0.12 % for the bending moments and 0.13 % for 

the horizontal support reaction (neglecting shear deformations). 

2- The maximum difference in the obtained moments results using MFTProg in the 

analysis of a two floor two-bay portal frame with setback subjected to both vertical and 

horizontal loads compared with the published results was found to be -0.11 % 

(considering shear deformations). 

3- A fifteen floors multistory square building including four shear walls and subjected to 

unsymmetrical lateral loads was analyzed using MFTProg. The closest differences in the 

maximum shear forces and the bending moments and the displacements and rotations 

measured in the upper left corner of the building plan compared with the results obtained 

using the structural analysis packages ETABS and STAADPro2004, were as follows: 

4.88 % for displacement in x-direction. 

2.98 % for displacement in y-direction. 

-2.34 % floor twist rotation. 

The percentage difference of 7.85 % in the shear force was noticed in shear wall #4 with 

a difference of -0.2 % in bending moment. Shear wall #4 resists very small values of 

stresses compared with its section.  

 The differences in results of the other walls were: 

0.19 %  and -0.28 % for shear force and bending moment respectively, in shear wall  #1. 

-0.62 %  and 1.93 % for shear force and bending moment respectively, in shear wall  #2. 

-0.92 %  and 1.84 % for shear force and bending moment respectively, in shear wall  #3. 

4- As case study 1, the analysis of a 2D frame of 15 floors Building model subjected to 

vertical and lateral loads was carried out. The results obtained using MFTProgV2 were 

compared with those obtained using StaadPro2004, StaadProV8i, SAP200V16 and 

ETABS, for different analysis types as follows: 

A-Static Linear and second order Analysis   

In Static Linear and second order Analysis of the building model the maximum 

differences in the results with exact results were as follows: 
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0.27 % for lateral displacement at the top floor level in linear analysis. 

0.07 % for axial displacement at the top floor level in linear analysis. 

-0.66 % for maximum bending moment in the lower level of the columns in linear 

analysis. 

0.26 % for lateral displacement at the top floor level in P-Delta analysis. 

0.14 % for axial displacement at the top floor level in P-Delta analysis. 

-0.60 % for maximum bending moment in the lower level of the columns in P-Delta 

analysis. 

B-Buckling Analysis of the building model 

The MFTProgV2 cubic shape results show very close critical buckling result compared to 

the values of StaadPro2014 (Stardyne advanced Engine), with a percentage difference of 

-0.03%.  

C-Dynamic analysis of the building model  

In a linear and second order dynamic analysis of the model, comparison between the 

natural frequencies, the mode shapes and the mass participation ratios show almost 

identical results.  

D-Response Spectra Linear Analysis: 

 The lateral displacement results obtained by performing response spectrum analysis were 

calculated. For the SRSS method, very close results were obtained by the proposed 

method and SAP2000V16 with a maximum of 0.0006 % difference. For the CQC 

method, very close results were obtained from the proposed method and ETABS with a 

maximum of 0.0047 % difference.  

The base shear results obtained by performing response spectrum analysis were 

calculated. For the SRSS method, the closest results to the proposed method results were 

obtained from SAP2000V16 with a maximum of 0.43 % difference, and for the CQC 

method, the closest results to the proposed method were obtained from StaadProV8i with  

0.24 % maximum difference.  

The base overturning moment results obtained by performing response spectrum analysis 

were calculated. For the SRSS method, the closest results to the proposed method results 

were obtained from ETABS with -0.01 % maximum difference, and for the CQC method, 
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the closest results to the proposed method results were obtained from ETABS which is of 

-0.01 % difference.  

E-Response Spectra P-Delta Analysis 

The lateral displacement results obtained by performing response spectrum P-Delta 

analysis were calculated. For the SRSS method, the closest results to the proposed 

method results were obtained from ETABS with a maximum of -0.00119 % difference, 

and for the CQC method, the closest results to the proposed method were obtained from 

ETABS with -0.00149 % maximum difference.  

The base shear results obtained by performing response spectrum P-Delta analysis were 

calculated. For the SRSS method, the closest results to the proposed method results were 

obtained from ETABS with a maximum of 0.03 % difference, and for the CQC method, 

the closest results to the proposed method results were obtained from ETABS with 0.03% 

maximum difference. 

For the SRSS method, the closest results for the base overturning moment results 

obtained by performing response spectrum P-Delta analysis to the proposed method 

results were obtained from ETABS with 0.01 % maximum difference, and for the CQC 

method, the closest results to the proposed method results were obtained from ETABS 

with 0.01 % maximum difference. 

F-Time History Linear Analysis  

The top floor lateral displacement results obtained by performing the time history 

analysis using the proposed method were calculated and compared with the results 

obtained from different analysis packages. The results variation curves were similar and 

show very close agreement. For the minimum response, the closest results to the 

proposed method results were obtained from ETABS with 0.01 % maximum difference, 

and for the maximum response, the closest results to the proposed method results were 

obtained also from ETABS with a maximum of 0.03 % difference.  

The base shear results obtained by performing the time history analysis were calculated. 

The results variation curves were similar and show a very close agreement. For the 

minimum response, the closest results to the proposed method results were obtained from 

ETABS and SAP2000V16 with a maximum of 0.02 % difference, and for the maximum 
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response, the closest results to the proposed method results were obtained from ETABS 

with 0.05 % maximum difference.  

The base overturning moment results obtained by performing the time history analysis 

were calculated. The results variation curves were similar and show a very close 

agreement. For the minimum response, the closest results to the proposed method were 

obtained from ETABS with a maximum of 0.01 % difference, and for the maximum 

response, the closest results to the proposed method results were obtained from ETABS 

with 0.01 % maximum difference.  

G-Time History P-Delta Analysis 

The top floor lateral displacement results obtained by performing the time history P-Delta 

analysis using the proposed method were calculated and compared with the results 

obtained from different analysis packages. The results variation curves were similar and 

show very close agreement. For the minimum response, the closest results to the 

proposed method results were obtained from ETABS with 0.03 % maximum difference, 

and for the maximum response, the closest results to the proposed method results were 

obtained also from ETABS with a maximum of 0.03 % difference.  

The base shear results obtained by performing the time history P-Delta analysis were 

calculated. The results variation curves were similar and show a very close agreement. 

For the minimum response, the closest results to the proposed method results were 

obtained from ETABS with a maximum of 0.09 % difference, and for the maximum 

response, the closest results to the proposed method results were obtained from ETABS 

with 0.01 % maximum difference.  

The base overturning moment results obtained by performing the time history P-Delta 

analysis were calculated. The results variation curves were similar and show a very close 

agreement. For the minimum response, the closest results to the proposed method were 

obtained from ETABS with a maximum of 0.38 % difference, and for the maximum 

response, the closest results to the proposed method results were obtained from ETABS 

with 0.25 % maximum difference.  

5- As case study 2, the analysis of a 3D frame of 25 floors Building model subjected to 

vertical and wind loads was carried out. The results obtained using MFTProgV2 were 
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compared with those obtained using StaadPro2004, StaadProV8i, SAP200V16 and 

ETABS, for different analysis types as follows: 

A-Static Linear and second order Analysis   

In Static Linear and second order Analysis of the building model the maximum 

differences in the results with exact results in the building center (column#10), were as 

follows: 

-3.5 % for lateral displacement in y-direction in linear analysis. 

0.47 % for axial deformation in linear analysis. 

-7.69 % floor twist rotation, in linear analysis. 

-4.63 % for lateral displacement in y-direction in P-Delta analysis. 

0.35% for axial deformation in P-Delta analysis. 

-8.99 % floor twist rotation in P-Delta analysis. 

-1.37 % for maximum bending moment in U-Shaped Core, in linear analysis.  

-1.77 % for maximum bending moment in U-Shaped Core, in P-Delta analysis.  

-2.24 % for maximum bending moment in Edge Shear Wall, in linear analysis.  

-3.36 % for maximum bending moment in Edge Shear Wall, in P-Delta analysis.   

In additional discussion of the results, an alternative analysis has been carried out using a 

borrowed StaadPro Floor stiffness. The analysis yields the following results: 

Displacements and rotation in the top floor level in the building center (column #10): 

-0.05 % for lateral displacement in y-direction in linear analysis. 

0.00 % for axial deformation in linear analysis. 

0.00 % floor twist rotation, in linear analysis. 

-0.13 % for lateral displacement in y-direction in P-Delta analysis. 

0.00 % for axial deformation in P-Delta analysis. 

-0.00 % floor twist rotation in P-Delta analysis. 

-0.01 % for maximum bending moment in U-Shaped Core, in linear analysis.  

0.01 % for maximum bending moment in U-Shaped Core, in P-Delta analysis.  

0.27 % for maximum bending moment in Edge Shear Wall, in linear analysis.  

0.18 % for maximum bending moment in Edge Shear Wall, in P-Delta analysis.   

The elapsed running time by MFTProg used in solving a 150 floor model was 83 seconds 

only. Comparison between the number of unknowns using MFTProg and the 
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conventional matrix methods for the 150 floors model showed that there were 1,102,620 

coupled unknowns in the case of conventional matrix methods compared to 12,735 

partially coupled unknowns when using MFTProg which is a ratio of 86 times. 

B-Buckling Analysis of the building model 

  The MFTProgV2 Euler functions results show very close critical buckling result 

compared to the value of StaadProV8i, with a percentage difference of 0.11%. 

C-Dynamic analysis of the building model 

  In a linear and second order dynamic analysis of the model, comparison between the 

natural frequencies and the mass participation ratios in the two directions show very close 

agreement.  

D-Response Spectra Linear Analysis: 

 The lateral displacement results obtained by performing response spectrum analysis were 

calculated. For the SRSS method, very close results were obtained by the proposed 

method and StaadProV8i with a maximum of 0.34 % difference. For the CQC method, 

very close results were obtained from the proposed method and StaadProV8i with a 

maximum of 0.37 % difference.  

The base shear results obtained by performing response spectrum analysis were 

calculated. For the SRSS method, the closest results to the proposed method results were 

obtained from StaadProV8i with a maximum of 1.78 % difference, and for the CQC 

method, the closest results to the proposed method were obtained from SAP2000V16 

with -0.67 % maximum difference.  

The base overturning moment results obtained by performing response spectrum analysis 

were calculated. For the SRSS method, the closest results to the proposed method results 

were obtained from StaadProV8i with 0.44 % maximum difference, and for the CQC 

method, the closest results to the proposed method results were obtained from 

StaadProV8i which is of 0.29 % difference. 

 E-Response Spectra P-Delta Analysis 

The lateral displacement results obtained by performing response spectrum P-Delta 

analysis were calculated. For the SRSS method, the closest results to the proposed 

method results were obtained from StaadProV8i with a maximum of 0.50 % difference, 
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and for the CQC method, the closest results to the proposed method were obtained from 

StaadProV8i with 0.53 % maximum difference.  

The base shear results obtained by performing response spectrum P-Delta analysis were 

calculated. For the SRSS method, the closest results to the proposed method results were 

obtained from StaadProV8i with a maximum of 1.37 % difference, and for the CQC 

method, the closest results to the proposed method results were obtained from 

StaadProV8i with 1.12 % maximum difference. 

For the SRSS method, the closest results for the base overturning moment results 

obtained by performing response spectrum P-Delta analysis to the proposed method 

results were obtained from StaadProV8i with 0.28 % maximum difference, and for the 

CQC method, the closest results to the proposed method results were obtained from 

StaadProV8i with 0.18 % maximum difference. 

 F-Time History Linear Analysis  

The top floor lateral displacement results obtained by performing the time history 

analysis using the proposed method were calculated and compared with the results 

obtained from different analysis packages. The results variation curves were similar and 

show very close agreement. For the minimum response, the closest results to the 

proposed method results were obtained from ETABS (thin) with -0.46 % maximum 

difference, and for the maximum response, the closest results to the proposed method 

results were obtained also from StaadProV8i with a maximum of -1.33 % difference.  

The base shear results obtained by performing the time history analysis were calculated. 

The results variation curves were similar and show a very close agreement. For the 

minimum response, the closest results to the proposed method results were obtained from 

SAP2000V16 (thick) with a maximum of -7.84 % difference, and for the maximum 

response, the closest results to the proposed method results were obtained from ETABS 

(thick) with 1.02 % maximum difference.  

The base overturning moment results obtained by performing the time history analysis 

were calculated. The results variation curves were similar and show a very close 

agreement. For the minimum response, the closest results to the proposed method were 

obtained from SAP2000V16 (thin) with a maximum of -1.68 % difference, and for the 
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maximum response, the closest results to the proposed method results were obtained from 

ETABS (thick) with 0.79 % maximum difference.  

G-Time History P-Delta Analysis 

The top floor lateral displacement results obtained by performing the time history P-Delta 

analysis using the proposed method were calculated and compared with the results 

obtained from different analysis packages. The results variation curves were similar and 

show very close agreement. For the minimum response, the closest results to the 

proposed method results were obtained from StaadProV8i with 1.33 % maximum 

difference, and for the maximum response, the closest results to the proposed method 

results were obtained also from StaadProV8i with a maximum of -3.26 % difference.  

The base shear results obtained by performing the time history P-Delta analysis were 

calculated. The results variation curves were similar and show a very close agreement. 

For the minimum response, the closest results to the proposed method results were 

obtained from ETABS (thin) with a maximum of -7.76 % difference, and for the 

maximum response, the closest results to the proposed method results were obtained from 

ETABS (thin) with -2.54 % maximum difference.  

The base overturning moment results obtained by performing the time history P-Delta 

analysis were calculated. The results variation curves were similar and show a very close 

agreement. For the minimum response, the closest results to the proposed method were 

obtained from ETABS (thin) with a maximum of -8.2 % difference, and for the maximum 

response, the closest results to the proposed method results were also obtained from 

ETABS (thin) with 0.49 % maximum difference.  

7.3 Recommendations Drawn from Results Obtained  

   It is recommended to use the nonlinear version of the moment-force transformation 

method in the static and dynamic, linear and nonlinear analysis of tall buildings together 

with the buckling analysis for the following: 

1. Static and dynamic, linear and nonlinear analyses of super-tall buildings in which the 

axial deformation of the vertical members is dominant and should be considered. 

2. Static and dynamic, linear and nonlinear analyses of ordinary portal frames and shear 

wall-frame interaction problem. 
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3. Static and dynamic, linear and nonlinear 2D analysis of shear walls with openings, by 

considering the beams stiffness including also the infinite stiffness of the rigid parts of 

the walls. 

4. Static and dynamic, linear and nonlinear three dimensional analyses of buildings with 

vertical members irregularly arranged and oriented in the building plan and with different 

sections in the different levels and with different floor heights. 

5. Elastic instability analysis of 2D and 3D tall buildings.  

7.4 Recommendations for Future Research  

  For future research it is recommended to: 

1- Develop method to take into account elastic-plastic analysis incorporating both elastic 

instability and plastic yielding in members. 

 2- Further develop the program to incorporate the elastic-plastic responses, by 

formulating the stiffness and the carryover moment matrices using the various Hysteresis 

models, e.g. elasto-plastic, bilinear and curvilinear models.   

3. For more simplification of the problem solution, columns or vertical members not 

contributing to the resistance of the lateral loads can be included in the floor rotation 

stiffness and the problem solution will include only the walls or the vertical members that 

actually contribute to the resistance of the lateral loads.  

4. For more optimization of the analysis, the stiffness of the floor can be calculated by 

using simplified rules instead of calculations by finite elements, e.g. for slabs with beams 

construction considering the properties of the equivalent T and L sections. 

5. For flexible supports, the rotational and axial stiffness of the supports may also be 

incorporated in the analysis. 

6. Columns shortening in reinforced concrete and composite tall buildings due to time-

dependant creep, shrinkage and elastic modulus could be also analyzed.  
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Appendix A1 

A Three Segments Cantilever Example  

   The translations and the rotations of the joint of a cantilever of unit elasticity consists of 

three segments and subjected to lateral forces as shown in Figure A1.1, were obtained.  

            

 

                                            Figure A1.1: Single post example 

  The translations and rotations of the three free joints of the cantilever are given in 

shown Tables A1.1 and A1.2. From the two tables, the translations and the rotations of 

the original structure are equal to the summations of the systems (a) and (b).  

                        Table A1.1: Displacements of the original structure 

JOINT# TRANSLATION ROTATION 

1 9754 940.5 

2 6955 918 

3 1744 792 

Table A1.2: Displacements of the split systems: 

System System(a) System(b) System(a) + System(b) 

Joint # TRANSLATION ROTATION TRANSLATION ROTATION TRANSLATION ROTATION 

1 252.25 0 9501.75 940.5 9754 940.5 

2 241 0 6714 918 6955 918 

3 160 0 1584 792 1744 792 
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Appendix A2 

The Moment Distribution Procedure 

   The moment distribution procedure (ordinary or no-shear Figures A2.1 and A2.2) uses 

the two loading systems (a) and (b) illustrated previously as follows. The first step in the 

procedure is by obtaining from the system (a), the fixed-end moments produced from the 

applied loads and from which the restraining moments at the joints are obtained, then the 

balancing moments are applied in system (b), the induced carryover moments at the far 

end of the members are then considered as a fixed moments and are again applied in 

system (a). This procedure is repeated until the carryover moments become negligible. 

Then the summations of all the resulting moments in the two systems are obtained and 

represent the final end moments. 

    From this illustration it is seen that, the moment distribution procedure is actually 

equivalent to the two systems (a) and (b) when separately analyzed and the resulting 

joints moments are superimposed. 

                         

                         Figure A2.1: Ordinary rotational stiffness of a member 

                                                        

                  Figure A2.2: No-shear rotational stiffness with translation permitted 
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             Figure A2.3: No-shear moment distribution between two members 

   Figure A2.4 shows the split of a continuous beam into the two loading systems (a) and 

(b):                                                           

 

                              Figure A2.4: Continuous beam model 
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Appendix A3 

The Moment Transformation Procedure 

   The moment transformation procedure (ordinary or no-shear) can be carried out by 

considering the two loading systems (a) and (b) described before and also shown in 

Figure A2.4. In system (a), the fixed-end moments induced from the external applied 

loads and the restraining moments are obtained then in the system (b) the balancing 

moment (the reverse of the restraining moment) are applied with special sequence. For 

example, in joint (1) from which the transformation procedure will be carried out to joint 

(2), due to the applied moment at joint (1) there will be an induced moment at joint (2). 

 Superimposing the two systems (a) and (b) will eliminate the moment at joint (1) and 

produce the equivalent moment at joint (2), then joint (1) will be relieved and will never 

be considered in the analysis again. Same procedure will be carried out to the next joint 

(3) until reaching the concerned joint. The transformation will be carried out in the other 

direction until also reaching the concerned joint. By releasing and balancing the fixed 

moments at the concerned joint, the rotation of the joint and the final moments in the 

extremities to the left and to the right of the concerned joint can be calculated using the 

equivalent stiffness of the connected members. The procedure will be carried out for all 

the joints of the continuous frame. 

                          

               Figure A3.1: Moment transformation of continuous beam  
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  The Figures A3.2 and A3.3 show the moment transformation procedure for structural 

system subjected to horizontal loads and permitted to side sway at the floor levels. The 

sway fixed-end moments induced in the vertical members, due to the applied horizontal 

loads are shown in Figure A3.2.  

  The illustrated transformation procedure is in the direction from top to bottom. Figure 

A3.2 shows the transformation from joint (1) to joint (2), and Figure A3.3 shows the 

transformation from joint (2) to joint (3). 

                              

   Figure A3.2: Moment transformation from joint 1 to 2 in a single post frame  

 

                        

 Figure A3.3: Moment transformation from joint 2 to 3 in a single post frame  
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Appendix A4 

A Three Segments Column Example            

                                        

                                  Figure A4.1: Three segments column      

  The axial translations of the joints are calculated using the force transformation 

procedure for the shown three columns structural system, with material elasticity, 

E=1000 kN/m2, Figure A4.1.  

   Using equations 3.34 and 3.35, the transformation factors and the axial equivalent 

stiffness from top to bottom and from bottom to top, are calculated and shown in Tables 

A4.1 and A4.2: 

Table A4.1: Equivalent Stiffness and Transformation Factors from Top to Bottom. 

Member 1 2 3 

Equivalent Stiffness 0 0 0 

Transformation Factors 1 1 1 

 

Table A4.2: Equivalent Stiffness and Transformation Factors from Bottom to Top. 

Member 3 2 1 

Equivalent Stiffness 800 307.7 173.9 

Transformation Factors 0 0.3846 0.5652 
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 By using the transformation procedure illustrated in section 3.6, the axial displacements 

at the joints are calculated as follows: 

Displacement at joint 1: 

 

Total force = [(60*0.3846) + 80]*0.5652+50 = 108.2586 kN 

Equivalent Stiffness = (173.9+0) = 173.9 kN/m 

D1= 108.2586/173.9 = 0.6225 m 

Displacement at joint 2: 

 

Total force =50*1 + 80 + 60* 0.3846 = 153.076 kN 

Equivalent Stiffness = (307.7+0) = 307.7 kN/m 

D2= 153.076/307.7 = 0.4975 m 

Displacement at joint 3: 

 

Total force =50*1 + 80*1 + 60 = 190 kN 

Equivalent Stiffness = (800 +0) = 800 kN/m 

D3= 190/800 = 0.2375 m 

 The displacement in the concerned level can also be calculated using the following 

equation, Taranath (1988): 
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Where: 

N= total numbers of levels. 

n= number of the concerned level. 

Displacement at joint 1: 

D1= (2.5/1/1000)*(50)+(4/2/1000)*(50+80)+(5/4/1000)*(50+80+60) = 0.6225 m 

Displacement at joint 2: 

D2= (4/2/1000)*(50+80)+(5/4/1000)*(50+80+60) = 0.4975 m  

Displacement at joint 3: 

D3= (5/4/1000)*(50+80+60) = 0.2375 m 
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Appendix A5  

Further Optimization of the Transformation Procedure  

  Based on the subroutines of the transformation procedure presented by Ibrahim (2013), 

a new faster subroutine was developed and implemented in MFTProgV2. The new 

subroutine is based on two modifications: 

(1) Introducing new indexed variable to store the inverse of the equivalent stiffness of the 

concerned level. 

    The equivalent stiffness matrix of the level is calculated as follows: 

                               Ktot =  KT+KB+KF 

 Where: 

Ktot: the total Stiffness of the level.  

KT: the equivalent stiffness of the structure part above the floor.   

KB: the equivalent stiffness of the structure part below the floor.   

KF: the stiffness of the floor. 

  This modification is very useful and optimizing the computer running time especially in 

the cases of repeated analysis as in the construction of the global flexibility matrix where 

the structure is solved for applied unit loads several times, and in the inverse iteration 

method used in the dynamic analysis. 

(2) Introducing new indexed variables used to store the fixed-end moments plus the 

transformed moments during the transformation procedure in the two directions. 

  The indexed variable may be calculated as follows: 

                            MD1(i)=M1(i)+FT*MDtot(i-1) 

Where: 

MD1(i):the resultant moment vector below level i.  

M1(i):the fixed moment vector below level i. 

FT*MDtot(i-1): the transformed moment from level i-1. 

  These indexed variables are calculated only once and may be used several times during 

the program execution. 
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Appendix B 

Flow Chart of the Conventional Buckling Incremental Method  

Based on Figure 3.22, the following notes are made as illustrated by Coates et al (1990): 

(1) The input data is very similar to that required by a stiffness analysis, the only 

difference is the use of the stability functions. The preliminary data must include 

an initial value for the load factor (LF), the increment to be applied to it (INC), 

and the required accuracy in the final result (ACC). 

(2) N is used to count the number of loading cycles and DET1, DET2, DET3 are 

values of the determinant of the stiffness matrix. The axial forces in the members 

of the structure are not generally known before the analysis begins, and this is 

unlikely to provide much overall saving in computing time. 

(3) A check on N might be inserted to limit the number of load cycles in the event of 

any ill-conditioning preventing convergence. 

(4) As the axial forces at each load level are initially only known approximately, a 

number of solutions (counted by I ) are performed. 

(5) The structure stiffness matrix is set up, but the member stiffness matrices used are 

those involving the stability functions. The functions are calculated as required 

using the current estimates of the axial forces. 

(6) The repetition of the analysis performed at each load level should be terminated 

when the terms of the stiffness matrix converge to a steady state at successive 

cycles. The determinant (DET2) is used here as a convenient quantity whose 

value depends on the stiffness matrix terms- if its values have reach a steady state, 

it is also likely that the terms of the matrix have done so. The alternative is to 

check the convergence of the individual displacements. 

(7) The repeated analysis is terminated when the proportionate change in determinant 

is less than 0.1%. This limit is quite arbitrary, but seems to be reasonable in 

practice. The final value of determinant obtained is stored in DET3 and its sign is 

used as the test of positive-definiteness. 

(8) When the loading approaches the critical level, the stiffness matrix becomes 

increasingly ill-conditioned and successive values of the determinant are found to 

vary widely.  In this case there is no virtue in continuing with repeated analyses, 
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and the chart shows their termination at I=6. If this termination is found necessary 

on the first load level attempted (N=1) then obviously the initial loading is too 

near the critical level for any satisfactory analysis to be performed. In this case the 

analysis is stopped and must be repeated with a smaller set of loads. Otherwise 

the load factor can be increased, the axial forces increased by the same ratio as a 

good initial guess of their new values, and a further load level examined. 

(9) When satisfactory convergence is achieved at any load level as described in Step 

7 the value of the determinant obtained is compared with that from the previous 

load cycle. If no sign change is found then the load factor and axial forces are 

increased by one step and a new load level studied. At the first load level this 

comparison is impossible, and is bypassed. 

(10) If a sign change is found in Step 9, i.e. a change from positive to negative, then 

the critical value of load factor has been passed. The load factor is then 

decreased to its previous value, and increased again by smaller steps. If the 

reduced increment is below some prescribed accuracy and great accuracy is not 

warranted, then the analysis is ended. 

(11) Although output is shown only at this final stage it is generally desirable to trace 

the progress of the iterations by printing frequent intermediate results.    
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Appendix C 

Buckling of Column Subjected to Axial Load P 

                   

             Figure C.1: The condensed translational and rotational stiffnesses 

  The buckling load for a column subjected to axial load P, Figure C.1, is obtained. With 

linear-deformed shape assumption, the stiffness matrix of the system is as follows: 
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  Condensation of the matrix in the translation direction with the rotation of the free joint 

permitted, yields: 

21

1

221211

*

11 SSSSS   

)
4

/()
6

()
12

( 2

23

*

11
L

EI

L

EI

L

P

L

EI
S   

If P is the critical buckling load, then, 0*

11 S  

From which the buckling load 
3

3

L

EI
PCritical   

  Same results can be obtained by condensation of the stiffness matrix in the rotational 

direction with the translation of the free joint permitted: 

12

1

112122

*

22 SSSSS   

)
12

/()
6

()
4

(
3

2

2

*

22
L

P

L

EI

L

EI

L

EI
S   

For 0*

22 S , The buckling load can also be obtained as: 

3

3

L

EI
PCritical   



 242 

Appendix D 

StaadPro Buckling Analysis, the basic solver 

  In StaadPro, a simple procedure has been adopted to incorporate the calculation of the 

Buckling Factor for any number of primary load cases. The buckling factor is the amount 

by which all of the loadings in a load case must be factored to cause global buckling of 

the structure. The procedure followed is: 1) First, the primary deflections are calculated 

by linear static analysis based on the provided external loading. 2) Primary deflections 

are used to calculate member axial forces and plate center membrane stresses. These 

forces and stresses are used to calculate geometric stiffness terms. Both the large delta 

effects and the small delta effects are calculated. These terms are the terms of the Kg 

matrix which are multiplied by the estimated LF (buckling factor) and then added to the 

global stiffness matrix K. For compressive cases, the Kg matrix is negative definite. If the 

buckling factor is large enough, then [ [K]+LF*[Kg] ] will also be negative definite which 

indicates that LF times the applied loads is greater than the loading necessary to cause 

buckling. 4) STAAD starts an iterative procedure with a LF estimate of 1.0. If that LF 

causes buckling, then a new, lower LF estimate is used in the next trial. If the LF does not 

cause buckling, then a higher LF estimate is used. In STAAD, on the first iteration, if the 

determinant of the K matrix is positive and lower than the determinant of the K+Kg 

matrix, then the loads are in the wrong direction to cause buckling; and STAAD will stop 

the buckling calculation for that case. 5) After a few iterations, STAAD will have the 

largest LF that did not cause buckling (lower bound) and the lowest LF that did cause 

buckling (upper bound). Then each trial will use a LF estimate that is halfway between 

the current upper and lower bounds for LF (bisection method). 6) After the default 

iteration limit is reached or the user specified iteration limit, MAXSTEPS, is reached or 

when two consecutive LF estimates are within 0.1% of each other; then the iteration is 

terminated. 7) Results for this load case are based on the last lower bound LF calculated.  
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Appendix E 

 Buckling Analysis – the advanced Solver in STAAD package 

 In STAAD, a second procedure has been adopted to incorporate the calculation of the 

Buckling Factor for one primary load case. This procedure is an eigenvalue calculation to 

get buckling factors and buckling shapes. 

1) First, the primary deflections are calculated by linear static analysis based on the 

provided external loading. 

2) Primary deflections are used to calculate member axial forces and plate center 

membrane stresses. These forces and stresses are used to calculate geometric stiffness 

terms. Both the large delta effects and the small delta effects for members are calculated. 

These terms are the terms of the Kg matrix.  

3) An eigenvalue problem is formed. | [ K ] - LFi*[ Kg ] | = 0 There will be up to 4 

buckling factors (LF) and associated buckling mode shapes calculated. LF less than 1.0 

means that the load causes buckling; LF greater than 1.0 means buckling has not 

occurred. If LF is negative, then the static loads are in the opposite direction of the 

buckling load.  
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Appendix F 

Column shortening calculations for reinforced and composite concrete 

structures (Proposed future study) 

  This section illustrates briefly a proposal for computing column shortening using the 

transformation method. The main concept of the calculations is taken from the, 

Reinforced Concrete Council, Spreadsheet to EC2 Axial Column Shortening to EN 1992-

1: 2003 

   The proposed subroutine is based on the Euro Code, EC2 (prEN 1992-1: 2001) clauses 

3.1.3 Elastic deformation (1) and (3) and Annex B (Creep and Shrinkage Strain). It works 

from the roof down and assumes that time “0” equates to construction of the lowest 

column. A detailed construction history is input so that time-dependent creep and 

shrinkage factors may be computed. The proposed program is feed by the materials and 

dimensional data.  Then loads are calculated using the proposed program.  

The following physical quantities are used in the proposed analysis:  

A- Shortenings between Floors 

 These are the amounts by which individual column lifts may be reduced in length 

following construction of the floor immediately above, Figure F.1 (b). 

B- Floor Displacements 

 These are long-term net displacements of floors from the level at which they were 

constructed; the particular shape of the curve being defined by effects of incremental 

loading and the assumption that any shortening occurring prior to a floor's construction is 

compensated for, Figure F.2 (a). 

  Any differential shortening between connected vertical members will generate a transfer 

of vertical load. If connecting slabs or beams are stiff and/or short, such load transfer can 

be substantial and in tall buildings, may even be critical at ultimate limit state. 

C- Creep and shrinkage 

 Creep and shrinkage of the concrete depend on the ambient humidity, the dimensions of 

the element and the composition of the concrete. Creep is also influenced by the maturity 

of the concrete when the load is first applied and depends on the duration and magnitude 

of the loading. 
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 Creep and Shrinkage are time-dependent properties of concrete. Their effects should 

generally be taken into account for the verification of serviceability limit states. The 

effects of shrinkage and creep should be considered at ultimate limit states only where 

their effects are significant, for example in the verification of ultimate limit states of 

stability where second order effects are of importance. 

  The total shrinkage strain is composed of two components, the drying shrinkage strain 

and the autogenous shrinkage strain. The drying shrinkage strain develops slowly, since it 

is a function of the migration of the water through the hardened concrete. The autogenous 

shrinkage strain develops during hardening of the concrete: the major part therefore 

develops in the early days after casting. Autogenous shrinkage is a linear function of the 

concrete strength. It should be considered specifically when new concrete is cast against 

hardened concrete. 

D- Elastic deformation 

  The elastic deformations of concrete largely depend on its composition (especially the 

aggregates). The modulus of elasticity of a concrete with quartzite aggregates, are 

tabulated in the code and for limestone and sandstone aggregates the value should be 

reduced by some amount. For basalt aggregates the value should be increased by some 

amount. The Modulus of elasticity is also varying with time. 

Column shortening using the transformation method 

   In this part, the steps of performing the column shortening in tall buildings are 

described briefly. The proposed analysis procedure can be summarized in the following 

steps: 

1- For all loaded floors, firstly, with zero prescribed displacements, calculate the 

supports fixed moments with no rotations permitted.  

2- Analyze the frame by distributing the moments only using the moment 

transformation method, with the axial deformations in the vertical members 

ignored, Figure F.1, Model (a). The elasticity of the members should be the time-

dependant long term elasticity at the time concerned, after the required 

adjustments. The output results are joints rotations and supports vertical reactions.  

Use the no-shear rotational stiffness and the corresponding carryover moment 

matrices to permit for possible lateral translations. Use the following equations: 
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Assuming, m = 5 vertical members: 
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Where 

                 LFSt Djiijij )(**    

               DjiF )(  : The interaction force acting on the member i due to displacement Dj  

3- Use the vertical reactions obtained to calculate the time dependent displacements 

due to the elasticity, creep and shrinkage. 

4- Deduct the displacements compensating by the construction of the floor 

immediately above, using Model (b), Figure F.1. The reactions are calculated by 

iterations or approximately using the short term Elasticity, but using the force-

moment transformation method with the axial deformation in the vertical members 

considered (no prescribed displacements are applied in this model), use these 

reactions to calculate the displacements due to creep, shrinkage and elasticity.  

5- Again, for all loaded floors and with the prescribed net displacements obtained 

from 3 and 4, calculate the supports fixed moments with no rotations permitted, the 
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fixed moments due to the prescribed displacements can be obtained using the 

matrix equation, {F} = [S]{D}, where {F} is the fixed moments and forces, [S] is 

the floor stiffness matrix and {D} is the displacements vector which is contains two 

parts,  one part is zero rotations and the other part is the prescribed displacements.  

6- Analyze the frame by distributing the moments as in 2, using the moment 

transformation method, with the axial deformations in the vertical members 

ignored. The elasticity of the members should be the time-dependant elasticity at 

the time concerned, after the required adjustments. Use the no-shear rotational 

stiffness and the corresponding carryover moment matrices to permit for lateral 

translations. Obtain the resulting supports vertical reactions, using the new 

rotations and the prescribed displacements.  

7- Repeat the procedures from 3 to 6 until a balance is reached (i.e. residual transfer is 

close to zero). 

NOTE: transfer of loads from the floors to the columns should be damped by a 

constant factor. 

          

                                      Figure F.1: The proposed analysis two models 
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APPENDIX G 

Manual Check for the Results of the Square Building 

   A simple manual check for the forces resisted by the four shear walls for the hypothesis 

square building in Figure 5.3, was carried out, by considering a sample of one floor with 

the in-plane resistance of the walls considered and the out of plane ignored, and 

neglecting the effects of the frame action (the flexural rigidity of the floor and the 

columns lateral stiffnesses). As shown in Figure G.1, the external forces acting on the 

structure are 50 kN in the y-direction at 6 meter eccentricity from the center of the 

building, and 30 kN in the x-direction coincide with the center of the building. 

   With these assumptions, the twist moment produced from the eccentricity of the force 

50 kN, is resisted equally by the four shear walls. 

 

                               Figure G.1: Simplified sketch of the Square building  

The force resisted by each shear wall can be calculated from the following relations: 

        2 ( ft W ) = F.e 

or     ft = F.e / (2W) 



 249 

Where  

W  is the width of the square building. 

ft = 50*6/(12*2) = 12.5 kN 

Therefore, the forces resisted by the shear walls are calculated as follows: 

Shear wall 1, F1 = fy - ft  = 25-12.5  = 12.5 kN 

Shear wall 2, F2 = fy + ft  = 25+12.5 = 37.5 kN 

Shear wall 3, F3 = fx + ft  = 15+12.5 = 27.5 kN 

Shear wall 4, F4 = fx - ft  = 15-12.5 =    2.5 kN 

  The calculated forces resisted by the different shear walls show that shear wall #4 is 

resist very small force compared with the other walls. If considering the effects of the 

frame action, the force resisted by the wall will be even smaller. 

  The effect of the different finite elements formulation of the different packages results 

in small differences in the forces resisted by the different shear walls. The small 

difference resulted from the different packages may produce a large percentage 

difference in shear wall 4 due to the already small force resisted by the wall.   

   In other words, in all the comparisons, the differences are found to be very small for 

large stresses values (shear forces and bending moments in shear walls 1, 2 & 3), and the 

largest percentage difference is found in shear wall #4, which resists very small stresses 

compared with its section. The variations are noticed in the results of all packages as 

shown in the shear force and the bending moment diagrams of shear wall 4, Figures 5.24 

and 5.25.   

 

 

 

 

 

 


