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Chapter One 
                                              Introduction 

1.1 Electromagnetic Theory 
An electromagnetic field is defined as a field which possesses magnetic an 

electrical properties and surrounds objects with electrical charge. 

In 1873 Professor James Clerk Maxwell assembled the laws of Ampere, Faraday 

and Gauss, for electric and magnetic field into a set of four equations (MEs) 

[1].These equations are used to describe the behavior of electric and magnetic 

fields. Maxwell’s that treats light as electromagnetic waves is one of greatest 

achievement of the 19th century [1-5]. M.Es are physical laws which unity 

electric and magnetic phenomena [1-3]. The importance of these equations relies 

in their wide-spread applications in our day life and modern technology. 

. Some uses include scattering, wave guides, antennas and radiation. In recent 

years these applications have expanded to include modularization of digital 

electronic circuits, wireless communication, land mine detection, design of 

microwave integrated circuits and nonlinear optical devices. 

Also it known that the mode of operation of telecommunication system depends 

on M.Es [3-4]. 

M.Es describe how electric charges and electric current acts as a source for the 

electric and magnetic field. Further, it describes how a time varying electric field 

generates a time varying magnetic field and vice versa.  

Of the four equation two of them, Gauss law for electricity and Gauss law for 

magnetism describe how the field emanate from changes (for the magnetic fields 

lines neither begins nor end anywhere). The other two equations describes field 

circulates around their respective source .The magnetic field circulate around 

electric currents and the time varying magnetic field in Faraday’s law. 
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1.2 Photon Concepts  
The idea that light consist of rapidly moving particles can be traced from of 

ancient to Descartes and Riverton. The wave theory of light was put forward by 

Huygens and was later decisively proved to be correct through discovery of 

interferences and diffraction by young and Fresnel 

Maxwell’s theory of light as electromagnetic waves one of the greatest 

achievements of the 19th century. 

The history of the photon in the 20th century started in 1901 with formula by 

blank for radiation of a black body and introduction of what was called later the 

quantum of action [8]. 

In 1902 Lenard discovered that energy of electrons in photo effect does not 

depend on the intensity of light, but depend on the wave length of the latter [9]. 

In his fundamental article “ on an heuristic point of view concerning the 

production and transformation of light” published in 1905 Einstein’s point out 

that the discovery of Lenard meant that the energy of light distributed in space 

not uniformly, but in a form of localized light quanta [8]. 

He explained that all experiments related to the black body radiation 

photoluminescence and production of cathode rays by ultraviolet light can be 

explained by the quanta of light. 

The proof that Einstein’s light quanta behave as particles, carrying not only 

energy, but also momentum, was given in 1923 in the experiment by Compton 

on scattering of X-ray on electrons [10]. 

The term photon for particles of light was coined by Lewis in 1926 in article “the 

conservation of photon” [11]. His notion of a photon was different from the 

notion we used today. He considered photon to be “atoms” of light, which 

analogously to the ordinary atoms are conserved. 
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A photon is an elementary particle. The quantum if light and all other forms of 

electromagnetic radiation, and the force carrier for the electromagnetic force, the 

effect of this force are observable at both macroscopic and microscopic level. 

The great success of Maxwellian electrodynamics and quantum electrodynamics 

is based on the hypothesis that the photon should be a particle with zero mass, 

which has led to almost total acceptance of the mass less photon concept. The 

possibility of non zero mass has been studied by De Broglie, Vigier, Bass and 

Schrodinger [12], [13], [14] as well as Okun [15], [16] and others. The photon 

mass can be estimated using the uncertainty principle, to be in the range ~ 10ି଺଺ 

gram. 

With the knowledge that the age of the universe is approximately 1010 years. 

Many laboratory experiments and astrophysical observation have been 

performed using many methods to check directly or indirectly whether the 

photon has mass. The particle data group lists the mass of the mass to be < 10 ×

10ିଵ଻ev   or   ܯ௣௛ ≤ 1 × 10ିସଽgram  [12]. 

There are many consequences of non zero mass photon, the speed of light would 

depend on its frequency, the usual Coulomb potential would become  a Yukawa 

potential, Maxwell’s equations would be replaced by Proca equations, the black 

body radiation formula would take on a new form, and many other theories 

would be affected. 

In addition it seems that non zero photon mass would have impact on the special 

theory of relatives, because the photon mass would affect the universe constant 

C. 

1.2 Special Theory of Relativity for Massive Photons  
          The great success of Maxwellian electrodynamics and QED is based on 

the hypothesis that the photon should be a particle with zero mass, which has led 

to an almost total acceptance of the mass less photon concept. The possibility of 

a nonzero photon mass has been studied by De Broglie, Vigier, Bass and 
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Schrödinger [2][3][4] as well as Okun [13] [14] and others. The photon mass can 

be estimated using the uncertainty principle [10] 

݉ఊ~ ℏ
(∆௧)஼మ

~10ି଺଺Gram 

.Many laboratory experiments and astrophysical observations have been 

performed, using many methods, to check directly or indirectly whether the 

photon has mass. The Particle Data Group lists the mass of the photon to be <

6 × 10ିଵ଻ eV or mஓ ≤ 1 × 10ିସଽ  gram [11]. 

There are many consequences of nonzero photon mass: the speed of light would 

depend on its frequency, the usual Coulomb potential would become a Yukawa 

potential, Maxwell’s equations would be replaced by Proca’s equations, the 

black-body radiation formula would take on a new form, and many other theories 

would also be affected. 

In addition, it seems that a nonzero photon mass would have an impact on the 

special theory of relativity, because the photon mass would affect the universal 

constant C. In fact, however, this is not necessarily true. We could simply 

consider that the velocity that is the key quantity in special relativity is not the 

velocity of light but rather a constant of nature, which is the maximum speed that 

any object could theoretically attain in space-time. Although the mass of the 

photon is very small, any nonzero photon mass would have many consequences 

at a theoretical level. In this study, we will attempt to derive a dynamical 

relativistic energy equation for the photon as a particle. We then will see how 

Lorentz transformations can demonstrate, remarkably, that under certain special 

conditions, length expansion is also possible. All of these results together 

provide us with a bizarre new picture of the photon behavior. 

1.3 Research Problem: 
 Some recent works shows existence of E.M. Yukawa potential which be 

associated with photon mass. 
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A massive photon would have other effect, Coulomb’s law would be modified 

and the electromagnetic field would have an extra physical degree of freedom, 

these effect yield more sensitive experimental probes of the photon mass than the 

frequency dependence. 

A tiny photon mass would have important consequences for theory and 

experiments let’s list a few of them 

A) While there is still a special speed it would no longer be speed light travel. 

B) Electrical force binding atoms together would have a characteristic length 

scale determined by photon mass large photon mass means the force acts only 

over short range (distance) while small mass would lead to influences over 

large distance. 

C) Massive photon could be unstable decaying in other particles [ if the half life 

of a photon is large enough, their decay might not be noticeable over lifetime 

of the universe]. 

1.4 Aim of the Work: 
      This work is concerned with construction new electromagnetic equations 

which can predict existence of short range electromagnetic force. 

1.5 Research Methodology: 
a) Using Lagrange and other formalism to derive E.M equations. 

b) Construction of E.M equation obtained to find short range force. 

c) Solution of E.M equation obtained to find short range force. 

d) Comparison the results with experimental and previous studies. 

   1.6 Presentation of the Research: 

This thesis contains four chapters, chapter one introduction, chapter two 

General Theory of Massive Photon, chapter three The Literature Review and  
Chapter four different formalism Used to derive Short Range Gravity Potential 

self Energy and Nonlinear Potential dependent Lorentz transformation also 

deducing pressure potential dependent Lorentz transformation. 
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Chapter Two 
General Theory of Massive Photon Effect on Maxwell Equations 

and Lorentz Transformation 
 

2.1 Introduction: 
                  Because classical Maxwellian electromagnetism has been one of the 

cornerstones of physics during the past century, experimental tests of its 

foundations are always of considerable interest. Within that context, one of the 

most important efforts of this type has historically been the search for a rest mass 

of the photon. The effects of a nonzero photon rest mass can be incorporated into 

electromagnetic straightforwardly through the Proca equations, which are the 

simplest relativistic generalization of Maxwell’s equations. Using them, it is 

possible to consider some far-reaching implications of a massive photon, such as 

variation of the speed of light, deviations in the behavior of static 

electromagnetic fields, longitudinal electromagnetic radiation and even questions 

of gravitational deflection. All of these have been studied carefully using a 

number of different approaches over the past several decades. This review 

attempts to assess the status of our current knowledge and understanding of the 

photon rest mass, with particular emphasis on a discussion of the various 

experimental methods that have been used to set upper limits on it. All such tests 

can be most easily categorized in terms of terrestrial and extraterrestrial 

approaches, and the review classifies them as such. Up to now, there has been no 

conclusive evidence of a finite mass for the photon, with the results instead 

yielding ever more stringent upper bounds on the size of it, thus confirming the 

related aspects of Maxwellian electromagnetism with concomitant precision. Of 

course, failure to find a finite photon mass in any one experiment or class of 

experiments is not proof that it is identically zero and, even as the experimental 

limits move more closely towards the fundamental bounds of measurement 

uncertainty, new conceptual approaches to the task continue to appear. The 
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intrinsic importance of the question and the lure of what might be revealed by 

attaining the next decimal place are as strong a draw on this question as they are 

in any other aspect of precise tests of physical laws [18]. 

             Maxwell’s Equations are four of the most influential equations in 

science: Gauss’s law for electric fields, Gauss’s law for magnetic fields, 

Faraday’s law, and the Ampere – Maxwell law. 

             In Maxwell’s Equations, you’ll encounter two kinds of electric field: the 

electrostatic field produced by electric charge and the induced electric field 

which produced by a changing magnetic field. Gauss’s law for electric fields 

deals with the electrostatic field, and you’ll find this law to be a powerful tool 

because it relates the spatial behavior of the electrostatic field to the charge 

distribution that produces it [19]. 

           The most important applications of Maxwell equation found on radio, 

television, radar, wireless Internet access, and Bluetooth technology are a few 

Examples of contemporary technology rooted in electromagnetic field theory. 

           In Maxwell equation the photon mass is ordinarily assumed to be exactly 

zero. However, this is merely a theoretical assumption; there is no experimental 

evidence to indicate that the photon mass is identically zero. In contrast, there are 

various experimental methods that have been used to set upper limits on the 

photon mass. If there is any deviation from zero, it must be very small. 

Nevertheless, even a small nonzero value would have many consequences in 

many theories in modern physics. It would mean that we could treat the photon 

as a particle that is approximately analogous to an electron. Photon mass would 

imply that the famous C is not a universal constant but instead depends on the 

photon energy, just as in the case of other particles within nonzero mass. In a 

related problem, we will study the Lorentz contraction of a rod using the Lorentz 

transformation equations. We will see how Lorentz transformations can 

demonstrate, remarkably, that under certain special conditions, length expansion 

is also possible! The aim of this study is combine all of these components – 
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photon mass, length variation, and Doppler Effect – to develop a complete 

special theory of relativity for the photon as a particle. 

(2.2) Maxwell equations 

The Maxwell equations forࡱሬሬ⃗ ሬሬ⃗ࡰ , ሬሬሬሬ⃗ ࡴ , and ࡮ሬሬ⃗  are:: 

                                   ப୆
ሬሬ⃗

ப୲
+ ∇ × Eሬሬ⃗ = 0            (Faraday’s law)         (2.2.1) 

డ஽ሬሬ⃗

డ௧
− ∇ × ሬሬ⃗ܪ =  (2.2.2)          (Ampere’s law)          ܬ⃗−

  Coupled with Gauss’s law 

ߘ   ∙ ሬ⃗ܤ = 0                                                    (2.2.3) 

∇ ∙ Dሬሬ⃗ = ρ                                                    (2.2.4) 

Where  ⃗ݏ݅ ܬ the electric current density vector and ߩ is the electric charge density. 

It can be shown that the time derivative of Gauss’ law is a consequence of 

Faraday’s 

And Ampere’s law, when   ப஡
ப୲

+ ∇ ∙ J⃗ =0 

For linear, homogeneous, isotropic materials (i.e. materials having field-

independent, direction-independent and frequency independent electric and 

magnetic properties) we can relate the magnetic flux density vector ܤሬ⃗  to the 

magnetic field vector ܪሬሬ⃗  and the electric flux density vector ܦሬሬ⃗  to the electric field 

vector ܧሬ⃗  using: 

ሬ⃗ܤ = ሬሬ⃗ܪߤ ሬሬ⃗ܦ      ,    = ሬ⃗ܧߝ                                 (2.2.5) 

And also relate the electric current density vector ⃗ܬ to the electric field vector 

ሬ⃗ܧ   using the Ohm’s law: 

ܬ⃗ = ሬ⃗ܧߪ                                             (2.2.6) 

We assume σ, ε and μ are given scalar functions of space (in general case they 

can be also time-dependent). Often one can neglect the conductivity σ and set  J⃗= 

0. Such media are called loss-free. A special loss-free medium is free space. ε Is 

the Dielectric permittivity and μ is the magnetic permeability. Both of these 
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quantities are positive and describe dielectric and magnetic characteristics of the 

material. In most cases ε and μ are constant within each body. We set ε = ε଴ε୰ 

and μ =μ଴μ୰, 

where μ଴ = 4π ∙ 10ି଻ ୌ
୫

 and  ε଴ = ଵ
େమஜబ

୊
୫

  are the free space permeability and 

permittivity   respectively (c = 3X108 m/sec is a speed of light). 

The relative permittivity ε୰and relative permeability μ୰are frequency dependent. 

However, in this thesis we simplify this and assume that the materials do not 

have such a dependence, the so-called simple materials. The magnetic 

permeability μ୰ is equal to one for almost all simple materials except magnetic 

materials which can be considered as perfect electric conductors (PEC). The 

dielectric permittivity satisfies ε୰ > 1. It is discontinuous at the interface 

between materials and these changes frequently cause significant difficulties for 

numerical simulations.  

(2.2.1) Maxwell equations in various coordinate systems 
(2.2.1.1) Cartesian coordinates 

ε
∂E୶
∂t

=
∂H୸

∂y
−
∂H୷

∂z
                μ

∂H୶

∂t
= −

∂E୸
∂y

+
∂E୷
∂z

 

ε
ப୉౯
ப୲

= பୌ౮
ப୸

− பୌ౰
ப୶

                μ
பୌ౯
ப୲

= − ப୉౮
ப୸

+ ப୉౰
ப୶

          (2.2.1.1) 

ε
∂E୸
∂t

=
∂H୷

∂x
−
∂H୶

∂y
                μ

∂H୸

∂t
= −

∂E୷
∂x

+
∂E୶
∂y

 

For this goal we shall discuss in more detail the one-dimensional Maxwell 

equations. Then (2.2.1) reduces to 

ε ப୉౰
ப୲

= பୌ౯
ப୶

               μ பୌ౯
ப୲

= ப୉౰
ப୶

                   (2.2.1.2) 

(2.2.1.2) Cylindrical coordinates 

Maxwell equations in cylindrical coordinates (ߩ,∅,  :are given by (ݖ

ε
∂E஡
∂t

=
1
ρ
∂H୸

∂∅
−
∂H∅

∂z
                         μ

∂H஡

∂t
=
∂E∅
∂z

−
1
ρ
∂E୸
∂∅
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ε ப୉∅
ப୲

= பୌಙ
ப୸

− பୌ౰
ப஡

                      μ பୌ∅
ப୲

= ப୉౰
ப஡

− ப୉ಙ
ப୸

     (2.2.1.2.1) 

ε
∂E୸
∂t

=
1
ρ
∂(ρH୸)

∂ρ
−

1
ρ
∂H஡

∂∅
                  μ

∂H୸

∂t
=

1
ρ
∂E஡
∂∅

−
1
ρ
∂(ρE∅)

∂ρ
 

(2.2.1.3) Spherical coordinates 

We write the system of Maxwell equations in spherical coordinates (ߠ,ݎ,߮): 

ε ப୉౨
ப୲

= ଵ
୰ୱ୧୬஘

ቂப
൫ୱ୧୬஘ୌಞ൯

ப஘
− பୌಐ

ப஦
ቃ            μ பୌ౨

ப୲
= − ଵ

୰ ୱ୧୬஘
ቂப
൫ୱ୧୬஘୉ಞ൯

ப஘
− ப୉ಐ

ப஦
ቃ 

ε ப୉ಐ
ப୲

= ଵ
୰ୱ୧୬஘

ቂப(ୌ౨)
ப஦

− ଵ
୰
ப(୰ୌಞ)

ப୰
ቃ                  μ பୌಐ

ப୲
= − ଵ

୰ ୱ୧୬஘
ப୉౨
ப஦

+ ଵ
୰
ப൫୰୉ಞ൯
ப୰

 

ε ப୉ಞ
ப୲

= ଵ
୰
ቂப(୰ୌಐ)

ப୰
− பୌ౨

ப஘
ቃ           μ பୌಞ

ப୲
= − ଵ

୰
ቂப(୰୉ಐ)

ப୰
− ப୉౨

ப஘
ቃ   (2.2.1.3.1) 

In addition to the time dependent Maxwell equations we have Gauss’ law, i.e. in 

the absence of sources both the divergence of  Eሬሬ⃗  and Hሬሬ⃗  are zero. 

divEሬሬ⃗ =
1
r
∂(rଶE୰)
∂r

+
1

r sin θ
∂(sin θE஘)

∂θ
+

1
r sin θ

∂E஦
∂φ

= 0 

divHሬሬ⃗ = ଵ
୰
ப(୰మୌ౨)

ப୰
+ ଵ

୰ ୱ୧୬஘
ப(ୱ୧୬஘ୌಐ)

ப஘
+ ଵ

୰ୱ୧୬஘
பୌಞ
ப஦

= 0            (2.2.1.3.2) 

(2.2.2) Solutions of Maxwell equations in spherical coordinates system 
                     The general solution can be obtained by separation of variables in 

the case of azimuthally symmetry. Boundary conditions are easier to apply to 

these solutions, and their forms highlight the similarities and differences between 

electric and magnetic cases in both time- independent and time –dependent 

situations [19]. 

The Maxwell equations for the electromagnetic field vector, expressed in 

international system of units (SI) are: 

ࡰ.∇ = ∇                    ߩ × ࡱ = − డ࡮
డ௧

 

࡮.∇  = 0                           ∇ × ࡴ = ܬ +
ࡰ߲
ݐ߲

                                     (2.2.2.1) 
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Where the source term  ܬ ݀݊ܽ ߩ describe the densities of electric charge and 

current, respectively. For a linear isotropic medium D and H are connected with 

basic field E and B by the constitutive relations: 

ࡰ = ࡴ          ࡱߝ =
࡮
ߤ

                                    (2.2.2.2) 

Where ߤ ݀݊ܽ    ߝ are the permittivity and permeability of the medium 

respectively.  

The boundary conditions for fields at a boundary surface between two different 

media are: 

݊. ૚ࡰ) − (૛ࡰ = ݊     ,     ௦ߩ × ૚ࡱ) − (૛ࡱ = 0 

݊. ૚࡮) − (૛࡮ = 0  ,      ݊ × ૚ࡴ) − (૛ࡴ =  (2.2.2.3)               ࢙ࡶ

Where  ߩ௦ ,     ܽ݊݀ ܬ௦ denote charge and current densities, respectively, and the 

normal unit vector n is drawn from the normal into first region. The interior and 

exterior fields satisfy the homogeneous vector wave equations: 

∇ଶࡱ − ߤߝ
߲ଶࡱ
ଶݐ߲

= 0 

∇ଶ࡮ − ߤߝ
߲ଶ࡮
ଶݐ߲

= 0,                                        (2.2.2.4) 

Which are obtained from equations (2.2.2.1) and (2.2.2.4) for regions free of 

charge and current by combining the two curl equations and making use of the 

divergence equation together with this vector identity. 

∇ଶ(   ) = ∇(∇. ) − ∇ × (∇ ×   ).                          (2.2.2.5) 

Changes in the electromagnetic fields propagate with speed ݒ = ଵ

√ఌఓ
 

Without any loss of generality, we may consider only harmonic time dependence 

for sources and fields: 

,ݎ)ߩ (ݐ = ,ݎ)ܬ                        ௜௪௧ି݁(ݎ)ߩ (ݐ =                              ௜௪௧ି݁(ݎ)ܬ

,ݎ)ܧ (ݐ = ,ݎ)ܤ                       ௜௪௧ି݁(ݎ)ܧ (ݐ =  ௜௪௧      (2.2.2.6)ି݁(ݎ)ܤ

Where the real part of each expressions is implied. Equation (2.2.2.4) then 

becomes time independent. 
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∇ଶࡱ + ࡱଶܭ = 0,                              ∇ଶ࡮ + ࡮ଶܭ = 0,        (2.2.2.7) 

Where ܭଶ =  ଶ .these are vector Helmholtz equations for transverse fields߱ߤߝ

having zero divergence 

Actually, the usual technique for solving boundary value problems introduces 

the electromagnetic potentials as intermediary field quantities. These are defined 

by equation (2.2.2.5): 

࡮ = ∇ × ࡱ        ,࡭ = −∇∅ −
࡭߲
ݐ߲

                          (2.2.2.8) 

With subsidiary Lorentz conditions 

࡭.∇ + ߤߝ
߲∅
ݐ߲

= 0                                     (2.2.2.9) 

It is then found that these potentials satisfy the inhomogeneous wave +equations: 

∇ଶ∅ − ߤߝ
߲ଶ∅
ଶݐ߲

=
ߩ
ߝ

 

∇ଶ࡭ − ߤߝ
߲ଶ࡭
ଶݐ߲

=  (2.2.2.10)                                  ܬߤ−

Which together with the Lorentz condition form a set of equations equivalent to 

the Maxwell equations. The boundary conditions for the potentials may be 

deduced from equation (2.2.2.3). 

For fields that vary with an angular frequency ߱, 

,ݔ)∅ (ݐ = ,ݔ)࡭,௜ఠ௧ି݁(ݔ)∅ (ݐ =  ௜ఠ௧,                   (2.2.2.11)ି݁(ݔ)࡭

We get equations that do not depend on time in regions free of charge and 

current: 

∇ଶ∅ + ∅ଶܭ = 0,         ∇ଶ࡭ + ࡭ଶܭ = 0,                     (2.2.2.12)   

The purpose of this work is to get general solutions of the electromagnetic vector 

equations in spherical coordinates with azimuthally symmetry using separation 

of variables in spite of having equations that mix field components. 

The work is organized as follows in section 2 we describe the method for the 

static case showing how the mathematical complications of solving the vector 

field equations are easily overcome by means of separation of variables. In 
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section 3 we extend the method to discuss the case of time –varying fields and 

concluding remark are given in sec 4. 

(2.2.2.1) Static fields 
For steady – state electric and magnetic phenomena, the fields outside sources 

satisfy the vector Laplace equations 

∇ଶࡱ = 0,                       ∇ଶ ࡮ = 0                (2.2.2.1.1) 

Where only transverse components with zero divergence are involved.   

Supposing all the charge and current are on the boundary surfaces, solutions in 

different regions can be connected through the boundary conditions indicated in 

equation3. To demonstrate the features of treatment, we first consider boundary 

value problems with azimuthally symmetry in electrostatics. The solution of 

stationary current problems in magneto statics is mathematically identical 

Combining the expression for ∇ × (∇ × ࡱ.∇ and 0=(ࡱ = 0  is spherical 

coordinates and assuming no ∅ dependence, we find using eq. (5) that the 

components of the electric field ܧ௥ and ܧఏ satisfy the equations 

(∇ଶࡱ)ݎ =
1
ଶݎ

߲ଶ

ଶݎ߲
(௥ܧଶݎ) +

1
ଶݎ sin ߠ

߲
ߠ߲

൬ sinߠ
௥ܧ߲
ߠ߲

൰ = 0     (2.2.2.1.2) 

(∇ଶܧ)ߠ =
1
ݎ
߲ଶ

ଶݎ߲
(ఏܧݎ) −

1
ݎ
߲ଶ(ܧ௥)
ߠ߲ݎ߲

= 0                   (2.2.2.1.3) 

Equation (2.2.2.1.2)is for ܧ௥ alone, whereas eq. (2.2.2.1.3). Which is involves 

both components. There is also a separated equation forܧఝ: 

(∇ଶE)φ =
1
r
∂ଶ

∂rଶ
(rE୰) +

1
rଶ sin θ

∂
∂θ × ቆsinθ

∂E஦
∂θ ቇ − ൬

1
rଶ sinθ E஦൰ = 0       (2.2.2.1.4) 

Using the transverse condition 

∇.۳ =
1
rଶ

∂
∂r

(rଶE୰) +
1

r sin θ
∂
∂θ

(sin θ E஘) = 0                 (2.2.2.1.5) 

Where the azimuthally symmetry is assumed in Eqs.(2.2.2.1.5) To be implies: 

߲
ݎ߲

(ఏܧݎ) −
௥ܧ߲
ߠ߲

= 0                             (2.2.2.1.6) 
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Thus, to obtain ܧఏ from ܧ௥ we can consider either eq. (2.2.2.1.5) Or 

Eqs (2.2.2.1.6). 

Now, in order to solve eq. (2.2.2.1.1) For ܧ௥ ,we refer to the method of 

separation of variables and write the product form 

,ݎ)௥ܧ (ߠ =
(ݎ)ݑ
ଶݎ

 (2.2.2.1.7)                          ,(ߠ)ܲ

This leads to the following separated differential equations 

݀ଶݑ
ଶݎ݀

−
݊(݊ + 1)

ଶݎ
ݑ = 0                           (2.2.2.1.8) 

1
sinߠ

݀
ߠ݀

൬sinߠ
݀ܲ
ߠ݀
൰ + ݊(݊ + 1)ܲ = 0                 (2.2.2.1.9) 

Where n(n+1) is separation constant. The solution of Eqs. (2.2.2.1.7)) is: 

(ݎ)ݑ = ௡ାଵݎܽ +
ܾ
௡ݎ

                               (2.2.2.1.10) 

Where a and b are arbitrary constant. Equations (2.2.2.1.9) is the Legendre 

equation of order n and the only solution which is single valued, finite and 

continuous over whole interval corresponds to Legendre polynomial ௡ܲ(cos  n ,(ߠ

being restricted to positive integer values. 

Thus the general solution for ܧ௥  is 

,ݎ)௥ܧ (ߠ = ෍൬ܽ௡ݎ௡ିଵ +
ܾ௡
௡ାଶݎ

൰
ஶ

௡ୀ଴
௡ܲ(cosߠ).             (2.2.2.1.11) 

The simplest way of solving Equation(2.2.2.1.2)for ܧఏ is to use the series 

expansion 

(ߠ,ݎ)ఏܧ = ෍ݒ௡(ݎ)
ஶ

௡ୀ଴

݀
ߠ݀ ௡ܲ(cosߠ)                    (2.2.2.1.12) 

Where ݒ௡(ݎ) are functions to be determined. By substituting Equation 

(2.2.2.1.11), (2.2.2.1.12) into Equation  (2.2.2.1.2). It is formed that. 

(ݎ)௡ݒ =
ܽ௡
݊
௡ିଵݎ −

ܾ௡
݊ + 1

1
௡ାଶݎ

                        (2.2.2.1.13) 
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For n≥ 1 ܽ଴ = 0 this null factor in Eqs.(2.2.2.1.11) . Means the absence of static 

field terms of the  ଵ
௥
 type which are in reality typical of radiative fields. Clearly 

the solution gives in Eqs(2.2.2.1.11)),( (2.2.2.1.12)) and (2.2.2.1.13)satisfy 

Eq(2.2.2.1.6)). The coefficients ܽ௡  ܽ݊݀   ܾ௡ are to be determined from the 

boundary condition. 

For completeness we include here the well-behaved general solution of 

Eqs.(2.2.2.1.13): 

(ߠ,ݎ)ఝܧ = ෍൬ܿ௡ݎ௡ +
݀௡
௡ାଶݎ

൰
݀
ߠ݀ ௡ܲ(cosߠ)             (2.2.21.14)  

ஶ

௡ୀ଴

 

Thus Eqs. (2.2.2.1.11)(2.2.2.1.14) give all three components of the electric 

field. The same type of equations applies in magneto static. However, the 

boundary conditions of Eqs.(2.2.2.1.3) will make the difference, implying in 

particular that ܾ௡ୀ଴   in the series expansion of Eq,s(2.2.2.1.11)in magneto static 

, this being primarily related to the absence of magnetic monopole. 

(2.2.2.2) time-varying fields 

By using Eqs. (2.2.2.1.1),(2.2.2.1.2) and (2.2.2.1.6)it is seen that outside sources 

the fields are related by 

ࡱ =
݅߱
ଶܭ ∇ ×  (2.2.2.2.1)                                        ࡮

So that we only need to solve Eq.(2.2..1.7) for B. alternatively, we can solve for 

E and obtain B through the expression 

࡮ = −
݅
߱
ߘ ×  (2.2.2.2.2)                                   ࡱ

In the following, we choose to deal with the Helmholtz equations for the 

magnetic induction field. the reason to exhibit similarities and difference with 

the static case treated in sec( 2.2.2.1.1). 

In the case of spherical boundary surfaces with azimuthally symmetry, the 

 components of the magnetic induction satisfy the following ࣂ࡮ and ࢘࡮

equations: 
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(∇ଶܤ)ݎ + ௥ܤଶܭ    =
1
ଶݎ

߲ଶ

ଶݎ߲
(௥ܤଶݎ) +

1
ଶݎ sin ߠ ×

߲
ߠ߲ ൬sinߠ

௥ܤ߲
ߠ߲ ൰+ ௥ܤଶܭ = 0   (2.2.2.2.3)      

(∇ଶܤ)ߠ + ఏܤଶܭ =
1
ݎ
߲ଶ

ଶݎ߲
(ఏܤݎ) −

1
ݎ
߲ଶܤఏ
ߠ߲ݎ߲

+ ఏܤଶܭ = 0      (2.2.2.2.4) 

Similarly for the ܤఝ component we would have the equation: 

(∇ଶܤ)߮ + ఝܤଶܭ =
1
ݎ
߲ଶ

ଶݎ߲
൫ܤݎఝ൯ +

1
ଶݎ sin ߠ

߲
ߠ߲

× ቆsinߠ
ఝܤ߲
ߠ߲

ቇ −
1

ଶݎ sin ଶߠ
ఝܤ + ఝܤଶܭ

= 0                                                                                                    (2.2.2.2.5) 

These are analogous to equations  (2.2.2.1.2)), (2.2.2.1.3)and  (2.2.2.1.4)in 

connection with the vector Laplace equation. In order to solve Eq (2.2.2.2.3)we 

let 

,ݎ)௥ܤ (ߠ =
(ݎ)݆
ݎ

 (2.2.2.2.6)                                 ,(ߠ)ܲ

Where upon separation yields 

݀ଶ݆
ଶݎ݀

+
2
ݎ
݆݀
ݎ݀

+ ൤ܭଶ −
݊(݊ + 1)

ଶݎ
൨ = 0                     (2.2.2.2.7) 

Equation (2.2.2.2.7) is the spherical Bessel equation of order n with variable kr. 

therefore, the general solution for ܤ௥ is 

,ݎ)௥ܤ (ߠ = ෍ቈܽ௡
݆௡(݇ݎ)
ݎ

+ ܾ௡
݊௡(݇ݎ)
ݎ

቉ ௡ܲ(cos (ߠ
ஶ

௡ୀ଴

                   (2.2.2.2.8) 

Depending on boundary conditions, the spherical Henkel function ℎ௡ instead of 

the spherical Bessel function ݆௡ ,݊௡ may be used. For ܤఏ  and we again write 

,ݎ)ఏܤ (ߠ = ෍ݓ௡(ݎ)
ஶ

௡ୀ଴

݀
ߠ݀ ௡ܲ(cosߠ),                            (2.2.2.2.9) 

And use ∇.ܤ = 0 to obtain now 

௡ݓ =
ܽ௡

݊(݊ + ݎ(1
݀
ݎ݀

[(ݎ݇)௡݆ݎ] +
ܾ௡

݊(݊ + ݎ(1
݀
ݎ݀

 (2.2.2.2.10)                [(ݎ݇)௡݊ݎ]

For ݊ ≥ 1 with ܽ଴ = ܾ଴ = 0. The other coefficient ܽ௡andܾ௡ are determined so 

that the boundary conditions for the vector field are exactly satisfied. In the case 

of ܤఝ component the general solution is 
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,ݎ)ఝܤ (ߠ = ෍൫ܿ௡݆௡(ݎܭ) + ݀௡݊௡(ݎܭ)൯
݀
ߠ݀ ௡ܲ(cos (2.2.2.2.10)                     ,(ߠ

ஶ

௡ୀ଴

 

The same type of equations applies for the electric field. 

(2.3)The photon mass 

             The photon is a very mysterious quantic phenomenon, moving as a 

wave, but appearing as a particle. It is a boson with spin one and rest mass either 

zero, or extremely small, it carries energy, it has a frequency (in a given 

referential) and presents phenomena of polarization. If we assume a very small 

but non-zero rest mass, the photon goes slower than the limit velocity c and we 

can study it in the referential in which it is at rest. In such referential and in 

vacuum the basic hypothesis is that all photons are identical. In the other 

referential, according to their velocity, they present frequency and energy that 

can be studied by the usual Lorentz transformations that will be our main tool. 

We will see that if photons have a non-zero rest mass they have also a well 

defined proper period and thus the phenomenon of photon can perhaps be 

associated to vibrations or rotations, which fit particularly well with the property 

of polarization and the different possible presentations of a rotating phenomenon 

[18]. 

  In this section existence of  photon mass is proven with  using different models. 

 (2.3.1) General theory of massive photon electromagnetism 

                     Electromagnetic phenomena in vacuum are characterized by two 

three-dimensional vector fields, the electric and magnetic fields, E(x, t) and B(x, 

t), which are subject to Maxwell’s equations and which can also be thought of as 

the classical limit (limit in large quantum numbers) of a quantum mechanical 

description in terms of photons. The photon mass is ordinarily assumed to be 

exactly zero in Maxwell’s electromagnetic field theory, which is based on gauge 

invariance. If gauge invariance is abandoned, a mass term can be added to the 
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Lagrangian density for the electromagnetic field in a unique way (Greiner and 

Reinhardt 1996): 

ܮ =
1

଴ߤ4
ఓ௩ܨఓ௩ܨ − ఓܣఓ௩ܬ +

ఓܣఓܣఊଶߤ

଴ߤ2
                       (2.3.1.1) 

where ߤఊିଵ is a characteristic length associated with the photon rest mass, Aμ and 

jμ are the four-dimensional vector potential (A, iφ/c) and four-dimensional vector 

current density (J, icρ), with φ and A denoting the scalar and vector potentials, 

and ρ and J are the charge and current densities, respectively. μ0 is the 

permeability constant of free space and Fμν is the antisymmetric field strength 

tensor. It is connected to the vector potential through 

ఓ௩ܨ =
௩ܣ߲
ఓݔ߲

−
ఓܣ߲
௩ݔ߲

                                      (2.3.1.2) 

 The variation of Lagrangian density with respect to Aμ yields the Proca equation 

(Proca 1930a,b,c, 1931, 1936a,b,c,d, 1937, 1938, de Broglie 1940):{175-189]. 

ఓ௩ܨ߲
௩ݔ߲

+ ఓܣఊଶߤ =  ఓ                                       (2.3.3)ܬ଴ߤ

Substituting equation (2.3.1..2) into (2.3.1.3), we obtain the wave equation of the 

Proca vector field Aμ: 

(□ − ఓܣ(ఊଶߤ =  ఓ                                     (2.3.1.4)ܬ଴ߤ−

Where the d’Alembertian symbol   □ is shorthand for ∇2 − ∂2/∂(ct)2. In free 

space, 

Equation (2.3.1.4) reduces to 

      (□ − (ఓܣఊଶߤ =   0                                    (2.3.1.5) 

Which is essentially the Klein–Gordon equation for the photon? The parameter 

μγ could be interpreted as the photon rest mass mγ , with 

݉ఊ =
ఊℏߤ
ܥ

                                          (2.3.1.6) 

With this interpretation, the characteristic scaling length ߤఊିଵ becomes the 

reduced Compton wavelength of the photon, which is the effective range of the 
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electromagnetic interaction. An additional point is that static electric and 

magnetic fields would exhibit exponential damping governed by the term exp 

(μஓିଵr) if the photon is massive instead of mass less. Therefore, a finite photon 

mass is accommodated in a unique way by changing the inhomogeneous 

Maxwell’s equations to the Proca equations. In the presence of sources ρ and J, 

the three-dimensional versions of the Proca equations can be written in SI units 

as 

∇ ∙ ܧ =
ߩ
଴ߝ
−  ఊଶ∅                                          (2.3.1.7)ߤ

∇ × ܧ = −
ܤ߲
ݐ߲

                                              (2.3.1.8) 

∇ ∙ ܤ = 0                                                   (2.3.1.9) 

∇ × ܤ = ܬ଴ߤ + ଴ߝ଴ߤ
ܧ߲
ݐ߲

−  (2.3.1.10)                         ܣఊଶߤ

Together with  

ܤ = ∇ ×  (2.3.1.11)                                           ܣ

ܧ = −∇∅ − డ஺
డ௧

                                          (2.3.1.12)  

And Lorentz condition                         

∇ ∙ ܣ +
1
ଶܥ

߲∅
ݐ߲

= 0                                       (2.3.1.13) 

where ε0 and μ0 are the permittivity and permeability of free space, respectively. 

The Proca equations provide a complete and self-consistent description of 

electromagnetic phenomena. The equation for conservation of charge is obtained 

from equations (2.3.1.7) and (2.3.1.10) and the Lorentz condition (2.3.1.13), so 

that 

∇ ∙ ܬ +
1
ଶܥ

ߩ߲
ݐ߲

= 0                                 (2.3.1.14) 

Obviously, in massive photon electromagnetism, the Lorentz condition is 

identical to the law of charge conservation, or in other words, the Lorentz 

condition is a necessary result of charge conversation. Similarly, from equations 
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(2.3.1.9), (2.3.1.10), (2.3.1.12) and (2.3.1.13), the equation for conservation of 

energy can be written as 

∇ ∙ ܵ +
1
ଶܥ

ݓ߲
ݐ߲

=   (2.3.1.15)                              ܧ.ܬ−

Where the Poynting vector, S, represents the energy flow density and w is the 

energy density of the electromagnetic field (de Broglie 1940, Bass and 

Schrödinger 1955, Burman 1972a): 

ܵ =
1
଴ߤ
൫ܧ × ܤ +  ൯                               (2.3.1.16)ܣ∅ఊଶߤ

And 

ݓ =
1
2
൬ߝ଴ܧଶ +

1
଴ߤ
ଶܤ + ଴ଶ∅ଶߤ଴ߝ +

1
଴ߤ
ଶ൰ܣఊଶߤ          (2.3.1.17) 

In a Proca field, obviously, the potentials themselves have physical significance; 

it does not arise just through their derivatives. The scalar potential φ and the 

vector potential A described by the Proca equations are observable since the 

potentials acquire energy density ߝ଴ߤ଴ଶ∅ଶ/2 and ଵ
ଶఓబ

 ଶ  respectively. Phaseܣఊଶߤ

invariance (U(1) invariance) is lost in Proca theory, but the Lorentz gauge is 

automatically held, and this is indispensable to charge conservation, i.e. the 

Lorentz condition becomes a condition of consistency for the Proca field. As a 

consequence, the field equation takes the form of equation (2.3.1.4). However, if 

mγ = 0, the Proca equations 

would reduce smoothly to Maxwell’s equations. The theoretical problem of 

describing the photon is profound and difficult, and the arguments presented can 

often be speculative and controversial. There is a huge literature on this topic and 

the articles in it vary widely in their scope of investigation. A number of the 

more well-known works in this area include (Feynman 1949, Coester 1951, and 

Feldman and Matthews 1963, Strocchi 1967, Chakravorty 1985, Masood 1991, 

Mendon¸ca et al 2000). Although the theoretical problem is an area of great 

interest, it is not our objective here to dwell on it, but rather to touch only on 
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those fundamental principles that can help shed light on the experimental 

consequences of a nonzero photon rest mass. 

(2.3.2) the dispersion of light 

The most direct consequence of a finite photon mass is frequency dependence in 

the velocity of electromagnetic waves propagating in free space. From the Proca 

equations, the electric and magnetic fields in free space are given by 

,A୴~exp [i(k. r − wt)]                                    (2.3.2.1) 

 

where the wave vector k, the angular frequency ω and the rest mass ߤఊ(note that 

here and in what follows, the rest mass of the photon ߤఊ has units of reciprocal 

length (wave numbers), which is related to the mass mγ in grams by equation 

(2.3.1.6), i.e. 1 cm−1 ≡ 3.5 × 10−38 g ≡ 2.0 × 10−5 eV) satisfy the Klein–

Gordon equation, 

݇ଶܥଶ = ଶݓ −  ଶ                                           (2.3.2.2)ܥఊଶߤ

The phase velocity and the group velocity (the velocity of energy flow) of a free 

massive wave would then take the form 

ݑ = ௪
௞

= ܥ ቀ1 − ఓംమ஼మ

௪మ ቁ
షభ
మ ≈ ܥ ቀ1 + ఓംమ஼మ

ଶ௪మ ቁ                       (2.3.2.3) 

௚ݒ =
ݓ݀
݀݇

= ܥ ቆ1 −
ଶܥఊଶߤ

ଶݓ ቇ

ଵ
ଶ
≈ ܥ ቆ1 −

ଶܥఊଶߤ

ଶݓ2 ቇ                      (2.3.2.4) 

 

Where k = |k| = 2πλ-1 with λ being the wavelength. Because of the nonzero 

photon mass, the dispersion produces frequency dependence, and the group 

velocity will differ from the phase velocity. In the Proca equations, c becomes 

the limiting velocity as the frequency approaches infinity. 

For two wave packets with different propagating frequencies (denoted by ω1 and 

ω2, and assuming ω1 > ω2 ≫  the velocity differential between them is ,(ܥఊߤ

given by 
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∆v
C

=
v୥ଵ − v୥ଶ

C
=
μஓଶCଶ

2
ቆ

1
wଶ
ଶ −

1
wଵ
ଶቇ + 0 ൥ቆ

μஓଶCଶ

wଵ
ଶ ቇ

ଶ

൩

=
μஓଶ

8πଶ
(λଶଶ − λଵଶ)

+ 0 ቂ൫μஓλଵ൯
ସቃ                                                               (2.3.2.5) 

 

If the two waves move through the same distance L, the time interval between 

their arrivals is expressed as 

Δݐ =
ܮ
௚ଵݒ

−
ܮ
௚ଶݒ

=
ܮ

ܥଶߨ8
ଶଶߣ) −  ఊଶ                  (2.3.2.6)ߤ(ଵଶߣ

 

in which the terms of order higher than ൫μஓλଵ൯
ସ
 are neglected. Equations 

(2.3.2.4)–(2.3..2.6) are the starting points for detecting a dispersion effect due to 

the photon rest mass in both the terrestrial and extra-terrestrial approaches. 

(2.3.3) Gravitational deflection of massive photons 

In 1973, Lowenthal proposed a method for setting limits on the photon mass by 

exploiting the gravitational deflection of electromagnetic radiation. As is well-

known, the theory of general relativity predicts a deflection of starlight by the 

Sun of 1.75 arcsec (Hawking 1979). If the photon has a nonzero rest mass, this 

deflection angle would become 

ߠ = ଴ߠ ቆ1 +
݉ఊ
ଶܥସ

2ℎଶܥଶ
ቇ                                                     (2.3.3.1) 

 

where θ0 = 4MG/Rc2 is the deflection angle for a mass less photon ,M is the solar 

mass ,G the Newtonian gravitational constant, R the photon impact parameter 

(normally the solar radius), and hv the photon energy. Lowenthal set the 

correction term ∆ = θ0 (m2
γ c4)/(2h2v2) equal to 
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the difference between the measured deflection angle and the deflection angle 

calculated for photons with zero rest mass. By so doing, an expression setting an 

upper limit on the photon mass could be written as 

݉ఊ
ଶ ≤

ℎݒ
ଶܥ

ඨ
2∆
଴ߠ

                                    (2.3.3.2) 

 

Using the above equation and the data available at the time on the deflection of 

electromagnetic radiation by the Sun, Lowenthal considered three cases and 

obtained: (1) for visible light, mγ < 1 × 10−33 g with v = 5 × 1015 Hz and ∆ ≈ 0.1 

arcsec; (2) for radio source 3C 270, mγ < 7 × 10−40 g with v = 3 × 109 Hz and _ ≈ 

0.1 arcsec; (3) for intercontinental baseline interferometry, a promising limit 

would be mγ < 7 × 10−41 g if the deflection measurement at radio frequencies 

could be improved to 0.001 arcsec. Recently, Accioly and Paszko (2004) 

analyzed the energy-dependent deflection of a massive photon by an external 

gravitational field and arrived at the same expressions for setting limits on the 

photon mass as found in equation (2.3.3.1). Using the best measurement of the 

deflection of radio waves by the gravitational field of the Sun (≈1.4 × 10−4 

arcsec) and the lowest frequency employed by radio astronomers (≈2 GHz), they 

found a limit of mγ < 10−40 g. The values of mγ derived from gravitational 

deflection are considerably weaker than the other bounds obtained recently, and 

this method for setting limits on the photon mass is, in principle, less precise 

than the approaches that directly measure the dispersion of light passing through 

interstellar space (Lowenthal 1973). Even so, the method is an interesting 

independent approach and its presentation adds to the evidence restricting the 

size of the photon mass. 

(2.3.4)The Yukawa potential in static fields 

The next effect we discuss regarding massive photons arises in static fields. For a 

static electric field (the case of a static magnetic field ∂/∂t = 0) and the wave 

equation reduces to 



24 

൫∇ଶ − ∅ఊଶ൯ߤ = −
ߩ
଴ߝ

                                     (2.3.4.1) 

For a point charge ρ(r) = Q δ(r), yields a Yukawa or Debye type of potential, 

 

(ݎ)∅ =
1

଴ߝߨ4
ܳ
ݎ
 ൯                                (2.3.4.2)ݎఊߤ−൫݌ݔ݁

And the electric field becomes 

(ݎ)ܧ =
ܳ

଴ߝߨ4
൬

1
ଶݎ

+
ఊߤ
ݎ
൰  ൯                      (2.3.4.3)ݎఊߤ−൫݌ݔ݁

 Inspection of equations (3.8) and (3.9) shows that if ݎ ≪  ఊିଵ  the inverse squareߤ

law is indeed a good approximation, but if ݎ  ఊିଵ then the law departsߤ ≪

drastically from the predictions of Maxwell’s equations. (Analogously, in 

plasma, the static scalar potential does have a Debye form, 

(ݎ)∅ =
1

଴ߝߨ4
ܳ
ݎ
  (2.3.4.4)                           (ݎ஽ߤ−)݌ݔ݁

Where ߤ஽ = ට௡௘మ

ఌబ்
the inverse Debye shielding distance, n is is the plasma density 

and T (in joules) is the plasma temperature. Likewise, in a superconductor, a 

static magnetic field obeys 

(∇ଶ − ܤ(௅ଶߤ = 0                                       (2.3.4.5) 

Where ߤఊ = ௪೛

஼
      is the London skin depth, with ݓ௣ = ට ௡௘మ

ఌబ ௠௘
  denoting the 

electron plasma frequency)? So the static fields would be characteristic of 

exponential decay with a range ߤఊ-1 the exponential deviation from Coulomb’s 

law and its magnetic analogue in Ampere’s law provide many sensitive 

approaches to test for a photon rest mass in laboratory Experiments. 

(2.3.5) Effect of massive photon on the static electric field 

          Once the photon is provided with a finite mass, three immediate 

consequences may be deduced from the Proca equations: the frequency 

dependence of the velocity of light propagating in free space; the third state of 
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the polarization direction, namely the ‘longitudinal photon’; and some 

modifications in the characteristics of classical static fields. All those effects are 

useful approaches for laboratory experiments and Cosmological observations to 

determine the upper bound on the photon mass. 

      So the most interest in this section is the effect of a massive photon in a static 

electric field. In the case of a massive photon, the wave equation will be 

modified for all potentials (including the Coulomb potential) in the form  

ቀ∇ଶ − ଵ
େమ

பమ

ப୲మ
− μஓቁ∅ = −ρ ε଴ൗ                                 (2.3.5.1) 

For a point charge and in the static case, this yields a Yukawa type potential, 

∅(r) = ଵ
ସ஠கబ

୕
୰

exp൫−μஓr൯                                  (2.3.5. 2) 

 

and the electric field 

E(r) = ୕
ସ஠கబ

ቀ ଵ
୰మ

+ ஜಋ
୰
ቁ exp൫−μஓr൯                       (2.3.5.3) 

 

The 1924 de Broglie Einstein equations for photon mass are derived from Cartan 

geometry within the context of ECE theory. The latter produces the 1934 Proca 

wave equation straightforwardly, the main counter example to the obsolete 

twentieth century physics because it is not gauge invariant and signals the 

existence of finite photon mass, a counter example to the Higgs boson. The 

cosmological red shift is derived straightforwardly from the de Broglie Einstein 

equations as an implication of photon mass without an expanding cosmology. 

The photon mass is derived for the first time using light deflection by gravitation 

calculated with a Planck distribution for one photon, giving a consistent result. 

Compton scattering theory is worked out with finite photon mass, giving another 

method of measuring the mass. The de Broglie Einstein equations of 1923 and 

1924 [29- 30 ] used the concept of photon mass to lock together the Planck 

theory of the photon as quantum of energy and the theory of special relativity. 

Louis de Broglie quantized the photon momentum, producing wave particle 
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dualism. His papers of 1923 and 1924 led directly to the inference of the 

Schrödinger equation. Recently,photon mass has been shown to be responsible 

for light deflection and time change due to gravitation, the obsolete methods of 

calculating these were shown to be incorrect. This is an example of a pattern in 

which ECE theory has made the old physics entirely obsolete [31-40]. In this 

paper it is emphasized that finite photon mass is the main counter example to the 

standard model of physics, so called. This standard model was based to a large 

extent on the arbitrary and experimentally false assumption that the mass of the 

photon is identically zero. Unsurprisingly, this idea produces many well known 

problems, notably in canonical quantization of the electromagnetic field [31] and 

in gauge theory [32]. It is well known that the 1934 Proca equation [43] for finite 

photon mass is not gauge invariant, meaning that the use of a U(1) sector 

symmetry and Higgs mechanism is incompatible with finite photon mass. It 

follows that standard electroweak theory and standard attempts at a unified field 

theory are incompatible with photon mass, and in consequence that it is futile to 

search for a Higgs boson. Standard model 

unified field theory is bound to fail, it is a mixture of false assumptions. The 

Higgs boson does not exist because of finite photon mass. The latter implies that 

there is a cosmological red shift without an expanding universe. This red shift is 

derived in Section 2 directly from the original 1924 de Broglie Einstein 

equations without any further assumption. The de Broglie Einstein equations are 

derived straightforwardly in Section 2 from Cartan geometry in the context of 

ECE theory    

In Section 3, the existence of photon mass is proven with light deflection due to 

gravitation using the Planck distribution for one photon. The result is consistent 

with a photon mass of about 10-51 kg for a light beam heated to about 2,500 K 

as it grazes the Sun. This result proves the existence of photon mass for the first 

time. All previous estimates of photon mass are given as a value less than an 

upper bound, the best estimate [44] of the upper bound being of the order of 10-
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52 kg, close to the value obtained in this paper from light deflection due to 

gravitation.  

 In Section 4 the simplest type of Compton scattering theory is developed using 

Finite photon mass, showing that photon mass is observable in principle with 

Compton scattering and other types of particle scattering. Photon mass works its 

way through into all the experiments that signals the onset of quantum theory 

[45], notably black body radiation, specific heats, Compton scattering, the 

photoelectric effect, and atomic and molecular spectra.   

Finally one conclude that gives some development of the Proca wave and field 

equations to show that there exists a potential of space time itself because of the 

existence of photon mass. This potential exists in the absence of any other type 

of mass, notably electron mass. This potential can be amplified by spin 

connection resonance to produce electric power from space time. 

(2.3.6) Photon mass and the cosmological red shift.  

          The de Broglie Einstein equations are the classical limit of the Proca wave 

equation of special relativistic quantum mechanics. The Proca equation has been 

shown in this series [31-40] to be itself the limit of the ECE wave equation of 

generally covariant quantum mechanics, the long sought unification of general 

relativity and quantum mechanics.  The ECE equation of quantum 

electrodynamics [31-40] is:   

(□ଶ + R)Aஜ
ୟ     = 0                                       (2.3.6.1) 

 

Where R is a well defined scalar curvature and where  
2

2 2

2ct

  



�

  d' 

Alembert an. and 

Aஜ
ୟ = Aqஜୟ                                          (2.3.6.2) 
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Here A is a scalar potential magnitude and ݍఓ௔   is the Cartan tetrad [31-40]. 

Equation (2.3.2.1) reduces to the 1934 Proca equation [43] in the limit: 

R → ቀ୫େ
୦
ቁ
ଶ
                                       (2.3.6.3) 

    Where m is the mass of the photon, c is a universal constant and ћ is the 

reduced Planck constant. Note carefully that c is not the velocity of the photon of 

mass m. In the photon mass theory of de Broglie [29, 30], c is the maximum 

speed attainable in the theory of relativity. The old physics ignored the de 

Broglie Einstein theory and asserted erroneously that c is the speed of light in a 

vacuum. By habit this verbiage became accepted uncritically, an example of 

Langmuir´s scientific pathology, the acceptance of dogma instead of fact. 

Eq. (2.3.6.1) in the classical limit is the Einstein energy equation: 

ΡஜΡஜ = mଶCଶ                                    (2.3.6.4) 

Where  

Ρஜ = ቀ୉
େ
ቁ                                         (2.3.6.5) 

and where m  is the mass of the photon. Here E is the relativistic energy: 

E = γmCଶ                                         (2.3.6.6) 

And _Ρ is the relativistic momentum: 

Ρ = γmv୥                                         (2.3.6.7) 

The factor γ is the result of the Lorentz transform [31 -40] and was denoted by 

de Broglie [29, 30] as: 

γ = ቀ1 −
୴ౝమ

େమ
ቁ
షభ
మ

                                       (2.3.6.8) 

Where ࢜௚  is the group velocity; 

 

v୥ = ப୵
ப୩

                                              (2.3.6.9) 

   The de Broglie Einstein equations are: 

Ρஜ = ℏkஜ                                           (2.3.6.10) 
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Where the four wave numbers are: 

kஜ = ቀ୵
େ

 ቁ                                       (2.3.6.11)ܓ.

 Eq. (2.3.2.10)is a logically inevitable consequence of the Planck theory of the 

energy. Quantum of light later called “the photon”, published in 1901 [44], and 

the theory of special relativity [31 - 40, 45]. The standard model has attempted to 

reject the inexorable logic of Eq. (2.3.6.10)by rejecting m. This is illogical and 

fallacious, delaying and greatly damaging the progress of natural philosophy. In 

retrospect it is farcical to reject the particle in wave particle duality, which the 

standard model accepts at the same time as rejecting m. Eq. (2.3.2.10) can be 

written out as: 

        

E = ℏw = γmv୥                                 (2.3.6.12) 

And 

Ρ = ℏk = γmv୥                                 (2.3.6.13) 

In his original papers of 1923 and 1924 [29, 30] de Broglie defined the velocity 

in the Lorentz transform as the group velocity [40], which is the velocity of the 

envelope of two or more waves. For two waves: 

v୥ = ∆୵
∆୩

= ୵మି୵భ

୩మି୩భ
                               (2.3.6.14) 

And for many waves, Eq. (2.3.6.9) applies. The phase velocity (+ was defined by 

de Broglie [29, 30] as: 

v୮ = ୉
୔

= ୵
୩

                                   (2.3.6.15) 

The phase velocity is the average velocity of the waves in a wave packet. It 

follows that: 

v୥v୮ = Cଶ                                   (2.3.6.16) 

     This is an equation independent of the Lorentz factor γ, and universally valid. 

The standard model makes the arbitrary and fundamentally erroneous 

assumptions: 
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m = ?  0   , v୥ = v୮ =?   c                         (2.3.6.17) 

If there were no “standard model”, these assumptions would be considered to be 

ludicrous, revealing the extent to which imposed pathology has supplanted 

science in the twentieth century. 

In physical optics [42] the phase velocity is defined by: 

v୮ = ୵
୩

= େ
୬
                                      (2.3.6.18) 

Where n (w) is the frequency dependent refractive index, in general a complex 

quantity. 

The group velocity in physical optics is [42]: 

v୥ = C ቀn + w ୢ୬
ୢ୵
ቁ
ିଵ

                             (2.3.6.19) 

It follows that: 

v୮v୥ = Cଶ = େమ

୬ቀ୬ା୵ౚ౤
ౚ౭ቁ

                              (2.3.6.20) 

Giving the differential equation: 
ୢ୬
ୢ୵

= ି୬
ଶ୵

                                         (2.3.6.21) 

A solution of this equation is: 

n = ୡ

୵
భ
మ
                                           (2.3.6.22) 

Where C is a constant of integration with the units of angular frequency, so: 

n = ቀ୵బ

୵
ቁ
భ
మ                                        (2.3.6.23) 

Where   ݓ଴is a characteristic angular frequency of the electromagnetic radiation. 

Eq. (2.3.6.23) has been derived directly from the original papers of de Broglie 

[30, 31] using only the equations (2.3.6.18) and (2.3.6.19) of physical optics, or 

wave physics. The photon mass does not appear in the final Eq. (2.3.6.23), but 

the photon mass is basic to the meaning of the calculation. If ݓ଴is interpreted as 

the emitted angular frequency of light in a far distant star, then ݓ଴  is the angular 

frequency of light reaching the observer. If: 
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݊ > 1                                          (2.3.6.24) 

Then   

଴ݓ <  (2.3.6.25)                                         ݓ

and the light has been red shifted, meaning that its observable angular frequency 

(w) is lower than its emitted angular frequency (ݓ଴), and this is due to photon 

mass, not an expanding universe. The refractive index, n(w ) is the refractive 

index of the space time between star and observer. Therefore in 1924, de Broglie 

effectively explained the cosmological red shift in terms of photon mass. “Big 

Bang” (words in a derisory joke coined by Hoyle) is now known to be erroneous 

in many ways, and was the result of imposed and muddy pathology supplanting 

the clear science of de Broglie. 

In 1924 de Broglie also introduced the concept of least (or “rest”) angular 

Frequency: 

ℏݓ଴ =  ଶ                                  (2.3.6.26)ܥ݉

and kinetic angular frequencyݓ௞. The latter can be defined in the non relativistic 

limit: 

ℏw = mCଶ ቀ1 −
୴ౝమ

େమ
ቁ
షభ
మ

~mCଶ + ଵ
ଶ

mv୥ଶ            (2.3.6.27) 

So: 

ℏw୩~ ଵ
ଶ

mv୥ଶ                                  (2.3.6.28) 

Similarly, in the non relativistic limit: 

ℏk + mv୥ + ଵ
ଶ

mv୥ଷ                            (2.3.6.29) 

So the least wave number, k0, is: 

ℏk଴~mv୥                                         (2.3.6.30) 

And the kinetic wave number is 

ℏk୩~ ଵ
ଶ

m
୴ౝయ

େమ
                                        (2.3.6.31) 

The total angular frequency in this limit is: 
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w = w଴ + w୩                                     (2.3.6.32) 

And the total wave number is: 

k = k଴ + k୩                                      (2.3.6.33) 

The kinetic energy of the photon was defined by de Broglie by omitting the least 

(or “rest”) frequency: 

T = ℏk୩~ ଵ
ଶ

mv୥ଶ = ୔మ

ଶ୫
                              (2.3.6.34) 

Where: 

P = mv0                                         (2.3.6.35) 

Using Eqs. (2.3.6.26) and (2.3.6.30) it is found that: 

v୮ = େమ

୴ౝ
= ୵బ

୩బ
                                     (2.3.6.36) 

And using Eqs.(2.3.2.28) and (2.3.6.31): 

v୮ = େమ

୴ౝ
= ୵ౡ

୩ౡ
                                    (2.3.6.37) 

Therefore: 

v୮ = ୵
୩

= ୵బା୵ౡ

୩బା୩ౡ
                                  (2.3.6.38) 

a possible solution of which is: 
୵ౡ

୩బ
= v୥                                        (2.3.6.39) 

Using Eqs. (2.3.2.30) and (2.3.6.28): 
୵ౡ

୩బ
= (ଵ

ଶ
)v୥                                      (2.3.6.40) 

 So it is found that in these limits that:   

                                            v୥  = (ଵ
ଶ
)v୥                                                  (2.3.6.41) 

This is the actual work of de Broglie [29, 30], which has been extended  to give a 

simple derivation of the cosmological red shift due to the existence of photon 

mass. Inter alia, the cosmological red shift is an experimental proof of photon 

mass.   

(2.3.7) Photon mass and light deflection due to gravitation. 
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 The current best estimate of photon mass [49, 50] is of the order 10-52 kg. The 

photon mass from light deflection was calculated as:  

m = ୖబ
ୟେమ

E                                         (2.3.7.1) 

Using: 

E = ℏw                                           (2.3.7.2)                             

This gave a result 

m= 3.35 x 10-41 kg.                                 (2.3.7.3) 

Here R0 is the distance of closest approach, taken to be the radius of the Sun: 

R0 = 6.955 x 108 m                               (2.3.7.4) 

and a is  a distance parameter computed to high accuracy: 

a = 3.3765447822 x 1011 m.                          (2.3.7.5) 

More realistically, the photon in a light beam grazing the Sun has a mean energy 

given by the Planck distribution [55]: 

< ܧ > = ℏw ቆ ୣ
షℏ౭

ౡ౐ൗ

ଵିୣ
షℏ౭

ౡ౐ൗ
ቇ                           (2.3.7.6) 

where k is Boltzmann’s constant and T is the temperature of the photon. It is 

found that a photon mass of: 

m = 9.74 x 10-52 kg                               (2.3.7.7) 

     Is compatible with a temperature of 2,500 K. The temperature of the 

photosphere at the Sun´s surface is 5,778 K, while the temperature of the Sun´s 

corona is( 1 – 3) million K .Using Eq. (2.3.7.6) it is found that 

Vg = 2.99757 x 10 8 m s-1                             (2.3.7.8) 

This is less than the maximum speed of relativity theory: 

c = 2.9979 x 108 m s-1 .                              (2.3.7.9) 

The mean energy < E > is related to the beam intensity I in joules per square 

meter by: 

ܫ = ߨ8 ቀ௙
஼
ቁ
ଶ

< ܧ >                              (2.3.7.10) 

where f is the frequency of the beam in hertz. The intensity can be expressed as: 
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ܫ = ଶ݉ቀ1݂ߨ8 −
௩೒మ

஼మ
ቁ
షభ
మ

                             (2.3.7.11) 

The total energy density of the light beam in joules per cubic meter is: 

ܷ = ௙
஼
 (2.3.7.12)                                                ܫ

and its power density in watts per square meter (joules per second per square 

meter) is: 

Φ = ܷܥ = ܫ݂ ଷ݉ቀ1݂ߨ8 = −
௩೒మ

஼మ
ቁ
షభ
మ

                   (2.3.7.13) 

The power density is an easily measurable quantity, and implies finite photon 

mass through Eq. (2.3.7.13). In the standard model there is no photon mass, so 

there is no power density, an absurd result. The power density is related to the 

magnitude of the electric field strength (E ) and magnetic flux density (B) of the 

beam by:  

Φ = ଶࡱܥ଴ߝ =       ଴                            (2.3.7.14)ߤ/ଶ࡮ܥ

where ϵ0 and μ0 are respectively the vacuum permittivity and permeability, 

defined by:  

଴ߤ଴ߝ = ଵ
஼మ

                                         (2.3.7.15) 

So: 

   Φ ଷ݉ቀ1݂ߨ8 = −
௩೒మ

஼మ
ቁ
షభ
మ

ଶࡱܥ଴ߝ =  =  ଴              (2.3.7.15)ߤ/ଶ࡮ܥ

 (2.3.8)  Photon mass and Compton´s scattering.  

       Consider the collision of one photon of mass m with one electron of mass 

M. Let the initial angular frequency of the photon be w1 and its angular 

Frequency after collision is w2. Then the de Broglie Einstein theory gives:    

ℏݓଵ = ଶܥ݉ ቀ1 − ௩భమ

஼మ
ቁ
షభ
మ        ,      ℏݓଶ = ଶܥ݉ ቀ1 − ௩మమ

஼మ
ቁ
షభ
మ          (2.3.8.1) 

 where v1and v2 are the group velocities before and after collision with the 

electron. Consider the electron to be initially at rest, and define its relativistic 
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momentum after collision to be P. The electron gains momentum after collision, 

so the photon loses momentum. So:     

ଶݒ <  ଵ                                          (2.3.8.2)ݒ

This shows that the photon group velocity of de Broglie is lower after collision 

than before collision, a simple deduction that immediately proves the point made 

by Dr. Gareth J. Evans discussed in Section 2. By conservation of total energy 

(photon plus electron):  

ℏ(ݓଵ (ଶݓ− = ଶܲଶܥ) + (ଶܥଶܯ
భ
మ  ଶ                  (2.3.8.3)ܥܯ−

By conservation of total momentum in the X and Y axes: 

ℏ݇ଵ = ℏ݇ଶ cos ߠ + ܲ cos  ᇱ                            (2.3.8.4)ߠ

 

 0 = ℏ݇ଶ cosߠ − ܲ cos  ᇱ                               (2.3.8.5)ߠ

where the initial momentum of the photon is ℏ݇ଵ and its final momentum is 

ℏ݇ଶSo: 

ܲଶ = ℏଶ(݇ଵଶ + ݇ଶଶ − ݇ଵ݇ଶ cos  (2.3.8.6)                        (ߠ

The photon is scattered at an angle θ to its incoming X axis. 

Using the equations: 

ଵଶݓ = ଶ݇ଵଶܥ + ቀ௠஼
మ

ℏ
ቁ
ଶ
    and        ݓଶଶ = ଶ݇ଶଶܥ + ቀ௠஼మ

ℏ
ቁ
ଶ
        (2.3.8.7) 

It is found that: 

ଵݓ − ଶݓ = ℏ
ெ஼మ

ቀݓଵݓଵ − ଵଶݓ) − (଴ଶݓ
భ
మ(ݓଶଶ (଴ଶݓ−

భ
మ cosߠቁ + ௠మ஼మ

ℏெ
       (2.3.8.8) 

This is the one photon one electron Compton effect for a photon of mass m 

colliding with an electron of mass M. The least frequency of the photon is 

defined by: 

଴ݓ = ௠஼మ

ℏ
                                     (2.3.8.9) 

The only unknown in this experiment is m, which can be found given sufficient 

experimental precision. The usual theory of the Compton effect is developed 

with: 
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m =? 0                                     (2.3.8.10) 

in which case Eq. (2.3.8.7) reduces to: 

ଵݓ − ଶݓ = ℏ
ெ஼మ

ଵ(1ݓଵݓ − cos(2.3.8.11)            (ߠ 

Using: 

ଵݓ = ଵ݇ܥ = ஼
ఒభ

                                (2.3.8.12) 

ଶݓ = ଶ݇ܥ = ஼
ఒమ

                                (2.3.8.13)    

the usual description [17] of the Compton effect is obtained: 

ଵߣ − ଶߣ = ଶℏ
ெ஼మ

sinଶ ఏ
ଶ
                              (2.3.8.14)    

This theory is valid for the scattering of the photon of mass m with any particle 

of mass M, including another photon (the case M = m). There are few if any data 

on photon-photon scattering.  

(2.3.9) Proca Equations and the Photon Imaginary Mass 

    It has been recently proposed that the photon has imaginary mass and null real 

mass. Proca equations are the unique simplest relativistic generalization of 

Maxwell equations. They are the theoretical expressions of possible nonzero 

photon rest mass. The fact that the photon has imaginary mass introduces 

relevant modifications in Proca equations which point to a deviation from the 

Coulomb’s inverse square law. 

 For quite a long time it has been known that the effects of a nonzero photon rest 

mass can be incorporated into electromagnetism through the Proca equations 

[75-76]. It is also known that particles with imaginary mass can be described by 

a real Proca field with a negative mass square [77-79]. They could be generated 

in storage rings, Jovian magnetosphere, and supernova remnants. The existence 

of imaginary mass associated to the neutrino is already well-known. It has been 

reported by different groups of experimentalists that the mass square of the 

neutrino is negative [80]. Although the imaginary mass is not a measurable 

amount, its square is [81]. Recently, it was shown that an imaginary mass exist 
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associated to the electron and the photon too [82]. The photon imaginary mass is 

given by  

݉ఊ =
2
√3

ቀℎ݂ ଶൗܥ ቁ ݅                                 (2.3.9.1)   

This means that the photon has null real mass and an imaginary mass, ݉ఊ 

expressed by the previous equation.  

Proca equations provide a complete and self-consistent description 

electromagnetic phenomenon [86]. In the presence of sources ρ and J, these 

equations may be written as (in SI units). 

∇ ∙ ሬ⃗ܧ =
ߩ
଴ߝ
−  ఊଶ∅                                       (2.3.9.2)ߤ

∇ ∙ ሬ⃗ܤ = 0                                                 (2.3.9.3) 

∇ × ሬ⃗ܧ = −
ሬ⃗ܤ߲
ݐ߲

                                              (2.3.9.4) 

 ∇ × ሬ⃗ܤ = ܬ଴ߤ + ଴ߝ଴ߤ
డாሬ⃗

డ௧
− ሬሬሬሬ⃗  ܣఊଶߤ                             (2.3.9.5) 

 Where ߤఊ = ݉ఊ
஼
ℏ
with the real variables ߤఊand ݉ఊ. However, according to Eq. 

(2.3.9.1) ݉ఊ is an imaginary mass. Then, ߤఊmust be also an imaginary variable. 

Thus, ߤఊଶ is a negative real number similarly to ݉ఊ
ଶ consequently, we can write 

that 

ఊଶߤ =
݉ఊ
ଶܥଶ

ℏଶ
=

4
3
൬

ߨ2
ߣ
൰
ଶ

=
4
3
݇௥ଶ                                                   (2.3.9.6) 

 Whence we recognize  ଶగ
ఒ

= ݇௥ as the real part of the propagation vector; ሬ݇⃗ . 

݇ = ห ሬ݇⃗ ห = ݇௥ + ݅݇௜ = ට݇௥ଶ + ݇௜ଶ                (2.3.9.7) 

 Substitution of Eq. (6) into Proca equations, gives 

∇ ∙ ሬ⃗ܧ =
ߩ
଴ߝ
−

4
3
݇௥ଶ  ∅                                    (2.3.9.8) 

∇ ∙ ሬ⃗ܤ = 0                                                        (2.3.9.9) 
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∇ × ሬ⃗ܧ = −
ሬ⃗ܤ߲
ݐ߲

                                             (2.3.9.10) 

∇ × ሬ⃗ܤ = ܬ଴ߤ + ଴ߝ଴ߤ
డாሬ⃗

డ௧
− ସ

ଷ
݇௥ଶܣ  ሬሬሬሬ⃗                        (2.3.9.11)   

 

 In four-dimensional space these equations can be rewritten as   

ቄ∇ଶ − ଵ
஼మ

డమ

డ௧మ
− ସ

ଷ
݇௥ଶቅ ఓܣ = ఓሬሬሬ⃗ܬ଴ߤ−                          (2.3.9.12) 

 Where ܣఓand ܬఓሬሬሬ⃗   are the 4-vector of potential (A ,i∅/ܥ)and the current density, 

(J, iCߩ)respectively. In free space the above equation reduces to 

ቊ∇ଶ −
1
ଶܥ

߲ଶ

ଶݐ߲
−

4
3
݇௥ଶቋܣఓ = 0                                   (2.3.9.13) 

which is essentially the Klein-Gordon equation for the photon.  

Therefore, the presence of a photon in a static electric field modifies the wave 

equation for all potentials (including the Coulomb potential) in the form 

ቊ∇ଶ −
1
ଶܥ

߲ଶ

ଶݐ߲
−

4
3
݇௥ଶቋ ∅ =

ߩ
଴ߝ

                     (2.3.9.14) 

For a point charge, we obtain 

(ݎ)∅ = ଵ
ସగఌబ

௤
௥
݁ି

మ
√య

(௞ೝ௥)                              (2.3.9.15) 

and the electric field 

(ݎ)ܧ =
1

଴ߝߨ4
ݍ
ݎ
൭1 +

2
√3

(݇௥ݎ)൱ ݁
ି ଶ
√ଷ

(௞ೝ௥)
               (2.3.9.16) 

Note that only in the absence of the photon the expression of reduces to the well-

known expression: ݇௥ = (ݎ)ܧ 0 = ଵ
ସగఌబ

௤
௥మ

Thus, these results point to an 

exponential deviation from Coulomb’s inverse square law, which, as we know, is 

expressed by the following equation (in SI units): 

ଵଶܨ⃗ = ଶଵܨ⃗− = ଵ
ସగఌబ

௤భ௤మ
|௥భమሬሬሬሬሬሬ⃗ |య ଵଶሬሬሬሬሬ⃗ݎ                       (2.3.9.17) 

As seen in Eq. (2.3.9.16), the term 
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2
√3

(݇௥ݎ) 

only becomes significant if 

ݎ > ~10ିସߣ 

This means that the Coulomb’s law is a good approximation when  ݎ < ~10ିସߣ          

However, if, ݎ > ~10ିସߣ the expression of the force departs from the prediction 

of Maxwell’s equations.   

The lowest-frequency photons of the primordial radiation of 2.7K are about 

108Hz [88]. Therefore, the wavelength of these photons is λ ≈1m. Consider the 

presence of these photons in a terrestrial experiment designed to measure the 

force between two electric charges separated by a distance r. According to Eq. 

(2.3.9.17)the deviation from the Coulomb’s law only becomes relevant if r > 10-4 

m. Then, if we take r = 0.1 m the result is     
2
√3

(݇௥ݎ) =
ߨ4
√3

ቀ
ݎ
ߣ
ቁ = 0.73 

And 

൭1 +
2
√3

(݇௥ݎ)൱ ݁
ି ଶ
√ଷ

(௞ೝ௥)
= 0.83 

           Therefore, a deviation of 17% in respect to the value predicted by the 

Coulomb’s law. Then, why the above deviation is not experimentally observed? 

Theoretically because of the presence of Schumann radiation (f1=7.83 Hz and λ1 

=3.8 X107 m) [89-90]. According to Eq. (18), for, λ1 =3.8 X107 m the deviation 

only becomes significant if  ݎ > ~10ିସ3.8= 1ߣ km 

      Since the values of r in usual experiments are much smaller than 3.8 km the 

result is that the deviation is negligible. In fact, this is easy to verify. For 

example, if r = 0.1m, we get   
2
√3

(݇௥ݎ) =
ߨ4
√3

ቀ
ݎ
ߣ
ቁ   =

ߨ4
√3

(
01݉

3.8 × 10଻
= 1.9 × 10ି଻ 

And 
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൭1 +
2
√3

(݇௥ݎ)൱ ݁
ି ଶ
√ଷ

(௞ೝ௥)
=   0.999999999 

Now, if we put the experiment inside an aluminum box whose thickness of the 

walls are equal to 21cm * the experiment will be shielded for the Schumann (   

The thickness δ necessary to shield the experiment for Schumann radiation can 

be calculated by means of the well-known expression [91]:ߜ = ݖ5 =
10

ඥ2݂ߪߤߨ൘  where μ and σ are, respectively, the permeability and the electric 

conductivity of the material; f is the frequency of the radiation to be shielded. 

radiation. By putting inside the box a photons source of λ ≈1m, and making r = 

0.1m , then it will be possible to observe the deviation previously computed of 

17% in respect to the value predicted by the Coulomb’s law. 

(2.3.10)  Photon Mass and Electric Energy from Space Time.  

      . The Proca wave equation (49) may be written for each sense of polarization, 

a as 

ఓܣ =  ఓ                                      (2.3.10.1)ܬ଴ߤ

where the charge current four density of space time itself is defined as: 

ఓܬ                         = − ଵ
ఓబ
ቀ௠஼
ℏ
ቁ
ଶ
        ఓ                            (2.3.10.2)ܣ

The following definitions are used: 

ఓܬ =  (2.3.10.3)                                (ܬ−,ߩܥ)

And 

ఓܣ = ቀథ
஼

 ቁ                               (2.3.10.4)ܣ−,

The existence of the current ܬఓmeans that the inhomogeneous Proca field 

equation is [3 –12]: 

ఓ߲ܨఓ௩ =  ఓ                                (2.3.10.5)ܬ଴ߤ

and this is a consequence of the inhomogeneous ECE field equation [3-12]. In 

vector notation: 
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∇ ∙ ࡱ = ߩ
଴ൗߝ                                 (2.3.10.6) 

And 

∇ × ࡮ − ଵ
஼మ

డࡱ
డ௧

=  (2.3.10.7)                           ܬ଴ߤ

Here Eq. (2.3.10.6) is the Coulomb law of space time itself, and Eq. (2.3.10.7) is 

the Ampere Maxwell law of space time itself. Thus: 

ߩ = ଴ߝ− ቀ
௠஼
ℏ
ቁ
ଶ
∅                                (2.3.10.8) 

ܬ = − ଵ
ఓబ
ቀ௠஼
ℏ
ቁ
ଶ
 (2.3.10.9)                                ܣ

Therefore the existence of photon mass means that there is a potential of space 

time itself which gives a charge density and current density of space time itself. 

This can be amplified with spin connection resonance [31-40] in devices that 

take energy from 

space time. If space time itself can be polarized and magnetized, the equations 

are: 

સ ∙ ࡰ =  (2.3.10.10)                                ߩ

And 

સ × ࡴ − డࡰ
డ௧

=  (2.3.10.11)                            ࡶ

Here  

ࡰ = ࡱ଴ߝ +  (2.3.10.12)                              ࡼ

And 

࡮ = ࡴ)଴ߤ +  (2.3.10.13)                           (ࡹ

So photon mass is central to all aspects of physics 

(2.3.11) Photon Mass and Maxwell’s equations 

          In this section Maxwell’s equation in free space is solved in presence of 

polarization. The quantum expression for energy and momentum are used to 

relate energy to momentum. This relation is compared to the expression of 
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energy in special relativity; this comparison is utilized to find the mass of the 

photon. Compton theory is also used to find photon mass. 

 Maxwell’s equations are used to describe the behavior of electromagnetic 

waves, to describe the nature of electromagnetic wave in free space, it is better to 

bear in mind that its conductivity is very small and can be neglected. The 

equation of the electric field in free space in the presence of polarization is given 

by : 

−∇ଶܧ + ଴ߝ଴ߤ
డమா
డ௧మ

+ ଴ߤ
డమ௉
డ௧మ

= 0                     (2.3.11.1) 

The electric polarization P is defined to be: 

P = ex                                            (2.3.11.2) 

Where e is the charge of electron, while x is its displacement. To solve equation 

(1) one can assume the solution 

ܧ =  ଴݁௜(୩୶ି୵୲)                                   (2.3.11.3)ܧ

Where ܧ଴ stand for the amplitude electric field wave, while k and w represents 

the wave number and angular frequency, respectively. 

݇ = ଶగ
ఒ

ݓ           =  (2.3.11.4)                               ݂ߨ2

Where is ߣ the wave length, while f is the frequency. With the aid of (2.3.11.3) 

one finds: 
డா
డ௫

=  (2.3.11.5)                                           ܧ݇݅

߲ଶܧ
ଶݔ߲

= −݇ଶ(2.3.11.6)                                           ܧ 

ܧ߲
ݐ߲

=  (2.3.11.7)                                           ܧݓ݅−

߲ଶܧ
ଶݐ߲

= ݅ଶݓଶܧ =  (2.3.11.8)                                 ܧଶݓ−

To relate polarization P to E it is important to find equation of motion of electron 

of mass m and charge e in the presence of the electric field E. this equation the 

form: 
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݉௘̈ݔ = ⟹       ܧ݁− ݔ̈  = −
ܧ݁
݉௘

                          (2.3.11.9) 

But 

଴ߤ
డమ௉
డ௧మ

= ଴݁ߤ
డమ௫
డ௧మ

=  (2.3.11.10)                                 ݔ଴݁̈ߤ

With aid of (2.3.11.9); 

଴ߤ
డమ௉
డ௧మ

= ݔ଴݁̈ߤ = ଴ߤ−
௘మ

௠೐
 (2.3.11.11)                             ܧ

But; 

ଶܥ =
1

଴ߝ଴ߤ
                                      (2.3.11.12) 

Substituting (2.3.11.6, 2.3.11.8, 2.3.11.11, and 2.3.11.12) in (2.3.11.1) yield: 

ܧଶ݇ଶܥ − ܧଶݓ + ଴ߤ
݁ଶܥଶ

݉௘
ܧ = 0                   (2.3.11.13) 

From which photon mass can be calculated 

Eliminating E from both sides of (2.3.11.13) yields;  

ଶ݇ଶܥ − ଶݓ + ଴ߤ
݁ଶܥଶ

݉௘
= 0                   (2.3.11.14)  

Multiplying both sides by ℏଶ yields : 

ଶ݇ଶℏଶܥ      − ℏଶ ݓଶ + ଴ߤ
௘మ஼మℏమ 
௠೐

= 0                  (2.3.11.15)      

According to the laws of quantum mechanics: 

ܧ = ℏݓ             ܲ = ℏ݇                           (2.3.11.16)       

Then inserting (2.3.11.16) in (2.3.11.15) yields 

ଶܲଶܥ  − ଶܧ  + ଴ߤ
௘మ஼మℏమ 
௠೐

= 0                         (2.3.11.17)       

Therefore  

ଶܧ = ଶܲଶܥ   + ଴ߤ
݁ଶܥଶℏଶ 
݉௘

                        (2.3.11.18) 

On the other hand the energy E is related to the momentum P and rest mass ݉଴ 

in special relativity according to the relation  
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ଶܧ = ଶܲଶܥ   + ݉଴
ଶܥସ                             (2.3.11.19) 

Where ݉଴ here stands for photon rest mass . 

Comparing (2.3.11.18) and (2.3.11.19) the photon rest mass is given by: 

݉଴
ଶܥସ = ଴ߤ

݁ଶܥଶℏଶ 
݉௘

 

݉଴ =
ℏ݁
ܥ ඨ

ߤ
݉௘

                                      (2.3.11.20) 

Mathematically: 

݉଴ =
6.63 × 10ିଷସ × 1.6 × 10ିଵଽ

2 × 3.14 × 3 × 10଼
ඨ4 × 3.14 × 10ି଻

9.1 × 10ିଷଵ
 = 0.6587 × 10ିସଽ݃  )     

(2.3.12) Photon Mass and Compton´s scattering.  

       Consider the collision of one photon of mass m with one electron of mass 

M.  

. Let the initial angular frequency of the photon be w1 and its angular 

frequency after collision is w2. Then the de Broglie Einstein theory of Section 2 

gives:    

ℏݓଵ = ଶܥ݉ ቀ1 − ௩భమ

஼మ
ቁ
షభ
మ        ,      ℏݓଶ = ଶܥ݉ ቀ1 − ௩మమ

஼మ
ቁ
షభ
మ          (2.3.12.1) 

 where v1and v2 are the group velocities before and after collision with the 

electron. Consider the electron to be initially at rest, and define its relativistic 

momentum after collision to be P. The electron gains momentum after collision, 

so the photon loses momentum. So:     

ଶݒ <  ଵ                                     (2.3.12.1)ݒ

This shows that the photon group velocity of de Broglie is lower after collision 

than before collision, a simple deduction that immediately proves the point made 

by Dr. Gareth J. Evans discussed. By conservation of total energy (photon plus 

electron):  

ℏ(ݓଵ (ଶݓ− = ଶܲଶܥ) + (ଶܥଶܯ
భ
మ  ଶ                (2.3.12.2)ܥܯ−



45 

By conservation of total momentum in the X and Y axes: 

ℏ݇ଵ = ℏ݇ଶ cos ߠ + ܲ cos  ᇱ                            (2.3.12.3)ߠ

 

 0 = ℏ݇ଶ cosߠ − ܲ cos  ᇱ                             (2.3.12.4)ߠ

where the initial momentum of the photon is ℏ݇ଵ and its final momentum is 

ℏ݇ଶSo: 

ܲଶ = ℏଶ(݇ଵଶ + ݇ଶଶ − ݇ଵ݇ଶ cos  (2.3.12.5)                           (ߠ

The photon is scattered at an angle θ to its incoming X axis. 

Using the equations: 

ଵଶݓ = ଶ݇ଵଶܥ + ቀ௠஼
మ

ℏ
ቁ
ଶ
    and        ݓଶଶ = ଶ݇ଶଶܥ + ቀ௠஼మ

ℏ
ቁ
ଶ
           (2.3.12.6) 

It is found that: 

ଵݓ − ଶݓ = ℏ
ெ஼మ

ቀݓଵݓଵ − ଵଶݓ) − (଴ଶݓ
భ
మ(ݓଶଶ (଴ଶݓ−

భ
మ cosߠቁ + ௠మ஼మ

ℏெ
    (2.3.12.7) 

This is the one photon one electron Compton effect for a photon of mass m 

colliding with an electron of mass M. The least frequency of the photon is 

defined by: 

଴ݓ = ௠஼మ

ℏ
                                       (2.3.12.8) 

The only unknown in this experiment is m, which can be found given sufficient 

Experimental precision. The usual theory of the Compton Effect is developed 

with: 

m =0                                           (2.3.12.9) 

In which case Eq. (65) reduces to: 

ଵݓ − ଶݓ = ℏ
ெ஼మ

ଵ(1ݓଵݓ − cos(2.3.12.10)                   (ߠ 

Using: 

ଵݓ = ଵ݇ܥ = ஼
ఒభ

                                (2.3.12.11) 

ଶݓ = ଶ݇ܥ = ஼
ఒమ

                                (2.3.12.12)    

The usual description [17] of the Compton effect is obtained: 
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ଵߣ − ଶߣ = ଶℏ
ெ஼మ

sinଶ ఏ
ଶ
                           (2.3.12.13)    

This theory is valid for the scattering of the photon of mass m with any particle 

of mass M, including another photon (the case M = m). 
 

(2.4) Special Theory of Relativity for Photons 

                   The photon mass is ordinarily assumed to be exactly zero. However, 

this is merely a theoretical assumption; there is no experimental evidence to 

indicate that the photon mass is identically zero. In contrast, there are various 

experimental methods that have been used to set upper limits on the photon 

mass. If there is any deviation from zero, it must be very small. Nevertheless, 

even a small nonzero value would have many consequences in many theories in 

modern physics. It would mean that we could treat the photon as a particle that is 

approximately analogous to an electron. Photon mass would imply that the 

famous ! is not a universal constant but instead depends on the photon energy, 

just as in the case of other particles within nonzero mass. In a related problem, 

we will study the Lorentz contraction of a rod using the Lorentz transformation 

equations. We will see how Lorentz transformations can demonstrate, 

remarkably, that under certain special conditions, length expansion is also 

possible! The aim of this study is combine all of these components – photon 

mass, length variation, and Doppler effect – to develop a complete special theory 

of relativity for the photon as a particle. 

           There are many consequences of nonzero photon mass: the speed of light 

would depend on its frequency, the usual Coulomb potential would become a 

Yukawa potential, Maxwell’s equations would be replaced by Proca’s equations, 

the black-body radiation formula would take on a new form, and many other 

theories would also be affected. In addition, it seems that a nonzero photon mass 

would have an impact on the special theory of relativity, because the photon 

mass would affect the universal constant C. In fact, however, this is not 

necessarily true. We could simply consider that the velocity that is the key 
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quantity in special relativity is not the velocity of light but rather a constant of 

nature, which is the maximum speed that any object could theoretically attain in 

space-time. 

        Although the mass of the photon is very small, any nonzero photon mass 

would have many consequences at a theoretical level. In this study, we will 

attempt to derive a dynamical relativistic energy equation for the photon as a 

particle. We then will see how Lorentz transformations can demonstrate, 

remarkably, that under certain special conditions, length expansion is also 

possible. All of these results together provide us with a bizarre new picture of the 

photon behavior. 

(2.4.1) Laboratory Limits on the Photon Mass  

       Photons, just like any other observed particle, possess a real physical 

identity and are not just a conceptualization of the physicist’s mind. Once the 

photon is provided with a finite mass, three immediate consequences may be 

deduced from the Proca equations: (2.3.5.1) there will be a frequency 

dependence in the velocity of light propagating in free space, (2.3.5.2) a third 

state of polarization, the ‘longitudinal photon’ will exist and (2.3.5.3) there will 

be some modifications in the characteristics of the classical static fields. Critical 

scientific minds since the time of Cavendish and before have repeatedly come to 

the conclusion that the photon may have mass. The question is a persistent one 

and has spurred several reviews of the topic over the past 30 years (Goldhaber 

and Nieto 1971b, Chibisov 1976, Byrne 1977, Dolgov and Zeldovich 1981, 

Vigier 1990, 1992, 1997, Gray 1997, Zhang 1998). In this section, we will 

discuss the history of the various experimental searches for the photon mass that 

have been carried out in the terrestrial laboratory or on the surface of the earth. 
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Table (2.3.1) the upper limit mass of photon according to Particle data group 

Author (date) Experimental approach Upper 

limit on 

݉ఊ/݃ 

Terrestrial results   

Goldhaber et al. (1971) Speed of light 5.6x10-46 

Williams et al. (1971) Test of Coulomb’s law 1.6x10-47 

Chernikov et al. (1992) Test of Ampere’s law 8.4x10-46 

Lakes (1998) Static torsion balance 2x10-50 

Luo et al. (2003) Dynamic torsion balance 1.2x10-51 

Extraterrestrial results   

De Broglie (1940) Dispersion of starlight 0.8x10-39 

Feinberg (1969) Dispersion of starlight 10-44 

Schaefer (1999) Dispersion of gamma-ray 

bursts 

4.2x10-44 

Davis et al. (1975) Analysis of Jupiter’s magnetic 

field 

8x10-49 

Fischbach et al. (1994) Analysis of Earth’s magnetic 

field 

1x10-48 

Ryutov (1997) Solar wind magnetic field and 

plasma 

10-49 

Gintsburg (1964) Altitude dependence of 

geomagnetic field 

3x10-48 

Patel (1965) Alfvén waves in Earth’sMagnetosphere 4x10-47 

Hollweg (1974) Alfvén waves in the interplanetary medium 1.3x10-48 

Barnes et al. (1974) Hydromagnetic waves 3x10-50 

DeBernadis et al. (1984) Cosmic background radiation 3x10-51 

Williams et al. (1971) Galactic magnetic field 3x10-56 

Chibisov (1976) Stability of the galaxies 3x10-60 

Goldhaber and Nieto (2003) Stability of plasma in Coma cluster  

Accioly and Paszko (2004) Gravitational defection of radio waves  
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(2.4.2) Solution of Maxwell and Proca equations 

In the presence of a nonzero photon mass, Maxwell’s equations will become 

Proca’s equations in the form 

ቀ ૚
૛࡯

ࣔ૛

૛࢚ࣔ
− સ૛ +  (2.4.2.1)                                ࣆ࡭૛ቁࢽࣆ

Where ߤఊିଵ = ℏ
௠ം஼

   ݉ఊis the mass of photon 

The solution of equation (2.4.2.1) is the electromagnetic field in free space, 

௩ܣ = ݁ି௜(௪௧ି௞௫)                                        (2.4.2.2) 

With  

݇ଶ =
ଶݓ

ଶܥ
−  ఊଶ                                           (2.4.2.3)ߤ

Where k is the wave vector and w is the angular frequency. Then, the group 

velocity will be 

௚ݒ = ௗ௪
ௗ௞

= ට1ܥ −
ఓംమ஼మ

௪మ                                     (2.4.2.4) 

 

௚ݒ = ௗ௪
ௗ௞

= ට1ܥ −
௠ം
మ஼ర

௛మ௩మ
                                   (2.4.2.5) 

This is the most important consequence of nonzero photon mass: the speed of 

light will depend on the frequency of the electromagnetic wave. It is clear that 

௚ݒ =  ܥ

 Only when ݉ఊ → 0  or when the frequency approaches infinity, ݒ → ∞.. 

(2.4.3) Relativistic Total Energy of the Photon 

             If we use the quantum energy formula for photons and the relativistic 

total energy of particles, we will find, directly, that 

ܧ = ℎݒ = ௠ം஼మ

ඨଵି
ೡ೒
మ

಴మ

      ⟹ ௚ݒ  ට1ܥ = −
௠ം
మ஼ర

௛మ௩మ
                      (2.4.3.1) 
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When ݒ௚ = it must be that  ݉ఊ  ܥ → 0  and E will be unknown. Also, ݒ௚ୀ଴ only 

when 

݉ఊ
ଶܥସ

ℎଶݒଶ
= 1     ⟹  ݉ఊ

ଶܥସ = ℎଶݒଶ                    (2.4.3.2) 

This means that the photon is in its rest frame. We know that there is no rest 

frame for the photon if the speed of light does not change. However, if C is 

variable with mass and frequency, we could imagine, theoretically, that the 

photon could have a rest frame. Then, v would be the rest frequency, which 

would correspond, in some way, to the photon rest mass ݉ఊ.Now; we will 

combine the relativistic Doppler Effect with equation (2.4.3.1). The relativistic 

Doppler Effect for an observer receding from the light source is given by: 

v = vᇱඨ
ଵି ౬ి
ଵା ౬ి

                                         (2.4.3.3) 

For an observer approaching the light source, it is given by [82] 

v = vᇱඨ
ଵା ౬ి
ଵି ౬ి

                                        (2.4.3.4) 

Where vᇱthe rest frequency, and v is is the velocity of the observer. When we 

insert equations (2.4.3.3)and (2.4.3.4)into (2.4.3.1)we find, after some algebra, 

that 

 

E = hv = hvᇱඨ
ଵି ౬ి
ଵା ౬ి

                                    (2.4.3.5) 

and                                             

E= hv = hvᇱඨ
ଵା ౬ి
ଵି ౬ి

                                     (2.4.3.6) 

Using (7) instead, we find 
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 E = ݉ఊܥଶඨ
ଵି ౬ి
ଵା ౬ి

                                       (2.4.3.7) 

E =  ݉ఊܥଶඨ
ଵା ౬ి
ଵି ౬ి

                                        (2.4.3.8)   

               Equation (2.4.3.7) shows that the energy of the single photon, treated as 

a particle, decreases as the observer’s velocity increases, whereas equation 

(2.4.3.8)shows that the energy increases with an increase in the observer’s 

velocity. Equations (2.4.3.6) and (2.4.3.5)  are merely the normal Doppler-shift 

effect, i.e., (2.4.3.3) and (2.4.3.4) , multiplied by Planck’s constant. However, the 

interpretation of the two sets of equations is entirely different. The Doppler 

effect treats light as a wave, but equations (2.4.3.7)and (2.4.3.4)apply to a single 

photon with a tiny mass  ݉ఊ . Thus, we must be careful here, because the photon 

has finite dimensions like other particles.      

  (2.4.4) Lorentz contraction and Lorentz Expansion 

                 Equation (2.4.3.7)indicates that space-time has a special character. We 

know that all kinematical and dynamical phenomena in the special theory of 

relativity arise as necessary consequences of the nature of space-time and the 

Lorentz transformations. Diagram (2.7.3.1) illustrates how the equations of the 

special theory of relativity have been carefully constructed in relation to each 

other. 

                                                   Lorentz transformations 

                                                                ⇓ 

݀߬
ݐ݀

= ඨ1 −
ଶݒ

ଶܥ
ܮ                          ,      = ଴ඨ1ܮ −

ଶݒ

ଶܥ
         

                                                                ⇓ 
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௜ݑ =
ݒ ௜

ට1 − ଶݒ
    ଶܥ

 

⇓ 

                                                        P  =  mݑ௜ 

                                                                ⇓ 

ܧ =
ଶܥ݉

ට1 − ଶݒ
     ଶܥ

 

                          Diagram (2.7.3.1) 

  Where ݀߬ the proper is time, and ݑ௜  is the proper velocity. 

We have shown, in equation (2.4.3.8)  that the energy of the photon, when 

treated as a tiny particle, decreases as the velocity of the light source increases. 

This phenomenon is familiar from the relativistic Doppler effect, but here, we 

focused our attention on a single photon, which is clear from the presence of 

Planck’s constant in equations (2.4.3.5)  and (2.4.3.6)  Equation (2.4.3.7)  poses 

an important and exciting question: are there kinematical and dynamical 

equations that are consistent with equation ((2.4.3.7) . Fortunately, just as 

Lorentz transformations lead to length contraction, we will show that, under very 

special conditions, Lorentz transformations can also lead to both expansion and 

invariance in length! Suppose that there is reference frame S with spatial 

coordinates x, y, z and time t. Let S’ be another reference frame with coordinates 

x’, y’,z’ and time t’ that moves with speed v relative to S in the  positive 

direction along the x- axis. The relation between the coordinates and time of an 

event in the inertial frame S and the coordinates and time of the same event as 

observed in the second inertial frame 

S’ is given by the following Lorentz transformations [80]: 

ᇱݔ = ݔ)ߚ −  (2.4.4.1)                                        (ݐݒ

ᇱݕ =  (2.4.4.2)                                                 ݕ
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ᇱݖ =  (2.4.4.3)                                                 ݖ

ᇱݐ = ߚ ቀݐ −
ݔݒ
ଶܥ
ቁ                                         (2.4.4.4) 

Where ߚ = ට1 − ௩మ

஼మ
   If S’ instead moves in the negative direction along the x 

axis, we have only to change the sign of the relative velocity v because of the 

symmetry of the equations. Therefore, 

ݔ = ᇱݔ)ߚ +  (2.4.4.5)                                      (ݐݒ

ᇱݕ =  (2.4.4.6)                                               ݕ

ᇱݖ =  (2.4.4.7)                                               ݖ

ݐ = ߚ ቀݐᇱ +
ݔݒ
ଶܥ
ቁ                                       (2.4.4.8) 

The famous consequences of the Lorentz transformations are length contraction 

and time dilation, as revealed by Einstein in his famous paper in 1905 [75]. 

However, the Lorentz transformations also lead to other results concerning the 

relativity of length. Under certain special conditions, Lorentz transformations 

also result in length invariance and length expansion! This result was 

demonstrated by 

Sadanand D. Agashe [80]. Therefore, we will follow his derivation to illustrate 

how Lorentz transformations can lead to length contraction and then how these 

transformations can also lead to length invariance and expansion. He wrote the 

following: 

                  “In deducing the Lorentz contraction in such a scenario, most authors 

talk about a rigid rod lying at rest on the  ݔᇱaxis of the moving system ܵᇱ The 

ends  ଵܲand  ଶܲ of this rod can thus be thought of as a series of events  ଵܲ ≡

{ (xଵᇱ, 0, 0, tᇱ)}and Pଶ ≡ { (xଶᇱ, 0, 0, tᇱ)}   of  with xଶᇱ − xଵᇱ > 0 , say, so that we 

can call L the constant (in Sᇱ) length of the rod, and so we are justified in calling 

the rod “rigid” in SᇱNext, one shows that although the rod is at rest in Sᇱ it is 

“observed” to be moving in S with speed v, of course. Further, as it moves in S, 

its length remains constant in S and so it is rigid in S also. However, its length in 
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S is different from its length L inSᇱ, and is, in fact, ିߚଵܮ, which is smaller than L 

Hence the term “contraction”. Indeed, using [(1.29)...(1.32)], at any time t of S  

the coordinates of Pଵ in S are (ݔ)ߚᇱ + ,(tଶᇱݒ 0 ,0)  and the coordinates of Pଶ in S 

are(ݔ)ߚᇱ + .(tଶᇱݒ 0 .0 ) where tଶᇱ and tଶᇱ  i݊ Sᇱ correspond to a common time S 

in t and so, 

ݐ = ߚ ቆݐଵᇱ +
ଵᇱݔݒ

ଶܥ
ቇ = ߚ ቆݐଶᇱ +

ଶᇱݔݒ

ଶܥ
ቇ                  (2.4.4.9) 

The distance betweenP1andP2 in S at time t, and, thus, the length of the rod in S 

at time t are given by, 

ଶᇱݐݒ)ߚ + ଶᇱݔ ) − ଵᇱݐݒ)ߚ  + (ଵᇱݔ   = ଶᇱݔ)ߚ − (ଵᇱݔ − ଶᇱݐ)ݒߚ   − (ଵᇱݐ = ଶᇱݔ)ߚ − (ଵᇱݔ −
௩
஼మ
ଶᇱݔ)ݒߚ − (ଵᇱݔ = ଶᇱݔ)ߚ  − (ଵᇱݔ ቀ1 − ௩మ

஼మ
ቁ =  ଵ

ఉ
 (2.4.4.10)                         ܮ

All this is very familiar and is written only to fix the notation and to avoid 

misunderstanding. Note that one could allow the rod to be anywhere in the space 

of S’ provided it is parallel to the x’ –axis.  

 He then derived length expansion and invariance, under the title “What happens 

to a rod moving with an arbitrary velocity?”: 

Again   

  What are the motions of P1 andP2 in S’? Is the distance between them constant 

in S’ too, so that the rod remains rigid in S’? Indeed the motions of P1 and P2 are 

uniform in S’ too, since they are given by, 

ଵܲ: ൥൭ݔ)ߚ଴ + ݐݑ − ,(ݐݒ ߚ,0,0 ቆݐ −
଴ݔ)ݒ + (ݐݑ

ଶܥ
ቇ൱൩           (2.4.4.11) 

ଶܲ: ൥൭ݔ)ߚ଴ + ܮ + ̅ݐݑ − ,(̅ݐݒ ߚ,0,0 ቆ̅ݐ −
଴ݔ)ݒ + ܮ + (̅ݐݑ

ଶܥ
ቇ൱൩      

Their common speed is given by, 
ݑ − ݒ

1 − ݒݑ
ଶܥ

                                         (2.4.4.12) 

The S’ distance between P1 and P2 at a time t’ in S’ is given by 
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଴ݔ)ߚ + ܮ + ̅ݐݑ − (̅ݐݒ − ଴ݔ)ߚ  + ݐݑ −  (2.4.4.13)          (ݐݒ

Where t and ̅ݐ are related to t’ by, 

ᇱݐ = ߚ ቀݐ − ௩(௫బା௨௧)
஼మ

ቁ = ߚ ቀݐᇱ − ௩(௫బା௅ା௨௧̅)
஼మ

ቁ           (2.4.4.14) 

The distance calculates out to be, 
1

ߚ ቀ1 − ݒݑ
ଶቁܥ

 (2.4.4.15)                                 ܮ

Thus, the rod is observed to stay rigid in S’ too. But is its length in S’ necessarily 

smaller than its length L observed in S? Denoting the factor multiplying L in 

  (2.4.4.15)by k(u), the function k has the following values: 

݇ ቆ
ଶܥ

ݒ
ቇ = ∞                                   (2.4.4.16) 

݇(ܿ) =
1

ߚ ቀ1 − ݒ
ቁܥ

= ඨ
1 + ݒ

ൗܥ
1 − ݒ

ൗܥ
> 1                 (2.4.4.17) 

(ݒ)݇ =
1

ߚ ቀ1 − ଶݒ
ଶൗܥ ቁ

= ߚ > 1                     (2.4.4.18) 

݇(0) =
1
ߚ

< 1                                         (2.4.4.19) 

(ܥ−)݇ =
1

൫1ߚ − ݒ
ൗܥ ൯

= ඨ
1 − ݒ

ൗܥ
1 + ݒ

ൗܥ
< 1               (2.4.4.20) 

݇(−∞) = 0                                 (2.4.4.21) 

With 

(ܥ−)݇ < ݇(0) < 1 < (ݒ)݇ <  (ܥ)݇

    The case u = 0 corresponds to the rod being at rest in S and its length in S’ is 

observed to be smaller than its length in S, but if u = v the rod is at rest in S’ its 

length in S’ is observed to be larger than its length in S. Further, there is a 

particular value of u, namely: 
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Such that ݇(ݑത) = 1 and 0 <. (ݑത) <  Thus, there is a speed v for which the rod ݒ

is observed to be moving in both S and S’ but its length is observed to be the 

same in both. So, we can have not only a contraction but also an expansion and 

even invariance!” [6] Agashe analyzed all of these results in detail, and he also 

carefully discussed Einstein’s papers [6][7][8]. He considered that [6] 

[…the “change” in length is purely a kinematical fact, arising out of the manner 

in which the two systems S and S’ and their coordinates and times are related, 

and we need not look for any dynamical reason for the change in either system]. 

(4.4.5) What About the Relativistic Time? 

We know that the length, or, more accurately, space, is working together with 

time to keep the speed of light a universal constant. In the special theory of 

relativity, length contraction and time dilation maintain the speed of light at a 

constant. They also conserve Lorentz invariance. Diagram 1 shows very clearly 

that the equations of the special theory of relativity depend on one another. 

Therefore, any change in one of them will lead to a change in all other equations. 

We derived the new equation of energy; the energy of photons, when they are 

treated as particles, can decrease. We then showed, as derived by Agashe, that 

the length of a rod can expand or remain invariant, and length expansion is 

consistent, in principle, with the equation of decreasing energy. Because of this 

consistency, the proper 

velocity, the relativistic momentum and all other dynamical quantity must exist. 

However, the most bizarrely affected quantity is the time. If equation (2.4.4.9) is 

correct and is applied to the length of a rod, time or the clocks used to measure it 

must be speeding up! We can easily demonstrate the truth of this statement. 

Consider again (fig.2.4.4 1), and suppose that there is a particle the frame S’ with 

a mean lifetime ߬ ". If equation (2.4.4.8) is correct, the length of the rod in frame 

S will expand to 

ܮ = ௅଴

ටଵିೡ
మ

೎మ

                                        (4.4.5.1) 
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In this case, however, to the observer in the particle frame, all space behind the 

observer will appear to 

Expand according to equation (4.4.5.1)not just the rod in frame S. Thus, if the 

time interval between two events as measured in the particle frame S’ is " ݀߬, it 

will be different in frame S. In this frame, the length will not change, so the 

particle will occupy a smaller distance than in frame S’, but the two 

Observers must agree on the time at which the particle disappears. For this to 

happen there is only one possibility: time must speed up in frame S’ relative to 

frame S This means that the equation for the time interval must reverse in frame 

S to obtain the same result for the two reference frames. Therefore, for S, time 

must obey this equation: 

ݐ݀
݀߬

= ඨ1 −
ଶݒ

ଶܥ
                                        (4.4.5.2) 

Of course, time also speeds up in frame S relative to frame S’. The two equations 

(4.4.5.1)and (4.4.5.2)will leave the speed of light, universally, constant, and they 

satisfy Lorentz invariance and the laws of physics. 

In conclusion, we can say that if photons have a mass, albeit a very tiny one, 

there will be many surprising consequences at the theoretical level. A nonzero 

photon mass would allow the photon to have a mean lifetime and to decay to 

lighter particles! If the photon really has a mass and a mean lifetime and if the 

equations (4.4.4.20) (4.4.5.1)and (4.4.5.2)are correct, using some experimental 

arrangement that simulates Fig 1, one could verify that time speeds up for the 

photon and that its energy decreases. Of course, it is very difficult to verify 

equation (4.4.5.1) because there is no direct evidence of length contraction, but 

we know that it must occur to be consistent with time dilation. The same logic 

applies for these new results: evidence of one of them is sufficient to know that 

the others must also be correct. 

This model may apply for photons because of the dual nature of the photon. 
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Space-time, according to this model, does not exhibit only spatial contraction 

accompanied by time dilation but also spatial expansion accompanies by time 

speeding up. Space-time may be very elastic. It may be able to contract and 

expand in both length and time to leave the speed of light universally constant. 
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Chapter Three  
Literature Review  

3.1 Introduction:  
Physicists have considered massive photons for decades, starting with Alexander 

Proca in 1930 [16]. Who wrote down the modified form of Maxwell’s equations 

for an electromagnetic. Later Hideki Yukawa used Proca’s work as an 

inspiration for his Nobel prize-wining research in to nuclear force. Yukawa 

showed that a short ranged force like that holding atoms of nuclei together were 

the result of massive particle mediating the interaction, and calculated the mass 

of the poem from the principle. 

Yukawa’s equation for this interaction also describe a massive photon, it suffice 

to say that the mass of particle whether a peon or massive photon or other 

subatomic provides a natural range for the force it carries. 

More massive particle have mass less particles technically extending to infinity. 

Photons are mediators of the electromagnetic force. For massive photon law 

between two electric ݍ and ܳ separated by a distance ݎ is a short range force. 

The role of field in affection the motion of particles and photons were 

talked by many researcher [100, 101, 102, 103, and 104]. 

One of the most interesting is the one which recognize the effect of the field on 

Lorentz transformation [100, 101, 102, 103, 104]. 

In this chapter some of these attempts are discussed. 

(3.2) Matter, Antimatter Generation, Repulsive Gravity Force. 

Hashim and other studies repulsive gravity using the energy relation according to 

Einstein generalized relativity which is given by [100]. 

ܧ =
݉଴ܿଶ ቀ1 + 2߮

ܿଶ ቁ

ට1 + 2߮
ܿଶ −

ଶݒ
ܿଶ

                                            (3.2.1) 
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Where ݉଴,߮,  stands for rest of mass, potential and velocity respectively one ݒ

can rewrite ܧ to be  

ܧ = ݉଴ܿଶ ൬1 +
2߮
ܿଶ
൰ ቆ1 +

2߮
ܿଶ

−
ଶݒ

ܿଶ
ቇ
ିଵଶ

                       (3.2.2) 

To find vacuum minimum energy, the energy, one minimize ܧ to get  

ܧ݀
݀߮

= ݉଴ܿଶ ቎൬1 +
2߮
ܿଶ
൰ × −

1
2
ቆ1 +

2߮
ܿଶ

−
ଶݒ

ܿଶ
ቇ
ିଷଶ

×
2
ܿଶ

+ ቆ1 +
2߮
ܿଶ

−
ଶݒ

ܿଶ
ቇ
ିଵଶ

×
2
ܿଶ
቏ 

Thus  

ܧ݀
݀߮

=
2݉଴ܿଶ

ܿଶ
൬1

2 + ߮
ܿଶ −

ଶݒ
ܿଶ൰

൬1 + ߮
ܿଶ −

ଶݒ
ܿଶ൰

ଷ
ଶ

                                 (3.2.3) 

Hence  

1
2

+
߮
ܿଶ
−
ଶݒ

ܿଶ
= 0 

Therefore  
ఝ
௖మ

= ௩మ

௖మ
− ଵ

ଶ
       ,                  ߮ = ܿଶ(௩

మ

௖మ
− ଵ

ଶ
 )                      (3.2.4) 

Thus the value of ߮ which make E minimum is given by  

߮ = ଶݒ − ௖మ

ଶ
                                                 (3.2. 5  )        

Due to the wave nature of light        ܥ௘ = ஼೘
√ଶ

 

௘ܥ 2√ = .௠                                                   (3.2ܥ 6  )  

Let  

ܥ = ௘ܥ 2√ = .௠                                           (3.2ܥ 7  ) 
 

߮ = ଶݒ − .௘ଶ                                              ( 3.2ܥ 8 )   



61 

When  ݒ = 0 

߮ = .௘ଶ                                                ( 3.2ܥ− 9 ) 

Thus the potential is given by  

ܸ = ݉଴߮ = −݉଴ܥ௘ଶ                                   ( 3.2.10 )   

In this case the vacuum constituents are at rest (v=0). 

But when a photon, which constitute vacuum move with speed c, thus  

v =  c                                                    (3.2.11) 

Substitute in (3.2.5) to get 

߮ = ܿଶ − ௖మ

ଶ
 = ௖మ

ଶ
                                       (3.2.12  )      

When inserting equation (3.2.7), one gets  

߮ =  ௘ଶ                                             (3.2.13 )ܥ 

But the potential energy is given by  

ܸ = ݉଴߮ 

Thus from (3.2.13) and (3.2.1) the potential is given by  

ܸ = ݉଴ܥ௘ଶ        

The vacuum energy can be found by inserting (3.2.11) and (3.2.12) in (3.2.11) to 

got  

ܧ = ݉଴ܿଶ(1 + 1) = 2݉଴ܿଶ                       (3.2. 14 )   

Thus one can imagine vacuum energy levels as shown below 

ܧ = ݉௠ܿଶ = ݉଴ܿଶ        

ܧ = 0                                           

ܧ  = −݉଴ܿଶ = ݉଴ܥ௘ଶ               

Figure (3.2.1): vacuum states as consisting of photons producing and destructing 

particles and antiparticles with rest masses ݉଴. 

The production of pair particles can be regarded as due to electron transfer state 

the lower to the upper state after absorbing a photon.  

Where 

m଴ = matter mass =  m଴ 
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m଴ = antimatter mass =  −m଴                             (3.2.15) 

The energy diagram is shown in figure (3.2.1)  

According to Newton’s laws the potential is given by 

߮ = −
݉ܩ
ݎ

                                                 (3.2.16) 

For matter             ݉௠ =  ݉଴   

Thus  

߮଴  = ݈ܽ݅ݐ݊݁ݐ݋݌ ݎ݁ݐݐܽ݉ =  −
 ௠݉ܩ
ݎ

      = −
 ଴݉ܩ
ݎ

       (3.2.17) 

This is an attractive force. 

For antimatter         ݉௔ =  −݉଴ 

߮௔  = ݈ܽ݅ݐ݊݁ݐ݋݌ ݎ݁ݐݐܽ݉ =  −
 ௔݉ܩ
ݎ

      = +
 ଴݉ܩ
ݎ

             (3.2.18) 

This is a repulsive force  

When matter and antimatter interact with each other the potential is given by  

ܸ =  −
 ܯ݉ܩ
ݎ

                                           (3.2.19) 

Where the force is given by 

ܨ = − ∇V = −
∂V
∂r

= GmM
∂rିଵ

∂r
 

Hence the force is given by  

ܨ = −
GmM
ଶݎ

                                               (3.2.20) 

For matter and antimatter reaction 

݉ =  ݉௠ =  ݉଴    ,        ܯ =   ݉௔ =  −݉଴          (3.2.21)   

Thus the force between matter and antimatter is given by 

ܨ = − ୋ(௠బ)(ି௠బ)
௥మ

 =  ୋ ௠బ
మ

௥మ
                                                                      (3.2.22)  

Thus there is repulsive force between matter and antimatter.  
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௩ܧ                                                                                                                   =

݉଴ܿଶ 

          

௩ܧ-                                                                                                              =

−݉଴ܿଶ 

Figure (3.2.2): vacuum energy levels  

       In  Generation of particle and antiparticle on the basis of conservation law  

the energy conservation requires 

௩ܧ = ݉ܿଶ + 2݉߮                                    (3.2.23) 

The GSR mass was proposed by some authors to be  

݉ =
݉଴

ට(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)

                                    (3.2.24) 

From equation (3.2.23) and 3.2.(24) one gets 

ܧ =
݉଴ܿଶ

ට(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)

   +
2݉଴ܿଶ

ට(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)

                    (3.2.25) 

To find vacuum state, the energy E need to be minimized With respect to  ߮, to 

get  

ܧ߲
߲߮

=  −
1
2
݉଴ܿଶ(1 +

2߮
ܿଶ

−
ଶݒ

ܿଶ
)ିଷ ଶൗ  ×  

2
ܿଶ

+ 2݉଴[߮ −
1
2

(1 +
2߮
ܿଶ

−
ଶݒ

ܿଶ
)ିଷ ଶൗ  

×  
2
ܿଶ

+ (1 +
2߮
ܿଶ

−
ଶݒ

ܿଶ
)ିଵ ଶൗ    

ܧ߲
߲߮

=  
−݉଴

(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)ଷ ଶൗ

−
2݉଴߮

ܿଶൗ

(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)ଷ ଶൗ

+
2݉଴

(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)ଵ ଶൗ

 

 

 
ܧ߲
߲߮

  =   
−݉଴ −

2݉଴߮
ܿଶൗ + 2݉଴(1 + 2߮

ܿଶ −
ଶݒ
ܿଶ)ଵ ଶൗ

(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)ଷ ଶൗ

            (3.2.26) 
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Thus equation can be satisfied, when  

2݉଴(1 + ଶఝ
௖మ
− ௩మ

௖మ
)ଵ ଶൗ = ݉଴ + 2݉଴߮

ܿଶൗ              

(1 + ଶఝ
௖మ
− ௩మ

௖మ
)ଵ ଶൗ = ଵ

ଶ
 + ఝ

௖మ
      ,         ଵ

ଶ
− ௩మ

௖మ
= ఝ

௖మ
 

     ߮ = ଶݒ  −   ௖
మ

ଶ
                                           (3.2.27)   

If vacuum particle are at rest   v=0, thus equation (3.2.27) become  

  ߮ =  −   ௖
మ

ଶ
                                                (3.2.28)  

Substituting this value in (3.2.23) and (3.2.24) yield 

݉ =
݉଴

ට(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)

  =
݉଴

0
   = ∞                       (3.2.29) 

Thus from (3.2.25) 

=   ܧ ∞                                                            (3.230) 

Thus condition (3.2.25) is the condition for maximum E. 

No one can use equation (3.2.23) 

ܧ = ݉ܿଶ + 2݉߮                                                 (3.2.31)  

But the mass term is in the form  

݉ =
(1 + 2߮

ܿଶ )݉଴

ට(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)

                                             (3.2.32) 

Inserting (3.2.32) in (3.2.31) yields  

ܧ =
(1 + 2߮

ܿଶ )݉଴ܿଶ

ට(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)

  +
2߮(1 + 2߮

ܿଶ )݉଴

ට(1 + 2߮
ܿଶ −

ଶݒ
ܿଶ)

                      (3.2.33) 

ܧ = ݉଴ܿଶ ൬1 +
2߮
ܿଶ
൰ (1 +

2߮
ܿଶ

−
ଶݒ

ܿଶ
)
ିଵ
ଶ +   2݉଴(߮ +

2߮ଶ

ܿଶ
)          (3.2.34) 

The differentiation of E with respect to ߮  requires 
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ܧ߲
߲߮ = ݉଴ܿଶ  ቐ൬1 +

2߮
ܿଶ ൰×

−1
2 ቆ1 +

2߮
ܿଶ −

ଶݒ

ܿଶቇ

ିଷ
ଶ

×
2
ܿଶ + ቆ1 +

2߮
ܿଶ −

ଶݒ

ܿଶቇ

ିଵ
ଶ

×
2
ܿଶ
ቑ

+  2݉଴{ቆ߮ +
2߮ଶ

ܿଶ ቇ ×
−1
2   ቆ1 +

2߮
ܿଶ −

ଶݒ

ܿଶቇ

ିଷ
ଶ

× 
2
ܿଶ +  ቆ1 +

2߮
ܿଶ −

ଶݒ

ܿଶቇ

ିଵ
ଶ

×   ൬1 +
4߮
ܿଶ ൰}  

 

ܧ߲
߲߮ =

−݉଴ ቀ1 + 2߮
ܿଶ ቁ

൬1 + 2߮
ܿଶ −

ଶݒ
ܿଶ൰

ଷ
ଶ

+   
2݉଴

൬1 + 2߮
ܿଶ −

ଶݒ
ܿଶ൰

ଵ
ଶ

 −  

2݉଴
ܿଶ ൬߮ + 2߮ଶ

ܿଶ ൰

൬1 + 2߮
ܿଶ −

ଶݒ
ܿଶ൰

ଷ
ଶ

 

+
2݉଴ ቀ1 + 4߮

ܿଶ ቁ

൬1 + 2߮
ܿଶ −

ଶݒ
ܿଶ൰

ଵ
ଶ

  (3.2.35)    

 

ܧ߲
߲߮

= 0                                                      (3.2. 36)  

=
−݉଴ ቀ1 + 2߮

ܿଶ ቁ + 2݉଴ ൬1 + 2߮
ܿଶ −

ଶݒ
ܿଶ൰ −

2݉଴
ܿଶ ൬߮ + 2߮ଶ

ܿଶ ൰ + 2݉଴ ቀ1 + 4߮
ܿଶ ቁ (1 + 2߮

ܿଶ −
ଶݒ
ܿଶ) 

൬1 + 2߮
ܿଶ −

ଶݒ
ܿଶ൰

ଷ
ଶ

  

൬1 +
2߮
ܿଶ
൰ + 2ቆ1 +

2߮
ܿଶ

−
ଶݒ

ܿଶ
ቇ −

2
ܿଶ
ቆ߮ +

2߮ଶ

ܿଶ
ቇ+ 2 ൬1 +

4߮
ܿଶ
൰ ቆ1 +

2߮
ܿଶ

−
ଶݒ

ܿଶ
ቇ = 0 

 

−1 −
2߮
ܿଶ

−
2߮
ܿଶ

−
4߮ଶ

ܿସ
+ 2ቆ1 +

2߮
ܿଶ

−
ଶݒ

ܿଶ
ቇ+ 2 ൬1 +

4߮
ܿଶ
൰ ቆ1 +

2߮
ܿଶ

−
ଶݒ

ܿଶ
ቇ = 0 

 

൬1 +
2߮
ܿଶ
൰ −

2߮
ܿଶ

−
4߮ଶ

ܿସ
+ ቆ−

ଶݒ2

ܿଶ
ቇ + 2 ൬1 +

4߮
ܿଶ
൰ ቆ1 +

2߮
ܿଶ

−
ଶݒ

ܿଶ
ቇ

= 0   (3.2.37) 
 

3 ൬1 +
2߮
ܿଶ
൰ +

8߮ଶ

ܿସ
−

ଶݒ4

ܿଶ
+

2߮
ܿଶ

−
ଶݒ8߮

ܿସ
 = 0                    (3.2.38) 
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3 +
8߮
ܿଶ

+
8߮ଶ

ܿସ
−

ଶݒ4

ܿଶ
−

ଶݒ8߮

ܿସ
 = 0                          (3.2.39) 

 

For stationary vacuum constituents     

ݒ   = 0                                              (3.2. .40)        

Equation(3.2.39) reads  

3 +
8߮
ܿଶ

+
8߮ଶ

ܿସ
 = 0 

8߮ଶ + 8߮ܿଶ + 3ܿସ = 0       

Solving for ߮ 

߮ =  
−ܾ ± √ܾଶ − 4ܽܿ

2ܽ
                                      (3.2.41) 

 

߮ =  
−8ܿଶ  ± √64ܿସ − 48ܿସ

16
                             (3.2.42) 

Substituting (3.2.42)in the energy E relation (3.2.23) 

ܧ =  ±√−2  ݉ܿଶ                                          (3.2.43) 

Consider now a vacuum is full of photons, this means that 

8߮
ܿଶ

+
8߮ଶ

ܿସ
− 1 = 0                                        (3.2.44)   

Using (3.2.41) 

߮ =  
−4ܿଶ  ± √16ܿସ + 12ܿସ

8
  

 

߮ =  
−4ܿଶ  ± 2√7ܿସ

8
   =     

−1 
2
ܿଶ ±  

 √7
4
ܿଶ                  (3.2.45) 

Inserting equation (3.2.45) in equation (3.2.23) the energy is given by  

௩ܧ = ݉ܿଶ + 2݉൬ 
−1 

2
ܿଶ ±  

1 
√2

ܿଶ   ൰                          (3.2.46) 

ܧ =  ±√−2  ݉ܿଶ                                           (3.2.47) 
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(3.3) Energy Conservation Relations in Newton , Generalized Special 

Relativistic Mechanics and Force  

Mubarak Dirar work is concerned with energy conservation in GSR. To see how 

energy is conserved he considered the generalized special relativistic energy 

equation. 

ܧ =
݉଴ܿଶ

ට1 − 2߮ − ଶݒ
ܿଶ

                                           (3.3.1) 

Rearranging and multiplying by m, yields  

ܧ =
݉଴ܿଶ

ඨ݉ܿ
ଶ − 2(݉߮ − 1

ݒ2݉
ଶ)

݉ܿଶ

                                    (3.3.2) 

Thus when Newtonian energy  

ேܧ  =   ܶ + ܸ                                                   (3.3.3) 

The definition  of Force in Terms of Potential a Newton law,  the energy wave 

equation is takes the form. 

= ܧ  
ଶ݌

2݉
 + ܸ =  (3.3.4)                                     ݐ݊ܽݐݏ݊݋ܿ

Where the total energy is constant differencing the equation (3.3.4) with respect 

to time given  

Where the momentum is given by  

        p = mv                                                            (3.3.5) 

Using relation (3.3.5) and substituting in equation (3.3.4) 

ݒ
݌݀
ݐ݀

= −  
ܸ݀
ݐ݀

                                                         (3.3.6) 

And the force is  

ܨ =  
݌݀
ݐ݀

                                                              (3.3.7) 

Using relation in (3.3.6) 
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ܨ =  −  
1
ݒ

 
ݒ݀
ݐ݀

   =   −  
ݐ݀
ݔ݀

 
ݒ݀
ݐ݀

                                     (3.3.8) 

Thus equation (3.3.8) becomes  

ܨ =    −   
ܸ݀
ݔ݀

                                                    (3.3.9) 

This is the formal definition of F in terms of V for special relativity one has: 

ଶܧ =  ܿଶ݌ଶ +  ݉଴
ଶ ܿସ                                             (3.3.10) 

By differencing equation (3.3.10) with respect to time gives  

ܧ2
ܧ݀
ݐ݀

= 2ܿଶܲ 
݌݀
ݐ݀

+  0                                      (3.3.11) 

The force is defined as  

ܨ =  
݌݀
ݐ݀

                                                         (3.3.12) 

Substituting in (3.3.11) and dividing by (2ܿଶܲ) yields   

ܧ2
2ܿଶܲ

ܧ݀
ݐ݀

=  (3.3.13)                                                    ܨ 

But                              ܲ = ܧ                  ݒ݉ =

݉ܿଶ                                            (3.3.14) 

Substituting in (23) gives  

݉ܿଶ

ܿଶ(݉ݒ)
ܧ݀
ݐ݀

=  
1
ݒ
ܧ݀
ݐ݀

  

 

ݐ݀
ݔ݀

ܧ݀
ݐ݀

=  
ܧ݀
ݔ݀

 =  (3.3.15)                                        ܨ    

Which relates force to energy but according to GSR the energy satisfies 

ܧ =
݉଴ܿଶ

ට݃଴଴ −
ଶݒ
ܿଶ

                                               (3.3.16) 

 

ଶܧ =
݉଴

ଶܿସܧଶ

݃଴଴ܧଶ − ܿଶ݌ଶ
                                        (3.3.17) 

Divides by ܧଶ  
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1 =
݉଴

ଶܿସ

݃଴଴ܧଶ − ܿଶ݌ଶ
                                       (3.3.18) 

 

݃଴଴ܧଶ − ܿଶ݌ଶ = ݉଴
ଶܿସ                                   (3.3.19) 

 

Thus  

݃଴଴ܧଶ = ܿଶ݌ଶ + ݉଴
ଶܿସ                                    (3.3.20) 

Differentiating with respect to given  

ଶܧ
݀݃଴଴
ݐ݀

+ ݃଴଴2ܧ
ܧ݀
ݐ݀

= 2ܿଶܲ  
݀ܲ
ݐ݀

                            (3.3.21) 

Rearranging again by dividing by 2ܿଶܲ yields  

ଶܧ

ଶܲܥ2
݀݃଴଴
ݐ݀

+
଴଴݃ܧ2
ଶܲܥ2

ܧ݀
ݐ݀

=  (3.3.22)                                 ܨ

From energy equation E= mܥଶ substituting in (3..3.21) gives  
௠మ௖ర

ଶ஼మ௠௩
ௗ௚బబ
ௗ௧

 + ଶ୫஼మ

ଶ஼మ௠௩
݃଴଴

ௗா
ௗ௧

=  ܨ

Thus  

݉ܿଶ

2
ݐ݀
ݔ݀

݀݃଴଴
ݐ݀

+
ݐ݀
ݔ݀

݃଴଴
ܧ݀
ݐ݀

=  (3.3.23)                                ܨ

Thus 

ܨ =
݀ܲ
ݐ݀

=   
ܧ
2
݀݃଴଴
ݔ݀

+ ݃଴଴
ܧ݀
ݔ݀

=                                    (3.3.24) 

݃଴଴ = 1 +
2߮
ܿଶ

                                                 (3.3.25) 

Divides by m 

݃଴଴ = 1 +
2݉߮
݉ܿଶ

=  1 +
2ܸ
ܧ

                                     (3.3.26) 
 

Substituting  

݃଴଴ = 1 +
2ܸ
ܧ

                                                 (3.3.27) 

Inserting (3.3.27) in (3.3.24) yields 
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ܨ =
݀ܲ
ݐ݀

=
ܧ
2

(ଵିܧܸ)2݀
ݔ݀

+ (1 +
2ܸ
ܧ

)
ܧ݀
ݔ݀

  

Thus  

ܨ =
ܧ
2

(ଵିܧ)(2)
ܸ݀
ݔ݀

− ܧଶܸିܧ
ܧ݀
ݔ݀

+
ܧ݀
ݔ݀

+
2ܸ
ܧ
ܧ݀
ݔ݀

             (3.3.28)   

Cancelling similar terms in equation (3.3.28) yields 

ܨ =
ܸ݀
ݔ݀

−
ܸ
ܧ
ܧ݀
ݔ݀

+
ܧ݀
ݔ݀

+
2ܸ
ܧ
ܧ݀
ݔ݀

                           (3.3.29)   

Thus  

ܨ =
ܸ݀
ݔ݀

+
ܧ݀
ݔ݀

+
ܸ
ܧ
ܧ݀
ݔ݀

                                        (3.3.30) 

When E is conserved 

ܧ݀
ݔ݀

= 0                                                (3.3.31) 

When the potential is positive .i.e. repulsive  

ܸ =  ⟶⟶   −ܸ                                       (3.3.32) 

This is since ݃଴଴ is derived by assuming negative attractive potential. Thus using 

(3.3.31) and (3.3.32) in equation (3.3.30) yields 

ܨ =
ܸ݀
ݔ݀

                                                    (3.3.33) 

This is the ordinary definition of energy. 

3.4)  Sunspots and Its Effects on Space Weather 

 Mubarak Derar, and others tries to explain change of photon energy by using 

GSR.Sun, a star of spectral type G2 is main source of energy to the earth.   

 Being close to earth, Sun produces a resolvable disk of great details    

, which is not possible for other stars. Solar flares and control mass ejections are 

the enigmatic phenomena that occur in the solar atmosphere and regularly 

bombard the Earth's environment in addition to the solar wind .Thus it become 

important for us not only to understand these physical processes of the sun ,but 

in addition how these activates affect the earth and  it's  surrounding .Thus a 
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branch of  study  called "Space Weather " had emerged in the recent past ,which 

connects activity and associated energetic phenomena that occur in the 

atmosphere  of  the  sun 

and their influence on the Earth.(RAMAN,K,S,Febrauary 22,2011)     

Sunspots are regions in the sun's photosphere where intense magnetic files cause 

the temperature and radiation to be less than in the surrounding, hotter and 

brighter photosphere gases. A single sunspot    

Consists of one or more dark cores, called umbra. Often surrounding by a less 

dark area  called penumbra. In the umbra, very intense, longitudinally oriented 

magmatic fields cause the photosphere gasses to become very cool, and thus dark 

compared to overall photosphere.                                  

Sunspots have tendency to appear in magnetically bipolar groups. In each group 

there are normally tow major spots, oriented approximately east-west, called the 

leading, preceding or western, and the following or eastern spot.  The leading 

spot is usually larger in size and has stronger magnetic field strength. It is first to 

form, first to develop penumbra, and last to dissipate.  Also the leading spot is 

often located slightly closer to the equator than the following.                                               

Sunspot, in contrast to the thin flux tubes associated with NBPs, are must larger 

structures (with typical thickness in the range of 10000 to 20000km) that are 

strongly magnetized (around 3000 G in the central regions) . they are visible on 

the solar surface as dark features with a dark core called the umbra with a much 

lower temperature (around 40000 K ) than the ambient atmosphere and 

surrounded by lighter region called the penumbra .the darkness of sunspots has 

traditionally been attributed to suppression  of convective energy transport 

(relative to the surrounding photosphere ) by the strong magnetic  field. 

Orientation of the magnetic field is mainly vertical in the centre of the umbra and 

becomes increasingly inclined with radial distance to about 700 (with respect to 

the vertical ) at the edge of the penumbra , where the field strength drops to 

about 1000 G .the penumbra  displays radial filaments along which fluid motions 
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with speeds OF several kilometers per second occur .this is well-known E 

vershed  effect , discovered in Kodaikanal, India in 1909 ,the origin of which is 

still being debated .sunspot umbrae also reveal fine structure in the form of 

bright point's orumbral dots with atypical diameter of about 150 km and 

brightness comparable to the photosphere .it was earlier  believed  that the 

magnetic field in umbra dots is reduced compared to the background umbra  but 

recent observations do not  indicate a decrease in field strength .the physical 

mechanism responsible frothier information is most likely related to convention 

in a vertical magnetic field . Recent high- resolution observations have shown 

that the penumbral magnetic field exhibits an "interlocking comb structure ", 

consisting of two distinct group of field lines associated with :( a) inclined bright 

filaments, and (b) almost horizontal dark filaments,. From a theoretical 

viewpoint this dual topology is also not well understood, it has been suggested 

that buoyancy and downward pumping of magnetic may contribute to creating 

and maintaining such structures. 

       The number of sunspots and sunspot group (sunspot number) present on the 

solar surface changes with time and exhibit a cycle behavior with an 

approximately 11 year period. The amplitude of the cycle (often called the 

strength of the cycle)  varies from one cycle to another . 

          Sunspots occur typically in the latitude range ±35଴ and drift in latitude 

towards the equator as the cycle progresses (spÖrer law) 

          In recent year evidence has accumulated that the solar cycle has a long –

term modulation consisting of epochs of hyperactivity (most recent being the 

Medieval maximum in the 12th century ) as well as spells without sunspots 

(maunder minimum during 1645-1715). These periods of abnormal activity are 

without explanation incidentally , the total solar irradiance (the energy from the 

sun observed at earth per unit time and unit wavelength interval) also exhibits a 
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11 year cycle which is in phase with the sunspot cycle and has implications for 

the terrestrial climate . 

      The sun consists of very dense plasma gas this gas consist of some fast 

electrons elementary particles .these fast particles can suitably describe by the 

special relativity (SR) where the time t, displacement x and mass m for any 

frame moving with constant velocity v with respect to the particle is given by : 

t =
t଴

ඥ1 − vଶ cଶ⁄
= Υ଴୲బ  

x =
x଴
γ଴

= x଴ඨ1 −
vଶ

c2
 

m = γ଴୫଴                                                (3.4.1) 

Where  x଴  t଴ ,୫଴  is the time, displacement and mass for the frame in which the 

particles is at rest with respect to it. These SR relations, suffers from 

atermstarding for potential energy. This motirate some physics to propose 

generalized version of SR. 

Known as generalized SR (GSR) .in this new model x  , t ,୫  are given by  

t = γt଴ 

x = γିଵx଴ 

m = γm଴                                                 (3.4.2) 

Where  

γ = ቀ1 + ଶ஦
େమ
− ୴మ

େమ
ቁ
షభ
మ                                                (3.4.3) 

Where 

φ = potenial per unit mass  

φ = ୴
୫

                                                    (3.4.4) 

The particles energy E in this version is given by : 

E = MCଶ = γ m଴ୡమ                                          (3.4.5) 
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For funately, unlike SR, GSR, energy farmutaeredces to new tantian one for 

weak field and  

Small velocity, where V ≪ Cφ ≪ C 

E = m଴cଶ ቀ1 + ଶ஦
େమ
− ୴మ

େమ
ቁ
షభ
మ  

m଴cଶ ቀ1 + ଶ஦
େమ
− ୴మ

େమ
ቁ
షభ
మ  

= m଴ୡమି஦୫
బశభమౣబౙమ

 

For repulsive force, the potential and kinetic energy are given by:  

V = −m଴஦ 

T =  
1
2

 m଴୴మ  
 

This is the total energy is given by : 

E = T + V + M଴େమ                                           (3.4.6) 

This is usual Newton energy formula with additional term starting for rest mass 

energy.  

     In explanation of darkness of sunspots by using generalized relativity   

Sunspots are closely related to the sun magnetic storms this relation is explained 

by using GSR theory. 

Plasma equation of motion relates the acceleration of particles to the applied 

pressure P and potential V according to the relation 

nm 
dv
dt

= −∇P − ∇V                                            (3.4.7) 

Where n is the number of particles per unit volume, m is the mass of are particles 

and v is the particles velocity. 

Rearranging (3.4.7) in are dimension yields. 

nm
dv
dx

dx
dt

= −
∂P
∂x

−
∂V
∂x

                                     (3.4.8)    

 



75 

This  

nmv
dv
dx

= −
dP
dx

−
dV
dx

  

nmන vdv = −න dP − නdV + C 

E= ୬
ଶ

mvଶ + P + V = C 

Hence the energy per unit volume I,e. the fluid energy density is given by : 

E = Kୣ + V + P                                           (3.4.9) 

Where Kୣ is the kmethi energy henle 

  E= ୬
ଶ

mvଶ + P + V                                 (3.4.10)         

E t is interesting to note that this new expression consists of an additional term 

representing the pressure .for a single particle, where neglecting pressure the 

energy radius to the ordinary new Tinian are i.e.   

E= ଵ
ଶ

mvଶ + V                                                  (3.4.11) 

On the other hand GSR energy relation is given by 

  

E = MCଶ = γ m଴ୡమ  

hf = γhf଴ 

Where  

hf = MCଶ m଴cଶ = hf଴ 

hf = ቆ1 +
2φ
Cଶ

−
vଶ

Cଶ
ቇ

ିଵ
ଶ

 hf଴ 

Ignoring the velocity effect by assuming very large potential compared to very 

low speed of reference frame yields  

hf = ൬1 +
2m଴ φ
m଴cଶ

൰
ିଵ
ଶ

hf =  ൬1 −
2V

m଴Cଶ
൰
ିଵ
ଶ

 hf଴ 

By assuming that  

φ ≪ cଶ 
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hf = ൬1 −
2V

m଴cଶ
൰ 

this means that any attractive strong magnetic field lowers photon energy and 

make it the strong attractive uniform magnetic field . 

Eഥ =  −V୫ 

n୔ =  n଴e
ି୉ౌ

୉ഥൗ = n଴eି
୉ౌ
୴ౣ = e୦୤బି୴/୴ౣ 

Where 

V୫ = Average uniform magnetic field 

              The space weathers its effects on human life and then to cause 

malfunction and also loss of human activities and also to influence the earth 

weather and climate change.   

               A lot of broadcast radio communication system base on the reflection 

of radio waves from the ionosphere layer it is one of the upper layers of earth's 

atmosphere, the altitude above the ground between 85 kilometer and up to about 

thousand kilometers. The air in this layer is exposed in Electro ionization (i.e. 

loose electron from air molecules or atoms) Due to the ultraviolet rays coming 

from the sun, as well as the impact of the solar wind. For this reason, this 

variable class constantly, where affected by a succession of night and day, and 

the succession of the four seasons and the cycle of the solar activity. 

                    Including global positioning system known as GPS and because of 

changes in terrestrial ionosphere layer during the solar storm, the signals issued 

by satellites GPS systems has crossed the ionosphere that suffer so-called blink 

scintillation, and therefore less accurate positioning at the reception on the 

ground devices, GPS "Global positioning system" system is US system, there is 

Russian system "Gelosnas""Glosnas", and there is also an European system 

"Galileo""Gallileo", and finally entered China in satellite navigation system 

technology. 



77 

                 Storms geomagnetism affect as well as the increase in the radiation 

intensity above the solar radiation on the Earth's atmosphere, and it is through 

heating the atmosphere air and make it expands, which increases air resistance to 

the movement of satellites low orbits, making them slow down to the point 

where you may drop gradually towards the earth and burn in the atmosphere. 

Something similar to the space laboratory Skylab orbital Skylab has happened 

during the geomagnetism storm in 1979, he fell to wards  

 (3.5)  Generalized the General Relativity Using Generalized Lorentz 

Transformation 

       Mubarak Dirar derived new Lorentz transformation dependent on field 

potential.  The Principle of Special Relativity states that the laws of nature are 

invariant. Under a particular group of space-time coordinate transformations, 

called Lorentz transformations .A Lorentz transformation is a transformation 

from one system of space-time coordinates S to another system ሖܵ . Let us derive a 

new coordinate transformation from one inertial system to another, which 

replaces the Galilean transformation, on the basis of Einstein’s two postulates for 

the special theory of relativity. For this purpose, we consider two inertial systems 

S(x, y, z, t) and S (x′, y′, z′, t′). The inertial system S′ is assumed to be uniformly 

moving in the x direction in a potential field ∅ with velocity v relative to the 

inertial system S, keeping each coordinate axis parallel to the corresponding axis 

of the latter. Now, let an event occur at the position (x, y, z) at the time t in the 

inertial system S, and let the same event occur at the corresponding position (x, 

y′, z′) and at the corresponding time t′ in the inertial system S. Then, one needs to 

find how the sets of space-time coordinates, (x, y, z, t) and (x, y′, z, t′) are 

transformed to each other under the two postulates for the special theory of 

relativity.. 

The distance between the origins of two axes is given by L.   
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According to Newton’s   second law of motion the force F can be expressed in 

terms of the mass m and acceleration a as  

ܨ = ݉ܽ                                                       (3.5.1) 

Thus the potential V is given by 

ܸ = ݉߮ =  නݔ݀ܨ =  න݉ܽ݀ݔ = ݉ܽන݀ݔ =  ݔܽ݉

There ߮  is defined as the potential per unit mass. Thus  ݉߮ =       ݔܽ݉ 

   Hence  

߮ =  (3.5.2)                                                          ݔܽ 

Let two refernce frames (x,t) and (́ݔ +  ଴ andݒ moves with initial velocity (ݐ́

constant acceleration a with respect to each others. Thus the distance between 

their origin 
              ௥               
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ at any time t is given by  

 
Fig (3.5.2) shows two inertial systems S and ሖܵ  

ܮ = ݐ଴ݒ +
1
2
 ଶ                                                   (3.5.3)ݐܽ

i.e          ܮ = ݐ଴ݒ + ଵ௫௔
ଶ௫

 ଶݐ

Using equation (3.5.3) one can rewrite equation (3.5.44) as 

ܮ = ݐ଴ݒ +
߮
ݔ2

 ଶ                                                 (3.5.4)ݐ

This represents the length as measured by the observer O. assuming ݒ଴ 

And    ߮      to be the same for all observers, the length for observer ሖܱ     is given 

by ܮሖ = ݐ଴́ݒ + ଵ
ଶ௫
ଶݐݔܽ = ݐ଴́ݒ + ܽ ௫́

ଶ௫́
 ଶݐ́
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ሖܮ        = ݐ଴́ݒ + ଵ
ଶ௫
ଶݐݔܽ = ݐ଴́ݒ + ఝ́

ଶ௫́
   ଶ                                  (3.5.5)ݐ́

The space time   coordinate in two frames can be described by Lorentz 

transformation. According to Lorentz transformation                                                  

ݔ́ = ݔ)ߛ + (ܮ = ߛ  ቀݔ + ݐݒ + ఝ
ଶ௫
ଶቁݐ                              (3.5.6)                                                                

ݔ = ݔ൫́ߛ + ሖܮ ൯ = ߛ  ቀ́ݔ + ݐ́ݒ + ఝ
ଶ௫́
ଶቁݐ́                              (3.5.7)  

Consider now  a source of light that emits pulse when the two frames  origin  

coincide, i.e  t = t́ = 0 

The light pulse which is emitted travels distances x and  x ́  respectively, where 

 x =  ct           x ́ =  ct́                                         (3.5.8)  

 

Substituting (3.5.8) in (3.5.9) yields  

ct́ = γ ቀct + vt +
߮

2ct
tଶቁ    

t́ = γ ቀ(1 +
଴ݒ
c

)t +
߮

2cଶ
tቁ 

t́ = γ ቂ1 +
଴ݒ
c

+
߮

2cଶ
 ቃ t                                           (3.5.9)   

Inserting also (3.5.8) in (3.5.7) gives  

ݐܿ = ߛ ቀܿ́ݐ − ݐ́ݒ −
߮

ݐ2ܿ́
 ଶቁݐ́

                                            ݉ = ௠బ

ටଵାమക಴మି
ೡమ

಴మ

= ݉ =

௠బ

ට௚బబି
ೡమ

಴మ

                              (3.5.10)     

From (9) and (10)                                                     

t = γଶ ቂ1 − ୴బ
ୡ
− ఝ

ଶୡమ
ቃ ቂ1 + ௩బ

ୡ
+ ఝ

ଶୡమ
 ቃ t                        (3.5.11)     

Therefore  

ߛ = ଵ

ටቂଵି౬బౙ ି
ക
మౙమ

ቃቂଵାೡబౙ ା
ക
మౙమ ቃ

                                    (3.5.12)    
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It is very interesting to note that when no field exists 

    ߮ = 0                                                       (3.5.13) 

The factor  ߛ in equation 3.5.(12) reduces to  

γ =
1

ටቂ1 − v଴
c − φ

2cଶቃ ቂ1 + v଴
c + φ

2cଶ ቃ
=  

1

ට൤1 − ଴ଶݒ
cଶ ൨

       (3.5.14) 

which is ordinary SR relation. A direct insertion of equation (3.5.12) in (3.5.6) 

and (3.5.7) yields  

x́  =
(x + v଴t + φ

2cଶ tଶ)

ටቂ1 − v଴
c − φ

2cଶቃ ቂ1 + v଴
c + φ

2cଶ ቃ
                      (3.5.15) 

x =
(x́ + v଴t́ + φ

2cଶ t́ଶ)

ටቂ1 − v଴
c − φ

2cଶቃ ቂ1 + v଴
c + φ

2cଶ ቃ
                      (3.5.16) 

In the absence  of fields again (3.5.15) and (3.5.16) reduces to that of SR. 

The expression for energy is given by. 

E =  mcଶ = γm଴  cଶ                                       (3.5.17)  

Inserting (12) in (17) yields  

E =
m଴  cଶ

ටቂ1 − v଴
c − φ

2cଶቃ ቂ1 + v଴
c + φ

2cଶ ቃ
                          (3.5.18) 

When no field exists the energy relation reduces to 

E =
m଴  cଶ

(1 − ଴ଶݒ
cଶ )

                                              (3.5.19) 

Let now  

  x =  
v଴
c

+
φ

2cଶ
                                              (3.5.20) 

Assuming  
v଴
c

>
φ

2cଶ
                                                 (3.5.21) 
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Equation (3.5.18) becomes  

E = m଴  cଶ(1 −
଴ଶݒ

cଶ
)
ିଵ
ଶ                                 (3.5.22) 

But for law speed  
v଴
c

<< 1                                                  (3.5.23) 

Thus  

E = m଴  cଶ  (1 +
଴ଶݒ

2cଶ
)                                       (3.5.24) 

But according to Newton’s laws  

vଶ = ଴ଶݒ  + 2φ                                            (3.5.25) 

Thus  

E = m଴  cଶ ቈ1 +
ଶݒ

2cଶ
−
φ
cଶ
቉ 

 E  = m଴  cଶ +  ଵ
ଶ

 m଴  vଶ   +  m଴  φ −   m଴  cଶ + T + V          (3.5.26)  

Where  

V =  − m଴  φ   

T =   
1
2

 m଴  vଶ                                              (3.5.27) 

This is the usual Newton energy relation beside rest mass term. 

(3.6) Utilization of Photon Equation of motion to obtain Electromagnetic 

Momentum, Time & Length in Einstein Generalization of Special Relativity 

The photon equation of motion was used by Fatima Madani to incorporate the 

potential term in Lorentz transformation.  

       The behavior of photons within the framework of (SR) is not consistent 

within     that of general relativity  (SR) [11,12].In (SR) the energy of the photon 

is not   affected by the gravitational field [13].this is direct conflict with the 

prediction of the gravitational red shift by (GR)[14].Such prediction was 

confirmed experimentally by observing the gravitational red shift at the stars 
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[15].Thus the expression of photon energy and momentum in the gravitational 

field from (SR) and (GR) stand points need to be modified. 

      Several attempts are made to modify (SR) to include the effect of 

fields.[16.17.18]One of them  that made by M.Dirar he study nuclear mass defect 

and the neutrino mass problem [19,20].But its derivation is complicated A 

simple derivation is made by Savickas [21].Both derivations are similar to each 

other ,but the former consists of an additional term in the expression of mass and 

energy. 

    uniting this work is concerned with the expression of energy and mass of the 

photon in both(SR)and (GR).Relaying on the behavior of the photon in the 

gravitational field to derive the expression for mass and energy ,as well as 

finding the generalized momentum expression in the presence of electromagnetic 

fields. 

   The (GSR) expression for the mass and the energy can be obtained here by 

using the expression of the invariant proper length in the four dimensional 

space_ time coordinates. The invariant length is given by [19]: 

݀߬ଶ = ݃ఓఊ݀ݔఓ݀ݔఔ                                             (3.6.1) 

For one dimensional physical system 

݀߬ଶ = ݃଴଴(ݐ݀ܥ)ଶ + ݃௫௫(݀ݔ)ଶ                               (3.6.2) 

Where: 

଴ݔ =  ଶݔݐܥ

The invariant length can be written in terms of the velocity in the form 

݀߬ଶ = ݃଴଴ܥଶ(݀ݐ)ଶ + ݃௫௫(ௗ௫ௗ௧)ଶ݀ݐଶ 

= ݃଴଴ܥଶ(݀ݐ)ଶ + ݃௫௫ߥ௫ଶ݀ݔଶ                                    (3.6.3) 

In the weak field limit the components of the metric takes the form [19]. 

݃଴଴ = 1 +
2߮  
ଶܥ

         ݃௫௫ = −1                            (3.6.4)      

Where φ represents the potential per unit mass 
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For a system at rest in free space: 

߮ = 0    
ݔ݀
ݐ݀

= ௫ݒ = 0 

݃଴଴ = 1 +
2߮  
ଶܥ

= 1 

 ݃௫௫ = ݐ             1− =  ଴                                            (3.6.5)ݐ

In this case:             

݀߬ଶ = ݃଴଴ܥଶ(݀ݐ)ଶ + (−1)(ௗ௫ௗ௧)ଶ݀ݐଶ 

݀߬ଶ =  ଶ                                                (3.6.6)(଴ݐ݀)ଶܥ

Since  ݀߬ଶ  is assumed to be invariant thus equations (3.6.3) and (3.6.6) give 

ଶ(଴ݐ݀)ଶܥ = ݀߬ଶ = ଶ[݃଴଴ܥ + ݃௫௫ݒ௫ଶ]݀ݐଶ                            (3.6.7) 

Where: 

ߛ = [݃଴଴ + ݃௫௫
௫ଶݒ

ଶܥ
]
ଵ
ଶ 

= [݃଴଴ +
݃௫௫ݒ௫ଶ

ଶܥ
]
ଵ
ଶ                                             (3.6.8) 

Where: 

௫ݒ =  ݒ

Thus: 

଴ݐ݀ =  (3.6.9)                                                    ݐ݀ߛ

If the photon momentum is P, and the force on it is F, The equation of motion of 

a photon is given by: 

݀ܲ
ݐ݀

=                  ܨ
݀(݉ܿ)
ݐ݀

= ܨ = ܧߘ =
ܧ݀
ݔ݀

                    (3.6.10) 

Where:  

C is the speed of light 

E is the energy 

ܨ = ݉
ݒ݀
ݐ݀

= ݉ܽ = ݉
ݔ݀
ݐ݀
ݒ݀
ݔ݀
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= ݒ݉
ݒ݀
ݔ݀

=
݀(1

ݒ2݉
ଶ)

ݔ݀
=
ܧ݀
ݔ݀

                                  (3.6.11) 

And 

P=mc=momentum 

Hence: 
ௗ(௠௖)
ௗ௧

= ௗா
ௗ௫

 ௗ௠௖
ௗ௫

ௗ௫
ௗ௧

= ௗா
ௗ௫

 

Since the speed of the photon is constant: 

ݔ݀
ݐ݀

= ݒ =  (3.6.12)                                                 ܥ

Hence: 

ܥ
݀݉ܿ
ݔ݀

=
ܧ݀
ݔ݀

 

But C is constant therefore 

  
ଶܥ݉݀

ݔ݀
=
ܧ݀
ݔ݀

                                               (3.6.13) 

Integrating both sides yields 

න݀ܧ = න݀݉ܥଶ 

ܧ =  ଶ                                                    (3.6.14)ܥ݉

This is the ordinary expression for energy in (SR). 

To obtain the expression for the energy in a curved space-time , one  can  utilize 

the equation (3.6.10)for a frame to get the rest mass 

݀݉଴ܿ
ݐ݀

=  (3.6.15)                                                  ܨ

Where the rest mass for a system at rest is given by: 

݉ = ݉଴߮ 

For a frame in which a system is not at rest the mass is denoted by m, and 

equation (10) reads 

݀(݉ܿ)
ݐ݀

=  (3.6.16)                                                 ܨ
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With the aid of equation (3.6.15) and equation (3.6.10) and utilizing equation 

(3.6.9), one gets 

݀(݉଴ܿ)
ݐ݀ߛ

=
݀(݉ܿ)
ݐ݀

                                     (3.6.17)     

Thus: 

(݀ (݉ଵ଴ܿ (ݔ݀ߛ = ݔ݀(ܿ݉)݀ ⁄⁄ݐ݀ ݔ݀  ⁄ݐ݀  

But: 

ݔ݀
ݐ݀

=  ܥ

Hence: 

(଴ܿ݉)݀ܥ
ݔ݀ߛ

=
(ଶܿ݉)݀ܥ

ݔ݀
 

Since C is constant: 

݀(݉଴ܿଶ)
ݔ݀ߛ

=
(ଶܥ݉)݀
ݔ݀

                                         (3.6.18) 

Thus: 

ଶܥ

ߛ
݀݉଴ =  ଶ݀݉ܥ

Viewing equation (8)  ߛ  is independent 

ଶܥ

ߛ
න݀݉଴ =  ଶන݀݉ܥ

ଶܥ

ߛ
=  ଶ݉                                               (3.6.19)ܥ

Thus the mass and energy E in a curved space-time is given by: 

݉ =
݉଴

ߛ
= ݉ܿଶ                                           (3.6.20) 

With the aid of the equation (8) is given by: 

݉ =
݉଴

ට݃଴଴ + ݃௫௫
ଶݒ
ଶܥ

                                  (3.6.21) 

For Quai- Minkowskian space 
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݃௫௫ = −1        ,              ݃଴௩ = 1 + ଶ∅
஼మ

                      (3.6.22) 

Thus: 

    ݉ = ௠బ

ටଵାమക಴మି
ೡమ

಴మ

= ݉ = ௠బ

ට௚బబି
ೡమ     

಴మ

                          (3.6.23) 

 

The corresponding energy is given according to equation (3.6.14) an equation 

(3.6.23) by: 

ܧ = ଶܥ݉ = ௠బ஼మ

ටଵାమക಴మି
ೡమ

಴మ

= ௠బ஼మ

ට௚బబି
ೡమ

಴మ

                          (3.6.24) 

The expression resembles the energy found by Savickas (3.6.12). If one 

considers the expression of time in a curved space time the time is thus given by 

[19]. 

௖ݐ݀ = ඥ݃଴௩݀(3.6.25)                                              ݐ 

In this case equation (3.6.17) can be rewritten as: 

݀(݉଴ܥ)
ݐ݀ߛ

=
݀
௖ݐ݀

൤݉
ݔ݀
௖ݐ݀

൨ 

ܥ
ߛ
݀݉଴

ݔ݀
ݔ݀
ݐ݀

=
1
݃଴଴

݀
ݐ݀
൤݉

ݔ݀
ݐ݀
൨ =

1
݃଴௩

(ܥ݉)݀
ݐ݀

 

஼మ

ఊ
ௗ௠బ

ௗ௫
= ଵ

௚బబ

ௗ
ௗ௧
ቂ݉ܥ ௗ௫

ௗ௧
ቃ = ଵ

௚బೡ
ܥ ௗ(௠஼)

ௗ௧
= ஼మ

௚బೡ

ௗ௠
ௗ௫

                  (3.6.26) 

Thus 

݃଴௩ܥଶ

ߛ
න݀݉଴ =  ଶන݀݉ܥ

ܧ = ଶܥ݉ = ௚బೡ௠బ஼మ

ఊ
                                    (3.6.27) 

Thus the mass is given by: 

m = ୥బ౬୫బ

ට୥బ౬ି
౬మ

ిమ

                                           (3.6.28)   

The corresponding energy is given with the aid of equation (3.6.14) 
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ܧ = mCଶ = ୥బ౬୫బେమ

ට୥బ౬ି
౬మ

ిమ

                                      (3.6.29) 

This resembles the expression of energy derived by M.Dirar. 

   The total momentum of a charged particle in an electromagnetic field can be 

found by considering the equation of motion of charged particle like the electron 

in an electromagnetic field. If the electron is affected by a magnetic field of flux 

density B, the equation of the motion becomes: 
ୢ(୫୴)
ୢ୲

= Bev                                             (3.6.30) 

But, since velocity ν and B is given by [19]: 

ܤ =
ܣ߲
ݔ߲

=
ܣ݀
ݔ݀

ݒ                            =
ݔ݀
ݐ݀

                 (3.6.31) 

Inserting equation (30) in equation (29) yields: 

(ݒ݉)݀
ݐ݀

= ݁
ܣ݀
ݔ݀

ݔ݀
ݐ݀

= ݁
ܣ݀
ݐ݀

            
ݒ݉)݀ − (ܣ݁

ݐ݀
= 0       (3.6.32) 

This equation looks like the equation of momentum conservation: 

݀ܲ
ݐ݀

= 0                                                   (3.6.33) 

Comparing equation (33) and equation (32) yields 

ܲ = ݒ݉ −  (3.6.34)                                              ܣ݁

To throw light on term݁ܣ, on can use the definition of electric field intensity ܧ in 

term of A to get: 

ܧ = −
ܣ߲
ݐ߲

= −
ܣ݀
ݐ݀

= −
ܣ݀
ݔ݀

ݔ݀
ݐ݀

= −ܿ
ܣ݀
ݔ݀

                    (3.6.35) 

Where the speed of photon is constant. Thus the work done by photon filed is 

given by: 

ܹ = +݁නܧ. ݔ݀ = ܥ݁ න
ܣ݀
ݔ݀

ݔ݀ = ܥ݁− න
ܣ݀
ݔ݀

 ݔ݀

ܹ =  (3.6.36)                                                  ܣܥ݁−

The photon energy is given also in terms of momentum ௉ܲ as: 

௉ܧ = ௉ܲ(3.6.37)                                                 ܥ 
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Where the mass term is neglected by assuming ݉଴ to be very small. But W is 

equalܧ௉. Thus: 

௉ܧ = ܹ 

௉ܲܥ =  ܥܣ݁−

Thus the photon momentum is given by: 

௉ܲ = −eA                                                  (3.6.38) 

Thus the equation (3.6.34) represents the sum of mechanical and photon 

momentum, i.e: 

ܲ = ௠ܲ௘௖ + ௉ܲ                                          (3.6.39) 

Where: 

௠ܲ௘௖ = ௉ܲ                   ݒ݉ = −eA                                (3.6.40) 

The total momentum can also be found from the equation of motion of the 

electron in the electric field, where: 

(ݒ݉)݀
ݐ݀

=  (3.6.41)                                                  ܧ݁−

With the aid of the equation (3.6.35) one, gets: 

(ݒ݉)݀
ݐ݀

=
ܣ݀݁
ݐ݀

=
(ܣ݁)݀
ݐ݀

 

ݒ݉)݀ − (ܣ݁
ݐ݀

= 0                                               (3.6.42) 

ݒ݉)݀ − (ܣ݁
ݐ݀

  

Using the same procedures as in equation (3.6.32) and equation (3.6.33) again 

the total momentum ܲ is given by: 

ܲ = ݒ݉ − ܣ݁ = ௠ܲ௘௖ + ௉ܲ                                                                    (3.6.43)   

(3.7) Summary and Critique 

   The attempt made by researchers utilizes different approaches to incorporate 

the effect of potential on the Lorentz transformation besides space time mass and 

energy. Unfortunately none of them recognize the effect of the pressure on this 
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parameters and quantities . Such effect is important to make special relativity 

conform with the energy relations of thermodynamics and plasma 

Chapter Four 
 

4.1 Pressure - Potential Dependent Lorentz Transformation and 

short range photon and crystal field from Plasma Equation 
 

         Plasma equation is used in this work to derive new non linear Lorentz 

transformation, beside new special relativistic energy relation dependent on 

potential, pressure and thermal energy. This expression reduces to the ordinary 

special relativity, and conforms with Newton thermodynamic and plasma energy 

equations. The plasma equation also predicts that photon pressure and electron 

gas potential can produce short range repulsive field. This short range field can 

be useful in constructing non singular cosmological model and describing the 

nature of black holes. 

          Classical physics divided into two different categories. The first one are 

particles which are described by Newton laws [106]. The second one are waves 

which are described by using Maxwell’s equations [107]. 

The Newton laws are showed to be unable to describe Michelson and Morley 

experiment. This experiment shows that the speed of light is constant and is 

independent on the motion of the source or the observer [108]. This conflict was 

removed by Einstein who proposed the so called special relativity (SR). Special 

relativity is based on Lorentz transformation which leaves Maxwell’s equations 

invariant [109].the SR shows that the laws of physics are invariant under Lorentz 

transformation .it also shows that space and time are not absolute but depends on 

the frame of reference [110]. The theory of SR succeeded in explaining a wide 

variety of physical phenomena. It explains photoelectric effect, Compton Effect, 

pair production, meson decay and transformation [111].the special theory of 

relativity is useful in describing high speed particles [111]. 
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  However SR suffers from noticeable setbacks for instance the SR energy 

relation does not satisfy correspondence principle. This is since SR energy 

relation does not have a potential term like that of Newton. Also SR states that 

electrons having speed v moving in free space and electrons having the same 

speed v moving around a certain nucleus have the same energy. This is in direct 

conflict with the laws of quantum mechanics and observed spectra of atoms 

[112].  

Plasma state is the fourth state of matter. Plasma is an ionized fluid in which 

electric and magnetic field plays an important role [106,107] .thus fluid equation 

look more general than ordinary fluid equation, since the particles are affected by 

fields beside pressure effect [108,109]. 

This general nature of plasma equations motivates some scientists to derive new 

energy expressions, even to derive new quantum equation [110,111,112,113].    

on the other hand special relativity (SR) energy relation seems to be in direct 

conflict with plasma energy equation for not recognizing thermal, pressure and 

potential energy [114,115]. This needs searching for a new modified SR version 

which accounts for these defects and tries to cure them. This was done in this 

work where a new Lorentz transformation which is pressure and potential 

dependent. The general nature of plasma equations is also used to describe the 

behavior of stellar and quasi-stellar objects specially collapsing stars like black 

holes [116, 117]. The latter problem is tackled in section (2) and section (3), 

while the former one is investigated in section (4). Sections (5) and (6) are 

devoted for discussion and conclusion 

The history of gravitational field dates starts from the Newton inverse square law 

of gravitation [106]. This law explains successfully the motion of freely falling 

objects towards the earth surface. It is also explains some a astronomical 

phenomenon like the motion of planets around the sun, beside the motion of the 

moon and satellite around the earth. The satellite of the planets and the satellites 

in their orbits attributed. 
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To centrifugal   force which counters balance the gravitational attractive force. 

The motion of astronomical objects is assumed to be inside hypothetical fluid 

called ether [107]. The effect of earth motion on the speed of light, which was 

studied by Mickelson and Morley, shows that no ether no ether exist and shows 

also that the speed of light is a universal constant. This is since the speed of light 

is not affected or changed by the motion of the source or the observer or both. 

This fact in direct conflict with Newton’s law, specially the law of velocity 

addition the Galilean transformation [108]. This conflict was removed by the 

famous Einstein theory of special relativity (SR) which uses Lorentz 

transformation instead of Galilean transformation. This SR changes radically the 

motion of space and time. According to SR time interval and distance depend on 

the relative motion of the observer with respect to the mass energy. Einstein SR 

succeeded in explaining a wide verity of physical phenomena. It explains 

photoelectric effect, Compton Effect, pair production, Time dilatation in meson 

decay, beside more physical observations [109].  

Later on Einstein generalizes SR to the so called general relativity (GR) to 

explain the gravitational phenomena [110, 111]. It assumes that the gravity 

results from the space bending made by matter [112]. Einstein GR succeeded in 

explaining most of   gravitational phenomena [112]. Namely the so called big 

bang (BB) cosmological model explain some important cosmological 

phenomena like universe expansion, existence of relic microwave back ground 

and galaxy formation , beside stars evaluation filed is measured by the optional 

φ. This potential is defined as the work done to bring a unit mass from infinity to 

a certain point. According to the Newton law this potential affected by the matter 

density ρ. 

     Einstein special relativity (SR) and general relativity (GR) are one of the big a 

achievement in physics. Special relativity [106, 107] is concerned with 

describing the behavior of high speed particles of macro and micro world. 
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Unfortunately SR suffers from noticeable setbacks. First of all does not reduce to 

Newton one, since its energy expression for small velocity does not recognize 

potential term [108].Also SR in general does  not have any term which is 

sensitive to field which is in direct conflict with the physics mean 

stream[113,114,115]. General relativity which partially solves this problem for 

gravitational field, successfully describes many astronomical and cosmological 

phenomena [112, 113]. However GR gives singular solutions for massive and 

super massive objects [116, 117] 

        This means that GR predicts its own break down in these application [116, 

117] different attempts were made to cure these defects. The so called 

generalized special relativity think that still SR is valid by generalizing Lorentz 

transformation in the so called generalized SR (GSR)[118, 119]. Some authors 

also try to cure singularity problem by suggesting repulsive gravity force [120, 

121, and 122]. But they are not based on Poisson equation or Maxwell statistical 

distribution. One thus needs a new model which cures some of these defects. 

This is done in section (4.1.2), which is concerned with non singular model and 

section (4.1.3) which is devoted for potential dependent Lorentz transformation.  

4.1.1 Lorentz Pressure and Potential dependent Lorentz transformation 

   Plasma equation recently pays attention of many scientists. This is due to its 

general nature. 

According to plasma equation when pressure only affects the motion of an 

electron moving with velocity v on gets:  

݊݉ ௗ௩
ௗ௧

= ݉݊ܽ = − ௗ௉
ௗ௫

                                     (4.1.1) 

For thermal pressure: 

ܸܲ = ܰ݇ܶ    ,ܲ = ே
௏
݇ܶ   From which  

ܲ = ݊݇ܶ                                                (4.1.2.) 

Where ݊ = ே
௏

  number of particles per unit volume (density) 

For constant uniform density of particles n, equation (1) becomes: 
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݊݉ܽ = −݊
݀݇ܶ
ݔ݀

 

Then integrating both sides after omitting n one gets: 

න݉ܽ݀ݔ = −න݀݇ܶ = −݇ܶ 

For constant mass m and acceleration a 

ݔܽ݉ = −݇ܶ                                          (4.1.3) 

But more generally for constant acceleration and constant number density  

݊݉ܽ = −
݀ܲ
ݔ݀

 

 Then 

නܽ݀ݔ = −න
݀ܲ
݊݉

= −න݀ ଴ܲ 

thus 

ݔܽ = − ଴ܲ                                               (4.1.4) 

Where ݀ ଴ܲ= change of pressure for one particle per until mas (4.1.4) 

This is similar to ∇∅ which is potential change per unit mass. Consider now the 

effect of pressure and potential on the particle. This makes equation 

(4.1.2.1)becomes: 

݊݉ ௗ௩
ௗ௧

= ݉ܽ݊ = −݉݊ ௗ௉బ
ௗ௫

−݉݊ ௗ∅
ௗ௫

                        (4.1.5) 

Again when a is constant  

ݔܽ = − ଴ܲ − ∅                                            (4.1.6) 

Following ordinary Lorentz transformation, Consider now Lorentz 

transformation for two frames S and ሖܵ  such that: 

ݔ = ݔ́)ߛ +  (4.1.7)                                           (ܮ

Here one assumes that the two frames S and S/ moves in a field having potential 

∅ with constant acceleration obeys Newton second law of motion. The two 

frames are assumed to be a distance L apart from each other at time t. thus : 

ݔ́ = ݔ)ߛ −  (4.1.8)                                            (ܮ
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Where L is given by: 

ܮ = ݐ଴ݒ + ଵ
ଶ
ଶݐܽ = ݐ଴ݒ + ଶݐܽ − ଵ

ଶ
   ଶݐܽ

଴ݒ)=   + ݐ(ݐܽ − ଵ
ଶ
௔௫
௫
ଶݐ  = ݐݒ + ଵ

ଶ
ቀ௉బା∅

௫
ቁ  ଶ                    (4.1.9)ݐ

ݔ = ߛ ቀ́ݔ + ݐ́ݒ + ଵ
ଶ
ቀ∅ା௉బ

௫́
ቁ ଶሖݐ ቁ                        (4.1.10) 

ݔ́ = ߛ ቀݔ − ݐݒ − ଵ
ଶ
ቀ∅ା௉బ

௫
ቁ  ଶቁ                        (4.1.11)ݐ

It is very interesting to note that this is a nonlinear Lorentz transformation, which 

is non linear in time. For simplicity let: 

∅ + ଴ܲ=D                                       (4.1.12) 

For pulse of light moving with speed c. such that the origin of the two frames 

coincide at (ݐ = ݐ́ = 0). Thus: 

ݔ = ݔ́    ݀݊ܽ    ݐܿ =  (4.1.13)                              ݐ́ܿ

Thus  

ݐܿ = ߛ ቀܿ́ݐ + ݐ́ݒ + ஽
ଶ௖௧ሖ

ଶ  ሖݐ ቁ = ܿߛ ቀ1 + ௩
௖

+ ଵ
ଶ
஽
௖మ
ቁ  or  ݐ́

ݐ = ߛ ቀ1 + ௩
௖

+ ଵ
ଶ
஽
௖మ
ቁ  (4.1.14)                               ݐ́

Similarly 

ݐ́ܿ = ߛ ቀܿݐ − ݐݒ − ଵ
ଶ
஽
௖௧
ܿߛ= ଶቁݐ ቀ1 − ௩

௖
− ଵ

ଶ
஽
௖మ
ቁ  ݐ

ݐ́ = ߛ ቀ1 − ௩
௖
− ଵ

ଶ
஽
௖మ
ቁ =݊1)ߛ −  (4.1.15)                         ݐ(݂

Where 

  ݂ = ௩
௖

+ ஽
ଶ௖మ

= ௩
௖

+ (∅ା௉బ)
ଶ௖మ

                             (4.1.16) 

Thus inserting equation (4.1.15) in (4.1.14) yields  

ݐ = ଶ(1ߛ + ݂)(1 − ଶ(1ߛ=so that 1    ݐ(݂ − ݂ଶ)  and ߛ = (1 − ݂ଶ)
షభ
మ  

Thus  

ߛ = ଵ

ටଵିቀೡ೎ା
∅శುబ
మ೎మ

ቁ
మ                                  (4.1.17) 

This represents new potential and pressure dependent Lorentz transformation 
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This expression reduces to SR one when ∅ = 0 , ଴ܲ = 0. 

ߛ = ଵ

ටଵିೡ
మ

಴మ

                                        (4.1.18) 

Therefore the energy is given by: 

 E=݉ܿଶ =  ଴ܿଶ݉ߛ

It is very interesting to note that this term of energy relation is nothing but that of 

ordinary SR. 

For small v and∅, such that ∅ ≪ ܿଶ   ଴ܲ ≪ ܿଶ 

ܧ = ݉଴ܿଶ ൬1 − ቀ௩
௖

+ (∅ା௉బ)
ଶ௖మ

ቁ
ଶ
൰
షభ
మ

 = ݉଴ܿଶ ൤1 + ଵ
ଶ
ቀ௩
௖

+ ∅ା௉బ
ଶ௖మ

ቁ
ଶ
൨ 

ܧ = ݉଴ܿଶ + ଵ
ଶ
݉଴ݒଶ + ௩

௖
ቀ∅ା௉బ

ଶ
ቁ + ∅మ

ସ௖మ
+ ௉బమ

ସ௖మ
+ ∅௉బ

ଶ௖మ
           (4.1.19) 

It is very interesting to note that the presence of pressure in the energy 

expression resembles that of general relativity where  

ఓܶ௩ = ݃ఓ௩ߩ + ߩ) + ܲ) ఓܷ ௩ܷ  

It is also important to note that equation (4.1.17) can be simplified further by 

assuming 

∅ + ଴ܲ

ଶܥ2
<
ݒ
ܥ

 

To get  

ቀ௩
஼

+ (∅ା௉బ)
ଶ஼మ

ቁ
ଶ
=௩

మ

஼మ
ቀ1 + (∅ା௉బ)

ଶ௩
ቁ
ଶ
≈ ௩

మ

஼మ
ቀ1 + (∅ା௉బ)

ଶ௩
ቁ 

But from plasma equation  

݉଴݊ݒ
ௗ௩
ௗ௫

= −݉଴݊
ௗ௉బ
ௗ௫

−݉଴݊
ௗ∅
ௗ௫

    , 

Rearrange this one get 
1
2
ଶݒ = − ଴ܲ − ∅ 

Thus  

1
2
൬
ݒ
ܥ

+
∅ + ଴ܲ

ଶܥ2
൰
ଶ

= −
(∅ + ௔ܲ)
ଶܥ

ቆ1 +
(∅ + ଴ܲ)

ݒ
ቇ = −

(∅ + ଴ܲ)
ଶܥ

+ ⋯ 



96 

According to equation (4.1.2.19). 

ܧ = ݉଴ܥଶ + ଵ
ଶ
݉଴ݒଶ −݉଴ ଴ܲ −݉଴∅                   (4.1.20) 

It is clear that the energy expression consists of potential beside pressure term 

similar to that of plasma equation 

4.1.2 Short range force due to photon pressure  

Photon plays an important role in the early universe and inside young star. 

Therefore it is very important to see how these photons affects the evolution of 

the universe and stars. 

Consider Newton second law where the force is related to the momentum, i. 

ܨ =
݌݀
ݐ݀

 =
(ݒܯ)݀
ݐ݀

                                           (4.1.2.1) 

For v = constant, equation (4.1.2.1) becomes 

ܨ = ݒ
ܯ݀
ݐ݀

                                                  (4.1.2.2) 

Where  ௗெ
ௗ௧

 is mass flow rate and can be given for constant speed flow by: 

ܯ݀
ݐ݀

= ݉. ݊.  ܣ.ݒ

Where n is number of photons, A cross section area and v is speed of the 

particle. 

Insert  ௗெ
ௗ௧

 in equation (4.1.3.2) we get:- 

ܨ = .ݒ (ܣݒ݊݉) =  (4.1.2.3)                                 ܣଶݒ݊݉

For photon v = c where c is speed of light. Thus 

ܨ = ଶݒܣ݊݉ = mnAܿଶ      = nAmCଶ                          (4.1.2.4) 

This relation can also be derived by using dimensional analysis where  

ܨ = ௠௡஺௫௩మ

௫
 = ௠ே௖మ

௫
                                        (4.1.2.5)  

 N = n x A total numbers of photon in the included volume. 

ܨ = ெ௖మ

௫
= ௘௡௘௥௚௬

௫
                                            (4.1.2.6)   

 Where 
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 M= m N is the total mass. 

 But the pressure is given by 

ܲ = ி
஺

= ݉݊ܿଶ = 2
ௌೌೡ೒
௖

                                     (4.1.2.7)  

Where ܵ௔௩௚is energy flow per unit time per unit area, also 

ܵ௔௩௚ =
1
2

(݉ܿଶ݊)ܿ                                          (4.1.2.8) 

Where ݉ܿଶ݊  represents energy density. Thus the intensity of photons is given 

by: 

I = intensity = (energy density) × c                      (4.1.2.9) 

Also the force is related to the potential according to the expression 
 

~ܨ
߲ܸ
ݔ߲

~
ݕ݃ݎ݁݊ܧ
݁ܿ݊ܽݐݏ݅݀

                                          (4.1.2.10) 

Consider a photon as a particle moving inside fluid of photons in gravity field of 

potential per unit mass ∅. Assume also the photon is affected by fluid force. 

Thus 

ܨ = ݉݊ܿଶ(4.1.2.11)                                               ܣ 

Using Newton second law for plasma, thus the photon equations is given by:  

݉݊ ௗ௩
ௗ௧

= ܨ − ݉∇∅                                        (4.1.2.12) 

Since the photon moves with constant speed thus 

݉݊ ௗ௩
ௗ௧

= ݉݊ ௗ௖
ௗ௧

= 0                                       (4.1.2.13) 

Thus the equation of motion of the photon is given by 

݉∇∅ = ݉ ௗ∅
ௗ௫

= ܨ =  ଶ                                 (4.1.2.14)ܿܣ݊݉

Considering the photon as gas obeying Maxwell-Boltzmann distribution  

n =  n଴eିஒ∅                                             (4.1.2.15) 

For very small value of ߚ such that 

β∅ < 1 

n = n଴(1 − β∅)                                      (4.1.2.16) 



98 

Inserting ((4.1.3.15) in (4.1.3.14) yields 

m
d∅
dx

= mn଴ACଶ(1 − β∅) = Cଵf 

d∅
dx

= n଴ACଶ(1 − β∅) = Cଵf 

Where  

Cଵ = n଴ACଶ 

f = 1 − β∅                                           (4.1.2.17) 

Thus 
ୢ୤
ୢ୶

= −β ୢ∅
ୢ୶

                                          (4.1.2.18) 

Hence equation (4.1.2.17) yields  

−
1
β

df
dx

= Cଵf 

Rearranging gives  

∫ ୢ୤
୤

= −Cଵβ∫ dx + Cଶ  , ln f = −Cଵβx + Cଶ 

f = eେమeିେభஒ୶=Cଷeିେభஒ୶                              (4.1.2.19) 

From equation (4.1.3.18) 

∅ = ଵ
ஒ
൫1 − Cଷeିେభஒ୶൯                                (4.1.2.20) 

At:  x = 0   , ∅ = ∅଴ 

Where ∅଴ is the self energy. 

Hence: 

∅଴ =
1
β

(1 − Cଷ) 

At: ݔ → ∞ 

∅ = ∅ୡ = cosmic potential  

Thus  

∅ୡ =
1
β

 

Thus 
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∅ =
1
β
ൣ1 − (1 − β∅଴)eିେభஒ୶൧ 

∅ = ∅଴eିେభஒ୶                                       (4.1.2.21) 

This is a short range repulsive field. This means that a photon gas at the early 

universe or inside stars can produce repulsive force which prevents singularity 

and gravitational collapse. 

4.1.3 Short range field generated by electron gas in crystals 

Four conductors and semiconductors free electrons plays an important role in 

their electronic properties. These electrons produce electric field inside the 

crystal. Thus they contribute to the crystal field. Since these electrons can be 

considered as a gas, thus it is quite obvious to use plasma equation to describe 

their behavior. 

Consider an electron surrounded by electron cloud of density n and each 

contributes an electric field E଴ .The force on the electron is electric field beside 

crystal field ∅. Thus the equation of motion  

m ୢ୴
ୢ୲

= −∇∅ + nE଴ = −∇∅ − E଴n଴eିஒ∅                          (4.1.3.1) 

Let 

c଴ = n଴E଴ 

Using Taylor's series eିஒ∅  can be expanded in the form. 

eିஒ∅ = 1 − β∅ + (ஒ∅)ଶ
ଶ!

+ (ஒ∅)ଷ
ଷ!

+ ⋯ ≅ 1 − β∅                (4.1.3.2)  

For smallβ , such that β∅ < 1   ,  eିஒ∅ ≈ 1 − β∅ 

Thus equation (43) 

m
dv
dt

= −∇∅ + c଴(1 − β∅)                                   (4.1.3.3) 

Consider uniform motion, such that 

dv
dt

= 0 
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Where speed of electrons are considered to be a uniform. Hence equation 

(4.1.4.3)reduced to  

∇∅ = c଴(1 − β∅)                                            (4.1.3.4) 

Or  

∅ߘ = ܿ଴(1 −  (4.1.3.5)                                            (∅ߚ
d∅
dx

= c଴(1 − β∅) = c଴ − c଴β∅                                   (4.1.3.6) 

Define f such that 

d∅
dx

= c଴ − c଴β∅ = f                                          (4.1.3.7) 

Now let 

cଵ = c଴β 

Thus 

c଴ − cଵ∅ = f                                                (4.1.3.8) 

Differentiating equation (4.1.3.8)yields 

-ܿଵ݀∅ = ݂݀ 

݀∅ = −
1
cଵ
݂݀                                                (4.1.3.9) 

Thus equation (4.1.3.9)gives 

−1
cଵ

df = fdx                                              (4.1.3.10) 

df
f

= −cଵdx                                              (4.1.3.11) 

Integrating both side yields 

ln f = −cଵx + cଶ                                           (4.1.3.12) 

Where  cଶ is constant of the integration. 

f = eିୡభ୶ାୡమ                                               (4.1.3.13)  

f = ceିୡభ୶                                                  (4.1.3.14) 

Where 

c= ݁௖మ  
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Equate equation (4.1.3.14)with (4.1.4.8)to get 

c଴ − cଵ∅ = ceିୡభ୶                                          (4.1.3.15) 

Let 

cଷ ୀ ୡబ
ୡభ

       ,     cସ = େ
ୡభ

 

∅(x) = cଷ − cସeିୡభ୶                                   (4.1.3.16)  

Since self energy exists the origin, hence  

At      x = 0           ∅(0) = cଷ − cସ = ∅଴ 

Also vacuum energy exists at infinity hence  

  And     x =  ∞           ∅(∞) = ܿଷ= ∅௩ 

Therefore 

∅(0) = ∅଴ = ∅௩ − ܿସ                                   (4.1.3.17) 

Hence  

Cସ = ∅୴ − ∅଴ 

Inserting equation (4.1.3.16) in (4.1.3.17)yields 

∅ = ∅௩ + (∅଴ − ∅௩)݁ି஼మ௫                                 (4.1.3.18) 

For negligible vacuum energy 

∅ = ∅଴eିେమ୶                                           (4.1.3.19) 

Thus electron gas inside the crystal can produce short range repulsive fields 

which resembles that proposed some superconductors models.  

4.2 Short Range Gravity Potential self energy and Nonlinear potential 

dependent Lorentz Transformation 
 

 Using Poisson equation beside Maxwell distribution law for very hot star 

core consisting of elementary particles one can find new Poisson equation. This 

equation predicts existence of short range gravity force. This short force may 

have a link with short range nuclear force, thus raises a hope in unifying gravity 

and nuclear force. This short range field beside long range field secures singular 

finite self energy. This central role of potential in unifying self energy for high 

relativistic particles at star cores requires seeking Lorentz transformation that 
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accounts for effect of fields. This work derived new Lorentz transformation for 

accelerated frame. This transformation is potential dependent and reduces to SR 

and explains time dilation and gravitational red shift.  

  The history of gravitational field dates starts from the Newton inverse 

square law of gravitation [1]. This law explains successfully the motion of freely 

falling objects towards the earth surface. It is also explains some a astronomical 

phenomenon like the motion of planets around the sun, beside the motion of the 

moon and satellite around the earth. The satellite of the planets and the satellites 

in their orbits attributed. 

To centrifugal   force which counters balance the gravitational attractive force. 

The motion of astronomical objects is assumed to be inside hypothetical fluid 

called ether [107]. The effect of earth motion on the speed of light, which was 

studied by Mickelson and Morley, shows that no ether no ether exist and shows 

also that the speed of light is a universal constant. This is since the speed of light 

is not affected or changed by the motion of the source or the observer or both. 

This fact in direct conflict with Newton’s law, specially the law of velocity 

addition the Galilean transformation [108]. This conflict was removed by the 

famous Einstein theory of special relativity (SR) which uses Lorentz 

transformation instead of Galilean transformation. This SR changes radically the 

motion of space and time. According to SR time interval and distance depend on 

the relative motion of the observer with respect to the mass energy. Einstein SR 

succeeded in explaining a wide verity of physical phenomena. It explains 

photoelectric effect, Compton Effect, pair production, Time dilatation in meson 

decay, beside more physical observations [109].  

Later on Einstein generalizes SR to the so called general relativity (GR) to 

explain the gravitational phenomena [110, 111]. It assumes that the gravity 

results from the space bending made by matter [112]. Einstein GR succeeded in 

explaining most of   gravitational phenomena [112]. Namely the so called big 

bang (BB) cosmological model explain some important cosmological 
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phenomena like universe expansion, existence of relic microwave back ground 

and galaxy formation , beside stars evaluation filed is measured by the optional 

φ. This potential is defined as the work done to bring a unit mass from infinity to 

a certain point. According to the Newton law this potential affected by the matter 

density ρ. 

     Einstein special relativity (SR) and general relativity (GR) are one of the big a 

achievement in physics. Special relativity [106, 107] is concerned with 

describing the behavior of high speed particles of macro and micro world. 

Unfortunately SR suffers from noticeable setbacks. First of all does not reduce to 

Newton one, since its energy expression for small velocity does not recognize 

potential term [108].Also SR in general does  not have any term which is 

sensitive to field which is in direct conflict with the physics mean 

stream[113,114,115]. General relativity which partially solves this problem for 

gravitational field, successfully describes many astronomical and cosmological 

phenomena [112, 113]. However GR gives singular solutions for massive and 

super massive objects [116, 117] 

        This means that GR predicts its own break down in these application [116, 

117] different attempts were made to cure these defects. The so called 

generalized special relativity think that still SR is valid by generalizing Lorentz 

transformation in the so called generalized SR (GSR)[117, 118]. Some authors 

also try to cure singularity problem by suggesting repulsive gravity force [15, 

120, and 121]. But they are not based on Poisson equation or Maxwell statistical 

distribution. One thus needs a new model which cures some of these defects. 

This is done in section (4.2.2), which is concerned with non singular model and 

section (4.2.3) which is devoted for potential dependent Lorentz transformation.  

4.2.1 Short range Gravity field  

        Poisson Newton equation states that matter density ߩ generates gravity field 

of potential per unit mass ∅.according to the equation 
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∇ଶ∅ = ߩܩߨ4 = ∅଴݁ିఉబ݊݉ܩߨ4 = (1 −    C଴                 (4.2.1.1)( ∅ߚ

଴ܥ =   ߩܩߨ4

Where the particle density obeys Maxwell’s equations: 

Consider the behavior of elementary particles which form very hot gas at the star 

core. This meaning that: 

m଴ ≪ 1          β(kT)ିଵ ≪ 1    therefore x = β଴φ ≪ 1 

 ݊ = ݊଴݁ିఉா = ݊଴݁ିఉ௠బ∅ = ݊଴݁ିఉబ∅ ≈ ݊଴(1 −  ଴∅)            (4.2.1.2)ߚ

For spherically symmetric field  

1
ଶݎ

߲
ݎ߲
൬ݎଶ

߲∅
ݎ߲
൰ = (1 −  ଴                            (4.2.1.3)ܥ( ∅଴ߚ

To simplify this equation let us define the function ƒ to be  

 f =(1 −  ଴                                      (4.2.1.4)ܥ(∅଴ߚ

Consider solution of the form 

݂ =  ௡݁ఊ௥                                                 (4.2.1.5)ݎ

From equation (3)   

݂݀ =   ∅݀ߚ−

݀∅ = − ଵ
ఉభ

 df                                          (4.2.1.6) 

Where ߚଵ =  ଴ߚ଴ܥ

Let 

 ଶ                                                (4.2.1.7)ܥ-= ଵߚ 

Divide equation (4.2.2.5) both side by dr to get 

݀∅
ݎ݀

=
1
ܿଶ

 
݂݀
ݎ݀

                                                  (4.2.1.8) 

݂݀
ݎ݀

= ௡ିଵ݁ఊ௥ݎ݊ +  ௡݁ఊ௥                                     (4.2.1.9)ݎߛ

Hence inserting eq,s (4.2.1.9) , (4.2.1.8) and (4.2.1.3) in (4.2.1.2) yields 

 ଵ
௖మ

ଵ
௥మ

డ
డ௥
൫ݎଶ(݊ݎ௡ିଵ݁ఊ௥ + ௡݁ఊ௥)൯ݎߛ = ݂                       (4.2.1.10) 

ଵ
௖మ

ଵ
௥మ

డ
డ௥

௡ାଶݎߛ) + ௡ାଵ)݁ఊ௥ݎ݊ =   ௡݁ఊ௥                  (4.2.2.11)ݎ 
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Multiply both sides by ݎଶܿଶ 

߲
ݎ߲

௡ାଶݎߛ) + ௡ାଵ)݁ఊ௥ݎ݊ = ܿଶ ݎ௡ାଶ݁ఊ௥                  (4.2.1.12) 

௡ାଶݎଶߛ) + ݊)ߛ + ௡ାଵݎ(2 + ݊(݊ + ௡ݎ(1 + ௡ାଵ)݁ఊ௥ݎߛ݊

= ܿଶݎ௡ାଶ݁ఊ௥     (4.2.1.13) 

Eliminating ݁ఊ௥ from both sides of equation (4.2.2.13) yields: 

ଶߛ +
݊)ߛ + 2)

ݎ
+
݊(݊ + 1)

ଶݎ
+
ߛ݊
ݎ

= ܿଶ                        (4.2.1.14) 

For   ݊ = −1 

ଶߛ +
1−)ߛ + 2)

ݎ
+
−1(−1 + 1)

ଶݎ
+
ߛ−
ݎ

= ܿଶ 

ଶߛ = ܿଶ                                                  (4.2.1.15) 

Or 

ߛ  = ±√ܿଶ                                            (4.2.1.16) 

Therefore f can be written according to (4.2.1.4) and (4.2.1.16) as: 

݂ =
1
ݎ
݁ା√௖మ௥                                               (4.2.2.17) 

According to equations (4.2.1.1) ,(4.2.1.2) and (4.2.1.7) equation (4.2.1.17) reads  

C଴ − C଴β଴∅ = ଵ
୰

eିඥସ஠ୋ୫୬బஒబ ୰  

∅ = ଵ
ఉబ
− ଵ

஼బఉబ௥
݁ିఉభ௥ = ଵ

ఉబ
ቀ1 − ଵ

ସగீ௠௡బ
݁ିඥସగீ௠௡బఉబ  ௥ቁ       (4.2.1.18) 

Assuming the existence of attractive long range field beside the short one, the 

total potential is given by 

= ∅௦ + ∅௅ = ଵ
ఉబ
ቀ1 − ଵ

஼బ௥
݁ିఉೝ௥ቁ − ீ௠

௥
                     (4.2.1.19) 

 .   Consider now the region near the center of mass (ݎ → 0) 

Thus:   

݁ିఉభ௥ ≈ 1 −  ݎଵߚ

Hence  
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∅ = ଵ
ఉబ
ቆ1 − ଵ

஼బ௥
(1 − ቇ(ݎଵߚ − ீ௠

௥
= ଵ

ఉబ
− ଵ

ఉబ஼బ௥
+ ఉభ

஼బ
− ீ௠

௥
             (4.2.1.20) 

The finiteness of   ∅ requires 

଴ܥ଴ߚ = − ଵ
ீ௠

                                           (4.2.1.21) 

In this case   

∅ = ∅૙ = ૚
૙ࢼ

+ ૚ࢼ
૙࡯

                                          (4.2.1.22) 

Thus the self energy, at which energy is a minimum, is given by 

E = m଴∅଴ = m଴ ቀ
ଵ
ஒబ

+ ஒభ
େబ
ቁ                                     (4.2.1.23) 

This means that when r is very small the potential is finite, and no singularity 

exists. The minimum r can be obtained from equation (4.2.1.19) to get 

1
ଶݎ଴ܥ଴ߚ

݁ିఉଵ௥ +
ଵߚ

ݎ଴ܥ଴ߚ
݁ିఉଵ௥ +

ܩ
ଶݎ

= 0 

(1 + ఉଵ௥ି݁(ݎଵߚ + ଴ܥ଴ߚଵܥ  = 0 

For small r  

(1 + 1)(ݎଵߚ − (ݎଵߚ + ܩ଴ߚ଴ܥ = 0 

1 − ଶݎଵଶߚ =  ܩ଴ߚ଴ܥ

ݎ = ඨ
1 − ܩ଴ߚ଴ܥ

ଵଶߚ
 

Thus r is real when ܥ଴ߚ଴1> ܩ this means that critical mass is 

M < ୖ
య
మ

ୋ(ଷஒ)
య
మ
ܩ(ߩܩߨ4)ߚܯ         < 1 

This means that the star mass should be less than a certain critical mass Mc, i.e. 

ܯ <  ௖ܯ

Where  

Mୡ = ୖ
య
మ

ୋ(ଷஒ)
య
మ
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Since self energy requiresݎ → 0. Thus it is quite natural to expect M to be small 

and less than certain critical value 

4.2.2 Nonlinear potential dependent Lorentz transformation  

The Principle of Special Relativity states that the laws of nature are invariant 

Under a particular group of space-time coordinate transformations, called 

Lorentz transformations .A Lorentz transformation is a transformation from one 

system of space-time coordinates S to another system ሖܵ . Let us derive a new 

coordinate transformation from one inertial system to another, which replaces the 

Galilean transformation, on the basis of Einstein’s two postulates for the special 

theory of relativity. For this purpose, we consider two inertial systems S(x, y, z, t) 

and S (x′, y′, z′, t′). The inertial system S′ is assumed to be uniformly moving in 

the x direction in a potential field ∅ with velocity v relative to the inertial system 

S, keeping each coordinate axis parallel to the corresponding axis of the latter. 

Now, let an event occur at the position (x, y, z) at the time t in the inertial system 

S, and let the same event occur at the corresponding position (x, y′, z′) and at the 

corresponding time t′ in the inertial system S. Then, one needs to find how the 

sets of space-time coordinates, (x, y, z, t) and (x, y′, z, t′) are transformed to each 

other under the two postulates for the special theory of relativity.. 

The distance between the origin of two axis is given by L, where                                   

 
 

Figure (4.2.3.1) shows two inertial systems S and ሖܵ  
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For motion with constant acceleration  

ܮ = ݐ଴ݒ + ଵ
ଶ
 ଶ                                       (4.2.2.1)ݐܽ

The velocity at instant of time is given by  

ݒ = ଴ݒ +  (4.2.2.2)                                           ݐܽ

by adding and subtracting ଵ
ଶ
  ଶ for equation (4.2.3.1) we getݐܽ

ܮ = ݐ଴ݒ + ଵ
ଶ
ଶݐܽ − ଵ

ଶ
ଶݐܽ + ଵ

ଶ
ଶ - ଵݐܽ+଴ݒ= ଶݐܽ

ଶ
 ଶ              (4.2.2.3)ݐܽ

଴ݒ) =     + t-ଵ(ݐܽ
ଶ
 ଶ                                          (4.2.2.4)ݐܽ

From equation (4.2.3.2) this quantity   ݒ଴ +  equal to v ݐܽ

ܮ = ݐݒ − ଵ
ଶ
                      ଶ                                           (4.2.2.5)ݐܽ

One can write L in terms of the potential per unit mass, to be in the form 

ܮ = ݐݒ − ଵ
ଶ௫
ଶݐݔܽ = ݐݒ + ∅

ଶ௫
  ଶ                              (4.2.2.6)ݐ

Where ∅ =  ݔܽ−

Consider now the nonlinear Lorentz transformation, in time of the form  

ݔ = ݔ൫́ߛ + ሖܮ ൯ 

ݔ = ߛ ቀ́ݔ + ݐ́ݒ + ∅
ଶ௫́
                                     ଶቁ                                    (4.2.2.7)ݐ́

Where x is the position of event in S. Thus the equivalent position in ܵᇱ  is given 

by 

ݔ́ = ݔ)ߛ −  (ܮ

ݔ́ = ߛ ቀݔ − ݐݒ − ∅
ଶ௫
                   ଶቁ                                      (4.2.2.8)ݐ

Consider a pulse of light emitted when the origins of S and ܵ ሖ  coincide at t = ́ݐ =

0 

Thus x = ct and ݔ ́ = ćݐ. Substitute these quantities in equations (4.2.2.7) & 

(4.2.2.8) respectively gives 

ݐܿ = ߛ ൬ܿ́ݐ + ݐ́ݒ +
∅

ݐ2ܿ́
 ଶ൰ݐ́
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ߛ = ቀܿ + ݒ + ∅
ଶ௖
ቁ   (4.2.2.10)                                    ݐ́

ܿߛ  = ቀ1 + ௩
௖

+ ∅
ଶ௖మ
ቁ   (4.2.2.1)                                     ݐ́

from which we get t as 

ݐ     = ߛ ቀ1 + ௩
௖

+ ∅
ଶ௖మ
ቁ  (4.2.2.12)                                   ݐ́

And from equation (4.2.2.12) 

ݐ́ܿ = ߛ ቀܿݐ − ݐݒ − ∅
ଶ௖௧

 ଶቁ                                   (4.2.2.13)ݐ

ߛ=     ቀܿݐ − ݐݒ − ∅
ଶ௖
ܿߛ=ቁݐ ቀ1 − ௩

௖
− ∅

ଶ௖మ
ቁ  (4.2.2.14)                             ݐ

ݐ́ = ߛ ቀ1 − ௩
௖
− ∅

ଶ௖మ
ቁ  (4.2.2.15)                                      ݐ

Substitute equation (4.2.2.12) in to equation ((4.2.2.15) yields 

t́ = γ ቀ1 + ୴
ୡ

+ ∅
ଶୡమ
ቁ ∙ γ ቀ1 − ୴

ୡ
− ∅

ଶୡమ
ቁ t́                         (4.2.2.16) 

1 = γଶ ቀ1 + ୴
ୡ

+ ∅
ଶୡమ
ቁ ቀ1 − ୴

ୡ
− ∅

ଶୡమ
ቁ                        (4.2.2.17) 

γିଶ = ቀ1 + ୴
ୡ

+ ∅
ଶୡమ
ቁ ቀ1 − ୴

ୡ
− ∅

ଶୡమ
ቁ                                (4.2.2.18) 

This expiration represents potential and speed dependent Lorentz’s 

transformation  

From the fact that (1 + ݂)(1 − ݂) = 1 − ݂ଶ  

Where ݂ = ቀ௩
௖

+ ∅
ଶ௖మ
ቁ yields 

γିଵ = ൬1 − ቀ୴
ୡ
− ∅

ଶୡమ
ቁ
ଶ
൰
భ
మ
                               (4.2.3.19) 

ଵିߛ = ቆ1 − ቀ௩
మ

௖మ
− 2 ௩∅

ଶ௖య
+ ∅మ

ସ௖ర
ቁቇ

భ
మ

                            (4.2.3.20)  

ଵିߛ = ቆ1 − ቀ௩
మ

௖మ
− ௩∅

௖య
+ ∅మ

ସ௖ర
ቁቇ

భ
మ

                             (4.2.3.21) 

∅ = ௏
௠

       or  ܸ = ݉∅      and ܸ =         ݔ݀ܨ∫−

V= ݔ݀ܨ∫− = ݔ݀ܽ݉∫− = −݉ܽ ݔ݀∫ =   (4.2.3.22)             ݔܽ݉−
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From which we conclude that ∅ =       ݔܽ−

Let us now see how this new Lorentz transformation related to SR one. For ∅ =

0  clearly equation (4.2.2.17).                              

઻ି૚ = ቀ૚ − ૛ܞ

૛܋
ቁ
૚
૛                                   (4.2.3.23) 

Thus it reduces to Einstein SR when no potential exist one needs also to see its 

relation within general relativity predictions. 

Consider the case when 

    ∅
ଶ௖మ

≪ ௩
௖
                                          (4.2.3.24)   

Thus equation (4.2.2.15) gives 

ଵିߛ = ൬1 − ቀ௩
஼
ቁ
ଶ

 ቀ1 − ௩∅
ଶ஼
ቁ
ଶ
൰
భ
మ
=൤1 − ቀ௩

஼
ቁ
ଶ
ቀ1 − ௩∅

஼
ቁ൨

భ
మ
      (4.2.3.25) 

For particle moving from rest  

ଶݒ = ଴ଶݒ + ݔ2ܽ = ݔ2ܽ = −2∅                            (4.2.3.26) 

Thus 

ߛ = ቂ1 + ଶ∅
஼మ
ቀ1 − ௩∅

஼
ቁቃ

షభ
మ ≈ ቂ1 + ଶ∅

஼మ
ቃ
షభ
మ                        (4.2.2.27) 

According to this relation  

ݐ = ݐ́ߛ = ଴ݐߛ = ቂ1 + ଶ∅
஼మ
ቃ
షభ
మ  ଴                            (4.2.2.28)ݐ

This equation resembles the general relativistic time dilation relation which was 

verified experimentally. 

4.3 Discussion 

The SR energy relation appears to be in conflict with plasma and 

thermodynamics energy equations [106, 107   ], which consists of thermal beside 

mechanical pressure energy, where  

Eୱ୰ = m଴ ቆ1 −
vଶ

Cଶ
ቇ

ିଵ
ଶ
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E୮୪ୟୱ =
1
2

m଴vଶ + V + γkT + P୫ 

dQ = dU + PdV = dU + dw 

This conflict is removed here by suggesting new Lorentz transformation, 

nonlinear in time [see equations (4.1.1) to (4.1.12)]. By assuming homogeneity 

of space - time and equivalence of coordinates, beside constancy of speed of 

light in vacuum, one finds new Lorentz transformation which reduces to the 

ordinary one when no potential or pressure exists [see equation (4.1.19)]. It is 

also reduces to ordinary plasma energy equation as shown by equation (4.1.21) 

The stability of stars against collapse, to avoid singularity is one of the important 

issues in cosmology and particle physics. Section (4.1.3) proves that photon 

pressure inside black holes or any collapsing stellar object can support collapse 

by generating short range repulsive gravitational or nuclear field as shown by 

equation (4.2.2.5). Here one uses plasma equation (4.2.2.6) by considering the 

photon number density a gas obeying Maxwell equation (which is a limiting case 

of Bose – Einstein distribution when  eஒ∅ > 1 ). Then by expanding the 

exponential, potential term, as a Taylor series, one gets a useful equation see 

equation (4.2.2.10) which leads to short range potential [ see equation 

(4.2.2.14)]. 

 This is a short range repulsive field. Similarly electron gas within crystal can 

also generate short range field due to the effect of the crystal and electric field 

[see equation (4.2.2.15)], assuming electron density obeys Maxwell distribution 

[see equation (4.2.2.17)], and β to b small, one can find a useful expressions 

(4.2.2.17),(4.2.2.20) for uniform velocity. These expressions predicts the 

existence of short range field [see eqn.(4.3.27)] affected by self energy and 

vacuum energy for negligible vacuum energy equation (4.3.28) shows presence 

of short range repulsive field. This short range field is very important for stars 

evolution since it prevents singularity and gravitational collapse. It is also helps 

in describing free universe. 
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Using Poisson equation (4.1.1), beside Maxwell distribution law in equation 

(4.1.2), one can find new Poisson equation. For very small ߚ଴  (ߚ଴~(݇ܶ)ିଵ, i.e. 

for very high temperature, a short range gravity field exist see equation 

(4.2.1.18). This is agrees with the assumptions that such short range field is 

observed near the stars cores, where the temperature is very high, to prevent 

collapse. According to equation (4.2.1.19), when one assumes the existence of 

attractive force, beside the short range one, the potential ∅  is constant and finite 

at the center of mass. This means that the stars and elementary particles have 

finite self mass (see equation 4.2.1.23) .thus this model is more advanced than 

that SR. The relativistic behavior of particles in this short or long range field can 

also be found by seeking Lorentz transformation that accounts for the effect of 

fields. This is done by equations (4.2.1.31) and (4.2.1.32).Assuming the speed of 

light to be constant. One find the Lorentz transform (4.2.1.43) which depends on 

speed v and potential ∅ [(see equation (4.2.43)].surprisingly equation (4.2.1.43) 

reduces to SR one for no potential and predict general relativistic time dilation 

for weak field [ see equation (4.2.1.47), (4.2.1.52)]. 

             The capability of this model in predicting finite self mass and it is 

agreement with wide experimental observation shows that this version of SR is 

still capable of describing of physical phenomena 

4.4 Conclusion  

            Plasma equation general nature make it capable of recognizing the effect 

of potential, pressure and thermal energy in SR. this enables generalizing 

Lorentz transformation and special relativity to recognize the effect of potential 

and pressure effects. Thus makes SR to conform to plasma equations and 

thermodynamics. It also helps in deriving short range repulsive energy. This 

opened the door for considering cosmological model which is free of singularity. 

It also raises a hope in describing black holes by non singular model which 

prevents gravitational collapse.  
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Using Newton Poisson equation beside Maxwell statistical distribution law one 

can predict existence of short range repulsive gravity force. This gravity force 

may have a link with strong nuclear force and predicts finite self mass energy 

and help in constructing non singular model for stars and universe. It also 

enables using describing non singular and non collapsing black holes. By using 

Newton’s second law for constant acceleration one can drive new Lorentz 

transformation which  

Recognize the effect of potential as well as velocity. This reduces to that SR 

besides predicting the gravity time dilation. 

4.5 Recommendation and future work 

1) It is important to derive short range repulsive gravity to predict finite self 

mass energy in order to construct non singular model for the universe. 

2) Plasma equation general natures make it capable of recognizing the effect of 

potential, pressure and thermal energy in SR 

3) The photon energy equation in the presence of gravitational field 

(gravitational red shift equation) needs to be used to derive Einstein’s energy 

equation in the presence of fields. 

4) construct expression represents and relate potential and speed dependent 

Lorentz transformation 

5) The new relativity equation which stated by Mubarak Dirar should be unified 

with Einstein and solved either experimentally or by Monte Carlo simulation.  
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