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Abstract

The minimal submanifolds with constant mean curvature and of a sphere with
bounded second fundamental form are considered. An intrinsic rigidity theorem from
minimal submanifolds with parallel mean curvature in a sphere and the log-Sobolev
inequalities for subelliptic operators satisfying a generalized curvature dimension inequality
were studied. Stochastic completeness, volume growth, connection, curvature and distance
comparison theorem for sub-Riemannian manifolds are shown. The sub-Riemannian
curvature dimension inequality, volume doubling property, Poincaré inequality and balls in
CR Sasakian manifolds are discussed. We classify the closed minimal submanifolds and

geometric inequalities for certain submanifolds in pinched Riemannian manifolds.
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Introdution

We study submanifolds with constant mean curvature. First, we want to reduce the
theory of constant mean curved submanifolds to the theory of minimal submanifolds under
fairly general conditions. Second, we study the minimal submanifolds themselves.

Let h be the second fundamental form of an n-dimensional minimal submanifold M
of a unit sphere S™P(p > 2), S be the square of the length of h, and o(u) = ||h(u, u)||?
for any unit vector u € TM. Simons proved that if S < n/(2 — 1/p) on M, then either
S =0,0orS = n/(2 — 1/p). Chern, do Carmo, and Kobayashi determined all minimal
submanifolds satisfying S = n/(2 — 1/p).

We shall show a rigidity theorem for submanifolds with parallel mean curvature in
S™*1(1). Let M be a smooth connected manifold endowed with a smooth measure p and a
smooth locally subelliptic diffusion operator L which is symmetric with respect to u. We
assume that L satisfies a generalized curvature dimension inequality as introduced by
Baudoin and Garofalo.

We generalize A. Grigor’yan’s volume test for the stochastic completeness of a
Riemannian manifold to a sub-Riemannian setting.Let M be a smooth connected manifold
endowed with a smooth measure p and a smooth locally subelliptic diffusion operator L
satisfying L1 = 0, and which is symmetric with respect to u.We show that if L satisfies,
with a non negative curvature parameter, the generalized curvature inequality introduced,
then the following properties hold:

* The volume doubling property;
* The Poincaré inequality;
» The parabolic Harnack inequality.

We first show a generalized Simons integral inequality for closed minimal
submanifolds in a Riemannian manifold. Second, we show a pinching theorem for closed
minimal submanifolds in a complete simply connected pinched Riemannian manifold,
which generalizes the results obtained by S. S. Chern, M. do Carmo, and S. Kobayashi and
A. M. Li and J. M. Li respectively. We show global estimates for the sub-Riemannian
distance of CR Sasakian manifolds with nonnegative horizontal Webster-Tanaka Ricci
curvature.

For a subRiemannian manifold and a given Riemannian extension of the metric, we
define a canonical global connection. This connection coincides with both the Levi-Civita
connection on Riemannian manifolds and the Tanaka-Webster connection on strictly
pseudoconvex CR manifolds. We define a notion of normality generalizing Tanaka’s notion
for CR manifolds to the subRiemannian case. Under the assumption of normality, we
construct local frames that simplify computations in a manner analogous to Riemannian
normal coordinates. We study global distance estimates and uniform local volume estimates
in a large class of sub-Riemannian manifolds. Our main device is the generalized curvature
dimension inequality introduced and its use to obtain sharp inequalities for solutions of the
sub-Riemannian heat equation.

vi
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Chapter 1

Constant Mean Curvature Submanifolds

We study in higher dimensional submanifolds for studing submanifolds with
constant mean curvature.
Section (1-1): Submanifolds

We study the submanifolds with constant mean curvature. The object of here is two-
fold. We want to reduce the theory of constant mean curved submanifolds to the theory of
minimal submanifolds under fairly general conditions. We study the minimal submanifolds
themselves.

We shall restrict our attention to surfaces. H. Hopf was the first one who proved that
the only constant mean curved surface with genus zero in Euclidean three space is the
standard sphere. His idea was then extended and used by Calabi [1] and Chern [2] in the
theory of minimal spheres. We shall use this idea again. Klotz and Osserman [9] studied
complete surfaces with constant mean curvature in Euclidean three space. The last part of
the argument in Theorem (1.1.11) is the same as theirs. This was pointed out to us by Klotz.

Is essentially Chern's presentation of Simon [3], [15] which will be extensively used.
Is a generalization of J. Erbacher [8] and Chen and Yano [6]. These are conditions under
which a submanifold lies in a totally umbilical submanifold.

The main theorem below is a splitting theorem. It states that for the immersion of a
surface with genus zero or a complete surface with non-negative curvature, the splitting of
the normal bundle (in the geometric sense) has strong consequences. Suppose the normal

bundle is N1 & N, and the mean curvature vector lies in N1. Then we prove if the curvature

of the surface is not identically zero, it is either a minimal submanifold of an umbilical
submanifold with normal bundle N or a submanifold of a totally geodesic submanifold with
normal bundle Ns. If we apply this theorem to full minimal sphere in sphere, it says that the
normal bundle cannot split. We also consider the flat case.

We show that every surface with parallel mean curvature in a manifold with constant
curvature actually lies in a totally geodesic three space or a minimal surface of an umbilical
hypersurface. This essentially reduces the whole theory of surfaces with parallel mean
curvature to the theory of minimal surfaces. We note that the theorem was proved by Chen
and Ludden [7] under the assumption the surface has constant curvature and the ambient
manifold is the Euclidean space.

We consider surfaces with constant mean curvature. The assumption is weaker than
the assumption on the parallel mean curvature and we have only partial results. If a sphere
or a complete non-negatively curved surface is immersed as a constant mean curved surface
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of a four-dimensional constant curved manifold, then either the surface is minimal, a
minimal surface of an umbilical hypersurface, or flat. In the last case, the second fundament
form is covariant constant. If the ambient manifold is the Euclidean space, this generalizes
Hopf's theorem and a theorem of Klotz and Osserman [9]. Using Calabi's theory on
holomorphic curve, we show that the hyperbolic plane cannot be minimally immersed in
Euclidean space, even locally. Finally we show a similar theorem as above for minimal
totally real surfaces in manifolds with constant holomorphic sectional curvature.

Chen proved Theorem (1.1.6). Namely he proved that if N is the Euclidean space,
then either M? is a minimal surface of an umbilical hypersurface of N or M? is a "Hoffman
surface". He also proved Theorem (1.1.10) independently. D. Hoffman [17] has also some
nice results in this direction. See [18].

We follow closely the exposition in [5]. Let M be an n-dimensional manifold immersed
in an (n + p) —dimensional Riemannian manifold N. We choose a local field of
orthonormal frames ey, e,,.. . en+p in N such that, restricted to M, the vectors ey, ey,... ,e, are
tangent to M. We shall make use of the following convention on the ranges of indices:

1=ABC,....=n+pl<ijk..<n
n+1<afy...< n+tp
and we shall agree that repeated indices are summed over the respective ranges. With respect
to the frame field of N chosen above, let ;... , ®n+p be the field of dual frames. Then the
structure equations of N are given by

doy = — ) opg N O,
opg + 0gg =0 1)
dopg = — X wac A ©cg + Dpp
Dpp = Y2 ¥ Kppep 0¢ A op (2)

Kagep + Kagpe = 0.
We restrict these forms to M. Then

o, = 0. (3)

Since 0 = do, = — Y 0, w; by Cartan's lemma we may write
Z hea; hS = he (4)

From these formulas, we obtain
dCOi: Zi (UU/\(U] ) wij +(‘)ji =0 (5)
dw;j = — Y wij Nwg +Qy; (6)
- lz R ijkl (Dk/\ QY]]

Rijkl Kijia + Ya(hfihi — hihf), (7)
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dww =— ) Way A Wey + Qap (8)
Qup =%2 LR apll Wi\ w;

Rapri = Kapr +Zi( hﬁ h{ hﬁ) 9)
The Riemannian connection of M is defined by (w;;). The form (w,g) defines a connection
in the normal bundle of M. We call hj,wioje. the second fundamental form of the

immersed manifold M. Sometimes we shall denote the second fundamental form by its
components hfj We call ¥, 1/n(3, h{i%)e, the mean curvature vector. The length of it is

called the mean curvature. An immersion is said to be minimal if the mean curvature
vanishes. We take exterior differentiation of (4) and define h; kDY

Y hiixwy = dhi; — ¥ hijwy — X hijo; + X hijwa[)’- (10)

Then
Z(hl]k Cjzk)(&)] /\ (Dk: 0, (11)
ik — hikj = Kaij = —Kaiji (12)

We take exterior of (10) and define h{l,; by

3 héw, = dh&y — ¥ h oy — X hGw; — T hGwu + L hiy wqp. (13)

Then

1 a 1 B _
> ( ikl — Z R ‘Z AR + ‘Z h;; Raﬁkl) wx Nw; =0, (14)
hitkr — hijie = 2 himRujia + 2 hijRirg — 2 hﬁ' Ropi (15)

Since (w;;) defines a connection in the tangent bundle T = T(M) [and, hence a
connection in the cotangent bundle T* = T* (M) also] and (w,) defines a connection in the
normal bundle T+ = T+(M), we have covariant differentiation which maps a section of
T'®T* ®...®T x®T *, (T*: k times), into a section of T'® T * ®...® T * ®T *,
(T*:k + 1 times). The second fundamental form hf; is a section of the vector bundle
T'® T* ® T*and hiix s the covariant derivative of hf;. Similarly, h{}; is the covariant
derivative of h{j; .

Considering Kg; ;) as a section of TI® T*® T*®T*, its covariant derivative Kk 18
defined by

Y Kaijuwr = dKgijk — X Komjk@im — X Kaimk@mj — X Kaijm@mi + X Kpijk@agp.

(16)



This covariant derivative of K, should be distinguished from the covariant
derivative of K,pp as a curvature tensor of N, which will be denoted by K,pcp.¢ Restricted
to M, Ky i1 is given by

Keijir = Kaijkr — X Kaﬁjkh['; - Kaiﬁk -2 Kuﬂhgl -2 Kmijkhﬁ (17)
Now let us assume that N is locally symmetric, i.e., Kypcp.g = 0. The Laplacian Ahf; of the
second fundamental form h;; is defined by

Ahg = Z P e (18)
From (12) we obtain
Ahfﬁ- = Z hl]kk Z hfﬁ-kk = Z hfﬁ-kk - Z hfﬁ-kk (19)
From (15) we obtain ' ' '
hiijk = hkirj + 2 RemRmijk + 2 hmiRmkjx — 2 h;[jiRaﬁjk (20)

Replace hy;jj, in(20) by hy;; — Kakirj @and then substitute the right-hand side of (20) into
hiijx Of (19). Then

ha = Z(hkkij - K}?ikj - ngk)

+ Z Z higm Rmijic + Z honi Rmkjic — Z hii Ragiji (21)
k m m B

Now assume e, is the mean curvature vector. Hence
Sihl= 0 if B (22)
From (10) we have

Z he, w, = ndH
ik
z he, wp = ndHwge if Bra (23)

Here H is the mean curvature.
From (22) and (13), we have

Zhuk = ndH - Z(th)(th) (mH)"* if H%0

B*a

> hi =y ifH=0 (24)

Substituting (24) into (21), we have



Ahf; = nH Z (Z ul) (Z ul) (nH)™! Z(Klgikj + Kijkk)
K K

B*a

+ Z( Z hy . Ronijic + Z honi Rnkjie — Z hii Ragji) (25)
k m m B

wheree = 1 ifH=#0and e = 0ifH = 0.
The vector e, is parallel in the normal bundle of M if the covariant derivative of e, in N is
tangent to M. This is equivalent to
0qp = 0. (26)
Then by (23) and (26) we have
Yeht, =0 if B#a. (27)
Hence in this case,

Aha — nHL] Z(Kklk] + Kl]kk)

+ Z( Z hy . Ronijic + Z honi Rkjie — Z hii Ragji) (28)
k m m B
ARE = — ( +K2 )
kikj ijkk

+ Z( Z hy . Ronijic + Z honi Rmkjk — Z hR; Rasjk) (29)
k m m 1)

Let N be the Euclidean space. Then Chen and Yano [6] proved that if there exists a
nonzero normal vector field e over M such that M is umbilical with respect to e, then M lies
in a sphere with e parallel to the radius vector field. On the other hand, J. Erbacher [8]
proved that if N has constant curvature and if the first normal space N; of M is invariant
under parallel translations with respect to the normal connection, then M is a submanifold
of a totally geodesic submanifold of N with dimension n + [ where [ is the constant
dimension of N;. For the later purpose, we unify and extend these theorems.

Let N; be a sub-bundle of the normal bundle. We say that M is umbilical (totally
geodesic) with respect to N1 if M is umbilical (totally geodesic) with respect to any local
section of N;. We say that N, is parallel in the normal bundle if it is invariant under the
parallel translation in the normal bundle.

Theorem (1.1.1)[33]. Let N be a conformally flat manifold. Let N; be a sub- bundle of the
normal bundle of M with fiber dimension k. Suppose M is umbilical with respect to N; and
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N; is parallel in the normal bundle. Then M lies in an n + p — k dimensional umbilical
submanifold N' of N such that the fiber of N, is everywhere perpendicular to N'. If N has
constant curvature, the size of N' can be determined. In particular, if M is totally geodesic
with respect to N;, then N' is totally geodesic.

Proof. We first assume N is the euclidean space. Let { e, ,€q,, -1 €q,1€qp, .1 1 €a, } be

a local normal frame field of M such that {e, ,eq,. ..., eq, } SPan N;. By assumption, there
exists functions {f ..., f, } such that

(‘)ali = fai(‘)i (30)
forj=1,... ki =1,....,n It is easy to see by performing an orthogonal
transformation in the normal space, we may assume

Wi = fw;,
We i =0 for j=2..,k (31)
The hypothesis that N is parallel in the normal bundle means
Waa; = 0 (32)

forl <i < k,k +1 < j < p. Exterior differentiate the first equation of (31) and use the
second equation of (31) and (32), we obtain
dfNw; =0 (33)
This implies f is a constant function.
We assume f = 0. Now exterior differentiate the second equation of (31), we obtain
Waja, N wq, i =0 (34)
forj = 2,..., k. Here we use (32) and the second equation of (31). Since f= 0, the equation
(34) implies immediately Wejar, = Oforallj = 2,3,... k.
Let X be the position vector of M. Then as f is constant and Weja, = O for all j, one
can use the definitions of covariant derivatives and Waja, = O to prove that X +e, / f is

a constant vector. Hence we have proved that M lies in a sphere e, parallel to the radius
vector.

By repeating the arguments again, it is easy to see, from the second equation of (31),
the multivector ey, N ey, /\ ... \ e, is constant on M. The manifold therefore lies in a linear
space perpendicular to the linear spanned by {e,, , €4, -, €4, }. Combining these assertions,
we see M lies in a sphere with N; perpendicular to this sphere.

Let us now turn to the general case. A theorem of Kuiper [10] says that every simply
connected conformally flat manifold has a unique conformal immersion onto a domain of
Euclidean space. Using this theorem, it suffices to prove Theorem (1.1.1) locally. Let p be
a smooth function such that the metric e?? Y., w,®w, on N has zero curvature. Then {
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e Pe,} is an orthonormal frame field with respect to the new metric. The dual frame field
is {w, = ePw,}. Inthis new metric, the structure equations of N are given by

dwy = —Ypwyp/\ wp
(35)
Wap = Wyp + Pawp.
In particular
Wap = Zj h?jwj — PaWi, (36)
Wap = Wap (37)
on M.

From equation (36), one sees that M is umbilical with respect to e, in the old metric
if M is umbilical with respect to e"Pe,, in the new metric. From equation (32), e, is parallel
in the normal bundle in the old metric if e "¢, is parallel in the normal bundle in the new
metric. The first part of the theorem then follows from the result in euclidean space. The last
part follows by examining the sterographic projection.

For the dimension two case, it is more convenient to view M as a complex manifold.
We first prove the following theorem.
Theorem (1.1.2)[33]. Let M? be a surface in a constant curved manifold. Suppose the
normal bundle of M2 is an orthogonal sum of two subbundles N; and N, such that both N;
and N, are invariant under the parallel translations in the normal bundle. Suppose the
orthogonal projection of the mean curvature vector in N, is parallel in the normal bundle. If
M?2 has genus zero or if M? is a complete non-negatively curved surface with bounded mean
curvature, then either

(a) M2 has curvature identically equal to zero,

(b) M? lies in a k + 2 dimensional umbilical submanifold of N where k is the fiber
dimension of N;. If the mean curvature vector lies completely in N;, then the umbilical
submanifold can be chosen to be totally geodesic or

(c) M? is a submanifold of an 2 + p — k dimensional umbilical submanifold with
parallel mean curvature vector. If the mean curvature vector lies completely in Ny, then M?
is actually minimal.

Proof. By considering the two-fold cover of the surface, we may assume
M? is oriented and the orientation is given by o,/ \w,. Let

¢ = o+ o (38)
From (1), we have
dp = io; N (39)
The existence of local isothermal coordinates means that we can write, locally,
@ = Adz (40)



Substituting into (39), we obtain
(dA — ilwi2)\Ndz =0 (41)
For a normal vector ea, we define
B B
h%, —h
Hp = -2 + iR}, (42)

Clearly if ¢ is changed to e™ ¢, Hyis changed to e*eH . Hence the form HB¢? is invariant
under the change of ¢
Now choose a normal frame field {e,, , e4,,- €q, + €ap, . Cayyyr -+ eap} on M such
that the first k vectors span the fiber of N; and that e..1 has the same direction as the
projected mean curvature vector. Then an application of (10) shows
R =0, (43)
dHaj: 2ia)12Haj - Zl>k Hajwajai

hi1 —h3 _
- 0 (B o+ i Sy, (44

whenj > k.
Combining (43), (44) and (12), we obtain

(dHa] + Zl>k Haiwajai - Ziwleai) /\ q_D

[(h1210~’j - h1210~’j) + i(h2210~’j - h2120~’j)] 01/\®2

= (Kgj112 + iKyj212) 01\ o2 (45)
Since N has constant curvature, we have
(dHa] + Zl>k Haiwajai - Ziwleai) N §_0 =0 (46)

Hence
2 N2
d z (Haj) +4iwq, z (Haj) = 0modyp 4an
>k >k
From the remark above, it is easy to see Y}~ (Haj)z @* is a globally defined form
on M2 Using the local isothermal coordinate z introduced in (40), we may write
Y isk (Haj)z p* = f(2)dz* . It follows from (41) and (47) that f(z) is holomorphic. This
implies
90 Iog|21>k i | (48)

when f(z) = 0. On the other hand, it is well known that the Gauss curvature of M is given by
8



(49)
Combining (48) and (49), we have

= 4R (50)

where A = — 33 / A? is the Laplacian of M.

2
Since f(z) is holomorphic, ¥ ;- (Haj) Is either identically zero or has only isolated zeros.

An application of Gauss-Bonnet theorem on equation (50) shows that 3., (Haj)z is

identically zero if M2 has genus zero. Let us now consider the case where M? is complete
and has non-negative curvature. First of all, it is standard that

Z(h%)z — 4H? = 2(K131, — R). (51)

a,i,j

where H is the mean curvature of M2,
Hence if R = 0 and H is bounded, the length of the second fundamental
form is also bounded. On the other hand, it is straightforward to see from (50)

D ()| =8> (7)

j>k j>k

A > 8 R (52)

2 2
everywhere on M2, Therefore if R > 0, Yok (Haj) | is a bounded subharmonic function on

M?. A theorem of Blanc, Fiala and Huber [16] states that every complete non-negatively

2 2
curved surface is parabolic. Hence |3, (Haj) must be a constant. If this constant is

nonzero, equation (52) shows K=0.

2
Hence we may assume 3, ;- (Haj) =0. We note that formula (46) and a theorem of

Chern [2] says that the common zeroes of {He,, };~ is isolated. Now exterior differentiate
the assumptioncoaiaj = 0 yields
- Z eyt + Pgye; = 0 (53)
l

forl=si =kk+1=j=p.
By definitions (2) and (4)



D ik =B = K (54)
l

If N has constant curvature, the right hand side of the above equation vanishes and
the second fundamental form corresponding to e,, and e,, commute. Hence if M? is

nonumbilical with respect to some e, 1 = i = k, the second fundamental corresponding

to {eaj}_ . can be diagonalized simultaneously. On the other hand, }. ;> Héj = 0 implies
jzk+1

hyl —hoJ @2
11 92\ _
Zj>k <T> - Zj>k(h1é

ha h, J -
sk (—) h) =0. (55)

If the second fundamental form corresponding to {ea].}, oy, Can be diagonalized
j=

simultaneously, one sees from (55) that M? is umbilical with respect to N,. We have
therefore proved if M, is nonumbilical with respect to N;, at a point then it is umbilical with
respect to N, at that point. However, we have remarked that {Ha].} have only isolated

jzk+1
common zeroes. These two facts together imply either M? is umbilical with respect to N,
globally or with respect to N globally. Theorem (1.1.2) then follows from Theorem (1.1.1).
Theorem (1.1.3)[33]. Suppose in Theorem (1.1.2), M? is flat, N has non-negative curvature
and N has trivial normal connection. Then either
(i) M2 liesina 2 + k umbilical submanifold with normal bundle N; .
(i) There are two geodesics g; and g, in M2, two umbilical submanifolds U, and U,

in N such that M?2 = g, @ g, —»U; @ U,— N and the normal bundle of M2 in U, ®U, is
N;. The first immersion preserves the product structure and the second is the standard one.
_ \2)?
Zj>i (Ha])
bundle N has trivial normal connection, we can see as in Theorem (1.1.1) that the second
fundamental form with respect to local sections in N, can be diagonalized simultaneously,

Proof. From the proof of Theorem (1.1.2), we know that constant. Since the

ajz

i.e., we may assume hfé =0forj =k +1,...,p. Hence we conclude that ¥;-.(h;} — h,’

. . ;i
is a constant on M. By taking e, .. to be the mean curvature vector, we may assume h,i+

hg = constant for j > k. Therefore ¥, ¥ (h,‘;‘{n)z Is constant. On the other hand, a simple

computation shows
%A(ZZ(hfj{n ’ ) ZZ(h Y +ZZh (56)

j>k mn j>k mmn|l j>k mn

10



Substituting (21) into (56) and noting that »h/ = 0 for j> k, we obtain

> (i)~

j>kmmn,l

Hence from definition (10), one sees
((hy] = hyp)wiz = O

dhy] + ) K} 0y =0 (58)

aj a;
dhzz + 2 h22 wa’ja’[ =0
i>k
for j > k. We already note in Theorem (1.1.2) that either h5. = h; on M? or the points
where hS: = hi is isolated. If h,) — hy’ on M2, then (i) holds by Theorem (1.1.1). So in
view of the first equation of (56), we assume w:, =0. It is also clear than h{! and h3. are
constants for j > k since N2 has trivial normal connections.

We may assume M? to be simply connected. Furthermore, we assume
Yok Zmni (hf‘,{n)2 Is not equal to zero. (If it is zero, then (i) holds.) Hence at every point, we

have a well-defined frame {e,, e, } which diagonalized the second fundamental forms with
respect to N. Since w,, = 0, the curves defined by ®:=0, w2 =0 respectively define an
orthogonal geodesic foliation of M2, Let g; be a curve defined by w; =0 for i = 1, 2. Then it
is clear that M = g; @ g,. A lemma in J. Moore [13] shows that there are two geodesic

submanifold U; and U, of N such that M = g1®g, -»U1®U, = N preserving the product

structure. Using the fact that hfi and hgé are constant for j > k and an argument in Theorem
(1.1.1), it is easy to see that g. lies in the intersection of U; with an umbilical submanifold
such that N is orthogonal to this umbilical submanifold. The conclusion (ii) then follows
easily.
Corollary (1.1.4)[33]. Let M? be a complete flat surface in euclidean space. Suppose the
normal bundle of M? is trivial. Then M? is a product immersion described in (ii) of Theorem
(1.1.3).
Proof. This follows from Theorem (1.1.3) and the classification of flat surface in Euclidean
space of dimension three.

Let M? be a surface with parallel mean curvature vector in a constant curved manifold
N. In the notation of Theorem (1.1.2), if we take N; to be the bundle spanned by the mean
curvature vector and N, the complement of it in the normal bundle, then it follows from the
proof of Theorem (1.1.2) that either M? is umbilical with respect to N; everywhere or the
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second fundamental form can be diagonalized simultaneously. Hence by Theorem (1.1.1),
we have
Lemma (1.1.5)[33]. Let M? be a surface with parallel mean curvature vector in a constant
curved manifold. Then either M? is a minimal surface of an umbilical submanifold of N or
the second fundamental forms of M? can be diagonalized simultaneously.
Theorem (1.1.6)[33]. Let M? be a surface with parallel mean curvature vector in a constant
curved manifold N. Then either M? is a minimal surface of an umbilical hypersurface of N
or M? lies in a three-dimensional umbilical submanifold of N with constant mean curvature.
Proof. By Lemma (1.1.5), we may assume the second fundamental form of M? can be
diagonalized simultaneously. Without loss of generality, we may assume the mean curvature
vector is nonzero.

Let us now perform an orthogonal transformation in the normal bundle. We note that
if {e.} is changed to { a,zez } where (agp) is an orthogonal matrix, then {h;.} is changed

to {aqp hg.}. Since the second fundamental form can be diagonalized simultaneously, we

may assume h{,= 0 for all a. The vectors ¥, hi’ e, and ¥, h; e,then define two local
sections in the normal bundle. If es has the same direction as the mean curvature vector, then
Y +h§, =0 for a >3. Hence either ), h{, e, or X, h%, e,vanishes would imply
Y a>3(h%)? and Y ,-3(h%,)? vanishes. But the latter can vanish only at isolated points by
the proof of Theorem (1.1.2). (Otherwise Theorem (1.1.6) follows from Theorem (1.1.1)
Therefore we can assume neither )., h¥; e, nor Y., h%, e, vanishes. Now using the Gram-
Schmit orthogonalization process, we may assume the plane spanned by e; and e, is the
plane spanned by )., h¥; e, and )., h$, e, , this implies h$; = h§, =0for a > 4. Changing
the frame e; and e, again, we may assume ez has the same direction as the mean curvature
vector.
With all these preparations, we are going to prove
Oy, =04 =0 (59)
for all o > 4. The last equality follows because e; is parallel. It suffices, therefore, to prove
waa =0. First of all, we know from the construction that

0y =0 (60)
fora=>4,i=12
Exterior differentiate (60) gives
g, N4 =0 (61)
for o >4,i =12. Hence
hi;04,=0 (62)

fora >4,i=12.
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We already noted that hi; = —h3, can vanish only at isolated points. Hence (62)
implies o,, = 0 for o > 4. An application of Theorem (1.1.1) shows that M? lies in a four-

dimensional, totally geodesic submanifold of N. Furthermore, M? has constant mean
curvature and the normal bundle of M? has trivial normal connection.

We are going to complete the proof by changing the normal coordinate again. First of
all, e; is a global parallel section of the normal bundle and e, is therefore also a globally
defined parallel section. (By taking a double cover, we can always assume M? is oriented.)
We first see from the proof of Theorem (1.1.2) that both (h3; — h3,)?A* and h}; — h3,)?\*
are holomorphic functions in the isothermal conditions defined by ¢ = Adz. As both
(h3, — h3,)? and (h%, — h2,)? are real valued, either one of them is identically zero or they
differ by a constant factor. The first case implies M? is umbilical with respect to e; or e,
and the theorem follows from Theorem (1.1.1). So we assume

(hiy — h32)°= c (hiy — h3)? (63)
for some constant ¢ =0. Define

tan = c. (64)
Then from (63) h3,
cos Oh3, + sin 6h{, = cos OBh3, + sin 6h3,. (65)
On the other hand, we have
hiy +h3, = (66)
Therefore
cos Oh3, + sin 6ht, = —cos @ My this (67)

which is a constant.

Equations (65) and (67) show that M? is umbilical with respect to the normal section
cosfes + sinfes. Furthermore, the eigenvalues of the corresponding second fundamental
form is constant. Since e; and e, are parallel in the normal bundle and @ is constant, it is
clear that cosfe; + sin6e, is also parallel in the normal bundle. The theorem then follows
from Theorem (1.1.1).

We shall only assume the mean curvature is constant. This fact is weaker than the
assumption that the mean curvature vector is parallel. On the other hand, if the mean
curvature is a nonzero constant, the mean curvature gives a nonzero global section of the
normal bundle which is a topological restriction,we have
Proposition (1.1.7). Let n be a power of two. If M™ is topologically a real projective space
and if M™ is embedded in N 2™ with constant mean curvature, then M™ is actually minimal.
Here we assume N is a complete simply connected constant curved manifold.

Now let us consider the case where M? has genus zero and M? has non-negative curvature.

We prove
13



Theorem (1.1.8). Let M? be a topological two sphere or a complete non- negative curved
surface immersed in a four-dimensional constant curved manifold N. If M2 has constant
mean curvature, either M? is flat, totally umbilic or M? is a minimal surface.
Proof. We use the notations above . For each e, in the normal bundle, we define
He = "2 4 ind). (68)

As in the proof of Theorem (1.1.2), we know that ¥, ,(H,)?¢* is globally defined on
MP". Using the local isothermal coordinate z, we can write this form as f(z)dz*. We claim
that f is holomorphic.

In fact, let p be an arbitrary point in M2. Choose a normal frame field such that
wss= 0 and e, has the same direction as the mean curvature vector at the point p. As in the

proof of Theorem (1.1.2),
d Z(H“)Z _diwy, <Z(H“)2> ~0 modg (69)

L=0 (70)
at p. Since p is arbitrary, f (z)dz* is an abelian form of degree 4 on M2,

If M? has genus zero or if M? is a complete non-negative curved surface, then as in
Theorem (1.1.2), either M? is flat or f =0. Suppose f =0. Then

> (M 1E) - 5y

a

R

Now assume that the codimension is two. Let e; be the normal vector which has the
same direction as the mean curvature vector. Then we may write

at p. Hence

(71)

W31 = h11 W1, W3z = hzz W3,
Wy1= k1w, Wy= k1 w1, (72)
where
KZ=Y (ha )2 _ k3
{=X.h and K, === 0 (73)
Define
Ei=e +iey,
Eo= e3+ies. (74)
Then
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DE1 = iwpE\ + k) ©E2 + Hpwes, (75)
where H is the mean curvature. By differentiation (75), we have
—2ik16012(pE2 + dk; QE > - ik1¢ 3Er + Hpwszs4 = 0. (76)
From (76), if H# 0,
¢ N w3 =0, (77)
which implies w31 = 0. We have therefore proved if H = 0, the mean curvature is parallel in
the normal bundle. Applying Theorem (1.1.6), M? is a minimal surface in a three-
dimensional constant curved manifold. By applying (70) again, one sees M? is actually
totally umbilic.
Finally let us propose to classify all possible immersions of constant curved surface
into a constant curved manifold with constant mean curvature. In case the codimension is 1,
these are just standard spheres, planes and cylinders.
Proposition (1.1.9)[33]. Let M be a holornorphic curve in a Kahler manifold with non-
negative constant holomorphic sectional curvature c. Suppose M has constant curvature with
respect to the induced metric. Then M has strictly positive constant curvature.
Proof. The proof follows from Calabi's theory.
In fact, let ds? =2F|dz|? be the induced metric on M. Then Calabi [12] proved that
there exists a sequence of functions {F,}Z§ by setting

Fo = 1,
F1 = F,
and
_ (4 (k+1)
Fievr = Fr_1 (dz dz'log Fie + CF)’ (78)

fork = 1,...,n.For0 < k < n, Fxis non-negative and vanishes only at isolated points.
The succeeding function Fy+1 is defined by (78) away from those points but extends to a real
analytic function on all of M. Furthermore the function Fn+1= 0. On the other hand, it is well

known that the Gauss curvature of M is given by

—1d 4
K = ~ dz_log F. (79)

Substituting (79) into (78), one sees that if F is a negative constant, Fx+1 cannot be zero. This
contradiction finishes the proof.

Now for every minimal surface M? in E" Euclidean space, Chern and Osserman [4]
defined a Gauss map into CP™ . This map can be made into a holomorphic mapping such

that if d§2 is the metric induced from this map,
ds?

& - g (80)

ds?
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where K is the Gauss curvature of M2, Hence if K = —1, the Gauss map is actually an
isometry. Hence we have a holomorphic curve in CP™~1 with constant negative curvature.
This is a contradiction by Proposition (1.1.9). We have proved

Theorem (1.1.10)[33]. The hyperbolic space cannot be minimally immersed in Euclidean
space, even locally.

In [14], Nomizu and Smyth proved that if M is a compact holomorphic curve in CP?
whose Gauss curvature satisfies K < 2. Then M is the quadric. Let us consider the opposite
case, namely the totally real case. A submanifold M of CP™ is called totally real if for every
point xeM, T, (M) is perpendicular to JT,,(M). Here T, (M) is the tangent space of M at x
and J is the complex structure.

If N is a Kahler manifold with constant holomorphic sectional curvature and M is a
totally real submanifold, it is straightforward to calculate from (17) and (21) that

2 hiiART =¥ hiihigm Rk + 2 hiihmi Rk — 2 h?jhfiRa[)’jk (81)
Let us consider minimal totally real surface with codimension 2. Let
es = Jey, e4 = Je,. Then using the fact that N is Kaihler,

hi, = h3,,
h3, = hi,. (82)
Hence by assuming h3, = 0 and h3; = a, we can write
Y hi5Ah; =8a’K + 4a® K34y, — 8a®. (83)
Since N has constant holomorphic sectional curvature,
K3412 = 2’ (84)
Ki212 = 2- (85)
The Gauss equation then implies
2a% = g —K. (86)
Hence from (83), (84), and (86), we have
Y hAhE =8a*K + 4a’K. (87)
On the other hand, it is straightforward to see
Ve (S(h)?) = S(hE)” + hijan
= Z(hf‘j)2 + 12a°K. (88)

Using the fact that
Zi,j(h?j)z — Zi,j(h?j)z
(89)
D) h?jh?j =0
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It is easy to prove
~A(log X(h)?) = K (90)
Whenever ¥ (h{;)* =O0.
Using the isothermal coordinate and (90), it is not hard to prove that either = Z(hf‘j)zz 0 or
Z(hf‘j)zvanishes only at isolated points.
If M? has genus zero, the Gauss-Bonnet theorem and (90) shows that (hf‘j)zz 0,

i.e., M? is totally geodesic. This is the standard embedding RP? into CP2.

If M2 is complete and has non-negative curvature, (88) shows that either M2 is totally
geodesic or the curvature K =0 and Z(hf‘j)2 = 0. In case M? is complete and has
nonpositive curvature, we shall use an argument due to Klotz and Osserman [9]. From (90),

1
the curvature of the metric (X(h{;)?)*ds? is zero. If X.(h{;)%is bounded away from zero,

this metric is complete and hence M? is parabolic. Since equation (90) shows that ,(h is a
non-negative superharmonic function, K = 0. By equation (86), the quantity Z(hf‘j)2 IS
indeed bounded away from zero if (c/4) — K = a > 0 for some constant a.
We have proved
Theorem (1.1.11)[33]. Let M2 be a totally real minimal surface of a Kahler surface with
constant holomorphic sectional curvature c. Then
(i)  If M? has genus zero, M? is the standard embedding of RP? in CP2.
(i)  If M? is a complete non-negative curved surface, then M? is totally geodesic or
flat. In the last case, the second fundamental form is covariant constant.
(iii)  If M2 is complete non-positive curved with Gauss curvature K and if
(c/4) — K > a > 0 for some constant a, then M? is totally geodesic or flat,

Section(1-2): Constant Mean Curvature

We are interested in higher dimensional submanifolds. We show a theorem similar to
the Simons' pinching theorem for submanifolds with parallel mean curvature in sphere.
Namely, if M™ is a compact submanifold with parallel mean curvature in the sphere S™*P
with p > 1, and the length of the second fundamental form of M™ is not greater than n/3 +
n” — 1/(p — 1), then M™ lies in a totally geodesic S™*! . We note that theorems of this
form were studied by extra conditions.

We extend a result of Nomizu and Smyth [28]. Nomizu and Smyth classified non-
negatively curved hypersurfaces with constant mean curvature. We generalize it to higher
codimension. This was done by Yano and Ishihara [32] under a further assumption that the
normal bundle is flat. We learned that Smyth has also independently extended their theorem.
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Then we discuss some simple observations about isometric immersions. For example, a
compact hypersurface with non-negative Ricci curvature and constant mean curvature in
euclidean space is the standard sphere. This also generalizes the result of Nomizu and
Smyth.

We generalize the Hilbert-Liebmann theorem to higher dimensional hypersurfaces.
We prove, for example, that a compact convex hypersurface with constant scalar curvature
is totally umbilical. Since this theorem is global, it seems to be more natural than the
ordinary generalizations. We also discuss the generalization of Efimov's theorem.

We discuss a "quantization phenomenon” of compact minimal submanifolds in
sphere. Lawson proved that if M2 is a non-singular holomorphic curve in CP" whose
curvature K satisfies 1/ k < K < l/(k —1) for some k,1 < k < n, then K=1/k. We
will show that this phenomenon also occurs for compact minimal submanifolds. in euclidean
sphere. The main theorem is a pinching theorem opposite to that of Simons. The bound that
we obtain here is sharp. For example, it will be attained by some non-totally geodesic
iIsometric minimal immersion of spheres.

We improve the pinching constant of Simons in the following sense. Simons proved
that if the average of the sectional curvatures is greater

than 1 — ;1) , then the compact minimal submanifold M™ in S™*Pmust be totally

(n—1)(2—;
geodesic. We show here that if the sectional curvatures are greater than p — 1/(2p — 1),
then the same conclusion holds. The constant p — I/(2p — 1) is always less than Simons'

constant than 1 — #(1) . Itis also less than %2 which is independent of dimension. We
n—

also discuss the pinching formulas for complex submanifolds and minimal totally real
submanifolds in Kahler manifolds with constant holomorphic sectional curvature. We note
that since there is a submersion from sphere to symmetric space of rank one, the
corresponding phenomena in sphere also occur in symmetric space of rank one by the
techniques of Lawson [25]. In [12] However, the bound so obtained is not good and hence
we only discuss complex submanifolds and minimal totally real submanifolds.

We discuss a question asked by Simons [15]. The question of Simons' is the
following: Let M™ be a compact minimal submanifold in S™*P. Is it true that the (n +
1) — plane in R™*P*1 which is spanned by T (M), and the radial vector m has non-trivial
intersection with every fixed p-plane R™*! For p = 1 this was proved by DeGiorgi. Simons
[15] and Reilly [31] also obtained partial results for general p. We shall prove it for minimal
immersion of S? in S*. Actually a more precise statement will be obtained.

In [15], Simons proved that if M™ is a compact minimal submanifold of the sphere
S™*Pand if the length of the second fundamental form of M™ is everywhere not larger than
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n/(2 — 1/p), then M™ is totally geodesic. The theorem was proved by the following
inequality

jS{(Z—%)S—n}deO (91)

M
where dV is the volume form of M.

We shall prove a similar pinching theorem for submanifolds with parallel mean
curvature by establishing an inequality similar to (91).
Theorem (1.2.1)[36]. Let M™ be an n-dimensional compact submanifold with parallel mean
curvature in S™Pwith p> 1. If (3+n* —(p —1)Y)S < n, then M™ lies in a totally
geodesic S™P,
Proof. We shall still use the notations of [33]. Let e,,,1, be the normalized mean curvature
vector, then

Wnt1p =0 (92)
for all B. Exterior differentiate (92), we obtain
2i Wny1p Nwp; =0 (93)
For each a, let H* be the matirx (h{}). Then (93) implies
Hn+1Ha — HaHn+1 (94)
for all a.
From (9), we see that (94) is equivalent to
Rn+1akl =0 (95)
for all a, k, I. Hence, equation (29) gives
AR} = Z R + Z W R = ) hiRga (96)
km k
a+n+1
f#=n+ 1

The Gauss equation (7) then implies

AR = z RE h% RS, — z hE %, hE

akm akm
+Zh"’h“.h“ —Zh"’h“ he
mitmj Mk Kk j
akm akm
+nhhf - Z h% R (97)
a+n+1

for p#n+ 1.
Following Simons' proof of his pinching theorem, one can then prove
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> nfanfz > RO

ij i,j,km
p#n+1 p#n+1
S
BB BB
— Z h h hn+1h7}+1+ Z hl]hmlhn+1hn+1
i,j i,j,km
p#n+1 p#n+1
_ Z hghilhn+1hn+1
i,j,km
p#n+1
+n Y ()P - 2——|Z(h } (98)
i,j,km J
B#n+1 ﬂ¢n+1
Now fix a vector eg. Let {ey,..., en} be a frame diagonalizing the matrix (hg.) such that
B_—
h;;=0 (99)

for i=j. Then
Z hghlljmh;ln-;lh:}:—l_ Z hﬁhﬂ hn+1hn+1

i,j,km i,j,km
BB 1 1 BB 1 1
+ Z hl]hmlhn+ hn+ Z hl]hmlhn+ hn+
L, J i,j,km
p#n+1 B#n+1

_Zhﬁhﬁhn+1hn+1 Zhﬂhﬂ hn+1hr;+1
+ Z hﬁhﬁhn+1hn+1 Z hﬁhﬁhn+1hn+1 (100)

On the other hand, from (94)
+Z hﬁhﬁ hn+1hn+1 — Z hﬁhﬁhn+1hn+1 (101)
Therefore, (100) is equal to
i
The absolute value of this number is not greater than

(n%+1) (Z(h )(Z(h"“ ):(n%+1) Z(hfj.)z Z(h{}“ 2| (103)
i i,j ij

by Schwarz inequality.
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Hence, from (98), we have

S h otz - (n;+1)( 5 (hg)z) (Z“l”“ )

ij Lj L,j
L#En+1 L#n+1

( ) (
+n (h”’)2 - 2——1I (hth)? |
D)ot 2

ﬁin+1

> ( ). (hfj-)Z) (n=(2- m)s - (n2+1)s) (104)

L#En+1

Now it is straightforward to see

% A Z WY | = Z (hf)? + Z nEA R, (105)
ij [

ij
B#n+1 ﬁ¢n+l B#n+1

Therefore, under the assumption n > (3 + n%-( p - 1)) S, (104) and (94) shows that
Y i (h{’;)2 is subharmonic on M™. By the Hopf maximum principle, we see that this

B#n+1

function must be a constant and the right hand side of (105) must be zero. In particular
z (1) (n—(3+ni—(p-1)1)s) =0 (106)

ﬁ¢n+1
Ify . (h{’;)2 =0, it is easy to see from a theorem of Erbacher [8] that M lies in a totally

B#n+1

geodesic S™*1,
If n— (3 + 3z — (p— 1)‘1) S =0, then all the previous inequalities become
equalities and it is not hard to see that these equalities force ¥ ;; (h{’;)2 to be zero and M

B#n+1

lies in a totally geodesic S™* . This completes the proof of Theorem (1.2.1).

In [28], Nomizu and Smyth proved that if M™ is a non-negatively curved compact
hypersurface with constant mean curvature in the euclidean space, or the euclidean sphere,
then it is the standard sphere or the product immersion of two spheres. We propose to extend
this result to arbitrary codimension. After we have finished our proof, we learned that this
was done by Yano and Ishihara [32] by assuming the normal bundle is locally parallelizable.
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Theorem (1.2.2)[36]. Let M™ be a compact non-negatively curved manifold immersed in
a constantly curved manifold N. Suppose M™ has parallel mean curvature. Then M™ = M, x
Myx ... x M} such that each M; is a minimal submanifold of a totally umbilical submanifold
N; (with codimension > 0) and the N;'s are mutually perpendicular along their intersections.
Proof. Suppose e, ., has the same direction as the mean curvature vector. Assume the
second fundamental form of M™ with respect to e, ; has been diagonalized so that the
eigenvalues are A;. Then it follows from the fact that en+1 is parallel and (28).

2 1 2
oA <z z?) = Z(hg;l) + EZ(AL- ~4)Ryy;  (107)
i i

ik
Since M™ is compact and the right hand side of (107) is non-negative, it follows from Stokes
theorem that both of them are identically zero. Hence

2
i,j
> (Y =0 (109)
ij,k

Equation (109) shows 2; are constants and (108) shows whenever A; #4;, R;j;; = 0.
Without loss of generality, let us assume

M=y i dn, = Api1 = e T Ay, > > Ay H1l= = A, > = Ay (110)
Since en +1 Is parallel, wn+1, i = Aii and Ai's are constants, it follows that
(Ai - 4) ;i Ny = 0 (111)
forall i,j.
Hence, ifng1 < i < ng,
dw; = —zr_ls W;jWj (112)
J=ng_1+1
It is known that the connection matrix (w;;) is completely determined by (112). Hence
w;j =0 (113)

whenever 4; #4;,

It is clear from the equations (112), (113) that ®,, _ +1=...= 0, = 0 defines a
totally geodesic foliation of M™ . Since all the A;’s are constant, the leaves of this foliation
are all closed and hence compact.

When k varies, we get different totally geodesic foliation with compact leaves. The
leaves of these two foliations are mutually perpendicular to each other and equation (113)
shows actually they give a product decomposition of M. (cf. the proof of the decomposition
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theorem of [24]). Hence M= M;x M,x .... x M, such that the second fundamental form of
M; with respect to the mean curvature vector has equal eigenvalues.
Let us now prove that whenever e and e;are tangent to M; and M; respectively, then
5 =0. (114)
fora > n+ 1andi=j. Infact, since e, ; is parallel, the second fundamental form defined
by it commutes with all other second fundamental forms, i.e.
Aihi; = Ajhj; (115)
foralla = n+ 1. Hence, if i #A;, h; =0 and (114) is proved.

If the ambient manifold is the euclidean space, a lemma of J. D. Moore [24] and (114)
shows that each M; lies in a linear subspace N; and that the N;'s are all mutually
perpendicular. Each M; is umbilical with respect to the mean curvature vector which is
parallel in the normal bundle of M;. (on+1j = 0 on M; if gj is perpendicular to M;). Hence,
Theorem (1.1.1) says that M; is minimal in an umbilical hypersurface of N; for each i.

If the ambient manifold is the sphere, the theorem also follows by considering the
standard embedding of the sphere in the euclidean space. If the ambient manifold is the
hyperbolic space, the theorem can be obtained by considering the non-euclidean model of
the hyperbolic space. The essential point is that if the tangent space of M; is spanned by
ey, ..., e, then

D(esN...Ne; ) =0 (116)
by (113) and (114).

Let us now discuss the extra-condition imposed by Yano and Ishihara [32].
Theorem (1.2.3)[36]. Let M™ be a subnanifold of the euclidean space N™*P. Suppose M™
has flat normal bundle and parallel mean curvature vector, then there is an open dense subset
U of M™ such that each component of U lies in a 2n —dimensional linear subspace of N"*P,
Proof. We shall prove that for all peM™, we can find a dense open set of a neighborhood
of p such that each component of this open set lies in a 2n —dimensional linear subspace of
N Take an open neighborhood U of p such that the normal bundle is geometrically trivial

on U, i.e., we can find parallel normal vector fields e, 1, ep42,...., €44, ON U. The matrices
(h{;) are then mutually commute. Hence, there exists an open dense set U; — U such that we
can find a frame e, e, , .., e, on U; with
hi; =0 (117)

for i=j.

By the standard matrix theory, it is easy to see that there exists another open dense set
U2 in U; such that on U, we can find an orthogonal matrix valued function (a.s) with the
property
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Z auphf =0 (118)
7
for ¢ > 2n.

Hence, if we replace the normal frame on U, by {Zpauges}, we can assume
0ai =0 (119)
fora >2nandi=12,...,n
Clearly, we can also assume e, ., is parallel to the mean curvature vector. Then by

definition, and (119)
Zhukwk Z B g (120)

B=n+2
for a > 2n.
In particular, h{}; = 0 unless i = j. On the other hand, equation (12) says that h{};, =

ikj Therefore, his) =Ounlessi = j =k and

2n
he o, = Z R wap (121)
f=n+2
for a > 2n.
Since e, 4 is the mean curvature vector, we have
Z hf =0 (122)
i
for > n+1
Equations (121) and (122) shows
Z g = (123)
which implies
hi;=0 (124)
and
2n
Z Rewes =0 (125)
p=n+2

Change the normal frame on an open dense subset if necessary, we may assume there
IS a number k < n such that the matrix

(hul)n+ZSﬁSn+k+1 (126)

1<isn

has rank k and
hb=0 (127)
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forp > n+ k+ 1. Then

0ai =0 (128)
fora >n+k+landi=12,...,n.
As in (125), we can derive

n+k+1
Z Rewe =0 (129)
p=n+2
Equations (126), (127) and (129) imply
®ap =0 (130)

fora>n+k+1< n+k+1.
The theorem of Erbacher [8] (cf. theorem (1)) then says the open set lies in a linear space
with dimensionn + k +1 < 2n.
Corollary (1.2.4)[36]. Let M™ be a submanifold with parallel mean curvature in S™*P,
Suppose M™ has flat normal bundle. Then there is an open dense set U in M such that each
component of U lies in a totally geodesic S2™*1-
Let us discuss the curvature assumption of Nomizu and Smyth.
Proposition (1.2.5)[36]. Let M™ be a subnanifold of another manifold N™*? with constant
sectional curvature. Suppose the mean curvature of M is nowhere zero and the Ricci
curvature of M is > (n — 1)c (or > (n — 1)c). Then the second fundamental form of
M with respect to the mean curvature is semi-definite (definite).
Proof. Let e, ., be the unit vector in the direction of the mean curvature vector. Diagonalize
the second fundamental form so that
hzﬁ'l = Li0jj (131)
Then the Gauss equation says
D kG = (W =Ryy—c (132)
(04 (04
_ a2 . _ a)2 — () _
Z(hu) +nAH Z;(hu) Ric(i) — (n—1)c (133)
where Ric(i) is the Ricci curvature of M in direction i.
Suppose H > 0, equation (133) and the hypothesis says A;> 0 for all i. Furthermore, it
is clear that 2; = 0 implies r% = 0 for all j and hence R;;;; = 0 for all .
Corollary (1.2.6)[36]. Let M™ be a hypersurface with non-zero mean curvature in a
manifold with constant curvature c. If the Ricci curvature of M™ is not less than (n — 1)c,
then M' is convex.
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Corollary (1.2.7)[36]. Let M™ be a compact hypersurface with constant mean curvature in
the euclidean space. If M™ has non-negative Ricci curvature, then M™ is an umbilical
hypersurface (which is the sphere).

Proof. Since Nomize and Smyth [28] already proved the corollary by assuming the
curvature is positive, the assertion follows from this theorem and the proposition.

We generalize some well-known theorems about surfaces to higher dimensional
submanifolds. Unlike the ordinary generalization, our theorems are global and nontrivial.
First of all, we generalize the Hilbert-Liebmann Theorem which states that the isometric
immersion of $2 in three dimensional euclidean space is rigid.

Theorem (1.2.8)[36]. Let M™ be a compact hypersurface of a manifold with constant
curvature c. Suppose M™ has constant scalar curvature and non- negative sectional
curvature. Then

i) if ¢ < 0 and the Ricci curvature of M™ is larger than (n — 1)c, M™ is totally
umbilical (and isometric to the standard sphere).
i) if ¢ > 0 and the sectional curvature of M™ is larger than 0, M™ is totally

umbilical (and isometric to the standard sphere).
Proof. Let A; be the principal curvatures. Since the scalar curvature R is constant, we have,
from the Gauss equation

— Y. A2 +n?H?2 =n(n- 1)R- (n— 1)c = constant  (134)

A <Z i?) = n?A(H?) (135)

l

hence

On the other hand, from (28),

A <z z?) = Z(hijk)2 + nz A Hy + %Z(zi — 1) Riji; (136)
7 T

i)k i
From (135) and (136) we obtain

2 1 2

i J#i i,j,k i,j
Since M? is compact, there is a point x where H attains its maximal. At this point,
H; <0 (138)
(grad H)? =0 (139)

On the other hand, we observe that if H is zero at some point, the Ricci curvature at that
point will be (n — 1)c which is a contradiction to the hypothesis by (133). Hence, we may
assume H > 0 and by proposition (1.2.5), Ai > 0. Therefore, from (137), (138) and (139)
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Z(/li ~ %) Ryjy (140)
07

at the point x.

By hypothesis and Proposition (1.2.5) , R;;;; > 0. Equation (140) and this fact implies
X is an umbilical point. The value of H? at this point is therefore 27 = R — ¢, by the Gauss
equation.

Since we know that H? attains its maximum at x, H? is everywhere not greated than
R — c. Therefore, it follows from equation (134) that nH2 > ¥.; A* everywhere. On the
other hand, the Schwartz inequality says that nH? < ¥\; A%and nH? = ¥; A7if and only if
A1 = Xo=...= An. These last two facts then imply M™ is totally umbilical everywhere .

We discuss the generalizations of the Hilbert-Efimov theorem. Their theorem states
that a complete surface with curvature bounded from above by a negative constant cannot
be isometrically immersed in three dimensional euclidean space.

Proposition (1.2.9)[36]. Let M™ be a hypersurface of a manifold with constant curvature c.
Suppose M™ has sectional curvature < ¢. Then M"™ = M, U M; U M, with the following
properties: the interior of M; has codimension i totally geodesic foliation.

The leaves of the foliation are actually totally geodesic in the ambient manifold and
the sectional curvature between the normals of the leaf and the tangents of the leaf is equal
to c.

Proof. Let A; be the principal curvatures of M. Then the Gauss equation shows

AL <0 (141)
for i=j.
A simple calculation then shows at most two principal curvatures of M are non-zero.
Let M; be the set of points of M where the rank of the second fundamental form is i. We
shall prove our assertion only for M,. The rest is trivial.
Assume A1, A, are the only non-zero eigenvalues. Then

Opt11 = 4101

Ont22 = A200; (142)
Ony1i — 0
fori > 2.
Exterior differentiate the last equation of (142) and simplifying, we obtain
ho1 \ o5 + Ao Ny =0 (143)
fori > 2.

Hence, w1 and wz are linear combinations of forms ®; and w; only. Using the
defining equations for wy;, it is then straightforward to see o, = 0, , = 0 define a foliation

on M,. The leaves of this foliation are totally geodesic in M™ because wq; and w,; are zero
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on them. They are totally geodesic in the ambient manifold because w,;,; = 0 on them
also. The last assertion on the curvature follows from the Gauss equation.
Corollary (1.2.10)[36]. Let M™ be a manifold with sectional curvature < ¢ and Ricci
curvature < (n— 1)c. If n > 3, then M™ cannot be immersed as a hypersurface of a
manifold with constant curvature c.
Corollary (1.2.11)[36]. Let M™ be a complete manifold with non-positive sectional
curvature. If the scalar curvature of M™ is bounded from above by a negative constant, then
M™ cannot be isometrically immersed as a hypersurface in euclidean space.
Proof. It is easy to see from Proposition (1.2.9) and our assumption that M = M, has
codimensional 2 totally geodesic foliation. The leaves of the foliation are actually
codimensional 2 linear spaces. Arguments similar to [34] can then be used to prove that
M™ = M~2 x R™ 2 where R™2is the n — 2 dimensional euclidean space. Furthermore the
immersion of M™is a product immersion. The corollary then follows from Efimov's
theorem.

We believe that Corollary (1.2.4) can be extended to slightly higher codimension.
This is true if the normal bundle is locally parallelizable.
Proposition (1.2.12)[36]. Let M™ be a manifold with sectional curvature < ¢ and Ricci
curvature < (n — 1)c.If n > 2P, then M™ cannot be immersed in manifold N™*? with
constant curvature ¢ and flat normal bundle.
Proof. The assumption implies that the second fundamental forms can be diagonalized
simultaneously. For each normal vector e, let a; be the corresponding principal curvatures.
The Gauss equation then says

> @ <0 (144)

a

The n vectors (a;) lie in the euclidean p-space with n > 2P, By the pigeon box principle, if
these vectors satisfy (144), one of them must be zero. This will imply that the Ricci curvature
of M™ is zero for some direction which is a contradiction.

We shall prove an inequality opposite to that of Simons and hence derive a
guantization theorem similar to that of B. Lawson mentioned in the introduction.
Theorem (1.2.13)[36]. Let M™ be a compact minimal submanifold immersed in a manifold
N™*P with constant curvature c. Let S be the length of the second fundamental form of M™,
Let K(x) be the function assigns to each point of M the infinimum of the sectional curvatures
of M at that point. Then

j S[pn (c —2K) — S]dV = 0O (145)
M
and if K is everywhere non-positive,
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j Shpn (c — K) — SdV = 0 (146)
M
Proof. It follows from (29) and (9) that

D hgARG = " RGhE Ry

Lja a,l,jm

+ Z hiihomi Rk jic

a,l,jm

= > RGREgH], — hihf) (147)
a,B.ij,l
If we denote by H* the matrix (h{;), then by (7) the first two terms together on the

right hand side of (147) is equal to the negative of

z tr(H*HP)? — z tr(H*)2(HP)?
a,B a,B

+Z[tr(H“Hﬁ’)]2 - Z(trHﬁ) (tr (HP)? HP)
a,B a,B

+(tr (HP)? — nc (Z (RS 2> (148)

a,ij

Hence for any real number a,

D hgARG =(1+a) Y hnhE R

alj a,ijkm

—(1-0) Z tr(HO)2(HP)? +(1 — a) Z tr (H*HP)?
af ap

+a2[tr(H“Hﬂ)]2 a 2 tr (HF)2(¢r(HP)2 HF)

a,p a,p
+aZ(tr Ha)2 — nac <Z(hf} 2> (149)
a a,lj
It is easy to see
1
D (9?2 EZ(tr(H“)Z)Z (150)
a a
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Ztr (HO)2(HB)? > Z[tr(H“HB)]Z (151)
@B @B
Since M™ is minimal, it follows from (149), (151) and (152)

Z hiiAR; = (1 + a) Z hiihiem Rmijik

al,j a,ljkm

+(1+a) ) hEhE R

a,l,jkm
S
+a > (§ — pnc) (152)

fora = 1.
Now for each a,, let ai be the eignevalues of the matrix (hf;). Then

2 z hl]hkm ml}k+ 2 z haha mk}k Z(a l]l]

1jkm i,jkm

= 2nK Z(hg; (153)

Hence, from (152) and (153)

as as np(l+ a)
Z hi;Ah = (1 + a)nKS + ?(S —pnc) = ?[S — pnc +—K] (154)
a,i,j
As in Theorem (1.1.11), we obtain
n(c+a
j [pnc - %K - 5] dv >0 (155)
M

fora = 1.

Now (145) follows from (155) by taking a = 1. If K < 0, (146) follows from (155) by

letting a approach infinity.

Corollary (1.2.14)[36]. Suppose in Theorem (1.2.3), S = pn(c — 2K)(S = pn(c — K)

when K < 0). Then the second fundamental form of M" is covariant constant and M™ is

either totally geodesic or S = pn(c — 2K)(S = pn(c — K) when K < 0).

Corollary (1.2.15)[36]. Let M™ be a compact minimal submanifold of a manifold N™*P

with constant curvature c. Let R be the scalar curvature of M™ and K be the function which

assigns to each point of M™ the infinimum of the sectional curvature at that point. Suppose

n—1-p 2pK n—1-p pK
K<R< ¢+ (KSRS ¢+ WhenKSO>
n—1 n—1 n—1 n—1
Then either M™ is totally geodesic, or the second fundamental form of M™ is covariant
constant and
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Let us now examine the bound we obtain in Theorem (1.2.3).

In general, let S™(r) be the m-dimensional sphere with radius r. Then one can
construct a standard minimal immersion of S™t(m,/n) * x ... x §™(m;/n)*) into
SMk=lwhere n = Y¥_,m; In fact, if x; is a point in S‘(m;/n) * , i.e., a vector of length
(mi/n)”% in R™*1 then (xq, x5, ..., x,) defines a minimal immersion of S™((my/ n)*) x ... x
S™k(m,/n)*) into S™**~1The length of the second fundamental form is exactly (k — 1)n,
the bound we obtained in Theorem (1.2.13), with K =0. We shall prove that the converse is

also true. In fact, if K=0and S = npc, then

Z tr (HO)2(HB)? = Z[tr(H“HB)]Z (156)
a,B a,B
and
Z[tr(H“HB)]Z =0 (157)
a=p

Equality (156) implies H*H? = HPH*for all o, B and the normal bundle of M™ is flat.
Hence, we can diagonalize {H“} simultaneously. Putting these informations together, we
can apply the proof of Theorem (1.2.2) or [13] to see that M™ is an open piece of the product
of spheres.

Theorem (1.2.16)[36]. Let M™ be a minimal submanifold in another manifold N™*P with
constant curvature c. If M™ has non-negative curvature, S = pncand ¢ = 1, then M™ is
an open piece of the product 7;S™i(m;/n) %),n = Y& . m;.

Let us consider the case K = constant > 0. In [5], Chern, DoCarmo, and
Kobayashi gave an isometric minimal immersion of S™(2(n + 1)/n)*into S™F with p =
Yo(n — 1)(n + 2). (Actually, it is an embedding of the real projective space.) The length
of the second fundamental form turns out to be n(n —1) (n + 2)/2(n + 1). This
number is exactly pn (1 — 2K). We suspect the converse may be true, i.e., if K=
constant > 0 and S = pn(1 — 2K), then M is the immersion of the standard sphere
described above. From the proof of Theorem (1.2.3), we see M™ must satisfy the following
strong conditions
(i)

z (h%)* =0 (158)
a,ijk
(i) For all normal frame {e,}

S
z(h?‘jk)z = = n=2K) (159)
Lj

31



and
> hghf =0 (160)
Lj

for a = B3.
(iii) For each a, let ai be the eigenvalues of (h;;) and R;;; the sectional curvature between
ei and ej. Then

(a; —0y) (Rij;j—K) =0 (161)
(iv)
Z tr (HO2(HF)2 = Y tr(HHP)? = nKS (162)
a,f af
(v) The Gauss equation and (162) imply

n-1-p=>m-1-2p)K (163)

Equation (159) implies that if p = 1, M™ is an open piece of the product of two
spheres. This was proved in [5]. If n = 2, it is easy to see from (161) and (162) that M™ is
the Veronese surface. Equation (163) shows that if a; # «;, R;j;; = K. On the other hand
(163) says the matrices {(h;;)} are highly non-commutative. These two facts indicate M"
has constant curvature. Then a theorem of DoCarmo and Wallach [20] will prove the
assertion.

Now we discuss the case K < 0. It seem to be not known whether there is any
compact negatively curved minimal submanifold in sphere except for very special case
(surface in S®). The following corollary gives some information:

Corollary (1.2.17)[36]. Let M™be a compact minimal submanifold of the sphere S™*P.

Suppose sectional curvature of M™ is non-positive and bounded from below by B

Then M™ is the standard minimal immersion of the product of circles into S™*P -

Proof. We note that in Theorem (1.2.13), we may take K to be any function which is
bounded from above by the sectional curvatures of M at every point. In particular, we may
take

K=- (164)
in this corollary.

Then the hypothesis of Corollary (1.2.15) is satisfied and therefore R = 0. Since the
sectional curvature of M™is everywhere non-positive and the average of them is zero, M™ is
a flat manifold. Corollary (1.2.17) then follows from Theorem (1.2.16). Let us remark that
if one replaces sectional curvature by Ricci curvature, one can prove inequalities similar to
Theorem (1.2.13). In fact, let Ric(x) be the function assigns to each point of M™" the
infinimum of the Ricci curvature of M™ at that point, then if M™ is compact,
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] [pnc - w(me —(n—=2)c)—-S|dv=0 (165)

forany a = 1. This follows because by (7), one can prove that when i #j,
R;jij = Ric— (n— 2)c. Similarly, one can verify that -3, ;a;a;R;j;; = Zla — 521
Therefore we also have [y S[(2p - 2/n + 1)S + 2pRic — pnc]dV = 0.
We improve Simons' inequality [15] under sectional curvature restriction (instead of

scalar curvature restriction).
Theorem (1.2.18)[36]. Let M™ be a compact minimal submanifold in the sphere S™*F.
Suppose the sectional curvature of M™ is everywhere not less than (p — 1)/(2p — 1).
Then either M™ is the totally geodesic sphere, the standard immersion of the product of two
spheres or the Veronese surface in S*.
Proof. We first note that it was proved in [5]

Z tr (HO)2(HB)? — Z tr(HOHP)?

B @B

< Z(tr (H)?)(tr(HP)?) < pp%ls (166)

and the equality holds if at most two matrices (h;) and (h;;) are not zero and these two
matrices can be transformed simultaneously by an orthogonal matrix into scalar multiples
of A and B respectively, where

/O ‘1' O\ (167)
R

By taking 0 < a < 1in (149), we obtam

1 a
SZ+;S2 —nas$ (168)
al,j
If a = (p- 1)/p, the right hand side of (168) is nS/p[(2p — 1)K — (p — 1)]. If the
hypothesis is satisfied, 3., ; ; hijAh{; =0 and hence (166) and (168) are equalities.
We using the method of B. Lawson, it is possible to generalize Theorems (1.2.13)
and (1.2.18) to minimal immersions into symmetric spaces of rank one. However, we shall
consider here only immersions into Kahler manifolds with constant holomorphic sectional
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curvature. We shall denote our ambient manifold N by N™*P(¢) where n + p is the complex
dimension and c is the holomorphic sectional curvature.
A straightforward computation then shows that if M™ is a complex manifold or a

totally real minimal submanifold,
Zh“Ah“ = z R R

a,i,j a,ijkm

z hiihmiRmkjk — z h?jhfiRaﬁjk (169)
a,ijkm a,f
ijk

We first discuss the case where M™ is a complex submanifold of N™*P(c). In this

case, if eq is a local section of the normal bundle, then the fundamental form (h{}) has the

following form

A ‘ B
B —A
Furthermore, the second fundamental form corresponding to the section Je, has the form
B ‘ A
A - B

Using these two facts, the Gauss equation and (169), it is not hard to see

z hi;Ah; = (1 + a) z i higm Rmiji

a,i,j a,ijkm
+(1+a) D AR
a,ijkm
2
+q 845 —Cs (170)
2p 2 2

for a > 1. Here S is the length of the second fundamental form.
Let K be the function which assigns to each point the infinimum of the section
curvature of M™, then

N aS? (n+3) c
Zh Ah = (1 + a)2nKs + 2 - acS—ES

a,i,j
cp 4(1+a)

[5 p(n +3)c — pnk | (171)

Hence if M™ is compact,
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fs[—@pm( +%+p(n+3)c—5]20 (172)
M

Letting a approach infinity when K < c¢/(4n), we obtain the following.

Theorem (1.2.19)[36]. Let M™ be a compact complex submwnifold of a Kahler manifold
N™*P(c) with constant holomorphic sectional curvature c. Let K and S be defined as above.
Then

j Slp(n+4)c —8pnk —S] =0 (173)

M
If furthermore K < c/(4n),

j Slp(n+ 3)c —4pnk —S] =0 (174)
M
Corollary (1.2.20). Suppose in Theorem (1.2.19),S =2 p(n + 3)c—8pnK [S= p (n +
3)c — 4pnK if K < c/(4n)]. Then the equality actually holds.
Corollary (1.2.21). Suppose in Theorem (1.2.19),

R < [n(n + 1)c — p(n + 3)c + 8pnk]

2n(2
[n(n + 1)c — p(n + 3)c + 4pnk] when K < ¢/(4n)). Then the equality

(R = 2n(2
actually holds.
Theorem (1.2.22)[36]. Let M™ be a complex submanifold of a Kahler manifold N™*?(¢)
with constant holomorphic sectional curvature c. Suppose M™ has non-negative sectional
curvature and S is a constant. Then S < p(n + 3)c or M™ is totally geodesic.

Proof. Note that from the representation of the second fundamental forms above, it is clear
that the second fundamental forms commute to each other if and only if the complex
submanifold is totally geodesic. The rest of the proof is similar to that of Theorem (1.2.16).
Theorem (1.2.23)[36]. Let M™ be a compact complex submanifold of the complex
projective space Cp™*P. Suppose the curvature of M™is not less than [(2p — 1) n + 8p —
3]/(16p — 4)n. Then M™ is totally geodesic.

Proof. The proof is similar to that of Theorem (1.2.18). In this case we have

aS? (n+3
Zh“Ahf‘Z(1+a)2nKS+——( )aS———(l— )(
J 2p 2

2p—1
pp )52 (175)

(ll]
forO0 < a < 1.
(2p-1)n+8p-3
(16p—4)n

. 2p—1
Hence if a = Z—p and K >
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Z h%AhE >0

at,j
As in Theorem (1.2.18), this impliesp = 1, M™ is a complex hypersurface.

Let M™ be a compact minimal submanifold of the sphere S™*P. It was asked by
Simons [15] whether the n + 1 —plane spanned by the tangent space Tx(M) and the radial
vector x has non-trivial intersection with every fixed p-plane in the euclidean space N™®*P*1,
The assertion was first proved by DeGiorgi for p = 1 and partially proved by Simons [15]
and Reilly [31]. We observe here that the Calabi-Chern theory can be used to prove the
assertion for S? in S*.

Let G2 5 be the Grassmann manifold of all oriented two-dimensional planes through
origin of the five dimensional euclidean space. Then Chern [20] [21] defined a Gauss map
g: S =G, 5 by assigning at each point x e S? the oriented plane through the origin which
is parallel to the normal plane of S in S*.

Now G, 5 has a natural complex structure defined as follows: Suppose the two-plane
be spanned by the orthonormal vectors &, n (in that order, as the plane is oriented). Then & +
in is defined up to a complex constant. Regarding ¢ + in as the homogeneous coordinates
of a point in the complex projective space C**, we can consider G, 5 as a hyperquadric in
cP*.

The Calabi-Chern theory asserts that if S is minimal in S*, the Gauss map g is
holomorphic with respect to the unique conformal structure of S2. Chern [35] also observed
that if g(52) lies in a hyperplane of 4, the minimal sphere must be totally geodesic. The
well-known theory of compact holomorphic curve in CP* says that if g(S?2) does not lie in
a hyperplane, it has to intersect every hyperplane exactly once.

Let e3 = e3 = (ed,e2,...,e3) and e, = (e}, eZ,...,e3) be a normal frame at some
point x of S2 such that e;/\e, defines the orientation of the normal plane. The condition that
g(x) intersects the hyperplane defined by the complex vector (a; + iby, a, + ib,,..., as +
ibs) is equivalent to

Z(aj +ib)(el +ie)) =0 (176)

J
Hence if A = (aq,a,,...,as) is any vector in the five dimensional euclidean space

NS, there is exactly one point x in S2 such that A4 is orthogonal to both e; and e,at x. (This
follows by taking (a4, ...,as) = (by, by, ...,bs) in (176).)

In conclusion, we have
Theorem (1.2.24)[36]. Let S? be any non-totally geodesic minimal sphere in S*. Suppose
S*sits in the euclidean space N°. Then for all four dimensional linear space N* in N>, there
is exactly one point xeS? such that the normal space at x is parallel to N,
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The conjecture of Simons is equivalent to say that for all fixed three dimensional
linear space passing through the origin, we can find a point x in S? such that the normal plane
at x has non-trivial projection on this fixed linear space. By taking a four dimensional linear
space containing this three dimensional linear space, it is quite easy to see that Simons
conjecture follows from Theorem (1.2.24) in this special case.
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Chapter 2
Minimal Submanifolds and an Intrinsic Rigidity Theorem
We show that if o(u) < § , then either o(u) = 0,0ro(u) = § All minimal

submanifolds satisfying o (u) are determined. A stronger result is obtained if M is odd-
dimensional.

Section(2-1): A Sphere with Bounded Second Fundamental Form

Let M be a smooth (i.e.C*) compact n —dimensional Riemannian manifold
minimally immersed in a unit sphere S™? of dimension n+ p. Let h be the second
fundamental form of the immersion, h is a symmetric bilinear mapping T, x T, »T4 for
xeM, where T, is the tangent space of M at x and T is the normal space to M at x. We
denote by S(x) the square of the length of h at x. By the equation of Gauss, S(x) =
n(n— 1) — p(x), where p(x) is the scalar curvature of M at x. Therefore, S(x) is an
intrinsic invariant of M. Let II: UM —M and UMy be the unit tangent bundle of M and its
fiber over xe M, respectively. We set o (u) = ||h(u,u)||? for any u in UM. o (u) is not
an intrinsic invariant of M. However, like S(x), o (u) is a measure of an immersion from
being totally geodesic.

In [42] proved that if S(x) < n/(2—1/p) everywhere on M, then either S(x) =0

(i.e. M is totally geodesic), or S(x) =n(2 — %). In [37], S.-S. Chern, M. do Carmo, and S.

Kobayashi determined all minimal submanifolds M of S™*? satisfying S(x) = n/(2 — 1/p)
(for p = 1 it was also obtained by B. Lawson [56]). The purpose is to obtain the analogous
results for o(u).

We first describe the following examples of minimal immersions [37, 41].

A. Let S™(r) be an m-dimensional sphere in R™?! of radius r. We imbed Sm(\/é) xS§m
(\E) into S+t = §2M*1(1) as follows. Let &, n € S™ (\E). Then ¢ and n are vectors in
R™*1 of length \E . We can consider (£, n) as a unit vector in R2Mm*2 = Rm+1 x gm+1 |t

is easy to see that Sm(\/é) x §m (\E) is a minimal submanifold of $2™+1,

B. Let F be the field R of real numbers, the field C of complex numbers, or the field
Q of quaternions. Define d by
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1, if F=R,
d=<2, ifF=C(,

4, if F=4Q,
Let FP? denote the projective plane over F. FP? is considered as the quotient space of the
unit (3d — 1) — dimensional sphere $3¢-1(1) = {xeF3: 'x - x = 1}obtained by identifying
x With Ax where 1 € F such that [A] = 1. The canonical metric g, in FP? is the invariant
metric such that the fibering 7 : $3¢1(1) »F P? is a Riemannian submersion. The sectional
curvature of RP? is 1, the holomorphic sectional curvature of CP? is 4, and the Q-sectional
curvature of QP? is 4, with respect to the metric g,. Let M (3, F) be the vector space of all
3 x 3 matrices over F and let

@B F)={AeM(3,F).A"=A, traceA = 0}

where A* = tA. ¥ (3, F) is a subspace of M(3, F) of real dimension 3d + 2. We define the
inner product in (3, F) = R3%*2by (4, B) = Y trace (AP) for A, Be¥(3, F). Define a
map  : §34+1 5 R34+2 = ¥ (13, F) as folows.

EAR _§ X1Xy  X1X3
U =|x2%  |]* =3 1%

X3%y X3y |xzl? _§
for x = (xq,x,,x3) € §3%71 (I)  F%. Then, it is easily verified that { induces a map :
FP? -R3%%2 = ¥ (3, F) such that ¥ = y 0 m. Direct computation shows that y(FP?) c
$34+1(1/3). We blow up the metric g, by putting g = 3g, in FP?, so that the sectional
curvature of RP? is ¥ and the holomorphic sectional curvature (resp. Q-sectional curvature)
of CP? (resp. QP?) is g , with respect to the metric g. Then y gives a map y: FP? —»53¢+1

(I). It is proved in [41] that v is an isometric minimal imbedding. Thus, we have the
following isometric minimal imbeddings:
y1: RP? —5S4(1) (the Veronese surface),
\VzZCPZ —)87(1),
y3:QP? 1S,
In a similar manner one may obtain (see [41]) an isometric imbedding of the Cayley
projective plane Cay P? furnished with the canonical metric (normalized such that the C-
sectional curvature equals g) into $2°(1):
y,:Cay P? — S*(1).
In addition there is an immersion
v, S(V3) - S*(1)
defined by v, = y, om.

39



Forn,m = 0, let S™(1) be the great sphere in S™*™(1)given by
SM1) = {0y Xpamer) €STTL): Xpiz = o = Xpagmnr

and Ty, ;i S™(1)— S™™(1)be the inclusion. For p=0,1,..., we set

W1p = Tap0 Y1:RPZ 5S4,

Yop=T7p0 \VzZCPZ — S™P,

Y3p= T13p OY3: QP2 - 813+p,

W4,p= T25p ow4:Cay P2 —> 825+p’

\Vll,P: Tap O\V'li 82 (1/3)—) S4+p.
dip i = 1,....4,p = 01,...), is an isometric minimal imbedding and ¢'1p, (p =
0,1,...), is an isometric minimal immersion.

Let M be a compact n-dimensional manifold minimally immersed in S™*P. We
choose a local field of adapted orthonormal frames in S™*7, that is frames {ey, ..., e,4p}
such that the vectors ey, ..., e, are tangent to M. The vectors ey 4,..., en4, are therefore
normal to M. From now on let the indices a, b, c,..., run from 1,...,n, and the indices «, i3,
Y,...,tunfromn+1,...,n+p. Let h = (hg,) be the second fundamental form of the immersed
manifold M, and o(u) = || h(u,w)||? for u € UM. Since the immersion of M into S™*Pis
minimal, >..h%, = 0 for all .

Let xeM. Suppose that ueU M, satisfies o(u) = max ,yn, o (v). We shall call
u a maximal direction at x. Let {e;,..., e, p} be an adapted frame at x. Assume that e, is a
maximal direction at x, o(e;) #0, and e, .; = h(e;,e;)/|| h(e;, e,)||. Because of our
choice of e, 1,

0},

h{, = 0, a#n+1. (1)
Since e, is a maximal direction, we have at the point x for any t, x?,..., x" eR

n n 2 n 2
h (el +t 2 x%ey e+t 2 x“ea> 1+ ¢t2 E(xa)zl (h’ﬂrl)2 (2)
a=2 a=2 a=2

Expanding in terms of t, we obtain

<

AthTH1 z x®+0(t?) < 0.
a+l
It follows that

Rt =0, a=2,...,n (3)
We now choose an adapted frame at x € M such that in addition to (1) and (3),
Al =0, a=b. (4)

Once more expanding (2) in terms of t, we obtain
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—2t2 Z |:h?+1(hn+1 hn+1) 2 Z (hn+1 ](xa)z
a*+1l

a¥n+1

—4 Z Z hy hox®xP b+ 0(e%) <0, (5)

a¥n+1lab#1l
a+b

It follows that

2 Z (KD < kM (AR -REY, a=2...n (6)
a¥xn+1
Let us define a tensor field H = (Hgp.4) ON M by the formula
abcd Za (7)

Itis clear that o(u) = H(u,u,u,u).
Lemma (2.1.1)[43]. Let u be a maximal direction at x eM. Assume that o(u) =0. Let eq,...
, en+1 D€ an adapted frame at x such that e; = u,e,,.; = h(eq,e;)/||h(es,e1)]|, and
hl't1 = 0 for a #b. At the point x
(i) ifp=1,then

S () 2 (R 2[ = (h? 2] (®)
a
(i)if p = 2, then
1
E(AH)1111 > (hif1)? [n —n(hif')? - ZZ(h%l 2] 9
with equality attained if and only if
(Rt — hig?t [h?“(hn“ h -2 ) (hfa)ZI =0 (10)
azn+1
and
Va(h;)? =0 (11)

for all a and all o, where A and V, denote the Laplacian and the covariant derivative,
respectively.
Proof.

1
E(AH)1111 = h711-1|-1 (Ah)ﬂ-l + Z(Va h(ill)2
a,x

Using Simons' formula [60] for the Laplacian of the second fundamental form (see also
[55]), we obtain
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1 n+ n+
> (AH)1111 = (h11 1)2 [n - E(haa 1)2

+ ) (Vb)) ifp=1, (12)
and

1 n+ n+ n+

5 (@H)1 = (1) [n —n(hiiy -2 (hi 1)2]

+ R (R - i) [h’ﬂ Mt -mt) -2 ) e
a

azn+1

+ > (Vahfr)? itp22,(13)
a,a

from which the lemma follows readily by inequality (6).
Lemma (2.1.2)[43]. Let an adapted frame {e;,..., e, 4} at xeM be as in Lemma (2.1.1).
(i)  Assume that n (= 2m) is even. If
1, ifp=1,
o(u) < {1 itp>2 for all ue UM,

then (AH);111 = 0. If equality (AH)1111 = O is attained, then it is possible to renumber
e, ..., ey such that the following equalities hold

1, ifp=1,
h?1+1 == hptn = _h;ln-:-llm+1 == h?rtzlzm = i if p=>2. (14)
V3
(if) Assume that n (= 2m + 1) isodd. If
(1-1 p=1
o(u) < { 1 n forallu € UM,
Gom  P=2

then (AH)1112 0 . if equality (AH);11, = O s attained, then it is possible to renumber
e1,. .., eam+1 SUCh that the following equalities hold.

RIS = oo = R = —hIEL = e = R
( 1
| (1_5)—5, ifp=1,
o(u) < 4 1 forallu € UM, (15)
| ———= ifp=2,
\(3—2/n)~2

n+1 —
hm+1 m+1 — 0.

Proof. Since e, is a maximal direction

—hift <hggt <hff ', a=2..,n (16)
Because of minimality of the immersion of M into S™*,
n
> gt = —hgtt (17)
a=2
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It is easily seen that the convex function f(h%f2, ..., hAltY) = ¥ _ (A2 1)2 of (n— 1)
variables h%1, ..., At subject to the linear constraints (16), (17) attains its maximal value
when (after suitable renumbering of e;,..., en)

n+l1 — — ,n+1 — n+1 — — n+1 H — 2
hll _—t —_- hmm -_ _hm 1m 1 _—rt —_- _hzm 2m ,IfTL -_ m
and
n+1 — — ,n+1 — n+1 — — n+1
hll — eee T h ju— —h 1 1= cee T —hz 2

n+1 — . —
hymi12mer =0, if n=2m +1

Therefore, by inequalities (8), (9),

( n(h [ - a(e)], ifp=1n=2m
1 4 n(hi1)?[1 - 3a(e,)] ifp=2n=2m
7 (A 2 | (K1)’ In— (- L)a(ey)] ifp=1n=2m+1
L(R1 )% — (3n — 2)a(en)] ifp>2n=2m+1

Let L(x) be a function on M defined by L(x) = maxy,cymc(U).

Lemma (2.1.3)[43]. Assume that one of A;, A,, A3, A, is satisfied.

(A)p=1niseven, o(u) < lforallueUM,

(A)p =1,nisodd, o(u) < 1/(1- 1/n) forallueUM,

(A3)p = L,niseven, o(u) < BforallueUM,

(Ay)p = 2,nisodd, o(u) < 1/(3 — 2/n) forallueUM.

Then L(x) is a constant function on M.

Proof. Following an idea in [39] we prove the lemma using the maximum principle. Clearly
L(x) is a continuous function. It suffices to show that L(x) is subharmonic in the generalized
sense. Fix x € M and let e; be a maximal direction at x. In an open neighborhood U, of x
within the cut-locus of x we shall denote by u(y) the tangent vector to M obtained by parallel
transport of e; = u(x) along the unique geodesic joining x to y within the cut-locus of x.

Define g, (y) = o(u(y)). Then
Agy (x) = A[H@(y), u(y) u(y), u(y))ly==x
= Ya(ViH) (e, e1,e1,61) = (AH)1111(%).
If [|[h(eq, e1)|| #0, then by Lemma (2.1.2), (AH);111(x) 2 0. If |||h(ey, )|l =0, then h =0
at x. In this case the formula of Simons [60] for Ah shows that Ah = O at x, and therefore

(AH)1111(x) = Z(Vahﬁ)z > 0.

Thus, we obtain that in any case Ag,(X) = (AH)1111(x) 2 0.
For the Laplacian of continuous functions, we have the generalized definition
— H 1
A= Clim= ([ L/ oy 1= LX) )

r—0 1?

where C is a positive constant and B(x,r) denotes the geodesic ball of radius r with the
center at X. With this definition L is subharmonic on M if and only if AL(x) = O at each
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point x € M. Since g,(x) = L(x)and g, < Lon Uy, AL(x) = Ag,(x) = 0. Thus, L(x)
Is subharmonic and hence constant on M.

Lemma (2.1.4)[43]. Assume that one of B,, B,, B3, B, is satisfied.

(Bj)p=1niseven, o(u)<lforallu e UM,

(B,) p=1,nisodd, ou)<1/(1-1/n) forallu e U M,

(B;) p=1,niseven, o(u) < % forallu e U M,

(By)p=2,nisodd, ou)<1/(3-2/n)forallu e UM.

Then M is totally geodesic in S™*P,

Proof. Let xeM and e; be a maximal direction at x. Assume that o(e1)=0. Let g,(y) =
o(u(y)) be the function defined in the proof of Lemma (2.1.3). By Lemma (2.1.3), g, (X)
iIs a maximum of g,. Therefore, (AH){111(x) = Ag,(x) < 0. On the other hand, by

Lemma (2.1.2), (AH)1111(x) = 0. Therefore, (AH)1111(X) = 0 on M. Hence, by (14) and (15),

( 1, if p = 1, nis even
1

if p = 1,nisodd,
s ifp niso

og(e;) =11 , if p=1niseven

3
1

\ 3-2/n'
contradicting the assumptions B1,B2,B3,B4. Hence, h(u,u) = 0 for all ueUM, that is M is
totally geodesic in S™*P,
Theorem (2.1.5)[43]. Let M be a compact n-dimensional manifold minimally immersed in
a unit sphere S™*1. Assume that n (= 2m) is even.

(i) Ifo (u)<1foranyu e UM, then M is totally geodesic in S™.,

(i) If Max, .yy o(u) =1, then M is S™(¥2) x S™(%2) minimally imbedded in

§2m+1 as described above.

Proof. (i) follows from Lemma (2.1.4). We prove (ii). As in the poof of Lemma (2.1.4), we
obtain (AH)1111 = 0. Hence, by (4) and (14),
S@Y= ) (hG) =) () =n

a,a,b

if p=2,nisodd.

All minimal immersions into S"*! satisfying S(x) =n were found by S.-S. Chern, M. do
Carmo, and S. Kobayashi in [37] and B. Lawson in [38]. It is easy to see that among their
immersions only S™ (Vi2) x S™ (V%) imbedded in S$?™*lsatisfies the condition

Maxy cym o(u) = 1.

Theorem (2.1.6)[43]. Let M be a compact n-dimensional manifold minimally immersed in
a unit sphere S™*1. Assume that n (= 2m + 1) is odd. If o(u) < 1/(1 — 1/n) for any
u € UM, then M is totally geodesic in S™*1.
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Proof. By Lemmas (2.1.3) and (2.1.4), we have to consider only the case L(x) =
Max, .yy o(u) = 1/(1 — %) on M. As in the proof of Lemma (2.1.4), (AH)1111 = 0. Hence,

by (15),

a,a,b a=1
It is shown in [37] that if M is minimally immersed in S™*! and S(x) =n, then r%* may
attain at most two different values fora = 1,...,n. However, since by (15),

1 1
hift = (ﬁ)z’ h me1 = — (ﬁ)za hym+12m+1 = 0,
we obtain a contradiction, so the equality Max, gy o(u) = 1/(1 — %) on UM is
impossible.
Theorem (2.1.7)[43]. Let M be a compact n-dimensional manifold minimally immersed in
a unit sphere S™P. Assume that p > 2 and n(= 2m) is even.
(i) Ifo(u) < ¥ forany u e UM, then M is totally geodesic in S™*P,

(i) If Max, _yp o(u) :§ , then o(u) =% on UM, and the immersion of M into

S™P js one of the imbeddings ¢ip (i = 1,...,4;p = 0,1,...), or the
immersions ¢'1p (p = 0,1,...), described above.

Proof. (i) follows from Lemma (2.1.4). We prove (ii). As in the proof of Lemma (2.1.4),

we obtain (AH)1111 = 0. Let the indices ij, k,..., run from 1,..., m, and let 7,J, k, ..., denote

i + mj + mk + m,...,respectively. By (14) we have
1

R = —hEl=—= i=1..m (18)
Since ||h(e;, e)|> < Y5 and || h(eg, ey)|* < Y5, we obtain
hi; = —h =0, azn+1 i =1.,m. |, (19)
By (10), X .41 (h$5)?="5. Since each vector e,, (@ = 1,...,n), is @ maximal direction,
Z (h{%)? == % ij=1,..,m (20)
a*xn+1

Let u = (e; + €;)/v/2 . Then.
1
o(w) = |lh(e; +¢j.e; + ¢ I§
1
-2 “(hlr%-'-l + h]njﬂ)enﬂ + 2 Y axn+1 hijeauz
1 1
= E + Zoc;tn+1 (hg)z < E

Therefore,
h?j: 0, azn +1; i,j =1,...,m. (21)
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Similarly,
h= 0, azn +1; i,j =1,...,m. (22)
Expansion (5) now takes the form

t* (‘4 2 Z hﬁhﬁ%x}x") +0(t*) 0.

It follows that 3o h{5h;; = O for j=k. Since each vector e, is a maximal direction,

Dowe =0k (23)
a
Z MR =0 %, (24)

a
Once more expanding (2) in terms of ¢ ,

2t3 Z (R%hS + hGh% ) x/xFxl+ 0(t*) < 0.
a,jk,l
from which

D hhi + hEhE =0, i#jork=l (25)
(04

Using (4) and (19)-(25), we obtain by direct computation that o(u) = % for any ueUM. B.
O'Neill [40] calls an immersion A-isotropic if ||h(u, u)|| = A for any ueUM. Therefore, the
immersion under consideration is I/ 3-isotropic.

By Lemma (2.1.1), Vah{,= 0. It follows that Vahj,= 0. By polarization, Vah§; =0 or
all a, a, b, c. Therefore, the second fundamental form of the immersion is parallel. All -
isotropic minimal immersions into a unit sphere with parallel second fundamental form were
completely classified by K. Sakamoto in [41]. Among his immersions only ¢1p , d2p , d3p,
d4p and ¢'1p described in above are 1/+/3-isotropic.

Theorem (2.1.8)[43]. Let M be a compact n-dimensional manifold minimally immersed in
a unit sphere S™*P, Assume that p = 2 and n(= 2m + 1) is odd. If o(u) < 1/(83—2/n)
for any ue UM, then M is totally geodesic in S™*P.
Proof. By Lemmas (2.1.3) and (2.1.4), we need only consider the case L(x)=1/(3 —
2/n) on M. We show that this case cannot occur. Thus, assume that L(x) =1/(83—2/
n) on M. As in the proof of Lemma (2.1.4), (AH)1111 = 0. Let the indices i, j, k, ..., run from
1,...,m,and lett,j,k,...,denote i + m,j + m,k + m,..., respectively. By (15),
W l=prtt=3-%, i=1,.,m,
2)2
At =0, (26)
As in the proof of Theorem (2.1.7),
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hi; = hi;= 0, oaxn+1l;, i=1..,m
Since hy, = — X;h{i — >;h& |
a :0
nn '

By (10),

E A =1
(I,]_) - 3—2/'"_’ l = ,--.,m
a
1
‘N2 — | —
Z(hm) 2G—2/m) T b

a
N )= grma, =1

m) = 5@3—pmy’ o™
a

(27)

(28)

(29)

(30)

(31)

As in the proof of Theorem (2.1.7), we obtain with the help of expansion (2) the following

equalities:

z R h& =0,

> g+ hihi =0, i%jork#1

iy

D hf b+ bk, =0 % j
(04
Zhg]_hgﬁhgfkhg]_ =0, j+k
(04
> hihi =0, oy
(04
Zhg‘;lhf;l =0, oy

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(04
Letu = ) ,u%e,e UM. Direct computation with the help of (4) and (26)- (41) shows

that
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o(w) = [1- @W")*1(3—2/n)™" (42)
It follows from (42) that for any x eM, the tangent space Ty of M at x is a direct sum of two
mutually orthogonal subspaces T, = P, + Q,, where P, is 2m —dimensional and is
defined by

1

P, = {XeTy: |Ih(X, Xl = (3-2) * [1X]1%} (43)
and Q, is 1-dimensional and is defined by
0y = {XeT,: h(X,X) = 0O}. (44)

Lemma (2.1.9)[43]. The distributions P: x — P, and Q: x — Q, are smooth distributions on

M.

Proof. It is sufficient to prove that Q is smooth. Let x, e M and {ey, ..., e,,,} be a smooth

local field of orthonormal adapted frames in a neighborhood U of x, such that

eo(xp) € Qx,. If U is sufficiently small, there is a unique vector X of the form X =
Zm X%e, + e, which belongs to Q, at each point xeU. We prove that X%,a = 1, ..., 2m,

are smooth functions of x.

By (44), X%(x),a = 1, ...,2m, are a unique solution of the system of equations

2m 2m
he (X, X) = Z he, (x)X9X? + 2 Z he (x)X® = 0, (45)
a,b=1 a=1

At the point Xo the Jacobian of system (45) is
(0h*/0X%*) = 2(h%, ), a=n+1..n+pa=1..2m

By (30), (31) and (39)-(41), the rows of the matrix (r%,) are mutually orthogonal nonzero
vectors. Hence, rank (0h*/0X%)= 2m at x, Therefore, X%, a =1,...,2m, are smooth
functions of x in a sufficiently small neighborhood of x,,.

We now return to the proof of Theorem (2.1.8). Let xeM. By Lemma (2.1.9), we may
choose a smooth family of orthonormal adapted frames {e;,...,en4p} in some
neighborhood U of x such that equations (4), (26)-(41) are satisfied on U. Set

N, = [(3 = 2/n)]z Z he a=1,..2m

By (4), (30), (31), and (39)-(41), the vectors e,,; 1, Nu,..., Nom are orthonormal. Therefore,
with no loss of generality, we may assume that e,,;1,, =Na,a = 1,...,2m. Then,

R = il = (3 2/n)]z i=1..,m (46)
hiy, =0, azn+1+i ,i=1 ..,m, a7
h& =0, aozn+1+i,i=1,..,m, (48)
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Let the indices 4, B, C run from 1,...,n + p, and let {o”} and {wj} be the coframe
dual to the frame {e4} and the connection forms of the Riemannian con- nection on S™*P,

respectively. Then,
dwt = ZwB Aol
B

dwf = ch/\(oé+a)‘4/\ wB,

As in the proof of Theorem (2.1.7), we obtaln
Ve(hS,) =0, ab=1..2m c=1,...,n

Letustakea =h+1+i,a=>b =i in(53). By (4), (26)-(28), (46),(48), and (45)

2\17 N
) z mrtof - [2(3-5)| Ter+(3-5) Teptiti=o

Analogously, taklng o =n+l+ia = ib =jiin(53),
1

- 2\ 2
—ZZh"““ wf +(3-3) e +eptiti=o iy
n

Summing (56) with respect to (j # i) and adding (55), we have
2\"2 . 2\172
—zz R R 4 (3 _ E) W _[o (3 _ E)] Wl =0,

Let us nowtakea =n+1+i a=>b = k in(53). Then,

1
) 2\ "2 _
_zz hn+1+z I_c + (3 _ E) W1+ = 0,

Summing (58) with respect to K,

. 2\ 2 .
2 z R )+ (3 - E) W =g
Jj.k

Finally, adding (57) to (59), we get
wi=0
Analogously, we obtain

wr=0
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(50)

(51)
(52)
(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)
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Differentiating (60) and using (4), (26)-(28), (46)-(48), and (21), we obtain
- Z h& RS s NP + w™/\ @ =0 (62)
a,a,b
Taking the coefficient of @™ A @ in (62) we have— Y ,(h%)? +1 = 0. By (30), it gives
2(3— 2/n) = 1andtherefore n = 5/4,yielding a contradiction. Therefore, the equality
max,.ymx o(u) =1/(3—2 /n) on M is impossible.

Section(2-2). Minimal Submanifolds in a Sphere

Let M be an n-dimensional compact minimal submanifold in a unit sphere S™*P of
dimension n + p. Denote by ||c ||? the square of the length of the second fundamental form. S.S.

Chern, M. Do Carmo and S. Kobayashi [46] proved that if ||o]|]* < ;_1 everywhere on M, then
P

. : : n . .
either M is totally geodesic or || ol = o1 In the latter case M is either a Clifford hypersurface or
p

a Veronese surface in $*. In [47] Shen Yibing proved that if ||c||? < n/l + /nz—_nl everywhere on

M, then M is either a totally geodesic submanifold or a Veronese surface in S*. In [49] Wu
Baogiang and Song Hongzao proved that for a 3-dimensional minimal submanifold M in
$3*?_if ||0]|> < 2 everywhere on M, then M is totally geodesic.

Let M be an n-dimensional compact manifold, x : M < S™*Pa minimal immersion.
We choose a local field of orthonormal frames X, e;,...,e,,..., en4p, ..., €nipeq SUCH that,
restricted to M, the vectors ey, ..., e are tangent to M, and e, = x. Let w® 1 < 4 <
n + p + 1, be the field of dual frames. Then the structure equations are given by

do” =Y 0PN of, o+ on5=0,

dof=> o Nol, ABC=1..,n+p+ 1

We restrict these forms to M. Then
o* =0,
CO?: Zh?jcoj, h?j:hﬁ,
where
n+l< a< n+p, 1<ij <n

lolP= ) k)
L] o

is called the square of the length of the second fundamental form. For each a., let H, denote
the symmetric matrix (h;}), and set

The invariant
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Sap= 2ij h?jhiﬁj
Then the (p x p) —matrix (S,p) is symmetric and can be assumed to be diagonal for a
suitable choice of e, 11,...,ep4p, 1.€

_(Se ifa=p
Sap = {o if a=B

where we set S, = S, By definition, ||o|> = XaS« .S. S. Chern, M. Do Carmo and S. at
Kobayashi [46] obtained the following formula for the Laplacian of || o ||?:
vdllol? = > (h§)? + nlloll” = Y N (HeHy — HgHe) = ) S5 (63)
ijka o, a
The crucial point is to derive an upper bound for ., ; N (HaHﬁ — HﬁHa) + Y, S2.interms
of ||o||?, which will be carried out in the sequent sections.

First of all, let us notice the following two facts, easily to be verified.
A) LetT = (T;) be an, orthogonal, (n x n) —matrix, and let "As= TA('T, 1 < a < p.

Then
NCAAs — "Ag"As) = N(A A — AgA,)
“Sap = Sap,
"S=8.

B) Let C = (C,p) be an orthogonal (p x p) —matrix and let
Aa = ZﬁCaﬁAﬁ 1< a,ﬁ < p.
Then
Za,[)’N (Aagﬁ - A[)’Aa) — Za,[)’N (AaA[)’ - A[)’Aa)
YapSap = TopSap
§=8.
Let A, = (af}). According to the fact B, after the transformation by a suitable orthogonal

(p x p) —matrix C, the (p % p) —matrix (S,3) may be assumed to be diagonal, i.e.,
Se ifa=p

Sw = Disafy af. ={s" "if g (64)
Then
SasN(AA — Agh,) + N S2 < 282 (65)
Proposition (2.2.1)[52]. Let A, A, be two symmetric (n x n)-matrices. If S;= S,, then
N (AA; — AzAy) + BoS? < 28, (66)

and the equality holds if and only if there exists an orthogonal (n x n)-matrix T such that
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1 0 0 1
tT7 — [S1 0 tT — [S1 0
TA1T—\E< I ) TA2T—\E< - )
o o 0 0
Proof. This proposition follows immediately from Lemma (2.2.2) of Ref. [64] .

Let us now study the case of more than two matrices. Let A,,..., Ax be symmetric (n x
n)-matrices (k = 3) with

S5=5=.... = 5 >0
@k~ 0 ifa # B

We may assume that A, is diagonal and we denote by A1, A2, ...Anthe diagonal entries in A;.
Then
Slzii + ...+ i?l,

k
Lo (ArA —AAD = 28004 = 1) ) (@)
a:

Denote S;=.... = Sy =b. We use Lagrange's method to calculate the maximum of the function
o 2Zig (2i=2j) Zk-(afs)?> 52
S1S
under the constraints
A+ +22 =
Y i(af)? =b, 2<acs<k

Let

@=F+m (Z Af — b) + m, (Z(aizj)z - b) +oeeetmy (Z(afj)z - b)
i ij ij

Obviously, F attains its maximum F(g) at some point
and
o]0
6afj-
Lemma (2.2.2)[52]. For any a, 2 < a < k, if there exist two nonzero entries in the set {ajj,i<j},
then

(@)= 0.

2 Nicj(Ai — 4)%(a3)* < 2b* (67)
Proof. Without loss of generality, we may assume that a$, # 0. Then from ;—i (@)= 0. we
i
have
(Mm—4) 1 _
Tk bl @ Fme=0

Forany aff =0, i < j, we have also
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(Li—4)? 1 _
2 i@ rm.=0

it follows for that a7, = 0, a;; =0 that
(4 — jbj)2 = (41— 4)%
therefore
2 Zi<j(j~i - ij)z(aiaj)z = (11 - jvz)z Zi;ﬁj (aiaj)2 < (11 - j~2)2 b.
Assuming af, # 0, we now consider three cases separately.
1) af, = 0 for some j > 2. We have
(A — j~2)2 - (11 - jvj)z
Again we consider two subcases.
If 4, —4,=4, -4 then
b= M5+ Jp+ A = A +22,
. . 2_.2 .2 . .2 .2 1.2 .2
(/11‘/12) —/11 + /12 _2/11/12 S /11 + /12 +E/11 +2/12
— 3 A
=2( + iz) = 30,
If zl-zzzil-ij,thenzj:2/11—/12
b= Ay + A+ A = 5i; + 205 — 444,
(A — )2 = A1 + dp — 2444, S54; + 225 — 414 4,
<b<3p
2
2) ag; = 0 for some j > 2. The same argument as in 1) gives that (A1 — A2) = %b .
3) ai; # 0 forsomei > 2,j > i. We have
(A1 - A2)*= (di - 4)? = 1/2[(/11 - /12)2 + (i - 4]
é/ll + /12+/1i + /1,- =b < Eb'
In summary, we have
(Ja- Jo)? < 2b,
2 e iCi = )2 (af)? £ - 2)*b < %b.
Lemma (2.2.3)[52]. Forany o, 2= a < B =k, we have
2% — A)2 [(a8)? + (a) 71 =3P (68)
Proof. If ¥;.;(af;)* =0 (or (a )2 =0), then
2 Zi<j(ii ])2 [(au)z + (a )2 ]
=2 %A — 4)? (a )2 = 28518p=2b" <3P

So, in the following we assume that
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Yicj(af)* =0, ¥icj(a)? =0
We consider two cases separately.
1) There are two nonzero elements in the set {a;}, i <j} and there are also two nonzero
elements in the set {aij I <j}. In this case the inequality (68) follows immediately
from Lemma (2.2.2).

2) There exists only one nonzero element in the set
{ag, i<} {or{ al, i <i}).
Without loss of generality, we may assume that af, = 0.
If Ai-22=0, then (68) holds obviously. In the case i - A, 0 we can prove that
a%l = agz == a%n —

In fact, from % (g) = 0. we have
ij
(M — A)? 1 _
T—EF(Q)'FTR(Z— O

1 .
(—Ep(q) N ma) a% =0,

It follows that af; = 0. Similarly, we have
iy ==l =
Then the condition ¥;;aj; afj: 0 implies that a;;= 0. As Z(c‘zf‘j)2 # 0 suppose that a;; #0
for some i <j, (i,J) # (1, 2). We have
2 Yici(hi = )2 [(8)? + (a])? ]
S[0.-2)% + (U —Zj)z 1 b.

We consider three cases separately.
1) i=1, j>2 Wehave

(- 22)? + (A — 4)PS3(A1 + 15 + A7) =3b.
2)i=2,j>2.We have

(= 22)? + (g — 4)2S3( + 4, + 1)) =3b.
3)2 <i<j Wehave

(a-2)? + (= 4)2S2(A + Ay + A + 1) S2b.

Hence

2% — A)2 [(a%)? + (a))? 1 <32
Lemma (2.2.4)[52]. For any m—-1 matrices A, ,Ag,,...., A, Of the matrices
Ay, Ay, .. A, 3= m = k, we have
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A 3
ZZ(AL- — ) ;(agh > £ 5(m—1)b° (69)
i<j =

Proof. We prove Lemma (2.2.4) by mathematical induction on m. By Lemma (2.2.3), the
inequality (69) holds for m = 3. Assume that (69) is valid form. Let A, ,A,,,...., A

N 0m41

be m matrices from A, ...., A, Applying (69) to any m — 1 matrices of 4,,,...., 4, 1,
and adding the obtained m inequalities, we get

2(m — 1) Ty — 4)? Bpiagy? < 2 (m — 1)mb?
which shows that (69) holds for m + 1. Lemma (2.2.4) is proved,

By Lemma (2.2.4) we have
3 2 312
3(k —1)b* +3p2 3
. 2 2 N
F(g) = 2 =35
Since F attains its maximum F (g) at g we obtain the following result.
Proposition (2.2.5)[52]. Let Ay, A; ..... Ax be symmetric (n x n)-matrices (k=3). Suppose

that S; =S, =....= S > 0,

@k~ 0 ifa +f
Then
3 3
Yh=2 N (414, — AgA1) +5 ST = 25, 8. (70)

Using Proposition (2.2.1) and Proposition (2.2.5) we can prove
Proposition (2.2.6)[52]. Let A, 4,,..., A, be symmetric (n % n) —matrices (k = 2). Suppose
that §; = max {S;,..., Sy}

Sp=fia Ha=P
@k~ 0 ifa + f
Then
k2N (A4dy — Agdy) +2S2 S 28, S, (72)
and the sign of equality holds if and only if one of the following conditions holds:
1)A, = A, =....= A, = 0,

2) only one of the matrices 4, ..... 4, say A, is different from zero, and S, = 5, >0,
and there exists an orthogonal (n < n) —matrix T such that
O j
/

1 0
t — S1
TAlT—\/; I
0 |0

1

0
t — [S1
), TAOLT—\/;< -
0

0

o
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\

M
[
Proof. We may assume that A; = '\ . )l
I

and
S;= A+ . +22=b>0
We wish to maximize the function
2 Nicj (li=4j) Th=2(af)? 5§
518

F

subject to the constraints
A+ .. +22=b
0=S5,=bh

0=S,=h
Obviousely, F attains its maximum F(q) at some point
G = (A Ayl ).
It suffices to consider the following 4 cases separately.

1)atg,0<S,<b, 0<S3<b, ..., 0<S,<b,
Forany a?, #0 (i < j,a = 2), from %(Q) = 0 we have
ij
(4 — ij)z =S F(q)
It follows that
SlF(Q)(52++Sp)+S%

F(g) = 5.3
Hence
F@)§1<§
2atq,$2=...= Sp=0.
We have in this case F (4) = % =1<:
3)atg,S2=...= Sk=b, forsome k = 2,

S, =0 fora>k.
It follows from Propositions (2.2.1) and (2.2.5) that F(q) é%
(4)atg,S,=....= Sk=b,forsomek = 2, k < p,
0<S,1<b, .., 0<S<bforl=I1l=p—k
S,=0for a>k+1
In this case the same argument as in 1) gives
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Fa) < $1F(@)(Sk+1++Spi+1)+TicjCi— 1)? Th=p(af)?+57
= $18

It follows that
) < zzi<j(zi;i,}2 z’é=;(af;)2+$%

S1(S1++Sy)
Then we have F(q) é% by Propositions (2.2.1) and (2.2.5). In summary, we have F(q) é%
, therefore the inequality (71) is valid. The conditions for that the sign of equality holds are
obvious by Propositions (2.2.1) and (2.2.5).
Lemma (2.2.7)[52]. If 0 < Sp< b for some a,, 2 = o = p, then

Y ap N(AgAp—ApAy)+ SE

F(g) = 224 —— . (72)

$¢S

M
Proof. Without loss of generality, we assume that o =2, and A, = '\

~
S
~_

Then
14 14
DN (AAg—Aga,)+ ) S
a,f=1 a=1
= 4% (A — 2)? 2 ,(af)? + S + Xy pea N (AaAﬂ - AﬁAa) +3P . S2
We have
S@=o (73)
Denote

bij = ¥pea(al)?.
From (73) we obtain
2 Yk (A1 = Aie) bag + S22, = SAF(4)
2 Yiwa(Aa — M) boxe + S22, = SA,F ()

2 Zk#n(j*n - Ak) bnk + Sziz = SAnF(q)
Hence

.2 .. . ) L2

2 Y1 (A1 — A1 Ag) by + S A1 = SAF(Q)
.2 .. . ) L2

2 YAy = A Ay) ba + Sy A5 = SA,F(G)
..2 N . . .2 .. 2 .

2 Zk#’n(lz - An}*k) bnk + SZAn = SAnF(q)

Adding these inequalities we get
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2SicjCi-1)? Lpealal)?+52

S,S '
_ Ypz2 N(AzAg—Aphs)+ S5

So8 '
Theorem (2.2.8)[52]. Let A1, Ay,...,Ap, be symmetric (n < n) —matrices (p = 2). Denote
Sap =trace ALAp S, =Sy = N(4,),S = Si+...+ 5, Then

Yo N(4q Aﬁ AﬁAa)+zaﬁsaﬁ < 52 (73)

and the equality holds if and only if one of the followmg conditions holds:
NA,=A4,= ...=4,= 0,
2) only two of the matrices A;, A,, ..., Apare different from zero. Moreover, assuming
A1#0,4,#20,A;3 = -+ = A, = 0, then §; = S,, and there exists an orthogonal (n x n) —
matrix T such that

1 0 1 0
tp — [S51 0 tp —  [S51 0
TAlT—\/: 0 -1 ,TA,'T = » 0 -1

o |o/ 0 |o

F(q) =

Proof. It suffices to consider the following two cases separately.
1)atg,S; =S,=...=S, =D for some Kk,
1=k =p, andS, S,=0 for a > k.
By Propositions (2.2.1), (2.2.5) and (2.2.6) we have
F(g) = Z§=1(Za N(Aa.“iﬂ_AﬂAZ)"' Sé) < %S z.:llcsﬁ — 3
§? §? 2
2)atg,S; =...=S, =bforsomek, 1=k <p,
0<Sp41<b,..0<S <bforl<l<p-k
Sq=0fora>k+1.
By Lemma (2.2.7) we have
S F(@)(Ska1++Skr1)+ L1 CEEI N (Agdp—ApAq) + SB)
(S1+-+Sk41)?

F(q) =
It follows that
SRo1(CEET N (AqAp—ApA,) + SB)
(51"‘ +5k+1)2

F(q) =

By Proposition (2.2.6) we have F(q) = %
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3 .. . :
In any case we have F(q) = 3 Since F attains its maximum at g we get

ZN(AA —AA)+Z<§52
a‘lp pla —2a
(24 (24

The conditions for that the sign of equality holds are obvious,
Theorem (2.2.9)[52]. Let M be an n-dimensional compact minimal submanifold in
S™P p > 2. Then

fy GlielP=n)llol? <1 =0, (74)

where *1 denotes the volume element of M.
Proof. Applying the inequality (73), (74) and (63) and integrating over M we get (74).
Theorem (2.2.10)[52]. Let M be an n-dimensional compact minimal submanifold in S™*7,
p = 2. If ||o]]* <%5n everywhere on M, then M is either a totally geodesic submanifold or a
Veronese surface in S*.

Our pinching constant %5 n is better than the pinching constants of [46], [47], [49].
Theorem (2.2.10) can be rewritten in terms of the scalar curvature R of M as follows.

Proof. If ||o]||? é%n everywhere, then either ||o|? = 0 or ||o|]> = %n by Theorem (2.2.9). When

2
lo|l> = =n we have A, = 0 and we may assume that
3 ijk

Ho =0 fora=n+3
by Theorem (2.2.8). The same argument as in [46] shows that dim (M) = 2, and as M is

compact 2 —dimensional minimal surface with ||c||? = 5 It must be a Veronese surface in
54-
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Chapter 3

Rigidity Theorm and Log-Sobolev Inqualities
We apply the rigidity theorem for submanifolds and we discuss functional inequalities
for u like the Poincaré inequality, the log-Sobolev inequality or the Gaussian logarithmic
Isoperimetric inequality.

Section(3-1). Submanifolds with Parallel Mean Curvature in a Sphere

We generalize the famous Chern-do Carmo- Kobayashi Rigidity Theorem [53] for
minimal submanifolds to general cases. Let M" be an n —dimensional compact submanifold
with parallel mean curvature in a unit sphere S™*P (1), and h its second fundamental form.
It follows from the Gauss equations that the square norm of h is given by

S=n(n—-1)—R+n?H?,

where R and H are the scalar curvature and the mean curvature of M respectively. It was
proved by Okumura [55, 56] that if the normal bundle of M is fiat, n = 3, and S <2 +

n

—H2 then M is totally umbilical. Yau [58] proved thatif p > 1,and § < ———,
n-1 3+n2 —-(p—1)71

then M lies in a totally geodesic S™*1(1). [57] improved Yau's result above. We proved that

2n n

ifp>1andS < min{ } then M is a totally umbilical sphere. We shall show

1+n2 2-(p-1)7"
a rigidity theorem for submanifolds with parallel mean curvature in S**1(1) by using a
different method, which generalizes the main theorems in [53, 54], and also improves the
results in [55,56,57].

Let M™ be an n-dimensional compact manifold immersed in an (n + p) —dimensional
unit sphere S™*1(1). We shall make use of the following convention on the range of indices:

1=ABC.=n+pl=ijk.=nn+1=ap,y,.=n+p.

Choose a local orthonormal frame field {eA} in S™*1(1) such that, restricted to M, the ej's
are tangent to M. Let {w, } and {w45} be the dual frame field and the connection I-forms of
N respectively. Restricting these forms to M, we have

Zhu W,  hE=H, @
1
h = Z hijw,Qw; &€, & = ﬁz hi; €« (2)
a,i,j o,i
Riji = 8i6j1 — 616 Z(hlk i1 — hithik) | 3
Ra[)’kl — Z(hik iP — ilhik ’ 4)
a
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where h, &, R;jy; and Rqpi are the second fundamental form, the mean curvature vector,

the curvature tensor and the normal curvature tensor of M respectively. We set
S=hP, H =<1l Hy = (hij)nxn (5)

Definition (3.1.1)[59]. M is called a submanifold with parallel mean curvature if & is

parallel in the normal bundle of M. In particular, M is called minimal if H vanishes

identically.

We assume that M is a submanifold with paratlel mean curvature (H=0). We choose

en+15uUch that ent1// & tr Hypy =nHand tr H; = 0,n + 2 = n + p Set
Su= ) (R Si= ) (R’ (®)
ij ij
B#n+1

We have the following proposition immediately from the definition.
Proposition (3.1.2)[59]. M is a submanifold with parallel mean curvature in S™*P(1) if and
only if either H=0, or H is constant and H,,,, H, = H,H,, for all a.

We denote the covariant derivatives of h; by hf, and hf,,, etc. The Laplacian Ak of h
is defined by An§ = ¥ by, . Following [58], we have

Ahg'-'-l = z hnm-;-cl Rmijk + z h?r-nﬂ Rmkjk ) (7)
km km
B _ B B
Ahij - z hTYlk Rmijk + z him Rmkjk + z hZi Raﬂjk’ ﬁ #n+1 (8)
km km km
a=n+1

By using Lagrange multiplier method, we have the following
Lemma (3.1.3)[59]. Let ay, ..., a,, be real numbers satisfying 3; a; = 0 and }; a? = 0. Then
N
and the equality holds if and only if at least n - 1 numbers of the a;'s are same with each
other.

For a matrix A = (a;j)nxn, We denote by N(A4) the square norm of A, ie., N(4) =
tr (A'4) = Y, ; af; a?. Then N(4) = N(TA'T), for each orthogonal (n x n)-matrix T.

Lemma(3.1.4)[59]. (See [53,54]). Let An+ 1. ... An+p be symmetric (n x n)-matrices, Set
Sap = tr (A445),Sa = Saa = N(45),S = X4 S, Then

ZN(A A, — A A“)+Z Sap < <1+—sgn(p 1)>S2 (10)

where sgn () is the standard sign function. The equality holds if and only if at most two
matrices A, and Ag are not zero and these two matrices can be transformed simultaneously
by an orthogonal matrix into scalar multiples of A, and Ag respectively, where
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0 0 0 0

First of all, we define our pinching constants as follows
n3 n(n —2)

= + — 2 _ — <

el H)=n+50—HH — 50D

a(n, H), forp=1o0rp=2and H # 0,
min{a(n,H)é(Zn + 5nH2)}, forp=3,orp=2and H =0.

Jn2H* + 4(n — 1)H*, (11)

C(n,p,H) = { (12)

Theorem (3.1.5)[59]. Let M™ be a compact submanifold with parallel mean curvature
(H=0) in S™P(1). If S = a(n, H), then either M is pseudo-umbilical, or S = Sy = a(n, H)

1 < Sl k(n,H)

/1+x2(n,H) /1+x2(n,H)

geodesic S™*1(1), where A(n,H) = H + a(:gl)__sm-

Proof. By (7) and Gauss equations, we have

1
EASH — Z(hzzl 2 +Zhn+1Ahn+1

and M is the isoparametric hypersurface S"~! in a totally

i,j.k
Z(hzzl) + z n+lhn+l |:5m151k mk5ij + Z(hfr(z]hf;c hfr(zkhg)]
ijk ijkm a
z A Ve [5,,”5,(,( 8 S + Z(h e — R hk)]
ijkm
— E(hz-;-(l 2 +Tl2(h3~+1 2 (E(hn+1) )2 _ nZHZ
i,jk ij.k
+nH Y, Wt h”““lhﬁl+1 = Xt = HE ALY (13)
Let {e;} be a frame diagonalizing the matrix H,,,; such that h"+1 = At s; forall i,j Set
fi= ) G, (14)
i
pttt=H-""i=12...n (15)
Bi= ) (" (16)
Then
1 = 0,B, = Sy - nH? (17)
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B; = 3HSy,— 2nH3 - f;. (18)
From (12), (16), (17) and Lemma (3.1.3), we get

1
585 = Y (W + by — 53— wHE +mify =y () W)

ijk p#En+1 i
n—2 3
gzk(hm_l) +nHH—SH — n’H? + nH [3HSH—2nH3—mB§] B,S;
ij
n(n —2) 1
Z(hnzl 2 4+ B, |n+2nH2 =5 — ——— =L (S, — nHZ)z]
i Y Jnn—1)

Z(hzv 2 _ lm_F n(n—2) H + 2(n1— ) Jn3(n—1)H? + 4n(n — 1)Zl

2 /n(n—-1)

> n(n — 2) B 1 S 5 —
lw/S—nH +2 n(n—l)H 2(n—1)‘/" (n—1)H? + 4n(n 1)] (19)

On the other hand, the assumption

i,j,k

S = an, H)
Is equivalent to
n(n —2) 1
S—nH?+ ———H — n3(n —1)H?+4n(n—-1)> =0, (20
v D) 2oV (n—1) (20)
which together with (19) shows that Sy is subharmonic on M. By the Hopf maximum
principle, we see that S;; must be a constant. This together with (19) and (20) force that

B,(Sy — nH?)z = By (S — nH?)z , (21)

— n(n—2) _ 1 _ 5 ~ 2’_
B, VS —nH +2 n(n—l)H 2(n_l)\]n:*‘(n 1)H* +4n(n—1)°[ = 0. (22)

If Sy = nH?, then M is a pseudo-umbilical submanifold.

IfS =S4 and
gz nm-2) o 1 3(y _ 2 — 1\2 —
VS —nH + - n(n—l)H 2(n_l)\/n (n—1)H?+4n(n—-1)2=0

then S = Sy = a(n,H), and S; = 0. Consequently M is a hypersurface in a totally
geodesic S™* (1). From (19) we have

n-—-2

3
B; = mBg . (23)
It follows from Lemma (3.1.3) that at least n — 1 numbers of {u**'} are same with each
other. Without loss of generality, we assume that u*' = u, k=12,...,n—1, and p?**?
=p. Then
m—Du+pu=0, (24)
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(n—1)i*+p%? = a(n,H) — nH? (25)
Substituting the solution of equations (24) and (25) with condition (n — 1)u3 + 3 > 0 into
(15), we get

Py \/(n—l)(a(n,H)— nH?) (26)

n

Hence M is the isoparametric hypersurface

1 A(n, H)

Sn—l ><51

/1+/12(n,H) /1+/12(n,H)
_ a(n,H)— nH?
where A(n,H) = H + /—n(n—l) :

Corollary(3.1.6)[59]. Let M™ be a compact hypersurface with constant mean curvature
(H=0) inS™1(1).if S = a(n, H), then either M is the totally umbilical sphere S"( 11H2)

or the isoparametric hypersurface s™1 <—1 > x 51( Mn.H) >

[1422(n.H) [1+22(n.H)

If M is a pseudo-umbilical submanifold with nonzero parallel mean curvature and p =
2, it is to see from a theorem of [58] that M is a minimal submanifold in

in S™*1(1),

Sn+p—1

with second fundamental form H,, o = n+2,...,n + p. Hence, we have

1+H2

the following

Theorem (3.1.7)[59]. Let M™ be a compact submanifold with parallel mean curvature
(H#0) in S™P(1). ifS = a(n,H), then either M is a totally umbilical sphere, a
isoparametric hyperurface in a totally geodesic S™*1(1), or a minimal submanifold in a

. +p—1 1
totally umbilical S™*P (m)

Theorem (3.1.8)[59]. Let M™ be a compact submanifold with parallel mean curvature in

§™P(1),. If S = C (n, p, H), then either M is the totally umbilical sphere S”(@) the

isoparametric hypersurface S™1[ ——— | x St —20H | in a totally geodesic
p

[1422(n.H) [1+22(n.H)
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sn*+1(1),, one of ~ne Clifford minimal hypersutfaces S* <\/§> X Sn-k< ﬂ) k =
12..... n — 1, in S®*1(1), the Clifford minimal surface

1 A(n,H 1
sn-1 x §1 (n H) in S3sn ,

/1+/12(n,H) /1+/12(n,H) 1+ H2
o 1
or the VVeronese surface in S ( m)

Proof. (i) If H=10, M is minimal. The assertion follows from the main theorems in [53, 54].
(i) If H= 0 and p = 1, we know from Corollary (2.3.6) that either M is the hypersphere

1 . .
S”( ) or the isoparametric hypersurface s»1 = xst| 2 )
J1+H?2 [1422(n,H) [1422(n,H)

(iii) f H=0and p 2 2, it is straightforward to see from (8), Proposition (3.1.2) and Lemma
(3.1.4) that

W= ) W+ D r(HuaHp = ) [traHp)

i.jk B#n+1 B#n+1
B#n+1
+nH Z tr(Hpe1Hp) — Z tr(Hz,1Hf) +nS;
B#n+1 p#n+1
2 2

— tr(HyHg — HgHy)? — ) |tr(H , Hp)] (27)

a,f+n+1 B#n+1
> Z ()2 +nH Z tr (Hp1H3) — Z [tr(Hpss Hp)]

ijk L#n+1 B#n+1

B#n+1
+nS; — (1 +% sgn(p — 2)) S2.
We know from Theorem 1that either M is pseudo-umbilical or the isoparametric

hypersurface 5n1< ! ) x S1 <M> in a totally geodesic S™(1), If M is pseudo-

[1+2%(n,H) [1+2%(n,H)

umbilical, then (27) becomes
NS, =Y ijk (hg.k)2 + (n +nH?)S, — (1 +% sgn(p — 2)) 57
B#n+1

>3 ik (W2 +S1[n+nH? = (1+3 sgn(p—2)) (S —nH?)| 2 0, (28)

B#n+1

This shows that S, is a constant, and the inequalities above become equalities. It is not hard
to see that

S: [n +nH? — (1 +% sgn(p — 2)) (s- nHz)] =0 (29)
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If S1 =0, then M lies in a totally geodesic sphere S™1(1) and M is the totally umbilical sphere

s'(7)
If n+nH? — (1 +% sgn(p — 2)) (S —nH?) = 0, namely
S= <n+g sgn(p—Z)) (1 - H?) +nH? | (30)
then h, = O and
Za,ﬁ¢n+1 tr(HaH[)’ - H[)’Ha)z - Zﬁ¢n+1[tr(Hn+1Hﬁ)]2 = (1 +% sgn(p - 2)) S%-

By Lemma (3.1.4) and the same argument as in [71], we conclude thatn = 2, and the second
fundamental form h can be written as follows

@ n=2andp=2,H3=H(1 O),H4=m(l O), or

01 0 -1
(b) n:2andp§3,H3:H(%) f),H4: “3”2(01 _3),H5=ﬁ(? é)

By Theorem (3.1.7), we know that M is a minimal submanifold in S*? ( ) with

1
V1+H?

second fundamental form H,, ..., H,,,. Therefore, M is the Clifford minimal surface

) or the VVeronese surface in 84(

1 A(nH . 1 1
5 () ' (k) in (7 )
Section(3.2). Sub Elliptic Operators Satisfying a Generalized Curvature Dimension
Inequality

Logarithmic Sobolev inequalities, introduced and studied by L. Gross [136], are a
major tool for the analysis of finite- or infinite-dimensional spaces, see for instance [118].
The celebrated Bakry—Emerycriterion [122] which is based on the so-called T, calculus for
diffusion operator sprovides a powerful way to establish such inequalities. However this
criterion requires some ellipticity property from the diffusion operator and fails to hold even
for simple subelliptic diffusion operators like the sub-Laplacian on the Heisenberg group
(see [141]). However in the past few years, most of these examples have in common the
property that the subelliptic diffusion operator satisfies the generalized curvature dimension
inequality that was introduced in [125] in an abstract setting. As we will see, this curvature
dimension inequality may also be used to prove the Poincaré inequality, the log-Sobolev
inequality or the Gaussian logarithmic isoperimetric inequality for the invariant measure of
a subelliptic diffusion operator in some interesting new situations.
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M will be a C* connected finite-dimensional manifold endowed with a smooth
measure u and a second-order diffusion operator L on M, locally subelliptic in the sense of
[132] (see also [140]), satisfying L1 = O,

jng du = ngfd,u, jfoduSO,
M M M

forevery f,g € C5°(M). We indicate with I" (f) := I' (f, f)the carré du champ, that is the
quadratic differential form defined by

1
r(f.9)=5{g) ~fLg—gLf),  f.g € (M). (31)
An absolutely continuous curve y : [ 0,T] = M is said to be subunit for the operator L iffor every

smooth function f : M — R we have |% f (y(t))| /(Ff)(y(t)). We then define thesubunit length of

yas€s(y) =T.Given x,y € M, we indicate with
S(Cx,y) ={y:[0,T] » M | y is subunit for L, y(0)=x,y(T) = y}.
we assume that
S(x,y) 9, for everyx,y € M.
Under such assumption it is easy to verify that
d(x,y) = inf{Z;(¥)|y € S(x,y), (32)

defines a true distance on M. Furthermore, it is known that

d(x,y) =sup{lf(x) = fO)| f €CM), IT (Pl <1}, x,y €M.  (33)
We assume that the metric space (M, d) is complete.

In addition to the differential form (84), we assume that M is endowed with another
smooth symmetric bilinear differential form, indicated with I'?, satisfying for f,g €
C*(M)

I'*(fg,h) = fr*(g,h) + gr*(f, h),
and '2(f) =T%(f,f) =0.
We make the following assumptions:
(H.1) There exists an increasing sequence h; € C5°(M) such that h; 71 on M, and
1T (Ridlle + IT#(Ri)llee =0, ask — oo
(H.2) Forany f € C*(M) one has
I'(f,.T%(f) = I'*(f, I ().

As it has been proved in [121], the assumption (H.1) which is of technical nature,
implies in particular that L is essentially self-adjoint on Cy°(M). The assumption (H.2) is
more subtle and is crucial for the validity of most the subsequent results: It is discussed in
details in [121] in several geometric examples. Let us consider

1
L(f.g) =§[LF (f,g) =T (f,Lg) —T'(g,L)], (34)
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FA(F.9) = 3 ILI7(F.g) ~ T(F.Lg) ~ T5(g.LPY] (35)
As for I' and ', we will freely use the notations I, (f) = L(f. f), LZ(f) = LZ(f. f).
Definition (3.2.1)[161]. We say that L satisfies the generalized curvature dimension
inequality CD(p4, p2, k,d) if there exist constants p; ER,p, > 0,k = 0,and 0 <d <
oo such that the inequality

1 K
L) +VIA(F) 2 S + (pr = =) T () + ol ()
holds for every f € C* (M) and every v > 0, where I, and L7 are defined by (34) and (35).
Theorem (3.2.2)[161]. Assume that L satisfies the generalized curvature dimension
inequality CD(p4, p3, k, ) with p;> 0, p,>0and k = 0.

(i) The measure p is finite and the following Poincaré inequality holds
2

[ rrau={ [ rau) =
M M
(if) If w is a probability measure, that is u(M) = 1, then for f € C,(M),

K+ py
P1P2

_frqwu f e D(L).
M

Allenfzd,u—ﬂlfzdulnﬂlfzdu

2(k + py) K+p; ,
Sw(lf(f)dﬂ"' o Alf(f)dM)

Theorem (3.2.3)[161]. Assume that the measure p is a probability measure and that L
satisfies the generalized curvature dimension inequality CD(p4, p,, k, ) for some p; € R,
p, => 0,k = 0. Assume moreover that

j eldz(xo,x) d‘Ll(X) < +00,
M
for some x, € M and 1 > 22 | then there is a constant po > 0 such that for every function
0

2
f e G (M),

[rowrau= [ pawin [ o< = [ r (i
M M M M

Adapting some methods of Bobkov, Gentil and Ledoux [127], we prove an analogue of
an Otto-Villani theorem [148]. We recall that L2-Wasserstein distance of two measures
v; and v, on M is defined by
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Wy, v,)? = inf [ @, )dM(x,y)

where the infimum is taken over all coupling of v; and v, that is on all probability measures
I1 on M x M whose marginals are respectively v; and v,.

Theorem (3.2.4)[161].. Assume that the measure p is a probability measure and that L
satisfies the generalized curvature dimension inequality CD(p4, p;, k, ) for some p; €
R,p, > 0,k < 0. If the quadratic transportation cost inequality

5 dv
Wy (i, v)? < cEnt, (—) (36)
du
Is satisfied for every absolutely continuous probability measure v with a constant ¢ < ﬁi :
1

then the following modified log-Sobolev inequality

r(f) r’“(f )
Enty(f) <G | —= du+C, | ——du
M
holds for some constants C; and C, depending only on ¢, p;,x, p,.
Theorem (3.2.5)[161]. Assume that the measure u is a probability measure, that L satisfies
the generalized curvature dimension inequality CD(p4, p,,k,») for some p; € R, p, > O,
k = 0 and that p satisfies the log-Sobolev inequality:

flenfzdu—]deu lnllfzduséﬂlf(f)dﬂ, fe ) (37)

for all smooth functions f € Cy°(M). Let A be a set of the manifold M which has a finite
perimeter P(A) and such that 0 < u(4) < 1, then

1

In2

P(A) > —— m|n< o > (4) [ In——=
4(3+p \/_\/_ g <n (A)>

Let us now turn to the fundamental question of examples to which our above results
apply. See [125].

A first observation is that if M is an n-dimensional complete Riemannian manifold and
L is the Laplace—Beltrami operator, the assumptions (H.1) and (H.2) hold trivially with I'?
=0. Indeed, the assumption (H.1) is satisfied as a consequence of the completeness of M and
the assumption (H.2) is trivially satisfied. In this example, the generalized curvature
dimension inequality €CD(p;,1,0,n) is implied by (and it is in fact equivalent to) the
assumption that the Ricci curvature of M satisfies the lower bound Ric = p;.
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Besides Laplace—Beltrami operators on complete Riemannian manifolds with Ricci
curvature bounded from below, awide class of examples is given by sub-Laplacians on
Sasakian manifolds. Let M be a complete strictly pseudo convex CR Sasakian manifold with
real dimension 2n + 1. Let 8 be a pseudo-hermitian form on M with respect to which the
Levi form is positive definite. The kernel of 6 determines a horizontal bundleH. Denote now
by T the Reeb vector field on M, i.e., the characteristic direction of 8. We denote by V the
Tanaka—Webster connection of M. We recall that the CR manifold (M, 8) is called Sasakian
if the pseudo-hermitian torsion of V vanishes, in the sense that T (T, X) = O, for every X €
H. For instance the standard CR structures on the Heisenberg group H,, ., and the sphere
§2n+1 are Sasakian. On CR manifolds, there is a canonical subelliptic diffusion operator
which is called the CR sub-Laplacian. It plays the same role in CR geometry as the Laplace—
Beltrami operator does in Riemannian geometry. We have the following result that shows
the relevance of the generalized curvature dimension inequality.

Proposition (3.2.6)[161]. (See [125].) Let (M, 8) be a CR manifold with real dimension
2n + 1 and vanishing Tanaka—\Webster torsion, i.e., a Sasakian manifold. If for every x €
M the Tanaka—\Webster Ricci tensor satisfies the bound

Ric,(v,v) = py|v|?,
for every horizontal vector v € H,, then, for the CR sub-Laplacian of M, the curvature
dimension inequality CD (pl,%, 1, d) holds with d = 2n and I'?(f) = (Tf)?.

In addition to sub-Laplacians on Heisenberg groups, more generally, the sub-Laplacian
on any Carnot group of step 2 has been shown to satisfy the generalized curvature dimension
inequality €D(0,p,,k,d), for some values of the parameters p, and k. Let us mention that
recently [126], study sub-Laplacians in infinite-dimensional Heisenberg type groups and
show that a generalized curvature dimension inequality is satisfied with d = +oo. In that
case the assumption (H.1) is of course not satisfied but is somehow replaced by the existence
of nice and uniform finite-dimensional approximations, so that with suitable modifications
the results of this topic may be used. For infinite-dimensional situations, see [139].

Another interesting example, which has been highlighted by several works is given by
the Grushin operator on R?™. It is defined by

L_i(fﬂ M aZ>
Ix? 2 0y?

i=1

Where ||x]|? = x2 +--- +x2 for x = (x4,...,x,) € R™. This operator admits the Lebesgue
L . 2
measure A as invariant and symmetric measure. If we set X; = Py Y =
i
2 2 o
x;j— and Z; = —, we can write this operator as
J ay; 0y;
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n n n n
L= ZXLZ + z Y2 = _in*Xi _zYiTjYi,j-
i=1 ij=1 i=1 i=1
The only non-zero Lie bracket relations are
[Xi. Y ;1= Z; forl<i,j <n
This algebra structure is then exactly the one of a Carnot group of step 2 and the criterion

CD(0, pz, k., n + n?) therefore holds with I'Z(f,f) = $1., (52

ayi)z and some constant p,.
Alsoit is easy to see that assumptions (H.1) and (H.2) are satisfied in that case. Let us
however observe that more general Grushin operators are considered in [160],and that they
cannot be handled at the moment with our methods, since their Lie algebra correspond to a
Carnot group of step higher than 2. We mention that some close results are obtained in [137]
for Fokker—Planck type operators. In those examples, that typically does not satisfy the
generalized curvature dimension inequality studied, the hypoellipticity of the operator stems
from its first order part; a situation radically different from the examples discussed above.
We assume that the operator L satisfies the curvature dimension inequality
CD(py, py, Kk, ) for some p; > 0,p; >0,k = 0.

The main tool to prove the fore mentioned theorems, is the heat semigroup P, = e'L, which is
defined using the spectral theorem. Since L satisfies the curvature dimension inequality
CD(p4, P2, K, o), this semigroup is stochastically complete (see [125]), i.e. P,1 = 1. Moreover,
thanks to the hypoellipticity of L, for f € LP(M),1 < p < oo, the function (t,x) = P:f(x) is
smooth on M % (0, «) and

Pof(x) = j p(x,y, O 0)du(y)

M
where p(x,y,t) = p(y, x,t) > 0 is the so-called heat kernel associated to P,.

Henceforth, we denote
Cy’ (M) =C*(M) n L*(M).
For ¢ > 0 we denote byA, the set of functions f € C,°(M) such that
f=g+e

for some £ > 0 and some g € C°(M), g = 0, such that g,/T'(9),T%(g) € L*(M). As
show in [125], this set is stable under the action of Py, i.e., if f € A, then P,f € A,.

Our goal is to prove Theorem (3.2.2). In that direction, we first establish a useful
gradient bound for P;.
Proposition (3.2.7)[161]. Lete > 0and f € A,. Forx € M, t = 0 one has

(YN Pef) + = ; P2 (P, f)rZ(InP.f)
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_oP1pat

<e e <Pt(f1“(|nf)) +

Proof. Let us fix T > 0 once time for all in the following proof. Given a function f € A,
for 0 < t < T we introduce the entropy functionals

B1(x,t) = (Pr—¢f)(x)I (InPr_f)(x),

D2 (x,t) = (Pr—ef)()?(IN Pr_ f) (%),
which are defined on M % [0, T]. As it has been proved in [125], a direct computation shows
that

K +

; & Pt(frZ(lnf))>

1

90,
L@, + Fr = 2(Pr—¢f)I'2(In Pr_.f),

and

J0)
L, +—= = 2(Pr_ /)T (IN Pr_cf).

Let us observe that for the second equality the hypothesis (H.2) is used in a crucial way.
Consider now the function
B(x,t) = a(t)D,(x,t) + b(t)D,(x,t)
= a(t)(Pr—cf)ITUN Pr_f)(x) + b(¢)(Pr—ef)()T? (In Pr_f) (x),
where a and b are two non-negative functions that will be chosen later. Applying the
generalized curvature dimension inequality CD(p,, p, k, ©0), we obtain

LO +22 = ' (Pr_o YN Pr_of) + b (Pro )T *(IN Pr_of)
+2a(Pr_f)T,(INPr_of) + 2b(Pr_of )7 (IN Pr_cf)
> (a' +2p1a = 265) (Pr_ )T (N Pr_f)

+(b" +2p,a) (Pr—¢f)T?(In Pr_.f).
Let us now chose

_oP1P2t
b(t) = e K+p;
and
b'(t)
a(t) = — ,
20,
so that
b+ 2p,a=0
and
a2
a’ +2p1a—21c? =0

With this choice, we get
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a0
R
L®+at_0,

and therefore from a comparison theorem for parabolic partial differential equations we have
Pr(8(, T))(x) = ®(x,0).
Since,
@(x,0) = a(0)(Prf)()I" (InPrf)(x) + b(O)(Prf) () *(InPrf)(x)
And
Pr(8(, 7)) (x) = a(T)Pr(fT (Inf))(x) + b(T)Pr(fI*(Inf)) (x),
A similar proof as above also provides the following:
Proposition(3.2.8)[161]. Let f € L*(M) such that f € C*(M) and I'(f),l'%(f) €
L*(M). For x € M,t > 0one has

K+ p, —2p1pot
r(pf)~+

Z4P1FP2% +
F(Pef) < e <t (P () + —
Proof. We introduce

P,

1 1

D1(x,t) =T (Pr—¢f)(x),
By (x,t) = I'? (Pr_f) (),
and observe that

J0)
Ly +—— = 2(Pr_.f),

and

1410
L, +—= = 21 (Pr_if),

The conclusion is then reached by following the lines of the proof of Proposition (3.2.7).
A first interesting consequence of the above functional inequalities is the fact that p;

> 0 implies that the invariant measure is finite.

Corollary(3.2.9)[161]. The measure p is finite, i.e. u(M) < +oo and for every x € M, f €

L*(M),

1
P.f(x) >, oo—j du .
tf( ) t-+ .U(M) .’ f u
Proof. Let f, g € Cy°(M), we have

fM (Pef — flgdp = fo t fM (a% Psf) gduds = jo t fM (LP,f)g duds

= jo t jM I (Bf, g)duds.

By means of Proposition (3.2.8), and Cauchy-Schwarz inequality, we find
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j (P.f - f)gdu‘
M

t -2p,p,s 1
S( j [ obafas ds) J||r(f)||w+ P2 Pz j r(gidu. (38)
0

P1 M

Now it is seen from spectral theorem that in L?(M) we have a convergence P.f — Pyf,
where P, f belongs to the domain of L. Moreover LP,f = 0. By hypoellipticity of L we
deduce that P.f is a smooth function. Since LP,f =0, we have I' (P,f) =0 and
therefore P, f is constant.

Let us now assume that u(M) = +oo. This implies in particular that P, f = 0 because
no constant besides 0 is in L2(M). Using then (3.2.7) and letting t — +oo, we infer

]M fgdy s( ] ¢ *hr ds> JIIF(f)IIm+ ";"2 Ir2(e)l., j I (g)? du.

Let us assume g = 0, g =0 and take for f the sequence hn from assumption (H.1). Letting
n — oo, we deduce

j gdu <0,
M

which is clearly absurd. As a consequence u(M) < +oo.
The invariance of u implies then

jM P.f dy =jMfdu,

and thus

1
R
Finally, using the Cauchy—Schwarz inequality, we find that for x € M, f € L2(M), s,t,T =
0

|Pt+‘cf(x) - Ps+‘cf(x)| — |P‘L'(Ptf - Psf)(x)l
jM p(T.%.9) (Pof — P.F)3)(dy)

< j (1.2, 9)? u(dy) IPf — Pof 2
M

< pQt,x, )IP.f — BflI5
Thus, we also have

Pef () toren s MF di
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We also deduce a spectral gap inequality:
Corollary (3.2.10)[161]. For every f in the domain of L,

[ rane ([, ran) <22 [ rpa

Proof. We use an argument close to one found in [151]. Let f € C* (M) with a compact
support. By Proposition (3.2.8)m we have for t > 0

—2p1pyt
jM F(Pf, Pof)du < C(f)e ©%: |

with

i ; P2 125, Fdp.

1

C(f) = jM I (f.f)+

By the spectral theorem, one has

j [(Pf, Pof)dp = j “he? dEy(f)
M 0

and

jM I (f f)du= jo "1 dE(f)

where dE;is the spectral measure associated to —L. Thus, by Holder inequality, for0 < s <
t
s t=s
[ee) [ee) t [ee) t
| rees ppydn= [ e am) < ( | e d&(f)) ( | 2 d&(f))
M 0 0 0

t—s

s T2P1PoS Tt
< C(H)E ¢ =0 ( jM r(ﬁf)du)

Letting t — oo gives

—2p1pyS
j [(Pof Pof)du < ¢ *2 j I (f. f)du
M M

for all C* function with a compact support. Since this space is dense in the domain of the
Dirichlet form, it implies the desired Poincaré inequality.

We also deduce a modified log-Sobolev inequality that involves a vertical term:
Corollary (3.2.11)[161]. Let us assume u(M) = 1. For f € Cy(M),

f fzzandu—f deulnf £2 dy sz("”’”(f r(f)du +"+”2] FZ(f)du>-
M M M P1P2 M P1 M
Proof. Let g € A,. We have
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+oo a
] glngdu—] gdu ln] gd,u=—] a—] P.g In P,g dudt
M M M 0 t M
+00
—j j LP;g In P g dudt
o Jm
+oo rP
:j j (Pe9) dudt
0 v Ptg

+00
=j j P.gI'(InP,g)dudt
o Jm

+o0 —2p,p,t

SL e KPy dt fM (g]“(lng)+ o gr (Ing))
) [ (19, xen ),

PP, P g
Let now f € Co(M) and consider g =&+ f2 € A,. Using the previous inequality and
letting € — O, yields

jM f2inf2du —jM f2du In jM f2du

SMJ F(f)du+ﬂf r(f)du.
P1P; M Py Ju

We assume that the operator L satisfies the curvature dimension inequality
CD(p,, p,, K, ) for some p, € R,p, > 0,k = 0. We shall denote p; = max(—p,0).

We show Theorem (3.2.3).

Proposition (3.2.12)[161]. Lete > 0 and f € A.. For x € M, t > 0 one has
tPf T (INPef)(x) + pat*Pef ()T #(IN Py £)(x)

2
<(1+ p—" +25,6) [ P(f IN () = Pf () In Py £ ()]

Proof. We may assume p; = 0. We proceed similarly to the proof of Proposition (3.2.7).
Letf €A4,0<t<Tand
D1 (x,t) = (Pr—f)(x)I (InPr_, f)(x),
B2(x, t) = (Pr—¢f) ()T *(In Pr_¢ f)(x),

As before, we consider the function

B(x,t) = a(t)D,(x, t) + b(t)D,(x, t)

= a(t)(Pr_¢f) ()T (InPr_f)(x) + b(t)(Pr—e f) () *(InPr_f)(x),

where a and b are to be later chosen. As already seen, applying the generalized curvature

dimension inequality CD(p, p,, k, ), we obtain

L0+52> (a' +2p1a - 2c5) (P T (N Pr_ f)

76



+(b" +2p,a) (Pr—¢f)I?(In Pr_ f).
The idea is now to chose the functions a and b in such a way that
b+ 2p,a=0

and
a2
a +2pa— ZKF >C

where C is a constant independent from t. This leads to the candidates

O == -1)
‘ _Pz

and
b(t) = (T —t)%
for which we obtain
1 2k 2p,
P2 P; P2

For this choice of a and b, we obtain

1)
LY +E = C(Pr—¢f)T (INPr_¢ ).
The comparison principle for parabolic partial differential equations leads then to

T
Pr(0(- T))(x) = 8(0, %) + C j PU((Pr_o /)T (In Py_y £)) (X)dt.
0

It is now seen that

T
j Pe((Pr—e T (InPr_, f) (x)dt = Pr(f In f)(x) — Prf(x) InPrf (x),
0

which yields
T Prf(x)L(InPrf)(x) + pT?Prf (x)T#(In Prf)(x)

2
<(1+ p—" +25,T) [ Pr (fIn)() = Prf () In Py f ()]

Using a similar argument, we may prove the following:
Proposition (3.2.13)[161]. Let f € C,°(M), then for x € M,t > 0 one has

1 2
(P + ot TP < 5(1+ 5+ 20,8 ) [P () = PG

2
As a consequence, we get the following useful regularization bound that will be later used:

Corollary (3.2.14)[161]. Let f € Cy°(M), then for all t > 0,

1
_\2

1+£+pt

IWFEDI. <|=22—] Ifll..

t

77



An important by-product of the reverse log-Sobolev inequality that was proved in the
previous section (Proposition 3.2.12) is the following inequality that was first observed by
F.Y. Wang [154] in a Riemannian framework.

Proposition (3.2.15)[161]. Leta > 1. For f € L*(M), f = 0,t > 0,x,y € M,

. [l+—+2pt
(P)() < PO ) exp | — | —E2 d*(x.)

4t

Proof. We first assume f € A,.
Consider a subunit curve y:[0,T] » M such that y(0) = x,y(T) = y.Let « > 1 and
B(s)=1+(a—-1) - 0<s <T. Let
a
0(s) = ——InP, A (y(s)), 0<s <T,
where t > 0 is fixed. Differentiating with respect to s and using then Proposition (3.2.12)
yields

: a(a — 1) P,(fFO InfFO)) — (PfED) In PfF®  a e
s Th(s)? P fE® BGs) \/r (InPef7)
a(a — 1)t o @ o
= Tﬁ(s)z(l + pﬁ + Zﬁlt) F(In In Ptf‘g _ﬁ(s) \/r (ln Ptf )
2

Now, for every A > 0,

1 yE
~ P anPfrO) 2~ (1n P fP) - 2

If we chose
@+ 425,
2= : T
2@—Dr PE)
we infer

2K _
a(l+ —+2pt)

A PR

Integrating from O to L yields

2K _
a(l+ —+2pt)

a (04 pZ
P 0) = IN(Pef) () 2 = — s — 12

Minimizing then T2 over the set of subunit curves such that y(0) = x and y(T) = y gives
the claimed result.

If felL*(M), f=0, then for e >0, n0, and 7 > 0, the function ¢ + h, P.f €
Ag, where h,, € C;°(M) is an increasing, non-negative, sequence that converges to 1.
Letting then e - 0,n — oo and T — 0O proves that the inequality still holds for f € L*(M).
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An easy consequence of the Wang inequality of Proposition (3.3.15) is the following
log-Harnack inequality.
Proposition (3.2.16)[161]. For f € L*(M), inf f > 0,t >0,x,y € M,

1+ p—K+2Elt
P(Inf)(x) < InP.(f) (y) + Z—t d?(x, y).

The proof of this result appears in [158] where a general study of these Harnack
inequalities is done. For the sake of completeness, we reproduce the argument here.

1
Proof. Applying Proposition (3.2.15) to the function f2" for a=2", we ge
2K —
1+ —+2pt

o -n 1 p
P < (PN oxp| g | —— | @)

Now, since 27" — 0 as n — oo, by the dominated convergence theorem,

2
P(INf)() = lim P, <f2_1> ()

_ 1+ 2—K+25lt
PefON? " exp(Gr— <4—) d?(xy))-1

< lim

Z—n

1 1+ i—:+z;1t )
-n exp( 271._1 At d (x,y))—l

2—71.

R
= lim [5— + (P, f())°

—-n
n—oo 2

1+ 2425, ¢t
=In(Pf () + | 24— | *@.y).
When p is a probability measure, the above log-Harnack inequalities implies the
following lower bound for the heat kernel.
Corollary (3.2.17)[161]. Assume that p is a probability measure, then for t > 0,x,y € M,

1+ %+2§lt
P2 (x,y) = exp| -————d*(x,y) |.

4t

Proof. Again, we reproduce an argument of Wang [159]. By applying Proposition (3.2.16)
to the function f(:) = p;(x,-) and integrating over the manifold, one gets

2K —
1+ —+2pt

] pe(x,2) Inp, (x,2)du(z) < In] pe (v, 2) pe(x, z)dp(z) + pdez(x,y)-
M M
Now, by Jensen inequality, [, p:(y.z) p.(x,z)du(z) = 0 thus
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2K -
1+ —+2pt

INpe(x,y) = ——2——d?(x,y).
4t y

With Wang’s inequality in hands, we can prove a log-Sobolev inequality provided
the square integrability of the distance function.
Theorem(3.2.18)[161]. Assume that the measure u is a probability measure and that L
satisfies the generalized curvature dimension inequality CD(p4, p,, k, ) for some p, €
R,p, > 0,k = 0. Assume moreover that

j e/ldz(xo,x) d‘Ll(X) < 400,
M

for some x, € M and 1 > % , then there is a constant C > 0 such that for every function
f € Ly (M),

fM f2Inf? du —jM f? dulan f2du< CfM I (f)du

Proof. Let « > 1 and f € L™(M), f = 0. From Proposition (3.2.15), by integrating with
respect to y, we have

o 1+ ?+ 2p,t
| remanoy = @@ [ ew| -t (——) ¢ Jauw)

2K —
1+ —+2pt
(04 _ a ,02 ' 2
= (P.f)*(x) o) exp( po | ( - >d (x, y)> du(y)

1+ X, 2t
> u(B(xo,1)) (P.f)*(x)exp (— ” i 1 ( - >d2(xo. x) + 1)> :

4t
As a consequence, we get

1 1+ i—K +2pt
(P)C) < ; exp (a — ( = )dZ(xo,x) . 1)) Il
,Ll(B(Xo, :I-))a

Therefore if
j e/ldz(xo,X) d‘Ll(X) < +OO,
M

for some x, € M and 1 > % ,, thenwe can find 1 < a < 8 and t > 0 such that
||Ptf||LB < Ca,ﬁ”f”L“.
for some constant C,, . This implies the supercontractivity of the semigroup (P;), = 0 and

therefore from Gross’ theorem (see [119]), a defective logarithmic Sobolev inequality is

satisfied, that is there exist two constants A, B > 0 such that
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]M f2Inf2du —]M f2du In ]M f2du SA]M I (f)du B]M f2du, f € C(M).

Now, since moreover the heat kernel is positive and the invariant measure a probability, we
deduce from the uniform positivity improving property that L admits a spectral gap. That is,
a Poincaré inequality is satisfied. It is then classical (see [118]), that the conjunction of a
spectral gap and a defective logarithmic Sobolev inequality implies the log- Sobolev
inequality (i.e. we may actually take B = O in the above inequality).

If we take the dimension in the generalized curvature dimension inequality, we may
obtain an upper bound for the log-Sobolev constant under the assumption that the curvature
parameter p, is positive.

Theorem (3.2.19)[161]. Assume that the measure u is a probability measure and that L
satisfies the generalized curvature dimension inequality CD(p1,p2,k,d) for some p; >
0,p, > 0, k = 0and d = 1. For every function f € Cy°(M),

[ rrmfrau-[ praon[ prausc| ¢

_3(p + k) d 3k
C= — <1 +d (E (1 + 2_Pz>>>

d(x)=A+x)In(1+x) —xInx.
Proof. It is proved in [125] that the generalized curvature dimension inequality
CD(p1, p, k,d) with p; > 0,p, > 0,k = O0and d > 0 implies the following upper bound
for the heat kernel: For x,y € M and t > 0,

with

where

1

p(x,y,t) <

_ 2p1pat %(1"'237’{2).
(]_ — e 3(p2+K) >
Therefore, from Davies’ theorem ( in [129]), for f € C5°(M), we obtain the following
defective log-Sobolev inequality which is valid for every t > 0O,

| rnrzau-| fraum| rrau

3 2pp,yt
< 2tj r(f)dy—d<1+237k> In <1—e 3(Pz+'f)> j f2du.
M 2 M

The previous heat kernel upper bound also implies that —L has a spectral gap of size at least

—32)’1:’1). Therefore, the following Poincaré inequality holds
2
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, ©_3(pp+ )
]Mf dli_<jMfdll> SW r{f)du.

M
If we combine the two previous inequalities using Rothaus’ inequality and then chose the

optimal t, we get the result.

Theorem (3.2.20)[161]. Assume that the measure u is a probability measure and that
L satisfies the generalized curvature dimension inequality CD(p4, p,, k, d) for some p; >
0,p, >0,k > O0andd > 0.

(i) The metric space (M, d) is compact if and only if a log-Sobolev inequality

Lf”nﬂdujkfﬁwhd;f“wSCL;FUMM fecsan  (39)

Is satisfied for some C > O.
(i) Moreover, if (M,d) is compact with diameter D then, there is a constant
CD(p4, py, Kk, d) such that

< C(pla p21 K! d)
— min(1, pp)
where = is the smallest constant C such that (125) is satisfied.

Po

Proof. If M is compact, then
j o A2 (xo.x) du(x) < +oo,
M

for every x, € M and 4 > % . Therefore, from Theorem (3.2.18), a log-Sobolev inequality

IS satisfied.
Let us now assume that

Lﬂmﬂmhhfwwﬂ?FwS%Lme,fH$W)

Is satisfied.

Here we only sketch the proof, since we may actually follow quite closely an argument
from Ledoux [143]. The key is to note that the curvature dimension inequality
CD(p4, p,, k,d)for some p; €ER, p; > 0,p, > 0,k = 0and d > Oimplies a Li-Yau type

inequality. In particular for 0 <t < 1 and a positive function f

LP, B
S B

where A and B are some explicit positive constants depending only on p,, p,, K, d. Since
LPtf

= d: In P.f, integrating between t and 1 yields, with y = 2,
t

0<A4

1
Ptht—yPJ forall 0 <t<1
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Using now the equivalence between the log-Sobolev inequality and the hypercontractivity of the
heat semigroup due to Gross, we find that for1 <p <g <o

I1Pefllg < IIfllp

-1
as soon as 2”0t > I—  Therefore, fort = 1,p =2andq =1+ ",

1 1

Such a semigroup estimate implies a Sobolev inequality

7112 81713 + VTG )

for some r > 2 . Finally, the conjunction of the logarithmic Sobolev inequality and of the
above Sobolev inequality implies an entropy-energy inequality that may be used to prove
that the diameter is bounded . Carefully tracking the constants leads to the desired bound for
the diameter.

We shall examine the links between the log-Sobolev inequality and some
transportations cost inequalities. First, it is well known that the log-Sobolev inequality
implies some transportation inequalities in a general “metric” setting. Conversely, on a
weighted Riemannian manifold, under the hypothesis that the Bakry—-Emery curvature is
bounded from below, the converse implication holds true.

We shall study how some transportation inequalities can, if the generalized curvature
dimension inequality is satisfied, imply a log-Sobolev inequality. Unfortunately, we were
only able to establish a partial converse in the sense that the log-Sobolev inequality we
obtain involves a term with I'Z,

we assume u(M) = 1.
Let us begin with some notations. For a positive function f on M, we write

Ent,(f) = fM finfdu — fM fdu In fM fdu.

We recall that the L2-Wasserstein distance of two measures v, and v, on M is given by

W, v,)? = inf [ @2(x,y)dmG,y)
M

where the infimum is taken over all coupling of v; and v, that is on all probability measures
I1 on M x M whose marginals are respectively v; and v,.

Proposition (3.2.21)[161]. Assume that L satisfies the generalized curvature dimension
inequality CD(p,, p,, k, ) forsome p; € R, ,p, > 0,k = . Letf be a non-negative function

on M such that foduzl and set dv=/fdu. Then, for any ¢t >0,
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1+ 2425t

Ent, (Pf) < | —4 Wy (i, v)>.

Proof. Let t > 0 and f be a positive function on M such that fM f du = 1. The log-Harnack
inequality of Proposition(3.2.16) applied to the function P, f gives then

1
PN PAYG) < InPoe () +3 d2(x.7),

with
4t

$= 2K
1+ ==+ 25t
P2

For x fixed, by taking the infimum with respect to y on the right-hand side of the last
inequality, we obtain

Pi(InP.f)(x) < Qs (In Py f)(x)

where @, is the infimum-convolution semigroup:

1
- 2
Qs(p)(x) = Jnf {fp(y) +5od(xy) }
Setting ¢ = In P, f, by Jensen inequality

M M M
thus

PN Pof)(x) < 0u(9) (x) — j pdy.
M

Since by symmetry:

Entu(Pf) = | f PN Puf) di
M

one finally gets

Ent,(f) < sup { jM Qs W) (x)dv — jM wdu}.

where the supremum is taken over all bounded measurable functions i and where the
measure v is defined by Z_Z = f. By Monge—Kantorovich duality,

sup {Qs(w)(x) -/ wdu} =inf [ TCoy)ancy)

where the infimum is taken over all coupling of u and v and where the cost T is just
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1 2
T(x.y) =<d*(xy).
Therefore the latter infimum is equal to §W2 (u,v)2.

The following lemma may be proved in the very same way as Proposition (3.2.7)
Lemma(3.2.22)[161]. Assume that L satisfies the generalized curvature dimension
inequality CD(pq, p,,k, ) for some p, ER,p, > 0, k =0.Lete >0and f € A,.For x €
M, t =0 one has

PfT(INP.f) + PfT?(InPf) < e***(P(fT(Inf)) + P.(fT*(Inf))), t=0,
where a = —min(p2,p1—x,0).
Theorem(3.2.23)[161].Assume that L satisfies the generalized curvature dimension
inequality CD(p4, p,, K, ) for some p; € R,p, > 0, k = 0. If the quadratic transportation
cost inequality
dv
W,(u,v)? < cEnt, (d_) (40)
u
Is satisfied for every absolutely continuous probability measure v with a constant ¢ < pz—l,
then the following modified log-Sobolev inequality

Z
Entﬂ(f)Clj P v, j d ;f)
M M

holds for some constants C; and C, depending only on c, p;, k, p,.

du, f €A, e>0,

Proof. Let f € A, such that fM f du = 1, by the diffusion property, we have

d
—Ent, (Pcf) = —1(P:f)

dt
with
r'(Pf)
I(P.f) = du.
(Pf) fM pr
From Lemma (3.2.22), we have
%}f) < e*™(P(fr(Inf) + P.(fr*(In£))),

which implies, by integration over the manifold M,

2at @d FZ(f)d>
I(Pf)<e <fM 7 u+fM 7ok

As a consequence,
T

Ent(f) < [ 1Pf)de + Ent, (Pr )
0
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T

Z
< 0jez‘“dt <M ;f) +jM d ;f) du>+Entﬂ(PTf).

We now use Proposition (3.3. 21) and infer

Ent,(f) < f 2at g, <f T s jM rZ;f) dﬂ)

2K
1+ p_+2pl

Z-t WZ(M! v)Z’

where dv = f du. Using the assumption W,(u,v)* < cEnt,(f)and choosing T big
enough finishes the proof.

We assume that the measure u is a probability measure, that is u(M) = 1, and we
show how the curvature dimension inequality CD(p4, p,, k, ) together with a log-Sobolev
inequality implies alogarithmic isoperimetric inequality of Gaussian type. The method used
here is very close from the one in Ledoux [142].

We first need to precise what we mean by the perimeter of a set in our subelliptic setting:
This is essentially done in [134].
We observe that, given any point x € M there exists an open set x € U < M in which the

operator L can be written as
m
- z X;X;, (41)
i=1

where the vector fields X; have Lipschitz continuous coefficients in U, and X;" indicates the
formal adjoint of X; in L2(M, dp) .

We indicate with F(M) the set of C! vector fields which are subunit for L. Given a
function f € L], .(M), which is supported in U we define the horizontal total variation of f
as

var()= sup [ £ xige)du

QEF(M) Jy i=1
where on U, ¢ = Y, @; X;. For functions not supported in U, Var(f) may be defined by
using a partition of unity. The space
BV(M) ={f € L'(M) | Var(f) < o},
endowed with the norm
W lsvany = If 2y + Var(f),
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is a Banach space. It is well known that W11(M) = {f € LY(M)|/T'f € L*(M)} is a strict
subspace of BV (M) and when f € W1(M) one has in fact

Var(f) - ||\/r_f||L1(M) )

Given a measurable set E ¢ M we say that it has finite perimeter if 1z € BV (M). In such
casethe perimeter of E is by definition

P(E) = Var(1g).
We will need the following approximation result,
Lemma (3.2.24)[161]. Let f € BV (M), then there exists a sequence {f;, }neny Of functions
in C5° (M) such that:

@ = fllrqry = 0
(i) [, VI (R du - Var(f).

After this digression, we now state the follwing theorem.
Lemma (3.2.25)[161]. Assume that L satisfies the generalized curvature dimension
inequality CD(p1,p2, k,2), let f € C,°(M), then forallt >0
1 «k
IF =Peflls (5 + o=+ fut) VE I (). (42)

2
Proof. First, since the curvature dimension inequality CD(pq,p5, k,) holds true, by

Corollary(3.2.14), forall g € C°(M) and forall 0 <t < t,,

(R
5 T+ Pty

2
Ir el < | =—L2—— |llgll.

Therefore, by duality, for every positive and smooth function f, every smooth function g
such that|lgll., <1andall 0 <t < t,,

fM g(f = Pef)du=— jot fM gLP.f du ds
=/ t | rehg. pduas

<Ir NIl 4 j PRI o ds
0

<5+ 2+t VE I (DI

Theorem(3.2.26)[161]. Assume that L satisfies the generalized curvature dimension
inequality CD(p4, p,, k, ) and that u satisfies the log-Sobolev inequality:

]M £2 1n f? dy - ]M £2du In ]M £2 du < pio ]M r(f)du, (43)
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for all smooth functions f € C;°(M) . Let A be a set of the manifold M which has a finite
perimeter P(A) and such that 0 < u(4) < % then

N

In2

P(A) = < , ) A)(In——s=
4(3+—)mm J_J_ (i (A))

Proof. Let A be a set with finite perimeter. Applying Lemma (3.2.26) to smooth functions
approximating the characteristic function 14 as in Lemma (3.2.24) gives

1 «
114 — Pel4lly < 5 +p_+ p,t Ve P(A).
2
By symmetry and stochastic completeness of the semigroup,

11y — Pedyll, = j (1 - P1,)du+ j P.(1,)du
A

AC

- j (1 - Pl)du+ j (P Lpe)dn
A A
:2<M(A)— f Pt(lA)dp->
A

)
)
theorem it is well known that the logarithmic Sobolev inequality

2
| rrmprdu-[ paun| frans [ r(odu fecson
M M M Po m
Is equivalent to hypercontractivity property

IP:fllg < IfIlp
q-1

forall fin LP(M) whenever 1 <p < q < oo and ePot > Py

=2 <.U(A) -

P:(14)

2

. Indeed, from Gross’
2

P:(1A)

Therefore, with p(t) =1 + e"Pot < 2, we get,

1 x 2
5+ . put) VE P(4) 2 2(u(4) — p(4)P®)

1—e_p0t

= 2u(A)(L — p(A)rverot),

x 1 1—e7* x 1
1—e" mm( ) nd 2m|n< )

Since forx >0

2'2) M T ex 4’2

1—e”Pot pot 1 1
1+e~Pot < _ —_
u(A)i+e _exp( mm(4 4)I M(A))
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1-e~Pot t 1 1 1
1 —‘u(A)1+e_Pot < min (mln (%,Z)lnm,z)
Therefore for all t > 0,
2 pot 1 1 1
> —,= ).
P(A)_<l+£+— ) u(A)mm(mln( g 4)Inu(A)’2) (44)
p.t t
2 p, 1
With t, = min(pi,!_)l),for 0 <t <ty we have

t 1 1
pu(4) min (pi In—,—)
B
2 p, P1

8 u(d)'2
Now, if p(A) is small enough, i.e. u(4) < e~*, we can chose t = 4tf < t, SO that

P(A) =

M@
mln(p8° Inm %) = Poco
PO\/_ p(A)(In (A))Z
P(4) 2 —
P2

When 0 < u(4) < % we can apply (3.2.26) with t = t, and since Inﬁ >1n2,
_ (Pot 1 1 Poto N2
m|n< ) <

s @2 2
and thus
In2 poVtou(A)
P(4) = 2; 021c
+_
(3+3,)

Noticing Inﬁ <4 if u(A) = e*, we obtain that for every Awith0o < u(4) < %
poy/to 1(A)(In W)f In2
4(3+57)

P2

P(A) =

Keeping in mind thatt, = mm(— p— :
1
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Chapter 4
Stochastic Completenss and Sub-Riemannian Curvature Dimension
Inequality
We give a different proof of (and extend) a theorem in Baudoin and Garofalo stating
that when a smooth, complete and connected manifold satisfies the generalized curvature-
dimension inequality introduced, then the manifold turns out to be stochastically complete.
The key ingredient is the study of dimension dependent reverse log-Sobolev inequalities for
the heat semigroup and corresponding non-linear reverse Harnack type inequalities. The
results apply in particular to all Sasakian manifolds whose horizontal Webster—Tanaka—
Ricci curvature is nonnegative, all Carnot groups of step two, and to wide subclasses of
principal bundles over Riemannian manifolds whose Ricci curvature is nonnegative.

Section (4-1). Volume Growth in Sub-Riemannian Manifolds

By Baudoin and Garofalo [164] a generalizsation of the curvature- dimension
inequality was introduced of sub-Riemannian manifolds. It proved, among other results, that
if a smooth manifold M satisfies such generalized curvature-dimension inequality with a
finite bound from below on the curvature parameter, then the stochastic completeness of the
heat semigroup follows. Such result extended to a sub-Riemannian setting a classical 1975
result by Yau, see [174].

We generalize this result in [164]. Namely, we extend a result by Grigor’yan (see
Theorem 11.8 in [68]) that gives a condition on the growth of the volume of balls that
guarantees stochastic completeness. We establish a point wise estimate of the volume of the
metric balls when the manifold satisfies the curvature-dimension inequality. Once that these
results are established, the stochastic completeness proved in [164] will follow as a special
case.

It is worth mentioning that the strength of Grigor’yan’s theorem is that it only
requires the volume condition to hold at one particular point. This is of special importance
in the sub-Riemannian setting, since obtaining point wise estimates of the volume of the
metric balls is an easier task than establishing the uniform control provided by the Bishop-
Gromov comparison theorem. We should however mention by Baudoin et al. [163], in
which a global doubling property has been proved when the generalized curvature
dimension inequality holds below with a nonnegative curvature parameter. A detailed
exposition on the subject of curvature-dimension inequalities and Ricci-lower bounds for
sub-Riemannian manifolds can be found in [164].

We establish with the help of a Harnack inequality some new volume estimates when
the manifold satisfies the generalized curvature-dimension inequality CD(p, p,, k, d), with
a negative curvature parameter p,. We generalize Grigor’yan’s theorem to a metric setting
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and show that the estimates obtained below imply the stochastic completeness of any
manifold satisfying the generalized curvature-dimension inequality.

One of the most important identities in Riemannian geometry is the one due to
Bochner. The latter states that if M is an n-dimensional Riemannian manifold with Laplacian
A, forany f € C*(M) one has

A(IVFI?) = 2|[V2fII? + 2(Vf,VAf) + 2Ric(Vf,Vf), (1)
where Ric indicates the Ricci tensor of M.Consider the following differential forms on
functions f,g € C*(M),

1
r(f,0 =5 (A(f9) — fAg—gAf) = (Vf,V9),

and

1
[2(f.9) =5 [AL(f,0) =T (f.89) =T (9.41)]

When f = g, we simply write T'(f) = T'(f,f), T(f) = Ty(f,f). In terms of
these functionals, Bochner’s identity can be reformulated as

T,(f) = 2|IV*fII> + Ric (Vf,Vf).
Since the Cauchy-Schwarz inequality gives ||V2f]|? 2% (Vf)?, it is clear that if the

Riemannian Ricci tensor on M is bounded from below by p; € R, then we obtain the so-
called curvature-dimension inequality CD(p4, n):

L(F) 20 (72 + ol (), @
where f € C*(M). One should notice that by combining Theorem 1.3 in [173] with
Proposition 3.3 in [162] the following result is obtained: on a complete n-dimensional
Riemannian manifold M the inequality CD(p,, n) is actually equivalent to Ric = p;.

Baudoin and Garofalo in [164] introduced a generalization of the curvature-dimension
inequality (2) which has proved successful in extending to some sub-Riemannian settings
several results from Riemannian geometry.

Here is a brief description of their framework which is the same we are going to work with.
See [164].

Consider a smooth connected manifold M endowed with a smooth measure p and a
smooth second-order diffusion operator L, which is assumed to be locally sub-elliptic, with
real coefficients and satisfying:

(i) L1=0;

(i) [, fLodu =], gLfdy;
(iiy [, fLfdu <0,
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forevery f,g € C5° (M), where Cy;° (M) denotes the set of smooth and compactly supported
functions f : M — R.

There is a notion of “length of a gradient” canonically associated to L.Consider in fact the
bilinear differential form:

[(f.9)=5 @ (f9)~ flg~ oLf)
where f,g € C*(M), and set
I'(f) =T(.f)

There is also a canonical distance d associated with L which is continuous and defines the
topology of M. It is given by

d(x,y) = sup{lf (x) — fFIf €M) IT(Nllw =1}, (3)
where for a function g on M we have let ||g||, = ess supy|g|. It is assumed that the metric
space (M, d) be complete.

For the purposes it will be necessary to work with yet another distance on M. Such
distance is based on the notion of subunit curve introduced Fefferman and Phong in [166].
Here is a brief description of such metric. A result of [171] shows that, given any point x €
M, there exists an open neighborhood of x, U,, € M, in which the operator L can be written

as
m
L =-— ZX;" X;,
i=1

where the vector fields X; have Lipschitz continuous coefficients in U, and X; indicates the
formal adjoint in L?(M,du). Such representation of L is not unique, and the number of
vector fields X; varies with the representation. However, m is bounded from above by the
dimension of M. A tangent vector v € T,M is called subunit for L at x if v =
moa; X; ,with X%, a? < 1. The notion of subunitvector does not depend on the local
representation of L. Furthermore, a Lipschitz path y:[0,T] — M is called subunit for L if
Y'(t) is subunit for L at y(t) for a.e. t € [0, T]. The subunit length of v is defined as s(y) =
T. The set of subunit paths joining x to y in M is denoted by S(x,y). We assume that
S(x,y) = @ foreveryx,y € M, so that
ds(x,y) = inf{l; (N)ly € S(x, »)}, (4)
defines a true distance on M. We can work indifferently with either one of the distances d
and d; since
d(x,y) = ds(x,y).
In addition to ", we assume that there exists another first-order bilinear form I'? satisfying
for f,g,h € C*(M):

() T*(fg.h) = fT*(g.h)+gT*(f h);
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(i) T*(f) =T%f.f) =0
Similarly to the Riemannian case, we introduce the following second-order differential
forms:

1
r(f.9) =5 [LT(f.9) — T(f.Lg) — T'(g.Lf)]

1
r3(f,9) = 5ILT* (f,9) = T*(f.Lg) = T"(g.Lf)],
andwe let T,(f) = To(f.f).T3(f) = T3(f.f).

The following definition was introduced in [164] and it occupies a central role in the
developments in that work. It is a generalization of the above mentioned curvature-
dimension inequality (2).

Definition (4.1.1)[175]. We shall say that M satisfies the generalized curvature-dimension
inequality CD(p4, p,, k, d) with respect to L if there exist constants p; € R,p, > 0,k = 0,
and d = 2 such that the inequality

1
Lo () +vI3(F) 2 SN2+ (o =) T(F) + pal % f) 5)
holds for every f € C*(M)and every v > 0.
From now on we set

D =d(1+>) (6)

2p;
where p,, k, d are the parameters in (5).

We emphasize that the parameter p, plays the role of a lower bound on a sub-
Riemannian version of the Ricci tensor, see [164]. We now introduce the general
assumptions we will be working with.

Hypothesis (4.1.2)[175]. There exist an increasing sequence h;, € Cy°(M) such that h;, 71
on M, and
IRl + [T2CRi)||, = 0. as k » o,
Hypothesis (4.1.3)[175]. For any f € C* (M) one has
C(£. T (f)) = T (f.T()

Hypothesis (4.1.4)[175]. There exist p; € R,p, > 0,k >0, and d = 2 , such that M
satisfies the generalized curvature-dimension inequality CD(p4, p,, k, d) with respect to L.

Under these hypothesis it was proved in [164] that L is an essentially self-adjoint
operator on Cy°(M) whose Friedrichs extension (that we continue to denote by L) is the
generator of a strongly continuous semigroup of contractions on L2(M), which we denote
P, = etL. Since the semigroup (P,), = 0 issub-Markovian we have

1< 1.

By Hormander’s theorem [169], (t,x) — P.f (x) is smooth on M % (0, c0) and
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Pf (x) = j p (1,3, 0) FO)AR(),

M
where p(x,y,t) > 0 is the so called heat kernel associated to P;. Such function is smooth

and symmetric, i.e.,

r(x,y.t) = p(y,x.1).
By the semigroup property for every x,y € Mand 0 < s, t we have

p(ry.t +5) = j p (x,2,) (2., 5)du(2)
M

— jp(x,z, p(y,z,s)du(z) @)

M
= P (p(x,, ))(y).

In [164] it was proved that under the Hypotheses (4.1.2),(4.1.3) and (4.1.4) the
following result holds.

Theorem (4.1.5)[175]. The manifold M is stochastically complete with respect to the
semigroup { P¢}t>o, 1.€.,

1< 1.
The objective of this note is to provide a different proof, and a generalization of Theorem
(4.1.5), by proving that Grigor’yan’s test for stochastic completeness can be extended to the
present setting.

One should point out here that there is alarge class of sub-Riemannian manifolds that
satisfy the above inequality. Such class includes all CR Sasakian manifolds, all Carnot
groups with step two, and a wide sub-class of principal bundles, see [164].

The main goal is proving an estimate of the volume of the metric balls when the
curvature-dimension inequality (5) holds, with a curvature parameter p; < 0. Before
proving such estimate, we need to establish a Harnack inequality for non-negative solutions

of the heat equation H = L —% on M which are of the form u(x,t) = P.f (x), for some

f e C(M)n L*(M). This inequality is a consequence of the following generalization of
the celebrated Li-Yau inequality [170], whose proof can be found in [164],
Proposition (4.1.6) [175]. Assume that the manifold M satisfies (5). Let f € Cy,° (M), with
f = 0, then the following inequality holds for ¢t > O:
20, g D 2|pi| \LPf | dpf lp1|D  D?
F(lnPtf)+TtF (lnPtf)S<d + 3 t P f + 5 t + > +2dt'

Hereafter, we will denote C;°(M) = C*(M) n L (M).

94



Theorem (4.1.7) [175]. (Harnack inequality) Assume that (5) holds with p; < 0. Let f €
Cy’(M) be such that f > 0, and consider u(x,t) = P.f(x). For every (x,s),(y,t) €
M x (0, 00) with s < t one has with D as in (6)
D
t\2 d(x,y)? (D 2|p1| 3d|p1|(t— s)

u(x,s) < u(y,t) (E) exp< D <— + 22 t) ) ) o ®)
Proof. Let f be as in the statement of the theorem, and consider f,, = h,,f, where h, €
Co’ (M) is an increasing sequence with O < h,, < 1, and h,”7 1 on M. By the monotone
convergence theorem we have u, (x,t) = P:f,(x)7u (x,t) = P.f (x) forevery (x,t) €

M x (0, 00). Since u,, = % , Proposition (4.1.6) gives us
2 2
2|P1|t>a|nun + dpi " +D|P1| + D

<
Fnu) (d 3 ot 6 2 ' 2dt

This implies that

D 2|p,| \oInu, dp? Dlp,| D?
—=+ t < -r(nu,) +—t +—F +— 9
(d 3 ot (Inup) +5 2 ‘o O

Fix two points (x,s),(y,t) € M x (0,) with s < t. Let y(7),0 < v < T, be a sub-
unitary path such that y(0) = y,y(T) = x. Let a(7),0 < 7 < T, be the path in M x
(0, 00) defined by

a(r)=<y(r),t+ S;t T)
sothat (0) = (y,t),a(T) = (x,s). We have

T
o a1 5) d
n(y 5) Oj Inu, (a (7))dt

t—s dlnu,

jﬁm%wamz

0

" (a (r))] dr

Then forany € >0
2 r

1 Td dlnu,
gg 2<]d—nun(a(1))dt> —tT] " o (0))dr

1

2¢

0

‘ dInu,
+§]F(Inun(a(1)))dt— T] N ((@)dr (10)

0

0
Set B (1) = (— 2|p1 (t + ST_t r)) forO0 < t < T.From (41) we get




t

T

dr

T T
t—s (dlnu, t—s (T(nu, (a (7)) dpl(t - S)
- f D (@)t <~ Of e e —Z

L E=s5)p? ]T de

2dT — tT
D|p1|(t —5)
]B ()
Choose € > 0 such that
e (t —5s)
2~ BOT '

hence from (4) we obtain
2 —
Jun(xs) _ TB(0) +3|dpl|(t s) +Q|n(£>
n(y s) ~ 4(t —5) 4 2 \s
If we now minimize over all sub-unitary paths joining y to x, and we exponentiate, we obtain
D
t\2 d(x,y)? f (0)  3ldpsl(t —5)
< -~ +
Letting n — oo in this inequality we finally obtain (8)
We can now extend this inequality to the heat kernel.
Corollary (4.1.8) [175]. Let p(x, y,t) be the heat kernel on M. For every x,y,z € M and
every0 <s <t < ooonehas

D
t\z d(x,y)* (D  2|dp] 3dlp|(t —s)
p(x,y,s)Sp(x,z,t)(E) EXp<4(t—s) <—+ 3 t) + 2 )
Proof. The idea of the proof is to write the heat kernel in terms of the heat semi- group in
order to apply the above Harnack inequality. Due to the hypoellipticity of L we have that
p(x,,; +1) € C*(M % (—T1,00)) fort > 0 and x € M fixed. Because of (7)

p(x,y,s +1) = P (p(x,, 7))
and

p(x,z,t +1) = FK(p(x,:,7))(2).
Consider as in the proof of the previous theorem w,(y,t) = P:(h, p(x,,7))(y), where
h, € C°’(M),0 < h, < 1,and hn 7 1. Applying the Harnack inequality (8) we obtain

Pe(hn p(x,, 1))(¥) < Pe(hy p(x,, 7))
D
t\z d(x,y)* (D . 2|p] 3dlp,|(t —s)
(Z)<E) eX'°<4(t—s) aT 3 YT 2
By the monotone convergence theorem, we obtain by letting n — o
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2
p(x,y,s +1) < p(x,zt +T)<§)2

The corollary follows by letting ¢ — 0.

To introduce our next result we recall that in [163] it was proved the following
pointwise estimate of the volume of the balls in the special case of positive curvature,
namely p; = 0.

Proposition (4.1.9) [175]. Assume that (6) holds with p; = 0 on (M, d). Then, for every
x € M and every R, > 0 there is a constant C(d, k, p,) > 0 such that, with D as in (6),

C(d!K!pZ) D
W(B (xR)) <5 "2 RP (R = Ry,

The next result generalizes Proposition (4.1.9) to the negative curvature case.

Proposition (4.1.10) [175]. Assume that (5) holds with p; > 0. There exists a constant

C(d,x,pp) > 0 such that, given R,, for every x e M and every R > R,one has

u(B (x, R)) <C(d,x, p,)exp 22d|p1| Rgz
Rgp(x,x, Rg)

Theorem (4.1.11) [175]. If (M, g) is a complete Riemannian manifold with Rc > (n —
0. KBG)
’ vk (Br)

u(B (x,1)) < ug(By),
where ug(B,) denotes the volume of the ball B, in the space form of constant curvature K.
At this point one should remember that the volume of a ball in the space form of constant

curvature K < 0 is given by

RP exp(2d|p.|R?).

1) K, where K € R. Then forany x € M, r > IS non-increasing in r. Hence,

B f sinhn~1y=Kr
ug(Bg) = wp J—K dr.
This implies, in particular, that when r is large enough we obtain the following bound
u(B (x,1)) < Ciexp(C2r), C,,C, > 0.

The proof of the Bishop comparison theorem uses the theory of Jacobi fields. Since the
exponential map in a sub-Riemannian space (M, d) is in general not a local diffeomorphism
in a neighborhood of the point at which it is based (see[172]), the use of Jacobi fields in this
more general setting presently encounters some serious obstructions. Instead, function
analytical tools, like those developed in [164], are emerging to tackle these type of geometric
problems.

As an interesting application of Proposition (4.1.10) we obtain a growth estimate of
the volume for CR Sasakian manifolds. Let M be a non degenerate CR manifold of real
hypersurface type and dimension 2n + 1, where n > 1. Let 6 be a contact form on M with
respect to which the Levi form Ly is positive definite. The kernel of 8 determines the
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horizontal bundle H. Denote by Z the Reeb vector field on M and by V the Tanaka-Webster
connection on M. The pseudo-hermitian torsion with respect to V is

T (X,Y) =VyY — VX —[X,Y]
Since the CR manifold is Sasakian, we must have

T (Z,X) =0,

for every X € H. The following result was proved in [164].
Theorem (4.1.12) [175]. Assume that the Tanaka-Webster Ricci tensor is bounded from
below by p; € R on smooth functions, that is

Ric(Vuf Vuf ) = pullVuflI®. (11)
Then, M satisfies the generalized curvature-dimension inequality CD (pl,g ,1,2n) e,

1 1
rxf)+w%6)25;@ﬂ2+Qa—;UQ+gr%n,

forevery f € C*(M) and any v > 0.
As a consequence of Theorem (4.1.12) and of Proposition (4.1.10) we obtain the
following result. Let us note that in the present case we obtain from (6)
D :d<1+3—K) =2n+6,
2p,
Proposition (4.1.13) [175]. Let M be a complete Sasakian manifold with Tanaka-Webster

Ricci tensor satisfying (12) with p, < 0. There exists a constant ¢(n) > 0 such that, given
R,, forevery x € M and every R > R, one has
(4n|p,|RT)
B (x,R)) <C(n)ex 1
W(B (x,R)) < C(n) exp gt =

We recall that a manifold (M,d) is stochastically complete when the heat semigroup
satisfies P,1 = etl1 = 1 for every t > 0. This is equivalent to the condition

R® exp(4n|p,|R?)

[ ey odue) =1

M
for all x e M and t > 0. It is well-known, see [248] for instance, that the stochastic

completeness is equivalent to the fact that, for a given T > 0, the only bounded solution of
the Cauchy problem:

ot (12)
ult=o =0.

is the trivial one. Here, we are looking for a solution u € C*(M % (0, T)), and the initial

condition means that u(x,t) — O locally uniformly in x € M as t — 0. The stochastic

completeness will follow from the following beautiful result due to Grigor’yan in the

Riemannian case.

d
{ u Lu inM % (0,T),
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Lemma (4.1.14) [175]. Let u € C(M % [a, b]) be a solution of Au —ut = 0in M x

(a, b) satisfying for some x, € M and forall» > 0O
b

u(x, t)? du(x)dt < e ), (13)
a B(xyr)
where f is a positive function on (0, ). Then, for any r > 0 which satisfies the condition
2
r

b—a < 14

¢ =8f@r) (14)
one has
4
(e, )2du(x) < j ux, 0%du() + . (15)
B(xoﬂ’) B(xoﬂ’)

Proof. The proof is completely analogous to the original one of Grigor’yan in the
Riemannian case, and thus we confine ourselves to mention some necessary facts, and then
refer to [168] for details. Consider the function p(x) = (d (x,xy) — r), defined on M. Set
s := 2b — a and consider the function
p?(x)
n (x,t).:= 2—9)

Notice that n(x, t) is defined on M % [a, b], due to the fact that s¢[a, b]. Sincethe function
y — d(y,x,) is Lipschitz continuous (with respect to the Carnot-Carathéodory distance),
by the Rademacher theorem in [167], one can conclude that p belongs to the Sobolev space

Wy (M) ={f € L>(M) | (f ) € L”(M)},
and furthermore I'(p)/? < 1. This implies that for t € [a, b],

() < p?

4
(t —s)*
and we thus have

ne +T(n) <0 (16)
For r > 0, define the function ¢ (x) by

o (x) = min ((3 _ d(x’x")) ,1).

r
We notice here ¢ € Lip (M) and it has the following properties:
(i) ¢ =1o0onB (xy,2r) and ¢ = 0 outside B (x,, 3r).
(i) T(p)Y? < U/r
Consider the function ug?e™ as a function of x for fixed t € [a, b]. Notice that since by
[167] we know that ug?e™ belongs to W, (M), and supp ¢ is compact, then such function

belongs to W,}'Z (M). We can thus multiply the heat equation
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u, = Lu
by uge' and then integrate it over [a, b] x M to obtain

b b
1
Ej j(uz)t p2edudt = j j(Lu)u(pze” dudt a7
a M a M
The time integral in the left hand side can be computed as follows:
b b
1 2 2 1 2,2 b 1 2,2
> [ @ orende = Sgrentt - 3 [ st grenar (18)
a a

We can write the spatial integral on the right hand side of (17) as

j(Lu)ufpze” dpu=— j I'(u,up?e™) du
M

M
Observe

1
—I'(u, up?em) < (—zf(u) + F(u)llzf(n)1/2|u|) p%e + 2T (p)u?e™.

If we replace (17) into (18), and we use (16), we now obtain
b

b
juz (pze”du < _j j(r(u)llzlul —F(u)llz)z(pzen
a M

M a

b
+4j j T'(p)u?p?edudt
a M

and hence,
b

b
j u? p?eldu| < 4] j C(@)u?p?edudt (19)
M a a M

The properties of ¢ imply that from inequality (19) we obtain

b
4
juz(x,b)e”(x'b) du < juz(x,a)e"(x'b) d‘u+r_zj j u?e™ dudt. (20)
B, Byr a Byr\Byy
Theorem (4.1.15) [175]. Let u be a solution to the Cauchy problem (12). Assume that there
exist an increasing function f: (0, ) — (0, o), such that

rdr
_— = 0
f(r)
If for some x, € M and forall r > 0 one has
100
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u? (x, t)du(x)dt < exp(f(r)) (22)
0 B(xq,7)
Then,u =0in (0,T) x M.
Proof. Since we have nothing to add to the proof of Theorem 11.9 in [168].

Using Theorem (4.1.15) we can now establish the following generalization of
Grigor’yan’s criterion for stochastic completeness. Define the volume function V (x,r) on
the manifold (M, d) by

V(x,r) = u(B (x,1)),
where B(x,r) is a metric ball. Since (M, d) is a complete metric space we have V' (x,r) <
oo forallx e M andr > 0.
Theorem (4.1.16) [175]. If for some point x, € M there exists R, > 0 such that

‘ rdr _ 53
Rj V(g r) (23)

then M is stochastically complete.

Proof. If we can show that the only bounded solution to the Cauchy problem (12) isu =0
then the stochastic completeness will follow. This is because if P,1 # 1, then the function
u; = 1— P.1isa non-trivial bounded solution to (12). Now, if u is a bounded solution of

(12), then if we set M := sup |u| we obtain for T < oo
T

u?(x, t)du(x) < M2TV (xo,7) = exp(f (1)),
0 B(xq,1)
where
() == In(M2TV (x,,7)).

From (25) the function f satisfies (21). Therefore, by Theorem (4.1.15), we conclude u =
0. By combining Theorem (4.1.15) with Propositions (4.1.10) and (4.1.9) we now recapture
(with a different approach) the mentioned stochastic completeness result in [164].

Proposition (4.1.17) [175]. Suppose that the curvature dimension (5) hold with p, € R.
Then, M is stochastically complete.

Proof. It clearly suffices to consider the case p; < O. In such case, for every x, € M and
every r > R, we obtain by Proposition (4.1.10)

(2d|p4|R§)
R§p(x0, X0, RE)
= C,,r” exp(2d|p4|r?).

V(x0,7) < C(d, K, p;) €xp P exp(2d|p;|r?)

This gives for every r > Ry,
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InV(xe,7) < Ay, + DInr + Br?,
This clearly implies that

jo rdr
—_— =00
InV(xq,7)

Ry
The desired conclusion follows by Proposition (4.1.10).

Section(4-2). Volume Doubling Property and the Poincaré Inequality

A fundamental property of a measure metric space (X, d, u) is the so-called doubling
condition stating that for every x € X and every r > 0 one has

u(B(x,2r)) < Cqu(B(x,1)), (24)

for some constant C; > 0O, where B(x,r) ={y € X|d(y,x) <r}. As it is well-known,
such property is central for the validity of covering theorems of Vitali-Wiener type,
maximal function estimates, and it represents one of the central ingredients in the
development of analysis and geometry on metric measure spaces, see for instance
[176,189,193,194,200-202]. Another fundamental property is the Poincaré inequality which
claims the existence of constants C,, >0 and a = 1 such that for every Lipschitz function f
on B(x,ar) one has

[ = roran <cr® | gtan, (25)
B(x,1) B(x,ar)
where we have let f; = u(B)™" [, fdu, with B = B(x,r). In the right-hand side of (25)
the function g denotes an upper gradient for f .

One basic instance of a measure metric space supporting (24) and (25) is a complete
n-dimensional Riemannian manifold M with nonnegative Ricci tensor. In such case (24)
follows with C; = 2™ from the Bishop-Gromov comparison theorem, whereas (25) was
proved by Buser [185], witha = 1and g = |Vf].

Beyond the classical Riemannian case two situations of considerable analytic and
geometric interest are CR and sub-Riemannian manifolds. For these classes global
inequalities such as (24) and (25) are mostly terra incognita. The purpose is taking a first
step in filling this gap in the class of sub-Riemannian manifolds that satisfy the generalized
curvature dimension inequality introduced in [183]. Our main result, Theorem (4.2.8)
below, constitutes a sub-Riemannian counterpart of the case in which Ricci >0 (for this
aspect, see e.g. Theorem (4.2.10) below).
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To introduce the results, we recall that a n-dimensional Riemannian manifold M with
Laplacian A is said to satisfy the curvature-dimension inequality CD(p,,n) if there exists
p1 € R such that for every f € C*(M) one has

1
F(f) 2~ (A ) + VAP, (26)
where

L) =5 IVFI = 2(V,9(f )
This notion was introduced by Bakry and Emery [261], and it was further developed in
[178-180,210,216-221]. What is remarkable about the curvature-dimension inequality (27)
Is that it holds on a Riemannian manifold M if and only if Ric > p,. It follows that such
notion could be taken as an alternative characterization of Ricci lower bounds.

This point of view was recently taken up by [183], where a new sub-Riemannian
curvature-dimension inequality was introduced. Such new inequality was shown to
constitute a very robust tool for developing a Li—Yau type program in some large classes of
sub-Riemannian manifolds. We develop our program even further, and in a different
direction, by proving that the generalized curvature- dimension inequality introduced in
[183] can be successfully used to establish global inequalities such as (24) and (25) above.

We now introduce the relevant framework. We consider measure metric spaces
(M, d,u), where M is C* connected manifold endowed with a C* measure p, and d is a
metric canonically associated with a C* second-order diffusion operator L on M with real
coefficients. We assume that L is locally subelliptic on M in the sense of [195], and that
moreover:

(i) L1=0;

(i) [, fLgdu =, gLfdu ;

(iii) fM fLfdu <0,
forevery f,g € Cy,°(M). The following distance is canonically associated with the operator
L:

d(x,y) = sup{lf(x) — FOIIf € M), IT(f )l <1}, x,¥y EM, (27)
where for a function g on M we have let ||g||.€sS sup |g|.
M

Given the manifold M and the diffusion operator L, similarly to [181] we consider the
quadratic functional T'(f) = I['(f,f), where

1
r(f.9) =5(fg) — flg—gLf). f.g€C™(M) (28)
is known as le carré du champ. One should in fact think of T'(f) as the square of the length
of the gradient of f along the so-called horizontal directions. We remark that I" depends only
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on the diffusion operator L, and in this sense it is canonical. Notice that (f) = 0 and that
r{) =o.

Unfortunately, in sub-Riemannian geometry the canonical bilinear form does not suffice to
develop the Li-Yau program. To circumvent this obstruction, we further suppose that M is
equipped with a symmetric, first-order differential bilinear form
r%:.C*°(M) x C*(M) - C*(M), satisfying

r“(fg,h) = fri(g.h) +gr(f.h).

We make the assumption that T*( f) = I'*(f,f) = 0 (one should notice that I'*(1) =
0). Roughly speaking, in a sub-Riemannian manifold I'?(f) represents the square of the
length of the gradient of f in the directions of the commutators. We emphasize that, in the
above general formulation, the bilinear form I'“ is not canonical since, unlike the form I, a
priori it has no direct correlation to the diffusion operator L. If should however find
reassuring that, in all the concrete geometric examples encompassed, the choice of the form
I'“ can be shown to be, in fact, canonical.

To clarify this important point we pause for a moment to discuss a basic class of three-
dimensional models which have been analyzed. Given a p; € R we consider a Lie group
G (p,) whose Lie algebra g admits a basis of generators X, Y, Z satisfying the commutation
relations

[X.Y1=2 [X.Z]=—p.Y, [Y.Z] = p:X. (29)

The group G(p,) can be endowed with a natural CR structure 8 withrespect to which the
Reeb vector field is given by —Z. A sub-Laplacian on G(p,) with respect to such structure
is thus given by L = X2 + Y2, The pseudo-hermitian Tanaka—Webster torsion of G(p;)
vanishes, and thus (G(p;),0) is a Sasakian manifold. In the smooth manifold M =
G (p;) with sub-Laplacian L we introduce the differential forms I' and I'? defined by

I'(f,9) = XfXg+YfYg,T*(f.g9) = ZfZg .

It is worth observing that, since as we have said —Z is the Reeb vector field of the CR
structure @, then the above choice of I'“ is canonical. It is also worth remarking at this point
that for the CR manifold (G(p,), 8) the Tanaka—Webster horizontal sectional curvature is
constant and equals p,. For instance, when G is the 3-dimensional Heisenberg group H!,

with real coordinates (x,y,t), and generators of the Lie algebra X = d, —gat, Y =
d, + gat, Z = 0, then (30) holds with p; = 0. In [183] two other special instances of

the model CR manifold G(p;) were discussed in detail, namely SU(2), and SL(2, R),
corresponding, respectively, to the cases p; = 1 and p; = —1. Given the first-order bilinear
forms " and I'“ on M, we now introduce the following second-order differential forms:

1
ro(f.9) =3ILT(f,9) — T(f,Lg) — T'(g,Lf)], (30)
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5.9 =5 [LICf,9) - TCFiLg) - T9.LP) (3Y)
Observe that if I* = 0, then T'2 = 0 as well. As for T" and T'%, we will use the notations
T(f) = L(f.f)T5(f) = T3(f.f).
The next definition, which we are taking from [183], is the central character .
Definition (4.2.1)[225]. (Generalized curvature-dimension inequality) Let p; € R,p, >
0,k > 0,andm > 0. We say that M satisfies the generalized curvature-dimension
inequality CD(p4, p,, k, m) if the inequality

1 K
DN +VTE(F) 2 — W2+ (o =) TN +p,T(f)  (32)
holds for every f € C*(M) and every v > 0.
Proposition (4.2.2). The sub-Laplacian L on the Lie group G(p,) satisfies the generalized

curvature-dimension inequality CD(pl,%, 1,2).

The essential new aspect of the generalized curvature-dimension inequality
CD(p1, p2, k, m) with respect to the Riemannian inequality CD (p4, n) in (26) is the presence
of the a priori non-intrinsic bilinear forms I'> and I'5 .As in [183], to be able to handle these
non-intrinsic forms we will assume throughout the following hypothesis (Hypothesis
(4.2.3)), (Hypothesis (4.2.4)) and (Hypothesis (4.2.5)). Even if they will not be mentioned
explicitly in every individual result.

Hypothesis (4.2.3) [225]. There exists an increasing sequence hx€Cg’ (M) such that hx 71
on M,and

ITCR) oo + 1T (RiN e = O, as k — oo,
Hypothesis (4.2.4) [225]. For any f eC*(M) one has

I'(f,T%(f)) = (.7 ().

Hypothesis (4.2.5) [225]. The heat semigroup generated by L, which will denoted P;
throughout the section , is stochastically complete that is, for t > 0, Pi1 = 1 and for every
feEC,’(M)and T = 0, one has

sup  IT(P)lleo [T2(PA)|, < +oo.

te[0,T]
In addition to (Hypothesis (4.2.3)-( Hypothesis (4.2.5), throughout we also assume that:
Hypothesis (4.2.6) [225]. Given any two points x,y € M, there exist a subunit curve (in the
sense of [195]), joining them.
Hypothesis (4.2.7) [225]. The metric space (M, d) is complete.

We note that in the geometric examples encompassed by the framework (for a detailed

discussion of these examples see [183]), (Hypothesis (4.2.3)) is equivalent to assuming that
(M, d) be a complete metric space, i.e., (Hypothesis (4.2.7)). The assumption (Hypothesis

(4.2.6)) is for instance fulfilled when the operator L satisfies the finite rank condition of the
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Chow-Rashevsky theorem. When (Hypothesis (4.2.6)) holds, definition above provides a
true distance, and the metric space (M, d) is a length-space in the sense of Gromov. The
hypothesis (Hypothesis (4.2.4)) is of a geometric nature. For instance, all CR manifolds
which are Sasakian satisfy it. It is important to mention that the hypothesis (Hypothesis
(4.2.5)) has been shown in [183] to be a consequence of the curvature dimension inequality
CD(p41,p2,k,m) in the large class of sub-Riemanniann manifolds with transverse
symmetries of Yang-Mills type. Such class encompasses Riemannian structures, CR
Sasakian structures, and Carnot groups of step two. Therefore, the assumption (Hypothesis
(4.2.5)) should not be seen as restrictive if we assume that the curvature dimension
inequality is satisfied. We can also observe that the stochastic completeness of P; is
intimately related to the volume growth of large metric balls and has been extensively
studied (see [198,216]). The following is the central result.

Theorem (4.2.8)[225]. Suppose that the generalized curvature-dimension inequality hold
for some p; = 0. Then, there exist constants Cy4, C, > 0, depending only on p,, p,, k, m, for

which one has for every x € M and everyr > O:

W(B(x.2r)) < Cq u(Bx,T)): (33)
[ r=polan < cao® [ v0aR (34)
B(x,1) B(x,1)

for every f € C1(B(x,7)).

We note explicitly that the possibility of having the same ball in both sides of (34) is due
to the above mentioned fact that (M, d) is a length-space. This follows from the assumption
(41) below (which guarantees that (M,d) is a Carnot—Carathéodory space), and from
Proposition (4.2.11) in [191] (which states that every Carnot—Carathéodory space is a
length-space). Once we know that (M, d) is a length-space, we can follow the arguments in
Jerison [206] on the local Poincaréin equality to replace the integral on a larger ball in the
right-hand side of (34) with an integral on the same ball B(x, r) as in the left-hand side, see
[196]. To put Theorem (4.2.8) in the proper perspective we note that, be sides the already
cited case of a complete Riemannian manifold having Ric = 0O, the only genuinely sub-
Riemannian manifolds in which (33) and (34) are presently known to simultaneously hold
are stratified nilpotent Lie groups, aka Carnot groups, and, more in general, groups with
polynomial growth. In Carnot groups the doubling condition (33) follows from a simple
rescaling argument based on the non-isotropic group dilations, from the group left-
translations and form the fact that the push-forward to the group of the Lebesgue measure
on the Lie algebra is a bi-invariant Haarmeasure. For more general Lie groups with
polynomial growth Varopoulos gave an elementary proof of the Poincare inequality (34) in

[221]. In which they establish two-sided global Gaussian bounds in a Lie group with
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polynomial growth. As it is well known, such bounds are equivalent to the doubling
condition and the Poincare inequality.

It is worth mentioning at this point that, when L is a sum of square of vector fields like
in Hormander’s work on hypoellipticity [205], then a local (both in x € X and r > 0)
doubling condition was proved in [211]. In this same framework, a local version of the
Poincaré inequality was proved by Jerison [206]. But no geometry is of course involved in
these fundamental local results. The novelty of our work is in the global character of the
estimates (33) and (34).

In order to elucidate some of the new geometric settings covered, we recall that one of
the main motivations for [211] was understanding boundary value problems coming from
several complex variables and CR geometry. In connection with CR manifolds we mention
that in [183] the first and third named proved the following result.

Theorem (4.2.9)[225]. Let (M, 8) be a complete CR manifold with real dimension 2n + 1
and vanishing Tanaka—\Webster torsion, i.e., a Sasakian manifold. If for every x € M the
Tanaka—Webster Ricci tensor satisfies the bound

Ric, (v,v) = pq|v|?,
for every horizontal vector v € H,., then the curvature-dimension inequality CD (pl,g, 1,2n)
holds.

By combining Theorem (4.2.8) with Theorem (4.2.9) we obtain the following result

which provides a large class of new geometric examples which are encompassed by our
results, and which could not be previously covered by the existing works.
Theorem (4.2.10)[225]. Let M be a Sasakian manifold of real dimension 2n + 1. If for
every x € M the Tanaka—\Webster Ricci tensor satisfies the bound Ric,, = 0, when restricted
to the horizontal sub bundle H,, then there exist constants Cy, C,, > 0, depending only on n,
for which one has for every x € M and every r > 0:

W(B(x,2r) < Cq u(B(x.1)) (35)
[ ir=polan < r2 [ 10urPan (36)
B(x,r) B(x,r)

In (36) we have denoted with V,, f the horizontal gradient of a function f € C*(B(x,7)).
Concerning Theorem (4.2.10) we mention that in [176] Agrachev and Lee, with a
completely different approach from us, have obtained (35) and (36) for three-dimensional
Sasakian manifolds.

Once Theorem (4.2.8) is available, then from the work of Grigor’yan [197] and Saloff-
Coste [214] it is well-known that, in a very general Markov setting, the conjunction of (33)
and (36) is equivalent to Gaussian lower bounds and uniform Harnack inequalities for the
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heat equation L — d;. For the relevant statements we refer the reader to Theorems (4.2.24)
and (4.2.25) below.

Another basic result which follows from Theorem (4.2.8) is a generalized Liouville type
theorem, see Theorem (4.2.29) below, stating that, for any given N € N,

dimHy (M,L) < oo, (37)
where we have indicated with Hy (M, L) the linear space of L-harmonic functions on M with
polynomial growth of order < N with respect to the distance d.

In closing we mention that the framework is analogous to that [183], where two of us
have used the generalized curvature-dimension inequality in Definition (4.2.1) to establish
various global properties such as:

(i) An a priori Li-Yau gradient estimate for solutions of the heat equation L — 9, of the
form u(x,t) = P.f(x), where P, = etl is the heat semigroup associated with L;

(i) A scale invariant Harnack inequality for solutions of the heat equation of the form
u = P, f,withf >0;

(iii) A Liouville type theorem for solutions of Lf = 0 on M,

(iv) Off-diagonal upper bounds for the fundamental solution of L — 9;

(v) A Bonnet-Myers compactness theorem for the metric space (M, d).

As for the ideas involved in the proof of Theorem (4.2.8) we mention that our approach
is purely analytical and it is exclusively based on some new entropy functional inequalities
for the heat semigroup. Our central result in the proof of Theorem (4.2.8) is a uniform Holder
estimate of the caloric measure associated with the diffusion operator L. Such estimate is
contained in Theorem (4.2.22) below, and it states the existence of an absolute constant A >
0, depending only the parameters in the inequality CD (p4, p2, k, d), such that for every x €
M, and r > 0,

1
PArZ(lB(x,r))(x) = > (38)

Here, for a set E ¢ M, we have denoted by 1 its indicator function. Once the crucial
estimate (38) is obtained, with the help of the Harnack inequality
b 2

ri) < nfO)(5) e (1 goss) s <t (39)
that was proved in [183] (for an explanation of the parameter D see (45) below), the proofs
of (33), (34) become fairly standard, and they rely on a powerful circle of ideas that may be
found.
The proof of (38) which represents the main novel contribution of the present work is rather
technical. We mention that the main building block is a dimension dependent reverse
logarithmic Sobolev inequality in Proposition (4.2.12) below. We stress here that, even in
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the Riemannian case, which is of course encompassed, such estimates are new and lead to
some delicate reverse Harnack inequalities which constitute the key ingredients in the proof
of (38). Still in connection with the Riemannian case, it is perhaps worth noting that,
although as we have mentioned, in this setting the inequalities (24), (25) are of course well-
known, nonetheless our approach provides a new perspective based on a systematic use of
the heat semigroup. The more PDE oriented might in fact find somewhat surprising that one
can develop the whole local regularity starting from a global object such the heat semigroup.
This in a sense reverses the way one normally proceeds, starting from local solutions.

We mention that in [184] two of us have obtained a purely analytical proof of (38) for
complete Riemannian manifolds with Ric > 0. The approach, which is based on a functional
inequality much simpler than the one found, is completely different from that of Theorem
(4.2.22) below and cannot be adapted to the non-Riemannian setting .

Hereafter, M will be a C* connected manifold endowed with a smooth measure p and
a second-order diffusion operator L on M with real coefficients, locally subelliptic, satisfying
L1 =0 and

jng du = j gLfdu, jfodu <0,
M M M
forevery f,g € Cy°(M). We indicate with I'(f) the quadratic differential form defined by

(28) and denote by d(x, y) the canonical distance associated with L as in (28) .

There is another useful distance on M which in fact coincides with d(x,y). Such
distance is based on the notion of subunit curve introduced by Fefferman and Phong [195],
see also [207]. By a result in [213], given any point x € M there exists an open set x €
U < M in which the operator L can be written as

m
L =— ZX; X; | (40)
i=1

where the vector fields X; have Lipschitz continuous coefficients in U, and X;" indicates the

formal adjoint of X; in L>(M,du). We remark that such local representation of L is not

unique. A tangent vector v € T,,M is called subunit for L at x if v = Y}, a; X; (x), with
m . a? < 1.ltturns out that the notion of subunit vector for L at x does not depend on the

local representation (40) of L. A Lipschitz path y:[ 0,T] —» M is called subunit for L if y'(t)

is subunit for L at y(t) for a.e. t € [ 0, T]. We then definethe subunit length of y as s(y) =

T. Given x,y € M, we indicate with

S(,y) ={y:[0,T] » M| yissubunitforL,y(0) = x, y(T) = y}.

We remark explicitly that the assumption (H.(4.3.6)) can be reformulated by saying that

S(x,y)= @, forevery x,y € M. (41)
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Now, it is easy to verify that (72) implies that for any x,y € M one has

ds(x,y) =inf{l;(y) |y € S(x,¥)} < oo, (42)
and therefore (42) defines a true distance on M (once we have the finiteness of ds the other
properties defining a distance are easily verified). Furthermore, in Lemma 5.43 in [186] it is
proved that

d(x,y) =ds(x,y), xy€M. (43)

Therefore, also d is a true distance on M and, in view of (43), we can work indifferently
with either one of the distances d or d.

In closing, we mention if L is in the form L = Y7, X? + X,, with vector fieldswhich are
C> and satisfying the so-called Hormander’s finite rank condition on the Lie algebra, then
the Theorem of Chow-Rashevsky guarantees the validity of (Hypothesis (4.2.6)). If
moreover L has real-analytic coefficients, we know that L is hypoelliptic if and only if it
satisfies Hormander’s finite rank condition. Therefore, in this situation, the hypoellipticity
of L would guarantee the validity of (Hypothesis (4.2.6)). For generalizations of the cited
result in [192] to more general hypoelliptic operators with real-analytic coefficients, see
[212].

We collect some results from [183] which will be needed. In the framework below, L
is essentially self-adjoint on Cy°(M). Due to the hypoellipticity of L, the function (t, x) —
P f (x) is smooth on (0, ) x M and

PJ@)=fp@%Oﬂwmm& f e ce M)

M
where p(x,y,t) = p(y,x,t) > 0is the so-called heat kernel associated to P;. We denote

Cy’ (M) = C*(M) n L*(M).
For € > 0 we also denote by A, the set of functions f € C,°(M) such that
f=g+e
for some € >0 and some g € C;°(M),g = O, such that g,\/T(g), [T?(g) € L2(M). As
shown in [183], this set is stable under the action of P;, i.e., if f € A,, then P;f € A,.

Letusfix x € M and T > 0.Given a function f € A, for 0 < t < T we introduce the entropy
functionals

D,(t) = P((Pr— ¢f) (InPr — f))(x),

Oy (t) = P(Pr— +f) Z(UnPr— f)(x).
For later use, we observe here that

d
apt((PT - tf) InPr — f)(x) = Pt((PT - tf)r(InPT — f)(x) = ©.(t),
and thus, with the above notations,
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T

j O, (O)dt = Pr(FINf)() — Prf(0) NPy f (). (44)

0
For the sake of brevity, we will often omit reference to the point x € M, and write for

instance Prf instead of P, f(x). This should cause no confusion.
The main source of the functional inequalities that will be studied in the present work is
the following result that was proved in [183]:
Theorem (4.2.11)[225]. Let a,b:[0,T] » [0,) and y:[0,T] = R be C! functions. For
¢>0and f € A, we have
a(T)Pr(fT(in f)) + b(T)Pr(fr*(In f)
—a(O)(I;T frdnpr f)—b(O)(Prf)r“(In P; f)

a? ay
> ] a’+2p1a—2k7 —45 ®1ds+](b’+2p2a)®2ds
0

0
T

T
+4j ds LP 2] 2ds P
— | ayds LPrf ——| ay®ds Prf,
0

0
Henceforth, we let

K

D = (1 + 3—) m. (45)
20,

The following scale invariant Harnack inequality for the heat kernel was also proved in

[183].
Proposition (4.2.12)[225]. Let p(x, y, t) be the heat kernel on M. For every x,y,z € M and
every 0 < s <t < oo one has

D
t\2 D d(y,z)?
p(x,y,S) < p(x,z, t) (E) exp <a 4(t _ S))
A basic consequence of this Harnack inequality is the control of the volume growth of
balls centered at a given point.
Proposition (4.2.13)[225]. For every x € M and every R, > 0 there is a constant

C(m, k, p,) > 0 such that,
C(m,K,pz) RD

HBR) < ek

Proof. Fix x € M and t > 0. Applying Proposition (4.2.12) to p(x,y,t) for every y €
B(x,/t) we find

R = R,

D D
p(x,x,t) <22 e4mp(x,y,2t) = C(m, k,p)p(x,y,2t).

Integration over B(x,/t) gives
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p(x,x,t),u(B(x,\/f)) = C(mvkva) ] p(xvyv Zt) dﬂ(y) = C(mv Kva)v

B(xt)
where we have used P,1 < 1. This gives the on-diagonal upper bound
c(m,k,
p(x,x,t) < ( p2) : (46)
(D)
Let now t > 7 > 0. Again, from the Harnack inequality of Proposition (4.2.12), we have

D
N2
p(x,x,t) = p(x,x,1) (E) :
The inequality (46) finally implies the desired conclusion by takingt = R? and T = R3.
We derive some functional inequalities which will play a fundamental role in the
proof of Theorem (4.2.17) below.

Proposition (4.2.14)[225]. Lete > 0and f € A.. Forx € M,t,7 > 0,and C € R, one has
T
o P.(fT(In ))(x) + T2P(fT%(In f))(x)

1 2 4C
+E<1 +p—’2‘ +—) [P(fIn () = Pf ) I P, f ()]
> t; ‘ P, f)T(In P.f)(x) + (t + 1)?P, f (x)T%(In P, f) (%)

2

2

LIy iy <1+t)Pf()
E— X)——INn - X).
p,m mp; )t

Proof. Let T, > 0 be arbitrarily fixed. Weapply Theorem (4.2.11) with p; = 0, in which
we choose

b(t) = (T +1-t)?, a(t) :%(T'FT—t), y(t):% 0<t <T.

With such choices we obtain

, 2
[(a - 2% —4ﬂ5i(1+2—’€ +£),
b m P P2 m
b +2p2aEO,
§ [raar _ ser (47)
0 m pzm’
and
T 2ay? 2¢? t

—fEE=—n(1+2)

\ 0 m mp, T

Keeping (75) in mind, we obtain the sought for conclusion with T in place of t. The
arbitrariness of T > O finishes the proof.
Corollary (4.2.15)[225]. Lete > 0and f € A.,. Forx € M, t > 0 one has

tPf()T(INP, f )(x) + pot>Pef (x)T*(In Pef )(x)
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2
<(1+ —") [P,(f In £ )(&) — Pf)InP, F()].
P2

Proof. We first apply Proposition (4.2.14) with ¢ = 0, and then we let T - 0% in the
resulting inequality.

We may actually improve Corollary (4.2.15) and obtain the following crucial dimension
dependent reverse log-Sobolev inequality.
Theorem (4.2.16)[225]. Lete > O and f € A,, then for every C = 0 and § > 0, one has for
x € M,t > 0,

tPFCOTAN P, £ )(x) + E2Pef (OTA(ln Pef )()
2k AC
< (1+ 5+ )R I = P InP ()]

ac ¢ LP ()+262I <1+1)P 48

Proof. For x € M,t,t > 0, we apply Proposition (4.2.14) to the function P, f instead of f.
Recalling that P,(P.f) = P,,.f, we obtain, for all C € R,

L P (PT(IN P, f)(x) + T2 Pe(PfT2(In Pf )(x)

+p_12(1 N fTK + ) BB INBL I — Peacf ) INPr fGO]

t+71 7
= p—Pm(f )TN P, f)(x) + (t + T)?Pr o f ()TN P f ) (X)

2
2

AC 2C 1
+p_mt LPt+Tf(x) - p_m In (1 + ;) Pt+rf(x) (49)

2 2
Invoking Proposition (4.2.15) we now find for every x € M,t > 0,

B FGITAN P, £)(x) + ppr2Pf GOTE(IN P, £ )(x)
2
<(1+ p—") [P.(f In £)(%) — PfG) INPS ()],

If we now apply P; to this inequality, we obtain
TP f()T(In P, f)(x) + PzTZPt(PrfFZ(m P, f)(x)

2
< (1425 Peael £ 10 £)@) = P(BS NP (]
P2

We use this inequality to bound from above the first two terms in the left-hand side of (49),

obtaining
2K
1+ p_ AC
2 Ppr(f In f)(x) + — P(Pf INPf) (x)

P2 pm

113



1 1 2k 4C p () InP
P b, m t+cf () INPeyof (x)

+ 7
Peiof (OT(NPeyrf)(x) + (£ + TPy f (TN Py f) ()
2

4C 2C* 1

+—1t LPt+Tf(x) ———In (1 + )Pt+1f(x)
p.m pm

Consider the convex function ®(s) = slns, s > 0. Thanks to Jensen’s inequality, we

have for any ©™>0 and x € M
D(Rf (x)) < P(O(f))(x),
which we can rewrite
Bf ()InP f(x) < B(fInf)(x).
For C = 0, applying P; to this inequality we find

X PPN () S Py (f INf)(2)
- T T X) =——Ilt4r X).
pym * pam "
We therefore conclude, for C > 0,

1 2k 4C

E(1+E+ m)[Pt+T(f|nf)(x) Priof (x) IN Py f(x)]
> t;—TPHTf(x)F(In Peve f)(x) + (¢ + T)2P o f OTA(IN Py f )(x)

2
2

b f )~ ot (147 P f ()

pm p.m
If in the latter inequality we now choose t = 4§t, we find:
1 2k 4C
~ (14 22+ 2 P FINf ) = Prasef (I P fGO)]
P2 P2 m

t+ ot 5 .
2 Peestf COTUN Prrge () + (¢ + 60) Prosef (T (I Pesef ) (%)

2
2

N o (1+1)p (x)
—_— _—— n [— +
pom t+6tf x p,m )t (Stf x
Changing (1 + §)t into t in the latter inequality, we finally conclude:

PGNP )G + (AT .f )(2)
< (14 2+ )R I - PP FC]

P2 P2
4C ¢t 2C?
Toomi+o Ptf(x)_p_|n<1+ ) P.f(x)

This gives the desired conclusion (48).
Our principal objective is proving the following result.
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As a first step, we prove a small time asymptotics result interesting in itself. In what
follows for a given set A ¢ M we will denote by 1, its indicator function.

Proposition (4.2.17)[225]. Givenx € M and r > 0, let f = 1, ,)c. One has,
2
. . r
SILrgL inf(—sInP,f(x)) = 7
Proof. To prove the proposition it will suffice to show that
2

. . r
tILrgL inf(tInP.f(x)) = vy

Let O < &€ < r. By the Harnack inequality of Proposition (4.2.12) and the symmetry of the
heat kernel, we have fory € M and z € B(x, €) ,

De
p(x,y,t) < plz,y, (1 + &)t)2P/™ eamt .
Therefore, multiplying the above inequality by f(y) = 1 r)c(y¥) and then integrating with
respect to y, we obtain

Pf(x) < (P1e)ef ) (2)2P/m e%.

By integrating now with respect to z € B(x, €), we get

D¢
D/m edmt

u(B(x.€) J
Now, from Theorem 1.1 in [204] (for which normalization differs from us by a factor 1/2
because he considers the semigroup e®/2), we obtain:

Pf(x) < 1pxe) (2)(P1+e)ef )(2)du(2).

. (r-¢)?
Mt [ Lo @)(Pasonf V@) = =302
M
This yields therefore
. (r-¢)?> De
tILrgL inf(tInP.f(x)) < —4(1 T o) +4m.

We conclude by letting € —0.

As a second step toward the proof of Theorem (4.2.22) we investigate some of the
consequences of the reverse log-Sobolev inequality in theorem (4.2.16) for functions f such
that 0 < f < 1 (later, we will apply this to indicator functions).

Proposition (4.2.18)[225]. Let ¢ >0, f € A, e < f <1, and consider the function

u(x,t) = \/—InP.f(x) . Then, with the convention that% = 400, we have

D* D*
2tu, +u+| 1+ ’7 ul’3 + ’7u‘1’3 >0,
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where

2K
D* =m (1 + —) :
P2
Proof. Noting that we have

iPtf(x)F(ln P f)(x) + 2P f()T“(In P.f )(x) =0
1

p_<1 N i_ + _) [P.(FInf)(x) = Pf() NP, f()]

4C t Lp F(x) ZCZI<1+1>P )
pyml+6 Pof (X pzmn ) of (X

applying the inequality (48) in Theorem (4.2.16), we obtain that for all C > 0,

2K 4C 2K AC
§<1+p—:+z)Pt(flnf)(x)— %<1+p—’:+z)(Ptf)lnPtf
2Ct C?

133 LP.f(x) — 5 Pf 20

| (1 N 1) < 1

n 5) =35
On the other hand, the hypothesis 0 < f < limplies fIn f < 0. After dividing both sides
of the above inequality by p,f, we thus find

m 2k 4C 2Ct LP.f C?
——<1+—+—)In f ——— +—=>0.
P2 1+6 Pf 6

Dividing both sides by C > 0, this may be re-written

D*| P.f —2InP 2t Lpff+c>o 50

We now minimize the left-hand side of (50) with respect to C. The minimum value is

attained in
oD*

Substituting this value in (50), we obtain

where we used the fact that

,/ INP,f — 2P 2t Lptf+c>o
of U 1+85pf 67
With u(x,t) = In Ptf (x), and noting that u, = —zi—L:t; . we can re-write this
u e

inequality as follows,
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oD* 2t

+u + >0,
26  HT1ystt=
or equivalently,
D*
2tu; +u+oéu+ (1+9) ,25 > 0.
If we choose
1
6 = y2/3’

we obtain the desired conclusion.

We now introduce the function g : (0, ) — (0, o) defined by
1

g(v) = :
v+11+ z 171/3 + z 17_1/3
2 \/ 2

One easily verifies that

. |D* 1 :
o [z v =L i) =1

These limit relations show that g € L'(0, A) for every A > 0, but g¢L*(0, ). Moreover,
if we set

(51)

G = ] g(v) dv,

then G'(u) = g(u) > 0,and thus G: (0, ) — (0, o) is invertible. Furthermore, as is seen
from (42), asu — oo we have

Gw) =Inu+C, + R(u), (52)
where Cy is a constant and JI_)FEIO R(u) = 0. At this point we notice that, in terms of the

function g(u), we can re-express the conclusion of Proposition (4.2.18) in the form

1

gw) —
Keeping in mind that g(u) = G'(u), we thus conclude
de(u) o - 1 £3
o = W = - (53)

From this identity we now obtain the following basic result.
Corollary (4.2.19)[225]. Let f € L(M),0 < f <1,thenforanyx e Mand 0 <s < t,

6P @) 2 6(/" AT ()~ 5In(3).
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Proof. If f € A, for some €, the inequality is a straightforward consequence of the above

results. In fact, keeping in mind that u(x, t) = \/— In P.f (x), in order to reach the desired
conclusion all we need to do is to integrate (53) between s and t. Consider now f € L* (M),
0< f <1l Leth,€Cy’(M),withO<h, <1,andh,”1.Forn >0,7>0ande >0,
the function

(1 - E)P‘c(hnf) +e €A,
Therefore,

6(/=TNPf A= OB (inf ) + £())
> G(J=INBf (L= ©)B.(hnf ) + e(x)) — %m (g) |

Letting e — 0,7 = O and finally n — oo, we obtain the desired conclusion for f. This
completes the proof.

Combining Corollary (4.2.19) with Proposition (4.2.17) we obtain the following key
estimate.
Proposition (4.2.20)[225]. Let x € M and r > O be arbitrarily fixed. There exists C; € R,
independent of x and r, such that forany ¢t > 0,

r
(\/— In PtlB(x’T)c(x)) = In% + Cj .

Proof. Re-write the inequality claimed in Corollary (4.2.19) as follows
G(y—InP.f(x)) = G(/—=InBf (x)) +Invs — Inft,
where we have presently let f(y) = lgr)c(y). Since for this function we have, from

Proposition (4.2.17),
Iirgl+(—ln P.f (x)) = oo, using (52) we see that, for s—0+, the latter inequality is
S—

equivalent to

G(J=InP.f (x)) = In\/=InPf (x) —InVt +Cy + R(/—InPf (x)).
We now take the lim inf as s —» 0% of both sides of this inequality. Applying Proposition
(4.2.17) we deduce

6(J=InPf () = Ing _INVE +Cy = In% +c

where we have let C; = C, — In 2. This establishes the desired conclusion.
We are now in a position to prove the central result.
Theorem (4.2.21)[225]. There exists a constant A > 0 such that forevery x € M,and r >
0,
1

Pyy2 (1B(x,r))(x) = E :

Proof. By the stochastic completeness of M we know that P;1 = 1. Therefore,
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PAr2 (1B(x,r))(x) =1- PAr2 (1B(x,r)c)(x)-
We conclude that the desired estimate is equivalent to proving that there exists an absolute
constant A > 0 such that

(Vin2) < < \/ —1In PArz(lB(x’r)c)(x)>,

or, equivalently,

¢(Vin2) < G < J —INPar2(Lperye)(x) ) (54)
At this point we invoke Proposition (4.2.20), which gives

G <\/— N Pgr2(Lperye) () ) =In (%z " 65)

It is thus clear that, letting A — 0%, we can certainly achieve (54), thus completing the proof.

Theorem (4.2.22)[225]. (Global doubling property) The metric measure space (M, d, i)
satisfies the global volume doubling property. More precisely, there exists a constant C; =
C1(p1, p2, Kk, d) > 0 such that for every x € M and every r > 0,

u(B(x,2r)) < Ciu(B(x,7)).

Proof. The argument which shows how to obtain Theorem (4.2.22) from Theorem (4.2.21)
was developed independently by Grigor’yan [197] and by Saloff-Coste [214], and it is by
now well-known. However, since it is short for the sake of completeness in what follows
we provide the relevant details. From the semigroup property and the symmetry of the heat
kernel we have forany y e Mandt > 0

p(y,7,2t) = j p (7,2,6)dp(2).
M

Consider now a function h € C°(M) suchthat0 < h < 1,h = 1on B(x,vt/2)and h =
0 outside B(x,~/t). We thus have

1 1

Ph(y) = ] p (.2, )h(2)du(z) < ( ] Pz t)Zdu(z)) ( ] h(z)dez))

M M

< p(y,y,2t)2 u(B(x,Vt))z .
If we take y = x, and t = r?2, we obtain

Pr2(Lp(r) (0)? < Pr2h(x)? < p(x,x,2r%) p(B(x,7)). (55)
At this point we use Theorem (4.2.21), which gives for some 0 < A < 1, (the fact that we
can choose A < 1 is clear from the proof of Theorem (4.2.21)
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1
PArZ(lB(x,r/Z))(x) ZE, x €M, r >0,

Combining this estimate with the Harnack inequality in Proposition (4.2.12) and with (56),
we obtain the following on-diagonal lower bound

*

u(B(x,r))
Applying Proposition (4.2.12) we find for every y € B(x,/t),

p(x,x,t) < Cp(x,y,2t).
Integration over B(x,~/t) gives

p(x, x,2r?) > x € M, r>0. (56)

PO x ORBEN) <C [ py.20do) <
B(x,t)
where we have used P,1 < 1. Lettingt = r2, we obtain from this the on-diagonal upper

bound
C

) >

p(x,x,1%)

Combining (56) with (57) we finally obtain
CccC’

u(B(x,2r)) < S Gx A7) < G2 < cu(B(x,1)),

Where we have used once more Proposition (4.2.12) (with y = z = x), which gives
p(x, x,2r?) <
p(x, x,4r?)
and we have let C** = CC'(C*)~1. This completes the proof.
It is well-known that Theorem (4.2.22) provides the following uniformity control at all
scales.
Theorem (4.2.23)[225]. With C; being the constant in Theorem (4.2.22), let Q = log, C; .
Forany x € M and r > 0 one has
u(B(x,tr)) = Cc7tt%u(B(x,r)), 0<t <1.

The purpose is to establish some optimal two-sided bounds for the heat kernel
p(x,y,t) associated with the subelliptic operator L. Such estimates are reminiscent of those
obtained by Li and Yau for complete Riemannian manifolds having Ric > 0. As a
consequence of the two-sided Gaussian bound for the heat kernel, we will derive the
Poincare inequality and the local parabolic Harnack inequality thanks to well-known results
in the works [193,197,198,214,216-218].
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We assume, once again, that the assumptions (Hypothesis (4.2.3))—( Hypothesis (4.2.7))
be satisfied, and that the generalized curvature-dimension inequality CD(p, p,, k, m) hold,
with p; = 0. Here is the main result.

Theorem (4.2.24)[225]. For any 0 < & < 1 there exists a constant C(e) = C(m, k, p,, &) >
0, which tends to « as ¢ —0%, such that for every x,y € M andt > 0 one has
C(e)™? exp (_ Dd(x,y)2> < oy t) < C(e) o (_ d(x,y)2>
#(B(x,\/;)) m@—ex) > PV _#(B(x,\/;)) P\T@—ot)

Proof. We begin by establishing the lower bound. First, from Proposition (4.2.12) we obtain
forally e M,t > 0,andevery0<e<1,
D D d(x,y)?
p(x,y,t) = p(x,x,et)ezexp <_E(4 — e)t) :
We thus need to estimate p(x, x, et) from below. But this has already been done in (4.2.23).
Choosing r > 0 such that 2r? = «&t, we obtain from that estimate
c*
p(x,x,et) = BCx \/m )
On the other hand, since ,/e/2 < 1, by the trivial inequality wu(B(x,\e/2Vt)) <
w(B(x,Vt)), we conclude
Cc* D D d(x, y)?
p(x,y,t) = m&‘z exp <_E(4 — E)t>
This proves the Gaussian lower bound.

For the Gaussian upper bound, we first observe that the following upper bound is proved in
[183]:

x € M,t > 0.

LV 3

TP\ G+ o)

1
u(B(x,V£))2u(B(x,V1))?
At this point, by the triangle inequality and Theorem (4.2.23) we find.

w(B(x,Vt)) < u(B(y,d(x,y) + V)

Q
< Cu(BG.VL) (d(x"“ytfﬁ) .

This gives

1 Cy <d(x,;v) )Q
< +1 :
u(By.VE) T uBH.V)) \ vt
Combining this with the above estimate we obtain
€ (m . pa. ) (d(x,w . 1)‘?’2 N (_ d(x, y)2>
u(BHVE)) \ vt P\" G+ &)
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Ifnow 0 < e <1,itis clear that we can choose 0 < &' < ¢ such that

Clllz(m,rc,pz,e’) d(x,y) e/z d(x, y)?
+1 exp| —
u(B(y,Vt)) ( vt ) ( (4+ 8’)t>
C*(m, K, py, €) d(x, )
< exp| ————

u(B(y.Vt)) ( (4+€’)t>
where C*(m,k, p,,€) is a constant which tends to o« as e — 0*. The desired conclusion
follows by suitably adjusting the values of both &" and of the constant in the right-hand side
of the estimate.

With Theorems (4.2.22) and (4.2.24) in hands, we can now appeal to the results in
[193,197,208,214,216-218]. From the developments it is by now well-known that strictly
regular local Dirichlet spaces we have the equivalence between:

(i) A two sided Gaussian bounds for the heat kernel (like in Theorem 4.2.24);

(ii) The conjunction of the volume doubling property and the Poincaré inequality (see
Theorem 4.2.25);

(iii) The parabolic Harnack inequality (see Theorem 4.2.27).

For uniformly parabolic equations in divergence form the equivalence between (i) and
(iii) was first proved in [193]. The fact that (i) implies the volume doubling property is
almost straight forward, the argument may be found in [215]. The fact that (i) also implies
the Poincaré inequality relies on a beautiful and general argument by Kusuoka and Stroock
[208]. The equivalence between (ii) and (iii) originates from [197,214] and has been worked
out of strictly local regular Dirichlet spaces in [218]. Finally, the fact that (ii) implies (i) is
also proven in [218].

We obtain the following weaker form of Poincaré inequality. We already know the
volume doubling property since we proved it to obtain the Gaussian estimates.
Theorem (4.2.25)[225]. There exists a constant € = C(m, k, p,) > 0 such that for every
x €M, r>0,and f € C*(M) one has

j FO) = £I2du(y) < Cr? j (P )0 du(y)

B(x,r) B(x,2r)

m fB(x,Zr)B(x,T) fdu.

Since thanks to Theorem (4.2.22) the space (M, u, d), where d = d(x, y) indicates the sub-
Riemannian distance, is a space of homogeneous type, and it is also a length-space in the
sense of Gromov, arguing as in [206] we now conclude with the following result.
Corollary (4.2.26)[225]. There exists a constant C* = C*(m, k, p,) > 0 such that for every
x €M, r > 0,and f € C*(M) one has

where we have let f,. =
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| ro) - franoy <crt | ()
B(x,1) B(x,r)
Furthermore, the following scale invariant Harnack inequality for local solutions holds.
Theorem (4.2.27)[225]. If u is a positive solution of the heat equation in a cylinder of the
form Q = (s,s + ar?) x B(x,r) then

su < C infu, 58
upu nfu (58)

where forsome fixedO<f <y <d<a<owandn € (01),

Q—= (s + Br?, s +yr?) x B(x,nr), Q+= (s + 67r% s+ ar?) x B(x,nr).
Here, the constant C is independent of x, r and u, but depends on the parameters m, k, p,, as
wellason a, B,y,6 and n.

In [183] were able to establish a Yau type Liouville theorem stating that when M is
complete, and the generalized curvature dimension inequality CD(p4, p2, k,m) holds for
p1 = 0, then there exist no bounded solutions of Lf = 0 on M besides the constants. Note
that this result is weaker thanYau’soriginal Riemannian result in [223] since this author only
assumes a one-side bound. However, as a consequence of Theorems (4.2.22) and (4.2.25)
we can now remove such limitation and obtain the following complete sub-Riemannian
analogue of Yau’s Liouville theorem.

Theorem (4.2.28)[225]. There exist no positive solutions of Lf =0 on M besides the
constants.

We can now prove much more. In [190] Colding and Minicozzi obtained a complete
resolution of Yau’s famous conjecture that the space of harmonic functions with a fixed
polynomial growth at infinity on an open manifold with Ric = O is finite dimensional. A
fundamental discovery is the fact that such property can be solely derived from the volume
doubling condition and the Neumann—Poincaré inequality. However, at the time [190] was
written the only application of such theorem that could be given was to Lie groups with
polynomial volume growth.

If we combine Theorem (4.2.22) and Corollary (4.2.26) above, we can considerably
broaden the scope of Colding and Minicozzi’s result and generalize it to the geometric
framework covered. We obtain in fact the following generalization of Yau’s conjecture.
Given a fixed base point x, € M, and a number N € N, we will indicate with HN (M, L) the
linear space of all solutions of Lf = 0 on M such that there exist a constant C < oo for
which

If ()| <Cc@+d(x,x)Y), x€ M.
Theorem (4.2.29)[225]. For every N € N one has: dimHy(M,L) < co.
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Corollary(4.2.30)[291]. For every x € M and every € > O there isaconstant C(1 +¢€,1 +
€,1 + 2¢) > 0 such that,
C(l+e1+¢€1+2¢)

M(B(x, (Ro + E)) = Rgp(x, X, R(Z))

Proof. Fix x € M and € > 0. Applying to p(x,x +¢€,1+¢€) for every (x +¢€) €

B(x,V1+ €) we find
D

D
p(x,x,1+¢€) <22 e*+6) p(x,x +¢€,2(1 +¢€))
=C(1l+el+e2(1+€))p(x,x+e2(1+€)).
Integration over B(x,V1 + €) gives

(Ry+€)°, €= 0.

pCe,x,x + e)u(B(x,Vv1+e¢€) <C(l+¢el+¢€l+¢€) f p(x,x +€2(1+¢€))du(x +e)

B(x\/x+€)
<C(A+el+¢2(1+¢€)),

where we have used P;,.1 < 1. This gives the on-diagonal upper bound
C(l+e1+¢€1+2¢)

U (B(x Vs + e))
Let now t + € > 0. Again, from the Harnack inequality, we have
D
T \2
p(x,x,t+¢€) = p(x,x,1) (T " e) :

Corollary(4.2.31)[291]. Let € > O and the sequence f,,, € A.. Forx € M,t +¢e¢ >0, and
C € R, one has

T35y PreeUnT (N ) @) + T2Prc ful 2500 £)) )

1

4C
+m (3 + m) [P1+e(fm In fm)(x) - P1+efm(x) INPyye fm(x)]

S T GOT(N Prycfp)(2) + (28 + )P finCITX25(IN Prye fr) ()
= (1+2€) 1+e Jm 1+e/m T+e /m T+e J/m

4C 2C? | Tte
+m L P‘c+e fm(x) - (1 T E)(l T 26) n (1 + T) P‘c+efm(x)-

Proof. Let T, > 0 be arbitrarily fixed. With e > 0, in which we choose

p(x,x,s +€) < (59)

(a+e)(A+e)=(T +€)? a(l+¢€) = (T+e), y(r+e)= ,0

1+ 2¢ T +¢€

<t+e <T.
With such choices we obtain
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(1 LZ — av —_1 2(1te) i
a’'=2(1+e€) ate 4 (1+€) ~ (1+2€) (1 + (1+2¢) * (1+E)) ’

AQ+e)+2(1+2€)a=0

T 4ay __ 4CT
< fo (1+e)  (1+2¢)(1+¢€) (60)
and
(T 2ay? —_ 2C? ( + 1+26)
\ 0 (1+¢) (1+€)(1+2¢) 1+e /)’

We obtain the sought for conclusion with T in place of 7 + €. The arbitrariness of T > 0
finishes the proof.
Corollary(4.2.32)[291]. Let € > 0 and the sequence f,, € A;. For x € M, € > —1 one has

(1 + )Py frn ()TN Pryc fin)(x) + (L + 26)(1 + €)?Priefrn (OTT2(IN Py o fr) ()
2(1+¢)
= <1 (1+ 2¢ )) [P1+e(fm In /i )(x) — P1+efm(x) NPy, fm(x)]

Proof. We first apply with C = 0, and then we let 1 + e — 0% in the resulting inequality.

We may actually improve Corollary (4.2.32) and obtain the following crucial dimension
dependent reverse log-Sobolev inequality.
Corollary(4.2.33)[291]. Let € > 0 and the sequence f,,, € A, thenforevery C = 0and § >
0,onehas forx € M,e = —1,

(L + )P efin (TN Pryc fn)(x) + (L + €)*Pryefin ()T 24N Py o fr) (%)

2(1+¢) AC
<1 + (1 + 2¢) + 1+ E)) [P1+e(fm In fim )(x) — P1+efm(x) INP;ye fm(x)]

4C 1 2C* 1
- T 1es L@ * aaarg (1 +5) P (6D
Proof. For x € M,e > —1, we apply to the function P, .f,, instead of f,,. Recalling that
P11+ e(Piiefin) = Pa(1+e)fm, We obtain, for all C € R,

1+
ragy PreePraefml(INPrye frn ) () + (1 + €)2Pric(Praefral (N Pryefin) (%)

1 2(1+¢) 4C
+(1+2e)(+ b, 1+

> [P1+e( P1+efm In P1+efm )(x) - P2(1+e)fm(x) InP2(1+e) fm(x)]

PZ 1+€ +2€
= ﬁ 2(1+e)(fm(x)F(InP2(1+e) fm)(x) + (2(1 + 6)) P2(1+e)fm(x)1—‘X (In P2(1+e)fm)(x)

ac 2C? 2+¢
AT 20T O (1 + €)LP;(146)fm(x) — 17200+ 9 In (1 " 6) Prasofn(x)  (62)

We now find for every x € M,e = —1,
a+ E)P1+efm(x)r(|n Piie fm)(x) +(1+ 26)(1 + E)2P1+efm(x)rx+ze(|n Piie fm)(x)

2(1 +¢)
s<1+ e )[P1+E(fmlnfm)(x) Pracfmn() 1N Pryefon ()]

If we now apply P, to this inequality, we obtain
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A+ )P efn (TN Py fr)(x) + (1
+2e)(1+ E)2P1+¢s(P1+¢sfmrx-|-26(|n Piie fm)(x))

2(1
< <1 + ﬁ) [P2(1+e)(fm In fm)(x) - P1+6(P1+efm In P1+efm) (x)]

We use this inequality to bound from above the first two terms, obtaining

2(1+¢€)

(1 + 2¢) 4C

1+ 20) Pacire)(fon IN fr)(x) + AT Pric(Piaefn INPiycfim) ()

1 2(1+¢) ac

- (1 + 2¢) < + (1 + 2¢) + 1+ E)) P2(1+e)fm(x) In P2(1+e)fm(x)
> M P I'(InP
= (1 + 26) 2(1+e)fm(x) ( n 2(1+e)fm)(x)

+ (201 + €)) Paae fn COT (1N Py for) ()

N Lp 2C* | 2+¢€ p )
(1+2¢) 2(1+0)fm (%) = (1+2e)Q+¢) : (1 + e) 2(1+6)/m (x
Consider the convex function®(1+¢)=(1+¢)Ins, e >—1. Thanks to Jensen’s

inequality, we have foranye > —1land x € M

P(Priefin (%)) < Prie(P(fm)) (),

1+

which we can rewrite

Pivefm () INPrie fn(x) < Prie(fin IN fin) ().
For C = 0, applying P, to this inequality we find
4c 4c
(1 + 26)(1 + E) P1+E(P1+Efm In P1+E fm)(X) < (1 + 26)(1 + E) P2(1+e)(fm Infm)(X)

We therefore conclude, for C > 0,

1 201 4
< + ](__|_+2§) + : ) [P2(1+€)(fm Infm )(x) - P2(1+e)fm(x) In P2(1+e) fm(x)]

1+ 2¢ 1+¢€
2(1 + 6) 2 X+2€
= mPZ(He)fm(x)r(lnPZ(He) fr)(x) + (2(1 +€)) Pa4e)fm COT2(IN Po(q46) frn) (%)
2C? 2+¢
T 20 Pl ~ e g () Pacarefm

If in the latter inequality we now choose (1 + €) = 6(1 + €), we find:

1 ac
1+ 20) (2 tet m) [Paa+e)+sa+e)( fm IN fir ) (x)

— Pateyrsa+e)fm () NP1y oyrsare) fm ()]
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AQ+e)+56(1+¢€)
(1+ 2¢) Pavey+sa+e)fm (TN P(1se)ss(1+€) fin) (X)

2
+ (1 +€) + 6(1 + ) Prseyrsa+e)fm TN P1ioyrs(ire) fn) ()
4C 2C? 2+¢
+—(1 +29) LP(11ey+5(1+e) fm(x) — A+29(1* o In (1 " E) Patey+s@+e)fm(X)

Changing (1 + 6)(1 + €) into (1 + €) in the latter inequality, we finally conclude:

—1 re 2 X+2€
20y PrrefmOOTAN Prie £)(6) + (14 )2 Pra e fon TN Py o) ()

1 2(1 +¢) 4C
- P1+efm(x) In Py fm(x)]

4C 1 2C2 1
(1+2€) 1+6 LPytefm(x) = (1+2€)(1+€) In (1 + E) Pyiefm(x).

Corollary(4.2.34)[291]. Given x € M and € = —1, let the sequence f,;; = Lp(x 14¢)c. ONE
has,

(1+¢)?
o

Sllrgl+ inf(—sInP.f,(x)) =

Proof. To prove the proposition it will suffice to show that

2
1+I¢igr—r>]0+ inf ((1 +€) INPyycfn(x) ) > — S _:16)

Let O < € < 1. By the Harnack inequality of Proposition 2.2 and the symmetry of the heat

kernel, we have for (x +¢) € M and (x + 2¢) € B(x,¢),
De
plx,x+e1+¢€)< px+2¢,x+e 1+ €)2)2D/1+€ ga(1+e)?

Therefore, multiplying the above inequality byf,,(x + €) = lp( 1+e)c(x +€) and then

integrating with respect to x + €, we obtain
De
Piiefm(x) < (P(1+E)2fm)(x + 2¢)2D/1+€ ga(i+e)?,

By integrating now with respect to (x + 2¢) € B(x, €), we get

De
2D/1+E e4(1+€)?

u(B(x,€))
Now, (for which normalization differs from us by a factor 1/2 because he considers the
semigroup e 1+€L/2) e obtain:

P1+efm(x) =< j 1B(x,£) (x + 26)(P(1+e)2fm )(x + ZE)dM(x + 26)-
M

1

lim (1+¢)ln j Lpre) (x + 26)(P(14e)2 fm) (x + 2€)dp(x + 2¢) = Ta0r o)

(1+€)-0
M
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This yields therefore

lim inf((1+ &) InP De —1
(1+!:_5r_]>0+|n ( E) n 1+efm(x)) —4(1+ )

We conclude by letting € —0.

Corollary(4.2.35)[291]. Let ¢ > 0, the sequence f,, € A;, € < f,, < 1, and consider the
function u(x,1+¢) = \/—InP;, f,,(x) . Then, with the convention that % = +o00, We

have
D* *
2(L+€)ug,e +u+|1+ ’? ul/3 + f u~3 >0,
where
= ( €) 1+2¢ /)

Proof. Noting that we have

T Purehn TN Py fi) () + a O Praen (I 24(IN Precfin) (1) = 0
<1 ( Ldre) )[p (£ In ., )(x)
1+ 2¢ 1+2¢ 1+e¢ 1+e{fm IN fim ) (x
- P1+efm(x) In Piye fm(x)]

A 1 2C*2 1
T Te G WP — aaaaa e M (L +5) Prechn (o)
we obtain that for all C > 0,
l+e 2(1+¢)
(1

C
1+ 2¢ +1+E)P1+e(fm|nfm)(x)

l+e¢ 2(1+¢€) C
—(1+ 5+ o) Pure) INPric fn

2C(1 + e) C?
—ﬁ Pitefm(x) — P1+efm = 0,

6 - 6 .

On the other hand, the hypothesis 0 < f,,, < 1 implies f,,, Inf,,, < 0. After dividing both
sides of the above inequality by P; ;. fin, We thus find
1+ 2(1+ 4C 2C(L+¢€)LP c?
€ 1+ ( €) + NPy, f, — ( €) LPy cfm +— >0
2 1+2e 1+e€ 1+6 Piiefm 6
Dividing both sides by € > 0, this may be re-written
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D* 20+ €)LPiyefm  C
- - - +—=>
ZC InP1+efm 2 InP1+efm 1 + 6 P1+Efm 6 e O (63)
We now minimize the left-hand side of (63) with respect to C. The minimum value is

attained in

6D~
C= |- 2 InP1+¢5fm-

Substituting this value in (63), we obtain

5D 2(1+ €) LPy, o fi

C
— J—InP — 2P — +—=>0.
2 1+efm 1+efm 1 + 6 P1+Efm 6
With u(x, 1 + €) = /= In Py, ¢fin (x), and noting that u, . = —i% , We can re-
1+e/m

write this inequality as follows,

6D*+ +2(1+e) -0
26 YT 1w “te="
or equivalently,
D*
2(1 + €)uqye +u+ou+(1+906) ’% > 0.
Finally, if we choose
1
6 = y2/3’

we obtain the desired conclusion.
We now introduce the functions (f;,, + €) : (0,0) — (0, ) defined by

1
(fm +E)(v) =

v+<1+ /%) v1/3+ /% v—1/3

lim \/D?T v_%(fm +e)(v) =1, Jl_mo v(fm +e)(v) =1

-0t

(64)

One easily verifies that

These limit relations show that the sequence (f;,, + €) € L(0,1 + ¢) forevery e > —1, but
(fi, + €) 2L (0, ). Moreover, if we set

G(u) = j (fin + )(v) dv.
0
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then G'(w) = (f;,, + €)(u) > 0, and thus G: (0,) — (0, ) is invertible. Furthermore,
as is seen from (64), asu — oo we have

Gw) =Inu+C, + R(u), (65)
where C, is a constant and lim R(u) = 0. At this point we notice that, in terms of the

u—>0o

functions (f;,, + €)(u) we can re-express the conclusion of Corollary(4.2.35) in the form
1

2(1+e)uqqe + G o > 0.
Keeping in mind that (f,,, + €)(u) = G'(u), we thus conclude

de(uw) 1

dt =G (u)u1+6 = —m.

From this identity we now obtain the following basic result .
Corollary(4.2.36)[291]. Let the sequence f,, € L*(M),0 < f,, < 1, then for any x € M
and 0 <s < s+e¢,

G(V=NPorefn () = G(=N B S (1)) —%In (S b E) |

S
Proof. If f,,, € A, for some ¢, the inequality is a straightforward consequence of the above

(66)

results. In fact, keeping in mind that u(x,s +¢€) = \/— In Pg . fin (x), In Order to reach the
desired conclusion all we need to do is to integrate (66) between s and s + €. Consider now
fm ELY(M), 0< f,, < 1. Let (fi, +2€)14 € Co°(M), with 0 < (fy, +2€)14¢ <1,
and(f,,, + 2€)14 7 1. For e’ = 0 and € > 0, the function

(1 - E)P1+e((fm + 26)1+e’fm ) +¢e € Ae-
Therefore,

G(\/_ In P1+efm (1 - E)P1+e((fm + 26)1+e’fm ) + E(x))

1 /s+e€
> 6(y=T P fn (L= &) PryelUm + 2 1rerfin) + 2(0) — 510 (—— ).
Letting e — 0, and finally €’ — oo, we obtain the desired conclusion for f,,,.

Corollary(4.2.37)[291].Let x € M and € = —1 be arbitrarily fixed. There exists C; € R,
independent of x and 1 + ¢, such that for any € > —1,

(\/_ In P1+ElB(x’1+E)C(x)) 2 In V 1 + € + Cg

Proof. Re-write the inequality claimed in Corollary (4.2.36) as follows
G(V—INPgiefm (x)) = G(—=INBfir (x)) + InVs— InVs + ¢,
where we have presently let f,,,(x + €) = lp(y14e)c(x + €). Since for this function we
have, from Corollary(4.2.34),
Slirgl+(— In P f,,, (x)) = oo, using (65) we see that, for s—0+, the latter inequality is

equivalent to
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G(V—INPgiefm (x)) = Iny/=INBf, (x) —INVs + € +Cy + R(J—INPfy (x)).
We now take the lim inf as s - 0" of both sides of this inequality. Applying
Corollary(4.2.34), we deduce

G(\/—InPHEfm(x))zln —Invs+e +Cy=InV1+e+C(Cy,

where we have let C; = C, — In 2. This establishes the desired conclusion.
We are now in a position to show the central result.

Corollary(4.2.38)[291].. There exists a constant e > —1 such that for every x € M,

1
Pa+ep(Ipare)) () = 5

Proof. By the stochastic completeness of M we know that P;,.1 = 1. Therefore,

Pa+eyr(1aiei+e)(®) = 1= Puies(Lpieirer) ().
We conclude that the desired estimate is equivalent to proving that there exists an absolute
constant € > 0 such that

(\/ﬁ) = <\/_ InP(1+6)3(1B(x,1+e)c)(x)>a

1+e¢€

or, equivalently,

G(\/ﬁ) <G <\/— In P(1+e)3 (1B(x’1+6)c)(x)> (67)

At this point we which gives

G <\/— |nP(1+e)3(1B(x,1+6)C)(x)) = In (J% " C(’,‘)

It is thus clear that, letting 1 + € — 0%, we can certainly achieve (67), thus completing the

proof.

We have the following,

Corollary(4.2.39)[291]. (Global doubling property) The metric measure space (M,d, u)

satisfies the global volume doubling property. More precisely, there exists a constant C; =

C;:(1+¢€,1+2¢1+¢€,1+¢€)>0suchthatforevery x € M andeverye > —1,
u(B(x,2(1 +¢))) < Ciu(B(x,1+¢)).

Proof. The argument which shows was developed independently by Grigor’yan [197] and

by Saloff-Coste [214], and it is by now well-known. However, since it is short for the sake

of completeness in what follows we provide the relevant details. From the semigroup

property and the symmetry of the heat kernel we have forany (x +e€) e M and € > —1

p(x +e,x+¢€2(x+¢€) = jp(x+e,x+26,1+e)2du(x+26).
M
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Consider now the functions (f,,, +2¢) € C;°(M) such that 0 < f,, +2e < 1,(f;, +
2¢) = 1on B(x,V1+ €/2) and (f,, + 2¢) = 0 outside B(x, V1 + €). We thus have

Piie(fn +2e)(x +€) = f p(x+ex+2¢1+¢€)(f, +26)(x + 2€)du(x + 2¢)

M
1

2 2
< (f p(x+ex+2¢61+e)du(x+ 26)) (f (fin + 2€) (x + 2€)%du(x + 26))
M M
< p(x+ex+¢62(L+e€))2uBx,VI+e)):.

If we take e = 0, and e = —1, we obtain

P(1+e)2 (1B(x,r))(x)2 = P(1+e)2(fm + 26)(x)2 < p(x,x, 2(1+ 6)2) w(B(x,1+¢)). (68)
At this point we use Corollary(4.2.38) which gives for some 0 < e < 1, (the fact that we
can choose € < 1 is clear from the proof of Corollary(4.2.38).

1
P(1+e)3(1B(x,1+e/2))(x) = > x €M, e€=-1

Combining this estimate with the Harnack, we obtain the following on-diagonal lower
bound
c*
p(B(x,1+¢€)) °
we find for every x + € € B(x,V/1 + €),
p(x,x,1+¢€) <Cp(x,x+¢€2(1+ €)).
Integration over B(x,V1 + €) gives

plx,x,2(1 +€)?) >

X € M, e > —1. (69)

p(x,x, 1+ e)u(B(x,v1+¢€)) <C j p(x,x+¢€2(+e€))du(x+e€) <C,

B(x\1+4€)
where we have used P;,.1 < 1. Letting ¢ = —1, we obtain from this the on-diagonal
upper bound

p(x,x, (1 +€)?) < (70)

p(B(x,1+¢€))
Combining (69) with (70) we finally obtain

C cc’

< < <Cc* +
u(B(x.2(1+€)) < A0 S an SO B+ ).
(with x + € = x +2e = x), which gives
2

p(x,x,2(1 + €)%) <

p(x,x,4(1 + €)?)
and we have let C** = CC'(C*)~1. This completes the proof.
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It is well-known that Corollary(4.2.39) provides the following uniformity control at all
scales.
Corollary(4.2.40)[291].. For any O < & < 1 there exists a constant C(¢) = C(1+¢€,1+
€,1+ 2¢,&) > 0, which tends to « as ¢ —0*, such that for every x,(x +€) € M and € >
0 one has
C(e)?! Dd(x, x + €)?

u (B(x Vi+ e)) ep <_ (1+e)?(@4-¢)
- C(g) . <_ d(x, x + €)? )
" u(B@VITe) P\T@—oa+9/

Proof. We begin by establishing the lower bound. First, we obtain forall (x +€) € M,e >
0,andevery0 <e <1,

)S p(x,x +¢€,1+¢€)

D d(x,x+¢€)?
1+e(4—e)(1+e)>'

We thus need to estimate p(x,x, e(1 + €)) from below. But this has already been done in
(69). Choosing e < —1 such that 2(1 + €)? = (1 + €), we obtain from that estimate

D
p(x,x +e€,1+¢€) = p(x,x,e(1+¢€))eZexp <—

C*
p(x,x,e(1+€)) ZM(B(x,\/m o) x EM, e€>-1

On the other hand, since \/e/2 < 1, by the trivial inequality u(B(x,/e/2v1+¢€)) <
u(B(x,v1+ €)), we conclude

p(x,x +e,1+¢€) =

c* D < D d(x,x+¢€)? )
g2exp| —

1w(B(x,V1+¢€)) 1+e(@—¢e)(1+e)

This proves the Gaussian lower bound.

For the Gaussian upper bound, we first observe that the following upper bound is proved in
[183]:

p(x,x +e,1+¢€) =

C(l+e1+¢€1+2€¢) < d(x, x + €)? )
(

1 1exp -
H(B(x NI+ €)2u(B(x, V1 +€))? a+e)L+e)

At this point, by the triangle inequality we find.
u(B(x,V1+¢€)) < u(B(x +€,d(x, x + €) + VI +¢€))
dlx,x +e)+V1+¢ ¢
i)

< Ciu(B(x + €,V1 +¢€)) <

This gives

1 o d(x,x +€) ©
< +1) .
u(B(x + e, V1+¢€)) ~ u(B(x +¢€,V1+¢€)) < Vi+te )
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Combining this with the above estimate we obtain
p(x,x +€,1+¢€)
- C11/2(1 +e1l+e1+2¢¢&) (dlx,x +¢€) 1 ez B d(x,x + €)?

H(B(x + e V1+e)) ( VIve ) exp( @+e)T+ e)>

If now 0 < e <1, itis clear that we can choose 0 < &' < & such that
6'11/2(1 +e1+€1+26¢&)[(dx,x+¢€) Q72 d(x, x + €)?
w(B(x + €,V1 + €)) < Vi+e +1> x <_ (4"'8')(1"'6))
C*(1+e€1+¢€1+2€¢) d(x, x + €)?
= p|— 7
w(B(x + €,V1 + €)) < 4+HA+ e))

where C*(1 +€,1+€,1 + 2¢, €S) is a constant which tends to o« as € — 0. The desired

con- clusion follows by suitably adjusting the values of both & and of the constant in the
right-hand side of the estimate.
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Chapter 5

Pinched Riemannian Manifolds and Geometric Inqualities with Sub

Riemannian Balls

We obtain a distribution theorem for the square norm of the second fundamental form
of M under the assumption that M is a minimal submanifold with parallel second
fundamental form in a Riemannian manifold. We give some geometric inequalities for a
submanifold with parallel second fundamental form in a pinched Riemannian manifold and
the distribution for the square norm of its second fundamental form. In particular, large sub-
Riemannian balls are comparable to Riemannian balls.
Section (5-1): Closed Minimal Submanifolds

Let M™ be an n —dimensional oriented closed minimal submanifold in an (n +
p) —dimensional manifold N™*F. We denote the square norm of the second fundamental
form of M by S. In the case that the ambient manifold N is the Euclidean sphere S™+7 (1),
it is well known [227] that if S < n/(2 — 1/p) on M, then either M is the unit sphere
S™(1) , one of the Clifford minimal hypersurfaces in S™*1(1) , or the Veronese surface in
S*(1) . Further discussions in this regard have been carried out by many other
([228,230,233,234,237], etc.). A. M. Li and J. M. Li [231] have improved the pinching

constant above to %n for the case > 3 . But all these results were obtained under the

assumption that the ambient manifolds possess very nice symmetry.

We establish a generalized Simons integral inequality for minimal submanifolds in a
Riemannian manifold, and prove a pinching theorem for minimal submanifolds in a
complete simply connected pinched Riemannian manifold, which does not possess
symmetry in general. The proof uses some equations and inequalities naturally associated
to the second fundamental form of M, the curvature tensor of N, and their covariant
derivatives. Since we do not assume that N™*? is a sphere, the maximum principle and the
estimate for AS in [227, 231] cannot be applied here, and the trick of constructing a
differentiable 1-form and using integral estimates seems essential. Finally, a distribution
theorem for S is obtained under the assumption that M is a minimal submanifold with
parallel second fundamental form in a Riemannian manifold.

Let M™ be an n-dimensional Riemannian manifold immersed in an (n + p) —
dimensional Riemannian manifold N™*P. We shall make use of the following convention
on the range of indices:

1<AB,C,....<n+p, 1<i,jk,....,.<n,
n+1<apy..<n-+np.
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Choose a local field of orthonormal frames {e,} in N such that, restricted to M, the e;'s are
tangent to M. Let {w,} and {w,45} be the field of dual frames and the connection 1-forms of
N respectively. Restricting these forms to M, we have

Zh w, h% = he, @)
h= Z h% w; ® w; ®eq, Zhu ey, )
a,i,j
Rijii = Kijia + z(h‘%‘ i1 — hihii), 3
a
Rugii = Kagia + ) (h& hE — h2nb), 4
afkl afkl ( ( )

i
where h, &, Rapki, Rijir, and Kypep are the second fundamental form, the mean curvature

vector, the normal curvature tensor, the curvature tensor of M, and the curvature tensor of
N respectively. We define

S=rl?,  H=IlEl, He = (A)nxn-
M is called minimal if H vanishes identically. Therefore, if M is minimal, its scalar

curvature is given by

Now we define the covariant derivatives of h{'j, denoted by h{j;, and hi}; respectively, as

Z K% = AR + Z B s + Z he w5 + z B g,
z hl]kl(‘)l dhl]k + z hS]kwlS z hlsk(‘)]s z hl]kaS z hiﬁ;kwaﬁ’
B

Then we have
ik — hikj = Kaikjs 5)
and the Ricci formula

hisi — hije = z hgiRsix + z hisRsjk + z hUR[)’akl (6)

Considering K j as a section of TL(M) X T (M) X T"(M) R T (M), we also define its
covariant derivative Kg;jy; as

z Kaijkl(‘)l — dKaijk + z Kasjk(‘)is + z Kaisk(‘)js
l S S
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+ z Kaijs(‘)ks + z K[)’ijk(‘)a[)’

M is called a submanifold with paraIIeI second fundamental formif h{, = Oforalli,j k, a.
The Laplacian Ahj; of the second fundamental form h is defined by Ahf; = ¥ hfjx. In the
next section, we sometlmes also use Vy h{ to denote hi, etc.

For a matrix A = (a;;)nxn We denote by N(A4) the square norm of A , i.e., N(4) =
tr(A'A) =3 aizj. Then N(A) = N(TA'T), for each orthogonal (n x n) —matrix T.
Proposition (5.1.1)[238]. (see [307, 311]). Let Ay 41, Apt1, . .. Apyp DE Symmetric (n x n)-
matrices. Denote S,p = tr(ALAg), Su = Saa = N(4g), S = X4 Sa . Then

1
ZN(AaAﬁ —AﬁAa) +ZS§[)> < (1 +§ sgn(p — 1) )SZ, (7
a,f ap

where sgn(+) is the standard sign function, and the equality holds if and only if at most two
matrices A, and Ag are not zero and these two matrices can be transformed simultaneously

by an orthogonal matrix into scalar multiples of 4, and /Tﬁ respectively, where

0O 10

Proposition (5.1.2)[238]. (see [309]). Let N be an (n + p) —dimensional Riemannian
manifold. Ifa < Ky < batapointx € N, then, at this point,

(|) |KACBC| S%(b—a), fOTA:;tB

(i)  |Kugepl < %(b — a), for A, B, C, D distinct with each other.

From now on, we assume that M™ is a minimal submanifold in N**F | By (5), (6),
and the minimality of M, we have

Ahlqj — Z(Kaklk] + Kaljkk) z hmlRmk]k

z hkm mijk + z hklRa[)’k] (8)

Substituting (3) and (4) into the above, (8) becomes

Ahf; = — Z(Kakikj + Keoijire) + z homiRimkjk + R Rmiji) + z hfiRaﬁkj.
km kB
+ z (R&hb Ry + 2 hEhighE = i Bl hE — R RE  hi . — he hig b

mi'*mj ki''mj km'"ij mi'*mk ki’ “mk
mk,
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Therefore,

1
545 = Z (h{)? + Z hi; AR,

i,jk,a i,j,a

z (hl]k)z - z (h akikj +h K l]kk)

i,jk,a i,jk,a
) (e Ko+ B Ko (©)

i,jkma

> Ky~ ) hGhERGRY

iLjkap i,j.klaf

z (i kb, — hhb) (RGRE — hGhb)

i,jklLapf
thzhf’}

Then the (p % p) —matrix (Sgp) is symmetrlc and can be assumed to be diagonal for a
suitable choice of {e,} , i.e.,

Put

Sap = Sabep forall a,p.
By the definition, § = ., S From (9) we have
Lemma (5.1.3)[238]. Denote

A=-— ZN(H Hp — HgH,) + ZSQ,

z (ha ha mklk+h kh ml]k)+ z h h K[)’k]a

i,jkma i,j.kap
C= z (hgk)z z (h akikj +h K l]kk)
i,jk,a i,jk,a
Then
AS = A+ B+ C (10)

Let a(x) and b(x) denote the infimum and the supremum of the sectional curvature of N at
a point x respectively. Now we derive a lower bound for B in terms of a, b, and S.

Lemma (5.1.4)[238]. B =nbS —[n +2(p — 1)(n—1)*?](b — a)S.

Proof. Fix a vector e,. Let {e;} be a frame diagonalizing the matrix (h{}) such that

hi; = A 8ij, 1<i,j<n.

Then
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z homj M Kk + z honic i Komijie + z hi h iKaprj

Ljkp
z (ia)z ikik T z j~kj~aKkuk + z hkl ia a[)’kl
i,jka i,jka ik,

By Proposition (5.1.2), we have
|Kaﬁki| < g(b —a) for a=#p, i + k.
Hence, for fixed «, one sees

Y M Kapa == Y 20— @lRfAN

iLk.p a*Bi+k.
= Y L - - DV + (- 1)V
a+p,i+k.
> —%(n —1)Y2 (b —a) Z trH[? —%(n — 1)% (p —1)(b — a)tr H?

a+pf
On the other hand, we have

Z(A?)Z Kikix + z i K
Tk

i,jka
— 1 2 1 2 — 2
= EZ(% — M) Kikire 2 EQZ(% — ) =natrHg.
ik ik
Substituting (12) and (13) into (14), we obtain
B>Z[na ter——(n 1)/2 (b—a)ZtrHﬁ

a+p
—(n—1)Y? (p - 1)(b — a)trHg]
= nbS — [n+(p — 1)(n — 1)2(b — a)s.
We shall next estimate the integral of C.
Lemma (5.1.5). [, € = ——pn(n — 1)(26n — 25) [, (b — a)?.
Proof. Note that

a
z (h ajijk + hinaijkk)
i,j.ka

z Vk(h ajij +ha aljk)+ z (hlkk ajij L]kKaljk)

i,jk,a i,jk,a
We define a differentiable 1- form as

w = z (h ajij + hl]kKal]k)(‘)k
i,j,ka
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It follows that

le(l): z Vk(h a]l]+ha al]k)
i,j.ka

Thus
C= z (hl]k)z z (hlkk ajij L]kKaljk) dIVa)

i,jk,a i,jk,a
Since M is minimal, we have

Z e =0 forallj,a (16)
From (5), (16), and Proposition (5.1.2), we have

z hikkKeajij = z (higki — Kakin)Kajij = —z zKajij

i.jka i.jka La \ J
1
> —an(n —1)%2(b — a)?. a7
On the other hand, by Proposition (5.1.2), we have

z (h k)z z hl]kKaljk

i,j,ka i,jka
1 2
> ~2 z (Kaiji)
i,jka
1 2 1 2
220 > ey =5 ) ) Kaij) (18)
a i,jkdistinct a i#j

> —%pn(n —1Dn-2)(b—0a)? - %pn(n — 1) (b - a)?.
So
C > —%pn(n —1)(26n — 25)(b — a)? — divw (19)
and by using Green's divergence theorem, we get
jM > —%pn(n _ 1)(26n — 25) jM b — a)?. (20)

Lemma (5.1.5) follows.
Now we define

D(p) = n +2(p - D(n— D2

E(n,p) = ! Pn(n —1)(26n — 25).

140



Theorem (5.1.6)[238]. (Generalized Simons inequality). Let M™ bean n-dimensional
oriented closed minimal submanifold in an (n + p) —dimensional Riemannian manifold
N™*P Denote the infimum and the supremum of the sectional curvature of N at a point x
by a(x) and b(x) respectively. Then

] [an—(l +%sgn(p —1)S2=D(n,p)(b —a)S — E(n,p)(b — a)z] <0.

Proof. Combining Proposition (5.1.1), Lemma (5.1.3) and (5.1.4), we obtain
%AS > nbS — (1 + %sgn(p - 1)) §2 — [n + % p-1)(n- 1)1/2] (b-a)s+c. (21
Integrating both sides of (21) and applying Lemma (5.1.5), we have

] [nbS - (1 + Lsgn(p — 1))s? - D(n,p)(b — ) — E(up)(b - )2 <0 (22)

This completes the proof of Theorem (5.1.6).

Denote

a(n,p) = Sfpn(n - 1)(52n - 50)],
172

B(n.p) =n+(p - 1)(n - 1) + —fpn(n - 1)(52n— 50)]""*.
We are now in a position to prove
Theorem (5.1.7)[238]. There is a number §(n, p) with 0 < &§(n,p) < 1suchthatifthere
exists an oriented closed minimal submanifold M™ in a complete simply connected manifold
N™P with §(n,p) < Ky < 1and
a(n,p)(l—c)<S<n- %n sgn(p — 1) — B(n,p)(A — ©),
where c is the infimum of the sectional curvature of N, then either M is the unit sphere

S™(1), one of the Clifford minimal hypersurfaces s* <\/§> x svk(n—k)/n) k= 1,2,...,.n—

1, in S"*1(1), or the Veronese surface in S*(1). Moreover, N = S™*P(1).
Proof. Since

c < a(x)< b(x) <1,
(22) gives

] [nS (1 + Lsgn(p — 12 = D(n,p)(A - ©)S — E(u.p)A—c)?| <0, (23)

Take

§(n,p) =1-n@B-sgn(p — 1))(3D(n,p) + 6EY*(n,p))™".
Then

1
a(n,p)(l—c)<n- §n sgn(p — 1) — B(n,p)(1 — ©).
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From the assumption

a(n,p)(l—c)<S<n- %n sgn(p — 1) — B(n,p)(A — ©), (24)

we see that
nS—(l +2sgn(p - 1))52 —D(n,p)(L =¢)S — E(n,p)(L —¢)? =0 (25)
Therefore, all inequalities in (17), (18), (22), and (25) are actually equalities. This implies

1—c = b—a = 0and N is a complete simply connected Riemannian manifold with
constant curvature 1. Hence N = S™*P(1). This together with (23) and (25) gives

1
S =0 or S=n—§nsgn(p—1).

Furthermore, the previous inequalities become equalities, and it is not hard to see from
Proposition (5.1.1) that either M is the unit sphere S™(1), one of the Clifford hypersurfaces
S*¥(Jk/m) x smk(/n—k)/n), k = 1,2,...,n—1, or the Veronese surface. This proves Theorem
(5.1.7).

Theorem (5.1.8)[238]. Let M™ be an oriented closed minimal submanifold with parallel
second fundamental form in a Riemannian manifold N**? | Then

(i) S<pnd + F(n,p)(d —c), where F(n,p) = %p(p —1)(n—1)"?and d is the

supremum of the sectional curvature of N,
(i) ifd'(n,p) < Ky < 1, here

1.—1
§'(n,p)=1- n(3 — sgn(p — 1)) [Sn + 2(p- 1)(n— 1)5] ,
then either M is totally geodesic or n —%n sgn(p —1) — D(n,p)(1—¢c) < S < pn +

F(n,p)(1— o).
Proof. From the proof of Lemma (5.1.5) we have

C=- z Vi (hfiKajij + hiiKaiji)-
i,jk,a
It is easy to see from (5) that K,;;, = O, forall i, j, k, a. So
c =0. (26)

Since ZAS = Z(hf‘jk)2 + Y hi;Ahj; = 0O, S is a constant. This together with (10) and (16)
implies

A+ B =0. 27)
Obviously,

z N(H,Hg — HgH,) + z S2>S?%/p (28)
a,[)’ a
For fixed «, similar to the estimate of lower bound for B , we have
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LHS Of (11) — Z(ia)z ikik T z j~kj~aKkuk + z hkl ia a[)’kt

ik ik,
<ndtr H2+ §(p —1)(n—1)Y?(d - c)tr H2
- DV2(d =) Y o HE

B*a

This gives
B <ndS+2p(p—1)n—1)"%(d - c)S. (29)
It follows from (27), (28), and (29) that
ndS +>(p — 1)(n — 1)V2(d — c)S = $%/p.

This yields
S <pnd+2p(p -1 -1)"*(d - o). (30)
If 8'(n,p) < Ky <1, itisnot hard to see from the definition of §'(n, p) that
n— %n sgn (p —1)D(n,p)(1 —c) > 0. (31)
By (27), Proposition (5.1.1), and Lemma (5.1.4), we get
nS-(1 + %sgn(p — 1))S? — D(n,p)(1 —¢c)S <0, (32)

which together with (30) implies that either S =0 or n — %n sgn(p —1)— D(n,p)(1 —
c) < S < pn+ F(n,p)(1 — c). This completes the proof of Theorem (5.1.8).

Section(5-2). Certain Submanifolds in a Pinched Riemannian Manifold

It seems interesting to generalize the famous Simons’ pinching theorem to general
cases. It is well known [244] that if M™ is a compact minimal submanifold of the sphere
S™P(1) and if the square norm of the second fundamental form of M™, denoted by S, is

everywhere less than , then M™ is totally geodesic. There are many further discussions

in this regard in the literature [239, 240, 242, 243]. Yau [248,249] proved that if p > 1 and

Y T_l(p =ik then M™ lies in a totally geodesic S™*1(1). In [245], Xu proved that if

p>1and §< mrn{

7z 50 ( } then M™ is a totally umbilical sphere which

improves Yau’s result above. Thereafter, Xu also gave a sharp pinching constant C(n, p, H)
in [246] which is larger than the ones in [245] and [248, 249]. Precisely, if M™ is a compact
submanifold with parallel mean curvature inS™P(1) andifS < C (n,p, H), then M™ is the

totally umbilical sphere S™( ). Here the pinching constants are defined by

(1 H2)1/2
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a(n,H) =n +n—3 H? — nn - 2)
’ 2(n—1) 2(n—1)
a(n,H),forp =1,orp = 2and H # 0,
Cln,p. H) = { min{a(n,H),%(Zn +5nH?)}, forp = 3,orp = 2andH = 0.
All these results were obtained under the condition that the ambient spaces possess very
nice symmetry.

However, the existence of parallel second fundamental form imposes nice properties
to submanifolds whatever the ambient spaces are. The aim is to obtain the distribution for
the square norm of the second fundamental form of a submanifold with parallel second
fundamental form in a pinched Riemannian manifold. We get the estimate of upper bound
for the square norm of the second fundamental form under the above assumption. Moreover,
we establish a generalized Simons-type inequality which derives a quantization
phenomenon.

We give a quick recall of some preliminaries of the geometry of submanifolds. Let
M™ be an n-dimensional connected Riemannian manifold immersed in an (n + p) —
dimensional Riemannian manifold N™*P. We shall make use of convention on the range of
indices:

(n*H* + 4(n— 1)H2)%,

1 <ABC<n+p 1<ijk-<n,
n+1l< qpf,y<n+p.
Choose a local field of orthonormal frames {e,} in N such that, restricted to M, the
ei’s are tangent to M. Let{w,} and {w,5} be the field of dual frames and the connection 1-
forms of N, respectively. Restricting these forms to M, we have

Zh w, h%= he, (33)
h—Zh w; ® w; ey, Zh e, (34)
Riji = Kijkl"'Z(hk i — hithik), (35)
Ropia = Kapia +Z(h f — hih (36)

where h,&, Rapki, and Kapcep are the second fundamental form, the mean curvature vector,

the normal curvature tensor, the curvature tensor of M, and the curvature tensor of N,
respectively. We deﬁne

= [|r]I?, =&l He = (Aj)nxn:

Now we define the covariant derivatives of h{}, denoted by h{;, and h{j;, as
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z h?jkwk = dh“ z h iwis + z hlssz z hua)aﬁ,
z hl]kl(‘)l dhl]k + z hS]kwlS z hlsk(‘)]s z hl]kaS z hiﬁ;kwaﬁ’
B

respectlvely. Then we have
ik — hikj = Kaikjs @7)

and the Ricci formula

ik — hije = z hgiRsix + z higRsjr + z hiﬁ;‘R[)’akl (38)
S

Considering Kg; ;i as a section of TL(M) X T*(M) & T*(M) Q T*(M), we also define its
covariant derivative Kg;jy; as

Z Kaijklwl = dKaijk + Z Kasjkwis + Z Kaisksz + Z Kaijswks + Z Kﬁ’ijkwaﬁ’

We say that M is a submanlfold with parallel second fundamental form if hly = 0 for
all i,j,k,a. The Laplacian Ah; of the second fundamental form h is defined by Ahf; =
Xk h?jkk-

For a matrix A = (a;;)nxn We denote by N(A4) the square norm of A ,that is, N(4) =
tT(A,A) — Zi,j alzj
Moreover, we quote the following two propositions from [239,242] and [241], respectively.
Proposition (5.2.1)[250]. Let A,iq1,Ap42,...,Ansp be symmetric (n x n)- matrices.
Denote Spp = tr(ALAp), Sq = Saa = N(4g), S = ZaSa.Then

ZN(A Ap — AgA,) + ZS“f” < (1 + = sgn(p — 1)) (39)

where sgn(:) is the standard sign functlon,
Proposition (5.2.2) [250]. Let N be an (n + p) —dimensional Riemannian manifold. Ifa <
Ky < b at pointx € N, then, at this point,

(|) |KACBC| S%(b_a), fOTA:;tB
(i)  |Kugepl < %(b — a), for A, B, C, D distinct with each other.

From now on, we assume that M™ is a connected submanifold with parallel second

fundamental form. We choose e;,,; such that e, ;4 || &, tr Hpyq = nH, and trHg = O,

n +2< B < n + p. Hence, M™ has constant mean curvature since ) hn,tl wy, = ndH

(d here represents the exterior differential which is not the one in the pinching constants).
By direct computation, we have
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Ahf; = — Z(Kakikj + Kaijkk) + Z hiiRmkjk + hmiRmijk) + Z h;[jiRaﬁkj. (40)
K kom kB

Plugging (35) and (36) into (40), we get

Ahf; = — Z(Kakikj + Kaijkk) + Z hiiRmkjk + hmiRmijx) + Z h;[jiRaﬁkj.
K kom k.3

+ z (R&hb Ry + 2 hEhighE = & Bl hE — R BB hi . — he hig; b

mii'mj ki''mj km'ij mi"mk ki’ “mk7"
mk,3
Thus,
1
EAS = z (h{)? + z hi; AR,
i,jk,a i,j,a
= > 5 = ) (i Kakang + hés Koo
i,jk,a i,jk,a
+ Z (hmjhii Kmkik + hipichii Kmiji) + Z hg'h;[jiKaﬁkj
i,jkma i.jkapf
= > nghghfpf = > (hihf — hihf)(hghf - hgh)
i.jklap i,jklap
BB
+ > hghEhlL,
i,jmkapf
Set

Sap = ) W5l
i,j
Then the (p % p) —matrix (Sgp) is symmetric. Therefore, we have
Lemma (5.2.3) [250]. Denote

A= —z N(H,Hg — HgH,) +ZS§[)>,
a,B a,B

B = z (hinjhii Kmkik + hamichij Komaji) + z hijhfiKa[)’kja

i,j,k,m,a i!jvk!a!ﬁ
C= z (hf51)? — z (h{iKakikj + hijKaijix)
i,jk,a i,jk,a
D= > hihihlRG =nH Y hihd b
i,jmka,p ijma
Then
%A5:A+B+C+D. (41)

It is easy to see from (37) that K,;, = O, for all i, j, k, a. Hence, we have
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Lemma (5.2.4) [250]. C =0.
Let a(x) and b(x) be the infimum and the supremum of the sectional curvature of N at a

point x, respectively. We shall estimate B.
1
Lemma (5.2.5) [250]. B = nbS —(p — 1)(n — 1)2](b — a)S — n*aH?.
Proof. Fix a vector e,. Let {e;} be a frame diagonalizing the matrix (h{}) such that

hi; = A 8ij, 1<i,j<n.
Then
z ha ha Kokix + z hakhu mijk + z h h Kﬁkl
i,jkm i,j,km ijkpB
= z (AY)? Kigir + z A Aq Kyeiire + z h;@- A Kapri. (42)
i,jka i,jka ik.B

By Proposition (5.2.2),
|Kapri| < g(b —a) forall a=pi#+k
Hence, for fixed «,
Y MKz = Y. 2 - QR
ik.B a*Bi+k.
== ) 10 - Ql- DV + (- DT
a+L,i+k.
> —~(n—1)V2 (b — ) Ranptr Hf —3(n = D)V2 (p = 1)(b — )tr H}
On the other hand, one sees
Z(A?)Z Kikir + z A Aq Kreiik
ik i.j.ka

1 1
= EZ(/%X — A)? Kyire = EaZ(/lf‘ — A)? = na trH? — a(tr Hy)?
Tk ik

Plugging the above two inequalities into (42), we obtain

B> E[na trHZ2 ——(n —DY2 (b —a) 2 tr Hy — —(n - 1)2 (r — 1)(b — a)trH2] — n?aH?

a+f
=nbS —4(p —1)(n - 1)5(b —a)S —n*aH?. (43)
For fixed o, similar to the estimate of lower bound for B, we have
LHS Of (42) - Z(ia)z ikik T z j~kj~aKkuk + z hkl ia a[)’kl
ik,
< ndtr Hé + §(p —1)(n—1)Y?(b — a)tr H?
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+§(n —DY2(p —q) z tr Hﬁ% — n?aH?
B*a

This gives
Lemma (5.2.6) [250] . B < n dS +2p(p — 1)(n — 1)Y2(b — a)S — n?aH?.
We next shall estimate D.
Lemma (5.2.7) [250]. | D | < n | H | Sz
Proof. Following the proof of Lemma (5.2.5), for fixed a, let{ei} be a frame diagonalizing
the matrix (h;;) such that hi; = 0 if i # j. Then we have

2
> hihi it =) (i) Rt (44)
i

i,jm
The absolute value of this number is not greater than

[T ) o

by Schwarz inequality. In fact, for fixed a, this is less than

j (Z(hf;)z)Z. (Z(h;;”)z) < (Z(hg;)z) VS = 5,VS.
ij i i,j

Hence,

3
D|< n|H] h%hS AR | < n|H|. ) (S,/S) = n|H|s2.
ij'*mi'tmj

i,jma

Moreover, it is obvious that
2

D<StH+S 45
D] < nS(o-+5), (45)

forany t > 0.
We define the pinching constants as follows. Set

E(p) = 1+ san(p — 1),
F(n,p,c,d) =nc — g(p — D(n—-1)"%@d - o),
G(n,p.c.d) =nd +>(p —1)(n— 1)*(d - ¢),
J(n,d,H) = n?H?d,
K(n,c,H) =n?H?c,
e L —j(F— "Z',f')z — 41+ | H DEJ

2(1+ |H|E

Ql(n’p’ C, d, H) =
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n?|H n2|H|\?
F - 4|E|+\[<F—%) — 4L+ |HDEJ

Qz(n’p’c!daH): 2(1+|H|)E
n’p(L + |HDIH| n2p(1+ |HDIH[\? 4K
‘T +j<6‘ T )~y
R(n,p,c,d,H) = 5 .
@ +[H[)p

It is obvious that Q,(n,p,c,d,H) < Q,(n,p,c,d, H).

We give an estimate of the upper bound of the square norm of the second fundamental
form of the above submanifold.
Theorem (5.2.8) [250]. Let M™ be an n-dimensional submanifold with parallel second
fundamental form inan (n + p) —dimensional Riemannian manifold N™*P. Denote by ¢ and
d the infimun and the supremum of the sectional curvature of N™*P, respectively. If
R(n,p,c,d,H)> 0, then S is bounded, that is, S < R(n,p, ¢, d, H).
Proof. It is obvious that

—A = ZN(H Hp — HgH,) + Zsaﬁ_ (46)
Under the assumption of AS = O, Lemma (5.2.4) and Lemma (5.2.6), together with Lemma
(5.2.7) give
SZ

3
GS—K+n|H|552?, (47)

2
In the case M™ is minimal, this shows that GS > %Which means S < Gp. For H # 0,

tH?> S §?
GS — K + nS 7+— > —

using (45), it follows that

2t p
that is,
1 ny\, ntH?
(———)5 G + S+ K <0, (48)
p 2t
Lett= %}“{lfl) Then (48) becomes
1 np(1 + IHI)IHI)
— |G- S+K<0 49
@+ HDp < 2 “9)

Therefore, we obtain that
S < R(n,p,c,d, H).
Xu’s previous result in [327] is recovered when M™ is minimal.

Corollary (5.2.9) [250]. Under the assumption of Theorem (5.2.8), if M™ is minimal, then
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2 (V2
S < pnd +3p(p D(n—-1)"(d —c).

In addition, we also establish a generalized Simons-type inequality.
Theorem (5.2.10) [250]. (Generalized Pinching Theorem) Let M™ be an n-dimensional
submanifold with parallel second fundamental form in an (n + p) —dimensional
Riemannian manifold N™*P. Denote by ¢ and d the infimun and the supremum of the
sectional curvature of N™*P respectively. If Q;(n,p,c,d,H) = 0and S < Q,(n,p,c,d, H),
then we have S < Q,(n,p,c,d, H).
Proof. Since M™ is a submanifold with parallel second fundamental form, %AS =0.From
Proposition (5.2.1), we have
A > —ES?, (50)

Lemma (5.2.5) yields

B > naS — g(p — 1 (n—-1)Y2(b — a)S — n?aH?

> ncS ——2(p — 1)(n — 1)V?(d — c)S — n?dH?

= FS—]. (51)
Therefore, we obtain
O=A+B+C+D2—E52+FS—]—n|H|S%. (52)
If M™ is minimal, that is, H = 0, then 0 = %AS > —ES?+ FS.
We claim that Theorem (5.2.10) holds in this case by direct check.
For H #+ 0, using (45), we have

1 , tH*> S
0=-452—ES*+ FS—nS|{—-+ |-

2 2t
Equivalently,
(E+£)SZ —<F —ntH2>5 +] >0 (53)
2t 2 -
Lett = ﬁ Then (53) becomes
n®| H |

(J|H| +1)ES? — (F - 15 )S + ] > 0. (54)

The inequality (45) shows that S < Q,(n,p,c,d,H) or S = Q,(n,p,c,d,H). We thus
obtainthat0 < S < Q,(n,p,c,d,H) implies0 < S < Q,;(n,p,c,d, H).

From Theorem (5.2.10), we have

Corollary (5.2.11) [250]. Under the assumption of Theorem (5.2.10), if M™ is minimal,
then M™ is totally geodesic.

Section(5-3). CR Sasakian Manifolds
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Let M be a complete strictly pseudo-convex CR Sasakian manifold with real
dimension 2n + 1. Let 6 be a pseudo-hermitian form on M with respect to which the Levi
form Ly is positive definite. The kernel of @ determines a horizontal bundle H. Now denote
by T the Reeb vector field on M, i.e., the characteristic direction of 8. We denote by V the
Tanaka-Webster connection of M.

We recall that the CR manifold (M, 6) is called Sasakian if the pseudo-hermitian
torsion of V vanishes, in the sense that T(T,X) = O, for every X € H. For instance the
standard CR structures on the Heisenberg group H,,,,, and the sphere S2™*1 are Sasakian.
In every Sasakian manifold the Reeb vector field T is a sub-Riemannian Killing vector field

We consider the family of scaled Riemannian metrics g,, 7 > 0, such that for X, Y €
H,

1
g‘l,’(Xi Y) - dQ(X,]Y), g‘L’(Xi T) - O, g‘L’(TiT) - T_Z ! (55)

where J is the complex structure on M. We denote by d. the distance corresponding to the
Riemannian structure g, and by d the sub-Riemannian distance on M. It is well known that
d,(x,y) = d(x,y) whent — 0. Our goal is to prove the following theorem:

To put things in perspective, estimates between the sub-Riemannian distance and
Riemannian ones have been extensively studied (see [254], [255], [256], [257], [258]). But
in these cited works, such estimates are local in nature. Theorem (5.3.1) is the first result
that gives global and uniform estimates for a large class of sub-Riemannian metrics. It is
consistent with the well known Nagel-Stein-Wainger estimate [257], which implies that, at
small scales, (x,y) < Cd,(x,y)"?, and shows that, at large scales, due to curvature effects
we have d(x,y) = d. (x,y).

We first recall some results that will be needed in the sequel and that can be found in
[251] and [252]. We denote by A the sub-Laplacian on M and by V# the horizontal gradient.
For smooth functions f : M — R, set

0(F) = S[AIVAfII2 - 2(VH £, V9 Af)] (56)
and
IF(f) = S [ATF)? — 2TFTAf] (57)
The following result was obtained in [252] by means of a Bochner type formula. Theorem
(5.3.1) [259]. Assume that for every € H
R(X,X) > 0.
Then for every f € C*(M) and any v > 0,

1 1
L) +VIF () 2 5o AN =S IVIFI? +5 (TF)2
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We denote by p(t, x, y) the heat kernel of M, that is, the fundamental solution of the heat

equation % = A f. The following global lower and upper bounds were proved in [251].
Theorem (5.3.2) [259]. Assume that for every € H ,

R(X,X) > 0.
For any O < e < 1 there exists a constant C(¢) = C(n,&) > 0, which tends to oo as e—
0%, such that for every x,y € M and t > 0 one has

C(e)™ 3\ d(x, y)?
exp| — (1 + —) )
u(B(x,Vt)) < n/ (4 - e
C(¢) d(x,y)?

RBEND) <_ - e)t) |
In the above theorem, d is the sub-Riemannian distance, B(x, v't) is the sub- Riemannian
ball with center x and radius /¢, and p is the volume corresponding to the volume form 8 A
(do)y".

From now on and in the sequel we assume that for every X € H ,R(X,X) = 0. We first
have the following Li-Yau type estimatefor the heat kernel.
Proposition (5.3.3) [259]. Fort > 0,

< p(t,x,y) <

3 2
Ap, T (1 * ﬁ)
+ :
P, t
Proof. The result is essentially proved in [252], but due to the simplicity of the ar- gument,

we reproduce, without the details, the proof by sake of completeness. Fix T > 0 and
consider the functional

H 2 2
0@ =2 - op, (Tt ) - op (),

n 3
IVE In P,||2 + 3 t(T In P,)? (1 + E)

Pr_; Pr_;
where P; is the heat semigroup associated with A. Since T is a Killing vector field, for any
smooth function f we have

(VI VIT)?) = (THTIVELI?).

Differentiating ® and using the above yield

o'(t) = g (T — t)?P(Pr—(T(InPr_y)) + 2(T — t)*Pe(Pr—I7 (INPr_y))

— E (T — t)Pt <w> — 3(T — t)Zpt <M>
n PT—t PT—t

From Theorem (5.3.1), we have

6
- (T — t)*Pr_¢L,(INPr_y) + 2(T — t)*Pp_ T3 (INPr_y)
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3 18
= ") (T - t)ZPT—t(A In PT—t)2 - F(T - t)PT—t”VH In PT—t”2
+ 3(T — t)2Pr_(T InPy_,)2.
Therefore we obtain

V(1) 2 5 (T~ 0P (Pr_ (A1 Pr_))

18 6 . 5
= (S +2) @ = ORIV In P,
Now, for every y(t), we have

((AInPr_))? = 2y(t)AIn Pr_y —y(t)?

APp_
> 200 (== I InPr_fll2) = v(e)%
T-t

Therefore we get
2 (T = £)?P(Pr_o(AIN Pr_)?) = 2 (T — )2y () (AP — P.(Pr_|IV¥ In Py_,||2))

3
- T - 0% ®)p,
This implies

3
®'(0) 2 — (T = D(O8P; —— (T~ DY(t)pr

8 6 6
- <1_ +—+ F(T - t)y(t)> (T - t)Pt(PT—t”VH InPT—tHZ)

n¢ n
Choosing y(t) = — Z—jthen leads to
6(n + 3 3
P'(t) = —# (T —t)Apr —— (n+3)%
n n
By integrating the last inequality from O to T, we obtain
3(n + 3 3
—-®(0) = - ¥ T?Apy -+ 3)7T,
n n

which is the required inequality.

We can deduce from the previous Li-Yau type inequality the following Harnack
inequality.
Theorem (5.3.4) [259]. For x,y,z € M,s <'t,

t
n+3 3 1 = 2|n_
s s e (ol (1) kg g e ). o<

where d, denotes the Riemannian metric introduced in (55).
Proof. From Proposition (5.3.3)
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1+2

3\ AP
IVFInP||? < (1+—> t+( “)
n/ P; t

and

3
3 ) 3\ AP, (1 + g)
—t(TInp,)* < <1+—) + :
n n/ P;

Therefore we have that for every t > 0,
2

3
322 A, (1+3) [ 32
H 2 2 2 < el >~ t n el
IVEInP)|?+ 2(TInP,)" < <1+ nt) <1+n> P, + n <1+ nt). (58)
Now letx,y,z € Mand lety:[s,t] — M,s < t, be an absolutely continuous path such that
v(s) = y,y(t) = z. We first write (58) in the form

AP
g:(V¥Inp,,Viinp,) < a(u)P—t + b(u), (59)

t
where V* denotes the Riemannian gradient of the metric g%; that is,

g:(V¥Inp, , V¥ Inp,) = [[V¥InP.||> + (T In P,)?

= (1) (1)

2

3 2
o= ") (1,37,

nu

and

Let us now consider

o) = Inpy (x,v(t)).
We compute
@'(u) = (9, Inp, (x,y(w)) + g (V¥ Inp, (x,y(w)), vy (u)).

Now, for every 1 > 0O, we have
2

1
Iz (V’ Inp, (xyy(u)),y’(u)) 2 =525 9:(V-Inpy, V¥ Inpy) = = gy W), y'(wW).

Choosing 4 = /@ and then using (59) yield

‘) > b(w) 1 ) )
oW =-"08 "2 a(u)g.(v'(w),v'(u)).
By integrating this inequality from s to t we get as a result:
| | > D du — | "),y (w))d
np(ex) ~Inp(sx) = = [ 205 du =7 [ a0 e @Y @)du
S S
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We now minimize the quantity fsta(u) g-(y'(u), Yy (w))du over the set of absolutely

continuous paths such that y(s) = y,y(t) = z. By using reparametrization of paths, it is seen
that

t

d2(x,
]a(u) g:(Y @),y (w))du = t(iii}),
s s a(v)

u dv
s a(v)

with equality achieved for y(u) = o <t—dv> , Where ¢:[0,1] = M is a unit geodesic for

s a(v)

the distance d, that joins y and z. As a conclusion we get

‘ b d*(y,z
p(s,x,y) < exp % du + 45%3 p(t, x, z).
s s a(v)

Finally, from Cauchy-Schwarz inequality, we have

g dv (t—s)2
ja(v) = f;a(v)dv’

S
and thus
t

b d(y,2) [  a(w)dv
p(s,x,y) < exp j% du + y4(t{ss)2

S

Theorem (5.3.5) [259]. Let R be the Ricci curvature of the Webster-Tanaka connection V.
If forevery € H ,

p(t, x, z).

R(X,X) = 0,
then for every x,y € M,
dr(x,y) < d(x,y) < And.(x,y) + ByVTd (x,y)"?,
where A,, and B,, are two positive universal constants depending only on n.
Proof. The inequality d.(x,y) < d(x,y) is straightforward. We now prove the second
inequality. From Theorem (5.3.4) and Theorem (5.3.2),

1 3\(1 3In27? ,
p(s.x.7) 2 gy (/23 exp = (142) (5 + 5 ) delx3)? )

> 1 Co(m) exp <— (1 + E) <i + 3 In272> d,(x y)2>

23 (B (x,Vt)) n/ \2t nt2 T '
From the Gaussian upper bound of Theorem (5.3.2) and the previous lower bound, we
deduce that for all t > 0,
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In

2"3C(e) (1 3 d(x,y)*\ 1
W*(z(“z) R )z

3\ /3In2 1
1) (5) Pz 20

We now choose t = td,(x,y) and obtain

M3 () 3\ /3In2
d(x,y)? < (4 + £) <|nW 4+ (1 + —) ( | )) d.(x.y)
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Chapter 6

Connection and Curvature with VVolume and Distance

We establish Bianchi Identities and symmetries for the associated curvatures. Next
we study subRiemannian notions of the Ricci curvature and horizontal Laplacian,
establishing general Bochner type identities. Finally we explore sub Riemannian
generalizations of the Bonnet-Myers theorem, providing some new results and some new
proofs and interpretations of existing results. As a consequence, we obtain a Gromov type
precompactness theorem for the class of sub-Riemannian manifolds whose generalized
Ricci curvature is bounded from below .

Section(6-1). Subriemannian Geometry

A fundamental tool in Riemannian geometry is the Levi-Civita connection. As the
device which permits us to glue local differential equations into global ones, it is the key
ingredient in most modern descriptions of curvature and geodesics and underlies many
computational methods in differential geometry. The Tanaka-Webster connection, ([265],
[266]) plays a similar role in the study of strictly pseudo convex CR manifolds.

There has been much recent effort to define such geometrically useful connections in
sub-Riemannian geometry. All work, including this one, has operated under the assumption
that the subRiemannian metric on the horizontal bundle has been extended to a Riemannian
metric on the whole space. This allows us to define a vertical bundle. Previous work has
been inherently local, depending on a choice of frame. Usually some additional geometric
and topological restrictions have been required. In [261], [262] a subRiemannian connection
was defined under the assumption of a global frame for the vertical bundle. In [260], a
connection is defined under a strong tensorial condition, referred to as strict normality the
assumption of the existence of a frame of vertical Killing fields. All of these examples
required a a priori choice of frame for the vertical bundle and so do not define global
connections in general.

This lack of a global covariant derivative scheme means that the study of the
relationships between subelliptic PDE and subRiemannian manifolds has been by necessity
local in nature. Recently there has been some effort addressing this need.

In [260], several global curvature results such as Myer’s theorem have been extended
to certain step 2 subRiemannian manifolds.

We propose a new globally defined connection to facilitate this process. We shall
work assumption that a global complement to the horizontal bundle has been chosen. For
any Riemannian metric extending the sub Riemannian metric and preserving this
decomposition, we shall define a canonical, global metric compatible connection such that
the horizontal and vertical bundles are parallel. In the special cases of Riemannian and
strictly pseudoconvex pseudohermitian manifolds, this connection will coincides with the
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Levi-Civita and the Tanaka-Webster connections respectively. Furthermore any covariant
derivative of any horizontal vector field will be seen to be independent of the choice of
Riemannian extension. Thus for a subRiemannian manifold with vertical complement, there
Is a canonical method for taking covariant derivatives of horizontal vector fields.

We define the connection and explore its basic properties and how they relate to
bracket structures of the underlying horizontal and vertical bundles. We introduce a tool
similar to Riemannian normal coordinates, to aid computation.We consider the associated
curvature tensors and their symmetries. SubRiemannian equivalents of the Bianchi identities
are introduced and proved. We establish some Bochner-type formulas for general
subRiemannian manifolds and show how the analytic framework developed by Baudoin and
Garofalo generalizes to the category strictly normal subRiemannian manifolds. We compare
the sub Riemannian connection to the Levi-Civita connection for metric extensions. We then
use this to provide a new interpretation and proof of an existing subRiemannian Bonnet-
Myers theorem as well as providing new results.

We shall use the following definition:

Definition (6.1.1) [269]. A sub Riemannian manifold is a smooth manifold M, a smooth
constant rank distribution HM < TM and a smooth inner product (-,-) on HM. The bundle
HM is known as the horizontal bundle.

We should remark here that we are not assuming any conditions on the horizontal bundle
other than constant rank. Unless otherwise stated, we are not even assuming that it bracket
generates.

Definition (6.1.2) [269]. A subRiemannian manifold with complement, henceforth sRC-
manifold, is a subRiemannian manifold together with a smooth bundle VM such that HM @
VM = TM. The bundle VM is known as the vertical bundle.

Two sRC-manifolds M, N are sRC-isometric if there exists a diffeomorphism n: M —
N suchthatm,HM = HN,n,V M = VN and(r, X ,m.Y)y = (X,Y), forall horizontal
vectors X,Y .

Definition (6.1.3) [269]. A sRC-manifold (M,HM,V M,(-,-)) is r-graded if there are smooth
constant rank bundles V0,0 < j < r, such that
VM =V ... vD

HM & v @ [HM, v c HM Vv @ vU+Y (1)
forall 0 < j < r. Here we have adopted the convention that V(» = HM and V) =
O for k > r.

The grading is j-regular if
HM & 148D a5 [HM, V(j)] = HM & 148D a5 pU+1 (2)

and equiregular if is j-regular forall0 < j < r.
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A metric extension for an r-graded vertical complement is a Riemannian metric g of (-,-)
that makes the split

T™™M = HM @ v

1<js<r
orthogonal.
We shall denote a section of V) by X ®)and set
P =@y,
k%)

If a metric extension has been chosen then b 7W=(v1)™. the orthogonal com-plement of
V). For convenience, we shall often also extend the notation (--) to whole tangent space
using it interchangeably with g.
Definition (6.1.4) [269]. The unique 1-grading on each sRC-manifold,
v =vm

Is known as the basic grading.
Example (6.1.5) [269]. A Carnot group (of step r) is a Lie group, whose Lie algebra g is
stratified in the sense that

9=9D. 9g-1 [909]1=9s1 Jj=1.1n g =0
together with a left-invariant metric (-,-)on HM, the left-translates of g,.

The vertical bundle V' M consists of the left-translates of g, @... g,_;. In addition to the
basic grading, there is then a natural equiregular r — 1 —grading defined by setting VY to
be the left-translates of g;.

Definition (6.1.6) [269]. If a metric extension g has been chosen, we define
B(X,Y,Z) = (Lgz)(X,Y) = Zg(X,Y) + g([X,Z].Y) + g([Y.Z] X)

for vector fields X,Y,Z
Unfortunately B is not tensorial in general and so cannot be viewed as a map on vectors
rather than vector fields. However, we can define a symmetric tensor BY) by setting

BUY(X,Y,T) = B(X,Y,T)
for X,y e V), T € b V1) and declaring BY? to be zero on the orthogonal complement of
V) x yU) x PU) We can then contract these to tensors C9) : TM x TM — VUdefined
by

g(C(j)(X, Y ),Z(j)) — B(j)(X,Z(j), y) (3)
Additionally, we can define j-traces, by

tr(j)B(j)(Z) — z 2180 (Ei(j) ’Ei(j) 7)

where {E} are (local) orthonormal frames for V4.
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Definition (6.1.7) [269]. Suppose that M is an r-graded sRC-manifold with metric extension
g.
(i) The metric extension is j-normal with respect to the grading if BY) = 0.
(if) The metric extension is strictly normal with respect to the grading if it is j-normal for
alo < j <.
Example (6.1.8) [269]. Let M be the 4 dimensional Carnot group with Lie algebra induced
by the global left invariant vector fields X,Y, T, S with bracket structures
[X,Y] =T, [X,T] =S

and all others being zero. Then B(T,S,X) = —1 with all others vanishing. Now M admits
an equiregular 2-grading defined by

v =1y, V@ =),
Let g be the metric making the global frame orthonormal. Then g is strictly normal with
respect to this 2-grading.

It should be remarked that this metric is not 1-regular with respect to the basic grading.
For then we get B = 0 but BMW(T,S,X) = —1. Thus the metric is 0-normal but not
strictly normal with respect to the basic grading.

Example (6.1.9) [269]. Any step r Carnot group with a bi-invariant metric extension is
strictly normal with respect to the equiregular r — 1 —grading, but is only 0-normal with
respect to the basic grading.
Example (6.1.10) [269]. Let (M, ], n) be a strictly pseudoconvex pseudohermitian manifold,
(see [265]) with characteristic vector field T such that n(T) = 1, Tdn = 0. The horizontal
bundle HM is defined to be the kernel of the 1-form 1. An immediate consequence of the
defining properties of Tis that [T, HM] < HM. When J is extended to TM by defining JT =
0, the Levi metric
g(A,B) = dn(A,JB) + n(A)n(B)
can be viewed as an extension of the subRiemannian metric (X ,Y) = d8(X,JY ) with
VM = (T). As VM is one dimensional, the basic grading is the only grading admitted and
since [T, HM] < HM we see B = 0 trivially. Thus the Levi metric is always 1-normal
and so strict normality is equivalent to 0-normality. However, the Jacobi Identity coupled
with [T,HM] c HM implies
([T, x1.Y) = =T, x].JY1T)=([XJY]T]1.T)+ ([UY T].X]T)
= T{X.Y) + (Y, T]JX)
This implies that O-normality is equivalent to ([Y,T],X) = —([T,JY ],JX). But this
equivalent to [T,JY ] = J[T,Y ] which is Tanaka’s definition of normal for a strictly
pseudoconvex pseudohermitian manifold, [265].
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The tensors €Y provide the essential ingredient for the definition of our connections. The
idea boils down to using the Levi-Civita connection on each component V) and using
projections of the Lie derivative for mixed components. In general, this will not produce a
metric compatible connection, but we can use the tensors ) to adjust appropriately.
Lemma (6.1.11) [269]. If g is an extension of an r-graded sSRC-manifold, then there exists
a unique connection V(") such that
(1) g is metric compatible
(i) V) is parallel for all j
(iii) TorMWW vy c 70 forall j
(iv) (Tor® (XN, y®) 2Dy = (Tor® (zD, y®) xDyfor all j, k
Furthermore, if X,Y are horizontal vector fields, then VX and Tor™(X,Y) are
independent of the choice of grading and extension g. (They do however depend on choice
of VM)
Proof. For a vector field Z, we denote the orthogonal projections of Z to VU) by Z; . Define
a new connection V(") as follows: for X, Y, Z sections of V) and T a section of 7 (set
(VxY .70y =0
(VxY , Z) =%(X(Y,Z) +Y(Z,X) — Z(X,Y)
—(X,[Y.z]) - (Y, [X,Z]) + (Z,[X,Y ])
VoY = [T, Y]j +§ cO,T)
for X, Y, Z horizontal vector fields and T, U, W vertical vector fields. It’s easy to check that
this defines a connection with the desired properties. Futhermore if V is the Levi-Civita
connection for g, then for sections X, Y of V),
VxY = (VxY);
For uniqueness, suppose that connections V and V' satisfy the required properties and set
A(W,Z) = VwZ — V' Z. Then for sections X,Y,Z of VU, since the torsion terms are
inb 7U) we see
(AX.Y),z) = (Y  A(X.2)) = —(Y ,A(Z,X))
=(A(Z,Y ), X) = (A(Y,2),X)
= —(Z ,AX,Y))
Similarly if T is a section of 70,
(A(T,X),Y Y= —(X ,A(T,Y)) = —(X,Tor(T,Y) — Tor'(T,Y))
= —(Tor(T,X) — Tor'(T,X),Y)
= —(A(T.X).Y)
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Thus A = 0. Thus this connection V is the unique connection with the desired properties.
The required independence from g follows easily from (4).
Corollary (6.1.12) [269]. If M admits an r-grading, then
() TorMWW v0Y = 0if and only if VU is integrable.
(i) TorMHM, VD) ¢ HM @ v @ vU*D forall j
If the r-grading is j-normal then
Tor(r)(TM,V(j)) cy
If the r-grading is 0-normal and j-normal then
TorMHM, VD)) ¢ yU+D
with equality holding if and only if the grading is j-regular.
Example (6.1.13) [269]. Suppose that HM has global orthonormal frame {X;} and VM has
global orthonormal frame {Tg} with the following bracket identities:
[Xi, X;1 = ¢ Xk + ¢iiTy
[Xi, Xg] = cigXie + cfpTa
[Xy. X1 = cypXic + cypTa
Then using the basic grading and connection we have
i. VM isnormal if and only if ¢fg = — c;
ii. g is strictly normal if and only if c{z= —c; and Czs— - CkB
iii. g is vertically rigid if and only if ) cB =0
and
. 1
iv. VyxX; = E(ci + ¢S+ )X Tor(X, X)) = —ciiT,
1
V. VTB)(]' — _(CkB + C]B)Xk
Vi. Uy, Tp = 5 (cf + ) Ta
Vi, Vp T = (cl + cb + )Ty, Tor(Ty, Tg) = —cleXe
1
viii. Tor(X,,TB) = _E(CRB + ch)Xk — (]‘}‘3 + cB)Ta
To illustrate some important behavior, we shall highlight a group particular cases of the
previous example

Example (6.1.14) [269]. Let M be the 4 dimensional Carnot group of Example (6.1.8).
Using the basic grading, we can easily compute that

VT = S 15—1SVS—O 1T— 1T
- A A A

1 1

Tor(X,Y) = =T, Tor(X,T) = _ES’ Tor(X,S) = _ET
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All other covariant derviatives of frame elements vanish. That the basic covariant

derivatives of the natural vertical frame do not vanish is typical of non-step 2 Carnot groups.
However if we use the more refined 2-grading, then all covariant derivatives of the

frame elements vanish and the only non-trivial behavior occurs in the torsion

Tor@PXx,Y) = =T, Tor®@X,7) = =S, Tor®@Xx,S) =0

Example (6.1.15) [269]. Let M = R* with the following global orthonormal frames for

HM and VM

0 0 ] 0 0
X :a, Y :@'FSII’IXE—COSX%
0 0 0 0
T = cosx£+ smxa, S = —smxa+cosx£

Then[X,Y] = T = —[X,S],[X,T] = S with all other commutators vanishing. It’s then
easy to check that this is a strictly normal extension for the basic grading and that the only
non-trivial covariant derivatives are then VyT = Sand VxS = T. This is an example of a
flat, equiregular, strictly normal sRC-manifold with step size > 2.
Example (6.1.16) [269]. Let (M, ], nn) be a strictly pseudoconvex pseudohermitian manifold.
The Tanaka-Webster connection is the unique connection such that n, dn and J are parallel
and the torsion satisfies
Tor(X,Y) = dn(X,Y)T, Tor(T,JX) = —JTor(T,X)
The only defining property of the basic connection not clearly satisfied by the Tanaka-
Webster connection is torsion symmetry. But if we pick X,Y as any horizontal vector fields
then the Jacobi identity implies
0 =ndrxJvY1l + UY.IT.X]] + [X.UY.TID

= —-T(X,Y) + ([T,X],Y) + ([JY,T],]JX)
—(X ,VgY) + (Tor(T,X),Y) — (V¢ JY ,JX )+ (Tor(T,JY ), ]X)

= (Tor(T,X),Y) + (Tor(T,JY),JX)

= (Tor(T,X),Y) — (Tor(T,Y), X).
Thus the Tanaka-Webster connection satisfies the requirements of the basic connection.

One of the key computational tools when using the Levi-Civita connection is the

existence of Riemannian normal coordinates in a neighborhood of any given point. As HM
IS non-integrable in every interesting example, we cannot expect to find a similarly useful
coordinate system in the subRiemannian case. However, when the extension is normal, we
can guarantee the existence of a local orthonormal horizontal frame with computationally
nice properties at any particular point p.

Definition (6.1.17) [269]. If M is r-graded, then an orthonormal frame {£} for V), 0 <
j < r,defined in a neighborhood of p is V(™ -normal at p if

163



( l )|p
Lemma (6.1.18) [269]. Suppose g is a j-normal r-grading. Then there exists a V{™-normal

frame for VU) atevery p € M.
Proof. Let vl(k) vr(l’,? be orthonormal vectors spanning v;") and let {xfk)} be the
coordinates near p induced by the exponential map of V(™ at p using this frame. Then

certainly ng),xi c;0,:;) = 0 at p whenever the coefficients c; are constant. Considering
Vgrilaj(ai +0;) in  particular, this implies that for all ijat p
0 = vy 9, +v§;j)ai = 2V, 9; + Tor®(a;,9)).

Now (ax(i ,)) € v;f) . Since torsion is tensorial and Tor™(TM, V1)) < 7U) by Corollary
7 p
(6.1.12), this implies that

QOry ()
(v50x,),, €% )
for all i.

Now in a small neighbourhood of p define Z,Ej) = (ai‘(j))o, I.e. the orthogonal projection

of 8% onto V). Set T = a8,  — zU . We clearly have linear independence near p and

X(j)
sozd ... ,Zr(l’]'.) is a local frame for VO,

Now for any vector field Y,

ve)z? = vk, - ) =v ok, - v T
The first term on the right is in V) by (5). The last term is in V) everywhere as Ti(j) IS a
section of 7U) which is parallel. But Vy Z” is in VU as VO is parallel. This implies that
vz = oatp.

Now from metric compatibility, we see that Y (Zi(j) ,Z,Ej))h, = 0 for each i, k, so an
easy induction argument shows that if we apply the Gram-Schmidt algorithm to
Zl(j) . ,Zr(l’]'.) we obtain an orthonormal frame with the same property at p.

Corollary (6.1.19) [269]. If the grading is strictly normal, then near any point p € M, there

is a graded orthonormal frame Xi(j) for TM such that (VXi(j))l = 0.
b

Definition (6.1.20) [269]. The sub Riemannian curvature tensors for a SRC-manifold with
extension g are defined by
R(A,B)C = VAVgC — VgVAC — ViupC
and
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Rm*(A,B,C,D) = (R(A,B)C,D)
We note that for any vectors A,B € TM, the restriction of the (1,1)-tensor R(A,B) to HM
Is independent of the choice of extension g.

This definition immediately yields notions of flatness in subRiemannian geometry.
Definition (6.1.21) [269]. We say that an M is horizontal flat if Rm*(:,-, HM,-) = 0 for any
extension g. A particular extension is vertically flat if Rm>(:,-,V M,-) = Oor flatif Rm® =
0.

Lemma (6.1.22) [269]. A sRC-manifold is horizontally flat if and only if in a neighborhood
of every point p € M there is a local orthonormal frame {E;} for HM such that VE; = O. If
HM is integrable, this local frame can be chosen to be a coordinate frame.

A similar result holds for a vertically flat extension g and VM.

Example (6.1.23) [269]. Every step r Carnot group is horizontally flat for the basic grading
and flat for the r —1-grading. The sRC-manifolds considered in Example (6.1.8) and
Example (6.1.15) are both flat.

It is useful to define the following
Definition (6.1.24) [269]. If S is any set and F: S* — L is any map into a vector space L,
we define £F to be the sum of all cyclic permutations of F. For example if k = 3, then

PF(X,Y,Z) = F(X,Y,Z) + F(Y,Z,X) + F(Z,X,Y)
An example of the cyclic construction in action is a compressed form of the Jacobi Identity
for vector fields, namely
?[X,[Y,Z]] = O
We shall use it primarily to efficiently describe symmetries of the curvature tensor.

We also introduce

Definition (6.1.25) [269]. The second-order torsion of V is the (3,1)-tensor
TOR,(A,B,C) = Tor(A,Tor(B,(C))

We are now in a position to discuss the fundamental questions of curvature symmetries.
Many of the properties of the Riemannian curvature tensor go through unchanged, with
exactly the same proof. In particular,
Lemma (6.1.26) [269]. The subRiemannian curvature tensor always has the following sym-
metries

ix. Rm®*(A,B,C,D) = —Rm*(A,B,D, ()

X. Rm®*(A,B,C,D) = —Rm®(B,A,C,D)

Xi. Rm*(TM,TM,HM,VM) = 0
However, many symmetry properties of the Riemannian curvature tensor require additional
assumptions in the subRiemannian case. Most of these symmetries are naturally related to
the Bianchi Identities.

Lemma (6.1.27) [269]. (Algebraic Bianchi ldentites). For any vector fields X,Y, Z,
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PR(X,Y)Z = —¢TOR,(X,Y,Z2) + ¢ (VTor)(X,Y,Z).
Furthermore
(@) ifX,Y,Z € VU then
L(VTor)(X,Y,Z2) e 7O
(b)if X,Y,Z € V) and the grading is j-normal, then
—£ TOR,(X,Y,Z) € VU
() if X,Y € VU the grading is j-normal and V) is integrable then
—£ TOR,(X,Y,Z) € VU
Proof. The first part of the lemma is a standard result from differential geometry, but for
completeness we shall present a short proof
tR(X,Y)Z =L(VxVy Z — VyVxZ — Vixy1Z)
= £(VzVxY — V;Vy X — VixZ
= £(Vz([X,Y] + Tor(X,Y)) — Vixy1Z)
= ¢([Z [X,Y]] + Tor(Z,[X,Y]) + (V;Tor(X,Y))
= ¢ (Tor(Z,[X,Y]) + Tor((VzX,Y) + Tor(X,(VzY)) + ¢(VTon)(X,Y,Z)
= ¢ (Tor(Z,[X,Y] — (VxY — (VyX)) + £ (VTon(X,Y,2)
= —¢TOR,(X,Y,Z) + ¢(VTor)(X,Y,Z)
The remaining parts consist of analyzing the terms £ TOR, and #(VTor). Since these are
tensorial, we can compute using normal and seminormal frames. First let X, Y, Z be elements
of a seminormal frame for V) at p, then
L(VTor)(X,Y,Z) = ¢(VxTor(Y,Z2))
But each torsion piece must be in 7U). As this is bundle parallel, we have established (a).
Now, if we assume the frame is j-normal, then we can instead use a normal frame at p. If X
is an element of this frame then Tor(X,TM) < V1) and it is easy to check that (b) holds.
Assume a j-normal grading and that X,Y are elements of a j-normal frame at p, but Z is
an arbitrary vector field. Then
—LTOR,(X,Y,Z) = #Tor(X,Tor(Y,Z)) = Tor(Z, Tor(X,Y))
But
(Tor(Z,Tor(X,Y))); = —[Z; Tor(X,Y)];
which vanishes if 7is integrable. Thus (c) holds.
Corollary (6.1.28) [269]. (Horizontal Algebraic Bianchi Identity). If X,Y,Z, W are
horizontal vector fields and V M is normal, then
(PR(X,Y)Z , W) =0
If V M is also integrable, then this can be relaxed to any three of X, Y, Z, W horizontal.
Corollary (6.1.29) [269]. If VM is normal and X,Y, Z, W are horizontal vector fields then
Rm3(X,Y,Z,W) = Rm®*(Z,W,X,Y)
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If V M is also integrable, then this can be relaxed to any three of X,Y,Z,W horizontal.
Proof. A straightforward computation shows that
2Rm*(C,A,B,D) — 2Rm*(B,D,C,A) = ¢(YR(A,B)C,D)
The result then follows from the horizontal algebraic Bianchi ldentity,
Lemma (6.1.30) [269]. (Differential Horizontal Bianchi Identites). For any vector fields
X, Y, Z,V
L(VwR(X,Y ))Z = ¢(R(Tor(X,V),Y))Z
Furthermore, if VM is normal and integrable and X,Y,Z, W,V € HM then
VRm*(X,Y,Z,W,V) + VRm*(X,Y,W,V,Z) + VRm*(X,Y,V,Z, W) = 0
Proof. Again, the first part is a standard result that can be derived as follows
(VwR)(X,Y)Z = VwR(X,Y)Z — R(VwX,Y)Z — RX,VwY)Z
— R(X,Y )VwZ
= [Vy ,R(X,Y)]Z — R(Vw X,Y)Z — R(X,VwY )Z
Thus, recalling the Jacobi identity applies to operators, we see
C((Vw)R(X,Y ))Z = £ ([Vw . R(X.Y )])Z
— ¢ (R(VwX,Y))Z — ¢ (R(X,VwY))Z
= £([Vy.[Vx, Vy 1] - [Vv.VIX, Y ]])Z
—(R(Vw X,Y ))Z + ¢(R(VxV,Y )Z
= —¢([V . Vixy])Z + ¢(R([X,V] + Tor(X,V),Y ))Z
= —¢([Vv ,Vixy]])Z + ¢ (R(Tor(X,V),Y ))Z
+4([Vixy;: Vv ] — Vixviv)DZ
= —¢([Vy . Vixyi]DZ + ¢(R(Tor(X,V),Y ))Z

+ ’E([V[X,Y]a Vy ]Z)
= £ (R(Tor(X,V), Y )Z
To see the second part, we note that as VM is normal Corollary (6.1.29) implies that the
required identity is equivalent to
VRmS(Z,W,X,Y,V) + VRmS(W,V.X,Y,W,Z) + VRmS(V,Z,X,Y W) = 0
Choose X,Y,Z,W,Vto be elements of a normal from for HM = V() at p, then
VRmS(Z,W,X,Y,V) + VRmS(W,V.X,Y,W,Z) + VRm*S(V,Z,X,Y W)
= (¢ ((VWy)R(Z, W)X Y)

= (¢ (R(Tor(Z,V),W))X,Y)

But by Corollary (6.1.29)
Rm®(Tor(Z,V),W.X,Y) = Rm*(X,Y,Tor(Z,V),W) = 0

as Tor(Z,W) is vertical.
Definition (6.1.31) [269]. We define the subRiemannian Ricci curvature of V by
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RcS(A,B) = Z RmS (A, Xy, X, B)
k

where {X, } is any horizontal orthonormal frame. The horizontal scalar curvature is defined
by

So = tryRc® = Rc’ (X, Xi)
It should be noted that the scalar curvature is independent of the choice of extension g as is
the Ricci curvature restricted to horizontal vector fields.

It should be remarked here, that in general the Ricci curvature for the canonical
connection is not symmetric. However, using Corollary (6.1.29) and elementary properties
of the connection, we can immediately deduce
Lemma (6.1.32) [269]. If VM is normal and X,Y € HM then

Rc*(X,Y) = Rc*(Y,X)
If VM is normal and integrable then
Rc*(VM,HM) = 0
Proof. The first follows from the corollary to the horizontal Bianchi Identity. For the second,
we apply the corollary to the horizontal Bianchi Identity, to see that
Rc*(U,X) = Rm*(E,,U,X,E,) = Rm*(X,Ey,E,,U) = 0.

Lemma (6.1.33) [269]. (Contracted Bianchi Identity). Suppose VM is normal and
integrable, then for any horizontal X

VyS, = ZZ(VRCS) (E, X, E;)
where E; is an orthonormal frame for HM. Equivalently
VoSo = 2tro)(VRc®)
Proof. Let X be any element of a normal frame at p. Apply the differential Bianchi Identity
to E;, Ej, Ej, E;,X and sum over i and j.

As a quick and easy consequence of this identity, we get a subRiemannian version of a
result of Schur, that whenever the Ricci tensor is conformally equivalent to the metric then
the manifold is Einstein.

Corollary (6.1.34) [269]. Suppose that M is a connected sRC-manifold such that HM
bracket generates, dim(HM) = d > 2 and that VM is normal and integrable. If
Rc*(X,)Y) = X ,Y)
for horizontal all vectors X, Y then A must be constant.
Proof. Let E; be a normal frame at p € M. Then at p,
So = Rc*(E, E;)) = Ad
But
2troy(VRc®)(Ej) = 2V;Rc*(E; E;) = 2E;A
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Since E;S, = 2trgy(VRc*)(E;), we must have d = 2 or E;A = 0. Thus all horizontal vector
fields annihilate A. As HM bracket generates, this implies that A is constant

One of our purposes is to use Bochner type results to study the relationships between
curvature, geometry and topology on subRiemannian manifolds. To use this theory, we shall
need a geometrically defined subelliptic Laplacian.
Definition (6.1.35) [269]. For a tensor z, the horizontal gradient of 7 is defined by

Vot = Vg7 Q E;,
where E;" is the dual to E;.
The horizontal Hessian of 7 is defined by
VT(X,Y) = (VxVy — Vyy )T

for X, Y € HM and zero otherwise.
The symmetric horizontal Hessian of 1 is defined by

1
VaITr(X,Y) = > (V3r(X,Y ) + V3tr(X,Y))

Finally, the horizontal Laplacian of 7 is defined by
Ay T = troy(Vgr) = (Vg, Vg, — VinEi)T

The Laplacian on a Riemannian manifold has a rich and interesting L?-theory. To
replicate this for sSRC-manifolds, it is necessary to choose a metric extension. This metric
extension then yields a volume form and we have meaningful L?- adjoints. Unfortunately,
the horizontal Laplacian defined here, does not always behave as nicely as the Riemannian
operator. However, if we make a mild assumption on the metric extension, much of the
theory can be generalized.
Definition (6.1.36). For a metric extension of an r-grading we define a 1-form R, by

Ry(v) = ZZ B (P EY  vy)
j>0 i

where El.(j) is an orthonormal frame for V).

We say that a complement VM is vertically rigid if there exists a metric extension g such
that

R, = 0.
Lemma (6.1.37) [269]. For an orientable sSRC-manifold, the following are equivalent
(i) VM is vertically rigid
(if) There exists a volume form dV on M such that for any horizontal vector field
divX = trgVX = (V.. X ,¢e;)

where e; is an orthonormal frame for HM.
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(iii) Every metric extension g is vertically conformal to a metric § with R; = 0
Furthermore, if HM bracket generates, then the volume form in (b) is unique up to constant
multiplication.

Proof. To show that (a) implies (b), we first note that for the particular metric extension g

withR, = 0, we have
ZZ(Tor(Ei(j),X, EPy =0

>0 i
Now we recall the standard result (see [263]) that since V is metric compatible and HM is
parallel, the divergence operator for the metric volume form g satisfies
divgX = tr(V + Tor)(X)

= trgVX + Y50 (Tor(EY, X, ED)

= troVX — R,(X)

= tryVX
Thus we canset dV = dVj,.
To show (ii) implies (iii), we consider metrics vertically conformal to an arbitrary extension

9,

1 = {g, on HM
gt = e’lg, onV M
Now if V, = e*dV ,thenset 1 = — —E—s0 dV,; = dV . Then for horizontal X
9 dim(V M) 9

troVX — Ryp(X) = div X = divX = tryVX
soR;y = 0.
Since (c) trivially implies (a), the equivalence portion of the proof is complete.
For the uniqueness portion, we note that if @ = e*dV then for any horizontal X, we have
divpX = divX — X(1).
If the two divergences agree on horizontal vector fields and HM bracket generates, this
immediately implies that A is a constant.

For an orientable, vertically rigid sSRC-manifold, there is then a 1-dimensional family
of volume forms for which div X = tr,VX. We shall often refer to such a volume form as
a rigid volume form. Vertical rigidity therefore gives us a canonical notion of integration on
a SRC-manifold that does not depend on the choice of metric extension.

As an immediate consequence, we have
Lemma (6.1.38) [269]. Suppose that M is orientable and VM is vertically rigid. Then on
functions,
Ay = E} + divE; = —V5V,
where the divergence and L? adjoint are taken with respect to a rigid volume form.
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Thus on a vertically rigid SRC-manifold, the horizontal Laplacian behaves qualitatively
in a similar fashion to the Riemannian Laplacian.

Theorem (6.1.39) [269]. If F is a closed vector field and F;, is the projection of F to V()
then
= Ay |FI? = RS(F o) + | aqo) Fil?
+Y; ((E;, V*F;(F;,E;))
— (Vg F ,Tor(E;, F)) + (F ,(VTor)(F;,E;, E;))
—(F ,TOR,(E;, E;, F})))
where {E;} is any orthonormal horizontal frame.
Before we prove this result, we introduce some terms and notation. Firstly, we define J :
TM x TM — TM by
(J(A,Z),B) = (Tor(A,B),Z) (7N
Next we recall that a vector field F is closed if
A - (F A)
is a closed 1-form. It is then easy to check that F is closed if and only if for all vector fields
A'B
(VgF ,A) = (VoF ,B) — (J(B,F),A) = (VAoF ,B) + (J(A F),B)
Proof. Set u :%|Fj|2 , then
(Ayw,Y) = (VyF;  F;) = (VW F ,F)
= (VFjFO Yy + (J(F;, F),Y) €))
So
Apyu= Vg Fy + J(F;, F)o.
Next we need some preliminaries. Firstly, for horizontal X, Y
Viu(X,Y) = X(Y ,Vou) — (VY ,V) = (Y ,VyxVou)
= (Y, VxVyu) ©)
Secondly,
(VYJ(F;, F), X ) = X{J(F, F), X) —(J(F,F), VxX)
= X(F,Tor(F}-,X)) - (](F}-,F),VXX)
= (VxF ,Tor(F;, X)) + (F ,VxTor(F;, X))
— (F ,Tor(F;,VxX))
Now we can begin the main computation. For horizontal X
VAu(X,Y) = (VVou, X) = (VXVFjFOaX) + (VxJ(F}, F), X)
= R(X Fj, Fo, X) + (Vg VxFy X) + (Vix.r1Fo , X)
+(Vx/(F;, F), X)
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= R(X,F;, Fo, X) + (VFjVXFOaX )
+ (VVXFj—VFj X—Tor(X,Fj)F X ) + (VxJ(F;, F), X)

= R(X, F;, Fo, X) + (Vg VxFy — VVF].XFO  X)
+ (VxF; ,VxF;) +(F ,Tor(X,VxF)))
—(VxF ,Tor(X,F;)) — (F ,Tor(X,Tor(X, F;)))
+(VxJ (F}, F), X)

= R(X,F},Fo.X) + (X V2Fo(F;, X)) + |VyF}|?
— 2(VxF ,Tor(X,F;)) + (F ,(VTor)(F;,X, X))
—(F ,TORZ(X,X,F]-))

Now we let X range over the frame E; and take a sum.

To apply this theorem, we make the following observations
Lemma (6.1.40) [269]. If F = Vf then
(E; \V2Fo(F ED) = Vi f ViAo f
Proof. By (9),
(VZV2 )X, X) = Z(X ,VxF,) — (VzX ,VxFy) — (X ,Vy,xF,)
= (X ,VzVxFy) — (X, Vy,xFo)
= (X ,V?Fy(Z, X))

SO
> (B VPRELED) = ) (Ve V2f) (B E)

= z (Vf UL (Vy0 Vo f

k
=D (V00 Bt En) (P f (B ) + V2 (Er En))

= Vof Vphof
as the latter term is skew-symetric in i and m.
Definition (6.1.41) [269]. The Baudoin-Garofalo tensor for an sSRC-manifold with metric
extension is the unique symmetric 2-tensor such that
R(A,A) = Rc*(Ap,Ag) + (A, try(VTor)(4y))

1
+7 z [(Tor(E;, E;), A)[? (10)
i,j
Note that from standard polarization arguments this defines
1
R(A,B) :Z(R(A + BJA + B) — R(A — B,A — B))
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Corollary (6.2.42) [269]. If g is strictly normal with respect to the basic grading and VM is
integrable then

1 2
5 bolVofl” = (Vof . Voldof) =
2,sym 2
ROEYE) + Ve f | = 2069w f . Tor (. V(o))

1 2 _ 2
SAolVofl” = Vof Vodof) = Ve Vwfl

Proof. Most of this result follows immediately from noticing that the strictly normal
condition eliminates many of the torsion terms from Theorem (6.1.39) and then applying

Lemma (6.1.40). The rest consists of analyzing the ||V f ||2 First note
V*f(E; Ej) = EEf — (Vg,E)f
=~ (EEf — (VsE)f) + 2 (EES — (Vg,E)f)
+=(EEf + (V5,E) f — (VeE)f)
= ~V2f(E;, B;) + V2f (E;. E;) — > Tor(E;, E))f
From this we immediately obtain,

2 1
19y £ 117 = W™ £+ +5 D (Tor (8, 5. V)2
LJj

Definition (6.1.43) [269]. The torsion bounds of M are the defined by
K]} = sup {|Tor(X("),X(f))m|2 ()X @D 1x9D) < 1}
Noting that 0 < k7 < +oo.

To obtain topological and geometric information from this result, we follow the
technique developed by Baudoin and Garofalo in [340]. We define symmetric bilinear forms
by
To(f,.9) = (Vipf  V(»9)

Gy (f.9) = Aoy (f.9) — Toy(Boyf 9) — Ty (f, A0y 9)
If g is strictly normal then it is easy to check that

YO, (f,F(l)(f,f)) = Tw) (f,F(o)(f,f)) (11)
and we obtain the following result
Theorem (6.1.44) [269]. Suppose g is strictly normal for the basic grading and VM is
integrable. If

Koo < 0
and there exist constants p; € R and p, > 0 such that
R(A,4) = pillAoll? + p2llAll?
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then for k = dim(HM)«k},, the generalized curvature-dimension inequality

1 K
Gy + vIGy 2 W(A(O)f)z + (Pl—;) Toy(F. /) + pTy(f. 1)
holds for every f € C*(M) andv>0 .
Proof. As

”V?és)ymfnz 2Z(VZJ”(E-,EL-))2 > (B f)*

—dimHM
this follows immediately from Corollary (6.1.42) and the elementary identity that
2 K 2
23 Ve V! Tor(Eu Vo f)| < VIV wl’f + = Vwfl
i

It was shown in [340], that under the additional mild hypothesis that there exists a
sequence h;, € CZ°(M) of increasing functions that converge pointwise to 1 everywhere and
satisfy

[0y Cries R, + [Ty (e i, = 0.
the generalized curvature inequality has a wide variety of topological, geometric and
analytical consequences. In our case, this hypothesis is automatically satisfied as
Toy(f - f) + Ty(f. f) = |[V£|?. We shall focus on their subRiemannian generalization of

the Bonnet-Myers theorem.

Theorem (6.1.45) [269]. (Baudoin-Garofalo). If the generalized curvature inequality is
satisfied with p; > 0 and the above hypothesis holds together with (11) then M is compact.
Combining this with Theorem (6.1.44), provides the following generalization of the
examples considered in [260]

Theorem (6.1.46) [269]. Under the same conditions as Theorem (6.1.44), if p1 > 0 then M
IS compact.

A common theme in the early development of sub Riemannian geometry was the use
of Riemannian approximations. More precisely, a Riemannian extension g = g, @ g, was
chosen and then re-scaled as g* = A @ A%g,. The behavior of these Riemannian metrics
was then studied as 4 — oo. The idea is that blowing up the vertical directions makes
movement in these direction prohibitively expensive so the Riemannian geodesics should
converge to the subRiemannian geodesics. Unfortunately, this is problematic for the study
of the effects of curvature as this re-scaling makes the vertical curvatures much larger than
the horizontal ones. However, useful information can be derived from this approach if
instead we let A — O.

We compute the Ricci and sectional curvatures of these scaled Riemannian metrics
in terms of the basic connection. For simplicity, we shall specialize to the case where dim
VM = 1and so the only basic grading applies. We shall be able to provide alternative
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proofs to some of the results above and see the nature of the obstructions when the conditions
are weakened.

To proceed, we fix a sSRC-manifold M and choose a Riemannian extension g = g, @ g, -
The basic connection will always be in terms of this metric. Throughout, E;, ..., E4; will
represent an orthonormal frame for HM with respect to g and U will represent a unit length
vector in VM, again with respect to g.

We refine the J operator introduced earlier by defining

(J'(4,B),C) = (Tor(4,C),By),

(J°(A,B),C) = (Tor(4,C),By) (12)
Lemma (6.1.47) [269]. For any sRC-manifold (with no restriction on dimVM) the Levi-
Civita connection associated to g can be computed from the basic connection for g as
follows

VxV = Vy¥ —=Tor(X,Y) + J'(X,Y)
VeT = VT —%]O(T,T)
Ve X = VX +%]°(X, T) — Tor(T,X), (13)
Vxl = VyT +=/°(X,T) — Tor(X,T),
From these it is a straightforward, if brutal, computation to show that

Corollary (6.1.48) [269]. If X, Y are horizontal vector fields and T is a vertical vector field
then

Rm(X,Y,Y,X) = Rm5(X.Y, Y,X)—% |Tor(X,Y)|?

=yt Y )X X)) + N Y (14)
Rm(T,X,X,T) = Rm*(T,X,X,T) +=|)°(X, T)|?

+(VTor(T,X,X) — Tor(X,Tor(X,T)),T)

+(VTor(X,T,T),X) — |Tor(X,T),|? (15)
Rm(X,Y,T,X) = Rm5(X,Y,T,X) +§ (VTor(Y,X,X),T)
+ (VTor(X,T,Y) — VTor(Y,T,X),X) (16)

While this is far from a complete list of curvature terms, if we use properties of both
Riemannian and subRiemannian curvatures and polarization identities, it is suffcient to
compute all sectional and Ricci curvatures for the case dimVM = 1.

Provided that we only use constants for our re-scaling, it is easy to verify that the
covariant derivatives for the basic connection associated to the re-scaled metric are
unchanged from the base metric. Thus, paying careful attention to how each term scales, we
can compute the Riemannian Ricci curvatures for the metrics g* = A @ A?g;.
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ForY € HMand T € V M, with inner products and norms computed in the unscaled

metric
Rc* (Y,Y) = A°[Re(Y,Y) + (VTor(U,Y,Y),U)— (TOR,(Y,Y,U),U)]

1
+ 12 [—5 Z [Tor(E;, Y )2
i

+A72[(VTor(Y,U,U),Y ) — |Tor(Y,U),|? (17)
3 (0B YOI = (HEEDJLCY,Y )]

Rcr (Y, T) = 2° [Z(VTor(Ei,T,Y)— VTor(Y,T,E),E;)

+ )2 E (tryV Tor(Y), T)] (18)

ReH(T, T) = A° [Z(v Tor(E;, T,T),E;) — |T0r(Ei,T)0|2]

+ 2 [Z(v Tor(T,E;, E;) — TOR,(E; E;, T), T)]

A0 EL T (19)
For the case of a strictly normal sSRC-manifold, these formulae greatly simplify

to
2

RcA(Y,Y) = 2°Rc(Y,Y) —% z |Tor(E;,Y)|?

l

RCA(Y,T) = Z{troV Tor(Y ), T) (20)
_ 24 24
REM(T.T) = ZZ'IO(Ei’ T2 = ZZ Tor (E;, E})|?
i 139

and so
R(T +Y,T+Y)= IAiLr(])R_cl (Y + A72T,Y + A72T) (21)
Next we note that if T is unit length with respect to the base metric then for any smooth
function
VAf = Vof +A72(T f)T
which means that the Baudoin-Garofalo tensor applied to Vf can expressed as a limit of
Riemannian Ricci curvatures as follows:

R(Vf,Vf) = limRc* (VAf,VAf)
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Theorem (6.1.49) [269]. Under the same conditions as Theorem (6.1.4) and the added
assumption that dim VM = 1, there are constants A,c > 0 such that
Rc*(4,4) = cg*(A,4)
for all vectors A.
Proof. Split A = A, + A, and then note that

_ 22
Rct(4,4) = R(4, + 2?4, A, + AZAl)—?Zwor(Ei,AO)P
i

A 2 2 2
= Bl X (Ag,Ag) + pA°g”" (A1, A1)

2
Thus for very small A > 0, we can take ¢ = min {Azpz, P — '12—'{} > 0.

Combining this with the classical Myers theorem yields
Corollary (6.1.50) [269]. Under the same conditions as Theorem (6.1.44) and the added
assumption that dim VM = 1, M is compact and has finite fundamental group.

If we do not restrict to the strictly normal case, then this Riemannian approach
immediately has problems. If we send A — oo, we see that RcA(Y,Y) - —oo, so any
Riemannian results for positive Ricci curvature will immediately be lost. Since there are
very few topological consequences of negative Ricci curvature, this approach is unlikely to
bear fruit. If however we let A — 0, then we run into the issue that the subRiemannian Ricci
curvature for the horizontal terms isn’t the dominant term. Instead we must deal with the
symmetric 2-tensors

B(X,Y) = (VTor(X,U,U),Y) — Tor(X,U),,Tor(Y,U),

KOY) = ) (WHEXD T EY ) = CHEEH Y (23)

where again U is a unit length vertical vector. The tensor B is a genuine sRC- invariant
when dim VM = 1, but has no good invariant generalization when dimVM = 1. However
K is only a vertically conformal sRC-invariant. With these caveats in mind, we do however
obtain the following theorem
Theorem (6.1.51) [269]. Let M be an sRC-manifold with dimVM = 1 and bounded
curvature and torsion. If there are constants a, b > 0 such that for all horizontal vectors Y,
troB = a

B(Y,Y)+ K(Y,Y) > b|Y|? (24)
then M is compact and has finite fundamental group.
Proof. The condition of bounded curvature implies that for small A there will be some,

possibly large, constant M such that
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. a 4M?
2REMT,Y) < 2M |T||Y | < Z|T|2 +T|Y|2.

Since tryB = a globally, for suffciently small A, we will have
_ a
RCMT,T) = > |T|?
and since K(Y,Y) + B(Y,Y) = b|Y|? again for small A, we have

RCA(Y,Y) = =—|Y]|?

222
But then for small enough A
2

— b 4M a
RA(T + Y, T +Y) 25— Y2 +=|T)?

For very small A, both coeffcients will be postive, so
RAT + Y.T +Y) > c|T+Y|?

for some positive constant c. The result then follows from the classical Myers theorem.

This is a purely sub Riemmanian result as the conditions are trivially false when
restricted to Riemannian manifolds. However, it is somewhat unsatisfactory in nature. It
would seem reasonable to conjecture that for SRC-manifolds (or at least those that are in
some sense nearly strictly normal ) that there would be some sort of analogue of Theorem
(6.1.46) where the dominant terms are genuine subRiemannian Ricci tensors. However, it
appears that to prove it will be necessary to create new subRiemannian techniques such as
the heat kernel methods of [340] rather than fall back on existing Riemannian methods. we
expect the basic connection developed to provide a solid computational foundation for such
techniques.

Section(6-2): Comparison Theorems for Sub-Riemannian Manifolds

We study volume and distance comparison estimates on sub-Riemannian manifolds
that satisfy the generalized curvature dimension inequality introduced in [270]. We in
particular prove a global doubling property in the possibly negative curvature case which
complements the volume estimates obtained in [269], where the curvature was always
supposed to be non negative. The distance estimates we obtain, and the methods to prove
them are new, but in the non negatively curved Sasakian case that was treated in [268]. As
a consequence of the global doubling property, we obtain a Gromov type precompactness
theorem for the class of sub-Riemannian manifolds that satisfy the generalized curvature
dimension inequality and, as a consequence of the distance comparison theorem, we obtain
Fefferman-Phong type subelliptic estimates.
To put the results we obtain in perspective, let us point out that distance and volume
estimates in sub-Riemannian geometry have been extensively studied. But most of the

obtained results are of local nature. Let (M, g) be a smooth and connected Riemannian
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manifold. Let us assume that there exists on M a family of vector fields {X;,":- X;} that
satisfy the bracket generating condition. We are interested in the sub-Riemannian structure
on M which is given by the vector fields {X;,:- X;}. In sub-Riemannian geometry the
Riemannian distance dp of M is most of the times confined to the background. There is
another distance on M, that was introduced by Caratheodory in his seminal paper [275],
which plays a central role. A piecewise C! curve y : [0,T] —» M is called subunitary at x
if for every & € T; M one has

d
9&(O.67 < ) g (). 6.

We define the subunit length of y as £,(y) = T. If we indicate with S(x,y) the family of

subunit curves such that y(0) = x and y(T) = y, the fundamental accessibility theorem

of Chow-Rashevsky the connectedness of M implies that S(x,y) # @ forevery x,y € M,

see [276], [285]. This allows to define the sub-Riemannian distance on M as follows
d(x,y) =inf{fs(y) |y € S(x,»)}

We refer to the cited contribution of Gromov to [272], by Bellaiche in the same volume.

Another elementary consequence of the Chow-Rashevsky theorem is that the identity map

i: (M,d) - (M,dg) is continuous and thus, the topologies of d; and d coincide. Several

fundamental properties of the metric d have been discussed by Nagel, Stein and Wainger

[283]. The following local distance comparison theorem was proved in [283].

Theorem (6.2.1)[290]. (Nagel-Stein-Wainger, [283]). For any connected set Q ¢ M which

Is bounded in the distance d there exist K = K(©2) > 0, and € = €(Q) > 0, such that
d(x,y) < Cdg(x,y)¢, x,y € Q.

The following result also proved in [283] provides a uniform local control of the growth of

the metric balls in (M, d).

Theorem (6.2.2) [290]. (Nagel-Stein-Wainger, [283]). For any x € M there exist constants

C(x),R(x) > Osuch that with Q(x) = log,C(x) one has

wW(B(x, tr)) = C(x) 1™ yu(B(x,1r)), 0<t <10 <r < RX).
Given any compact set K ¢ M one has
inf C(x)>0, )Icléllf( R(x) > 0.

X€K
These theorems and the methods used to prove them are local in nature. The goal is to obtain

global analogues for a large class of sub-Riemannian manifolds.

To fix the ideas, let us present the main results of Sasakian manifolds but we stress that the
class of sub-Riemannian structures to which our results apply is much larger than the class
of Sasakian manifolds.

Let M be a complete strictly pseudo convex CR manifold with real dimension 2n + 1. Let

0 be a pseudo-Hermitian form on M with respect to which the Levi form Ly is positive
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definite and thus defines a Riemannian metric g on M (the Webster metric). The kernel of 6
defines a horizontal bundle #. The triple (M, , g) is a sub-Riemannian manifold. The CR
structure on M is said to be Sasakian if the Reeb vector field of 8 is a sub-Riemannian Killing
vector field. Let us denote by Ricy the Ricci curvature tensor of the Tanaka-Webster
connection on M. We prove the following global version of Theorems (6.2.1) and (6.2.2)
Theorem (6.2.3) [290]. Let M be a complete Sasakian manifold. Let us assume that there
exists K € R, such that for every V € H,
Ricy(V,V) = =KV,

then:

(i) Distance comparison theorem) There exists a constant C = C(n,K) > 0, such that

forevery x,y € M,

d(x,y) < Cmax{dg(x,y),+ dr(x,y)}
(if) Uniform local volume doubling property) For every R > 0, there exists a constant

C = C(R,n,K) > 0Osuch that for any x € M, with Q = log,C one has

u(B(x,tr)) =C t%uBx,7)), 0 <t <10<7r <R

The dependency of the constant C on R in the volume estimate is described more precisely
in Theorem (6.2.23).

The method we use to approach these types of results are heat equation techniques and sharp
Gaussian bounds for the heat kernel relying on the methods developed in [269] and [270].
We find it convenient to work in the context of a local Dirichlet space associated to a
subelliptic diffusion operator. This abstract presentation has the advantage to encompass in
the same framework many relevant examples of different nature.

We introduce the framework of [270] and recall the generalized curvature dimension
inequality that is going to be our main device. We study sharp Harnack inequalities for
solutions of the sub-Riemannian heat equations. The main novelty here with respect to [270]
and [269] is that these Harnack inequalities involve a family of distances that interpolate
between the sub-Riemannian distance and the Riemannian one. We devoted to the proof of
the uniform volume doubling property. We skip most of the details in some of the proofs
since the methods are close to the methods of [269]. However, due to the more general
setting, several computations are more involved. We establish through sharp upper
Gaussian bounds for the heat kernel the distance comparison theorem. And shows how the
distance comparison theorem is used to prove subelliptic estimates. The fact that the sub-

Riemannian distance behaves as /dg(x,y) for close x,y implies that the operator L is
subelliptic of order 1/2. Finally we establishes a sub-Riemannian Gromov type
precompactness theorem which is obtained as a consequence of our volume estimates.
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We consider a measure metric space (M, d, n), where M is C* connected manifold
endowed with a C* measure |, and d is a metric canonically associated with a C* second-
order diffusion operator L on M with real coefficients. We assume that L is locally subelliptic
on M in the sense of [277], and that moreover:

(i) L1=0;

(i) Jf, fLgdu = [, gLfdy

(i) f, fLfdu< 0,
forevery f,g € C;°(M). The quadratic functional I'(f) = I'(f, f), where

1
I'(f.9) =3 (L(fg) — fLg — gLf).f.g € C*(M), (25)

is known as le carr’e du champ. Notice that I'(f) = 0 and that I'(1) = 0.
An absolutely continuous curve y : [0,T] — M is said to be subunit for the operator I" if

. d
for every smooth function f: M — R we have |—f(y(t)) </ (I'f)(y(¢t)). We then
define the subunit length of y as £,(y) = T. Given x,y € M, we indicate with
S(,y) = {y: [0,T] » M |yissubunitforl,y(0) = x, v(T) = y}
We assume that
S(x,y) =0, forevery x,y € M.
Under such assumption it is easy to verify that
d(x,y) = inf{£s(y) |y € S(x, )}, (26)
defines a true distance on M. Furthermore, it is known that
d(x,y) = sup{lf(x) — fFIIf € CZ(M)IIT(Nle- = 1} x,y € M. (27)
Throughout we assume that the metric space (M, d) is complete.
In addition to I', we assume that there exists another first-order bilinear form I'? satisfying
for f,g,h € C*((M):
() T*(fg,h) = fr%(g,h) + gI*(f,h);
() T%(f) = T*(f.f)= 0.

We introduce the following second-order differential forms:

LU 9) = 5 ILI(F.9) ~ (fiLg) ~ (g L)
1

7(f.9) =5LI(f.9) =T* (f.Lg) —T*(g.Lf)
and we let I,(f) = 0(f. f), T7(f) =T3(f.f).
We also introduce a family of control distances d, for t > 0. Givenx,y € M, let us consider

S:(x,y)={y:[0,T] » M |yissubunitforT + 72I'%,y(0) = x,y(T) = y}.
A curve which is subunit for I is obviously subunit for I' + 72T, therefore S;(x,y) # @.
We can then define
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do(x,y) = inf{Z;(Nly € S:(x, )} (28)
Note that d(x,y) = dy(x,y) and that, clearly: d,(x,y) < d(x,y).
The following definition was introduced in [270].
Definition (6.2.4) [290]. We shall say that M satisfies the generalized curvature-dimension
inequality CD(p4, p2, k, d) if there exist constants p, € R,p, > 0,k = 0,and d > 0 such
that the inequality

1
L) + vIE () = 3 (1 + (o1 =) T + par(f) 29)

holds for every f € C*(M) and every v > 0.

Let us observe right-away that if p'; = p;, then CD(p';, py,k,d)= CD(p;,py, k. d). TO
provide with some perspective on Definition (6.2.4) we refer to [270] but point out that it
constitutes a generalization of the so-called curvature-dimension inequality CD (p;, n) from
Riemannian geometry. We recall that the latter is said to hold on a n-dimensional
Riemannian manifold M with Laplacian A if there exists p;€ R such that for every f €
C (M) one has

1
L) 22 @) + pulVfIP (30)
where

1
L) =5 IVFI2 = 297, VAN,

To see that (29) contains (30) it is enoughtotake L = A,T'* = 0,k = 0,andd = n, and
notice that (25) gives T'(f) = |Vf|? (also note that in this context the distance (27) is simply
the Riemannian distance on M). It is worth emphasizing at this moment that, remarkably,
on a complete Riemannian manifold the inequality (30) is equivalent to the lower bound
Ric = p;.

The essential new aspect of the generalized curvature-dimension inequality CD (p1, p,, k, d)
with respect to the Riemannian inequality CD(p4,n) in (30) is the presence of the a priori
non-intrinsic forms I'” and I’ . In the non-Riemannian framework the form I" plays the role
of the square of the length of a gradient along the (horizontal) directions canonically
associated with the operator L, whereas the form I'? should be thought of as the square of
the length of a gradient in the missing (vertical) directions.

In Definition (6.2.4) the parameter p; plays a special role. For the results such parameter
represents the lower bound on a sub-Riemannian generalization of the Ricci tensor. The case
when p; >0 is, in our framework, the counterpart of the Riemannian Ric > 0. For this reason,
when we say that M satisfies the curvature dimension inequality CD (p4, p2, k, d) with p; >
0, we will routinely avoid repeating at each occurrence the sentence “for some p, >0, k >
Oandd > 0.
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Before stating our main result we need to introduce further technical assumptions on the
forms I' and I'%:

Hypothesis (6.2.5) [290]. There exists an increasing sequence h,€Cg’(M) such that hj, 71
on M,and

||F(hk)||oo +||I‘Z(hk)||oo - 0, ask — oo.

Hypothesis (6.2.6) [290]. For any f € C* (M) one has

I'(f,T%(f)) = T2(f. T (f)).
Hypothesis (6.2.7) [290]. The heat semigroup generated by L, which will be denoted by P,
throughout the section, is stochastically complete that is, fort > 0,P;1 = 1, and for every
f eCy(M)and T = 0,0ne has

sup  IT(Pf)lleo [[T*(PA)|, < +oo.

te[0,T]
The hypothesis (6.2.5) and hypothesis (6.2.6) will be in force throughout. Let us notice
explicitly that when M is a complete Riemannian manifold with L = A, then hypothesis
(6.2.5) and hypothesis (6.2.6) are fulfilled. In fact, hypothesis (6.2.6) is trivially satisfied
since we can take I'? = 0, whereas hypothesis (6.2.5) follows from (and it is in fact
equivalent to) the completeness of (M,d). Actually, in the geometric examples
encompassed by the framework (as we have said before, for a detailed discussion of these
examples should consult the preceding section [270]), hypothesis (6.3.5) is equivalent to
assuming that (M, d) be a complete metric space. The reason is that in those examples ' +
I'Z is the carr'e du champ of the Laplace-Beltrami of a Riemannian structure whose
completeness is equivalent to the completeness of (M, d). The hypothesis (6.2.7) has been
shown in [270] to be a consequence of the curvature-dimension inequality CD(p4, p5.k,d)
only in many examples. We mention the following results from [270].
Theorem (6.2.8) [290]. Let (M, 8) be a complete CR manifold with real dimension 2n + 1
and vanishing Tanaka-Webster torsion, i.e., a Sasakian manifold. If for every x € M the
Tanaka-Webster Ricci tensor satisfies the bound

Ric,(v,v) = py|v|?,

for every horizontal vector v € H,,, then, for the CR sub-Laplacian of M the curvature-
dimension inequality CD(p,,d 4,1,d) holds, with d = 2n. Furthermore, the Hypothesis
(6.2.5), (6.2.6) and (6.2.7) are satisfied.
Theorem (6.2.9) [290]. Let G be a Carnot group of step two, with d being the dimension of
the horizontal layer of its Lie algebra. Then, G satisfies the generalized curvature-dimension
inequality CD (0, p,, k, d) (with respect to any sub-Laplacian L on G), where p, and x are
appropriately (and explicitly) determined in terms of the group constants. Moreover, the
Hypothesis (6.2.5), (6.2.6) and (6.2.7) are satisfied.

183



Theorem (6.2.9) says, in particular, that in our framework, every Carnot group of step two
Is a sub- Riemannian manifold with nonnegative Ricci curvature. CR Sasakian manifolds
and Carnot groups of step two are included in, but do not exhaust, the class of sub-
Riemannian manifolds with transverse symmetries of Yang-Mills type. Such wide class was
extensively analyzed, and we refer to that source for the relevant notions. In view of
Theorems (6.2.8) and Theorem (6.2.9) it should be clear that our approach allows for the
first time to extend the Li-Yau program, and many of its fundamental consequences, to
situations which are genuinely non-Riemannian. As a further comment, we mention that, if
we assume that the generalized curvature-dimension inequality CD(p4, p», k, d) is satisfied,
then the assumption (6.2.7) should not be seen as restrictive. As we mentioned above, it was
shown in [270] that (6.2.7) is fulfilled for all sub- Riemannian manifolds with transverse
symmetries of Yang-Mills type.
Theorem (6.2.10) [290]. Suppose that the generalized curvature-dimension inequality hold
for some p; € R. Then, there exist constants C;, C, > 0, depending only on p4, p,, k, d, for
which one has for every x,y € M and every r > O:

w(B(x,2r)) < C,exp(C,r?) u(B(x,1)); (31)
Theorem (6.2.11) [290]. Suppose that the generalized curvature-dimension inequality hold
for some p; € R. Let T = 0. Then, there exists a constant C(z) > 0, depending only on
P1, P2, K, d and ¢ for which one has for every x,y € M:

d(x,y) < C()max{yd;(x,y),d.(x, )} (32)

In the sequel, we assume that besides the assumptions specified in the previous section

the generalized curvature dimension of Definition (6.2.4) is satisfied for some parameters
P1, P2, K, d. We will denote

D = d<1+;—;). (33)

The main tool to prove the fore mentioned theorems, is the heat semigroup P, = e*L, which
is defined using the spectral theorem. Thanks to the hypoellipticity of L, for f € LF(M),1 <
p < oo, the function (t,x) = P.f(x) is smooth on M % (0, o) and

Pof(x) = j p (1,3, O 0)du)

M
where p(x,y,t) = p(y,x,t) > 0 is the so-called heat kernel associated to P;. It was
proved in [270] that the generalized curvature dimension inequality implies a Li-Yau type
estimate for the heat semigroup. Let f > 0, be a non zero smooth and compactly supported
function then the following inequality holds for ¢t > O:

= = )2 = 2
20, 2Py t) LPtf+ d(p1) ; +P1D + D

D
Z < | —
[‘(InPtf)+ 3 tr (InPtf)—(d"' 3 P.f 6 2 2dt

(34)
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where p; = max(—p4,0). A consequence of the Li-Yau inequality is the parabolic Harnack
inequality for the heat semigroup as it was established in [270]. The distance used in [270]
to control the heat kernel is the sub-Riemannian distance d. Purpose is to take advantage of
the upper bound on I'? (InP, f) that is also provided by the Li-Yau inequality in order to
deduce a control of the heat kernel by a family of Riemannian distances. This control of the
heat kernel in terms of Riemannian distances is the key point to prove the distance
comparison theorem.

As a first step, we observe that as a straightforward consequence of (34) we obtain that for
every t>0and t> 0,

32\ 7" p 25, \LP,f d(5,)° B,D D?
2pZ <(Z 1 ) t 1 1 .
(1+2p2t> (T(nP,f)+1°T%(InP,f) < <d+ 3¢ 0 e Tttt (35)

Theorem (6.2.12) [290]. (Harnack inequality). Let fCp;°(M) be such that f >0, and
consider v(x,t) = P.f(x). For every (x,s),(y,t) € M x (0,c0) with s < t one has with
D asin (33)

D
v(x,s) t\2 dp,(t - s) d.(x,y)> (D ,20,\ 7, 32D t
v(y, t) = <E> &P < 4 ) &P (4(1: —s) \d Tt p_2 3 (t+s)+ 2(t — s)p,d In <s)

Proof. We can assume p; < 0. Otherwise, if p;> 0then CD (0, p,, k, d) anyhow also holds.
We can rewrite the Li-Yau type inequality in the form

[nP, f) + T2I2(N P, ) < ap(w) Llfjf + by(w) (36)
Where
_ 3t2\ /D 2p,
ar(u) = (1 * zpzu> ()
and

372 d(ﬁ1)2 p1D D?
b =(1+ + + :
o) < 2p2u> 6 2  2du
Letnow x,y € Mandleto:[0,T] — M be asubunitcurve for I' + 72I'2 such that ¢ (0) =
x,0(T) = y.Fors < u < t,wedenote

y(u) = U(u—s T).

t—s

Let us now consider

) =InP, (f)y(w).

We compute
1 d
0/ 0) = s (R (@) + G (R )

Since o is subunit for I + 72I'Z, we have
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d T
— RS ()) 2 = VTR W) + THE, (W)

Now, for every A > 0, we have

VIR W) + 2T2P) (y(w) < ﬁ +5 (F(Puf)(y(u)) + TPy W)).

Therefore we obtain

0 2 (LPuf(V(u)) - 55 (55 5 eCNE@) < e (y<u))>>

1
B.f(y ( )
Sy LS (@) - ( -+ 2 @A (W) () + b ) (Puf)z(y(u))>

2(t—s)
Tar(w)r.f(y(u))

uf( @)
Choosing 4 =

yields

a‘c(u)Tz b‘c(u)
4t —-s)*  a(w)
By integrating this inequality from s to t we infer

[fa. du t b, ()
2@ =97 | ‘L @@

o' (u) = -

InP, f(y) —InP, f(x) = —

Minimizing over sub-unit curves gives

du,

[ a, (u )du 4Gy’ _]tbr(u)du’

INPefG) = INPf() 2 == D
which is the claimed result after tedious computations.
Corollary (6.2.13) [290]. Let p(x, y, t) be the heat kernel on M. For every x,y,z € M, every
0 <s <t < ocandeveryt =0, one has

D
p(x,y,s) t\2 dp, (¢ - s) d.(x.y)* (P ,2p,\ 7, 312D t
p(x,zt) = (E) exp( 4 )exp (4(1: —5) (d ot P, "3 (t45)+ 2(t - s)p,d In <s)
The following proposition provides a pointwise estimate of the volume of the balls, for the
proof see [282].

Proposition (6.2.14) [290]. There exists a constant C(d, k, p,) > 0 such that, given R, >
0, for every x € M and every R > R, one has

B R) < Cduk o) T fﬁ;’; exp(2d5,R?).

We now turn to the proof of Theorem (6.2.10). Though, some new ideas and more careful
estimates are required, the proof mainly follows the lines of [269] where the results is proved
when p; = 0. Therefore, several results are stated without proof and we only justify the
statements involving these new ideas and careful estimates. The results given without
justification may be proved as in [269] by keeping track of the term p; .

Henceforth in the sequel we denote
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Cy’(M) = C*(M) nL*(M).

For € > 0 we also denote by A, the set of functions f € C;°(M) such that
f=g+e

for some € >0 and some g € C;°(M), g = 0, such that g,/T(g),4/T%(g) € L>(M). As
shown in[270], this set is stable under the action of Py, i.e., if f € A, then P, f € A,.
The first ingredient to prove the doubling property is the following reverse log-Sobolev
inequality.
Theorem (6.2.15) [290]. Let e > 0 and f € A, then for every C = 0, one has for x €
M,t> 0,

L pf GO P f)(x) + 2P f GO (IN P, ()

1 2k 4C AC t
< E<1 E+7+2tp1)[Pt(flnf)(x) P.f(x)In Ptf(x)]_Tm LP.f(x)
2C?
+2in(143) Pf )

This inequality admits the following corollary.
Proposition (6.2.16) [290]. Let e > 0, f € A, such that e < f < 1 and consider the

function u(x,t) = /—InP.f (x). Then,

D* D*
2tu, + <u + <1 + ’;) u? + ,? u‘1/3> (1 + |dp, t) >0,

2K
D* = <1 +_>.
Py

Introduce the function g: (0, ) — (0, =) defined by
1

gv) = = =
u + <1 + %) 7.71/3 + % v—1/3
D* .
lim \/:vmg(v) =1, lim vg(w) = 1
-0 2 Vo400

Therefore, we have g € L (0, A) for every A > 0, but g¢L!(0, +0). If we set

GQu) = jo g W)dv,

then G'(u) = g(u) > 0, and thus G: (0,») — (0, ) is invertible. Furthermore, we can
write

Where

Note that g verifies

Gw)=In(u)+ Cy+ R(w), u >0 (37)
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where C, is a constant and R: (0, +o0) — R a function such that lim R(w) = 0. Proposition

u—>oo

(6.2.16) can be re-written in terms of g as follows

1 +,/td/ol

2tu, + >
g
Since g(u) = G'(u), we conclude
dé(u) _ 1 dp,
= G 2 -5 =5 = (38)

Integrating this differential inequality leads to the following result:
Corollary (6.2.17) [290]. Let f e L®(M),0< f <1,thenforany x e M and 0 < s < t,

G(J/=InPf(x)) = G/—InPf(x) - %m (g) — |dp,(Vt — Vs).

The second ingredient in our proof is the following small time asymptotics.

Proposition (6.2.18) [290]. Given x € M and r > 0, let f = 1p(, ). One has,
2
Iir(glinf (=sInP.f(x)) = —

We are now ready for the following estimate.
Proposition (6.2.19) [290]. Let x € M and r > 0 be arbitrarily fixed. There exists a constant
Co € R independent of x and r, such that for any t > O,

r —
G (\/— In PtlB(x’T)c(x)) = In%+ Co — dplt

Proof. Let f = 1p(,,)c. Corollary (6.2.17) and (38) give

G(y/—InP.f(x)) = Gy/—InP,f(x) —llnx/f — |dp,(Vt —s)

:|n,/—s|npsf(x)+c0+R( InPf(x —InvE - /dplt+ /dpl

Since Iirp+(—InPSf(x)):oo, we infer IlrglR(,/—lnPsf(x ) =0. Letting s—0%
Proposition (6.2.18) yields we obtain

r r
G (V=InPfG) ) = Ing —Ine + o — /dp = |n%—1/dﬁlt+65,

with C; = Cy — In2.

The following uniform lower bound on the heat content of balls, which is already interesting
in itself, will imply the volume doubling property.

Theorem (6.2.20) [290]. Set Ci* = G(VIn2)—C; and for R >0, define U(R) =
Wr1(C) where Wit is the inverse function of

Yr(uw) =1In (%) — \/dp,t Ru, u € (0, ).
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Then for every x € M and every function A: [0, +o) — (0, o) such that \/A(R) < U(R),
we have for r > 0,
1
PA(T)T2 (1B(x,r))(x) = E .

Proof. By the stochastic completeness of M

PA(T‘)T‘2 (1B(x,r))(x) =1- PA(r)r2 (1B(x,r)c)(x)
The desired estimate is equivalent to prove

In2 < \/—PA(r)rz(lB(x’r)c)(x)

or equivalently,

G(V In2< G <\/_PA(r)r2 (1B(x’r)c)(x)>. (39)
At this point Proposition (6.2.19) gives

G < \/—PA(r)rz(lB(x’r)c)(x)> > In (ﬁ) + C; —/dpA(r)r
> |n(i)+ C; — JdpirU(r) = G(VIn2).

u(r)
We now give some estimates for the function U(R) appearing in Theorem (6.2.20).
Proposition (6.2.21) [290]. The function U is non-increasing and satisfies, for R = 0,

U(R) =

dp, R + eG"
Proof. First notice that U(0) = e~% and U is positive. Since W (U(R)) is constant, taking
derivative yields:

U'(R) = — Jd_ﬁlU(Ri > —/dp,U(R)?.
Jdp; R "'m

Therefore U is non-increasing and integrating the above inequality we infer that

1
UR) = Jap, R+ U™(0)

Henceforth, in the sequel, for r > 0, we set

2
. 2 . 1
A(r) = min(U(r)4,1) = min <<—\/d_ﬁ1R+eCB*) ,1). (40)
There exists a constant C; > 0 such that, forallR > 0,
Cy
—— < < 1 41
1+dp;R? ~ AR) = (41)
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A first consequence of the uniform estimate we obtained are the following lower bounds
for the heat kernel. Observe, and this is another main novelty with respect to [269] that these
bounds are written with respect to the distance d, (we recall that d, is the sub-Riemannian
distance).

Theorem (6.2.22) [290]. Set C, = % .Fort > 0and x € M, then

() %) o
AB) L)oo

As a consequence, forx,y € M,t > Oandt = 0,
D

L g _dpst
(A <®> 7200 (50) (i a2t
exp | — XY —+—t+—(— In (2))
( < t>> P 2t \d 2\, T2,
4u| B x, 5

A
2_%62 exp(— 611t> d:(y,x)* (D _ps +2T2 p1 3D In(2 43
z : e R T PR T(p—z 2d"@) || @
4u<B<x I>><1+dgl>

Proof. With the same notations as in Theorem (6.2.20), for R > 0,

p(x, x,t) =

(42)

p(x,x,t) =

Pawyrz(Lpr)) (%) = =
Thus,
1
=P aryr? (Lper)) (%)

- (fM p (x,y,A(R)R2)(13(953)01“()’))2

< [y p (¢, 7, A(R)R?)2dn(Y) [, Lp(xrydn(y)
= p(x,x, 2A(R)R*)W(B(x, R)).

Now since 0 < A(R) < 1, Harnack inequality in Corollary (6.2.13) gives
D

1
p(x,x, 2A(R)R? < p(x,x,2R?)(A(R)) 2exp( dp, R ) (44)
Therefore, we proved
b 1
A(R)Z exp (— > dﬁle)

pex,2R%) = —— ey

(45)
The first point follows by setting t = 2RZ.
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For the second point, we recall that Harnack inequality with the distance d. reads, for ¢t >
t

0,s =-

2

t D dp.t dv,x)? (Db ». 222(p 3D
(sng) < s rfon (5 7 (350 (e 2 )

2

Using the first point the conclusion follows directly.
Theorem (6.2.23) [290]. There exist constants C; > 0 and C, > 0 depending only on d, k
and p, such that for all x € M and all R > 0, we have

w(B(x,2R)) < C3exp(C4p,R?) (B (x, R)) (46)
Proof. Due to Proposition (6.2.14), we have for R > 0
exp(12p,R?)
p(x,x,2R?)
Combining this inequality with the lower bound for the heat kernel (45) gives the desired
result:

w(B(x,2R)) < C(d, k, p;)2P"2

D2 25 _ 2 -D/2
W(B(x,2R)) < C(d.16,p,)22"2 exp (55,2 ) ACR) ™ 2u(B(x, R)).

We prove a global version of the celebrated Nagel-Stein-Wainger estimate, Theorem
(6.2.1) . We need the following optimal upper bound for the heat kernel p(x, y, t).
Theorem (6.2.24) [290]. For all € > 0, there exist some constants Cs, Cq > 0, depending
onlyond,p,,k and ¢ > 0, such that fort > 0 and x,y € M, one has

C:(¢) d?(x,
By By PR e <_ @ i:v))t> - @D
Proof. This proof follows the lines in Cao-Yau [274] and Baudoin-Garofalo [270]. Let a >
0, then by the Harnack inequality in Corollary (6.2.13) with t=0,

(1+a)DeXPL 2+a da
e (e 3) | TS

1+ a)’exp 2 +a da
(z0) xo <pt<%+d?>> Persaye (P (1 + @)L, 1)) ().

0)

Applying the Harnack inequality in Theorem (6.2.12) once again, we have
Paraye(pC (1 + Q)t) 150, v9) (%) = Papaye(F) (x)?

(1+a)Pexp (2&(—QD+ 1)d> 2+a da(a+1)
u(B (x, V1)) =P (plt( 6z | 2 >> JB(x,\/?) Psayze (F)(2)?dn(2)

with Fi()) = p(e,, (1 + @)6)Lg(y.y5)0)-

p(x,y,t) <

p(x,yt)* <

=(
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By using now an argument of the proof of Theorem 8.1 in [270] and the fact that for z €
B(y,Vt),
d*(x,y) t

l1+a a

d*(x,z) >

we have forO< 1+ a)’t < T,

j Pravar (B)@ )
B(x t

2(T (1 " a)zt)) e9((+a) t’Z)P(1+a)2t(Ft)(Z)2du(z)

- <2( (1 ; )Zt)) e9OD(F)(2)*du(z)
< exp ( )j exp <_ M) p (x, 2)%du(2)
B 2(T — 1+ a)?t) 5(x7) T (1+a)t (X, m
<e p< + t d*(x,z) )j p (x. 2)2du(2)
B 2(T—+ayt) 2aT 2(+aT) )y m 077
t d?(x, z)
- <2(T @+ aft) 24T 2(1+ )T> Py (F)®)

where for 0 < s < T and z € M, the function g is defined by
d?(x,z)
T

Finally,

5 D(a+2
Q1+ @) o (gt 1)

1 da
LBV 2u(BG VD)2 P (p 12+ a) (6_a N T))
t t d?(x,y)
exp
<4(T (1 + a)’t) 4aT 4(1 + a)T>
Hence the result follows by choosing T = (1 + a)t.
Theorem (6.2.25) [290]. There exists a constant C, > 0 which depends only on d, x and p,
such that forall xand yinMandall0 <7 < 1,
d(x,y) < 67(1 +\/_) max{ (2, v),d.(x, y)}
Proof. Using the symmetry of the heat kernel, combining the lower estimate (43) for the
heat kernel with the distance d, and the upper estimate (47) for the sub-elliptic distance d
gives

p(x,y,t) <
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t z -2 s (= 2P1t
<A< 2>> “re p( i ) exp<——dr(x'}1)2 <2+&t+2_12(&+ 3D In(2)>>>
4B P apBVD) 20 \d 20t 2pd

< Cs(e) d?(x, ) )

= W(BGND) 2B (y, V)2 4+ o)

Therefore we have
D

2
t D, dp,t d.(x,y)*(D py _ 2t%(p; 3D
A(@ 22 exp(‘ 2 )exp<‘ 2t T?“T(p—z*zpzd'”(”)

2
< Cs(&) exp(Cg(e)pt) exp <— M) .

exp(C6(e)ﬁlt) exp <—

(4 + o)
Thus for all t > 0:

D t D
0< —EInA<§>+<E+ 2

d? d 2(p p, 2t*(p, 3D
_&xy) &y (Db 20 (b n@ ).
(4+¢e)t 2t d 2 t \p, 2p,d
. vVt dp,t
Since —InA(;) < In(1+ . )— InC; <
constants E;,E> which only depend on d,x and p, such that for all ¢ > 0, we have for all
x,yEM,t > Oandt>0

d(x, d.(xy)’ (D p, 27%(p, 3D
0< E,+E,p,t— ( y)+ () —+ﬁt+i ﬁ+ In(2) | |.
VoA +at 2t p, 2p,d

Therefore, for some positive constants A;,1 < i < 3 which only depend on d,k and p,,
d(x,y)? < Ar(L+ o)t + Ay (L + prt)de(x, )2 + A (L + ) “&2
Sincet <1, ifd.(x,y)<1, choosing t = 7d.(x,y) < 1yields

d(x,y)* < (1 + pit)(Ay + A3)td (x,y) + Ad. (x,y)* < (A1 + Ay + A3)(L + pit)d. (x,y).
If d;(x,y) > 1, choosing t = 7 < 1, we infer

d(x,y)* < (1 + p10)A1T + Apd,(x,y)* + Astdo(x,y)* < (A; + Ay + A3)(1 + pit)d. (x, y)*.

We investigate some consequences of the curvature-dimension inequality. We show
that if an operator L is an Hormander type operator and if it satisfies some curvature-
dimension inequality CD(p4, p», k, d), then it is necessarly a rank 2 operator. The proof is
based on the distance comparison theorem (Theorem 6.2.25). Actually, only a local distance
comparison is needed. The notions of Hormander type operator and rank 2 operator are
explained below.

dplt

IN2+InCs(e) + Ce(e)(L +p )t + 2

dp, t ) )
:l —InC;, fixing € = 1, there exist some
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First, the comparison principle of Fefferman and Phong between sub-elliptic and elliptic
balls (see [277]) implies the following local sub-elliptic estimate:
Theorem (6.2.26) [290]. Assume the operator L satisfies the condition CD(p4, p,, k,d) for
some p;€ER, p,> 0,k = 0, and d = 2. Assume moreover that the metric associated to d is
a Riemannian metric g. on M for some 1. Let Q be a bounded domain in M and a chart
@:U c R™ — Q. Then there exist some constants ¢ = c(Q,9) > 0and C = C(Q,p) >
0 such that

1Ll + Cllull > cllullyu € c§(p(U)), (48)
where ||| denotes the usual L?(1) norm in Q and where |I{l¢s) is the standard Sobolev norm.

Proof. By Theorem (6.2.25), there exists a constant A such that d(x,y) < A,/ d.(x,y) for

all x,y € Q. Therefore, B,(x,R) < B(x, AVR). Since Q is a compact set, the metric g, is
comparable with geucl the metric obtained from the Euclidean one in U by the map ¢. If we

pull back the result in U, we thus have, B, (x,R) € B(x,A'vR) for some constant A’ >
0.

We call an H ormander type operator an operator L which satisfies the general assumptions
above and which can be written locally as L = ¥i_; X; X; for some C* vector fields X;.

We say it is an operator of rank k if the vector fields and their commutators up to order k:
Xpoo X X X b X Xy L X 11 1 G = Lor

span the tangent space in each point of M.

The following theorem is a direct consequence of an important result of Rothschild and

Stein [288] and of the local subelliptic estimate (48).

Theorem (6.2.27) [290]. In addition of the hypothesis of Theorem (6.2.26), assume that the

operator L is an H 'ormander type operator. Then L is a rank 2 operator.

The goal is to establish a generalisation Gromov’s precompactness theorem for our class
of subriemannian manifolds. Initially, the Gromov’s precompactness theorem states that the
space of Riemannian manifolds with Ricci curvature bounded below by k, dimension
bounded by N and diameter less D is precompact for the Gromov-Hausdorff convergence.
Moreover the result can be extended for the (pointed) measured Gromov-Hausdorff
convergence by endowing the Riemannian manifolds with their Riemannian volume. In our
generality, contrary to the Riemannian case, the measure i is only defined up to a positive
constant. Here, we need to normalize the measure. Let M be a compact smooth manifold
and p be a smooth measure on M such that there exists a smooth second order sub-elliptic
differential operator L which satisfies the general assumptions described in above. Let us
assume that the measure satisfies the normalisation property u(M) = 1. We say the compact
metric measured space M = (M,p) belongs to Mz(pq,p,, Kk, d),R > 0 if moreover L

satisfies CD(pq, p,, k, d) and the (sub-Riemannian) diameter of M is bounded above by R.
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Theorem (6.2.28) [290]. Let p; € R,p, >0,k =0, and d = 2,R > 0. The set of metric
measured spaces Mgr(pq,p,, k,d) is precompact for the measured Gromov-Hausdorff
convergence.

Proof. The proof is an easy consequence of Theorem 27.31 in [289] and of the doubling
property of Theorem (6.2.23).

Corollary (6.2.29) [291]. (Harnack inequality). Let fC,°(M) be such that f > 0, and
consider vg_q(x5,1 —€) = P;_.f(x5). For every (x5,5),(xs +€,1—¢€) € M % (0, )
with s < 1 — € one has with D

Vo1 (x5, 8)
ve_1(xs+€,1—¢€)

1—eg

<()
25\ s 3(1 - €)2D 1-

+(1+e)2£)+%((1—6)+s)+2((1_€)(_S)635+1(1+6)In< S€)>> (48)

Proof. We can assume p; < 0. Otherwise, if ps> 0 then C;,_,D(0, ps41,1 +€,1 + €) any
how also holds. We can rewrite the Li-Yau type inequality in the form

(1 + G)ﬁs((l - 6) - S) dl—e(xs’xs + 6)2 D
Xp( 4 )eXp A((1—e) —3) ((1 )

LP,
C(InP,_, f)+ (L+e)’T*(Ink, _, f) < a1+e(us_1)P;‘1]f + biyeis—s) (50)
Where
B 3(1 +¢€)? D 2D
a1+e(us—1) - <1 + 2p5+1u5—1> (1 + € + 3 us—l)
and

3(L+€)?\ (1 +e)(ps)? oD D?

2ps+1Us—1 6 2 2(1+€)us
Let now x,, (xs +€) € M and let ¢: [0,T] — M be a subunit curve for ' + (1 + €)?I'%
suchthat 0(0) = x,,0(T) = x, +e€.Fors <ug_; < 1 — ¢, we denote

Y(usq) = a(ﬁ r)

Let us now consider
o(us—1) =InPB,__ (f)(y(us-1)).

We compute

195



d
@ (s ) = L f(r(ts)) + o (B f (1))

zol
Pus_lf(y(us—l)) s—1

Since o is subunit for I' + (1 + €)?I'Z, we have

d
(Pu,_, f (r (us-1)))

dus—q

> - mJ F(Pug, ) (us—1)) + (1 + 2 T%(Py_, ) (r (us-1))

Now, for every € > 0, we have
\/ P(Pyy_ )y (us-1)) + (L + €)*T%(Py,_, /(¥ (us-1))

1+(1 2
Z((l :S) (F(Pup- ) ats)) + (@ + )T (P, ) (1 t5-0))).

Therefore we obtain

(p,(us—l) =

1
ug_1 f (v (us-1)) (Lpus_lf(y(usl))

T (1+(@1+e)?
REDEE ( ;r((l ++€§) (PP ) (r (ue—r)) + (@ = €)2T%(Ry,_ f) (y(usl)))>>

1
= Pus—1f(y(us—1)) LPuS_lf(y(us_l))
T (1 + (L+¢€)?

G s\ 2ar g (@) P ) (s ) (P ) )

+ b1+e(us—1)(Pus_1f)2(y(us—l)))>
2(1+€-s)
Ty 4e(Us—1)Pug_y f (¥ (Us-1))
(p,(u ) > _ a1+e(us—1)T2 _ b1+e(us—1).
s-1= 4((1 + E) - S)z a1+6(u5—1)
By integrating this inequality from s to 1 + € we infer
InP1+Ef(xs + E) - InPsf(xs)
- _ f51+6 ay7e (Us—q)dug_q 2 jHE byye(us—1) 4
- 4((1 +¢€) — 5)? s
Minimizing over sub-unit curves gives
InP1+Ef(xs + E) - InPsf(xs)

1
- fs +e ayye (Us_1)dus_4 Ay (o xe + €)° — js"'e byte(ug_yq)
- 4((L+¢€) —5)? reren s s Qpe(usg) 7

Choosing (1 +¢) =

yields

Ug—1;
a1+e(us—1) s

1
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which is the claimed result after tedious computations.
Corollary (6.2.30) [291]. Let x;, € M and € > —1 be arbitrarily fixed. There exists a
constant C;_; € R independent of x; and (1 + €), such that for any € > 0,

6 ([N Prsels s aromea () 2 INVTF e+ Gy — A+ 6

Proof. Let f = 1p _ (x, 1+€)cs-2-
G(\/_ In P1+ef(xs))
> G\ —InPf(xs) +InVs —InV1+e— /(L +€)p,(V1+ € —s)
=In\/=sINBf(x;) + Coy+ R(V=INRf(x;) ) = INVI+ € = 5,(1 +€)?
+ (1 + €)pss.
Since Iirgl+(— In P, f(xs)) = oo, we infer IirglR(,/— InP,f(x,) ) = 0. Letting s—0%, yields
we obtain

6 (VTIPLfG)) 2 In 72 —In JA+ ) + (s — VA + 02
= InVI+e— VR +e + (i

with C;_; = Cs_1 —In2.
The following uniform lower bound on the heat content of balls, which is already interesting
in itself, will imply the volume doubling property.

Corollary (6.2.31) [291]. Set C;*; = G(¥In2) — C;_, and for € > O, define Us_;(1 +
€) = WL (Cs*,) where Wi, is the inverse function of

1
Wirelsn) = In ()~ JEF OB W+ uper, oy €(0,00)
s
Then for every x; € M and every function Ag_;:[0,+o) — (0,00) such that
JAs_1(1 +€) < Us_1(1 + €), we have for e > —1,

1
Py (+e)arey (Lo (xo140) (¥s) 2 5

Proof. By the stochastic completeness of M

PA5—1((1+E))(1+E)2 (135—1(x511+€))(x5) = 1- PAS_l((1+E))(1+E)2 (1BS_1(x5,1+e)CS—2)(xs)
The desired estimate is equivalent to prove

In 2 < \/—In PAS_l((1+E))(1+E)2 (135_1(955’14_6)65_2)(36'5)
or equivalently,
c(WVIn2< G ( J —s PAS_l((HE))(He)z(135_1<x5,1+e)c5_2)(xs)). (51)
At this point Corollary (6.2.31) gives
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1

G (\/_PAS-1((1+e))(1+¢5)2 (135-1(x5,1+e)C5—2)(xs)) > In (m) + C5o1 —
Ja+opa(@+a)a+e
1 N —
> (—m5) + G VAT OB+ YUsma (1 +

€) = G(WIn2).
We now give some estimates for the function U,_, (1 + €) appearing in Corollary (6.2.30).

Corollary (6.2.32) [291]. The function U_, is non-increasing and satisfies, for € > 0,
1

JA+e)ps (L+e) + eSh
Proof. First notice that Us_;(0) = e~%-1and U,_, is positive. Since W1y (Us_1(1 + €))
Is constant, taking derivative yields:

(1+€)ps Us—1(1 +€)

JEF 95 A+ 9+ —17g

Therefore U,_, is non-increasing and integrating the above inequality we infer that

1
Us—1(1+¢€) = JA+ )5, (1+¢€)+ UL (0)

Henceforth, in the sequel, for e > 0, we set

Us_1(1+¢€) =

Us-1(1+e) = — > —\/(1+€)psUs—1(1 + €)*.
s—1

_ ) . 1 :
A._1(1+¢€)=min(U,_;(1 + €)? 1) = min ((m Aro eCs*i1> ,1). (52)

There exists a constant C; > 0 such that, forall e > 0,

T ﬁs(i oy < A,_(1+¢€) < 1. (53)

A first consequence of the uniform estimate we obtained are the following lower bounds
for the heat kernel. Observe, and this is another main novelty with respect that these bounds
are written with respect to the distance d,,. (we recall that d, is the sub-Riemannian
distance).

C

Corollary (6.2.33) [291]. Set C,,; = f. Fore > 0 and x; € M, then
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D

(1 ([559)) e (-2 )

p(xs, x5, 1 +€) =
1+¢
4'|-1 (Bs—l (xs’ T))

_ps(+ 6)2)

Cs+1 eXp <

(o ) (r Bz

As a consequence, for x;, (x; +€) € M,e >0and e > —1,

(54)

p(xg, xs +€,1+¢€) >
D
<As_1( £>>22_§ exP(_ﬁs(14+E)2) , B B
exp (— +e(Xs X5 +€) < b 4 % (1+¢)+2(L+e¢) (p& * s 3[(’“6) In(2))>>
s+1 S+1

2
2(1+€) (1+¢)

4u<Bs_1(xs,\/§>>

D _5 1 2
2_7C‘s+1 exp <_ %) d1+e(xs + €, xs)z D ﬁs
= _ D &P~ 2(1+¢€) 1+e+?(1+6)
4“—(35—1 <xsy 1 _2|- 6)) (1 + _p5(12_|_ 6)2>2
+2(1
Ps 3D
N 6) <ps+1 N 2ps+1(1 + 6) In(2)>)> (55)

Proof. With the same notations, for e > 0,
Pa_ a+e))a+e)?(Lp,_, (xo(1+€))) (X5) = 5

Thus,
1

7 = Pag (+e)+ey? (g, (x, 1+6)) (x5)?

2
= (i, P (o5 + € Ay (L + (L + D) (L, (x, (1+endit(xs +€))
= fM p (xS’ Xs + EaAs—l((l + E))(l + E)ZZdu(xs + E) fM 1BS_1(xS,(1+e))d|J-(xs + E)
= ploxg, x5, 2451 (L + €))(1 + €)*)u(Bs_1 (x5, 1 + €)).
Now since 0 < A,_,(1 + €) < 1, Harnack inequality in Corollary 1 gives
D
p(x5,%5, 2451 (L + €))(A + €)? < p(x5, x5, 2(1 + €)?) (451 (1 +€)) Zexp Gﬁs(l + 6)3)- (56)

Therefore, we proved

199



D 1_ 5
As_1(1+€)zexp (— 5ps(1+¢€) )

4 W(Bs-1(x5, (1 +¢€))
The first point follows by setting e = —1/2 .

For the second point, we recall that Harnack inequality with the distance d,, . reads, for

1+€
e>—-1s = 0

1+e€
P(xs,xs,T) <

pxs, x5, 2(1 + €)?) = (57)

D D p_s
p(xs, x5 +€,1+€)22 exp 1+€+?(1+6)+2(1

p_s(l + 6)2 ex _ d1+e(xs + €, xs)2
8 P 2(1+€)

Ps 3D
e <Ps+1 " 2psi1(1+€) In(Z))>>

Using the first point the conclusion follows directly.
Corollary (6.2.34) [291]. There exist constants C;,, > 0 and C,3 > 0 depending only on
1+e€ and p,,, such that for all x;, € M and all ¢ > 0, we have
|J—(Bs—1(x51 2(1 + E))) = Cs+2 exp(Cs+3ﬁs(1 +
€)*) W(Bs_1 (x5, 1 + €)) (58)
Proof. We have fore > 0
exp(12p5(1 + €)?)
p(xs, x5, 2(1 + €)?)
Combining this inequality with the lower bound for the heat kernel gives the desired result:
W(Bs-1(x5,2(1 + €)))

< Coa@+ 1% €022 xp (AL + 02) Aums (@ + )P 20(B s (ke

+€)).
Corollary (6.2.35) [291]. For all € > 0O, there exist some constants Cg, 4, Csy5 > O,
depending onlyon 1+ ¢,ps.1,1 + € and € > 0, such that for e > —1 and x,, (x; +€) €
M, one has

H(Bs_1 (x5, 2(1 + €))) < Csp(1 + €, 1+ €,p)2P"?

d? (x5, x5 + €)

Cora(2) exp(Csrs5(e)ps(L + €)) exp <— m) (59)

W(Bs—1 (x5, VI + €))/2u(Bs-y (x5 + €, V1 +€))1/2
Proof. This proof follows the lines in Cao-Yau [182] and Baudoin-Garofalo [178]. Let € >
0, then by the Harnack inequality with € = -1,

p(xg, x5 +€,1+ €)?

plxs,x, +€,1+¢) <
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- (2+¢e)Pexp (2(11-)I- e)2> - (3+¢) (L+¢)?
B H(Bs—l(xs + €,V 1 + 6)) exp pS( N 6) (6(1 + 6) N 2 > ]Bs—1(xs+e,\/E)p (xs’ xS
+2¢6,(2+€)(1 + €))?du(x, + 2¢)

i (Boos (s + e VIF0)) o <p5(1 e <6(1 To 2 )) Preyi+e) (P (X,

w@2+e)(l+ E)):I-B(xs+e,\/m))(xs)-
Applying the Harnack inequality in Corollary (6.2.29) once again, we have

P(Z"‘E)(l"'ﬁ)(p(z""?)(l"'ﬁ)(xS’'):I'Bs_l(xs+e,\/1+e))(xs)2 = P(2+E)(1+E)(F1+E)(x5)2

D
< (2 +€)P exp (2(1 +€)?(2 + e))
w(B(xs, V1 +¢€))

3+e  (1+e)*((2+¢)
€ <6(1 o 2 )) JB N Pareyr e (Fire) (xs + 2€)2dp(xs + 2¢)

With Fyye () = ples, 2+ (L + )Ly 1 evive)O)-

By using now an argument of the proof of Theorem 8.1 in [178] and the fact that for (x, +
2€) € Bs_1(xs + €,V/1 +€), d?(x, x5 + 2¢€) = % -1,

we have for0 < (2+¢€)?(L+¢€) < T,

P(2+e)2(1+e) (Fiie)(xs + Ze)zdu(xs + 2¢)
Bs_l(xs,\/1+e)

l1+e¢
Sexp(

2(T — (2 + €)2(L + 6))) eUmACTO OGP 32146y (Frae) (X5
+ 2€)?du(xs + 2¢)
1+e€
2(T-(2+e)?(1+e)
1+e€ )j d?(xg, xg + 2€) p
27— @+ 7+ ) oy (e or ) Perasa (s %
+ 2€)?du(xs + 2€)
< 1+e€ N 1
=P T2 r ez re) 2T
d?(x., x. + €)
- 2(25 +SE)T )j ( JTFE) P(2+e)(1+e)(x51xs + Ze)zdu(xs + 26)
Bs_q1(xstev1+e
_ 1+¢€ N 1 dz(xs,xs+e) p -
= EXp 2(T _ (2 +E)2(1 + E)) E_ 2(2 + E)T (2+E)(1+E)( 1+E)(xS)
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= exp( )e(f'e)(o'x5+26)(F1+E)(xs + 2€)%dp(xs + 2€)

< exp(




where for 0 < s < T and (x; + 2¢€) € M, the function (f — €) is defined by

2
(f —e)(s,x, +2¢) = — d (;ETxi';')ZE)

Finally,

p(xs x5 +€,1+€)

D(e+3
(2+€)Pexp (4(1 +(EE)2(2)+ E))

2 +¢€)?
= WBss Gro VL + ) 2By (s + e NTF )2 T (p_ Ere <6(1 5 >>
1+e€ 1 d?(xg,x; +€)
exp +——
<4(T —(2+¢€)’(L+¢€) 4T 42+ ¢€)T )
Hence the result follows by choosing T = (2+€)3(1 + ¢).
Corollary (6.2.36) [291]. There exists a constant Cs, = 0 which depends only on 1 + €
and pg,; such that for all x; and x; + ein M and all =1 <€ <0,
d(xy Xs + E) = Cs+6(1 + \/E) max{\/d1+e(x51 Xs + E), d1+e(x51 Xs + E)} '

Proof. Using the symmetry of the heat kernel, combining the lower estimate (55) for the
heat kernel with the distance d,,. and the upper estimate (59) for the sequance of sub-

elliptic distance d gives
D

Tre)\\ 2 (_p(l+e)?
(As_l(\/ 2 )) 2zop (-255) exp(_d1+e(xs,xs+€)2( D

Vv1+e Vvli+e 2(1+¢) 1+¢
4”(Bs—l(xsa 2 ))1/24|-1(Bs—1(xs + G’T))llz

Ps 3D
raire) <Ps+1 " 2psi1(1+€) In(Z))>>

C;+4(g)
= 1Bor VI E )2 u(Bes (s + 6 VI T €))7
Therefore we have

D
VI+€\2 D 05 (1 + €)? dire(xsxs+€)2( D P
As_l( E> Zzzexp(_u>exp<_ 1re(Xs, X5 +€) ( +%(1+€)+2(1

+2a+e

d? (x5, x5 + €) )

exp(Cs15(€)ps(L + €)) exp (_ (4 + &)(1+¢)

2 4 2(1+¢) l+e

Ps 3D
e <Ps+1 " 2ps11(1+€) In(Z))>>

_ d?(xs, x5 + €)
= Cs+4(5) exp(Csys5()ps(1 + €) exp <_ 4 + o)1+ E)) -

Thus for all € > -1:

D V1+ D (1 + €)?
0< —ElnAH( : €>+(§+ 2) N2+ I Cyya(6) + s+ A+ ) + 20T
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dz(xs’ Xs + 6) d1+e(xs’ Xs + 6)2 D p_s p_s 3D
N CET R T e (1 —+2@+a+21+e¢) <ps+1 tr— AT In(2))>.

Mxe 5 2 5 2
Since —InA,_4 (%) <In (1 + @) —InCs < @ —InC, fixing € = 1, there

exist some constants E, Es,; wWhich only depend on 1 + ¢ and ps,, such that for all € >
—1, we have for all x, (x; +€) e M,e > —1.
d?(xs, x5 + €)

0< E; + Es+1p_s(1 + 6) -

A+ +e)
de+1(xs’xs + 6)2 D p_s p_s 3D
+ 21+ (1+€+?(1+6)+2(1+6) <Ps+1+2ps+1(1+€)ln(2))>'

Therefore, for some positive constants (45_1);,1 < i < 3 which only depend on 1 + ¢ and
Ps+1:
d(xs, x5+ €)? < Ag(1+ps(L+ €))L+ €) + Ag1 (1 + (L + €))ders (x5, x5 + €)% +
As+2(1 + ﬁs)(l + E)de+1(x51 Xs + 6)2 '
Since e <0, ifdg;1(xs, x5 + €)< 1, choosing 1 = dq, (x5, x; + €) < 1yields
d(xs, x5 + €)2 < (1+ ps(1 + €))(As + Asy2) (1 + €)dire(xs, x5 + €) + Agpadyse(Xs, x5 + €)°
S (A5 + Agpr + Agi2) (L + ps (1 + €))dyie (x5, x5 + €).
If di,e(xg, x5 +€)>1, choosing € < 0O, we infer
d(xs, x5 + €)*
= (1 + ﬁs(l + 6))‘45(1 + 6) + As+1d1+e(xsv Xs + 6)2 + As+2(1
+ 6-)dl+«s(xsvxs + 6)2 = (As + As+1 + As+2)(1 + ﬁs(l + 6-))dl+«s(xsvxs + 6)2-

Corollary (6.2.37) [291]. Assume the operator L satisfies the condition C;_,D (ps, ps41, 2 +
€,1+¢) for some p;€ R, ps,1> 0,e = —1, and € = 0. Assume moreover that the metric
associated to d, .. is a Riemannian metric g, .. on M for some (1 + €). Let Q be a bounded
domain in M and a chart ¢:U,_; € R™ — Q. Then there exist some constants c,_, =
cs—2(Q,0) > 0and C,_, = C,_,(Q,¢9) > 0 such that

|Lus_ |l + Cs_allus—1ll = Cs—zllus—lll(l)’us—l € C(?o(‘P(Us—D)a (60)
where ||| denotes the usual L?(1) norm in Q and where |I{l¢s) is the standard Sobolev norm.

Proof. there exists a constant A;_; such that d(x,,x; +€) < As—l\/d1+e(xsa x; + €) for
all xg, (xs +€) € Q. Therefore, By,.(xs, 1+ €) € By_;(x5,A;_1V1 +€). Since Q is a
compact set, the metric g,,. is comparable with g.,. the metric obtained from the
Euclidean one in Us_; by the map ¢. If we pull back the result in U;_;, we thus have,
(Bs—1) euc1(xs, R) € Bg_1(xs, As_1\/1 + €) for some constant AL_; > 0. The result then
follows from Theorem 1 in [185].

We call a Hormander type operator an operator L which satisfies the general assumptions

and which can be written locally as L = Z};’fXj*Xj for some C* vector fields X;.
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We say it is an operator of rank k if the vector fields and their commutators up to order k:
Xpoo Xype Xep XD Xy X Lo X011 = 11+ e

span the tangent space in each point of M.
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