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ABSTRACT- The goal of this paper is to identify the parameters that influence the amount of power 

generated by steam power plants. Data mining tools were used to prove that influencing parameters are 

differ according to the current status of power plant. Waikato environment for Knowledge analysis 
(Weka) was used for feature selection and building the prediction model. An initial comparison between 

many algorithms for each data set was reported. Then the prediction model was built using linear 

regression algorithm, because it shows the highest correlation coefficient between parameters, and 

minimum errors. The selected model predicts the generated power using all available parameters as 
predictors. Although this is not a practical method for power prediction, because not all predictors are 

controllable, but it reflects how much a parameter influence the amount of generated power. Evaluation 

results of these models were discussed and a detailed analysis sheet was prepared, to prove that data 
mining is the best way to predict the amount of generated power, and show the health status of steam 

power plants.  
 

تم . تهدف هذه الورقة لتحديد العوامل التي تؤثر على تحديد كمية الكهرباء المنتجة من محطات التوليد الحراري المستخلص
ام  حزمة بهذا البحث تم استخد. استخدام تقنيات التنقيب في البيانات لإثبات أن أثر هذه العوامل يختلف باختلاف حالة المحطة

حيث تم أولًا إجراء مقارنة أولية بين نتائج تشغيل عدة . لتحديد العوامل المؤثرة و بناء نموذج التنبؤ Wekaتحليل المعرفة 
حيث , ومن ثم تم بناء نموذج التنبوء باستخدام خوارزمية الانحدار الخطي, خوارزميات على مجموعات مختلفة من البيانات

يقوم النموذج المختار بتوقع كمية الكهرباء  .و أقل نسبة خطأ, عامل ارتباط بين العوامل المختارة أظهرت الخوارزمية أعلى م
لأنه لا يمكن التحكم , و مع أن هذا ليس اسلوباً عملياً , المنتجة من المحطة باستخدام كل العوامل المتاحة بمجموعة البيانات

أيضاً تم تقييم و مناقشة هذه . ه العوامل على تحديد كمية الكهرباء المنتجةإلا أن النموذج يعكس مدى أثر هذ, بكل هذه العوامل
هذا البحث يثبت أن التنقيب في البيانات هو أفضل طريقة لتوقع كمية . كما تم إعداد تحليل تفصيلي لأثر هذه العوامل, النماذج

 .و دراسة حالتها الحالية, الكهرباء المنتجة من محطة التوليد الحراري
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INTRODUCTION 
The availability of real time data in the electric 
power industry encourages the adoption of data 

mining techniques. Data mining is defined as the 

process of discovering patterns in data 
[1]

. 
However, there are some obstacles that face 

researchers and engineers to benefit from data 

mining in this area. The first one is the 

interdisciplinary nature of such a research, because 

it requires deep knowledge in both IT and 

electromechanical engineering. Another obstacle is 

the lack of standard analysis methods and 
benchmarks, this leads to usage of different 

methods and datasets 
[2]

. 

A) Data Mining 
Data mining is defined as the process of 

discovering patterns in data 
[1]

. To discover this 

pattern; first we must explore the past then we can 
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predict the future. Exploring the past is done by 

describing the data by means of statistical and 
visualization techniques. While future prediction is 

done by developing prediction models. Prediction 

models could be classified to the following 

categories 
[3]

: 
(1) Classification: if the model outcome is 

categorical. There are four main groups of 

classification algorithms: 
1. Frequency Table: which contains ZeroR, 

OneR, Naive Bayesian and Decision Tree 

algorithms. 
2. Covariance Matrix: which contains Linear 

Discriminant Analysis, and Logistic 

Regression. 

3. Similarity Functions: which contains K 
Nearest Neighbors 

4. Others: which contains Artificial Neural 

Network, and Support Vector Machine 
(2) Regression:  if the model outcome is 

numerical. There are four main groups of 

regression algorithms: 
1. Frequency Table: which contains Decision 

Tree 

2. Covariance Matrix: which contains 

Multiple Linear Regression 
3. Similarity Functions: which contains K 

Nearest Neighbors 

4. Others: which contains Artificial Neural 
Network, and Support Vector Machine 

(3) Clustering or descriptive modeling: is the 

assignment of observations into clusters so 

that observations in the same cluster are 
similar. There are two main groups of 

clustering algorithms: 

1. Hierarchical which contains 
Agglomerative, and Divisive. 

2. Partitive: which contains K Means, and 

Self-Organizing Map. 
(4) Association rules: can find interesting 

associations amongst observations. One of the 

most famous algorithms in this group is 

Apriori algorithm which was proposed by 
Agrawal and Srikant in 1994 

[4]
. The algorithm 

generates the association rules by finding 

frequent itemsets (itemsets with frequency 
larger than or equal to a user specified 

minimum support). Then the algorithm uses 

the larger itemsets to generate the association 
rules that have confidence greater than or 

equal to a user specified minimum confidence 
[5]

. 

B) Power System 

The power system which is also known as the grid 

is divided into three components: the generator 

which produce the power, the transmission system 
that carries the power from the generators to the 

load centers, and the distribution which delivers 

power to the end users. 
There are many types of generators (also known as 

power plants) normally these power plants contain 

one or more generators, which is a rotating 
machine that converts mechanical power into 

electrical power. Then the motion between a 

magnetic field and a conductor creates an 

electrical current. Most power plants in the world 
burn fossil fuels such as coal, oil, and natural gas 

to generate electricity. Others use nuclear power, 

but there is an increasing use of cleaner renewable 
sources such as solar, wind, wave and 

hydroelectric 
[2]

. 
 

C) Rankine Cycle 
This research focus on thermal power plants that 

uses oil as energy source, these types of power 

plants uses Rankine Cycle to generate power. 
More theoretical investigation about Rankine 

Cycle could be found in 
[6]

.  Rankine Cycle is a 

closed system consists of four main components, 
that are interconnected together to build one 

system 
[7]

. As shown in figure 1 below, these 

components are:  

1. Steam Turbine which uses the superheated 
steam that is coming from the boiler to rotate 

the turbine blades.  

2. Condenser: uses external cooling water to 
condense the steam which is exhausted from 

turbine to liquid water.  

3. Feed water Pump: to pump the liquid to a high 
pressure and bush it again to boiler. 

4. Boiler which is externally heated to boil the 

water to superheated steam.  

 
Figure 1 Thermal Power Plant using Rankine Cycle [7] 

 

http://www.saedsayad.com/clustering_hierarchical.htm
http://www.saedsayad.com/clustering_hierarchical.htm
http://www.saedsayad.com/clustering_kmeans.htm
http://www.saedsayad.com/clustering_som.htm
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D) The use of data mining in power plants 

Recently the use of data mining application in 
electricity power systems have been increased. 

Many papers were found in the literature, each is 

focusing in one area of the power system. Some 

are focusing in the distribution system like Ramos 
2008, who used decision tree to classify the 

consumers. Saibal, 2008 
[8]

 used WN (Wavelet 

Networking is an extension of perceptron 
networks) for the classification of transients. 

Figueiredo, 2005 
[9]

  used decision tree for the 

classification of electric energy consumer. Dola, 
2005  

[10]
  used decision tree and neural network 

for faults classification in distribution system. 

Mori, 2002  
[11]

  used regression tree and neural 

network for load forecasting. Other researcher 
focused in the transmission line problems like: 

Hagh 2007 
[12]

  , Silva, 2006 
[13]

  , Costa, 2006 
[14]

  , 

Vasilic, 2002 
[15]

   all of them used neural network 
to study faults detection, classification and 

locations in transmission lines. Dash, 2007 
[16]

 

used support vector machine for the classification 
and identification of series compensated. Vasilic 

2005  
[17]

  and Huisheng 1998  
[18]

  used Fuzzy/ 

neural network for faults classification. Some 

other researchers focused in power generation part 
(power plants) like Andrew Kusiak et. al. 

[19] 
who 

used a multi objective optimization model to 

optimize wind turbine performance. Others like 
Ecir Ug˘ur Kucuksille et. al.

 [20]
 used data mining 

to predict thermodynamic properties. They used 

many algorithms to predict enthalpy, entropy and 

specific volume for specific types of refrigerants. 
Other researchers focused on work process 

optimization and performance monitoring. Water 

and Power Plant Fujairah (FWPP) in the United 
Arabic Emirates is a true success story of data 

mining usage, where more than 4% of of the total 

consumption have been achieved 
[21]

. Softstat 
showed the superiority of data mining tools to  

traditional approaches like DOE (design of 

experiments), CFD (computational fluid 

dynamics). In their research they started by feature 
selection then apply data mining  algorithms to get 

better performance of  flame temperature, finally 

recommendations from the model  was deployed 
[22]

. 

OBJECTIVES 
The first goal of this paper is to identify the 
parameters that influence the amount of power 

generated from thermal power plants, and their 

effect in the amount of generated power according 

to the current status of the power plant. The 
second goal is to  build a prediction model that 

uses the selected parameters to predict the amount 

of power generated from the thermal power plant. 

The results of the proposed feature selection and 
prediction models could be used as a tool to 

diagnose the power plant problem 
 

MATERIALS AND METHODS 
In this paper the author followed CRISP-DM 

(Cross-Industry Standard Process for Data 
Mining) to build the prediction model. CRISP-DM 

is selected because it is a non-proprietary, 

documented, simple, well organized, and freely 
available data mining model, which was 

developed by industry leaders 
[23]

. Waikato 

Environment for Knowledge Analysis (Weka) tool 

is used in this research because of its availability, 
simplicity, and it is suitable for similar researches. 

As stated by CRISP-DM, we started by problem 

definition and data understanding, then data 
preparation was done. Three data sets were 

prepared one for each unit, and the third is a 

combined dataset to check whether  a generic 
prediction model could be found. After that feature 

selection is done using wrapper method, to select 

the features that influence the amount of generated 

power. Then the selected features were used to 
build the prediction model. Because the outcome 

is numeric, regression algorithms were used to 

build the prediction model. Then obtained results 
were discussed, after that a conclusion is shown at 

the last part. Figure 2 shows the research 

framework, which shows the overall methodology 
followed in this research.  

A) Data Collection and Pre-Processing 

The datasets of this research were obtained from 

Khartoum North Thermal Power Plant KNTPP. 
This large (200 MW) power plant was 

commissioned in three phases, each phase is 

composed of two identical units, each unit is a 
separate power generation unit that follows 

Rankine Cycle . In this research we focus on Phase 

2 which is composed of unit 3 and unit 4. Data is 

collected instantly by different types of sensors 
through SCADA system and recorded in a 

historical database. Due to disk space limitation, 

any data older than two months will be purged 
automatically from the database.  
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Figure 2 Research Framework 

 

Efficiency engineers kept historical data for three 

years back (between Aug-2012 and July-2015), for 

plant efficiency analysis purposes. This monthly 

collected data is actually a snapshot of 2-minutes 
interval readings for the first day of every month. 

Data preprocessing is crucial to the integrity of 

data mining results. The raw data was reorganized 
in a relational format to be suitable for machine 

learning tools. Instances with null values were 

deleted from all datasets. The original datasets 
were composed of 83 features, these features were 

reduced to 63 according to domain expertise 

(efficiency engineers) decision. Table 1 shows the 

63 features of the datasets.  
 

B) The Datasets Characteristics 

Three datasets were prepared for feature selection 

and building the power prediction models, one for 
each unit and the third is a generic dataset that 

combines unit 3 and unit 4 data in one set. The 

class in all datasets is: Generated power in Mega 
Watt( GeneratedPowerM ). 

All attributes including the class are numeric. 

Below is some description about these three 

datasets: 

1. Unit 3 dataset: contains only 300 instances.  
2. Unit 4 dataset: contains 720 instances.  

3. Unit 3&4 dataset: This dataset is just a new 

file which combines both unit 3 and unit 4 
datasets. So, the total number of incenses of 

this new dataset is 1020.  
 

FEATURE SELECTION & PREDICTION 

MODEL 
To achieve the goals of this research; three 

experiments were done, using three different 

datasets (Unit 3 : to study unit 3 separately, Unit 4: 
to study unit 4 separately, Unit 3&4 : is a 

combined dataset that contains both unit 3 and 4 

data, to check whether a generic model could be 

used). As shown in figure 2 each experiment 
started by data exploration and analysis. Then an 

initial comparison is done between the seventeen 

regression algorithms provided by Weka, to select 
the algorithm that gives lowest Mean Absolute 

Errors and highest Correlation Coefficient 
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between attributes. The selected algorithm was 

then used to select the features that influence the 
amount of generated power, and build the 

regression model. More details about the 

experiment and its evaluation is shown in the rest 

of this part. 

A) Data Exploration and Analysis: 

Some statistical analysis is required to get more 

deep understanding about the datasets. Tables 2, 3 
and 4 shows basic statistics about the most 

important attributes of Unit 3, Unit 4 and Unit 

3&4  datasets respectively. The most important 
features are: Steam Flow, pressure and 

temperature of steam at turbine inlet and outlet, 

the class of all these datasets is the 

GeneratedPowerinMW. This basic data 
exploration gives an overview about the unit 

status. The standard deviation of PressureInlet is 

15.059 in unit 3 compared to 0.909 in unit 4, this 
is caused by the maximum value of pressure at 

unit 3 which is 116.963 bar. This will make direct 

impact on the generated power values. Regarding 
TemperatureOut, in unit 3 it is very high 

compared to unit 4, the maximum value in unit 3 

is 84.893, while its counterpart in unit 4 is 66.628. 

Even the mean value is higher, in unit 3 it is 
67.473, while in unit 4 it is 51.65. Also there is big 

difference between minimum values of 

TemperatureOut, it is 47.99 in unit 3 and 40.434 in 
unit 4. 
 

B) Initial comparison between Algorithms 

Weka provides seventeen regression algorithms, 
all of them could be used for our datasets. To 

select the most suitable algorithm for each dataset 

an experiment had been designed. The experiment 

used the seventeen algorithms and applied them all 
for each dataset. Each experiment generated 5 

evaluation factors: Mean Absolute Error, Root 

Mean Squared Error, Relative Absolute Error, 
Root Relative Squared Error, and Correlation 

Coefficient. The best  algorithm is the one that 

gives the lowest Mean Absolute Errors and the 

highest Correlation Coefficient between attributes. 
Table 5 shows experiments results for each dataset 

ordered by Correlation Coefficient descending, so 

the first row for each dataset is the most suitable 
algorithm for it. 
 

C) Build the Models and Evaluate Results for 

Each Dataset 

This section presents the details of feature 

selection process, and the prediction model 
creation. The following four steps were applied for 

each dataset: 

i. Weka AttributeSelectedClassifier method was 

used for feature selection and building the 
prediction model in one step 

[1]
. The algorithm 

that shows the highest correlation coefficient 

was selected as the classifier to build the 
prediction model. Wrapper method was used 

for feature selection, ClasifierSubsetEval 

algorithm was used as the evaluator, and the 
Best First method with Bi-directional option 

was used to search the total subsets. Test is 

done by splitting 66.0% of the dataset for 

training and the remaining for testing 
ii. List of selected features for each dataset is 

presented. 

iii. Evaluation results for each dataset is presented. 
iv. A comparison graph that shows the actual and 

the predicted generated power is presented to 

visualize the model. 
The subsequent sections shows the details of the 

above four steps, for each dataset. 
  

1. Feature selection Result and Power 

Prediction Model for Unit 3 Dataset  
According to the results of model evaluation 

experiments in table 5; the algorithm that shows 

the highest correlation co-efficient in Unit 3 
dataset is Pace Regression. For feature selection 

ClasifierSubsetEval was used as the evaluator, and 

the Best First algorithm with Bi-directional option 
was used to search the total subsets. Figure 3 

presented the selected model for Unit 3 in six 

blocks. 

i. Selected Features : the first block at the top of 
figure 3 is the list of the selected features. Each 

feature has a unique ID which is shown in table 

1. The selected features are marked by X letter 
under the ID feature and highlighted in green 

color. The number in the most top right cell (28), 

which is highlighted in yellow, means that: 

according to Pace Regression algorithm, only 28 
features affect the amount of generated power. 

ii. Generated Power Prediction Model: The block 

on the right side of figure 3 shows the model in a 
regression equation. The factor of each variable 

in the equation gives indication of how much this 

parameter has effect to  determine the generated 
power.  
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iii. Predicted vs Actual Graph: the graph in the 

center of figure 3 shows the accuracy of the 
model, by plotting the actual and predicted 

values. 

iv. Model Evaluation: the table at the lowest left 

side of figure (3) shows the results of evaluation 
of the test set which is done using Hold out/test 

set. The correlation coefficient between 

parameters is 0.9997, so the model accuracy is 
very high. 

v. Dataset info: this block is just on the right side 

of the model evaluation block. It shows 
information about the dataset like: the number of 

training instances = 198, number of test 

instances=102, the algorithm which is Pace 

Regression, and the time required to build the 
model which is 5.89 seconds in our case. 

vi. Comments: the last block is reserved area if any 

comments are required. 
 

2. Feature selection Result and Power 

Prediction Model for for Unit 4 Dataset   
The algorithm that shows the highest correlation 

co-efficient in Unit 4 dataset is Linear Regression. 

For feature selection ClasifierSubsetEval was used 
as the evaluator, and Best First algorithm with Bi-

directional option was used to search the total 

subsets. Figure 4 also presents unit 4 model in the 

following six blocks: 
i. Selected Features : 52 features were selected 

by this experiment, all of the most important 5 

features (1,3,4,61,62) were selected.  
ii. Generated Power Prediction Model: The 

factor of each variable in the equation gives 

indication about how much the variable affects 
the generated power. The value of pressure at 

turbine bleeders 1,2,3,4 and 5 is high, because 

these points are part of turbine outlet. Also the 

values of T_Aaxialdisplacement A, B and C are 
high, this is observation is very interesting as 

stated by domain experts. Such an observation 

could be communicated with maintenance team 
for more investigation.  

iii. Predicted vs Actual Graph: it is very clear 

from the graph that predicted values are very 

accurate. 
iv. Model Evaluation: model evaluation is done 

using Hold out/test set. The correlation 

coefficient is 0.9998, and the MAE is 0.0928. 
So the model accuracy is very high. 

v. Dataset info: the number of training instances 

are 475, and number of test instances are 245, 
the algorithm which is Pace Regression, and 

the time required to build the model is 73 

seconds. 

vi. Comments: all important features were 
selected. 

 

3. Feature selection Result and Power 

Prediction Model for Unit 3&4 dataset   

The last dataset is the Unit 3&4, which is a 
combination of the two previous datasets. The 

purpose of this model is to check whether we can 

find a generic prediction model regardless of the 

unit status. The Multilayer Perceptron algorithm 
shows the highest correlation coefficient for unit 

3&4 dataset. Although the correlation coefficient 

is 0.9997 and the MAE is 0.1294, but features 3 
and 61 (which are belong to the most 5 important 

features group) were not selected by the model. So 

regardless the model accuracy it is not accepted. 
Figure 5 give all information about this model. 
 

At least 5 models were created for each dataset, 

only the best model for each dataset was presented 
in this section. The features selection results of all 

models for each dataset is shown in table 6. 
 

DISCUSSION 
The domain experts stated that the most 5 

important attributes are : (1. Main steam flow, 3. 
Pressure at Turbine Inlet, 4. Temperature at 

Turbine Inlet, 61. Pressure at Turbine Outlet, 62. 

Temperature at Turbine Outlet.), this group is 
called the Top 5 group. Elements of the Top 5 

group are used to calculate the amount of 

generated power whether you are using 

manufacturer’s consumption graph, or power 
equation. So, any model that failed to select these 

features will not be accepted. Table (7) shows 

results of the top 5 parameters, from this table the 
only algorithm that matches this constraint is 

Linear Regression for unit 4. Also this model 

attained the highest correlation coefficient 

(0.9998) and lowest MAE (0.0928) in unit 4, so 
Linear Regression model for unit 4 is the most 

acceptable model. 

 
From Table (7) we can observe that feature 3 

(Main steam header pressure) is not selected by 

any of the algorithms in unit 3 dataset, this 
observation directly related to the high StdDev 
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(15.059) which is observed for the same feature, 

see Table (3) Unit 3 Dataset Analysis. From this 
observation we can highlight that there is an issue 

in the amount of pressure at at turbine inlet of unit 

3. It is the role of the domain expert to find 

interpretation for this observation.   
 

Features Ranking 

Tables 6 shows the ranking of features, the 
features that attained the highest ranking are : 1. 

Main steam flow and 4. T/A inlet steam 

temperature. Fortunately,  both of these attributes 
belong to the Top 5 group, this is an evidence of 

the correctness of the feature selection results. 

Table 6 is considered to be the main analysis sheet 

which should be submitted to the domain experts 
to get more understanding and come up with the 

right diagnosis of the power plant problems. 
 

Unit 3&4 Dataset 

No algorithm in Unit 3&4 dataset succeeded to 

select the Top 5 features. Because this dataset is 

composed of both unit 3 and unit 4 dataset, it 
inherited all problems observed in unit 3. So, this 

dataset could not be used as generic dataset, and 

any unit should be studied separately to predict the 
generated power. 
 

CONCLUSION 
In reality things are different, although both units 

are identical at commissioning time, but each 

dataset shows  different results, so we can neither 
depend on thermodynamic equations nor fabricant 

consumption graph to predict generated power 

“specially when power plant becomes older”. 

Data exploration and analysis is the initial and 
most important tool for power plant health check, 

that is very obvious from the high standard 

deviation found in Turbine Inlet Pressure of Unit 3 
dataset. 

Feature selection and prediction models can be 

used by efficiency engineers of power plant as a 
heath check tool to explore anomalies in the power 

plant, and to check how much specific attribute 

influence the power plant performance. 

In order to come up with better results and proper 
innovations in such cases, it is better to form a 

research group from IT and electromechanical 

disciplines. Electromechanical engineers to define 
the problem and interpret the results, and IT 

engineers to prepare data and build the models. 
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Table 1:  All Features of Power Prediction Datasets 
# Feature Name 

 

32 HPH5 inlet feedwater temperature (deg C) 

1 Main steam flow (kg/s) 
 

33 T/A wheel champer steam pressure (bar) 

2 Total steam flow (kg/s) 

 

34 T/A bleeder (1) pressure (bar) 

3 Main steam header pressure (bar) 
 

35 T/A bleeder (2) pressure (bar) 

4 T/A inlet steam temperature (deg C) 

 

36 T/A bleeder (3) pressure (bar) 

5 Main steam header steam temperature (deg C) 

 
37 T/A bleeder (4) pressure (bar) 

6 HPH5 discharge feedwater flow (kg/s) 

 

38 T/A bleeder (5) pressure (bar) 

7 Feedwater temperature at economiser inlet (deg C) 

 
39 T/A differential expansion (mm) 

8 Feedwater pressure at economiser inlet (bar) 

 
40 T/A axial displacement A (mm) 

9 Condenser right inlet temperature (deg C) 

 

41 T/A axial displacement B (mm) 

10 Condenser left inlet temperature (deg C) 

 
42 T/A axial displacement C (mm) 

11 Condenser right outlet temperature (deg C) 

 

43 T/A bearing 3 vibration (mm/s) 

12 Condenser left outlet temperature (deg C) 

 

44 T/A bearing 4 vibration (mm/s) 

13 Condensate water flow (kg/s) 

 
45 T/A bearing 1 vibration (1) (mic) 

14 Condenser hot well temperature (deg C) a 

 

46 T/A bearing 1 vibration (2) (mic) 

15 Condenser hot well temperature (deg C) b 

 
47 T/A bearing 2 vibration (1) (mic) 

16 Auxiliary steam flow (kg/s) 

 
48 T/A bearing 2 vibration (2) (mic) 

17 Auxiliary steam pressure (bar) 

 

49 TBN side cold air (deg C) 

18 Auxiliary steam temperature (deg C) 

 
50 TBN side warm air (deg C) 

19 Combustion air flow (Nm3/s) 

 

51 Exciter side cold air (deg C) 

20 Air temperature at FDF inlet (deg C) 

 

52 Exciter side warm air (deg C) 

21 Air temperature at FDF inlet (deg C) 

 
53 PMG side cold air (deg C) 

22 Air temperature after RAH (deg C)  (1) 

 

54 PMG side warm air (deg C) 

23 Air temperature after RAH (deg C)  (2) 

 
55 Generator winding temperature (deg C) 1 

24 FDF discharge air pressure (mbar) 

 
56 generator winding temperature (deg C) 2 

25 FDF A speed (rpm) 

 

57 Generator winding temperature (deg C) 3 

26 FDF B speed (rpm) 

 
58 Generator winding temperature (deg C) 4 

27 Air temperature after SAH (deg C)  (1) 

 

59 Generator winding temperature (deg C) 5 

28 Air temperature after SAH (deg C)  (2) 

 

60 Generator winding temperature (deg C) 6 

29 HPH4 inlet feedwater temperature (deg C) 

 
61 Condenser inlet exhaust steam pressure (bar a) 

30 HPH4 outlet feedwater temperature (deg C) 

 

62 Condenser inlet exhaust steam temperature (deg C) 

31 HPH5 outlet feedwater temperature (deg C) 

 
63 Generated power (MW) 

 
 

Table 2 Unit 3 Dataset Analysis 

 

 

 

 

 

 

 

 

Table 3 Unit 4 Dataset Analysis 
 

 

 

 

 

 

 

Table 4 Unit 3&4 Dataset Analysis 

 

 

 
 

 
 

 

 

 
 

 

 

 
 

 

 

 

Statistic  SteamFlow PressInlet TempInlet TempOut PressOutlet PowerMW 

Minimum 46.879 34.686 498.064 47.99 0.085 39.482 

Maximum 56.431 116.963 516.95 84.893 0.324 51.048 

Mean 50.992 84.288 508.766 67.473 0.173 43.123 

StdDev 2.429 15.059 2.83 10.715 0.068 3.746 

Statistic  SteamFlow PressInlet TempInlet TempOut PressOutlet PowerMW 

Minimum 29.981 84.769 485.746 40.434 0.059 28.073 

Maximum 60.601 95.13 524.338 66.628 0.225 57.358 

Mean 46.06 87.866 508.304 51.65 0.113 43.498 

StdDev 8.185 0.909 4.758 5.797 0.036 7.676 

Statistic  SteamFlow PressInlet TempInlet TempOut PressOutlet PowerMW 

Minimum 29.981 34.686 485.746 40.434 0.059 28.073 

Maximum 60.601 116.963 524.338 84.893 0.324 57.358 

Mean 47.51 86.814 508.44 56.304 0.131 43.388 

StdDev 7.353 8.354 4.286 10.461 0.055 6.762 
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Table 5 experiments results for for Unit 3, Unit 4 and Unit 3&4 datasets ordered by Correlation coefficient descending 

 

Unit # Algorithm Instances
Correlation 

coefficient

Mean 

absolute 

Root mean 

squared 

Relative 

absolute 

Root relative 

squared 
Time (s)

Unit3 2 PaceRegression 102 0.9997 0.0711 0.0949 2.23% 2.62% 5.89

Unit3 1 Linear Regression 102 0.9996 0.0798 0.1059 2.50% 2.93% 13.97

Unit3 3 SMOreg 102 0.9996 0.0723 0.1027 2.26% 2.84% 457.04

Unit3 4 MultilayerPerceptron 102 0.9995 0.0905 0.1182 2.84% 3.27% 373.43

Unit3 5 REPTree 102 0.9984 0.1606 0.2063 5.03% 5.70% 5.22

Unit4 1 Linear Regression 245 0.9998 0.0928 0.137 1.51% 1.81% 73.67

Unit4 2 Pace Regression 245 0.9998 0.1113 0.1529 1.81% 2.02% 28.23

Unit4 3 MultilayerPerceptron 245 0.9998 0.1216 0.164 1.98% 2.17% 1826.76

Unit4 4 DecisionTable 245 0.9917 0.3645 0.9718 5.94% 12.85% 121.72

Unit3 & 4 3 MultilayerPerceptron 347 0.9997 0.1294 0.1694 2.39% 2.50% 2894.61

Unit3 & 4 5 M5Rules 347 0.9996 0.1366 0.1811 2.52% 2.68% 752.64

Unit3 & 4 4 IBK 347 0.9981 0.2413 0.4147 4.46% 6.13% 43.99

Unit3 & 4 2 Linear Regression 347 0.9812 0.4281 1.3067 7.91% 19.31% 113.41

Unit3 & 4 1 Pace Regression 347 0.9808 0.4455 1.3194 8.23% 19.50% 22.97

Unit3 & 4 6 IsotonicRegression 347 0.9232 1.7774 2.6102 32.84% 38.58% 51.76  
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#  Unit 3 Unit 4 Unit 3 & 4 
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Total 
(Rank) Feature 

1 Main steam flow (kg/s) 1 1 1 1   1 1 1     1 1 1 1   11 

4 T/A inlet steam temperature  1 1 1 1 1 1 1 1   1 1 1       11 

37 T/A bleeder (4) pressure  1 1 1 1   1 1 1   1 1         9 

2 Total steam flow (kg/s) 1 1 1 1 1 1 1       1         8 

30 HPH4 outlet feedwater temperature  1         1 1     1 1 1   1 1 8 

36 T/A bleeder (3) pressure  1 1 1     1 1     1 1 1       8 

59 Generator winding temperature  5 1 1 1     1 1   1 1 1         8 

62 Condenser inlet exhaust steam temp 1 1 1     1       1 1 1   1   8 

13 Condensate water flow (kg/s) 1 1 1     1 1       1     1   7 

14 Condenser hot well temperature  a 1 1       1 1 1     1 1       7 

16 Auxiliary steam flow (kg/s)   1 1     1 1 1     1 1       7 

33 T/A wheel champer steam pressure  1 1 1 1   1 1       1         7 

34 T/A bleeder (1) pressure  1         1 1   1 1 1     1   7 

41 T/A axial displacement B (mm)   1 1 1   1 1     1 1         7 

46 T/A bearing 1 vibration (2) (mic) 1 1 1 1   1         1     1   7 

48 T/A bearing 2 vibration (2) (mic) 1 1 1 1   1 1       1         7 

61 Condenser inlet exhaust steam press  1 1 1     1 1     1 1         7 

18 Auxiliary steam temperature    1 1 1   1 1       1         6 

22 Air temperature after RAH   (1) 1 1 1     1 1       1         6 

29 HPH4 inlet feedwater temperature        1 1   1     1 1 1       6 

32 HPH5 inlet feedwater temperature  1         1 1   1 1 1         6 

38 T/A bleeder (5) pressure  1       1 1 1 1     1         6 

47 T/A bearing 2 vibration (1) (mic) 1 1 1     1 1       1         6 

50 TBN side warm air            1 1 1   1 1     1   6 

51 Exciter side cold air    1 1     1   1     1 1       6 

52 Exciter side warm air  1 1 1 1   1         1         6 

57 Generator winding temperature  3 1 1       1         1 1   1   6 

5 Main steam header steam temp  1 1       1       1 1         5 

9 Condenser right inlet temperarure  1       1 1         1 1       5 

11 Condenser right outlet temperarure      1     1 1 1     1         5 

12 Condenser left outlet temperarure  1         1 1 1     1         5 

15 Condenser hot well temperature  b 1   1     1 1       1         5 

23 Air temperature after RAH   (2)           1 1       1 1 1     5 

28 Air temperature after SAH   (2) 1   1     1 1 1               5 

31 HPH5 outlet feedwater temperature  1   1     1       1 1         5 

35 T/A bleeder (2) pressure          1 1 1       1 1       5 

42 T/A axial displacement C (mm) 1         1 1       1 1       5 

49 TBN side cold air  1 1   1   1         1         5 

54 PMG side warm air  1         1   1     1     1   5 

55 Generator winding temperature  1 1         1     1   1     1   5 

56 generator winding temperature  2 1         1 1 1     1         5 

58 Generator winding temperature  4 1         1 1 1     1         5 

7 Feedwater temperature at economiser 1 1       1         1         4 

8 Feedwater pressure at econom inlet        1 1 1         1         4 

17 Auxiliary steam pressure      1     1 1       1         4 

19 Combustion air flow (Nm3/s) 1 1         1     1           4 

21 Air temperature at FDF inlet  1 1 1       1                 4 

25 FDF A speed (rpm) 1         1 1       1         4 

26 FDF B speed (rpm) 1         1 1       1         4 

40 T/A axial displacement A (mm) 1 1       1           1       4 

43 T/A bearing 3 vibration (mm/s)         1   1 1     1         4 

3 Main steam header pressure            1 1     1           3 

10 Condenser left inlet temperarure  1   1               1         3 

27 Air temperature after SAH   (1) 1             1     1         3 

39 T/A differential expansion (mm) 1       1 1                   3 

45 T/A bearing 1 vibration (1) (mic)           1         1 1       3 

60 Generator winding temperature  6         1 1           1       3 

6 HPH5 discharge feedwater flow  1                     1       2 

24 FDF discharge air pressure (mbar) 1                   1         2 

53 PMG side cold air  1         1                   2 

44 T/A bearing 4 vibration (mm/s) 1                             1 

Sum   47 28 26 13 10 52 38 16 4 16 51 18 2 10 1 

 

Table  6 Attribute selection results for Unit 3, Unit 4 and Unit 3&4 

datasets 
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Table 7 Attribute selection summary of Unit 3 and 4 for the Top 5 features 

 

 
 

 

 

 
 

 

 

 
 

Figure 3 Generated Power model for Unit 3 using Pace Regression 
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Total  

(Rank) Feature 
 

1 Main steam flow (kg/s) 1 1 1 1   1 1 1     1 1 1 1   11 

4 T/A inlet steam temperature  1 1 1 1 1 1 1 1   1 1 1       11 

62 Condenser inlet exhaust steam temp 1 1 1     1       1 1 1   1   8 

61 Condenser inlet exhaust steam press  1 1 1     1 1     1 1         7 

3 Main steam header pressure            1 1     1           3 
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Figure 5 Generated Power model for Unit 4 using Multilayer Perceptron 
 

 
 

 

 

 

Figure 4 Generated Power model for Unit 4 using Linear Regression 

 


