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Abstract: Direct Current (DC) motors have been extensively used in many industrial 
applications. Therefore, the control of the speed of a DC motor is an important issue and has 
been studied since the early decades in the last century. This paper presents a comparison of time 
response specification between conventional Proportional-Integral-Derivatives (PID) controller 
and Linear Quadratic Regulator (LQR) for a speed control of a separately excited DC motor. 
The goal is to determine which control strategy delivers better performance with respect to DC 
motor’s speed. Performance of these controllers has been verified through simulation using 
MATLAB/SIMULINK software package. According to the simulation results, liner quadratic 
regulator method gives the better performance, such as settling time, steady state error and 
overshoot compared to conventional PID controller. This shows the superiority of liner quadratic 
regulator method over conventional PID controller. 
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التحكم فى ك فإن لذل. العدید من التطبیقات الصناعیة ىعلى نطاق واسع ف تستخدم (DC)محركات التیار المستمر   :مستخلصال
مواصفات مقارنة بین تقدم ھذه الورقة . ىلقرن الماضلمنذ العقود الأولى تھا قضیة مھمة تمت دراسمحركات التیار المستمر سرعة 

 سرعة محركللتحكم فى ) LQR( ىالخط ىمنظم التربیعو ال) PID(التفاضلیة -التكاملیة-الحاكمة التناسبیةبین الزمنیة ستجابة لإا
سرعة بالتحكم فى أداء أفضل فیما یتعلق التحكم التى تعطى ستراتیجیة إالھدف من ذلك تحدید . لمستمر ذو التغذیة المنفصلةالتیار ا
حزمة برنامج  ستخدامإالمحاكاة بالمتحكمات من خلال وقد تم التحقق من أداء ھذه . التیار المستمر محرك

MATLAB/SIMULINK.  ًزمن الترسیخأداء أفضل مثل  ىعطالتربیعى الخطى تمنظم قة النجد أن طریلنتائج المحاكاة  وفقا ،
التربیعى الخطى منظم طریقة الوھذا یدل على تفوق . PID تجاوز الھدف مقارنة مع الحاكمة التقلیدیةستقرار ولإحالة اعند خطأ ال

   .PID الحاكمة التقلیدیة على
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ntroduction: 
Electrical derives involving various types 

of DC motors turn the wheel of industry. 
The main reason for their popularity is 
the ability to control their torque and flux 
easily and independently. Therefore, DC 
motors are comprehensively used in 
various industrial applications such as 
electrical equipment, computer 
peripherals, robotic manipulators, 
actuators, steel rolling mills, electrical 
vehicles, and home appliances. Its 
applications spread from low horse power 
to the multi-mega watt due to its wide 
power, torque, speed ranges, high 
efficiency, fast response, and simple and 
continuous control characteristics [1-4]. 
Controlling the speed of a DC motor is a 
pivotal issue. The speed of DC motor can 
be changed by controlling the armature 
and field voltages. In this paper, the 
controller is designed to control the 
armature voltage while the field voltage 
is fixed as a constant. Over the past 
decades, many techniques have been 
developed for the DC motor control. 
Some of these methods were based on 
classical and also intelligent approaches 
[5-10]. For DC motors, factors such as 
unknown load characteristic and 
parameter variation influence seriously 
the controlling effect of speed controller. 
The most commonly used controller for 
the speed control of DC motors is 
conventional PID controller. Traditional 
PID controllers have been successfully 
used in control applications since 1940s 
and are the most often used industrial 
controller today. Conventional PID 
controllers have several important 
features. The reason is that the 
conventional PID controller is easy to 
implement either by hardware or by 
software. No deep mathematical theory is 
necessary to understand how the 
conventional PID controller works, so  

 
everybody is able to imagine what is 

happening inside the  
controller during the control process. 
Furthermore, it has the ability to eliminate 
steady state offset trough integral action 
and it can anticipate the changes through 
derivative action. In addition to this, 
traditional PID controllers have very 
simple control structure and inexpensive 
cost. In spite of the major features of the 
fixed PID controller, it has some 
disadvantages such as the high starting 
overshoot in speed, the sensitivity to 
controller gains and the sluggish response 
due to sudden change in load torque 
disturbance. Therefore, a great deal of 
attention has been focused on adaptive or 
self-tuning of conventional PID controller 
gains. Tuning PID controller parameters is 
very difficult, poor robustness; therefore, 
it's difficult to achieve the optimal state 
under field conditions in the actual 
production. In order to overcome some 
problems that faced by conventional PID 
controller and achieve accurate control 
performance of speed control of a DC 
motor, the other type of control methods 
can be developed such as linear quadratic 
regulator [11-16].  
Linear quadratic regulator design 
technique is well known in modern 
optimal control theory and has been 
widely used in many applications. It has a 
very nice robustness property. This 
attractive property appeals to the 
practicing engineers. Thus, the linear 
quadratic regulator theory has received 
considerable attention since 1950s. The 
liner quadratic regulator technique seeks 
to find the optimal controller that 
minimizes a given cost function 
(performance index). This cost function is 
parameterized by two matrices, Q and R, 
that weight the state vector and the 
system input respectively. These 
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weighting matrices regulate the penalties 
on the excursion of state variables and 
control signal. One practical method is to 
Q and R to be diagonal matrix. The value 
of the elements in Q and R is related to 
its contribution to the cost function. To 
find the control law, Algebraic Riccati 
Equation (ARE) is first solved, and an 
optimal feedback gain matrix, which will 
lead to optimal results evaluating from 
the defined cost function is obtained [17-
20].  

In this paper, to achieve accurate control 
performance of speed control of DC motor, 
optimal linear quadratic regulator 
technique is presented. The remainder of 
the paper is organized as follows: at first 
the dynamic model of the separately 
excited DC motor is briefly reviewed for 
the purpose of speed control. The next 
section the basic concept and design of 
linear quadratic regulator controller is 
briefly reviewed. Then the simulation 
results are presented. Finally, the last 
section states the main conclusion. 
Dynamic Model of DC Motor: 

Direct current motors are widely used for 
various industrial and domestic 
applications. Examples are as robotic and 
actuator for automation process, 
mechanical motion, and others. Accurate 
speed control of the DC motor is the 
basic requirement in such applications. 
There are two main ways of controlling a 
DC motor: The first one named armature 
control consists of maintaining the stator 
magnetic flux constant, and varying the 
armature current. Its main advantage is a 
good torque at high speeds and its 
disadvantage is high energy losses. The 
second way is called field control, and 
has a constant voltage to set up the 
armature current, while a variable voltage 
applied to the stator induces a variable 
magnetic flux. Its advantages are energy 
efficiency, inexpensive controllers and its 

disadvantages are a torque that decreases 
at high speeds. In this paper, the 
separately excited DC motor model is 
chosen according to its good electrical 
and mechanical performances more than 
other DC motor models. The electric 
circuit of the separately excited DC motor 
is shown in figure 1. Objective is to 
control the speed of the separately excited 
DC motor by armature voltage control [1-
4]. 

 

 
 
 
Figure 1:  A separately excited DC motor 

model 
 

Assuming constant field excitation the 
armature circuit electrical equation is 
written as:  

diaV R i L Ea a aa bdt
diaV R i L Ka a aa bdt



  

  
  (1)                           

Where Va is the input terminal voltage 
(armature voltage) in volt, Eb is the back 
emf in volt, Ra is the armature resistance 
in ohm, La is the armature inductance in 
H. Kb is the back emf constant in Vs/rad, 
 is represents angular speed in rad/s, and 
ia is the armature current in A. The 
dynamics of the mechanical system is 
given by the following torque balance 
equation: 
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 d
d t

T = Ji BT aK 
                                           

(2)  
 
Where J is the moment of inertia of the 
motor in kgm2/s2, T is the motor torque in 
Nm, B is the viscous friction coefficient in 
Nms, and KT is the torque factor constant 
in Nm/A. Equation (1) and equation (2) are 
rearranged to obtain: 
 

K Vd i Ra a b aiad t L L La a a
     (3) 

d
d t

K BT ia JJ


                           (4)  

 
To design a desired controller using the 
linear quadratic regulator technique, the 
system must first be expressed in the state 
space form. In the state space model of a 
separately excited DC motor, the equation 
(3) and equation (4) can be expressed by 
choosing the angular speed () and 
armature current (ia) as state variables and 
the armature voltage (Va) as an input. The 
output is chosen to be the angular speed [1-
4]. 
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The physical and functional parameters of 
the separately excited DC motor used for 
simulation testing are given in Table1. 
 

Table 1: Parameters of the separately 
excited DC motor 

Parameters Values 

Armature Resistance, Ra  1 

Armature Inductance, La  0.05H 

Moment of Inertia, J  0.01kgm2/s2 

Viscous Friction Coefficient, B  0.0000 3Nms 
The Back EMF Constant, Kb 0.023Vs/rad 

The Torque Factor Constant, KT 0.023Nm/A 

 
 
 
 

Design of the LQR Controller: 
Linear quadratic regulator design technique 
is well known in modern optimal control 
theory and has been widely used in many 
applications. The standard theory of the 
optimal control is presented in [17-20]. 
Under the assumption that all state variables 
are available for feedback, the LQR 
controller design method starts with a 
defined set of states which are to be 
controlled. In general, the system model can 
be written in state space equation as 
follows: 

 
x Ax Bu                                          (6) 
 

Where nx R  and mu R  denote the state 
variable, and control input vector, 
respectively. A is the state matrix of order 
nn; B is the control matrix of order nm. 
Also, the pair (A, B) is assumed to be such 
that the system is controllable. The linear 
quadratic regulator controller design is a 
method of reducing the performance index 
to a minimize value. The minimization of it 
is just the means to the end of achieving 
acceptable performance of the system. For 
the design of a linear quadratic regulator 
controller, the performance index (J) is 
given by: 

 

   
0

T TJ x Qx u Ru dt


               (7)                                                
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Where Q is symmetric positive semi-
definite ( 0 ) state weighting matrix of 
order nn, and R is symmetric positive 
definite ( 0 ) control weighting matrix of 
order mm. The choice of the element Q 
and R allows the relative weighting of 
individual state variables and individual 
control inputs as well as relative 
weighting state vector and control vector 
against each other. The weighting 
matrices Q and R are important 
components of an LQR optimization 
process. The compositions of Q and R 
elements have great influences of system 
performance. The designer is free to 
choose the matrices Q and R, but the 
selection of matrices Q and R is normally 
based on an iterative procedure using 
experience and physical understanding of 
the problems involved. Commonly, a trial 
and error method has been used to 
construct the matrices Q and R elements. 
This method is very simple and very 
familiar in linear quadratic regulator 
application. However, it takes long time 
to choose the best values for matrices Q 
and R. The number of matrices Q and R 
elements are dependent on the number of 
state variable (n) and the number of input 
variable (m), respectively. The diagonal-
off elements of these matrices are zero for 
simplicity. If diagonal matrices are 
selected, the quadratic performance index 
is simply a weighted integral of the 
squared error of the states and inputs. The 
term in the brackets in equation (7) above 
are called quadratic forms and are quite 
common in matrix algebra. Also, the 
performance index will always be a scalar 
quantity, whatever the size of Q and R 
matrices [21-25]. The conventional linear 
quadratic regulator problem is to find the 
optimal control input law *u that 
minimizes the performance index under 
the constraints of Q and R matrices. The 

closed loop optimal control law is defined 
as: 

*u Kx                       (8)                                                                            
Where K is the optimal feedback gain 
matrix, and determines the proper 
placement of closed loop poles to 
minimize the performance index in 
equation (7). The feedback gain matrix K 
depends on the matrices A, B, Q, and R. 
There are two main equations which have 
to be calculated to achieve the feedback 
gain matrix K. Where P is a symmetric 
and positive definite matrix obtained by 
solution of the ARE is defined as: 

1 0T TA P PA PBR B P Q                    (9)                                     
Then the feedback gain matrix K is given 
by: 

1 TK R B P               (10)                                                             
Substituting the above equation (8) into 
equation (6) gives: 

( )x Ax BKx A BK x                           (11) 
If the eigenvalues of the matrix (A-BK) 
have negative real parts, such a positive 
definite solution P always exits.  
Simulation Results: 
In order to verify the validity of the linear 
quadratic regulator controller, several 
simulation tests are carried out using 
MATLAB/SIMULINK software package. 
The performance of linear quadratic 
regulator controller has been investigated 
and compared with the conventional PID 
controller. Simulation tests are based on 
the facts that whether the linear quadratic 
regulator controller is better and more 
robust than the traditional PID controller 
or not. For the comparison, simulation 
tests of the speed response were 
performed according to the nominal 
condition, moment of inertia variation, 
and armature inductance variation of the 
separately excited DC motor. To 
determine the feedback gain matrix K, the 
elements of the weighting matrices Q and 
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R are chosen as: Q = [0.2 0;0 0.028] and 
R = 0.2, respectively. After solving the 
ARE and substituting into equation (10), 
the optimal values of control feedback 
gain matrix K are obtained as K= [0.9742 
1.3709]. Figure 2 shows the step 
responses of speed control of the 
separately excited DC motor at nominal 
condition by two controllers. According 
to the simulation results, linear quadratic 
regulator method give the better 
performance compared to traditional PID 
controller.  

 
Figure 2: Comparison of output speed 

responses among LQR and conventional 
PID controllers  

 
The time response specifications of the 
conventional PID controller and linear 
quadratic regulator technique obtained 
from the simulation of the separately 
excited DC motor speed control is shown 
in Table 2. Based on the Table 2, linear 
quadratic regulator technique has the 
fastest settling time of 2s while traditional 
PID controller has the slowest settling 
time of 4.5s. For the percent overshoot, 
linear quadratic regulator technique does  
 
 
 
 
not have overshoot and conventional PID 
controller has the greatest value of 
percent overshoot of 17%. Furthermore, 

there is no steady state error using linear 
quadratic regulator controller. However, 
the rise time for traditional PID controller 
is smallest value than for linear quadratic 
regulator controller. 
 
Table 2: Performances metrics for LQR 

and PID controllers 
Time Response 
Specifications 

LQR PID 

Settling Time (Ts) 2s 4.5s 

Rise Time (Tr) 2.5s 1.1s 

Overshoot % 0 17 

Steady State Error (ess) 0 0.03 

 
For high performance applications the 
proposed linear quadratic regulator 
scheme should be robust to parameter 
variations. Changes in the moment of 
inertia and the armature inductance are 
investigated through simulations. The 
simulation studies are undertaken by 
changing one parameter at a time while 
keeping other parameters unchanged. The 
separately excited DC motor is 
commanded to accelerate from rest to 
reference speed under no torque load. 
Figure 3 shows the separately excited DC 
motor responses of optimal linear 
quadratic regulator approach and 
conventional PID controller when the 
moment of inertia is increased by 100% 
of its original value, whilst figure 4 
depicts the speed response when the 
armature inductance increased by 100% 
of its original value.  
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 Figure 3: Responses of the DC motor 
using two controllers with variation in the 

moment of inertia   
 

 
 Figure 4: Responses of the DC motor 

using two controllers with variation in the 
armature inductance 

 
From figure 3, it can be seen that the 
increment of the moment of inertia does 
not impose any significant effect on the 
performance of the linear quadratic 
regulator technique but only affects the rise 
time. A comparison is illustrated in Table 3 
between LQR and PID controller 
quantitatively. 

 
Table 3: Performances of two controllers 

under increased J 
Time Response 
Specifications 

LQR PID 

Settling Time (Ts) 3.6s 7.8s 

Rise Time (Tr) 5.1s 2.1s 

Overshoot % 0 4 

Steady State Error (ess) 0 0.03 

 
It is very much clear from figure 4 that the 
proposed linear quadratic regulator 
controller is less sensitive to parametric 
variations and a robust tracking 
performance is achieved in presence of the 
uncertain parameters. Furthermore, it can 
be noted that the increase in armature 
inductance causes greatest value of percent 
overshoot, settling time, and steady state 
error in classical PID controller than 
optimal linear quadratic regulator 
controller which is affected only by 
slowest rise time. The time response 
parameters percent overshoot; settling 
time, rise time, and steady state error for 
LQR and PID controller are presented in 
Table 4. 

 
Table 4: Performances of two controllers 

under increased La 
Time Response 
Specifications 

LQR PID 

Settling Time (Ts) 3.3s 10.3s 

Rise Time (Tr) 2.6s 1.4s 

Overshoot % 2 31 

Steady State Error (ess) 0 0.03 

 
Conclusions: 
Optimal LQR strategy and conventional 
PID controller have been considered in 
this paper for controlling the speed of a 
separately excited DC motor.  The 
performance of the two controllers is 
validated through simulations. A number 
of simulation results are presented for 
comparison. Based on the comparative 
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simulation results, one can conclude that 
the linear quadratic regulator controller 
realises a good dynamic behaviour of the 
separately excited DC motor with a rapid 
settling time, no overshoot, and zero 
steady state error compared to 
conventional PID controller under nominal 
condition. But the comparison between the 
speed control of the separately excited DC 
motor by linear quadratic regulator 
technique and conventional PID controller 
shows clearly that the linear quadratic 
regulator technique gives better 
performances than conventional PID 
controller against parameter variations. 
Furthermore, the simulation results so 
obtained show that the conventional PID 
controller gives greatest value of percent 
overshoot and longer settling time. 
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