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Abstract: The proportional-integral-derivative (PID) conteil is tuned to find its
parameters values. Generally most of the tuninghau=t depend mainly on the
experimental approach of open-loop unit step respomhe controller parameters can be
found if the system truly can be approximated hbgtFDrder Plus-Dead Time (FOPDT).
The problem with such type of controllers is thite performance of most of them
deteriorates as the ratia/f) of approximated equivalent delay L to the ovetatie
constant T changes. The optimum tuning always chéuk ratio and considers it in its
formulae. The performances of different PID tunieghniques are simulated for different
systems and analyzed based on the transient respd& TLAB simulation results are
presented and compared for different higher orgstesns. For the same characterization
procedure, optimally tuned PID controller showstdretperformances over Ziegler-
Nicholas (Z-N) and Cohn-Coon tuned. Superioritytteg optimal PID tuning techniques
sustained for variety of higher order systems.
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Introduction:

The PID controller has several important
functions; it provides feedback, has the
ability to eliminate steady state offsets
through integral action, and it can
anticipate the future through derivative
action. PID controllers are the largest
number of controllers found in industries
sufficient for solving many control

problems.

48

The determination of the controller
parameters is called the controller tuning
or design. Many approaches have been
developed for tuning PID controller and
getting its parameters for single input
single output (SISO) systems. Among the
well-known approaches are the Ziegler-
Nichols (Z-N) method®, the Cohen-Coon
(C-C) method?, integral of squared time
weighted error rule (ISTEY), integral of
absolute error criteria (IAEY"" internal-
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model-control (IMC) based meth&, and
gain-phase margin methd@l. This paper
focuses on studying the optimum tuning
method and comparing it with Z-N which
has been explored since 1942 and is still
used in industry and C-C.

The PID control law is the sum of three
types of control actions: a proportional, an
integral and a derivative control actions.
Mathematically PID controller in the time-
domain is given by the following equation

u(t) = K, [e(t) +T1iie(r)dr+Td U w

Whereu (t) is the controller output (input
signal to the plant model), the error signal
g(t) is defined a®(t) =r (t) —y (t), andr (t)

is the reference input signal whilgt) is
the output. The controller parameters are
proportional gain 7I§, integral time T, and
derivative time F .

If a mathematical model of the PID-
controlled plant can be derived, then
various design techniques for determining
the controller parameters can be applied.
However, if the plant is so complex that its
mathematical model cannot easily be
obtained, then analytical approach to
design PID controller is not possibile
Then we must resort to experimental
approaches for tuning of PID controllers.

In this work the open-loop step response of
the given system is obtained and the three
characterizing parameters (K, L, and T) are
determined from this response. Then
according to the tuning method, the
controller parameters (KT, and T;) can

be obtained. The transient step responses
of the simulated closed-loop are then
compared for different tuning rules.

OPTIMUM PID CONTROLLER DESIGN:

Optimum setting algorithms for a PID
controller were proposed by Zhuang and
Atherton © for various criteria. The
methods involve searching for minimum
of the cost functionJd (¢ ip its general

form:

48

in(#) = [[t"e(g, 1) ct )

Where e ¢, t) is the error signal, witlp
as PID controller parameters. The
optimum controller parameters are found
when the partial derivative od, (¢ With

respect top equals zero. The error signal

used for optimization can be a result set-
point or of load disturbance. Therefore, it
is possible to obtain two sets of
parameters: one for the set-point input and
the other for the disturbance signal. In
particular, three values of n (n = 0, 1, 2)
are discussed. These three cases
correspond, respectively, to three different
optimum criteria: the integral squared error
(ISE) criterion, integral squared time
weighted error (ISTE) criterion, and the
integral squared time-squared weighted
error (ISFE) criterion. The expressions
given were obtained by fitting curves to
the optimum theoretical resuffs,

A large number of industrial plants can
approximately be modeled by the first
order plus dead time (FOPDT) model with
transfer function as follows"

G(s) =

-Ls
Ts+ 1e ®)

Sometimes one may want to design a
controller  having  good rejection
performances on the disturbance signal.
The parameters equations to design
controllers for disturbance rejection using
the optimal method are different than the
set point used here.

PID controller equation suggested by Z-N
is:

1

.
Gy(s)=12—(1+——+05Ls 4
(9 =127 Q5+ 05Ls) (4

And C-C suggested gains setting as:

Kp =£5(1+ 0.18r)
a 1-1
_25-2r L

' 1-039r
_037-037r

¢ 1-081

(5)
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Where;a=k,L/T & 7=L/(L+T).

While the gains of optimal PID controller
can be set as follow¥:

L bl
=37

_ T
Ti= a, +b,(L/T) ©

b3
L
Td = a3T (?j

Where the parameters (a, b) should be
determined according to Table Al in
appendix A. the selection of (a, b) depends
mainly on the value of (L/T).

Tuning Rules of PID Controllers for
Set-Point Changes:

The key feature in the optimum methods
for PID controller tuning is to obtain the
response of the plant to a unit step input. If
it involves neither integrator nor dominant
complex-conjugate poles, then such an
open-loop unit step response curve may be
characterized by three constants, gain K
delay time L and time constant.

The following is an example of PID-
controlled systems and their responses for
different ratios when tuned using Z-N and
C-C methods.

These constants are either to be found
experimentally or instead of experimental
approaches, a simulation may be used to
get these parameters. In the following are
different systems examined to illustrate the
method for tuning the controllers.

120
Systemi, (16573 (7)

From the step response we obtained the
parameters (K, L,and T) as (K =40, L =
0.174, T =1.826). The range of (L/T) from

the given transfer function is equal to

M: 0.095

1.82¢

5C

Table 1: The Controller Parameters of

Systeml

PID Controller

Parameters
Criterion Ko T Ty
Z-N 0.3143| 0.3485 0.0871
c-C 0.3330| 0.507 0.0633
ISE 0.215t| 1574 0.111
IST’E | 0.202: | 1.9z 0.071

200

System 2,G,(s) = 06+ 4676 8)

From the step response we obtained the
parameters (K, L, and T) as (K = 8.333, L
= 0.3725, T = 1.0442). The range of (L/T)
from the given transfer function is equal to
0.3725_ 0.3567
1.044:
The parameters of the controller are
obtained as in Table 2:

Table 2. The Controller Parameters of

System?2
PID Controller Parameters
Criterion Kp Ti T4
Z-N 0.4036 | 0.7450 0.1863
C-C 0.447¢ | 0.860(| 0.129:
ISE 0.317( | 0.981€6| 0.2044
IST’E | 0.2949 | 1.177% 0.1316

Systenm3; G(s) = 4/(s+1)* 9)
From the step response we obtained the
parameters (K, L, and T) as (K=2, L=2,
T=2). The range of (L/T) from the given
transfer function is equal to 1. Table 3
shows the parameters of the different
controllers.

Table 3: The Controller Parameters of

System 3
PID Controller Parameters
Criterion Kp T Ty
Z-N 0.3 4 1
Cc-C 0.3687 3.500 0.622
ISE 0.262 2.41¢ 0.978
IST’E | 0.242( | 2.76: 0.63:
3
YA Cy(9) = s (10)
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From the step response we obtained the

parameters (K, L, and T) as (K =1.5, L =4,

T=2.5), TE =16, Therefore the parameters

of the controller are obtained as in Table 4.
Table 4: The Controller Parameters of
System 4

PID Controller Parameters

Criterion Kp Ti Ty
Z-N 0.50( 8 2
c-C 0.671 6.177 1.13¢
ISE 0.590 3.600 1.710

IST’E | 0.5378 3.981 1.164

System Output

Simulation Results and Discussions:

In this section, a simulation for the four
different systems is carried out to obtain 12}
their transient responses. The comparison

is based on the rise time)(tthe settling

time (t), and the peak over shoot gVof
the closed-loop step response for each
method as shown in Figures 1 - 4 and the

results are tabulated in Table 5.
For the different tested systems,

=
=

System Output

=
=
T

the

0.2
i

optimally tuned controller gives accepted

rise time, generally the best settling time !

and they perform very much better than
others in the overshoot behavior. For some
systems the responses of both Z-N and C-

C result in

longer settling time and

=
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Figure 2: System 2 Step Response
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Figure 3: System 3 Step Response
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which considered as their shortcoming.
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Figure 4: System 4 Step Response
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Table 5: Comparison of Transient Responses

System | Criterig t; (Sec | t.(Sec | % O.s
Z-N 024 | 174 30.8
Gys) |C-C |02¢ |1.4 26.5
ISE 0.435 | 1.39 3.07
IST’E | 0.437 | 1.11 3.2
Z-N [0.496 | 2.15 18.0
Gy(s) |C-C | 0.465 | 2.48 22.0
ISE 0.675 | 2.65 6.52
IST’E | 0.715 | 2.05 5.62
Z-N 6.86 | 14.2 | C Critical
Gs(s) |C-C |251 |11cf 8.0¢
ISE 3.25 | 11.0 6.33
IST’E | 3.51 | 09.1 4.05
Z-N 23.8 | 47.7 | Ccritical
Gis) |C-C | 4.38 | 28.6 | CCritical
ISE 410 | 19.8 8.2
IST’E | 4.72 | 1438 7.6
Conclusions:

From the results obtained, it could be
conclude that PID control is still of great
interest, and is a promising control
strategy that deserves further research and
investigation. These tuning methods are
only valid for open loop and those can be
described by the first order plus dead-time
model and for 'ideal' PID control structure
case. Optimally tuned PID controllers
show better results than Z-N and C-C.
The responses of both the later deteriorate
as the approximated equivalent delay L to
the overall time constant T changes.
Optimally tuned controller sustain for
wide range of systems due to their
consideration to L/T. However, among the
optimum PID tuning methods, I1$E was
shown to be the best for the transient
response specifications.
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APPENDIX A:
Table Al: Set-point PID controller parameters
L/T 0.1-1 11-2
ISE  |ISTE IST?E ISE ISTE IST?E
al 1.048 1.042 0.96§ 1.154 1.142 1.06]1
bl -.897 | -.897 -.904] -.567 -.579 -.583
a2 1.195 [ 0.987 0.977  1.047 0.919 0.89p
b2 -.368 | -.238 -.253] -.220 -.172 -.165
a3 0.489 [ 0.385 0.316  0.490 0.384 0.31p
b3 0.888 | 0.906 0.8920 0.708 0.839 0.832
APPENDI X B:
M-File:
G=tf(--, [-----]) % kp=(1.048/K)*((L/T)"-0.897)) %L/T<:

[K,L,T]=getfod(G,1)
a=K*L/T; GP=feedback(G,1);
step(GP,'b-',50)
for n=1:4
switch n
case 1
kp=1.2/a
Ti=2*L
Td=0.5*L
ge=tf(kp*[Ti*Td Ti 1],[Ti O])
GZ=series(gc,G); Zeig=feedback(GZ,1);
step(Zeig,'r--)
case 2
tao=L/(L+T); kp=(1.25/a)*(1+((0.18*tao)/(1-t50
Ti=((3.3-ta0)/(1+1.2*tao))*L
Td=((0.37-0.37*ta0)/(1-0.81*ta0))*L
ge=tf(kp*[Ti*Td Ti 1],[Ti O])
GCCs=series(gc,G); coh=feedback(GCC,1);
hold on
step(coh,'b:")
case 3

53

% Ti=T/(1.195-0.368*(L/T))

% Td=0.489*T*((L/T)"0.888)

kp=(1.154/K)*((L/T)*(-0.567)) %L/T>1

Ti=T/(1.047-0.22*(L/T))

Td=0.49*T*((L/T)"0.708)

ge=tf(kp*[Ti*Td Ti 1],[Ti O])

GOl=series(gc,G); ISE=feedback(GO1,1);
step(ISE,'m:")
case 4

% kp=(0.968/K)*((L/T)"(-0.904)) %L/T<1

% Ti=T/(0.977-0.253*(L/T))

% Td=0.316*T*((L/T)"0.892)
kp=(1.061/K)*((L/T)"(-0.583)) %L/T>1
Ti=T/(0.892-0.165*(L/T))
Td=0.315*T*((L/T)"0.832)
ge=tf(kp*[Ti*Td Ti 1],[Ti O])

GO2=series(gc,G); IST2E=feedback(G02,1);
hold on

step(IST2E,'g-.")

end



