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 Abstract: Most of the surveying tasks involve the acquisition and analysis of measurements. 
Such measurements are subject to random, systematic and gross errors. In practice, redundant 
measurements are made to provide quality control and errors check. In qualitative analysis 
and statistical evaluation, it is generally assumed that the measurements contain only random 
errors and are regarded as random variables. In reality, the measurements may contain gross 
and/or systematic errors. The effects of such errors are distributed over the residuals, after an 
adjustment and lead to questionable results and interpretation. 
For high precision applications, gross and systematic errors need to be detected prior to the 
analysis. These errors should be tackled before the adjustment by means of screening. These 
few remaining gross errors in the measurements can be detected after the adjustment. These 
adjustment methods assume the presence of only one gross error. One of the most effective 
methods that can be used in detecting multiple gross errors is the statistical quality control 
method. Statistical quality control is a technique used to monitor a procedure with a goal of 
making it more efficient and ensures precise results. 
Statistical control charts are used to provide an operational definition of a special cause for a 
given set of data. It is possible to construct multiples of sigma control limits. When all the 
points on a control chart are within a multiple of sigma control limits and there are no gross 
errors in the data, the process of measurements is said to be in a state of statistical control. 
Otherwise, the data indicate the presence of non-random gross errors. In this research work, 
different methods of statistical quality control were used. Results showed that statistical 
quality control method can be used successfully and efficiently in detecting multiple gross 
errors. 
 
Keywords: Statistical Control Charts, Variables Control Charts, Attribute Control Charts, Probability,                    
Statistical Quality Control. 

 

  :مستخلص

تخضع تلك القياسات للأخطاء الجسيمة ، المنتظمة . وتحليلها كثير من المهام المساحية تتطلب الحصول على القياسات
فى . عملياً هنالك أرصادات زائدة من أجل الوصول الى قيم مضبوطه والمساعدة فى اكتشاف الأخطاء .والعشوائية

قط التحليل النوعى والتحليل  الإحصائى من أجل الجودة ،عادةً مايفترض أن القياسات تحتوى على أخطاء عشوائية ف
فى الحقيقة تلك القياسات يمكن أن تحتوى على أخطاء جسيمة بالاضافه الى أخطاء . واعتبارها متغيرات عشوائية

ثير هذه  الأخطاء يتوزع على الأخطاء المتبقية بعد إجراء عملية الضبط مما تؤدى  بدورها الى إثارة أت. منتظمة
  .الاسئلة حول نتائجها وتفسيرها
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العالية تتطلب كشف الأخطاء الجسيمة والمنتظمة قبل إجراء التحليل، وهذه  الأخطاء يجب  التطبيقات ذات الدقة
البسيطة المتبقية فى نتائج  الأخطاء الجسيمة . معالجتها قبل إجراء عمليتى الضبط و التقدير عن طريق دراسة البيانات

  .عادة ما تفترض وجود خطأ جسيم واحد فقط الطرائق المختلفة التى تستخدم. القياسات يمكن كشفها بعد عملية الضبط
الجسيمة المزدوجة هى طريقة ضبط الجودة  الأخطاء احدى الطرق ذات الفاعلية والتى يمكن استخدامها فى كشف

  .ضبط الجودة الإحصائى هى تقنية لمتابعة اجراء ما بهدف جعله إجراء فعالاً ويضمن نتائج ذات دقة عالية. الإحصائى
ومات البيانية الإحصائية لتوضيح المسببات الخاصة لمصفوفة بيانات محددة ومن الممكن إنشاء حدود تستخدم الرس

عندما تقع كل النقاط فى الحدود المحددة ولاتوجد أخطاء جسيمة او نمط . بعينها كمضروبات للانحراف المعيارى 
إن البيانات تحتوى على أخطاء غير واضح للبيانات، يقال ان عملية القياس فى وضع الضبط الإحصائى والا ف

الخلاصة الرئيسية من هذا البحث هى ان . أستخدم فى هذا البحث طرقاً مختلفة لضبط الجودة الإحصائى .عشوائية
  .ضبط الجودة الإحصائى يمكن إستخدامه فى كشف الأخطاء الجسيمة المزدوجة

Introduction  

Generally speaking, gross errors can arise 
from an incorrect measuring, and 
recording procedure, from the observer or 
the computer software used (1, 2). They are 
the most serious of all types of errors, 
simply because of their relatively large 
sizes. Therefore, care must be taken to 
avoid or eliminate them from observations, 
otherwise the results obtained from a 
process may be highly affected by their 
presence (3).  
Within a certain interval, i.e. (-a to +a), the 
observations are considered to be normally 
distributed. Then the gross error may be 
defined as an error which does not belong 
within the interval (-a to +a). it is stated 
further that  an assumption that the 
distribution of a gross error is unknown 
seems to be the only realistic alternative (4). 

Also when carrying out a statistical test for 
gross errors, a so-called statistic is 
computed. The probability density 
function (pdf) of the statistic is known and 
its value is so high that it can be expected 
to be excluded (in say) 1% of cases; it is 
assumed that the observation must be 
generated by another process (i.e. it is 
centered about a different mean and is 
highlighted as a possible gross error (for 
probable rejection) (5). 
The interpretation of gross errors given by 
above is the most widely used 
interpretation. It follows the so-called 

mean-shift model where it is assumed that 
the mean of an observation is shifted when 
a gross error is present but the shape of its 
distribution is not altered. i.e. it is still 
normally distributed with a given variance. 
The mean-shift model has advantage of 
allowing statistical tests to be applied. For 
this reason, that the mean-shift model has 
found good support in methods and 
techniques dealing with gross error 
detection (3). 
There are two major types of gross errors. 
The first is related to the instrument 
performance and include measurement 
errors (bias), miscalibration and total 
instrument failure. The second is model 
related and include model inaccuracies due 
to inaccurate model parameters.  
Various techniques have been designed for 
the detection and elimination of these two 
types of gross errors(6,7). Any 
comprehensive gross error detection 
strategy should preferably have the 
following capabilities: 
1) Ability to detect the presence of one or 
more gross errors in the data set (e.g., the 
detection problem). 
2) Ability to identify the type and location 
of the gross error (e.g., the identification 
problem).  
3) Ability to locate and identify multiple 
gross errors which may be present 
simultaneously in the data set (e.g., the 
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multiple gross error identification 
problems). 
4) Ability to estimate the magnitudes of 
the gross errors (e.g., the estimation 
problem). 
Not all gross error detection strategies may 
fulfill all the above requirements. The last 
of the above requirements, although 
useful, is not absolutely necessary.  A 
gross error detection strategy can be 
analyzed in terms of the component 
methods it uses to tackle the three main 
problems of detection, identification and 
multiple gross error identification, and the 
performance of the strategy is a strong 
function of these methods. 
The objective of the preset work was to 
apply and evaluate the statistical quality 
control technique to detect multiple gross 
error in data collected through some 
surveying measurements. Data used 
include electronic distance measurements, 
angular measurements and coordinates 
determined from the Global Positioning 
System (GPS) measurements. Various 
techniques of Statistical Quality Control 
(SQC) are to be used. 
The methodology used for data analyzing 
was the control charts generally applied in 
SQC technique.  
DETECTION OF MULTIPLE GROSS 
ERRORS:  
For a well maintained set of surveying 
observations, it should generally not 
expect more than one gross error to be 
present in the data. Therefore, a 
fundamental pre-requisite of any gross 
error strategy is that it should have good 
ability to detect and identify correctly a 
single gross error. However, if a large 
number of surveying measurements are to 
be carried out or if the instruments used 
are operated in a hostile environment, 
and/or procedures used in carrying out the 
measurements are inadequate, then it is 
possible for several gross errors to be 
simultaneously present in the data. 

The most commonly used statistical 
techniques for detecting gross errors are 
based on hypothesis testing. In the gross 
error detection case, the null hypothesis

0H , is that no gross error is present, and 

the alternative hypothesis, AH , is that one 
or more gross errors are present in the 
system. All statistical techniques for 
choosing between these two hypotheses 
make use of a statistical test which is a 
function of the measurements and model 
equations. The statistical test is compared 
with a pre-specified value and the null 
hypothesis is rejected or accepted, 
respectively, depending on whether the 
statistic exceeds the pre-specified value or 
not.  
The outcome of the hypothesis testing is 
not always perfect. A statistical test may 
declare the presence of gross errors, when 
in fact there is no gross error. In other 
words, the null hypothesis is rejected when 
it is true and ought to have been accepted. 
In this case the test gives rise to a false 
alarm. On the other hand, the test may 
declare the measurements to be free from 
gross errors, when in fact one or more 
gross errors exist, i.e. the null hypothesis is 
accepted when it is wrong and to be 
rejected. 
There are two major types of gross error 
detection. The first deals with the raw 
observations (e.g., pre-estimation gross 
error detection) and the second deals with 
the outcome from an estimation procedure 
(e.g., post-estimation gross error 
detection). In this paper only the first one 
is considered. 
Pre-estimation gross error detection is 
meant to be the process of trying to detect, 
locate and eliminate or repair obvious 
large gross errors from the note-books or 
observation files with the help of simple 
set up conditions requiring little effort and 
without extensive and expensive 
computational work (3,8). 
Statistical Quality Control (SQC) employs 
statistical methods to manage the quality 
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of products and services. In 1924, Walter 
A. Shewart of the Bell Telephone 
Laboratories laid the foundation for 
statistical quality control (9). Since then, 
the area of SQC has been enriched by the 
work of numerous statisticians, quality 
philosophers and researchers. No doubt, 
SQC is known in the quality literature. 
However, there is a lack of evidence that 
there is a chronological account of SQC to 
date in the literature.  
The origination of statistical quality 
control was initiated and implemented in 
the Bell Laboratories in the mid 1920s (10). 
It is stated:“as a young engineer at 
Western Electric’s Haouthorne Works, I 
was drawn into a Bell Telephone 
Laboratories initiative to make use of the 
science of statistics for solving various 
problems facing Hauthorne’s Inspection 
Branch. The end results of that initiative 
came to be known as Statistical Quality 
Control or SQC.”  
It is evident from the above statement that 
the concept of SQC has begun in the Bell 
Laboratories in the mid-1920s. 
A Control chart is one of the most 
important SQC methods in quality control 
and improvement. It is a statistical tool 
intended to monitor processes and signal 
(errors) when they go out of control. 
Nowadays the field of SQC can be broadly 
defined as those statistical and engineering 
models that are used in measuring, 
monitoring, controlling and improving 
quality (11, 12, 13). 
Statistical Control Charts (SCCs) are used 
to provide an operational definition of a 
cause for a given set of process data. If the 
process is stable, then the distribution of 
any subgroup averages (means) will be 
approximately normal and it is possible to 
construct a 1-sigma, 2-sigma or even 3-
sigma control limits, where sigma is 
generally taken to be the standard 
deviation of the mean. When all the points 
on a control chart are within the prescribed 

limits of 1, 2, and 3 sigma control limits 
and when there are no other non-random 
or systematic patterns in the data, the 
process is said to be in a state of statistical 
control or “in control”. Otherwise, the data 
indicate that the process is out of control. 
The purpose of statistical quality control is 
to ensure, in a cost efficient manner, that 
the product delivered to customers meets 
their specifications. Inspecting every 
product is costly and inefficient, but the 
consequences of delivering 
nonconforming products can be significant 
in terms of customer dissatisfaction. 
Statistical quality control is the process of 
inspecting enough product from given lots 
to probabilistically ensure a specified 
quality level (12).  
It is often required to compare the output 
of a stable process with the process 
specifications and make a statement about 
how well the process meets the 
specifications. To do this, it is necessary to 
compute the natural variability of a stable 
process with the process specification 
limits. A capable process is one where 
almost all the measurements fall inside the 
specification limits. This can be 
represented pictorially by the bell-shaped 
plot shown in Figure 1. 
 
 

 
 

Figure 1: A capable Process
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There is a close connection between 
control charts and hypothesis testing. 
Essentially, the control chart is a test of the 
hypothesis that the process is in a state of 
statistical control. A point fall within the 
control limits is means to accept the 
hypothesis of the statistical control, and 
vice versa. 
The control chart is a device for describing 
exactly what is meant by statistical 
control. As such, it may be used in a 
variety of ways. If the sample values of the 
mean, say, fall within the control limits 
and do not exhibit any systematic pattern, 
the process is in control at the level 
indicated by the chart.  
The control chart may also be used as an 
estimating device. That is, from a control 
chart that exhibits statistical control, we 
may estimate certain process parameters, 
such as the mean, standard deviation, and 
fraction nonconforming or fallout. These 
estimates may then be used to determine 
the capability of the process to produce 
acceptable products. 
Control charts may be classified into two 
general types, Variables Control Charts 
(VCCs) and Attributes Control Charts 
(ACCs). Many quality characteristics can 
be measured and expressed as numbers in 
some continuous scale of measurement. In 
such cases, it is convenient to describe the 
quality characteristic with a measure of 
central tendency and a measure of 
variability. Control charts for central 
tendency and variability are collectively 
called Variables Control Charts (VCCs).  
The sample mean chart is the most widely 
used chart for monitoring central 
tendency; whereas charts based on either 
the sample range or the sample standard 
deviation are used to control process 
variability. Many quality characteristics 
are not measured on a continuous scale or 
even a quantitative scale. In these cases, 
each unit of product may be judged as 
either conforming or nonconforming on 
the basis of whether or not it possesses 

certain attributes; or the number of 
nonconformities (defects) appearing on a 
unit of product may be counted. Control 
charts for such quality characteristics are 
called Attributes Control Charts (ACCs). 
Control charts have had a long history of 
use in industry. There are number of 
reasons for their popularity. These may 
include (9): 
1. Are proven techniques for improving 

productivity. 
2. Are effective in defect prevention. 
3. Prevent unnecessary process 

adjustments. 
4. Provide diagnostic information. 
5. Provide information about process 

capability.  
The parameters required to design a 
control chart are the population meanµ , 
and population standard deviation, σ , (if 
they are known). Otherwise, these 
parameters can be replaced by their 
respective sample values. The average of 
the sample is then plotted on the chart. The 
Upper Control Limit (UCL) and Lower 
Control Limit (LCL) are then calculated 
and plotted on the chart. To do this, and 
because the control chart utilizes the 
sample mean to monitor the process mean 
(e.g.,X ), it is usually called X  control 
chart. If samples of size n are taken, then 
the standard deviation of the sample 
average, xσ , is given by;  

n
    

X

σσσσσσσσ ====
  

 (1) 

By using the central limit theorem to 

assume that X  is approximately normally 
distributed, it would be expected that 

100(1-αααα ) % of the sample mean X  fall 

between Xkσσσσµµµµ ±±±±  where  is the level of 
significance. The constant k is customarily 
chosen to be a multiple of the standard 
deviation ofX . The “width” of the control 
limits UCL and LCL is inversely 

αααα



June 2012   
Journal of Science and Technology  vol. 13 
ISSN 1605 – 427X 
Engineering  and Computer Sciences (E C S No. 1) 
www.sustech.edu 

  

41 
 

proportional to the sample size n for a 
given multiple ofσσσσ . 
Materials and methods: 
To test the possibility of detecting multiple 
gross errors in surveying measurements, 
various tests were carried to find out 
whether multiple gross errors could be 
detected simultaneously using SQC 
methods. Various techniques and 
procedures were employed in order to 
achieve this objective. The data were 
provided using various surveying 
instruments including the Global 
Positioning System (GPS) and barometer. 
Results: 
In order to determine the height of              
a photo-control point, 30 measurements 
were taken using a barometer. Readings 
were taken every 10 minuets. The results 
of the measurements were as shown in 
Table (1). It is assumed that the 
measurements were taken under the same 
weather conditions. The formulae used to 
calculate the values given in Tables 1 and 
2 were as follow: 
Individuals Measurements: 














−=−=

=

+=+=
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m
x

d

m
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m
x
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m
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                 (2)  

 
Moving ranges: 
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Ranges: 








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=
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3

4

                               (4) 

3σ control charts: 









−=
=

+=

σ

σ

3

    

3

xLCL

xCL

xUCL
                            (5) 

where: 3D and 4D  are constants, tabulated 
for various sample sizes (9). 

4D = 2.115 , 3D = 0 , 128.12 =d     
 r     is the sample average range.  
m    is the sample average moving range 
and individual measurements. 
x      is the sample average mean. 
The test objective was to compare Shewart 
X  control chart, individual control chart, 
moving range control chart, deviations 
control chart and cumulative sum control 
chart in detecting multiple gross errors. 
In order to perform this comparison, 3σ 
control charts for the above mentioned 
techniques were drawn. These are shown 
in Figure 2 (a, b, c, d, and e). 
Because the control charts in Figure 2. a, 
b, c, d and e, can easily be constructed, the 

and the R control charts were used to 
see whether multiple gross errors can be 
detected using these methods. Another test 
was carried out using 25 GPS 
measurement samples, to determine the 
height of a benchmark using GPS receiver. 
These measurements were carried out in 
five separate consecutive days. The results 
obtained are given in Table 2. 
Again, the charts for the 25 samples, using 
the sample mean X  is shown in Figure 3 
and that for the sample ranges R, is shown 
in Figure 4. 

 

 
  

 

 

X
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Table 1: Barometric Heights of a photo-Control Points 

  

 
 

N
o 

Observ
ations 
(m) 

 
CL 

 

Deviation 
From The 

Mean σ 

X  Control Chart 
  Individual  
Measurements Moving range 

Range 
 

Cumulative  
 

Deviation UCL LCL UCL LCL UCL LCL 
1 125.562 125.528 0.034 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0 0.034 
2 125.501 125.528 -0.027 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.061 0.007 
3 125.522 125.528 -0.006 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.021 0.001 
4 125.56 125.528 0.032 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.038 0.033 
5 125.498 125.528 -0.03 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.062 0.003 
6 125.555 125.528 0.027 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.057 0.03 
7 125.543 125.528 0.015 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.012 0.045 
8 125.538 125.528 0.01 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.005 0.055 
9 125.517 125.528 -0.011 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.021 0.044 
10 125.499 125.528 -0.029 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.018 0.015 
11 125.54 125.528 0.012 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.041 0.027 
12 125.509 125.528 -0.019 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.031 0.008 
13 125.538 125.528 0.01 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.029 0.018 
14 125.544 125.528 0.016 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.006 0.034 
15 125.547 125.528 0.019 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.003 0.053 
16 125.565 125.528 0.037 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.018 0.09 
17 125.497 125.528 -0.031 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.068 0.059 
18 125.509 125.528 -0.019 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.012 0.04 
19 125.514 125.528 -0.014 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.005 0.026 
20 125.523 125.528 -0.005 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.009 0.021 
21 125.548 125.528 0.02 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.025 0.041 
22 125.533 125.528 0.005 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.015 0.046 
23 125.571 125.528 0.043 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.038 0.089 
24 125.507 125.528 -0.021 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.064 0.068 
25 125.511 125.528 -0.017 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.004 0.051 
26 125.519 125.528 -0.009 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.008 0.042 
27 125.521 125.528 -0.007 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.002 0.035 
28 125.5 125.528 -0.028 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.021 0.007 
29 125.546 125.528 0.018 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.046 0.025 
30 125.496 125.528 -0.032 0.023 125.597 125.459 125.6 125.456 0.088 0.027 0.05 -0.007 
To
tal 3765.833            
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Table 2: GPS height determination 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       

  

  

Figure 2a: 3σ X  Control chart for Barometer readings 
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Sample 
number 
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x 

 
R 

 
CL 

 
σ 

Three Sigma 
 
1 

 
2 

 
3 

 
4 

 
5 UCL 

 
LCL 

1 629 636 640 635 640 636 11 629.3760 0.9033 634.707 624.045 
2 630 631 622 625 627 627 9 629.3760 0.9033 634.707 624.045 
3 628 631 633 633 630 631 5 629.3760 0.9033 634.707 624.045 
4 634 630 631 632 633 632 4 629.3760 0.9033 634.707 624.045 
5 619 628 630 619 625 624.8 11 629.3760 0.9033 634.707 624.045 
6 613 629 634 625 628 625.8 21 629.3760 0.9033 634.707 624.045 
7 630 639 625 629 627 630 14 629.3760 0.9033 634.707 624.045 
8 628 627 622 625 627 625.8 6 629.3760 0.9033 634.707 624.045 
9 623 626 633 630 624 627.2 10 629.3760 0.9033 634.707 624.045 
10 631 631 633 631 630 631.2 3 629.3760 0.9033 634.707 624.045 
11 635 630 638 633 635 634.2 8 629.3760 0.9033 634.707 624.045 
12 623 630 630 627 629 627.8 7 629.3760 0.9033 634.707 624.045 
13 635 631 630 630 630 631.2 5 629.3760 0.9033 634.707 624.045 
14 645 640 631 640 642 639.6 14 629.3760 0.9033 634.707 624.045 
15 619 644 632 622 635 630.4 25 629.3760 0.9033 634.707 624.045 
16 631 627 630 628 629 629 4 629.3760 0.9033 634.707 624.045 
17 616 623 631 620 625 623 15 629.3760 0.9033 634.707 624.045 
18 630 630 626 629 628 628.6 4 629.3760 0.9033 634.707 624.045 
19 636 631 629 635 634 633 7 629.3760 0.9033 634.707 624.045 
20 640 635 629 635 634 634.2 11 629.3760 0.9033 634.707 624.045 
21 628 625 616 620 623 622.4 12 629.3760 0.9033 634.707 624.045 
22 615 625 619 619 622 620 10 629.3760 0.9033 634.707 624.045 
23 630 632 630 631 630 630.6 2 629.3760 0.9033 634.707 624.045 
24 635 629 635 631 633 632.6 6 629.3760 0.9033 634.707 624.045 
25 623 629 630 626 628 627.2 7 629.3760 0.9033 634.707 624.045 

total      15734.4 231 629.3760 0.9033 
 

634.707 
 

624.045 
mean      629.376 9.24     
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Figure 2b: 3σ Individual control chart for Barometer readings 

 

 

(2c)  3σ Moving range control chart for Barometer readings 

 

Figure 2d: 3σ Deviations from the mean control chart for Barometer readings 
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Figure 2e:  3σ Cumulative deviations control chart for the Barometer readings  
 

  

Figure 3: 3σ Control limits for a sample of 25 GPS heights (using ��)  

 

 Figure 4: 3σ  Control limits for a sample of 25 GPS heights (using R)
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individual control chart and the deviations 
control chart, produce the same results. It 
is clearly that all measurement values 
fluctuate about the mean or around zero. 

The use of the moving range gives results 
that were inconsistent. More observations 
fall on the lower side of the moving range 
than on the upper side. This means that  
the true mean of the measurements was 
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method was used. All values were positive 
except the measurement value number 
thirty in the cumulative deviations control 
chart. See Figure 2 e. 
It should be noted that even when there 
was no gross errors in the measurements, 
there was out of control readings every 33 
measurements for the 3σ control limits. In 
other words, the Average Run Length 
(ARL) was equal to 34 for the 3σ. 
As it can be seen from the second test, 

using the mean (X ), the results obtained 
were more sensitive in detecting gross 
errors than using the range (R); five 
measurements were detected as gross 
errors (20%) compared to two 
measurements (8%) respectively. This is, 
because X uses all available information  
while R uses only the two extreme values 
i.e. the smallest and the largest values. 
Conclusions 
From the results obtained the following 
conclusions could be drawn: 
� Using the mean was more sensitive in 
detecting multiple gross errors than the 
range . 
� Both deviations from the mean method 
and the cumulative sum method give 
identical results in multiple gross error 
detection. 
� The mean control chart, the individual 
control chart and the deviations control  
 
chart produce the same results when used 
in detecting gross errors. 
�  The use of the moving range in multiple 
gross error detection gives inconsistent 
results. Most of observations fall on one 
side of the base line than on the other. 
� Moving range method and cumulative 
deviation method graphs are identical in 
shape but with different deviations from 
the true values. 
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