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Abstract: Most of the surveying tasks involve the acquisitamd analysis of measurements.
Such measurements are subject to random, systeamakigross errors. In practice, redundant
measurements are made to provide quality contrdlearors check. In qualitative analysis
and statistical evaluation, it is generally assunied the measurements contain only random
errors and are regarded as random variables. lityrtehe measurements may contain gross
and/or systematic errors. The effects of such smoe distributed over the residuals, after an
adjustment and lead to questionable results aedoirgtation.

For high precision applications, gross and systenaators need to be detected prior to the
analysis. These errors should be tackled beforadhestment by means of screening. These
few remaining gross errors in the measurementdeatetected after the adjustment. These
adjustment methods assume the presence of onlgrass error. One of the most effective
methods that can be used in detecting multiplesgeseors is the statistical quality control
method. Statistical quality control is a technigused to monitor a procedure with a goal of
making it more efficient and ensures precise result

Statistical control charts are used to provide perational definition of a special cause for a
given set of data. It is possible to construct iplds of sigma control limits. When all the
points on a control chart are within a multiplescdma control limits and there are no gross
errors in the data, the process of measuremesisidsto be in a state of statistical control.
Otherwise, the data indicate the presence of nodena gross errors. In this research work,
different methods of statistical quality control weused. Results showed that statistical
guality control method can be used successfully effidiently in detecting multiple gross
errors.

Keywords: Satistical Control Charts, Variables Control Charts, Attribute Control Charts, Probability,
Satistical Quality Control.
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Introduction

Generally speaking, gross errors can arise
from an incorrect measuring, and
recording procedure, from the observer or
the computer software us€d®. They are
the most serious of all types of errors,
simply because of their relatively large
sizes. Therefore, care must be taken to
avoid or eliminate them from observations,
otherwise the results obtained from a
process may be highly affected by their
presencé?.

Within a certain interval, i.e. (-a to +a), the
observations are considered to be normally
distributed. Then the gross error may be
defined as an error which does not belong
within the interval (-a to +a). it is stated
further that an assumption that the
distribution of a gross error is unknown
seems to be the only realistic alternaffte
Also when carrying out a statistical test for
gross errors, a so-called statistic is
computed. The probability density
function (pdf) of the statistic is known and
its value is so high that it can be expected
to be excluded (in say) 1% of cases; it is
assumed that the observation must be
generated by another process (i.e. it is
centered about a different mean and is
highlighted as a Possible gross error (for
probable rejectiony’.

The interpretation of gross errors given by
above is the most widely used
interpretation. It follows the so-called
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mean-shift model where it is assumed that
the mean of an observation is shifted when
a gross error is present but the shape of its
distribution is not altered. i.e. it is still
normally distributed with a given variance.
The mean-shift model has advantage of
allowing statistical tests to be applied. For
this reason, that the mean-shift model has
found good support in methods and
techniques dealing with gross error
detectior®.

There are two major types of gross errors.
The first is related to the instrument
performance and include measurement
errors (bias), miscalibration and total
instrument failure. The second is model
related and include model inaccuracies due
to inaccurate model parameters.

Various techniques have been designed for
the detection and elimination of these two
types of gross errdfs).  Any
comprehensive gross error detection
strategy should preferably have the
following capabilities:

1) Ability to detect the presence of one or
more gross errors in the data set (e.g., the
detection problem).

2) Ability to identify the type and location
of the gross error (e.g., the identification
problem).

3) Ability to locate and identify multiple
gross errors which may be present
simultaneously in the data set (e.g., the
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multiple identification
problems).

4) Ability to estimate the magnitudes of
the gross errors (e.g., the estimation
problem).

Not all gross error detection strategies may
fulfill all the above requirements. The last
of the above requirements, although
useful, is not absolutely necessary. A
gross error detection strategy can be
analyzed in terms of the component
methods it uses to tackle the three main
problems of detection, identification and
multiple gross error identification, and the
performance of the strategy is a strong
function of these methods.

The objective of the preset work was to
apply and evaluate the statistical quality
control technique to detect multiple gross
error in data collected through some
surveying measurements. Data used
include electronic distance measurements,
angular measurements and coordinates
determined from the Global Positioning
System (GPS) measurements. Various
techniques of Statistical Quality Control
(SQC) are to be used.

The methodology used for data analyzing
was the control charts generally applied in
SQC technique.

DETECTION OF MULTIPLE GROSS
ERRORS:

For a well maintained set of surveying
observations, it should generally not
expect more than one gross error to be
present in the data. Therefore, a
fundamental pre-requisite of any gross
error strategy is that it should have good
ability to detect and identify correctly a
single gross error. However, if a large
number of surveying measurements are to
be carried out or if the instruments used
are operated in a hostile environment,
and/or procedures used in carrying out the
measurements are inadequate, then it is
possible for several gross errors to be
simultaneously present in the data.

gross  error
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The most commonly used statistical
techniques for detecting gross errors are
based on hypothesis testing. In the gross
error detection case, the null hypothesis

H . is that no gross error is present, and

the alternative hypothesi$] 4, is that one

or more gross errors are present in the
system. All statistical techniques for
choosing between these two hypotheses
make use of a statistical test which is a
function of the measurements and model
equations. The statistical test is compared
with a pre-specified value and the null
hypothesis is rejected or accepted,
respectively, depending on whether the
statistic exceeds the pre-specified value or
not.

The outcome of the hypothesis testing is
not always perfect. A statistical test may
declare the presence of gross errors, when
in fact there is no gross error. In other
words, the null hypothesis is rejected when
it is true and ought to have been accepted.
In this case the test gives rise to a false
alarm. On the other hand, the test may
declare the measurements to be free from
gross errors, when in fact one or more
gross errors exist, i.e. the null hypothesis is
accepted when it is wrong and to be
rejected.

There are two major types of gross error
detection. The first deals with the raw
observations (e.g., pre-estimation gross
error detection) and the second deals with
the outcome from an estimation procedure
(e.g., post-estimation gross error
detection). In this paper only the first one
is considered.

Pre-estimation gross error detection is
meant to be the process of trying to detect,
locate and eliminate or repair obvious
large gross errors from the note-books or
observation files with the help of simple
set up conditions requiring little effort and
without  extensive and  expensive
computational work®,

Statistical Quality Control (SQC) employs
statistical methods to manage the quality
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of products and services. In 1924, Walter
A. Shewart of the Bell Telephone
Laboratories laid the foundation for
statistical quality controf®. Since then,
the area of SQC has been enriched by the
work of numerous statisticians, quality
philosophers and researchers. No doubt,
SQC is known in the quality literature.
However, there is a lack of evidence that
there is a chronological account of SQC to
date in the literature.

The origination of statistical quality
control was initiated and implemented in
the Bell Laboratories in the mid 19208.

It is stated:*as a young engineer at
Western Electric’'s Haouthorne Works, |
was drawn into a Bell Telephone
Laboratories initiative to make use of the
science of statistics for solving various
problems facing Hauthorne’s Inspection
Branch. The end results of that initiative
came to be known as Statistical Quality
Control or SQC.”

It is evident from the above statement that
the concept of SQC has begun in the Bell
Laboratories in the mid-1920s.

A Control chart is one of the most
important SQC methods in quality control
and improvement. It is a statistical tool
intended to monitor processes and signal
(errors) when they go out of control.
Nowadays the field of SQC can be broadly
defined as those statistical and engineering
models that are used in measuring,
monitoring, controlling and improving
quality (11,12,13)

Statistical Control Chart6SCCg are used

to provide an operational definition of a
cause for a given set of process data. If the
process is stable, then the distribution of
any subgroup averages (means) will be
approximately normal and it is possible to
construct a 1-sigma, 2-sigma or even 3-
sigma control limits, where sigma is
generally taken to be the standard
deviation of the mean. When all the points
on a control chart are within the prescribed
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limits of 1, 2, and 3 sigma control limits
and when there are no other non-random
or systematic patterns in the data, the
process is said to be in a state of statistical
control or “in control”. Otherwise, the data
indicate that the process is out of control.
The purpose of statistical quality control is
to ensure, in a cost efficient manner, that
the product delivered to customers meets
their specifications. Inspecting every
product is costly and inefficient, but the
consequences of delivering
nonconforming products can be significant
in terms of customer dissatisfaction.
Statistical quality control is the process of
inspecting enough product from given lots
to probabilistically ensure a specified
quality level®?,

It is often required to compare the output
of a stable process with the process
specifications and make a statement about
how well the process meets the
specifications. To do this, it is necessary to
compute the natural variability of a stable
process with the process specification
limits. A capable process is one where
almost all the measurements fall inside the
specification limits. This can be
represented pictorially by the bell-shaped
plot shown in Figure 1.

SL * ' +

* actual process spread +

allowable process spread

Figure 1: A capable Process
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There is a close connection between
control charts and hypothesis testing.
Essentially, the control chart is a test of the
hypothesis that the process is in a state of
statistical control. A point fall within the
control limits is means to accept the
hypothesis of the statistical control, and
vice versa.

The control chart is a device for describing
exactly what is meant by statistical
control. As such, it may be used in a
variety of ways. If the sample values of the
mean, say, fall within the control limits
and do not exhibit any systematic pattern,
the process is in control at the level
indicated by the chart.

The control chart may also be used as an
estimating device. That is, from a control
chart that exhibits statistical control, we
may estimate certain process parameters,
such as the mean, standard deviation, and
fraction nonconforming or fallout. These
estimates may then be used to determine
the capability of the process to produce
acceptable products.

Control charts may be classified into two
general types, Variables Control Charts
(VCCs) and Attributes Control Charts
(ACCs). Many quality characteristics can
be measured and expressed as numbers in
some continuous scale of measurement. In
such cases, it is convenient to describe the
guality characteristic with a measure of
central tendency and a measure of
variability. Control charts for central
tendency and variability are collectively
called Variables Control Charts (VCCs).
The sample mean chart is the most widely
used chart for monitoring central
tendency; whereas charts based on either
the sample range or the sample standard
deviation are used to control process
variability. Many quality characteristics
are not measured on a continuous scale or
even a quantitative scale. In these cases,
each unit of product may be judged as
either conforming or nonconforming on
the basis of whether or not it possesses
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certain attributes; or the number of

nonconformities (defects) appearing on a

unit of product may be counted. Control

charts for such quality characteristics are

called Attributes Control Charts (ACCs).

Control charts have had a long history of

use in industry. There are number of

reasons for their popularity. These may

include®:

1. Are proven techniques for improving
productivity.

2. Are effective in defect prevention.

3. Prevent unnecessary process
adjustments.

4. Provide diagnostic information.

5. Provide information about process
capability.

The parameters required to design a

control chart are the population megan

and population standard deviatioa,, (if
they are known). Otherwise, these
parameters can be replaced by their
respective sample values. The average of
the sample is then plotted on the chart. The
Upper Control Limit (UCL) and Lower
Control Limit (LCL) are then calculated
and plotted on the chart. To do this, and
because the control chart utilizes the
sample mean to monitor the process mean
(e.g.,X), it is usually calledX control
chart. If samples of size n are taken, then
the standard deviation of the sample
averagegy, is given by;

o

Jn

By using the central limit theorem to

assume tha¥ is approximately normally
distributed, it would be expected that

100(1-9) % of the sample meaX fall

betweer‘fli kay where @ is the level of
significance. The constant k is customarily
chosen to be a multiple of the standard
deviation ofX . The “width” of the control
limits UCL and LCL is inversely

(1)

oy =
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proportional to the sample size for a
given multiple ot .

Materials and methods:

To test the possibility of detecting multiple
gross errors in surveying measurements,
various tests were carried to find out
whether multiple gross errors could be
detected simultaneously using SQC
methods. Various techniques and
procedures were employed in order to
achieve this objective. The data were
provided using various surveying
instruments  including the  Global
Positioning System (GPS) and barometer.
Results:

In order to determine the height of
a photo-control point, 30 measurements
were taken using a barometer. Readings
were taken every 10 minuets. The results
of the measurements were as shown in
Table (1). It is assumed that the
measurements were taken under the same
weather conditions. The formulae used to
calculate the values given in Tables 1 and
2 were as follow:

Individuals M easur ements:

UCL=x+31 =x+3 1
o 112
CL =X 2
LCL=x-3" =x-3 -
(073 1128
Moving ranges.
UCL=Dm=326T
CL =m 3
LCL=D4m=0
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Ranges:
UCL =D,F
CL =7 (4)
LCL =D,F
36 control charts:
UCL =X+30
CL =X (5)
LCL =X-30

where: D;and D, are constants, tabulated

for various sample sizé&38.
D,=2.115,D,=0,d, =1128

r is the sample average range.

m is the sample average moving range
and individual measurements.

X is the sample average mean.

The test objective was to compare Shewart
X control chart, individual control chart,
moving range control chart, deviations
control chart and cumulative sum control
chart in detecting multiple gross errors.

In order to perform this comparisog
control charts for the above mentioned
techniques were drawn. These are shown
in Figure2 (a, b, c, d, and e).

Because the control charts in Figure 2. a,
b, ¢, d and e, can easily be constructed, the
X and theR control charts were used to
see whether multiple gross errors can be
detected using these methods. Another test
was carried out wusing 25 GPS
measurement samples, to determine the
height of a benchmark using GPS receiver.
These measurements were carried out in
five separate consecutive days. The results
obtained are given in Table 2.
Again, the charts for the 25 samples, using
the sample mearX is shown in Figure 3
and that for the sample ranges R, is shown
in Figure 4.
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Table 1: Barometric Heights of a photo-Control R®in

Observ Individual

ations Deviation X Control Chart Measurements Moving range Cumulative
N (m) CL From The Range
[¢] Mean c UCL LCL UCL LCL UCL | LCL Deviation
1 125.562 125.528 0.034 0.02B 125.597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0 0.034
2 125501 | 125528 -0.027 | 0.023 | 125597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.061 0.007
3 125.522 125.528 -0.006 0.02B 125.597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0.021 0.001
4 125.56 125.528 0.032 0.02B 125.597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.038 0.033
5 125.498 | 125528 -0.03 | 0.023 | 125597 | 125459 | 125.6 | 125.456 | 0.088 | 0.027 0.062 0.003
6 125555 | 125.528 0.027 0.028 125597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0.057 0.03
7 125.543 125.528 0.015 0.023 | 125.597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.012 0.045
8 125538 | 125.528 0.01 0.02B 125.597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0.005 0.055
9 125517 | 125528 -0.011 | 0.023 | 125597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.021 0.044
10 125.499 125.528 -0.029 0.023 125.597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.018 0.015
11 125.54 125.528 0.012 0.02B 125.597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0.041 0.027
12 125.509 125.528 -0.019 | 0.023 | 125597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.031 0.008
13 | 125538 | 125.528] 0.01 0.028 125597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0.029 0.018
14 125.544 125.528 0.016 0.023 | 125597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.006 0.034
15 | 125547 | 125.528] 0.019 0.023 125.597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.003 0.053
16 | 125565 | 125528 0.037 | 0.023 | 125597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.018 0.09
17 | 125.497 | 125.528] -0.031 0.023 125.597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.068 0.059
18 125.509 125.528 -0.019 0.023 125.597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0.012 0.04
19 | 125514 | 125528 -0.014 | 0.023 | 125597 | 125459 | 125.6 | 125.456 | 0.088 | 0.027 0.005 0.026
20 125.523 125.528 -0.005 0.023 125.597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0.009 0.021
21 | 125548 | 125.528 0.02 0.023 | 125597 | 125459 | 125.6 | 125.456 | 0.088 | 0.027 0.025 0.041
22 125.533 125.528 0.005 0.023 125.597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.015 0.046
23 | 125571 125.528 0.043 | 0.023 | 125,597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.038 0.089
24 | 125507 | 125.528 -0.021 0.023 125.597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.064 0.068
25 125.511 125.528 -0.017 0.023 125.597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0.004 0.051
26 | 125,519 | 125.528 -0.009 | 0.023 | 125597 | 125459 | 125.6 | 125.456 | 0.088 | 0.027 0.008 0.042
27 125.521 125.528 -0.007 0.023 125.597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0.002 0.035
28 125.5 125.528 -0.028 | 0.023 | 125597 | 125.459 | 125.6 | 125.456 | 0.088 | 0.027 0.021 0.007
29 125.546 125.528 0.018 0.023 125.597 | 125.459 | 125.6 | 125.456 | 0.088| 0.027 0.046 0.025
30 | 125.496 | 125.52§ -0.032 0.023 125597 125.459 .6125125.456 | 0.088] 0.027 0.05 -0.007
To
tal | 3765.833
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Table 2: GPS height determination

Observations (m) Three Sigma
Sample —
number X R cL N
1 2 3 4 5 UCL LCL
1 629 | 636 | 640 | 635 | 640 636 11 | 629.3760| 0.9033| 634.707 | 624.045
2 630 | 631 | 622 | 625 | 627 627 9 629.3760| 0.9033| 634.707| 624.045
3 628 | 631 | 633 | 633 | 630 631 5 629.3760| 0.9033| 634.707| 624.045
4 634 | 630 | 631 | 632 | 633 632 4 629.3760| 0.9033| 634.707| 624.045
5 619 | 628 | 630 | 619 | 625 624.8 11 | 629.3760| 0.9033| 634.707| 624.045
6 613 | 629 | 634 | 625 | 628 625.8 21 | 629.3760| 0.9033| 634.707| 624.045
7 630 | 639 | 625 | 629 | 627 630 14 | 629.3760| 0.9033| 634.707| 624.045
8 628 | 627 | 622 | 625 | 627 | 625.8 6 629.3760| 0.9033| 634.707 | 624.045
9 623 | 626 | 633 | 630 | 624 | 627.2 10 | 629.3760| 0.9033| 634.707 | 624.045
10 631 | 631 | 633 | 631 | 630 631.2 3 629.3760| 0.9033| 634.707| 624.045
11 635| 630 | 638 | 633 | 635 634.2 8 629.3760| 0.9033| 634.707| 624.045
12 623 | 630 | 630 | 627 | 629 | 627.8 7 629.3760| 0.9033| 634.707| 624.045
13 635 | 631 | 630 | 630 | 630 631.2 5 629.3760| 0.9033| 634.707| 624.045
14 645| 640 | 631 | 640 | 642 | 639.6 14 | 629.3760| 0.9033| 634.707| 624.045
15 619 | 644 | 632 | 622 | 635 630.4 25 | 629.3760| 0.9033| 634.707| 624.045
16 631 | 627 | 630 | 628 | 629 629 4 629.3760| 0.9033| 634.707 | 624.045
17 616 | 623 | 631 | 620 | 625 623 15 | 629.3760| 0.9033| 634.707| 624.045
18 630 | 630 | 626 | 629 | 628 | 628.6 4 629.3760| 0.9033| 634.707| 624.045
19 636 | 631 | 629 | 635 | 634 633 7 629.3760| 0.9033| 634.707| 624.045
20 640 | 635 | 629 | 635 | 634 | 634.2 11 | 629.3760| 0.9033| 634.707 | 624.045
21 628 | 625| 616 | 620 | 623 622.4 12 | 629.3760| 0.9033| 634.707| 624.045
22 615 | 625| 619 | 619 | 622 620 10 | 629.3760| 0.9033| 634.707| 624.045
23 630 | 632 | 630 | 631 | 630 630.6 2 629.3760| 0.9033| 634.707| 624.045
24 635 | 629 | 635| 631 | 633 632.6 6 629.3760| 0.9033| 634.707| 624.045
25 623 | 629 | 630 | 626 | 628 | 627.2 7 629.3760| 0.9033| 634.707| 624.045
total 15734.4| 231 | 629.3760| 0.9033 634.707| 624.045
mean 629.376| 9.24
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Figure 2a: 8 x Control chart for Barometer readings
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Figure 2b: 3 Individual control chart for Barometer readings
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DISCUSSION:
Referring to Figures 2 a, b, c,d and e it

can be seen that th& control chart, the

individual control chart and the deviations
control chart, produce the same results. It
is clearly that all measurement values
fluctuate about the mean or around zero.
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The use of the moving range gives results
that were inconsistent. More observations
fall on the lower side of the moving range

than on the upper side. This means that
the true mean of the measurements was
underestimated. Also the shape of the
chart using the moving range was identical
to that when the cumulative deviations
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method was used. All values were positive
except the measurement value number
thirty in the cumulative deviations control
chart. See Figure 2 e.

It should be noted that even when there
was no gross errors in the measurements,
there was out of control readings every 33
measurements for thes Eontrol limits. In
other words, the Average Run Length
(ARL) was equal to 34 for thes3

As it can be seen from the second test,

using the mean X), the results obtained
were more sensitive in detecting gross
errors than using the range (R); five
measurements were detected as gross
errors  (20%) compared to two
measurements (8%) respectively. This is,
becauseX uses all available information
while R uses only the two extreme values
i.e. the smallest and the largest values.
Conclusions

From the results obtained the following
conclusions could be drawn:

¢ Using the mean was more sensitive in
detecting multiple gross errors than the
range .

¢ Both deviations from the mean method
and the cumulative sum method give
identical results in multiple gross error
detection.

® The mean control chart, the individual
control chart and the deviations control

chart produce the same results when used
in detecting gross errors.

¢ The use of the moving range in multiple
gross error detection gives inconsistent
results. Most of observations fall on one
side of the base line than on the other.

* Moving range method and cumulative
deviation method graphs are identical in
shape but with different deviations from
the true values.
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