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Abstract: The description of deformation and the measursti@in are essential parts of
nonlinear continuum mechanics. In this paper, a fmmulation for geometric nonlinear
plane stress/strain based on Logarithmic straiféL(&S) is presented. This is coupled with
a formulation based on the well known Green's s¢raand coupled with modifying a
formulation based on geometric strains (conventistrains). A geometric nonlinear total
lagrangian formulation applied on two-dimensionddsgcity using 4-node plane finite
elements is used. The formulations were implementéa the finite element program
(NUSAP), which is developed for the analysis ofnglastress/strain problems subjected to
static loading. The solution of nonlinear equatiovess obtained by the Newton-Raphson
method. The program was applied to obtain displ@rgsfor the different strain measures.
The accuracy of the results was demonstrated bygusvo numerical examples and the
results are in good agreement with other availglielished solutions and those obtained
using commercial finite element solvers such asSXS. It could be concluded that the
geometrically nonlinear formulations converge te ttorrect solution with coarse meshes
and are computationally efficient. In addition, tiesulting displacements clearly showed the
effect of the nonlinearity in the deflected shafieis also observed that all results were
approximately identical when applying a small vatdiéoad and when a large value of a load
was applied there was a difference between thétsasiihe three strain measures.
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Introduction

Many engineering problems of interest are
inherently nonlinear. In solid mechanics,
generally, two sources of nonlinearity exist
in the analysis of solid continua, namely,
material nonlinearity and geometric
nonlinearity. The former occurs when the
stress-strain  behavior given by the
constitutive relation is nonlinear, whereas
the latter is important when changes in
geometry, whether large or small, have a
significant effect on the load deformation
behavior. The solution of geometrically
non-linear problems is based on either the
total lagrangian formulation where all
variables are referred to initial
configuration or the updated lagrangian
formulation where all the variables are
referred to the configuration at the
beginning of the load step considered.

For genuine geometric non-linearity,’
incremental' procedures were originally
adopted by Argyri§” using the 'geometric
stiffness matrix' in conjunction with an up
dating of coordinates and, possibly, an
initial  displacement matrix. Newton-
Raphson iteration was used by Mallet and
Marcal ®. Zienkiewicz ® and Oden®
also recommended a modified Newton-
Raphson procedure. A special form using
the initial, elastic stiffness matrix was
referred to as the 'initial stress' metHdd
Brebbia and Connof® introduced the
concept of combining incremental and
iterative methods The plane stress
problem is well suited for introducing
continuum finite elements, from both the
historical and technical standpoint. The
first continuum structural finite elements
were developed at Boeing in the early
1950s to model delta-wing skin panéfs

A plane stress model was naturally chosen
for the panels.

There are many applications of plane
stress/strain in different fields of analysis,
Pida, Yang and Soedel (198%) used
large  strain  8-node plane  stress
isoparametric finite element for prediction

2

of rubber fraction. The formulation is
based on total Lagrangian description and
incremental formulation.

Seki, and Atluri (1994} used 2D plane
stress/strain element in application of
analysis of strain localization in strain-
softening hyper elastic material, using
assumed stress hybrid elements.
Fernando. Fores (2006§*® used an
assumed strain approach for a linear
triangular element based on a total
lagrangian formulation and its geometry is
defined by three nodes with only
translational degrees of freedom.

The nonlinear strain and stress measures in
definition of stress-strain relation are one
of the Kkey concepts of several
nonlinearities. There are alternative strain
measures used to derive finite element
equations, such as Green strain, which is
associated with Piola-Kirchoff stress,
Geometric strain, which is associated with
Engineering stress, and Logarithmic strain,
which is associated with true (Cauchy)
stress. The Green strain is the most
common definition applied to materials
used in mechanical and structural
engineering problems, which are subjected
to small deformations. On the other hand,
for some materials, subjected to large
deformations, the engineering definition of
strain is not applicablé!”. Thus other
more complex definitions of strain are
required, such as logarithmic strain and
Almansi strain.

Turner, et. al,™ reported the finite
element procedure to geometrically
nonlinear  structure.  Zienkiwicz®).
introduced the geometric nonlinear
analysis using the total lagragian
formulations, with incremental procedure
combined with Newton-Raphson (NR)
iterative techniques. Mohamed (198%)
used both Green strain and geometric
strain measures to solve the problem. He,
also, proposed a total lagrangian modified
incremental equations for a two-
dimensional state of stress based on the
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geometric strains. This has been adopted
as the base for the formulation based on
the geometric strain In this Paper,

geometrically nonlinear formulations

based on two-dimensional 4-node plane
stress and plane strain isoparametric finite
elements are developed. The nonlinear
formulations are based on the total
Lagrangian formulation and using the

Green's strains, Geometric strains and
Logarithmic  strains. The  adopted

formulations were implemented into a

general-purpose nonlinear finite element
program NUSAP and the displacements
values obtained from the different strain
measures were compared. Numerical
examples were wused to show the
performance of the proposed formulations.
Geometrically Non-linear Formulations:

As stated above the geometrically non-
linear finite element formulation based on
Green's strains is well established. In the

In this section, the formulation based on
Geometric  (conventional) strains is
outlined.

In two dimensions the geometric strains

¢, and &, are defined by the change in

length per unit initial length of line
elements originally oriented parallel to the
x and yaxes respectively. The shear

strain y'Xy is the change in right angle. This
shear strain is assumed to be small so that
siny,, can be assumed to be equaljg

The geometric strains as defined above by
the change in length per unit initial length,
are given by:

' 1 1
ex = (9x0x)2 ~1= L+ 265)2 -1 (1)

. 1 1

ey =(oyoyfo-1=lr 26,5 -1
Assuming that the shear angle is small, we
obtain the shear strain as

: . - y
following sections the other two Vxy = ad (1b)
formulations are outlined. (1+ 2£X)5 (1+ 2£y)§
Gleometrlcally lNo_n-Ilnea]lcr F'In'te whereEx, Ey and Yy are the Green strains.
Element . Formulation or. Pa_me The variation in the geometric strains is
Stress/strain based on Geometric strain: given by equations 2 and 3.
o 0 0
ey (1+22,)2 %,
J =10, (= 0 % 0 % @
iy (1+2‘9y)5 %y
~Vxy ~Vxy 1
3 1 PR 1 L
(o5 )alias ) (r2s)alivs, o (125 )alr2e, ) |
or J =Hoe 3)

From equations (1a) & (1b), the variations
in the geometric strains are given by:

« «T T T
)'=HB&a=Ba B =B H (@4

t//:J'BTHadv—f:O

\

(5)

In which Bis the strain matrix, anél relates By taking the variation of equation (5) we
variation in geometric strain to variation in have:

Green's strain.
The equilibrium equations in terms of
engineering stresses are:
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ow=[B"H"dav+ [ B "H  ad * *
W { v \j/ v 5ATHTU:[0X[I] rxy[l]}

(6) * *
Twill]| oyll 11
. Voo =P Goa
using equation (4) we have: where| is 2x2 unit matrix, and
T

JBTHTJOdV:UBTHTDHBdVJJa 0= du dv du ov

Y Y 7) 0x 0x 0y dy

_ JB*TDB*dV = (Ko + Ki)&i is _the_ vector contai_ning displacement
derivatives w.r.t cartesian coordinates, and

Where is related to the nodal displacements by the

N ToT form:
Ko = [ Bg H DHBydv (8) 6=Ga
v where G is a matrix containing shape
and function derivatives.
T x
K| ='[Bo HTDHBLdv+ B[ H T DHB,dv ando is the engineering stress vector
v v ) given by:
+[B{HTDHB dv 7 oy
\ * * _ T
[oBTHTodv = [oB[H Todv = a—a;y =H" 9y (12)
v (10) Tyy Txy

[GTOATH Todv = K, da

. _ , _ Substituting equation (11) in (10) then;
where K, is the symmetric matrix

—(cTp*
dependent on the engineering stress, and _JG P Gav (13)
can be written as:
Using equations (12) we have
O, Hhxy nyrxy ~hy
3 5 1 3 1
(+25); (+2safiv2sf;  (1+25) (1+2£f2 (425051425, 2
) 3 -, %
J—|T0'= y - + xyrxy Xy dfy L4)
(1+2£ny (1+25) (1+£b 1+2£X)2(1+2£f iy
symmetric 0

In simple form, equation (14a) can be re-written a

MTo =P =PBd
whereP is given by;
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— 0y WigTxy Vighry Ty
3 5 1 3 3 3 1
(1+25)2 (1+25)3(1+ 22, )2 (1+25,)2(1+ 2, )2 (1+25,)2(1+ 2, )2
-0y Yy Txy —Tyy (14b)

3
2

symmetric

Then

j BTd—|Tadv=U BT PdeJdi: K'  (15)
where K is the additional geometric

stiffness matrix, which is clearly
asymmetric matrix.

Therefore from equations (6), (10) & (15),
equation (5) can be written as:

=K, +K +K; +K; Ja= K@ (16)

in which

K is the tangent stiffness matrix due to
Geometric Strains

Geometrically Non-linear Finite
Element Formulation for  Plane
Stress/strain based on Logarithmic
strain:

In this section, the formulation based on
Logarithmic strains is outlined.

From the principle of virtual work, the
equilibrium equations can be writtein

termsof the true Cauchy stresses as

¢/=j§Tadv—f =0 (17)

where B' =B 'S =BTH s and
o=DBa=DB*a=DSHBa where S
relates variation in logarithmic strain to
variation in Geometric strain
Then

W :jBTHTsTadv— f=0

\

(18)

braele (r2s)lire) (r2s)obrs)e

1

0

On taking the variation of Equation (18)
the results are:

szjBTHTSTJm +jaBTHTsTadv
\% \%
+jBTd4TsTadv+jBTHTdsTadv
\% \
(19)

in which:
j BTHTST sadv
\"

=[j BTHTST DSHBdﬂda =(Ko + K| )@
\'

(20)
Where
Ko = [BgH ST DSHB,dv (21)
\"
KL =[BgHTS'DSHB dv
\%
+[B[HTS" DsHByav
\%
+[B[HTSTDSHBLV  (22)

Vv
Since: B = Bg + BI then:
B =B =GR , therefore
jaBTHTsTadv:jGTdATHTsTodv
\'

\"
and:
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ATHTS g =

o e Yy Lou Ty

1 , , 3 1 , 1 1
X eas)olivs) frafiras)olivzs o | V| b+ pglie2e)le 22, |
L ox _ Ty LoV Ty

1 , , 3 1 , 1 1
ax_(1+2ex)5(1+ex) (1+gx)(1+25X)§(1+2ey)5_ % (1+yxy)(1+2ex)§(1+2gyb_
wu oy Ty Lou Ty

1 . , 1 3 . 1 1
W ez, olivey) firearosolieze,)s | | b vighie2e)oliv2s,)s |
ov 0'|y ~ SyXyr;(y +6_v T;(y

1 . , 1 3 . 1 1
_ay_(“zgyb(“fy) (1+5ykl+2‘9x)5(1+25yb_ ax_@+yxykl+25x)2(l+2£yb__

A'H'S"g =P8 (23)
Therefore, Equation (23) can be re-
written as:

ATH'S'oc=P'8=P'Ga
where P’ is the initial stress
matrix (symmetric matrix) Hence taking
variation results indA'H'S'o = P'Géa
Therefore:
[BTHTS adv
\%

=jGTdATHTSTadv
\"

(24)
:[JGTP/GdVJJa: K0
\'%
where KU:jGTP’de is the initial

stress stiffness matrix. Also:

OEy
Ho'=L| d,
Wy
where og=So* (25)

In simple form, Equation (25) can be
written as:

HTo' =T ox=TB& (26)

where T is second initial stress

matrix.(symmetric matrix)

jBTaHTa‘adw[j BTT'deJda: K!dm

(27)
where
K,= [B'TBdv is additional initial
\'
stress  stiffness  matrix.  Similarly
H'&Bo* =M'Bda

where M'is the a third initial stress
matrix and is given in terms of the initial
stresses and strains. Therefore;

JBTHTJSTa*dV:[JBTM/BdV}da

\ \

=ka (28)
whereK! is the second additional initial
stress stiffness matrix. From Equations,
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(20), (21), (22), (27) and (28) the tangent
stiffness matrix due to logarithmic strains
can be defined by:

5w:(KO+KL+KU+Ké.+Kg)é
= K-T-L@
where
KTL= K, +K +K, +K] +K]
is the tangent stiffness matrix due to
logarithmic strains.
Numerical Results and Discussion:
The finite element formulation described
in the above section was implemented in
the FORTRAN based NUSAP. The two
numerical examples of large deformation
problems were examined to demonstrate
the degree of accuracy that can be
obtained by using the geometrically non-
linear formulations based on 4-node
isoperimetric plane stress/strain element
by using Green's strains, geometric strains
and the new formulation, namely
logarithmic  strains. The results of
displacements of the different strain
measures are compared with those
obtained from published finite element
solutions and commercial finite element
solvers such as ANSYS.
Cantilever under pure bending at free
end: A cantilever subjected to pure
moment was considered.
The cantilever was of dimensios=3000
mm, D=300 mm and thickness=60 mm
as shown in Figure 1.
The numerical values of material property
parameters are Young's modulus=210
GPa, and Poisson’s ratioy=0.3. The
structure is modeled with a mesh of 40-
isoparametric elements, and the integration
order is 2x2. The mesh is of equal size
elements of 158150mm. The deformed
shape when P=18000N, 21000N and
30000N is shown in Figure 3 and Table 2.
The locus or path followed by the point A
with load increments as computed by the

(29

present formulations is compared with that
generated by finite element solver
(ANSYS). Results are presented in Table 1
and Figure 2.

Y

D =300 mm
1
I
I
1
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I
1
i
i
i
|

I

—

Figure I Cantilever under pure bending

L= 3000 mm

It is observed that there was a slight
difference  between  geometric  and
logarithmic values, whereas the logarithmic
results showed reasonable agreement with
finite element solver (ANSYS). It was also
observed that under a lower load or initial
values of load all results were identical.
Figure 3 clearly shows the effect of the
nonlinearity in the deflected shape. It is also
observed that all results are approximately
identical when applying a load of (18000N)
whereas when the maximum load of
(30000N) was applied there is a difference
between the results of the three strain
measures.

Clamped beam under point force: A beam
with two-fixed end was considered. The
beam lengthL =200 mm, heighto=10 mm
and thickness 1 mm as shown in Figure 5.
The numerical values for material property
parameters are Young's modulusiE
=210GPa, Poisson's ratin=0.3. The beam
is modeled with mesh of 20-elementes, the
integration order used wax2.

The computed results of the displacement at
the centre point A obtained from the present
formulations and finite element solver
(ANSYS) are listed in Table 3; the responses
of the normal deflection at point A, V, to

the applied force F are presented in Figure 6.
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Table 1: Deflection at point A

GREEN | GEOM GREEN | GEOM LOG ANSYS
LOAD u u LOGu \Y \% \Y \Y
0 0 0 0 0 0 0 0
300C | 3.7570: | 3.7378¢ | 3.7230¢ | 99.972° |99.984: | 99.903: | 141.1¢
600C |15.754: | 15.753¢ | 15.727: | 199.24. | 199.93:| 199.99¢ | 270.59!
9000 | 35.7768| 36.0832 36.1821 297.087 300.0301.055 | 405.595
12000 | 63.4792| 64.792 65.4045 392.848 400./4493.837 | 517.66
15000 | 98.4102| 101.964 103.85 485.956 501.30@9.061 | 623.54
18000 | 140.04 147.685 152.101 575.941 602.63 617.40329.43
21000 | 187.788| 202.027  210.849 662.442 704/4229.472 | 823.55
2400( | 241.05: | 265.03: | 280.8¢ 745.21¢ | 806.61¢ | 845.83. | 917.61
2700C | 299.23" | 336.71: | 363.05: |824.10: | 909.10:| 966.96. | 974.7:
30000 | 361.758| 417.024 458.287 899.04 1011.7@93.28 | 1047.08
12m T T T T T
4 |-=—crEEWV -
e 1 |+ ceow /7 ]
c LOGV
T e |voAsS /?/
S / /
e / / i
()] /
@ 601 e /I/
a v ./
2 /S |
° 400 v/:
g /s
5 201 o
><
0+ ¥
T T T T T T T T T T T T
5 0 50 100 150 200 250 300 30 400

U, (Horizontal displacement)mm

Figure 2: The path followed by the point A with ¢bstep increments faantilever beam
under pure bending
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Table 2: Deformed shape along center line

LOAD 18000N LOAD 21000N LOAD 30000N
NOED | GREEN| GEOM LOG| GREEN GEOM LOG GREEN GEOM LOG
23 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0( 0.00
24 -13.8 -13.3 -12.7 -16.1 -15.5 -147 -23.1 -2119-20.4
25 -37.9 -37.0 -35.9 -44.3 -43.1 -41.6 -63.R -61{1-58.4
26 -72.1 -71.0 -69.6 -84.0 -82.7| -80.8 -119,0 -018.-114.0
27 -116.0 -115.0| -114.0 -135.( -135)0 -138.0 -191.0192.0 | -189.0
28 -170.0 -170.0| -169.0 -198.0 -198,0 -197.0 -278.0-283.0 | -284.0
29 -233.0 -236.0| -235.0 -271.( -27500 -275.0 -378.0393.0 | -399.0
30 -306.0 -311.0f -313.0 -354.0 -363,0 -367.0 -492.0520.0 | -536.0
31 -387.0 -398.0| -402.0 -448.( -4640 -478.0 -617.0666.0 | -696.0
32 -478.0 -495.01 -504.0 -551.0 -578/0 -593.0 -753.0-830.0 | -882.0
33 -576.( -603.C | -617.C | -662.( -704.C | -729.C | -899.C | -1010.( | -109C.
0 T T - -LOAD 18000
1 Ny, 5 6 7 8 9 | 10 | 1 CREEN
T IR ~ LOAD 18000
)
-200 \\ \&‘\ GEOM
k 'l\ - -LOAD 18000
= 400 A \\\;2 _._LOG
E .\\ N S N LOAD 21000
‘Z \ | W | GREEN
2 -600 N\ \ 1 LOAD 21000
] GEOM
EL 800 \ \T tggo 21000
N =
e |
-1000
\ I(.BOE/?)[:ASOOOO
1200 - -LOAD 30000
Distance along x-axis (mm) L0G

Figure 3: Deformed shape along center line
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A ve._ - < -1
1 Ay LN L N <
50000 v,v‘A\\‘fo “ o /q-
| v & &« e
40000 v 0’,4/4 A‘\:\\o\-\- 7]
a ] N ) A\\Oi.l\-
& 30000 - v/ /L’g:/‘ Ao‘-_l
20000 —: *Y;'w L-U/L.\\‘.‘ ]
«* %
10000 e T3 Geom a
" DS FO
0 Do A GEOMU -
-10000 - — T T L '”.I”G' T L — 1 T =
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
VIL, L-U/L
Figure 4: Displacements V/L, L-U/L at Point A
y Pi
i
€
S | A - X
1
om
< L=200 mm >
Figure 5 Clamped beam under point force
Table 3: Vertical displacement at point A
LOAD (N) ANSYS VA | LUSAS VA | GEOM VA | LOG VA
25 0.062 0.062 0.062 0.062
50 0.120 0.126 0.126 0.125
100 0.240 0.253 0.253 0.253
17t 0.41¢ 0.44¢ 0.44¢ 0.44¢
287.t 0.68 0.752 0.751 0.75]
456.25 1.104 1.223 1.122 1.122

10
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1.4 ‘

Vertical displacement at point A

—&— ANSYS VA

—&— GREEN VA

GEOMVA
—a—LOG VA

Displacement (mm)

Load (N)

Figure 6: Vertical displacement at point A

Vertical displacement at point A

1.20E+01

4.00E+00 /
2.00E+00

—e—GREEN A

1.00E+01 = GEOMA A
B ——LOGA /
E 800E+00
<
)
£ 6.00E+00
)
[S)
g P il
o
0
[a]

o

0.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Load (N)

Figure 7: Vertical displacement at mid span (paint

Six load increments were applied to the
clamped beam and resulted in a close
agreement of the displacements for the
formulations especially the ANSYS and

logarithmic strain solutions as shown in

Figure 6.

The application on this example of 45 load
increments resulted in the displacements
shown in Figure 7. The results obtained
showed that at the early stages of load, the
three formulations curves are coincident.
The application of large loads resulted in a
variation between the results, and the log-
curve tendsed in an infinite result as

expected.

11

Conclusions:

Based on the results of the numerical
examples, it can be concluded that:

e The resulting displacements showed
good agreement with available solutions.

¢ For a clamped beam subjected to central
load increments the resulting
displacements are identical in the early
stages of load for the three formulations.
Variations occur as load increases and the
GNLGS results tend to infinite values.

e The geometric strain solutions are
suitable to be wused with the elastic
constants based on engineering stress.
*The logarithmic strain formulation can be
used when the true stresses are required.
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