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Abstract: The description of deformation and the measure of strain are essential parts of 
nonlinear continuum mechanics. In this paper, a new formulation for geometric nonlinear 
plane stress/strain based on Logarithmic strains (GNLGS) is presented. This is coupled with 
a formulation based on the well known Green's strains and coupled with modifying a 
formulation based on geometric strains (conventional strains). A geometric nonlinear total 
lagrangian formulation applied on two-dimensional elasticity using 4-node plane finite 
elements is used. The formulations were implemented into the finite element program 
(NUSAP), which is developed for the analysis of plane stress/strain problems subjected to 
static loading. The solution of nonlinear equations was obtained by the Newton-Raphson 
method. The program was applied to obtain displacements for the different strain measures. 
The accuracy of the results was demonstrated by using two numerical examples and the 
results are in good agreement with other available published solutions and those obtained 
using  commercial finite element solvers such as ANSYS. It could be concluded that the 
geometrically nonlinear formulations converge to the correct solution with coarse meshes 
and are computationally efficient. In addition, the resulting displacements clearly showed the 
effect of the nonlinearity in the deflected shape. It is also observed that all results were 
approximately identical when applying a small value of load and when a large value of a load 
was applied there was a difference between the results of the three strain measures.       
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  :مستخلص

تعرض هذه الورقة تقنين . المكونات الاساسية للميكانيكا اللاخطية للاجسام المتصلة وصف التشوه وقياس الانفعال من
تُزاوج الورقة بين هذا التقنين وبين . الانفعال المستوى بنى على الانفعالات اللوغرثمية /جديد للاَّخطية الهندسية للاجهاد
حصول عليه بتعديل تقنين مبنى على الانفعالات وبين تقنين مستحدث تم ال) Green(التقنين المعلوم لانفعالات قرين

الكلِّى للاَّخطية الهندسية تطبيقاً على المرونة ثنائية ) Lagrange(استخدام تقنين لاقرانج ) المتعارف عليها(الهندسية 
 ج العنصر المحددـى برنامـتمت حوسبة التقنينات الثلاثة بوضعها ف. دـالابعاد لعنصر محدد مستوى ذى أربعة عق

)N U S A P( ر لتحليل مسائل الاجهادتم الحصول على حل . الانفعال المستوى المعرضة لأحمال ساكنة/ الذى طُو
طُبق البرنامج للحصول على الازاحات الناتجة عن قياسات . رابسون –المعادلات اللاَّخطية باستخدام طريقة نيوتن 

ثالين عدديين ، وأظهرت النتائج توافقاً جيداً مع الحلول المنشورة ومع وبينت دقة النتائج بناء على م. الانفعال المختلفة
تخلص الورقة الى أن تقنينات ). A N S Y S(التى تم الحصول عليها باستخدام برامج العنصر المحدد التجارية مثل 

. وسبة مناسبةاللاَّخطية الهندسية تتقارب الى الحل الصحيح باستخدام عناصر محددة قليلة وهى ذات كفاءة مح
ويلاحظ ، ايضاً ، أن كل . وبالاضافة لهذا تُظهر الازاحات المتحصل عليها بوضوح أثر اللاَّخطية على الشكل المنحنى

النتائج متطابقة تقريباً عند تطبيق الاحمال الصغيرة ، وهنالك فرق واضح بين نتائج قياسات الانفعالات الثلاثة عند 
  .تطبيق الأحمال العاليه
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Introduction 
Many engineering problems of interest are 
inherently nonlinear. In solid mechanics, 
generally, two sources of nonlinearity exist 
in the analysis of solid continua, namely, 
material nonlinearity and geometric 
nonlinearity. The former occurs when the 
stress-strain behavior given by the 
constitutive relation is nonlinear, whereas 
the latter is important when changes in 
geometry, whether large or small, have a 
significant effect on the load deformation 
behavior. The solution of geometrically 
non-linear problems is based on either the 
total lagrangian formulation where all 
variables are referred to initial 
configuration or the updated lagrangian 
formulation where all the variables are 
referred to the configuration at the 
beginning of the load step considered. 
For genuine geometric non-linearity,' 
incremental' procedures were originally 
adopted by Argyris (1) using the 'geometric 
stiffness matrix' in conjunction with an up 
dating of coordinates and, possibly, an 
initial displacement matrix. Newton-
Raphson iteration was used by Mallet and 
Marcal (2). Zienkiewicz (3) and Oden (4) 
also recommended a modified Newton-
Raphson procedure. A special form using 
the initial, elastic stiffness matrix was 
referred to as the 'initial stress' method (5). 
Brebbia and Connor (6) introduced the 
concept of combining incremental and 
iterative methods. The plane stress 
problem is well suited for introducing 
continuum finite elements, from both the 
historical and technical standpoint. The 
first continuum structural finite elements 
were developed at Boeing in the early 
1950s to model delta-wing skin panels (7). 
A plane stress model was naturally chosen 
for the panels. 
There are many applications of plane 
stress/strain in different fields of analysis,  
Pida, Yang and Soedel (1989) (8) used 
large strain 8-node plane stress 
isoparametric finite element for prediction 

of rubber fraction. The formulation is 
based on total Lagrangian description and 
incremental formulation.  
Seki, and Atluri (1994) (9) used 2D plane 
stress/strain element in application of 
analysis of strain localization in strain-
softening hyper elastic material, using 
assumed stress hybrid elements. 
Fernando. Fores (2006) (10) used an 
assumed strain approach for a linear 
triangular element based on a total 
lagrangian formulation and its geometry is 
defined by three nodes with only 
translational degrees of freedom.  
The nonlinear strain and stress measures in 
definition of stress-strain relation are one 
of the key concepts of several 
nonlinearities. There are alternative strain 
measures used to derive finite element 
equations, such as Green strain, which is 
associated with Piola-Kirchoff stress, 
Geometric strain, which is associated with 
Engineering stress, and Logarithmic strain, 
which is associated with true (Cauchy) 
stress. The Green strain is the most 
common definition applied to materials 
used in mechanical and structural 
engineering problems, which are subjected 
to small deformations. On the other hand, 
for some materials, subjected to large 
deformations, the engineering definition of 
strain is not applicable (11). Thus other 
more complex definitions of strain are 
required, such as logarithmic strain and 
Almansi strain.  
Turner, et. al, (12) reported the finite 
element procedure to geometrically 
nonlinear structure. Zienkiwicz (13).  
introduced the geometric nonlinear 
analysis using the total lagragian 
formulations, with incremental procedure 
combined with Newton-Raphson (NR) 
iterative techniques. Mohamed (1983) (14) 
used both Green strain and geometric 
strain measures to solve the problem. He, 
also, proposed a total lagrangian modified 
incremental equations for a two- 
dimensional state of stress based on the 
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geometric strains. This has been adopted 
as the base for the formulation based on 
the geometric strain In this Paper, 
geometrically nonlinear formulations 
based on two-dimensional 4-node plane 
stress and plane strain isoparametric finite 
elements are developed. The nonlinear 
formulations are based on the total 
Lagrangian formulation and using the 
Green's strains, Geometric strains and 
Logarithmic strains. The adopted 
formulations were implemented into a 
general-purpose nonlinear finite element 
program NUSAP and the displacements 
values obtained from the different strain 
measures were compared. Numerical 
examples were used to show the 
performance of the proposed formulations. 
Geometrically Non-linear Formulations:   
As stated above the geometrically non-
linear finite element formulation based on 
Green's strains is well established.  In the 
following sections the other two 
formulations are outlined.  
Geometrically Non-linear Finite 
Element Formulation for Plane 
Stress/strain based on Geometric strain: 

 In this section, the formulation based on 
Geometric (conventional) strains is 
outlined.  
In two dimensions the geometric strains 

'
xε  and '

yε  are defined by the change in 

length per unit initial length of line 
elements originally oriented parallel to the 
x  and y axes respectively. The shear 

strain '
xyγ  is the change in right angle. This 

shear strain is assumed to be small so that 
sin '

xyγ  can be assumed to be equal to '
xyγ  

The geometric strains as defined above by 
the change in length per unit initial length, 
are given by: 
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Assuming that the shear angle is small, we 
obtain the shear strain as 
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where Ex, Ey and Yxy are the Green strains. 
The variation in the geometric strains is 
given by equations 2 and 3. 
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or    δεδε H='                                      (3) 
From equations (1a) & (1b), the variations 
in the geometric strains are given by: 

aBaHB δδδε *' ==    
TTT

HBB =* (4)      
In which B is the strain matrix, and H  relates 
variation in geometric strain to variation in 
Green's strain.  
The equilibrium equations in terms of 
engineering stresses are:  

 

∫ =−=
v

T fdvHB 0σψ                 (5) 

By taking the variation of equation (5) we 
have: 
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using equation  (4) we have: 
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where *
σK   is the symmetric matrix 

dependent on the engineering stress, and 
can be written as: 
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where I    is 2×2 unit matrix, and 
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is the vector containing displacement 
derivatives w.r.t cartesian coordinates, and  
is related to the nodal displacements by the 
form:  
               Ga=θ  
where G  is a matrix containing shape 
function   derivatives. 

and *σ  is the engineering stress vector 
given by:  
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Substituting equation (11) in (10) then; 

    ∫=
v

T GdvPGK **
σ                        (13)                                                                                         

 

Using equations (12) we have 
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 In simple form, equation (14a) can be re-written as; 

σδ TH aPBP δδε ==                                                                                                         
whereP   is given by; 
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Then
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where  **
σK  is the additional geometric 

stiffness matrix, which is clearly 
asymmetric matrix. 
Therefore from equations (6), (10) & (15), 
equation (5) can be written as:  

( ) aKaKKKK TGLo δδδψ σσ
****** =+++=     (16) 

in which 
*
TGK  is the tangent stiffness matrix due to 

Geometric Strains 
Geometrically Non-linear Finite 
Element Formulation for Plane 
Stress/strain based on Logarithmic 
strain:  
In this section, the formulation based on 
Logarithmic strains is outlined.     
 
From the principle of virtual work, the 
equilibrium equations can be written in 
terms of the true Cauchy stresses as:

   

0=−= ∫ fdvBTσψ                           (17) 

where
 

TTTTTT SHBSBB == * and 
 DSHBaaDSBaBD === *σ where S  

relates variation in logarithmic strain to 
variation in Geometric strain 
Then 
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On taking the variation of Equation (18) 
the results are: 
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in which: 
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Therefore, Equation (23) can be re- 
written as: 

       GaPPSHA TTT // == θσ      
where /P is the initial stress  
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In simple form, Equation (25) can be 
written as: 
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σK  is the second additional initial 

stress stiffness matrix. From Equations, 
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(20), (21), (22), (27) and (28) the tangent 
stiffness matrix due to logarithmic strains 
can be defined by:  

 

( )
)29(*

///

aK

aKKKKK

TL

Lo

δ

δδψ σσσ

=

++++=

where 
*
TLK = ///

σσσ KKKKK Lo ++++  
is the tangent stiffness matrix due to 
logarithmic strains. 
Numerical Results and Discussion: 
The finite element formulation described 
in the above section was implemented in 
the FORTRAN based NUSAP. The two 
numerical examples of large deformation 
problems were examined to demonstrate 
the degree of accuracy that can be 
obtained by using the geometrically non-
linear formulations based on 4-node 
isoperimetric plane stress/strain element 
by using Green's strains, geometric strains 
and the new formulation, namely 
logarithmic strains. The results of 
displacements of the different strain 
measures are compared with those 
obtained from published finite element 
solutions and commercial finite element 
solvers such as ANSYS.  
Cantilever under pure bending at free 
end: A cantilever subjected to pure 
moment was considered. 
The cantilever was of dimensions L =3000 
mm, D =300 mm and thickness t =60 mm 
as shown in Figure 1. 
The numerical values of material property 
parameters are Young's modulus, E =210 
GPa, and Poisson’s ratio, υ =0.3. The 
structure is modeled with a mesh of 40-
isoparametric elements, and the integration 
order is 2x2. The mesh is of equal size 
elements of 150×××× 150mm. The deformed 
shape when P =18000N, 21000N and 
30000N is shown in Figure 3 and Table 2. 
The locus or path followed by the point A 
with load increments as computed by the 

present formulations is compared with that 
generated by finite element solver 
(ANSYS). Results are presented in Table 1 
and Figure 2. 
 

 
Figure 1: Cantilever under pure bending 

 
It is observed that there was a slight 
difference between geometric and 
logarithmic values, whereas the logarithmic 
results showed reasonable agreement with 
finite element solver (ANSYS). It was also 
observed that under a lower load or initial 
values of load all results were identical. 
Figure 3 clearly shows the effect of the 
nonlinearity in the deflected shape. It is also 
observed that all results are approximately 
identical when applying a load of (18000N) 
whereas when the maximum load of 
(30000N) was applied there is a difference 
between the results of the three strain 
measures. 
Clamped beam under point force: A beam 
with two-fixed end was considered. The 
beam length L =200 mm, height b =10 mm 
and thickness 1 mm as shown in Figure 5. 
The numerical values for material property 
parameters are Young's modulus, E
=210GPa, Poisson's ratio,υυυυ =0.3. The beam 
is modeled with mesh of 20-elementes, the 
integration order used was 2×××× 2. 
The computed results of the displacement at 
the centre point A obtained from the present 
formulations and finite element solver 
(ANSYS) are listed in Table 3; the responses 
of the normal deflection at point A, VA , to 
the applied force F are presented in Figure 6. 
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Table 1: Deflection at point A 

LOAD 
GREEN 

u 
GEOM 

u LOG u 
GREEN 

v 
GEOM 

v 
LOG  

v 
ANSYS 

v 
0 0 0 0 0 0 0 0 

3000 3.75703 3.73788 3.72309 99.9727 99.9841 99.9032 141.18 
6000 15.7544 15.7539 15.7273 199.242 199.931 199.996 270.595 
9000 35.7768 36.0832 36.1821 297.087 300.037 301.055 405.595 
12000 63.4792 64.792 65.4045 392.848 400.459 403.837 517.66 
15000 98.4102 101.964 103.85 485.956 501.306 509.061 623.54 
18000 140.04 147.685 152.101 575.941 602.63 617.401 729.43 
21000 187.788 202.027 210.849 662.442 704.421 729.472 823.55 
24000 241.054 265.033 280.88 745.216 806.616 845.831 917.67 
27000 299.237 336.712 363.054 824.102 909.104 966.961 974.73 
30000 361.758 417.024 458.287 899.04 1011.74 1093.28 1047.08 
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Figure 2: The path followed by the point A with load step increments for cantilever beam 

under pure bending 
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Table 2: Deformed shape along center line 
 LOAD 18000N LOAD 21000N LOAD 30000N 
NOED GREEN GEOM LOG GREEN GEOM LOG GREEN GEOM LOG 

23 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 
24 -13.8 -13.3 -12.7 -16.1 -15.5 -14.7 -23.1 -21.9 -20.4 
25 -37.9 -37.0 -35.9 -44.3 -43.1 -41.6 -63.2 -61.1 -58.4 
26 -72.1 -71.0 -69.6 -84.0 -82.7 -80.8 -119.0 -118.0 -114.0 
27 -116.0 -115.0 -114.0 -135.0 -135.0 -133.0 -191.0 -192.0 -189.0 
28 -170.0 -170.0 -169.0 -198.0 -198.0 -197.0 -278.0 -283.0 -284.0 
29 -233.0 -236.0 -235.0 -271.0 -275.0 -275.0 -378.0 -393.0 -399.0 
30 -306.0 -311.0 -313.0 -354.0 -363.0 -367.0 -492.0 -520.0 -536.0 
31 -387.0 -398.0 -402.0 -448.0 -464.0 -473.0 -617.0 -666.0 -696.0 
32 -478.0 -495.0 -504.0 -551.0 -578.0 -593.0 -753.0 -830.0 -882.0 

33 -576.0 -603.0 -617.0 -662.0 -704.0 -729.0 -899.0 -1010.0 -1090. 
 
 
 
 
 

 
Figure 3:  Deformed shape along center line 
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Figure 4:  Displacements V/L, L-U/L at Point A 

 

 
Figure 5: Clamped beam under point force 

 
Table 3: Vertical displacement at point A 

LOAD (N) ANSYS VA LUSAS VA GEOM VA LOG VA 
25 0.062 0.062 0.062 0.062 
50 0.120 0.126 0.126 0.125 
100 0.240 0.253 0.253 0.253 
175 0.419 0.449 0.449 0.449 

287.5 0.687 0.752 0.751 0.751 
456.25 1.104 1.223 1.122 1.122 
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Figure 6:  Vertical displacement at point A 
 

 
 
 
 
 
 
  

 
 
 
 
 
 
 
 

Figure 7: Vertical displacement at mid span (point A) 
 

Six load increments were applied to the 
clamped beam and resulted in a close 
agreement of the displacements for the 
formulations especially the ANSYS and 
logarithmic strain solutions as shown in 
Figure 6.  
The application on this example of 45 load 
increments resulted in the displacements 
shown in Figure 7. The results obtained 
showed that at the early stages of load, the 
three formulations curves are coincident. 
The application of large loads resulted in a 
variation between the results, and the log-
curve tendsed in an infinite result as 
expected. 
 
 
 

Conclusions: 
Based on the results of the numerical 
examples, it can be concluded that: 
� The resulting displacements showed 
good agreement with available solutions. 
� For a clamped beam subjected to central 
load increments the resulting 
displacements are identical in the early 
stages of load for the three formulations. 
Variations occur as load increases and the 
GNLGS results tend to infinite values. 
� The geometric strain solutions are 
suitable to be used with the elastic 
constants based on engineering stress. 
�The logarithmic strain formulation can be 
used when the true stresses are required. 
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