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ABSTRACT: This paper analyze a class of partial differential equations of the form 

( )2

2
u u u
t xx

x f x∂ ∂ ∂
∂ ∂∂

= +  

using Lie symmetry group method. It was shown that if the function f is a solution of a 
family of Ricatti equations, then symmetry techniques can be used to find the 
characteristic functions and fundamental solutions for partial differential equations 
(PDES).  
 

KEYWORDS: Airy function, Bessel function, Infinitesimal symmetries, Laplace 
transform, Lie algebra, Lie symmetry group and Ricatti equations. 
INTRODUCTION   
The purpose of this paper was to show how symmetry group methods may be used to 
compute characteristic fun-ctions and fundamental solutions for partial differential 
equation (PDES), of the form (1) . 

( )2

2
u u u
t xx

x f x∂ ∂ ∂
∂ ∂∂

= +                                                           (0.1) 

when f is a solution of one of the following three families of Ricatti equations 
21

2x f f f A x B′ − + = +
         (0.2) 

2 21
2x f f f A x B x C′ − + = + +                   (0.3) 

3
22 31

2 8x f f f A x C x′ − + = + −         (0.4) 

A , B and C are arbitrary constants. 
 

We will show that if  f is a solution of 
(0.2) or (0.4), with 0B = , then we can 
obtain the characteristic function for 

the PDE (0.1), from the solution 1u = , 
using symmetry group transformation. 
The characteristic function ( ),U x tλ of 
(0.1) is defined to be (2, 3): 

( ) ( )
0

, , ,yU x t e p t x y d yλ
λ

∞
−= �                                     (0.5) 

Where ( ), ,p t x y the fundamental 

solution of equation (0.1) is, ( ),U x tλ  
is the Laplace tran `sform 
of ( ), ,p t x y . 
The fundamental solution can be then 
obtained by taking the inverse Laplace 
transform of U λ  (4, 5). 
When f is a solution of (0.3) we can 
still find the fundamental solution by  

symmetry methods. Finally, we will 
consider the case when f satisfies 
(0.4) with 0B ≠ . 
Fundamental solutions and chara-
cteristic functions we determine are the 
infinitesimal symmetries for the PDE 
(0.1), and they show how these 
symmetries can be used to obtain 
characteristic functions and fundam-
ental solutions (6 – 8). 
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Fundamental solutions and charact-
eristic functions  
We  use a method for computing fun-
damental solutions, which involves 
taking the inverse Laplace transform of 
the characteristic functions. 
 

Case 1: Theorem 1. 1. let f be a 
solution of the Ricatti equation (9). 

21
2xf f f Ax B′− + = +         (1.1) 

Then the characteristic function 
( ),U x tλ for the PDE (1.1) is given by 

  

( ) ( ) ( ) ( )( )( ){ }21
2

2
1

1 2 1
, ex p

x A t x
t t

U x t F x F
λ

λ λ λ

+

+ +
= − − −            (1.2) 

Proof : 
Clearly ( ),0 xU x e λ

λ
−= , Now, since 21

2xf f f A x B′ − + = + , then, equation (0.1) 
has an infinitesimal symmetry of the form 

( )( )2 28 4 4 4 2x t ux t t x f x t A t u∂ ∂ ∂
∂ ∂ ∂= + − + +v             (1.3) 

The exponentiation of v  shows that if u is a solution of (0.1) with  
21

2x f f f A x B′ − + = + ,   then 

( ) ( ) ( ) ( )( )( ){ }2

2

4 2 1
1 4 2 1 4

, exp
x A t x

t t
u x t F x F

ε ε
ε ε ε

+

+ +
= − − −�

( )( )2 1 41 4
, tx

tt
u εε ++

×  (1.4)  

Let 1u = and 4λ ε= , then we obtain      (1.2). 
Example 1.1. if ( )f x α= (constant). In this case we have 0xf ff′′ ′+ = , so 

21
2x f f f B′ − + = . Consider 

2

2
u u u
t xx

x α∂ ∂ ∂
∂ ∂∂

= +                  (1.5) 

A basis for the Lie algebra of symmetries of  (1.5) is: (7, 8, 10) 

( )
( )

1

2

3

2
4

2 2

8 4 4 4

,

t

u

x t u

x t u

u

u

x t u

x t t x t u

x tβ

α
α

β

∂
∂

∂
∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂
∂

=
=
= + −

= + − +

=

v
v
v

v

v

 

We compute the action of the one parameter local Lie group generated by 4v  we 
obtain 

( )( ) ( ) ( ) ( )( )({ }2
4

4 1 4 2 1 4
exp , exp ln lnx x

t t
u x t xε α

ε ε
ρ ε −

+ +
= − −v  

( )( )2 1 41 4
, tx

tt
u εε ++

×                              (1.6) 

Thus if u is any solution of (1.5), then (1,6) is also a solution 
Let 4λ ε= , consider the solution 1u =  , then by symmetry 

( ) ( ) { }1, 1 exp x
tU x t t α λ

λ λλ − −
+= +             (1.7)    

is also a solution of (1.5), and it is the 
characteristic function for (1.5), it is 
the Laplace transform of ( ), ,p t x y , 

which can be inverted using the 
fundamental identity  
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( ) ( ) ( )
1

21 1
1 2

k y
kL e I k y

µ
λ

µ µλ

−
−

−=               (1.8) 

where vI  is a modified Bessel function of the first kind with order v               [1, 3, 
11]). Thus we obtain 

( ) ( ) { }( )1
1, , 1 exp x

tp t x y L t α λ
λλ −− −

+= + ( ) ( ) ( ){ }1
2

2

21
1 exp x yxyx

y t tt
I

α

α

−
+

−= −    (1.9) 

Example 1.2. Consider the function 

( ) 1
21

, , 0ax
ax

f x a x+= >  

Since, 
21

2 0xf f f′− + = , by Theorem 1.1 the characteristic function for the PDE 
2

2 1
21

u u ax u
t xaxx

x∂ ∂ ∂
∂ ∂+∂

= +                           (1.10) 

( ) ( )
( ) ( )( ) { }

2 1
2

2 1
2

1
11 1

, expt ax x
tt ax

U x t λ λ
λ λλ

+ + −
++ +

=                                  (1.11) 

By the inversion of the Laplace transform, we have  

( ) ( )
( ) ( )( ) { }

2 1
2

2 1
2

11
11 1

, , expt ax x
tt ax

p t x y L λ λ
λλ

+ +− −
++ +

�= �
�

                                    (1.12) 

After some calculations, we get 

( ) { } { }( )2 2

1 2 2
2

1 / /
1 2

, , exp exp
x y

te x t ax x t
ax t

p t x y L λ λλ

+− −
+= +  

( )

( ) ( ) ( ) ( )1
2

2
121

x y
t a x y x ye x

y tax t
I t yδ

+
−

+
� �= + +� �	 
      

         (1.13) 
in which δ  is the Dirac delta function. Consequently  

( ) ( )
( )

( ) ( ) ( ) ( )1
2

2
121

0

,
x y

ty e a xy xyx
y tax t

u x t I t y dyϕ δ
+

−∞

+
� �= + +� �	 
�  

( )
( )

( )
( )

( ) ( ) ( )1 1
2 2

0 2
121 1

0

x yx
t te y e a xy xyx

y tax ax t
I dyϕ ϕ

+
− −∞

+ +
= + +� (1.14) 

is a solution of the PDE (1.10), with intial data ( ) ( ),0u x xϕ= , which satisfies 

( ) ( )
0

,
t

L i m u x t xϕ
→

=               (1.15) 

Therefore  
( )

( ) ( ) ( ) ( )1 1
2 2

2
121 1

0

1
x y x

t ta xy xye ex
y tax t ax

I dy
+

−
∞

+ +
+ = −�  

and hence 

( ) ( ) ( )1 1
2 21 1

0

, , 1 1
x x
t te e
ax ax

p t x y dy
− −

∞

+ +
= + − =�             (1.16) 

Example 1.3. Consider the function 
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( ) ( )
( )
1 3

1

x

x
f x

+

+
=  

For this we have 2 31
2 8xf f f′ − + = − . Thus, by Theorem 1.1 the characteristic 

function for the PDE 
( )

( )
2

2

1 3

2 1

xu u u
t xx x

x
+∂ ∂ ∂

∂ ∂∂ +
= +                          (1.17) 

is 

( ) ( )( ) ( )( ) ( ){ }
( )

31
4 4 1

2 2 1
4

exp

1 1 1
,

x
tx x

t t x x
U x t

λ
λ

λ λ λ

+−

+ + +

� �
= +� �
� 


            (1.18) 

Inverting the Laplace transform gives the fundamental solution 

( )
( )

( ) ( ) ( )( )2 2

1
, , cosh sinh

x y
t xy xye

t tyt x
p t x y y

π

+
−

+
= +           (1.19) 

which can be integrable at 0y = , and 

( )
0

, , 1p t x y d y
∞

=�                          (1.20) 

As an example, let us compute a solution of (1,17) with initial data ( ), 0u x x= , 
which is continuous at the origin, we have 

( ) ( ) ( )
( )
1 3

2 1
0

, , ,
t x

x
u x t y p t x y d y x

∞
+

+
= = +�           (1.21) 

then u  is a solution of (1,17) and 

( )
0

,
t

L im u x t x
→

= , 

Example 1.4. Consider the three separate problems arising from  
2 31 1

2 2 8xf f f x′− + = −                            (1.22) 
We exhibit three different solutions to this Ricatti equation these are, 

( )1 1
2f x x= +  (1.23) 

( ) ( )2 1
2 tanhf x x x= +  (1.24) 

( ) ( )3 1
2 cothf x x x= +  (1.25) 

First, the equation arising from 1f  is 

( )2

2
1
2

u u u
t xx

x x∂ ∂ ∂
∂ ∂∂

= + +  (1.26) 

By Theorem 1.1 the characteristic function for (1.26) is 

( ) ( )
( )

2
21 1

4 11
, e x p

t x

tt
U x t

λ
λ λλ

+

++

� �= −� �
� �

           (1.27) 

Inverting the Laplace transform gives 

 ( ) ( ) ( ){ }21 1 1
4, , cosh exp

t x y x yx
t ty t

p t x y e t
π

+ +− � �= − −� �
� 


              (1.28) 

Next the equation arising from 2f  
 is 
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( )( )2

2
1
2 tanhu u u

t xx
x x x∂ ∂ ∂

∂ ∂∂
= + +              (1.29) 

By Theorem 1.1, the characteristic, function for (1.29) is 

( ) ( ) ( ) ( ){ }21
42 1

11cosh 1
, cosh exp

x tx
ttx t

U x t
λ

λ λλλ

− +

+++
=                   (1.30) 

Inverting the Laplace transform leads to the fundamental solution 

( ) ( )
( ) ( ) ( ){ }cosh 22 1 1

4cosh
, , cosh exp

y x yxy
t tyt x

p t x y t
π

+= − −                   (1.31) 

Finally, the equation arising from 3f  is 

( )( )2

2
1
2 cothu u u

t xx
x x x∂ ∂ ∂

∂ ∂∂
= + +             (1.32) 

From Theorem 1.1, the characteristic function for (1.32)is 

( ) ( ) ( ) ( ){ }21
43 1

1 1sinh 1
, sinh exp

x tx
t tx t

U x t
λ

λ λ λλ

+

+ ++
= −           (1.33) 

Inversion of the Laplace transform leads to 

( ) ( )
( ) ( ) ( ){ }sinh 23 1 1

4sinh
, , sinh exp

y x yxy
t tyt x

p t x y t
π

+= − −
               

        (1.34) 

For each of these cases, ( )
0

, , 1ip t x y dy
∞

=� , 1, 2,3i =  

Example 1.5. We consider now an example of a function which possesses 
discontinuities. The equation  

21
2 1xf f f′− + =−  

has a solution 

( ) ( )1 cot lnf x x= +  

This solution is discontinuous at points 
of the form 4nx e π= , { }0,1, 2,...n ∈ . 
By applying Theorem 1.1, we can 

obtain a characteristic function and 
fundamental solution for the PDE 

 
 

( )( )2

2 1 c o t lnu u u
t xx

x x∂ ∂ ∂
∂ ∂∂

= + +                      (1.35) 

Applying equation (1.2), we have the characteristic function  

( ) ( ) ( ) ( ) { }
( )

12 2
exp

2 1, cos ln 1 1
xi i
ti i

i tU x t ec x x t x t
λ
λ

λ λλ λ
−
+− −

+
� �= + − +
	 
      (1.36)                  

where 1i = − . Inversion of the Laplace transform gives the fundamental solution 

( ) ( )
( ) ( ) ( )( )1

2 22 2
2, , cos ln
x y

it xy xye
i iit t tp t x y ec x y I y I

+
− −

−= −                     (1.37) 

See [11] and [3] we obtain 

( )
( ) ( )( ) ( )

( ) ( )
2

2

2

21

10

c o s ln
, ,

2
i

ii x
t t

i x
t t

e c x
p t x y d y

i

∞ − +
=�  
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( ) ( )
( ) ( )

21
2

2

21
2

2
1

2

1

ii x
it t

i i
i x

t t

i x
x

i

� �
− +� �

� 


−
= =

           (1.38) 

Case 2: 
The Ricatti Equation  

2 21
2x f f f A x B x C′ − + = + +  

Next we consider the case when the function satifies the Ricatti equation (0.3). 
Equation (0.1) has infinitesimal symmetries of the form 

( )( )1
3 2

At At At
x t ux Ae e Ax Af x B e u∂ ∂ ∂

∂ ∂ ∂= + − + +v

( )( )1
4 2

At At At
t t ux Ae e Ax Af x B e u− − −∂ ∂ ∂

∂ ∂ ∂= − + − − +v  
 

In order to compute fundamental 
solutions, we require the corresponding 
group actions. This is given by our 
next result. 

Proposition 2.1. [8] Let f  be a 
solution of (0.3) and u  be a solution of 
(0.1). Then, for ε  sufficiently small, 
the following functions are also 
solutions of (0.1). 

 

( )( ) ( )3exp ,u x tρ ε =v ( ) ( )( )2 1
1 1

1 , ln
B

AtA

At At

At ex
AAe Ae

Ae u
ε ε

ε
+ +

+  

( ) ( ) ( )( )1
2 12 1

exp At

AAt

Ae x x
AeAe

F x Fε
εε

−
++

� �× − −� �
� �

(2.1) 

 
and 

( )( ) ( )4e x p ,u x tρ ε =v  

( ) ( )22
ln

,
B At

B AtA

At

e At At xe
Ae A

e e A u
ε

ε
ε

−−

−

� �− � �
� 
 ( ) ( ) ( )( )1

22
exp

At

AtAt

Ax xe

e Ae A
F x Fε

εε
−

−−

� �× − −� �
� �  

(2.2) 

Since 1u =  is a solution of equation (0.1), then by Proposition (2.1), so are, 

( ) ( )21 , 1
B

AAtU x t Aeε ε= +
( ) ( ) ( )( )1

2 12 1
exp

At

AAt

Ae x x
AeAe

F x Fε
εε

−
++

� �× − −� �
� �

(2.3) 

and 

( ) ( ) 222 ,
BB

AA AtU x t e e Aε ε−
= −  

( ) ( ) ( )( )1
22

exp
At

AtAt

Ax xe
e Ae A

F x Fε
εε

−
−−

� �× − −� �
� �

 (2.4) 

Neither of these two solutions can be 
immediately identified with the 
characteristic function of (0.1). 
However it is often possible to derive 

the fundamental solution from them. 
We illustrate the method with 
examples. 

Example 2.1. consider the PDE 
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( )2

2
3
2

u u u
t xx

x x∂ ∂ ∂
∂ ∂∂

= + −                                                            (2.5) 

Applying equation (2.4), and setting ( )/ 1ε λ λ= + , we see that  

( ) ( )
( )( ) ( ){ }

3
21

1 1
, exp

t

t t

e x
e e

U x t λ λ
λ λ λ λ λ

+ −
+ − + −

=�
              (2.6) 

is a solution of (2.5). Next, we use the fact that multiplication of solutions of (0.1) 

yields a new solution. We multiply U λ
� by ( )

3
21/ 1 λ+  to obtain 

( ) ( )( ) ( ){ }
3
2

1 1
, e x p

t

t t
e x

e e
U x t λ

λ λ λ λ λ
−

+ − + −
=              (2.7) 

which is the characteristic function for (2.5). See for example, [9]. Inverting the 
Laplace transform, we obtain the fundamental solution for (2.5). It is 

( ) ( ) ( ){ } ( )3
2

1
2

2

1 1 1
, , exp

tt

t t t

x y xyee
e e e

p t x y I+

− − −
= −                                        (2.8) 

where 

( ) ( ) ( )1 1
2 2

1 1
2 2

1
22v v

v vI z v Z I z− − +
− −= Γ +                          (2.9) 

Example 2.2. Consider the function ( ) ( )2coth xf x x= . Here  
2 21 1

2 2xf f f x′ − + = . 
By (2.4) of Proposition (2.1) the equation 

( )2

2 2co thu u ux
t xx

x x∂ ∂ ∂
∂ ∂∂

= +     (2.10) 

has a solution 

( ) ( )
( ) ( ){ }2

2

s in h

s in h 2
, e x p

tx e
te

x t
x

e
u x t

ε ε
ε ε

−

� �
� �
� �
� 
 −

−
=                                          (2.11) 

From this we can derive the fundamental solution ( ), ,p t x y  of (2.10). 
Observe that 

( ) ( ) ( )
( )
( ){ }( )2

2 2

11 1
2 2 1sinh sinh

,0 exp
x

x x

xeu x ε
ε ε

− +
−= −                                            (2.12) 

we note that ( ) ( )
2

2sinh

x

x
eg x =  is               a stationary solution of the equation (2.10). We 

therefore look for a fundamental solution ( ), ,p t x y  with the property that 

( ) ( ) ( )
2 2

22
s in hs i n h

0

, ,
y x

xy
e ep t x y d y

∞

=�                                              (2.13) 

Use the new parameter ( )
1

2 1
ε
ελ +

−= . The solution u ε  becomes  

( )
( )

( ) ( )( )
( )

( )
( ) ( )( ){ }

2 1

2 2 1 2 1

2

sinh
2 1

sinh 2 2 1 2 1
, exp

tx e
te

x t

x

e
u x t

λ

λ λ λ
λ λ λ

+

+ − −

� �
� �
� � − −� 


+ − −
=            (2.14) 
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By (2.13). we may write (2.14) as 

( ) ( ) ( ) ( )2

2 2

1 1
2 sinh sinh

0

, , ,
y

y y

yeu x t e p t x y dyλ
λ

∞
−� �= −� �

� 
�  

( ) ( ) ( )
2

2 2

1 1
, ,

2 s in h 2 s in h

x

yx

e
L p t x y
� �
� �= −
� �
� 


                                      (2.15) 

Rearranging equation (2.15), we get the fundamental solution 

( ) ( )
( )

( )( )
( ) ( )( )

2

2

2 1 1sinh 1
sinh 2 2 1 2 1

, , exp
t ty

x t

e e x

e
p t x y L

λ

λ λ

− + + −−
+ − −

� �� �= � �� �
� �� 


 

( )
( )

( )( )
( ){ } ( ) ( )

1
22

2

sinh 1 2
1sinh 1 12 1

exp
y t tt

t tx t

e x y xyee x
ye ee
I yδ+ +

− −−
� �= − +
� �	 
                             (2.16) 

Case 3: 
The Ricatti equation  

3
22 2 31

2 8xf f f A x Bx Cx′ − + = + + −  
 

The last case which we must consider 
is when the function f  is a solution of 
the third Ricatti equation (0.4). There 
are two subcases here. 0B = , and 

0B ≠ , In the case 0B = , we can  
 

obtain the characteristic function by 
symmetry directly as we did in 
Theorem 1.1. Recall that when f  is a 
solution of (0.4), and 0B = , the PDE 
(0.1) has an infinitesimal symmetry of 
the form [11]. 

( )3 22
6 38 4A

x txt x t t∂ ∂
∂ ∂= + + −v  

( ) ( )( )( )12 22 4 2 3
36 3

4 2 4 2
A f xA

ux
x Ct f x t t A x t t u

− ∂
∂+ + + + − (3.1) 

The group action generated by this symmetry allows us to determine the characteristic 
function for (0.1). Thus we have the following result. 
Theorem 3.1. let f  be a solution of the Ricatti equation [9]. 

3
22 31

2 8x f f f A x C x′ − + = + −                                                (3.2) 

Then the characteristic function ( ),U x tλ  for the corresponding PDE (0.1) is given by 

( ) ( )
( ) 3

1 2

1

1
, A

x t

x t t
U x t λ

λ
λ λ

+

+ −
=  

( ) ( )( )4

2

2
1
2 1 12 1

exp x A t
t t

F x F λ
λ λ+ +

� �� �� �� �× − −� �� �� �
� 
� �� 
� �

( ) ( )
( )

( )( )
( ){ }2 2 41 122

2 23
2 3

2 3 33
1 1 108 1

exp
x C t A t t tA t x t

t t t

λ λ λλ
λ λ λ

+ + −+
+ + +

× − − +       (3.3) 

Proof. The idea of the proof is the 
same as for Theorem 1.1. First we obs- 
 

erve that ( ),0 xU x e λ
λ

−= . In order  
to show that (3.3) is the characteristic 
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function we exponentiate the infinit-
esimal symmetry (3.1). The only 

difficulty here is solving the equation 

32
38d x A

d x t x tε = +� � �� �                                            (3.4) 

making the change of variables x y=� , under this change of variables, equation 
(3.4) becomes first order linear. This leads to 

( )
3

21 4 3 1 4

x A t
t t

x ε
ε ε− −

= +�  

By symmetry, if u  is a solution of (0.1), then so is 

( ) ( )
( ) ( )( )3

3 2
3

2
1 4

1 4 1 41 4 31 4
, ,A

x t x A t t
t tx t t t

U x t uε

ε ε
ε ε εε ε

+
+ ++ − +

� �= −� �
� 


( ) ( )( )4

2

2
1
2 1 4 31 4

exp x A t
t t

F x F ε
ε ε+ +

� �� �� �� �× − −� �� �� �
� 
� �� 
� �

( ) ( )
( )

( )( )
( ){ }21 2 423

2 2
2 3

4 8 3 2 33 4
1 4 1 4 108 1 4

exp
x Ct A t t tAt x t

t t t

ε ε εε
ε ε ε

+ + −+
+ + +

× − − +                        (3.6) 

Taking 1u = , and setting 4λ ε=  
gives the result. 
If we take 0A = , in (3.3), then it 
reduces to equation (1.2). In order to 
apply Theorem 3.1 we need solutions 

of (0.4). And we can transform (0.4) to 
the linear equation, 

( ) ( ) ( )2 3/2 3
82 0x y x Ax Cx y x′′ − + − =   (3.7) 

The general solution of (3.7), is easily 
found to be 

( ) ( )
( )

( )
( )

4 42 21
3 33 34

1 1
4 2 4 23 3

2 2

1 2
2 2

3 3
A AC x C x

A A
y x x a A i a Bi

+ +� �� � � �
= +� �� � � �� � � �� �

� 
 � 
� 

                         (3.8) 

Where Ai  and Bi  are the first and second kind Airy functions [6], and 1a  and 2a  are 
arbitrary constants, taking 2 /f xy y ′=  gives solutions of (0.4). 
Taking 4

13 , 0, 1A C a= = =  and 2 0a = , gives the solution 

( ) ( )
( )

1
2

x A i x

A i x
f x

′
= +                                                          (3.9) 

Since  

( ) ( ) ( ) ( )( )( )1
2 ln 4 lnf x

xF x dx x A i x= = +�                                  (3.10) 

An application of Theorem 3.1 allows us to determine the characteristic function for  

( )
( )

2

2
1
2

x A i xu u u
t xx A i x

x
′∂ ∂ ∂

∂ ∂∂
� �= + +� �
� 


                                                                (3.11) 

However at this stage we are unable to 
invert the Laplace transform. 
It should be possible to invert the 
transform numerically. See [5] on the 
numerical inversion of Laplace trans-
forms [5]. 

The last case we have to consider is the 
case when the function is a solution of 
(0.4) and 0B ≠ . Recall that when f  
was a solution of (0.4), for 0B ≠ , then 
(0.1) has two infinitesimal symmetries 
of the form 
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( ) ( )( )( )

( )
( ) ( )( )( )

1
2

1
2

2
5 3

2
2 3 2 3

2
6 3

2
2 3 2 3

B t B tA
x tB

A f x B tBB A
uB x

B t B tA
x tB

A f x B tBB A
uB x

x B x e e

x x f x e u

x B x e e

x x f x e u

α

α

∂ ∂
∂ ∂

− ∂
∂

− −∂ ∂
∂ ∂

− − ∂
∂

= + +

− + + − +

= − + +

− + − + +

v

v
 

where 
22 9
18

A BC
Bα += . At present we 

are unable to determine any 
characteristic functions for (0.1) 
because we have not yet found any 
explicit solutions of (0.4) for 0B ≠ . 
Nevertheless, for completeness, we 

present the group symmetries which 
are generated by 5v  and 6v . 
Proposition 3.2. Let f  be a solution 
of (0.4) and u  be a solution of (0.1). 
Then for ε  sufficiently small, the 
following functions are also solutions 
of (0.1). 
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1 1
, ln

B t

B t B t

x e
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                                                (3.12) 

( )( ) ( )

( )
( )

( )

( ) ( )

2 229 2
3/ 29

2

2

2
2
3

6

3 2

3

2 3

18

2

1
2

exp ,

exp

exp

B Bt t B t
B A

B

B t

B t

B
A t
B

B t

B e A e e B
B t

B x e

A B x

B e B

x e

e B

u x t

e B

F x F D

ε ε

ε

ε

ε

ρ ε

ε
−

� �
� �+ − −
� �
� 


+

−

+

−

= −

� �× −� �
� �

� �� �� �� �� �� �� �× − − −� �� �� �� �� �� �� 
� 
� 
� �

v

( ) ( )2
2
3

2
ln

,
B B tA t

B

B t
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                                   (3.13) 

 
where, 2

3
A
BD =  and 21 1

9 2A BCα = +  

Taking 1u =  allows us to write down 
solutions of (0.1) for any f  that is a 
solution of (0.4). Our experience with 
the previous cases strongly suggests 

that if we can obtain solutions to (0.4) 
with 0B ≠ , then we would be able to 
determine the corresponding charac-
teristic functions and fundamental 
solutions. 
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