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Abstract:  In this paper we show that Einstein field equations can be reduced to Newton's law of gravitation at the study of 
charged particles  trajectories on electromagnetic fields by using a generalization of the fundamental Newtonian equation for the 
general  physical or engineering systems in term of exterior differential forms.  
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INTRODUCTION 
     Recall that the curve y  at a point m of an n 

manifold M is a 0C -map from an open interval 

  I ⊂ � into M  such that 0  I∈ and ( )0y   m= . 

For such a curvey  we assign a tangent vector at each 

point ( ),y t  t  I∈ , by ( )( ) ty t   T y I= . 

So an integral curve (or flow line) of the tangent 
vector–field X is a paramet- erized curve 

:y   I  M→ satisfying the following condition  

( ) ( ( ))y t   X y t for all t  I= ∈                (1) 

Where the maximal integral curve of X  through 
m   M∈ is a parameterized curve satisfying [8]: 
(i)  ( ) 0y   m=  

(ii) If :  I  Mβ →%  is any other parameterized curve 

in M  satisfying (i) and (1), then I  I  ⊂%  and 
( ) ( )t   y tβ = for all t   I∈ % . 

  The velocity y ′ of the parameterized curve ( )y t  is 

a vector–field along y  defined 

by 1( ) ( ( ), ( ),.. . ( ))ny t   y t  x t   x t′ ′ ′= , 

and its speed defined by ( ) ( )y t   y t′ ′=  for 

all t I∈ . 
Now each vector–field X along y  is of the form  

1( ) ( ( ), ( ),..., ( ))nX t   y t X t X t=
               

 (2) 

where each component iX is a function along 

y . X is smooth if each :i X  I  M→ is 

smooth. The derivative of a smooth vector–field X 
along a curve ( )y t  is the vector–field X ˙ along 

y  defined by 

( ) ( ( ) , ( ) , . . . ( ) )1 nX t   y t X t  X t′ ′ ′=               (3) 

Here ( )X t′  measures the rate of change of the vector 

part ( ( ), .. . ( ))1 nX  t   X  t  of ( )X t  alongy . Thus, 

the acceleration ( )y t′′  of a parameterized curve 

( )y t  is the vector–field along y  get by 

differentiating the velocity field ( )y t′ . 

A parameterized curve :y   I  M  → is a 

geodesic of M  if and only if its acceleration 

( )y t′′  is everywhere perpendicular to M , i.e., if 

and only if ( )y t′′  is a multiple of the orientation 

( ( ) )N y t for  all t  I∈ ,i.e., 

( ) ( ) ( ( ))y t   g t N y t′′ = ,where :g  I → � .Taking the 

scalar product of both sides of this equation with 
( ( ))N y t  we find ( ( ))g  y N y t′ ′= − . Thus 

:y  I  M → is geodesic if and only if it satisfies 

the differential equation 
( ) ( ( )) ( ( )) 0y t   N y t  N y t   ′′ ′+ = .                          (4) 

This vector equation represents the system of 
second–order component ODEs 

( , . . . , ) ( , . . . , ) 0j
i i n n j k

k

N
x  N x  1      x x  1      x x x

x

∂
′′ ′ ′+ + + =

∂
 

If we substitute i iu   x ′=  we reduce this second–

order differential system to the first–order 
differential system 

( , ..., ) ( , ..., )j
i i i i n n j k

k

N
x =u , u  =-N x  1     x x  1     x x x

x

∂
′ ′ ′ ′+ +

∂
                (5) 

This first–order system is just the differential equation 
for the integral curves of the vector–field (geodesic 
spray) X in U x �  where U is an open chart inM . 
   Now if the parameter t represents time, and when an 
integral curve ( )y t  is the path a mechanical system Ξ  

follows, i.e., the solution of the equations of motion, it 
gives a trajectory.  
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   Here the motion of the system Ξ  on its 
configuration manifold described by     

( ) ( ( )),  i iy t   X y t for all t I = ∈ ⊆ �                     

(6) 

If ( )X  m is 0C the existence of a local solution is 

guaranteed, and a Lipschitz condition would imply 
that it is unique. Therefore, exactly one integral curve 
passes through every point, and different integral curves 
can never cross. 
 
Generalization of Newtonian 3D equation Now we 
are going to study charged particles motion, we need 
to generalize Newtonian 3D equation, F  ma=  to 

thought of as covariant force law: 
Force 1-form-field =  
Mass distribution × Acceleration vector-field 
In other words, the field or, family of force one–

forms iF , acting in all movable joints (with constrained 

rotations on n T and very restricted translations onnI ), 
causes both rotational and translational  accelerations of all 
body segments, within the mass distribution

ijmg , along the 

flow– lines of the vector–field ja . 

First consider the linear and homogenous 
transformation of velocities, 

ei
i e

x
x y

y

∂′ ′=
∂

                                                      (7) 

our internal velocity vector–field is defined by the set 
of ODEs (7), at each representative point ( )i ix x t= of 

the system’s configuration manifold M  =  
n nT  I× , where nT is n-torus, and n nI   ⊂ � is 

hypercube, as ( , ) : ( , )i

 
i i i iv  v x t   x x t′≡ =  

Note that in general, a vector–field represents a field of 

vectors defined at every point ix within some region 

U of the total configuration manifoldM . Analytically, 
vector–field is defined as a set of autonomous ODEs (7). 

Its solution gives the flow, consisting of integral curves 
of the vector–field, such that all the vectors from the 
vector–field are tangent to integral curves at different 

representative points
ix U∈ . In this way, through 

every representative point 
ix U∈  passes both a curve 

from the flow and its tangent vector from the vector–
field. Geometrically, vector– field is defined as a cross–
section of the tangent bundleT M . Its geometrical dual is 
the 1–form–field, which represents a field of one – 
forms, defined at the same representative points

ix U∈ .   

Analytically, 1–form–field is defined as an exterior 
differential system [8] , an algebraic dual to the 
autonomous set of ODEs. Geometrically, it is defined as 
a cross–section of the cotangent bundle*T M . Together, 

the vector–field and its corresponding 1–form–field define 
the scalar potential field at the same movable 
regionU M⊂ . 
    According to Newton, acceleration is a rate–of–
change of velocity, and since  i ia v ′≠  we have: 

: i i
i i i jk j k i jk j ka   v v   v v  x   x x′ ′ ′′ ′ ′= = + Γ = + Γ .          (8) 

Once we have the internal acceleration vector–field 
( , , )i i i ia   a x x  t′≡ , defined by the set of ODEs (8), 

where i
jk  Γ is Levi–Civita connections of the 

Riemannian configuration manifoldM , we can 
finally define the internal force 1–form field, 

( , , )i

 
i i iF  F x x t′= , as a family of force one– 

forms, half of them rotational and half translational, 
acting in all movable joints, 

: ( ) ( )k

j j
i ij j ij j ik i ij j ik i kF   m a  m v v v  m x x x′ ′′ ′ ′= = +Γ = +Γg g g ,            

where we have used the simplified material metric 

tensor, ijmg , for the system  defined by its 

Riemannian kinetic energy form 
1

2 ij i jT m v v= g  

Equation
i ij jF m a= g , defined properly by (9) at 

every representative point ix of the system’s 

configuration manifoldM , formulates the sought for 
covariant force law, that generalizes the fundamental 
Newtonian equation, F  ma= , for the generic 
physical or engineering system. Its meaning is: 
Force 1-form-field = Mass distribution × Acceleration 
vector-field. 
 
Newton's law and Gravitational force fields 
  Recall that the gravitational field is a vector field 
that describes the gravitational force. In general 
relativity the gravitational field is determined as the 
solution of Einstein's field equations (EFEs). These 
equations are dependent on the distrib- ution of 
matter and energy in a region of space, which would 
be applied on an object in any given point in space 
per unit mass [1]. It is actually equal to the 
gravitational acceleration at that point. So it is a 
generalization of the vector form, which becomes 
particularly useful if more than two objects are 
involved. 
  Note that Gravitational fields are also conservative 
[3], that is, the work done by gravity from one position 
to another is path-independent. This has the 
consequence that there exists a gravitational potential 
field. For point mass or the mass of a sphere with 

homogeneous mass distribution ijmg , the force field 

g(r) outside the sphere is isotropic, i.e., depends only 
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on the distance r from the center of the sphere. Now 
Dieudonne, J.A. [4] show the following theorem about 
trajectories separation: 
Theorem 1:  Given a vector–field ( )X    Mχ∈ , 

for all pointsp  M∈ , there exist 0  η > , a 

neighborhood V of p , and a function 

: ( ) , ( , (0)) ( , (0))i iy  ,   V  M  t x y t  xη η− × → a suc

h that 
,          (0, (0)) (0) (0)i i iy X y  y x x   forall x  V M′ = = ∈ ⊆o  

for all t η< , the map ( , )i ix (0 )   y  t  x (0 )a is a 

diffeomorphism X
tf between v  and some open set 

of M . 
  This Theorem states that trajectories that are near 
neighbors cannot suddenly be separated. There is a 
well–known estimate (see [4]) according to which points 
cannot diverge faster than exponentially in time if the 
derivative of X is uniformly bounded. 
  Next according to theorem 1, it showing that, where 
the gravitational field is weak  the Einstein field 
equations (EFEs) can be reduced to Newton's law of 
gravitation by using both the weak-field 
approximation and the slow-motion approximation. 
In fact, the constant appearing in the EFEs is 
determined by making these two approximations. 
  Newtonian gravitation can be written as the theory 
of a scalar fieldΦ  , which is the gravitational 
potential  

2 [ , ] 4 [ , ]x t G x tπ ρ∇ Φ =r r  

where ρ  is the mass density. The orbit of a free-

moving particle satisfies 
[ ] [ [ ] , ]x t x t t′′ = − ∇ Φr r  

or in tensor notation we write  

2

2

4ii

i

G

d x

dt

π ρΦ =

= − Φ
 

which written by the Einstein field equations in the 
trace-reversed form 

1
( )

2v v vR K T Tµ µ µ= − g  

for some constant K, and the geodesic equation 
x x xα α β γ

β γ′′ ′ ′= − Γ  

or 
2

2

d x d x d x

d d d

α β γ
α
β γ= − Γ

T T T
. 

where the Christoffel symbols are 
, , ,( ) / 2α β γ α β γ α γ β γβ αΓ = + −g g g  

the time component of the metric is 
2

0 0 1 2K V−= ≈ +g  

which is the weak field limit. 
 Now we assume that the test particle's velocity is 
approximately zero  

( , 0 , 0 , 0)
d x d t

d d

β

≈
T T

 

and thus   ( ) 0
d d t

d t d
≈

T
 

and that the metric and its derivatives are 
approximately static and that the squares of 
deviations from the Minkowski metric are negligible. 
Applying these simplifying assumptions to the spatial 
components of the geodesic equation gives 

2

002

i
id x

d t
≈ − Γ  

where two factors of d t

d T
 have been divided out. 

This will reduce to its Newtonian counterpart, 
provided 

, 0 0 0 ,0 0 ,0 0 0 ,

1
( )

2
i i

i
α

α α αΦ ≈ Γ = + −g g g g  

Our assumptions force α=i and the time (0) 

derivatives to be zero. So this simplifies to 

, 0 0 , 0 0,2 ( )i j
i j iΦ ≈ − ≈ −g g g  

which is satisfied by letting 
2

0 0 2c≈ − − Φg  

Turning to the Einstein equations, we only need the 
time-time component 

0 0 0 0 0 0

1
( )

2
R K T T= − g  

the low speed and static field assumptions imply that 
4

00d iag ( , 0 , 0 , 0 ) d iag ( , 0 , 0 , 0)vT T cµ ρ≈ ≈  

So 
0 0 4 2

0 0 2

1
T T T c c

c
α β

α β ρ ρ−= ≈ ≈ = −g g  

and thus 
4 2 2 4

0 0 0 0

1 1 1
( ) ( ( )( ))

2 2 2
K T T K c c c K cρ ρ ρ− ≈ − − − =g

 

From the definition of the Ricci tensor 

0 0 0 0 , 0 ,0 0 0 0 0R ρ ρ ρ λ ρ λ
ρ ρ ρ λ λ ρ= Γ − Γ + Γ Γ − Γ Γ  

our simplifying assumptions make the squares of Γ 
disappear together with the time derivatives 

0 0 0 0,iR ρ≈ Γ  

Combining the above equations together 
4

, 00 , 00 00 00

1 1
( )

2 2
i

ii i R K T T K cρΦ ≈ Γ ≈ = − ≈g  

which reduces to the Newtonian field equation 
provided 

41
4

2
K c Gρ π ρ= ; 

This will occur if 

4

8 G
K

c

π= . 

   Which simplifying the study of motion of a charged 
particle, as subatomic particles, or a collection of 
charged particles which is called plasma, in 
electromagnetic fields, since charges structures made 
up by Eikonal surfaces and wave fronts, and so on are 
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examples of physical structures. The emergence of 
physical structures in evolutionary process reveals in 
material system as an advent of certain observable 
formations, which develop spontaneously. Such 
formations and their manifestations are fluctuations, 
turbulent pulsations, waves, vortices, and others. It 
appears that structures of physical fields and the 
formations of material systems observed are a 
manifestation of the same phenomena [8]. The light is 
an example of such a duality. The light manifests 
itself in the form of a massless particle, like photons, 
and of a wave. 
  Now we give our main result: 
Theorem 2: Trajectories of free particles on a 
smooth manifold are geodesics  with exterior 
differential forms. 
Proof: Let M be smooth manifold then a geodesic 
with an affine connection ∇  is defined as a curve 

( )y t such that parallel transport along the curve 

preserves the tangent vector to the curve, so 
0y y′ ′∇ =                                                             (10) 

at each point along the curve, where y ′  is the 

derivative with respect to t. to define the covariant 
derivative of y ′  it is necessary first to extend y ′  to 

a continuously differentiable vector field in an open 
set. However, the resulting value of (10) is 
independent of the choice of extension. 
Now we can write the geodesic equation as: 

2

2
0

d x d x d x

d t d t d t

α β γ
α
β γ+ Γ =                               (11) 

where ( )x tβ  are the coordinates of the curve 

( )y t  on M and α
β γΓ  are the Christoffel symbols of 

the connection∇ . This is just an ordinary differential 
equation for the coordinates. It has a unique solution, 
given an initial position and an initial velocity. 
Therefore, from the point of view of classical 
mechanics, geodesics can be thought of as 
trajectories of free particles in a manifold. Indeed, the 
equation 0y y′ ′∇ =  means that the acceleration of 

the curve has no components in the direction of the 
surface (and therefore it is perpendicular to the 
tangent plane of the surface at each point of the 
curve). So, the motion is completely determinded by 
the bending of the surface. This is also the idea of the 
general relativity where particles move on geodesics 
and the bending is caused by the gravitation. 
  Gravitational energy is the potential energy 
associated with gravitational force. If an object move 
from point A to point B inside a gravitational field, 
the force of gravity will do positive work on the 

object and the gravitational potential energy will 
decrease by the same amount. 
   So when electromagnetic fields are determined 
using charges and currents via Maxwell's equations 
[10], the EFEs are used to determine the spacetime 
geometry resulting from the presence of mass-energy 
and linear momentum, that is, they determine the 
metric tensor of spacetime [5], for a given 
arrangement of stress-energy in the spacetime [11]. 
The relationship between the metric tensor and the 
Einstein tensor allows the EFE to be written as a set of 
non-linear partial differential equations (and so an 
exterior differential system [8]), so the solutions of the 
EFE are the components of the metric tensor [6], when 
used in this way, the solutions are the integral 
manifold of exterior differential system. 
 
REFERENCES 

1. Aczel, Amir D., (1999). God's Equation: Einstein, 
Relativity, and the Expanding Universe. Delta 
Science. A popular account.  

2. Brown, Harvey (2005), Physical Relativity, Oxford 
University Press, p. 164. 

3.  Charles Misner, Kip Thorne, and John Wheeler, (1973). 
Gravitation. W H Freeman.  

4.  Dieudonne, J.A. (1969). Foundations of Modern 
Analysis (in four volumes). Academic ress, 
New York. 

5.  Dimitrijevic, M., Meyer, F., M¨oller, L., Wess, J. (2004). 
Gauge theories on the kapa–Minkowski 
spacetime. Eur. Phys. J. C36, 117. 

6. Dragovic, V., Gajic, B. (2003). The Wagner Curvature 
Tensor in Nonholonomic Mechanics.   

7.  Einstein, Albert (1916). "The Foundation of the 
General Theory of Relativity“(PDF). Annalen 
der Physik. 
http://www.alberteinstein.info/gallery/gtext3.ht
ml.   

8. Logman. A.S, (2009). “The Theory of Exterior 
Differential Systems and its Applications”, 
PhD, Sudan University of Science and 
Technology (SUST). 

9. Stephani, Hans; D. Kramer, M. Mac Callum, C. 
Hoenselaers and E. Herlt (2003). Exact Solutions of 
Einstein's Field Equations. Cambridge 
University Press. ISBN 0-521-46136-7.   

10. Trautman, Andrzej  (1977). "Solutions of the 
Maxwell and Yang-Mills Equations associated 
with hopf fibrings", International Journal of 
Theoretical Physics  

11. Turner, Michael S. (May, 2001). "A Spacetime 
Odyssey". Int.J.Mod.Phys.  A17S1: 180–196.   

 �


