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Abstract: In this paper we show that Einstein field equatioan be reduced to Newton's law of gravitatiothatstudy of
charged particles trajectories on electromagrigtids by using a generalization of the fundameNtatonian equation for the
general physical or engineering systems in terextgrior differential forms
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INTRODUCTION
Recall that the curvey at a pointm of ann

manifold M is aC’-map from an open interval
I OO0 into M such that0 O | andy(0) = m.

For such a curvg we assign a tangent vector at each
pointy (t), tL I ,byy () = T,y (1)-
So an integral curve (or flow line) of the tangent

vector—field X is a paramet- erized curve
y : | -~ M satisfying the following condition
y(t) = X(y(@t)) for alt O I )

Where the maximal integral curve oX through
m O M isa parameterized curve satisfyifig

() y() =m

(i) If g: 1 - M is any other parameterized curve
in M satisfying (i) and@), then f o | and
Bt) = y)forallt 0 I .

The velocity y ' of the parameterized curvg (t) is

a vector—field along Yy defined
byy'(t) = (y(t), x;(t),...x, ¢)),

and its speed defined byy'|t) = |y'(t)| for
alit Ul .

Now each vector—fieldX alongy is of the form

X(t) = (y@), X, (t),..X, ¢)) @)
where each componen)(i is a function along
y. Xis smooth if eachX,: |1 - M is

smooth. The derivative of a smooth vector—field X
along a curvey (t) is the vector—fieldX ~ along
y defined by

X () = (y (), X, (t),.. X)) ®)

Here X '(t) measures the rate of change of the vector
part (x , (t),...X ., )) of X (t) alongy . Thus,

the accelerationy '"(t) of a parameterized curve
y(t) is the vector—field alongy get by
differentiating the velocity fielyy '(t) .

A parameterized curvey : | - M IS a
geodesic of M if and only if its acceleration

y "(t) is everywhere perpendicular tM , i.e., if
and only if y "(t) is a multiple of the orientation

N (y(t))fOI’ alltgdi ,i.e.,
y'(t) = gt)N(y(t)).whereg: | _ ;7 .Taking the
scalar product of both sides of this equation with
N(yt) we findg= —-y'N'(y(t)). Thus

y : 1 — M is geodesic if and only if it satisfies
the differential equation

y") + N'(y®)) N(y()) = 0. 4
This vector equation represents the system of
second-order componenbEs

N
X'+ N, (X + 1, ...,xn)ax—‘(x+1, X, X% =0
k

If we substituteu, = X we reduce this second-
order differential system to the first—order
differential system
><=l4,4=N(X+l---,>$)%é<+1y--->$>§>¢ 9

This first—order system is just the differentialiatjon
for the integral curves of the vector—field (geodesic
spray) X in ux s whereu is an open chart iivl .

Now if the parametef represents time, and when an
integral curvey (t) is the path a mechanical system
follows, i.e., the solution of the equations of motiibn,
gives a trajectory.
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Here the motion of the systent on its
configuration manifold described by
yit) = X, (y()), foraltOl OY
(6)
If x (m)is C°the existence of a local solution is
guaranteed, and a Lipschitz condition would imply
that it is unigue. Therefore, exactly one integraive

passes through every point, and different integrales
can never cross.

Generalization of Newtonian 3D equation Now we
are going to study charged particles motion, walnee
to generalize NewtoniaD equation, F = ma to
thought of as covariant force law:

Force 1-form-field =

Mass distribution x Acceleration vector-field

In other words, the field or, family of forcene—

forms F, , actingin all movable joints (with constrained

rotations onT"and very restricted translations loh),
causes botiotationabndranslationaiccelerations of all
body segments, within the mass distriblm@p, along the

flow—lines of the vector—fieldij .

First consider the linear and homogenous
transformation of velocities,
<! = X, v )

i ay e
our internal velocity vector—field is defined byetbet
of ODEs (7).at each representative poixt =X, (t) of

the system’'s configuration manifoldM =

T"x 1", where T "is ntorus, and I" O //"is

hypercubeasy, = v, (x ) =X (x, 1)

Note that in general, a vectorfield representield 6f

vectors defined at every poirX; within some region

U of the totatonfiguratiormanifoldm  Analytically,
vector—field is defined as a set of autonomonss (7).
Its solution gives the flow, consisting of integcarves
of the vectorfield, such that all the vectors frdma
vector—field are tangent totegralcurvesatdifferent
representative poings OU . In this way, through

every representative point [JU passes both a curve

from the flow and its tangent vector from the veeto
field. Geometrically, vector— field is defined asrass—
section of the tangent burdia . Its geometrical dual is
the 1—form-field, which represents a field of one —
forms, defined at the same representative pift .

Analytically, 1-form—field is defined as an exterior
differential system® , an algebraic dual to the
autonomous set @bes Geometrically, it is defined as
a cross—section of the cotangent bundi = Together,

the vector—field and iorresponding—form—field define
the scalar potential field at the same movable
regiord OM .

According to Newton, acceleration is a rate—of—
change of velocity, and since, v, we have:

— ! i — " i [
g =V =V + I"J.k VV, =X+ I"jk XX, . ®
Once we have the internal acceleration vector—field
a = a(x;,x/,t), defined by the set abDEs (8)

where Fijk is Levi-Civita connections of the

Riemannian configuration manifodd , we can
finally define the internal force 1-form field,

F = F(X,,X/,t), as a family of force one-

forms, half of them rotational and half translatibn
acting in all movable joints,

F = mg;a = mg; (V; +rijkVin): mg; (X;' +rijkxi'xl'< ’

where we have used the simplified material metric
tensor, Mg, , for the system defined by its

Riemannian kinetic energy form
1
T = Em g;ViVv
EquationF, = mg,a, defined properly by9) at
every representative pointX; of the system’s

configuration manifoldVl , formulates the sought for
covariant force law, that generalizes the fundaalent

Newtonian equation,F = ma, for the generic
physical or engineering system. Its meaning is:
Force 1-form-field = Mass distribution x Acceleoati
vector-field.

Newton's law and Gravitational force fields

Recall that the gravitational field is a vectdeld
that describes the gravitational force. In general
relativity the gravitational field is determined tee
solution of Einstein's field equations (EFES). Tehes
equations are dependent on the distrib- ution of
matter and energy in a region of space, which would
be applied on an object in any given point in space
per unit mass™. It is actually equal to the
gravitational acceleration at that point. So itas
generalization of the vector form, which becomes
particularly useful if more than two objects are
involved.

Note that Gravitational fields are also conseveat
Bl that is, the work done by gravity from one pasiti
to another is path-independent. This has the
consequence that there exists a gravitational paten

field. For point mass or the mass of a sphere with
homogeneous mass distributiarg; , the force field
g(r) outside the sphere is isotropic, i.e., dependg on
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on the distance from the center of the sphere. Now
Dieudonne, J.A*! show the following theorem about
trajectories separation;

Theorem 1. Given a vectorfieldx o , (m ),

for all pointsp o m , there existyp > 0, a
neighborhood/ of p, and a function

y:i (=i xV =M, tx0)~y t,x (Q)Suc
h that
y=Xoy, y@ Opx ©Q fad x @IOM
for aIIM<,7, the mapx . (0) ~ vy (t, x,(0))is @
difffomorphismf * betweenV and some open set

ofm

This Theorem states that trajectories that awsr ne
neighbors cannot suddenly be separated. There is a
well-known estimate (sé8) according to which points
cannot diverge faster than exponentially in tim¢hé
derivative of X is uniformly bounded.

Next according to theorem 1, it showing that, iehe
the gravitational field is weak the Einstein field
equationseFes)can be reduced to Newton's law of
gravitation by wusing both the weak-field
approximation and the slow-motion approximation.
In fact, the constant appearing in theEs is
determined by making these two approximations.

Newtonian gravitation can be written as the tiieor
of a scalar fieldP , which is the gravitational
potential
O0%®[xX,t] = 471G p[X,t]
where , is the mass density. The orbit of a free-
moving particle satisfies

X "[t] = —O0P[X[1], t]
or in tensor notation we write
&, =4n1G p
d?x, _
dt?

which written by the Einstein field equations ireth
trace-reversed form

1
RW:K(T/N—ETQW)
for some constark, and the geodesic equation

Xna :_r;yxrﬁxry

or

d?x? _ . dx’/dx”
d7 2 AT dT

where the Christoffel symbols are

ru[fy = (gaﬁ‘y + Gayps ~ gy[f,u)/z

the time component of the metric is

g 00 = K 2 = l+ N

which is the weak field limit.

Now we assume that the test particle's velocity is
approximately zero

B
dX_ = (d_t’ 0 s 0 s O)
d7 d7
and thus d_(_dt )= 0
dt d7
and that the metric and its derivatives are

approximately static and that the squares of
deviations from the Minkowski metric are negligible
Applying these simplifying assumptions to the spati
components of the geodesic equation gives

d?3x'’ i

TR

where two factors of At have been divided out.
dr

This will reduce to its Newtonian counterpart,

provided

o, = rioo = %g i0’(9010,0"' 9w .09 ooa)

Our assumptions forcen=i and the time (0)
derivatives to be zero. So this simplifies to

20, =g "(-g 00 )= ~9 o0,

which is satisfied by letting

9o = —C* - 20

Turning to the Einstein equations, we only need the

time-time component

1
Rg = K (Too_ETgoo)

the low speed and static field assumptions impdy th
T, =diag(,,.,0,0,0)= diagpc* ,0,0,0
So

T =gaﬁTa/3 :gooTooz

— pC
CZ

4 2

= -pcC
and thus

1 4 1 2 2 1 4
Koo = 5T 900) = K (pc” =2 (=pc7)(=c7)) = K pc
From the definition of the Ricci tensor
Roo = rgo,p - r‘;0,0"' rZAero_ rpoar/loa
our simplifying assumptions make the squareg of
disappear together with the time derivatives
ROO = r gO,i
Combining the above equations together

1 1
=Ry =K (TOO_ET g oc)zzK pCA
which reduces to the Newtonian field equation
provided
1
=K pc*
5 14
This will occur if
K =8 (’:’ G
Which simplifying the study of motion of a chedy

particle as subatomic particles, or a collection of
charged particles which is called plasma
electromagnetic fields, since charges structuredema
up by Eikonal surfaces and wave fronts, and saen a

©, =T

00,

=47G p >
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examples of physical structures. The emergence of
physical structures in evolutionary process reveals
material system as an advent of certain observable
formations, which develop spontaneously. Such
formations and their manifestations are fluctuatjon
turbulent pulsations, waves, vortices, and othé#rs.
appears that structures of physical fields and the
formations of material systems observed are a
manifestation of the same phenomé&harhe light is

an example of such a duality. The light manifests
itself in the form of a massless patrticle, like funs,

and of a wave.

Now we give our main result:

Theorem 2: Trajectories of free particles on a
smooth manifold are geodesics  with exterior
differential forms.

Proof: Let M be smooth manifold thea geodesic

with an affine connectiorl] is defined as a curve
y (t)such that parallel transport along the curve
preserves the tangent vector to the curve, so
O,y'=0 (10)

at each point along the curve, whewe' is the
derivative with respect to. to define the covariant
derivative of y' it is necessary first to exteng’ to

a continuously differentiable vector field in aneop
set. However, the resulting value of (10) is
independent of the choice of extension.
Now we can write the geodesic equation as
d?x“ . dx ? dx”
+

dt? Arodt dt

where X”(t) are the coordinates of the curve

11)

Yy (t) onMandr¢ are the Christoffel symbols of

the connectiof] . This is just an ordinary differential
equation for the coordinates. It has a unique gwlut
given an initial position and an initial velocity.
Therefore, from the point of view of classical
mechanics, geodesics can be thought of as
trajectories of free particles in a manifold. Indgthe
equation[J, .y’ =0 means that the acceleration of

the curve has no components in the direction of the
surface (and therefore it is perpendicular to the
tangent plane of the surface at each point of the
curve). So, the motion is completely determinded by
the bending of the surface. This is also the idehe
general relativity where particles move on geodesic
and the bending is caused by the gravitation.
Gravitational energy is the potential energy
associated with gravitational force. If an objeciven
from point A to point B inside a gravitational fiel
the force of gravity will do positive work on the

object and the gravitational potential energy will
decrease by the same amount.

So when electromagnetic fields are determined
using charges and currents via Maxwell's equations
[ the EFEs are used to determine the spacetime
geometry resulting from the presence of mass-energy
and linear momentum, that is, they determine the
metric tensor of spacetimé®, for a given
arrangement of stress-energy in the spacetifhe
The relationship between the metric tensor and the
Einstein tensor allows thereto be written as a set of
non-linear partial differential equations (and so a
exterior differential systefff), so the solutions of the
EFE are the components of the metric teff5owhen
used in this way, the solutions are the integral
manifold of exterior differential system.
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