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ABSTRACT

This study investigates the geometrical solution for a given pressure (i.e.
velocity) distribution of subsonic flow around an aerofoil section using an
analytical method. The results show that the analytical method is not precise on
the leading edge, when it is used to solve the mean camber line of updated
profile RAE (Royal Aircraft Establishment). Therefore, a correction parameter
with changeable values ranging between 0.32 and 0.42 was created, and it gives
appropriate results.
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INTRODUCTION
In wing section design, highly expensive working power is invested in
order to find configurations that are stable and efficient in ample working
ranges. The main goal is to pick out wing aerofoil profiles which achieved the
desired working range stability and efficiency. This will automatically result in
aircraft performance. At the same time, constraints arising from aerodynamic,
aeroelasticity, mechanical and manufacturing considerations have to be satisfied.
Since to optimize aerofoil design manually is time consuming, we need to
implement inverse design method (Berak, 1986) I which can calculate the
aerofoil shape to achieve desirable flow fields within short period of time.
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Inverse Design Method:

The principle of inverse method considered by Carlson and Leland (1987)"!
consists of the determination of a single profile and corresponding design angle
o, for the given distribution of the pressure coefficients C,, (x) and C,, (x)
along the profile chord.

Assumptions of the Inverse Solution: There are two assumptions considered in
Foundation of Aerodynamically Design (Kenthe and Chow, 1988)™ to apply
the inverse design method to aerofoil design: The solution is linearizable from
the physical point of view and the medium bypassing the profile is
incompressible and non-viscous.

Physical Model: The solved profile shape is obtained by linear transformation of
two basic geometric characteristics of the profile mentioned by Weber (1957)!*
and illustrated in (Fig.1), namely: Mean camber line of profile y 4(x) and thickness

function y,(x).

The solution of the mean camber line of profile is actually a solution of
bypassing infinitesimally thin profile for a given pressure distribution of
differences of coefficients.

AC,(X) =€, (X) =€y (X) cliiii i (1)
where: Cp: pressure coefficient, L: lower surface of the profile, U: upper surface
of the profile.

Theoretically, the infinitesimally thin profile is substituted by a continuous
distribution of elemental potential vortices; density of distribution & of these
elementary vortices is:

bixy= %ACP 8 @

Solution of the thickness function of the profile presents a solution of
symmetrical bypassing the symmetrical profile of finite thickness for a given
distribution of the mean pressure coefficient

C pmean (%) = %[CPL () + Cog (X) ] eeeeeeee e (3)
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Theoretically, the symmetrical profile of the finite thickness is
substituted by a continuous distribution of source and sinks; the distribution
density g of these sources and pancakes is:

GUAY = 2F (K] 5 cnnerennnnnsnasnmmiunnsinisssssssiasnumanmuss os s s nbnsumsomassnnnsss 4)
while

1
V. (x)= _ECPMEAN ............................................................ (5)

Mathematical Description of the Physical Model
Basic equations for solution of the profile mean camber line in

Fundamentals of Aerodynamics (Anderson, 2001)" are

AC,
Vioa (%) = j (? AE e, (6)
—j‘ V 0.5 (0N 52 simmmummsnmmnns s 415 51 35 Mmoo b RawR £ 13 1 8 ¥REEY 52 43 408 (7)
V=Y )=, +V,NDA(x) ...................................................... (8)
¥, (x) = ij<x) dx e PO 9)

where: V;NDA . is induce velocity at the camber line, 7: is the velocity, ap: is
design angle of attack, x: is aerofoil chord and y,: is the coordinate of the mean
camber line in Y-direction for unsymmetrical shape.

Basic equations for solution of the profile thickness function in

Fundamentals of Aerodynamics (Anderson, 2001)"’ (Fig.1) are

l s - —%CPMEAN (£) cereemeeermeereeeiereeeeseseees et riannan (10)
j INDS(x)dx—IVS(x).dx:O .................................................... (11)
Io/ys(x)= P Wi AT .o v swmismmns s o+ 0 00 fmmcsmmmpmenis « 3 » emmioc s o e (12)
v (x) = iy;(x),dx .................................................................. (13)
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where: Vinp.s is The induce velocity at the thickness line in Y-direction and g
is the coordinate of the thickness line in Y-direction for unsymmetrical shape.
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Fig. (1): Standard Aerofoil Model Configuration
{a) Mean Camber Line of Profile (b) Pressure Coefficienis Distribution
{c) Differences of Coefficients Distribution (d) Thickness Function of Profile

Analytical Solution of the Problem:
The application of trigonometric series in Rational Design of an Airfoil for
a High-Performance Jet Trainer (Powers and Sattler, 1981)! requires an
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introduction of new variable ¢ : (Fig.2) represents the following relations hold
between variables x and ¢ :

@ = A10C0S (2 = 1) euvereeneiiiee ottt (15)

& X

x=1/2(1+cos )

Fig. (2): Relation between the Profile Chord x and the Variable ¢

Solution of the Mean Camber Line of the Profile

The input set of solution forms is a distribution of the pressure
coefficient difference Acp(x) indicated by equation (1).

This distribution Acp(x) = Acp(@)is substituted by a trigonometric
series in (n+1) suitably selected discrete points:

A, tan§+iAi sin(iq)):%ACP(qD) ............................................. (16)

i=1
Coefficients of this series 4, , 4, 45....4;...4,, which determined by

solution of a set of (n+1) linear equations are a basic requirement for the
following computing relations:

Vo 40 = Vopr ((o):{Ao +Y 4, cos(i(p)J e eeerereeseessesssessnnnnninnens (17)
=1
n - i-—l_
iy =4, +EZAZ.L——£>——1 ........................................................ (18)
2 i=2 I ”“1
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Evaluation of Analytical Solutions:

The analytical solutions of the profile shape presented in the two
preceding sections are based on application of two mathematical procedures;
a theoretical qualitative comparison of this method of solution is virtually not
feasible.

Thus, these different results of solution can be considered, using actual
applications:

The solutions of mean camber line and thickness function for a selected
standard in which the distribution of the pressure coefficient Cp=Cp(X)and the

shape of mean camber line y, =y 4(x) and the shape of thickness function

Vg = yg(x)are available.

The standard selected model is update profile “ARE 101.14.30.70”
considered by collective of authors (1972)"*!, where the results of camber line
profile and thickness function are illustrated in (Fig. 3 a, b and ¢) represent the
pressure and mean pressure distribution of the model respectively.

Comparison of the analytical solution results (which are carried out by
application of program “INVSOL”) with the selected standard model ARE
101.14.30.70 1s represented by (Fig. 4 and 5) and result in: The analytical solution
of the thickness function represents appropriate matching with the selected
standard (etalon) result; the result is illustrated in (Fig.5) and The analytical
solution to obtain the mean camber line shows inaccurate result in (Fig.4), since
the surrounding region of the leading edge absolutely misfits. In the x-range
from (0.1 to 1) it gives surely qualitative agreement according to the etalon,
however, it sets up considerable different quantitative results. Thus, in the
following article we carry out a solution using correction parameter for the
influence of the leading edge, this parameter has optimization characteristic.
Principle of Numerical Solution Using Optimization Elements:

The originally numerical solution in Basic Optimization Methods
(Bunday, 1992)"' has its main justification and importance in eliminating
problematic accuracy of setting distributions of pressure coefficients
Cpy(x) and Cpy(x) in a close vicinity of the of the leading edge.
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Fig. (3-a): Mean camber line and thickness function of the standard aerofoil RAE
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Fig. ( 3-b): Distribution of pressure coefficients of RAE 101.14.30.70
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5, —-—:— EIALONRAE ap =160°
a IE0L O @p =1.805°
001
0 Q
a) o o
u]
a _.-*‘...-'——-“"'-.._ )
- e
0 Q ] Eall b
L0 o 02 o 04 7 0B 038 1 X
3 I
kY P4
% i
, ~
- -
-0.014

Fig. (4): Comparison of INVSOL II result with RAE 101.14.30.70 for mean camber line of the

profile

29




J.Sc. Tech Vol. 9(1) 2008

— ETALONEARE
o INWSOL I
YS
008
D T 1 T 1 T X
02 04 06 08 10

Fig. (5): Comparison of INVSOL II result with RAE 101.14.30.70 for thickness function of the profile

In this numerical processing of the problem, a numerical solution of two
complex sets of basic relations is carried out without any additional modific-
ation (Cerna, Machlioky and Zlatnik, 1987)"”'. The first set is composed of
equations (6) till (9), while the second set contains equations (10) till (13).

The input quantities ACp(x) and Cp 54y (X) in the close vicinity of

the leading edge present optimization parameters: though their extent is not
large, even a small change may influence substantially both shape of the profile
mean camber line and shape of the profile thickness function.

The optimization criteria of the proposal for the mean camber line and
thickness function mentioned by (Reneaux and Thibert, 1985)"" can be as
follows: Minimum deflection of the mean camber line, Minimum profile
thickness, highest critical Mach number of the proposed profile and Behavior of
boundary layer on the proposed profile, and possibly some others.

The preceding examples have been chosen to demonstrate the proposal
optimization criteria to solve the mean camber line of the profile 101.14.30.70:
Distribution of differences of the pressure coefficients AC , (£) is set as in (Fig. 6)
and the determination of main values of the induced velocity - (x) is
carried out only for a part of distribution of AC,(£) within an interval of
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x€ (0.L;1.0); i.e. provisionally without referring to the influence of a close
vicinity at the leading edge.
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Fig. (6): Distribution of pressure differences of coefficients (AC, ),
A modified equation (6) is:
1 ¢AC, (&
Vinp.ao(X) = ——J‘A-df =
AT X=G T (24)
_k AC,(0.125) i ACP(0.175)+ ....... AC,(0.975)
x-0.125 x-0.175 x—0.975

The integration is carried out numerically, using steps AE = 0.05 . Thus,

for a constant “K” given by

K =f—i.A§ i DDBO Tttt i wrmitpiaiwin onbeiesesaii s ioscs e sses s s mrsmisoess st e 20 (25)
47

The resulting important. values of the induced velocity Vyyp 0(x) are
presented in (Fig.7): Determination of complementary value of induced velocity
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AV np.4 in the close vicinity of the leading edge is carried out for the value
ACp =1.0 within an interval of & €< 0.0;0.1>.
A modified equation (6) is:
1 0.05 A C 1 0.1 1
e el

1 1 J
=K +
X-0025 X-0.075

1 % AC
AVZND.A (x) :_E I X £ (26)
0 ..

Complementary values of the induced velocity AV, 4 (x)are presented
in (Fig.7). Determination of induced velocities AV, 4(x)is carried out,
introducing the optimization coefficient A from the equation:
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Fig. (7): Induced velocity profiles V', ,, and V, ,
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The induced velocity Vpyp 4(x) in the close vicinity of the leading
edge is determined from the equations:
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Vi (x=0.05) =2V (x=0.1)=Vpy (x=0.15) ..o, (28)
Vi (x=0)=3V,p , (x=0.1)= 2V pp (X =0.15) ovoeeoeoeeeosee (29)

Determination of design angle «,, obtained by application of modified
equation (7).

1
a, = _I Vinp.a(X)dx =
0

- _% Vapa 6 =0)+Vpp =DlAx— b . (30)

[V p s (£ =0.05)+Vpp  (x =0.1) +.. ¥, (x = 0.95)] Ax

Determination of additional velocity Vy,(x)i.e. the first-order derivative
of mean camber line I_’A(x), is carried out directly from equation (8).

Vo)=Y, =0 +Vipa(0) oo 31)

Mean camber line Y ,(x) is determined through the numerical integration of

equation (9).
Y= Y00dx e (32)
0

using steps Ax =0.05 as follows:
Va (x=0)=0
y.(x=0.05)=y,(x=0)+y' (x =0.025)0.05

y,(x=0.1)=y,(x=0.05)+y! (x =0.075)0.05
y,(x=0.95)=y,(x=09)+y! (x =0.925).05
J’A(x =1)=0
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RESULTS AND DISCUSSION

The pervious procedure of the mean camber line solution as a whole
represents a simple algorithm of the program “INVSOL I1”.

At the practical application of program we appreciate the influence of
the leading edge on the camber line by using the optimization parameter “4” as
input data basic value.

We carry out the calculation for range (0.1< A < 0.4) and the results are
illustrated in (Fig. 8).

For the selected standard etalon:

YAMIN 3 127

Y amax
Which permits the mean camber line to be close to the etalon,
and this occurs at value 4 =0.32 and 1 =0.42.

The induced velocity result for the different rage of correction parameter
is represented by (Fig. 9), whereas the validation of INVSOL II for the different
rage of correction parameter with the model rRaE 101.14.30.70 is illustrated by
(Fig. 10).
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Fig. (8): Relation between £ and A
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Fig. (9): Validation of INVSOL II for the Induced velocity V', , of the aerofoil
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Fig. (10): Validation of INVSOL 11 for the leading edge of the aerofoil
CONCLUSION v

From the previous analyses, we approach the consequent conclusion:

Using analytical solution to solve the mean camber line of an airfoil
such as RAE does not give precise results on the leading edge, so we introduce
a correction parameter and the results indicate that:
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i) Using the program “INVSOL II”” to solve the mean camber line reaches a very
good agreement with the etalon from the qualitative point of view, for certain
value (in our example, 4=037¢) this a good agreement from the quantitative
point of view.

ii) When we change the value of (A) we get a family of mean chamber line,
which creates a set of input data to solve the profile‘s geometry.

iii) From all sides of view the program “INVSOL II” (with optimized parameter)
has better qualitative results than the program “INVSOLI”.
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