Chapter 6
Functional Calculus and Estimates
We find a class ¥ of functions in two real variables and construct a functional calculus on
this class which extends functional calculi constructed earlier. It is proved that for this
functional calculus the trace formula of Melton-Howe holds.
We show that if f is a nondecreasing continuous function on R that vanishes on (—oo, 0] and
is concave on [0, ), then its operator modulus of continuity Q; admits the estimate

f(st)dt
tZlogt

Q(8) <const[ " L 86>0,
We also study the problem of sharpness of estimates obtained in Aleksandrov and Peller.
We construct a C* function f on R such that [[f[[,~ < 1, [/f||.;; <1 and

04(8) > consts /Iog% '8 €(0,1].

We obtain sharp estimates of ||f (A) — f (B)|| in the case when the spectrum

of A has n points. Moreover, we obtain a more general result in terms of the e-entropy of the
spectrum that also improves the estimate of the operator moduli of continuity of Lipschitz
functions on finite intervals ,which was obtained in Aleksandrov and Peller .

Section (6.1): A pair of AImost Commuting Selfadjoint Operators.

For a pair(4, B) of commuting selfadjoint operators the spectral theorem allows one to
construct a functional calculus on the class of Borel functions of two real variables. This
functional calculus has natural properties. Namely, it is linear, multiplicative, and satisfies
the estimate ||¢(4, B)|| < sup|e(s, t)I.

s,teR

Suppose now that we have a pair (4,B) of almost commuting selfadjoint operators,
i.e, AB — BA € §;, where S;denotes the trace class. We consider only hounded selfadjoint
operators. In this case it is impossible to construct a functional calculus which is linear and
multiplicative. But one can try instead to construct a functional calculus which is linear and
multiplicative modulo the trace class. This problem is important in spectral theory and it
has been treated in [240, 241, 242].

If @(s,t) = Ynks0@Pnis"t" is a polynomial in two variables then one can define the
operator ¢(4, B)by

pA4.B)= ) A B, ()
n,k=0

It is well known that this polynomial functional calculus satisfies the following remarkable
trace formula. To write it down we need the notion of Pincus principal function. To each
pair of almost commuting selfadjoint operators (A,B) one can associate the so-called
principal function g of two variables which has compact support and belongs to L' with
respect to planar Lebesgue measure. Then for any polynomials ¢ and y the following
formula holds
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trace(p(4, B)Y (4, B) — ¥ (A, B)p(A, B))
1 dpdy JdoedyY
- ﬁ]c] (&E‘@g)g(x,y)dxdy- 2

The principal function was introduced by Pincus [243] in the case of a rank one
commutator. In [240] it was proved that this formula holds with right hand side

L2220

2rmi ). ) \ox dy Oy ox
where P is a complex measure. Later it was shown in [241] that P is absolutely continuous
and coincides with the Pincus principal function (see also [249,245,246]). The functional
calculus in (2) is defined for the polynomials by formula (1). In fact it is easy to see that if
we change in (1) the order appearance of A and B, the left-hand side of (2) will be the same.
Note that formula (2) and the principal function are of great importance in the study of
hyponormal operators. Namely, if T is a purely hyponormal operator (i.e., has no reducing
subspace on which it is normal), then the real and the imaginary parts of T are almost
commuting selfadjoint operators and there are important relations between the properties
of T and those of the corresponding principal function (see [249,245,246]).
We extend the functional calculus defined on the polynomials to a class of functions in two
variables which should be as big as possible. We are going to find a big class £ of functions
in two real variables and a mapping ¢ — @ (A, B), ¢ € &, defined for any pair of almost
commuting operators that satisfy the following natural properties:
(F) if o(s,t)f = (s), then @(A4,B) = f(A);Iif o(s,t) = g(t), then
»(4,B) = f(B);
(F2) (¢ +¥)(A4,B) = (A, B) + (4, B);
(F3) (9¥)(A, B) — ¢(4,B)Y(4,B) € Sy;

(F4) formula (2) holds for any almost commuting pair (4, B) and any ¢,y € .

(F2)-(F3) mean that the functional calculus is linear and multiplicative modulo the trace
class.

It is seen from (2) that the right-hand side is well-defined for any C?! functions ¢ and y
(and even for any Lipschitz functions). This might give a hope that it could be possible to
construct such a functional calculus defined on the set of C! functions. However, it turns out
that this is not the case. We prove that if we have a functional calculus on a class £ of
functions in two variables which satisfies (F1)-(F3) and if ¢ is a function in £ depending only
on one variable, then ¢ satisfies certain necessary conditions. These necessary conditions
imply that it is impossible to construct such a functional calculus on the class C! of
continuously differentiable functions.

In [240] the polynomial functional calculus has been extended to the class of infinitely
smooth functions. In [242] the class of smooth functions has been enlarged to the class of
Fourier transforms Fw of measures w on R? that satisfy the condition
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[ [a+1pa+phoei<e
RYR

But this assumption is too restrictive. First of all the first partial derivatives of such Fw
must locally have absolutely convergent Fourier expansion, and secondly, such function Fw
must have continuous second derivative 02/dsdt. We enlarge this class of functions and
construct a functional calculus on the enlarged class £ that satisfies (F1)-(F4). Note that the
functions in £ belong to €1, but they do not necessarily have second derivative 92/dsdt and
their first partial derivates do not necessarily have absolutely convergent Fourier
expansions.

If we want the functional calculus to satisfy the additional property to be involutive
modulo trace class, i.e.,

(Fs) @(4,B) = (p(4,B)) €S,
then we have to impose more restrictive conditions on functions. A smaller class £,, of
functions of two real variables and construct a functional calculus on £,, satisfying (F1)-
(Fs).
Namely, let A be a selfadjoint operator (not necessarily bounded) and B be a trace class
selfadjoint perturbation of it. M.G.Krein (see [247]) has associated with each such pair the
so-called spectral shift & which is a function on R in L' with respect to Lebesgue measure
and proved that

trace((4) - (8)) = [ ¢/ (D¢ ()t ©)
R

for sufficiently smooth functions ¢ .Namely he has proved (3) under the assumption that

@' is the Fourier transform of a finite measure. Then some weaker sufficient conditions on ¢
were found by Birman and Solomyak [248]. It turned out that the technique of double
operator integrals developed by Birman and Solomyak [249] allows one to reduce the
problem of the validity of the trace formula (3) to the question of when the function in two
real variables (¢(s) — @ (t))/(s — t) is a Schur multiplier . In [250] for bounded A and [251]
for unbounded A the previous results have been improved. Namely, it has been proved in
[250,251]that if ¢ belongs of the Besov class B, , then (¢(s) — ¢(t))/(s — t) is a Schur
multiplier, and so ¢ (A) — ¢(B) € S, and (3) holds.

Arazy, Barton, and Friedman [252] have found another sufficient condition in order that the
function (¢ (s) — @(t))/(s —t) be a Schur multi-plier. If ¢ € B, then ¢ satisfies their
condition.

As in the case of formula (2), the right-hand side of (3) is well-defined for any Lipschitz
function ¢. M. G. Krein has asked in [247] whether (3) is valid for any Lipschitz ¢. It turned
out that this is not the case. First, Farforovskaya in [253] has constructed an explicit
example of operators A and B and a Lipschitz function ¢ such that A — B € §; but the
operator on the left-hand side of (3) does not belong to §,. Then the author has found in
[250,251]necessary conditions on ¢ in order that ¢ (4) — ¢(B) be in §;, whenever A— B €
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S,. To obtain such conditions a technique of Hankel operators has been used. Those
necessary conditions imply that ¢(A4) — ¢(B) is not necessarily in §,for any C* function .
The simplest necessary condition obtained in [250,251]is that ¢ must be locally in the
Besov class B}. A stronger condition is that that Hankel operators H, and H, must act from
the Hardy class H' and the Besov class B1. Recently, S. Semmes has found a nice
description of such functions ¢.

The above two problems are not only similar to each other but they can be attacked by
using the same approach. The approach relies on the Hankel operators and the technique
of double operator integrals developed by Birman and Solomyak .

An operator T acting from a Hilbert space #; to a Hilbert space H,is called of trace class
(notationally T € §,)if

ITlls, = ) su(T) <o
where
s, (T) € inf{||T — K||:rank K < n}.
If T is a trace class operator on a Hilbert space #, then its trace is defined by

trace T = Z(Ten, en),

n=0

where {e,, },,s0iS an orthonormal basis in 7, the value of trace does not depend on the choice

Of {en}nzo-
The Hilbert-Schmidt class S, is defined by the condition

D M) <
We refer to [254].
Let E and F be Borel spectral measures defined on separable metric spaces A and M and T

be a bounded operator on Hilbert space. Given a bounded measurable function ¢ on A < M,
we can consider the double operator integral

oT = ] ] (s, t)dF (s)TdE(r)

The theory of such integrals has been developed in [249] (see also [25241]). If ¢ € L (A %
M), then @ is a bounded transformation on the Hilbert Schmidt class §,. If @ is bounded
on S;, we can define ®T by duality for any bounded T. In this case ¢ is called a Schur
multiplier of ;.
Let A,B be selfadjoint operators on Hilbert space with bounded A — B and ¢ a function in
C1(R) such that the function ¢,
. @(s) — o(t)
@(s,0) = et

in two variables is a Schur multiplier. Then

0(B) — p(4) = j ] (s, DAE(s)(B — A)dE, (D),
RYR
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where E, and E are the spectral measures of A and B (see [248]). This formula turned out
to be very useful in the problem of validity of the trace formula (1.3).
In [255] Birman and Solomyak have established the formula

0(4)B — Bo(4) = j ] (s, O dE(s)(AB — BAYAE,(t) @)
RYR

for any selfadjoint A and bounded B with bounded AB — BA, whenever ¢ is a Schur
multiplier. This formula will be used for the construction of a functional calculus for a pair
of almost commuting selfadjoint operators.
We deal with bounded selfadjoint operators, we can assume that the functions involved in
functional calculus are periodic with a sufficiently large period. Therefore we consider
here the Besov classes periodic functions or, which is equivalent, the Besov classes of func-
tions on the unit circle. These classes admit many equivalent definitions (see [256]).

Letn > 0. The trigonometric polynomial W, is defined as follows. The Fourier
coefficients W, (k) vanish outside (21,21, 1,,(2™) = 1, and W, is a linear function on
[27%1 2] and [2",2""1]. If n < O then W, & W, W,(2) & Z + 1 + z. Clearly for any function

f we have
F=) f*W,
nez
The Besov class By, of functions on the unit circle is defined by
feBy, = {2M|f = Wyliw) e ea, )

We use the notation By, for B,
We deal with two Besov spaces B, and Bl. They admit the following description. Let ¢,
be the harmonic extension of a function ¢ to the unit disc. Then

0eBl o [ 10O Q) <o, ®)
where A is the area measure, and ’
pEBy & 1<SU|01I(V2<py{)(rC)I> dr < co. (7)
<Here V2F = aOZF Iil-_ o°F + o°F >
0x? dy? 0x0dy

In a similar way one can define Besov classes on the real line (see [256]).
Given a bounded function ¢ on the unit circle T, the Hankel operator H, acts from the
Hardy class H? to the class H? & 2 © H? by the formula
H,f < P_of,

where P_ is the orthogonal projection onto H2.

It has been found in [257] thatH,, € S ifand only if P_¢ € Bi.

One can also consider Hankel operators defined on the Hardy class H?(C, ) of functions in
the upper half-plane.
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The role of Hankel operators in the problems considered above can be explained as follows.
It is important for us to know when the function ¢ is a Schur multiplier, or since we deal
with bounded operators, we have to know when the function ¢ restricted to I x I is a Schur
multiplier for any bounded interval I.

If ¢ is a periodic function then the last property can be reformulated as follows. We can
identify ¢ with a function y on the unit circle. Let

o = YO =¥
1-¢7
Then the question is equivalent to the question of whether i is a Schur multiplier. The last
property is equivalent to the fact that the integral operator on L?(T) with kernel
k({, D)P(S,7)

belongs to §; whenever k({,7) is the kernel of a trace class operator on L?(T) (see [249]).
In particular, the integral operator with kernel (¢, 7) must be in §;which is equivalent in
turn to the fact that

, ¢(,T€T.

HyHj € S;
(see [250]). As mentioned the latter is equivalent to the fact that iy € B1.
A stronger necessary condition obtained in [250] with the help of Hankel operators is that

both Hankel operators Hy,, and Hy map the Hardy class H?! into the Besov class B} (the

class of such functions ¥ is denoted in [250,251]by 2).

Similar results hold for unbounded operators. We have to consider arbitrary functions ¢
on R for which ¢ is a Schur multiplier on L2(R) (see [251]).

S. Semmes has found a nice characterization of the class £ (private communication).
Namely, he has proved that i € £ if and only if |(V2@4)(r{)|d&dn is a Carleson measure in
the unit disc. Itis easy to see from this description and from (6), (7) that BL,, ¢ £ c B}.

It has been shown in [250,251]that if ¢ € B, then the function ¢ is a Schur multiplier.
In [252] another sufficient condition has been found. Namely, let X be the class of
functions analytic in the unit disc that satisfies the property

1-—|7|?

sup [ T P OIdAG) < ®)
A function f on the unit circle is said to belong to the space Y if both functions -
(I -P_)f and f & P_f belong to X. It has been proved in [252] that if Y € Y, then ¢ is a
Schur multiplier. Moreover, it has been shown in [252] that Bl, c Y. S. A. Vinogradov has
recently proved that the inclusion is proper (private communication).
We show that it is impossible to construct a functional calculus on the class of continuously
differentiable functions. More precisely, we prove that if £ is a class of functions in two real
variables on which there exists a functional calculus satisfying (F1)-(F3) and ¢ is a function
in € depending only on one variable, ¢(s,t) = f(s), then f locally belongs to the class L.
We also present here the Semmes characterization of the class L.
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Definition (6.1.1)[239]: Let X be a class of functions on the real line. A function f on R is
said to belong to X locally if for any interval I there exists a function g in X such that f|I =
gll.

We say that a function f locally belongs to the class £ if for any interval I,f|I coincides
with the restriction to I of a periodic function of class L.
Corollary(6.1.2)[239]: Under the hypothesis of Theorem(6.1.2), f belongs locally to B7.
L c B And so the corollary follows immediately from the theorem.

It is well known (see [250]) that C ¢ B} and it follows that it is impossible to construct a
functional calculus satisfying (F1)-(F3) on the class of continuously differentiable functions.

Before we proceed to the proof of Theorem (6.1.2) we prove here for the sake of
completeness the Semmes theorem stated.

Let ¢ be a function on T. Recall that ¢ € £ means that both Hankel operators H, and H;
map H! into B].
Definition (6.1.3)[239]: Let u be a positive measure on the unit disc D. It is called a Carleson
measure if forany ¢ € T and forany e > 0

u{t € D:|{ — 7| < €} < const ¢.
Let
1
llley & sup —ufr € D:[¢ — 7] < &}
ZeT,e>0 €

The following characterizations of the Carleson measures are well known (see [9, 14]).
Let u be a positive measure on D. The following are equivalent:
(1) wisacCarleson measure;
(i) [1f(DIPdu(Q) < const||f ||} for some p > 0;
(iii) [1f (DIPdu({) < const||f||}, forany p > 0;

(iv) sup Ip(@ = 1817)/11 = T¢1*)dp(z) < oo.

Moreover the constants in (ii) and (iii) are equivalent to |||l cp-
It follows from (iv) that if ¢ is a function analytic in D, then ¢ € L if and only if
2
= e
It is interesting to compare this condition with (8).
Theorem (6.1.4)[239]:(S. Semmes). Let ¢ be a function on the unit circle. Then ¢ € £ if and
only if |(V2¢4;)|dA is a Carleson measure on D.
First recall the definition of Carleson measures.

Proof . Fist of all it is sufficient to consider the case of a function @ analytic in D

(otherwise we could represent ¢ asp =@, +¢@_ , o_=P_¢, and prove the result
separately for ¢, and ¢_).
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Suppose that ¢ is analytic in D and |¢''({)|dédn is a Carleson measure. Let us show that
H, is a bounded operator from H' to B1. Without loss of generality we can assume

that ¢(0) = ¢'(0) = 0.
Consider the following pairing defined on the set of polynomials

(f.g) = ] F@) 9@ do(Q),

where a is normalized Lebesgue measure on T.
The dual space to the subspace P_B] can be identified with respect to the above pairing
with the space B, of functions g analytic in the unit disc and satisfying

sup(1 = 1¢1*)1g(D)] < .
ZeD

We have to show that

[(Hyf 9)] < constlifllx2llg s,
for any analytic polynomials f and g. By Green's formula the last inequality is equivalent to

] OO — 17)AQ)| < constlfllallglz.
D

We have
§uglg(5)l(1 — [¢1?) < constligllg:,
€

and so
lle" (DI = ISI12)dAD Nl em < constligligs, " [dAllcu-
Therefore it follows from (iii) with p = 1 that
[(Hof, )| < constlif Il llgligs, lle"1dAllcum

Now suppose that H,, is a bounded operator from H* to B}. Let us show that |¢"|dA is a
Carleson measure. It is easy to see that ¢ € B! and so ¢ is a continuous function on T.

Given { € T, put

¢ ={rep:|g -t <e}
We have
[(Hyf, )| < constllf Iy - llgllgs,,,

for any smooth f and g.

Let G be a function in L*such that supp G c Cég) andsupp G NT = .

Put
mﬂ:]-iﬁﬂ—m@)

@ (1-wr)3

Clearly, g is analytic in a neighbourhood of the closed unit disc.
The function g satisfies the following properties:
(@) |g(@)| < const||G]|», (1/(1 — |¢])) for any € D;

(B) 1§ ()| < const £2||G|,», (1/|1 — (1 — £){z|®) forany ¢ Cézg).
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Property (f) is obvious. Let us establish («). Clearly, (a) is equivalent to the following
inequality.
Let y be a function in the upper half-plane C,defined by

_ dA(w)
Y(z) = bsm,
where D, = {w:|Rew| < ¢,0 < Imw < €}. Then
|Y(2)] - |Im z| < const. 9

Indeed, it is sufficient to prove (9) for x = iy, y € R,. We have

3. dA 1
yltp(iy)ISf:D Y (w)S]

inr — 13 2 i — I3
Jiy—oF y i — ol

dA(w) < .

Let now

1 _
9@ =51~ (1= )G,
It is easy to see from (a) and () that
1
< 00— .
9@ < constlGllo 7=, €D
Consider now the function

eT?

fO = a0y

It is easy to see that f € H! and
| f]l5: < const.

We have
=\ _l( oy 2 1. G(w) ,
= 1 —ml_z — 1 7
- E]cés) A= do (1) | G(w)dA(w) = Eng)(p (0) G(w)dA(w).

Let us now choose the function G. Put
¢ = {w € ¢ dist (0, T) = 6}.
Let us define G by
¢"(w)
G() = y]p" (W)’
0, otherwise.

if we c and " (w) #0,

It follows that

1
—] lo"(w)] dA(w) < const.
3 Cés)

The result follows by making § — O.
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Theorem (6.1.5)[239]: Let £ be a class of functions in two real variables and ¢ — @ (4, B),
@ € &, a functional calculus for pairs of almost commuting selfadjoint operators that
satisfies (F1)-(Fs3). Let ¢ € £ be a function dependent only on one variable ¢(s,t) = f(s).
Then f belongs locally to L.

Proof .Let o(s,t) = f(s), ¢ € £, Y(s,t) = t. It follows from (F3) that
(A, B)Y(A B) —y(A B)p(A B) = f(A)B — Bf(A) € S,
for any almost commuting pair of selfadjoint operators A and B. It follows that
f(A)B — Bf(4) € S,

for any selfadjoint A and bounded B with AB — BA € §; (one can consider separately the
real and the imaginary part of B).

It is easy to see that for any pair A, B with bounded B, bounded selfadjoint A4, and AB —
BA € §; the following inequality holds:

If(A)B — Bf (A)lls, < constl|AB — BAlls,.
Otherwise we could find sequences of operators{4,},{B,}such thatsupl||4,|| < o,
n

sup||B, || < oothe A, are selfadjoint,
n

D 1408, = Budyls, < o0
n

but
D IF (4B, = Baf (4, = o

AZZEBAn, BZZEBBn.

Obviously A is a bounded selfadjoint operator, B is a bounded operator, AB — BA € S,but
f(A)B — Bf(4) € S1.

Let I be an interval and p, g be arbitrary functions in L?(I). Let us show that the integral
operator T defined by

Then we can put

(Th)(©) = p(£)q(s)h(s)ds (10)

belongs to §; and ||T||s, < const||pl|;zllqll,> .This would imply that f is a Schur multiplier.
Consider the truncated functions p,, and g,, defined by

_(p@®), Ip@®|<n
PO =10 o

]f(t)—f(S)
, t—s

_(q@®), lq@®)]|<n
wO={g" ool

Define the operators A and B by
(An)(t) = th(t), h e L*(D),
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(B,h)(t) = p,,(t )]q"(s)h(s) s, he L2(D).

Then the B, are bounded, A is bounded and selfadjoint. It is easy to see that

((4B, = B,A)h)(t) = pu(t) ]h(s)qn(s)ds = (h g )pa(t), he L2()

and
((f(A)B, — Bof (A))h)(t) = f Mpn(t)qn(s)h(s)ds he L*(I)
Clearly
IAB, — ByAlls, = llpnllizllgnllz < llpll2llqll.2
Therefore

lf (A)B,, — B.f (A)lls, < const||pllzllqll 2.
It is evident that f(A)B, — B,f(A) converges in the weak operator topology to the
operator T defined by (10) which implies the desired estimate for ||T||s,.
We define a class & of functions in two real variables and construct a functional calculus on
L for pairs of almost commuting selfadjoint  operators. This functional calculus satisfies
properties (F1)-(F4) and extends the functional calculi constructed earlier. Then we give a
description of the class £ similar to that of Besov classes (5).
We define another class of functions £, contained in £ and we prove that the restriction of
the functional calculus on g to £, in addition to (F1)-(F4) satisfies (Fs)
Definition (6.1.6)[239]: Let & be the class of periodic functions ¢ (with a fixed period) in
two real variables which admit a representation

0,0 = ) fi(s)ga(®). (1)

n=0

where f,,, g, are periodic functions in one variable such that

D (Wfulla, gallo + Ufalliollgnllps,,) < oo (12)

n=0

Here we can choose the period to be an arbitrary number greater than 2(||A|| + || B]|).
Note that this is not the projective tensor product of two function spaces in one variable.
If A, B are almost commuting selfadjoint operators, then we define the operator ¢ (A4, B)

by
$AB)= ) f(4)gu(B). (13)

n=0
Such a functional calculus can be extended by the same formula to the class of functions in
two variables which belong to £ locally.
Let us show first that our functional calculus is well-defined by (13).
Lemma (6.1.7)[239]: Suppose that ¢ is a function in two variables that admits two
representations (11) satisfying (12):
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0.0 =Y FPDePO =Y [2eP0).

n=0 n=0

Then
Y (PP = (PP ®).

n=0 n=0

Proof. It is easy to see that

> W@ = [ 0s.0dE ©)dE@, =12 (4)

and the right-hand side of (14) does not depend on j. The integral in (14) can be
understood in the sense of weak operator topology.

Let us now show that the functional calculus on £ defined by (13) satisfies (F1)-(F4).
Theorem (6.1.8)[239]: The functional calculus on the class £ defined by (13) satisfies
properties (F1)-(F4).

Proof. Let f be a function in Bl A, B almost commuting selfadjoint operators. Then it
follows from the Birman-Solornyak formula (4) and from the fact that j is a Schur multiplier
(see [250]) that

If (A)B = Bf (A)lls, < lIf llgy, 1AB — BAlls,. (15)
Let us now establish properties (F1)-(F4) with the help of (15). Properties (F1) and (F2) are
obvious. Let us prove (Fz). Let

060 = ) fi)ga®, ¥, = ) un()vn(®)

n=0 n=0
be representations of ¢ and v satisfying (12).
It is sufficient to prove that forany n,k > 0
(fuur)(A)(gnvi) (B) — f,(A)gn(B)u, (A)v,(B) € Sy
and
| (fuwi) (A)(gnvi ) (B) — £(A)gn (B)uy (A) v (B)lls, < constliflli=llgllp,, lluwllps Nvillio
We have
(faw) (A) (gn i) (B) — f,(4) g (B)wy (A) v (B) = £,(A) (4, (A) gn (B) — fr(B)wi (A) )vic(B).
Now applying (15) twice, we obtain
| (/o) (A)(gnvi)(B) — [ (A) gn (B)wi (A)vi (B)lls,
< const|| full = lvpell oo 1w ll g1 1A g7 (B) — gn(B)Alls,
< const|| full o llviell o llugell g1 lgnllgr IAB — BAlls, .
Property (F4) follows from the fact that formula (2) holds for smooth functions (see [240,
241]) and from the fact that the set of smooth functions is dense in £.
Now we are going to give a description of the class £. Since we deal with periodic
functions, we can identify the functions in £ with functions on T x T. Let us define
trigometric polynomials W,, ;. n, k € Z, in two variables by

Wn,k({: T) = VVn(Z)Wk(T)
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Note that for any function ¢ on T x T we have

Q= Z @ *Wh k.

n,keZ
Recall that the tensor algebra C (T)®C(T) is the set of functions ¢ on T? of the form
0@ =) D). (16)
n=0
where
D Wallellgalleen < e @an
n=0

C (T) being the space of continuous functions on T. The norm |||l ¢(rygccry in C(T)®C(T) is
by definition the infimum of (17) over all representations (16).

The following description of £is similar to that of Besov spaces given.
Theorem (6.1.9)[239]: Let ¢ be a function T2. Then ¢ € g if and only if

Z (217! + 21K1) || = Wn’k”C(T)@)C(T) < . (18)

n,keZ
Proof. Suppose that ¢ admits a representation (16) satisfying (17). Let us show that ¢ € &.
It is sufficient to prove that for any n, k € Z

lo = Waill < const(2™ + 25 | « Wil oy

Suppose, to be definite, that n, k > 0. Then it suffices to prove that for any polynomial y of
the form

on+1 2k+1
PED= D > @ (19)
i=2n1 j=pk-1
the following inequality holds:
lYlle < const(2™ + 2°) 1Yl cmyacer)- (20)
Let

YED =) fulDgn()
where f,,,, g € C(T) and

Dl Ngmllis < 2llcengecny

m=0 L®
Let V, =W,y + W, + W, Then||V,|lx < constand I7,(j) =1 for
Vni (¢, 1) =V (Vi (7).
Since ¥ has the form (19), it follows that and so
lp * Vn,k = lpy

and so

YD =) Fa(OGm()

where
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Fm:fm*an Gm:gm*Vk-

Therefore
l¥lle < Z(IIFmIIBg(,lIIGmIILoo + || Byl |Gl g2, ).
mz=0
It follows easily from the definition of BL , that
IEnllpy, < const2M[|Epllp,  [1Gmllpy, < const 2] Gyl e
Then (20) follows from the obvious estimates
|| Bl o < const || fnll i, |G|l 10 < const || g || -

Let us now prove that any function ¢ in £ satisfies (18). It is sufficient to consider the case

e, 1) =f(yg(2)

and show that
> @M+ 25) [l Wl oy ocny < 20Nt (17 g, gl + 1F N lgllgy,,)

n,keZ
We have
(¢ * Wy )€, 7) = (f * W)((g * W, (2)).
Therefore
Z (21 + 2 [l * W]l g < Z (2! + 2IK) |1 + W]l ooll g * Wicll oo
n,keZ n,keZ

< 2( > 2mif w/nnLoo)ngnLoo +2( > 2Myif WknLoo)nfnLoo
In[=lk| |k|=n|

<2 (Z 20 if WnnLoo) gl +2 (Z 21| f « Wkan) I1f e

nez nez
< const(|Ifllgs, lglle + 1 fllellgllipy,,).
Recall that in [242] a functional calculus for almost commuting operators has been
constructed on the class of functions ¢ = Fw which are Fourier transforms of measures w
on R? satisfying the condition

1+ [tD@ + [sDdlw(t,s)]| < oo. (21)
]RZ
The functional calculus has been defined by the formula
04,8 = || 0 BB ). 22)

It is easy to see that the condition (21) is more restrictive than the condition (12). Indeed,
the condition (21) implies that ¢ has continuous derivatives 0p/ds,0¢p/dt, and 9%¢@/dsot
which have locally absolutely convergent Fourier expansions. However, the condition (12)
does not imply the existence of continuous derivative d?¢/dsdt and the first partial
derivatives dp/ds, de/dt do not necessarily have absolutely convergent Fourier
expansions.
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It is also easy to see that for ¢ satisfying (21) the definition (13) coincides with (22).
Thus our functional calculus extends the functional calculus defined by (22).
Let us now consider the problem to construct a functional calculus satisfying property
(Fs):
@(A.B) — (p(A,B))" € S;.
In this case we have to impose a more restrictive assumption on ¢.
Definition (6.1.10)[239]: Let £, be a class of periodic functions of the form

T ESWAOTAG)

n=0
where

D Wfallz, lgallzy, < oo

n=0

(In other words £, is the projective tensor product of two spaces BL,,)

For ¢in £, and almost commuting selfadjoint operators A and B we can define ¢ (4, B) by
(13)
Theorem (6.1.11)[239]: The functional calculus on £; defined by (13) satisfies properties
(F1)-(Fs).
Proof Clearly we have to prove only (Fs). It is sufficient to consider only the functions ¢ of
the form

o(s,t) = f(s)g(t), f.g€ By
We have by (15)
IF)g(B) = g(BIF (A5, < const lIf llg,, 14G(B) — g(B)Alls,
< const ||fllgs llgllgy IAB — BAlls,.

The class £;admits a description similar to (18).
Theorem (6.1.12) [239]: Let ¢ be afunctionon T x T. Then ¢ € £, ifand only if

Z 2 |l 5 Wi g < 00

n,keZ
The proof is similar to the proof of Theorem (6.1.9).
Section (6.2): Operator Moduli of Continuity™ .
We study operator moduli of continuity of functions on subsets of the real line. For a closed
subset & of the real line R and for a continuous function f on &, the operator modulus of
continuity (s ¢ is defined by
2r5(6) & supll f(A) —fFB)II , 6>0,
where the supremum is taken over all self-adjoint operators A and B such that
c(A)cF od(B)cE and ||A—-BJ| <6.
If & =R, we use the notation Q2 = ()¢ . Recall that a continuous function f on § is called
operator Lipschitz if 2, +(8) < const §,6 > O.
It turns out that a Lipschitz function f on R, i.e., a function f satisfying
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lf(x) = f)] <constjx —y|, x,y€R,
does not have to be operator Lipschitz. This was established for the first time by
Farforovskaya [9]. It was shown later in [262]that the function x +— |x| on R is not operator
Lipschitz.
The [262] followed the by [265], in which it was shown that the function x +— |x| is not
commutator Lipschitz. Note that nowadays it is well known that operator Lipschitzness is
equivalent to commutator Lipsc-hitzness.

We would like to also mention that in [266]necessary conditions for operator
Lipschitzness were found that also imply that Lipschitzness is not sufficient for operator
Lipschitzness. On the other hand, it was shown in [266]and [28] that if f belongs to the
Besov class BL; (R), then f is operator Lipschitz ( we see [267]and [268]).

In [269] and [261] we obtain the following upper estimate for continuous functions f on
R:

] Tor0) o ss0. (23)

tZ
where w is the modulus of continuity of f e,
wr(8) & sup{lf(x) — fOI:xy R |x -yl <6}, §>0.
We deduced from (23) in [261] that for a Lipschitz function f on [a,b], the following
estimate for the operator modulus of continuity 0 4 ,; holds:
b —
2 1a(8) < const 8 (1+10g (=) ) If i
where

UFl If(x) - I
/ Lip = x:ty |x — yl I
A similar estimate was obtained earlier in [262]in the very special case f(x) = |x|. Namely,
it was shown in [262]that for bounded self-adjoint operators A and B on Hilbert space, the
following inequality holds:
14l - 1Bl < 2 14 - B (2 . logw)
m lA — Bl
It turns out, however, that for the function x — |x| the operator modulus of continuity
admits a much better estimate. Namely, we show that under the same hypotheses
I1A] = |BI|l < const||A — B]| <2 + Iogw)
lA — Bl
We also prove that this estimate is sharp.

Note that in [270]an estimate slightly weaker than (23) was obtained by a different
method.

We show that if f isacontinuous non decreasing function on R, such that f(x) = 0O for
x < 0 and the restriction of f to [0, o) is a concave function, then estimate (23) can also be
improved considerably:
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2,(6) < const]oo ACD) §>0.

t?2logt’
e
We also obtain other estimates of operator moduli of continuity.

It is still unknown whether inequality (23) is sharp. It follows easily from (23) that if f is
a function on R such that [|f|[;» < 1, ||f||Lip < 1, then

1
02,(8) < consts (1 + log 3)’ 6 € (0,1]

We construct a C* function f on R such that [|f|;~ < 1, f|lLip < 1,and

2
12,(8) < consts /Iogg, 6 € (0,1].

To construct such a function f , we use necessary conditions for operator Lipschitzness
found in [27].
We obtain lower estimates in the case of functions on the unit circle and unitary operators.

Finally, we obtain the following sharp estimate for the norms || f(A) — f(B)|| for Lipschitz
functions f and self-adjoint operators A and B on Hilbert space such that the spectrum
o(A) of A has n points:

If(4) = fFB)I < €L+ logn)llfllLip l1A—BIl . (24)

We obtain an upper estimate in the general case (see Theorem (6.2.85) in terms of the e-
entropy of the spectrum of A, where ¢ = [|A — B||. It includes inequalities (23) and (24) as
special cases. Note that (24) improve earlier estimates in [264]and [271].
We give a brief introduction to Schur multipliers, we collect auxiliary estimates of certain
functions in the space of functions with absolutely converging Fourier integrals. To obtain
upper estimates for operator moduli of continuity of concave functions, we estimate the
operator modulus of continuity of a very special piecewise continuous function on R.

We define Schur multipliers and discuss their properties. Note that the notion of a Schur
multiplier can be defined in the case of two spectral measures (see, e.g., [27]). We define
Schur multipliers in the case of two scalar measures. This corresponds to the case of
spectral measures of multiplicity 1.

Let (X,u) and (Y,v) be o-finite measure spaces. Letk € L*(X x Y ,u ® v). Then k
induces the integral operator I, = .‘tﬁ’v from L2(Y,v) to L?(X, u) defined by

(T)(x) = j k(y) FO)Av(y),  f € 12T, v).
Y

Denote by ||k||g = ||k||%% the operator norm of I;,.. Let ® be a u @ v-measu-rable function

defined almost everywhere on X' x Y . We say that @ is a Schur multiplier with respect to u
and v if
[Pllgney = {llPkllg: ke, Pk € L2(X x Y ,u @), |lkllg < 1} < 0.
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We denote by 9" the space of Schur multipliers with respect to x and v. It can be shown
easily that Ay, c L°°(x XY, u® v) and | @[l e exy ugv) - Thus if @ € WA, then
Note that 9ty is Banach algebra:

||¢1¢z||m% < ||CD1||93?%||¢2||93?%-
It is easy to see that ||¢||Em% = ||l}'||§m% for ¥ (y, x) = ®(x,y).
If X, is a u-measurable subset of X', then we denote by (X,, 1) the corresponding measure
space on the og-algebra of u-measurable subsets of X,,.

Let X = Up=o X, and Y = Un-, Yn, Where the X, are u-measurable subsets of X', and the
Y,, are v-measurable subsets of Y. It is easy to see that

sup ||k||§3u,v < I|k|| b < E E ||k||53uv
mmn21 XmUn XmYn
m=1n=
forevery k € L>(X x Y ,u ® v), and

up [[Bl1Zey < 101G < Z chbnw (25)

mmnz1 me1ne
forevery ® € L*(X x Y ,u Q@ v).
We state the following elementary theorem:
Theorem (6.2.1)[260]. Let (X, u), (Y,up), (Y,v) and (Y,v,) be o-finite measure spaces.
Suppose that u, is absolutely continuous with respect to u and v,is absolutely continuous
with respect to v.
Let ® € My, . Then d € MA%° andl|Pllgpozo < I Pllgps

Proof. By the Radon-Nikodym theorem, du, = ¢dp and dv, = y¥dv for non-negative
measurable functions ¢ and ¥ on X and Y. Let k € L2(X XY ,uo ® v,). Put
(Tk)(x, ) & k(x, )V o ()p(y).
Clearly, T is an isometric embedding from L2(X <Y ,uy @ vy) in L2(X XY ,u @ v).
Moreover,||Tk||guv = |[|k|[grovo . We have
Xy Xy

vo — v = v < v v = v v
IPkllggoro = IT(@R) gy = NPTkl < 1Pllgyas [Tl = 1y 1Ellggoro
UoV
forevery k € L2(X <Y ,uo ® v,). Hence, ® € Sjtx‘fy" andIICDIIm?%vO < IICDIIW%.

Note that if X and Y coincide with the set Z, of nonnegative integers and u and v are the
counting measure, the above definition coincides with the definition of Schur multipliers on
the space of matrices: a matrix A = {a;;}; k=0 is called a Schur multiplier on the space of
bounded matrices if

A x B isamatrix of a bounded operator, whenever B is.
Here we use the notation
A x B ={ajkbjk}; k=0 (26)
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for the Schur-Hadamard product of the matrices A = {a;i}; k=0 and B = {bjx}; k=0
Let X and Y be closed subsets of R. We denote by Mty 4, the space of Borel Schur multipliers

on X x 1Y ,i.e, the space of Borel functions ® defined everywhere on X’ x Y such that
”(D”m?xly = Sup”q)”ﬂj}u% < OO

where the supremum is taken over all regular positive Borel measures pandvonX and Y .
It can be shown easily that

sup |@(x, )| < |Pllany -
(x¥)eXxY

It is also easy to verify that if ®,, € My y , P is a bounded Borel function on X x Y, and
d,(x,y) - O(x,y) forall (x,y) € X x Y, then

In particular, ® € My 4 if lim inf||CDn||93?xy < oo,
n—-oo !

We are going to deal with functions f on X’ x Y that are continuous in each variable. It

must be a well-known fact that such a function f has to be a Borel function. Indeed, one can
construct an increasing sequence {U,,},-,0f discrete closed subsets of Y such that U,;-; Y,
is dense in Y. Let us consider the function f,,: X x R — C such that f|(X xY,) = f,[(X %
Y,) and f,(x,-) is a piecewise linear function with nodes in Y,for all x € X . Clearly, the
function
fn 1s defined uniquely if we require that f,(x,-) is constant on each unbounded
complimentary interval of U,. It is easy to see that f, is continuous on X xR
and lim,,_,., f,(x,y) = f(x,y)for all (x,y) € X x Y. Thus, f belongs to the first Baire class,
and so it is Borel.
Lemma (6.2.2)[260]. Let X and Y be compact subsets of R and let u and v be finite positive
Borel measures on X and Y . Suppose that {v;}}2;is a sequence of finite positive Borel
measures on Y that converges to v in the weak-* topology o((C(Y))*,C(Y)). If k is a
bounded Borel function on X x Y such that k(x,-) € C(Y) for every x € X , then

L gy = 1 g
Proof. Clearly, T, /(T, )" is an mtegral operator on L2(X,u) with kernel i(x,y) =
fyk(x, t)k(y, t)dv;(t). Besides, the sequence {/;} converges in L?(X x X ,u ® p) to the
function [ defined by I(x,y) = fyk(x, t)k(y, t)dv(t), which is the kernel of the integral
operatorZ;” (Z4)*. Hence,

B = il (5 gy = Y g, = I

Corollary (6.2.3) [260]. Let X and Y be compact subsets of R, and let 1l and v be finite positive
Borel measures on X' and Y. Suppose that {v;}72, is a sequence of finite positive Borel

measures on Y that converges to v in a((C(Y))*, C(Y)). If ® is a Borel function on X x X
such that ®(x,-) € C(Y) forall x € X , then ||CI>||WU < liminf;_,, < IICDII ny

Xy
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Proof. It is easy to see that
19llgys = sup{llokllggs :k € COC X Y), lkllggr < 1}
Let k € C(X x Y) with ||k || ,2(,&,y = 0. Then

Kllgur = lim |k u,v-sliminf<d> w; Ik u,v->=Iim [ uv liminfllk|l_ev;
Ikl gee, jﬁmll ”%xﬂj mir I IIwmjll ”%xﬂj lim I IIm?x’y; mir I ”%xﬂj
= IIkII%%llmgonf ||<D||m?%j
which implies the result.

For a measure u and an integrable function ¢, we write v = ¢@u if v is the (complex)
measure defined by dv = @dpu.

The following fact can be proved very easily.
Lemma (6.2.4)[260]. Let v and v, be finite Borel measures on R with compact supports.
Suppose that supp v, < supp v . Then there exists a sequence {¢;};2, in C(R) such that
@; = 0 everywhere on R for all j and vy = lim;_,¢, ;v in o((C(supp v))*, C(supp v)).
Theorem (6.2.5)[260]. Let X and Y be closed subsets of R and let ® be a function on X x Y
that is continuous in each variables. Suppose that u and p, are positive regular Borel
measures on X ,and v and v, are positive regular Borel measures on Y. If supp p, € supp u
and v, c suppv,then||CD||m?%vo < IICDIIW%.

We need two lemmata.
Proof. Put X, & [-n,n]n X and Y,, & [-n,n] N Y. Clearly, { ”q’”m&"y }is a nondecreasing

sequence and
lim [|®]lger = ||P]|gpuv .
lim | ”chz,yn I ||gm%
This allows us to reduce the general case to the case when X and Y are compact. Besides, it
suffices to consider the case where u, = u. Indeed, the case v, = v can be reduced to the
case u, = u, and we have
||¢||W;?yVO < ||<D||m?%o < ||<D||gm%

Let X and Y be compact, and u, = u. Applying Lemma (6.2.5), we can take a sequence
{9}~ of nonnegative functions in C(R) such that v, = lim;_, ¢;v in the weak topology

a((C(Y))", C(Y)). Putv; & @;v.By Theorem (6.2.1), ”CD”Emu,vj < ||d>||m%for every j > 1.
XY !

It remains to apply Corollary (6.2.4).

Theorem (6.2.2) implies the following fact:
Theorem (6.2.6)[260]. Let X and Y be closed subsets of R and let @ be a function on X < Y
that is continuous in each variable. Suppose that ¢ and v are positive regular Borel
measures on X and Y such that supp u = X andsuppv =Y . Then ||¢||m?x,y = ||¢||Em% :

The following result is well known.
Let f € C(R). Put®(x,y) € f(x—y). Then ® € Mrpr if and only if f is the Fourier
transform of a complex measure on R. Moreover, ||CD||93?M = |u|(R).
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A similar statement holds for any locally compact abelian group. In particular, it is true for
the group Z:
Let f be a function defined on Z. Put ®(m,n) € f(m —n). Then ® € My,
if and only if {f (n)},cz are the Fourier coefficients of a complex Borel measure u on the
unitcircle T. Moreover, ||CI>||93?Z]Z = |u|(T).

We need the following well-known fact.
Lemma (6.2.7)[260]: Let

H(m,n)”‘:‘*f{m’ ifm,n€Zm+#n,
0, if m=nel

T

Then ||H||93?ZlZ =2

Proof. It suffices to observe that

2T 2T
1 . 1 T
H(n,0) = —] i(m—t)e " ™dt and —] |t — t]dt = =
21 21 2
0 0
We collect elementary estimates of certain functions in the space of absolutely convergent
Fourier integrals.
We are going to deal with the space

=R 2 F(T®), Ifllz = 1flpg 2 1F 7 fll.
Here we use the notation F for Fourier transform:

Ff)(x) & ] f(De-dt,  f e LMR).
R

Unless otherwise stated, an interval means a closed non degenerate (not necessarily
finite) interval. For such an interval J , we consider the class L'(J) defined by L'(J) &
{fI/: f € L'}, we put

@l & inf {lIfllz: £IJ = o}
For € C(R) , we put [|@llzy € @z Clearly, [[@ll ¢y < ll@llz)y -

For an interval J , we use the notation |J] for its length.

It is easy to see that the constant functions belong to the space L'(J) for bounded intervals J
and ||1]|z1;y = 1. Moreover,

') ={Fwl:pe MR} and [Ifllzgy & inf {llullse: (FU = £}

for every bounded interval J , where M (R) denotes the space of (complex) Borel measures
on R.

We are going to discuss (mostly known) estimates for ||-||z1().

First, we recall the PGlya theorem, see [272].

Let f be an even continuous function such that f|[0, o) is a decreasing convex function
vanishing at the infinity. Then f € I* and ||f||;x = £(0).

This theorem readily implies the following fact.
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Lemma (6.2.8)[260]. Let f be a continuous function on a closed ray J that vanishes at
infinity. Suppose that f is monotone and convex (or concave). Then f € L*(J) and ||f||zx =
m]axlfl.

In what follows by a locally absolutely continuous function on R we mean a function
whose restriction to any compact interval is absolutely continuous.
Lemma (6.2.9)[260]. Let f be a locally absolutely continuous function in L?(R) such that
f' € L2(R).Then f € I'(R) and [If & < £ Il 2N 2.
Proof. Puta = ||f|l,2, b = ||f'|| 2. By Plancherel’s theorem,

a? b?
FUflIZ2=— and |[xFif[|7 = —.
NF 1l - lxF £l 2 o
Hence,
2 a®p?
|| b? + a’x?F~ = .
21

and by the Cauchy-Bunyakovsky inequality,
IF = fll <

Corollary (6.2.10)[260]. Let a > 0. Put
2x, if x| <a,

def a
fa(x) = { -1 i x| = a

a

Then f, € L'(R) and |Ifyll; < 3.

= Vab.

b 1
ﬁ ||V a’x? + b? 12

Proof. It suffices to observe that ||fa||fz = % IIfa’Ilfz = % and \E <2
Lemma (6.2.11)[260]. Let J be a bounded interval and let f be a Lipschitz function on R such
that suppf /. Then f € L' and
If il < V_l J1- 11 oo
Proof. Let] = [—a, a]. Clearly, |f(x)| < (a — |x])IIf'|| . for all € J . Hence,
a

1
I£1172 < 21f'lI7 | (@ = &) dt = S IIf =1
12

Using the obvious inequality [If'[|% < 2[If'l|?~ /|, we get the desired estimate.
Corollary (6.2.12)[260]: Let f be a Lipschitz function on R such that f(0) = 0. Then

Il < ‘V_| 1= A1 N

for every bounded interval J that contains O.
Proof. Put 2] = {2x:x € J}. Clearly, there exists a function f; in C(R) such that f; = fon],

suppf; © 2/ and [[f[| .o < lIf'lli.

Lemma (6.2.13)[260]. Let f be a locally absolutely continuous function on R such

that(1 + |x])f'(x) € L*(R). Suppose that lim,_,_, f(x) =0and lim,_, f(x) = 1. Then
232



1 2 7 2
”fllil(—oo,a] < ﬁ”f ”LZ + ;fo ”LZ +§+;|oga

foreverya > 2.
Proof. Put

ﬁ@)gf@)—w‘]xmmﬂoa.

Clearly, If 1z (—may < Il fallz2.

We have
Zaix_eaix
—ivF-lf = F-1(fN = T-1(f") —
ixF 1, =F ) =F (") T
Puth & F~1(f').Then
Zaix_eaix dx
o = h —
Ifall = [ a0 -5
R
1
h — h(0 1 glaix _ paix dx h(x
S]|<x) QI _] 1__+]I(NM
|x| 2m |x| |x|
-1 -1 {Ix|=1}
1 ] | aix 1|
+
2ma x2
{lx|=1}
We have
() -h©@I (1 [ 1
x —
] " dxs]; ]lh’(t)ldt dx:]|h’(t)|-|logt|dt.
0 0 0 0
Hence,

1 1 1 1/2
1) — ()l , , 2.,
[ ar< (W@ Noglellde < Wl | [tog?lelde | = [= i@l
21 21

because h' = F~(ixf").
By Taylor’s formula for the function e?** — e* , we have

. . 5
2ix _ jix __ < —y2
|e e lx| < 2x .
Thus
1 , , a . , a
1 ] g2aix _ palx 1 dx 1 ] e2¥ — olx 1 dx 1 ] ] {5 2 }d
— - 1f- — —1[-—<— | min
21 aix x| 2n ix x| — 2n 2 x|
1 - “a

1
<—(B+4loga).
21
Finally,
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1

|h ()| _ '
] —dx < V2|hllz = A

|x]=1 | |
by the Cauchy—Bunyakovsky inequality and

1 ] |eaix—1|d 1 |eix—1|d 21
2ma x? ¥~ ona ] x? ¥

{lx|=1} {lx|za}
for a > 2. This implies the desired inequality.
Theorem (6.2.14)[260]. Let J be a bounded interval containing 0. Then
U <=y 27)
e*+1 () - W - 57"

(ex_1)' ”Loo = < and apply Corollary (6.2.12).

eX+1 2

Proof. It suffices to observe that |

Theorem (6.2.14) gives a sufficiently sharp estimate of the L*-norm for little intervals J . For
big intervals J , this estimate will be improved in Corollary (6.2.17).
Theorem (6.2.15)[260]. Let a = 2. Then

2
<2+-—loga.
z:1(_0016"] n

|| =
1+e*

e* \|I°
(ex+1>

B e?*dx B jo tdt 1
, JEexr+1t )] ¢t+1)* 6
L R 0

Proof. We have

and
e* \|I° _mezezxdx <2m 2,22 1
x(ex+1> LZ_ (ex+1)4— ]xe X—Ey
0 0
whence for a > 2,
|| e” <1+1+7+| <2+2|
<S—+—=+_—+-loga<2+-=lo
1+ ag I1(—00,q] Vbr ﬁ 2t 94 T[ 94
by Lemma (6.2.13).

Lemma (6.2.8) implies that

ea

ex
| -
1+e* 11(~,q] 1+ec
for a < 0 but we do not need this inequality.
Corollary (6.2.16)[260]. Let ] be a bounded interval containing 0. Then

e¥—-1 <5_|_4| (1”)
e*+1 - n0g2]

< e?

Il0))
if |J]| = 4.

Proof. We may assume that the center of J is nonpositive. Then J c (—oo,%|]|]. We have
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e —1 e* <5_|_4| 5_|_4| (1”)
= —10 = —l100| = :
e*+1 () e*+1 ) T ga T 9 2 /

We are going to obtain sharp estimates for the Schur multi-plier norms
e* — ey” e*™V -1

e YV + 1||§m]1]2

<142

RUTP P
for all intervals J; and J, . First, we consider two special cases. In the first case /; = J, while
in the second case J;and J,do not overlap, i.e., their intersection has at most one point.
Theorem (6.2.17)[260]. Let J; and J,be nonoverlapping intervals. Then

e* — ey”

(28)

er +e¥

<2

Myy 72

Proof. Clearly, either J; —J, € (—,0] or J; —J, € [0, ). It suffices to consider the case
when J; — J, € (—,0]. Then

ex—ey”

er +e¥

eX~y x

<1+2
RUIP P
by the Polya theorem [272], see also Lemma (6.2.8).

Theorem (6.2.18)[260]. Let / be a bounded interval. Then
e* —e” . (6 4
< min {2115+ log, I/}
5 T

=2

zl(—O0,0]

<1+2

X+ ¥ xX=y + ” X+
e e e 1 w, ), e 1

X+ y||
e e s‘m]’]

and so
e* —eY

|| < 4log(1 +|]]).
eX + e¥ M

Proof. We have
e* —eY e*—1
ex+ey||gm = e*+ -
7] u-n
Note that | —J| = 2|J] and 0 € ] — ] . The result follows now from (6.2.14) and Corollary
(6.2.16).
Theorem (6.2.19)[260]. Let J; and J,be nonoverlapping intervals and let J be the convex hull
of J; UJ,.Then

e ;
mmln{l, 1} <

e* —eY ] 6
|| < mln{2,§|]|}.

X 4+ ¥
€ € RUTP P

Proof. The upper estimate follows readily from Theorems (6.2.17) and (6.2.18). Let us
prove the lower estimate. We have

ex—ey” - ex—ey|>e”|—1>e—1 gL Ul
> sup > > min{1,
e* +e¥ RUTP P X€J1.Y€J2 e* +e” e/l +1 e+l
. t_1 . B t_1
because the function t ~ t(eet+1) decreases on [0,o), while the function t+~ Zt+1

increases.
Theorem (6.2.20)[260]. Let J be a bounded interval. Then
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eX —eY

1
> ?min{ljl, 1+ log.|/1}.

e* + ey||§m]J
Proof. Put Q.(t) & %tz
L*(R), Co f & f * Q. . Clearly, ||Co,|| = IFQcll = 1, see, for example, [273, Chapter 111,81].
Note that C,_is an integral operator with kernel Q.(x —y). We can define the integral

operator X; . on L*(J) with kernel
1 X—y e* —e¥
T(x—y):+e2eX+eY

on
&

We have
—eY
]l . ||X],S|| = (X],SIX]v)(]) ]J- (x — )2 + 82 o% + oY dXdy
JxJ
1 171 . iy
=~ [ e Wl -0
0
and
e* —eY eX —eY
”X]’S” = ”CQSH . ex + ey“im],/ e* + ey||im/,ll
Hence,

171
ex—ey 2 1

—_—— —t)dt
] o E loj L w-0

for every € > 0, whence

171 171
ex—ey” >2] et —1 (1 t)dt>1] et —1 it
e*+evlly,, —m) t(et+1) 1/ ) t(et+1)
b 0 0

t_
because the function t — t(it+11) decreases on (0, ). It follows that
171
e* —eY e—1

1
X y 2_.
+
e e s‘m]’] VA

] min{1, ¢t~ 1} dt.

0

e+1

This implies the desired estimate.

Theorem (6.2.21)[260]. There exists a positive number C such that
ool

<Clog(2+ (b—a),)
M[q,00),(~00,b]

er +e¥

forall a,b € R.
Proof. The result follows from Theorems (6.2.17) if a = b. If a < b, then

[a, ) % (=0, b] = ([a, b] % [a, b]) U ([a, b] % (=0, a]) U ([b, ®) % (=0, b])
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and we can apply Theorem (6.2.18)to the first rectangle and Theorem (6.2.17) to the
remaining rectangles.

Theorem (6.2.22)[260]. There exists a positive number C such that
e* — ey|

<Clog(2+b —a)
MR[a,b]

e* +eY
for all a, b € R satisfying a < b.
Proof. We have

R x [a, b] = ([a, b] % [a, b]) U ((—c0, a] x [a, b]) U ([b, ) x [a, b]).
It remains to apply Theorem (6.2.18) to the first rectangle and Theorem (6.2.17) to the
remaining rectangles.
Theorem (6.2.23)[260]. There exists a positive number ¢ such that

sl < clog (2 + log, 2
||x+y =¢ og( Og+5>

||93?[a,oo),[o,b]
forall a,b € (0, o).

Proof. Theorem (6.2.21) with the help of the change of variables x - logxand y = logy
yields

X—y b+¢
|| || < clog (2+Iog+ )
X+ y gm[a,oo),[s,b+s]
for every e > 0, whence
X—y—¢&
==

b+¢
< clog (2+Iog+ )

M[a,00)[0,b]
for every € > 0. It remains to pass to the limitas € — 0.
Theorem (6.2.24)[260]. There exists a positive number ¢ such that

X—7y b
|| " || < clog <2+ Iog—)
xTy M[a,b],[0,00) a

whenever a, b € (0,)and a < b.

Proof. The result follows from Theorem (6.2.22) in the same way as Theorem (6.2.23)
follows from Theorem (6.2.21).

Theorem (6.2.25)[260]. There exists a positive number ¢ such that

xX—y b
|| " || < clog (1+Iog—>
xTy M[a b][a,b] a

whenever a, b € (0,o) and a < b.
Proof. The result follows from Theorem (6.2.20) with the help of the change of variables
x — logxandy ~ logy
We study operator Lipschitz functions on closed subsets of the real line. It is well known
that a function f on R is operator Lipschitz if and only if it is commutator Lipschitz, i.e.,

lf (A)R — Rf (A)|| < const||AR — RA|
for an arbitrary bounded operator R and an arbitrary self-adjoint operator A.

237



The same is true for functions on closed subsets of R; moreover the operator Lipschitz
constant coincides with the commutator Lipschitz constant. The following theorem was
proved in [2, Theorem 10.1] in the case & = R. The general case is analogous to the
case § = R. See also [274] where similar results for symmetric ideal norms are considered.
Theorem (6.2.26)[260]. Let f be a continuous function defined on a closed subset & of R and
let C > 0. The following are equivalent:

M IIf Q) = fB)Il < C|l|A—B]| for arbitrary self-adjoint operators A and B with spectra in
5,

(i) If (AR — Rf (Al < ClIAR — RA]| for all self-adjoint operators A with a(4) c & and all
bounded operators R;

(iii) If (AR —Rf(B)|| < C||AR — RB|| for arbitrary self-adjoint operators A and B with
spectra in & and for an arbitrary bounded operator R.

A function f € C(%) iIs said to be operator Lipschitz if it satisfies the equivalent
statements of Theorem (6.2.26). We denote the set of operator Lipschitz functions on &
by OL(%). For f € OL(¥), we define ||flloL) to be the smallest constant satisfying the
equivalent statements of Theorem (6.2.26). Put || f{lowg) = « if f & OL(%).

It is well known that every f in OL(g) is differentiable at every nonisolated point of &, see
[275]. Moreover, the same argument gives differentiability at o in the following sense:
there exists a finite limit lim),.., x™* f (x) provided & is unbounded.

Let f € OL(&). Suppose that & has no isolated points. Put

f&)—f) .
(Df)(x,y) & —x—y , ifx,y g x #y,
f'(x), ifxeFx=y.
The following equality holds:
1 llowgs = IDF llng - (29)
The inequality || floLg) < IIi)fllgnm is an immediate consequence of the formula
F - 1@ = | @ DB - BAES ), (30)

where A and B are self-adjoint operators with bounded A — B whose spectra are in &, and
Ejand Egare the spectral measures of A and B . The expression on the right is called a
double operator integral. We refer the reader to [276-278] for the theory of double
operator integrals elaborated by Birman and Solomyak. The validity of formula (30) under
the assumption Df € Mg~ and the inequality

|U (D) (x, y)dE,(x)(4 — B)dEB(y)” < IDllgy,  l14 — BI

was proved in [6]. The opposite inequality in (29) is going to be proved in Corollary
(6.2.29).
In the general case for f € OL(§) we can define the function
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f&) - )

@A ] x—y Py EREEY
0, ifxeFx=y.
The following inequalities hold:
Iflloueg) < 1Dof llang < 2l1f llow). (31)
The first inequality in (31) follows from the formula
F) = £ @ = || @of) . )AEA - BYAES ), (32)

whose validity can be verified in the same way as the validity of (30). The second
inequality in (31) is going to be verified in Corollary (6.2.30).
Let f be a continuous function on a closed set &, & < R. We define the operator modulus
of continuity £ ¢ as follows
27 5(8) & sup{llf(4) — f(B)I: A= A",B = B*,d(4),0(B) c &, 1|1A— Bl < 6},
and the commutator modulus of continuity as follows
275(8) < sup{llf(4) — f(B)I: A= A",B = B*,0(A),0(B) c & [|A - Bl < 6},
One can prove that we get the same right-hand side if we require in addition that R is self-
adjoint.
On the other hand, ||f(4)R — Rf (B)Il < 27+(llAR — RB||) for all self-adjoint operators with
d(4),0(B) c ¥ and for every bounded operator R with ||R|| < 1. Also, ;5 < Q}’% < 205
These results were obtained in [261] in the case § = R. The same reasoning works in the
general case.
Lemma (6.2.27)[260]. Let & be a closed subset of R and let 4 and v be regular positive Borel
measures on . Suppose that k is a function in L*(§ x &, u ® v) such that k =0 on the
diagonal Az {(x, x): x € F}almost everywhere with respectto u @ v . Then

k N7 < k v
kDo llgr < IIf llovglIkllger
for every continuous function f on &.
Proof. Let &,, & & N [—n,n], and let u,, and v,, be the restrictions of u and v to &,,. Clearly,
lim||k|lger = ||k|lquer  forevery k € L2(F x
limlkellger = llkllger  forevery @F*xFu®v)
and
lim|Ifllovg,y = Ifllou ~ forevery f € C().

Thus we may assume that & is compact. It suffices to consider the case when k vanishes in a
neighborhood of the diagonal Ay . Puti(x,y) & (x —y)~'1k(x,y). Denote by A and B

multiplications by the independent variable on L2(§, x) and L?(§,v). Then I} = A%} —
TV B andTyy = f(A)T}” — T f(B). It remains to observe that
IfF DT - B < Iflovw AT — T B,
|4y — "B = llkllgue,
and
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IF AT =T F B = kDof llger.
Corollary (6.2.28)[260]. Let & be a closed subset of R with no isolated points, and let u and v

be finite positive Borel measures on &. Suppose that f is a differentiable function on & and
k€ L*(F>Fu®v) If k vanishes pu ® v-almost every-where on the diagonal Ag

{(x,x):x € ¥}, then
||k©f||g;§:g < ”f”OL(g)”k”%g:g-
Corollary (6.2.29)[260]. Let & be a closed subset of R with no isolated points, and let u and v
be finite positive Borel measures on &. If f is a differentiable function on &, then
IDf oy < 11flloLcs).
Proof. Let u be a regular Borel measure on & with no atoms and such that supp u = &. Then
(u ® u)(Ag) = 0and Corollary (6.2.28) implies that

||k©f||g;g1§ < ||f||0L(g)||k||53gg
for all k € L2(F < & u @ u). Hence, IIDfIIEBg,g < Ifllorg) - It remains to apply Theorem

(6.2.6).
Corollary (6.2.30)[260]. Let ¥ be a closed subset of R. Then
1Dof llsys < 201 fllore)
forevery f € C(%).
Proof. Let u and v be regular Borel measures on §. We have to verify that
||k©of||g;g:g < 2”f”OL($)”k”23g:§
forevery k € L*(§ x §,u ® v). Putky & x, kand k; & k — ko . We have
||ko||g;g:g < ||k||g;g:g-

This inequality can be verified easily. We leave the verification to the reader.
It follows thatllklll%g,g < ||k1||53g,g + ||k||%g,g < 2”k”%§‘§ . It remains to observe that

Let &, and &, be closed subsets of R. We define the space OL(&,, &) as the space of
functions f in C(%; U &,) such that

lf (AR — Rf (B)Il < CllAR — RB|| (33)

for all bounded operator R and all self-adjoint operators A and B such that ¢(4) c &, and

a(B) c &, with some positive number C . Denote by ||f|loL,5,) the minimal constant

satisfying (33). Clearly, ||fllovg,5,) = Ifllovg,5,) and Ifllougs = If lloug) - As in the
case &, = &, , we can prove that

I Nlong,,) < ||©0f||5m%132 < 2||fllon,5,) (34)
In the case when &, = &, we cannot claim that the inequality
I (4) — F(B)Il < CllA - B (35)

for all self-adjoint A and B such that 6(4) c &, and o(B) < &, implies (33).
Indeed, in the case f(t) = |t], & = (—,0],and &, = [0, =), inequality (35) holds with C =
1 because
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lA-Bll <lA+Bll
for positive self-adjoint operators A and B . However, inequality (33) does not hold with
any positive C. Indeed,

= 0

|x] - IyIH _ ”x—y”
y

X — x +
y M[1,00),[1,00)

M (—co,1],[1,00)
by Theorem (6.2.25).
Theorem (6.2.31)[260]. Suppose that inequality (33) holds for every bounded operator R
and arbitrary self-adjoint operators A and B with simple spectra such that o 0(4) c &, and
(B) € &2 . Then f € OL(J1, F2) andll flloL, 5,) < C-
Proof. We have to prove inequality (33) for arbitrary self-adjoint operators A and B with
o(4) c &, and (B) c &, . Itis convenient to think that the operators A and B act in different
Hilbert spaces. Let A act in H; and B in H,. Then R acts from H;into H,. We are going to
verify that
|(f (A)Ru, v) — (Rf (B)u, v)| = |(Ru, f(A)v) — (f(B)u,R*v)| < C||AR — RB||
for all unit vectors u € H, and v € H; . Denote by Hand , the invariant subspaces of A
and B generated by v and u. Clearly, 4, & A|#; and B, & B|H, are self-adjoint operators
with simple spectra. Consider the operator Ry: HyY — H? , Ryh & PRh for h € H,, where P
is the orthogonal projection from #;onto 7. Note that for h € H) , we have AyRyh =
APRh = PARhand RyByh = PRBh. Clearly, ||AoRy — A¢Boll < ||AR — RB]| . Applying (33) to
the operators A,,B,, and R, we obtain
|(f (4)Ru, v) — (Rf (B)w, v)| = |(Ru, F(A)v) — (Rf (B)u, V)|
= |(R0u,f(A0)v) - (Rof(Bo)uyv)l = |(f(A0)R0u,v) - (Rof(BO)qu”
< [[AoRo — 4oBoll = CllAR — RB]|.
Theorem (6.2.32)[260]. Let f be a function defined on Z. Then
Q,E,z(5) = 6l fllowczy
fors € (0,%].
Proof. The inequality
024(8) < 6llfllonezy » 6 >0,
is a consequence of Theorem (6.2.26). Let us prove the opposite inequality for § € (O,%].

Fixe > 0. There exists a self-adjoint operator A and a bounded operator R such
that||AR — RA|| = 1,0(4) c Z,and [|f(A)R — Rf (Al = lIfllovczy — & Put

Re 2 > BN REKD =R = ) By RE,GD.

j*k JEL
Clearly, AR — RA = ARy — R4A and f(A)R — Rf(A) = f(A)R4y — R4f(4). Thus we may
assume that R = R, . Note that
AR —RA= )"~ DEJ(GDRE, (kD).
j#k
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Since
R=Ry= Y ——( ~ WEGDRE, (kD)
j:#k] B
we have R = H x (AR — RA), where
1

HG.k) = {j—k’

0, ifj =k,
where x denotes Schur-Hadamard multiplication, see (26). It follows that
IRII < |Hllsny , IAR — RAN = |1 H |y, =

if j#k

T
2
by Lemma (6.2.7).
Let 6 € (0,2]. Then ||A(6R) — (SR)A|| = § and ||[6R]|| < 1. Hence,
072(8) 2 lIf (R = RF M) = 6(IIfllov — £) -
Passing to the limit as € — 0, we obtain the desired result.
Let wsg denote the usual scalar modulus of continuity of a continuous function f defined

on §. Clearly, wrg < Qr . PUt ws = wy g and 2 = ¢ . We are going to get some estimates
for the commutator modulus of conti-nuity Q]EZ. We consider first the case when § = R. The
following theorem is contained implicitly in [270].
Theorem (6.2.33)[260]. Let f be a continuous function on R. Then
Q,E(5) < 2w (6/2) + 2| f (6x)lloL(z).

Proof. Let ||AR — RA|| < 6 with [|R]| = 1. We can take a self-adjoint operator As such that
AsA = AAs, IIA— Asll < 8/2and o(45) € 8Z. Then || (4) — f(4s)Il < w;(6/2) and

lAsR — RAs|l < ||AsR — AR|| + ||AR — AR|| + ||RA — RAg|| < 26.
Hence,

IFCAR = REAI < IIFAIR = FARI + IF(A5)R = RE (ARl + IRF (A5) = RE(A)]
) )
< 207 (5) + 1458 = RAs - I lowcon < 205 (5) + 2811 fllowcon

)
= 2wy (§> + 2|l f (X)) lloL(z).
Theorem (6.2.34)[260]. Let f be a continuous function on R. Then
2
QIE(S) = max {wf(5),; ”f(5x)”OL(Z)}

forall § > 0.
Proof. Clearly, wy < 2y < 027 . It remains to prove that || f (6x)|lop(zy < %Q}(d). We have

2\ 2
02(8) 2 02528 = QD) = Vs (=) = ~ 1D lorca
We consider now similar estimates of 22 for an arbitrary closed subset & of R. Recall thata
subset A of Ris called a §-net for F if § € Uieq[t — 5, t + 6]
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Theorem (6.2.35)[260]. Let f be a continuous function on a closed subset & of R. Suppose
that s is asubset of F that forms a (6/2)-net of &. Then

02 (8) < 2w 5(8/2) + 26|\ flloLcgy)-
Theorem (6.2.36)[260]. Let f be a continuous function on a closed subset & of R and let § >
0. Suppose that A and M are closed subsets of & such that(A — M) n (=4§,6) < {0}. Then
)

025(8) > max{a 58). 5 100 N}
Proof. Clearly, wsg < Qrg < Q2 . Note that

”DOf”iD?A’M = Sup”DOf”imAn[_a’a]’Mn[_a’a]'

a>0

Thus it suffices to prove that

6

in the case when A and M are bounded.
Let € > 0. There exist positive regular Borel measures 4 on A, u on M, and a function k in
L*(A x M,A ® u) such that Ikllgre =1 and [kDof llgan = I1kDof llan,,, — . We define the
AM AM '

function kq in L2(A x M, 1 @ p) by
wr (K(x, ), if x #y
ko(x,y) ={O, ifx = y.
Then kD, f = kyD,f and ”k0”53/1,u < 2. Put®d(x,y) € fs(x —y) where f5 denotes the same
AM

as in Corollary (6.2.10). We define the self-adjoint operators A:L?(A,1) — L?(A,1) and
B:L*(M, p) - L*(M,u) by (Af)(x) & xf(x) and (Bg)(y) £ yg(y). Put

h(xvy) = cb(xvy)k(xvy) = cb(xvy)kO(xvy)'
Clearly,

SN

il < NPl MKl gt < l1®lang, <

by Corollary (6.2.10).
Clearly, AT), — X,B =%, and(4)T, — Tpf(B) = Ty, »,r - (Recall that T, is the integral
operator from L?(M, p) into L?(A, A) with kernelg € L?(A x M,A ® v).) Then

o)
||§~‘””h

5 5 K
[4G=) - G 5] =3l =

10)
=—|lh <1
5 IRl <1

and
[ (Ga) - (Ga) £BY| =5 koo s, <5 (100 F N, — ).

Hence, 02 (8) = S(IIDOfIImM — &) forevery e > 0.
Theorem (6.2.36) allows us to obtain another proof of Theorem 4.17 in [263].
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Theorem (6.2.37)[260]. Let f be a continuous function on an unbounded closed subset & of
R. Suppose that 2¢«(8) < oo for § > 0. Then the function t - t~'f(t) has a finite limit as
|t]| = oo, t €.
Proof. Assume the contrary. Then there exists a sequence {1};-,in & such that |A,.1] —
|A,] > 1 for alln > 1, lim,_,, |1,] = « and the sequence {A;!f(An)}:_,has no finite limit.
Denoten by A the image of the sequence {A};-;. Then ||flo1) = 0. This fact is contained
implicitly in [275]. Indeed, Theorem 4.1 in [275] implies that every operator Lipschitz
function f is differentiable at every nonisolated point. It is well known that the same
argument gives us the differentiability at co in the following sense: the function ¢t — t~1f(t)
has a finite limit as |[t] —» oo, provided the domain of f is unbounded. Applying Theorem
(6.2.36) for M = Aand § = 1, we find that 2 «(1) = co.

We need the following known result, see [279].
Theorem (6.2.38)[260]. Let f be a bounded continuous function on a closed subset & of R.
Suppose that f € OL((—, 1] n ¥)andf € OL([—1, %) N §).Then f € OL(F) and

Ifllovgy < C <||f||0L((—oo,1]n$) + | flloL-1,000n5) + 5%p|f|>,
where C is a numerical constant.

Proof. Put §; € § N (—o,—1], & € FN[-11],and F; & FN[1, ). We have

3 3
Ifllowsy < I1D0f gy < D D 1D0f N 5,

j=1k=1

3
= Y I100f 5, + 2ol 5, + 2ol 5, + 2ol .

j=1
Each term IIDOfII%J,’%k except IIDOfII%L%3 can be estimated in terms of 2||f|[oLz,us,) OF

Let us estimate IIDOfII%L%3 . We have

f&x) - 1) < <Sup|f|>”
Em‘hf&s 51

x—y
1
<2 <sup|f|> == =2suwir
& x—=Yy Mg, &

3

1 1
Iof g, = | |+ (somin) |5
" Xy RGN &s =y My 1.3

because by Corollary (6.2.10),

| <16, <1
Mg153

where f,means the same as in Corollary (6.2.10).
Thus

=

I Nlores) < 6llf llows,ug,) + 411 f oL, uss) + 45%p|f|
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We obtain sharp estimates of the operator modulus of continuity of the function x — |x|
on certain subsets of the real line. This allows us to obtain sharp estimates of |||S| — |T]||
for arbitrary bounded linear operators S and T . Note that our estimates considerably
improve earlier results of [18].

Put Abs(x) & |x|. ForJ c [0, ), we put log(J) & {logt:t €J,t > 0}.
Theorem (6.2.39)[260]. There exist positive numbers C; and C, such that

C;10g(2 + [log(J; N J)I) < N1AbS|loL—jpyus,) < C2109(2 + [log(Jy N J2)1)
for all intervals J; and J,in (0, o).
Proof. Put] = J; nJ, . Let us first establish the lower estimate. Note that ||Abs|[oL«-,)us,) =
|Abs||oL(;,) = 1. This proves the lower estimate in the case [log(J)| < 1. In the case
[log(J)| > 1 we have

IxI IyIH

|AbS||oL(-7,)uz,) = IADS|loL(-pyuyy = > cq log(1 + |log()])

==,

> ¢, log(2 + |log())1)
by Theorem (6.2.25).
We proceed now to the upper estimate. We consider first the case when /] = J;. Then

||Ab3||0L(( JOUL) = ||Ab3||0L(( J)U0,0)) = 2+2 ||

=

and we can apply Theorem (6.2.24). The case ] = J, is similar. Suppose that] +J, and] #
J> .Theninfj; # inf],. Letinf/; >infJ, . Puta ¥ infj;, and b & inf]2 Then

b5l o1z < NABSlor (- atutony < 2+ 2 |-

x +
y M[q,00),[0,b)

and the result follows from Theorem (6.2.23).
Let us state two special cases of Theorem (6.2.39).
Theorem (6.2.40)[260]. There exist positive constants C; and C,such that
C11og(2 + log(ba™)) < [|ADS|loL((-c001ufab]) < C2 109(2 + log(ba™1))
forall a,b € (0, ) with a < b.
Theorem (6.2.41)[260]. There exist positive constants C; and C, such that
C11og(2 + log,(ba™)) < [|Abs|lo(-b,ojuawmy) < C2109(2 + log,(ba™1))
forall a,b € (0, ).
Theorem (6.2.42)[260]. Let ¢, = Abs|[—a,») and n, = Abs|[—a, a], where a > 0. Then
there exist positive numbers C; and C, such that
C;61log(2 +log(ad™)) < 2, (8) < 0 (8) < C,6 log(2 + log(as™))
for 6 € (0,a],
C16 < 02 (6) < (56
for § € [a, ), and
Cia < 2, (6) < Cya
for § € [a, x).
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Proof. Put &s & [—a,©)\(0,d). Clearly, ¥sis a 6/2-net of (—oo, a]. Hence, by Theorem
(6.2.35) we have

02¢,(8) < 027 (6) < 6+ 26| &allonsy)-
Applying Theorem (6.2.41), we obtain the desired upper estimate for 2; . Clearly, 2, < 2a
every- where because 0 <7, < a.

To obtain the lower estimates, we use Theorem (6.2.36). We consider first the case § €

(o,g). Put A = [—a,0]and M = [§, a]. By Theorem (6.2.36),

2,,(6) < 305,(8) 2 5 1Dl
Theorem (6.2.25) implies now that, (&) = const§ log(2 + log(ad™")). The lower
estimates in the case § € [g ,©0) are trivial because 2, = w, and; = wg_ .

Theorem (6.2.43)[260]. There exists a positive number C such that
1141 - IBIll < Cll4 - Bl log (2 +1og AN 121 ”B”>
lA — Bl

for all bounded self-adjoint operators A and B .

Proof. This is a special case of Theorem (6.2.42) that corresponds to a = ||A]|| + || B]].
Theorem (6.2.42) also allows us to prove that the upper estimate in Theorem (6.2.43) is

sharp.

Theorem (6.2.44): Let a > 0. There is a positive number ¢ such that for everyé € (0, a),

there exist self-adjoint operators A and B such that||A|| + ||B|| < a,||A — B]| < 6, but
a
141 + 1BIIl = c810g (2 + log ).

We proceed now to the case of arbitrary (not necessarily self-adjoint) oper-ators. Recall
that for a bounded operator S on Hilbert space, its modulus |S| is defined by
NEESSES
Theorem (6.2.45)[260]. There exists a positive number C such that
ST =TIl < CllS — Tl log <2 + logw>
NS
for all bounded operators Sand T .

Proof. Put
A:(g SO) and B:(;), 7(;)

Clearly, A and B are self-adjoint operators with

- (1 9) _(m o)
41=(Tg js) e 181=(g

Hence,
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lAll + 1|BI|
ST =TI < IllAl = |Blll < Cl|A = Bl log { 2 + log ————-—

S Bl
IS1l + IITII>
Ss—1I /)
Theorem (6.2.45) significantly improves Kato’s inequality obtained in [18]:
IS1l + IITII>
Ss—1I /)
We obtain a sharp estimate for the operator modulus of conti-nuity of the piece- wise linear
function x defined by

=C||S—T]| log <2 +lo

1
1151 = 71l < 2115 — Tl log <2 ‘o

1 ift > 1,
x”‘:‘*f{t, if —1<t<1
-1, if t > 1.

Itis easy to see that x(t) == (|1 +t| — [1 - ¢ ).
Theorem (6.2.46)[260]. There exist positive numbers C; and C, such that
Cy logllog 6] < ”x”OL((—00,—1—6]U[—1,1]U[1+6,oo)) < C, logllog 6|
forevery 6 € (O,%).
Proof. Put x; = x|((—o0,—-1 - 6] U [-1,1]) and x, = x|([—1,1] U [1 + &, 0)). Note that

1 1
x,(t) :§(|1+t| —1+1t) and x,(t) :§(1+t— [t —1]).

It follows from Theorem (6.2.41) that

C, logllog | < [l ]lo. < C; log|log 6]
and

C, logllog | < || llor, < C; logllog §].
Thus the desired lower estimate is evident and the desired upper estimate follows from
Theorem (6.2.38).
Theorem (6.2.47)[260]. There exist positive numbers ¢, and ¢, such that

c;6log(1 +log(1+671) <, () <c,6log(l +log(l+4571))

forevery 6§ > 0.
Proof. Note that lim,_,., log(1 + log(1 + 6~1)) = 1. Thus it suffices to consider the case
when 0<§ <1.Putds = (—oo,—1—-6]U[-11]U][Ll+ §, ). Clearly, Fsis a 5-net for R.
Hence, by Theorem (6.2.35), we have

2,(8) < N2(8) < 6 + 26| xllongy) -
The desired upper estimate follows now from Theorem (6.2.46).
To obtain the %r estimate we can apply Theorem (6.2.42) because (t) = %(|1 +t| -1+

t)yfort > 1.
In [261] we proved that if f is a continuous function on R, then its operator modulus of
continuity 2, admits the estimate
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oow t oow td
2:(8) < const8] fg )dt = const] f(z )dt, 5> 0.
t t
5 1

We show that if f vanishes on (—o0, 0] and is a concave nondecreasing function on[O0, o),
then the above estimate can be considerably improved.

We also obtain several other estimates of operator moduli of continuity.
Theorem (6.2.48)[260]. Suppose that f"" = u € M (R) (in the distributional sense), u(R) =
0, and

] logQlog(le] + 3))dlul () < co.
R

Then

02¢(8) < cllpllpeqryd log(log(s~ + 3)),
where c is a numerical constant.
Proof. Put

|t — sl
2

1
@s(t) & E(Itl +[s]) - , s,tER (36)

It is easy to see that

w ISl g2t |s]
o.(t) & ?x<?— 1) +?, fors = 0.
Clearly,
s =80 — 6 and ¢5(0) = 0. (37)
Theorem (6.2.47) implies that

0, (t) < const t log <1 + log <1 + %))

< const t log <1 + log <1 + %)) , t=>0. (38)

It is easy to see that
tlog(1 + log(1 + t71|s])) < const (log(log(]s] + 3)))tlog(log(t~1 + 3)).
To complete the proof, it suffices to observe that

f(t)=at+b - ] @.(t)du(s),forsomea,b € C,
R
which follows easily from (37).

The assumption that u(R) =0 in the hypotheses of Theorem (6.2.48) is essential.
Moreover, the following result holds.
Theorem (6.2.49)[260]. Suppose that f" = u € M(R) and u(R) # 0. Then Q.(t) = oo for
everyt > 0.
Proof. Indeed, it is easy to see that there exists ¢ € R such that f'(t) = ¢ + u((—,t)) for
almostall t € R. Hence,
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fim 72 = im0 = e+ (@) and fim = lim £ =
The result follows from Theorem (6.2.37).
Let G be an open subset of R. Denote by M),.(G) the set of all distributions on G that are
locally (complex) measures.
Theorem (6.2.50)[260]. Let f € C(R). Put u & f” in the sense of distributions. Suppose
that lim. t™1 f(t) = 0, u(R\{0}) € M;,(R\{0}) and

] log(L + log(L + [s])) dlul(s) < oo.

R\{0}
Then
2,(5) < const 8 ] log(1 + log(1 + [s|6-1)) dlul(s).
R\{0}
Proof. Put
g(t) =— ] @s(©)du(s),
R\{0}

where ¢,is defined by (36). Inequality (40) implies that

0,(8) < const 5 ] log(1 + log(1 + [s|6-1)) dlu|(s). (39)

R\{0}

In particular, g is continuous on R. Clearly, g = f" on R\{0}. Hence, f(x) — g(x) = a|x| +
bx + c for some a, b, ¢ € C. It follows from (39) that

t wg(t 0,(t
|—g(t)|s lim 20 _ i 26O _

I
tooo t tooo [t

f()
m —_—

—oo t

i
which implies that f — g = const.

Corollary (6.2.51)[260]. Let a > 0 and let f be a continuous function on R that is constant on
R\(—a, a). Put u & f"" in the sense of distributions. Suppose that u|(R\{0}) € M,.(R\{0})

and

C < suplu|([s,2s] U [-2s,—5]) < . (40)
s>0
Then
a a a
12,(6) < Cconstd (Iog E) log (Iog E) for § € (0'5)'

Proof. By Theorem (6.2.50),
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2,(8) < const § ] log(1 + log(1 + s671)) d|u(s)| + ] log(1 + log(1 + s671)) d|u(—s)|
= const 52 ] log(1 + log(1 + s671)) d|ul(s)

+const § Z ] log(1 + log(1 + s671)) d|u|(—s).

It follows now from (40) and the inequality
log(1 + log(1 + ax)) < 2log(1 +log(1+x)), 0<x < oo, l<a<?,
that

2 "q

d
0¢(8) < const SZ ] log(1 + log(1 + 55‘1))?5

nz02—n-1g4
a
ds
= const 5] log(1 + log(1 + s571)) -
0
al/é
ds
=consté§ ] log(1 + log(1 + s)) 5
0

al/é
ds
< const § + const § ] log(1 + log(1 + s))?
1
al/é

logs ds
=const§( 1+ (log(1 + log(1 + s)) log S)|il/6 - ‘
J (1 +5)(log1 + log(1 + ),

< const § + const 6(log(1 + log(1 + s)) log s)|§‘/‘S < consté§ (Iog %) log (Iog %)

for sufficiently small 4.
Corollary (6.2.52)[260]: Let f be a continuous function on R that is constant on R\(—a, a).
Suppose that f is twice differentiable on R\{0} and

C & suplsf''(s)| < oo.

s#0

Then
12,(8) < const C§ (Iog %) log (Iog %) for s € (O,%).

The following result shows that in a sense Theorem (6.2.48) cannot be improved.

We need the following lemma, in which ¢ is the function defined by (36).

Lemma (6.2.53)[260]. There is a positive number ¢ such that for every s > 10, there exist
self-adjoint operators A and B satisfying the conditions:
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s 3s
o(4).0(8) < (3.5). 114 = Bll < L,and llp(4) — 5(B)I| = cloglogs
Proof. Clearly, it suffices to prove the lemma for sufficiently large s . By Theorem (6.2.47),
there exist self-adjoint operators Ajand Bysuch that ||Ayll , [|1Boll <1, ||4g — Byll < 2/s
and |||4,] = |B,l|l = consts~1log(2 + logs). Put A & sI +§A0 andB & sI +§BO. Then

s 3s

o0(4),0(B) c (5’7) and ||A — B|| < 1. Let us estimate ||p(4) — @.(B)]||. Clearly,

05(A) = p5(B) = 7 (4o — Bo) =7 (14| = 1B ).
Hence,

s s 1
llps(4) — ps(B)]| = 2 Aol = Bolll = 2 |49 — Boll = constloglogs — Econstlog log s

for sufficiently large s.
Theorem (6.2.54)[260]. Let h be a positive continuous function on R. Suppose that for every
f € C(R) such that

f'=pemM@®),u(R)=0, and ]h(t)d|y|(t) < o,
R

we have 2,(5) < o, § > 0. Then for some positive number c,
h(t) = clog(log(Jt | +3)) , t e R.

Proof .

Assume the contrary. Then there exists a sequence {s,} of real numbers such that

andlim|s,| = lim,_(og(log(]s,,[)))~! h(s,) = 0.Passing to a subsequence, we can
n—->oo

reduce the situation to the case when s, > 0 for all n or s,, <0 for all n. Without loss of
generality we may assume that s,, > 0 for all n. Moreover, we may also assume that s; >
10, Sp41 = 2s, and loglogs, = n3(1 + h(s,)) for everyn > 1. Put a, % n(loglogs,)~* for
n =1 andf(t) € ¥,.; a,9s (t). Note that the series converges for every t because o ¥
Y1 @y, < . Moreover,

£ = 66y — Z a,8, and oh(0)+ Z @, h(s,) < oo.

n=1 n=1
By Lemma (6.2.54), there exist two sequences {4,,},,>1 and {B, },,=1 of self-adjoint operators
such that
Sp 3Sp

U(An)vU(Bn) c (2 yT)y ”An _Bn” <1

and

”(psn(An) - (psn(Bn)” =cC Iog Iog Sn.
Note that ¢, (4,) = @5, (B,) = s, for k < n. Also, ¢, (4,,) = A, and ¢, (B,) = B, for k >
n. Hence,

f(An) - f(Bn = an((psn(An) - (psn(Bn)) + Z ak(An - Bn),

k>n
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and so

1FCAn) = FBII 2 @ s, (40) = 95, B = ) @elld, = Byl

k>n
> Ca'nloglogsn—z:xk — 00 as n - oo,
k>n
Thus 2,(1) = o and we get a contradiction.
In [261] it was proved that
4 we(0s
0:(5) < ] fs(z ) s

1
for every f € C(R). The following theorem shows that this estimate can be improved

essentially for functions f concave on a ray.
Theorem (6.2.55)[260]. Let f be a continuous nondecreasing function such that f(t) = O for
t <0,lim,,, t~1 f(t) =0, and fis concave on [0, ). Then
¢ F(8s)ds
<
@) <c s?logs’

e

where c is a numerical constant.

Proof. Let u = —f"" (in the distributional sense). Clearly, u =0 on (—,0) and u is a
positive regular measure on (0, ) because f is concave on (0, ). Hence, u € Mj,.(R\
{0}). By Theorem (6.2.50), we have

2,(5) < const 8 ] log(1 + log(1 + s6-1))du(s).

To estimate this integral, we use the equality f'(t) = u(t, ) for almost all t > 0 and apply
the Tonelli theorem twice.
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[ee] [ee] S d
8] log(1 +log(1 + s67)du(s) = ] ( (1 +log(1 + tail))(l + t5‘1)> a(s)

f'(t)dt
J A+logd+t6~1)@A+t5 1)

[ (2 + log(1 + s671))ds ,
<0] (1 +log(1 + s6-1))2(1 + 55_1)2>f (t)dt

2+ log(1+s671)
(1+log(1+s671))2(1 +s6

_1)2 f(S)dS

_ 4 2+ log(1 +s) 54
‘f(1+log(1+s))2(1+ 52/ (s0)ds

1
i 20] @+ Tog@ + sN( + 92 %

It remains to observe that

1 1
oj A+ log( + A + 5y €Ods < f(ed) ] @+ log(l+ ) A+ )2 2

(o1 ~ [ f(s8)ds
Sf(ed)oj L ds = f(ed) < const ] 52109 s
and
1 ¢ f(s8)ds

] (L +log(L +s) @+ )2/ Vs = | “Foes

Corollary (6.2.56)[260]. Suppose that under the hypotheses of Theorem (6.2.61), the
function f is bounded and has finite right derivative at 0. Then

M M
12,(8) < constasd log (Iog E) foré € (O’S_a>’

where a = f/(0) and M = sup f.
Proof. Sincef (t) < min{at, M}, t > 0, the result follows from Theorem(6.2.61) and the
following obvious facts:

M
3a 00 00
]a ad ds — g5 (I M) g ] Mds < ] Mds
slogs o109\ 1o ad an s?logs — s?
e M M
3a 3a

In [261] we proved that if f belongs to the Holder class 4,(R),0 < a < 1, then
02:(8) < const(1 — a) | fll,, 6%, 6§ >0, (41)
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where

T SUIDIf(x) —f(y)ll
“ xzy |x — yl
The next result shows that if in addition to this f satisfies the hypotheses of Theorem
(6.2.55), then the factor (1 — a)™! on the right-hand side of (41) can considerably be
improved.
Corollary (6.2.57)[260]. Suppose that under the hypotheses of Theorem (6.2.55), the
function f belongsto 4,(R),0 < a < 1.Then

2
0,6) < const(log — a) I 1l 6

forevery § > 0.
Proof. Indeed,

¢ ds r dt [ e~tdt 2

- = ((X—l)t_ — < t
]SZ‘“Iogs ]e t ] t = cons 1-
e 1 1-a

The following theorem is a symmetrized version of Theorem (6.2.55).

Theorem (6.2.58)[260]. Let f be a continuous function on R such that f is convex or
concave on each of two rays (—o,0] and [0, ). Suppose that there exists a finite limit
lim g0 t ™1 f() & a. Then

.Qf(5) < a5+C] |f(55)_f(0)—5a5|+|f(—55)_f(0)+5aslds

s?logs

where c is a numerical constant.

Proof. It suffices to consider the case where f(0) = a = 0. We assume first that f(t) = 0 for
t <0. To be definite, suppose that f is concave on [0,). Then f is a nondecreasing
function because lim; - t~1 f(t) =0, and so the result reduces to Theorem (6.2.55). The
case f(t) =0 for t = O follows from the considered case with the help of the change of
variables t » —t. It remains to observe that each function f with a = f(0) =0 can be
represented in the form f = g + h in such way that g(t) =0fort <0, h(t) =0 fort = 0,
and the cases of the function g and h have been treated above.

Theorem (6.2.59)[260]. Let f be a nonnegative continuous function on R such that f(x) =0
for all x < 0 and the function x = x~'f(x) is nonincreasing on (0, o0). Suppose that 2¢(5) <
oo for § > 0. Then

<
f(x) < const loglog x

forevery x > 4.
Proof. By Theorem (6.2.36),

1
'be(l) 2> E ||®0f||il)?[1loo],(_oo,0]
Making the change of variables y » —y we get
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”f(x)

< 20%(2).
+y < 20:(1)

M1,00][0,00]
Thus foreverya > 1

X | f(x)
fO |[x+y Rpsal (1

a | f(x) _ 2a(1)
fla)llx+y - f(a)

X
T < r[qa>]<
X a
y M[1,a][1,a]

<

M[1,a][1,a]
It remains to apply Theorem (6.2.25).
Let x, > e and let g, be a continuous function such that

X
— if x>x,>0,
ga(x) = {Iog“(log x) °
0, if x<Oo.

Then 0, (6) < oo for a > 1. Indeed, in this case g,coincides with a function satisfying
Theorem (6.2.55) outside a compact subset of R. On the other hand, 2,_(&) = oo for a < 1.

This follows from Theorem (6.2.59). Indeed, outside a compact subset of R the function
ggcoincides with a function f , for which the function x —» x~1f(x) is nonincreasing on
(0, ). The case ¢ = 1 is an open problem.

Recall that it follows from (23) that if f is a function on R such that [|f[,~ < 1, [[f|lLip < 1,

then
1
2,(8) < const § (1 + Iogg>, 6 € (0,1].
It is still unknown whether this estimate is sharp. In particular, the question whether one

can replace the factor (1 + log %) on the right-hand side with (1 + log %)S forsomes <1is

still open.

We established a lower estimate for the operator modulus of continuity of the function
x + |x| on finite intervals.
A C* function f on R such that || f]| = < 1, [|flLip, < 1,and

2
2,(8) < const§ /Iogg, 5 € (0,1].

Let 0 > 0. Denote by &, the set of entire functions of exponential type at mosto . LetF €

E; N L2(R). Then _
F(z) = Z sin(oz — mn) v (E)’

= 0Z —Tn o
n
see, e.g., [280, Lecture 20.2, Theorem 1]. Let f € £, N L*(R). Then
sin(o(z — a)
f(2) ( )

o(z—a)

€ £,5 N L2(R).

Hence,
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sin(o(z —a)) < sin(2oz — n) sin (0 ) n
f(2) o(z—a) Z 20z —mn_ (_ _ ) f (20)
20

nez
sin(2oz — mn) sin (aa )
=2 ; (20z — mn)(2oa — n) ( )
Substituting z = a, we obtain

—_— _ . _mn
) = 2z:sln (20z — n) sm(az 5 )f(ﬂ)

(20z — 7m)2 20

sln2 oz - — cos (oz ﬂzn) m
B Z _mn f(Z)' (42)
nez 2 )
for f € €, N L7 (R).

Denote by £,(C?) the set of all entire functions f on C%such that the functions z » f(z, &)
and z » f(&,z) belong to E,for every £ € R (or, which is the same, for all ¢ € C). Equality
(42) implies the following identity:

sin? (oz — %) cos (aa — %) sin? (ow — %) cos (ow — %) (ﬂm E)
Tm\?2 n\?2 20 '20
(mmn)€ez (O'Z - T) (O’W - 7)

for every f € £,(C?) n L*(R?).
Theorem (6.2.60)[260]. Let o > 0 and ® € £,(C?). Suppose that ® (g +a, T+ ,8) € My
for some a, f € R. Then ® € My r and

0GPl < 2|0 (G5 + g0+ )|

f(z,w) =

(43)

Proof. Clearly, it suffices to consider the case whena = 8 = 0,0 = n/2 and ||CI>(x,y)||9RZZ =

1. Then (see [281, Theorem 5.1]) there exist two sequences {@,,}mez and {Y, }n,ez Of
vectors in the closed unit ball of a Hilbert space H 'such that (¢,,,, ¥,,) = ®(m, n). Put

sin? (% (x — m)) coS (% (x — m))

Ix = ﬁrnzez (.X' _ m)z Pm
and
4 sin? (% (y - n)) CcoS (% (y - n))
h, & —Z |
g T[Z nez (X B n)z lpn
We have
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Lol < 2 Z sin ( m)) |cos (% (x — m)>|

X —m)?
MmeZ ( )

4 sin () Joos ()| | 4 sin® (T = 3) [eos (7 -3)|
:FZ (x — 2n)? +;Z (x —2n - 1)?
nerz nez

=[eos ()| + [sin ()| = 2

In the same way, ||k, ||,. < V2 forall y € R. Clearly || < 1 on Z* . The Cartwright theorem

(see [280, Lecture 21, Theorem 4]) implies that ® is bounded on RXZ. Applying once more
the Cartwright theorem, we find that ® € L*(R?). Hence, we can apply formula (43) to the
function ®, whence ®(x,y) = (g, h,) for all x,y € R. It remains to observe that by

Theorem 5.1 in [281],
PG, ) llamg . < SUPlIGallsc - supl|hy ||, < 2
x€ER YER

Theorem (6.2.61)[260]. Let f € €, . Then
fG) = ()

22(6) > =
2 ‘ x—y

MR R
forevery 6 € (O,i].
Proof. The general case easily reduces to the case o = n/4. By Theorem (6.2.60), we have

fx) = £f() f@m+1) - f(2n)
oy g, = ‘ om—2n+1 |, < 2ll7 v
Hence, by Theorem (6.2.32),
f&)=f()
HE 5) =26 LA T
.Qf( )= .sz( ) = ”f”OL(Z) 2‘ X—y .
fors € (0,%].
Theorem (6.2.62): Let f € £, . Then
f&x) = f(y)
2:(8) = ‘ ——y .

forevery 6 € (O,i].
Proof. It suffices to observe that 22(6) < 20,(6) by Theorem 10.2 in [261].

Lemma (6.2.63)[260]. For every positive integern, there exists a trigpnometric polynomial f
of degree nsuch that ||f|l; > < 1, ||f'|l;» < 1,and

f&)=f)

eix — ply

> c /logn.

93?[0,271],[0,271]
Proof. It follows from the results of [266]that for every function h in C1(T),
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h(e™) — h(e?)

eix _ eiy

‘ = const ||h|| s, (44)
Mo0,27] [0,27]
where B} is a Besov space (see [268]for the definition) of functions on T. Note that this
result was deduced in [266]from the nuclearity criterion for Hankel operators (see [282]
and [268, Chapter 6]). It is easy to see from the definition of B1(T) (see, e.g., [268] ) that
Ihlgs > const Z 21|h(27)|. (45)
j=0
It is well known (see, for example, [283]) that for every positive integer n, there exists an
analytic polynomial h such that
hO)=0, degh=n [Allm=m=1 and Z 21|h(27)| = dflogn |,
j=0
where d is a positive numerical constant. Then inequality (44) implies that
h(e™) — h(e?)

eix _ eiy

> const,/logn.
93?[0,271],[0,271]
Put f(x) & h(e™). It remains to observe that |A'||;~ = IA' ooy =1 and || f |l =

IRl o ry < 1.
Lemma (6.2.65)[260]. Letn € Z. Then
||x —y— 27m|| - 3V2m
e —e¥ M1, -4

for all intervals J; and J, with J, — J, < [(2n — %)ﬂ, (2n + %)ﬂ].
Proof. We can restrict ourselves to the case n = 0. We have

elix — oty m,, l(x y) — ]_” - | elt — Ll([_3”3” B ||2 sin(t/2) A1([ 3 3n])'
Consider the 3m-periodic function £ such that £(t) = — for t € [-2Z,%]. We can
2 sin(t/2)

expand ¢ in Fourier series

HOE Z a,edt

nez
Note that a,, = a_,, € R for all n € Z because ¢ is even and real. Moreover, £ is convex on

[_ 31 3”] Hence, by Theorem 35in [16], (—1)"a, = O for all n € Z. It follows that

sy == ()=

Corollary (6.2.66)[260]: Let J, = [rj, j + 7] and], = [k — g,nk + g], where j k € Z. Then

||x —y— 27m|| - 3V2rm
e —e¥ llm, , 4
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for somen € Z.

Proof. We have J; — J, = [n(j — k) — %,n(j — k) + 32—”]. If j — k is even, then we can apply
Lemma (6.2.65) withn = %(j — k). If j — k is odd, then we can apply Lemma (6.2.65) with
n==-(—k+1)

Lemma (6.2.67)[260]: Let g be a 2r-periodic function in C1(R). Then

7'[37'[

93?[0,271],[0,271]

gx) —g) g(x) g(y)
‘ ol oy < 3o ||————= :
M[0,27],[0,27] MR R
Proof. Note that
‘g@)—g@) g(x) = g()
xX—y e X —1y—2nn T
foralln € Z and
9(92 —gi(y) < 3V3x ‘g(x) g(y)H
e — e

Now we can represent the square [0,2r] % [—%,7] as the union of four squares with sides
of length 1, each of which satisfies the hypotheses of Corollary (6.2.66).

Theorem (6.2.68)[260]. For every § € (0,1], there exists an entire function f € £;/§ such
that ||f]lomy < 1, If'llory < 1 and 2,(8) = C6 flog% , where C is a positive numerical
constant.

Proof. It suffices to consider the case when § € (O,%]. Then é§ € [ﬁ,%] for an integer n > 2.
By Lemma (6.2.64), there exists a trigonometric polynomial f of degree n such that

f&x) = f(y)
—x > c /logn.
€ e 93?[0,271],[0,271]
Hence,
%fl(y) > c./logn.

MR R
by Lemma (6.2.67). Clearly, g € &,, ¢ €,/5 . Applying Theorem (6.2.62), we obtain

1
0,(t) = const,/logn t, 0<t< >

2,(6) = 0 (%) > CO\/I(;W <C§ ’Iog (%)

for some positive numbers C, and C .

Hence,
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Theorem (6.2.68)[260]. There exist a positive number ¢ and a function f € C*(R) such that

Ifllee < L 1If'lle < 1,and 26(6) = C§ flog (%) forevery § € (0,1].

Proof. Applying Theorem (6.2.63) for § = 27" , we can construct a sequence of functions
{fn}n=1 and two sequences of bounded self-adjoint operators {4,},-1 and {B,},>1 such
that ||f,ll.2 < L Ifille < 1, |4, — Byl < 27™and ||f,(4,) — fu(B)I = Cvn27" for all n >
1. Denote by A, the convex hull of 6(4,) U a(B,;). Using the translations f,, » f,,(x — a,,),
A, A, +a,l,B, - B, +a,land A, an + A, for asuitable sequence {a,},-; in R, we
can achieve the condition that the intervals A,, are disjoint and dist(4,,,,4,) > 2 for m # n.
We can construct a function f € C*(R) such that ||f||.e < 1,|[f']l;» < 1 and f|A,,= f,]A,
for alln > 1. Clearly, 2,(27") = C/n27" for all n > 1 and some positive C which easily
implies the result.
To obtain the lower estimate in Theorem (6.2.68), we used the inequality

ixy _ iy

f(eel.,)c _ Zi(ye ) > const Z 21 |f @), (46)
Mo 271 [0,27] j=0

which in turn implies that there exists a positive number C such that for every positive

integer n there exists a polynomial f of degree n such that

f(e™) - f(e?)

eix _ eiy

= Cy/logn || f1lLip. (47)
93?[0,271],[0,271]

We do not know whether Theorem (6.2.68) can be improved. It would certainly be
natural to try to improve (47). The best known lower estimate for the norm of divided
differences in the space of Schur multipliers was obtained in [266]. To state it, we need
some definitions.

Let f € L1(T). Denote by Pf the Poisson integral of,

1 2
@6 = [ TH o), cep
T

— (|2
where m is normalized Lebesgue measure on T.
Fort € Rand é € (0,1), we define the Carleson domain Q(t, §) by
Q(t,8) ¥ {re*:0<1—r<h|s—t|l <é}

A positive Borel measure on u on D is said to be a Carleson measure if

L(u) & u(D) +sup{d~tu(t,Q):t e R,6 € (0,1)} < oo.
If 1 is a nonnegative measurable function on D, we put

L) & 2(u), where du & pdm,.
Here m, is planar Lebesgue measure.
It follows from results of [266](see also [284]) that

‘ f(e™) - f(e?)

eix _ eiy

> const||f]l . (48)

93?[0,271],[0,271]

260



where
If Il & g(IHess (PAID
where for a function ¢ of class C? , its Hessian Hess(¢) is the matrix of its second order
partial derivatives.
It turns out, however, that for a trigonometric polynomial f of degree n,

If 1l < const/log(1 + n) || f llLip, (49)
and so even if instead of inequality (46) we use inequality (48), we cannot improve
Theorem (6.2.68).

Inequality (49) is an immediate consequence of the following fact:
Theorem (6.2.69)[260]. For a trigonometric polynomial f of degree n,n > 2, the following
inequality holds:

LUV(PS)I]) < consty/logn || f]] .
We are going to use the well-known fact that a function f in L'(T) belongs to the space
BMO(T) if and only if the measure u defined by du = |V(Pf)|*>(1 — |z|])dm, is a Carleson
measure. We refer to [273] for Carleson measures and the space BMO.
Proof .Suppose that ||f||,~ = 1. We have to prove that

] |V (Pf)| dxdy < const §,/logn. (83)
Q(t.6)
Note that |V(Pf)| < 2n by Bernstein’s inequality. Hence,

[V(Pf)ldm, < 2nm,({L —n~' < [{| < 1} n Q(¢, 6)) = 2n8(1 — (1 —n)?)
{1-n"1<|q|<1}InQ(t,6)
< 46.
This proves (50) inthecase § =1 —n"1.Inthecase § <1 —n"? itremains to estimate the

integral over the set {1 —n~! < |[{| <1} n Q(t, §). Note that ||f|lgmo < const||f]|.«. Hence,
there exists a constant C such that

] V@I (gl < 1)dm,(Q) < C5.

Q(t.5)
Thus
|V(Pf)] dm,
{I¢I<1-n~1}nQ(t.8)
1/2
< ] V(PAOI? Sl < 1)dm,({) ] (¢l < 1)~ tdm,({)
Q(t.5) {IClI<1-n=1}nQ(t.6)

< const 8(log(nd))? < const §(logn)*/2.
We define an operator modulus of continuity of a continuous function f on T by
02,(8) € sup{l|f(U) — f(V)I:U and V areunitary [[U - V|| < 5},
As in the case of self-adjoint operators (see [261]), one can prove that
261
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If (WIR — RF(V)Il < 202¢(][UR — RV|)
for all unitary operators U , V and an operator R of norm 1. We define the space OL(T) as
the set of f € C(T) such that
I flloery & 5Up5 106(8) < oo,

Given a closed subset &of T, we can also mtroduce the operator modulus of continuity £ ¢
and define the space OL(&) of operator Lipschitz functions on .

For closed subsets §; and &,0f T, the space Mg « of Schur multipliers can be defined by
analogy with the self-adjoint case. Note that the analogues of (29) and (31) for functions on
closed subsets of T.Letf € C(T). We put f,(t) & f(e®). It is clear that 0y, < )y . Hence,
lfalloLwy < llfllorery - Lemma (6.2.67) implies that||f|loLry) < Sﬁﬂllﬁ”OL(R)- One can
prove that {2 < const (2, .

Recall that it follows from results of [266]that for f € C(T),

If lloLery = const || 1l p1;
See inequality (44).

We would like to remind also that for each positive integer n, there exists an analytic

polynomial f such that deg f = n,||f"|| () = 1, and

If llorcry = consty/logn; see Lemma (6.2.64).

Put
1n 1
an(Z) def — E Zk
k-0
It is easy to see that
0,((z7) =z~ nZ 28 =z, (2¢7)
n(z—f) " |

Denote by T, the set of nth roots of 1, ie, T, & {( € T:{™" = 1}. Let f be an analytic
polynomial of degree less that n. Then

> f(©)0uzl) forevery € T.

JetT,
If fis a trigonometric polynomial and deg f < n, then for every ¢ € T, the function
z"f(2)0,,(zE 1) is an analytic polynomial of degree less than 4n. Hence,
2F Do) = D f(D)n(GEN0un(ZE ),
(€TTyn

Substituting ¢ = z we get
F@ =27 ) @Gz = ) fORED (1)

(€TTyn (€TTyn
for every t € T, where

(ZZn _ (Zn)(zzln _ €4n)

F (Z ( def 1 3n€1—4—n 8n2(Z_ ()2
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Denote by P,(T?) the set of all trigonometric polynomial f on T2such that the functions z ~
f(z, &) and z » f(&,z) are trigonometric polynomials on T of degree at most n for every & €
T. Equality (51) implies the following identity:

fewm= > > FGOREIRMmE (52)
(€T Tan §€T2Tan
for every f € P,(T?) and for arbitrary r; andz, inT.
Theorem (6.2.70) [260]. Let ® € P,(T?). Then
I1®llgey, < 20Pl g, 1)1,

forall t,,7, € T.
Proof. Clearly, it suffices to consider the case when 7, =1, =1 and 2||CD||93?T4n]T4n =1.Then
(see [281, Theorem 5.1]) there exist two sequences {@¢}cer,, and {Ys}eer,, Of vectorsin
the closed unit ball of a Hilbert space #'such that (., ;) = ®(¢,¢). Put

& Y EGOge and hy = ) B @O

(ETyn §E€Tyn

Taking into account that for z € T,

1 ZZn _ 72n|2 1 ZZn _ 72n)2 ZZn _ 72n)2

2 | T 0 | = ] am©o =2

" (€T, z2=¢ " (€T 4n/Ton 2=¢ T 2=¢
we obtain

” ” - ZlF |<|ZZn_|_:|_|Z ZZn_ZZn2+|ZZn_1| Z ZZn_ZZn2
9zllxw = n(ZvZ) = 8n?2 Z _Z 8n2 7 _{
(ETyn (€T, CET4n/Ton
z+ 1|+ 22" -1
_ | | + | I <3

2
In the same way, ||, |l2c < V2 for every w € T. By (52), we have ®(z, w) = (g,, h,,) for all
z,w € T. It remains to observe that by Theorem 5.1

in [281],
Iz, W)llary < SUPIlgellse - supllhy lls < 2.
z€T weT
Lemma (6.2.71)[260]. Let n be a positive integer. Then
n
7 if niseven,
1A(z — W)”aan,Tn =Yn2-1 o
, if nisodd.
4n

Proof. It is easy to verify that

n
Z(k n+1> k_nz" z"—1 n+1 z"—l_ A 1
2 )% T7-1 (z —1)2 2 Zz—l_n z

k=1
for € T,, . Hence,
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Az—w)=w A (zw 1 -1) = ii (k _nr 1) zkw k-1 (53)

n 2
k=1
Thus
n n 1 1
1 n+1 2 if niseven,
G = Wl e, <= ) k=5 =2 _
nTn n 2 n i i
k=1 , if n is odd.
4n

The opposite inequality is also true. It can be deduced from the observation that equality

(53) means that the function A(z — 1) on the group T,is the Fourier transform of the n-

periodic sequence {a;}xcz defined by a, = k — "T“ for k =1,2,...,n. Here we identify the

group dual to T,with the group Z/nZ. We omit details because we need only the upper
estimate.
We need the following version of Theorem (6.2.32):
Theorem (6.2.72)[260]: Let f be a functionon T,, . Then
'be,Tn(5) = 5”f”OL(’JI‘n)
forevery 6 € (O,%].
To prove Theorem (6.2.71), we need a lemma. Put

et z—1, if zeC,z#0,
O A

Proof . The inequality

be,qrn((g) = 5”f”oL(1rn)y >0,
is a consequence of a unitary version of Theorem (6.2.26), which can be proved in the same
way as the self-adjoint version, see also [263, Theorem 4.13].

We prove the opposite inequality for § € (O,%]. Fix € > 0. There exists a unitary operator U
and bounded operator R such that ||[UR —RU|| =1,0(U) c T, ,and ||f(U)R —Rf(U)| =
”f”OL("JI‘n) —&. Put

Ry > B, REN =R- ) E, (DRE,ED.

(leTnlzif (ETn
Clearly, UR — RU = URy — RyU andf(U)R — Rf(U) = f(U)Ry — Ryf(U). Thus we may
assume that R = R . Note that

UR — RU = Z @ - ©Ey, {QRE,({E)
{,E€ETH.(#E
Since

UsRy= ) AG-9E-DE (DRE,(R)
¢,E€Ty,{#E
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we have R = H,, x (UR — RU), where H,({,§) = A({ = &), where {,¢ € T,,. Thus by Lemma
(6.2.71),

n
RIS Hull, 2, IUR = RUI = 1Bl < 5

Let§ € (0,%]. Then [|[U(SR) — (SR)U|| = § and ||8R]| < 1. Hence,

0f1,(8) 2 8 fF ()R — RE ) = 6(lI fllowcr,) — €).
Passing to the limit as € — 0, we obtain the desired result.
Theorem (6.2.73)[260]: Let f be a trigopnometric polynomial of degree n > 1. Then

o)
-be,Tn(5) = E”f”omr)
fors € (o,%].

Proof. Applying Theorems (6.2.70) and (6.2.71), we obtain
‘f(Z)—f(W) f(@) - f(w)

Z— W Z—Ww
1
foré € (O,;].

Theorem (6.2.74)[260]: Let f be a trigopnometric polynomial of degree n > 1. Then

o)
2 1(6) = Z”f”OL(’JI‘)

=257100y, (8) < 26710274(6)
MT 4 Tan

<2]

M T

fors € (o,%].
Theorem (6.2.75) [260]. Let f € C(T). Then

Q2" = c2m Z 24 (If @9 +1F(=2]).
k=0

where C is a positive constant.

Proof. Applying the convolution with the de la Vallée Poussin kernel, we can find an analytic
polynomial f, such thatdeg f, < 2", f,(k) = f(k) for k < 2"' and 2, < 30, . Applying
inequalities (44) and (45), we obtain

Ifullowcr = const ) 2% (|7(24)] + |F(-24)])
k=0

It remains to apply Theorem (6.2.74) for § = 27",
In the following theorem we use the notation C, for the disk-algebra:
Cy & {f € C(T): f(n) =0for n <0},
Theorem (6.2.76) [260]. Let w:(0,2] = R be a positive continuous function. Suppose

that w(2t) < const w(t), the function ¢t ~ t(log %)‘Hu(t) is non-decreasing, and
2

] w?(t)dt

4
o t3log? <

< o, (54)
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Then there exists a function f € C, such that f' € C, and 2,(5) = w(6) forall § € (0,2].
Proof. Note that the inequality 2,(8) = w(8) for § = 27" implies that 2,(5) = const w(J)
for all § € (0,2]. Thus it suffices to obtain the desired estimate for § = 27" Taking Theorem

(6.2.75) into account, we can reduce the result to the problem to construct a function g € C,4
such that

o 120G 2"w(2 ") Zl 529

for all nonnegative integer n.
Indeed, in this case the function f defined by

fg(é) — 9(0)
7

f(2) = d¢
0
satisfies the inequality
n—1
1 A
an <= ) 2[F@Y)|
n k=0

Condition (54) implies that{a,},»o € 2 . Moreover, {a,},-o iS @ nonincre-asing sequence
because the function t ~ t~1(log %)‘1w(t) IS nondecreasing.

We can find a function g € C, such that §(2*) = a, for all k < 0, see, for example, [283].

Then
1n—1 o 1n—1
EZ'Q(Z )l = EZ Qg = An-1 = ay,.
k=0 k=0

We obtain sharp estimates of the quasicommutator norms || f(A)R — Rf (B)|| in the case
when A has finite spectrum. This allows us to obtain sharp estimates of the operator
Lipschitz norm in terms of the Lipschitz norm in the case of operators on finite-dimensional
spaces in terms of the dimension.

Moreover, we obtain a more general result (see Theorem (6.2.85) ) in terms of e-entropy
of the spectrum of A, where € = ||AR — RA|| . This leads to an improvement of inequality
(23). Note that the results improve cum results of [271] and [285].

Let & be a closed subset of R. Denote by Lip(&) the set of Lipschitz functions on §. Put

1f lLips) 2 Inf{C > 0:1f(x) — fF()| < Clx — ylvx,y € T},
Let {s;(T)};~, be the sequence of singular values of a bounded operator. We use the
notation S, for the Matsaev ideal,

Su 2 {T:ITlls, & ) (@ +))L5(T) < ooy,

We need the following statement which is contained implicitly in [286].
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Theorem (6.2.77) [260]. Let f be a Lipschitz function on a closed subset & of R. Then for
every nonempty finite subset 4 in ,

1Dof llar,5 < €1+ log(card (NI f IlLipz).

where C is a numerical constant.
Proof. Let k € L?(u ® v), where u and v are Borel measures on A andg. Clearly, rank I}7% <

card(A). Hence, ||1ﬁv||s < (1 + log(card(A)))||=5|| - Now Theorem 2.3 in [286] implies

that
1T he,r Il < (2 +log(eard(A)[|T, " [[IlLip

Theorem (6.2.78) [260]. Let A and B be self-adjoint operators. Suppose that a(4) is finite.
Then

If ()R = Rf (B)Il < (1 + log(card(A)) || llLip(oayuocs IR — RB
for all bounded operators R and f € Lip(a(4) U o(B)), where C is a numerical constant.
Proof. The result follows from Theorem (6.2.77) if we take into account the following
generalizations of (30) and (32) (see [287]):

F(A)R - RF(B) = ] f (Dof)(x,7) dE4(x)(AR — RB)dE5(y)
a(A)xa(B)
and

(Dof)(x.) dE4(x)(AR = RBYAE5 ()| < 1Dof Il yqaynqsyIAR — RBIl
a(A)*xa(B)

which proves the result.
Corollary (6.2.79) [260]. Let A,B be self-adjoint operators and let R be a linear operator on
C™. Then

If (DR — Rf (Bl < C(L +log n)l|f Il ipo(ayuacs ylIAR — RB| (55)
for every function f on o(4) U a(B), where C is a numerical constant.
Remark (6.2.80). Note that in the special case f(t) = |t| inequality (55) is well-known, see,
e.g., [288]. This special case also follows from Matsaev’s theorem, see [289, Chapter IlI,
Theorem 4.2] (see also [290] where a finite-dimensional improvement of Matsaev’s
theorem was obtained).
Remark (6.2.81). We also would like to note that inequality (55) is sharp. Indeed, it follows
immediately from Lemma 15 of [288] that for each positive integer n there exist n x n self-
adjoint matrices A and R such that

IlJA]R — R|A||l < constlog(1 + n)||AR — RA|| and AR —RA # 0. (56)
We also refer to [265] where inequality (56) is essentially contained. Moreover, (56) can be
deduced from the results of Matsaev and Gohberg mentioned above.

The following result is a special case of Corollary (6.2.79) that correspondsto R = I.

Theorem (6.2.82)[260]: Let A, B be self-adjoint operators on C™ . Then

If(A) = F(B)Il < C(A + log M| fllLip(o (ayuscey 14 = Bll
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for every function f on o(4) U a(B), where C is an absolute constant.
Remark (6.2.83). The estimate in Theorem (6.2.82) is also sharp. Indeed, for each positive
integer n there exist n x n self-adjoint matrices A and B such that A # B and
IIA] = [B]Il = const log(1 + n)||A — B]|.
This follows easily from (56), see the proof of Theorem 10.1 in [261].
Definition (6.2.84)[260]: Let & be a nonempty compact subset of R. Recall that for € > 0, the
e-entropy K (%) of & is defined as
K.(%) & inflog(card(A)),
where the infimum is taken over all 4 c R such that A is an e-net of &. The following result
is a generalization of Theorem (6.2.78). On the other hand, it improves inequality (23)
obtained in [261].
Theorem (6.2.85)[260]: Let A and B be self-adjoint operators and let R be bounded operator
with ||R|| < 1. Suppose that 6(4) c &, where § is a closed subset of R. Then for every f €
Lip(a(4) U a(B)),
| (AR — Rf(B)Il < const (1 + K (ENIf lipocayuocay) IAR — RBI|
where € & ||AR — RB]||.
Proof. We repeat the argument of the proof of Theorem (6.2.33). Clearly, f can be extended
to a Lipschitz function on R with the same Lipschitz constant. We can find a self-adjoint
operator A, such that A,A = AA, ||A — A,|| < ¢, and log(card(c(4.))) < K.(%). Then
IF (AR = RF(BI < const (1 + KN f Lip(atauocenlAcR — RBI
< 2consts (1 + K. (DI f lipoayvoy)
by Theorem (6.2.79). It remains to observe that since A commutes wit A,, we have
If (AR = RF (B < lIf (A) — fF(A)N + lIf (AR — RF(B)I
< I luipcocay + IF (AR = RF(B)I
Corollary (6.2.86)[260]: Let A and B be self-adjoint operators and let 6(4) c &, where  is a
closed subset of R. Then for every f € Lip(a(4) U a(B)),
If(A) — F(B)II < const (1 + K. (I f ILip(aayuseyllA — Bll,

where € ¥ ||A — B|.
Proof. It sufficesto putR =1.

If we apply Theorem (6.2.85) to the case K = [a, b], we obtain the following estimate,
which improves inequality (23) in the special case R = I.

268



