Chapter 5
Multiple operator integrals and operator Holder Zygmund

We improve earlier results by Sten’kin. In order to do this, we give a new approach to multiple
operator integrals. This approach improves the earlier approach given by Sten’kin. We also
consider a similar problem for unitary operators. We study moduli of continuity, for which
Ilf (A) — f (B) || <constw (|| A — B ||) for self-adjoint A and B, and for an arbitrary function f in
A,. We obtain similar estimates for commutators f (4)Q — Qf (A) and quasicommutators

f (A)Q — Qf (B). Finally,we estimate the norms of finite differences 27‘:0(—1)’"‘1'(7) f(A+

JK) for f in the class 4, ,, that is defined in terms of finite differences and a modulus continuity
w of order m. We also obtain similar results for unitary operators and for contractions.
Section (5.1): Higher Operator Derivative

If A is a bounded self-adjoint operator on Hilbert space, the spectral theorem allows one
for a Borel function ¢ on the real line R to define the function ¢(4) of A. We are going to
study smoothness property of the map 4 = @(A4). It is easy tosee that if this map is
differentiable (in the sense of Gateaux), then ¢ is continuously differentiable.

If K is another bounded self-adjoint operator, consider the functiont - @(A + tK), t € R.
In [179] it was shown that if ¢ € C?(R) (i.e., is twice continuously differentiable), then the
map t = @(A + tK) is norm differentiable and

d o) — <p(u)
o+, = | [ F5—2E dr,KdE W) )
whereE,is the spectral measure of A. Note that in the case A = u we assume that
) —p(w) _
——, -~

The expression on the right-hand side of (1) is a double operator integral. Later Birman and
Solomyak developed their beautiful theory of double operator integrals in [180-182](see
also [183]).

If we integrate a function on R%(orT%) and the domain of integration is not specified, it is
assumed that the domain of integration is R?(orT%).
Birman and Solomyak relaxed in [182] the assumptions on ¢ under which (1) holds. They
also considered the case of an unbounded self-adjoint operator A. However, it turned out
that the condition ¢ € C1(R)is not sufficient for the differentiability of the function t —
@ (A + tK) even in the case of bounded A. This can be deducedfrom an explicit example
constructed by Farforovskaya [185] (in fact, this can also be deduced from an example
givenin [184]).
In [186] a necessary condition on ¢ for the differentiability of the functiont —» ¢ (A + tK)
for all A and K was found. That necessary condition was deducedfrom the nuclearity
criterion for Hankel operators (see the monograph [187]) and it implies that the condition
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@ € C1(R) is not sufficient. We also refer to[188] where a necessary condition is given in
the case of an unbounded self-adjoint operator A.

Sharp sufficient conditions on ¢ for the differentiability of the function t = ¢@(A + tK) were
obtained in [186] in the case of bounded self-adjoint operators and in[188] in the case of an
unbounded self-adjoint operator A. In particular, it follows fromthe results of [188] that if ¢
belongs to the homogeneous Besov space B, (R),A is a self-adjoint operator and K is a
bounded self-adjoint operator, then the functiont — ¢@(A + tK)is differentiable and (1)
holds. Inthe case of bounded self-adjoint operators formula (1) holds if ¢ belongs
to BL,; (R)locally (see [186]).

A similar problem for unitary operators was considered in [182] and later in [186]. Let ¢ be
a function on the unit circle T. For a unitary operator U and a bounded self-adjoint
operator A, consider the function t — @(e*4U). It was shown in [186] that ifg belongs to

the Besov space B ;, then the function t — @ (e4U) is differentiable and

d . _ 9() — ()
(e )| _, = l< | TTdEU(A)AdEU(u)) v

(earlier this formula was obtained in [182] under more restrictive assumptions on ¢). We
refer the reader to [186] and [188] for necessary conditions. We also mention herethe
paper [189], which slightly improves the sufficient condition ¢ € BL,.

The problem of the existence of higher derivatives of the function t = ¢@(A + tK)was
studied by Sten’kin in [190]. He showed that under certain conditions on ¢ the function t —
@ (A + tK) has m derivatives and

Ci’._mm(‘P(As))lszo - m!] ] @"0) (A1, s Apa1)AE 4 (A))K .. KAE 4 (A41), 3)

where for a k times differentiable functiong the divided differences ©*¢ of order k are
defined inductively as follows:

Do & o
if k > 1, then
(Dk_l(p)(ﬂ'lv ’Ak—llﬂ'k) — (Dk_l(p)(ﬂ_zy ’Ak—llﬂ'k+1)
A, — A 1 )lk * )lk+1,
(Dk(p)(ﬂ'ly yﬂ-k.}.l) déf a k k+1
| 2@ )] e
t=A

(the definition does not depend on the order of the variables). We are also going to use the
notation

Dy = Dlo.
The Birman-Solomyak theory of double operator integrals does not generalize to the case
of multiple operator integrals. In [191] multiple operator integrals

] ] WQss o A )AE; A TrdEy (AT, . T dEr (),

N——
k
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were defined for bounded operators Ty, T, ..., Ty, —; and sufficiently smooth functions .

In [190], Sten’kin considered iterated integration and he defined multiple operator
integrals for a certain class of functions v . However, the approaches of [191] and [190]
inthe case k = 2 lead to a considerably smaller class of functions ¥y than the Birman-
Solomyak approach. In particular the functiony identically equal to 1, is not integrablein the
sense of the approach developed in [190], while it is very natural to assume that

] ] dE; ()T dE, (AT, .. Ty dE (X)) = TiT, ... Ty_y.
Tk
We use a different approach to the definition of multiple operator integrals. The approach is
based on integral projective tensor products. In the casek = 2 our approach produces the
class of integrable functions that coincides with theclass of so-called Schur multipliers,
which is the maximal possible class of integrable functions in the case k = 2.
We also mention here the paper by Solomyak and Sten’kin [192], in which the authors
found sufficient conditions for the existence of multiple operator integrals in the case when
YAy, ) = (D 10)(Ay, .0, Ag).

Our approach allows us to improve the results of [192] and Sten’kin’s results on the
existence of higher order derivatives of the functiont = ¢(A + tK ). We prove that formula
(3) holds for functions ¢ in the intersection B™,(R) n B, (R)homogeneous Besov spaces.

Note that the Besov spaces Bl and BL,(R) appear in a natural way when studying the
applicability of the Lifshits—Krein trace formula for trace class perturbations(see [186] and
[188]), while the Besov spaces B%, and BZ,(R) arise when studying the applicability of
the Koplienko-Neidhardt trace formulae for Hilbert—-Schmidtperturbations (see [193]).
It is also interesting to note that the Besov class B2 ,(R) appears in a natural wayin
perturbation theory in [194], where the following problem is studied: in which case

@(T;) = Tpor €517

(Tyis a Toeplitz operator with symbol g.)
We obtain similar results in the case of unitary operators and generalize formula(2) to the
case of higher derivatives.
Let 0 <p,q < x ands € R. The Besov class B;,of functions (or distributions)on Tcan be
defined in the following way. Let w be a C*function on Rsuch that

1 [ee)
w >0, suppwc[z,z], and Zw(znx)zlfor x>0 (4

Consider the trigonometric polynomialsi, , and W,# defined by

k
Wn(Z):ZW<2—n>Z", n>1 Wy(z)=z+1+2 and

Wit(z) = Wp(z), n=0.
Then for each distribution gon T,

kEZ
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¢=Z¢*%+Z¢*M#-

nz=0 nz=0
The Besov class Bj,consists of functions (in the case s > 0) or distributions ¢ on Tsuch
that
{12 ¢ = W[l }nso € £7and{][27 0 * W' llp}nsy € £
Besov classes admit many other descriptions. For s > 0, the space B;,admits the following
characterization. A functionibelongs to B;,, s > 0, ifand only if
wdm(r) <o for g<ow
T |1 _ T|1+sq

and
A7 ]l v
Tilll _'Tls
Where m is normalized Lebesgue measure on T, n is an integer greater than s and A, is the

difference operator: (A.f)(z() = f(z{) — f({), { € T.
To define (homogeneous) Besov classes By, (R) on the real line, we consider the same

function w as in (4) and define the functions W, and W* on R by

X
FWE) =w(5),  FWIG) = FW(-2), ne,
where F is the Fourier transform. The Besov class By, (R) consists of distributions ¢ on R

such that

<o for q= oo,

{l12"¢ * Wyl 1o tnez € €7 (Z)and{[|2 ¢ * W || o }nez € £9(Z).
According to this definition, the space B3, (R)contains all polynomials However, it is not
necessary to include all polynomials.
We need only Besov spaces BY,, d € Z,. In the case of functions onthe real line it is
convenient to restrict the degree of polynomials in B%,(R)by . Itis also convenient to

consider the following seminormon  BZ,(R):
191l 52,y = suple @) + Z 27 || % Wyl oo + Z 27 || % Wi || oo,
paS

nez nez
The classes B2, (RR) can be described as classes of function on R in the followingway:
12 o],

¢ € BL(R) < suple@(r)|+ — a4t < o,
x€R R ||

Where A; is the difference operator defined by (A;¢)(x) = @(x +t) — @(x).We refer to
[195] for more detailed information on Besov classes. We define multiple operator
integrals using integral projective tensor products of L*-spaces. However, we begin with a
brief review of the theory of doubleoperator integrals that was developed by Birman and
Solomyak in [BS1-BS3]. We state a description of the Schur multipliers associated with two
spectral measures in terms of integral projective tensor products. This suggests the idea to
define multiple operator integrals with the help of integral projective tensor products.
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Double operator integrals. Let (X,E) and (Y, F) be spaces with spectral measuresE and F
on a Hilbert space . Let us first define double operator integrals

[ [va.mas@rare, 5)
XY

for bounded measurable functions y and operators T of Hilbert Schmidt class S, . Consider
the spectral measure Ewhose values are orthogonal projections on the Hilbert spaces,,
which is defined by

EAXA)T =E)TF(A), TES,,
AandA being measurable subsets of X and Y. Then £ extends to a spectral measure on X x
Y and if y is a bounded measurable function on X' x Y , by definition,

[ [wamaeayrare = < [ tpd£> r
XY xXxY
Clearly,

fx fylp(ﬂ'“) dEMTAF || < Iyl lTlls,

S;

] ] Y4, 1) dEQA)TAF (1) € S,
xy

for every T € S, , we say that y is a Schur multiplier (of §,) associated with thespectral
measure E and F . In this case by duality the map

T ] ] W) dEQDTAF (), TES, (6)
X7y

extends to a bounded linear transformer on the space of bounded linear operators on .
We denote by M(E, F) the space of Schur multipliers of §;associated with the spectral
measures E and F . The norm of ¥ in IMM(E, F) is, by definition, the norm of the transformer
(6) on the space of bounded linear operators.

In [182] it was shown that if A is a self-adjoint operator (not necessarily bounded), K is a
bounded self-adjoint operator and ife is a continuously differentiable function on R such
that the divided difference D, is a Schur multiplier of §;with respect tothe spectral

measures of A and A + K , then

A1) —
o410 - p) = [[ L0 ar, kar o @

and
lp(A + K) — p(A)|| < constl|@llam, £, 0 I,
i.e., @ is an operator Lipschitz function.
It is easy to see that if a function ¥ on X x Y belongs to the projective tensor product
L®(E) ® L°(F) of L*(E) and L*(F) (i.e., ) admits a representation)
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YO = D o) 9a (W),

n=0

where f,, € L*(E), g, € L™ (F), and
D Wfalle llgallo < oo

n=0

then ¥ € M(E, F). For such functions ¥ we have

fx fyw(ﬂ, ) dE(A)TAF (u) = Z <]an dE) T <]ygn dp)

More generally, ¥ is a Schur multiplier of S, ify belongs to the integral projective tensor
product L*(E) ®; L*(F) of L*(E) and L*(F) (i.e., 1 admits a representation

W) = ] £ 09 0)do (), ®)
Q

where(Q, o) is a measure space, f is a measurable function on X % Q, g is a measurable
functionon Y x Q, and

j 17 Gl ey LG G ) oy dor ) < oo ©)
Q
Ify € L*(E) ®; L (F), then

] ] W 1) dEQDTAF () = ] ( ] f(/l,x)dE(/l)>T< ] g(u,x)dF(u)>da<x).

xJy Q \VX Y

Clearly, the function x ~ ([, f(2,x)dE(2))T (fyg(u, x)dF(u)) is weakly mea-surable

]Q <]xf()l,x)dE()l)>T<jyg(ﬂyx)dp(ﬂ)>

It turns out that all Schur multipliers can be obtained in this way. More precisely, the
following result holds (see [186]):

Theorem on Schur multipliersLety be a measurable function on X x Y . Thefollowing are
equivalent:

() Y € M(E, F);

(i) Y € L°(E) ®; L*(F);

(i11) there exist measurable functions f on X x Q and gon Y x Q such that (8)holds and

]lf(-,x)lzda(x) lgC, x)|?da(x) < o, (10)
Q L) e L®(F)

Note that the implication (iii)=(ii) was established in [182]. Note also that in thecase of
matrix Schur multipliers (this corresponds to discrete spectral measures ofmultiplicity
1) the equivalence of (i) and (ii) was proved in [196].

It is interesting to observe that if f and g satisfy (9), then they also satisfy (10), but the
converse is false. However, if 1 admits a representation of the form (8) with f and g

do(x) < co.
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satisfying (10), then it also admits a (possibly different) representation of the form (8) with

f and g satisfying (9).

In a similar way we can define the projective tensor product A ® B andthe integral

projective tensor product A ®; B of arbitrary Banach functions spaces Aand B.

The equivalence of (i) and (ii) in the Theorem on Schur multipliers suggests an idea how to

define multiple operator integrals.

Multiple operator integralsWe can easily extend the definition of the projective tensor

product and the integral projective tensor product to three ormore function spaces.
Consider first the case of triple operator integrals.

Let (X ,E), (Y,F), and (Z,G) be spaces with spectral measures E,F, and G on a Hilbert

space H. Suppose that 1 belongs to the integral projective tensor
productL®(E) ®; L*(F) ®; L°(G), i.e., 1) admits a representation
W) = [ G009 D, ) do), (11)
Q

where (Q,0) is a measure space, f iS a measurable function on X xQ,g Is a
measurable function on Y % Q, h is a measurable function on Z % Q, and

j 17 Gl oy 19 G ooy IRC, i@y do) < 0. (12)
Q

We define the norm||y|| g, =g, in the spaceL”(E) ®; L (F) ®; L*(G)as theinfimum of the
left-hand side of (12) over all representations (11).

Suppose now that T, and T, be bounded linear operators on H. For a function y
inL®(E) ®; L*(F) ®; L*(G)of the form (11), we put

jxjyjzlp(/l,#,v)dE(/l) T dF (W) T,dG(v) & L(]Xf(/l,x)dE(A)> T, <Lg(ﬂ,x)dp(ﬂ)>

T, < ] hQv, x)dG(v)) do(x). (13)
z
The following lemma shows that the triple operator integral
[ [ [#0.nwasw rar@rdcw)
xJyJz

is well-defined.
Lemma(5.1.1)[178]. Suppose thaty € L*(E) &; L*(F) &; L*(G). Then the right-hand side
of (13) does not depend on the choice of a representation (11) and

]x fy L Y, w, v)AE(A) TydF (u)To,dG (v)

< [l o o e - 1Tl - I T (14)
Proof. To show that the right-hand side of (13) does not depend on the choice of a
representation (11), it suffices to show that if the right-hand side of (11) is the zero
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function, then the right-hand side of (13) is the zero operator. Denote our Hilbert spaceby
H and let { € H. We have

] ] FOL0)g(w )R, x) do(x) | dG(v) = 0 for almost A and p,
Z\JQ

and so for almost alldl and u ,

] £, )9 ()T, ( ] h(v, %) dG(v)) ¢ do(x)
Q Z

=T, ] ] £ 2)g(w (v, x) do(x) | dG()7 = 0.
Z\7Q

Putting

£ =T, ( ]Z h(v, %) da(v)) :,

we obtain
]f(/l, x)g(u, x)é,da(x) =0 foralmost A and u.
Q

We can realize the Hilbert space H as a space of vector functions so that
integration with respect to the spectral measure F corresponds to multiplicat-on. It follows
that

] FOLT, ( ] g(u,x)dF(u)> fudo(x) =T, ] ] £, 0)g (1 )&, do(x)dF (i) = 0
Q Y YyJQ

for almost all A. Let now

ne=1 [ g0 dr@ |
Y

We have

]f(ﬂ, s)n,do(x) =0 foralmostall A.
Q

Now we can realize H as a space of vector functions so that integration with respect to the
spectral measure E corresponds to multiplication. It follows that

| ( | f(/l,x)dE(A)> 1ot = [ [ fGom.doyar@) =0
Q \VX xXJQ

This exactly means that the right-hand side of (13) is the zero operator.
Inequality (14) follows immediately from (13).
In a similar way we can define multiple operator integrals

] ] W, s DAEy AT dEy(A)T . Ty dEx (Ag)

~———
m+1
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for functions ¥ in the integral projective tensor product L®(E;) ®;-&®; L*(E,) (the latter
k

space is defined in the same way as in the case k = 2).

Let U be a unitary operator and A a bounded self-adjoint on Hilbert space. For t € R, we put
U, = e4U.

We obtain sharp conditions on the existence of higher operator derivatives of the

function t — @ (U,).

Recall that it was proved in [186] that for a function ¢ in the Besov space B} ;the divided

difference®,belongs to the projective tensor product C(T) ® C(T), andso for arbitrary

unitary operators U and V' the following formula holds:

A —
o) - o) = [[ LO=LL a5, G)0v - )5, (. (15)

First we state the main results for second derivatives.
Theorem(5.1.2)[178]. If ¢ € BL,, then

(D?p) € C(T) ® C(T) ® C(T)

Proof .It is easy to see that
(D%*¢)(24,25,23) = Z pl+j+k+ 2)212223 + Z pl+j+k— 2)2122231 (16)

i,j,k=0 i,j,k<0
where@(n) is the nth Fourier coefficient of ¢ . We prove that
Z @(i+j+k+2)zizz € C(T) B C(T) ® C(T).

i,j,k=0
The fact that

Z @(i+j+k—2)zizz € C(T) B C(T) ® C(T).

i,j,k<0
can be proved in the same way. Clearly, we can assume that @(j) = 0 forj < O.
We have

Z @(i+j+k+2)zlzézé‘: Z aijka(i+j+k+2)z1izé'z§‘

i,j,k=0 i,j,k=0
+ ) B+ j+k+2)Bhzlzk+ D vy (4] + e+ 2zizlak,
i,j,k=0 i,j,k=0
where
1
~ {(5 . i=j=k= 0
al]k i
+j+
ki+j+k i+j+k+0
1
{5 , l —j =k=0
ﬁl}k :{ ]
+j+
ki Tk i+j+k=+0



and

1
s e
Yijk = k
— i+ j+ ,
ki+j+k’ i+j+k+0
Clearly, it suffices to show that
Z Qe (i + ] + k +2)ziz)2K € C(T) ® C(T) ® C(T). (17)

i,j, k=0
It is easy to see that

D @ (i +j+ e+ 2)zizlzk

i,j,k=0

= S [(y429) ¢ wyert | ) |z

j.k=0 i=0

whereS*is backward shift, i.e., (S*)*¢ = P,z*%¢ (P, is the orthogonal projectionfrom L2
onto the Hardy class H?). Thus,

D @ i+ + ke + 2)zizlzk N (GO
i,j k=0 LORLOBL® jk=0 i=0 100
Put
i—m . 1 .
Q,(2) = Z —z', m>0 and Q,(z) = 52 zt
izm l i1
Then itis easy to see that
(Y +29) = ) il = b * Qoo
i20 L®

wherey = (5*)?¢ ,and so

D g i+ + ke +2)ziz)zf < D = Qaellye = D+ DIl * @l

i.j,k=0 LB LOBL® j k=0 m=0
Consider the function r on R defined by
1 IxI =1
=<1
r(x) — x| =1

x|’
It is easy to see that the Fourier transform Fr of h belongs toL!(R). Define the

functionsR,,,n > 1,on T by
k
— =\ 7k
R@ = r(5) e~

kEZ
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Lemma (5.1.3)[178].
||R, |2 < const.
Proof . For N > 0 consider the function &, defined by

1, x| <N,
2N — |x
&&)=-—7#J,N3LHSZM
0, [x] = 2N.

Itis easy to see that F¢&, € LY(R) and |F&n Il 12 (ry does not depend on . Let
k ky .
Rua@ =Y r(-)en(2)¢% cem

kEZ
It was proved in Lemma 2 of [186] that||Ry » ||, < IIF(réy)ll () - Since

”T(rEN)”Ll(IR) < ”Tr”Ll(IR)”“FfN”Ll(]R) = const,
it follows that the L'-norms ofRy ,are uniformly bounded. The result follows from the
obvious fact that
lim ||R, — Ry_|| . = 0.

N—-oo

Let us complete the proof of Theorem (5.1.1).
For f € L, we have

If * Qullio = 1If = f * Ripllieo S Ml f [l + |If * Ripll o < const]| f]] .

Thus,
D A DY Qullie = D (n+D|Y P Wx Q| = D O+ Dl Wy = Qi
m=0 m=0 nz=0 L® m,nz0
=) ) A DY Wy s Qullm <const ) Y (m+ Dl Wyl
nz0 0sm=2n+1 nz0 0sms2n+1

< constZ 22 [ * Wyl < constllyllpz

n=0
where the W, are defined .
This proves that
Z @ ® (i +j + k +2)ziz] 2k € L°(T) ® ¢(T) ® C(T)
i,j,k=0
and

Z aip@ (i +j+k+ 2)Z{Z£Z§

i,j,k=0

< constllfpllBg01 (18)

L®(T)®C(T)®C(T)
To prove (17), it suffices to represent ¢ as

0= 9 W,

n=0

Then we can apply the above reasoning to each polynomial ¢ * W},. Since
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i20

(((S*)H’HZ(P * Wn) * Z ai+j+kzi>

is obviously a polynomial, the above reasoning shows that
N @ W i+ j + ke + D)zizlzk € C(T) & C(1) ® ¢(T)

i,j,k=0

and by (18),

17 (: . iJ k
Z ajjrp * Wy (i +j + k + 2)z12, 23
i.jk=0

< const|l * W llpz |

C(MRC(TIRC(T)
< const22™||g * W, || ;.
The result follows now from the fact that
Ynz0 22 | * Wl < constllollpz, -
Theorem (5.1.4)[178]. Let pbe a function in the Besov class Bl ,, then the functiont —
@ (U,) has second derivative and

d
= @Ulzo = =2 ( [[| @00 1) dEs WAdEL (ATEL () U2 (19)

Note that by Theorem (5.1.2), the right-hand side of (19) makes sense and determines a
bounded linear operator.
Proof . It follows from the definition of the second order divided difference that

(u=)@*)(A, 1,v) = D) (A, 1) — (DP)(A,v). (20)

o)

= ([ @ a.vaE, W45, w0, - [[ @) waaE,@)

By (15), we have

1/d
S P CIOA)

d
- — (U

s=t

- ;Of (D) (A, v)dEy, (DA dEy, (v) — ] (D) (u, v)AEy (n)A dEu(v>> Ut
o || @0 @1dE (4 dEy 0V, - [[ @o)w I @A dE, @)

+e Of (09I VB WA B, ) - [[ @0)2v)dE, W4 dEu(ﬂ)> u
By (20), we have
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|| @) v, @adz, ) - [[ @o)0 a8 @AdE, o)
- ] f ] (©p) (A, V)dEy, (D) dEy (1) AdEy, (v)
_ ] f f (D) (u,v)dEy, (D) dEy (1) AdEy, (v)
_ ] f (D20) (A, 1 v)(A — p)dEy, (DdEy (1) AdEy, ()
- ] f (©%9) (4, 1 v)dEy, (DU, dEy (W) Ad By, (v)
_ ] f (D20)(h, i, v)dEy (A)UdEy () AdEy (v)

= || @) m vy @) - DUAE (AdE, 0

Similarly,

|| @0)G.dE @A, o) - || @00 0dE (AW

= [|] @ )0 1 vaE W adE G - DuAE, 0.

t s=0>

( ] f f (D)4, 1, v)E,, (1) (e — I)UdEU(y)AdEUt(v)> U,
+ E( ] f (Do) (1, v)AEy (W) AdEy, (v) U, — ] (D¢) (1, v)dEy (W AdEy, (v) U)

N ;(ﬂ (D2@) (A, 1, v)dEy (D AdE, (1) (¥ — 1)U dEUt(”)> v

Since ItirrgllUt — U|| = 0, to complete the proof it suffices to show that
1 .
im [[] @) v)dE, W — DUdE, ) AdE, )

= j f (D20) (A, v)AEy (D) AdEy (1) AdEy (W)U, 1)

Thus,

1/d
= (- Wy

t

d
- —(oU)

S

o~

~. ~ |

im || @20)u YU, (04, ()

= ] (D20) (1, v)dEy (D) dEy (1) AdEy (W)U | (22)

and

1 .
im [[] @) v)dE @ AdE ) (e ~ DUdE,, ()
= i ||| @)1 0B, D AdE () AdE, W)U, (23)
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Let us prove (21). Since D?¢ € C(T) ® C(T) ® C(T), it suffices to show that forf, g, h €
c(T),

1 .
im= [[] r9GoReIE, (e ~ DUar, (s, @)

= i [[| rvg@nerae, @aas,ads, 0. 24)
We have
1 .
=[] revg@oneaas, e ~ puat,Gaak, o)
1 .
= fW) (7 (e = DU) gW) AR,
and

|| rvg@oneae, @aae,aas, o = agwarwu

Since f and h are in C(T), it follows that
(it suffices to prove this for trigonometric polynomials f and h which is evident). This
together with the obvious fact

lim <1 (et — 1)> =iA

t-0 \ t
proves (24) which in turn implies (21).
The proof of (23) is similar. To prove (22), we observe that B%, c B, and usethe fact that
D2¢p € C(T) ® C(T) (this was proved in [186]). Again, it suffices to provethat for f, g €
¢(T),

im ([ 609w, wads, o) = [[ Ferge)dE, (adE,w)

which follows from the obvious equality:
limllg(U,) — g(W)ll =o.
The proofs of Theorems (5.1.1) and (5.1.2) given above generalize easily to the case of
higher derivatives.
Theorem(5.1.5)[178]. Let m be a positive integer. If ¢ € BZ,, then
D?p € C(T) ® - & C(T).

m+1
Theorem(5.1.6)[178]. Let m be a positive integer and let ¢ be a function in the Besov

classBY;, , then the function t — ¢(U,) has mth derivative and

Ci’,_mm((l’(Us)) =i"m! ]] (D*@) (A1, o Ay 1)AEy(A)A .. AdEy (A y4) | U™,

m+1

s=0

We consider the problem of the existence of higher derive- atives of the function
t — @(A) = p(4 + tK).
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Here A is a self-adjoint operator (not necessarily bounded), K is a bounded self-adjoint
operator,and A, & A + tK .
In [188] it was shown that if ¢ € BL,(R), then D¢ € B(R) &; B(R), whereB(R)is the
space of bounded Borel functions on R equipped with the sup-norm, and so

llp(A + tK) — p(A)Il < constllpllg: 11Kl (25)
In fact, the construction given in [188] shows that for ¢ € BL,(R), the functiont —
@(A + tK) is differentiable and

d
o] _ = [| o ndemrdEw. (26)

For completeness, we show briefly how to deduce (26) from the construction given in[188].
We are going to give a detailed proof in the case of higher derivatives.
We need the following.
Definition(5.1.7). A continuous function gon R is called operator continuous if
limllp(A + tK) — (A

for any self-adjoint operator A and any bounded self-adjoint operator K .

It follows from (25) that functions in B ;(R)are operator continuous. It is alsoeasy to see
that the product of two bounded operator continuous functions is operator continuous.
Proof of (26) . The construction given in [188] shows that if ¢ € BL ;(R), then D¢ admits a
representation

@A) = | F0. g x)do),
Q
Where(Q, o) is a measure space, f and g are measurable functions on R x Q suchthat
| Wdlogey Ngellsgeydote) < oo,
Q

and for almost all x € Q, and f,and g,are operator continuous functions wheref, (1) &
f(A,x) and g, (1) & f(u, x). Indeed, it is very easy to verify that thefunctions f,and
gxconstructed in [188] are products of bounded functions inBL ; (R).

By (7), we have

1 1
;(<P(As) —p(4)) = ;]f@(ﬁ)(ﬂ,M)dEAS(ﬂ)SKdEA(M) = ]Qfx(As)Kgx(A)dO—(x)-

Since f,is operator continuous, we have
limllf(45) = fe(A)]l = 0.
It follows that

| K@K g @dst) - [ flAK g Ao ()
Q Q

-0 as-0,
which implies (26).

< |IK| ] 1£:(As) — £l - Nl g (A) 1 do(x)
Q
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Consider first the problem of the existence of the second operator derivative. Firstwe
prove that if f € B%Z,(R) , then®?¢p € B(R) ®; B(R) ®; B(R).Actually, to provethe
existence of the second derivative, we need the following slightly stronger result.

Theorem (5.1.8)[178]. Let @ € BZ,(R). Then there exist a measure space (Q,c) and
measurable functions f,g,and hon R x Q such that

@)A1 = [ FA DGR o), 27)
Q
fx» 9, and h,are operator continuous functions for almost all x € Q, and
]Q”foSB(IR) |95 llswy 1 x| sy do(x) < constllollpz (). (28)

As before, £, (1) = f(4,x), gx(1) = g(u, x), and h,(v) = g(v, x).
Theorem (5.1.8) will be used to prove the main result.
Proof . Suppose thatsupp F¢ < [M/2,2M]. Let us show that each summand on the right-
hand side of (30) admits a desired representation. Clearly, it suffices to do it for the first
summand. Put
W0 = ([ (Stu®) > au) et didu= [| W, (dhu) Otd
R; xR, R; xR,
where
f,) = ((S;9) *ay)A), g:(p) = e™and  h,(v) = e
Clearly, llg.llsq = 1 and|lh,lls@) = 1. Since
1+|Ir o V< 2M,
Ifollsey = ulle = llg = @ = ry o < {77 1o Plhm, v =20

we have

IWllsmssmesm < constllell - ]f dtdu < const - M2||¢|| ..

tu>0,t+u<2M
In the same way we can treat the case whensupp Fo < [-2M,—M/2]. Ife@ is apolynomial
of degree at most 2, the result is trivial.

Letnow ¢ € B2,(R) and
(p:Z(p*Wn+Z(p*W#,

nez nez
It follows from the above estimate that

1D?¢llgmygsmesm < CONSt(Enez 22 1@ * Wy llLo + Xnez 2°" [l * Wi [l1=). To complete
the proof of Theorem (5.1.8), we observe that the functions A+ e areoperator
continuous, because they belong toBl,(R). On the other hand, it is easy tosee that
ifsupp ¢ c [—2M, —M/2], then the function (S;¢) * g is the product of e'Vand a bounded
functionin BL,(R).
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Theorem(5.1.9)[178]. Suppose that A is a self-adjoint operator, K is a bounded self-adjoint
operator. If ¢ € B%,(R) n BL,(R), then the function s — (4;) has second derivativethat
is a bounded operator and

dZ
@] =2 [[ @B DKEGKED. @

Note that by Theorem (5.1.8), the right-hand side of (29) makes sense and is a bounded
linear operator.
Fort > 0 and a function f , we define S;f by

(Fsin)) ={ TP L=

t>s,

We also define the distributions g.and r;, t > 0, by

S
_ >
(TCIt)(S):{S+t’ s20,
0, s<O0,
and
1’ |S| S ty
=11
(Fr)(s) {;, o>t

Itis easy to see that r, € L1(R) and 7¢Il (ry does not depend ont.
Proof .1t follows from Lemma (5.1.11) that

([ @0 w)0E, 0K () - [[ @) vI0E, OKaEL))
= [|] @00, 1), QKA (DKAEAG)

Similarly
1
=([] @0 v)dEs, (KB - ([ @) wIdELGOKAEN))
= ]H(DZ@)(K, i, V)AEx, Q) KAE (WKAE,, (v).
Thus,
1,d d
T(E @(A))| =55 (@(A)) S=0>
= [|] @@k v)dEn, (OKdE (WKAEAG)
" ]f (D*@) (A, v)dEA (WKAE A (WKAE (V).
The fact that

im || (©20)01 1, V)dER, WKIE, (DKAEA) = [[[ (©20)(h 1 ¥)IEADKIEAWKIES®)

follows immediately from (27) and (28) and from the fact that the functions f,, g,, and hy
in (27) are operator continuous.
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Similarly,

im || (©20)01 1, V)AER WKIEAGKIEA®) = ] (D20)h 1, VIAERQIKAEL (DKAEAG),

which completes the proof.
Lemma (5.1.10)[178]. Let M > 0 and let ¢be a bounded function on R such thatsuppF¢ c
[M/2,2M]. Then

(D*Q)(h 11 v)
== [ (Gt i) Wee ata
R, xRy

[ (o) a,,) e asau
R4 xR,

— ]f ((S;H(P) % qs+t) (v)e'stelt dsdt. (30)
Ry xRy
Proof. Let us first assume that F¢ € L*(R). We have
| (i) * ae) @rete™ dpay
R; <R,

S o
= ]ﬂ (Fp)(s + t + u) ————eSeltte™dsdtdu.
Ry xRy xR, s+t+u

We can write similar representations for the other two terms on the right-hand side of(30),
take their sum and reduce (30) to the verification of the following identity:

@%p)(A, u,v) = ]ﬂ (Fp)(s + t +u) eiSteltte™dsdtdu
Ry xRy xRy

This identity can be verified elementarily by making the substitutiona =s+t+ub =t +
u,and c = u.
Consider now the general case, i.e., ¢ € L”(R) andsupp Fe c [M/2,2M]. Consider a
smooth function won R such that w >0, supp w < [-1,1], and ||w||,1(gy = 1.For € > 0 we
put w.(x) = w(x/e)/s and define the function ¢, by Fo, = (Fp) * w, Clearly,

Fo, € L'(R), limllpelliomy = @l (),
and

Igig(w)<pg(x) = @(x)foralmostall x € R.

Since we have already proved that (30) holds for ¢, in place of ¢, the result follows by
passing to the limitas € — oo,

To prove (26), we need the following lemma.

Lemma (5.1.11)[178]. Let A be a self-adjoint operator and let K be a bounded self-adjoint
operator. Suppose that ¢is a function on R such that D¢ € L”(R) ®; L”(R)and D?%¢p €
L”(R) ®; L”(R) ®; L°(R). Then
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] f (D)X, WAE k(D KAE 4 1 (1) — ] f (DP) (A, V)AEs 4k (DKAE, (V)
= j f j (D20) (A, 1,v)AEy, g (DK AE (1)K AE,(v).

Proof. Put
B, = E,([-n,n]),Q,, = EA+K([—n,n]),A[n] = P,Aand Bp,; = Q,(A+K).

We have
j f (©9) (A W) dE s c (YK AE (1) — j f (D9) (A, V)dEq, c()KAE,(v)

= [|] @) aEs kWK AE BN

- ||| @0 G @K KAL)

Thus,
0n ([ @00k WK AEL () - ([ @IA B DKAE, ) P,
-( [ [ ';@w)(z,u)dEA+K<A)KdEA+K(u) dE,()
-[ [ [ ';cmp)(z, V)AE gk DK AEpy (1) d_y ()
= ] f (1 = V)(D?*Q) (A, 1, VIdEp,, (DK AEg,, (1)KdE, (v)
since

D)4, W) — (@), v) = (u —)(D?*P)(A, w1, v).
On the other hand,

0n ( [|] @202 1V kWK AE GO AEL ) ) By

= ] ] ] (©20) (b V) AEps kKA () (A + K) — A) dE4 (v)

= j j j (D20)(h, V) AEps e VK AEns1c(12) O % ((A + K) — A)P,EA(v)

= ] ] (©20) (A, V)AE sk (DK AE s (1) % (BygPa — OnApeg)dEa(v)

= [|] @03 1. V)aEg DK, (D (B = Qup)K B, ).

It is easy to see that this is equal to
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ﬂ (D*0) (A . v)AE g, (DK dE g, (1) By Pud By (v)
_ f J (D?@) (A, 1, v)dEp  (DKAEp  (1)QnApdEs,, (v)
= f J f u(D2)(A, ., v)dEp, (DKdEg  (W)dE,  (v)
~ ||| V@)1 (KA, (0E s, )

= [[[ ¢ = @)A1 ¥) s, (KA, (), )

The result follows now from the fact that
limB,=1limQ,=1
n—oo n—oo
in the strong operator topology.
Theorem (5.1.12)[178]. Let m be a positive integer and let ¢ € B7;,(R). Then there exist a

measure space (Q, o) and measurable functions f;, ..., f;,+1 ON R %X Q such that
@), Anss) = [ FiG0 o) fs G, D)l ),
the functions £, (-, x), ..., fm+1(, x) arerperator continuous for almost all x € Q,and
L”ﬁ('lx)”sg(ﬂ%) | fmaa G0 lprydo (x) < constlifllsz, wy.

Theorem(5.1.13)[178]. Let mbe a positive integer. Suppose that A is a self-adjoint
operatorand K is a bounded self-adjoint operator. If ¢ € B™,(R) n BL,(R), then the
functions — @ (4;) has mth derivative that is a bounded operator and

T @G, =t [ [ @0 A DB A . KA G

m+1

Section (5.2): Operator Holder-Zygmund Functions

It is well known that a Lipschitz function on the real line is not necessarily operator
Lipschitz, i.e., the condition

[[f() —f(Y)Il < constjx—y|, XV ER,
does not imply that for self-adjoint operators A and B on Hilbert space,
If(x) — f(Y)Il < const|lx — y.

The existence of such functions was proved in [198]. Later in [199] necessary conditions
were found for a function f to be operator Lipschitz. Those necessary conditions also imply
that Lipschitz functions do not have to be operator Lipschitz. It was shown in [199] that an
operator Lipschitz function must belong locally to the Besovspace Bi(R). Note that in [199]
and [200] a stronger necessary condition was also obtained.
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It is also well known that a continuously differentiable function does not have to be
operator differentiable. Moreover, the fact that f is continuously differentiable does not
imply that for bounded self-adjoint operators A and K the function

t— f(A+tK)
is differentiable. For f to be operator differentiable it must satisfy the same necessary
conditions [31, 33].(Note that Widom posed in [201] a problem entitled “When are
differentiable functions differentiable?”.)
On the other hand it was proved in [199] and [200] that the condition that a function
belongs to the Besov space B (R) is sufficient for operator Lipschitzness (as well as for
operator differentiability). We also mention here [202,203,204-206]and [207] that study
operator Lipschitz functions.
Many mathematicians working on such problems in perturbation theory believed that a
similar situation occurs when considering Holder classes of order a and operator Hélder
classes of order a, 0 < a < 1. In particular, Farforovskaya obtained in [198] the following

estimate
a

b—a
+1) 14— B||®

I1£CA) = £ < constilflLa,cey (1003 T —pr
for self-adjoint operators A and B with spectra in [a, b] and for an arbitrary function f in
A,(R),0 < a < 1. She also obtained the same inequality for « = 1 and a Lipschitz function f
(seealso [298]).

However, we show that the situation changes dramatically if we consider Holder classes
A,(R) with 0 < a < 1. In this case Hoélder functions are necessarily operator Holder, i.e.,
the condition

lf (x) = fF)I < const |x —y|*, x,y € R, (31)
implies that for self-adjoint operators A and B on Hilbert space,
lf (4) — F(B)Il < const||A — BJ|“. (32)

The constant in (32) must depend not only on the constant in (31), but also on a and must
tend to infinity as the constant in (31) is fixed and a goes to 1.
Our method gives the following estimate:

If(A) — FB)Il < const(1 — &) M lIfll4,mllA — BII*, 0<a<1  (33)
where

et lf (x) = fF)I
up .

(bl s
fllaqgm P

We consider the same problem for the Zygmund classA; (R), i.e., the problem of whether a
function f in the Zygmund class A (i.e., fis continuous and satisfies the inequality
lf(x+1t)—2f(x) + f(x—t)|] <const|t], x,teR

implies that f is operator Zygmund, i.e., for arbitrary self-adjoint operators A and K ,
If(A+K)—2f(A) + f(A - K)Il < const|[K]|.
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This problem was posed in [209].

We show that the situation is the same as in the case of Hélder classes4,(R),0 < a < 1.
Namely we prove that a Zygmund function must necessarily be operator Zygmund.

We also obtain similar results for the whole scale of Hélder-Zygmundclasses 4,(R), 0 <
a < oo, of continuous functions f satisfying

—1)m- " f(x+kt) [t]*(here m — 1 < a <m).

There are many natu ral equivalent (semi)norms on/,(R), for example,

Z( ymk () £+ kt)|

Analogs of these results for unltary operators and for contractions.
We estimate ||f(4) — f(B)|| in terms of ||A— B|| for functions f of classA4, , (i.e.,
|f(x) — f(y)] < const w(|x — y])) for arbitrary moduli of continuity w. In particular, we
study those moduli of continuity, for which the fact that f € A, implies that
I (4) — f(B)Il < const w(|lx — ylI)

for arbitrary self-adjoint operators A and B . We compare this class of moduli of continuity
with the class of moduli of continuity w, for which the Hilbert transform acts on4,,
We study the class of operator continuous functions and for a uniformly continuous
function f we introduce the operator modulus of continuity £, . The material is closely
related. We construct a universal family {4;}:>, of self-adjoint operators in the sense that to
compute (2(for arbitrary f, it suffices to consider the family {A;},,.
We compare the operator modulus of continuity with several othermoduli of continuity
defined in terms of commutators and quasicommutators.

We obtain norm estimates for finite differences

1l 4, my) = supltl“ (34)

Z( I (7)) £+ 10 (35)

wheref belongs to the class A, , that is defined in terms of finite differences and w is a
modulus of continuity of order m.

We collect necessary information on Besov classes (and in particular, the Holder— Zygmund
classes), and spaces A,and4,,, . We give a brief introduction into double and multiple
operator integrals.

In [211] we are going to study the problem of the behavior of functions of operators under
perturbations of Schatten-von Neumann classS,. We are going to study properties of
functions of perturbed dissipative operators in [236], where we improve results of [212].
Finally, we would like mention that Farforovskaya and Nikolskaya have informed us
recently that they had found another proof of the fact that a Holder function of order ,0 <
a < 1, must be operator Holder of order a. However, their method gives the estimate
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If(4) — f(B)Il < const(L — &) ?lIflla,mllA—BII%*, O<a<1
(compare with (33)).
We are extremely grateful to the referee for his numerous remarks to improve the text.
The purpose of this point is gave a brief introduction to the Besov spaces that play an
important role in problems of perturbation theory. We start with Besov spaces on the unit
circle.
Letl <p,q < o and s € R. The Besov class B;,0f functions (or distributions) on Tcan

bedefined in the following way. Let w be an infinitely differentiable function on Rsuch that
1 X
w=0, suppwcC [5,2] ,and wx)=1-w (E)forx €f1,2]. (36)
Consider the trigonometric polynomialsW,, , and W,* defined by

k -

W.(z) = Zw (§>Z", n>1Wy(2) =7+ 1+zandW*(z) = W.(D).n > 1
KkEZ

Then for each distribution f on T,

F=) frWot ) foug

n=0 nz1

The Besov class Bj,,consists of functions (in the case s > 0) or distributions f on Tsuch
that

{12 f * Wyl oo bnzq € £%and{|[27f * Wi || 1o }nay € €9, (37)
To define a regularized de la ValléePoussin type kernel 1},, we define the C* function v on
Rby

v(x) = 1forx € [-1,1] and v(x) = w(|x]) if |x] = 1, (38)
wherew is a function described in (36). Then the trigonometric polynomial V},is defined by

V,.(z) = Z v(%) z¥, n=>1.

k€EZ
Besov classes admit many other descriptions. In particular, for s >0, the space

B;,admitsthe following characterization. A function f € LP belongs to B;,, s > 0, if and
only if
mg(14
L%dm(r) <o for g< o
and
AT £l o
T#1 |1 _'Tls
wherem is normalized Lebesgue measure on T, m is an integer greater than s, and A, T €
T, isthe difference operator:

(A1) = f(@) - f(G), (€T

We use the notation By for By, .
The spaces 4, & B% form the HOlder-Zygmund scale. If 0 < a < 1, then f € A, if and onlyif

< oo for g = oo, (39)
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1 ({) — f(x)] < const|{ —7|*, {,TET,

whilef € A; ifand only if f is continuous and

| f(¢T) —2f () +fD| <const|]l —7|, {,;T€T.
By (39),fora >0, f € A, ifand only if f is continuous and
|(A7*/)({)] < const|¢ — 7%,
wherem is a positive integer such that m > «.
By analogy with (34) we can define the natural (semi)norm on A,in terms of finite
differences. Note that the seminorm of a function f in A,is equivalent to

I(f = 0)) * Woll o +5up 27 If * Walluso + I1f = Wil

where for a function or a distribution f on T, f(n) is the nth Fourier coefficient of f .
We denote by 1, the closure of the set of trigonometric polynomials in 4, . It is easy to see
that f belongs to 4,if and only if
lim 2% || f % W[l 0 = lim 274 ||f Wi || 0 = O.
n—->oo n—->oo
If « > 0, this is equivalent to the fact that

AT fllo _

lim =0, m>a«a

-1 |1 —7|%
It is well known that the dual space (1,)" can be identified naturally with the Besov

spaceB7 % with respect to the following pairing:

(£.9)= ) Fmg@m)
nez
in the case when g is a trigonometric polynomial. It is also well known that the dual space

(B1%)*can be identified naturally with the space A,with respect to the same pairing.
It is easy to see from the definition of Besov classes that the RieszprojectionP,

P.f = fa,

is bounded on Bj,. Functions (or distributions) in (Bj,),  P,Bj,admit a natural

extensionto analytic functions in the unit disk following description:
D. It is well known that the functions in (Bf,q)+ admit the

1
f e (Bf,q)+ & ]0 (1 —r)aim-9-1 ”fr(m)”ZdT‘ < 0,q < oo,
and
fe(By,). & sup(L-r)™s ||fr(m)|| < oo,
+ o<r<i p

wheref,.({) ¥ f(r{) and m is a nonnegative integer greater than s.
Let us proceed now to Besov spaces on the real line. We consider homogeneous Besov
spaces B, (R)of functions (distributions) on R. We use the same function w as in (36) and

define the functions W, and W,* on R by
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FW,(x) =w (%) FWi(x) = FW,(—x), n€Z,

whereZFis the Fourier transform:
(FF)(E) = j fO)e-"tdy, fell
R

With every tempered distribution f € §'(IR) we associate a sequence {f;, }nez »
L W+ f x W

Initially we define the (homogeneous) Besov class Bf,q(lR) as the set of all f € §'(R)
suchthat

2%l full Lo Inez € £9(Z). (40)
According to this definition, the space Bj,(R)contains all polynomials. Moreover, the
distribution f is defined by the sequence {f,,},.cz uniquely up to a polynomial. It is easy to
see that theseries Y,,5( frconverges inS’'(R). However, the series )., f,can diverge in

general. It iseasy to prove that the series Zn<0fn(r) converges on uniformly Rfor each

nonnegative integerr > s — 1/p. Note that in the case g = 1 the series },,<o fn(r)converges
uniformly, whenever r > s — 1/p.
Now we can define the modified (homogeneous) Besov classB;,(R). We say that a
distribution f belongs to BS.(R) if {27||f,ll,pdnez € €9(Z) and @ =¥, £ in the
spaceS’(RR),where r is the minimal nonnegative integer such that r >s - 1/p (r s -1/
pif g = 1). Nowthe function f is determined uniquely by the sequence {f,}n,cz Up tO a
polynomial of degree lessthanr , and a polynomial gbelongs to Bj,(R) if and only if
degop <r.
We can also define de la ValléePoussin type functionslj,,n € Z by

Flh() = v (55).
wherev is a function given by (38). We put VV £ V.
We use the same notation V,, , W, and W;* for functions on T and on R. This will not lead to
confusion. For positive n we can easily obtain the function V,on the circle from the
corresponding function V,on the line. It suffices to consider the 2r-periodic function

1
=D h(x+2jm)

nez
and identify it with a function on T. The same can be done with the functions W,,and W,*.

Besov spaces B;,(R)admit equivalent definitions that are similar to those discussed above
inthe case of Besov spaces of functions onT. In particular, the Holder-Zygmund
classesq,(R) € BZ%(R), a > 0, can be described as the classes of continuous functions f on
R such that
|(AT)(x)| < const|t]%, t € R,
where the difference operator A; is defined by
Q) =fx+t) = f(x), x€R
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andm s the integer suchthatm — 1 < a <m.
As in the case of functions on the unit circle, we can introduce the following equivalent
semi-norm on A, (R) that is equivalent to the seminorm (34):

sup 2" (IIf * Wallpeo + IIf * Will=),  f € A.(R).

nez
Consider now the classA,(R), which is defined as the closure of the Schwartz class S(R)in

A,(R). The following result gives a description of A,(R)fora > 0. We use the following
notation: C,(R) stands for the space of continuous functions f on Rsuch
thatlim, .. f(x) = 0.
Theorem (5.2.1)[197]. Let « > 0 and let m be the integer such thatm — 1 < o < m. Suppose
that f € A,(R). The following are equivalent:
(1) f € 2o (R);
(i) f,, € Co(R)for every n € Z and

Jim 2% £yl = 0;

(i11) the following equalities hold:
Itirrgltl‘“ (AT f)(x) = Ouniformly inx € R,
lltilmoltl‘“ (AT f)(x) = Ouniformly inx € R,
and
Ililmoltl‘“ (AT f)(x) = 0 uniformly in t € R\{0}.
x|

Proof. (ii) = (i). It follows from the definition of A,(R) in terms of convolutions with

W,and W that
N

f=> h

n=—N

lim

A (R)
Thus it suffices to prove that f,, € 1,(R). However, this is a consequence of the following
easily verifiable fact:

6))

Iirrasup|(e‘52x2fn(x)) — 9P| =0forallj=0  (41)
€20 xeR

Indeed, (41) is obvious if we observe that all derivatives of fbelong to C,(R).
The implication (i) = (iii) follows very easily from the fact that (iii) holds for all functions

inS (R) which can easily be established.
It remains to show that (iii) implies (ii). Consider the function Q,, defined by

NOE i(—l)k-l BEAR) (42)
k=1

It is easy to see that
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FO = (@0 = FG) - | f(x—t)Z( 1t (1) v () ae

=f(x)+ f Z( 1)" f(x — kt)V,(t)dt

= f (™ £) (x) Vi (0)de. (43)
R

Hence,

f (A% n,f) ()

e[ V(®)[t[*dt| - 0 as|n]

2°M|f — f * Qull > = sup2%™
x€ER
— 00
by the Lebesgue dominated convergence theorem.
Let us observe now that suppFQ,, c [-2"*1, 2"*1], and so
If = f*Valle = If = f % Quey = (f = f % Qua) * Vol
Sf = f * Quoallyoe + I(f = f * Qnoq) * Vyllpo S cONSt|If — f * Qp_yll e

which immediately implies that

= sup
x€ER

f (™ £) (%) Vi (0)de
R

aim 2% I fulli= = 0

Similarly, we can prove that f — f * Q,, € C,(R)and f,, € C,(R).
The dual space (1,(R))*to 1,(R) can be identified in a natural way with B7%(R) with
respect to the pairing

(.)€ lim D [ (FUNOENOdr, £ € A, g € By (R)
n=-N R

The dual space (B7%(R))* to B *(R) can be identified with A, (R) with respect to the
same pairing.
We refer to [213] and [214] .
Lemma(5.2.2)[197]. Let « > 0 and let P be a polynomial whose degree is at most a. Then
for an arbitrary € > 0O there exists a function f € A,(R) with compact support such that
fII0,1] = P[0 1]and|lf Il 4, my < €
Proof. It suffices to consider the case when P(x) = x™with n < a. Assume first that n < a.
Let g be an arbitrary function in A,(R) with compact support and such that g(x) = x™
for x € [0,1]. For t € (0,1), we define the function g, by
ge(x) =t g(tx).
Itis easy to see that g,(x) = x™ for x € [0,1] and
lgella,my = t* " glla,my 2> 0 ast—0.
Suppose now that « is an integer and n = a. It is well known that the function h defined by
h(x) = x™log|x| belongs toA,(R). Multiplying it by a suitable function in A, (R) with
compact support, we obtain a function g € A,,(R) with compact support such that g(x) =
x™log|x| for x € [0,1]. For t € (0,1), we define the function g.by
ge(x) = (™" g(tx) — g(x))/ logt.
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Then g,(x) = x™ for x € [0,1] and
gella,my < 2llogtl~*llgllg,m = 0 ast—0.

Theorem(5.2.3)[197]. Leta > 0. Then for each £ > 0 and each function f € A, (R) there
exists a function g € A,(R) with compact support such that f(t) = g(t) fort € [0,1] and

llglla, < const||f][5 + &,
where the constant can depend only on a.
To prove Theorem (5.2.2), we use the well-known fact that if @and f are functions in
A (R)and @has compact support, then of € A,(R). We refer to [215], Section 4.5.2 for the
proof.
Proof .Let pbe a function in A,(R) with compact support. We fix a subsetA of [0,1] that has
m elements, where m is the largest integer such that m < « + 1. It follows from the closed
graph theorem that |lof|l,, < C(p,a,b)llglls, for every f € A, that vanisheson A. It
remains to observe that an arbitrary function in A, can be represented as the sum of a
polynomial of degree at most a and a function A, vanishing on A.
Let w be a modulus of continuity, i.e., w is a nondecreasing continuous function on
[0, c0)such that w(0) = 0, w(x) > Ofor x > 0, and

w(x +y) <w(x)+wy) xye€l0 0).

We denote byA, (R) the space of functions on R such that

w ) =FOI

f1a, @y & iliy w(x =D <

We also consider the spaces A of functions on the unit circle and (4,), of func- tions
analytic in the unit disc that can be defined in a similar way.

Theorem (5.2.4)[197]. There exists a constant ¢ > 0 such that for an arbitrary modulus of

continuity wand for an arbitrary function f inA(R), the following inequality holds:
If = f* Valleo < C(‘)(Z_n)llf”Aw(R)y n e 7. (44)

Proof. We have

lf () = (f * V) ()| = 27

[ (6 = 1 = IV @3] < 20 sy [ @D V@l
R R

2—n [0¢]

=20l | WDV +2"fllyw | 00) V@ lay.

_2—1’1 2—n
Clearly,
2—n
on ] o(yD) V@ )ldy < 0@ ™|Vl
_Z—n

On the other hand, keeping in mind the obvious inequality 27" w(y) < 2yw (27") fory >
27" we obtain

[0¢] [0¢]

on+1 f o) IV y)|dy < 4-2%w(27") f yIv(@™y)ldy

2—1’1.
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=402 [ yIVO)ldy < const w(@).

This proves (44).
Corollary(5.2.5)[197]. There exists ¢ > 0 such that for every modulus of continuity w and
for every f € A,(R), the following inequalities hold:

If * Wrllieo < cw@MIfla,m)y 7 EZ
and

If * Wil < cw@™Mflla,w)y 7 EZ
We proceed now to moduli of continuity of higher order. For a continuous function f on R,
we define the mth modulus of continuity w,, of f by

wrm(x) = sup [[AFflle = sup  [IAF Iy, x> 0.
{h:0<sh=zx} {n:0<|n|=x}
The following elementary formula can easily be verified by induction:
m
m
@BA =D (7) @R+ jh). (45)
j=0

It follows from (15) that ws , (2x) < 2™ w¢ 4, (x), x > 0.
Suppose now that w is a nondecreasing function on (0, o) such that

Iirrg w(x) =0and w(2x) <2™w(x) for x > 0. (46)
X—
It is easy to see that in this case
w(tx) < 2™t"w(x), forall x>0 and t>1. 47
Ul o e sup I e
Aw,m(R) - >0 w(t)

Theorem(5.2.6)[197]. There exists ¢ > 0 such that for an arbitrary nondecreasing function
w on (0, x)satisfying (46) and for an arbitrary function f € 4,,,,(R), the following
inequality holds:

If = f*Valle < cw@ ™S Nla,, wy: 7 € Z.
Proof. Consider the function Q,, defined by (42). Applying formula (43), we obtain

|f (x) = (f * Qu)(x)| = ]R(A’_"tf)(x)Vn(t)dt < IIfIIAw,m(R)]w(ItI) [V.(D)ldt.
R
It follows from (47) that

27" e

ot m@la= [ ol m@lac+2 [ o@ W@ old
R

—2—n 2—n

< Vo llp@(@7m) + 2m+1 . pmn+1) gy (-n) f £m [V (2nt)|de

2—n

= VIl @@ + 27+ (277 f £m |V (£)]dt < conste(2-7).
1
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Summarizing the above estimates, we obtain

If = f * Qulle < const w27 f 4, (w)
As in the proof of Theorem 2.1, we have

If = F o Vallio = If = f % Qnoy — (f = f % Qua) * Wl 1o
<Nf = f* Quoallie + N = f % Quey) * Vallo < cONSt|f — f @l
< const w27l 4, m(w)-

Corollary(5.2.7)[197]. Let mbe a positive integer. Then there exists a positive number c,,
such that for every w satisfying (46) and for every f € A, ,,(R), the following inequalities
hold:

If * Walle < crn@™IIflla,my 7 EZ
and

If * Wil < cnw@ ™I flla,my: € Z
As in the case m = 1, a similar result holds for the space 4, ,, of functions on the unitcircle,
which consists of continuous f functions such that

wr AT
Pl = S0 e < *
Again, identifying a function f in 4, ,,, with a 2r-periodic function on R, we can see that
If = f * Vallo < const w(27™)If |l a,,,e > 0.

We give a brief introduction in the theory of double operator integrals developed by
Birman and Solomyak in [9,10] and [218], see also their survey [219].
Let (X,E;) and (Y,E,) be spaces with spectral measures E;and E, on Hilbert spaces
HiandH,. Let us first define double operator integrals

] ] (2, y)E1 () QdE, (7). (48)
xXJY

for bounded measurable functions ® and operators Q: H, — H; of Hilbert-Schmidt class
S,.Consider the set function F whose values are orthogonal projections on the Hilbert
spaceS,(H,,H;) of Hilbert-Schmidt operators from H,toH;, which is defined on
measurable rectangles by

F(A; xA,)Q = E1(41)QE>(D1),  Q € 5,(35, Hy),
A;andA, being measurable subsets of X'and Y. Note that left multiplication by E; (A,) obvi-
ously commutes with right multiplication byE, (4,).
It was shown in [237] that Fextends to a spectral measure on X’ x Y . If @ is a bounded
measurable function on X' x Y, we define

fx fyfb(x,y)El(x)QdEz(y) :< f CDdF)Q.

XxY

Clearly,
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< [Pl =llQlls,.
S>

fx fy (x, y)E; () QdE, (y)

If the transformer
0~ | [ @@ 0aE0)
x/y

maps the trace class S;into itself, we say that @ is a Schur multiplier of §,associated with
the spectral measures E; and E,. In this case the transformer

0 ] ] O, Y)Ei()QAE (), Q € S,(HpHy),  (49)
xXJY

extends by duality to a bounded linear transformer on the space of bounded linear
operators fromH; to H, and we say that the function ¥ on X’ x Y defined by

P(x,y) = @(x,y)
is a Schur multiplier of the space of bounded linear operators associated with E,and E;. We
denote the space of such Schur multipliers by I (E,, E;).
To state a very important formula by Birman and Solomyak, we consider for a continuously
differential function f on R, the divided difference Df ,

N =L sy epwnEfw, wyer

Birman in Solomyak proved in [218] that if A is a self-adjoint operator (not necessarily
bounded),K is a bounded self-adjoint operator, and f is a continuously differentiable
function on Rsuch that ©f € M(E4;k, E4), then

FA+0 =@ = || @) dEuk WKAELD) (50)
RxR

and

If (A +K)— f(AIl < const||Df [l Kl
where||Df ||qz is the norm of Dfin M(E 4.k, E4).
A similar formula and similar results also hold for unitary operators, in which case we have
tointegrate the divided difference Dfof a function f on the unit circle with respect to the
spectral measures of the corresponding operator integrals.
It is easy to see that if a function ® on X %Y belongs to the projective tensor

productL®(E;) ® L*(E,) of L*(E,) and L®(E,) (i.e., ® admits a representation

() = ) oa(IPn ), (51)

n=0

where ¢,, € L”(E;), Y,, € L”(E;), and
D loallim il < o, (52)

n=0

then ® € M(E,, E,), i.e, @ is a Schur multiplier of the space of bounded linear operators.
Forsuch functions ® we have
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fx LCD(x,Y)El(x)QdEz(y) = Z (fxrpndE1> Q (Llp“dEZ)'

n=0
Note that if ® belongs to the projective tensor product L®(E;) ® L°(E,), its norm
inL®(E;) ® L= (E,) is, by definition, the infimum of the left-hand side of (52) over all
representations (51).
More generally, @ is a Schur multiplier if @ belongs to the integral projective tensor
productL®(E;) ®; L*(E,) of L®(E,) andL*(E,), i.e., ® admits a representation

o(x,y) = ] 9, )Py, w)do(w),

where(#2,0) is a o-finite measure space, @is a measurable function on X' x 02 , ¢ is a
measurable function on Y x £, and

[ 1 0l el 0y (@) < o
n

If ® € L°(E,) ®; L°(E,), then

f f O (x,y)E; (x)QdE, (y) = f ( f ox, w)dE1<x)>Q ( f v, w)dEz(y)> do(w).  (53)
a2\ 1

XY
w — (f o(x, w)dEl(x)> Q (f Y(y, w)dEz(y)>
d

Clearly, the function
X

is weakly measurable and

L ( l o(, w)dEl(x)> 0 ( J (. w)dE, (y))

It turns out that all Schur multipliers of the space of bounded linear operators can be

obtained in this way (see [199]).
In connection with the Birman-Solomyak formula, it is important to obtain sharp estimates
of divided differences in integral projective tensor products of L* spaces. It was shown in
[199]that if f is a trigonometric polynomial of degree d , then

IDf llccrygccry < const d||f],=.(54)
On the other hand, it was shown in [200] that if f is a bounded function on R whose
Fouriertransform is supported on [—o,0] (in other words, f is an entire function of
exponential type at most ¢ that is bounded on R), then ®f € L ®; L®and

IDf ll o0 < const |l f ] (zy-(55)
Note that inequalities (54) and (55) were proved in [199] and [200] under the assumption
that the Fourier transform of f is supported on Z, (orR,); however it is very easy to
deduce the general results from those partial cases.

do(w) < .
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Inequalities (54) and (55) led in [199] and [200] to the fact that functions in B and
Bl . (R)are operator Lipschitz.
It was observed in [200] that it follows from (50) and (55) that if f is an entire function of
exponential type at most ¢ that is bounded on R, and A and B are self-adjoint operators
withbounded A — B, then

lf(A) — f(B)Il < constal|f]l=lA— Bl
Actually, it turns out that the last inequality holds with constant equal to 1. This will be
proved in [220].
The approach by Birman and Solomyak to double operator integrals does not generalize to
the case of multiple operator integrals. However, formula (53) suggests an approach to
multiple operator integrals that is based on integral projective tensor products. This
approach was given in [221].
To simplify the notation, we consider here the case of triple operator integrals; the case of
arbitrary multiple operator integrals can be treated in the same way.
Let (X,E;), (Y,E,), and (Z, E3) be spaces with spectral measures E;, E, , and E; onHilbert
spaces H;, H,, and H;. Suppose that ® belongs to the integral projective tensor
productL®(E,) ®; L*(E,) ®; L*(E;), i.e., ® admits a representation

O(x,y,2) = ] (. )P, w)x(z, 0)do (@), (56)

0
where(£2,0) is a o -finite measure space, @is a measurable function on y x 2 , Y is a

measurable functionon Y % 2, y is a measurable functionon Z x 2, and

]”(p('vw)lle(El)lllp('vw)”L°°(F)”X('vw)lle(G)dO—(w) < .
0

Suppose now that T, is a bounded linear operator from H,to H; and T,is a bounded linear
operator from #;toH,,. For a function ® in L®(E;) ®; L°(E,) &; L*(E;) of the form (56),
we put

fff(D(x’y’Z)dE1(x)T1dE2(y)T2dE3(z)

XY z

o ( | <P(x,a))dE1(x)>T1 [ 6.0 a8, T2< | x(z,w)dEs(z)>da<w) (57)
Y

O \X Z

It was shown in [221] (see also [222] for a different proof) that the above definition does
not depend on the choice of a representation (56).
It is easy to see that the following inequality holds

< (|l ooz - T3 T

fff‘D(x,y,Z)dEl(x)TldEz(y)Tsz3(Z)

XY z
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In particular, the triple operator integral on the left-hand side of (57) can be defined if
dbelongs to the projective tensorproductl®(E;) ®; L°(E,) ®; L*(E;)i.e, ® admits a
representation

O(y.2) = ) oa(IPn i),

nz1

where ¢, € L*(E;), Y, € L*(E;).xn, € L”(E3) and
D 1onllim e lnllis ey 1 nllimgey < o

n=1
In a similar way one can define multiple operator integrals, see [221].
Recall that multiple operator integrals were considered earlier in [223] and [224].
However, in those papers the class of functions @ for which the left-hand side of (57) was
defined is much narrower than in the definition given above.
Multiple operator integrals are used in [221] in connection with the problem of evaluating
higher order operator derivatives. To obtain formulae for higher operator derivatives, one
has to integrate divided differences of higher orders (see [221]).
We are going to integrate divided differences of higher orders to estimate the norms of
higher order differences (35).
For a function f on the circle the divided differences D*of order k are defined inductivelyas
follows:
DfES
if k > 1, then in the case when 4,, 1,, ..., 4, aredistinct pointsin T,
)i Ay Ay & D, Ak M) = (D, Aemq Aegn)

)lk - )lk+1
(the definition does not depend on the order of the variables). Clearly,
Df = DIf;

If f e C*(T), then DXf extends by continuity to a function defined for all points
2-112-21 v vﬂ-k+1'
It can be shown that

n+1 k-1 n+1

@Az An) = ) FED | =17 | | =)
k=1 j=0 j=k+1

Similarly, one can define the divided difference of order k for functions on the real line. It
was shown in [221] that if f is a trigonometric polynomial of degree d, then

1D*fllcmye--@cery < const d“|Ifle. (58)
If fis an entire function of exponential type at most ¢ that is bounded on R, then
1D*f Il g, < cONSt d||f [l 0wy, (59)

In [225] Haagerup tensor products were used to define multiple operator integrals.
However, it is not clear whether this can lead to stronger results in perturbation theory.
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Let H'be a Hilbert space and let (X, B) be a measurable space. A map Efrom Bto the algebra
B(H) of all bounded operators on H'is called a semi-spectral measure if
E(A) =0, Ae B,

E(P) = 0and&(X) =1,

and for a sequence {A;};>; of disjoint sets in B,
E U A )= AIILrQO E(4;) in the weak operator topology.
j=1

If ¥is a Hilbert space, (X, B) is a measurable space, E: B — B(¥K) is a spectral measure, and
His a subspace of K, then it is easy to see that the map £: B — B(H) defined by

(@A) = PE(A)|H, A€ B, (60)
IS a semi-spectral measure. Here Pystands for the orthogonal projection onto H.
Naimark proved in [226] that all semi-spectral measures can be obtained in this way, i.e.,
asemi-spectral measure is always a compression of a spectral measure. A spectral measure
Esatisfying (60) is called a spectral dilation of the semi-spectral measure &.
A spectral dilation E of a semi-spectral measure £is called minimal if

K = clos span {E(A)7: A€ B}.

It was shown in [227] that if E is a minimal spectral dilation of a semi-spectral measure &,
then E and £are mutually absolutely continuous and all minimal spectral dilations of a
semi-spectral measure are isomorphic in the natural sense.
If ¢ is a bounded complex-valued measurable function onX and &:8 - B(H)is a
semispectral measure, then the integral

] p(x)dE(x) (61)
X
can be defined as
| o@ae) = P | [ o0aEe) ||, (62)
X X

whereE is a spectral dilation of €. It is easy to see that the right-hand side of (62) does not
depend on the choice of a spectral dilation. The integral (61) can also be computed as the
limit of sums

D PEDD), x4 € A,
over all finite measurable partitions {A,}, of X .
If T is a contraction on a Hilbert space H, then by the Sz.-Nagy dilation theorem (see
[228]),T has a unitary dilation, i.e., there exist a Hilbert space K'such that # c K and a
unitary operatorU on K'such that
T = P, U™|H, n > 0,(63)
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whereP;is the orthogonal projection onto H. Let E; be the spectral measure of U .

Consider the operator set function £defined on the Borel subsets of the unit circle T by
E(A) = P E,(A)|H, AcT.

Then Eis a semi-spectral measure. It follows immediately from (63) that

Tn = ] {MAEQ) = Pye ] ES@IH, n=0 (64)

T T
Such a semi-spectral measure Eis called a semi-spectral measure of T . Note that it is not

unique. To have uniqueness, we can consider a minimal unitary dilation U of T , which is
unique up to an isomorphism (see [228]).
It follows easily from (64) that

£(T) = Py ] FQESQ)I7
T

for an arbitrary function @in the disk-algebra C, .

In [129] and [230] double operator integrals and multiple operator integrals with respect
to semi- spectral measures were introduced.

Suppose that (X, B,) and (Y, B,) are measurable spaces, and £;: 8, » B(H,) and &,: 8, -
B(HH,) are semi-spectral measures. Then double operator integrals

|| oGdeedso)

xXxY
were defined in [230] in the case when Q € S, and @ is a bounded measurable function.
Doubleoperator integrals were also defined in [230] in the case when Q is a bounded linear
operator and® belongs to the integral projective tensor product of the spaces L*(&;) and
L™ (&,).
In particular, the following analog of the Birman-Solomyak formula holds:

R - £ = [[ @G DR ~ e 0) (69)
TxT

Here T and R contractions on Hilbert space, £rand &, are their semi-spectral measures, and
fis an analytic function in Dof class (BL,).,
Similarly, multiple operator integrals with respect to semi-spectral measures were
definedin [230] for functions that belong to the integral projective tensor product of the
correspondingL® spaces.
We also mention here [231], in which another approach is used to study perturbations of
functions of contractions.
We show that Holder functions on R of order a, 0 <a < 1, must also be operator Holder of
order a. We also obtain similar results for all Hoélder-Zygmund classesA,(R),0 < a < oo.
For simplicity, we give complete proofs in the case of bounded self-adjoint operatorsand
explain without details that similar inequalities also hold for unbounded self-adjoint
operators. We are going to give a detailed treatment of the case of unbounded operators in
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[220]. In the case of first order differences, the corresponding estimates for unbounded
operators also follow from Theorem (5.2.37).
If A and B are self-adjoint operators, we say that the operator A — B is bounded if B = A +
K for some bounded self-adjoint operator K. In particular, this implies that the domains of
A and B coincide. We say that ||A — B|| = o if there is no such a bounded operator K
thatB=A+K.
Theorem(5.2.8)[197].Let 0 < a < 1. Then there is a constant ¢ > 0 such that for every f €
A,(R) and for arbitrary self-adjoint operators A and B on Hilbert space the following
inequality holds:

I (A) = FB < clifllagwy - 11 A — BII*.
Proof. If A and B are bounded operators, it follows from Theorem 2.2 that we may assume
that f € L”(R) and we have to obtain an estimate for ||f(4) — f(B)|| that does not
dependon ||f | .
Put

fo=f*xWy+ f W]

Let us show that

HORNOEWAOEIAC) (66)

n=-—oo
and the series on the right converges absolutely in the operator norm.
For N € Z, we put
gn = f*Vy
Clearly,
F=feVy+ ) fu
n>N

and the series on the right converges absolutely in the L* norm. Thus

FA) = (F V)@ + ) fud)and f(B) = (f < Vy)(B) + ) fu(B)

n>N n>N
and the series converge absolutely in the operator norm. We have

FA = F(B) = ) (uld) = fu(B)) = (f(A) - fn(A)> - (f(B) - fn(3)>

n>N n>N n>N
= gn(4) — gn(B).
Since gy € L®(R) and g, is an entire function of exponential type at most 2V*1 | it follows
from (50) and (55) that
llgn(4) — gy (B)I < const2"||f = Vy ||~ ]|A — B|
< const2"||f|l~]|lA = B|| - 0

as N - —oo. This proves (66).
Let now N be the integer such that

2N <||A-B| 27N+, (67)
We have
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F = FB) = ) () = LuBN + ) (hi(W) = /u(B))

ns<N n>N

It follows from Corollary(5.2.5) and from (67) that

D G = LG + D 1A = KB < const ) 2" Iflly=l14 - B

n<N n<N ns<nN

< const Z 2" 27" || fll auqmy 14 = Bl < const2V*=D||fll 4wy llA — BIl
n<N
< Iflla,mllA — BII*.
On the other hand,

D ()~ fu(BY

n>N

£ WA+ B <2 Y l1flles < const 274 4,z

n>N n>N nsN
< const 27| fll 4, wy < cONstlfll 4, w14 — BII

by(67). This completes the proof in the case of bounded self-adjoint operators.
In the case of unbounded self-adjoint operators the same reasoning holds if by f(4) —
f(B)we understand the series

> (@) — f,(BY.

nez
which converges absolutely.

Note that. (i) The proof of Theorem(5.2.8) allows us to obtain the following estimate
Il F(A) — FB)Il < const(L =) HIflla,mllA — BII*, 0<a<L1.
We do not know whether this estimate can be improved.
(i)Birman, Koplienko, and Solomyak obtained in [232] the following result: ifA and B are
positive self-adjoint operators and O < a < 1, then
|A* — BY|| < ||A — BI|*.
It follows from Theorem(5.2.8) that under the same assumptions
[|A* — B¥|| < const ||A — B||*.
Indeed, it suffices to apply Theorem(5.2.8) to the operators A,B and the function f €
A (R)defined by f(t) = |t]%t € R.
We state the result for arbitrary Holder-Zygmund classesA, (R).
Lemma (5.2.9)[197]. Let m be a positive integer and let f be a bounded function of class
BZ, (R). If Aand K are self-adjoint operators on Hilbert space, then

m

> om (F) fa i)

j=0

=m! ] ] (Df )y, oo X 1)AEA(x))KAE 4 g (x2)K -+ KAEp 4 (X 1)

~——————
m+1

Proof. In the case m = 2 we have to establish the following formula for € BZ ; (R):
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FA+K) = 2f(4) + f(A—K) =2 f f (D2£) (x. y, 2)dEps g (O)KAE, (¥)KdEy_x (2).

PUtT = f(A + K) — 2f(4) + f(4 — K). By (50),
T=f(A+K)—f(4) - (F(A) - f(4—K))

= f f (D), Y)dEq i () KAEA(y) — f f (DF)(x, Y)dEx (X)KdEs ¢ ()
- f f (DF) e, y)dE s (O)KAE, (7) — f f (DF) G, y)dE s x C)KAEs_ (7)

+ f f (DF) . y)dE s x COKAE,_ () — f f (DF) (e, y)dE, OKAE, (7).

We have

| @) G OKAED) - [[ @ 3Bk KB )
= || @ @Bk KAL) = ([ ©F) (6, AE s KBy ()
= ||| @NG B KB G) B ()
- ||| @G DB KA YE, (o)
= [[| 0 - @120y, B IR B ) )

- f f (D2£) (x v, 2)dE s x (OVKAE, (y)KdEy_ (2).

Similarly,

f f (OF) (. Y)dEgsx (X)KdE,_c(v) — f f (F) (x, Y)dEs (K dEy_c ()

= ||| @ N6y, DB KA GIKAE, ()
Thus
T=2 fff(bzf)(xyyyZ)dEA+K(x)KdEA(Y)KdEA—K(Z)-
Theorem(5.2.10)[197]. Let0 < a <m and let f € A,(R). Then there exists a constantc > 0

such that for every self-adjoint operators A and K on Hilbert space the following inequality
holds:

< Ifllagemy 1K 11%

% _./m .
> o (F) fea+
j=0

We need the following lemma.

Proof .By Theorem (5.2.2), We may assume that f is a bounded function.

We are going to use the same notation f,, and gy as in the proof of Theorem(5.2.8). In the
case when A and K are bounded self-adjoint operators we show that

FAU+K) = 2f(A) + fA=K) = D (fuld+K) = 2,(A) + fo(4 = K)), (68)

n=—oo
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and the series converges absolutely in the operator norm. As in the proof of
Theorem(5.2.8), we can easily see that
FA+K) = (FxV)@A+K)+ ) f(A+K),

n>N

FA) = (f = Vy)(4) + Z £.(A),

n>N
and

FA-K) = (FxV)A-K)+ ) f(A=K),
n>N
and the series converge absolutely in the operator norm. It follows that

FA+K) =2 () + F(A=K) = D (fuld+K) = 2£,(4) + fu(4 - )

n>N

- (f(A =) fila+ K)) -2 (f(A) - fn(A)> + (f(A —0- ) fila- K))

n>N n>N n>N
= gn(A+K) —2gy(4) + gy(A - K).
Sincegy € L*(R) and gyis an entire function of exponential type at most 2¥*1 | it follows
from Lemma (5.2.9)and from (59) that
lgn (4 + K) — 2g5(4) + gy(A — K)|| < const2?V || gyl = [|K]| < const2?V || £ || || K |
- 0asN - —oo,

This implies that the series on the right-hand side of (68) converges absolutely in the
operator norm.
As in the proof of Theorem(5.2.8), we consider the integer N satisfying

27N <|IK|| < 27"+, (69)
Put now

Ty 3 (fulA+K) = 2£,(A) + £ (A - )

ns<N

and
To 2 ) (fuld+ K) = 2£,(4) + fu(4 = D).

n>N

It follows now from Corollary (5.2.7), Lemma (5.2.9), from (69), and (59) that
ITall < ) (A +K) = 26,8) + £, (A= K

n<N

=2y | [[[ @)y Dam . cCIKaE, OB, o)

n<N

< const ) 27||f, | . IKI? < const " 2@ 1l ey K11

n<N n<N

< const 2O K|12|I £l 4,y < const £ 1], oy 1K 11
On the other hand, by (69),
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ITall < D A+ K) = 2/,(A) + fu(d= KD < 4 ) lfulli < const D 27 fll,ay

n>N n>N n>N
< const 27V f|l , ) < const|K]|*.

As in the case a < 1, for unbounded self-adjoint operators we understand by f(4 + K) —
2f(A) + f(A — K) the sum of the following series
D (hla+K) = 2£,() + £,(4 - ),

nez
which converges absolutely. We refer to [220] where the case of unbounded self-adjoint

operators will be considered in more detail.
Corollary (5.2.11)[197]. There exists a constant ¢ > 0 such that for an arbitrary function f
in the Zygmund class A;(R) and arbitrary self-adjoint operators A and K , the following
inequality holds:

If(A+K)—2f(A) + f(A— K < cllflla,mIKII
Note that. We can interpret Theorem(5.2.9) in the following way. Consider the measure v
on Rdefined by

AT, = Z( ()6,
where fora € R, §, is the unit point mass at a. Then
Z( ! () fa+ K = ] F(A— tK)dv(D)
Clearly, v determines a continuous linear functlonal on 1,(R) defined by
fe [ roav
R

In other words, v € B{*. We are going to generalize Theorem(5.2.9) to the case of an
arbitrary distribution inB7*(R).
For simplicity, we consider here the case of bounded self-adjoint operators A. In [220] we
will consider the case of an arbitrary (not necessarily bounded) self-adjoint operator A.
It follows from Theorem(5.2.9) that for arbitrary vectors u and v in our Hilbert space Hand
for an arbitrary function f in4,(R), the function

t— fu () € (f(A —tK)u,v)
belongs to A, (R). Identifying the space A,(R) with the dual space to BT, wecan consider
for every distribution g in B{*(R) the value (f,%,g)of f,¥ € (BT*(R))* at g.We define

now the operator QAK. A (R) — B(H) by

((QAKf)u v) (fax:9) f € A,(R), u,veEH.
Theorem (5.2.12)[197]. Let « > 0. Then there exists ¢ > 0 such that for every self-adjoint
operators Aand , for every f € A,(R), and forevery g € BT“,

1991l < cllf llaumllgll sz 1K (70)
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Proof. Let m be the smallest integer greater than a. By Theorem(5.2.9), inequality (70)
holds for= AT*6, . Hence, the result also holds for g = A}'6, for arbitrary h,a € R.

To complete the proof, it suffices to use the following fact (see [1, Theorem 3.1]): ifg €
B7%(R), then g admits a representation in the form of a norm convergent series

j=1

Zlﬂl ||Ah} aj

jz1
We also obtain an estimate for ||f(U) — f(V)|| for a function f in the Zygmund classA;and
unitary operators Uand .
Theorem (5.2.13)[197]. Let O < a < 1. Then there is a constant ¢ >0 such that for
every f € A, and for arbitrary unitary operators U and V on Hilbert space the following
inequality holds:

such that

. < const|| gl p-a(ry-

If ) = FDI < cllflia U= VII*
Proof.Let € A, . We have
=P f+P f=fi+f.
We estimate ||f.(U) — £ (V)| . The norm of f_(U) — f_(V) can be obtained in the same
way. Thus we assume that f = f,. Let
@ F W
Then

Clearly, we may assume that U # V. Let N be the nonnegative integer such that
2N <||lU-V| < 27N, (72)
We have

FO = £ = Y (KW = 1)+ Y (W) = £ 1))

n<N n>N
By the Birman-Solomyak formula for unitary operators and by (54),

> (@ - W) < Y 1L - £

nsN n>N

< const Yoy 2MIU = VI - lIfallo < constllU — V| Xpsny 27 27| f ] 4,
< const||U = V|2V =D ||, < const||U = VII¥|If |l 4,
the last inequality being a consequence of (72).

On the other hand,
< Z 2|If, |l < const Z 27 |If Nl 4

n>N n>N
< const2™"||f |, < constl|U = VII*|Ifll4,

> () = /)

n>N
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To obtain an analog of Theorem(5.2.9) for unitary operator, we are going to represent a

finite difference
N
. (N—-1
> (Y1) rw)
j=1

for unitary operators Uy, .. ., Uy as alinear combination of multiple operator integrals.
Note that algebraic formulae in the case of unitary operators are more complicated than
inthe case of self-adjoint operators. That is why we consider the case of unitary operators in
more detail.
We first illustrate the idea in the special case N = 3.
Let us show that for unitary operators U,, U,and U and for € BZ | ,

f(Uy) = 2f(U;) + f(Us)

=2 f f f (©*F) (¢, 7.v)dE, Q) Uy — Up)dE, () (U, — Us)dE; (v)
+ f f (DA D)dE @)Uy — 2U, + U)dE; (), (73)
whereE; is the spectral measureof U; ,1 < j < 3.

Indeed, let T = f(U;) — 2f(U,) + f(U3). Then
T = f(U;) = f(U) = (f(U,) — £(U3))

= [| @G, - v)aE@ - [[ @G DaEEQW, - 1)aE @

= [| @nG.DaE W, - 1)dE® - [[ @G DeEQW, - U)aE @)

+ [[ @n@ 0eE @O, - 1)dE® - | @NE VW, - 1)k @
+ [[ @n 6 B O, - 1B @ - [| @NEDEEW, - s @)

We have

[| @@ 0aE @@, - 1)iEw - [| @NEDEE W, - U8 @
= [| @NG. DB W, - 1)aE@ - [[ @NE VEE@W - U)dE @)
= ||| @n €.0aE @)W, - 1) @) - (|| @) GVAEE W, - U,)E©dE )
= [[| @ - @0 € e @O, - v)dE )
= ||| @9 G2 0B W, - 1B, - Us)dEW.

Similarly,

f f (D)@, D)dE, Q) (U, — Us)dEs () — f f (DF) (G, DE, Q) (U, — Us)dEs (7)

= f f (©%F) (,7,v)dE; Q) (Uy — Up)dEy (2)(Us — Us)dE; (v).
Finally,
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f f (), DE @)U, — Up)dEs(c) — f f (DF) (G D)E, () (U, — Us)dEs(7)
= || @nG. DB W, - 20, + U;)aE .

Consider now the general case. Suppose that U = {U;}} is a finite family of unitary

operators.
Denote by E; the spectral measure of U;. For 1 < j <k < N, we put

k—j
1G.) =Y 0 (/) U (74)
s=0
Note that
TG,k)-T(G+1,k+1)=T(G,k+1),1<j<k<N-1 (75)

We would like to mention that formula (75) is purely algebraic and it is valid for arbitrary
operators U; in (74).

Let / be a nonempty subset of{1,2,...,N}. We denote by d =d; the number of
elementsof J. Suppose that J = {j,/,...,j4}, Wherej; <j, <--- < j,.For f € B4;' , we put

d
N [ [ @G B[ [7Goi) 8,6
hd_/ s=2

Though, we need the case,d; = 2, but we still can assume that d; = 1, in which case we put

T, f) o ] F@Q)dEQ), where J = i}

We denote by 2the collection of all finite subsets of the set of positive integers and by
A the collection of all subsets J € A such that the maximal element of ] is N.

If/,,], € A, we say that J;is an ancestor of J,if J,can be partitioned in nonempty subsets/,
and J;'such that maxj, <maxJ; and J;=J,U(; —1) (by A—1 we mean the left
translateof a subset A of Z by 1). Each such partition is called an evidence of the fact that
J1is an ancestor of J,. We denote by #(J;,/,) the number of such evidences and we put
#(J1.J2) = 0 if J;is notan ancestor of/,. Note that the property of being an ancestor is not
transitive.

If #(J1.J2) = 1, then maxJ, =1+ max/; and 0 <d;, —d; <1 Itis also easy to see that
ifd, —d,, , then#(J;,/;) =0=1

Let us construct now the family x; of integers by induction. Putx;; = 1. Suppose that
thenumbers x;are defined for J € Ay_;. Let] € Ay . Put

Clearly,x, is a positive integer for every | € Ay. We leave for the reader the verification of
the fact that for {j;,j,,...,jq4} € ¥,
_ Ga— !
Hg=2 T(js - js—1)!l
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Theorem (5.2.14)[197]. Let Nbe a positive integer and let U = {U]-}’l"be unitary operators on
Hilbertspace. Suppose that f is a function in the Besov space BY ;. Then

i(—l)f-l(’j Ty =Yy,
j=0

IEAy
We need one more lemma. To state it, we introduce some more notations. For J € 2, we
denoteby £(J) the collection of nonempty proper subsets of J such that

max A < min(J\A4).
For A € £(J), we put

A7 € \AandA; € A7 U {max A}

If ] is specified, we write A° and A° instead of Ayand ;.
Proof. We argue by induction on N. For N = 1, we have

FUy) = ] F@GAEQY.

Suppose that the result holds for N — 1 unitary operators. Put U~ & {U;,,}"-}' . We have

Son (= T gnan
j=1

JeUN_1

and
N_

i(—l)f*(?_f)f(tf,-ﬂ): D YW H= ) H T,

j=1 JEUAN_1 JEUAN_1

It follows now from Lemma (5.2.15) and from (75) with f(U;) in place of U;that

i(—l)f-l (ZD)rwp= D) my(@wn-gawn)
j=1

JeUN_1

= Z xj Z Taoae+y (U, ) + Z v+ (W ) + oy (W, f) ).

JEUN -1 A€L()) A€L())

It remains to observe that a set J in UAy_; is an ancestor of a set Jyin Ayif and only if J, =
AU (A°+ 1) forsome A € &(J) or], = AU (A" + 1) forsome A € £(J) or], =] U {N}.
Lemma (5.2.15)[197]. Let € Ay _; . Then

TC]('U,f) - z]+1(‘uaf) = Z zAU(A°+1) (‘u,f) + Z zAU(A'+1)(‘uaf) + %U{N}(U,f).
AEL()) A€L())

Proof. The above identity can be verified straightforwardly if we observe that the multiple
operator integral

f f D)Ly, ..., {g)AF(3y) ﬁ Qs—1 dF5 ()
—a =

is a multilinear function in the operators Q and use the following easily verifiable identity:
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ff(bf)((l’(z)dE1((1)(U1 — U,)dE,(3y) = ff(() dE;({) — ff(() dE,(J).

Theorem (5.2.16)[197']. Let m be a positive integer and 0 < @ < m. Then there exists a
constant ¢ > Osuch that for every f € A, and for an arbitrary unitary operator U and an
arbitrary boundedself-adjoint operator A on Hilbert space, the following inequality holds:

2 V() e
k=0

Proof. For simplicity we give a proof for m = 2. The general case can be treated in the same
way. We have to show that for 0 < a < 2, there is a constant ¢ > 0 such that for every f €
Agand for arbitrary unitary operators U and V on Hilbert space the following inequality
holds:

< cliflla 1Al

If(vU) —2f () + fFV* DIl < cllf lla, Il = VII*

As in the proof of Theorem (5.2.13), we assume that f = f, and consider the expansion

F=>fu

n=0

Let N be the nonnegative integer such that
27N < ||I = V| < 27¥*1,(76)
We have
fU) = 2f(@) + f(Vv*U)

= (V) - 2£W) + LD + Y (V0 = 2£,W) + (V).

ns<N n>N

LetT,, = £,,(VU) — 2f,(U) + f,(V*U). It follows from (73) that
T, =2 f f (©2£,) (¢, 7, V) dEvy (O)(V — DUAEy (2) (I = V*)UdEy-y @)

+ || @) € DB O - 21+ VYUdEyy (@)
By (58), we have
|[]] @ @ 2¥ab @ - DU, @G - vIvas., @)
< const 22™|1 — V|21 fu | 1o

On the other hand, by (54),

H f (DF) (€ 1) dEyy () (V = 21 + V) UdEyey (7)
< const 27[[1 = VIl fulls

< const 27|V — 21 + V*|||If;, |l yeo

Thus
> (RO - 2£,W) + £, V)| < constllr = VI2 Y 227 [yl
nsN nsN
< constlll — VI* »" 2727 [, < constllf = VIP2YE- ],
nsN
< const||fll 4 III = VI|*
by(76).
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To complete the proof, we observe that

. () -2£W) + O V)| < D ROV =260 + LOD)| < ) 4llfillis

n>N n>N n>N

< constllfll,, ) 27 < constlfll, 2 < constlll = V|

n>N

by(76).

The following result gives an estimate for ||f(U)— f(V)|| for functions f in the
ZygmundclassA;.

Theorem (5.2.17)[197]. There exists a constant ¢ > 0 such that for every function f € A,
and for arbitrary unitary operators U and VV on Hilbert space the following inequality holds:

1
£ (U) = FDI < cliflla, (2 1092 17— vu)

Proof. Again, as in the proof of Theorem (5.2.13), we assume that f = f, and N is the
nonnegative integer satisfying (72). Using the notation introduced in the proof of Theorem
(5.2.13), we obtain

> (50 - )

ns<N

U -Vl

< Z I () = £ (N < constz 2m U = VI Nfyllo

ns<N ns<N

1
< const(1+ M)l IU = VIl < constilflL, (2 + l0gs =) IV = V1l

On the other hand,

> () - 1))

n>N

< Z 2 |Ifll = < const Z 27 Ifll 4, < const27V||f ]l 4,

n>N n>N

< const 27| £ 41U = V.
In a similar way we can obtain an estimate for differences of order n and functions in A, for
an arbitrary positive integer n.
Let us obtain now an analog of Theorem (5.2.12) for unitary operators. Let U be a unitary
operator and let A be a bounded self-adjoint operator on a Hilbert space H. Suppose
that f € A,. By Theorem (5.2.16), for every u, v € H, the function
o fE@) = (F(e™AU)u, v)
onR belongs to the space 4,(R). Thus for every g € BT%(R), we can define the operator
Ry 4 Aq = B(3{) such that
((RE 4P v) = (1%, 9)
(here we identify the dual space (B;*(R))* with 4,(R)).

Theorem (5.2.18)[197]. Let a > 0. Then there exists ¢ > 0 such that for arbitrary unitary
operator U and a boundary self-adjoint operator A, and for every g € B;“(R),

1RG4l < cllgllpzeayllAll
Proof. Clearly,
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(R4 e, 0)| < constll 2], o gllazacey < constllull - 1wl - £ 1L, lgllazee A1

Recall that if Tis a contraction on Hilbert space, it follows from von Neumann’s inequality
that the polynomial functional calculus f + f(T) extends to the disk-algebra C,
andllf (I < lIfllc, . f € Ca-
Theorem (5.2.19)[197]. Let O <a < 1. Then there is a constant ¢ >0 such that for
every f € (A,)+ and for arbitrary contractions T and R on Hilbert space the following
inequality holds:

I (T) — fFRI < cliflia IT — RII.
Proof. The proof of Theorem (5.2.19) is almost the same as the proof of Theorem (5.2.13).
For f € (A,),, we use expansion (71) and choose N such that

27N < |IT — R|| < 27N+,

Then as in the proof of Theorem (5.2.13), for < N , we estimate ||f,,(T) — f,(R)|| in terms
of const 27™||T — R|| (see (65) and (54)), while for n> N we use von Neumann’s
inequality to estimate ||f,,(T) — f,(R)|| in terms of 2||f,|[.~ . The rest of the proof is the
same.
Corollary (5.2.20)[197]. Let f be a function in the disk algebra and 0 < a < 1. Then the
following two statements are equivalent:
@) IIf(T) = f(R)|| < const||T — R||*for all contractions T and R,
(i) [If(U) = f(M)]| < const||U — V||*for all unitary operators U and V.
Remark. This corollary is also true for « = 1. This was proved by Kissin and Shulman [231].
The following result is an analog of Theorem (5.2.16) for contractions.
Theorem (5.2.21)[197]. Let m be a positive integer and 0 < o« < m. Then there exists a
constant ¢ > 0 such that for every f € (4,), and for arbitrary contractions T and R on
Hilbert space the followinginequality holds:

- k

—1yk (™ +—R—T>
kE_O( (o) F(T+— R =)
To prove Theorem (5.2.21), we use the following analog of Lemma 4.3.

Lemma (5.2.22)[197]. Let m be a positive integer and let f be a function of class (Bl,),. If
T and R arecontractions on Hilbert space, then

i(—l)k () F(r+2r—)
k=0

|
= %] ] (Dmf)(fp v€m+1)d81(€1)(R - T) (R - T)d8m+1(5m+1)

m+1

where&is a semi-spectral measure of T + %(R -T).

Theorem (5.2.23)[197]. There exists a constant ¢ > 0 such that for every function f € (4,).,
and for arbitrary contractions Tand R on Hilbert space the following inequality holds:

< cllflla IT = R
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1
LF(T) = QRN < el (2 + 10g2 =g ) IT = R

We consider the problem of estimating ||f(4) — f(B)|| for self-adjoint operators A and B
and functions f in the space 4,, where w is an arbitrary modulus of continuity. We give
complete proofs for bounded self-adjoint operators. The same estimates also hold for
unbounded self-adjoint operators. This will follow from Theorem (5.2.37). We also obtain
similar results for unitary operators and for contractions.
We have mentioned in the introduction that a Lipschitz function does not have to be
operator Lipschitz and a continuously differentiable function does not have to be operator
differentiable. On the other hand, we have proved that a HOlder function of order a« € (0,1)
must beoperator Holder of order a as well as a Zygmund function must be operator
Zygmund. Moreover, the same is true for all classes A, with @ > 0. This suggests an idea
that the situation is similar with continuity properties of the Hilbert transform.We consider
the problem forwhich moduli of continuity w the fact that f € A,, implies that f belongs to
the “operator spaceAd,,”, i.e.,

If(A) — f(B)Il < const w(||A — BI)).
We are going to compare this property with the fact that the Hilbert transform acts on4,,.
Given a modulus of continuity w, we define the function w, by

w,(x) =x foo (ot(zt) dt, x> 0.

X

Theorem (5.2.24)[197]. There exists a constant ¢ > 0 such that for every modulus of
continuity w, every f € A,(R) and for arbitrary self-adjoint operators Aand B, the
following inequalityholds

£ (A) = FBI < clif lla, wyw-(IlA = BID).
Proof. Since A and B are bounded operators and their spectra are contained in [a, b], we can
replace a function f € A, (R) with the bounded function f, defined by

f(), x>b,
fix) ={f(x), x €[a,b],(77)
f(a), x <a.

Clearly, ||lfslla, ) < lfla,(r) - Thus we may assume that f is bounded.
Let N be an integer. We claim that

f4)—-f(B) = Z (H,() = £,(B) + ((f = fF = Vi)(A) — (f = f = Vy)(B))(78)

n=-—oo

andthe series converges absolutely in the operator norm. Here
fo=f*W,+ f«W¥# Supposethat M < N . Indeed, it is
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FO-FB = Y (h = LB+ ((f = F V)@ = (f = f xVy)(B))
= (f * Vu)(A) — (f = V) (B).
Clearly, f = Vyy is an entire function of exponential type at most2”*1, Thus it follows from

(55)that
I(f * Vi) (A) = (f * Vi Y(B)II < const2¥||f || ||A — B]| > 0 as M — —oo.
Suppose now that N is the integer satisfying (67). It follows from (2.2.4) that

N(f = f*V)A) = (f = fF+ VB < 2MIf = f * Vyll o

< const||fll4, mw(2™N)
< const||f |l 4, wyw(llA — BIl).
On the other hand, it follows from Corollary(5.2.5) and from (55) that

D A~ fuB)l < const > 2" lIfll=ll4 = Bl < const ) 2% ™) I lla, wll4 — Bl

n=-—oo n=-—oo n=-—oco

N
= constz 2Nk gy (27N*KY (Il 1. ollA — Bl

k=0

* w()
< const (f dt) Iflla,wllA = BIl < const2Vw,(27)If Il 4,,my 14 — Bl
2

N t2
< const||fll 4, my@. (14 = Bl).
The result follows now from the obvious inequality w(x) < w.(x),x > 0.
Obviously, if w,(x) < oo for some x > 0, then w,(x) < oo for every x > 0. It follows easily
from I'Hopital’s rule that in this case
!Ci_ry) w,(x) =0.

Moreover, in this case w,is also a modulus of continuity. Indeed, it is easy to see that
“w(sx)

w,(x) :]1 2 ds

which implies that
o(x+y)<w.()+wly), xy=0
and
w,(x) <w,(y), 0<x<y.
Note that if the modulus of continuity w is bounded, then obviously, w,(x) < oo for
every x > 0. In the case when A and B are bounded self-adjoint operators and their
spectra are contained in [a, b], we can replace f with the function f, defined by (77)
redefine the function w on [b — a, ) by putting w(x) = w(b — a). Clearly, the modified
modulus of continuity is bounded.
Corollary (5.2.25)[197]. Let w be a modulus of continuity such that
w,(x) <constw(x), x>0.
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Then for an arbitrary function f € A,(R) and for arbitrary self-adjoint operators A and B
onHilbert space the following inequality holds:

£ (A) = f(B)Il < constlif |, w) w(llA = BID). (79)
In the next result we do not pretend for maximal generality.
Corollary (5.2.26)[197]. Let w be a modulus of continuity such that w(2x) < xw(x) for
some x < 2andall x > 0. Then w,(x) < const w(x) and

I (4) — F(B)Il < const||fl4, &) @(lA—BIl)

for arbitrary self-adjoint operators A and B .
Proof. It is easy to see that

w(t) <x (g)logzx w(x),

whenever 0 < x < t.Thus

w(t)

[ee] [ee]
x
w,(x) =x —dt < xxl7l082% ) (x ] tlogzx—2gr < — — (h(x
(x) ]x 3 ()x 1= log, » (x)

In [233] it was proved that if A and B are self-adjoint operators on Hilbert space whose
spectra are contained in [a, b] and f is a continuous function on [a, b], then

2

17a) = FB)I < 4 (1og (7 —5m) + 1) (14 - BI).
where

w;(8) = supf{lf(x) — fO:x,y € [a,b], |x — y| < &}.
The following corollary improves the result of Farforovskaya and Nikolskaya.
Corollary (5.2.27)[197]. Supposethat A and B be self-adjoint operators with spectra in an
interval [a, b]. Then for a continuous function f on [a, b] the following inequality holds:

a
I1£(4) = £(B)I < const log (e =) @y (14 — BID.

Proof. Put w = wf . Clearly, we may assume that w(x) = w(b —a) forx > a. Using the
obviousinequality

o) 20 o
t x

we obtain

e b-a b-a .
w.(x) = xf wt(zt) dt = xf wt(zt) t+ f wlt )dt < 2w(x)f a, w(b @)
x b—-a

X b—a

—ad + 2w(x) =< 2w(x)log <e b ; a).

The result follows now from Theorem (5.2.24).
Corollary (5.2.28)[197]. Let fbe a Lipschitz function on R. Then for self-adjoint operators A
and B with spectrain an interval [a, b], the following inequality holds

I (4) = F(B)I < const If lu log e

b
< 2w(x) log

eri—pr) A= Bl (€0)
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Note that a similar estimate can be obtained for bounded functions f in the Zygmund
classA; (R).
Inequality (80) improves the estimate

14 = FB)I < const Il (log e

obtained in [198] (see also [298]).

We state analogs of Theorem (5.2.24) for unitary operators and for contractions.

Theorem (5.2.29)[197]. There exists a constant ¢ > 0 such that for every modulus of
continuity w, for every f € A, , and for arbitrary unitary operators Uand , the following
inequality holds

2

1)+1) lla-BI

—+
14 - Bl

I (U) = FDI < cllfll 4, (T = VD).
Theorem (5.2.30)[197]. There exists a constant ¢ > 0 such that for every modulus of
continuity w, for every f € (4,),, and for arbitrary contractions T and R, the following
inequality holds

If(T) = FRI < cllflla, w.(IT = RID.
The proofs of Theorems (5.2.29)and (5.2.30) are similar to the proof of Theorem (5.2.24).
Actually, they are even simpler, since we do not have to deal with convolutions with W, and
W,¥# with negativen which makes analogs of formula (78) trivial.
We introduce notions of operator continuous functions and uniformly operator continuous
functions. We also define for a given continuous function on R the operator modulus of
continuity associated with the function. We prove that a function is operator continuous if
and only if it is uniformly operator continuous.
Definition1(5.2.31)[197]. For a continuous function f on R, we consider the map

A— f(4) (81)

defined on the set of (not necessarily bounded) self-adjoint operators. We say that f is
operator continuous if the map (81) is continuous at every (bounded or unbounded) self-
adjoint operator A.
This means that if A is a (not necessarily bounded) self-adjoint operator, then for an
arbitrarye > 0 there exists § > 0 such that|| f(A + K) — f(A)|| < &, whenever K is a self-
adjoint operatorwhose norm is less than §.
It is easy to see that if f is a continuous function on R, then the map (81) is continuous at
every bounded self-adjoint operator A. Indeed, this is obvious for polynomials f. The result
for arbitrary continuous functions follows from the Weierstrass theorem.
Definition2 (5.2.32)[197]. Let f be a Borel function on R. It is called uniformly operator
continuous if for every ¢ > 0 there exists § > 0 such that||f(4) — f(B)|| < &, whenever A
and B are bounded self-adjoint operators such that||4A — B|| < 6.
Theorem (5.2.33)[197]. Let f be a bounded uniformly continuous function on R. Then f is
uniformly operator continuous.
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Proof. Let = w, . Then w is a bounded modulus of continuity, and so w,(x) < o, x > 0. The
result follows now from Theorem (5.2.24)and the remark following that theorem.
Definition (5.2.34)[197]. Let f be a continuous function on R. Put

2:(6) € supllf(4) - f(BI, 6>0,
where the supremum is taken over all bounded self-adjoint operators A and B such
that||A — B|| < 6. We say that (2is the operator modulus of continuity of f .
It suffices to consider only operators A and B that are unitary equivalent to each other.
Indeed, if A and B are self-adjoint operators on a Hilbert space H, we can define on
thespace H @ H the self-adjoint operators Aand B by

4=(5 pner=(g 4

Obviously,

l4 —Bll = 1A — Blland||f (A) — F(B)II = 11 (4) — FB)II -
We have by Theorem (5.2.24),

wr(6) < 02,(8) < const(wy).(6), §>0.
Theorem (5.2.35)[197]. Let f be an operator continuous function. Then
!Yig(w) 2,(6) =0,
and so f is uniformly operator continuous.
Proof. Suppose that
mrzf(a) >g >0,
Then there are sequences of self-adjoint operators {4;};>o and {K;};>, on Hilbert space
Hsuch that ||K;|| < 1/j and ||f(4; + K;) — f(4;)|| > o . We define the operators A and R,

onf?(H) by
0
h Aih h I 0 I
Al "t [=1"171 ) and R, = |= :
hz Azhz n hZ Knhn
: : : Kn+1.hn+1

Clearly, ||R,]| -0 asn — 0, while |[f(A+R,)— f(4)| > ofor n >0, and so the map
(81)is not continuous at A.
Example (5.2.36)[197]. Consider the function g defined by g(t) = |t|, t € R. It was proved
in [234] that the function g is not operator Lipschitz. It was observed in [233] that the
function g is not operator continuous. Let us show that

04(6) = coforevery § > 0,
which will also imply that g is not operator continuous. Indeed, suppose that 2,(5,) < o
for somed, > 0. Since g is homogeneous,it follows that2,(8) = 550‘1%(50) = consts.
However this implies that g is an operator Lipschitz function which contradicts the result of
[234].
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Theorem (5.2.37)[197]. Let A and B be a pair of (not necessarily bounded) self-adjoint
operators such that A — B is bounded. Then
If(A) = FB)II < 2:(I1A - BIl) (82)
for every continuous function f on R.
Proof . Clearly, if 2¢(§) < o for some § > O, it follows that f satisfies the hypotheses of
Lemma (5.2.39). Let K = B — A. Then K is a bounded self-adjoint operator. Put
4; £ E,([-j, jDA.
Clearly, (83) holds. It follows easily from Lemma (5.2.39) that
1A+ Ku = f(Aull < limsupllf (4; + K)u = f(Apull < A UK DIull.u € D,

To complete the proof, it suffices to observe that if f satisfies the hypotheses of Lemma
(5.2.39), then f(A) is the closure of its restriction to ©,. The same is true for f(A + K).
This implies (82).

Lemma (5.2.38)[197]. Let f be a bounded continuous function on R. Suppose that A is a
self-adjoint operator (not necessarily bounded) and {4;};,, is a sequence of bounded self-
adjoint operatorssuch that

]ILrg”A]u — Aul| = 0 for every u in the domain of 4 (83)

Then
lim £ (4;) = f(A) in the strong operator topology. (84)
j—oo

Proof. We consider first the special case when (t) = (1 —t)™1, 2 € C\R. Let u be a vector in
D, , Where D denotes the domain of A. Put u;, & (A1 — A)~ w. Clearly, u; € D, and
M —A) u= A —4) ' - Dy

=wy + (Al — 4;)"'(Aju — Au) - uyas j — oo
Since the linear combinations of such rational fractions are dense in the space C,(R) of
continuous functions on R vanishing at infinity, it follows that (84) holds for an arbitrary
function fin C,(R).
Suppose now that f is an arbitrary bounded continuous function on R. By subtracting from
fa continuous function with compact support, we may assume that f vanishes on [—1,1].
Then there exists a function g in C,(R) such that f(t) = tg(t),t € R. Let € D, . We have

fA)u = g(4))Au= g(4;)Au + g(4;)(Aju — Au)
- g(A)Au=f(Au asj - oo (85)

Lemma (5.2.39)[197]. Let f be a continuous function on R such that |f (t)| < const(1 + |t |),
t € R and let A and {4;};-, be as in Lemma (5.2.38). Then

lim||£(4;)u — f(A)u|| = 0for every u € D,,.
]—)00
Proof. As in the proof of Lemma (5.2.38), we may assume that f vanishes on [—1,1] and

define the continuous function g byf(t) = tg(t), t € R. It follows now from Lemma
(5.2.38) that (85) holds for every u € D, .
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Corollary (5.2.40)[197]. Let fbe a continuous function on R. Then f is operator continuous
if and only if it is uniformly operator continuous.

We conclude with an estimate for the operator modulus of continuity of a bounded function
in the Zygmund classA; (R). The proof of the following theorem is similar to the proof of
Theorem 3.4 of Ch. 2 of [238].

Theorem (5.2.41)[197]. Let f be a bounded function inA;(R). Then there exists ¢ > 0 such
that

2
2,(8) < cdlog Efor 6 <1

Proof. By Corollary (5.2.11), there is a constant c; such that
If(A+2K) - 2f(A+K) + f(AI < cillflla,mwlIKIl.
It is easy to see that
1 1
If (4 +K) = fFAI < 5IIF(A+2K) = 2f(A+K) + FA)] + 5 If (4 +2K) ~ F (A

It follows that

c 1
0p(8/2) < 5 If laymy8 +5.2,(8),
and so

c
2710, (2748) = 247202 8) < ZlIf laywyS.  wheneverk > 1
Substituting 6 = §, & i||f||,11(R)||f||Loo, and keeping in mind the trivial estimate 2(6) <

€1
2| f I, 6 > 0, we obtain
2" 106(2780) < (n + DIf I .
Hence, for = 27§, ,n = 0, we have

c 8lIf Il
nf(a)s§||f|u1®6logz< - )

cillf Nl a,my)d
Therefore
8IIf Il 8o
Q:8) < i1 Fllo. w8 10 <— for § < 22
r(0) = allfllamolosz\ T e =5 2

and,(6) < 2||f|l,» ford = §,/2.
We construct a universal family of (unbounded) self-adjoint operators {A4;};>,such that the
operators A; have purely point spectra and

0e(t) = Ilf(A:) — f(Ap)ll, t=>0,
for every continuous function f.In particular,||A, — 4|l =t.t > 0. Moreover, the
operatorsA;,t = 0, are unitarily equivalent to each other.
Denote by Sthe set of finite rank self-adjoint operators on Hilbert space and let &,be a
countable dense subset of K.
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Lemma(5.2.42)[197]. Suppose that {4;} is a sequence of bounded self-adjoint operators that
converges to A in the strong operator topology. Then f(4;) — f(A) strongly for an arbitrary
continuousfunction f .
Proof. The conclusion of the lemma is trivial if f is a polynomial. It remains to approximate
f by polynomials uniformly on [—sup,j||4;|, sup, ||4; ][]
Corollary (5.2.43)[197]. Let f € C(R)and t > 0. Then
2p(t) =sup{llB — All:A,B € &,(H), ||B — A|| < t}.
Proof. Clearly, we have to verify that the left-hand side is less than or equal to the right-
hand side. Let A and B be bounded self-adjoint operators such that ||A — B|| <t . Let {4;}
and {K;} be sequences of operators in Kqsuch that A; - A, K; > B— A in the strong
operator topology, and ||K;|| < IIB — All for all j. By Lemma(5.2.43), f(4;) - f(4) and
f(4; + K;) — f(B)strongly. Hence,
IF(B) = (Al < liminfl|£(4; + K;) — £ (4)]

which implies the desired inequality.

Suppose that {R;};2,is an enumeration of &,. For given j = 1 and t > 0 we consider the
set

R “{AeK||A-R| <t}

and let {R(t)}k 1 be an enumeration of &;,. PutR(? e R;.

jk =
We can define now a universal family {A;}:s, by
o (oe}
A ® @ RY. (86)
=1 k=1

Theorem (5.2.44)[197].The operators A;are pairwise unitarily equivalent. Each operator
A;has purely point spectrum. Moreover, for every continuous function f on R, we have

If (A — f(AIl = 2¢(2), ¢t >0.
Proof. It is easy to see that each operator in §,0ccurs in the orthogonal sum on the right of
(86) infinitely many times and each operator in the orthogonal sum on the right of (86)
belongs toK,. Thus A; is unitarily equivalent to 4, forallt > 0.
We have

£ (A0 — F(A)Il = Sulpllf(R(t)) FRO = 2
I

by Corollary (5.2.43).

We obtain estimates for the norm of quasicommutators f(4A)Q — Qf(B) in terms of
|AQ — @B|| for self-adjoint operators A and B and a bounded operator Q. We assumefor
simplicity that A and B are bounded. However, we obtain estimates that do not depend
onthe norms of A and B. In [220] we will consider the case of not necessarily bounded
operators Aand B . In the special case A = B this problem turns into the problem of
estimating the norm of commutators f(4)Q — Qf (A) interms of ||AQ — QA|| . On the other
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hand, in the special case Q =1 the problem turns into the problem of estimating
If(4) - f(B)Il interms||A—BJ| .
Note that similar results can be obtained for unitary operators and for contractions.
Birman and Solomyak (see [219]) discovered the following formula

e -or® = || Mdmxxw — QB)AE, (),
whenever f is a function such that the d|V|ded difference Dfis a Schur multiplier with
respect to the spectral measures E, and Ej.
We could use this formula to obtain estimates of quasicommutators as we have done in the
case of functions of perturbed operators. However, we are going to reduce estimates of
quasicommutators to those of functions of perturbed operators. For this purpose we obtain
estimates that compare different moduli of continuities (the operator modulus of
continuity, the (quasi)commutator modulus of continuity, etc.).
We start with the case of operator Lipschitz functions.
The following theorem compares different operator Lipschitz norms and
(quasi)commutator Lipschitz norms. The fact that they are equivalent is well-known, see
[205]. The following theorem says that all those norms are equal.
Theorem (5.2.45)[197]. Let fbe a continuous function on R. The following are equivalent:
) IIf(4A) — fFB)Il < ||A — B||for arbitrary self-adjoint operators A and B ;
(i) NfAQ) = f(B)|l < ||A — Bl|for all pairs of unitarily equivalent self-adjoint operators
Aand B ;
(iii) |If (AR — Rf(B)|l < ||AR — RB||for arbitrary self-adjoint operators A and R;
(iv) [If(AR — Rf(B)|l < |lAR — RB||for all self-adjoint operators A and bounded operators
R;
v) |If(AR — Rf(B)|l < |lIAR — RB||for arbitrary self-adjoint operators A and B and
anarbitrary bounded operator R.
Proof. The implication (i) = (ii) is obvious.
Let us show that (ii) = (iii). Put B = exp(—itR)A exp(itR). Clearly, B is unitarily
equivalentto Aand f(B) = exp(—it R)f(A)exp(itR). Thus
I (A) — exp(—it R)f (A)exp(itR)|| < ||A — exp(—itR)A exp(itR)||forall t € R.
It remains to observe that

i IIf (4) — exp(— Hitlr)f(A)exp(ltR)” If (AR = RF(B)II

t—0

and
A —exp(—it R)Aexp(itR
jirm 14— xP(=it R)Aexp(i )||:||AR_RB”_
t-0 |t|
To prove that (iii) = (iv), we consider the following self-adjoint operators

A= (‘é g)andﬂz = (Ig g)

It is easy to see that
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0 fR _( 0 Rf()
f (A)R‘(f(A)R* o JandRs (”q)_<R*f(A) o)
Hence,
1 AR — R (A max{llf (A)R — RF(A)IL I (A)R" — R*F (A}
and

[AR — RA|| max{||AR — RA||, ||AR* — R*A||} = [|AR — RA]|.
It follows that
If (AR - RF B < lIf (AR — Rf(A)l < AR — RA|l = l|AR — RA||
The implication (v) = (i) is trivial; it suffices to put R =1 .
To complete the proof, it remains to show that (iv) = (v). Let us first consider the special
case
whenA and B are unitarily equivalent, i.e., A = U*BU for a unitary operator U and we
provethat
IU*f(B)UR — Rf(B)I < IlU"BUR — RB||.
This is equivalent to the inequality
lf (B)UR — URf(B)I| < lIBUR — URB||
which holds by (iv).
Now we consider the case of arbitrary self-adjoint operators Aand . Put

CA:(A O), B:(B O)and:R:(R O).

0 A4 0 A 0 R
Then Aand Bare unitarily equivalent. We have
_(f(AR 0 _(Rf(4) 0
FR= (0" gy Jnarr @ = (67 )
Hence,
If (AR — Rf (BYI| = max{|lf (AR — Rf B)II lf (B)R" — R*f(A)II}
and

[ AR — RB|| = max{||AR — RB||,||BR* — R*A||} = ||AR — RB]|.
It follows that
If (AR = RF BN < lIf (A)R = Rf(B)Il < [|AR — RBI| = |AR — RB]|.
For a continuous function f on R we have defined the operator modulus of continuity
1y We define here 3 other versions of moduli of continuity in terms of commutators and

guasicommutators.
Let f be a continuous function on R. For § > 0, put

0f(8) = sup{llf(4)R — Rf(4)|l:A = 4", R = R",||R|| = 1, |AR — RA|| < 6};
27(8) « sup{lIf (AR — Rf(A)|l: A= A" |IRI| = L, |AR — RA|| < &};

2(8) « sup{lIf(A)R — Rf(B)II: A= A", B = B*,|IRI| = L, ||AR — RB| < &}.
obviously, 2! < 0" < oand 0; < ol

Theorem (5.2.46)[197]. Let f be a continuous function on R. Then
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o <ol =0P=0 =20,

Proof. The inequality Q/EZ] < QP] can be proved in the same way as the implication (iii) =
(iv)
in the proof of Theorem (5.2.45)The inequality 0! < al*! can be proved in the same way
as theimplication (iv) = (v) in the proof of Theorem (5.2.45). It remains to prove that Q
[235] QP] < 2. We need two lemma.
Lemma (5.2.47)[197]. Let X and Y be bounded operators. Then

XY™ —Y"X|| < n|lY||" XY - YX]|.
Proof. We have

n

XY™ —y"X| < Z YR=L(XY — YX)Y™ K| < n||Y||*Y|XY — YX]|.

k=1
Lemma (5.248)[197]. Let T be a self-adjoint operator such that ||T|| <1 and let Xbe a
bounded operator. Then

Tl - IIXT — TX]||

@ -IryHrz -

) .Thena, >0and (1 —t)Y2=3Y%_. a,t?" Thus

[0¢]

”(I _ T2)1/2X _ X(I _ T2)1/2|| < |

Proof.Let a, & (—1)*1 (17/12

||(1 _ T2)1/2X _ X(I _ T2)1/2|| —

Z a, (XT?" — T2nX)

n=1

< IXT = TX| Z ona, ||T||2"1
n=1

_ Tl 1IXT — TXl
L =Tz -
by Lemma (5.2.47).
Let us complete the proof of Theorem (5.2.47). Let R be a self-adjoint contraction and 7 €
(0,1).Consider the operators

_ A O _ R (1 —T2R2)1/2
A= (0 A) andU = (_(1 _ 2R2)1r2 R )
Clearly, Uis a unitary operator. We have
FAU = ( f (AR (- rZRZ)“Zf(A)>
—f(A)( —T*R*)"? Tf (AR '
and
UF(A) = ( TRf(4) (- rZRZ)l’Zf(A)>
—(I = T*R*)*f (4) TRf (A) '
Clearly,
If (AU —Uf(A) = zllf (AR — Rf (A)]
and

| AU — UA|| < TllAR — RA|| + ||A(I — T2R?)Y2 — (I — T2R?)V24||
< (t+ 721 —1%)"2)||AR — RA||
by Lemma (5.2.48) with X = Aand T = tR. Hence,
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If (AR = R < 7 HIf (AU — UfF (A = T HUF (AU = fF(A
<t (IUWAU = All) = 77202, (| AU — UAIN)
<t710:(r + 72(1 — t3)"Y?)||AR — RA||
Taking T = 1/2, we obtain
If (AR — RF(A)II < 2 ((% + %) AR — RAn) < 20,(lAR — RAI)).
Lemma (5.2.49)[197]. Let 0 < a < 1. Then there exists ¢ > 0 such that for every f € 4,(R),
for arbitrary self-adjoint operators A and B and a bounded operator R the following
inequality holds:
If (DR — RF Bl < cllf lla,mllAR — RBI|*|IR||* <.
Proof. Clearly, we may assume that R # 0. By Theorems (5.2.8)and (5.2.46),
IFCOR = REE = RN - ) (72 R) = (2 R) £ 8| < el IR | 4R = Ry
= constl|f |l 4, mylIAR — RBII*lIRII* <.
Lemma (5.2.50)[197]. There exists ¢ > 0 such that for every modulus of continuity w, for
every f € A,(R), for arbitrary self-adjoint operators A and B , and a bounded nonzero
operator R thefollowing inequality holds:
IAR — RB||>

IfCOR = R (B < clIRllo. ( i

The proof of Lemma (5.2.50) is the same as the proof of Lemma (5.2.49).
We obtain norm estimates for finite differences

@pnH@ = > om (7) e+ e
j=0

for functions f € 4, ,,(R) and self-adjoint operators A and K . For simplicity, we give
proofs in the case of bounded operators and bounded functions f . Note that our estimate
will not depend on the L* norm of f , nor on the operator norm of A. In [220] we consider
the case ofan arbitrary (not necessarily bounded) self-adjoint operator A (though K still
must be bounded)and an arbitrary function f € A, ,,(R).
We also obtain similar results for unitary operators and for contractions.
Let w be a nondecreasing function on (0, o) such that

!Ci_ry) w(x)=0and w(2x) < 2™w(x)for x > 0. (87)

Recall that 4, ,, (R) is the space of continuous functions f on R satisfying
AT f ”L°°
il “su
f Aw,m(R) t>0p w(t)
Given a nondecreasing function w satisfying (87), we define the function w. ,,, by

w(t) ] “ w(sx)

(U*,m(x) = xm] t
X tm+1 Sm+1

X.
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Lemma (5.2.51)[197]. Let m be a positive integer. Then there is a positive number ¢ such
that for an arbitrary nondecreasing function w on (0, ) satisfying (87), an arbitrary
bounded functionfin 4, ,,(R), and arbitrary bounded self-adjoint operators A and K on
Hilbert space the following inequality holds:

IR < clf |4y @-mIKID.

Proof. As in the proof of Theorem (5.2.24), we can easily see that

N
@GR = D (ARE)(A) + (AF(F = f *Vi))(A)

n=—oo
where as before, f,, = f * W, + f * W7
Suppose that N is the integer satisfying (69). By Theorem (5.2.6),
| (AR — 5 Vi) ()| < const|If — fx V]l
< constllfllz,, ,m@(2) < const(flla, ,mw.m IKI):

On the other hand, it follows from Lemma (5.2.10), (59), and Corollary (5.2.7)that

IQAR ) (A1 < const2™|f || e [|K|[™ < const|flla,, 2™ w2~ )IIK]I™.
Thus

D IARLIADI < const D flla,, @2 0@ ™ IKI™

n=—oo n=—oo

")

=) 20Bm@V ) Il IK ™ < const ( = dt> 1AL e I
X

k=0
= constl fll 4,y @ (KD

This completes the proof.
Corollary (5.2.52)[197]. Let w be a positive nondecreasing function on (0, o) such that
lim,_, w(x) = 0and w(2x) < xw(x) for some x < 2™ and all x > 0. Then for x > 0, we
have w,,(x)const < w(x) and so

1A A < const || fl 4, @K
The proof of Corollary (5.2.52) is the similar to the proof of Corollary (5.2.26).
Corollary(5.2.53)[197]. Suppose that under the hypotheses of Theorem(5.2.51)||f|| .~ < M.
Then for the function w,, ), defined by

() = [ TRER
X

the following inequality holds:

QAR DI < const || fl4,, ,, @mm (1K)
The following analogs of Lemma (5.2.51) for unitary operators and for contractions can be
proved in a similar way.
Theorem (5.2.54)[197]. Let mbe a positive integer. Then there exists a constant ¢ > 0 such
that for every nondecreasing function w on (0, o) satisfying (87), for every f € A, ., , and
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for an arbitrary unitary operator U and an arbitrary bounded self-adjoint operator A on
Hilbert space, the following inequality holds:

> 0k () fleav)
k=0

Theorem (5.2.55)[197]. Let mbe a positive integer. Then there exists a constant ¢ > 0 such
that for every nondecreasing function w on (0, o) satisfying (87), for every f € (A, .,), and
for arbitrary contractions T and R on Hilbert space, the following inequality holds:

> (s (T + %(R - T))
k=0

< cllfll ag @ (AID.

< cllf llag @ UIT = RID).
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