Chapter 4
Functions of Perturbed and Normal of Operators

We study properties of the operators f (A)-f (B) for f € A, (R)and selfadjoint operators A
and B such that A — B belongs to the Schatten—von Neumann class Sp. We consider the
same problem for higher order differences. Similar results also hold for unitary operators
and for contractions. We obtain a more general result for functions in the spaceA,,(R?)
={f: 1f(¢y) — f(Qx)| < const w(|¢; — ¢;|)} for an arbitrary modulus of continuity w. We
show that if f belongs to the Besov class BL,(R?), then it is operator Lipschitz,
ie, If(Ny) —f (N2) I <constliflligz Il N; — N, |l. We also study properties of f(N;) —
f (N,) in the case when f € A,(R?) and N; — N, belongs to the Schatten-von Neuman
class Sp.

Section (4.1): Perturbed Operators.

It is well known that a Lipschitz function on the real line is not necessarily operator
Lipschitz, i.e., the condition,
If (x) — f(y)| < const|x —y|, xy€R,
does not imply that for selfadjoint operators A and B on Hilbert space,
If(4) — F(B)Il < const||A — BJ| .
The existence of such functions was proved in [132] (see also [133] and [134]). Later in
[135]necessary conditions were found for a function f to be operator Lipschitz. Those
necessary conditions imply that Lipschitz functions do not have to be operator Lipschitz.
It is also well known that a continuously differentiable function does not have to be
operator differentiable, see [135]and [136]. The necessary conditions obtained in
[135]and [136]are based on the nuclearity criterion for Hankel operators, see [137].
We consider Holder classes A,(R) withO < a < 1. In this case such functions are
necessarily operator Holder of order «, i.e., the condition:
If (x) — f(¥)| < const| x —y|¥, x,y €R,
implies that for selfadjoint operators A and B on Hilbert space,
I (4) — f(B)Il < const||A — BJ|* . 1)
Moreover, a similar result holds for the Zygmund class A, (R), i.e., the fact that
[f(x+t) —2f(x)+ f(x —t)] <const|t], x,t€ER,
and f is continuous implies that f is operator Zygmund, i.e., for selfadjoint operators A
and K ,
lf(A+ K)—2f(4) + f(A—K)Il < const|K]||. @)
We also obtain similar results for the whole scale of Holder-Zygmund classes A, (R)
for 0 < @ < oo. Recall that for a > 1, the class Ay (R) consists of continuous functions f
such that

n
Z(—l)”"k (Z)f(x + kt)| < const|t|* ,wheren—1<a<n.
k=0

The same problems can be considered for unitary operators and for functions on the
unit circle, and for contractions and analytic functions in the unit disk.
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To prove (1), we use a crucial estimate obtained for trigonometric polynomials and
unitary operators in [135]and for entire functions of exponential type and selfadjoint
operators in [136]. We state here the result for selfadjoint operators. It can be considered
as an analog of Bernstein's inequality.

Let f be an entire function of exponential type athat is bounded on the real line R. Then
for selfadjoint operators A and B with bounded A — B the following inequality holds:

I£(A) — fF(B)Il < const ol f 1l =o(wyllA — BIl. (3)
Inequality (3) was proved by using double operator integrals and the Birman-Solomyak
formula:
@ - 1) = [[E2L2 a5, 00 - a5y 0),
where E,and Egzare the spectral measures of selfadjoint operators A and B ; we refer the
reader to [138], [139] and [140] for the theory of double operator integrals. Note that A
and B do not have to be bounded, but A — B must be bounded.

To estimate the second difference (2), we use the corresponding analog of Bernstein's
inequality which was obtained in [141] with the help of triple operator integrals. To
estimate higher order differences, we need multiple operator integrals. We refer to [141]
for definitions and basic results on multiple operator integrals.

We also consider the problem of the behavior of functions of operators f(A) under
perturbations of A by operators of Schatten-von Neumann class §,, in the case when f €
Ay (R).

We start with first order differences. We use the notation by A,, 0 < a < oo, for the
scale of Holder-Zygmund classes on the unit circle T
Theorem(4.1.1)[131]. LetO < a < 1. Then there is a constant ¢ > 0 such that for every
f € A, and for arbitrary unitary operators U and V on Hilbert space the following
inequality holds:

If @) = FDI = cliflia, - IU=VII%
Theorem(4.1.2)[131]. There exists a constant ¢ > 0 such that for every function f € A,
and for arbitrary unitary operators U and V on Hilbert space the following inequality
holds:

IF) = I < el (2+ og, =) 0 = V1L

This result improves an estimate obtained in [132]for Lipschitz functions in the case
of bounded selfadjoint operators.
We proceed now to higher order differences.
Theorem (4.1.3)[131]. Let n be a positive integer and O < a < n. Then there exists a
constant ¢ > 0 such that for every f € A, and for an arbitrary unitary operator U and an
arbitrary bounded selfadjoint operator A on Hilbert space the following inequality holds:

Z (_ 1)n—k (Z) f(eikA U)
k=0

Let us consider now a more general problem. Suppose that w is a modulus of continuity,
i.e., w IS a nondecreasing continuous function on [0,0) such that w(0) =0 and w(x +
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y) < w(x) +w(y),x,y = 0. The space A, consists of functions f on T such that

If()) —f(@)| <constw(|{—1]), {,TET

With a modulus of continuity wwe associate the function w* defined by:

“w(t
w*(x) =xf t(z)dt, x =>0.
X

Theorem(4.1.4)[131]. Suppose that w is a modulus of continuity and f € A, . If U and V
are unitary operators, then

If(U) — F)II < const || flIa, 0" (IIU = VII).
In particular, if w*(x) < constw(x), then for unitary operators U and V

IF () = FONII < const |If |, w(lU = V).
We have also proved an analog of Theorem (4.1.4) for higher order differences. We
denote here by (A,), the set of functions f € A, , for which the Fourier coefficients f(n)
vanish forn < 0.

Recall that an operator T on Hilbert space is called a contraction if ||T|| < 1. The

following result is an analog of Theorem (4.1.3) for contractions.
Theorem(4.1.5)[131]. Let n be a positive integer and 0 < a < n. Then there exists a
constant ¢ > 0 such that for every f € (A,), and for arbitrary contractions T and R on
Hilbert space, the following inequality holds:

n
n—k (M k
;(—1) (f(r+=a-n)
Note that an analog of Theorem (4.1.4) also holds for contractions.
Theorem(4.1.6)[131]. Let 0<a <1 and letf € A,(R). Suppose that A and B are
selfadjoint operators such that A — B is bounded. Then f(4) — f(B) is bounded and
If (4) — fF(B)II < const||f[a,mllA — BII*

In this connection we mention the paper [132]where it was proved that for selfadjoint
operators A and B with spectra in an interval [a,b] and a function ¢ € A,(R), the
following inequality holds:

< cllf lla NIT = RII%.

2
+ 1) + 1) 4 — B||*

a
A) — o(B)|| < const <Io <
lo(4) = o(B)] lellaum (1o (17—

(see also [142] where the above inequality is generalized for general moduli of
continuity).

Theorem(4.1.7)[131]. Suppose that n is a positive integer and0 < a <n. Let A be a
selfadjoint operator and let K be a bounded selfadjoint operator. Then the map,

f- @@ ey o (7) ra+ i, @)
j=0

has a unique extension from L* n A,(R) to a sequentially continuous operator from
A, (R) (equipped with the weak-star topology) to the space of bounded linear operators
on Hilbert space (equipped with the strong operator topology) and
12 )] < constllf . e IK NI
We use the same notation (A} f)(A) for the unique extension of the map (4).
We can also prove an analog of Theorem (4.1.4) for selfadjoint operators.
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We consider the behavior of functions of selfadjoint operators under perturbations of
Schatten-von Neumann class S,,. Similar results also hold for unitary operators and for

contractions.
Recall that the spaces S,and S, ., consist of operators T on Hilbert space such that

ITlls, (Z

nz0
Theorem(4.1.8)[131]. Letl < p < »,0 < a <1,andlet f € A,(R). Suppose that A and B
are selfadjoint operators such that A — B € §,, . Then

f(A) —f(B) €Sy, and|If(4) = f(B)lls, < constlITlls,mllA—BIIS,.

Note that in Theorem (4.1.8) in the case p > 1 we can replace the condition A — B € §,
with the condition A — B € S, .

Using interpolation arguments, we can deduce from Theorem (4.1.8) the following result:
Theorem(4.1.9)[131]. Letl<p <o, 0<a <1, and let f € A,(R). Suppose that A and
B are selfadjoint operators such that A — B € S, . Then

f(A)-f(B) € Se  and 1/ (4) — f(B)ls, < const|IT|la,mllA— BIlS,.

We state similar results for higher order differences.
Theorem(4.1.10)[131]. Suppose that n is a positive integer, ais a positive number such
thatn —1 <a<n, andn <p <oo. Let A be a selfadjoint operator and let K be a
selfadjoint operator of class S,,. Then the operator (A% f)(A) defined in Theorem (4.1.7)

belongs to S» ,, and

1/p
1
(sn(T))”) <o and [ITs,, & Sug(l +n)P 5,(T) < o0,
nz

(AR (Mls, < const |ITl5,mlIKIlS,

Theorem(4.1.11)[131]. Suppose that n is a positive integer, ais a positive number such
thatn —1 <a<n, f € A,(R),and n < p < . Let A be a selfadjoint operator and let K
be a selfadjoint operator of class §,,. Then the operator (A f)(A) defined in Theorem(

4.1.7) belongs to S» , and
1Ak Dls, < constITll5,mlIKIIS,.

Section (4.2): Normal Operators Under Perturbations

We generalize results of the papers [145], [146], [147], [148], and [149] to the
case of normal operators.

A Lipschitz function f on the real line R(ie, a function satisfying the
inequality |f (x) — f(y)| < const]x — y|,x,y € R) does not have to be operator
Lipschitz. In other words, a Lipschitz function f does not necessarily satisfy the
inequality

If(A) — f(B)Il < const ||A - B||
for arbitrary self-adjoint operators A and B on Hilbert space. The existence of such
functions was proved in [150]. Later Kato proved in [151] that the function f(x) = |x|
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is not operator Lipschitz. Note also that earlier Mclntosh established in [152] a similar
result for commutators (i.e., the function f(x) = |x| is not commutators Lipschitz).

In [146] and [153] necessary conditions were found for a function f to be operator
Lipschitz. In particular, it was shown in [146] that if f is operator Lipschitz, and then f
belongs locally to the Besov space B}, (R). This also implies that Lipschitz functions do
not have to be operator Lipschitz. In [146] and [153] stronger necessary conditions
were also obtained. The necessary conditions obtained in [145] and [146] are based on
the trace class criterion for Hankel operators; see [145] .

On the other hand, it was shown in [146] and [153] that if f belongs to the Besov
class BL;(R), and then f is operator Lipschitz. We refer to [154] for information on
Besov spaces.

It was shown in [147] and [148] that the situation dramatically changes if we
consider Holder classes A,(R) withO<a <1 In this case such functions are
necessarily operator Holder of order a, i.e., the condition|f(x) — f(y)| < const|x —
yl, x,y € R, implies that for self-adjoint operators A and B on Hilbert space,

If(A) — f(B)Il < const ||A — B||*.

This result was generalized in [147] and [148] to the case of functions of class A4, (R)
for arbitrary moduli of continuity w. This class consists of functions f on R, for
which |f(x) — f(¥)] < const w(Jx —y]),x,y € R.

Let us also mention that in [147] and [149] properties of operators f(A) — f(B) were
studied for functions f in A,(R) and self-adjoint operators A and B whose difference
A — B belongs to Schatten-von Neumann classes §,.

In [147], [148] and [155]analogs of the above results were obtained for higher order
operator differences.

We also mention here that [147], [148], [149], [155], [156], and [157] study problems
of perturbation theory for unitary operators, contractions, and dissipative operators.

We study the case of (not necessarily bounded) normal operators.

We prove that if f is a function on R? that belongs to the Besov class BL,,(R?) , then it
is an operator Lipschitz function on R?,i.e.,

lf (N1) — f(N)Il < const [[Ny — N, |
for arbitrary normal operators N; and N,. Note that we say that the operator N; — N, is
bounded if the domains Dy, and Dy, of N; and N, coincide and N; — N, is bounded
on Dy, . If N; — N, is not a bounded operator, we say that [[N; — N,|| = o

Note, however, that the proof of the corresponding result for self-adjoint operators
obtained in [153] does not work in the case of normal operators. In the case of self-
adjoint operators it was shown in [153]that for functions f in the Besov space BL;(R)
and self-adjoint operators A and B with bounded A — B, the following formula holds:

- = [T a5, - pras, )

RxR
The expression on the right is a double operator integral. However, in the case of

normal operators a similar formula holds for arbitrary normal operators only for linear
functions .We obtain a new formula for f(N;) — f(N,) in terms of double operator
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integrals for suitable functions f on C and normal operators N; and N,with bounded
N; — N,. The validity of this formula depends on the fact that certain divided differences
are Schur multipliers.

We prove that as in the case of self-adjoint operators, Holder functions of order a, 0 <
a < 1, must be operator Holder of order a. We also consider the case of arbitrary
moduli of continuity. Note that in [175] some weaker results were obtained.
We study of properties of f(N;) — f(N,), where N;and N, are normal operators whose
difference N; — N, belongs to the Schatten—-von Neumann class S, and f belongs to the
Holder class 4,(R?) . We obtain analogs for normal operators of the results of [147]
and [148] for self-adjoint operators. We also obtain much more general results for
normal operators N;and N, whose difference N; — N, belongs to ideals of operators on
Hilbert space.

Finally, We obtain estimates for quasicommutators f(N,)R — Rf(N,) in terms of
N;R — RN, and N;R — RN

We give a brief introduction to Besov spaces and the spaces 4, (R?) of functions of
two real variables. We review ideals of operators on Hilbert space.

Note that the results were announced in the note [176]. We identify the complex
plane C with R2.
We collect necessary information on Besov spaces and the spaces 4,,(R?) of functions
of two real variables.
The purpose to give a brief introduction to Besov spaces that play an important role in
problems of perturbation theory. We need the Besov spaces on R2only.

Let w be an infinitely differentiable function on R such that

w=0, suppw cC E, 2], and w(x)=1-w (g) forx € [1,2]. (B)

We define the functions W}, on R2by

|x]
FW,(x) = W(E ., n€Z x=(x,x,), lx] & (x2 + x2)V2,

where F is the Fourier transform defined on L'(R?) by

(Tf) = .l‘f(x)e_i(x't) dxa X = (xlaxZ)a t= (tla tZ)a (xa t dif xltl + thZ

With each tempered distribution f € §'(IR?), we associate a sequence {f, },.cz
n S fx Wy (6)

Initially we define the (homogeneous) Besov class B}, (R?), s > 0,1 < p, q < o, as the
space of all f € §'(R?) such that

{Znsllfn”LP}nEZ € 1l')q(Z)- (7)
According to this definition, the space Bf,q (R?) contains all polynomials. Moreover, the
distribution f is defined by the sequence {f,,}»ez uniquely up to a polynomial. It is easy
to see that the series},,, ., f,, converges in §'(R?). However, the series Y, ., f, can
diverge in general. Itis easy to prove that the series

Z 0" fn ®)
6xf6x2r &
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converges uniformly on R? for every nonnegative integer r >s —2/p and 0 <k <r.
Note that in the case g = 1 the series (8) converges uniformly, whenever r > s —2/p
and0 <k <r.

Now we can define the modified (homogeneous) Besov class B, (R*) . We say that a
distribution f belongs to Bj,(R?) if (7) holds and

af 0" fa
dxkoxsk et dxkoxy

in the space S'(R?) , where r is the minimal nonnegative integer such that r > s —
2/p(r=s—2/pifg=1)and 0 < k < r.Now the function f is determined uniquely by
the sequence {f,}necz Up to a polynomial of degree less thanr, and a polynomial ¢
belongs to B;,(R?) ifand only ifdeg ¢ <.

To define a regularized de laVallée Poussin type kernel 1}, we define the C* oo
function v on R by

v(x) =1 for x€[-11] and v(x)=w(]x]) if |x|] =1,
where w is the function defined by (5). Now we can define the de la Vallée Poussin
type functions V;, by
FV,(x)=v (IZx—nI>, nez, x = (xq1,x5).

We put & V, . Clearly, V,(x) = 22"V (2"x).

Besov classes admit many other descriptions. We give here the definition in terms of
finite differences. For h € R?, we define the difference operator A,

(Anf)(x) = f(x+h) = f(x), x€R®

It is easy to see that Bj,(R?) c Lij,.(R?) for every s >0 and Bj,(R?) c C(R?) for
everys > 2/p. Let s >0 and let m be a positive integer such thatm —1 < s <m. The
Besov space B3, (R?) can be defined as the set of functions f € Lj,.(R?) such that

f|h|_2_sq AR flllpdh < 00 for g < oo
R2

and
i?egW for g = oo. 9

However, with this definition the Besov space can contain polynomials of higher degree
than in the case of the first definition given above.
We use the notation Bj;(R?) for B, (R?) .

For a > 0, denote by 4,(R?) the Holder-Zygmund class that consists of functions f €
C(R?) such that

[(AT* F)(x)| < const |h]|%, x,h € R?,

where m is the smallest integer greater than a. By (9), we have 4,(R?) = B%(R?).

We refer the reader to [154] and [158] for more detailed information on Besov
spaces.
Let w be a modulus of continuity, i.e., w is a nondecreasing continuous function on[0, o)
such that w(0) = 0, w(x) > 0 for x > 0, and
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wx+y) <wx)+w(y) xye€l0 ).
We denote by A, (R?) the space of functions on R2such that

wr o O = f(Y)]
”f”Aw(]RZ) = ?Ci)l:/) a)(lx _yl) <
Theorem(4.2.1)[144]. There exists a constant ¢ > 0 such that for an arbitrary modulus
of continuity w and for an arbitrary function f in A,(R?) , the following inequality
holds:

If = f * Vallyo < co@™If Il o, m2) N EL (10)

Proof. We have

1FG0) = (F * V@) = 22 f (FGO) — FGx — ) V(2y)dy
]RZ
< 228l gy a0) [ 0D IV @Iy
]RZ

=2l gy | oD@y + 2 My [ 0D IVE DIy
{lyls2—n} {lyl>2-n}
Clearly,

20 [ ey V@ lay < 0@ IV
{lyls2—m}
On the other hand, keeping in mind the obvious inequality 27w (|y|) < 2|ylw(27™)
for |[y] = 27", we obtain

22n f Wy V@) ldy < 2 - 2mw(2-m) f Iyl IV Ey)ldy
{ly|>2—7} {lyl>2—7}

= 20(2") f Iyl - IV)ldy < const w(2—).
{lyl>1}
This proves (10).
Corollary (4.2.2)[144].There exists ¢ > 0 such that for every modulus of continuity w
and for every f € A, (R?), the following inequalities hold:
If * Wallio < cwo@MIfN 4, (m2), nEZ
We give a brief introduction to quasinormed ideals of operators on Hilbert space.
Recall a functional ||-]|: X — [0, ) on a vector space X is called a quasinorm on X if
() |lx]l =0ifand only if x = 0;
(i) lax|l = |a] - l|x]|, for every x € X and a € C;
(iii) there exists a positive number ¢ such that [|x + y|| < c(||x]| + ||y|l) for every x and
yinX.
We say that a sequence {x;};>; of vectors of a quasinormed space X converges to
x €X if]an;”xJ' —x|| =0. It is well known that there exists a translation invariant

metric on X which induces an equivalent topology on X . A quasinormed space is called
quasi-Banach if it is complete.
Recall that for a bounded linear operator T on Hilbert space, the singular
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values s;(T),j = 0, are defined by

s;(T) =inf{|IT — R||: rank R < j}.
Clearly, so(T) =|IT|| and T is compact if and only if 5;(T) > 0 asj — c0. We also
introduce the sequence {0,(T)},so defined by

1 n
o(T) £ — = (1), (11)
=0

Definition(4.2.3) [144]. Let H be a Hilbert space and let 3 be a linear manifold in the set
B(H)of bounded linear operators on # that is equipped with a quasi-norm ||-||5 that
makes J a quasi-Banach space. We say that J is a quasinormed ideal if for every A and
BinB(H)andT € J,

ATB €3 and [|ATBllg < [lAll- [IBIl - IITll5 - (12)
A quasinormed ideal J is called a normed ideal if ||-||5 isanorm.

Note that we do not require that 3 # B(H).

Itis easy to see that if T, and T, are operators in a quasinormed ideal 3 and s;(T;) =
sj(T,) for j = O, then [Ty |l = [IT2ll5 . Thus there exists a function ¥ = ¥, defined on
the set of nonincreasing sequences of nonnegative real numbers with values in [0, o]
suchthatT € Jifand only if W(sq(T ), s:(T),s, (T), ) < » and

ITlls =¥ (so(T ), 51(T )52 (T), ), TES.

If T is an operator from a Hilbert space #; to a Hilbert space H,, we say that T belongs
to Jif¥Y(so(T),51(T),s, (T), ) < oo,
For a quasinormed ideal 3 and a positive number p, we define the quasinormed ideal
R by

S = {1:(T" TP € Sh Tl & || (T T)P"2) ",
If T is an operator on a Hilbert space H and d is a positive integer, we denote by [T],
the operator EB?lej on the orthogonal sum EB;Ll}[ of d copies of 7, where T; =T ,1 <
j < d.ltiseasy to see that

sn([T14) = Spa)(T), n =0,
where [x] denotes the largest integer that is less than or equal to x.
We denote by S5, the quasinorm of the transformer T — [T]; on3J. Clearly, the
sequence {f54}q>1 IS NONdecreasing and submultiplicative, i.e., B4, 4, < Bya,Pza, - It
is well known (see e.g., § 3 of [149]) that the last inequality implies that
i log B3 4 —inf log ﬁS,d.
a-w logd  d=2 logd
Definition(4.2.4) [144]. If 3 is a quasinormed ideal, the number
logBsa . 10954
hs = lim logd =it logd
is called the upper Boyd index of 3.
It is easy to see that S5 < 1 for an arbitrary normed ideal 3. Itis also clear that S <
1 if and only if dlliﬁn;d‘lﬁs,d =0.

(13)

o
LY

e

Note that the upper Boyd index does not change if we replace the initial quasinorm in
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the quasinormed ideal with an equivalent one that also satisfies (12). It is also easy to
see that
By =0~ By .
The proof of the following fact can be found in [149], § 3.
Let 3 be a quasinormed ideal. The following are equivalent:
() By <1
(it) for every nonincreasing sequence {s, },-o Of nonnegative numbers,
Vs ({0ntns0) < const (Ps {s,}ns0) (14)

where g, & (1 +n)~' X7_;s;.

For a normed ideal 3 let C5 be the best possible constant in inequality (14). Then
(see [149], 8 3)

Cy<3 z 27K B . (15)
k=0

Let §,, 0 <p < o, be the Schatten-von Neumann class of operators T on Hilbert

space such that
p

1/
ITlls, = > (5m)" )
j=0
This is a normed ideal for p > 1. We denote by §,,, 0 < p < oo, the ideal that consists of
operators T on Hilbert space such that

1/p
. p
ITlls,, = (s}gg(l + )(s;(T)) ) :
The quasinorm ||-||Sp°o IS not a norm, but it is equivalent to a norm if p > 1. It is easy to
see that

Bs, = Bs, .. =%, 0<p<o.
Thus §,and §, ., with p > 1 satisfy the hypotheses of Theorem on ideals with upper
Boyd index less than 1.
It follows easily from (15) that for p > 1,
Cs, <3(1— 21/p-1)-1,

Suppose now that J is a quasinormed ideal of operators on Hilbert space. With a
nonnegative integer [ we associate the ideal (I)5 that consists of all bounded linear
operators on Hilbert space and is equipped with the norm

Y5 (50,5152, ) = ¥(s0,51,52, 5,00, ...).
It is easy to see that for every bounded operator T,
Tl s = sup{lIRTllx: IRl < 1, rank R < I+ 1} = sup{|ITRl5: IRl < 1,rank R < [ + 1},
It is easy to verify (see [149], § 3) that if I is a quasinormed ideal, then for all
Cayy < Cs. (16)
Note thatif 3 = S,,,p = 1, then S}, & S, is the normed ideal that consists of all bounded

14
linear operators equipped with the norm
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1/p
def p
Tl 2 > (55(r))
j=0

Itis well known that ||-||5110 isanorm for p > 1 (see [160]).

Itis also well known (see [149], § 3) that
I Tollgy < ITullgy 1Tl gt 7
where T;and T, bounded operator on Hilbert space and 1/p + 1/q = 1/r.
We say that a quasinormed ideal 3 has majorization property (respectively weak
majorization property) if the conditions
T,e€3J, T,€B, and o0)(T,) < o0(Ty) forall =0
imply that
T, €3 and ||Ty|ls < ITylls  (respectively ||T,|ls < ClITyllx)

(see [158]). Note that if a quasinormed ideal 3 has weak majorization property, then

we can introduce on it the following new equivalent quasinorm:
ITIl5 & sup{llRll5: 0;(R) < 0,(T) foralll > O}
such that (3, [Ill5) has majorization property.

It is well known that every separable normed ideal and every normed ideal that is
dual to a separable normed ideal has majorization property, see [158]. Clearly, S, c 3
for every quasinormed ideal 3 with majorization property. Note also that every
quasinormed ideal 3 with S5 < 1 has weak majorization property (see, for example, 8 3
of [149] and § 3 of [155]).

We need the following fact on interpolation properties of quasinormed ideals that
have majorization property (see e.g., [155]):

Theorem on interpolation of quasinormed ideals. Let 3 be a quasinormed ideal with
majorization property and let 2: & — £ be a linear transformer on a linear subset £ of B
suchthat £ N §; isdensein §,. Suppose that || AT|| < ||IT|| and [|AT||s, < |IT|ls,for
everyT € &.

We refer to [158] and [160] for further information on singular values and normed
ideals of operators on Hilbert space.

We give a brief introduction in double operator integrals. Double operator integrals
appeared in [161] by Daletskii and S.G. Krein. However, the beautiful theory of double
operator integrals was developed later by Birman and Solomyak in [162], [163], and
[164], see also their survey [165].

Let (X,E;) and (U,E,) be spaces with spectral measures E; and E, on a Hilbert
space . The idea of Birman and Solomyak is to define first double operator integrals

f f ®(x,y)dE, () TdE,(7) (18)
XY

for bounded measurable functions @ and operators T of Hilbert Schmidt class §,.
Consider the spectral measure £ whose values are orthogonal projections on the
Hilbert space S,, which is defined by

E(A x AT = E;(AN)TE,(A),T € S,,

120



A and A being measurable subsets of X'and Y . It was shown in [166] that £ extends to
a spectral measure on X x Y and if @ is a bounded measurable function on X x Y, by

definition,
f f o (x,y)dE,(x)TdE,(y) = ( f d)dS) T.
xJY xXxY

Clearly,
| [owyarraeo | < leleiris,
xJy s,

It

f f & (x,y)dE, ()TAE,(y) €S,
xJy

forevery T € §,, we say that @ is a Schur multiplier of §;associated with the spectral
measures E; and E,.
In this case the transformer

T o f f O (x,y)dE, ()TdE,(y), TES, (19)
X7y

extends by duality to a bounded linear transformer on the space of bounded linear
operators on H and we say that the function ¥ on Y x X defined by

Yy, x) = P(x,y)
is a Schur multiplier (with respect to E, and E;) of the space of bounded linear
operators. We denote the space of such Schur multipliers by I (E,, E;). The norm of ¥
in M(E,, E,) is, by definition, the norm of the transformer (19) on the space of bounded
linear operators.

In [164] it was shown that if A and B are a self-adjoint operators (not necessarily
bounded) such that A — B is bounded and if f is a continuously differentiable function
on R such that the divided difference Df ,

fG) = f()

(DN ==
isa Schur multiplier of §; with respect to the spectral measures of A and B, then

F - 1@ = [[(ON@ N dE U - BB (20)
and
1£(A) = FBI < const | llgncs, 5,14 — BII,
i.e., f isan operator Lipschitz function.
It is easy to see that if a function @ on X x Y belongs to the projective tensor product
L*(E,) ® L*(E,) of L°(E,) and L™ (E,) (i.e., ® admits a representation

DY) = ) Pu(IPn )

n=0

where ¢,, € L*(E,), ¥, € L”(E;), and
> lonllilipnllo < oo

nz0
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then @ € M(E,, E;). For such functions @ we have

fx fy @ (x,y)dE,(x)TdE,(y) = Z ( fxfpndE1> T ( fy W, d Ez)-

More generally, @ € M(E,, E;) if & belongs to the integral projective tensor
product L*(E,) & L°(E,) of L®(E,) ,and L*(E,) i.e., ® admits a representation

0(.y) = [ oG W) b0, w)dAw). (21)
Q

where (Q, 1) is a o-finite measure space, ¢ is a measurable functionon X xQ, ¢y isa
measurable functionon Y % Q, and

[ Mol 1, W)l 0) < o, 22)
Q
If @ € L°(E;) ®; L°(E,) , then
[ [otyarcorar,o = | ( [ w(x,w)dEl(x)) r ( [vo. w)dEz(y)) da(w).
xJY Q\/x Y

Clearly, the function

s - (f <p(x,W)dE1(x)> T (fl/)(y, W)dEz(y)>
X Y

is weakly measurable and

| ( | w(x,s)dEl(x))T ( [ w0 w)dEz(w))H dAw) < o
Q X Y

It turns out that all Schur multipliers can be obtained in this way. More precisely, the
following result holds (see [146]):
Theorem on Schur multipliers. Let @ be a measurable function on X < Y . The following
are equivalent:
(i) @ € M(Ey, E);
(i) @ € L”(E) ®; L”(E,);
(iii) there exist measurable functions ¢ on X xQ and 3 on Y x Q such that (21)

holds and

1/2 1/2

( [ |<p(-,w)|2dz(w)) ( [ o wyre cm(w)) <o (23)
Q Q o)

The implication (iii)=>(i) was established in [164]. In the case of matrix Schur
multipliers (this corresponds to discrete spectral measures of multiplicity 1) the fact
that (i) implies (ii) was proved in [167].

Note that the infimum of the left-hand side in (23) over all representations of the
form (21) is the so-called Haagerup tensor norm of two Lo spaces.

It is interesting to observe that if ¢ and y satisfy (22), then they also satisfy (23), but
the converse is false. However, if @ admits a representation of the form (21) with ¢ and
Y satisfying (23), then it also admits a (possibly different) representation of the form
(21) with ¢ and y satisfying (22). We refer the reader to [168] for related problems.

It is also well known that MM (E,, E;) is Banach algebra (see [146]).
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We would like to observe that it follows from the Theorem on interpolation of
quasinormed ideals that if @ € M(E,, E;) and Jis a quasinormed ideal with
majorization property, then

Tes o f f o (x,y)dE, ()TdE,(y) €3
xJy
and

< [ Pllee, £ I T 5. (24)

ffé(x,y)dEl(x)TdEz(}’)
XY

Recall that a function f on R? is called operator Lipschitz if
lf (N,) — F(N)II < const || Ny — N, || (25)

for every normal operators N; and N, on Hilbert space. Clearly, if f is operator Lipschitz,
then f is a Lipschitz function. The converse is false, because it is false for self-adjoint
operators (see the Introduction).

The first natural try to prove that a function on R? is operator Lipschitz is to attempt
to generalize formula (20) to the case of normal operators. Suppose that the divided
difference

Z1) — Z
(Z]_,Zz) - M! Zlaz2 € Ca
Z1— 22
isa Schur multiplier with respect to arbitrary Borel spectral measures on C. Then as
in the case of self-adjoint operators, for arbitrary normal operators N;and N, with

bounded difference N; — N,, the following formula holds

FN) — F(N,) = ff%

CxC
where E; is the spectral measure of N;, i = 1,2. Moreover, in this case f is operator
Lipschitz.

However, it follows from the results of [169] that under the above assumptions f
must have complex derivative everywhere. In other words, f must be an entire
function. In addition to this f must be Lipschitz. Therefore in this case f is a linear
function, but the fact that linear functions are operator Lipschitz is obvious.

Thus to prove that a given function on R? is operator Lipschitz, we have to find
something different.

We introduce the following notation. Given normal operators N;and N,on Hilbert
space, we put
A; = ReN;, B; £ ImN; , E; isthe spectral measure of N;, j =12

In other words, N; = 4; +iB; , j = 1,2, where A;and B; are self-adjoint operators.
Since the operators N; are normal, A; commutes with B;.

With a function f on R? that has partial derivatives everywhere, we associate the
following divided differences

dE;1(z1) (N; — Np)dE,(z,), (26)

(Duf)z1,2,) & f(xl,y;) ~ /;Z(XZ,yz), 21,2, € C.

and
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(Dyf)(z1,2,) & f(xl,y;) — ;‘}(xl,yz), 24,2, € C.
1= )2

We use the notation
xiZ=Rez, yy=lImgz, j=12
Note that in the above definition by the values of D, f and D, f on the sets
{(z1,22): %, = x, } and {(z1,22):y1 = y2}
we mean the corresponding partial derivatives of f .
Theorem (4.25)[144]. Let f be a continuous bounded function on R? whose Fourier
transform Ff has compact support. Then the functions D,f and D, f are Schur
multipliers with respect to arbitrary Borel spectral measures E; and E,.
Moreover, if
supp Ff c{{eC:[¢|<c}, 0>0,
then

1Dxfllance, £,y < const ollfll .~ and ||Dyf||§m( < const o||f|| .~ (27)

E1,E2)

Proof.The result follows from Theorem(4.2.9), because
IPllme, £, < 1Pl ©@@nch©

for every @ € C,(C) ®,, C,(C) and for every Borel spectral measures E; and E, on C.

Theorem (4.2.6)[144]. Let f be a continuous bounded function on R? whose Fourier

transform Ff has compact support. Suppose that N; and N, are normal operators

such that the operator N; — N, is bounded. Then

f(N) = fF(N,) = .U(Dyf)(zlazz)d51(21) (B; — By)dE,(z,)
(CZ

+ f f (©D (21, 2,)dEx (2) (Ar — Ay)dE, (2,) (28)
CZ

We postpone the proof of Theorem (4.2.5). Let us deduce here Theorem (4.2.6) from
Theorem (4.2.5).
Proof. Consider first the case when N; and N, are bounded operators. Put
d = max{|[N, |l IN2|l} and D= {{eC[{]|<d}
By Theorem(4.2.5), both D, f and D, f are Schur multipliers. We have
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[| @) 2B ) (B = BB ) = [ (00 22)E ) (8 - B AE 2)

C2 DxD

_ f f (D,1) (21, 22)dE; (21) B, dE; (2,)
_ f f (Dyf) (21 22)dE; (1) B,dE, (2,)
- f f Y1(Dy f) (21, 22)dEy (2,) dE, (2,)
_ f f Y2 (Dyf ) (21, 22)dE (1) dE, (2,)
= f f 01 — 12)(D,f) (21, 25)dE; (2,) dE, (25)
_ f (FCersy1) = £ Cr v2))dE, (z2) dEy(2,).

Since M(E,, E,) is a Banach algebra, it is easy to see that the function
(21,22) = f(x1,y1) = f(x1,y2) = (1 — yZ)(Dyf)(ZbZZ)
is a Schur multiplier. Similarly,

.U (Dxf)(21,22)dE(21) (A — Ay)dE,(2,) = f (f (x1,y2) = f(x2,¥2))dE (1) dE,(2,).

C2 DxD
It follows that

[| @) 2B ) (5~ BB + [[ @128 () () - a2
c2 C2

- f (FGeay1) = F (o y2))dEs (21) dEy (25)

= || rewas) ase) - [ fGydae) de )

= f(Ny) — f(N,).
Consider now the case when N; and N,are unbounded. Put
P YE({(eC|{|<k}) and Q¥ E,{CeC:|{|<k}), k=>0.
Then
Nig @ PN,  and Ny & QN,
are bounded normal operators. Denote by E; , the spectral measure of N;,, j = 1,2. Itis
easy to see that
Nyy = PeA; +iPgB; and N,y = A,Q, + iB,Qy, k > 0.
We have
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P [ @91 2088, B, - B |
C2

=Py ff (Dyf)(zlazz)dEl,k(Zl) (P¢B;, — B, Qk)dEz,k(Zz) Qx
C2

and

Py .U (Dxf)(21,22)dE1(21) (Ay — Ay)dE,(23) | Qk
CZ

=Py .U(Dxf)(zpzz)dELk(ZD (PrA; — AyQy)dE, 1 (23) | Q.
c2

If we apply identity (28) to the bounded normal operators N, , and N, ;, we obtain

Pe (F(Nui) = F(Nz)) Qi

=Py ff (Dyf)(zbzz)dEl,k(Zl) (PyBy — ByQy)dE; 1 (z3) | Qk
c2

+ Py ff (Dxf)(zlazz)dEl,k(Zl) (PA; — Asz)dEz,k(Zz) Q-
C2

Since obviously,

Py (f(Nl,k) - f( NZ,k)) Qi = Pr(f(Ny) — F(N;))Qy,
we have

P (f(Ny) — F(N,))Qy

=P, ff(Dyf)(zl,zz)dEl(zl) (B; — B3)dE»(2;) | Qx
CZ

+ Py .U(Dxf)(zbzz)dﬂ(zﬂ (A1 — A3)dE(27) | Qk
C2
It remains to pass to the limit in the strong operator topology.
We would like to extend formula (28) to the case of arbitrary functions f in B}, (R?).
Since BL ,(R?) consists of Lipschitz functions, it follows that for f € BL,(R?),

If (] < const(L+[{[), (eC (29)
Hence, for f € BL,(R?),
Df(N) ] DN'
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Theorem (4.2.7)[144]. Let N; and N,be normal operators such that N; — N, is
bounded. Then (28) holds for every f € BL,(R?)
Proof. Itsuffices to prove that for u € Dy, = Dy, ,(f(Ny) — f(N,))u =

([1ea(Dy1) (21, 22)dEL (22) (By - BL)AE,(22)) u

+ ff(bxf)(zl,zz)dEl(Zl) (A; — Az)dE,(z2) |u
C2

Indeed, if N is a normal operator and f satisfies (29), then f(N) is the closure of its
restriction to the domain of N

We have
(V) = FND)u = ((f = FOIN)) u— ((f = FO))(N2)) u
(= rO)M))u= > ((f - HO)M))u (30)
and "
(¢ = FOYWND)u= > ((fu = fuO)(M)) (31)

where the functions f,, are defined by (6). Moreover, the series on the right-hand sides
of (30) and (31) converge absolutely in the norm.
Thus

(f(N1) - f( Nz))u = Z(fn(N1) - fn(NZ))u

nez
It remains to observe that

f f (Dyf)(z1,22)dE; (z,) (By — By)dE(z2,)

C2

= Z ff (D) 1,)(z1, 22)dE, (21) (B, — By)dE,(zy)
nez c2
and

.U (Dxf)(21,22)dE; (21) (A — A3)dE,(2,)
C2
= Z .U (Dufu)(z1, 22)dE (1) (A1 — A3)dE,(2,),
Nnez 2

and the series on the right-hand sides converge absolutely in the norm which is an
immediate consequence of inequalities (27).
We are going to prove Theorem(4.2.5) that gives sharp estimates for the norms of D, f
and D, f in the space of Schur multipliers. Consider the function D, f,

(D, )(z1,2,) = f(xl’y;) :i(xz’yZ),zl,zz € C.

The first natural thought would be to fix the variable y, and represent the function
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[ y2) — F(x2,2)

X1 — Xy

(xla xZ) -

in terms of the integral projective tensor product L® ®; L® in the same was as it was
done in [153] for functions of one variable. However, it turns out that if we do this, we
obtain in the integral tensor representation terms that depend on the mixed
variables (x4, y,), and so this would not help us.

The first proof of Theorem(4.2.5) we have found was based on a modification of the
integral tensor representation obtained in [153] and an estimate in terms of the tensor
norm (23) rather than the integral projective tensor norm.

We give a different approach based on an expansion of entire functions of exponential

type o in the series in the orthogonal basis {M} .
nez

oxX—Tn
For a topological space X , we denote by C,(X) the set of bounded continuous
(complex) functions onX. If X and UYare topological spaces, we denote by
C,(X) R, Cp(Y) the set of functions @ on X x Y that admit a representation

2= ) oalMn(), @Y €Xx. (32)

n=0

such that ¢,, € C,(X), ¥, € C,(Y) and

1/2 1/2
(S‘EJJE’ I(Pn(x)|2> (Sup w}n(Y)IZ) < oo, (33)
n=0 n=0

For @ € C,(X) ®y, C,(Y), its norm in C,(X) &, C,(Y) is, by definition, the infimum of
the left-hand side of (33) over all representations (32).

For ¢ > 0, we denote by £, the set of entire functions (of one complex variable) of
exponential type at most o.

It follows from the results of [153]] that
f&x) - f(y)

fee,nL”[R) = Ty

< const gl f | o (r) (34)

Hﬁm(bﬁ E2)
for every Borel spectral measures E; and E, on R.

It was shown in [155]that inequality (34) holds with constant equal tol.

The following result allows us to obtain an explicit representation of the divided

difference L2~/ ) f(y) as an element of C,(R) ®, C,(R).
Theorem (4.2.9)[144] Letf € €, nL*(R). Then

f(x) — f ») n. f&) - f(mno™") sinoy
X — HZEZ( 1) oxX —TIn gy —Tn (35)
; ﬂﬁ‘f”?“?ﬁ*»ﬁ,xyeR (36)
R _ _
Moreover,
If(x) = f@na™HI> 1 [ If(x) = f(@)I?
L, (ax — nn)z = % o (x — t)z dt, xe€eR (37)
and
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sin‘a 1 (sin*(o(y—t
Bl ANy (=0, yeER  (38)
—~ (ox — mn)? nolg (¥ —t)?
n

Proof. Clearly, it suffices to consider the case 0 = 1. Let us first observe that the
identities in (38) are elementary and well known.

We are going to use the well-known fact that the family {;;nj;} orthogonal basis in
- nez

the space €; n L2(R), forms an

F(z) = Z(—l)”F(nn) Zs_n;n, (39)
and nez
D IFF == [ IFoPar (40)

nez

for every F € € n L?(R), see, e.g.,, [170], Lect. 20.2,Th. 1. It follows immediately from
(6.9) that

1 -
ZF(nn)G(nn) =—fF(t)G(t)dt. forevery F,G € €, n L*(R). (41)
nez T Jr
Given x € R, we consider the function F defined by F(1) =

€, N L2(R).

It is easy to see that (35) is a consequence of (39) and the equality in(37) is a
consequence of (40). Itis also easy to see that (36) follows from (41).

It remains to prove that

f(x) f(l) LA € C.Clearly, F €

If (x) = F(@)I?
) Ry e dt < 3||f||§°o(R)

for every F € &, nL2(R) and x € R. Without loss of generality we may assume
that [[f]| gy = 1. Then ||f'|| =&y < 1 by the Bernstein inequality. Hence, |f(x) —
f(@®)] < min(2,|x — t]), and we have

f @~ fOF 11 min@ G-t Efzdt LT,

(x —t)? tlg  (x—1t)? 7 J, ), t? w
Theorem (4.2.9)[144]. Let o > 0 and let f be a function in C, (R?) such that
supp Ff < {{ € C:|{ |< o}
Then ®,.f, Dy f € C,»(C) ®x C,(C),
1D f llcp@y@ncr@ < ol flloe)

and
1271, 058160 = Tl
Proof. Clearly, f is the restriction to R%of an entire function of two complex variables.

Moreover, f(:,a), f(a-) € € NnL2(R) for everya € R. It suffices to consider the
case 0 = 1. By Theorem(4.2.8), we have

(bxf)(ZLZz) def f( 1,}’2) f( 2a}’z) Z( l)nf(nn,yz) — f(xz,}’z)_ sin x,

X1 — Xy mn — X, X; —Tn

nez
and
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(Dyf) (z1,2,) &

fle1,y1) — f(x1,}’z) oS 1,}’1) f(xl,Tm) siny;,
Y1 Z( b | — TN Y, — N

sinxq

nez
and f(x1.y1)- f(x1 nn) depend onz, = (xl,yl) and do not

X1—Ttn Vi—

Note that the functions

f(ﬂn,JIz)—f(xz,JIz) and siny,
mn—Xx, Y,—Ttn

depend on z, = (x,,v,) while the functions depend on z, =

(x,,v,) and do not depend on z; = (x;,y;). Moreover, by Theorem(4.2.8) we have

. 2
Zlf(xl,yl) [, ) < 3lIf e Mo my < 3lf oy,

(y1 — mn)?
nez
£ e, y2) = £ G 9P
oyt S 3yl < 31 ey

nez
and

sinx; sinfy,
Lty —mn)? - Ly, —mn)?
This implies the result.
We show that functions in the Besov space BL,(R?) are operator Lipschitz. We also
show that if f € BL,, (R?) then,

N—-N, €3 = f(N)—f(N) €S,

whenever J is a quasinormed operator ideal with majorization property. In
particular, thisis true if 3 = §;.

Recall that in the case I = §; one cannot replace the Besov class BL,; (R?) with the
Lipschitz class. Indeed, even in the case of self-adjoint operators a Lipschitz function f
on R does not possess the property

A—BeS, = f(A)-f(B)ES,.
This was shown for the first time in [171]. Later necessary conditions were found in
[146] and [153]] that also show that Lipschitzness is not sufficient.

The following lemma is an immediate consequence Theorems (4.2.5) and(4.2.6).

Lemma (4.2.10)[144]. Let f be a function in C,(R?) such that

suppFf c{(eC:|{|<a}, o>0.
If N; and N, are normal operators, then

lf (N1) — F(N)l < const ol f ]l [INy — N, |l.
Theorem(4.2.11)[144]. Let f belong to the Besov space Bl ,(R?) and let N; and N, be
normal operators whose difference is a bounded operator. Then (28) holds and
LFNL) = FOV)I < const IIf ] gy, ay 1Ny = Wyl

Proof. It follows from Lemma (4.2.10) that

IFW) = FON < D /() = (W)l < const Y 2%l lIN; = M,

nez nez
< const || fllpy, (r?)lIN1 — No |l
In other words, functions in BL,; (R?) must be operator Lipschitz.
We can obtain similar results for operator ideals.
Lemma (4.2.12) [144]. Let 3 be a quasinormed ideal of operators on Hilbert space
that has majorization property and let f be a function in €, (R?) such that
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suppFf c{(eC:|{|<a}, o>0.
If N; and N, are normal operators such that N, — N, € 3, then
f(N) — f(N2) €3 and  If (N1) — fF(N)llg < callfllolINy — Nollg

for a numerical constant c.
Theorem (4.2.14)[144]. Let I be a quasinormed ideal of operators on Hilbert space
that has majorizati3on property and let f belong to the Besov space BL,(R?). If N;
and N, are normal operators such that N; — N, € 3. Then f(N,) — f(N,) € S and

If(N) = F(N)ls < cllf Il gy wey 1INy — Nall
for a numerical constant c.
Proof. In the case where J is a normed ideal the result is an immediate consequence of
Lemma (4.2.12). In particular, Theorem(4.2.13) is true for 3 =S¢ . To complete the
proof in the general case it suffices to use the majorization property.
Corollary(4.2.14)[144]. There exists a positive number c such that if f € B ;(R?) and
let N;and N, are normal operators such that N; — N, € §, , then

If(Ny) = fF(Nls, < IF I g w2y lINy — Nl g, -
Recall that a € (0,1), the class 4,(R?) of Holder functions of order « is defined by:

1008 2 {11 oy = sup 2L < o)
Z1%2Zo Z1 — ZZI
We show that in contrast with the class of Lipschitz functions, a Holder function of
order a € (0,1) must be operator Holder of order a.
We also consider the more general case of functions in the space 4, (R?) , where w is

an arbitrary modulus of continuity.
Theorem(4.2.15)[144].There exists a positive number ¢ such that for every a € (0,1)
and every f € A,(R?),

IF V) = FONI < (@ = @) I f Il g, rzy I Ny — NI (42)
for arbitrary normal operators N; and N,.
Proof. The proof is almost the same as the proof of Theorem 4.1 of [148] (see also
Remark following Theorem 4.1 in [148]) for self-adjoint operators. All we need is the
following:

I/ (N1) = fu(NII < const 27| f || = |INy — Nell, n € Z, (43)
and
| full o < const 277¢||f || 4 (r2), M € Z, (44)
where the functions f,, are defined by (6). We remind that (43) is a consequence of
Lemma(4.2.10), while (44) is a special case of Theorem(4.2.1).
The deduction of inequality (42) from (43) and (44) is exactly the same as in the
proof of Theorem 4.1 of [148], in which inequality (42) for self-adjoint operators is
deduced from the corresponding analogs of inequalities (43) and (44).
Consider now more general classes of functions. Let w be a modulus of continuity.
Recall that the class 4, (R?)is defined by
(o CIf(z) ~ f(2)
Ao (R = {f' I, ey = zsilizz w(lz; — z,]) = oo}'
As in the case of functions of one variable (see [147], [148]), we define the function w,
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by

“w(t
w,(x) & xf wt(z) dt, x> 0. (45)
X

Theorem (4.2.16)[144].There exists a positive number c such that for every modulus of
continuity w andevery f € 4, (R?) ,

If (V) = FNI < cllflla, w2y (1N, = NI (46)
for arbitrary normal operators N; and N, .
Proof.To prove Theorem(4.2.16), we need inequalities (43) and Theorem(4.2.1). The
deduction of inequality (46) from (43) and Theorem(4.2.1) is exactly the same as it was
done in the proof of Theorem 7.1 of [148] in the case of self-adjoint operators.
Corollary(4.2.17)[144]. Let w be a modulus of continuity such that

w,(x) < constw(x), x>0,
and let f € A, (R?). Then
If(Ny) = fF(NII < const If |, rzyw(IINy — N1

for arbitrary normal operators N; and N, .

Theorem(4.2.16) allows us to estimate |[f(N;) — f(N,)]| for Lipschitz functions f and
normal operators N; and N, whose spectra are contained in a given compact convex
subset of C.

For a Lipschitz function f on a subset K of C, the Lipschitz constant is, by definition,

I/ llLip & sup {If(iz : I;Z(IQ)I .G EK G # (2}-

For a Lipschitz function f on a compact convex subset K of C, we extend it to C by the
formula

f(§) = f(Sw), (47)

where {4 is the closest pointto ¢ in K . Itis easy to see that the Lipschitz constant of
this extension does not change.

Theorem(4.2.18) [144]. Let N, and N, be normal operators whose spectra are contained
in a compact convex set K and let f be a Lipschitz function on. Then

d
£ @) = QNI < const I gl = Mall (1+ loggr—pr). (48)

where d is the diameter of K .
Proof. Without loss of generality, we may assume that ||f||,;, = 1. Let us extend f to C
by formula (47). Define the modulus of continuity w by
_(6 68<=d,
w(8) = {d, §>d.
Clearly, f € A,(R) and I|fll,m) < IIfllLip- We have

ddt ® dt d
w*(a)zaf —+5df — =6log=+6, §<d,
s t gt )

where w, is defined by (45). Now inequality (48) follows immediately from
Theorem(4.2.16).

We obtain sharp estimates for f(N;) — f(N,) in the case when f € 4,(R?) ,0<a <
1,and N, and N, are normal operators such whose difference belong to Schatten—
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von Neumann classes §,. We also obtain more general results in the case when the
difference of the normal operators belongs to operator ideals.

Let us first state the result for Schatten—von Neumann classes.
Theorem(4.2.19)[144]. Let 0<a <1 and1l <p < . Then there exists a positive
number c¢ such that for every f € A,(R?) and for arbitrary normal operators N; and
N, with N; — N, € §,,, the operator f(N,) — f(N,) belongs to §,,, and the following
inequality holds:

I f (N,) _f(Nz)”sp,a = C”f”Aa(]R)”Nl - N2||?p.

We discuss the case p = 1 after the proof of Theorem(4.2.21).

Theorem9.1 is an immediate consequence of a more general result for operator
ideals, see Theorem(4.2.25) below.

To proceed to operator ideals, we start with the ideals S}, . Recall that for { >0
and p > 1, the normed ideal S}, consists of all bounded linear operators equipped with

the norm
1/p

l
Tl 2 > (5m)”
=0

Theorem(4.2.20)[144]. Let0 < a < 1. Then there exists a positive number ¢ > 0 such
that for every l > 0,p € [1,»),f € 4,(R?), and for arbitrary normal operators N; and
N,on Hilbert space with bounded N; — N,, the following inequality holds:
Si(F(ND) = F(N2)) < cllfllagmzy @ + )™ PIIN, = NI,

foreveryj <L
Proof. The proof is almost the same as the proof of Theorem(4.2.5) of [149]. To be able
to apply the reasonings given in the proof of Theorem(4.2.5) of [149], we need
inequality (44) and the following inequality:

£2(N2) = fu(N)llgy < const 2" (| fll o lINy = Nollgt, n€Z,  (49)
where the functions f,, are defined by (6). Inequality (49) is an immediate consequence
of Lemma (4.2.12). All the details can be found in the proof of Theorem(4.2.5) of [149].
Theorem (4.2.21)[144]. LetO < a < 1. Then there exists a positive number ¢ > 0such
that for every f € A4,(R?) and arbitrary normal operators N; and N, on Hilbert space
with N; — N, € §, , the operator f(N;) — f(N,) belongs to S1, and the following

inequality holds:
If (V1) = F(N)ls, < cliflla ey lINy = NS,

Proof. As in the case of self-adjoint operators (see Theorem 5.2 of [149]), this is an
immediate consequence of Theorem(4.2.20) in the case p = 1.

Note that the assumptions of Theorem(4.2.21) do not imply that f(N;) — f(N,) €
S1/¢- This is not true even in the case when N; and N, are self-adjoint operators. This
was proved in [149]. Moreover, in [149] a necessary condition on the function f on R
was found for

f(A) —f(B) € S1/o» Whenever A=A "B=B" and A—BE€S,.
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That necessary condition is based on the §,, criterion for Hankel operators ([145] and
[172], Ch. 6) and shows that the condition f € A,(R) is not sufficient.

The following result ensures that the assumption that N, — N, € §; for normal
operators N, and N, implies that f(4) — f(B) € §,/, under a slightly more restrictive
assumption on.

Theorem(4.2.22)[144]. Let 0 < a < 1. Then there exists a positive number ¢ > 0 such
that for every f € B%,(R?) and arbitrary normal operators N; and N,on Hilbert space
with N, — N, € §,, the operator f(N;)— f(N,) belongs to §,,, and the following
inequality holds:
If(N) = F(NDls,,, < 1fllge, m2yll Ny = N2 IS,

Note that in the case @ = 1 turns into Corollary (4.2.15).
Proof. Again, if we apply Lemma (4.2.10), the proof is practically the same as the proof
of Theorem(4.2.7) in [149].
Theorem (4.2.23). Let0 < a < 1. Then there exists a positive number ¢ > 0 such that
for every f € A,(R?) and arbitrary normal operators N;and N;on Hilbert space with
bounded N; — N,, the following inequality holds:

SiF(ND = FINDI YD) < clIF Iy Tay05 (N = Np), j =0,
Recall that the numbers g; (N; — N,) defined by (11).
Proof. Asin the case of self-adjoint operators (see [149]), it suffices to apply
Theorem (4.2.20) with | =j and p = 1.

Now we are in a position to obtain a general result in the case f € 4,(R?) and
N; — N, € 3 for an arbitrary quasinormed ideal 3 with upper Boyd index less than 1.
Theorem(4.2.24). LetO<a <1. Then there exists a positive number ¢ > 0 such
that for every f € A,(R?) , for an arbitrary quasinormed ideal 3 with 85 <1, and
for arbitrary normal operators N; and N, on Hilbert space with N; — N, € J, the
operator |f(N,) — f(N,)| ¥* belongs to J and the following inequality holds:

1F ) = FONI Y < CSIFIL, oy I Ny = Nl
Proof. The proof is almost the same as the proof of Theorem 5.5 in [149].
We can reformulate Theorem(4.2.24) in the following way.
Theorem(4.2.25). Under the hypothesis of Theorem(4.2.24), the operator f(N;) —
f(N,) belongs to 3{/« and
If(NL) = f(N) g0y < c*CSNf 1l g, mzyll Ny — N2 lIS.
The following result is a consequence of Theorem(4.2.24).
Theorem(4.2.26). Let0<a < land1l <p < oo. Then there exists a positive number ¢
such that for every f € 4,(R?) , everyl € Z,, and arbitrary normal operators N; and

N, with bounded N; — N, , the following inequality holds:
l

l
14
D (5UFM) = FAM) < ellf 15z > (55(Ny = )"
j=0 j=0
Proof. As in the case of self-adjoint operators (see [149]), the result immediately

follows from Theorem(4.2.24) from (16).
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We obtain estimates for quasicommutators f(N;)R — Rf(N,), where N; and N, are
normal operators and R isabounded linear operator. In the special case when R = [
we arrive at the problem of estimating f(N;) — f(N;) that we have discussed above.
On the other hand , in the special case when N; = N, we have the problem of
estimating commutators f(N)R — Rf(N).

It turns out, however, that it is impossible to obtain estimates of || f(N;)R — Rf(N,)||
in terms of ||N;R — RN, ||. This cannot be done even for the function f(z) = Z.

Though the well-known Fuglede-Putnam theorem says that the equality N;R =
RN, for a bounded operator R and normal operators N, and N, implies that NyR = RN,
the smallness of N;R — RN, does not imply the smallness of NR — RN;.

Indeed, it follows from Corollary 4.3 of [169] that for every ¢ > 0 there exists a
bounded normal operator N and operator R of norm 1 such that

INR — RN|| <& but |IN*R—RN*|| = 1.
The results of [169] also imply that if f € C(C) and

If (N)Q — Qf (N)|l < const [[NQ — QN||
for all bounded operators Q and bounded normal operators N , then f is a linear
function, i.e., f(z) = az + b for some a, b € C.

We obtain estimates for quasicommutators f(N;)R —Rf(N,) in terms of the
quasicommutators N;R — RN, and N;R — RN,.

Let us explain what we mean by the boundedness of N;R — RN, for not necessarily
bounded normal operators N, and N,.

We say that the operator N;R — RN, is bounded if R(Dy, ) € Dy, and

IN; Ru — RN,ul| < const ||ul| forevery u € Dy, .

Then there exists a unique bounded operator K such that Ku = N;Ru — RN,u for
allu € Dy,. In this case we write K = N;R — RN,. Thus N;R — RN, is bounded if and
only if

|(Ru, N{v) — (Nzu, R*v)| < const |[ul| - [|v]| (50)
For every u € Dy,and v € Dy: = Dy, . It is easy to see that N;R — RN, is bounded if
and only if N/R*—R*N, is bounded, and (N;R —RN,)* = —(N;R*— R*N;). In
particular, we write N;R = RN, if R(Dy, ) € Dy, and N;Ru = RN,u for every u € Dy,.
We say that ||[N;R — RN, || = « if N;R = RN, isnotabounded operator.
Theorem (4.2.27). Let f be a function in C,(R?) whose Fourier transform Ff has
compact support. Suppose that R is a bounded linear operator, N; and N,are normal
operators such that the operators N;R — RN, and Ny R* — R*N, are bounded. Then

f(Ny) = f(N2)
- f f (D) (21, 22)dEy (2)(BLR — RB,)dE, (z,)
C2

+ f f (Duf) (21, 22)dE1 (20) (AR — RA)AEy(25) (51)
CZ

Proof. The proof is similar to the proof of Theorem(4.2.6), Consider first the case when
N, and N, are bounded operators. Put
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d = max{|[Ni[l.[IN-[I} and D& {{€C:[{|<d}
By Theorem(4.25), both D,f and D,f are Schur multipliers. We have

ff(cz(gyf)(zbZz)dE1(Z1)(B1R - RBz)dEz(Zz) = .UDXD(Dyf)(ZLZz)dE1(Z1)(B1R -
RB,)dE,(z;) = ffDXD(byf)(ZpZz)dE1(Z1)B1RdE2(Zz) -

I p(Dyf) (21, 22)dE1 (2)RBLdE; (22) = [f, . v1(Dyf) (21, 22)dE1 (21)RAE(27) —
.UDXDYZ(Dyf)(ZLZz)dE1(Z1)RdEz(Zz) = ffDxD(Y1 -
YZ)(Dyf)(ZbZz)dE1(Z1)RdEz(Zz) = ffDXD(f(xb}ﬁ) - f(xlaYZ))dE1(Z1)RdEz(Zz)-
Similarly,

f f (D) (21, 2,)dE () (AR — RA)AE, (2,)
CZ

= | Gy - £ 7)) aEL)RAE, ).
It follows that o

.U(Dyf)(zl’ZZ)dE1(Z1)(B1R — RB,)dE,(z;)
C2
+ f f (Dxf)(21,22)dE; (21)(A1R — RA,)dE,(2)
C2

= .U(f(xb}ﬁ) - f(xz,yz))dEl(zl)RdEZ(Zz)

DxD

= || reyDaBEIRAE D) — ([ FGy)aE GORAE) = F(NIR — RE,).
DxD DxD
In the general case we use the same approximation procedure as in the proof of

Theorem(4.2.6).

As in the case of differences f(N;) — f(N,), we can extend Theorem 10.1 to functions
finBg(R?).
Theorem(4.2.28)[144]. Let N;and N,be normal operators and let R be a bounded linear
operator such that the quasicommutators N;R — RN, and N;R — RN; are bounded.
Then (51) holds for every f € BL,,(R?).
Theorem (4.2.29)[144]. There exists a positive number ¢ such that for every normal
operators N;and N,, every bounded linear operator R and an arbitrary function f in
B, (R?) the following inequality holds:

If (N))R — RF (NI < cllf g, mzy max{ll NyR — RN |ls, Il NyR — RNZ |[}.
Theorem(4.2.30)[144]. Let 0 < a < 1. Then there exists ¢ > 0 such that for every f €
A, (R?) , for arbitrary normal operators N;and N, and a bounded operator R the
following inequality holds:

If (NDR = RF(N ) < cllfll 4, @z Max{ll NyR — RN, ||, [l NyR — RNZ [[}¥]|R|I* <.
Theorem (4.2.31)[144]. There exists ¢ > 0 such that for every modulus of continuity
w, for every f € A,(R?) , for arbitrary normal operators N;and N,, and a bounded
nonzero operator R the following inequality holds:
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IR = REQUN < clf Rl (M P = R R =LY

The next result shows thatin the case N;R—RN, €S, 1<p<o, and f €
Ag(R?), 0<a<1, we can estimate [f(N,)R—Rf(N)lls,,, interms of || N,R—
RN, IISp , we do not need || NfR — RN2*||sp-
Theorem(4.2.32)[144].Let O<a <1 and1l <p <. Then there exists a positive
number ¢ such that for every f € A, (R?) , for arbitrary normal operators N;and N,and
a bounded operator R with N;R—RN, €S, and NyR — RN, € §,,, the operator
f(N1)R — Rf (N,) belongsto S,,, and the following inequality holds:

IF(NDR = REWN)s, < cllflla,ull MR — RN, I

Proof. In the same way as in the proof of Theorem 9.1, we can prove that

a
LF(NDR = RE(N)s,, < cllflla ey max{Il NyR = RN I, I| N R = RN s, }
The result follows from the well-known inequality:
| NfR — RN; |5, < const || N;R — RN, [ls , 1 <p < oo, (52)
see [173] and [174].
Inequality (52) does not hold for p = 1, see [175]. Thus to obtain analogs of Theorems
(4.2.22) and (4.2.23), we have to estimate the quasicommutators f(N;)R — Rf(N,) in
terms of both N;R — RN, and Ny/R—RN,. Let us state e.g, the analog of
Theorem(4.2.23).
Theorem(4.2.33)[144]. Let0 < a < 1. Then there exists a positive number c such that
for every f € B (R?) , for arbitrary normal operators N; and N, and a bounded
operator R with N;R — RN, € §; and NyR — RN, € §;, the operator f(N;)R — Rf(N;)
belongs to §,,, and the following inequality holds:
If(NDR = REN s, < cllif llge, w2y max{ll NyR — RN, I, | NiR — RN; Il }".
The proof is almost the same as the proof of Theorem (4.2.22).
Corollary (4.2.34) [293]: There exists a constant ¢ > 0 such that for an arbitrary modulus of
continuity w and for an arbitrary function f in A,,(R?) , the following inequality holds:
If = £ * Vil < co @ ™fllgm2) N EZ. (53)
Proof. We have

If 1) = (F * V) (20| = 2% f(f(xr—1) — flx_q — }’r—1)) V(2 yr_1)dy,-1
]RZ

< 2Ly [ @y aD V@)l
]RZ

=2flaywy | oD IVE@Y, Dy,
{lyr—11s277}

2l [ oD V@Y, Dy,
{lyr-11>2=7}
Clearly,
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2 [y DY@y iy < 0@V
{lyr-11=277}
On the other hand, keeping in mind the obvious inequality 27" w(|y,_1]) < 2]y,_1lw(27™)
for |y,_1| = 27", we obtain

g2n f o(lys_1D) IV (@, -Dldy, 1

{|J’r—1|>2_n}
< 2. 23ng(2 1) f Yral V@, —0)dys s
{|YT—1|>2_TL}
= 20(2") f ral IV s_0)ldyr_y < const w(2™),
{lyr—1l>1}

This proves (53).
Corollary (4.2.35) [293]: Let f be a continuous bounded function on R? whose Fourier
transform Ff has compact support. Then the functions ©, f and D, _f are Schur
multipliers with respect to arbitrary Borel spectral measures E, andE, ;.
Moreover, if
suppFf c{¢ _,€C:|¢_,|<c}, >0
then

< const o|f |l ~and||D,, __ f]| < const a||f|| = (54).

1Dl
Proof :

We are going to show Theorem 5.1 proved by [144] that gives sharp estimates for the norms

of ©,  fand D, _ f inthe space of Schur multipliers. Consider the function®,___f,

[ Vrr1) = (X1, Vri1)
(Dxr_lf)(Zr,ZH_l) = S = = 1Zry Zre1 € C.
Xy — Xr41

The first natural thought would be to fix the variable y, and represent the function
f(xrayr+1) - f(xr+1aYr+1)
Xr — Xr41
in terms of the integral projective tensor product L” ®; L in the same was as it was done
in [153] for functions of one variable. However, it turns out that if we do this, we obtain in
the integral tensor representation terms that depend on the mixed variables (x,., y,,1), and so
this would not help us.

The first proof of Corollary (4.2.36) we have found was based on a modification of the
integral tensor representation obtained in [153] and an estimate in terms of the tensor norm
(4.6) rather than the integral projective tensor norm.

We give a different approach based on an expansion of entire functions of exponential type o

sinox,_q }

OXp_1—TIN

M(Er.Er+1)

Xr—1

(xT1 }’r+1) -

in the series in the orthogonal basis { .
nez

For a topological spaceX , we denote by C, (X) the set of bounded continuous (complex)
functions onX. If X and Yare topological spaces, we denote by C,(X) &, C,(Y) the set of
functions @ on X’ x Y that admit a representation
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D(xXp_1,Yr-1) = Z On (- )P (Vr-1), (Xr—1,Yr-1) EX X Y. (55)

n=0

such that ¢,, € C,(X), ¥, € C,(Y) and

1/2 1/2
(sup kan(xr_l)lZ) (sup len(yr_l)P) <w  (56)
Xy—1EX >0 Yr-1€Y

n=0

For®d € C,(X) ®j, C,(Y), its norm in C,(X) ®;, C,(Y) is, by definition, the infimum of the
left-hand side of (56) over all representations (55).
For 0 > 0, we denote by &, the set of entire functions (of one complex variable) of
exponential type at mosto.
It follows from the results of [153] that
fOo1) = fr-1)
Xr—1 = Yr-1
for every Borel spectral measures E, and E,.,; on R.
It was shown in [150] that inequality (57) holds with constant equal to1l.
Corollary (4.2.36) [293]: Let f be a continuous bounded function on R? whose Fourier
transform Ff has compact support. Suppose that N, and N,,; are extended normal
operators such that the operator N,, — N, ; is bounded. Then

F) = ) = [ (D, o) 2 DB ) (A + €Dy = (4 + B 1 (2r0)
CZ

feE;NL*(R) =

< consta || £l . (r) (57)
M(ErErs1)

+ .U (Dxr_lf)(zra Zr+1)AE-(2,) (A — A3)AE, 1 (2r41) (58)
C2

We postpone the proof of Corollary (4.2.36)till the next section. Let us deduce here Corollary
(4.2.37) from Corollary (4.2.36). (see [144]).

Proof : Consider first the case when N, and N,,; are bounded operators. Put

d = maqIIN, [l [N, lI} and D 2 {¢ € C:J¢,_, | < d}.

By Theorem 5.1, both D,, __f and D, __ f are Schur multipliers. We have
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ff (Dyrqf)(zr’ Zr+1)AE(2,) (A+ €)1 — (A + €)3)dE 1 1(2,41)
CZ

= [ @) 2B ) (A 0, = (A + B 1 (2100)

DxD

= || ) 2B ) (A + ol i)

— ([ @) 2B ) (4 + 2B i)

= || @y, ) 2B ) B )

— [ yra(®@y, PG 2r)E ) Ay

= || 0r =9y, ) 2022 By s 2r)
= || GGy = G VB (2) By

Since M(E,, E,,1) is a Banach algebra, it is easy to see that the function

(ZraZr+1) - f(xrayr) - f(xrayr+1) = (Yr - Yr—l)(Dyr_lf)(ZraZr+1)
is a Schur multiplier. Similarly,

ff (Dxr_lf)(zr1zr+1)dEr(Zr) (A — A,)dE,1(241)
CZ

= f (f Gt Yr1) = F i1, Yr41))AE(2,) AE, 41 (2,44).

DxD
It follows that

ff (byrqf)(zr’ Zr41)dE(2,) (A+€); — (A+ €))dE, 41 (241)
C2
+ .U(Dxr_lf)(zraZr+1)dEr(Zr) (A1 — A2)dEr11(2y44)
C2

= f f (FCor ) = F o Vrs ) VAEr(2) dEy a1 (z141)

DxD
= || £ B G = [ i) ) B )
DxD DxD

= f(N,) = f(Nyyq).
Consider now the case when N,. and N,.,,are unbounded. Put
Pk = Er({(r—l e C I(r—l I = k})anko = r+1({(r—1 e C I(r—l I = k}) ) k> 0.
Then
Nr,k e PkNr and Nr+1,k e QkNr+1
are bounded extended normal operators. Denote by (E,_;);, the spectral measure
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of(Ny_1)jx, J = p,p+ 1. 1tis easy to see that
Ny = PA; +iP (A +€)andNy g, = A0, + i(A+€),0k, k>0.
We have

Py (.Ucz(byr_lf)(zra Zr41)dE (z,) (A+€); — (A+ E)z)dEr+1(Zr+1)) Qr =
Pk (.U@Z(Dyr_lf)(zra Zr+1)dEr,k(Zr) (Pk(A + E)1 - (A + E)ZQk)dEr+1,k(Zr+1)) Qk and

Pk ff (Exr_lf)(zrazr+1)dEr(Zr) (Al - AZ)dEr+1(Zr+1) Qk
C2

= Pk ff (Dxr_lf)(zra Zr+1)dEr,k (Zr) (PkAl - AZ Qk)dEr+1,k(Zr+1) Qk-
C2

If we apply identity (58) to the bounded extended normal operators N, andN;,;,, we
obtain

Pe (F(Nr) = fF(Npsaie) ) Q

= Pk ff (Dyr_lf)(zra Zr+1)dEr,k(Zr) (Pk(A + E)1
C2
- (A + E)ZQk)dEr+1,k(Zr+1) Qk

+Pk ff (Exr—lf)(zr’ Zr+1)dEr,k(Zr) (PkAl - AZQk)dEr+1,k(Zr+1) Qk-
c2

Since obviously,

Py (f(Nr,k) - f(Nr+1,k)) Q = P (F(N,) = fF(N,y 1)) Q.
we have

Pk(f(Nr) - f(Nr+1))Qk

= B [[ (@4, 1) 2r4)dE () (A + O, = (A + JE ) |04
c2

+ .U (Dxr_lf)(zrazr+1)dEr(Zr) (A; — Ay)dE,1(2r41) | Qx
C2

It remains to pass to the limit in the strong operator topology.
We would like to extend formula (58) to the case of arbitrary functions f inBL,(IR?).
Since BL,(R?) consists of Lipschitz functions, it follows that forf € BL, (R?),

|f ($r-0| < const(1 + [&r—q [), -1 €C. (59)
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Hence, forf € BL,(R?),

Df(Nr—l) > DNr—l'

Corollary (4.2.37) [293]: Let N,. andN,.,, be extended normal operators such that N, — N,
is bounded. Then (58) holds for every f € B, (R?)

Proof. It suffices to prove that for u € Dy =Dy, ,

(f(Nr) - f(Nr+1))u

= | [ @4 1) 2r1)dE ) (A + 1 = (A + 9B s ) |
c2

+ ff (Dxr_lf)(zra Zr+1)dEr(Zr) (A; — Ay)dE,41(zy41) |u
c2

Indeed, if N,_; is an extended normal operator and f satisfies (59), then f(N,_,) is the
closure of its restriction to the domain ofN,._; .

We have
(F) = FWNee))u = ((F = FO) W) ) u = ((f = F(O)) Nysr) ) u
(¢ = r@)W)u= > ((f - HO)MN))u (60)
and "
(= FO)Y W) u =D ((fa = ul®) o)) w (61)

where the functions f,, are defined by (2.2). Moreover, the series on the right-hand sides of
(60) and (61) converge absolutely in the norm.
Thus

(PO = F W) = D (i) = foNo))u

nez
It remains to observe that

ff (byrqf)(zr’ Zr41)AE(2,) (A+€); — (A+€))dE, 41 (241)
c2

= Z ff (Dyr_lfn) (ZraZr+1)dEr(Zr) ((A + 6)1 - (A + E)Z)dEr+1(Zr+1)

Nnez 2
and

ff (Dxr_lf)(zrazr+1)dEr(Zr) (A — A))dE, 1(Z,441)
CZ

= Z .U (Dxr_lfn)(zr, Zp41)dE (2,) (A) — Ay)dE,1(Z41),

nez c2
and the series on the right-hand sides converge absolutely in the norm which is an
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immediate consequence of inequalities (54).
Corollary (4.2.38) [293]: Letf € €, n L*(R). Then
f(xr—l) — f(Vr-1) — Z(_l)na . f(xr—1) - f(ﬂna—l) ) sinay,_4

Xr—1— Vr-1 0Xy—q1 — TN 0Yr—1 — TN

— l f(xr—l) - f(tr—l) Sin(o'(Yr—l - tr—l))

(62)

dty_1,  X-1,¥r-1 €ER (63)

i Yr-17 bra
Moreover,
X._)—f(mmoe™H|? 1 Xr_1) = f (tro)I?
Zlf( ) —flmo DI L e )G p e
(0%, — n)? no g (o1 —tr1)?
nez
and
sinZ gy,._ 1 [ sin*(o(yr—q1 — tr—
Yr-1 =1= —f ( (yr ! L 1)) dtr—11 Vr-1 € R. (65)
net. (oxy_1 —mn)? nolg  (ro1 = tr-1)?

Proof. Clearly, it suffices to consider the casec = 1. Let us first observe that the identities
in (65) are elementary and well known.

We are going to use the well-known fact that the family {%} orthogonal basis in
=17 nez

the space€; n L2(R), forms an

Flar) = Y (D" Fm) 2L (66)
and nez
1
DI =2 [ 1R )P, (67)
R

Nnez

For every F € €, n L*(R), see, e.g., [167], Lect. 20.2,Th. 1. It follows immediately from

(67) that

1

Z F(mn)G(mn) =;f F(t,_1)G(t,_,)dt,_,.forevery F,G € € n L*(R). (67)
nez R

Given x,_; € R, we consider the function F defined by F(1) =

F € €, n L2(R).
It is easy to see that (62) is a consequence of (66) and the equality in (64) is a
consequence of (67). Itis also easy to see that (63) follows from (6.10).
It remains to prove that
1 If(xr—l) - f(tr—l)lz
— dt,_, < 3lIfII}-
T JR (xr—l - tr—l)2 Tt L(R)
for every F € &, nL*(R) and x,_, € R. Without loss of generality we may assume
that|| fll =gy = 1. Then |If'll =y < 1 by the Bernstein inequality. Hence,
|f (xr—1) = f(tr-1)| < min(2, |x,_; — t,_4]), and we have
1 1fCGeroa) = f(6-0)I? 1 min(4, (x—1 — tr—1)?)

dt -1 S -
mlr (g —tr_q)? ’ TJR (g — tr—1)?

2 (2 8 (*dt,_, 8
:—f dt,_, +— _=-<3
TJy )y (tr-1) T
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Corollary (4.2.39) [293]: Let ¢ > 0 and let f be a function in C, (R?) such that
suppFf < {1 € C:[§4]< o}
Then®,  f,D, . f € (p(C) &y Cp(C),

D, f| < ollfll

Cp(Q®rChH(C) —
and

||Dyr_1f||Cb((C)® cp(C) = O-”f”LDO((C)
Proof. Clearly, f is the restriction to R2?of an entire function of two complex
variables.Moreover, f(:,a),f(a,’) € € nL*(R) for everya € R. It suffices to consider the
caseo = 1. By Theorem 6.1, we have

dff(x Yre1) = f (i1, Yrs1)
(Dxr_lf)(z‘raz‘r+1) def rJr+ r+ r+

Xy = Xpr41 '

= Z(_l)n f(nn’yr+1) - f(xr+1,yr+1) ] SIn Xx,.

nez N — Xr41 X, — N
and
X, — flx,,
(DYT 1f)(Zr’Zr+1) = [ yrﬂ) f G Yraa)
— Vr+1 '

Nnez —Tn yr+1 - T[n'

Note that the functions St ang Lr¥r)- f(x”m) depend on z, = (x,,y,) and do not

Xp—TINn Vy—
depend on z,.; = (x4, ¥r+1) While the functions

FEnyri1)=f Cre1.Vr+1) and Sin Yr41 depend
TN—Xr41 Yr41—TN

on z,..; = (x,41,y,+1) and do not depend on z, = (x,,y,.). Moreover, by Corollary
(4.2.39)we have

S 3D =P TOL < 311 M < 3

nez
Z |f (mn, y,41) — f(xr+1a}’r+1)|2

(mn — x,41)?

<3l Cyre )z < 31112,

nez
and

sinx, sin? y,,,

_— = _ =1.
(x, — mn)? (Vr41 — mn)?
Nnez

nez

This implies the result.
Corollary (4.2.40) [293]: Letf belong to the Besov space BZL,(R?) and let N,and N,.,, be
extended normal operators whose difference is a bounded operator. Then (58) holds and

If (N,) = fF(Nes DI < COI’]St||f||B§O1(Rz)||Nr — Npgll.
Proof. It follows that

”f(Nr) - f(Nr+1)” = Z”fn(Nr) - fn(Nr+1)” = COﬂStZ 2n”f”L°° ”Nr - Nr+1”

nez nez
= C0nSt||f||B1 (RZ)”Nr = Ny g4l

(see the definition of B, (R?) in § 2).
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In other words, functions in B, (R?) must be operator Lipschitz.
Corollary (4.2.41) [293]: Let 3 be a quasinormed ideal of operators on Hilbert space that
has majorization property and let f belong to the Besov spaceBZ,(R?). If N, and N,,, are
extended normal operators such thatN,, — N,,; € 3. Then f(N,) — f(N,4+1) € I and

If(N:) = F(Nry Dl < C“f”Bgol(RZ)”Nr — Npyallg
for a numerical constant c.
Proof. In the case where J is a normed ideal the result is an immediate consequence In
particular, Corollary (4.2.42)is true for3 = S, . To complete the proof in the general case it
suffices to use the majorization property.
Corollary (4.2.42) [293]: There exists a positive number ¢ such that for every ¢ > 0 and
every € A,_.(R?),
If(N:) = FNee DI < (@) IF Nl oy N = Nyt 109, (68)
for arbitrary extended normal operators N, and N, 4.
Proof. The proof is almost the same as the proof of Theorem 4.1 of [148] (see also Remark
following Theorem 4.1 in [148]) for self-adjoint operators. All we need is the following:

“fn(Nr) - fn(Nr+1)” < const 2n”fn”L°°”Nr - NT+1||1 n € Z, (69)
and
| full = < const 27"A=D|| £, gy, n € Z, (70)

where the functions f,, are defined by (2.2). We remind that (69) is a consequence while (70)
is a special case of Corollary (4.2.35).
The deduction of inequality (68) from (69) and (70) is exactly the same as in the proof
of Theorem 4.1 of [148], in which inequality (68) for self-adjoint operators is deduced
from the corresponding analogs of inequalities (69) and (70).

Consider now more general classes of functions. Let w be a modulus of continuity. Recall

that the class A, (R?)is defined by
If (z,) — f(z,41)I }
< ©O¢.

2Y) def . =
Aw(R ) = {f “f”/lw(]RZ) - 2%z (U(IZr — Zr+1|)
T T+1

As in the case of functions of one variable (see [147], [148]), we define the function w, by

* w(t,_q1)
(U*(xr_l déf xr_lf ﬁdtr_l, xr_l > O (71)
r-1

Corollary (4.2.43) [293]: There exists a positive number ¢ such that for every modulus of
continuity w and every f € A,(R?) ,
F@) = F WD < cllf L, y@. (N, = Ny ) (72)
for arbitrary extended normal operators N, and N, .
Proof. To prove Corollary (4.2.44), we need inequalities (69) and Corollary (4.2.35). The
deduction of inequality (72) from (69) and Corollary (4.2.35)is exactly the same as it was
done in the proof of Theorem 7.1 of [148] in the case of self-adjoint operators.

For a Lipschitz function f on a compact convex subset Kof C, we extend it to C by the
formula
f(Gr-1) & f(($r-1)8), (73)
Corollary (4.2.44) [293]: LetN, and N,,, be extended normal operators whose spectra are
contained in a compact convex set K and let f be a Lipschitz function on. Then
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—den)’ (4)

If(N:) = F(Nr DI < const || fllLipINy — Nyl (1 + log N
T
whered is the diameter of K .
Proof. Without loss of generality, we may assume that||f|.;, = 1. Let us extend f to C by
formula (73). Define the modulus of continuity w by
_(6, d=d,
w(8) = {d, §>d.

Clearly, £ € 4,(R) andllflls, s < lIflip. We have
dd * dt,_
w*(5) — 5.f T r—1

1)

fr1 4 sd

tr—1 d (tr—l)2
wherew, is defined by (71). Now inequality (74) follows immediately from Theorem 8.2.
Corollary (4.2.45) [293]: Lete = 0. Then there exists a positive number ¢ > 0 such that for
everyl >0, >0,f € A,_.(R?), and for arbitrary extended normal operators N, and
N,.,,on Hilbert space with bounded N, — N,.,,, the following inequality holds:

SN = F(Npin)) < ellflla,_ 2y + DTN, = Ny I3,

foreveryj <L
Proof. The proof is almost the same as the proof of Theorem 5.1 of [149]. To be able to
apply the reasonings given in the proof of Theorem 5.1 of [149], we need inequality (70) and
the following inequality:
”fn(Nr) - fn(Nr+1)”sll+6 < const 2n”fn”L°°”Nr - Nr+1”sll+ea n e x, (75)
where the functions f,, are defined by (2.2). Inequality (75) is an immediate consequence .
All the details can be found in the proof of Theorem 5.1 of [149].
Corollary (4.2.46) [293]: Lete > 0. Then there exists a positive number ¢ > 0 such that for
every f € A;_.(R?) and arbitrary extended normal operators N, and N,.,; on Hilbert
space with N, — N,,; €S, , the operator f(N,)— f(N,,,) belongs to S, and the

d
=6logg+6, 6 <d,

following inequality holds:
“f(Nr) - f(NH'l)”SLw = C”f”/ll_e(]RZ)”Nr - Nr+1||§1_6-
1—-€

Proof. As in the case of self-adjoint operators (see Theorem 5.2 of [149]), this is an
immediate consequence of Corollary (4.2.46) in the case € = 0.

Note that the assumptions of Corollary (4.2.47) do not imply that f(N,) — f(N,41) €
S1/1—¢- This is not true even in the case when N, and N,,, are self-adjoint operators. This
was proved in [149]. Moreover, in [149] a necessary condition on the function f on R was
found for
f(A)—f(A+€)€ESi/1_e, Whenever A=A""A+e=(A+¢€) and €€S,.

That necessary condition is based on the §,,. criterion for Hankel operators ([145] and
[172], Ch. 6) and shows that the condition f € A,_.(R) is not sufficient.

The following result ensures that the assumption that N,, — N, ; € S, for extended normal
operators N, and N,,; implies that f(4) — f(A+¢€) € S;/._1 under a slightly more
restrictive assumption on.

Corollary (4.2.47) [293]: Let € > 0.Then there exists a positive number ¢ > 0 such that for
every f € A;_.(R?) and arbitrary extended normal operators N,andN,,,on Hilbert space
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with boundedN, — N, 4, the following inequality holds:
Sj(lf(Nr) = f(NrD)I 1/1_6) = C”f”jl/l:(eRZ)O}'(Nr —Nyi1), j20.
Recall that the numbers o; (N, — N,.,.1) defined by (3.1).
Proof. As in the case of self-adjoint operators (see [149]), it suffices to apply Corollary
(4.2.46)with [ = j ande = 0.

Now we are in a position to obtain a general result in the case f € A;_.(R?) and

N, — N,,, € 3 for an arbitrary quasinormed ideal 3 with upper Boyd index less than 1.
Recall that the number Cy is defined in § 3.
Corollary (4.2.48) [293]: Let f be a function in C,(R?) whose Fourier transform Ff has
compact support. Suppose that R is a bounded linear operator, N,and N, ,are extended
normal operators such that the operators N,R — RN,,, and N;/R* — R*N;,,are bounded.
Then

f(Ny) = f (Nryq)
= .U (Dxr_lf)(zraZr+1)dEr(Zr)((A +€)1R — R(A+ €))dE,11(Zr41)
C2

+ .U(Dxr_lf)(zr,Zr+1)dEr(Zr)(A1R — RA)AE;11(2r41) (76)
C2

Proof. The proof is similar to the proof of Corollary (4.2.37), Consider first the case when
N, and N,.,, are bounded operators. Put

d = max{[|N; |l [IN; 44} and D & {¢,_; € C:|{,4| < d}.
By Corollary (4.2.36), both ©,, _f and D, _ f are Schur multipliers. We have

.U (Dyr_lf)(zra Zr41)dE (2, )((A+ €);R — R(A +€),)dE,,1(Z,11)
CZ

= .U (Dyr_lf)(zraZr+1)dEr(Zr)((A +€)1R —R(A+€))dE,11(Z41)

DxD

= .U (Dyr_lf)(zraZr+1)dEr(Zr)(A + €)1RAE; 1 1(2741)
DxD

- .U (Dyr_lf)(Zr, Zr+1)AE-(z.)R(A + €)2dE; 1 1(Zr41)
DxD

= || 5y, 1) 20 G IRAE, 1 2111)
DxD

- .U Yr+1(®yr_1f)(zraZr+1)dEr(Zr)RdEr+1(Zr+1)
DxD

= .U Or — yr+1)(®yr_1f)(zraZr+1)dEr(Zr)RdEr+1(Zr+1)
DxD

= [ Gy = 7)), G IRAE, 1210,
DxD

Similarly,
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.U (Dxr_lf)(zraZr+1)dEr(Zr)(A1R — RA)AE;11(2r41)
C2

= [ Gy = F i1 3r40)E, G RAE, 12y

DxD
It follows that

| @) 2 DB + R = RO+ €)E, 4(2r0)
(CZ
+ .U (Dxr_lf)(zwZr+1)dEr(Zr)(A1R — RA,)AE, 1 1(Zr41)
CZ

= ff (f(xra}’r) - f(xr+1aYr+1))dEr(Zr)RdEr+1(Zr+1)

DxD

= || £ B IRE G = [[ FOrin i) IRAE, )

DxD DxD

= f(NIR — Rf (Ny41)-
Corollary (4.2.49) [293]: Let € > 0. Then there exists a positive number ¢ such that for
every f € A,_.(R?) , for arbitrary extended normal operators N,and N,.;and a bounded
operator R with N,R — RN,,; € S1, andN;R — RN;,, € §,,., the operator f(N,)R —
Rf(N,,,) belongsto S,../;_ and the following inequality holds:

lf (N-)R — Rf(Nr+1)”S1+E/1_E = C”f”AHE(RZ)”NrR - RN,,+1||§1_+66.
Proof. we prove that
If (N IR = Rf (Ny1)ls, e/

< cllflln,_.quzy MaX{INR = RN, 1 s, o, IN:R = RNy s, J
The result follows from the well-known inequality:
INR — RN/ 4lls,, . < const|[N,R — RN, 4lls,,., €>0, (77)
see [173] and [174].
Note that inequality (77) does not hold fore = 0, see [175]. Thus to obtain analogs of
Corollary (4.2.47)we have to estimate the quasicommutators f(N,)R — Rf (N,,,) in terms of
both N.R — RN, andN;'R — RN, ,.
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